
The Stability and Control of
Curved Liquid Jet Break-up.

by

CHRISTOPHER JAMES GURNEY

A thesis submitted to
The University of Birmingham

for the degree of
Doctor of Philosophy

School of Mathematics
The University of Birmingham
SEPTEMBER 2009



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



Acknowledgments

Firstly I would like to thank my supervisors Steve Decent and Mark Simmons for

all the help throughout the course of my PhD. Their advice has been invaluable in

the completion of my thesis, and further thanks to Steve for his help with grant ap-

plications. Further thanks to Vicki Hawkins who has helped a mathematician perform

some experiments without dire consequences, and also my examiners for passing me.

I would also like to thank my friends and family for their continued support through-

out my time at university, despite their insistences that I get a real job. An additional

word of thanks to all at Birmingham who have made studying here immensely enjoy-

able, notably to those in my office who have had to put up with me for many years.

A special acknowledgment to Postgrad Mathletic, we may not be the best team in the

world, but we’re certainly better than Physics.



Abstract

An investigation into the break-up dynamics of a curved liquid jet has been studied.

A comprehensive review of previous works on straight and curved jet break-up is given,

with a detailed comparison between experimental investigation and theoretical models,

showing the full uses and limitations of the linear and nonlinear models. A local

stability analysis has been developed which can be used to investigate jet stability at

any point on the jet at any time. The uses of this model concerning break-up of a

ligament and short wave generation at break-up is discussed.

The Needham-Leach method is adopted to obtain the behaviour of linear and non-

linear waves in the large spatial and temporal limits. The onset of nonlinear wave

instability as an implication in satellite drop formation is discussed. A solution to the

jet equation is obtained which shows an example of Wilton’s ripples, a feature of many

other areas of fluid dynamics that has, to date, not been seen in liquid jet break-up.

A vibrating nozzle has also been developed which, when vibrating in frequency

regimes discovered in this thesis, can control the jet break-up such that satellite droplets

are significantly reduced.
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Chapter 1

Introduction

Liquid jet break-up is an interesting area of study due to the competing factors

bought on by the effects of surface tension; the contraction of a liquid’s surface to

minimise its energy state and the growth of capillary waves which break the jet. It is

an area of considerable interest to the industrial and scientific communities, with the

primary focus on the droplets produced post jet break-up, and scientific insights have

led to advances in fields such as the quality of ink jet printing.

Despite two hundred years of extensive research in the field of liquid jet break-up,

with noticable advances in the classical works of Rayleigh [39] and Weber [47], and

more recently Eggers [15], there are many areas not fully understood. With advances

in computational techniques and computing power, greater details of jet break-up can

be achieved, though mathematical methods remain invaluable in understanding the

dynamics behind the numerical solutions.

It is the aim of this thesis to develop a mathematical understanding of curved liquid

jets, using similar techniques to those used in examining classical straight jets, as well

as developing new methods to shed new insight into the complex dynamics involved.

In Chapter 2 we briefly summarise the results of the aforementioned classical works

3



on straight jets. We discuss the use of a linear stability analysis in identifying the

unstable linear waves involved in jet break-up, and present nonlinear analysis which

can be used to simulate break-up.

In Chapter 3, we detail the extension of research on straight jets to include the

effects of rotational forces, outlining the models of Wallwork et al. [46], Decent et al.

[12] and Părău et al. [36] that form the basis for the work in this thesis. We also

present an industrial scenario as motivation for the work.

In Chapter 4 we present some of the experimental work on curved liquid jet break-

up, describing the experimental set-up used at the University of Birmingham to repli-

cate the industrial problem. We also detail some methods of droplet control.

In Chapter 5 we fully analyze linear and nonlinear models simulating a curved liquid

jet. We classify different types of jet behaviour into different modes of break-up in order

to perform the full comparisons with experimental results presented in Chapter 6. In

Chapter 6 we also investigate the extent to which a numerical simulation models a jet

produced in an experiment, and highlight the uses and limitations of the mathematical

model.

In Chapter 7 we investigate the extent to which additional disturbances have an

effect on jet break-up. This will be used to explain any discrepancies between the

mathematical model and experimental results, and also give an indication of the use

of secondary disturbances to control droplet formation. In Chapter 8 we extend the

conventional stability analysis in order calculate the stability of a jet at any point in

time. This will permit a more detailed analysis of local stability, and will be used to

gain insight into jet dynamics during the break-up process.

In Chapters 9 and 10, we develop an asymptotic technique that will be used to

analyse the jet equations in the large time and space limit, for a straight and curved

inviscid jet respectively. This will give an indication of the behaviour of nonlinear wave
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growth, and information about the onset of nonlinear wave instability will be valuable

when attempting to regulate droplet production.

In Chapter 11, we use results obtained from the bulk of the thesis to aid the

manufacture of a vibrating nozzle that will be added to the experimental setup. We

shall present some preliminary results from the experiments. Chapter 12 gives some

conclusions and suggestions for further work.

5



Chapter 2

A Brief review of Straight Jets

A jet is an example of a free surface flow, where a free surface is defined as the

boundary between two fluids. In free surface flow problems, there is the added com-

plication of calculating the position of the free surface in addition to examining the

behaviour of the fluid itself. It is necessary to develop boundary conditions on the

fluid to prescribe its position. Consider a free surface given by F (x, t) = 0, where x are

spatial coordinates and t is time. Now a particle which is positioned on the free sur-

face remains there for all time, and we describe this mathematically by the kinematic

condition

∂F

∂t
+ u · ∇F = 0,

where u is the velocity of the fluid and∇ is the gradient operator. Dynamical conditions

on the free surface arise from the need to balance stresses acting on it. Within a fluid,

molecules in contact with their neighbours are in a lower energy state than those that

are not. However, surface molecules are in less contact and so are in a higher state of

energy. Therefore, the liquid minimizes its surface area to minimize its energy state.

It is this contracting of the surface that gives the liquid a surface tension, which can

be considered as the energy per unit area of the interface [1]. Returning to our free
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surface problem, equilibrium occurs as stresses caused by pressure and viscous forces

acting on the free surface are balanced by stresses caused by surface tension.

We formulate our normal stress condition thus

n ·T · n = σκ,

where σ is the surface tension, n is a normal vector to the surface and κ = ∇ ·n is the

curvature of the surface1. T is a second order stress tensor defined by pI+µ[∇u+(∇u)T ]

where I is the second order Identity Tensor, p and µ are the pressure and dynamic

viscosity of the fluid respectively, and T denotes the transpose of the vector.

The other form of dynamical condition results in stresses caused by gradients in

surface tension acting tangentially to the free surface, and thus our tangential stress

conditions are

n ·T · ti = ∇σ · ti, (2.1)

where ti are vectors tangential to the surface and i indicates there may be more than

one tangential vector present. In three dimensions i = 1, 2. Gradients in surface tension

can be as a result of thermal changes or the presence of surfactants. In the meantime,

we shall assume that surface tension is constant throughout and so the right hand side

of (2.1) is zero.

2.1 Break-up regimes

The break-up of a liquid jet can be defined as the transition period during which a

column of liquid changes into liquid droplets. It is widely believed that this break-up

is caused by small perturbations to the surface of the liquid which grow and eventually

1In some literature, the curvature is given by κ =
(

1
R1

+ 1
R2

)
where R1 and R2 are called the

principle radii of curvature.
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become large enough such that the radius of the column becomes zero, thus breaking

the liquid jet into droplets. The primary source of free surface instabilities are caused

by surface tension, and are thus named capillary instabilities.

Four different types of break-up regimes of fluid emanating from an orifice have

been identified [26], corresponding to combinations of liquid inertia, surface tension

and aerodynamical affects. Two lower speed regimes called the Rayleigh regime and

first wind-induced regime are characterized by break-up occurring further down the jet

and produce drop sizes of the same order to that of the orifice. The two other regimes

occur at higher speeds and are named second wind-induced and the atomization regime,

both of which are typified by break-up lengths close to the orifice and much smaller

drop sizes than the orifice radius. It is also important to note that if the exit velocity

of the fluid is too low, then the liquid will not jet. This effect dramatically increases if

the liquid becomes more viscous. The different break-up regimes can be seen in Figure

2.1.

Although the different regimes have important industrial applications, throughout

this thesis we shall consider jet break-up which follows the Rayleigh regime, with the

exit velocity sufficiently high speed as to cause jet formation but not so high as to

cause atomization. Aerodynamical effects are neglected and the medium in which the

jet is dispersed into is taken to be a low density gas.

2.2 Linear Analysis of an Inviscid Straight Jet

Despite liquid jet break-up being a nonlinear occurrence, many aspects can be

investigated to a good degree of accuracy using linear theory, such the break-up length

of the jet and the size of a main drop produced. (In many cases of liquid-jet break-up,

multiple drop sizes are produced and it is necessary to investigate nonlinear aspects
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Figure 2.1: Examples of the four jet break-up regimes, (a) Rayleigh regime, (b) first
wind-induced regime, (c) second wind-induced regime and (d) atomization regime.
Reproduced from Lin & Reitz [28]

to ascertain the details of these secondary droplets. This will be discussed in further

detail later).

Rayleigh [39] proposed that capillary jet break-up is caused by the wave mode which

grows most quickly with time, or the ‘mode of maximum instability’. Consider an infi-

nite axisymmetric cylinder of an incompressible inviscid fluid. Wavelike perturbations

of the form exp(i(kz−nθ) + λt) are applied to the free surface, where z represents the

distance along the central axis of the cylinder and θ the azimuthal coordinate2. The

amplitude of the disturbance is proportional to exp(λt). Values of Re(λ) > 0 cause the

amplitude of the disturbance to grow with time, and so Re(λ) is defined as the growth

rate of the disturbance. k is denoted the wavenumber, where k = 2π/λw where λw is

the wavelength of the disturbance. A prediction for the size of the drop produced on

jet break-up can be obtained by assuming a droplet forms over the wavelength of this

2Note that Rayleigh used cosines to describe this deformation, whilst we have used exponentials
here and will throughout the remainder of this thesis for consistency.
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disturbance.

A dispersion relation is developed describing the relationship between k and λ,

given by

λ2 =
σ

R3ρ

kRI ′n(kR)

In(kR)
(1− n2 − k2R2) (2.2)

where ρ is the density of the liquid, R is the unperturbed radius of the cylinder,

In is the modified Bessel function of nth order and I ′n is the derivative defined by

I ′n =
(
d
dr
In(kr)

) ∣∣
r=R

. Here n is an integer. The derivation of (2.2) follows from a

linearisation of the equations of motion. In Chapter 8, we apply this method in a more

complex scenario and we will show the details at that point of how these equations are

derived. For values of n 6= 0, λ2 < 0, and this corresponds to waves where λ is purely

imaginary with Re(λ) = 0. These waves are called neutrally stable (waves for which

Re(λ) < 0 are called stable). However, in the case of n = 0, (2.2) yields positive values

for Re(λ) corresponding to a growing amplitude for 0 < kR < 1. The desired ‘mode of

maximum instability’, or the most unstable mode, corresponds to the maximum value

of Re(λ) for all k. Thus Rayleigh’s classical formula for the growth rates for an inviscid

infinite circular cylinder of fluid are given by

λ2 =
σ

R3ρ

kRI ′0(kR)

I0(kR)
(1− k2R2) (2.3)

On examination of (2.3), the disturbance which has the maximum of Re(λ), corre-

sponding to the most unstable wavenumber, takes its value for kR ≈ 0.697 which

gives a wavelength λw ≈ 2πR/0.697 ≈ 9R. The growth rate at this maximum

is Re(λ) ≈ 0.3433
√
σ/R3ρ, which yields a characteristic time to break-up, tb =

1/Re(λ) ≈ 2.94
√
R3ρ/σ s. Thus a jet of water of diameter 5mm radius has a wave-

length λw ≈ 45mm and a characteristic time to break-up tb ≈ 1/8 seconds [4]. Also

note that λ2 < 0 when k > 1/R, and so the inviscid cylinder is neutrally stable to
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these disturbances.

2.3 The inclusion of viscosity

Viscosity is a damping force on capillary wave growth. Hence the dispersion relation

that describes wave behaviour must be dependent on viscosity. This was investigated

by Weber [47]. For n = 0, the dispersion relation is found to be

λ2 + λ
2µk2

I0(kR)

[
I ′1(kR)− 2kk̃I1(kR)I ′1(k̃R)

(k2 + k̃2)I1(k̃R)

]
=
σR

ρµ2

kR(k2 − k̃2)I1(kR)

(k2 + k̃2)I0(kR)
(1− k2R2)

(2.4)

where k̃2 = k2 +λ/µ. Equation (2.4) can be analysed numerically, looking for the value

of k which maximizes Re(λ).

2.4 Instability analysis

In the previous sections, disturbances were of the form exp(i(kz−nθ)+λt). Positive

values of Re(λ) caused perturbations to grow with time. This type of instability is

called a temporal instability. λ is a complex quantity, denoted λ = λr + iλi. The

amplitude of the disturbance will grow or decay depending on whether λr is positive

or negative respectively, and so λr is called the temporal growth rate. The imaginary

part λi represents the (angular) frequency of oscillation and λi/k is the phase speed of

the wave. The wavenumber, k, remains real throughout temporal instability analysis.

However, Keller et al. [21] noticed that this form of stability analysis assumes that

the disturbances grow everywhere, including at the orifice. In fact disturbances are

observed to be minimal in proximity to the orifice and grow as they move down the jet.

This is also seen in experimental research involving imposed harmonic disturbances

at the orifice to force jet break-up or from technological devices such as the ink jet
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printer [23]. These types of instability are called spatial instabilities, with a complex

wavenumber k = kr + iki and only the imaginary part of λ is non-zero, hence λ = iλi.

Here ki is the spatial growth rate, kr is the wavenumber and λi the frequency. Keller et

al. [21] describe that in spatial stability analysis, λ has just two solutions for different

values of k and n, but k can have infinitely many solutions for one value of λ and n.

The above spatial instability is a convective instability, i.e. an instability which

only grows with space away from its point of origin, and not at the point of origin of

the disturbance. In other words, the spatial disturbance is small at the orifice where

it arises and grows as it moves away.

For very slow jets, a new type of disturbance was discovered which grows more

quickly than the Rayleigh mode. It was Leib & Goldstein [23] who formally classified

this type of instability in liquid jets, called an absolute instability, and discovered that

the critical Weber number (a relationship between a jet’s inertia and surface tension)

below which a jet becomes absolutely unstable is a function of the jet’s Reynolds

number (a relationship between a jet’s inertia and viscosity)3. In absolute instability,

the disturbance propagates away from its point of origin, but also grows everywhere,

including at the point of origin of the disturbance. Lin & Lian [27] extended this

to examine the effect of the ambient gas surrounding the jet. In order to describe

the differences between convective and absolute instabilities in the context of unstable

disturbances to a jet’s surface, we shall now give a very brief review of the works of

Lin [26, 25].

Lin did not assume that the instabilities take any particular form, and thus allowed

both k and λ to be complex. Lin let the variables of the problem be defined by f(x, t)

3The Weber number and Reynolds number are formally defined in Section 3.2.1
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and took the Laplace-Fourier transform

F(k, λ) =

∫ ∞
∞

∫ ∞
0

e−λteik·xf(x, t)dtdx

in order to model disturbances down the jet (in a similar way previous solutions were

of the form exp(ikz + λt)).

Lin used residue calculus to solve the resulting inverse transform problem. Taking

large time asymptotics to the resulting equations, Lin shows that for a convective

instability

lim
t→∞

A(x, t) = 0 (2.5)

and

lim
t→∞

A(x = Ut, t) =∞. (2.6)

where U is the velocity of the wave packet and A is a vector describing the amplitude of

the disturbance at location x. Equation (2.5) shows that the disturbance at a particular

point will eventually dissipate, whilst if we move along with the disturbance as in (2.6),

it will continue to grow.

Lin analyzed saddle point formation and through long time asymptotics the rela-

tionship for an absolute instability is found to be

lim
t→∞

A(x, t) =∞. ∀x. (2.7)

Equation (2.7) shows that the disturbance will grow at all points along the jet. This

is the definition of absolute instability.

In this thesis, we shall consider convective instability of a liquid jet, with distur-

bances growing as they move away from the orifice.
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2.5 Nonlinear analysis

The linear stability analysis predicts drop sizes by assuming a drop forms over the

wavelength of the most unstable disturbance. However, jet break-up is seen to be a

nonlinear phenomenon and smaller droplets, called satellite droplets, can arise through

the nonlinearity of jet break-up. Nonlinear jet break-up is now briefly reviewed.

The full Navier-Stokes equations with a free surface boundary are an extremely

complicated set of equations to solve. As of yet, no general analytical solution to this

problem exists, and a full numerical solution is very computationally expensive. The

reduction of this problem to a one-dimensional approximation using a long-wavelength

assumption will help save on this front, whilst maintaining accuracy [16].

Eggers & Dupont [16] adopted a one-dimensional Taylor series expansion in the

radial coordinate r,

v(z, r, t) = v0(z, t) + r2v2(z, t) + ...

u(z, r, t) = −1
2
rv0z(z, t)− 1

4
r3v2z(z, t) + ...

p(z, r, t) = p0(z, t) + r2p2(z, t) + ...

(2.8)

where v,u and p are the axial velocity, radial velocity and pressure fields respectively

in cylindrical polar coordinates, and a subscript represents a derivative with respect

to that variable. This allows the derivation of the equations describing the nonlinear

system, which are found to be

vt = −vvz −
pz
ρ

+
3ν(h2vz)z

h2
,

p = σ

(
1

h(1 + h2
z)

1
2

− hzz

(1 + h2
z)

3
2

)
,

ht = −vhz −
1

2
vzh,
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where h(z, t) is the position of the free surface, and ν = µ/ρ is the kinematic viscosity.

This set of equations can be used to generate a numerical simulation of a liquid jet’s

break-up. Equations similar to the above will be derived later in this thesis for a curved

jet. Using Reynolds lubrication theory [40], Eggers & Villermaux [17] used asymptotic

Taylor expansions with a small parameter ε to derive the leading order (in ε) solution

to the problem.

2.6 Summary

In this chapter we have given a review of many of the classical works analyzing

jet break-up. We presented dispersion relations for both inviscid and viscous jets that

could be solved to find the most unstable mode. We then illustrated the differences

between convective and absolute instabilities and noted from here on we will be exam-

ining disturbances which propagate convectively. We describe the difference between

linear and nonlinear analysis of a jet, noting that linear analysis can provide valu-

able information such as break-up lengths and main drop sizes, but it is the nonlinear

methods that fully describe the local dynamics near break-up.
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Chapter 3

A Brief review of Theoretical Work

on Curved Jets

In the previous chapter, we introduced important aspects concerning liquid jet

break-up, focussing on a straight cylindrical jet. However, external forces can cause

curvature to a jet’s trajectory, such as gravitational or rotational forces. In the next

section we shall present an industrial scenario where rotational forces cause a curved

liquid jet, whilst the remainder of the chapter details some current research on the

break-up of curved liquid jets. The differences to the jet trajectory caused by curvature

are discussed in more detail later in the thesis.

3.1 Prilling

Prilling is an industrial process used in the mass manufacture of prills, small spheres

of material formed from a molten liquid. For example, Norsk Hydro are a Norwegian

company who use the prilling process in the production of fertilizer pellets made from
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Figure 3.1: Photograph showing multiple jets emerging from a can (dark shape at the
bottom of the photograph) in the prilling process. Some droplets can also be seen at
the top of the photograph. Reproduced from Wallwork [45].

urea1. Their prilling tower is one of the largest in the world, measuring 30m in height

and 24m in diameter. At the top of the tower there is a 1m long can, 0.5m in diameter

with aprroximately 2000 small holes 4mm in diameter. The can rotates at a rate of

320-450 rpm and the rotational forces cause the molten metal inside the can to emerge

from the orifice at high speeds into the atmosphere. Figure 3.1 shows jets forming

during the prilling process.

The emerging jets break-up into droplets, which cool and solidify as they fall and

are taken away to be processed. Currently, the prilling process produces drops of non-

uniform size which causes waste. This waste is due to satellite drop formation. It is

1Urea, also known as carbamide, is an organic compound with the chemical formula (NH2)2CO.
It reacts with water to form ammonia and carbon dioxide releasing nitrogen, and hence is used as a
fertilizer replenishing nitrogen in soils.

17



the aim of this thesis to gain a thorough understanding of curved liquid jet break-

up, focussing on the formation and ultimately the eradication of satellite droplets,

reducing waste for companies who use the prilling process in the manufacture of par-

ticulate products. This same process is also used in other areas of industry, such as

in the production of small spheres of liquid metal in the manufacture of cars, and in

some pharmaceutical manufacture. In cases where liquid metals are used, the smaller

droplets can be a cause of dust explosion.

3.2 Curved Liquid Jets

In analyzing curved liquid jets we use many of the techniques described for straight

jets outlined in Chapter 2. We detail some of the current work on the break-up of

curved liquid jets, discussing the calculation of the jet’s centreline, linear stability and

nonlinear analysis.

3.2.1 The equations of motion

We begin by describing the model and coordinate system for our curved liquid jet,

as derived by Wallwork [45].

We consider a circular cylindrical container of radius s0 rotating about its vertical

axis with rotation rate Ω. We work in a rotating frame of reference in which the orifice

of radius a is fixed on the surface of the can. The X-axis is directed normal to the

surface of the container in the initial direction of the jet and the Y and Z-axes are

orthogonal to the X-axis, in the plane of the axis of the cylinder and centreline of the

jet respectively. The origin O is at the centre of the can for the X-Y -Z coordinates.

This is shown in Figure 3.2.

The centreline of the jet can be written in summation notation as rcl = Xiei. Here
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Figure 3.2: Graphical description of the x, y and z coordinates.

e1 = i, e2 = j and e3 = k where i, j and k are unit vectors in Cartesian coordinates

in the rotating frame, and X1 = X,X2 = Y and X3 = Z. We adopt a curvilinear

coordinate system (s, n, φ) where s is the arclength along the centreline of the jet,

and (n, φ) are plane polar coordinates in any cross-section of the jet. The origin o for

the s-n-φ coordinates is at the centre of the orifice on the surface of the cylinder, as

demonstrated in Figure 3.3. Also, we let Xi = Xi (s, t) where t is time.

(a) Jet centreline

O’

ee

p

b n

nφ

φ

Q

(b) Jet cross section.

Figure 3.3: Graphical description of the jet’s geometry. o is the origin at the centre of
the orifice.

We define unit normal vectors in the s, n and φ directions as es, en and eφ respec-

tively. We use

es = Xi,sei

19



to calculate our principal and binormal vectors, p and b,

p =
es,s
|es,s|

=
Xi,ssei√
X2
j,ss

b = p× es =
εijk(Xj,ssXk,sei)√

X2
`,ss

,

where

εijk =


1 if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2),

−1 if (i, j, k) = (1, 3, 2), (3, 2, 1) or (2, 1, 3),

0 otherwise,

and for Xi, subscripts in s denote derivatives with respect to s, and subscripts in i, j,

k and l are used for summation convention. We describe our plane polar coordinate

vectors as

en = cosφ p + sinφ b

=
1√
X2
`,ss

(cosφXi,ss + sinφεijkXj,ssXk,s)ei

eφ = − sinφ p + cosφ b

=
1√
X2
`,ss

(− sinφXi,ss + cosφεijkXj,ssXk,s)ei

We also define the position vector of any particle relative to the origin o as

r =

∫ s

0

esds+ nen.

If g is the acceleration due to gravity and if s0Ω2 � g, then the jets do not fall

significantly out of the plane of rotation before breaking up into drops. As we are

modelling jets emerging from a rapidly rotating cylinder, the impact of rotation is
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much larger than that of gravity and so this is a valid assumption most of the time.

Hence we set Y (s, t) = 0. Further justification on the negation of gravity will be given

later when discussing droplet sizes.

We formulate our model thus. In the bulk we have the Continuity Equation and

Navier-Stokes Equations

∇ · u = 0,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u− 2ω × u− ω × (ω × r′), (3.1)

where u = ues + ven + weφ is the velocity field, p is the pressure, ρ, ν = µ/ρ and

µ are the liquid’s density, kinematic viscosity and dynamic viscosity respectively, r′ is

the position vector in the X-Y -Z system and ω = Ωj. The boundary conditions on the

free surface n = R(s, φ, t), as described in Chapter 2, are the kinematic condition

∂F

∂t
+ u · ∇F = 0

where F (r, t) = R(s, φ, t)− n describes the free surface, tangential stress conditions

n ·T · ti = 0,

where ti are vectors tangential to the surface and i = 1, 2, and the normal stress

condition

n ·T · n = σκ, (3.2)

where σ is the (constant) surface tension, n is a normal vector to the free-surface

and κ = ∇ · n is the curvature of the free-surface. T is the stress tensor defined by

pI + µ[∇u + (∇u)T ] where I is the second order Identity Tensor and T denotes the
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transpose of the vector. We have tangential flow down the centreline,

v = w = 0 on n = 0,

in addition to the arclength condition2

X2
s + Z2

s = 1.

At this point, to simplify analysis, we move the origin O of the X-Y -Z system to

coincide with the origin o of the s-n-φ system. In other words we translate the origin

of the X-Y -Z system to the centre of the orifice o. We also have orifice conditions

X = Z = Zs = 0, Xs = 1, R = a and u = U at s = 0.

We wish to examine dimensionless equations and use the following transformations

(ū, v̄, w̄) =
1

U
(u, v, w), (X̄, Z̄) =

1

s0

(X,Z),

p̄ =
p

ρU2
, n̄ =

n

a
, ε =

a

s0

, R̄ =
R

a
, s̄ =

s

s0

, t̄ =
tU

s0

,

where U is the exit speed of the jet in the rotating frame at the orifice, and we call ε

the aspect ratio. We identify the following non-dimensional parameters,

We =
ρU2a

σ
, Rb =

U

s0Ω
, Re =

ρUa

µ
, Oh =

µ
√
σaρ

,

namely the Weber, Rossby, Reynolds, and Ohnesorge numbers respectively. As a <<

s0, ε << 1 and can be considered a small parameter, providing the basis for a slender

jet assumption. The overbars denote dimensionless quantities in the above.

2derived from the fact that ds2 = dX2 + dZ2 along the centreline,
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Dropping overbars, we adopt a slender jet solution method and assume asymptotic

expansions of the form

u = u0(s, t)es + εu1(s, n, φ, t) +O(ε2)

p = p0(s, t) + εp1(s, n, φ, t) +O(ε2)

R = R0(s, t) + εR1(s, n, φ, t) +O(ε2)

X = X0(s, t) + εX1(s, n, φ, t) +O(ε2).

where u1 = u1es + v1en + w1eφ and X1 = Xi + Zk, as in Wallwork [45]. We can use

this to find the steady leading order solution in terms of the pressure, radius, velocity

and centreline position by assuming no t dependence. At leading-order, these steady

equations are found to be independent of viscosity. These equations are derived in

Wallwork [45] and are given below

u0 =

(
1− 1

Rb2

(
X2 + 2X + Z2

)
+

2

We

(
1− 1

R0

))1/2

dR0

ds
= −WeR2

0 ((X + 1)Xs + ZZs)

Rb2 (1 + 2WeR0u2
0)

Zss =
WeR0XS

WeR0u2
0 − 1

(
2u0

Rb
+
ZXs − (X + 1)Zs

Rb2

)
X2
s + Z2

s = 1. (3.3)

These ordinary differential equations can be solved subject to the non-dimensional

initial conditions X = Z = Zs = 0, Xs = R0 = u0 = 1 at s = 0. X0 and Z0 have been

relabelled as X and Z in the above. A similar derivation is given in Chapter 8. For

the interested reader, the linear derivation of the centreline equations for a jet rotating

under the influence of gravity can be found in Wallwork [45]. The expansions presented

above can also be used to analyze unsteady time-dependent solutions, giving rise to

PDEs in s and t. This will be described in Section 3.2.3. The steady state trajectory
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Figure 3.4: Theoretical simulation of the trajectory of the centreline of a curved jet
with Rb = 5(−), 2(− −) and 1(· · · ) for We = 50.

is solved numerically using a Runge-Kutta scheme and is shown in Figure 3.4.

3.2.2 Linear Stability Analysis

We will now describe linear stability analysis in accordance with the method de-

scribed in Chapter 2. Wallwork et al. [46] studied this for an inviscid rotating jet

and Decent et al. [12] extended the research to account for viscosity; both were in the

absence of gravity. Decent et al. [13] incorporated gravity into the linear instability

analysis. We outline the method and the results of Decent et al. [12] in detail.

We begin by perturbing the steady state using a small dimensionless parameter δ,

u = ū(s, n, φ, ε) + δũ(s, s̄, n, φ, t, t̄) +O(δ2)

p = p̄(s, n, φ, ε) + δp̃(s, s̄, n, φ, t, t̄) +O(δ2)

R = R̄(s, n, φ, ε) + δR̃(s, s̄, n, φ, t, t̄) +O(δ2)

X = X̄(s, ε) + δεX̃(s, s̄, t, t̄) +O(δ2).
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where (ū, ũ) = (ū, ũ)es + (v̄, ṽ)en + (w̄, w̃)eφ, (X̄, X̃) = (X̄, X̃)i + (Z̄, Z̃)k3. Here

(ū, p̄, R̄, X̄) are the steady state solutions found in the previous section by solving

the ODEs (3.3), whilst (ũ, p̃, R̃, X̃) are the unsteady perturbed variables. We have

introduced a short length scale, s̄ = s/ε, and a short timescale, t̄ = t/ε, with short

wave-like disturbances of O(ε). Here s is a long length scale associated with the curving

of the trajectory of the jet, while s̄ is associated with waves with a much shorter

wavelength comparable to the jet’s diameter. In Section 2.2, it was these short-wave

disturbances that Rayleigh derived.

We retain the terms of O(δ)4 and look for travelling modes of the form

ũ = û(s, n, φ, t) exp (ik(s)s̄+ λ(s)t̄) + c.c.,

p̃ = p̂(s, n, φ, t) exp (ik(s)s̄+ λ(s)t̄) + c.c.,

R̃ = R̂(s, φ, t) exp (ik(s)s̄+ λ(s)t̄) + c.c.,

X̃ = X̂(s, t) exp (ik(s)s̄+ λ(s)t̄) + c.c.,

where û = ûes + v̂en + ŵeφ, and X̂ = X̂i + Ẑk. Here, k(s) is the wavenumber and

λ(s) is the wave frequency/temporal growth rate and both are made functions of s

thus allowing variation down the jet. In addition c.c. denotes the complex conjugate.

We expand the velocity, pressure and radius (û, p̂ and R̂) in Fourier series in φ, and

find an infinite set of eigenvalue relationships, each associated with cos(nφ) or sin(nφ)

for each integer n. As with straight jets, we have stable modes for n ≥ 1, plus one

unstable mode corresponding to n = 0. This calculation is shown in full in Chapter 8.

