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ABSTRACT 

The research work reported in this thesis aimed to identify the underlying mechanism 

which drives fish to evolve into schooling behaviour. Although the adaptive dynamic to 

cause this collective movement has been widely studied from various aspects, the 

previous perspectives still contain different blind spots, and the causation of this 

adaptation is still far from discovered. 

Based on agent-based simulations and game-theoretic analyses, this thesis investigated 

the proposed issue through the following three main research questions. First, can a 

model be built with less bias from the preconceived knowledge? Secondly, can the 

evolution of prey's schooling behaviour be simulated under individual selection? 

Thirdly, can the schooling behaviour be evolutionarily stable given predators are also 

adaptive? By addressing these three research questions, a more comprehensive answer 

to this topic gradually emerged. Finally, it is inferred by the simulation and derivation 

that the schooling pattern in nature can be an evolutionarily stable state, in which the 

prey adopt the collective departure strategy and the predators can develop various 

hunting tactics. 

To reduce the bias of preconceived knowledge, two attempts were made when building 

a spatial-explicit agent-based model. First, the limited range of candidate strategies for 

prey agents to develop has been addressed by introducing the algorithm NeuroEvolution 

of Augmenting Topologies (Stanley & Miikkulainen, 2002) into the model. This 

algorithm generates a fish agent's behavioural strategy automatically in an open-ended 

search space. Hence, designing potential strategies in advance is unnecessary. 

Moreover, beneficial strategies can be developed even if they are unreported. Secondly, 

to validate whether the model designs which involved ecological knowledge may lead 

to considerable bias, the authenticity and credibility of the model were studied 

according to popular suggestions in the ecological domain. The validation of 

authenticity was to verify whether its settings accord with the empirical data of fish. The 

validation of credibility was to analyse the sensitivity of parameters and improve the 



ii 
 

robustness of the model against noises. These efforts maintain that the findings and 

extensions from this model will be persuasive. 

The simulation outputs of this relatively unbiased model displayed an unreported 

adaptive dynamic, that is, the collective departure scenario. It was demonstrated that 

when the fish agents evolve under individual selection, they tend to move into the safe 

centre of their groups as predicted by the selfish herd scenario (Hamilton, 1971). This 

tendency finally causes compact groups, where marginal prey cannot move into the 

centre for their safety. In this situation, prey agents develop the collective departure 

strategy, by which the marginal agents leave the border of their groups together to 

expose the inner neighbours. Hence, the moving schools emerge since no agent prefers 

to stay on the margin of a stationary herd. This is the first scenario to explain the 

evolution of schooling by evolutionary selfishness, and the second research question is 

addressed.   

Based on the findings of the collective departure strategy, a coevolution system of 

predators' and prey's behavioural adaptations was constructed. It was demonstrated and 

analysed that there are evolutionarily stable states in this coevolution system. In these 

stable states, prey always adopt the collective departure strategy and cause the 

emergence of the schooling pattern. In contrast, depending on the strength of predators, 

as the level of the extra energy cost to chase a moving school, the adaptive strategies 

can be various. For example, if predators are strong, they should evolve to attack the 

central position of prey aggregates. Otherwise, they should evolve to attack the marginal 

prey, known as the marginal predation (Parrish, 1991). These derived adaptations are 

consistent with the appearance of predator-prey interactions in open waters. Hence, the 

third research question has been addressed.   

This research is the first work to demonstrate and derive that the schooling behaviour of 

group-living fish can be evolutionarily stable in the predator-prey coevolution system. 

The agent-based simulation provides the evidence of the assumptions made in the 

game-theoretic analyses, and the game-theoretic studies validate that the simulation 

outputs are reasonable and accurate. The findings have made a breakthrough in the 

understanding of natural evolution in the marine world. It is hoped that this thesis can 

make a significant contribution to the debate on this topic.  
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Unexpectedly, when somewhere sheds a faint light, full of 

uncertainty, awe-inspiring, should one leave the route, and tread 

a footpath toward to it? In Robert L. Stevenson’s story 

Eldorado (1878), those Spanish kept chasing that dim figure, 

had never stepped back, even if overwhelmed by the shadow of 

fear. “A strange picture we make on our way to our chimaeras, 

ceaselessly marching, grudging ourselves the time for rest; 

indefatigable, adventurous pioneers.” 
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CHAPTER I 

INTRODUCTION 

 

 

 

This thesis is concerned with the computational simulation and game-theoretic analysis 

of the behavioural evolution of fish in open waters. In open waters, most species of 

group-living fish flock into a densely packed aggregate, head in the same direction and 

swim with a high degree of coordination when they confront predators (Breder, 1967; 

Shaw, 1978; Magurran, 1990). This collective behaviour has long been referred to as 

the ‘schooling’ pattern in related biological studies, like Parr (1927), Atz (1953), Aoki 

(1982), Handegard et al. (2012) and so on. Due to the polarised property of a schooling 

pattern, there must be some fish in the front position of their group, which lead other 

fish to move forward. It has been observed and analysed that fish in this front position 

(referred to as the ‘pioneer’ position in this thesis) undertake a higher predation risk 

than their followers (Bumann et al., 1997). 

Since fish schools generally consist of unrelated individuals and the effect of inclusive 

fitness is insignificant (Naish et al., 1993; Hauser et al., 1998; Krause et al., 2000), this 
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phenomenon leads to a pending question why schooling fish can be pioneers unselfishly 

(Parrish & Edelstein-Keshet, 1999). The paradox is that: if pioneers in a fish school 

incur a higher risk than those followers, a selfish fish which always hides in the crowd 

should gain better survival fitness. Therefore, evolution should not drive fish into the 

schooling pattern since those fish willing to be pioneers should be replaced by the 

selfish ones according to the principle ‘survival of the fittest’. 

However, the schooling pattern has been observed in various species of gregarious fish 

when they are under a predatory hazard (Shaw, 1978). To discover the reason for these 

adaptations, explanations from various perspectives have been proposed. For example, 

some empirical studies have reported that these schooling formations can reduce the 

average risk on fish individuals, which may result from the confusion effect (Milinski & 

Heller, 1978), dilution effect (Turner & Pitcher, 1986), information transfer effect 

(Lima, 1995) and so on (Krause & Ruxton, 2002). These findings imply that the benefit 

at the group level may relief the degree of short-term selfishness in evolution. 

On the other hand, some studies doubt the influence of group benefit in evolution and 

emphasise the adaptive dynamic undergone by selfish individuals (Dawkins, 1976; 

Williams, 1966). For example, Hamilton (1971) demonstrated that the herding 

phenomenon can be explained by evolutionary selfishness, known as the selfish herd 

scenario. To further explain the formation of a moving school from the same viewpoint, 

individual difference and evolutionary trade-offs are the two primary proposed reasons. 

The first reason is that the different needs or endowments among fish individuals can 

cause fish of some characters prefer to lead the group (Conradt & Roper, 2009; Eshel et 

al., 2011). In other words, it is believed that there is a fixed group of pioneers in a 

school. The second reason is that the higher predation risk of being a pioneer can be 
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mediated by the foraging benefit (Krause, 1992; Olson et al., 2015). It implies the 

schooling formation is more likely to happen in a foraging stage. Both reasons lead to 

some conflicts with the empirical data. 

The agent-based simulation has been employed to study the evolution of the collective 

movement since Reynolds (1993) and Werner & Dyer (1993). It is considered more 

persuasive to illustrate a natural complex system by this kind of models because they 

avoid a large degree of abstract simplifications compared to those models built from the 

view of the whole population (Grimm et al., 2005; Schellinck & White, 2011). Among 

this kind of models, Wood & Ackland (2007) showed that both a stationary herd and a 

moving school can be the final emergent patterns in evolution, and all schooling agents 

have the same probability of being pioneers temporarily. However, different outputs 

also exist. For example, the simulation in Guttal & Couzin (2010) demonstrated that a 

subgroup of agents should become permanent leaders to cause the collective motion in 

evolution, and the simulation in Olson et al. (2013) displayed that schooling is a 

transitional state toward to stationary herds under individual selection and adaptation. 

So far, explanations about the adaptation of schooling behaviour all have their 

advantages and drawbacks. The viewpoints based on the group benefit can be supported 

by empirical data, but leave a conflict with the principle of natural selection. The 

viewpoints based on evolutionary selfishness are theoretically correct, but only the 

herding behaviour can be explained from this aspect persuasively at present. The 

computational simulations are possible to disclose implicit causations in the 

evolutionary trajectory, but their outputs are largely affected by the preconceived 

knowledge behind the model design. These pros and cons of different viewpoints have 
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resulted in debates and studies on this topic for decades, which are reviewed in Chapter 

II. 

In this thesis, the question why fish have evolved into the schooling pattern is 

investigated by computational simulations and game-theoretic analyses. The general 

aim of the research is to solve this pending question, which can be achieved through 

addressing the three main research questions of this thesis sequentially. First, can a 

computational model be constructed with less preconceived bias in its design? 

Secondly, can this relatively unbiased model simulate the evolution of fish schools 

under individual selection? Thirdly, when the adaptation at the predator side is 

considered, can fish agents evolve into a schooling pattern? 

The first research question considers that since the simulation outputs largely depend on 

the model design, methods to reduce the potential bias of the involved knowledge then 

become fundamental. To address this question, related concerns about the authority and 

credibility of an ecological model are highlighted. In addition, the bias from an 

arbitrarily designed set of potential strategies in previous works has also been reduced. 

The works about the construction of an evolutionary model with an open-ended solution 

space, as well as its validation, are put in Chapter III. The second research question 

considers whether evolutionary selfishness under individual selection is sufficient to 

drive fish agents into the schooling pattern by the model. If it is possible, the viewpoints 

based on individual selection are supported, and the reason of this adaptation can be 

inferred from the simulation. On the other hand, if the model demonstrates that 

individual selection cannot drive fish agents into the schooling pattern, the viewpoints 

based on the group benefit are supported, and the selective forces at the higher level 

should be studied. These experiments and analyses are displayed in Chapter IV. The last 
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research question further considers the coevolution between prey fish and their 

predators. If it is demonstrated that the schooling pattern can evolve when predators are 

also adaptive, the answer to the pending question can be more complete. This attempt is 

described in Chapter V. 

In Chapter III, the issue about model construction and validation is studied. To simulate 

fish behaviour and the emergent patterns, a spatial-explicit agent-based model is built, 

in which the fish agents interact with one another in a virtual arena as the appearance of 

real fish.  To simulate the evolutionary dynamic of prey fish, the NEAT algorithm 

(Stanley & Miikkulainen, 2002) is employed, which evolves neural networks through a 

genetic algorithm and the complexity of networks, as the numbers of links and nodes in 

a neural network, increases with generations automatically without an upper bound 

(Stanley & Miikkulainen, 2002). Therefore, by letting each NEAT network represent a 

behavioural strategy of a fish agent, that is, the operation of elementary responses based 

on local information, the behavioural evolution of fish can be simulated without an 

artificially predetermined set of potential strategies. To heed previous criticisms on the 

related simulation works (Grimm et al., 2005; Schellinck & White, 2011), the 

authenticity and credibility of this model are emphasised and validated. First, whether 

the settings and parameters of the proposed model are consistent with the empirical data 

is analysed thoroughly. Secondly, the robustness of this evolutionary model, which 

indicates the ability to reproduce consistent and reliable outputs given a noisy 

environment, and the sensitivity of model parameters are experimented and reported. 

Based on the proposed model, the research question about whether schooling can be the 

simulation output is addressed in Chapter IV. It is demonstrated that the schooling 

pattern can evolve through the mechanism of individual selection. In the model, this 
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adaptation usually increases the predation risk of the whole population, which implies 

that the group benefit can be irrelevant to the adaptation of schooling in nature. Through 

a theoretical analysis, the collective departure scenario is proposed. It indicates that 

under individual selection, the tendency of herding, as the selfish herd scenario 

(Hamilton, 1971), will finally result in a tightly packed and relatively stationary swarm 

where no peripheral fish can enter the central position of the crowded flock. In this 

situation, leaving the swarm with few companions can be more adaptive than staying on 

the periphery, so the stationary swarm will be replaced by moving groups, or to say, 

schooling patterns, in evolution. The excess fitness of this strategy is earned from 

exposing central fish of a swarm after the collective departure, which exposed fish have 

to share the predation risk during a predatory hunt. 

In Chapter V, the adaptation of predators’ hunting strategies is considered. That is to 

say, if predators’ feeding preferences are adaptive, can fish evolve into the schooling 

pattern? It is demonstrated that the behavioural coevolution of predators and prey can 

reach certain evolutionarily stable states. Depending on the energy difference between 

chasing a moving school and hunting a stationary herd, the adaptive strategies at the 

predator side can be various. If this difference is greater than a threshold, predators 

should evolve into the ‘marginal predation’ (Parrish, 1991), that is, attacking the border 

of a prey group. This adaptation can be observed in most predatory fish and dolphins 

(Parrish, 1991; Vaughn-Hirshorn et al., 2013). If this energy difference is small, the 

predators should evolve to hunt the centre of a prey group. This tactic can be observed 

in killer whales and humpback whales (Simila & Ugarte, 1993; Wiley et al., 2011). In 

contrast, prey aggregation forms the schooling pattern by the collective departure 

strategy in any evolutionarily stable states. 
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The research studies in this thesis illustrate a complete picture of the behavioural 

evolution of gregarious fish as well as their predators in open waters. It is inferred that 

natural selection at the individual level can drive prey fish and their predators into an 

evolutionarily stable state, where the prey fish exhibit the schooling pattern and the 

predators usually display a preference of marginal predation. This schooling pattern can 

be a self-organising phenomenon from the adaptive strategy of collective departure, by 

which peripheral fish leave the border of a group together. These findings are consistent 

with fieldworks and empirical studies to a significant extent and have broadened the 

understanding of the evolution of fish schools in nature. 
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CHAPTER II 

LITERATURE REVIEW 

 

 

The research of animals’ social behaviour has been a significant field in Ecology 

(Krause & Ruxton, 2002; Couzin & Krause, 2003). One popular subject is the collective 

behaviour of fish, especially when under predatory threats (Krause & Ruxton, 2002). In 

this situation, fish immediately flock into a compact aggregate and move in 

coordination (Magurran, 1990). 

Two questions behind this phenomenon have been proposed for half a century 

(Sumpter, 2006): viz., by what mechanism can those relatively simple fish perform such 

sophisticated behaviours? Why have these behaviours developed in evolution? At 

present, the first question in general seems to be solved, that is, fish can simply interact 

with other nearby fish, and the local interaction among individuals can result in a certain 

collective behaviour, known as the self-organising phenomenon (Couzin & Krause, 

2003). However, detailed interpretations of the local interaction are still diverse 

(Schellinck & White, 2011). 

The answer to the ‘why’ question has not reached a consensus. The most popular 

viewpoint is that survival pressure is the primary evolutionary force (Krause & Ruxton, 
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2002). Relevant explanations are the information transfer effect (Lima, 1995), the 

confusion effect (Milinski & Heller, 1978) and the dilution effect (Turner & Pitcher, 

1986), which indicate that the collective behaviour of a fish aggregate brings the 

survival benefit to its members. On the contrary, the benefit of a group has long been 

considered doubtful to drive the evolution of fish individuals by other academic schools 

(Hamilton, 1971; Dawkins, 1976; Williams, 1966), despite that a more convincing 

explanation has not been proposed. 