Wallwork et al. [46] derived a relation analogous to (2.3) for inviscid jets, and for

3We also note that we first tried X = X̄(s, ε) + δX̃0(s, s̄, t, t̄) + δεX̃(s, s̄, t, t̄), but X̃0 was found to
be identically equal to zero

4the O(1) equations dropping out naturally as the steady state equations
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viscous jets Decent et al. [12] derived

We3/2R2
0λ

2 k2I0(kR0)I1(k̃R0) + We3/2R2
0λ

2 k̃2I0(kR0)I1(k̃R0)

+2iWe3/2R2
0λ k3I0(kR0)I1(k̃R0) + 2iWe3/2u0λR

2
0 kk̃2I0(kR0)I1(k̃R0)

−We3/2R2
0u

2
0 k

4I0(kR0)I1(k̃R0) − We3/2R2
0u

2
0 k

2k̃2I0(kR0)I1(k̃R0)

+2OhWeR2
0λ k4I0(kR0)I1(k̃R0) + 2OhWeR0λ k3I1(kR0)I1(k̃R0)

+2OhWeR2
0λ k2k̃2I0(kR0)I1(k̃R0) − 2OhWeR0λ kk̃2I1(kR0)I1(k̃R0)

−4OhWeλ k3k̃I1(kR0)I0(k̃R0) + 2iOhWeR2
0u0 k

5I0(kR0)I1(k̃R0)

+2iOhWeR0u0 k
4I1(kR0)I1(k̃R0) + 2iOhWeR2

0u0 k
3k̃2I0(kR0)I1(k̃R0)

−2iOhWeR0u0 k
2k̃2I1(kR0)I1(k̃R0) − 4iOhWeR2

0u0 k
4k̃I1(kR0)I0(k̃R0)

−
√
We kk̃2I1(kR0)I1(k̃R0) +

√
We k3I1(kR0)I1(k̃R0)

+
√
WeR2

0 k3k̃2I1(kR0)I1(k̃R0) −
√
WeR2

0 k5I1(kR0)I1(k̃R0) = 0 (3.4)

where k̃2 = k2 + We1/2(λ + iku0)/Oh. This is equivalent to (2.4) where u0 = R0 = 1

for a straight jet, whilst (3.4) has the effects of rotation come in via the solutions of

u0 and R0, obtaining by solving the nonlinear ODEs (3.3). As u0 and R0 vary down

the jet5 the most unstable wavenumber generated by (3.4) will also change as s varies.

The impact of gravity on growth rates and stability can be found in Decent et al. [13].

We shall describe the temporal instability first. As outlined in Section 2.4, for

temporal instability we set k real, and let λ = λr + iλi, with λr > 0 generating

instability. So the most unstable wavenumber (k = k∗(s)) is the value of k at which

the growth rate λr is at a maximum.

Small Oh number asymptotics yield at leading-order the inviscid temporal insta-

5as the jet is accelerating and thinning
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bility result presented in Wallwork et al. [46], namely

λ = −iku0 (s) +

√
kI1 (kR0 (s))

WeI0 (kR0 (s))

(
1

R2
0 (s)

− k2

)
,

where modes are unstable for 0 < kR0(s) < 1. The most unstable wavenumber k∗ is

found, using this equation, to be

k∗(s) =
0.697

R0 (s)

where R0(s) is obtained by the solution of the ODEs presented at the end of the

previous section.

The most unstable mode is found by examining a long-wavelength approximation

(k → 0) of (3.4) and is given by

k∗(s) =
1

21/4R
3/4
0 (s)

√√
2R0 (s) + 3Oh

. (3.5)

We also note that if we take the inviscid limit Oh = 0 of (3.5) we obtain

k∗(s) =
1√

2R0 (s)
=

0.707

R0 (s)
≈ 0.697

R0 (s)

and so the long wavelength approximation is also a reasonable numerical approximation

for the shorter inviscid waves.

For spatial stability, following the method of Keller et al. [21], we set λ = −iω and

k = kr + iki, and so ω is a real frequency. Instability occurs for ki < 0 since the jet

starts at s = 0 and propagates to large positive values of s. Comparing the long wave

analysis for temporal and spatial instability by writing k = ω/u0 + iK and solving the

eigenvalue relationship for K in the long-wave limit ω → 0 and K → 0, it was found
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that the frequency of the most unstable mode ω = ω∗ is given by

ω∗ = u0k
∗ (3.6)

where k∗ is given by (3.5) in the long wave limit. Here the spatial instability results

coincide with temporal instability for long waves.

Full details of these asymptotics can be found in Decent et al. [12], as well as

numerical solutions to (3.4). These results are analogous to those results for a straight

jet. However, noticeable differences arise through the introduction of rotational forces.

For a straight jet the leading-order steady radius and velocity are constant. Spinning

jets accelerate and thin as they increase their distance from the orifice. As such, R0(s)

and u0(s) are introduced as functions of s and this causes the Rayleigh mode to change

at different points down the jet.

While asymptotic solutions to (3.4) are useful, it is necessary to solve (3.4) com-

putationally for O(1) values of the parameters to find the most unstable mode as a

function of s, as in Decent et al. [12]. We will see similar calculations in this thesis,

extending [12].

3.2.3 Nonlinearity of Break-up

Whilst linear analysis can be used to examine a jet’s stability and calculate the

break-up length, we must use nonlinear analysis to investigate the break-up mecha-

nism and satellite drop formation. The nonlinear aspects of a curved jet break-up are

described in the works of Părău et al. [35, 36], and the full equations and derivations

can be found in [35, 36] and in Partridge [33], but we shall present a summary here.
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We pose the asymptotic expansions

u = u0(s, t) + (εn)u1(s, φ, t) +O((εn)2)

p = p0(s, t) + (εn)p1(s, φ, t) +O((εn)2)

R = R0(s, t) + εR1(s, φ, t) +O(ε2)

X = X0(s) + εX1(s, φ, t) +O(ε2).

(3.7)

where we have also assumed a steady centreline at leading order. We obtain the

following equations,

R0t + u0R0s +
u0sR0

2
= 0,

u0t + u0u0s = − 1

We
κs +

(X + 1)Xs + ZZs
Rb2

+
3

Re

(R2
0u0s)s
R2

0

, (3.8)

where κ is the curvature of the free surface as defined in Section 3.2.1. Here X0(s) =

X(s)i + Z(s)k.

This system of equations can be solved for our leading order velocity and radius,

u0 and R0. The initial conditions at t = 0 are found to satisfy the following ODEs.

u0u0s = − 1

2We

u0s√
u0

+
(X + 1)Xs + ZZs

Rb2
+

3

Re

(
u0ss −

u2
0s

u0

)
,

(XsZss − ZsXss)

(
u2

0 −
3

Re
u0s −

√
u0

We

)
− 2u0

Rb
+

((X + 1)Zs − ZXs)

Rb2
= 0,

X2
s + Z2

s = 1, (3.9)

where u0 = 1/R2
0, and the boundary conditions at s = 0 are given by X(0) = Z(0) =

Zs(0) = 0 and Xs(0) = u0(0) = 1. This is the system of ODEs for the solution at t = 0.

When Re = ∞, this system can be solved using a Runge-Kutta method producing

solutions as seen in Figure 3.4 (and also satisfy the steady state equations (3.3) found

in section 3.2.1). Părău et al. [36] solved the above viscous equations for Re = O(1)
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by using Newton’s method. Due to the extra derivatives in s appearing in the viscous

term in (3.9), extra boundary conditions at s = ∞ were applied corresponding to

an assumption that the steady state is bounded at s = ∞. Further details of the

computational methods used are given in the next section.

Părău et al. [36] showed that the viscous steady state and inviscid steady state

showed an excellent agreement when these equations are solved numerically, except in

cases of very high viscosity. This is verified in Decent et al. [12] who showed that

the viscous terms appear at higher order, except in the case of high viscosity, using

an asymptotic approach by considering the steady state’s linear instability. Therefore,

it is possible to use the inviscid steady state equations as a good approximation to

the viscous steady state equations to calculate the initial conditions at t = 0, and

some authors have used this assumption in their work [44]. The steady state numerical

solution is shown in Figure 3.5, including viscosity. In this thesis we shall use the

above viscous steady state equations to calculate the initial conditions at t = 0 for

added accuracy.

Părău et al. [36] also examined the problem of an unsteady centreline, generalizing

the asymptotic expansions (3.7) by rewriting the centreline into steady and unsteady

parts as

X = X̃(s) + X̂(s, t) +O(ε)

and allowing v and w to have extra O(1) components in the velocity expansion. This

gave rise to a much larger system of PDEs than equations (3.8). It was shown that

the movement of the centreline is very small at experimental and industrial parameter

values for all times and for all s, with X̂ typically being about 0.1% to 1% of the size

of X̃. Therefore, we can assume the centreline remains in its initial state for all times.

Therefore in equations (3.8) X and Z can be taken to be equal to their steady state

values given by (3.9) for all t.
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Figure 3.5: Solution of the steady trajectory of the jet. We = 50, Rb = 2 and
Re = 3000.

We examine the nonlinear temporal evolution of the jet. In addition to retaining

the necessary convective terms in the Navier-Stokes equations, we must retain the

full expression for the curvature. When we considered the linear dynamics, the leading

order pressure term arising from the curvature in the normal stress condition was given

by

p0 =
κ

We
=

1

nWe
on n = R0.

However, close to break-up when the surface becomes more deformed it is necessary to

retain the full expression for the curvature6,

κ =

(
1

R0(1 + ε2R2
0s)

1
2

− ε2R0ss

(1 + ε2R2
0s)

3
2

)
(3.10)

even though the higher order terms in ε yield
√

1 + ε2R2
0s ∼ 1 and ε2R0ss ∼ 0 asymp-

totically to leading order as ε → 0. However, it is necessary to retain all these extra

6Note here we still assume no φ dependence, as the jet remains axi-symmetric
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terms in simulations otherwise the equations yield exponential growth to infinitesimally

short wavelengths which is not the case physically [3]. The approach of retaining full

curvature in simulations has been used by many authors previously for straight jets,

for example Eggers and Dupont [16]. Also, Entov and Yarin [18] and Yarin [50] ob-

tained the pressure in terms of the full curvature included here for bending jets in their

derivation from physical arguments.

The resulting nonlinear evolution problem is therefore given by

At + (Au)s = 0

ut +

(
u2

2

)
s

= − 1

We

∂

∂s

(
4(2A+ (εAs)

2 − ε2AAss)
(4A+ (εAs)2)3/2

)
+

(X + 1)Xs + ZZs
Rb2

+
3

Re

(Aus)s
A

, (3.11)

where A = R2
0. The initial conditions at t = 0 are obtained from the steady state ODE

equations, namely

A(s, t = 0) = R2
0(s), u(s, t = 0) = u0(s) (3.12)

where R0(s) and u0(s) are solutions of the ODEs (3.9). Also X(s) and Z(s) in the

above evolution PDEs are obtained from the steady state ODEs (3.9).

To impose the wave disturbance we pose boundary conditions at the orifice s = 0

A(s = 0, t) = 1, u(s = 0, t) = 1 + δ sin

(
κt

ε

)
, (3.13)

where δ and κ are the amplitude and frequency of the wave and the introduction

of ε shows we are searching for fast waves as in Section 3.2.2 because of the non-

dimensionalization used. Here δ is a measure of the size of the initial perturbation,

and though we have the freedom to choose the size of δ, it is usual to choose a small
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perturbation7. We can vary κ to simulate disturbances with different frequencies, and

by setting κ = k∗ where

k∗ =
1

21/4
√√

2 + 3Oh
, (3.14)

we are imposing the most unstable mode at the orifice from (3.5) since R0(s = 0) = 1.

In Chapter 6, we will perform comparisons between a jet excited by this frequency and

experimental data. We also impose boundary conditions at the other end of the jet,

which involves ensuring that the jet equals the steady state as s→∞.

Figure 3.6(a) shows the nonlinear temporal solution plotted over the solution of

the steady state. Figure 3.6(b) shows R0(s, t) plotted against s. The simulations are

carried out until R0(s, t) equals 0.05 somewhere along the jet, at which point it is

considered to be sufficiently close to break-up. Figure 3.6 shows the solution at this

time. It can be seen that the initial sinusoidal disturbance becomes nonlinear at some

point down the jet. The onset of this nonlinearity is investigated in Chapters 9 and 10.

Break-up of the jet occurs at s = s2, yielding a break-up length of s = 1.2215

non-dimensionalized with respect to s0. To calculate the drop sizes we take values of

R0 from the numerical simulation, and integrate over a volume of revolution

V = π

∫
R2

0ds. (3.15)

to get the volume of the drop V . We integrate over a wavelength before break-up from

s1 to s2 (for the smaller satellite drop in this case) and over a wavelength after break-up

from s2 to s3 (for the main drop in this case).

7Decent et al. [12] derived this condition as δ << 21/4/
√

3OhWe.
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(a) Temporal evolution of the jet superimposed over the steady state
initial solution.

(b) Radius R0 against arc length s.

Figure 3.6: Nonlinear simulation at the time of break-up. We = 50, Rb = 2, Re = 3000,
δ = 0.01 and κ = 0.7053
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To calculate the radius of the drop R̂ that results from instability, we assume that

the resulting drops are spherical (once rupture has occurred), so that

V =
4

3
πR̂3. (3.16)

Therefore, we consider a sphere of radius R̂ which has volume V . The jet in Figure

3.6 has a main drop with radius of 1.8572 and a satellite drop of radius 0.6413 non-

dimensionalized with respect to a. (Note, since s and R0 are non-dimensionalized with

respect to different length scales, we integrate from εs1 to εs2, or εs2 to εs3, and so the

resulting drop size R̂ is then non-dimensionalized with respect to a.

We note that the jet is assumed to have ruptured when the radius approaches an

arbitrarily chosen number (5% in this case). As the radius decreases, a radial depen-

dence becomes more important and the long wavelength analysis less valid. Leppinen

and Lister [24] considered an asymptotic nature of inviscid capillary jet break-up in

order to get a better understanding of the nature of pinch-off, Sierou and Lister [43]

examined the viscous case.

Uddin [44] extended the above by studying Non-Newtonian effects on a spiralling

liquid jet by investigating power law fluids. He also provided models for the effect of

surfactants on a curved jet, the effect of a periodically heated nozzle and performed

investigations into compound jets. This work turned up some interesting results with

the potential for further research.

3.2.4 Computational Methods and Numerics

In this section we give a brief outline of the numerical methods used in the simula-

tions, detailing the iterative method used to plot the centreline and the Lax-Wendroff

method used to simulate break-up.
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Jet Steady State

The steady state is given by the system of equations (3.9), numerically solving for

the quantities X(s), Z(s), and u0(s) subject to the initial conditions X(0) = Z(0) =

Zs(0) = 0 and Xs(0) = u0(0) = 1 at the orifice s = 0. We use R2
0 = 1/u0 to obtain

R0(s). In the inviscid case, when Re = ∞, we can rewrite (3.9) as a system of five

equations to solve for X, Z, Xs, Zs and u0, and hence use a Runge-Kutta method.

With the inclusion of viscosity, we have an extra derivative of s in the steady equations,

and hence we cannot use a Runge-Kutta method.

We therefore use an iterative method, namely Newton’s method, solving for Xs,

Zs and u0 with X and Z obtained using trapezoidal-rule integration. We generate the

necessary additional boundary conditions downstream using a quadratic extrapolation

of the last internal mesh points. Părău et al. [36] show that this method solves

the inviscid equations with very good accuracy when compared to the Runge-Kutta

method, provided the number of mesh points M ≥ 200 and the grid interval ds ≤ 0.1.

Temporal Evolution

To plot the evolution of the jet we solve the system (3.11) where we have the initial

conditions given by the solution for the steady state (3.12) and boundary conditions

at the orifice (3.13). This system is solved numerically using a two-stage Lax-Wendroff

method.

A Lax-Wendroff method solves a system of equations of the form

∂u

∂t
= −∂F(u)

∂s

where in our case the vector u = (A, u)T and the conserved flux F(u) =
(
Au, u

2

2

)T
.
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Now the finite difference approximation to this system is

uj+1
i − uji
dt

=
Fj
i+1 − Fj

i−1

2ds

where uji = u(s0 + ids, t0 + jdt), Fj
i = F(s0 + ids, t0 + jdt), ds and dt are the space and

time intervals and s0 and t0 are the initial values for s and t. In our case s0 = t0 = 0.

This approximation can be unstable, and so we introduce half time-steps tj+1/2 and

half mesh-points si+1/2. Substituting this into the approximation yields the two steps

u
j+1/2
i+1/2 =

1

2

(
uji+1 + uji

)
− dt

2ds

(
Fj
i+1 + Fj

i

)
uj+1
i = uji −

dt

ds

(
F
j+1/2
i+1/2 + F

j−1/2
i+1/2

)

using forward and central differences where the flux F
j+1/2
i+1/2 is calculated using the values

of u
j+1/2
i+1/2 . This is solved at all points down the jet. Jet break-up occurs when the jet

radius becomes less than an arbitrarily chosen value (5% of the jet’s initial radius).

At points downstream of the break-up point, the jet solution no longer has physical

meaning as the jet would have broken up into droplets. The spatial and temporal step

sizes are decreased until the solutions are found to converge in the simulations.

3.3 Summary

In this chapter we have reviewed current research on a liquid jet emerging from a

rotating can. We described methods for plotting the centreline of the jet and detailed

the linear stability analysis used to calculate the most unstable mode and we discussed

how this differs from a straight jet. We also described the nonlinear analysis used to

simulate jet break-up and the method used to work out the corresponding drop sizes.

We also detailed the numerical methods used in these simulations.
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Chapter 4

A Brief Review on Experimental

Investigation of Liquid Jets

In this chapter we detail experimental work on liquid jet break-up. We review

previous research into straight jets and droplet control. We then describe in detail the

experimental investigation on curved liquid jets at the University of Birmingham.

4.1 Straight Jets and Droplet Control

One of the first to study liquid jet break-up was Savart [42] who noted that liquid

jet break-up was a feature of the jet’s dynamics. He was able to obtain images, such

as the one shown in Figure 4.1, with the jet breaking up into mostly primary (or

main) droplets, the larger droplets which form and are of the same order in size to the

radius of the orifice. He also generated secondary (or satellite) droplets, the droplets

much smaller in size which form in between the primary droplets. Savart showed

that by varying the frequency at the orifice, disturbances of different frequencies could

be seen along the jet, corresponding to different wavelength disturbances. This was

also seen by Plateau [38] who found many different unstable wavelengths above a
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Figure 4.1: A figure from Savart [42] showing the break-up of a straight liquid jet
emerging from a 6mm orifice. Reproduced from Eggers and Villermaux [17].

critical wavelength, though it was Rayleigh [39] who noted that it was the mode with

highest growth rate that dominates the behaviour (see Chapter 2) and compared well

to Savart’s experimental results.

Savart’s experiments show a high level of accuracy considering the technology avail-

able at the time, though with the use of more modern photographic equipment liquid

jet break-up can be recorded to a micron scale over a period of microseconds. Pere-

grine et al. [37] investigated the break-up of thin liquid bridges and show clearly the

processes involved during drop formation. As drop pinch off is approached, a cylin-

drical column of fluid (or bridge) forms between the mass of the jet and the drop. At

pinch-off, a bifurcation is seen where the column forms into a sharp cone whilst the

drop remains spherical. Immediately after pinch-off, very short waves develop on the

drop caused by the liquid bridge recoil. A secondary necking and bifurcation appears

during the satellite drop formation.

One of the most important aspects of liquid jet break-up is this secondary formation

causing the satellite drops, and thus there is a lot of research focussing on reducing

their number. By imposing disturbances at the orifice using a piezo-electric transducer,

Lindblad and Schneider [29] noted that “droplet size can be precisely controlled and

individual droplets produced at will”. Chauhan et al. [8] used piezo crystal to gener-

ate these disturbances, whilst Crane et al. [10] used an electrical vibrator to induce

mechanical vibrations and Donnelly and Glaberson [14] used a loudspeaker.

Goedde and Yuen [19] investigated a range of induced perturbations at the orifice
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and investigated jets falling under gravity. Jets were generated through hydrostatic

pressure, as using a pump would cause extra vibrations through the jet. Alongside

the theoretical works of Yuen [51], they showed that nonlinear effects dominate the

jet break-up, particularly at small wavenumbers, with an initially sinusoidal wave gen-

erating higher order harmonics. Rutland and Jameson [41] presented a comparison

between the theory and the experiments, where it was shown that a secondary swell

can form over a wavelength for a viscous fluid. Chaudhary and Redekopp [7] show

theoretically that satellite drops can be reduced by inducing a secondary harmonic,

and Chaudhary and Maxworthy [5, 6] compare the theory with experiments using a

piezo-electric transducer before and after break-up respectively.

Using the idea of inducing vibrations at the orifice, modifications have been made to

the rig at Birmingham involving a vibrating nozzle such that we can attempt to control

the liquid jet break-up and produce main droplets of desired size. This is detailed in

Chapter 11.

4.2 Laboratory scale Experiments at Birmingham

Experimental investigations into the break-up of curved liquid jets took place in the

Chemical Engineering Department at the University of Birmingham. We detail here

the investigations on a laboratory scale rig performed by Wong et al. [49] simulating

the prilling process. A cylindrical can of diameter D = 0.085 m and height of 0.115 m

was used, with two orifices of diameters a = 0.001 m and a = 0.003 m. To maintain

a constant hydrostatic pressure a peristaltic pump (Waltson-Marlow 505s) kept the

fluid at constant height H inside the spinning can. This height was changed from one

experimental run to another, with the aspect ratio (H/D) varying from 2/3 to 5/4.

The average exit velocities U were calculated by dividing the total volume of liquid
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collected over a period of 1 minute by the cross-sectional area of the hole.

(a) Diagrammatic representation

(b) Photographic representation

Figure 4.2: The experimental laboratory scale setup

Images were generated using a high speed digital camera (Photron Fastcam Super

10k) capable of recording up 10,000 frames per second. Using the software Image-Pro

Express (Datacell Ltd., UK), Wong et al. [49] were able to obtain digital measure-

ments accurate to a tenth of a millimetre, repeating the results three times to generate

accuracy. A diagram and photograph of the experimental set-up can be seen in Figure
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Liquid dynamic viscosity, µ (Pa s) 0.001-0.081
Liquid density, ρ (kg m−3) 1000-1200

Liquid surface tension, σ (N m−1) 0.047-0.072
Orifice radius, a (m) 0.0005-0.0015

Liquid aspect ratio, (H/D) 2/3 - 5/4
Can rotation rate, Ω (rad s−1) 5.24-31.4
Jet Exit Velocity, U (m s−1) 0.318-0.985

Can radius s0 (m) 0.0425
Rb = U/Ωs0 0.2 - 4
Re = ρUa/µ 1 - 1000

Fr/Rb = Ωs0/
√
gH 0 - 2

We = ρU2a/σs0 0.5 - 25
Oh = µ/

√
σaρ 0.005 - 0.4

Table 4.1: Table summarizing the experimental parameters used for the laboratory
scheme.

4.2

Through addition of glycerol (up to 80% of the total fluid mix) to water, Wong et

al. [49] could obtain fluids of varying rheologies, with dynamic viscosity µ increasing

to around 100 times that of water1. Through the addition of n-butanol to the mix,

surface tension was lowered to a range of 65-100% that of water. The rotational speed

of the can was varied from 50 to 300 rpm (corresponding to an angular speed Ω of

5.24 − 31.4 rad s−1). A summary of the range of the fluid rheologies, the geometry of

the experiment and the dimensionless parameters used is given in Table 4.1.

Using different fluids emerging at different exit velocities, Wong et al. [49] identified

four qualitative types of jet behaviour. These were classified modes 1-4 (denoted M1-

M4), with each displaying distinct behaviour which we will now describe in detail. All

images are taken from Wong et al. [49].

Mode 1 break-up is shown in Figure 4.3, and is characterised by short wavelength

disturbances growing quickly causing jet break-up close to the orifice, resulting in

primarily main droplets. Few or no satellite droplets are seen. The primary aim of

1Note η is used throughout Wong et al. [49] for dynamic viscosity. µ is used here for consistency.
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(a) Sketch showing Mode 1 break-up

(b) Photograph showing Mode 1 break-up

Figure 4.3: Mode 1 break-up

research into curved liquid jet concerns the formation, and ultimately eradication, of

these satellite droplets. As such, Mode 1 break-up is the mode of break-up we wish to

generate. Typically, this type of break-up occurs for jets of low exit velocities and so

is not seen in the prilling industry due to the large rotation rates present. Wong et al.

[49] suggest that the presence of the occasional satellite drop could be due to natural

vibrations occurring within the experimental set-up. This is an interesting factor which

will be investigated in more detail in this thesis.

Mode 2 break-up is shown in Figure 4.4. M2 break-up also consists of short wave-

length disturbances, but satellite droplets form in between main droplets. The change

from M1 to M2 occurred as the exit velocity of the jet increased, either through in-

creasing the orifice size to 0.003 m or by increasing the rotation rate of the can.

Typical Mode 3 behaviour can be seen in Figure 4.5. M3 occurs as the viscosity of
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(a) Sketch showing Mode 2 break-up

(b) Photograph showing the evolution of Mode 2 break-up

Figure 4.4: Mode 2 break-up

the high velocity jets is increased. The viscous forces dampen the capillary instabilities,

and this increased stability causes break-up to occur much further from the orifice.

The wavelengths of the disturbances are much longer (around 2-5 times that of the jet

diameter) and we see the jet breaking up in several places simultaneously. In between

the main droplets we see the formation of ligaments, long thin filaments of fluid which

subsequently contract and break-up into multiple satellite droplets.

We show Mode 4 break-up in Figure 4.6. M4 break-up is highly nonlinear, occurring

for very viscous fluids leaving the orifice at low exit velocities. A swell forms at the

end of the jet, and the inertia caused by this swell alters the jet trajectory. Upon
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(a) Sketch showing Mode 3 break-up

(b) Photograph showing the evolution of Mode 3 break-up

Figure 4.5: Mode 3 break-up

break-up, the jet shatters causing the jet to recoil, and a disturbance propagates back

down the jet towards the orifice breaking the upper part of the jet into multiple satellite

droplets. A disturbance convecting back upstream is a unique feature of M4 break-up.

It is believed there is an element of absolute instability in M4 break-up, and this is

currently being investigated in the thesis work of Rachan Bassi.

Wong et al. [49] used these mode classifications to develop flow maps showing

regions where particular types of behaviour typically occur. One such flow map is

shown in Figure 4.7. Four distinct regions showing the modes of jet break-up are
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(a) Sketch showing Mode 4 break-up

(b) Photograph showing the evolution of Mode 4 break-up

Figure 4.6: Mode 4 break-up

identified, and also a region where the exit velocity is too small to generate a jet. This

map illustrates the aforementioned relationships between exit velocity and viscosity,

through We and Oh respectively, with the movement through the mode boundaries.

The laboratory scale rig was not only used to identify modes of jet break-up, Wong

et al. [49] also presented relationships between the various non-dimensional parameters

and the length of the jet before break-up and generated several drop size distributions.

Three such distributions are presented as examples in Figure 4.8, where the vertical

axis measures a frequency f(n) which shows a ratio of the number of drops of diameter

n to the total number of drops produced, and the horizontal axis gives the size in a

dimensionless quantity. In order to generate reliable results a sample of 200 drops were

used, and 35 jets were used to calculate average break-up length.
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Figure 4.7: Figure showing a map of Ohnesorge number against Weber number dis-
playing regions of break-up regimes.

Figure 4.8(a) shows a typical distribution for M1 break-up. We see a unimodal

distribution of drop sizes, with a singular maximum where the highest percentage of

drop sizes are generated. Not many smaller satellite drops are produced. Figure 4.8(b)

displays a distribution for M2 break-up, which is a bimodal distribution. There are

two local maxima, one with a large number of main droplets, and another with a large

number of satellite droplets. Figure 4.8(c) shows the distribution for M3 break-up.

Again the distribution is bimodal, but there is a greater quantity of satellite droplets.

Further trends and drop size distributions for Mode 4 behaviour and varying orifice

sizes are given in Wong et al. [49]. We only present typical distributions for Modes 1-3

here.

Though Wong et al. [49] were able to identify the four modes on the laboratory scale

rig, and identify trends for break-up lengths and drop size distributions, the parameter

ranges replicating an industrial problem could not be reached [33]. A larger scale rig

was built to obtain dimensionless parameters closer to the industrial regime.

47



(a) Mode 1 break-up (b) Mode 2 break-up

(c) Mode 3 break-up

Figure 4.8: Graphs showing drop size distributions for three modes of break-up

4.3 Pilot Scale Experiments at Birmingham

We detail the work of Partridge [33] who obtained results on the larger pilot scale

rig in conditions closer to industrial situation, in addition to comparing the results

to the smaller laboratory scale rig. These results are summarised in Partridge et al.

[34]. The rig is situated in the Chemical Engineering Department at the University

of Birmingham. The rotating cylinder is 0.285 m in diameter. Orifice diameters were

0.001 m and 0.003 m. The setup can be seen in Figure 4.9. The same mixes of water

and glycerol were used as for the laboratory scale rig. The parameter ranges are given

in Table 4.2.

Unlike the laboratory scale rig, there was no pump to maintain the same amount

of fluid in the can. Instead, after each run of the experiment the fluid was topped back
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(a) Diagrammatic representation

(b) Photographic representation

Figure 4.9: The experimental pilot scale setup

up to the correct aspect ratio. The fall in fluid height in the can dH could be used to

calculate the jet exit velocity using the simple formula

U =
s2

0dH

a2t

where t is the duration of the experiment in seconds. This exit velocity is assumed to be

constant as dH << H. In order to obtain clear experimental images, Nigrosine (BDH

49



Liquid dynamic viscosity, µ (Pa s) 0.001-0.081
Liquid density, ρ (kg m−3) 1000-1215

Liquid surface tension, σ (N m−1) 0.047-0.072
Orifice radius, a (m) 0.0005-0.0015

Liquid aspect ratio, (H/D) 1/4 - 1/2
Can rotation rate, Ω (rad s−1) 3.14-31.4
Jet Exit Velocity, U (m s−1) 0.1-6.3

Can radius s0 (m) 0.1425
Rb = U/Ωs0 0.13 - 7
Re = ρUa/µ 2 - 4200

We = ρU2a/σs0 0.36 - 170.2
Oh = µ/

√
σaρ 0.0031 - 0.3091

Table 4.2: Table summarizing the experimental parameters used for the pilot scheme.

Chemical Suppliers) dye was stirred into the mixture and allowed to set2. The same

high speed camera (Photron Fastcam Super 10k) was used to generate the images, and

a ruler attached to the side of the can to allow for calibration when calculating jet

break-up length from the images obtained from the camera.

Partridge [33] investigated a range of parameters in similar ranges to those used by

Wong et al. [49] to see a comparison between the two rigs, investigating whether the

fluid has the same break-up mode classification for particular parameter ranges. This

is shown in Figure 4.10.

There are distinct regions where the two rigs have good agreement for M2 and M3

break-up, though there is a parameter region where both M2 break-up and M3 break-

up is encountered. This overlap is partially due to the subjective nature in classifying

the mode of jet break-up, and so classifying break-up into the laboratory scale regime

was difficult. A new type of break-up was identified, called Mode 2/3 break-up and

examples are shown in Figure 4.11(a). It is a short wavelength disturbance with one

satellite droplet forming in between main droplets, features identified as Mode 2 break-

2This has minimal effect on the jet rheology. Viscosity, density and surface tension were calculated
before and after the dye was added with little change noted.
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Figure 4.10: Figure showing a map of Ohnesorge number against Weber number dis-
playing regions of break-up regimes found on the pilot scale rig plotted over the bound-
aries derived by Wong et al. [49].

up. There are also multiple break-up points, as typified by Mode 3 behaviour, though

there is no ligament formation.

Partridge [33] also highlights another interesting feature, the presence of anti-

symmetric (or kink) disturbances. This is shown in Figure 4.11(b). These were also

not seen on the laboratory scale rig where only axisymmetric (or varicose) disturbances

were seen for Modes 1-3. Partridge [33] suggested these features could be because of

air resistance or greater mechanical vibrations at higher rotation rates. We also see in

Figure 4.10 no areas of M1 behaviour on the pilot scale rig.

4.4 Present Day and Future Work

In Uddin [44], nonlinear models were presented detailing non-Newtonian jet break-

up, both for shear thinning and shear thickening liquids. Victoria Hawkins is a research

51



(a) Multiple break-up points (b) Non-axisymmetric disturbances

Figure 4.11: Figure showing features of M2/3 break-up, identified by Partridge [33].

student in the Chemical Engineering Department at Birmingham and much of her

experimental research investigates non-Newtonian jets and jets under the influence of

surfactants.

4.4.1 Non-Newtonian Jets

The earlier experiments by Wong and Partridge involved the use of Newtonian

fluids, namely fluids which continue to flow in the same manner despite external forces

or stresses acting upon it, such as water (or glycerol) and air. Mathematically, the

primary factor which identifies a Newtonian fluid is the linear relationship between

the stress and rate of strain, and thus as a result a constant viscosity. Many fluids

industrially, biologically and chemically do not display this relationship and these fluids

are entitled non-Newtonian.

For non-Newtonian fluids, the viscosity changes as external stresses are applied

to the fluid. As such rotational forces will have a major effect on a non-Newtonian

fluid’s rheology, and the corresponding liquid jet could show some very interesting
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Figure 4.12: Figure showing typical pendant drop formation.

behaviour. There are two types of non-Newtonian fluids, those displaying no elastic

(or inelastic) properties, and those which do, viscoelastic fluids. We present some

of Victoria Hawkins’ research on experimental break-up of a non-Newtonian jet with

inelastic properties using the pilot-scale rig.

There are two main types of inelastic fluids, shear-thinning fluids with viscosity

decreasing with the rate of shear applied, and shear-thickening fluids with viscosity

increasing with the rate of shear. The next series of results we present are for shear-

thinning fluids, namely an aqueous-carboxymethylcellulose (CMC) mixtures of three

different concentrations, 0.1% CMC, 0.2% CMC and 0.3% CMC.

The first distinct feature seen are pendant drops, which form instead of ligament in

between the main drops. A ‘tear-shaped’ drop forms with the head forming at pinch-

off. The tail contracts yielding a drop larger than the adjacent primary drops. We

show this formation in Figure 4.12.

Further features are presented in Figure 4.13, showing extremely long jets which
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break-up at many places simultaneously. The corresponding ligaments are completely

displaced from the jet centreline. Although these multiple break-up points and non-

axisymmetric disturbances were seen for a viscous fluid, their effect is far more no-

ticeable here. For Newtonian fluids, this non-axisymmetry was attributed to wind

resistance, whereas here it would suggest that this bending is also a function of the

fluid rheology.

(a) Multiple break-up points (b) Non-axisymmetric disturbances

Figure 4.13: Figure showing Non-Newtonian jet break-up.

Presented in Figure 4.14 is a flow map illustrating the regions where pendant drop

formation and the non-axisymmetric disturbances are typically observed. It suggests

that as velocity is increased the ligaments no longer form into pendant drops and start

showing non-axisymmetry. Shear-thickening fluids are the subject of current research

with no results available at this time.

4.4.2 Surfactants

Also present in Uddin [44] is a mathematical model describing the influence of

surfactants on a jet. A surfactant is a substance which is added to a fluid and will

change the surface tension, without changing other properties of the fluid too dras-

tically. With liquid jet break-up, the instabilities are driven by capillary forces, so

a substance which affects surface tension will naturally have an effect on these in-
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Figure 4.14: Figure showing a map of Ohnesorge number against Weber number dis-
playing regions of break-up regimes for a non-Newtonian rig plotted over the boundaries
derived by Wong et al. [49].

stabilities. Victoria Hawkins added a soluble surfactant to the fluid, sodium dodecyl

sulfate (SDS) in 0.1%, 0.2% and 0.3% of the total fluid, and examined the effect on

the resulting jet.

Figure 4.15 shows the effect of 0.1% surfactant concentration compared to a jet

with no surfactant present, for 4 different rotation rates. The surfactant has a greater

effect on the jet trajectory for higher rotation rates. Wallwork [45] discovered that

jets with a higher surface tension are more curved. This surfactant lowers the surface

tension and this explains why the jet has less curvature. More ‘blobby’ behaviour with

surfactants is observed, with neither distinct primary or secondary drop formation at

the time of break-up. Also, a longer break-up length is noted as the surface tension

driven instabilities have been reduced. We note this has changed for 180 rpm, break-

up is shorter for the surfactant laden jet. With decreased surface tension, there is a

smaller force holding the jet together and so increased mechanical instabilities caused
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by higher rotation rates could have a larger effect.

4.5 Summary

In this chapter we have documented current work on the experimental research into

the break-up of liquid jets. There are many interesting aspects left to be examined

however. The effect of shear-thickening liquids is yet to be resolved, and perhaps

viscoelastic fluids could also be examined. Following on from research presented in

Chapter 7 in this thesis, a device which generates mechanical vibrations in the nozzle

has been developed. This will be discussed in greater detail in Chapter 11.
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(a) 30 rpm

(b) 60 rpm

(c) 120 rpm (d) 180 rpm

Figure 4.15: Figure showing a jet of 0.1% SDS(red) compared to a jet with no surfac-
tant.
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Chapter 5

Mode Classification of Numerical

Jet Simulations

In Chapter 3 we discussed theoretical research developed to model a curved viscous

jet. We presented discussions on both the linear and nonlinear theories. However,

we did not analyzed the differences (if any) between different models. We intend to

perform here a more in-depth comparison between the models in parameter ranges we

would typically see in experiments. This chapter extends previous work reviewed in

Chapter 3.

5.1 Linear and Nonlinear Theories

As the break-up of the jet is a nonlinear phenomenon, only the nonlinear theory

predicts the impact of satellite droplets. Therefore, we shall focus our comparison

around the prediction of main droplet sizes between linear and nonlinear theories.

Linear theory states that we can predict the size of the main droplet by integrating

over a wavelength about the point of break-up. Now the dimensional wavelength of the

disturbance is given by λw = 2πa/k∗(s) where k∗(s) is the most unstable wavenumber
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given by (3.4). Therefore, it is necessary to calculate the most unstable wavenumber

at the point of break-up, k∗(sb), where sb is the length of break-up. Nonlinear theory

is used to calculate sb.

As outlined in Chapter 3, the steady state equations (3.9) are solved, yielding the

initial conditions for the temporal PDEs (3.11) subject to the boundary condition

A(s = 0, t) = 1, u(s = 0, t) = 1 + δ sin

(
κt

ε

)
,

where δ is the amplitude of the disturbance and κ = k∗(s = 0) is the most unstable

wavenumber at the orifice given by

k∗ =
1

21/4
√√

2 + 3Oh
.

This yields values for the main drop radius, satellite drop radius and break-up length

sb. Using values of R0(sb) and u0(sb), obtained from (3.9), the linear dispersion relation

(3.4) is solved for k computationally, adopting the view of a spatial instability with

λ = −iω. An example is shown in Figure 5.1. The curve displays the roots for which

ki is most negative, since (3.4) has more than one solution.

The most unstable wavenumber is the real part of the wavenumber kr corresponding

to the most negative growth rate ki
1. In this case k∗(sb) = kr = 0.765, and hence

integrate over the wavelength λw = 2πa/k∗(sb) in the same way as for nonlinear break-

up (using (3.15) and (3.16)). We obtain a drop radius of 1.7205 in non-dimensional

units in this case. The nonlinear simulation gives a main drop radius of 1.8246 in

non-dimensional units at the same parameter values, so differs only slightly from the

linear prediction.

1With a complex wavenumber k = kr + iki waves are of the form e−kis̄ei(kr s̄+λt̄), and so we need
the growth rate ki < 0 yields an increase in amplitude as s̄ increases from 0.
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Figure 5.1: Dispersion relation solved for k for 0 < ω < 2. R0(sb) = 1.2022, u0(sb) =
0.912, We = 50, Rb = 2 and Oh = 0.001.

We compare the two models for a variety of parameters, investigating the degree

to which the two results differ. The nonlinear results show similar trends to those

presented in Părău et al. [35, 36] whilst linear theory results are equivalent to those

in Wallwork et al [46] and Decent et al. [12]. However, comparisons between these

theories has, as of yet, not been performed in detail. Figure 5.2 shows the differences

in sizes between the two theories for main drop radii.

Figure 5.2(a) shows a comparison between the nonlinear and linear theory as the

Weber number is increased for varying Rossby numbers. It can be seen that nonlinear

theory predicts very little variation in size as the Weber number changes, whilst linear

theory predicts smaller droplets for larger Weber numbers. As the Rossby number is

decreased (corresponding to an increasing rotation rate) there is a decrease in drop

sizes for both theories, as expected. However, for smaller Rossby number the discrep-

ancies between the two theories becomes more noticeable. In the case of higher Weber
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numbers and lower Rossby number the nonlinear theory can predict a droplet over

twice the size of the linear theory.

Similar results are noted for other parameters. Figure 5.2(b) shows the impact of the

Ohnesorge number on the two theories. Increasing the Ohnesorge number (increasing

viscosity) causes the difference between the two theories to become more noticeable

at higher Weber numbers. Perhaps most noticeably, using nonlinear theory results

in increasing main drop sizes with increasing Ohnesorge number, whilst linear theory

predicts a decreasing main droplets for a increasing Ohnesorge number. Figure 5.3(a)

shows that the theories differ to their greatest extent for larger Ohnesorge and smaller

Rossby number, in other words in the case of a more viscous fluid at a higher rotation

rate.

Close to pinch-off the nonlinear wavepacket could ‘bunch-up’ as the jet thins. This

nonlinear wave supposition could increase the radius of the droplet. This effect would

be more noticeable for a thinner jet, which would explain why this occurs for high

viscosities at high rotation rates. Linear theory however, does not account for the

nonlinearity of break-up, so this effect would not be seen. Figure 5.3(b) shows that the

difference between the two theories has a greater effect for smaller δ, i.e. if the initial

imposed amplitude of the disturbance is smaller and hence the jet is longer.

5.2 Classifying Jet break-up

We must clarify our typical mode behaviour of a theoretical jet, and investigate

whether numerical simulations can generate the modes identified by Wong et al. [49].

We cannot simulate Mode 4 break-up as this would probably involve absolute insta-

bilities; this is studied in the PhD thesis of Rachan Bassi. We vary the parameters to

generate different modes and classify these on a theoretical scale, fully describing their
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behaviour.

Figure 5.4 shows how changing δ has an effect on the nonlinear dynamics of the

jet. When δ is smaller the jet has a larger break-up length. This is intuitive, since if

we perturb the initial disturbance by a greater amount then it needs less time to grow

to the amplitude necessary to generate break-up. We can see from Figures 5.4 that

qualitatively, jet break-up is not affected by changes in δ. However, if the main drop

does not form clearly after break-up, such as in Figures 5.4, we investigate the main

drop before the satellite drop or ligament.

Figures 5.5 and 5.6 show numerical simulations using parameters from the experi-

mental regime, illustrating three modes of theoretical jet break-up with similar char-

acteristics to the experimental modes M1-M3. Identifying the mode of break-up from

the simulations can be relatively straight forward, such as in Figure 5.5(a) and (b);

the break-up is distinctively M1 and M2 behaviour respectively where clear formation

of the primary droplet occurs, and in the case of M2 break-up clear formation of the

satellite droplet on the other side of the break-up point. However, as the transition

period between M2 and M3 break-up is approached, classifying the mode of break-up

becomes more difficult and largely subjective. In cases where the simulation does not

show a secondary pinch-off such as in Figure 5.6(a), or when it is unclear whether there

is a ligament or a large satellite droplet, the jet is assumed to break-up under the M2/3

regime. In situations when it appears that multiple primary droplets may form, such

as in Figure 5.6(b), the jet is said to undergo M3 break-up, where a ligament forms

in between two primary droplets. As the numerical model breaks down at the point

of break-up, further ligament behaviour cannot be ascertained [35]. As such, for M2/3

and M3 break-up, the frequency and size of any satellite droplets cannot be obtained

and drop size analysis is limited to examining primary drops.
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5.3 Summary

In this chapter we have compared primary drop sizes generated by linear and nonlin-

ear theories. The models compare well for jets with low exit velocity and low viscosity.

As velocity is increased (decreased Rb) or viscosity increases (increasing Oh), a more

noticeable difference occurs between drop sizes.

The nonlinear model was used to simulate jet break-up, and the modes of break-up

were identified through the similarity in their behaviour to experimental modes. We

identified that satellite droplets can not be generated from a ligament. In the next

chapter we compare drop sizes produced from these theories to experimental data.
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(a) Varying Weber numbers for different Rossby numbers, Oh = 0.001,
δ = 0.01

(b) Varying Weber numbers for different Ohnesorge numbers, Rb = 2,
δ = 0.01

Figure 5.2: Graph showing a comparison between main drop radii predictions using
nonlinear theory and linear theory. ε = 0.01 and κ varies accordingly since k = k∗(s =
0) which is a function of Oh.
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(a) Varying Ohnesorge numbers for different Rossby numbers, We = 50
and δ = 0.01

(b) Varying δ for different Ohnesorge numbers, We = 50 and Rb = 2

Figure 5.3: Graph showing a comparison between main drop radii predictions using
nonlinear theory and linear theory. ε = 0.01 and κ varies accordingly.
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(a) δ = 0.1

(b) δ = 0.001

Figure 5.4: Nonlinear simulation showing the effect of changing δ on a jet. We = 50,
Rb = 2, Oh = 0.5, κ = 0.4926 and ε = 0.01. In (d) the orifice is at X = Z = 0, off the
edge of the figure.
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(a) Mode 1

(b) Mode 2

Figure 5.5: Theoretical Mode Classification
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(a) Mode 2/3

(b) Mode 3

Figure 5.6: Theoretical Mode Classification
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Chapter 6

Comparison between Theory and

Experiments

In the previous chapter we compared the linear model and nonlinear model for a

curved viscous jet, focussing on main drop sizes. We noticed differences in the size

of droplets produced by those models when we have a more viscous fluid at higher

rotation rates, with the nonlinear model predicting a drop over twice the size of the

linear model. These differences and their implications can only be fully discussed once

a detailed comparison with experimental data had been performed.

We shall compare the theory with the experiments in this chapter in order to truly

appreciate the uses and limitations of the mathematical model. We wish to see if the

numerical simulations exhibit the same behaviour and generate droplets of the same

size identified on the experimental stage.
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6.1 Comparison of Theoretical Mode Classifications

with Experimental Data

6.1.1 Parameter Maps

In Chapter 4, we discussed the use of flow maps to characterize jet break-up in

given parameter ranges. We wish to see if the same thing can be done on a theoretical

scale. Parameter maps were used to illustrate the relationship between viscosity and jet

velocity in describing mode type. As the surface tension changes only slightly between

different liquids in the experiments, necessary experimental changes in Weber number

came through changes in the velocity of the jet, and so to generate this change in inertia

we must change the rotation rate of the can, thus impacting upon the Rossby number

in experimental runs. This illustrates an inter-dependence of the non-dimensional

parameters within the problem when carrying out experimental parameter searches.

The nonlinear model is used to predict the mode boundaries of Partridge et al.

[34] and the results are presented in Figure 6.1. Each simulation point uses values of

dimensionless parameters obtained from the experiments. The hollow symbols denote

theoretical mode break-up which matches the experimental modes of break-up, whilst

the solid symbols indicate a different mode. In this analysis, δ was kept as constant

due to the large number of break-up points, hence not optimised to match the break-

up length. This does not affect the nature of break-up (as shown by Figure 5.4).

All discrepancies between modes occur at the same viscosity (µ = 0.00418 Pa s) in

the transition period between M2 and M3 break-up. Due to the subjective nature of

classifying the mode of break-up (both theoretically and experimentally), comparing

experimental and theoretical modes is difficult in the transition period between modes.

Discrepancies in this region more typically occur at higher Weber numbers suggesting

the nonlinear model is more sensitive to rotation rate.
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Figure 6.1: Map of Weber number against Ohnesorge number to illustrate a comparison
between theoretical data and experimental data. Theoretical data obtained for δ =
0.01, ε = 0.01 and κ varies accordingly with Oh. Rb is taken from the experimental
data obtained from the pilot scale rig. Also plotted are the mode boundaries derived
by Wong et al. [49].

Nine data points (marked by crosses) have been chosen in Figure 6.1 for further

evaluation. These data points are chosen since they exhibit M2, M2/3 and M3 break-

up. The theoretical results for these data points are compared to experimental images,

with δ optimised to match the break-up lengths. Drop size distributions will also be

compared. These data points will be referred to as Jets 1-9. The parameters for each

jet are given in Table 6.1.
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Jet Glycerol Mode µ (Pa s) Ω(rad/s) ρ (kg/m3) σ (N/m)
Concentration (%)

1 0 2 0.001 3.14 997.5 0.0718
2 0 2 0.001 6.28 997.5 0.0718
3 0 2 0.001 12.56 997.5 0.0718
4 40 2/3 0.00418 12.56 1140 0.065
5 40 2/3 0.00418 18.84 1140 0.065
6 40 2/3 0.00418 31.4 1140 0.065
7 80 3 0.0722 12.56 1244 0.0665
8 80 3 0.0722 18.84 1244 0.0665
9 80 3 0.0722 31.4 1244 0.0665

Jet H/D U We Rb Re Oh κ
1 1/2 0.9804 20.03 2.189 1462 0.003051 0.7048
2 1/2 1.153 27.75 1.289 1600 0.003051 0.7048
3 1/2 1.203 32.82 0.672 1800 0.003051 0.7048
4 1/4 0.9428 22.26 0.512 375 0.01253 0.6979
5 1/4 1.404 51.86 0.522 574 0.01253 0.6979
6 1/4 2.231 128.7 0.494 905 0.01253 0.6979
7 1/4 2.231 28.676 0.336 30 0.1785 0.6022
8 1/4 2.231 28.676 0.332 30 0.1785 0.6022
9 1/4 2.231 28.676 0.269 30 0.1785 0.6022

Table 6.1: Table detailing the jets which will undergo further evaluation. The param-
eters which are similar to all the jets are a = 0.0015 m, s0 = 0.1425 m and ε = 0.01

6.2 Comparing Jet images

We modify the amplitude δ of the unstable wave at the orifice in order to obtain a

break-up length in the simulations which corresponds to that observed in experiments.

We then measure the simulations’ predicted drop sizes and compare to experiments

for identical parameter values. We take this route since δ is difficult to measure in

experiments.

Figure 6.2 shows the numerical simulation for Jet 1, and this is overlayed onto

the experimental photograph in Figure 6.3. There is excellent agreement between the

model and the experimental jet, in terms of the trajectory, shape and point of break-

up. Figure 6.4 presents the drop size distribution obtained from the experiments, with
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(a) radius vs arc length (b) Jet Simulation

Figure 6.2: Theoretical results for Jet 1. δ = 0.00199 and ε = 0.01.

added predictions for theoretical drop sizes. Primary drop sizes show little discrepancy

between the two theories and correspond almost exactly to the experimental mean drop

size.

(a) experimental jet (b) Theoretical jet overlayed onto experimental
jet

Figure 6.3: Results for Jet 1. δ = 0.00199 and ε = 0.01.

Similar results can be noted for Jets 2 and 3, as shown by Figures 6.5 - 6.7 and

Figures 6.8 - 6.10 respectively. The nonlinear theory does appear to provide a very

good prediction of the behaviour in the Mode 2 regime. We note that as we increase

the rotation rate, δ increases to match break-up lengths with the experimental images.
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Figure 6.4: Graphs showing the experimental drop size distribution forJet 1, with
theoretical drop size predictions from linear and nonlinear theory. δ = 0.00199 and
ε = 0.01.

(a) radius vs arc length (b) Jet Simulation

Figure 6.5: Theoretical results for Jet 2. δ = 0.00803 and ε = 0.01.
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(a) experimental jet

(b) Theoretical jet overlayed onto experimental jet

Figure 6.6: Results for Jet 2. δ = 0.00803 and ε = 0.01.

Figure 6.7: Graphs showing the experimental drop size distribution for Jet 2, with
theoretical drop size predictions for linear and nonlinear theory. δ = 0.00803 and
ε = 0.01.
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(a) radius vs arc length (b) Jet Simulation

Figure 6.8: Theoretical results for Jet 3. δ = 0.0325 and ε = 0.01.

(a) experimental jet (b) Theoretical jet overlayed onto experimental
jet

Figure 6.9: Results for Jet 3. δ = 0.0325 and ε = 0.01.
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Figure 6.10: Graphs showing experimental drop size distribution for Jet 3, with theo-
retical drop size predictions for linear and nonlinear theory. δ = 0.0325 and ε = 0.01.

We investigate the Mode 2/3 regime next. Figure 6.11 shows two numerical solu-

tions for Jet 4, with slightly different values of δ. It illustrates, as an example, that

when a fluid is more viscous, and we have ligament formation, break-up can occur on

either side of the ligament for two different values of δ. For δ = 0.0052, assuming

one drop/ligament before break-up and one after break-up, gives a break-up length of

2.208 and a main drop of radius 1.0376 in nondimensional units, and for δ = 0.0053

break-up length is 2.0032 and main drop radius is 1.369. These are two markedly dif-

ferent lengths and drop sizes, though the amplitude of orifice disturbance δ is changed

by only a small amount and there is little difference in qualitative jet break-up.

The comparison with the experimental image is made in Figure 6.12, where δ =

0.0052 as this yields the value which corresponds to the experimental break-up length.

Initially the numerical simulation accurately models the jet trajectory, but as the jet

length increases there is a noticeable difference between the two trajectories. This could

be because the trajectory of the jet falls out of the Z −X plane through gravitational
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(a) δ = 0.0053

(b) δ = 0.0052

Figure 6.11: Theoretical results for Jet 4. ε = 0.01.

forces which are neglected in the simulations. This is illustrated in Figure 6.12(a)

where the droplets towards the end of the jet are ‘blurry’ and so are not in focus,

unlike the upper part of the jet. Whilst the calculation of the trajectory in three

dimensions is possible, a 2D experimental image can not be compared with a 3D

numerical simulation. It would be necessary to use multiple cameras in different planes

to accurately measure the trajectory of the jet in three dimensions. Then the 3D

nonlinear simulation could be compared.

The results are compared to the experimental photographs and drop size distribu-
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tions in Figures 6.12 and 6.13 . The larger drop predicted by δ = 0.0053 is not in the

experimental drop size distribution, whilst the drop produced for δ = 0.0052 and the

linear theory result are both very similar and fall in the centre of the distribution. This

shows that with multiple break-up points, there may be droplets of varying size though

the nonlinear simulation can only be used to predict one droplet as the solution is not

valid after break-up point. There are no satellite droplets for the more viscous fluid

predicted by these simulations.

(a) experimental jet (b) Theoretical jet overlayed onto experimental
jet

Figure 6.12: Results for Jet 4. δ = 0.0052 and ε = 0.01.

Figures 6.14 - 6.16 shows the results for Jet 5. Gravity appears to have less of

an affect on the trajectory of the jet1, although the trajectory is not as accurately

modelled as for Mode 2 break-up for Jets 1-3. Figure 6.16 shows that the nonlinear

theory predicts a drop which falls within the upper end of the distribution for main

drops, while the linear theory predicts smaller drops.

1Note that although it appears the numerical simulation moves away from the experimental image,
this is in fact due to post break-up droplets falling after the break away from the jet.
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Figure 6.13: Graphs showing experimental drop size distribution for Jet 4, with theo-
retical drop size predictions for linear and nonlinear theory. δ = 0.0052 and ε = 0.01.

(a) radius vs arc length (b) Jet Simulation

Figure 6.14: Theoretical results for Jet 5. δ = 0.0399 and ε = 0.01.
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(a) experimental jet (b) Theoretical jet overlayed onto
experimental jet

Figure 6.15: Results for Jet 5. δ = 0.0399 and ε = 0.01.

Figures 6.17 - 6.19 show results for Jet 6, displaying similar behaviour to Jet 5.

However, Figure 6.19 shows that the nonlinear theory predicts a drop much larger

than expected from experimental results, and the linear theory predicts a drop of size

more typically observed. These results, in correlation with those presented in the

previous section, illustrate that the two theories give different results for high rotation

rates and viscosities, and show the nonlinear theory gives droplets much larger than

what experiments suggest.

As a viscous jet has a longer break-up length and thins more than a less viscous

jet, air resistance has a greater chance of impacting upon it, which has been excluded

from our theoretical research. However, air resistance would act as a force resisting

the forward movement of the jet, and so would have the effect of pushing the jet away
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Figure 6.16: Graphs showing experimental drop size distribution for Jet 5, with theo-
retical drop size predictions for linear and nonlinear theory. δ = 0.0399 and ε = 0.01.

from its direction of movement. As a consequence, were air resistance an important

factor in these experiments, we would expect the numerical simulation to be on the

other side of the experimental image. As this is not the case, we can conclude that air

resistance is not a defining factor for our simulations here.

Secondly, even though there is a greater rotation rate in Figure 6.15 and 6.18, break-

up length is shorter than in Figure 6.12. It has been shown, [45], [33], that the effect

of rotation is to increase the break-up length. However, this is not what is noted here

in the experiments. It was necessary to raise δ by an order of magnitude to generate

this shorter break-up length. This is an indication that something is occurring on the

experimental scale creating this shorter break-up length when the rig is rotating more

quickly. Perhaps this is due to instabilities caused by vibrations in the experimental

apparatus. We shall investigate this possibility in the next chapter.

Figures 6.20 - 6.22 show simulated break-up for Jet 7. There is a vast difference

between the trajectory of the simulated jet and the experimental image. Viscosity
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(a) radius vs arc length (b) Jet Simulation

Figure 6.17: Theoretical results for Jet 6. δ = 0.065 and ε = 0.01.

causes the jet to thin dramatically and, with a large break-up length, makes the jet

susceptible to the effects of gravity. This is noted through experimental observations

as the jet is seen to fall significantly out of the plane of rotation. The main drop shows

non-spherical formation and no satellite droplets are generated from the ligament. The

inability to generate satellite droplets from ligaments for M2/3 and M3 break-up will

create a major problem when comparing drop size distributions in the next chapter.

Similar results are noted for Jet 8 in Figures 6.23 - 6.25 though break-up length

seems to be more consistent with the rotation rate as expected. Results could not be

obtained for Jet 9 as the experimental break-up length was too long to be captured in

a single frame, and thus trajectories cannot be matched.

6.3 Changing exit angle

We investigate the impact of the jet exit angle and discuss the implications it has

upon the comparisons made in the previous section. Wong et al. [49] illustrated that

the exit angle of the jet varies as the viscosity and rotation rate is altered. This is

shown in Figure 6.26.
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(a) experimental jet (b) Theoretical jet overlayed
onto experimental jet

Figure 6.18: Results for Jet 6. δ = 0.065 and ε = 0.01.

As the Rossby number is decreased, the angle at which the jet leaves the orifice

becomes smaller. This also happens as the jet becomes more viscous. Therefore, for

the jets we have considered, particularly the viscous jets at high rotation rates, our

assumption that the jet is exiting perpendicularly to the orifice may become less valid.

It is in this case that we found the least accurate comparison. We can modify the

angle at which the jet leaves the orifice in the simulations by changing our steady state

orifice conditions Xs(s = 0) = 1 and Zs(s = 0) = 0. We must, however, maintain the

arclength condition,

Xs(0)2 + Zs(0)2 = 1.
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Figure 6.19: Graphs showing experimental drop size distribution for Jet 6, with theo-
retical drop size predictions for linear and nonlinear theory. δ = 0.065 and ε = 0.01.

(a) radius vs arc length (b) Jet Simulation

Figure 6.20: Theoretical results for Jet 7. δ = 0.137 and ε = 0.01.
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(a) experimental jet (b) Theoretical jet overlayed onto experimental
jet

Figure 6.21: Results for Jet 7. δ = 0.137 and ε = 0.01.

Figure 6.22: Graphs showing experimental drop size distribution for Jet 7. δ = 0.137
and ε = 0.01.
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(a) radius vs arc length (b) Jet Simulation

Figure 6.23: Theoretical results for Jet 8. δ = 0.058 and ε = 0.01.

(a) experimental jet (b) Theoretical jet overlayed onto experimental
jet

Figure 6.24: Results for Jet 8. δ = 0.058 and ε = 0.01.
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Figure 6.25: Graphs showing experimental drop size distribution for Jet 8. δ = 0.058
and ε = 0.01.

Figure 6.26: Graphs showing how the exit angle at the orifice is affected by rotation
rate and viscosity of the fluid, reproduced from Wong et al. [49]
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Figure 6.27: Graphs showing different trajectories for different values of Xs(0) and
Zs(0). The jet parameters used are We = 28.676, Rb = 0.336, Re = 30, Oh = 0.1785
and ε = 0.01.

Figure 6.27 shows the affect of changing these initial conditions at s = 0, showing

that the jet becomes more coiled as Xs is decreased. This illustrates the importance

of the calculation of the steady state in the overall solution to the problem.

Figure 6.28, shows how these conditions affect the numerical simulations. Figure

6.28(a) and (b) show the original jet trajectory with the jet exiting perpendicularly to

the orifice, as in the previous section. The orifice conditions are changed in 6.28(c) and

(d) so the jet is no longer perpendicular and the same amplitude disturbance is applied.

Break-up length is now shorter, and the main drop now forms after break-up with the

ligament forming before break-up. This suggests that when the jet is emerging at an

angle, it requires a different disturbance to generate the same break-up length.
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(a) Xs(0) = 1, Zs(0) = 0, δ = 0.137.

(b) Xs(0) = 0.8, Zs(0) = 0.6, δ = 0.1.

(c) Xs(0) = 0.8, Zs(0) = 0.6, δ = 0.137.

Figure 6.28: Numerical simulations used to show how Xs(0) and Zs(0) changes break-
up for Jet 7. ε = 0.01.
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Figure 6.29: Graph showing additional jets added to Figure 6.21(b) with break-up
length matched. (i) (blue) Xs(0) = 0.8, Zs(0) = 0.6, δ = 0.1 and (ii) (green) Xs(0) =
0.6, Zs(0) = 0.8, δ = 0.075 The parameters used are We = 28.676, Rb = 0.336,
Re = 30, Oh = 0.1785, κ = 0.6022 and ε = 0.01.

δ is modified in 6.28(e) and (f) such that break-up length is matched. Now break-up

occurs in exactly the same way as in 6.28(a) and (b). Changing the angle has had no

affect on the way the jet breaks up when the break-up length is the same. We can see

in Figures, 6.28(b), (d) and (f) that although the break-up length has changed slightly,

qualitative jet break-up is unaffected by changing the exit angle.

The numerical simulations are compared to an experimental image in Figure 6.29.