Computational models have been introduced to inspect viewpoints about the ‘how’ 

question for decades, for its capability to simulate the self-organising mechanism of 

social agents (Grimm et al., 2005; DeAngelis & Grimm, 2013). In fact, current 

understanding of fish’s self-organising phenomenon has largely relied on the spatial-

explicit agent-based models (Schellinck & White, 2011). In these models, fish agents 

are put into a virtual place to interact with one another under a set of rules. 

In recent years, the attempts to employ computational models to gain insight into the 

‘why’ question have begun (Wood & Ackland, 2007; Olson et al., 2013; Olson et al., 

2016b). These few works simulated the evolutionary trajectory of prey population by 

spatial-explicit agent-based models, and used their outputs to support certain viewpoints 

and propose causal inferences. The outputs of these evolutionary simulations, however, 

can even conflict with one another due to different preconceived knowledge behind 

their model settings. 

In the following sections, after clarifying the definition of certain ambiguous terms, the 

above summation is reviewed in detail, from Chapter 2.2 to Chapter 2.4 sequentially. In 

Chapter 2.5, the validity of an evolutionary model in Ecology is discussed from the 
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three aspects: the authenticity of a model, the robustness of a simulation and the 

convergence of an evolutionary process. 

2.1 Terminology 

First, the terms used to describe collective behaviours and patterns of fish individuals 

are clarified. Following the conformity of related studies, for example, Parr (1927), Atz 

(1953), Aoki (1982), Couzin et al. (2002) and Handegard et al. (2012), the term 

‘schooling’ is introduced to indicate the coordinated and cohesive movement of a fish 

aggregate, and a schooling aggregate is referred to as a ‘school’. To describe other two 

collective patterns highlighted by related works, following the usage in Parrish & 

Edelstein-Keshet (1999), Couzin et al. (2002), Deutsch et al. (2012), Tunstrom et al. 

(2013) and so on, the term ‘swarm’, or ‘swarming pattern’, is adopted to mention a 

relatively stationary group where individuals move with a low coordination; the term 

‘milling pattern’, or ‘milling group’, is adopted to mention a stationary aggregate which 

individuals circle about the centre of the group in coordination. 

The terms ‘herd’ and ‘flock’ are used based on their usual definitions, as to mention a 

cohesive aggregate, no matter it is a school, a swarm or a milling group. Similarly, their 

verbs are used to mention the behaviour to form cohesive aggregates. As a complement, 

the term ‘shoal’, which is usually adopted to mention a fish aggregate without the 

emphasis of the collective pattern, was sometimes used to refer ‘schooling’ or 

‘swarming’ in different contexts (Delcourt & Poncin, 2012). This term is avoided in the 

thesis to reduce possible ambiguity. 
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Table 2.1: Terms about Collective Behaviour 

Term Definition References 

 ‘schooling’ 

The behaviour to move in coordination 

with nearby individuals so that a moving 

aggregate emerge. 

Parr (1927), Atz 

(1953), Aoki (1982), 

Couzin et al. (2002), 

Handegard et al. 

(2012), etc. 
 ‘school’ 

A moving aggregate where individuals 

move in coordination and head in the same 

direction. 

 ‘swarming’ 

The behaviour to move towards nearby 

individuals in low coordination so that a 

relatively stationary aggregate emerges. 
Parrish & Edelstein-

Keshet (1999), 

Couzin et al. (2002), 

Deutsch et al. (2012), 

Tunstrom et al. 

(2013), etc. 

 ‘swarm’ 
A relatively stationary aggregate where 

individuals move in low coordination. 

‘milling group’ 

A relatively stationary aggregate where 

individuals cycle around the centre in 

coordination. 

‘herd’ / ‘flock’ / 

‘group’ 

An aggregate (which can be a school, a 

swarm, a milling group or others), or the 

formation of an aggregate. 

Hamilton (1971), 

Aoki (1982), Couzin 

et al. (2002), Deutsch 

et al. (2012), etc. 

 

Secondly, the usage of the two terms in this thesis, ‘evolution’ and ‘coevolution’, are 

clarified. In Ecology and Biology, the term ‘coevolution’ is a specific concern of 

‘evolution’, which focuses on the interactive influence of different species or objects in 

evolution, like the ‘coevolution’ of predators and prey, or the ‘coevolution’ of 

heterogeneous proteins (Thompson, 1989). 

However, in Computer Science, particularly in the subdomain Evolutionary 

Computation, an evolutionary system is labelled ‘coevolutionary’ if the performance 

(usually referred to as the fitness value) of a solution (which can represent a strategy, an 

individual, a set of parameters and so on) is influenced by other solutions in the 

population (Paredis, 1995; Watson & Pollack, 2001). For example, the multi-player 

prisoner’s dilemma game is a ‘coevolutionary’ system since the utility of a strategy 

depends on other players’ strategies (Miller, 1996). In contrast, the term ‘evolution’ is 

used when a solution’s performance can be evaluated without the consideration of other 

solutions in the population, for example, the successful times of a solution in a typical 
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pole balancing task (Wieland, 1991). According to this definition, evolution of a prey 

population should be a ‘coevolutionary’ system if each prey’s survival fitness depends 

on not only its behavioural strategy but also other prey’s strategies. 

To make the statement in this thesis consistent with the proposed ecological topic, the 

definition and usage of ‘evolution’ and ‘coevolution’ are kept with the ecological 

domain, for example, ‘evolution of prey’ and ‘coevolution between predators and prey’. 

However, it should be noted that all the mentioned evolutionary models in this thesis, 

from previous works to the proposed models, are ‘coevolutionary’ systems given the 

definition in Evolutionary Computation. 

Thirdly, the term ‘fitness’ usually mentions the evaluated value of a solution’s 

performance in Evolutionary Computation (Haupt & Haupt, 2004). It is not exactly the 

same as a solution’s reproduction probability, although they are positively correlated. In 

contrast, ‘fitness’ usually equals the reproduction probability, or the reproduction rate, 

in Evolution Theory and Evolutionary Game Theory (Hammerstein & Selten, 1994). In 

this thesis, the usage of this term conforms to the definition in Evolutionary 

Computation. 

2.2 Ecological Observation 

The interaction between prey fish and their predators in open waters is a splendid 

natural sight. At the prey side, an aggregate of fish individuals responds to the predatory 

attacks as a coordinated unit, and exhibits dramatic evasive tactics like moving, 

morphing, splitting and merging (Magurran, 1990). At the predator side, predatory fish 

and cetaceans have developed sophisticated hunting strategies against the prey 
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aggregation (Domenici, 2001). In the sequent content, this real-world phenomenon is 

depicted as background for further discussion. 

2.2.1 Defensive Tactics of Prey Fish 

Aquatic vertebrates exhibit different evasive strategies when facing the predation 

hazard. One common and efficient defence is hiding into reefs or rifts (Krivan, 1998). 

Unfortunately, this method is not an option for fish with their habitat in open waters, 

like in the pelagic zone of the ocean, where finding a refuge to reduce the predation risk 

is denied. 

For these fish, collective motion has been developed under predatory threats (Shaw, 

1978). A dramatic example is when the pelagic forage fish, like herrings (Clupea 

harengus) and sardines (Sardinops sagax), encounter their predators (Clua & Grosvalet, 

2001; O’Donoghue et al., 2010). In this situation, countless prey fish flock tightly and 

move in high coordination with one another in front of those predatory fish and 

cetaceans. This unique response of vigilant prey fish is known as ‘schooling’ (Breder, 

1967), also referred to as ‘polarisation’ (Partridge, 1982) and ‘compact’ (Magurran & 

Pitcher, 1987). More examples of the schooling behaviour are in dwarf herrings 

(Jenkinsia lamprotaenia), pollocks (Pollachius pollachius) (Partridge, 1982), minnows 

(Phoxinus phoxinus) (Magurran & Pitcher, 1987), and so on (Seghers, 1974; Hoare et 

al., 2004; Tien et al., 2004). 

The biological mechanisms to establish this schooling pattern have been well 

investigated since Parr (1927). Empirical studies showed that the degree of coordination 

of schooling fish is decreased considerably when their eyes are covered (Parr, 1927; 

Atz, 1953; Partridge, 1982). Therefore, vision has been suggested as the fundamental 
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function for fish to maintain a schooling pattern. In addition, the influence of the lateral 

lines, a biological system to detect the surrounding water flow, has also been reported 

(Partridge, 1982; Faucher et al., 2010). When fish’s lateral lines are temporarily 

damaged, the frequencies of body collisions and isolated fish both increase (Faucher et 

al., 2010). 

2.2.2 Hunting Tactics of Predators 

Different from the identical adaptation of prey fish in open waters, the adaptations of 

predatory fish and cetaceans vary largely among species. Nevertheless, their hunting 

tactics can be organised in general by dividing predators into the following three types 

(Domenici, 2001): relatively small predators (around ten times larger than their prey 

fish), relatively large predators (around 100 times larger than their prey fish) and 

extremely large predators (around 1000 times larger than their prey fish). 

For those relatively small predators, the ‘marginal predation’ is a significant feeding 

preference (Parrish, 1991). That means the predator prefers to eat those prey at the 

boundary of a group, rather than those in the centre. Examples are bass (Micropterous 

salmoides), goldfish (Carassius auratus) (Romey et al., 2008), and bullgill (Lepomis 

macrochirus) (Ioannou et al., 2012). This preference has been well depicted in Romey 

et al. (2008). The experiment showed that, given a prey group on the water surface, a 

predatory fish directly below this group still attacks the marginal prey, even if they are 

more distant to the predator than the central ones. 

Those relatively large predators are the primary predators in the pelagic zone of the 

ocean, and have developed multifarious hunting strategies (Parrish, 1991; Domenici, 

2001). For example, when a swordfish (Xiphias gladius) or a sailfish (Istiophorus 
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albicans) feeds on schooling prey, it uses its long bill to ‘slash’ at the prey group and 

then catches those attacked and injured fish (Domenici et al., 2014). The thresher shark 

(Alopias pelagicus) ‘whips’ the prey group by its tail to receive a similar result (Oliver 

et al., 2013). These predators have evolved their weapons to hunt prey aggregation 

solitarily. 

Moreover, some species of relatively large predators have developed coordinative group 

hunting strategies. For example, when dolphins, such as spinner dolphins (Stenella 

longirostris) and dusky dolphins (Lagenorhynchus obscurus), feed on schooling fish, 

they ‘herd’ these prey into a milling aggregate (Benoit-Bird & Au, 2009; Vaughn-

Hirshorn et al., 2013). The participant dolphins can vary from 3 to 300, depending on 

the breed (Vaughn-Hirshorn et al, 2013). A typical process of this hunting tactic is each 

dolphin first swims through the side or bottom of the fish school without direct feeding 

attempts, known as the ‘herding pass’ (Benoit-Bird & Au, 2009). After several times of 

herding passes, prey fish are centralised into a huge milling aggregate. Dolphins then 

begin to consume fish at the side of the milling ball, that is, exhibiting the marginal 

predation (Vaughn-Hirshorn et al., 2013). 

To those extremely large predators, that is, large sharks and whales, a school of prey 

fish can be treated as a food unit (Parrish, 1991). For example, when a humpback whale 

(Megaptera novaeangliae) attacks schooling fish, it first expels air bubbles below the 

prey school to drive stunned fish into a dense aggregate. Then it consumes the whole 

aggregation from the bottom to the water surface through a bite (Wiley et al., 2011). 

Killer whales (Clupea harengus) can also exhibit a group hunting behaviour similar to 

dolphins, without the appearance of marginal predation (Simila & Ugarte, 1993). 
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2.3 Mechanism and Reasons 

Focusing on the schooling pattern of gregarious fish when they confront predators, the 

following two questions have been studied for decades (Sumpter, 2006): how do fish 

exhibit this schooling pattern? Why have they developed this behaviour? The former 

question is about the mechanism to form the collective behaviour and the latter question 

concerns the mechanism of its adaptation in evolution. Nowadays, the gap between 

these two topics is inconspicuous (Sumpter, 2006). 

In the following section, the swarm behaviour and self-organising phenomenon is 

introduced to address the ‘how’ question. Subsequently, current understanding and 

debates of the ‘why’ question are reviewed thoroughly. 

2.3.1 Swarm Behaviour and Self-organisation 

Two essential characters of a fish school are as follows. First, fish are homogeneous 

without collaboration or social roles (Partridge, 1980; Ward et al., 2001; Grégoire et al., 

2003). That is to say, this collective motion does not consist of certain leaders. 

Secondly, consensus making is local and limited (Olst & Hunter, 1970; Huth & Wissel, 

1994; Hoare et al., 2004). That is to say, fish can only interact with their neighbours and 

cannot form the schooling pattern on purpose. This collective behaviour, caused by 

homogeneous and simple individuals, is known as swarm behaviour (Bonabeau et al., 

1999; Bouffanais, 2016). Swarm behaviour has been observed among several 

gregarious organisms, like the murmuration of starlings, the vortex swimming of 

daphnia, the milling formation of ants, as well as the schooling pattern of fish (Couzin 

& Krause, 2003; Conradt & Roper, 2005). 
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Although swarm behaviour can display a sophisticated appearance at the group level, it 

is usually caused by relatively simple behaviours at the individual level (Bonabeau et 

al., 1999; Bouffanais, 2016). For example, it has been demonstrated that the collective 

evasion of schooling fish can be simulated through four simple individual behaviours as 

below (Inada & Kawachi, 2002). One is moving away from the extremely close 

neighbours, another is moving towards the relatively distant neighbours, the third one is 

keeping the distances to the other neighbours, and the last one is escaping from a 

predator. When these simple reactions are adopted by a population of homogeneous 

prey agents, the evasive tactics of natural schooling fish during a close attack, like the 

morphing and merging of an aggregate, can be observed. The phenomenon that simple 

individuals can result in unexpected group behaviours is referred to as self-organisation 

(Couzin & Krause, 2003). This mechanism implies that the collective pattern is an 

‘emergent’ phenomenon from local interactions. 

Since the first self-organising model of fish’s schooling pattern (Aoki, 1982), the 

studies on the self-organising mechanism in animals have been fruitful (Couzin & 

Krause, 2003; DeAngelis & Grimm, 2013). One of the most popular tools is the spatial-

explicit agent-based model. This kind of model simulates the complex mechanism of 

self-organisation through the spatiotemporal interactions among a population of simple 

agents (Schellinck & White, 2011). These simulations are reviewed in Chapter 2.4.1. 

2.3.2 Survival Benefit of Schooling Fish 

As to the question why fish have evolved into the schooling pattern under predation 

risk, a prevalent belief is that this formation provides survival benefit to the individuals 

(Krause & Ruxton, 2002). The three most popular explanations are the information 
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transfer effect (Powell, 1974; Lima, 1995), the confusion effect (Milinski & Heller, 

1978; Hall et al., 1986), and the dilution effect (Foster & Treherne, 1981; Turner & 

Pitcher, 1986). The first two explanations advocate that schooling brings a functional 

advantage to fish individuals, which advantages require further mechanisms be 

involved. The third explanation stresses the survival benefit of living in groups 

compared with living in isolation, or in smaller groups. This advantage needs no 

additional mechanism within a group. 