With the modified orifice conditions, the numerical simulation shows a better com-

parison. However, the extent to which the simulation models the trajectory cannot
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Figure 6.30: Graphs showing how changing Xs(0) and Zs(0) affects drop sizes showing
(i) nonlinear main drop prediction, (ii) nonlinear ligament size prediction and (iii)
linear drop prediction for δ = 0.137 and δ chosen to match break-up length. The jet
parameters used are We = 28.676, Rb = 0.336, Re = 30, Oh = 0.1785 and ε = 0.01.

be entirely quantified as the experimental jet falls out the plane of the experimental

image.

Figure 6.30 shows the nonlinear and linear drop size predictions for changing jet

angle with δ unmodified as well as with δ changing to match break-up. To generate

the ‘size of the ligament’ we assume that the ligament contracts into a single drop.

We then use the same technique as for calculating the radius of the main and satellite

droplets described in Section 3.2.3 (That is, ‘size of ligament’ in Figure 6.30 refers to an

equivalent drop radius produced if a ligament contracts into a single drop at rupture).

The nonlinear theory predicts decreasing main drop size and increasing ligament size

with increasing Xs(0). These change only slightly when δ is chosen to match the break-

up lengths, whilst they change more when δ is kept the same as for an exit angle of

90◦. Nonlinear theory still predicts drops which are larger than seen experimentally in
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Figure 6.23, despite the changes in exit angle. Linear theory exhibits the same trends

as identified for nonlinear theory whilst maintaining drop sizes comparable to that of

experiments.

6.4 Conclusions

Throughout this chapter we have compared experimental results with theoretical

predictions assuming break-up was generated by the most unstable wave. For less

viscous fluids in the M2 regime we obtained a very good comparison between the

theory and the experiments. However, we were unable to compare the trajectories for

slower viscous jets as they fell out the plane of the experimental image, and quicker

high viscosity jets as we could not ascertain break-up on an experimental scale as the

jet was too long to be observed in a single frame.

The comparison with the experiments show that the linear theory provides an

accurate drop size prediction. Whilst nonlinear theory can accurately predict the

mode classification of a jet (providing ε is small), in more viscous situations where the

jet thins, the theory appears less accurate. Perhaps the bunching of the wavepacket

resulted in nonlinear supposition of waves close to pinch-off. Alternatively, inaccuracies

could arise due to the use of the long wavelength approximation in the derivation of

the nonlinear equations.

We also investigated the impact of jet exit angle and discovered that though the

exit angle has a dramatic effect on the trajectory of the jet, qualitative behaviour is

unaffected and drop sizes are only slightly affected.
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Chapter 7

Introducing Another Disturbance

Up to this point, we have posed a periodic boundary condition at the orifice of the

form,

u(0, t) = 1 + δ sin(κt/ε),

where δ is the amplitude of the disturbance, and κ chosen such that break-up is caused

by the most unstable mode. However, experiments are seen to yield a distribution

in drop sizes, and the above boundary condition will only produce a single drop size

prediction. Partridge et al. [34] attributed discrepancies between the pilot scale rig

and results from the laboratory scale rig from Wong et al. [49] to mechanical vibrations

in the rig components, yet this could also account for distributions in drop sizes. A

secondary disturbance is introduced through the boundary condition at the orifice,

u(0, t) = 1 + δ sin(κt/ε) + γ sin(ωt/ε), (7.1)

where γ and ω are the amplitude and frequency of the additional disturbance. Clearly

it is unlikely that a singular sinusoidal wave is representative of all vibrations in the

rig; this approach merely allows the sensitivity of a jet to additional disturbances to
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(a) no secondary disturbance

(b) γ = 0.00199 and ω = 0.5

(c) γ = 0.01 and ω = 0.5

Figure 7.1: Secondary disturbance applied to Jet 1. δ = 0.00199 and ε = 0.01.
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Figure 7.2: Graphs showing how the drop sizes with varying ω for three different
disturbances, (1) δ = 0.00199, γ = 0.00199, (2) δ = 0.00199, γ = 0.01, and (3) δ =
0, γ = 0.00199 for Jet 1. ε = 0.01. The dotted line shows the experimental mean.

be demonstrated.

Figures 7.1(a) and (b) show a jet with no additional disturbances at the orifice.

Figures 7.1(c) and (d) show a secondary disturbance with the same amplitude as the

most unstable wave, and Figures 7.1(e) and (f) show a secondary disturbance with

amplitude larger than that of the most unstable wave. As the size of the secondary

disturbance is increased, the presence of satellite droplets is seen to be eradicated for

this given secondary frequency ω = 0.5. We apply additional frequencies to Jets 1-9

from Table 6.1 to generate drop size distributions and investigate changes of mode of

break-up.
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7.1 Water

Figure 7.2 examines the behaviour of Jet 1 when subjected to a three different

secondary disturbances, one with a weak disturbance the same size as the most unstable

mode, another a stronger secondary disturbance which is an order of magnitude in

amplitude greater and one without the most unstable mode present (δ = 0). Also

plotted is the experimental mean for the main and satellite drop sizes. Although

values of ω only go up to 2, greater frequencies could be investigated. However, for the

purpose of our investigation we are examining regions around the most unstable wave

frequency κ = 0.7048 and so we are not interested in very high frequency secondary

disturbances.

There is very little quantitative difference for the main drop sizes for all frequencies

and amplitudes. However, there is a difference with satellite droplet formation. For the

low amplitude secondary disturbance, satellite droplet formation is largely unaffected.

The most unstable wave frequency does indeed dominate the jet break-up over other

frequencies applied to the jet, thus regulating break-up.

At a higher secondary amplitude, the additional frequencies can have a more dom-

inant affect on the jet and in some cases eradicate the satellite drop formation. When

δ = 0 and there is no Rayleigh mode, the behaviour is equivalent to investigating a dis-

turbance an order of magnitude greater than the most unstable wave, except at higher

frequencies. We propose that for some jets, such as Jet 1, the most unstable mode

can cause satellite droplets and it is necessary to force a jet to vibrate at a different

frequency to reduce the presence of these smaller droplets.

In order to compare the behaviour of these imposed secondary disturbances with

experimental drop size distributions and gain insight into the behaviour of the exper-

imental setup, it is necessary to generate drop size distribution modelling a carefully

selected range of frequencies.
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Figure 7.3: Theoretical drop size distributions produced for the different disturbances
(1) δ = 0.00199, γ = 0.00199, (2) δ = 0.00199, γ = 0.01, and (3) δ = 0, γ = 0.00199,
taken about the frequency of the most unstable wave for Jet 1. ε = 0.01. Also plotted
is the experimental data.

To model a distribution in disturbance frequencies at the orifice, a (truncated) Gaus-

sian profile is adopted with the mean chosen to be equal to the frequency of the most

unstable wave, under the assumption that the Rayleigh mode is still a critical factor in

jet break-up. The standard deviation of the Gaussian distribution is arbitrarily taken

to be equal to the experimental standard deviation in drop size. 200 frequencies are

studied to be consistent with the production of experimental distributions, generated

using MATLAB’s normal distribution function (normrnd).

Inputting 200 different frequencies into the nonlinear model is impractical, thus

discrete values of ω are chosen (i.e. those shown in Figure 7.2). It is assumed that

drop sizes generated by a given frequency fall on the gradient in between the discrete

points. In cases where no satellite droplets are produced, such as ω = 1.3, the jet is

assumed to undergo M1 break-up. It is also assumed that no further satellite drops

are generated in between the two discrete values.
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Using this Gaussian profile, we obtain the theoretical drop size distribution shown

in Figure 7.3. We conclude that if disturbances are of similar magnitude to the most

unstable wave (γ = δ) then there is a poor correlation with experimental results - there

are too many satellite droplets and not enough variation in main drop size. Removing

the most unstable wave from the jet had no improved effect upon the variation in main

droplet sizes, but had a more dramatic effect on satellite droplets, in a similar fashion

to increasing the amplitude of the secondary disturbance by an order of magnitude.

It is necessary for γ to increase by two orders of magnitude, to γ = 0.1 in Figure

7.4, before a good agreement is reached and a unimodal distribution is generated, in-

dicating the impact of mechanical instabilities that dominate the classical dynamics

of liquid jet break-up. (It is not suggested that the vibrations are this large in ampli-

tude; in practice there would be a multitude of smaller disturbances interacting during

break-up). As a consequence, this raises issues for experimental research. Would two

independently engineered experimental setups yield the same results if the jets are so

sensitive to vibrations, and does an engineered setup vibrate with similar amplitudes

and frequencies to the industrial problem? Dimensionless parameters permit a scaling

of the industrial problem, yet subtleties in engineering that lead to varying mechanical

instabilities are not accounted for. In order to control jet break-up, it would be neces-

sary to dominate the mechanical instabilities that arise as the rig rotates, regardless of

its design. Similar trends are identified for the same fluid at a larger rotation rate, as

shown by Figures 7.5 and 7.6 for Jets 2 and 3. However it appears that higher rotation

rates in Figure 7.6 show less of an accurate comparison.

In addition, the concept of these experimentally induced vibrations may explain

why there is less of a comparable distribution for higher rotation rates. Naturally, if

there are instabilities in the rig then these will be more pronounced when the rig is

rotating more rapidly. As a consequence, the experimental jet will be experiencing
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higher amplitude vibrations at the orifice. This could cause jets to be shorter, and as

such, it explains why in the previous chapter it was necessary for δ to be set larger to

match to experimental images in these cases.

In addition, the jets generated during these simulations using additional distur-

bances naturally have varying break-up lengths. We see variations in break-up lengths

on the experimental scale during visualisation of a single jet; perhaps these are related.

Also, to reiterate an earlier statement, these secondary disturbances we have intro-

duced here have not been used to model vibrations in the rig, rather to demonstrate

the jet’s sensitivity. In reality, we would have a whole range of different frequencies

and amplitudes at the orifice, corresponding to nonlinear wavepackets moving down

the jet.

7.1.1 Changing Modes

The previous section illustrated a jet’s sensitivity to additional disturbances, and

we proposed that such disturbances occurring in the experimental set-up could account

for the observed distributions. However, we did not fully investigate the impact of these

disturbances on the theoretical jet simulation. Increasing either γ or ω corresponds to

increasing the amplitude or frequency of the secondary disturbance. We wish to see

which has greater effect on the jet, increasing amplitude or frequency, and how these

qualitatively effect break-up.

Figure 7.7 shows how low amplitude disturbances of different secondary frequencies

affect jet break-up when compared with a jet with no secondary disturbance. Increasing

the frequency of this small amplitude disturbance has little effect on the jet, apart from

slightly reducing the break-up length. There is distinct satellite drop formation, and

this has no effect on the mode of break-up; it is clearly M2. Note that each jet image

is shifted along the Z axis, the orifice remains at X = Z = 0 during each simulation.
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.4: Effect of 3 secondary disturbances, (1) δ = 0.00199, γ = 0.00199, (2)
δ = 0.00199, γ = 0.01 and (3) δ = 0.00199, γ = 0.1 for Jet 1. ε = 0.01.
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.5: Effect of 3 secondary disturbances, (1) δ = 0.00803, γ = 0.00803, (2)
δ = 0.00803, γ = 0.01 and (3) δ = 0.00803, γ = 0.1 for Jet 2. ε = 0.01. Also plotted is
the experimental data.
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.6: Effect of 3 secondary disturbances, (1) δ = 0.0325, γ = 0.0325, (2) δ =
0.0325, γ = 0.1 and (3) δ = 0, γ = 0325 for Jet 3. ε = 0.01. Also plotted is the
experimental data.
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Figure 7.7: Graphs showing how the disturbance is affected by changing frequency of
a low amplitude disturbance γ = 0.00199 for Jet 1. ε = 0.01. Each jet image is shifted
along the Z axis.

The amplitude is increased in Figure 7.8. There is markedly different behaviour as

frequency is changed. For frequencies ω = 0.3 and ω = 1.3, it appears that satellite

drop formation is eradicated, the high frequency disturbance causes very short jet

break-up.

Figure 7.9 shows the different modes of break-up for different amplitude distur-

bances. We can see that for low amplitude disturbances we see little qualitative change

in jet break-up, and it is the most unstable wave derived by Decent et al. [12] which

dominates the behaviour. When the amplitude is increased, there are two areas of

M1 break-up predicted, one in the low frequency range and a larger area in the high

frequency range. The stability of different frequencies will be examined in the next

chapter.

These areas of satellite drop eradication are of primary interest to prilling, and so

we can propose useful frequencies for an experimental range in order to achieve the

desired break-up, i.e. we propose that this feature could usefully be applied by forcing

104



Figure 7.8: Graphs showing how the disturbance is affected by changing frequency of
a high amplitude disturbance γ = 0.1 for Jet 1. ε = 0.01. Each jet image is shifted
along the Z axis.

the jet at given frequencies to control jet break-up, using either a vibrating nozzle

or insonification. This is discussed further in Chapter 11. It would perhaps also be

useful to search for higher frequency disturbances above those shown in the figures.

However, we notice as ω approaches 2 that a very high frequency disturbance predicts

M2 behaviour. In fact this break-up is very ‘messy’, and we shall investigate reasons

why these very high frequencies generate disturbances yielding satellite drops in a later

chapter.

As a side note, the jet break-up length can be controlled through the use of applied

frequencies. Whilst the prilling industry is primarily focussed on droplet size, the

length of a jet is an important factor in areas such as electrospinning, and the results

obtained in this chapter could be used to generate jets of a desired break-up length.
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(a) low amplitude disturbance γ = 0.00199

(b) high amplitude disturbance γ = 0.1

Figure 7.9: Graphs showing how the mode of jet break-up changes with varying fre-
quency for Jet 1. ε = 0.01.
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7.2 Low Viscosity Fluids

In this section we examine the effect of secondary disturbances on Jets 4-6, using

the same analysis as for Jets 1-3. Figure 7.10 shows the impact of three different

secondary disturbance amplitudes. The size of the ligament in Figure 7.10(a) refers to

the effective radius if the ligament formed a single drop instead of multiple satellite

drops.

Figure 7.10 presents results for Jet 4. Having a large amplitude disturbance of

varying frequency can cause a large range of droplets. However, most of the main

droplets produced theoretically are larger than seen experimentally. Ligaments have

been neglected in Figure 7.10(b) since we do not feel able to predict whether they will

contract into a single drop or break-up into multiple satellites. We return to this in

more detail in Chapter 8.

Figure 7.11 and Figure 7.12 present distributions for Jets 5 and 6. They demonstrate

that our uncertainty in dealing with the ligaments is producing poor agreement with

experiments for drop size distributions.

7.2.1 Changing Modes

The mode of jet break-up is now investigated, first examining changes in frequency.

Figure 7.13 shows little qualitative changes in the jet, although break-up length is

noticeably reduced at higher frequencies. This effect is more noticeable than for Jet 1.

Amplitude is increased in Figure 7.14 and there are some very striking results. As

the secondary frequency is increased, break-up moves through the mode boundaries;

beginning with M3 with no additional disturbance; a low frequency result yields the

behaviour characterised as M2/3; through M2; and finally the highest frequency dis-

turbance predicts M1 behaviour. This suggests that high energy disturbances of both
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.10: Effect of 3 secondary disturbances, (1) δ = 0.0052, γ = 0.0052, (2) δ =
0.0052, γ = 0.01 and (3) δ = 0.0052, γ = 0.1 for Jet 4. ε = 0.01. Also plotted is the
experimental data.
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.11: Effect of 3 secondary disturbances, (1) δ = 0.0399, γ = 0.0399 and (2)
δ = 0.0052, γ = 0.1 for Jet 5. ε = 0.01. Also plotted is the experimental data.
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(a) drop sizes with varying ω

(b) drop size distribution

Figure 7.12: Effect of 3 secondary disturbances, (1) δ = 0.065, γ = 0.065 and (2)
δ = 0.065, γ = 0.1 for Jet 6. ε = 0.01. Also plotted is the experimental data.
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Figure 7.13: Graphs showing how the disturbance is affected by changing frequency of
a low amplitude disturbance γ = 0.0052 for Jet 4. ε = 0.01. Each jet image is shifted
along the Z axis.

Figure 7.14: Graphs showing how the disturbance is affected by changing frequency
of a high amplitude disturbance γ = 0.1 for Jet 4 ε = 0.01. Each jet image is shifted
along the Z axis.
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high frequency and amplitude are required to generate M1 behaviour in a viscous fluid.

There is also a rather surprising result here. The disturbance frequency correspond-

ing to ω = 0.7 is very close to the most unstable frequency (κ = 0.6979 here). However,

with a high amplitude secondary disturbance (γ =0.1), at this frequency (ω = 0.7) M2

behaviour is generated, not the M3 predicted which occurred with no additional dis-

turbance (i.e. ω = 0). This hints that mode break-up in the absence of secondary

disturbances can be dependent on the amplitude of the most unstable wave at the

orifice, contrary to what was previously thought in Chapter 5. We propose a reason

for this behaviour in Chapter 10.

Figure 7.15 shows how the behaviour changes for varying frequencies, fully illus-

trating the movement through the mode boundaries for a high amplitude disturbance.

For a very high frequency break-up reverts back to M2 behaviour. Also, M1 behaviour

can be found in Figure 7.15(b).

7.3 High Viscosity Fluid

Jet 7 is now examined, though no drop size distributions are generated as it is known

a priori that main droplets will be too big and satellite droplets cannot be generated

from a ligament. Figure 7.16 shows the movement through the mode boundaries as

the secondary disturbance is changed. However, for high amplitude high frequency

disturbances there is still M2 behaviour. This may be because it was necessary to have

a large δ chosen so that break-up length matches the experimental data with γ = 0,

and so we cannot impose a secondary disturbance to completely dominate this unstable

mode. It may also be the case that jets at this viscosity can not be forced to break-up

in the M1 regime.

In the previous chapter, we discussed that the trajectory of the jet is affected
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by changing the angle at the orifice, whilst qualitative behaviour remained largely

unaffected. We wish to see whether this is the case for secondary disturbances. Figures

7.17 and 7.18 show how changing the orifice angle affects the growth of low and high

frequency disturbances respectively. Break-up length changes with exit angle. The

impact of orifice angle is further illustrated in Figure 7.19 where the full range of

frequencies are examined. The exit angle has no effect on the mode of break-up on

application of a secondary disturbance.

7.4 Conclusions

In this chapter we have modelled secondary disturbances in a jet using an additional

sinusoidal wave. Though this does not model the mechanical vibrations in a rig, we used

this to demonstrate the sensitivity of a jet to these vibrations. Through comparison

with experimental data, we concluded that the experimental rig is subject to mechanical

instabilities that cause such varied drop size distributions.

We also investigated the qualitative break-up of a jet as we varied the amplitude

and frequency of a disturbance. We showed that as the disturbance amplitude was in-

creased, break-up gradually moved through the mode boundaries and eradicate satellite

droplets. We were unable to completely remove satellite droplets from a high viscosity

fluid at a high rotation rate. We postulate that the effects described in this chapter

can be used to industrial advantage. This will be discussed in Chapter 11.
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(a) low amplitude disturbance γ = 0.0052

(b) high amplitude disturbance γ = 0.1

Figure 7.15: Graphs showing how the mode of jet break-up changes with varying
frequency for Jet 4. ε = 0.01.
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Figure 7.16: Graphs showing how the secondary disturbance is affected by changing
frequency and amplitude for Jet 7. ε = 0.01. Each jet image is shifted along the Z
axis.

Figure 7.17: Graphs showing how the secondary disturbance affects a jet with different
orifice angles with a low frequency disturbance ω = 0.3 for Jet 7. ε = 0.01. Each jet
image is shifted along the Z axis.
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Figure 7.18: Graphs showing how the secondary disturbance affects a jet with different
orifice angles with a high frequency disturbance ω = 1.3 for Jet 7. ε = 0.01.
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Figure 7.19: Graphs showing how the mode of jet break-up changes with varying
secondary frequency for different orifice angles for Jet 7. ε = 0.01. γ increases with
increasing ω.
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Chapter 8

Stability Analysis

In Chapter 6, we show that the nonlinear model can be used to accurately predict

the mode of jet break-up. For Mode 2 break-up, occurring for low viscosity fluids at

low rotation rates, the trajectory and drop sizes compare well to experimental data. As

viscosity and rotation rate increase, however, the trajectory appeared displaced, pri-

mary drop sizes appear larger that expected and satellite droplets cannot be predicted

post jet break-up.

In this chapter we investigate a local instability analysis of a jet, with the view to

investigating the stability at any point on the jet at any time, in order to investigate

the stability on the ligament at the time of break-up and estimate the sizes of satellite

droplets.

Additionally, in Chapter 7 we imposed a secondary disturbance and showed a jet

can be sensitive to disturbances other than the most unstable wave. The behaviour of

different frequencies is examined by adopting a spatial instability analysis of the steady

jet equations.

Firstly, we present the full equations for our problem here from [36] and [45]. In

the bulk we have conservation of mass
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εn
∂u

∂s
+ (1 + εn cosφ(XsZss −XssZs))

(
v + n

∂v

∂n
+
∂w

∂φ

)
+

εn(XsZss −XssZs)(v cosφ− w sinφ) = 0,

and the Navier-Stokes equations
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w

n

∂u
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)
+ εu

∂u
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,
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hs
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with boundary conditions on the free surface n = R(s, φ, t),
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In addition we have the arclength condition

X2
s + Z2

s = 1

and centreline conditions

v = w = 0 on n = 0.

8.1 Asymptotic Form of the Jet Equations

We examine small deformations to our variables by perturbing by a small parameter,

δ, where we assume 0 < δ << ε << 1, as follows

u = û(s, t, n, φ, ε) + δũ(s, s̄, n, φ, t, t̄),

R = R̂(s, t, φ, ε) + δR̃(s, s̄, φ, t, t̄)

p = p̂(s, t, n, φ, ε) + δp̃(s, s̄, n, φ, t, t̄)

X = X̂(s, t, ε) + δεX̃(s, s̄, t, t̄)


(8.1)

where (û, ũ) = (û, ũ)es + (v̂, ṽ)en + (ŵ, w̃)eφ, (X̂, X̃) = (X̂, X̃)i + (Ẑ, Z̃)k. (We note

that we first tried X = X̂(s, t, ε) + δX̃0(s, s̄, t, t̄) + δεX̃(s, s̄, t, t̄), but X̃0 was found

to be identically equal to zero). The variables with a hat describe the solution to the

leading order unsteady nonlinear equations, and the variables with a tilde denote the

unsteady linear disturbances describing the perturbation. We have introduced a short

lengthscale s̄ and a short timescale t̄, given by s/ε and t/ε respectively, in order to

describe the shorter wave-like disturbances of O(ε), as in Chapter 3.
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8.1.1 Unsteady Nonlinear Jet Equations

We apply the above asymptotic expansions to the jet equations, taking O(1) equa-

tions in δ in order to obtain û, R̂, p̂ and X̂. We then apply asymptotic Taylor series

solutions of the form

û = u0(s, t)es + (εn)u1(s, φ, t) + (εn)2u2(s, φ, t) +O ((εn)3) ,

R̂ = R0(s, t) + (εn)R1(s, φ, t) + (εn)2R2(s, φ, t) +O ((εn)3) ,

p̂ = p0(s, φ, t) + (εn)p1(s, φ, t) + (εn)2p2(s, φ, t) +O ((εn)3) ,

X̂ = X0(s) + (εn)X1(s, t) + (εn)2X2(s, t) +O ((εn)3) ,


(8.2)

where ui = uies +vien +wieφ for i = 1, 2 and Xi = Xii+Zik for i = 0, 1, 2. We rewrite

X0 as X, Z0 as Z, define S = XsZss − ZsXss and obtain the following equations (8.3)

- (8.16). Taking the Continuity Equation at O (εn):

u0s + 2v1 + w1φ = 0, (8.3)

and at O ((εn)2):

u1s + 3v2 + w2φ + (3v1 + w1φ)S cosφ− w1S sinφ = 0. (8.4)

The first Navier-Stokes equation at O (ε):

u0t + u0u0s = −p0s +
1

Rb2
((X + 1)Xs + ZZs)

+
1

Re

(
− u0S

2 + u0ss4u2 + u2φφ + (2u1 + u1φφ)S cosφ− u1φS sinφ

)
,

(8.5)

123



the second Navier-Stokes equation at O (ε):

−u2
0S cosφ = −p1 −

2

Rb
u0 cosφ+

cosφ

Rb2
((X + 1)Zs + ZXs)

+
1

Re

(
3v2 + v2φφ − 2w2φ((−2u0s + v1 + v1φφ − 2w1φ)S − u0SS) cosφ

− (w1 − v1φ)S sinφ

)
, (8.6)

the third Navier-Stokes equation at O (1):

p0φ = 0, (8.7)

and at O (ε):

u2
0S sinφ = −p1φ +

2

Rb
u0 sinφ− sinφ

Rb2
((X + 1)Zs + ZXs)

+
1

Re

(
3w2 + w2φφ + 2v2φ(w1 + w1φφ + 2v1φ)S cosφ

+ ((2u0s + v1 − w1φφ)S + u0SS) sinφ

)
. (8.8)

The Kinematic Condition at O (ε):

R0t −R0v1 + u0R0s = 0, (8.9)

the first Tangential Stress Condition at O (ε):

u1 = u0S cosφ, (8.10)

and at O (ε2):

R0v1s + 2R0u2 +R0s(v1 − u0s) = 0. (8.11)
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The second Tangential Stress Condition at O (ε):

v1φ = 0, (8.12)

and at O (ε2):

R0w2 +R0v2φ +
2

R0

R1φw1φ = 0. (8.13)

The Normal Stress Condition to O (1):

p0 −
2

Re
v1 =

1

WeR0

, (8.14)

and at O (ε):

R0p1 −
2

Re

(
2R0v2 −

1

R0

R1φv1φ −R0s(u1 − u0S cosφ)

)
=

1

We

(
S cosφ− R1 +R1φφ

R2
0

)
.

(8.15)

The final equation is the arclength condition, at leading order this is

X2
s + Z2

s = 1. (8.16)

Equation (8.12) implies that v1 = v1(s, t) and (8.7) implies p0 = p0(s, t). Differen-

tiating (8.3) with respect to φ gives

w1φφ = 0⇒ w1φ = C,

where C is a constant. As we require periodic solutions with respect to φ, C = 0 and
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so w1 = w1(s, t). Evaluating (8.3) we obtain

v1 =
−u0s

2
. (8.17)

Differentiating (8.13) with respect to φ yields

w2φ = −v2φφ

and we substitute this result, along with (8.10), into (8.4) to get

v2φφ − 3v2 =

(
−1

2
u0sS + u0Ss

)
cosφ− w1S sinφ. (8.18)

The particular solution to (8.18) is

v2 =
1

4

(
1

2
u0sS − u0Ss

)
cosφ+

1

4
w1S sinφ, (8.19)

and hence

w2 =
1

4

(
1

2
u0sS − u0Ss

)
sinφ− 1

4
w1S cosφ. (8.20)

Substituting (8.19) and (8.20) into (8.6) and rearranging for p1, gives

p1 =

[
u2

0S −
2u0

Rb
+

1

Rb2
((X + 1)Zs − ZXs)−

1

Re

(
5

2
u0sS + u0Ss

)]
cosφ

+
1

Re
w1S sinφ. (8.21)

We note that substituting (8.19) and (8.20) into (8.8) gives

p1φ = −
[
u2

0S −
2u0

Rb
+

1

Rb2
((X + 1)Zs − ZXs)−

1

Re

(
5

2
u0sS + u0Ss

)]
sinφ

+
1

Re
w1S cosφ, (8.22)
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which is (8.21) differentiated with respect to φ. We substitute (8.10), (8.19) and (8.21)

into (8.15) and obtain the equation

R1 +R1φφ

R3
0

=

[
u2

0S −
2u0

Rb
+

1

Rb
((X + 1)Zs − ZXs)−

3

Re
u0sS −

S

WeR0

]
cosφ.

(8.23)

In order to remove the non periodic secular terms in (8.23), the right hand side must

be identically equal to zero, and so

(XsZss −ZsXss)

(
u2

0 −
3

Re
u0s −

1

WeR0

)
− 2u0

Rb
+

1

Rb
((X + 1)Zs −ZXs) = 0. (8.24)

This is the first equation describing the nonlinear evolution of the jet.

We substitute (8.17) into (8.11) and rearrange for u2 yielding

u2 =
u0ss

4
− 3

2

u0sR0s

R0

. (8.25)

Substituting (8.17) into (8.14) and differentiating with respect to s yields

p0s = − 1

Re
u0ss +

1

We

(
1

R0

)
s

. (8.26)

We substitute u2 and p0s, along with (8.10), into (8.5) and obtain the second equation

u0t + u0u0s = − 1

We

(
1

R0

)
s

+
1

Rb2
((X + 1)Xs + ZZs) +

3

Re

(
(u0sR

2
0)s

R2
0

)
. (8.27)

Finally, we substitute (8.17) into (8.9) and obtain the third equation

R0t +
R0u0s

2
+ u0R0s = 0. (8.28)

Equations (8.24), (8.27) and (8.28), along with (8.16) are our system of four equations
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for the four unknowns R0, u0, X and Z. The conditions at the orifice are X = Z =

Zs = 0, Xs = R0 = u0 = 1 at s = 0. Note that we are assuming that X and Z are not

time dependent, as demonstrated in calculations carried out in [35, 36].

Steady State Equations

The initial conditions for the temporal problem are given by the steady solutions

to equations (8.24), (8.27), (8.28) and (8.16), namely

u0u0s = − 1

2We

u0s√
u0

+
(X + 1)Xs + ZZs

Rb2
+

3

Re

(
u0ss −

u2
0s

u0

)
,

(XsZss − ZsXss)

(
u2

0 −
3

Re
u0s −

√
u0

We

)
− 2u0

Rb
+

((X + 1)Zs − ZXs)

Rb2
= 0,

X2
s + Z2

s = 1, (8.29)

where u0 = 1/R2
0, and the boundary conditions at s = 0 are given by X = Z = Zs = 0

and Xs = u0 = 1. Downstream boundary conditions are given by u0(∞) = ∞ and

R0(∞) = 0 as described in Chapter 3.

Temporal Equations

The non-linear temporal system to be solved are equations (8.27) and (8.28) for u0

and R0. Here κ = 1/R0 is the leading order curvature term obtained in the derivation

of the nonlinear equations. Eggers and Villermaux [17] describe the importance of

the full curvature in the nonlinear PDEs, and we must include the full radial and

longitudinal components of curvature here before the asymptotic expansions in δ are
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applied. Hence

κ =
1

R(1 + ε2R2
s)

1/2
− ε2Rss

(1 + ε2R2
s)

3/2

= (R̂ + δR̃)−1
(

(1 + ε2(R̂ + δR̃)2
s)

1/2
)
− ε2(R̂ + δR̃)ss

(
(1 + ε2(R̂ + δR̃)2

s)
3/2
)

=
1

R̂(1 + ε2R̂2
s)

1/2
− ε2R̂ss

(1 + ε2R̂2
s)

3/2

+ δ

[
1

R̂(2ε2R̂sR̃s + 2εR̂sR̃s̄)1/2
− R̃

R̂2
− ε2R̃ss + εR̃ss̄ + R̃s̄s̄

(1 + ε2R̂2
s)

3/2

− ε2R̂ss

(2ε2R̂sR̃s + 2εR̂sR̃s̄)3/2

]

So, asymptotically, we retain the full curvature to leading order in δ and so the full

temporal system we solve is given by

At + (Au)s = 0

ut +

(
u2

2

)
s

= − 1

We

∂

∂s

(
4(2A+ (εAs)

2 − ε2AAss)
(4A+ (εAs)2)3/2

)
+

(X + 1)Xs + ZZs
Rb2

+
3

Re

(Aus)s
A

. (8.30)

at O(1) in δ. Here A = R2
0, with initial conditions

A(s, t = 0) = R2
0(s), u(s, t = 0) = u0(s),

provided by the above steady state equations (8.29). Likewise X and Z in (8.30) are

obtained from (8.29) at all times as in [35, 36]. The periodic boundary conditions at

the orifice are

A(s = 0, t) = 1, u(s = 0, t) = 1 + δ sin

(
κt

ε

)
,
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where δ and κ are the amplitude and frequency of the disturbance.

8.1.2 Instability Equations

The equations describing the instability are obtained by taking the full equations

to O(δ) and to leading order in ε, namely

n
∂ũ

∂s̄
+ ṽ + n

∂ṽ

∂n
+
∂w̃

∂φ
= 0,

∂ũ

∂t̄
+ u0

∂ũ

∂s̄
= −∂p̃

∂s̄
+

Oh

We1/2

[
∂2ũ

∂s̄2
+

1

n

∂ũ

∂n
+
∂2ũ

∂n2
+

1

n2

∂2ũ

∂φ2

]
,

∂ṽ

∂t̄
+ u0 cosφ(X̃s̄t̄Zs − Z̃s̄t̄Xs) + u0

∂ṽ

∂s̄
− cosφ(XsZ̃s̄s̄ − ZsX̃s̄s̄)u

2
0 =

−∂p̃
∂n

+
Oh

We1/2

[
∂2ṽ

∂s̄2
+ u0 cosφ(XsZ̃s̄s̄s̄ − ZsX̃s̄s̄s̄)

+
1

n

∂ṽ

∂n
+
∂2ṽ

∂n2
+

1

n2

(
∂2ṽ

∂φ2
− ṽ − 2

∂w̃

∂φ

)]
,

∂w̃

∂t̄
+ u0 sinφ(Z̃s̄t̄Xs − X̃s̄t̄Zs) + u0

∂w̃

∂s̄
+ sinφ(XsZ̃s̄s̄ − X̃s̄s̄Zs)u

2
0 =

− 1

n

∂p̃

∂φ
+

Oh

We1/2

[
∂2w̃

∂s̄2
+ u0 sinφ(XsZ̃s̄s̄s̄ − ZsX̃s̄s̄s̄)

+
1

n

∂w̃

∂n
+
∂2w̃

∂n2
+

1

n2

(
∂2w̃

∂φ2
− w̃ + 2

∂w̃

∂φ

)]
,

with conditions on n = R0:

∂R̃

∂t̄
− ṽ + cosφ(X̃t̄Zs −XsZ̃t̄) + u0

∂R̃

∂s̄
= 0,

∂ṽ

∂s̄
+
∂ũ

∂n
− u0 cosφ(XsZ̃s̄s̄ − X̃s̄s̄Zs) = 0,

∂w̃

∂n
− w̃

R0

+
1

R0

∂ṽ

∂φ
= 0,

p̃− 2Oh

We

∂ṽ

∂n
=

1

We

(
− 1

R2
0

(
R̃ +

∂2R̃

∂φ2

)
+ cosφ

(
Xs

∂2Z̃

∂s̄2
− Zs

∂2X̃

∂s̄2

)
− ∂2R̃

∂s̄2

)
,

XsX̃s̄s̄ + ZsZ̃s̄s̄ = 0,
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and on n = 0

ṽ = w̃ = 0. (8.31)

We search for solutions of the instability problem by searching for Fourier series solu-

tions of the form

ũ = exp (ik(s, t)s̄+ λ(s, t)t̄)

(
û1(s, n) +

∞∑
m=1

ûm0(s, n) cos(mφ) + ûm1(s, n) sin(mφ)

)
+ c.c.,

p̃ = exp (ik(s, t)s̄+ λ(s, t)t̄)

(
p̂1(s, n) +

∞∑
m=1

p̂m0(s, n) cos(mφ) + p̂m1(s, n) sin(mφ)

)
+ c.c.,

R̃ = exp (ik(s, t)s̄+ λ(s, t)t̄)

(
R̂1(s) +

∞∑
m=1

R̂m0(s) cos(mφ) + R̂m1(s) sin(mφ)

)
+ c.c.,

X̃ = exp (ik(s, t)s̄+ λ(s, t)t̄) X̂1 + c.c., (8.32)

where (û1, ûm0, ûm1) = i(û1, ûm0, ûm1)es+(v̂1, v̂m0, v̂m1)en+(ŵ1, ŵm0, ŵm1)eφ and X̂1 =

X̂1i + Ẑ1k. The wavenumber and frequencies are functions of t as well as s, namely

k(s, t) and λ(s, t), allowing both to be complex quantities. In addition c.c. denotes

the complex conjugate. Through inclusion of a temporally dependent mode, we can

use stability analysis at the time of break-up to give an indication of post break-up

behaviour. This is of special interest concerning ligament break-up.

After considerable work, the dispersion relation governing jet stability is given by

(λ+ iu0k)2 +
2(λ+ iu0k)

ReIm(kR0)

[
I ′′m(kR0)− 2k2I ′m(kR0)I ′′m(k̃R0)

(k2 + k̃2)I ′m(k̃R0)

]

+
1

We

(
k2 − 1

R2
0

(1−m2)

)[
(k̃2 − k2)I ′m(kR0)

(k̃2 + k2)Im(kR0)

]
= 0, (8.33)

This derivation is given in Appendix A. For the unstable mode m = 0, the dispersion
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relation is

We3/2R2
0 λ2k2I0(kR0)I1(k̃R0) + We3/2R2

0 λ2k̃2I0(kR0)I1(k̃R0)

+2iWe3/2R2
0 λk3I0(kR0)I1(k̃R0) + 2iWe3/2u0R

2
0 λkk̃2I0(kR0)I1(k̃R0)

−We3/2R2
0u

2
0 k

4I0(kR0)I1(k̃R0) − We3/2R2
0u

2
0 k

2k̃2I0(kR0)I1(k̃R0)

+2OhWeR2
0 λk4I0(kR0)I1(k̃R0) + 2OhWeR0 λk

3I1(kR0)I1(k̃R0)

+2OhWeR2
0 λk2k̃2I0(kR0)I1(k̃R0) − 2OhWeR0 λkk̃

2I1(kR0)I1(k̃R0)

−4OhWe λk3k̃I1(kR0)I0(k̃R0) + 2iOhWeR2
0u0 k

5I0(kR0)I1(k̃R0)

+2iOhWeR0u0 k
4I1(kR0)I1(k̃R0) + 2iOhWeR2

0u0 k
3k̃2I0(kR0)I1(k̃R0)

−2iOhWeR0u0 k
2k̃2I1(kR0)I1(k̃R0) − 4iOhWeR2

0u0 k
4k̃I1(kR0)I0(k̃R0)

−
√
We kk̃2I1(kR0)I1(k̃R0) +

√
We k3I1(kR0)I1(k̃R0)

+
√
WeR2

0 k3k̃2I1(kR0)I1(k̃R0) −
√
WeR2

0 k5I1(kR0)I1(k̃R0) = 0 (8.34)

where Re = We1/2/Oh and k̃2 = k2 + We1/2(λ + iu0k)/Oh. This is the dispersion

relation we solve for k (or λ) to investigate the jet stability. This is identical to the

equation presented in Decent et al. [12], yet now we can investigate stability as the jet

evolves with time, since in the above equation R0 = R0(s, t) and u0 = u0(s, t) obtained

from (8.30).

8.2 Spatial Instability of the Steady State

From the previous chapter we saw the effect of the additional disturbances on jet

break-up. On application of a low frequency disturbance, satellite droplets could be

eradicated, whilst applying high frequencies always caused a change in jet break-up if

it was applied with a large amplitude (though it did not always prevent satellite drop

formation).
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Figure 8.1: Graph showing the wavenumber k for 0 < ω < 5 for Jet 1. ε = 0.01. Each
curve corresponds to a different value of s. Along each curve, ω increases from 0 to 5.

We shall investigate the spatial instability of these additional disturbances and

investigate the behaviour down the jet. The time dependence is removed from k and

λ in the dispersion relation (8.34) and we use the steady state given by (8.29).

For spatial instability, k = kr + iki and λ = −iω where ω is a real frequency.

Thus ki describes the growth rate of the disturbance, k∗ = kr is the most unstable

wavenumber found at min(ki), and ω∗ is the corresponding frequency. Figure 8.1 shows

the stability at different points along Jet 1 (see Table 6.1). Each curve corresponds to

a different value of s and along each curve, ω increases from 0 to 5. Here s = sb is

the experimentally observed break-up length for these parameters. As s increases, the

most unstable wave is generated by a larger wavenumber yielding shorter wavelength

disturbances, and the growth rate of each disturbance is smaller. The most unstable

wave in each case is at the minimum of each curve.

Figure 8.2 shows that the drop radius, found by integrating over a wavelength of the

most unstable wave, decreases as s increases due to the shorter wavelength disturbances
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Figure 8.2: Graph showing the predicted drop sizes from linear theory produced by
the most unstable wave for different values of s for Jet 1. ε = 0.01.

along a thinner section of the jet. This describes the size of drops that will be produced

given rupture at each point on the jet.

In Figure 8.3, the effect of different frequencies is investigated. It shows that the

wave with the largest growth rate occurs for higher values of ω for larger s. The effect

of different frequencies is shown to greater effect in Figure 8.4. There is a difference in

behaviour between lower frequencies ω < 0.6065, middle frequencies ω ≈ 0.6065 and

higher frequencies ω > 0.6065. ω = 0.6065 corresponds to the frequency of the most

unstable wave ω∗(s = 0) at the orifice.

The middle frequencies have the largest growth rate close to the orifice which de-

crease exponentially down the jet. The lower frequencies also have maximum growth

rate at the orifice, though the growth rate is smaller than for the middle frequencies

and low frequencies never correspond to the maximum growth rate. These also de-

crease exponentially down the jet. Higher frequencies however, have zero growth rate

at the orifice. At a given value of s these disturbances suddenly become unstable and

so disturbances of these high frequencies naturally grow at points away from the orifice,
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Figure 8.3: Graph showing the growth rate ki plotted against ω for different values of
s for Jet 1. ε = 0.01.

and not at the orifice. Each discrete value of ω has growth rate at a maximum at a

single point down the jet.

This perhaps explains some of the results in the previous chapter on the effect

of secondary forced disturbances. Lower frequencies applied at small amplitudes had

little effect, due to the smaller growth rate at all points down the jet for these waves.

For higher frequencies at low amplitude there was minimal effect on the jet. These

disturbance would become unstable down the jet, but as the growth rate is much

smaller towards the orifice, the most unstable wave k∗(s = 0) still grows more quickly

and dominates the break-up. However, at high amplitudes, break-up occurred very

close to the orifice as the disturbance suddenly became unstable.

This may explain why it was necessary to set a larger value of δ to match break-

up for higher rotation rates. For the higher rotation rates we would expect larger

vibrations in the rig, thus resulting in shorter jet break-up than if no disturbances

were present. As a consequence, matching to experimental images it was necessary to

choose a larger value of δ when there was no additional disturbance.
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Figure 8.4: Graph showing the growth rate ki for different values of ω for Jet 1.
ε = 0.01.

It would serve great value if we were able to verify this assumption experimentally.

Though it would be impossible to remove any additional disturbances from the rig, it

would be extremely useful to identify the frequencies present through vibration. The

techniques used in this thesis could then be used to find particular modes which could

be imposed onto a jet to counter or modify the effect of the instabilities naturally

occurring, ultimately yielding the desired break-up.

Results for Jet 7 (see Table 6.1) are shown in Figure 8.5, showing similar behaviour:

frequencies which are stable at the origin become unstable down the jet. This explains

why having smaller amplitude additional disturbances had little or no effect for greater

viscosity in the previous chapter. However, the frequency to generate the mode with

greatest growth rate required is much larger than before.

In Chapter 6 we saw that for low viscosity fluids (40% Glycerol, 60% Water) jet’s

had a longer break-up length for low rotation rates than high rotation rates. This did

not occur for high viscosity fluids (80% Glycerol, 20% Water). This could be explained

by the above analysis. It mat be the case that the mechanical instabilities occur at
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Figure 8.5: Graph showing the growth rate ki for different values of ω for Jet 7.
ε = 0.01.

sufficient frequency such that they become unstable to break the jet, whilst at a lower

viscosity the same frequency becomes unstable at a larger value of s.

We also note here that if we wished to force the jet at the very high frequency

disturbances which are stable close to the orifice as seen in Figure 8.5, we would need

to impose vibrations in the order of 10kHz at high amplitudes, a range we are unable

to reach with the proposed experimental equipment. We shall explain this in greater

detail in Chapter 11.

8.3 Time-dependent Instability

We examine the instability of our jet as time increases, where now k and λ are

functions of t. (8.34) is solved computationally, with a temporal instability where the

wavenumber k is real and λ = λr + iλi is complex. u0 and R0 are obtained by solving

the nonlinear equations (8.30). λr describes the growth rate, and we solve for k.

R0(s, t) for Jet 1 is shown in Figure 8.6, showing the approach to pinch off as time
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Figure 8.6: Graph showing R0(s, t) for Jet 1 at times approaching break-up. δ =
0.00199 and ε = 0.01.

Figure 8.7: Graph showing the growth rate λr at times approaching break-up at Point
1 for Jet 1 for 0 < k < 20. δ = 0.00199 and ε = 0.01.
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progresses, and the gradual formation of the satellite droplet. Several points have been

labelled on the figure as points for further evaluation. Point 1 occurs at the global

minimum of R0 at each time, and corresponds to the break-up up point sb at the time

of break-up. Points 2 and 3 are at the two local minima either side of the break-up

point, namely at the points that we assume pinch off to form the droplets. Point 4 is

taken at the maximum of R0 on the main drop.

We first examine the instability at Point 1. We note that the value of s is different

for each simulation. At the time of break-up this value of s is the break-up point sb.

Figure 8.7 shows that as time increases towards break-up, the wavenumber k of the

most unstable wave increases dramatically. This shows that the original imposed long

waves generate these short waves later on close to rupture, as seen experimentally [37].

We also see that the growth rate λr increases as break-up is approached, due to the jet

becoming more unstable.

Examining the full complex values of λ, as shown in Figure 8.8, highlights some

interesting results. As the growth rate λr increases, the frequency of the disturbance

λi changes sign from negative to positive. This occurs at the point where u0 becomes

negative in the nonlinear simulation. At break-up, there is a very large positive fre-

quency corresponding to the disturbance with greatest growth rate. This change of

sign of λi corresponds to a change in direction of the unstable waves, with the waves

at this point travelling towards the orifice.

In Figure 8.9, values of s close to sb are examined. These solutions also have positive

frequencies, and it is not the largest frequency disturbance which is generated at the

break-up point. Perhaps these large modes of varying frequencies interact during the

break-up process, thus resulting in complex behaviour close to pinch off.
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(a)

(b)

Figure 8.8: Graph showing the frequency λ at times approaching break-up for Jet 1
for 0 < k < 20 for Point 1 in Figure 8.6. δ = 0.00199 and ε = 0.01. The lower graph is
a zoomed in version of the upper graph.
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(a) frequency λ

(b) growth rate λr

Figure 8.9: Wave behaviour at points near break-up of waves for Jet 1 for 0 < k < 20.
ε = 0.01.
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(a) frequency λ

(b) growth rate λr

Figure 8.10: Graph showing wave behaviour as the break-up time is approached for
Jet 1 for 0 < k < 4.5, for (i) Point 2 ‘· · · ’ and (ii) Point 3 ‘−’ in Figure 8.6. ε = 0.01.
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(a) frequency λ

(b) growth rate λr

Figure 8.11: Graph showing wave behaviour at times approaching break-up for Jet 1
for 0 < k < 4.5 shown at Point 4 in Figure 8.6 ε = 0.01.
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Figure 8.10 shows the instability at Points 2 and 3. We see that both these points

behave in a similar way, with an increase in growth rate and wavenumber as break-

up is approached. Originally the first minima has larger growth rate, but then the

later point becomes more unstable. This is as expected as it is a smaller radius which

generates greater instability, and the radius decreased at a later time further down the

jet on Figure 8.6.

In Figure 8.11 the instability at Point 4 is shown. The growth rate is much smaller

than at other points along the jet, and gets smaller as the break-up time is approached,

as the radius R0(s, t) increases and so the solution becomes more stable. In addition,

the wavenumber decreases and remains less than 1. This shows that disturbances along

a main droplet are long wave disturbances and the shorter waves generated at smaller

radii are not seen here.

Increasing Viscosity

Figure 8.12 shows the temporal evolution of R0(s, t) for Jet 4 at times approaching

break-up. We recall from Chapter 6 that when we changed δ from 0.0052 to 0.0053 we

shifted break-up points, these are labelled Point 5 and 6 in Figure 8.12. Figure 8.13

shows the instability at Points 5 and 6 at each time as break-up is approached.

The growth rate does not change significantly as t increases at Point 5. However,

the growth rate of Point 6 increases dramatically as break-up is approached. There is

also an increase in wavenumber at the break-up point and the generation of very short

waves. Unlike Jet 1, there are no negative frequencies.

Figure 8.12 also shows Point 7, which is a point taken on the ligament in betweens

Points 5 and 6. The wave behaviour is shown in Figure 8.14. The growth rate is not

as large as at the break-up point so the ligament is far more stable, but there are short

wave disturbances present. We can use these short wave disturbances to predict post
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Figure 8.12: Graph showing R0(s, t) for Jet 4 at times approaching break-up. The
parameters used are We = 22.26, Rb = 0.512, Re = 375, Oh = 0.012354, δ = 0.0052
and ε = 0.01.

break-up behaviour on the ligament by assuming that satellite droplets form over the

wavelengths of these modes.

We integrate over these wavelengths on the ligament in the same way as for the

main drops from the linear theory (see Chapter 3). Figure 8.15 shows the radius of

the predicted satellites droplets on the ligament using this theory added to the drop

size distributions for two different viscous fluids, namely Jets 4 and 7. We can see that

the satellite droplets predicted using this technique fall within the droplet range we

see in experiments. We also see a greater variety in satellite droplets for Jet 7, as the

ligament has a greater variation in R0 at break-up.
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(a)

(b)

Figure 8.13: Graph showing the frequency λ at times approaching break-up for Jet
4 for 0 < k < 25, shown at (i) Point 5 ‘−’ and (ii) Point 6 ‘−−’ from Figure 8.12.
δ = 0.00199 and ε = 0.01.
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(a) frequency λ

(b) growth rate λr

Figure 8.14: Graph showing wave behaviour at times approaching break-up for Jet 4
for 0 < k < 5 for Point 7 in Figure 8.12. ε = 0.01.
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(a) Jet 4

(b) Jet 7

Figure 8.15: Graph showing the satellite drop size prediction using the local stability
analysis on the ligament added to experimental drop size distributions.

148



8.4 Long-wavelength Dispersion Relation

In order to describe the instability of the jet as time evolves, we have used values for

u0 and R0 obtained from the nonlinear simulation of the jet. We now wish to analyse

the instability of this long wavelength model and investigate the comparison between

the resulting dispersion relations and the dispersion relation (8.34) for short waves. We

take our nonlinear equations (8.30), namely

At + (Au)s = 0,

ut +

(
u2

2

)
s

=
−1

We

∂

∂s

(
4(2A+ (εAs)

2 − ε2AAss)
(4A+ (εAs)2)3/2

)
+

(X + 1)Xs + ZZs
Rb2

+
3

Re

(Aus)s
A

, (8.35)

where A = R2, and perturb them by unsteady quantities

R = R0(s) + δR̃(s, s̄, φ, t, t̄),

u = u0(s) + δũ(s, s̄, φ, t, t̄),

where δ is a small parameter and s̄ and t̄ are short length and timescales defined in

the same way as Section 8.1. Note the absence of n here, due to the use of asymptotic

Taylor expansions in the derivation of (8.35). To first order in δ and leading order in

ε we obtain the equations

R̃t̄ +
1

2
R0ũs̄ + u0R̃s̄ = 0,

ũt̄ + u0ũs̄ =
1

We

(
1

R2
0

R̃s̄ + R̃s̄s̄s̄

)
+

3

R̃e
ũs̄s̄,
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where R̃e = εRe is a scaled Reynolds number allowing the effect of viscosity at leading

order. We search for a solution of the form

R̃ = R̂(s, φ, t) exp(ik(s, t)s̄+ λ(s, t)t̄),

ũ = û(s, φ, t) exp(ik(s, t)s̄+ λ(s, t)t̄),

and obtain the dispersion relation

λ = −iu0k −
3k2

2Re
± k

2

√
9k2

Re2
− 2R0

We

(
k2 − 1

R2
0

)
. (8.36)

Note here that the derived equation (8.36) is the long-wavelength approximation k → 0

of the full dispersion relation (8.34). This approximation was derived and verified by

Decent et al. [12] by taking this long-wavelength limit of (8.34) in the simpler case of

λ = λ(s) and k = k(s). Here λ = λ(s, t) and k = k(s, t). This result is as expected,

as we used the long wavelength asymptotic Taylor expansions during the derivation of

(8.35).

This result is compared to full dispersion relation (8.34). Figure 8.16 shows a

comparison for Jet 4 at t = 0; Figure 8.17 at the break-up point for Jet 1 for times

approaching break-up and Figure 8.18 shows a comparison at the break-up point for

Jet 4 for times approaching break-up.

In all cases, there is a good comparison in the unstable region, though the long-

wavelength theory predicts a slightly larger growth rate. In addition, in regions where

the full dispersion relation predicts modes of zero growth rate, the long wavelength

theory predicts stable modes. For Jet 1, the frequency λi changes signs as k increases

in the stable region λr < 0, yet for Jet 4 they become more negative. Overall however,

as we focus on the region for unstable modes, the excellent correlation between the two

results means that we can take the long wavelength approximation in future to predict
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our break-up, thus saving computation time whilst solving the dispersion relation.

8.5 Conclusions

In this chapter we developed a dispersion relation which could be used to calculate

the instability not only at points down the jet, but at points in time as the jet evolves.

We could use this to calculate the post break-up instability of a ligament and obtain the

satellite droplets; something that cannot be achieved using only the nonlinear model.

The sizes of these droplets compare well to the experimental drop size distributions.

We also used this dispersion relation to explain the very short break-up we encoun-

tered in Chapter 7. We were forcing a jet to break-up with mode of zero growth rate

at the orifice which became unstable down the jet dominating the break-up. These

had less of an effect for a more viscous fluid. We also derived the long wavelength

dispersion relation and the corresponding instability analysis of both these dispersion

relations showed an excellent agreement in regions where the jet is unstable.
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(a) frequency λ

(b) growth rate λr

Figure 8.16: Graph showing for Jet 4 for 0 < k < 5 at t = 0, shown for (i) the full
dispersion relation ‘−’ and (ii) the longwavelength dispersion relation ‘−−’. ε = 0.01.
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(a) frequency λ

(b) growth rate λr

Figure 8.17: Graph showing for Jet 1 for 0 < k < 25 at t = 0, shown for (i) the full
dispersion relation ‘−’ and (ii) the longwavelength dispersion relation ‘−−’. ε = 0.01.
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(a) frequency λ

(b) growth rate λr

Figure 8.18: Graph showing for Jet 4 for 0 < k < 25 at t = 0, shown for (i) the full
dispersion relation ‘−’ and (ii) the longwavelength dispersion relation ‘−−’. ε = 0.01.
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Chapter 9

An asymptotic solution to the jet

equations

In previous chapters we showed that it is possible to control a liquid jet’s break-up

by applying an additional disturbance at the orifice using a chosen frequency. Mode

1 break-up, that is break-up classified by the absence of satellite droplets, more com-

monly occurred when a jet had shorter break-up length. This occurred as the initial

linear perturbation had not developed extensive nonlinearities and mode competition

which may cause the satellite drop formation. When the jet break-up is longer, these

nonlinearities can have a greater effect. An asymptotic method is adopted here to gain

further understanding of the nonlinear jet equations and the nonlinearities that arise

in jet break-up. This chapter details a large time and space asymptotic analysis in

order to determine when the jets naturally become nonlinear. We begin be examining

an inviscid straight jet, with the effects of rotation appearing in the next chapter.
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Figure 9.1: Diagrammatic representation showing the regions for the Needham-Leach
Method for liquid jet break-up.

9.1 The Needham-Leach Method

The Needham-Leach Method [22] was originally developed to analyse the large time

solutions to reaction diffusion equations. Is was later used to develop understanding of

other PDEs, such as the Korteweg-de Vries equation. The method involves developing

asymptotic solutions in different regions of s and t using matched asymptotics; these

regions for liquid jet break-up are shown in Figure 9.1.

Solutions to the jet equations are obtained near the orifice in Region I where s→ 0

and t → 0, using the initial conditions at t = 0 and boundary conditions at s = 0.

The solutions obtained in Region I are used to generate an expansion in Region II,

where s = O(1) and t → 0, and the solutions are matched in Region A. Region II is

a region arising through the presence of a temporal boundary layer due to the initial

conditions. The solution in Region II drives the expansion in Region III where s→∞

and t = O(1), with the solutions from Region II and III asymptotically matched in

Region B. The large time and large spatial (s → ∞ and t → ∞) solutions are given

in Region IV, which are driven by matching in Region C with Region III. Region IV
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describes nonlinear waves. Region V describes growing waves where s = O(1) and

t → ∞, with matching in Region D. The solutions in Region IV and V will give an

indication into the jet behaviour as break-up is approached.

The equations governing straight inviscid jet break-up are

Rt + uRs +
usR

2
= 0, (9.1)

ut + uus =
−1

We

(
1

R(1 +R2
s)

1
2

− Rss

(1 +R2
s)

3
2

)
s

(9.2)

subject to

R(s, t = 0) = 1 u(s, t = 0) = 1 (9.3)

R(s = 0, t) = 1 u(s = 0, t) = 1 + δ sin(ωt) (9.4)

In addition, it is necessary to adopt the following conditions in the spatial far field

R→ 1 u→ 1 as s→∞

(9.1) and (9.2) are equivalent to (3.11), with Rb → ∞ and Re → ∞ and A = R2

in (3.11). The above initial conditions (9.3) and boundary conditions (9.4) are the

equivalent to (3.12) and (3.13) with R0(s) = u0(s) = 1. These are the straight inviscid

limits of the equations used to date in this thesis. We examine the behaviour of these

equations in Regions I-V.

9.2 Asymptotic region for s→ 0, t→ 0

We examine the behaviour in Region I close the orifice with s→ 0 and t→ 0.

157



9.2.1 Existence of an inner region

We first try the following naive expansions and subsititute into (9.1) and (9.2),

R = 1 + tp(s) +O(t2), u = 1 + tq(s) +O(t2) as t→ 0.

Then (9.1) yields p = 0 as t → 0 and (9.2) gives q = constant as t → 0. This means

that the boundary conditions at s = 0 and s → ∞ cannot both be satisfied. Hence

there is a temporal boundary layer close to the orifice and it is necessary to have

two asymptotic regions as t → 0 as already indicated. Hence we abandon the above

expansions for R and u and adopt something less naive.

9.2.2 Inner Solution

The solution in this region s→ 0 and t→ 0 drives the asymptotic behaviour in all

future matching regions and so the solutions must be found in detail. We expand by

writing

u = 1 + tmF0(η) + tm+pF1(η) + tm+2pF2(η) +O(tm+3p)

R = 1 + tcG0(η) + tc+pG1(η) + tc+2pG2(η) +O(tc+3p) (9.5)

where η = st−a and a, c,m, p ≥ 0. Here η = O(1) as s→ 0 and t→ 0. This expansion

satisfies the initial conditions at t = 0 (9.3). Decent [11] solved the equivalent viscous

problem for a straight jet and showed that the higher order terms can be neglected

in the asymptotic expansion, and so we neglect Fi and Gi for i = 1, 2.... From the

boundary conditions (9.4),

u(s = 0, t) = 1 + δ sin(ωt) = 1 + δωt+O(t3) as t→ 0,
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and so

m = 1, F0(0) = δω.

Substituting (9.5) into (9.1) and (9.2), and looking for the distinguished limits, we

obtain c = 3/2 and a = 1/2. This yields the equations

3G0 − ηG′0 + F ′0 +O
(
t1/2
)

= 0, (9.6)

F0 −
1

2
ηF ′0 −

1

We
G′′′0 +O

(
t1/2
)

= 0, (9.7)

where ′ ≡ d
dη

, η = s/
√
t and the boundary conditions are

F0(0) = δω, F0(∞) = 0, G0(0) = 0, G0(∞) = 0.

Differentiating (9.7) and substituting (9.6) we obtain

G′′′′0 +
1

2
Weη2G′′0 −

3

2
WeηG′0 +

3

2
WeG0 = 0. (9.8)

As G0 = η is a solution to (9.8) (satisfying G0(0) = 0) we can use the method of

reduction of order where G0(η) = ηḠ0(η) and Ḡ0 is the solution to the equation

ηḠ′′′′0 + 4Ḡ′′′0 +
1

2
Weη3Ḡ′′0 −

1

2
Weη2Ḡ′0 = 0.
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This ODE is solved for Ḡ0 which yields the solution for G0, namely

G0 = C1η +
1

2
C2η

3 +
[
−2C3 +

√
WeC4η

2
]

cos

(√
2We

4
η2

)

+

[
−
√

2We

2
C3η

2 − 23/2C4

]
sin

(√
2We

4
η2

)

+

[
−3We1/4

√
π

21/4
C3η +

We3/4
√
π

21/4
C4η

3

]
Fs

(
We1/4

21/4
√
π
η

)
+

[
We3/4

√
π

23/4
C3η

3 + 3 21/4We1/4
√
πC4η

]
Fc

(
We1/4

21/4
√
π
η

)
, (9.9)

where

Fs(x) =

∫ x

0

sin

(
πτ 2

2

)
dτ, Fc(x) =

∫ x

0

cos

(
πτ 2

2

)
dτ.

are Fresnel Integrals that are also seen in Fresnel diffraction phenomena in optics [2].

Here Ci for i = 1...4 are constants of integration. Applying the boundary condition

G0(0) = 0 yields

C3 = 0.

Using (9.6) we obtain an expression for F0,

F0 = −C1η
2 + 3

√
2C4η sin

(√
2We

4
η2

)
+

3 23/4
√
π

We1/4
C4Fs

(
We1/4

21/4
√
π
η

)
− 3 21/4We1/4

√
πC4η

2Fc

(
We1/4

21/4
√
π
η

)
+ C5, (9.10)

where C5 is a further constant of integration. Applying the boundary condition F0(0) =

δω implies

C5 = δω.