The information transfer effect, also termed the ‘many-eyes effect’ (Powell, 1974) or 

the ‘wisdom of the crowd effect’ (Conradt, 2011), predicts that group vigilance can 

cause a better opportunity for individuals to escape from predators. It is because the 

detection range of a group is much wider than that of a single individual, and the 

spreading of danger signals within a group can be quick (Lima, 1995). However, the 

phenomenon that an individual is less vigilant in a large group may reduce the effect of 

this collective detection (Roberts, 1996). Recent empirical studies have reported that 

this information transfer effect occurs in fish schools (Handegard et al., 2012), and the 

spreading of information becomes quicker as the group size increases (Ward et al., 

2008). The mechanism by which group-living animals can improve their decision 

making in a large group was also modelled theoretically (King & Cowlishaw, 2007). 

The confusion effect indicates that the similar characters of prey individuals can reduce 

the accuracy of a predatory attack (Milinski & Heller, 1978). That is to say, a predator is 

likely to change its target many times when facing an aggregate of identical prey, which 

potentially decreases the successful rate of the attacks (Hall et al., 1986). This 

hypothesis is favoured in invertebrate animals (Smith & Warburton, 1992). On the 

schooling fish and their predators, supportive evidence had been considered scant 
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(Morgan & Godin, 1985; Krause et al., 1998). However, some of recent empirical 

studies inferred the existence of this effect from predatory fish’s preference of marginal 

predation (Romey et al., 2008; Ioannou et al., 2012). 

The dilution effect describes that an individual’s probability of being targeted by a 

predator becomes smaller as the size of its group increases (Foster & Treherne, 1981). 

The precondition of this explanation is that the predator feeds only one prey, or few 

prey, when it encounters a prey group. Hence, a prey in a large group is less likely to be 

the unlucky one compared with a prey in isolation or in a smaller group. This viewpoint 

attracts less criticism since the likelihood of facing predators could be similar between a 

prey aggregate and a lone prey in the marine world (Turner & Pitcher, 1986). 

Fieldworks and Empirical studies have supported that fish in smaller groups are more in 

danger (Morgan & Godin, 1985; Handegard et al., 2012; Domenici et al., 2014). 

2.3.3 Competition within a Group 

The perspectives in the previous section highlight the survival benefit in a fish school. 

However, it remains uncertain whether the group benefit can cause the evolution of a 

schooling pattern, considering that the selective force in nature should fall on 

individuals rather than groups (Hamilton, 1971; Parrish & Edelstein-Keshet, 1999). This 

debate has lasted for a half century without a strong solution (Williams, 1966). 

Hamilton (1971) underlined the effect of natural selection through a conceptual model. 

This work demonstrated that evolution can be irrelevant to the group benefit when 

individual fitness is taken into account. The scenario, known as the selfish herd 

hypothesis, is that frogs tend to flock into compact herds because every frog prevents 

itself from staying at the dangerous boundary. This famous work refutes the intuitive 
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opinion that evolution of a collective pattern must bring some advantage to the 

population. Following from the argument in Hamilton (1971), it has been pointed out 

that explaining fish’s schooling behaviour by the group benefit could be theoretically 

incomplete (Parrish & Edelstein-Keshet, 1999; Sumpter, 2009). 

However, a conundrum is that fish at the front edge of a school bear a higher risk than 

the others (Bumann et al., 1997). Moreover, the increase of the school size can 

aggravate the predation risk of the leading fish (Krause et al., 1998). This biased risk 

results in an inconsistency that if the individual selection is considered, the evolutionary 

stability of a schooling pattern should not hold because selfish individuals can gain 

excess fitness by shirking from staying in the front position (Parrish & Edelstein-

Keshet, 1999). In other words, assuming the eaten ones are usually those fish ahead of 

the others, a mutant fish which always follows some leading neighbours, instead of 

staying at the front edge occasionally, should be selected in evolution. Consequentially, 

undergoing natural selection and adaptation, fish's schooling pattern should collapse due 

to the lack of leading individuals. 

To avoid the invalid conclusion that the evolution of fish schools is an exception of 

natural selection, viewpoints based on the evolutionary trade-offs have been proposed 

(Krause, 1992; Parrish & Edelstein-Keshet, 1999; Conradt et al., 2009). This kind of 

perspective considers that although those fish at the front edge of a school undertake 

higher risk than the others, there is a foraging benefit for them to balance their pros and 

cons. As supportive evidence, empirical studies have documented that the leading fish 

can intake more food than their followers (Krause, 1993; DeBlois & Rose, 1996). Also, 

starving fish are more likely to be in the front position than well-fed fish (Krause et al., 

1992). However, this trade-off explanation is not favoured by the fact that fish exhibit 
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their schooling behaviour especially when in danger of predation (Seghers, 1974; 

Magurran & Pitcher, 1987; Tien et al., 2004), instead of when in the foraging situation 

(Hoare et al., 2004). 

Recently, individual difference has been emphasised as an influential factor of fish’s 

collective movement. For example, fish with a larger body size are usually observed at 

the front edge of a school (Krause et al., 2000). The different extent of hunger, as 

described above, and the biased foraging information (Couzin et al., 2011) can also lead 

to temporary differences among a fish group. These differences then cause a certain 

sub-group being in the front position consistently, and hence, cause the collective 

motion. This kind of explanation implies that there is ‘leadership’ within a fish group 

(Krause et al., 2000). A few models have demonstrated how individual difference can 

drive a population into a moving group with ‘leaders’ (Couzin et al., 2005; Conradt et 

al., 2009; Couzin et al., 2011), as well as some evolutionary models have been proposed 

(Conradt & Roper, 2009; Guttal & Couzin, 2010; Eshel et al., 2011). 

However, this kind of collective motion, consisted of constant leaders, is reported 

mainly when fish are in the foraging situation (Krause et al., 1992; Couzin et al., 2011). 

When fish perform the schooling pattern in front of predators, the existence of ‘leaders’ 

is considered negligible by earlier documents (Partridge, 1980). Unfortunately, no 

recent investigation considers whether fish schools have ‘leaders’ under predatory 

threats. 

2.4 Computational Simulation 

The ecological experiments have given fruitful speculations to the behavioural 

mechanism and evolutionary dynamic of fish’s schooling pattern. In recent decades, 
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computational simulation has been employed as a concrete way to test these viewpoints 

(DeAngelis & Grimm, 2013). One reason is that it provides a greater scope of 

experiments than empirical works (Grimm et al., 2005). Another reason is that it models 

the natural complex system better than theoretical derivations (Schellinck & White, 

2011). Through computational simulations, a viewpoint or an assumption can be 

demonstrated and analysed, which is considered more persuasive than purely by the 

induction and inference from relatively limited ecological findings (Grimm et al., 2005; 

Sumpter, 2006). In the following sections, the self-organising models are introduced 

first, which demonstrate how collective patterns can emerge by local behaviours. 

Subsequently, previous evolutionary models of prey fish, or generally speaking, of prey 

aggregation, are reviewed. 

2.4.1 Self-organising Models 

Self-organising models of fish’s collective pattern are mainly spatial-explicit agent-

based models, which simulate the collective patterns based on spatiotemporal 

interactions among fish-like agents (DeAngelis & Grimm, 2013). Typically, in this kind 

of model, agents are homogeneous and their behavioural rules are designed according to 

certain preconceived knowledge (Schellinck & White, 2011). By simulating these 

agents’ interactions on a computer, the self-organised pattern of the virtual population 

can support particular perspectives or lead to original inferences (Grimm et al., 2005). 

The first significant self-organising model of gregarious fish, and of group-living 

animals, was contained in Aoki (1982). This model assigned each fish agent a fixed 

moving speed, a limited sensory range and a blind zone at the rear. The reaction of an 

agent to its neighbours was designed through a set of simple rules: viz., approaching the 
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referenced neighbour if it is distant, avoiding the referenced neighbour if it is close, and 

aligning with the referenced neighbour if the distance is intermediate between the above 

two. The choice of a referenced neighbour, at each step, is along a probabilistic 

distribution, by which neighbours ahead of the focal fish are more likely to be chosen, 

known as the ‘front priority’. This work demonstrated that the interaction of these fish-

like agents can lead to collective schooling behaviour. 

Following the model in Aoki (1982), a novel modification was made in Huth & Wissel 

(1994).  This work underlined the mixed influence of multiple neighbours and designed 

an agent’s movement decision based on up to four referenced neighbours in its sensory 

range. The simulation demonstrated that the degree of coordination is increased 

significantly when multiple neighbours are involved in an agent’s movement decision. 

Hence, it implied that the natural schooling fish would make decision based on multiple 

referenced neighbours. In addition, the influence of the ‘front priority’ was 

experimented. The result suggested that without this feature, the emergent collective 

motion is more similar to the natural fish schools. 

Couzin et al. (2002) abandoned the ‘front priority’ and treated the influence of all 

neighbours equally important. Additionally, the avoidance behaviour in Aoki’s 

framework (1982) was designed prior to the approaching and paralleling behaviours. 

This work demonstrated that through expanding the range of parallel orientation, the 

collective pattern of fish agents transits from a disordered swarm, via a milling group, to 

a schooling pattern with a high degree of coordination. This work displayed that the 

transition of fish’s collective patterns can be simulated through the adjustment of a 

single parameter, as the range of parallel orientation. Its simplicity implies the self-
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organising mechanism of fish’s collective behaviour may be captured to a significant 

extent. 

Although Huth & Wissel (1994) and Couzin et al. (2002) suggested that schooling is 

better simulated when the influences of neighbours are evenly important, the evidence 

of this ‘front priority’ in fish individuals has been reported (Aoki, 1982; Herbert-Read 

et al, 2011; Katz et al., 2011). In order to mimic the interaction of real fish more 

realistically, a few works have begun to study the precise positional priority for a fish’s 

decision making (Ballerini et al., 2008; Strombom, 2011; Strandburg-Peshkin et al., 

2013). 

There have been works to simulate the collective evasion of schooling fish during the 

close attack of a predator. For example, Inada & Kawachi (2002) have shown that the 

morphing and merging of a fish school can be simulated. The employed model was 

similar to the model in Huth & Wissel (1994), with an additional behaviour as escaping 

from the predator. Based on a similar design, Zheng et al. (2005) compared the fitness 

of different escaping tactics, and reported that cooperative evasion obtains better fitness 

than the others. Lee (2006) studied the morphology of fish aggregation given different 

types of predatory attacks. 

2.4.2 Evolutionary Models 

Before reviewing the evolutionary models of schooling fish, it should be clarified that 

although the terms ‘predator-prey’, ‘pursuit-evasion’ and ‘coevolution’ have been 

widely used in Evolutionary Computation since Benda (1986), their focus is different 

from the topic here. In Evolutionary Computation, ‘predator-prey’ models are built to 

solve complicated tasks or practise artificial intelligence (Hillis, 1990; Ficici & Pollack, 
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1998; Goh & Tan, 2009). In these cases, a direct fitness function for the aimed goal is 

difficult to be explicitly defined. By cooperation or competition among agents, 

optimisation can be reached through a simpler fitness function (Haupt & Haupt, 2004; 

Bouffanais, 2016). The common focus of these techniques is put on optimisation of 

solutions rather than on evolutionary dynamics of the natural predator-prey interaction 

(Nowak & Sigmund, 2004). 

With the concern of natural evolution in animal behaviours, some evolutionary 

simulations had focused on the competition between a predator and a prey. For 

example, Cliff & Miller (1995) and Nolfi & Floreano (1998) demonstrated how the 

coevolution between a prey agent’s evasive strategy and a predator’s chasing strategy 

leads to a balance of both fitness values. By these simulations, the ‘red queen 

hypothesis’ (Van Valen, 1973), which assumed a predator-prey coevolution is an arms 

race without endpoints, was highlighted and supported. However, the findings from this 

kind of one-on-one interactions are rarely considered to be an analogy to the evolution 

of gregarious animals and their collective behaviours because the intraspecies 

competition in a species, which influences the evolution much more than the 

interspecies competition (Connell, 1983), was overlooked. 

The first evolutionary model focusing on animals’ collective behaviour can be traced 

back twenty years (Reynolds, 1993). However, the link between a computational 

simulation and the natural evolution of collective motion has only been established in 

recent years (Wood & Ackland, 2007). These evolutionary models are typically a 

combination of a self-organising model and a genetic algorithm. The self-organising 

model is to simulate agents’ spatiotemporal interaction as well as the emergent patterns. 
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The genetic algorithm is employed to simulate the evolutionary mechanism of natural 

selection and adaptation. 

Genetic algorithms are computer programmes that inspired from natural evolution 

(Holland, 1975). In a genetic algorithm, there is a population of ‘chromosomes’, each of 

which represents a strategy, a solution or an agent, depending on the design. A typical 

evolutionary process is as follows (Haupt & Haupt, 2004). First, each chromosome is 

assigned a score, referred to as a fitness value, based on its performance in a given task. 

Then, according to the principle of ‘survival of the fittest’, a chromosome’s 

reproduction probability and elimination probability are given based on its relative 

performance in the population. Finally, before entering the next generation, offspring 

are reproduced by the operation of crossover and mutation on the selected 

chromosomes. This process is repeated so that the dynamic of natural evolution is 

mimicked. 

Earlier works, like Reynolds (1993) and Werner & Dyer (1993), were more similar to 

games of artificial agents. That is to say, given rewards and dangers in an arena, agents 

can evolve to develop an effective movement to gain better fitness. These preliminary 

works, however, drew a framework to simulate collective behaviour in evolution, that 

is, a spatial-explicit agent-based model combining with a genetic algorithm. Moreover, 

agents in these models were designed with sensory perceptions so that decision making 

can be adaptive to the surroundings. 

Ward et al. (2001) simulated the behavioural coevolution of prey fish and their 

predators. In this model, a fish’s eyes and lateral lines were simulated as two sensory 

perceptions of an agent, and a neural network was employed to connect the movement 
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decision with local information from these sensors. Although the output may not be as 

appealing, this is the first work to consider a real fish’s perceptions and responses in 

evolution. 

Since Oboshi et al. (2003), Aoki’s framework (1982) of  the design of a fish agent has 

been introduced to evolutionary models. Based on the predefined attraction, repulsion 

and paralleling behaviours in Aoki (1982), the simulation can be more robust and the 

output can be more similar to the appearance of real fish. In this kind of evolutionary 

models, the adaptation of a fish individual is simulated by evolving certain parameters 

of a chosen self-organising model. For example, the agent design in Oboshi et al. (2003) 

was based on Inada & Kawachi (2002). Through a genetic algorithm, the adaptive 

weight of escaping behaviour was studied. 