Comparing the coefficients of the largest terms of (9.9) and (9.10) as η →∞, and using

the identities Fs(η) = Fc(η) = 1
2

as η →∞, we use the boundary conditions F0(∞) = 0
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and G0(∞) = 0 to obtain

C1 = −3We1/4
√
π

23/4
C4 + δω and C4 = − 21/4

We3/4
√
π
C2,

We use equation (9.7) to evaluate the final constant, namely

C2 =
We

3
δω,

and thus

C1 =

√
2We

2
δω, C4 = −21/4We1/4

3
√
π

δω,

so that

G0 = δω

[√
2We

2
η +

We

6
η3 − 21/4We3/4

3
√
π

η2 cos

(√
2We

4
η2

)

+
27/4We1/4

3
√
π

sin

(√
2We

4
η2

)
− We

3
η3Fs

(
We1/4

21/4
√
π
η

)
−
√

2WeηFc

(
We1/4

21/4
√
π
η

)]
(9.11)

and

F0 = δω

[
1−
√

2We

2
η2 − 23/4We1/4

√
π

η sin

(√
2We

4
η2

)
− 2Fs

(
We1/4

21/4
√
π
η

)
+
√

2Weη2Fc

(
We1/4

21/4
√
π
η

)]
. (9.12)

Matching with the next region occurs in Region A, where s = O(1) and t→ 0, i.e.
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as η = s/
√
t→∞. Therefore, as η →∞,

F0 =
α

η3
sin
(
βη2
)

+O

(
1

η5

)
,

G0 =
α

η4
sin
(
βη2
)

+O

(
1

η6

)
, (9.13)

where

α = − 4 23/4

We3/4
√
π
δω, β =

√
2We

4
.

We see algebraic decay here. In the viscous case, in Decent [11], the solution in Region

I was found to decay exponentially with η.

9.3 s = O(1), t→ 0 asymptotic region

In region (ii), using (9.13) we pose

u = 1 + sin

(√
2We

4

s2

t

)
t5/2

s3

(
u0(s) + tu2(s) +O

(
t2
))

+ cos

(√
2We

4

s2

t

)
t5/2

s3

(
u1(s) + tu3(s) +O

(
t2
))

R = 1 + sin

(√
2We

4

s2

t

)
t7/2

s4

(
R0(s) + tR2(s) +O

(
t2
))

+ cos

(√
2We

4

s2

t

)
t7/2

s4

(
R1(s) + tR3(s) +O

(
t2
))

(9.14)

as t→ 0.

Substituting into equation (9.1) gives

u0 = R0, u1 = R1, (9.15)
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u2 =
4√

2Wes2

(√
2We

4
s2R2 −

1

2
sR′1 − 2R1 −

√
2We

2
sR0

)
(9.16)

and

u3 =
4√

2Wes2

(√
2We

4
s2R3 −

√
2We

2
sR1 +

1

2
sR′0 + 2R0

)
. (9.17)

Equation 2 (9.2) yields

R0 = A sin

(√
We

2
s

)
+B cos

(√
We

2
s

)
(9.18)

and

R1 = A cos

(√
We

2
s

)
−B sin

(√
We

2
s

)
. (9.19)

Note that u0 to u3 are used in the derivation of (9.18) and (9.19); u2, u3, R2 and

R3 appear in the derivation of (9.18) and (9.19) but these terms cancel on substitution

of (9.16) and (9.17). Matching with the previous region occurs as s → 0. This gives

A = 0 and B = α. Hence

u = 1 + α sin

(√
2We

4

s2

t
−
√
We

2
s

)
t5/2

s3
+ h.o.t

R = 1 + α sin

(√
2We

4

s2

t
−
√
We

2
s

)
t7/2

s4
+ h.o.t (9.20)

as t→ 0 and s = O(1), where h.o.t. denotes higher-order terms in the expansion.

9.4 Large spatial asymptotics

In region (iii) we consider t = O(1) and s→∞. Driven by (9.20), we expand using
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u = 1 + sin

(√
2We

4

s2

t
−
√
We

2
s

)
t5/2

s3

(
U0(t) +

U2(t)

s
+
U4(t)

s2
+O

(
1

s3

))

+ cos

(√
2We

4

s2

t
−
√
We

2
s

)
t5/2

s3

(
U1(t) +

U3(t)

s
+
U5(t)

s2
+O

(
1

s3

))
+ h.o.t

R = 1 + sin

(√
2We

4

s2

t
−
√
We

2
s

)
t7/2

s4

(
r0(t) +

r2(t)

s
+
r4(t)

s2
+O

(
1

s3

))

+ cos

(√
2We

4

s2

t
−
√
We

2
s

)
t7/2

s4

(
r1(t) +

r3(t)

s
+
r5(t)

s2
+O

(
1

s3

))
+ h.o.t

as s→∞ and h.o.t. denotes the higher order terms. Substituting into equation (9.1),

U0 = r0, U1 = r1, (9.21)

U2 = r2 − tr0, U3 = r3 − tr1, (9.22)

U4 =
4√

2We

(
1

4

√
2Wer4 −

1

2

√
2Wetr2 − t2r′1 − 2tr1 +

1

4

√
2Wet2r0

)
(9.23)

and

U5 =
4√

2We

(
1

4

√
2Wer5 −

1

2

√
2Wetr3 +

1

4

√
2Wet2r1 + t2r′0 + 2tr0

)
. (9.24)

Substituting into equation (9.2), using U0 to U5 gives

[r0 = C sin

(
1 +We

2
√

2We
t

)
+D cos

(
1 +We

2
√

2We
t

)
(9.25)

and

r1 = −C cos

(
1 +We

2
√

2We
t

)
+D sin

(
1 +We

2
√

2We
t

)
. (9.26)

Note that in the derivation of (9.25) and (9.26) we have used (9.22) - (9.24) with higher
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order terms cancelling.

Asymptotic matching with the solution in the previous region gives C = 0 and

D = α. Hence

u = 1 + α sin

(√
2We

4

s2

t
−
√
We

2
s+

1 +We

2
√

2We
t

)
t5/2

s3
+ h.o.t

R = 1 + α sin

(√
2We

4

s2

t
−
√
We

2
s+

1 +We

2
√

2We
t

)
t7/2

s4
+ h.o.t (9.27)

These expressions remain uniformly valid as t → ∞ providing s >> t, and become

non-uniform when t = O(s) as t → ∞. The above results correspond to the inviscid

large Reynolds number limit Re→∞ of the viscous results in Decent [11].

9.5 s→∞, t→∞ asymptotics

Using (9.27), we propose using the following expansions

u = 1 +
2∑
j=1

exp

(
(−1)jtg0(z)

)[
h

(j)
11 (z)

t1/2
+
h

(j)
21 (z)

t
+
h

(j)
31 (z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z)

)[
h

(j)
22 (z)

t
+
h

(j)
32 (z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z)

)[
h

(j)
33 (z)

t3/2

]
+O

(
1

t2

)
+ h.o.t., (9.28)
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R = 1 +
2∑
j=1

exp

(
(−1)jtg0(z)

)[
ζ

(j)
11 (z)

t1/2
+
ζ

(j)
21 (z)

t
+
ζ

(j)
31 (z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z)

)[
ζ

(j)
22 (z)

t
+
ζ

(j)
32 (z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z)

)[
ζ

(j)
33 (z)

t3/2

]
+O

(
1

t2

)
+ h.o.t. (9.29)

in this region where s→∞, t→∞ and z = s/t = O(1). This expansion is equivalent

to that presented in Decent [11]. However, higher order exponential terms (exp(2tg0),

exp(3tg0) ...) that are neglected due to viscous damping in Decent [11] are included

here as they are the same order of magnitude for an inviscid jet. These expansions

remain uniformly valid providing g0 is purely imaginary.

It is necessary to distinguish between the coefficients of exp(tg0) and exp(−tg0) in

the above, and so we include, for example, both h
(1)
11 (z) and h

(2)
11 (z) terms. However, we

will find that the expansions (9.28) and (9.29) are incomplete, as they fail to generate

a solution that matches with the far-field in the previos asymptotic region. The full

correct expansions will be found in Section 9.5.3, but it is important to understand

what happens when we use (9.28) and (9.29) to appreciate their deficiency.

9.5.1 The Lower Order Terms in the Expansion

Substitution of the expansions (9.28) and (9.29) into equation (9.1) yields

h
(j)
11 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
11 . (9.30)

Equation (9.2) yields a first order nonlinear ODE for g0,

(g′0)4 + (g′0)2 + 2We
[
(z − 1)2(g′0)2 − 2(z − 1)g0g

′
0 + g2

0

]
= 0. (9.31)
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Equation (9.31) has 3 sets of solutions. The first are the set of linear solutions

g0 = M0 +M1z

which are linked by the algebraic equation

M4
1 +M2

1 + 4WeM1M0 + 2WeM2
0 + 2WeM2

1 = 0. (9.32)

This equation describes spatial instability and will be discussed in Section 9.6. The

remaining solutions are given by g0 = g+ and g0 = g− where

g+ =
(−1)j

4
√
We

(
−We2(z − 1)4 − 10We(z − 1)2 + 2

+

√
We(z − 1)2 (We(z − 1)2 − 4)3

)1/2

(9.33)

and

g− =
(−1)j

4
√
We

(
−We2(z − 1)4 − 10We(z − 1)2 + 2

−
√
We(z − 1)2 (We(z − 1)2 − 4)3

)1/2

(9.34)

We take the asymptotic limit as z →∞ of the above, namely,

g+ = i(−1)j (z − 1) +O

(
1

z

)
g− = i(−1)j

(√
2We

4
z2 −

√
We

2
z +

We+ 1

2
√

2We

)
+O

(
1

z

)
as z →∞.

Clearly it is the solution given by g− that could be matched with the solution in

region (iii) (9.27) as z → ∞. The behaviour of (9.34) is examined in more detail in
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Section 9.7.

9.5.2 Higher Order Terms

It is necessary to go to higher order to obtain an expression for the wave amplitude

ζ
(j)
11 (h

(j)
11 is given by (9.30)). Substituting the expansions into equation (9.1) yields

h
(j)
21 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
21 . (9.35)

h
(j)
22 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
22 −

3

2
h

(j)
11 ζ

(j)
11 (9.36)

h
(j)
31 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
31 + (−1)j

2(z − 1)(ζ
(j)
11 )′ + ζ

(j)
11 − (h

(j)
11 )′

g′0
− 3h

(j̄)
11 ζ

(j)
22 .

(9.37)

h
(j)
32 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
32 −

3

2

(
ζ

(j)
11 h

(j)
21 + h

(j)
11 ζ

(j)
21

)
(9.38)

h
(j)
33 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
33 −

1

3

(
4ζ

(j)
11 h

(j)
22 + 5h

(j)
11 ζ

(j)
22

)
. (9.39)

where j̄ = 3− j.

Substituting into equation (9.2), we obtain

ζ
(j)
22 =

[
−1 + 2(g′0)2

2(g′0)2

]
(ζ

(j)
11 )2. (9.40)

ζ
(j)
32 =

[
1 + 2(g′0)2

(g′0)2

]
ζ

(j)
11 ζ

(j)
21 , (9.41)

ζ
(j)
33 =

[
3 + 23(g′0)2 + 25(g′0)4 + 3(g′0)6

16(g′0)2

]
(ζ

(j)
11 )3. (9.42)
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Additionally two ODEs for ζ
(j)
11 are obtained

(−1)j
1

2

[
−3(g0)2 − 15(g0)4 − 11(g0)6 + 3(g0)8

]
ζ

(j̄)
11 (ζ

(j)
11 )2

+
[
2Weg2

0g
′′
0 + 2We(z − 1)2(g′0)3 + (g′0)3 + 3(g′0)5

]
(ζ

(j)
11 )′

+
[
2We(g0)2g′′0 + 2We(z − 1)(g′0)3 − 2Weg0(g′0)2 + 3(g′0)4g′′0

]
ζ

(j)
11 = 0 (9.43)

for f = 1, 2, where the value of g0 is given by g0 = g− in (9.34). In the viscous case,

the equivalent ODE for ζ was satisfied automatically by using the equivalent solution

for g0. The solution for ζ was then obtained through asymptotic matching with region

(iii). However, the coefficients for the cubic term in ζ
(j)
11 in (9.43) do not equal zero

when g0 is given by (9.34). Therefore the only solution to (9.43) is ζ
(j)
11 = 0, which is

clearly not a valid solution because of matching with hte previous asymptotic region.

Cubic nonlinearities such as these appear in many physical systems, such as the

vibration of strings, beams and membranes, or in the motion of masses connected by

nonlinear springs [32]. The interactions of higher order harmonics in the system are

indicative of resonance [9, 48]. These have also been shown to occur for capillary waves

by Wilton [20] in his classical work. Details of these ripples in shallow water waves can

be seen in many works, [30, 31], amongst others.

9.5.3 Extended Multiple Scales Expansion

Following experience of these cubic nonlinearities (e.g [9]), we introduce a secondary

scale to generate a solution for ζ
(j)
11 , given by Z = z ln(t)1. It is then necessary to include

an additional term in the expansions (9.28) and (9.29) to balance the terms of ln(t)/t3/2,

given by h̄
(j)
31 and ζ̄

(j)
31 , in additional to the secondary scale. The correct expansions in

region (iv) are given by

1We note that we first tried Z = ztp but no rational value of p generated the necessary terms.
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u = 1 +
2∑
j=1

exp

(
(−1)jtg0(z)

)[
h

(j)
11 (z, Z)

t1/2
+
h

(j)
21 (z, Z)

t
+
h

(j)
31 (z, Z) + ln(t)h̄

(j)
31 (z, Z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z)

)[
h

(j)
22 (z, Z)

t
+
h

(j)
32 (z, Z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z)

)[
h

(j)
33 (z, Z)

t3/2

]
+O

(
1

t2

)
+ h.o.t., (9.44)

R = 1 +
2∑
j=1

exp

(
(−1)jtg0(z)

)[
ζ

(j)
11 (z, Z)

t1/2
+
ζ

(j)
21 (z, Z)

t
+
ζ

(j)
31 (z, Z) + ln(t)ζ̄

(j)
31 (z, Z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z)

)[
ζ

(j)
22 (z, Z)

t
+
ζ

(j)
32 (z, Z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z)

)[
ζ

(j)
33 (z, Z)

t3/2

]
+O

(
1

t2

)
+ h.o.t. (9.45)

where Z = z ln(t). Note there will also be ln(t) terms in the expansion to O(1/t2) and

higher order terms in the expansion. It is important to note that this secondary scale

does not affect the solution for g0, and thus all the results in Section 9.5.1 are retained.

On substitution of (9.44) and (9.44) into (9.2), the terms for h11, h21, h22, h32 and

h33 are identical to before (namely (9.30), (9.35), (9.36), (9.38) and (9.39)). In addition,

we obtain

∂h
(j)
11

∂Z
= 2(z − 1)

∂ζ
(j)
11

∂Z
, (9.46)

h̄
(j)
31 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ̄

(j)
31 + (−1)j

2(z − 1)
∂ζ

(j)
11

∂Z
− ∂h

(j)
11

∂Z

g′0
− 3h

(j̄)
11 ζ

(j)
22 .

(9.47)
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and

h
(j)
31 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
31 + (−1)j

2(z − 1)
∂ζ

(j)
11

∂z
+ ζ

(j)
11 −

∂h
(j)
11

∂z
− 2z

∂ζ
(j)
11

∂Z

g′0
− 3h

(j̄)
11 ζ

(j)
22 ,

(9.48)

Equations (9.46) and (9.47) are new equations arising from the need to balance ln(t)

terms; equation (9.48) replaces equation (9.37).

Substituting into equation (9.2), we obtain the same ODE to solve for g0, namely

(9.31). Therefore, the solution for g0 is unaffected by the secondary scale. In addition,

ζ22, ζ32 and ζ33 remain unchanged, (given by (9.40), (9.41) and (9.42)). We also obtain

[
[2((z − 1)2(g′0)2 − g2

0)]We+ 3(g′0)4 + (g′0)2
] ∂ζ(j)

11

∂Z

+(g′0)5 + (g′0)3 + 2Weg′0
[
(z − 1)2(g′0)2 − 2(z − 1)g0g

′
0 + g2

0

]
= 0. (9.49)

and

(−1)j
[
−3(g0)2 − 15(g0)4 − 9(g0)6 + 3(g0)8

]
ζ

(j̄)
11 (ζ

(j)
11 )2

+
[
2Weg2

0g
′′
0 + 2We(z − 1)2(g′0)3 + (g′0)3 + 3(g′0)5

] ∂ζ(j)
11

∂z

+
[
2We(g0)2g′′0 + 2We(z − 1)(g′0)3 − 2Weg0(g′0)2 + 3(g′0)4g′′0

]
ζ

(j)
11

−8Wez(g′0)2((z − 1)g′0 − g0)
∂ζ

(j)
11

∂Z
= 0. (9.50)

Equation (9.49) is a new equation arising from the need to balance ln(t) terms; equation

(9.50) replaces equation (9.43). Equation (9.49) is satisfied automatically when g0 is

given by g0 = g− in (9.34).

Hence,

∂ζ
(j)
11

∂Z
= (−1)jA(z)ζ

(j̄)
11 (ζ

(j)
11 )2. (9.51)
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where

A(z) =
[−3(g0)2 − 15(g0)4 − 9(g0)6 + 3(g0)8]

−8Wez(g′0)2((z − 1)g′0 − g0)
6= 0,

and g0 is given by g0 = g− in (9.34). This arises due to the fact that the coefficients

of ∂ζ
(j)
11 /∂z and ζ

(j)
11 in (9.50) equal zero when g0 is given by g0 = g− in (9.34). Taking

the limit as z →∞

A(z)→ −3
√

2

32
iWe3/2z3.

Hence A(z) is purely imaginary as z →∞.

Equation (9.51) consists of two equations, namely

∂ζ
(1)
11

∂Z
= −A(z)ζ

(2)
11 (ζ

(1)
11 )2 ∂ζ

(2)
11

∂Z
= A(z)ζ

(1)
11 (ζ

(2)
11 )2 (9.52)

Through matching with the far field in region (iii) as z →∞ it becomes clear that the

solution is required to behave as

ζ
(1)
11 →

iα

2z4
ζ

(2)
11 → −

iα

2z4
(9.53)

where α is a constant obtained in region (i). Solving (9.52), we obtain

ζ
(1)
11 = C1(z) exp (C2(z)Z) ζ

(2)
11 = − C2(z)

A(z)C1(z)
exp (−C2(z)Z) .

Matching with the previous region is obtained if

C2(z) = A(z)C1(z)2.

and

C1(z)→ iα

2z4
as z →∞.
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Hence

ζ
(1)
11 →

iα2

2z4
exp

(
−A(z)α2

4z8
Z

)
ζ

(2)
11 → −

iα

2z4
exp

(
A(z)α

4z8
Z

)
.

as z →∞ and Z →∞, as so this matches with region (iii). This solution also agrees

with the viscous solution obtained in Decent [11] in the large Reynolds number limit

Re→∞.

9.6 Linear waves with t→∞ and s = O(1).

In region (v), s = O(1) and t→∞. We search for linear wave solutions, expanding

with

u = 1 + δ exp(iωt)

(
Ω0(s) +

Ω1(s)

t1/2
+O

(
1

t

))
+ c.c+ h.o.t.

R = 1 + δ exp(iωt)

(
Γ0(s) +

Γ1(s)

t1/2
+O

(
1

t

))
+ c.c+ h.o.t.

where c.c denotes the complex conjugate and higher order terms encompass the ln(t)

terms in the multiple scales expansion used in region (iv). ω is given by the boundary

condition at s = 0, and δ small indicates a small perturbation at the orifice.

Taking equations (9.1) and (9.2) to O(1) gives

iωΩ0 + Γ′0 +
1

2
Ω′ = 0 (9.54)

and

iωΓ0 + Γ′0 =
−1

We
(−Ω′0 − Ω′′′0 ) (9.55)

Hence

Ω′′′′0 + (1 + 2We)Ω′′0 + 4iWeωΩ′0 − 2Weω2Ω0 = 0
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and

Ω0 =
4∑
j=1

ωje
mjs

where mj are the solutions to the equation

m4 + (1 + 2We)m2 + 4iWeωm− 2Weω2 = 0. (9.56)

This equation describes spatial instability (as can be seen in Keller et al. [21]) and

corresponds to the linear wave solution found in Section 9.5.1 where M0 = −m and

M1 = −iω.

Equation (9.54) yields

Γ0 =
4∑
j=1

γj expmjs

where

γj = −2ωj(iω +mj)

mj

for j = 1, 2, 3, 4. (9.57)

Substitution into the boundary condition R(s = 0, t) = 1 gives

ω1 + ω2 + ω3 + ω4 = 0

and u(s = 0, t) = 1 + δ sin(ωt) gives

γ1 + γ2 + γ3 + γ4 = − i
2
.

Taking equations (9.1) and (9.2) to O(t), we obtain similar to equations (9.54) and

(9.55), though with solution

Ω1 =
8∑
j=5

ωje
mjs, and Γ1 =

8∑
j=5

γje
mjs,
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where mj are solutions to (9.56) and γj are given by (9.57) for j = 5, 6, 7, 8, and

ω5 + ω6 + ω7 + ω8 = 0

γ5 + γ6 + γ7 + γ8 = 0.

9.7 Discussion

In Section 9.5, we used the expansions (9.44) and (9.45) to generate the solution

in Region IV where s → ∞ and t → ∞. The correct solution g0 that matched to the

farfield in Region III is given by (9.34). We now examine the behaviour of this solution.

Figure 9.2 shows g0, given by (9.34), plotted along the jet for varying Weber num-

bers. It can be seen in Figure 9.2(a) that for values of z1 < z < z2, for some value of

z1 and z2, the real part of g0 (<(g0)) is positive, and therefore the expansions (9.44)

and (9.45) become non-uniform for large t. In this region, the asymptotics cannot fully

capture the behaviour of the waves and only a full computational solution can do it.

<(g0) is the temporal growth rate of the nonlinear wave, and the most unstable tem-

poral mode occurs at z = 1. The imaginary part of g0 (=(g0)) is the local frequency,

and this is shown in Figure 9.2(b). It can be seen that the frequency changes sign at

z = 1.

By considering a Taylor expansion of g0(z), and comparing with terms to an expres-

sion describing a linear wave (exp(iks+ωt), we can also obtain the spatial growth rate,

given by <(g0)′, and the local wavenumber, given by k = =(g0)′. These are plotted

in Figure 9.3. The spatial growth rate changes sign at z = 1. The minimum in local

wavenumber also occurs at this point.
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The local wave speed is given by

v = z − =(g0)

=(g0)′
.

This is plotted in Figure 9.4, and we notice that v = 1 as z = 1. The local wavespeed

increases with z.

Adopting a Taylor expansion about z = 1 we obtain

<(g0) =

√
2

4
√
We
−
√

2We

8
(z − 1)2 +

√
2We3/2

32
(z − 1)4 +O((z − 1)6)

=(g0) = −
√

2

2
(z − 1)−

√
2We

16
(z − 1)3 +O((z − 1)5)

v = 1 +
We

4
(z − 1)3 +O((z − 1)4)

k = =(g0)′ =

√
2

2
+

3
√

2We

16
(z − 1)2 +O((z − 1)4)

as z → 1. We notice that as z → 1 the values for the temporal growth rate and

wavenumber, <(g0) and k, correspond to the longwavelength results of temporal in-

stability of a the straight jet dispersion relation (2.3). This suggests that when the

nonlinear wave is growing at its fastest, it behaves in a similar fashion to an unstable

linear wave.

In Section 9.6, we obtained a linear wave solution which was spatially unstable.

This grows as it propagates, becoming nonlinear, but is driven by the frequency ω

arising from the vibration at the orifice. At point z1, which corresponds to the point

at which the real part of g0 becomes unstable, this linear wave interacts with the

unstable nonlinear disturbance for z1 < z < z2. In this region the expansions are non-

uniform and the full solution can only be captured computationally. The expansions

are uniform for z > z2 and it is the solution given by (9.34) that matches with the

far-field in Region III. The aforementioned regions where linear waves are dominant,
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nonlinear waves are dominant, and where linear and nonlinear waves undergo mode

are shown in Figure 9.5.

After some algebra, we can evaluate z1 and z2 as

z1 = max

(
1− 2√

We
, 0

)
z2 = 1 +

2√
We

.

It is postulated that in order to regulate jet break-up it is necessary to break the jet in

regions where linear waves dominate break-up and nonlinear waves are stable (z < z1).

This suggests that when We ≤ 4, z1 = 0 and nonlinear waves are dominant at the

orifice and the jets are more difficult to control. As We increases, the region at which

the jet is more easily controllable increases.

If the jet is allowed, either for We < 4 or δ sufficiently small, to break up for z > z1

nonlinearities are present which cause satellite droplets, shown in Figure 9.6(a) and

(b). If the jet is forced to break-up for z < z1 then it is possible to remove satellite

droplets if the correct frequency is used (as discussed in Chapter 7 for the case of a

rotating jet). This is shown in Figure 9.6(c).

9.8 Conclusions

In this chapter we have used the Needham Leach method to develop an asymptotic

solution in the large time region to describe the behaviour of the jet evolution equa-

tions. We illustrate the difference in behaviour between an inviscid jet and viscous jet,

highlighting the more complex dynamics in the solution for nonlinear waves for inviscid

fluids, drawing comparisons with other areas of fluid dynamics such as shallow water

waves.

We have used a multiple scales expansion to generate the asymptotic expansions in

order to describe nonlinear waves as s → ∞ and t → ∞. This allowed us to describe
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the regions in which linear waves are more dominant, nonlinear waves dominated jet

break-up and a region where both modes undergo competition. We postulate that if

the jet can be forced to break in a region where linear waves are more dominant, then

satellite droplets are less likely to appear.
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(a) temporal growth rate <(g0)

(b) =(g0)

Figure 9.2: Plot showing g0 with z.
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(a) spatial growth rate <(g0)′

(b) local wavenumber k = =(g0)′

Figure 9.3: Plot showing wave behaviour with z.
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Figure 9.4: Plot showing wave speed v with z.

Figure 9.5: Diagrammatic representation showing the regions of wave behaviour.
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(a) We = 2, δ = 0.001, ω = 0.7048

(b) We = 50, δ = 0.001, ω = 0.7048

(c) We = 50, δ = 0.1, ω = 1.1

Figure 9.6: Straight jet break-up.
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Chapter 10

The effect of rotation on an

asymptotic solution to the jet

equations

In the last chapter we used the Needham-Leach Method to investigate the asymp-

totic behaviour of a straight liquid jet in the large spatial and temporal limits. This

chapter extends the analysis to describe the behaviour of a curved liquid jet. The

asymptotic regions are the same as for a straight jet, namely those shown in Figure

9.1.

The equations describing curved liquid jet break-up are

Rt + uRs +
usR

2
= 0, (10.1)

ut + uus =
−1

We

(
1

R(1 +R2
s)

1
2

− Rss

(1 +R2
s)

3
2

)
s

+
(X + 1)Xs + ZZs

Rb2

(10.2)

where u is the jet velocity, R is the jet radius and X and Z are the jet centreline
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coordinates. These equations were derived by Părău et al. [36] and are equivalent to

(3.11) with Re→∞. These are subject to

R(s, t = 0) = 1 u(s, t = 0) = 1

R(s = 0, t) = 1 u(s = 0, t) = 1 + δ sin(ωt)

R→ R̄(s) u→ ū(s) as s→∞ (10.3)

where ū(s) and R̄(s) are the steady state solutions obtained from the solutions to the

equations

ūūs =
1

We
κs +

(X̄ + 1)X̄s + Z̄Z̄s
Rb2

,

1

2
R̄ūs + ūR̄s = 0

(X̄sZ̄ss − Z̄sX̄ss)

(
ū2 − 1

WeR̄

)
− 2ū

Rb
+

((X̄ + 1)Z̄s − Z̄X̄s)

Rb2
= 0,

X̄sX̄ss + Z̄sX̄ss = 1. (10.4)

where κ is the curvature of the jet. These are subject to X̄ = Z̄ = Z̄s = 0 and

X̄s = R̄ = ū = 1 at s = 0. In addition, we have the boundary condition

R(s, t = 0) = R̂(s) u(s, t = 0) = û(s) as s→ 0

where R̂(s) and û(s) are the small s expansions of the steady state (10.4).

184



10.1 Asymptotic region for s→ 0, t→ 0

As with a straight jet, there exists an inner region as s → 0. The expansion in

Region I is given by

u = û(s) + tF0(η) +O(t3/2)

R = R̂(s) + t3/2G0(η) +O(t3) (10.5)

where η = s/
√
t and û(s) and R̂(s) are the small s expansions of ū(s) and R̄(s).

This is the same expansion as in Chapter 9, but for the presence of the steady state.

Substitution into (10.1) and (10.2) yields

1√
t

(
ûR̂s +

ûsR̂

2

)
+ 3G0 − ηG′0 +

1

2
ŘF ′0 +O

(
t1/2
)

= 0, (10.6)

and

F0 −
1

2
ηF ′0 + ûûs −

1

We

(
−R̂s

R̂2(1 + R̂2
s)

1
2

− R̂sR̂ss + R̂R̂sss + R̂G′′′0

(1 + R̂2
s)

3
2

+
3R̂sR̂

2
ss

(1 + R̂2
s)

5
2

)

− (X̂ + 1)X̂s + ẐẐs
Rb2

+O
(
t1/2
)

= 0, (10.7)

where X̂(s) and Ẑ(s) are the small s expansions of steady state solutions X̄(s) and

Z̄(s). The hatted quantities are given by the small s asymptotic solution to the steady

state equations (10.4). After considerable work investigating the small s behaviour of

the steady state equations, details of which can be found in Appendix B, this can be

reduced to

3G0 − ηG′0 + F ′0 +O
(
t1/2
)

+O(s) = 0,

F0 −
1

2
ηF ′0 −

1

γ
G′′′0 +O

(
t1/2
)

+O(s) = 0,
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where ′ ≡ d
dη

, η = s/
√
t and

γ = We
(

1 +
(
Ř′
)2
)3/2

=
We (Rb4(2We+ 1)2 +We2)

3/2

Rb6(2We+ 1)3
as s→ 0. (10.8)

We note that taking the limit Rb → ∞, γ → We and we simplify to the case of a

straight jet. We maintain boundary conditions

F0(0) = δω, F0(∞) = 0, G0(0) = 0, G0(∞) = 0.

Following the same analysis as in the previous chapter we obtain

G0 = δω

[√
γ

2
η +

γ

6
η3 − 21/4γ3/4

3
√
π

η2 cos

(√
2γ

4
η2

)
+

27/4γ1/4

3
√
π

sin

(√
2γ

4
η2

)
− γ

3
η3Fs

(
γ1/4

21/4
√
π
η

)
+
√

2γηFc

(
γ1/4

21/4
√
π
η

)]
(10.9)

and

F0 = δω

[
1−

√
γ

2
η2 − 23/4γ1/4

√
π

η sin

(√
2γ

4
η2

)
− 2Fs

(
γ1/4

21/4
√
π
η

)
+

√
2γη2Fc

(
γ1/4

21/4
√
π
η

)]
. (10.10)

As η →∞,

F0 =
α

η3
sin
(
βη2
)

+O

(
1

η5

)
,

G0 =
α

η4
sin
(
βη2
)

+O

(
1

η6

)
, (10.11)
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where

α =
4 23/4δω

γ3/4
√
π
, β =

√
2γ

4
.

This solution is identical to the solution describing a straight jet, but for the constant

γ.

10.2 s = O(1), t→ 0 asymptotics

In Region II, we consider s = O(1) and t→ 0. Driven by matching in Region A as

η →∞, we use (10.11) in (10.5) to pose the following expansions

u = ū(s) + sin

(√
2γ

4

s2

t

)
t5/2

s3

(
u0(s) + tu2(s) +O

(
t2
))

+ cos

(√
2γ

4

s2

t

)
t5/2

s3

(
u1(s) + tu3(s) +O

(
t2
))

+ h.o.t

R = R̄(s) + sin

(√
2γ

4

s2

t

)
t7/2

s4

(
R0(s) + tR2(s) +O

(
t2
))

+ cos

(√
2γ

4

s2

t

)
t7/2

s4

(
R1(s) + tR3(s) +O

(
t2
))

+ h.o.t

as t→ 0, h.o.t. denotes the higher order terms in the expansion of F0 and G0 and ū(s)

and R̄(s) are the steady values for u and R.