Wood & Ackland (2007) designed agents based on the model in Couzin et al. (2002), 

with an additional escaping behaviour. The evolution of prey agents was simulated by 

evolving the movement speed and the orientation range, that is, neighbours in which can 

trigger a prey’s paralleling behaviour. This work exhibited that two Nash equilibria 

(should also be evolutionarily stable states according to its description) of collective 

patterns can be reached. One is a compact milling group of low-speed agents and the 

other is a polarised moving school of high-speed agents. This work stated that the 

milling aggregation is invasion-free although individuals in this pattern incur higher 

predation risk. Hence, the findings supported the selfish herd hypothesis (Hamilton, 

1971). The significance of this work is that it is the first work to introduce game-

theoretic concepts to validate the simulation (Sumpter, 2009). 
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Similar to Wood & Ackland (2007), Ioannou et al. (2012) introduced the agent design 

in Couzin et al. (2002) and evolved the agents by the orientation range, where the 

designs different from Wood & Ackland (2007) were the fixed speed and the lack of 

escaping behaviour. Instead of setting an artificial predator to hunt the prey agents, 

Ioannou et al. (2012) used a real predatory fish, bluegill sunfish, to hunt the virtual prey 

agents and drive the evolutionary simulation. It showed that the bluegill sunfish 

preferred the isolated prey to prey aggregation, preferred the marginal prey to the 

central prey, and preferred the swarming prey to the schooling prey. It was 

demonstrated that these feeding preferences always drive the evolution of the virtual 

prey agents into the schooling pattern. 

A series of latest works (Olson et al., 2013; Olson et al., 2016a; Olson et al., 2016b) 

simulated the evolution of prey aggregation as well as the coevolution between prey and 

predators with minimal predetermined rules. These works abandoned Aoki’s framework 

(1982) and designed an agent’s movement decision at a rather basic level, as turning 

right or turning left, based on the information from the visual perception. Olson et al. 

(2013) demonstrated that schooling is a transitional state and can be replaced by 

disordered swarms and milling groups in evolution. Olson et al. (2016a) experimented 

whether the cohesive swarming pattern can evolve given different hunting strategies. 

Olson et al. (2016b) demonstrated that prey’s swarming behaviour and the predator’s 

hunting strategy can form an evolutionary cycle in coevolution.  

2.5 Validation in Ecological Modelling 

Ecological modelling aims to investigate the dynamic in a natural system by the tool of 

computational models, mainly spatial-explicit agent-based models (DeAngelis & 
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Grimm, 2013). The targets can be fish in the ocean, trees in a forest, birds in the air, and 

so on (Grimm et al., 2005).  After the review of the related computational models, the 

validation of an ecological model is discussed here. 

Validation in ecological modelling is largely different from normal procedure in 

Computer Science. Typically, a computational algorithm can be validated through a 

relatively objective measurement, like the accuracy or the running time. In contrast, 

evaluating the significance of an ecological model is fairly descriptive, and has been one 

of the important pending questions in Ecology itself (Sutherland et al., 2013). The most 

popular concern is the authenticity of a model, that is, whether a model can represent 

the targeted system in nature (Rohani et al., 1997; Grimm et al., 2005; Schellinck & 

White, 2011). Focusing on evolutionary simulations, the robustness of a model and the 

game-theoretic analysis of the outputs have also been highlighted (Grimm et al., 2005; 

Sumpter, 2009). These three perspectives of a model’s validity are discussed in this 

subchapter. 

2.5.1 Authentic Model 

Computational simulations have revealed many underlying mechanisms of ecological 

systems qualitatively (Grimm et al., 2005). For example, from the emerged collective 

patterns demonstrated in Couzin et al. (2002), one can infer how gregarious animals, 

like fish, birds, ants and insects, can form a milling torus or a moving group (Couzin & 

Krause, 2003). However, similar patterns among different systems are possible to be 

driven by different mechanisms (Breckling et al. 2006; Giardina, 2008). To better 

understand whether the findings of a model is suitable to predict a certain targeted 

system, or which design among various models (with qualitatively similar outputs) can 
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better illustrate a particular system, the quantitative analysis of a model has recently 

been highly emphasised in the ecological domain (Parrish et al., 2002; Couzin & 

Krause, 2003; Breckling, et al. 2006; Giardina, 2008). By this analysis, the authenticity, 

or ‘realism’ in Grimm et al. (2005), of a model’s parameter setting, agent design and 

simulation outputs is concerned based on empirical data (Couzin & Krause, 2003; 

Grimm et al., 2005). Nevertheless, it is not a debate between qualitative models and 

quantitative models; instead, the quantitative analysis has improved the understanding 

of the qualitative features in an ecological system (Wiegand et al., 2003; Breckling et al. 

2006). 

To validate an ecological model by its authenticity, two general principles have been 

widely agreed (Parrish et al., 2002; Grimm et al., 2005; Schellinck & White, 2011). One 

is that the complexity of a model should be in a reasonable range. The other is that the 

analogy between a model and the reality should be strong. 

Focusing on the first principle, a successful model should illustrate a complex system to 

a considerable extent, at the same time with as simple and clear settings as possible 

(Grimm et al., 2005). There is a trade-off between simplification and meticulosity. 

Obviously, if a model is too simple, the output then becomes uninformative (Parrish et 

al., 2002). On the contrary, if a model is too complicated with numerous parameters, the 

essence of the targeted system is not revealed (Parrish & Edelstein-Keshet, 1999). It 

remains a tough task for model designers to decide which elements of the real system 

should be included. Some systematic approaches have been suggested in Grimm & 

Railsback (2012). 
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Certain computational models of gregarious fish have attracted criticisms from this 

aspect. For example, models based on mathematical tools have been criticised as too 

abstract to the direct ecological interest (Schellinck & White, 2011). On the other hand, 

simulating fish schools based on Aoki’s framework (1982) has been criticised as 

predictable at the beginning due to the simplified setting of parallel orientation (Parrish 

& Edelstein-Keshet, 1999). Sumpter (2006) suggested that a simplification should be 

with reasons because no individual really follows simple rules. 

Focusing on the second principle, an ecological model is meaningful only if its settings 

and outputs both resemble the natural system (Rohani et al., 1997; Grimm et al., 2005). 

About the model setting, the parameters and the design of a model should be consistent 

with the empirical data to a considerable extent (Parrish et al., 2002; Schellinck & 

White, 2011). Many criticisms on previous models are from this aspect. For example, 

even though averaging the influences of all neighbours for decision making can mimic 

the natural schooling pattern well (Huth & Wissel, 1994; Couzin et al., 2002; Wood & 

Ackland, 2007), criticisms on this design have been made due to its inconsistency with 

the empirical data (Parrish & Edelstein-Keshet, 1999; Ballerini et al., 2008). 

About the authenticity of model outputs, an analogical mapping from the simulation 

outputs to the targeted system should be obvious (Grimm & Railsback, 2012). 

Unfortunately, comparison between a simulation output and a natural complex system 

can still be arbitrary. A popular way is through a visualisation, which can be found in 

Aoki (1982), Couzin et al. (2002), Wood & Ackland (2007) and all the reviewed 

models. Furthermore, most of these works provided specific quantifications to add 

credit to the statement, despite that the quantified values can still be inconsistent to the 

empirical data (Parrish et al., 2002). 
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2.5.2 Robust Simulation 

An agent-based model’s credibility is increased if the emerged pattern can be 

reproduced consistently against noises (Rohani et al., 1997) and be insensitive to 

parameters to an extent (Grimm et al., 2005). In other words, a simulation is more 

significant if it is robust to a noisy environment and parameter adjustments in a wider 

range. Since simulating the evolution of a prey population is typically based on a 

‘coevolutionary’ system of genetic algorithms, that is, a solution’s payoff relies on the 

frequency of different solutions in the population (Angeline & Pollack, 1993; Watson & 

Pollack, 2001), studies from Evolutionary Computation are informative to enhance the 

consistency and reliability of simulation outputs in a noisy simulation environment. 

However, the different focuses between Evolutionary Computation and ecological 

modelling should be highlighted. 

In Evolutionary Computation, a genetic algorithm is employed typically to solve 

optimisation problems, by which an acceptable solution to the given objective function 

can be retrieved from a vast searching space effectively and efficiently (Beasley et al., 

1993). For this purpose, dwelling on a local maximum, or even an intermediate state, is 

considered an evolutionary failure (Beasley et al., 1993; Watson & Pollack, 2001). To 

avoid this situation, techniques to improve the searching scheme have been widely 

studied, like annealing (Ingber & Rosen, 1992), niching (Horn et al., 1994) and so on 

(Haupt & Haupt, 2004). In contrast, the ‘coevolution’ systems in nature, like the 

evolution of a fish population undergoing individual selection, are usually without an 

explicit objective function to evaluate the simulation effectiveness (Watson & Pollack, 

2001). In these cases, ‘evolutionary stability’ in Game Theory is more suitable to verify 

whether a simulation has reached its convergence (Nowak & Sigmund, 2004), the 
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concept of which is introduced in the next section. In this part, computational designs to 

avoid simulation failure in ecological modelling are reviewed. 

The reproduction probability of an individual should be positively correlated to its 

fitness value, as the score of its performance, to guarantee a more adapted population in 

the next generation (Holland, 1975). The original version of this mapping defined an 

individual’s reproduction probability by the ratio of its fitness value to the overall 

fitness values in the population (Holland, 1975), known as the ‘roulette wheel selection’ 

(Goldberg, 1989). However, the reproduction probability may not be commensurate 

with the fitness value assigned by a given evaluation function (Baker, 1987; Whitley, 

1989). In this situation, a more effective and robust way is to evaluate this probability 

based on the ranking sequence (Whitley, 1989; Jadaan et al., 2005; Noraini & Geraghty, 

2011). This type of selection schemes are known as the ‘rank selection’ (Baker, 1987), 

by which an adjusted fitness value, as the rank of an individual’s performance score in 

the population, is assigned to calculate the reproduction probability. A popular scheme 

is the ‘tournament selection’, which practises the rank selection by a competition among 

randomly chosen individuals (Goldberg & Deb, 1991). Additionally, present works in 

Evolutionary Computation usually adjust this mapping to cause the effect of speciation, 

by which the group selection is simulated (Haupt & Haupt, 2004). Focusing on the 

evolutionary models of fish, Wood & Ackland (2007) adopted the roulette wheel 

selection. Other works did not provide clear descriptions of their selection schemes. 

To simulate the replacement of individuals in a population, the reproduction and 

elimination of a population can occur between every two generations (Holland, 1975), 

known as the ‘generational reproduction’. An alternative is that individuals reproduce 

offspring and die out continuously without a significant gap, as the ‘steady-state 
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reproduction’ (Syswerda, 1991). Related studies have shown that the steady-state 

reproduction performs better than the generational reproduction in many environments 

(Syswerda, 1991; Davis, 1991; Vavak & Fogarty, 1996). However, it was reported that 

the effectiveness of a steady-state reproduction can reduce in a noisy ‘coevolution’ 

system (Paredis, 1995), which can be improved by a dynamic revaluation of the fitness 

values (Paredis, 1995; Vavak & Fogarty, 1996). The replacement method in most of the 

evolutionary models in Ecology, like Wood & Ackland (2007) and Olson et al. (2013), 

is the steady-state reproduction, by which few offspring are generated to replace few 

worst-performed agents between every two generations. 

The evaluation function to assign fitness values to individuals can be subject to 

constraints. It has been considered an inefficient method to eliminate or repair infeasible 

solutions through additional mechanisms (Michalewicz, 1995). A more practical 

technique is to apply a penalty to those infeasible solutions through an adjusted 

evaluation function (Richardson et al., 1989; Carlson, 1995). This technique defines a 

new evaluation function by combining the original function with its constraints through 

a penalty multiplier or similar skills (Joines et al., 1994; Michalewicz & Attia, 1994). 

Hence, the same system can be operated as without constraints by this new evaluation 

function. Another technique to avoid infeasible solutions is to modify the genetic 

operator, so that the offspring individuals are guaranteed to be feasible (Michalewicz, 

1995). 

2.5.3 Evolutionary Stability 

Evolutionary stability is one of the most persuasive concepts on natural evolution 

(Hammerstein & Selten, 1994; Nowak & Sigmund, 2004). This concept considers that a 
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state can be an endpoint of the evolution only if it cannot be perturbed by few mutants 

in a given set of alternative strategies (Smith, 1982). Not only used to describe a state of 

a population (which can represent human beings, animals, etc.), evolutionary stability is 

also used to describe a strategy (which can represent genetic traits, behavioural 

phenotypes, etc.) when all individuals in a population exhibiting this strategy leads to an 

evolutionarily stable state (Smith, 1982). For example, a population of ‘defect’ players 

in a one-shot (no repeated interactions) prisoner dilemma game is an evolutionarily 

stable state, and the ‘defect’ strategy is an evolutionarily stable strategy (Hammerstein 

& Selten, 1994). 

Before a brief review of the special cases and limitations of evolutionary stability, the 

original definition of evolutionary stability in Smith (1982) is displayed as follows. It 

should be noted that in principle, evolutionary game theories only consider 'symmetric' 

games, where the payoff of a strategy is independent from the individual who adopt it, 

or to say, the utility/payoff/fitness function is unique (Hammerstein & Selten, 1994). 

Given a set of potential strategies, 𝑋, and an infinite population exhibiting the strategy 

𝑝 ∈ 𝑋, this state is defined evolutionarily stable if and only if any small proportion, 𝜖 <

𝜖∗, of a different strategy 𝑞 ∈ 𝑆, is less adaptive in this population than the resident 

strategy 𝑝. Mathematically to say, ∀𝑞 ∈ 𝑋, 𝑞 ≠ 𝑝, 

∃𝜖∗ > 0 , ∀𝜖 < 𝜖∗  𝑢𝑝 = 𝑢(𝑝|(1 − 𝜖)𝑝 + 𝜖𝑞) > 𝑢𝑞 = 𝑢(𝑞|(1 − 𝜖)𝑝 + 𝜖𝑞) (2.1) 

where 𝑢(𝑥|𝑑)  denotes the utility of strategy 𝑥  in state 𝑑 , and (1 − 𝜖)𝑝 + 𝜖𝑞  is the 

perturbed state after strategy 𝑞 ‘s invasion, where the proportions of strategy 𝑝  and 

strategy 𝑞 are  1 − 𝜖 and 𝜖, respectively. This inequality guarantees strategy q will be 

eliminated and replace by strategy p in evolution. As all alternative strategies are 
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considered (∀𝑞 ∈ 𝑋), strategy p is defined as an evolutionarily stable strategy and the 

state that all individuals adopt strategy p is an evolutionarily stable state. In most 

traditional games, the interactions among individuals are randomly paired (or to say, 

individuals are completely mixed), and hence the probability for an individual to 

encounter a certain strategy is equal to the frequency of this strategy in the population 

(Hammerstein & Selten, 1994). In this situation, the utility of adopting a strategy in a 

state can be rewritten as  

𝑢(𝑥|𝑎𝑑1 + 𝑏𝑑2) = 𝑎𝑢(𝑥|𝑑1) + 𝑏𝑢(𝑥|𝑑2).   (2.2) 

Hence, the inequality to reach evolutionary stability can be rewritten as, ∀𝑞 ∈ 𝑋, 𝑞 ≠

𝑝, ∃𝜖∗ > 0 , ∀𝜖 < 𝜖∗, 

𝑢𝑝 = (1 − 𝜖)𝑢(𝑝|𝑝) + 𝜖𝑢(𝑝|𝑞) > 𝑢𝑞 = (1 − 𝜖)𝑢(𝑞|𝑝) + 𝜖𝑢(𝑞|𝑞).  (2.3) 

If 𝑢(𝑝|𝑝) > 𝑢(𝑞|𝑝), there must be a sufficiently small 𝜖∗  to satisfy the inequality. If 

𝑢(𝑝|𝑝) < 𝑢(𝑞|𝑝), the inequality cannot hold given a nearly zero 𝜖. In the last condition, 

as 𝑢(𝑝|𝑝) = 𝑢(𝑞|𝑝) , this inequality is equivalent to 𝑢(𝑝|𝑞) > 𝑢(𝑞|𝑞) . Therefore, the 

common form of evolutionary stability is derived, as the following two conditions 

(Smith, 1982): 

𝑢(𝑝|𝑝) > 𝑢(𝑞|𝑝)  or  𝑢(𝑝|𝑝) = 𝑢(𝑞|𝑝) & 𝑢(𝑝|𝑞) > 𝑢(𝑞|𝑞).   (2.4) 

An evolutionarily stable strategy needs not to be a pure strategy. It can be a mixed 

strategy like 𝑥 = (𝑡𝑥1, (1 − 𝑡)𝑥2), where 𝑥1, 𝑥2 denote pure strategies and 𝑡, 1 − 𝑡 are the 

probabilities of adopting the associated pure strategies (Hammerstein & Selten, 1994). 

Most traditional games are based on the precondition that individuals are randomly 

paired and mixed strategies are flexible. This precondition leads to the property of 
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symmetry in an evolutionary game: an evolutionarily stable state in a symmetric game 

must be a symmetric equilibrium, where all individuals adopt the same strategy (Smith, 

1982; Hammerstein & Selten, 1994). That is to say, an evolutionarily stable state must 

contains a single evolutionarily stable strategy. As a complement, Bishop & Canning 

(1978) derived that given individuals are randomly paired, if the mixed strategy 𝑥 is 

evolutionarily stable, then 𝑢(𝑥1|𝑥) = 𝑢(𝑥2|𝑥) = 𝑢(𝑥|𝑥), and any pure strategies, as 𝑥1 or 

𝑥2, are not evolutionarily stable. This theorem is not contradictory to the property of 

symmetry in an evolutionary game. 

Only when a mixed strategy is inflexible, an evolutionarily stable state can be a 

‘polymorphic’ state where the population exhibits a fixed distribution of various pure 

strategies (Smith, 1982). For example, the gender distribution among human beings 

forms a polymorphic stable state, where 50% individuals are male and the other 50% 

are female, but no individual can adopt a mixed strategy to be sometimes male and 

sometimes female. 

The relation between an evolutionarily stable state and a Nash equilibrium is as follows 

(Hammerstein & Selten, 1994). A Nash equilibrium is a state where no single individual 

can earn excess profit from changing its strategy (Osborne & Rubinstein, 1994). That is 

to say, taking the above game for example, given all individuals adopting strategy 𝑝 is a 

Nash equilibrium, then ∀𝑞 ∈ 𝑋, 𝑞 ≠ 𝑝,  

𝑢(𝑝|𝑝) ≥ 𝑢(𝑞|𝑝),     (2.5) 

where 𝑢(𝑥|𝑑) denotes the utility of strategy 𝑥 in state 𝑑, and 𝑋 is the set of potential 

strategies. 
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Comparing this form with the common form of evolutionary stability, it can be 

observed that the concept of evolutionary stability is a refined subset of Nash 

equilibrium (Osborne & Rubinstein, 1994; Smith, 1982). Traditional game theories 

assumed individuals are completely rational and hence, a Nash equilibrium is an 

endpoint of a game since no single individual can receive better payoff by alternative 

strategies (Osborne & Rubinstein, 1994). Comparatively, evolutionary stability 

additionally considers the ‘irrational’ mutants, which happens in natural evolution. 

When a small proportion of ‘irrational’ mutants has already perturbed a state, 

evolutionarily stable states are those Nash equilibria which have the tendency to recover 

and keep being endpoints in a game (Smith, 1982).  

Evolutionary stability does not always exist in a game (Hammerstein & Selten, 1994). 

For example, although the rock-paper-scissors game has a unique Nash equilibrium as 

(1/3 rock, 1/3 paper, 1/3 scissors) (Figure 2.1A), where no other strategy can earn 

excess benefit from this state (all strategies’ expected payoffs are 0), it is not 

evolutionarily stable. As a brief proof, given a population of individuals which all adopt 

(1/3 rock, 1/3 paper, 1/3 scissors) and forms a Nash equilibrium (1/3 rock, 1/3 paper, 

1/3 scissors), when the state is invaded by a small proportion of individuals adopting 

pure ‘rock’, the perturbed state then becomes (1/3+ rock, 1/3- paper, 1/3- scissors), 

where 1/3+ means greater than 1/3 and vice versa. In this perturbed state, the utility of 

the resident strategy, (1/3 rock, 1/3 paper, 1/3 scissors), is 0, and the utility of the 

invasive strategy, pure ‘rock’, is also 0 (Figure 2.1B). Hence, the invasive strategy has 

no tendency to die out and the original state is changed. 
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Figure 2.1: The Rock-paper-scissors Game 

Panel A shows the payoff matrix of the rock-paper-scissors game, by which the utility of 

adopting ‘rock’, for example, can be calculated as 1 − 𝑝 − 2𝑞. When individuals in the 

population all adopt (1/3 rock, 1/3 paper, 1/3 scissors), that is, 𝑝 = 𝑞 = 1/3, no other 

strategy can gain better payoff in this population. Hence, it is a Nash equilibrium. Panel 

B shows this Nash equilibrium is not evolutionarily stable. For example, given a small 

proportion of individuals, denoted by 𝜖, have changed their strategies into pure ‘rock’, 

the payoff of  (1/3 rock, 1/3 paper, 1/3 scissors) in this perturbed state is not better than 

that of the invasive strategy, pure ‘rock’, so that the pure ‘rock’ individuals have no 

tendency to die out in evolution. 

 

 

Traditional game theories do not focus on the reachability of a Nash equilibrium 

(Osborne & Rubinstein, 1994). However, in evolutionary game theory, the adaptive 

dynamic, as the evolutionary trajectory, of an evolutionary game has also been widely 

studied and modelled (Hammerstein & Selten, 1994). For example, Nowak & Sigmund 

(2004) has concluded that even if an evolutionarily stable state exists in a game, it can 

be unreachable through any evolutionary trajectory. The absence of evolutionary 

stability in a system has been observed in the real world. For example, the adaptation of 

male body colours in a population of side-blotched lizards (Uta stansburiana) displays a 

periodic cycle and cannot be converged (Sinervo & Lively, 1996). 

The preconditions of evolutionary stability do not always hold. For example, game-

theoretic studies have demonstrated that the interaction among individuals in a 

population is not necessarily randomly paired in a spatial game (Nowak & May, 1992). 

In this kind of games, limited dispersal of individuals can result in a local interaction 

among specific strategies and violates the common form of evolutionary stability 
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(Nowak & May, 1992). In addition to this exception, in many ‘coevolutionary’ systems 

in Evolutionary Computation, the search space is ‘open-ended’ (Ficici & Pollack, 

1998), that is, there are always potential solutions able to invade the current one. Since 

the set of potential strategies is difficult to be defined completely, the analysis of 

evolutionary stability cannot be applied to these systems. An analogy in nature is the 

alien species brought by humans. An ecological equilibrium can be no longer stable 

when the invader does not belong to the original set of animals (Mooney & Cleland, 

2001). 

Few ecological works have begun to introduce this game-theoretic concept for the 

validation of their simulation outputs. For example, Wood & Ackland (2007) stated that 

their simulation outputs are Nash equilibria through the observation “when simulations 

are started from one evolved state, then this state is maintained even in conditions 

where the other state usually evolves. This indicates that two distinct Nash equilibria—

states from which no individual boid can benefit from changing its behaviour—exist on 

the fitness landscape of the model”. As a complement, since this work allowed irrational 

mutants during their evolutionary simulation, the two states should also be 

evolutionarily stable based on the definition. Also, Guttal & Couzin (2010) verified 

whether a converged state is evolutionarily stable by testing the invasive ability of 

certain mutants by computational simulation. In detail, after a population of agents 

evolves into a certain pattern, this work perturbed this state by putting a small 

proportion of invasive agents into the resident population. Then, it demonstrated that, 

given various sets of invasive agents, the perturbed pattern can always recover to the 

original state after a few generations. Although these attempts are not a formal proof of 
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evolutionarily stability, the significance of analysing the evolutionarily stable states of 

an evolutionary simulation has been highlighted (Sumpter, 2009). 
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CHAPTER III 

MODELLING THE BEHAVIOURAL EVOLUTION OF PREY FISH 

 

 

This chapter addresses the first main research question, about how to reduce the bias 

when building a computational model to simulate fish’s behavioural evolution, from the 

following four specific topics:  

 A model to  evolve strategies based on an open-ended solution space 

 A bottom-up metric to quantify the simulation outputs 

 The validation of the model from the aspect of realistic settings 

 The validation of the model from the aspect of reliable outputs 

In this work, an evolutionary model is proposed to study fish’s adaptation under the 

survival pressure. The employed genetic algorithm of the model is NEAT (Stanley & 

Miikkulainen, 2002), which evolves neural networks through a genetic algorithm. 

Different from many of previous evolvable neural networks, which networks’ 

complexity, such as the number of nodes, links and layers, were usually predesignated 

(Haupt & Haupt, 2004), a neural network in the NEAT algorithm can evolve from a 

rather basic structure to a complicated composition of nodes and links without a 
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limitation of its complexity. By adopting NEAT networks to implement the behavioural 

strategies of fish agents, the evolutionary simulation can be viewed as based on an 

open-ended solution space, which covers all possible strategies a fish agent can develop 

to control its elementary behaviours based on the acquired information (Stanley & 

Miikkulainen, 2002). Hence, the bias of manually designed solution space in previous 

works can be largely reduced. To quantify the simulation output, a measurement based 

on the bottom-up categorisation is proposed. Compared with traditional methods, this 

metric illustrates evolutionary states in a wider range. Finally, according to the 

validation principle in ecological modelling (described in the following section), 

authenticity and credibility of this model are both analysed to reduce potential biases 

from the model setting. 

Although the inconsistency between a model and the targeted system always exists, the 

proposed model in this chapter has reduced many significant biases in previous works 

from the three aspects. First, the predesignated small range of potential strategies in 

previous models is replaced by an open-ended solution space. Secondly, some 

significantly unrealistic settings in different previous works are improved. For example, 

this model forbids the physical overlaps and allows agents to make decision based on 

current surroundings. Thirdly, the influence of selection schemes to the robustness of 

agent-based models is emphasised and analysed. 

3.1 Background 

With the rapid growth of computational capability, simulation has become a powerful 

tool to investigate complex systems in animals (DeAngelis & Grimm, 2013). These 

ecological simulations are typically agent-based and spatial-explicit models, which hold 
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a population of agents in a virtual arena and mimic the real-world system by 

spatiotemporal interactions among these agents (Couzin & Krause, 2003; Schellinck & 

White, 2011). The advantage of this kind of simulation is that the abstract formulations 

are largely avoided compared with traditional theoretical models (Schellinck & White, 

2011; DeAngelis & Gimm, 2013). Therefore, the implicit causality of a natural system 

is inferred more directly and clearly. 

One of the most successful usages of simulation is to reveal the self-organising 

mechanism of group-living fish’s collective movement (Schellinck & White, 2011). For 

example, Aoki (1982) demonstrated that fish schools can be an emergent pattern by 

agents of simple behaviours. Huth & Wissel (1994) compared various behavioural 

settings and found that fish’s schooling pattern is better mimicked when decision 

making relies on multiple neighbours. Couzin et al. (2002) showed that the transition 

between fish’s collective patterns can be displayed by adjusting a certain behavioural 

preference of agents. These simulations have largely improved the understanding of 

fish’s behavioural mechanism (Couzin & Krause, 2003). 

After the success of modelling fish’s behaviours by computers, simulation has recently 

been employed to study the behavioural evolution of fish (Sumpter, 2006). That is to 

say, why should fish develop these simple behaviours in evolution? However, at 

present, simulations on this topic are less significant due to the diverse outputs from 

different designs. For example, Wood & Ackland (2007) demonstrated that the survival 

pressure can drive fish agents into one of the two states: a milling herd or a moving 

school. On the contrary, schooling was the only evolutionary result in Oboshi et al. 

(2003) and Ioannou et al. (2012). On the other hand, Olson et al. (2013) demonstrated 
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that schooling should be an intermediate phase in evolution and should be replaced by 

milling herds and stationary swarms. 

The inconsistency among the previous evolutionary simulations highlights the issue of 

preconceived biases in ecological modelling. For example, if the work in Wood & 

Ackland (2007) is considered more successful due to its ‘reasonable’ output (Sumpter, 

2009), the validation then biases to the preconceived knowledge and reserves no 

significance for the experiments by simulation. Unfortunately, validation in ecological 

modelling has been highly contested (Rohani et al., 1997; Parrish et al., 2002; 

Schellinck & White, 2011), and a convincing metric to score ecological simulations still 

seems impractical. Nevertheless, two fundamental principles have been widely agreed, 

which are realistic settings and reliable outputs (Grimm et al., 2005; Schellinck & 

White, 2011). 

The most important factor of a valid ecological simulation is that the setting should 

accord with the empirical data (Parrish et al., 2002; Grimm et al., 2005; Schellinck & 

White, 2011). Otherwise, the output cannot be an analogy to the targeted natural system. 

For example, although fish schools can be mimicked vividly by averaging the 

influences of all neighbours (Huth & Wissel, 1994; Couzin et al., 2002), this setting has 

become disputed after unfavourable empirical evidence was found (Ballerini et al., 

2008; Katz et al., 2011). From this viewpoint, the model in Wood & Ackland (2007) 

may not be as valid because at least two of its settings violate the empirical data 

considerably. One is that an agent’s decision making in this model is also evenly 

influenced by all neighbours. Another is that the paralleling behaviour of its agents is 

not observed in the real fish (Tien et al., 2004; Katz et al., 2011). Comparatively, Olson 

et al. (2013) designed the movement of agents without predetermined rules. This design 
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is more realistic to a certain extent, despite its output, as the crucial part of a model, may 

be unrealistic. 

The credibility of a model is increased if its outputs are less sensitive to potential noises 

and parameter adjustments (Rohani et al., 1997; Grimm et al., 2005), which property is 

also referred to as the ‘robustness’ of a demonstration (Grimm et al., 2005). Related 

techniques to improve an evolutionary model’s ability to reproduce consistent and 

reliable outputs have been developed for decades in Evolutionary Computation (Haupt 

& Haupt, 2004). However, rare ecological models have acquired this knowledge. For 

example, Wood & Ackland (2007) designed an unscaled proportional fitness selection 

in its genetic algorithm, which scheme has been proven less robust than others (Whitley, 

1989; Blickle & Thiele, 1995; Reeves, 2003; Noraini & Geraghty, 2011). Moreover, 

almost none of the previous works reported quantitative analyses about the robustness 

of their simulations and the sensitivity of their parameter settings, the neglect of which 

may cause concern about the reliability of the outputs. 