Substituting into equation (10.1) we obtain,

1

2
R̄ūs + ūR̄s = 0

which is satisfied by the steady state, and

u0 =
R0

R̄
and u1 =

R1

R̄
,
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u2 =
4√

2γs2R̄

(√
2γ

4
s2R2 −

1

2
sR′1 −

1

2
sR1

R̄′

R̄
− 2R1 −

√
2γ

2
sR0

)
and

u3 =
4√

2γs2R̄

(√
2γ

4
s2R3 −

√
2γ

2
sR1 +

1

2
sR′0 +

1

2
sR0

R̄′

R̄
+ 2R0

)
.

Substituting into equation (10.2) we obtain,

ūū′+
1

We

(
−R̄′

R̄2(1 + (R̄′)2)
1
2

− R̄′R̄′′ + R̄R̄′′′

R̄(1 + (R̄′)2)
3
2

+
3R̄′R̄′′2

(1 + (R̄′)2)
5
2

)
+

(X̄ + 1)X̄ ′ + Z̄Z̄ ′

Rb2
= 0

which is satisfied by the steady state with the full curvature included, and

−β
s
u0 +

8β3

sWe(1 + (R̄′)2)3/2
R0 (10.12)

and

β

s
u1 +

8β3

sWe(1 + (R̄′)2)3/2
R1 = 0, (10.13)

where β =
√

2γ/4. This is not satisfied with

γ = We(1 + (R̄′)2)3/2

as defined by (10.8). However, if γ is defined as

γ =
We(1 + (R̄′)2)3/2

R̄
,

(10.12) and (10.13) are satisfied. This new value of γ does indeed match with (10.8)

in Region A as R̄ = 1 at s = 0. We also obtain

R′1 +

√
2γ

2
ūR0 + ΣR1 = 0
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and

R′0 −
√

2γ

2
ūR1 + ΣR0

where

Σ =
R̄′(1 + (R̄′)2)− 3R̄R̄′R̄′′

2R̄2(1 + (R̄′)2)
> 0.

This yields

R′′0 + 2ΣR′0 +

(
γū2

2
+ Σ2

)
R0 = 0

and hence

R0(s) = A exp(−Σs) sin

(√
2γū

2
s

)
+B exp(−Σs) cos

(√
2γū

2
s

)
(10.14)

and

R1(s) = A exp(−Σs) cos

(√
2γū

2
s

)
−B exp(−Σs) sin

(√
2γū

2
s

)
(10.15)

Matching occurs in Region A, with η = s/
√
t and s→ 0, yielding A = 0 and B = α.

The expansions become

u = ū +
α exp(−Σs)

R̄
sin

(√
2γ

4

s2

t
−
√

2γū

2
s

)
+ h.o.t

R = R̄ + α exp(−Σs) sin

(√
2γ

4

s2

t
−
√

2γū

2
s

)
+ h.o.t

as t→ 0 and s = O(1). The exponential term suggests that as s increases R decreases,

indicating the jet thins with s.
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10.3 Large spatial asymptotics

In Region III we consider t = O(1) and s → ∞. It is extremely difficult to obtain

the full solution in Region III in terms of R̄ and ū, so we scale out the complex algebraic

terms for the steady state and concentrate on the asymptotic behaviour of (10.1) and

(10.2). The impact of rotation will appear through a numerical solution to the steady

state. We introduce a second variable s̄ = sε, with ε → 0 such that s̄ = O(1). We

extend the solution in Region II by

u = ū(s̄) +
exp(−Σs)

R̄(s̄)

[
sin

(√
2γ

4

s2

t
−
√
γ

2
ūs

)
t5/2

s3

(
U0(t) +

U2(t)

s
+
U4(t)

s2
+O

(
1

s3

))
+ cos

(√
2γ

4

s2

t
−
√
γ

2
ūs

)
t5/2

s3

(
U1(t) +

U3(t)

s
+
U5(t)

s2
+O

(
1

s3

))]
+ h.o.t.

R = R̄(s̄) + exp(−Σs)

[
sin

(√
2γ

4

s2

t
−
√
γ

2
ūs

)
t7/2

s4

(
r0(t) +

r2(t)

s
+
r4(t)

s2
+O

(
1

s3

))
+ cos

(√
2γ

4

s2

t
−
√
γ

2
ūs

)
t7/2

s4

(
r1(t) +

r3(t)

s
+
r5(t)

s2
+O

(
1

s3

))
+ h.o.t.

(10.16)

as s→∞, where now R̄, ū and γ depend on s̄. h.o.t. denotes the higher order terms.

Substituting the above expansions into (10.1), we obtain the steady state equations

ūR̄′ +
ū′R̄

2
= 0 (10.17)

and

εūū′ =
−1

We

(
−εR̄′

R̄2(1 + ε2(R̄′)2)
1
2

− ε3R̄′R̄′′ + ε3R̄R̄′′′

R̄(1 + ε2(R̄′)2)
3
2

+
3ε5R̄′(R̄′′)2

(1 + ε2(R̄′)2)
5
2

)

+
(X + 1)Xs + ZZs

Rb2
, (10.18)
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where ′ ≡ d
ds̄

. The large s behaviour of X and Z is found to be

Z =

(
√

2Rbs−
√

2Rb3/2

8

log s√
s

+ · · ·

)
sin

(√
2s

Rb
−
√

2Rb

8

log s√
s

+ · · ·

)

X = −1 +

(
√

2Rbs−
√

2Rb3/2

8

log s√
s

+ · · ·

)
cos

(√
2s

Rb
−
√

2Rb

8

log s√
s

+ · · ·

)

as s→∞. This calculation is given in Appendix C. Hence

(X + 1)Xs + ZZs
Rb2

→ 1

Rb
as s→∞.

Scaling Rb by R̃b/ε, we adopt the following expansions

u0 = ǔ0 + εǔ1 + ε2ǔ2 +O(ε3)

R0 = Ř0 + εŘ1 + ε2Ř2 +O(ε3)

and apply them to (10.17) and (10.18). We obtain the following leading order equations

for the jet stady state as s→∞,

ǔ0Ř
′
0 +

ǔ′0Ř0

2
= 0,

ǔ0ǔ
′
0 =

−1

We

(
−Ř′0
Ř2

0

)
+ R̃b. (10.19)

A numerical solution to these equations is shown in Figure 10.1.

The behaviour of the parameters from the previous section is given as follows

γ =
We(1 + R̄2

s)
3/2

R̄
=
We(1 + ε2R̄2

s̄)
3/2

R̄
→ We

Ř0

as ε→ 0,
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and

Σ =
R̄s(1 + R̄2

s)− 3R̄R̄sR̄ss

R̄(1 + R̄2
s)

=
εR̄s̄(1 + ε2R̄2

s̄)− 3ε3R̄R̄s̄R̄s̄s̄

R̄(1 + ε2R̄2
s̄)

→ 0 as ε→ 0.

It is then possible to continue the Needham-Leach asymptotic analysis with the effect

of rotation appearing through ǔ0 and Ř0. Substitution of (10.16) into (10.1)

U0 = r0 and U1 = r1,

and

U2 = r2 − ǔ0tr0 and U3 = r3 − ǔ0tr1,

and

U4 =
4Ř0√
2We

(
1

4

√
2We

Ř0

r4 −
1

4

√
2We

Ř0

ǔ0tr2 − t2r′1 − 2tr1 +
1

4

√
2We

Ř0

ǔ2
0t

2r0

)

and

U5 =
4Ř0√
2We

(
1

4

√
2We

Ř0

r5 −
1

4

√
2We

Ř0

ǔ0tr3 +
1

4

√
2We

Ř0

ǔ2
0t

2r1 + t2r′0 + 2tr0

)
.

Substitution of (10.16) into equation (10.2) the O (1/s) and O (1/s2) are satisfied

automatically. To O (1/s3), using U0 − U5, we obtain,

r′1 =

√
2(1 + ǔ2

0ŘWe)

4
√

2Ř3
0We

r0

and

r′0 = −
√

2(1 + ǔ2
0ŘWe)

4
√

2Ř3
0We

r1.
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Hence

r′′0 +
(1 + ǔ2

0ŘWe)2

8WeŘ3
0

r0 = 0

and

r0 = C sin

√2(1 + ǔ2
0ŘWe)

4
√

2Ř3
0We

t

+D cos

√2(1 + ǔ2
0ŘWe)

4
√

2Ř3
0We

t

 ,

and

r1 = −C cos

√2(1 + ǔ2
0ŘWe)

4
√

2Ř3
0We

t

+D sin

√2(1 + ǔ2
0ŘWe)

4
√

2Ř3
0We

t


Matching occurs in Region B, with t→ 0 and s = O(1), and therefore C = 0, D = α,

Σ→ 0 and γ → We/Ř0, and the expansions become

u = ǔ0 +
α

Ř
sin

√2We

4
√
Ř0

s2

t
−

√
We

2Ř0

ǔ0s+

√
2(1 + ǔ2

0ŘWe)

4
√

2Ř3
0We

t

 t5/2

s3
+ h.o.t

R = Ř0 + α sin

√2We

4
√
Ř0

s2

t
−

√
We

2Ř0

ǔ0s+

√
2(1 + ǔ2

0ŘWe)

4
√

2Ř3
0We

t

 t7/2

s4
+ h.o.t

Taking the asymptotic limit as t→∞ we obtain

u =
α

Ř0

(√
2We

4
√
Ř0

(s
t

)2

−

√
We

2Ř0

ǔ0
s

t
+

1 + ǔ2
0We

2
√

2Ř0We

)(
t

s

)3
1

t1/2
+ h.o.t

R = α

(√
2We

4
√
Ř0

(s
t

)2

−

√
We

2Ř0

ǔ0
s

t
+

1 + ǔ2
0We

2
√

2Ř0We

)(
t

s

)4
1

t1/2
+ h.o.t

(10.20)

Taking the limit of a straight jet Rb → ∞, ǔ0 = Ř0 = 1 and this corresponds to the

result obtained in Chapter 9 in the far-field as s→∞ and t→∞.
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10.4 s→∞, t→∞ asymptotics

The above expression generates the form of the expansion in Region IV, where

higher order exponential terms are included as the jet is inviscid (c.f. Chapter 9).

However, in this section we shall not examine the higher order terms to obtain the

expression for ζ
(j)
11 , and will focus on the behaviour of the nonlinear waves through

the solution of g0. However, the multiple scale Z = z ln(t) is included such that the

expression for ζ
(j)
11 could be found by examining higher orders. We note the secondary

scale s̄ = sε has also been included. The expansion in Region IV are

u = u(s̄) +
2∑
j=1

exp

(
(−1)jtg0(z, s̄)

)[
h

(j)
11 (z, s̄, Z)

t1/2
+
h

(j)
21 (z, s̄, Z)

t

+
h

(j)
31 (z, s̄, Z) + ln(t)h̄

(j)
31 (z, s̄, Z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z, s̄)

)[
h

(j)
22 (z, s̄, Z)

t
+
h

(j)
32 (z, s̄, Z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z, s̄, Z)

)[
h

(j)
33 (z, s̄, Z)

t3/2
+O

(
1

t2

)]
+ h.o.t.,

R = R(s̄) +
2∑
j=1

exp

(
(−1)jtg0(z, s̄)

)[
ζ

(j)
11 (z, s̄, Z)

t1/2
+
ζ

(j)
21 (z, s̄, Z)

t

+
ζ

(j)
31 (z, s̄, Z) + ln(t)ζ̄

(j)
31 (z, s̄, Z)

t3/2

]

+
2∑
j=1

exp

(
2(−1)jtg0(z, s̄, Z)

)[
ζ

(j)
22 (z, s̄, Z)

t
+
ζ

(j)
32 (z, s̄, Z)

t3/2

]

+
2∑
j=1

exp

(
3(−1)jtg0(z, s̄)

)[
ζ

(j)
33 (z, s̄, Z)

t3/2
+O

(
1

t2

)]
+ h.o.t.
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Substituting into equation (10.1) we obtain

h
(j)
11 =

2(z − ǔ0)g0z − 2g0

Ř0g0z

ζ
(j)
11 ,

where ǔ0 and Ř0 are given by the solution to equations (10.19). Substitution into

equation (10.2) yields the ODE for g0

g4
0zŘ

2
0 + g2

0z + 2WeŘ0 [(z − ǔ0)g0z − g0]2 = 0. (10.21)

Taking the limit of a straight jet with ǔ0(s) = Ř0(s) = 1 gives

h
(j)
11 = 2

(
(z − 1)g′0 − g0

g′0

)
ζ

(j)
11 ,

and

(g′0)4 + (g′0)2 + 2We [(z − 1)g′0 − g0]
2

= 0;

namely (9.30)-(9.31) obtained in the previous chapter for a straight jet.

As in Chapter 9, (10.21) has 3 sets of solutions. The first are the set of linear

solutions

g0 = M0 +M1z

which are linked by the equation

Ř2
0M

4
1 +M2

1 + 4Ř0ǔ0WeM1M0 + 2Ř0WeM2
0 + 2Ř0ǔ

2
0WeM2

1 = 0. (10.22)

This is the spatial instability result analogous to a straight jet. The remaining solutions
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are

g+ =
(−1)j

4
√
WeŘ

3/2
0

(
−We2Ř2

0(z − ǔ0)4 − 10WeŘ0(z − ǔ0)2 + 2

+

√
WeŘ0(z − ǔ0)2

(
WeŘ0(z − ǔ0)2 − 4

)3
)1/2

g− =
(−1)j

4
√
WeŘ

3/2
0

(
−We2Ř2

0(z − ǔ0)4 − 10WeŘ0(z − ǔ0)2 + 2

−
√
WeŘ0(z − ǔ0)2

(
WeŘ0(z − ǔ0)2 − 4

)3
)1/2

(10.23)

We take the asymptotic limit as z →∞ of the above, namely,

g+ = i(−1)j
(
z

Ř0

− ǔ0

Ř0

)
+O

(
1

z

)

g− = i(−1)j

√2We

4
√
Ř0

z2 −

√
We

2Ř0

ǔ0z +

√
2(Ř0ǔ

2
0We+ 1)

4
√
WeŘ3

0

+O

(
1

z

)
as z →∞.

The solution that matches with the farfield (10.20) is given by g0 = g−. The behaviour

of this solution will be discussed in Section 10.6.
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10.5 Linear waves with t→∞ and s = O(1).

In Region V we consider s = O(1) and t → ∞. We examine linear wave solutions

of the form

u = ū(s̄) + δ exp(iωt)

(
Ω0(s) +

Ω1(s)

t1/2
+O

(
1

t

))
+ c.c+ h.o.t.

R = R̄(s̄) + δ exp(iωt)

(
Γ0(s) +

Γ1(s)

t1/2
+O

(
1

t

))
+ c.c+ h.o.t.

where s̄ = sε, c.c denotes the complex conjugate and ω is given by the boundary

condition at s = 0. h.o.t. denote the higher order terms which include the ln(t) terms

in the expansion in Region IV.

Taking equations (10.1) and (10.2) to O(1) in δ and ε, we obtain the equations

iωΩ0 + ǔ0Ω′0 +
1

2
ŘΓ′0 = 0 (10.24)

iωΓ0 + ǔ0Γ′0 =
−1

We

(
−Ω′0
Ř2

0

− Ω′′′0

)
(10.25)

where ǔ0 and Ř0 are solutions to equations (10.19). This yields

Ř2
0Ω′′′′0 + (1 + 2ǔ2

0Ř0We)Ω′′0 + 4iWeǔ0Ř0ωΩ′0 − 2WeŘ0ω
2Ω0 = 0

⇒ Ω0 =
4∑
j=1

ωje
mjs

where mj are the solutions to the equation

Ř2
0m

4 + (1 + 2ǔ2
0Ř0We)m2 + 4iǔ0Ř0Weωm− 2WeŘ0ω

2 = 0. (10.26)

This equation describes spatial instability and matches with the linear solution appear-
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ing in Region IV (c.f. Chapter 9). (9.54) yields

Γ0 =
4∑
j=1

γj expmjs

where

γj = −2ωj(iω + ǔ0mj)

Ř0mj

for j = 1, 2, 3, 4. (10.27)

We have set the constant of integration equal to zero as it does not yield wave solutions

in the expansion.

Substitution into the boundary condition R = 1 gives

ω1 + ω2 + ω3 + ω4 = 0

and u = 1 + δ sin(ωt)

γ1 + γ2 + γ3 + γ4 = − i
2
.

Taking equations (10.1) and (10.2) to O(t), we obtain similar to equations (9.54)

and (10.25), though with solution

Ω1 =
8∑
j=5

ωje
mjs, and Γ1 =

8∑
j=5

γje
mjs,

where mj are solutions (10.26) and γj given by (10.27) for j = 5, 6, 7, 8, and

ω5 + ω6 + ω7 + ω8 = 0

γ5 + γ6 + γ7 + γ8 = 0.
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10.6 Discussion

As in the previous chapter, we can analyse (10.23) to find the region z1 < z < z2

where these nonlinear waves grow. z1 and z2 are given by

z1 = max

(
ǔ0 −

2√
Ř0We

, 0

)
z2 = ǔ0 +

2√
Ř0We

.

Figure 10.2 shows the temporal growth rate, given by the ral part of g0 (<(g0)) given

by (10.23), for different jets at different rotation rates. It shows that as Rb decreases,

for a given value of s̄, the maximum of <(g0) occurs for a larger value of z. This is

because the maximum occurs at z = ǔ0, and for a given value of s̄, ǔ0 is larger if the jet

is rotating more quickly. The value of z1 also increases with s̄. Consequently, a given

value of z1 would occur for a smaller value of s for a jet rotating more rapidly. Therefore,

nonlinearities are unstable for smaller values of s. This coincides with results obtained

earlier in this thesis, as it was noted that it is easier to generate Mode 1 break-up for

slower rotation rates. At s̄ = 0, the curves are identical for different Rossby numbers,

as ǔ = Ř = 1.

The local wavespeeds, spatial growth rates and wavenumbers are shown in Figures

10.3, 10.4 and 10.5 respectively. The wavespeed increases with decreasing Rb and is

larger for a given s̄. For a larger Rb, the region of z for which the jet is spatially

unstable is smaller, and occurs for a smaller value of z. Therefore, at higher rotation

rates the range of z for which nonlinearities grow spatially is larger. The minimum of

the local wavenumber occurs for a larger value of z for increased rotation rate and for

a larger s̄. Again, at s̄ = 0, the curves are identical for different Rossby numbers, as

ǔ = Ř = 1.

Many of the above results can be explained by taking a Taylor expansion about
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z = ǔ0,

<(g0) =

√
2

4
√
WeŘ3

0

−
√

2We

8
√
Ř0

(z − ǔ0)2 +

√
2Ř0We3/2

32
(z − ǔ0)4 +O((z − ǔ0)6)

<(g0)′ = −
√

2We

4
√
Ř0

(z − ǔ0) +

√
2Ř0We3/2

8
(z − ǔ0)3 +O((z − ǔ0)5)

v = ǔ0 +
WeŘ0

4
(z − ǔ0)3 +O((z − ǔ0)4)

k = =(g0)′ =

√
2

2Ř0

+
3
√

2We

16
(z − ǔ0)2 +O((z − ǔ0)4)

as z → ǔ0. ǔ0 increases (and Ř0 decreases) as the rotation rate increases and is

larger (Ř0 is smaller) for a given value of s̄. This illustrates the trends presented

in Figures 10.2 - 10.5, with the dominant behavior of the solution occurring at z =

ǔ0. The temporal growth rate increases with Ř
−3/2
0 , wavespeed increases with ǔ0 and

wavenumber increases with Ř−1
0 . The Taylor expansion for spatial growth rate also

illustrates that for z < ǔ0, the waves are spatially unstable and for z > ǔ0 they are

spatially stable.

Figure 10.6 displays the z values at the time of break-up of 4 different disturbances

and where they fall on a temporal growth rate curve. We note that the temporal growth

rate used here is for the purposes of an example, it does not correspond to any of the

jets shown. The point labelled Z1 on Figure 10.6 occurs for z < z1. This yields Mode

1 break-up, as shown in Figure 10.7(a). The point labelled Z2 in Figure 10.6 occurs for

z1 < z < z2, but occurs for a value of z significantly smaller than z = ǔ0 (where the

growth rate is at a maximum). Consequently, there is clear linear and nonlinear mode

competition in Figure 10.7(b). We assume this break-up is Mode 1, as it is unclear

whether there will be any satellite drop formation.

Z3 in Figure 10.6 occurs for a small amplitude disturbance. The value of z is quite

similar to ǔ0 and the break-up regime is clearly M2. The frequency in Figure 10.7 and
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Figure 10.8(a) (ω = 1.3) is chosen such that it is stable at the orifice and becomes

unstable for a value of s (see Chapter 8). In Figure 10.7, when δ is larger forcing the

jet at higher amplitudes, z is smaller and we see M1 break-up. In Figure 10.8(a), with

lower amplitude, nonlinearities dominate as z is larger. This corresponds to results

found in Chapter 7. Figure 10.8(b) shows a disturbance generated by an unstable

linear frequency at the orifice, corresponding to Z4 in Figure 10.6. z1 < z < z2 and the

nonlinearity causes the satellite droplet. No values of z > u0 were found at the point

of break-up.

The relationship between the mode of break-up and the value of z at break-up

compared to z1 and ǔ0 seems to be an interesting area of study, requiring a much more

thorough investigation.

10.7 Conclusion

In this chapter we have extended the Needham-Leach method to account for rota-

tional forces on the jet. For s = O(1), a solution could be obtained in terms of the

steady state values for R̄ and ū. In Region III however, where s→∞, it was necessary

to scale the steady state by an additional scale s̄ = sε. This secondary scale was then

used in Regions IV and V to examine the linear and nonlinear wave behaviour.

An ODE was obtained for g0 which could be used to investigate nonlinear wave

stability. This was dependent on leading order values for the scaled steady state ǔ0

and Ř0. In the limit of Rb→∞, the equations reduced to the equations for a straight

jet.

We examined the impact of rotation rate on the stability of the nonlinear waves. As

the rotation rate increases, the value of z at which the nonlinearities become unstable

decreases. We performed a brief investigation into the impact of these nonlinearities
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on the mode of jet break-up. Preliminary results suggest that as z approached the

local steady state velocity ǔ0, Mode 2 break-up is more likely. This work needs further

investigation to fully understand the impact of these nonlinearities. A comparison with

the results in Chapters 6 - 8 would also be interesteing.
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(a) ǔ0 vs s

(b) Ř0 vs s

Figure 10.1: Graph showing the solution to (10.19) for Rb = 0.5,1 and 2.
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Figure 10.2: Plot showing temporal growth rate <(g0) with z. We = 10

Figure 10.3: Plot showing wavespeed v with z. We = 10.
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Figure 10.4: Plot showing spatial growth rate <(g0)′ with z. We = 10

Figure 10.5: Plot showing local wavenumber k with z. We = 10
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Figure 10.6: Plot illustrating z values of 4 different orifice disturbances compared to a
temporal growth rate curve. We = 50, Rb = 5.
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(a) Mode 1 break-up in the linear wave regime, corresponding to Z1 in Figure 10.6. δ = 0.075 and
ω = 1.3.

(b) Mode 1 break-up with linear and nonlinear mode competition, corresponding to Z2 in Figure
10.6. δ = 0.025 and ω = 1.3.

Figure 10.7: Break-up in different wave regimes. We = 50, Rb = 1.

207



(a) Mode 2 break-up with linear and nonlinear mode competition, corresponding to Z3 in Figure
10.6. δ = 0.001 and ω = 1.3.

(b) Mode 2 break-up with linear and nonlinear mode competition, corresponding to Z4 in Figure
10.6. δ = 0.025 and ω = 0.7.

Figure 10.8: Break-up in different wave regimes. We = 50, Rb = 1.
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Chapter 11

Controlling Jet Break-up

This chapter details an attempt to control liquid jet break-up, motivated by the

results in this thesis. In Chapter 10, it was deduced that the nonlinearities that are

the cause of the smaller satellite droplets can be avoided if the jet is forced to break-up

in the region where linear waves dominate and the nonlinear waves are stable. This

typically occurs for small s. In Chapter 7, it was discovered that to cause shorter jet

break-up and obtain Mode 1 behaviour it is necessary to apply an additional distur-

bance which has a high amplitude and frequency ω ≈ 1 − 1.5 in dimensionless units.

This research has aided the production of a device that can attach to the experimental

rig. The preliminary results are summarised in this chapter.

11.1 Obtaining the frequency and amplitude on di-

mensional units

In Chapter 7, jet break-up was cause by applying the following orifice boundary

condition

u(0, t) = 1 + δ sin(κt/ε) + γ sin(ωt/ε), (11.1)
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where δ and κ were the amplitude and frequency of the most unstable wave and γ and ω

were the amplitude and frequency of the secondary disturbance. This is a perturbation

to the velocity of the jet, yet a vibrating orifice would cause perturbations to the jet

by vibrating in the plane of gravity (up and down). Thus, we need to discuss what the

values of γ and ω mean physically.

Consider the problem in terms of the full model equations in three dimensions

before any asymptoic expansions are applied. We perturb gravity by a small parameter

g = ḡ + G sin(ωt) such that G/g << 1. Therefore, a perturbation expansion in terms

of G/g gives to leading order the unperturbed long wavelength equations which have

a steady solution given by the solution to the three dimensional steady ODEs (c.f.

Chapter 8 for the two dimensional counterpart).

To next order in G/g, we obtain a linearised system of equations describing a

perturbation of frequency ω. This yields the viscous dispersion relation (8.34) for a

given frequency ω. As long as G/g << 1, these linear spatial instability results remain

valid. Nonlinear theory can be used to get an impression of the behaviour as G/g

increases from 0+, taking a long wavelength approximation of the linear results to a

long wavelength dispersion relation (8.36). Therefore G/g is small.

If we were to apply a small δ expansion, as in Chapter 8, we would obtain the same

results as above. Hence, δ would be the amplitude of the velocity perturbation in the

above boundary condition. Therefore, a perturbation in the plane of gravity and a

perturbation of the velocity are equivalent. Therefore, we only need to dimensionalise

γ and ω.

In Chapter 7, the largest regions of M1 break-up occurred for γ = O(0.1) and

ω = O(1). Recalling the dimensionless parameters introduced in Chapter 3,

t =
Ut̄

s0

and ε =
a

s0
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where t is the dimensionless time, t̄ is the dimensional time, U is the jet exit velocity,

a is the orifice radius and s0 is the radius of the can. Therefore, from (11.1),

ω

ε
t =

ωU

a
t̄

and so the dimensional frequency would be given by

f̄ =
ωU

a
.

As a = O(1 mm), U = O(1 ms−1) and ω = O(1), f̄ = O(kHZ).

As the perturbation in the plane of gravity and the perturbation in the velocity can

be considered equivalent, the amplitude of the perturbation is simply given by

γ̄ = γa,

and so γ̄ = O(0.1 mm) for γ = O(0.1) and a = O(1 mm). Therefore to control liquid

jet break-up, 0.1 mm amplitude disturbances of the order of kHz should be applied to

the jet. The details of a vibrating nozzle which works in those regimes is given in the

next section.

11.2 A Vibrating Nozzle

Modifications were made to the pilot scale rig such that a vibrating nozzle could

be attached to the can in place of the original nozzle. The amplitude and frequency

of the vibration could be applied such that the Rayleigh mode and any mechanical

instabilities are dominated by a more controlled disturbance. An image of the nozzle

is shown in Figure 11.1.
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Figure 11.1: Graph showing the impact of a secondary disturbance on Jet 4.

Figure 11.2 shows a schematic of this nozzle added to the rig. Through the applica-

tion of an AC electric signal, the electromagnet attracts and repels causing a vibration

to the transporter tube. The liquid flows from the drum, through the tube to the

nozzle, and the vibration is controlled through the electric signal. There is also a hall

sensor that acts as a feedback to control the amplitude. As can also be seen in the

figure, an accelerometer has been added to the rig in order to measure the mechanical

instabilities arising through rotation.

11.3 Preliminary results

In this section we present some preliminary results of the work by Victoria Hawkins

using the vibrating nozzle. Figure 11.3 shows a drop size distribution displaying a high

amplitude and high frequency disturbance applied to Jet 1 from Table 6.1. Satellite

droplets are reduced, and there is a decreased standard deviation in main drop sizes.

A high amplitude and frequency disturbance is applied to Jet 4 in Figure 11.4 and

we see a more dramatic reduction in the number of satellite droplets, changing break-

up from Mode 2/3 to Mode 1. It should be noted that the vibrating nozzle reduces
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Figure 11.2: Sketch of the vibrating nozzle set-up.
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Figure 11.3: Graph showing the impact of a secondary disturbance on Jet 1.

the exit velocity of the fluid, and so the dimensionless parameters will differ with the

additional disturbances. A greater comparison between the theoretical insonification

and experimental results is the subject of current work, but these preliminary results

are very encouraging.
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Figure 11.4: Graph showing the impact of a secondary disturbance on Jet 4.
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Chapter 12

Conclusions and Future Work

Over the course of this thesis we have investigated the break-up dynamics of a

curved liquid jet as seen in the prilling process. The primary aim of the study was to

investigate methods of reducing satellite droplets which are the source of waste to the

industrial process. These satellite droplets were typically seen for viscous jets emerging

from the can rotating at higher speeds.

Chapters 2 - 4 gave an in depth review of the previous works on straight jets and

curved jets, both theoretical and experimental. We presented linear stability analysis

of a curved viscous jet derived by Decent et al.[12], and the nonlinear equations derived

by Părău et al.[35].

In Chapter 5 we fully analyzed the mathematical model, illustrating the differences

between the linear and nonlinear theories. For a viscous fluid at higher rotation rates,

the nonlinear theory can predict a droplet over twice the radius of the linear theory.

In addition, the nonlinear model breaks down at the time of break-up, and subsequent

satellite droplets can not be generated after the ligament forms.

Despite extensive work theoretically and experimentally on curved liquid jets, there

had never previously been a full and thorough comparison. In Chapter 6, we showed
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the nonlinear model could be used to accurately predict the mode of jet break-up,

although identifying the mode close to the mode boundary becomes more difficult due

to the subjective nature of classifying break-up. There was an excellent correlation

between the nonlinear theory and the experimental image in the M2 regime, match-

ing the trajectory and predicting main and satellite drop radii that compare well to

experiments. As viscosity is increased, the nonlinear theory showed less of an accu-

rate comparison; the trajectory appeared displaced, and the droplet we could predict

was much larger than experimental droplets. Linear theory predicted drops of a more

comparable size. We changed the exit angle of the jet in the nonlinear simulations and

noted the trajectory can be modelled to a greater degree of accuracy, though the main

drop remained too large.

In Chapter 7 we added a secondary wave at the orifice and investigated the effects.