In this chapter, an evolutionary model is built to reduce preconceived biases in previous 

works and its validation is emphasised. After building the model based on an open-

ended solution space in Chapter 3.2, the validity of this model is highlighted from the 

three aspects. First, for an objective description of the simulation outputs, the 

quantification is discussed in Chapter 3.3. Secondly, to validate the authenticity of this 

model, a comprehensive comparison of the model, the empirical data and previous 

works is reported in Chapter 3.4. Thirdly, in Chapter 3.5, the parameters are scanned to 

understand their influences to the simulation. These elaborate analyses construct a solid 

base of the validity of the model outputs and further inferences. 
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3.2 Model 

To investigate the evolution of gregarious fish under the survival pressure, a spatial-

explicit agent-based model is built based on a genetic algorithm. The employed 

algorithm is NeuroEvolution of Augmenting Topologies (NEAT) (Stanley & 

Miikkulainen, 2002). This algorithm encodes a neural network into a chromosome so 

that a population of neural networks can evolve through the procedure of selection, 

crossover and mutation. In the NEAT algorithm, neural networks can be initially given 

a minimal topology, and complicated structures can be built incrementally along the 

evolutionary process. Based on this powerful capability, the strategies of agents can be 

developed from trivial tactics to sophisticated ones automatically, without a 

predetermined setting of the candidate strategies. 

In the proposed model, 100 prey agents are put in a square arena to interact with one 

another for the survival fitness. To simulate the environment in open waters, the arena is 

wrapped around, that is, the left boundary connects the right boundary, and the upper 

limit connects the bottom one. The size is set 500𝐵𝐿 × 500𝐵𝐿  (body length, as the 

length unit in the model) to avoid crowding within a feasible computational time. 

Similar settings are 80 prey agents in a 400𝐵𝐿 × 400𝐵𝐿 wrapped-around arena (Wood & 

Ackland, 2007) and 50 prey agents in a 512𝐵𝐿 × 512𝐵𝐿 wrapped-around arena (Olson 

et al., 2013). 

To simulate predation risk in this virtual arena, the concept, ‘domain of danger’ 

(Hamilton, 1971), is introduced. It indicates the area where one becomes the nearest 

prey if a predator is present. As supported by empirical evidence (Mooring & Hart, 

1992; Viscido & Wethey, 2002; De Vos & O'Riain, 2010), it is usually assumed that a 
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prey’s predation risk is proportional to its domain of danger (Viscido, et al., 2001; 

James et al., 2004; Wood & Ackland, 2007). In the proposed model, the calculation of 

each prey’s domain of danger is simplified by randomly putting a rule-based predator in 

the arena (outside prey’s bodies) and letting it chase the nearest prey until a touch. 

Geometrically, a moving group’s domain of danger is different from that of a stationary 

herd (Bumann et al., 1997). By providing the predator a fixed speed, this skewness in a 

moving group can be simulated directly. 

Each prey has a round body and its diameter is defined 1 𝐵𝐿 (body length), which is 

treated as the unit of the length. The overlap between two prey’s bodies is considered 

unrealistic and forbidden in the model (outlined in Chapter 3.2.3). A prey swims in a fix 

speed and the swimming direction depends on its strategy, subject to a maximal turning 

angle. The strategy is implemented by a NEAT network, which input is the information 

from a local sensory range, as the round area of radius 𝑅𝑆 with a blind zone at rear 

(outlined in Chapter 3.2.1), and the output controls a prey’s movement decision at each 

step (outlined in Chapter 3.3.2). In other words, a prey’s behavioural strategy is a course 

of reactions according to local information acquired from its sensors. As different 

strategies incur different predation risks, the behavioural evolution of the prey agents is 

then processed undergoing selection, reproduction and elimination (outlined in Chapter 

3.2.3 and Chapter 3.2.4). 

In the following sections, the agent design and the evolutionary procedure of this model 

are described and explained, followed by a report about the originality of the proposed 

model. The general concern of these designs is to accord with the empirical data at the 

same time avoiding a sharp rise in computational complexity. Comprehensive 
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validations of this model’s authenticity and credibility are provided in Chapter 3.4 and 

Chapter 3.5, respectively. 

Table 3.1: Parameters for Interaction 

Name Value 

 Arena Length  500 BL 

 Prey Speed (SPD)  0.12 BL per step 

 Predator Speed (PS)  1.125 ~ 5 SPD 

 Min. Turning Radius (𝑅𝑇)  0.5 BL 

 Max. Turning Angle (𝜃𝑇)  asin(SPD/2/𝑅𝑇)   

 Sensory Radius (𝑅𝑆)  15 BL 

 Angle of Blind Sector  60 degrees 

Length of the Attraction 

Area (ℓA) 

dynamically decided by 

each NEAT network at 

each step (Figure 3.2) 

Spreading Angle of the 

Attraction Area (θA) 

Length of the Repulsion 

Area (ℓR) 

Spreading Angle of the 

Repulsion Area (θR) 

 

3.2.1 Two Perceptions of Local Surroundings 

It has been reported that a fish’s movement decision largely relies on the information 

from its lateral lines and eyes, where the lateral lines sense the moving direction of 

neighbours (as the vector dir in the following content) and the vision distinguishes the 

distances of nearby fish (as the vector loc in the following content) (Olst & Hunter, 

1970; Partridge, 1982; Faucher et al., 2010). According to the empirical data, the visual 

sensor and flow sensor designed in this subchapter are considered to fit the realism of a 

fish's capability at a reasonable level. A further validation of this design’s authority is 

put in Chapter 3.4.1. 

In the proposed model, each prey agent is assigned a limited sensory range and an agent 

can only notice those neighbours in this range. It is a circular area of the sensory radius, 

𝑅𝑆, except a blind zone, as the behind sector of 60 degrees (Figure 3.1). The perceptions 
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to retrieve information from the sensory range are implemented as the input of a NEAT 

network. To simulate the lateral lines, three nodes are used to detect the average 

direction of nearby prey. To simulate the vision, five nodes are used to depict their 

average positional distribution. As the predator is designed to distribute the predation 

risk according to agents’ domains of danger, it is unnecessary to let agents identify this 

predator (Hamilton, 1971). That is to say, the escaping tactics during a close attack is 

omitted in the present model. With an additional node feeding the constant value one, to 

provide a computational offset to the neural network, there are nine input nodes in total. 

 
Figure 3.1: Sensory Range and Two Perceptions 

A prey agent is given a limited sensory range, drawn as the grey area. The information in 

this sensory range is acquired by the simulated lateral lines, as in subfigure A, and the 

simulated eyes, as in subfigure B. The lateral lines report the average direction of prey 

neighbours, and the eyes report the positional distribution of them. The two plots at the 

right hand side display the detection range of these sensors. Specifically, it is set 72° 

towards the both sides in the visual system so that a nearby prey triggers exactly two 

visual sensors.  

 

 

Given that the vector 𝒍𝒐𝒄𝑖 denotes the location of fish 𝑖, the unit vector 𝒅𝒊𝒓𝑖 denotes the 

moving direction of fish 𝑖, 𝛿𝑖
𝑗
 is the angle between 𝒅𝒊𝒓𝑖 and 𝒅𝒊𝒓𝑗 (Figure 3.1A), and 𝑍𝑖

𝑆 

contains the indices of those prey in fish 𝑖’s sensory range, here the three input nodes, 

𝑃𝑖
𝐿(0°), 𝑃𝑖

𝐿(120°) and 𝑃𝑖
𝐿(240°), of the simulated lateral lines are valued by 
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𝑃𝑖
𝐿(𝑥) = ∑

𝜑(cos(𝛿𝑖
𝑗
− 𝑥) , 0)

‖𝐥𝐨𝐜𝑗 − 𝐥𝐨𝐜𝑖‖
2

𝑗∈𝑍𝑖
𝑆

 ,   

where 𝜑(𝑦, 𝑧) = {
  𝑦 , if   𝑦 > 𝑧   
  0 , otherwise.

  (3.1) 

The cosine value of (𝛿𝑖
𝑗
− 𝑥) calculates the similarity between 𝒅𝒊𝒓𝑗 and the vector which 

rotates 𝒅𝒊𝒓𝑖  by 𝑥  degrees (Figure 3.1A). The function 𝜑  is a threshold in order to 

accumulate the influences of referenced prey. The denominator portion provides the 

information of distance, by which a closer prey results in a larger value, as suggested in 

Viscido et al. (2002). According to the values of these three input nodes, the average 

direction of nearby prey can be estimated. For example, if 𝑃𝑖
𝐿(0°) is significantly larger 

than the two others, fish 𝑖  can recognise that it swims in coordination with its 

neighbours. Since this design has simplified a fish’s lateral system into 3 numeric 

signals, additional noises are not added into this flow sensor. 

Similarly, the visual perception is simulated as a greyscale based on the five input 

nodes: 𝑃𝑖
𝐸(0°) , 𝑃𝑖

𝐸(72°) , 𝑃𝑖
𝐸(144°) , 𝑃𝑖

𝐸(216°)  and 𝑃𝑖
𝐸(288°) . Given 𝜃𝑖

𝑗
 is the angle 

between 𝒅𝒊𝒓𝑖 and 𝒍𝒐𝒄𝑗 − 𝒍𝒐𝒄𝑖 (Figure 3.1B), the corresponding values of these nodes are 

𝑃𝑖
𝐸(𝑥) = ∑

𝜑(cos(𝜃𝑖
𝑗
− 𝑥) , cos(72°))

‖𝐥𝐨𝐜𝑗 − 𝐥𝐨𝐜𝑖‖
2

𝑗∈𝑍𝑖
𝑆

 ,   

where 𝜑(𝑦, 𝑧) = {
  𝑦 , if   𝑦 > 𝑧   
  0 , otherwise.

  (3.2) 

The nonzero threshold, 𝑐𝑜𝑠 (72°), is set to ensure agents can identify the presence of 

leading neighbours. By this setting, 𝑃𝑖
𝐸(0°) > 0  if and only if there is at least one 

neighbour at the front sector between the angles 72° and −72°, or equivalently, in the 



52 
 

range 0°~72° or 288°~360° (Figure 3.1B). Like the case of designing the flow sensor, 

additional noises are not considered in this simplified visual sensor. 

3.2.2 Reaction by Two Elementary Behaviours  

The two elementary behaviours exhibited by real fish are attraction and repulsion, by 

which fish approach relatively distant neighbours and avoid the extremely close ones 

(Partridge, 1982; Tien et al., 2004; Katz et al., 2011). When a fish has multiple 

neighbours, those ahead of this fish are more influential to its decision making (Aoki, 

1982; Herbert-Read et al, 2011; Katz et al., 2011). The agents in the proposed model are 

designed to develop their strategies on the basis of these two elementary behaviours, 

with a front priority of the referenced neighbours. The validation of this design’s 

authority is put in Chapter 3.4.2. 

 
Figure 3.2: Decision Making by Repulsion and Attraction 

A movement decision is made through the mediation of attraction and repulsion. As 

subfigure A illustrates, the attraction-triggered range is defined by the length ℓA and the 

spreading angle θA; the repulsion-triggered range is defined by the length ℓR  and the 

spreading angle θR. In subfigure A, a fish is in the attraction-triggered range (the red 

area), a fish is in the repulsion-triggered range (the blue area), and one fish is in both 

ranges (the purple area). Calculation of the attraction behaviour, or the repulsion 

behaviour, is to average all the corresponding vectors of the fish in its range. In this 

example, there are two fish. Subfigure B shows that the final direction is the sum of the 

attraction vector and the repulsion vector, with a slight noise, subject to a maximal 

turning angle.  
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At each step, the nine input nodes provide local information to the NEAT network, and 

through the nodes and links in the hidden layer, four output nodes are set to define the 

triggered ranges of attraction (approaching a prey) and repulsion (avoiding a prey), by 

which the final movement is mediated. To draw the triggered range of attraction, two 

output nodes are used to determine its length, ℓ𝐴, and spreading angle, 𝜃𝐴, by which two 

parameters, a fan-shaped area is defined to represent this range (Figure 3.2A). Similarly, 

the length,  ℓ𝑅, and the spreading angle, 𝜃𝑅, to draw the triggered range of repulsion is 

controlled by another two output nodes (Figure 3.2A). To accord with the area of the 

sensory range, the maximal length of both triggered ranges is the sensory radius, 𝑅𝑆, and 

the maximal spreading angle of both ranges is 150°, considering the blind zone (Figure 

3.2A). 

A fish’s attraction behaviour, 𝒅𝒊𝒓𝑖
𝐴, is defined as a scaled vector of the sum of all the 

directions from its location toward to those prey in its triggered range (Figure 3.2A). In 

detail, given 𝑍𝑖
𝐴 contains the indices of those prey in fish 𝑖’s attraction-triggered range, 

𝒅𝒊𝒓𝑖
𝐴 is assigned a zero vector if 𝑍𝑖

𝐴 = ∅, and when 𝑍𝑖
𝐴 ≠ ∅, 

𝒅𝒊𝒓𝑖
𝐴 =

𝒅𝒊𝒓𝑖
𝐴′

𝑚𝑎𝑥(‖𝒅𝒊𝒓𝑖
𝐴′‖, 1)

 ,    where   𝒅𝒊𝒓𝑖
𝐴′ = ∑

𝒍𝒐𝒄𝑗 − 𝒍𝒐𝒄𝑖

‖𝒍𝒐𝒄𝑗 − 𝒍𝒐𝒄𝑖‖
𝑗∈𝑍𝑖

𝐴

.                  (3.3) 

This design follows Huth & Wissel (1994), Couzin et al. (2002) and Wood & Ackland 

(2007), but the normalisation of  𝒅𝒊𝒓𝑖
𝐴′ is adjusted to happen only when the length of 

𝒅𝒊𝒓𝑖
𝐴′  is greater than one, which adjustment reduces the noise from an unnecessary 

scaling-up. Similarly, given 𝑍𝑖
𝑅  contains the indices of prey in fish 𝑖 ’s repulsion-

triggered range, the repulsion behaviour, denoted as the vector 𝒅𝒊𝒓𝑖
𝑅, is 0 if 𝑍𝑖

𝑅 = ∅, and 

when 𝑍𝑖
𝑅 ≠ ∅, it is calculated by 
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𝒅𝒊𝒓𝑖
𝑅 =

𝒅𝒊𝒓𝑖
𝑅′

𝑚𝑎𝑥 (‖𝒅𝒊𝒓𝑖
𝑅′‖, 1)

 ,    where   𝒅𝒊𝒓𝑖
𝑅′ = ∑

𝒍𝒐𝒄𝑖 − 𝒍𝒐𝒄𝑗

‖𝒍𝒐𝒄𝑖 − 𝒍𝒐𝒄𝑗‖
𝑗∈𝑍𝑖

𝑅

,                (3.4) 

as summing and scaling all the directions away from those prey in its triggered range 

(Figure 3.2A). 

After the calculation of the two elementary behaviours, a fish’s final direction is the unit 

vector of 𝒅𝒊𝒓𝑖
𝐴 + 𝒅𝒊𝒓𝑖

𝑅 + 𝝐, subject to a maximal turning angle (Figure 3.2B), where the 

noise 𝝐  is set as the vector 0.01 × 𝒅𝒊𝒓𝑖  rotated by 𝜖~𝑁(0,5)  degree. Although the 

influences of all prey in a triggered range are averaged, the priority of leading 

neighbours (Katz et al., 2011) is preserved by the setting of spreading angles. Through a 

dynamic change of these triggered ranges, an adaptive degree of the priority can be 

developed for survival benefit. 

3.2.3 Evolutionary Procedure 

The performance of a prey, or equivalently, its strategy as well as its NEAT 

chromosome, is evaluated based on the eaten times (the times that the predator touches 

it) and the overlapping times (the times that a prey overlaps its body with others). This 

design is to estimate the survival fitness and prevent the unrealistic interaction at the 

same time (Carlson, 1995). Specifically, the fitness value of prey 𝑖 is set as 

𝑢𝑖 = (1 − 𝑇𝑖
𝐸/𝑇𝐻) − 𝜆𝑇𝑖

𝑂/𝑇𝐻 ,    (3.5) 

where 𝑇𝑖
𝐸  and 𝑇𝑖

𝑂  denotes fish 𝑖 ’s total eaten times and total overlapping times, 

respectively, and 𝑇𝐻 is the total hunting attempts of the predator. Hence, 1 − 𝑇𝑖
𝐸/𝑇𝐻 is 

the survival probability of fish 𝑖 in a hunt. The multiplier 𝜆 is a penalty to handle the 

overlap-free constraint 𝑇𝑖
𝑂/𝑇𝐻 = 0. In the experiment, 𝑇𝐻 is set to 300 for a sufficiently 
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large sampling size; 𝜆 is set to 0.1 to allow few mistakes and reduce the evolutionary 

difficulty, which can effectively forbid unrealistic overlaps after about ten generations, 

as 0~2 times per agent per 10000 steps. 

The mapping from the fitness value to the reproduction probability in the original 

NEAT algorithm operates a niching technique to optimise the performance. This usage 

causes additional assumptions, however, when linked to the evolutionary mechanism in 

nature. To be more analogous with the natural selection, the exponential rank selection 

is adopted after the comparative experiments in Chapter 3.5.1. Given 𝑟𝑛𝑘(𝑢𝑖) as the 

rank of prey 𝑖’s fitness value in the population, the associated reproduction probability, 

𝑟𝑖, is 

𝑟𝑖 =
1.16−𝑟𝑛𝑘(𝑢𝑖)

∑ 1.16
−𝑟𝑛𝑘(𝑢𝑗)𝑁

𝑗=1

≈ 0.16 × 0.862𝑟𝑛𝑘(𝑢𝑖) (𝑔𝑖𝑣𝑒𝑛 𝑁 = 100).  (3.6) 

Based on the reproduction probabilities, 𝐾  pairs of prey agents are selected as the 

parents. Through the operation of crossover and mutation by the NEAT algorithm, 𝐾 

offspring of the selected parents are reproduced to replace the same amount of worst-

performed ones. These 100 − 𝐾  better-performed agents and 𝐾  offspring agents 

compose the population in the next generation. The replacement rate is set 𝐾 = 17 

according to the experiments in Chapter 3.5.1. 

3.2.4 Implementation of NEAT Algorithm  

The NEAT chromosome of each prey agent, 𝐶𝑖 = {(𝑙𝑚
𝑛 , 𝑤𝑖

𝑚𝑛)}, is a set of weighted links, 

where 𝑙𝑚
𝑛  is a link from node 𝑚 to node 𝑛, and the weight of this link in 𝐶𝑖 is 𝑤𝑖

𝑚𝑛. As a 

distinctive structure of the NEAT algorithm, each link is labelled an unique innovation 

number, 𝑥𝑚
𝑛 , in a global set, 𝐼𝑛𝑛𝑜 = {(𝑙𝑚

𝑛 , 𝑥𝑚
𝑛 )}, which records the time this link first 
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appears in the population (Stanley & Miikkulainen, 2002). By these innovation 

numbers, a NEAT network can be represented as a sequence of ordered links, or to say, 

a chromosome, so that it can be evolved by a genetic algorithm. The maximal 

innovation number of all links in 𝐶𝑖  is denoted as 𝐼𝑖
𝑀𝐴𝑋  and the maximal innovation 

number in the population is denoted as 𝐼𝑀𝐴𝑋. 

Based on the agent design, there are nine input nodes, labelled from 0 to 8, and four 

output nodes, labelled from 9  to 12 . The initialisation of each agent’s NEAT 

chromosome is 

𝐶𝑖
𝑎𝑠𝑠𝑖𝑔𝑛
←    {(𝑙0

9, 𝜖()), (𝑙0
10, 𝜖()),⋯ , (𝑙1

9, 𝜖()),⋯ , (𝑙8
12, 𝜖())} ,   (3.7) 

where 𝜖() is a generator of white noises, following the normal distribution N(0,0.01). In 

other words, the simplest network is built at beginning, by 36 weighted links from each 

input node to each output node. At the same time, the set of innovation numbers is 

initialised as 

𝐼𝑛𝑛𝑜
𝑎𝑠𝑠𝑖𝑔𝑛
←    {(𝑙0

9, 1), (𝑙0
10, 2),⋯ , (𝑙1

9, 5),⋯ , (𝑙8
12, 36)}.   (3.8) 

Hence, 𝐼𝑀𝐴𝑋 = 36, as well as 𝐼𝑖
𝑀𝐴𝑋 = 36, initially. 

There are two steps to reproduce an offspring chromosome (Stanley & Miikkulainen, 

2002). The first step is to generate a new chromosome by a crossover from the parents’ 

chromosomes, in order to inherit the beneficial network components of parents. The 

second step is to allow mutation of links and nodes with a small probability, by which 

operation beneficial innovations are possible to happen in evolution. The probabilities 

are suggested 0.08 for link mutation and 0.03 for node mutation (Stanley & 

Miikkulainen, 2002), which parameters are adopted in the model. 
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To implement the crossover, denoting the offspring as 𝐶𝑜 and its parents as 𝐶𝑖 and 𝐶𝑗, all 

links belonged to both 𝐶𝑖 and 𝐶𝑗 are inherited by 𝐶𝑜. Each of these links in 𝐶𝑜, said 𝑙𝑚
𝑛 , 

receives a weight value as 𝑤𝑖
𝑚𝑛 + 𝜖() or 𝑤𝑗

𝑚𝑛 + 𝜖() with even probability. For those 

links only owned by one parent, assumed 𝐶𝑖, they are inherited by 𝐶𝑜 as (𝑙𝑚
𝑛 , 𝑤𝑖

𝑚𝑛 + 𝜖()) 

with a given probability. This probability is set to 1.0 if this link’s innovation number, 

𝑥𝑚
𝑛 , is greater than 𝐼𝑗

𝑀𝐴𝑋; otherwise, it is set to 0.5. The motivation of this setting is to 

protect newly invented links for their potentials. 

After inheriting the links and weights from the parents, the offspring 𝐶𝑜 has a small 

probability to operate mutation. There are two kinds of mutations: the link mutation and 

the node mutation. To practise the link mutation, a link, said 𝑙𝑚
𝑛 , which is not belonged 

to 𝐶𝑜 but both node 𝑚 and node 𝑛 are in 𝐶𝑜, is created in 𝐶𝑜, with the weight 𝜖(). If this 

link appears in the population at the first time, it is given the innovation number 𝐼𝑀𝐴𝑋 +

1 and then added to the global innovation set, 𝐼𝑛𝑛𝑜. 

To practise the node mutation, a link belonged to 𝐶𝑜 is chosen, said  𝑙𝑚
𝑛 , and segmented 

into two links 𝑙𝑚
𝑡  and 𝑙𝑡

𝑛. That is to say, a node, 𝑡, and two links, 𝑙𝑚
𝑡  and 𝑙𝑡

𝑛, are created in 

𝐶𝑜 and the original link, 𝑙𝑚
𝑛 , is abandoned. If 𝑤𝑜

𝑚𝑛 > 0, the weights of  𝑙𝑚
𝑡  and 𝑙𝑡

𝑛, as 𝑤𝑜
𝑚𝑡 

and 𝑤𝑜
𝑡𝑛, are both set to the square root of  𝑤𝑜

𝑚𝑛. Otherwise, 𝑤𝑜
𝑚𝑡 is set to the square root 

of  |𝑤𝑜
𝑚𝑛| and then 𝑤𝑜

𝑡𝑛 = −𝑤𝑜
𝑚𝑡. This design guarantees 𝑤𝑜

𝑚𝑡 ×𝑤𝑜
𝑡𝑛 = 𝑤𝑜

𝑚𝑛, and hence 

the original function will not be largely affected after adding a node. After assigned the 

innovation numbers 𝐼𝑀𝐴𝑋 + 1 and 𝐼𝑀𝐴𝑋 + 2, respectively, both of these links are added 

to the global innovation set, 𝐼𝑛𝑛𝑜. 

As the last part of the implementation, the method to construct a neural network from a 

NEAT chromosome, 𝐶𝑖 = {(𝑙𝑚
𝑛 , 𝑤𝑖

𝑚𝑛)}, is as follows. At first, the default network is built 



58 
 

by 9 input nodes, labelled from 0 to 8, and 4 output nodes, labelled from 9 to 12. Then, 

the weighted links in 𝐶𝑖 are put into the network sequentially along the ascending order 

of their innovation numbers (Stanley & Miikkulainen, 2002). If adding a link, said 𝑙𝑚
𝑛 , 

to the network can cause a loop, for example, node 𝑚 to node 𝑛 to node 𝑡 back to node 

𝑚, 𝑙𝑚
𝑛  is treated as a recurrent link with a delay unit 𝑍−1  (Stanley & Miikkulainen, 

2002). By setting the delay unit, the value of node 𝑚 toward to node 𝑛 delays one time 

step. In other words, the value that node 𝑛 receives through link 𝑙𝑚
𝑛  is actually node 𝑚’s 

value at the previous step. On the one hand, this design is to prevent an infinite loop in 

the neural network; on the other hand, the capability of a neural network is extended due 

to the memories brought by these recurrent links. To operate a NEAT network in the 

proposed model, the values of the eight sensors and the offset node are directly set as 

the inputs, which values are generally between zero and one. Two output values of the 

network are multiplied by 𝑅𝑆 to represent the values of ℓ𝐴 and ℓ𝑅. The other two are 

multiplied by 150 degrees to represent the values of 𝜃𝐴 and 𝜃𝑅. Since the output values 

are handled numerically, the activation function of a node is set to only compress 

excessive values outside the range [0,1] and keep any value in this range unscaled. 

Table 3.2: Parameters of NEAT 

Name Value 

 Input nodes  9 

 Output nodes  4 

 Activation function 𝜑(𝑥) = {
0 , if 𝑥 < 0
1 , if 𝑥 > 1

    𝑥 , otherwise
 

 Recurrent links  YES 

 Node disability  NO 

 Pr. of link mutation  0.08 

 Pr. of node mutation  0.03 

 Noise  𝜖()~𝑁(0,0.01)  
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3.2.5 Originality of Model Design 

The concern of designing the proposed model is to accord with the popular modelling 

framework in this domain at the same time modifying those settings which have 

significantly caused biases. Four modifications based on this concern are as follows. 

The first one is that physical overlaps are highlighted and strictly forbidden by the 

penalty of individual fitness (Chapter 3.2.3). Comparatively, almost all previous models 

in this domain may overlook the influence of physical overlaps, and only smoothly 

reduced the frequency of overlaps by adding a repulsion force towards those extremely 

close neighbours (Schellinck & White, 2011). As demonstrated in the next Chapter, the 

overlap-free setting will reveal some novel evolutionary scenarios which were ignored 

in overlap-allowed models, 

The second modification is providing an open-ended solution space to the evolution of 

behavioural strategies by the NEAT algorithm. Ward et al. (2001) also evolved fish 

agents by an evolvable neural network, but only the weights of its neural networks were 

optimised during the evolutionary simulation. It implies the set of candidate strategies is 

still restricted although this set is larger and less easily understandable. Comparatively, 

the NEAT networks can be composed by unlimited links and nodes during the 

evolutionary simulation, which implies, theoretically, all possible mappings from the 

local information to the responses are included. Although the present model may be the 

first work to introduce an open-ended solution space into the evolutionary simulation of 

animal collective behaviour, it is not novel to evolve intelligent agents by NEAT or 

other algorithms with open-ended solution space (Ficici & Pollack, 1998; Bouffanais, 

2016). For example, Stanley & Miikkulainen (2004) evolves unreported chasing 
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strategies between two competitive robots by NEAT because of the advantage of its 

open-ended solution space.    

The third modification is that the parallel orientation behaviour, that is, following the 

neighbours’ directions, is abandoned and only the attraction and repulsion behaviours 

are provided to fish agents. The popular design of fish agents’ behaviours is based on 

the triggered ranges of the three predesignated elementary behaviours: attraction, 

repulsion and paralleling orientation (Schellinck & White, 2011). However, the setting 

of paralleling orientation has been disputed since only the attraction and repulsion 

behaviours can be observed in real fish (Parrish et al., 2002; Tien et al., 2004; Katz et 

al., 2011). On the other hand, Romanczuk et al. (2009) and Guttal et al. (2012) have 

demonstrated how locusts exhibit a collective motion only by individual attraction and 

repulsion. However, the displayed collective behaviours in these models are not 

reasonably similar to fish schools (Strombom, 2011). Based on the hints from the locus 

models, the traditional design of fish agents’ triggered ranges is modified with an 

additional spreading angle, so that the unrealistic parallel orientation behaviour can be 

abandoned. 

The forth modification is the design of local sensors. This consideration can be seen in 

Werner & Dyer (1993), Ward et al. (2001) and Olson et al. (2013), and hence is not 

originally proposed in the model. For example, the most similar implementation is in 

Olson et al. (2013). This work segments a fish agent’s sensing range into 100 sectors, 

each of which is detected by a binary sensing unit: if any fish neighbour is in the sector, 

the unit returns the value 1; otherwise, the value 0 is returned. The modification from 

this design is to reduce the sensing units from 100 into 3 (for the flow sensor) or 5 (for 

the visual sensor) by changing the binary signals into numeric signals. Through this 
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improvement, the number of a neural network’s input nodes is largely reduced so that 

the complexity to evolve an effective mapping from the input to the output, as an 

agent’s strategy, decreases considerably and the simulation outputs can be more 

stabilised and repeatable. 

3.3 Quantification 

To describe the emergent patterns in a spatial-explicit agent-based model, specific 

quantifications have been developed in many previous works (Parrish et al., 2002). For 

example, the degree of coordination in a fish aggregate is usually measured based on the 

addition of all individuals’ directions (Huth & Wissal, 1994; Couzin et al., 2002). 