We generated drop size distributions for our theoretical jet by varying this additional

disturbance. We showed that these distributions displayed a better comparison to ex-

perimental drop size distributions when the amplitude of this disturbance is larger, and

concluded that experimentally engineered setups have mechanical instabilities present

that dominate the Rayleigh mode. These results have major implications; whilst di-

mensionless parameters can be used to scale down an industrial setup, subtleties in

design engineering that cause mechanical instabilities are not picked up by the exper-

imental modelling. These instabilities are more noticeable at higher rotation rates.

We also showed that it was possible to reduce the presence of satellite droplets if a

disturbance was applied with sufficient amplitude and at a chosen frequency.

In Chapter 8 we developed a local stability analysis of the jet. We derived a linear

dispersion relation that can be used to calculate the instability at any point along the

jet at any time. With this method, we generate very short waves at break-up point,

noting that at break-up we see the presence of negative frequencies, indicating wave
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motion in both directions. For higher rotation rates we did not see these negative

frequencies.

We also generated short waves on a ligament and showed that satellite droplets that

form over these wavelengths fall within a drop size distribution, suggesting this local

stability analysis is a suitable way of predicting post ligament break-up. Through a

combination of nonlinear analysis, linear stability and the new local stability technique,

droplets can be accurately predicted for jets consisting of a wide range of viscosities at

varying rotation rates.

We also investigated the spatial instability of a steady jet, and showed that some

frequencies are initially stable at the orifice and then suddenly become unstable further

down the jet. The use of initially stable disturbances that become unstable down the

jet can be used to control the break-up length, which has implications to industries

other than prilling. This shorter break-up length also coincided with the M1 break-up

seen in Chapter 7. The onset of unstable disturbances of (dimensionless) frequencies

greater than one is a feature unique to curved jet break-up.

In Chapter 9 we used the Needham Leach asymptotic technique to investigate the

behaviour of the the straight inviscid jet in the large time and space limits. This

was used to develop understanding of linear and nonlinear behaviour of the capillary

instabilities in liquid jets. For small s the wave grows linearly, but for some value of

z = s/t, nonlinearities became unstable and dominate the jet behaviour. To regulate

droplet production, it is necessary to break a jet in regions where the nonlinear waves

are stable. For We < 4, nonlinear waves are unstable at the orifice and there is no

region where the jet can be forced to break linearly.

In addition, through investigation of the nonlinear wave region, we found some

exciting results. We discovered the prescence of cubic nonlinearities, an example of

Wilton’s ripples, in the equation describing wave amplitude. These nonlinearities are
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seen in other areas of fluid dynamics such as shallow water waves, but have not been

seen to be a feature of liquid jet break-up.

The technique was extended in Chapter 10 to examine the behaviour of a curved

inviscid jet. The critical region for the onset on nonlinear wave instability was seen

to be a function of the steady state values for radius and velocity, and so is largely

dependent on rotation rate. Nonlinearities occur for smaller values of s for higher

rotation rates. M1 behaviour is more likely to be obtained if the jet is forced to break-

up before nonlinearities become unstable.

In Chapter 11 we used knowledge obtained throughout the majority of this thesis to

design a method of droplet control. A vibrating nozzle was designed such that it could

vibrate at sufficient amplitude to break the jet in the linear wave regime, as motivated

by Chapters 9 and 10, vibrating in frequency ranges suggested by work in Chapter 7.

The preliminary results are extremely encouraging, with the significant reduction of

satellite droplets in a viscous fluid.

12.1 Further Work

There are many further questions still to be answered on jet break-up. The work

previewed in Chapter 11 needs to be examined in greater detail for an increased range

of fluid rheologies and rotation rates. This needs to be compared thoroughly with

the work predicted by the nonlinear model in Chapter 7 and the regions of linear and

nonlinear wave growth predicted in Chapter 10.

There is also limited understanding in the behaviour of the cubic nonlinearity that

arose in Chapter 9. Through techniques used in examining shallow water waves, greater

understanding of jet nonlinearities could be obtained.

In addition, the work in Chapter 8 highlighted the complex dynamics governing
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jet break-up. The numerical model predicted negative values for jet velocity and this

resulted in waves propagating back down the jet in the local stability analysis. It could

be that the one-dimensional model fails to capture the full dynamics of jet break-up and

it is necessary to include a radial dependence on jet velocity to capture these dynamics.

This would involve some very complicated mathematical and numerical modelling.
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Appendix A

Derivation of the linear dispersion
relation

This section details the derivation of the linear dispersion relation governing jet
instability. Subtitution of (8.32) into the instability equations (8.31) yields the following
set of equations

(−knû1 + v̂1 + nv̂1,n) +
∞∑
m=1

(−knûm0 + v̂m0 + v̂m0,n +mŵm1) cosmφ

+
∞∑
m=1

(−knûm1 + v̂m1 + v̂m1,n −mŵm0) sinmφ, (A.1)

(
−(λ+ iu0k)û1 − kp̂1 +

1

Re

(
−k2û1 +

1

n
û1,n + û1,nn

))
+
∞∑
m=1

[
−(λ+ iu0k)ûm0 − kp̂m0 +

1

Re

(
−k2ûm0 +

1

n
ûm0,n

+ ûm0,nn −
m2

n2
ûm0

)]
cosmφ+

∞∑
m=1

[
− (λ+ iu0k)ûm1 − kp̂m1

+
1

Re

(
−k2ûm1 +

1

n
ûm1,n + ûm1,nn −

m2

n2
ûm1

)]
sinmφ, = 0

(A.2)
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[
−(λ+ iu0k)v̂1 − p̂1,n +

1

Re

(
−k2v̂1 +

1

n
v̂1,n + v̂1,nn −

1

n2
v̂1

)]
+
∞∑
m=1

[
−(λ+ iu0k)v̂m0 − p̂m0,n +

1

Re

(
−k2v̂m0 +

1

n
v̂m0,n

+ v̂m0,nn −
m2

n2
v̂m0 −

1

n2
v̂m0 −

2m

n2
ŵm1

)]
cosmφ+

∞∑
m=1

[−(λ+ iu0k)v̂m1 − p̂m1,n

+
1

Re

(
−k2v̂m1 +

1

n
v̂m1,n + v̂m1,nn −

m2

n2
v̂m1 −

1

n2
v̂m1 +

2m

n2
ŵm0

)]
sinmφ

+(ZsX̂1 −XsẐ1)

(
kλu0 − k2u2

0 −
1

Re
ik3u0

)
cosφ = 0,

(A.3)

and [
−(λ+ iu0k)ŵ1 −

1

n
p̂1 +

1

Re

(
−k2ŵ1 +

1

n
ŵ1,n + ŵ1,nn −

1

n2
ŵ1

)]
+
∞∑
m=1

[
−(λ+ iu0k)ŵm0 −

1

n
p̂m0 +

1

Re

(
−k2ŵm0 +

1

n
ŵm0,n

+ŵm0,nn −
m2

n2
ŵm0 −

1

n2
ŵm0 +

2m

n2
v̂m1

)]
cosmφ+

∞∑
m=1

[
−(λ+ iu0k)ŵm1 −

1

n
p̂m1

+
1

Re

(
−k2ŵm1 +

1

n
ŵm1,n + ŵm1,nn −

m2

n2
ŵm1 −

1

n2
ŵm1 −

2m

n2
v̂m0

)]
sinmφ

−(ZsX̂1 −XsẐ1)

(
kλu0 − k2u2

0 −
1

Re
ik3u0

)
sinφ = 0,

(A.4)

and on n = R0(
(λ+ iu0k)R̂1 − v1

)
+
∞∑
m=1

(
(λ+ iu0k)R̂m0 − vm0

)
cosmφ

+
∞∑
m=1

(
(λ+ iu0k)R̂m1 − vm1

)
sinmφ+ λ(ZsX̂1 −XsẐ1) cosφ = 0, (A.5)

(ikv̂1 + iû1,n) +
∞∑
m=1

(ikv̂m0 + iûm0,n) cosmφ

+
∞∑
m=1

(ikv̂m1 + iûm1,n) sinmφ+ k2u0(ZsX̂1 −XsẐ1) cosφ = 0, (A.6)
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(
ŵ1,n −

1

R0

ŵ1

)
+
∞∑
m=1

(
ŵm0,n −

1

R0

ŵm0 +
m

R0

v̂m1

)
cosmφ

+
∞∑
m=1

(
ŵm1,n −

1

R0

ŵm1 −
m

R0

v̂m0

)
sinmφ = 0, (A.7)

(
p̂1 −

2

Re
v̂1,n −

1

We

(
k2 − 1

R2
0

)
R̂1

)
+
∞∑
m=1

(
p̂m0 −

2

Re
v̂m0,n

− 1

We

(
k2 − 1

R2
0

+
m2

R2
0

)
R̂m0

)
cosmφ+

∞∑
m=1

(
p̂m1 −

2

Re
v̂m1,n

− 1

We

(
k2 − 1

R2
0

+
m2

R2
0

)
R̂m1

)
sinmφ+ k2(ZsX̂1 −XsẐ1) cosφ = 0, (A.8)

XsX̂1 + ZsẐ1 = 0, (A.9)

v̂1 +
∞∑
m=1

v̂m0 cosmφ+ v̂m1 sinmφ = 0 on n = 0, (A.10)

ŵ1 +
∞∑
m=1

ŵm0 cosmφ+ ŵm1 sinmφ = 0 on n = 0. (A.11)

From equation (A.2) we obtain expressions for the pressure

p̂1 =
1

k

[
−(λ+ iu0k)û1 +

1

Re

(
−k2û1 +

1

n
û1,n + û1,nn

)]
,

p̂m0 =
1

k

[
−(λ+ iu0k)ûm0 +

1

Re

(
−
(
k2 +

m2

n2

)
ûm0 +

1

n
ûm0,n + ûm0,nn

)]
,

p̂m1 =
1

k

[
−(λ+ iu0k)ûm1 +

1

Re

(
−
(
k2 +

m2

n2

)
ûm1 +

1

n
ûm1,n + ûm1,nn

)]
,

(A.12)

and from equation (A.1),

−knû1 + v̂1 + nv̂1,n = 0,

−knûm0 + v̂m0 + v̂m0,n +mŵm1 = 0,

−knûm1 + v̂m1 + v̂m1,n −mŵm0 = 0, (A.13)

for m ≥ 1. Substituting (A.12) into (A.3) and (A.4), and using (A.13) and (A.9) we
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obtain (after considerable algebra)

u1 = A1(s)I0(kn)− A2(s)k̃I0(k̃n), v1 = A1(s)
1

k

d

dn
I0(kn)− A2(s)

k

k̃

d

dn
I0(k̃n)

w1 = 0, p1 = −A1(s)
λ+ iu0k

k
I0(kn)

um0 = A3(s)Im(kn)− A4(s)k̃Im(k̃n), vm0 = A3(s)
1

k

d

dn
Im(kn)− A4(s)

k

k̃

d

dn
Im(k̃n)

wm1 = −A3(s)
mIm(kn)

kn
+ A4(s)

kmIm(k̃n)

k̃n
, pm0 = −A3(s)

λ+ iu0k

k
Im(kn)

for m > 1

um1 = A5(s)Im(kn)− A6(s)k̃Im(k̃n), vm1 = A5(s)
1

k

d

dn
Im(kn)− A6(s)

k

k̃

d

dn
Im(k̃n)

wm0 = −A5(s)
mIm(kn)

kn
+ A6(s)

kmIm(k̃n)

k̃n
, pm1 = −A5(s)

λ+ iu0k

k
Im(kn)

for m ≥ 1

u10 = A7(s)I1(kn)− A8(s)k̃I1(k̃n),

v10 = A7(s)
1

k

d

dn
I1(kn)− A8(s)

k

k̃

d

dn
I1(k̃n)− iku0Ẑ1

Xs

w11 = −A7(s)
I1(kn)

kn
+ A8(s)

kI1(k̃n)

k̃n
+
iku0Ẑ1

Xs

, pm0 = −A7(s)
λ+ iu0k

k
I1(kn).

where k̃2 = k2 +Re(λ+ iu0k), A1−A8 are constants and I0, I1 and Im are zeroth, first
and mth order modified Bessel functions respectively.

Substituting the above into the boundary condition (A.5) yields

R1 =
1

λ+ iu0k

(
A1(s)

1

k
I ′0(kR0)− A2(s)

k

k̃
I ′0(k̃R0)

)
Rm0 =

1

λ+ iu0k

(
A3(s)

1

k
I ′m(kR0)− A4(s)

k

k̃
I ′m(k̃R0)

)
for m > 1

Rm1 =
1

λ+ iu0k

(
A5(s)

1

k
I ′m(kR0)− A6(s)

k

k̃
I ′m(k̃R0)

)
for m ≥ 1

R10 =
1

λ+ iu0k

(
A5(s)

1

k
I ′m(kR0)− A6(s)

k

k̃
I ′m(k̃R0)

)
− Z1

Xs

where I ′m(kR0) ≡
(
d
dn

(Im(kn)
) ∣∣

n=R0
. Using the boundary condition (A.6) we obtain

the following relationships;
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A2(s) =
2A1(s)k̃I ′0(kR0)

(k2 + k̃2)I ′0(k̃R0)
, A4(s) =

2A3(s)k̃I ′m(kR0)

(k2 + k̃2)I ′m(k̃R0)
,

A6(s) =
2A5(s)k̃I ′m(kR0)

(k2 + k̃2)I ′m(k̃R0)
, A8(s) =

2A7(s)k̃I ′1(kR0)

(k2 + k̃2)I ′1(k̃R0)
,

Substituting these relations into (A.8) yields (after considerable algebra) the dis-
persion relation for the stable modes with m ≥ 1

(λ+ iu0k)2 +
2(λ+ iu0k)

ReIm(kR0)

[
I ′′m(kR0)− 2k2I ′m(kR0)I ′′m(k̃R0)

(k2 + k̃2)I ′m(k̃R0)

]

+
1

We

(
k2 − 1

R2
0

(1−m2)

)[
(k̃2 − k2)I ′m(kR0)

(k̃2 + k2)Im(kR0)

]
= 0, (A.14)
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Appendix B

The solution in Region I for a
curved jet

This appendix details the small s expansion in Chapter 10, showing that it is
necessary to use the full curvature in the steady state equations to obtain the solution
in region I, ((10.9) and (10.10)). The steady state equations are

ūūs =
1

We
κs +

(X̄ + 1)X̄s + Z̄Z̄s
Rb2

,

1

2
R̄ūs + ūR̄s = 0

(X̄sZ̄ss − Z̄sX̄ss)

(
ū2 − 1

WeR̄

)
− 2ū

Rb
+

((X̄ + 1)Z̄s − Z̄X̄s)

Rb2
= 0,

X̄sX̄ss + Z̄sX̄ss = 1. (B.1)

where κ is the curvature of the jet, subject to X̄ = Z̄ = Z̄s = 0 and X̄s = R̄ = ū = 1
at s = 0.

We first tried using the leading order term for the curvature,

κ =
1

R̄
.

As we have up to third derivatives with respect to s in R̄ in (10.2), we must expand
our steady quantities up to O(s3), and so we expand by

F̂ = F0 + sF1 + s2F2 + s3F3 +O(s4),

where Fi = (ui, Ri, Xi, Zi) for i = 0, 1, 2... as s→ 0.
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We obtain

û = 1 +
2We

Rb2(2We+ 1)
s−

(
We

Rb2(2We+ 1)
− We2(4We− 1)

Rb4(2We+ 1)3

)
s2

−
(
We2(4We− 1)

Rb4(2We+ 1)3
+

2We3(8We4 + 121We3 + 3We2 + 31We+ 1)

3Rb6(We− 1)2(2We+ 1)5

)
s3 +O(s4),

R̂ = 1− We

Rb2(2We+ 1)
s−

(
We

2Rb2(2We+ 1)
− We2(5We+ 1)

Rb4(2We+ 1)3

)
s2

+

(
We2(5We+ 1)

Rb4(2We+ 1)3
− 2We3(29We4 + 107We3 − 6We2 +We+ 2)

3Rb6(We− 1)2(2We+ 1)5

)
s3 +O(s4),

X̂ = s− 2We2

3Rb2(We− 1)2
s3 +

We3

Rb6(We− 1)3
s4 +O(s5),

Ẑ =
We

Rb(We− 1)2
s2 − 2We2

3Rb2(We− 1)2
s3

+

(
− We2

6Rb4(We− 1)2
+

We3(10We2 − 1)

6Rb6(We− 1)3(2We+ 1)2

)
s4 +O(s5). (B.2)

as s→ 0.
Substituting into (10.6) and (10.7) we obtain

3G0 − ηG′0 + F ′0 +O
(
t1/2
)

+O(s) = 0, (B.3)

F0 −
1

2
ηF ′0 −

1

γ
G′′′0 + χ+O

(
t1/2
)

+O(s) = 0 (B.4)

where ′ ≡ d
dη

and η = s/
√
t and

γ =
We((2We+ 1)2Rb4 +We2)3/2

Rb6(2We+ 1)3

χ =
Γ

Rb2((2We+ 1)2Rb4 +We2)5/2(We− 1)2(2We+ 1)

where

Γ = (We− 1)2(2We+ 1)5Rb10 −We(7 + 32We)(We− 1)2(2We+ 1)3Rb8

+ 3We2(2We+ 1)(44We4 − 150We3 − 9We2 + 4We+ 3)Rb6

+ We3(2We+ 1)(28We+ 5)(We− 1)2Rb4 −We4(80We3 − 51We2 + 78We+ 1)Rb2

− ((2We+ 1)2Rb4 +We2)5/2(We− 1)2.

We note that taking the limit in Rb → ∞ in the above, γ → We and χ → 0 and
(B.4) reduces to the case of a straight jet. Following the method used in Chapter 9,
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we obtain

G0 = (δω − χ)

[√
γ

2
η +

γ

6
η3 − 21/4γ3/4

3
√
π

η2 cos

(√
2γ

4
η2

)
+

27/4γ1/4

3
√
π

sin

(√
2γ

4
η2

)
− γ

3
η3Fs

(
γ1/4

21/4
√
π
η

)
+
√

2γηFc

(
γ1/4

21/4
√
π
η

)]
(B.5)

and

F0 = (δω − χ)

[
−
√
γ

2
η2 − 23/4γ1/4

√
π

η sin

(√
2γ

4
η2

)
− 2Fs

(
γ1/4

21/4
√
π
η

)
+

√
2γη2Fc

(
γ1/4

21/4
√
π
η

)]
+ δω. (B.6)

As η →∞,

F0 = χ+
α

η3
sin
(
βη2
)

+O

(
1

η5

)
,

G0 =
α

η4
sin
(
βη2
)

+O

(
1

η6

)
, (B.7)

where

α =
4 23/4

γ3/4
√
π

(δω − χ) , β =

√
2γ

4
.

As Rb → ∞, χ → 0 and the above equations reduce to the equations describing
a straight jet. However, through this term χ, we have an extra term in the large
η behaviour of the velocity. This appears as though the velocity is been driven by a
constant term, which should not be the case. This arises as a result of the full curvature
term used in (9.2). This is not a problem for a straight jet as u = R = 1 at the orifice.
Therefore, we must perform our small s asymptotics for steady state equations with
the full curvature.

Using the full curvature in the small s asymptotics

We now use the full curvature in the problem, namely

κ =
1

R(1 +R2
s)

1
2

− Rss

(1 +R2
s)

3
2
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We have new modified steady state equations

ūūs =
1

We

(
−Rs

R2(1 +R2
s)

1
2

− RsRss +RRsss

R(1 +R2
s)

3
2

+
3RsR

2
ss

(1 +R2
s)

5
2

)
+

(X̄ + 1)X̄s + Z̄Z̄s
Rb2

,

1

2
R̄ūs + ūR̄s = 0

(X̄sZ̄ss − Z̄sX̄ss)

(
ū2 − 1

WeR̄

)
− 2ū

Rb
+

((X̄ + 1)Z̄s − Z̄X̄s)

Rb2
= 0,

X̄sX̄ss + Z̄sX̄ss = 1. (B.8)

and expand as above.
We obtain

û = 12R1s− (3R1− 2R2) s2 +O(s3)

R̂ = 1 +R1s+R2s
2 (B.9)

− 1

6

(
We(2Rb2R1 + 1)(1 +R2

1)(3/2)

Rb2
+R1(1 +R2

1) + 2R1R2 −
12R1R

2
2

1 +R2
1

)
s3 +O(s4),

X̂ = s− 2We2

3Rb2(We− 1)2
s3 +

We3

Rb6(We− 1)3
s4 +O(s5),

Ẑ =
We

Rb(We− 1)2
s2 +

(
R1We(2We+ 1)

3Rb2(We− 1)2
− We2

3Rb4(We− 1)2

)
+

(
R2We(2We+ 1)

6Rb2(We− 1)2
− We2

12Rb4(We− 1)2
+

We4(4 + 5We)

6Rb6(We− 1)3(2We+ 1)2

)
s4 +O(s5).

(B.10)

as s → 0. As we have introduced the full curvature into our steady state (B.8), we
get contributions from R1, R2 and R3 to leading order in s. Hence we are unable to
determine R1 and R2. Substitution into (9.1) and (9.2) yields

3G0 − ηG′0 + F ′0 +O
(
t1/2
)

+O(s) = 0,

F0 −
1

2
ηF ′0 −

1

γ
G′′′0 +O

(
t1/2
)

+O(s) = 0,

where ′ ≡ d
dη

and η = s/
√
t and

γ = We(1 +R2
1)3/2

is not a function of s, but it must be necessary that R1 → 0 as Rb→∞. If we assume
the centreline position is unaffected by the full curvature, R1 and R2 can be caluclated
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by matching X and Z in (B.8) and (B.10). This yields

û = 1 +
2We

Rb2(2We+ 1)
s−

(
We

Rb2(2We+ 1)
− We2(4We− 1)

Rb4(2We+ 1)3

)
s2

R̂ = 1− We

Rb2(2We+ 1)
s−

(
We

2Rb2(2We+ 1)
− We2(5We+ 1)

Rb4(2We+ 1)3

)
s2

+

(
−(Rb4(2We+ 1)2 +We2)

3/2

6Rb8(2We+ 1)4

+
WeRb2(2We+ 1)−We2 + We3(8We+1)

Rb2(2We+1)2
+ We4(58We+11)

Rb4(2We+1)3
− 3We5(92We2+34We+3)

Rb6(2We+1)5

6 (Rb4(2We+ 1)2 +We2)

 s3 +O(s4),

X̂ = s− 2We2

3Rb2(We− 1)2
s3 +

We3

Rb6(We− 1)3
s4 +O(s5),

Ẑ =
We

Rb(We− 1)2
s2 − 2We2

3Rb2(We− 1)2
s3

+

(
− We2

6Rb4(We− 1)2
+

We3(10We2 − 1)

6Rb6(We− 1)3(2We+ 1)2

)
s4 +O(s5).

as s→ 0. Hence

3G0 − ηG′0 + F ′0 +O
(
t1/2
)

+O(s) = 0,

F0 −
1

2
ηF ′0 −

1

γ
G′′′0 +O

(
t1/2
)

+O(s) = 0,

where ′ ≡ d
dη

, η = s/
√
t and

γ = We
(

1 +
(
Ř′
)2
)3/2

=
We (Rb4(2We+ 1)2 +We2)

3/2

Rb6(2We+ 1)3
as s→ 0.

Taking the limit Rb→∞, γ → We and we reduce to the case of a straight jet.
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Appendix C

Large s asymptotics of jet equations

Expanding u, R, X and Z in (10.4) by 1/s as s→∞ doesn’t yield a valid expansion,
so clearly the large s expansion is more complicated. As s → ∞, we have a coiled
solution, so we adopt plane polar coordinates where Z = r(s) sin(θ(s)) and X =
−1+r(s) cos(θ(s)) placing the centre of the coordinate system at the cnetre of the can.
Substituting this into the steady state equations (10.4) we obtain

uus −
Rs

WeR2
− rr′

Rb2
= 0, (C.1)

1

2
Rus + uRs = 0, (C.2)(

−rθ′r′′ + r2(θ′)3 + 2(r′)2θ′ + rr′θ′′
)(

u2 − 1

WeR

)
− 2u

Rb
+
r2θ′

Rb
= 0, (C.3)

r2(θ′)2 + (r′)2 = 1. (C.4)

Differentiating (C.4) we get

θ′θ′′ = −r
′r′′

r2
+

(r′)3

r3
− r′

r3
.

Substituiting this and (C.4) into (C.3) yields after some simplification

r′′

r
+

(r′)2

r2
− 1

r2
+

1

u2 − 1
WeR

(
2u

Rb

√
1− (r′)2

r2
− 1− (r′)2

Rb2

)
= 0. (C.5)

From (C.1), using R = u = 1 and r = 0 at s = 0, we obtain

u =

(
1 +

2

We

(
1− 1

R

)
+

r2

Rb2

)1/2

. (C.6)

Hence, to give a balance it is necessary that u ∼ r/Rb. Substituting (C.6) into (C.5)
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yields

r′′

r
+

(r′)2

r2
− 1

r2

+
1

1 + 2
We
− 3

WeR
+ r2

Rb2

(
2

Rb

√
1− (r′)2

r2

(
1 +

2

We

(
1− 1

R

)
+

r2

Rb2

)1/2

− 1− (r′)2

Rb2

)
= 0.

Evaluating (C.2), using R = u = 1 at s = 0 gives u = 1/R2. Substituting this and
(C.2) into the above yields

r′′

r
+

(r′)2

r2
− 1

r2

+
1

1 + 2
We
− 3

√
u

We
+ r2

Rb2

(
2

Rb

√
1− (r′)2

r2

(
1 +

2

We

(
1−
√
u
)

+
r2

Rb2

)1/2

− 1− (r′)2

Rb2

)
= 0

Using u ∼ r/Rb

r′′

r
+

(r′)2

r2
− 1

r2

+
1

1 + 2
We
− 3

√
r

We
√
Rb

+ r2

Rb2

(
2

Rb

√
1− (r′)2

r2

(
1 +

2

We

(
1−

√
r√
Rb

)
+

r2

Rb2

)1/2

− 1− (r′)2

Rb2

)
= 0.

(C.7)

We adopt an algebraic expansion for r,

r ∼ αsn + βsm + ...

where 0 < m < n < 1, α, β ∈ < and α > 0. Substituting into (C.7) it is necessary that

(n(n− 1) + n2)s−2 =
1

α2
s−2n +

2Rb(3
√
Rb− 1)

Weα7/2
s−7n/2 (C.8)

To match the above
(i) n = 4/7 balancing the first and third terms in s. In this case, α is not real.

(ii) n = 1 to match the first and second terms. In this case, the third term is larger.

(iii) n = 1/2 to make the first term identically equal to zero. The second and third
terms don’t match.

It appears that an algebraic expansion is not possible for r(s). However, if a higher
order expansion were to remove the second term, in case (iii) there would be a match if
We→∞. This is realistic, as for a finite Weber number the jet returns to the orifice.
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So a large s expansion will not be valid for finite Weber number. Taking the limit
We→∞,

r′′

r
+

(r′)2

r2
− 1

r2
+

1

1 + r2

Rb2

(
2

Rb

√
1− (r′)2

r2

(
1 +

r2

Rb2

)1/2

− 1− (r′)2

Rb2

)
= 0. (C.9)

The limit We → ∞ corresponds to zero surface tension, so we can consider the
classical mechanics problem considering the motion of a particle on the centreline of
the jet.

Consider a rotating can with radius a in a rotating frame of reference r(t) =
(x(t), y(t), z(t)) with rotation ω = (0, 0, ω). The fixed axis is given by r′(t) = (x′(t), y′(t), z′(t)).
A particle leaves the orifice with speed v in the x-direction. As there are no body forces,
Newton’s second law states that the acceleration is zero, hence

d2r

dt2
= 0

and
d2r′

dt2
+ 2ω ∧ dr

′

dt
+
dω

dt
∧ r + ω ∧ (ω ∧ r) = 0

This yields

x′′ − 2ωy′ − ω2x = 0,

y′′ + 2ωx′ − ω2y = 0,

z′′ = 0,

where ′ ≡ d/dt, subject to the initial conditions x = a, x′ = v and y = y′ = z = z′ = 0.
Defining ξ = x+ iy yields

ξ′′ + 2iξ′ − ω2ξ = 0,

subject to ξ = a and ξ′ = v. This yields

ξ = e−iωt[(v + aiω)t+ a]

and hence

x = vt cos(ωt) + atω sin(ωt) + a cos(ωt)

y = −vt sin(ωt) + atω cos(ωt)− a sin(ωt)

In polar cooridinates, where ξ = reiθ, this gives

r =
√
a2ω2t2 + v2t2 + 2vta+ a2. (C.10)

It is the aim to obtain r(s), where s is the arclength along the centre of the jet. This
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can be done by obtaining t(r) and t(s) and removing t as a parameter. Rearranging
(C.10), and keeping the physical positive root

t =
−av +

√
v2r2 + ω2a2r2 − ω2a4

v2 + ω2a2
. (C.11)

In terms of s,

s =

∫ √(
dx

dt

)2

+

(
dy

dt

)2

dt =

∫ √
v2t2ω2 + a2t2ω4 + 2atvω2 + v2dt

yielding

s =
((v2ω2 + ω4a2)t+ 2avω2)

√
(v2ω2 + ω4a2)t2 + 2avω2t+ v2

2ω2(v2 + ω2a2)

+

ω2v4 log

(
aω2+ω2(v2+ω2a2)t√

ω2(v2+ω2a2)
+
√

(v2ω2 + ω4a2)t2 + 2avω2t+ v2

)
2(ω2(v2 + ω2a2))3/2

(C.12)

As we wish to examine s → ∞ and t → ∞, taking the large t expansion of above
we get terms to O (t2). Taking the terms up to O(1), we can solve the expansion as a
quadratic for t,

t ∼
−2avω +

√
8
√
v2 + a2ω2(sa2ω3 + sωv2)− 2v4

2ω(v2 + ω2a2)
. (C.13)

Using (C.11) and (C.13), we can eliminate t to get

r ∼

√
4a4ω4 − 2v4 + 8s(v2ω + ω3a2)

√
v2 + a2ω2

2ω
√
v2 + ω2a2

. (C.14)

Expanding this asymptotically gives r = O(
√
s) to leading order. This backs up the

findings from case (iii) setting n = 1/2 in (C.8) matching when We → ∞. However,
the higher order behaviour has not yer been determined. Taking the limit a → 0 in
(C.10) and (C.12), this corresponds to the radius of the drum tending to zero which is
a reasonable approximation in the large s limit, we obtain

s =
1

2
tv
√
t2ω2 + 1 +

v log(ωt)

2ω
,

r = tv

Eliminating t from the above, we obtain r(s) in terms of the Lambert W function,
defined as the solution y = LambertW(x) as a solution to yey = x. Taking the
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asymptotic limit of this solution we obtain

r ∼ C0

√
s+ C1

log s√
s
.

Substituting this into the equation for r (C.9), the terms now balance. We obtain an
expression linking the constants

C1 = − 1

64
C3

0 −
1

8

Rb2

C0

− 1

4

Rb4

C5
0

.

It is still necessary to determine the value of C0. Examining the largest term in
(C.14), with a→ 0, gives

r ∼
√

2sv

ω
.

Given that the Rossby number in the problem is v/ωs, C0 =
√

2Rb, and the expansion
becomes

r ∼
√

2Rbs−
√

2Rb3/2

8

log s√
s

+ · · · .

This gives, using (C.4),

θ ∼
√

2s

Rb
−
√

2Rb

8

log s√
s
,

and the large s asymptotics are complete.
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