According to the length of this sum vector, a moving school can be distinguished from a 

disordered swarm or a milling herd due to the large value. However, these metrics can 

only measure a single aggregate, and lose their effectiveness when fish flock into 

multiple groups. A simple instance is when two fish schools moving in opposite 

directions, in which case, the sum of their directions is mediated to a small vector, as the 

situation of a swarm. 

In the proposed model, fish agents are given the ability to leave their neighbours, as free 

as to herd together. Therefore, a state of multiple groups is a common situation during 

an evolutionary process. Instead of clustering these groups from a global view, the 

bottom-up metric, RPFC, is originally designed by the research work to quantify 

collective patterns simply and effectively, as drawn in Figure 3.3. The metric takes 

advantage of each agent’s sensory perceptions, by which an agent’s positional status, at 

each time step, can be categorised into one of the following six types: R, P, Fm, Fc, Cm 

and Cc (Figure 3.3). According to the average frequencies of these six positional types 
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in a population, three collective patterns can be identified, as the schooling pattern 

(composed of P, Fm and Fc), the swarming pattern (composed of Cm and Cc) and the 

dispersal pattern (composed of R). 

 
Figure 3.3: Categorisation of Positions 

Each fish agent at each step can be categorised into exactly one position: ranger (without 

neighbours in the sensory range), pioneer (schooling without leading neighbours), 

marginal follower (schooling with leading neighbours and without neighbours at some 

other side), central follower (schooling and surrounded by neighbours), marginal coward 

(not schooling, and not surrounded by neighbours) and central coward (not schooling, 

and surrounded by neighbours). This categorisation is based on an agent’s sensory 

perceptions, which ensures that an agent can recognise these positional differences. 

 

The implementation of the RPFC metric is as follows. If an agent’s five visual sensors 

are all zero, which means there is no neighbour in its sensory range, this agent reports 

its position as ‘ranger (R)’. For those agents with neighbours, an agent is considered 

‘schooling’ if  

𝑃𝐿(0°) > 𝜔(𝑃𝐿(120°) + 𝑃𝐿(240°)),    (3.9) 

where 𝜔 = 2 based on the experiment in Figure 3.4. This condition means an agent’s 

neighbours are on average in a direction similar to that of itself, and if the condition is 

not satisfied, the agent is considered ‘swarming’ at this step. 
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Figure 3.4: RPFC Metric vs. Group-level Index 

The model in Couzin et al. (2002) showed that the increase of ℓ𝑂, as a parameter of the 

tendency of parallel orientation, can lead the collective pattern to transit from a 

disordered swarm, via a milling group and a relatively disordered school, to a highly 

coordinated school, which outcome is duplicated as the visualisation. To quantify the 

degree of coordination, the length of the sum vector of all individuals’ directions was 

used in the referenced work, which measurement is duplicated as the black line. As a 

comparison, the proposed RPFC metric displays that the swarming pattern and the 

schooling pattern can also be recognised clearly given 𝜔 ≥ 2. Specifically, a disordered 

swarm and a milling herd cannot be separated by both of these two metrics, which was 

measured by another group-level metric in the referenced work. Besides, the relatively 

disordered school moves through the repulsion behaviours by overlapped agents, which 

is not a potential state in the proposed overlap-free model. 

 

 

Subsequently, for further analyses in the latter chapter, a schooling agent is subdivided 

into one of the three positions according to the information from its visual sensors: viz., 

‘pioneer (P)’, if 𝑃𝐸(0°) = 0, which means there is no neighbour in the front sector of 

144°; ‘central follower (Fc)’, if all of its five visual sensors are greater than zero, which 

means it is surrounded by neighbours; and ‘marginal follower (Fm)’ if none of the both. 

It should be noted that the ‘straggler’ of a moving school is not separated from 

followers, in consideration of the existence of a blind zone at the rear. Lastly, a 

swarming agent is subdivided into one of the two positions: ‘central coward (Cc)’, if all 

of its visual sensors are greater than zero, and ‘marginal coward (Cm)’, otherwise. The 

term ‘coward’ is chosen to describe swarming individuals according to the appearance 

that these agents prefer to hide in the crowd rather than being ‘pioneers’ or ‘rangers’. 
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Since the proposed categorisation is based on an agent’s two perceptions, it is 

guaranteed that these positional differences can be recognised by the fish agents. 

Although an agent often changes its position with time, the distribution of these 

positions in the population is highly stable, except when the population size is too small. 

Specific exceptions are when a ranger is followed by other agents in its blind zone, a 

follower is actually in a huge milling aggregate, and two parallel pioneers are not 

followed by other agents. These errors, however, are insignificant to the measured 

results in the model. Hence, more complicated categorisations are prevented. 

Apart from the proposed RPFC metric, the nearest neighbour’s distance (NND), as the 

distance between one and its nearest neighbour, is introduced to quantify the flocking 

degree of agents and the level of crowd density in a group. This metric has been widely 

used as a measurement of the crowding degree in animals (Parrish et al., 2002). There 

are k-NND metrics (Ballerini, 2008), as the kth nearest neighbour’s distance, to reduce 

the influence of exceptional situations, like pairs. Since there is no survival benefit to 

pairwise couples in the model, NND is adopted for its simplicity. 

3.4 Validation of Authenticity 

An ecological model can be significant only if it does not directly contradict the targeted 

natural system. This is reflected mainly from whether the settings in a model are 

supported by the empirical data (Parrish et al., 2002; Grimm et al., 2005; Schellinck & 

White, 2011). Here the authenticity of the proposed model is investigated with a 

comparison of the previous works. 
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3.4.1 The Sensory Perceptions 

As mentioned in Chapter 3.2.1, a fish’s eyes and lateral lines have been proven 

fundamental to its decision making (Partridge, 1982; Faucher et al., 2010), and the 

acquisition of information is local and limited (Olst & Hunter, 1970; Hoare et al., 2004). 

Previous evolutionary models of social agents, like Werner & Dyer (1993), Ward et al. 

(2001) and Olson et al. (2013), also designed a visual perception for their agents to 

make dynamic decisions based on local information, among which the agents in Ward 

et al. (2001) were even given a flow sensor, offering the function of lateral lines. 

According to the empirical data and the popular settings, the design of these perceptions 

in the proposed model should be valid and necessary. 

In contrast, the agents in Oboshi et al. (2003), Wood & Ackland (2007) and Ioannou et 

al. (2012) were designed to make static decisions without the reference to current 

surroundings. That is to say, an agent’s behavioural strategy has been decided once the 

agent is created, and cannot exhibit different responses under different surroundings, for 

example, being on the periphery or in the centre. This unrealistic limitation of decision 

making seems disputed when simulating the evolution of fish. 

3.4.2 The Elementary Behaviours 

Empirical studies have shown that attraction and repulsion are the two elementary 

behaviours when fish interact with one another (Partridge, 1982; Katz et al., 2011). The 

front priority, as the larger influence of those neighbours ahead, has also been observed 

from fish (Aoki, 1982; Katz et al., 2011). Many previous self-organising models have 

simulated these features effectively (Aoki, 1982; Huth & Wissel, 1994; Inada & 

Kawachi, 2002), where an additional behaviour, parallel orientation, was set in order to 
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simplify the interplay of the two elementary behaviours. However, this simplification 

has become disputed after more empirical studies were made (Parrish et al., 2002; Tien 

et al., 2004; Katz et al., 2011). 

The evolutionary models in Oboshi et al. (2003), Wood & Ackland (2007) and Ioannou 

et al. (2012) adopted the framework in Aoki (1982) and evolved certain parameters to 

simulate fish’s behavioural adaptation. Both of these works remained the disputed 

setting of individual paralleling. Other works, such as Ward et al. (2001) and Olson et 

al. (2013), evolved agents’ behaviour from a rather basic level, that is, deciding the 

moving direction based on the local information. The latter modelling style treats all the 

behavioural features of real fish as a consequence of adaptation and hence contains 

much fewer preconceived assumptions. However, possibly subject to the heavy 

complexity to develop sophisticated movements from such basic level, both of these 

works (as well as the earlier models in the present study based on this setting) cannot 

simulate the evolution of fish’s schooling behaviour. 

In consideration of the computational complexity and the empirical evidence, this 

model simulates a fish’s movement based on the predesignated attraction and repulsion 

behaviours, with a front priority of the referenced neighbours. Fish’s escaping 

behaviour during a close attack, which was designed in Inada & Kawachi (2002), Zheng 

et al. (2005) and Lee (2006) to investigate the morphology of fish schools, is discarded 

in the model. It is because the predator is set to draw a risk distribution proportional to 

an individual’s ‘domain of danger’ (Hamilton, 1971), and the predator-prey interaction 

during a physical attack is irrelevant to this concept. The issue is further explained in 

the next section. 
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3.4.3 The Predation Risk 

Hamilton (1971) proposed the concept, ‘domain of danger’, to estimate the predation 

risk on prey individuals. It is the area where a prey becomes the nearest one if a predator 

appears. Therefore, a prey with a large domain of danger implies it may incur higher 

predation risk. The positive correlation between the domain of danger and the predation 

risk has been supported by ecological evidence (Mooring & Hart, 1992; Viscido & 

Wethey, 2002; De Vos & O'Riain, 2010). However, there are also exceptions caused by 

specific predators. 

These exceptions have been mentioned even in Hamilton’s original paper, since the 

precondition of this concept is that the predator should hunt the nearest prey and only 

hunt one prey. This assumption does not hold if the predatory fish, for example, prefers 

to attack those prey in the central position. In this situation, the correlation between the 

domain of danger and the predation risk is reversed (Hamilton, 1971; Parrish, 1991). 

This kind of feeding preference has been observed in the pelagic ocean, as in sailfish 

(Domenici et al., 2014), thresher shark (Oliver et al., 2013) and killer whales (Simila & 

Ugarte, 1993). 

Considering the generality of this concept, most models about prey’s behavioural 

evolution still adopted the ‘domain of danger’ to simulate predation risk (Viscido, et al., 

2001; James et al., 2004; Wood & Ackland, 2007). On the other hand, there have been 

some works to simulate the evolution of prey under different hunting strategies (Hirsch 

& Morrell, 2011; Olson et al., 2016a). However, the outputs seem relatively less 
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informative at present, due to the lack of a strong connection with the natural 

adaptations in animals. 

To outline the general situation of gregarious fish’s behavioural evolution, the risk 

distribution in the present model still follows the concept of ‘domain of danger’. 

However, the limitation of this setting has been noticed in the above paragraphs. A 

comprehensive model of the coevolution between predators’ feeding strategies and 

prey’s collective patterns will be built in Chapter V. 

3.4.4 Other Issues 

The minimal turning radius of fish has been studied decades ago (Webb, 1976; 

Domenici & Blake, 1997). This radius, termed RT, draws the smallest circular path for a 

fish to turn around (Figure 3.5A), and is measured around 0.2 𝐵𝐿 in many species of 

prey fish, as well as predatory fish and cetaceans (Domenici, 2001). Geometrically, as 

shown in Figure 3.5B, this value is relevant to the maximal turning angle, θT, and the 

moving speed, SPD, as  

𝑅𝑇 = 𝑆𝑃𝐷/2/sin(𝜃𝑇)     (3.10) 

or 

𝜃𝑇 = asin(𝑆𝑃𝐷/2/𝑅𝑇).    (3.11) 

 

Unfortunately, almost all simulations of fish neglected this metric and only set the 

maximal turning angle and the moving speed intuitively. Hence, unrealistic values of an 

agent’s minimal turning radius are usually observed in the previous model. For 

example, in Couzin et al. (2002), the minimal turning radius of an agent is 2.88 𝐵𝐿 
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according to the settings that 𝜃𝑇 = 10 degrees and 𝑆𝑃𝐷 = 1 𝐵𝐿. In Olson et al. (2013), 

Olson et al. (2016a) and Olson et al. (2016b), this radius is 3.59 through 𝜃𝑇 = 8 degrees 

and 𝑆𝑃𝐷 = 1 𝐵𝐿. In Wood & Ackland (2007), the incorrect relation, 𝜃𝑇𝑆𝑃𝐷
2 = 12.5 was 

used, where 𝑅𝑇 = 2.31~286 𝐵𝐿  in its experimental range 𝑆𝑃𝐷 ∈ [1,5] . These 

unrealistically large radii directly affect the authenticity of the simulations. In the 

proposed model, the minimal turning radius is set 0.5 𝐵𝐿, the speed is set 0.12 𝐵𝐿 per 

step, and hence the maximal turning angle per step is derived as 7 degrees. 

 
Figure 3.5: Minimal Turning Radius 

The minimal turning radius, RT, draws the minimal circle for a fish to turn around, as in 

subfigure A. The relation between RT, the speed (SPD), and the maximal turning angle 

per step (θT) is displayed in subfigure B. 

 

 

The small amount of prey agents has been mentioned as unrealistic compared to the real 

fish school of countless individuals (Rohani et al., 1997; Parrish et al., 2002). Subject to 

the computational time, however, it is impractical to simulate thousands of agents. In 

this thesis, this criticism is addressed by the associated game-theoretic analyses of the 

simulation outputs. The derived results from these analyses are insensitive to the 

population size, which can be from 100 to infinite. Hence, these analyses support that in 

the proposed model, 100 agents are sufficient to represent the adaptation of countless 

individuals in a fish population. 
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Almost all of the related works designed their fish agents with a fixed moving speed 

(Schellinck & White, 2011), which is obviously unrealistic since a real fish can speed 

up and slow down. The only agent-based model which allowed its agents to adjust the 

speed is in Wood & Ackland (2007). It demonstrated that given a fixed predator speed, 

the adaptation of prey’s speed is influential to the evolutionary results. The setting of 

adaptive speeds is abandoned in the proposed model due to the computational difficulty. 

However, the influence of speed is included in the extensive model in Chapter V. 

 

3.5 Validation of Credibility 

To maintain reliable outputs in a noisy environment, relevant adjustments and 

parameter scans are made in this subchapter, including the choices of the selection 

scheme, the selection intensity and the replacement rate in the coming section, and the 

influences of other parameters. 

3.5.1 Alternative Selection Scheme 

In a genetic algorithm, crossover, mutation and selection are the three backbones of the 

computational performance (Haupt & Haupt, 2004). These components of the employed 

algorithm, NEAT, have been well analysed and validated by the original work (Stanley 

& Miikkulainen, 2002). However, the selection scheme in NEAT involves niching and 

speciation, which causes an inconsistency, or to say, additional assumptions, when 

natural selection and evolutionary selfishness are simulated. The proposed model 

abandons this selection scheme and chooses an alternative among three popular 

schemes which conform to the mechanism of individual selection. 
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The first candidate is the proportional fitness selection, which was the selection scheme 

of the original genetic algorithm in Holland (1975). This scheme is defined as 

𝑟𝑖 =
𝑚𝑎𝑥 (𝑢𝑖, 0)

𝐼𝑃𝐹

∑ 𝑚𝑎𝑥 (𝑢𝑗, 0)
𝐼𝑃𝐹𝑁

𝑗=1

,                                                  (3.12) 

where the maximum function is to discard negative values; 𝑢𝑖  and 𝑟𝑖  are the fitness 

value and the reproduction probability of agent i, respectively. 𝐼𝑃𝐹 is an index of the 

selection intensity, also termed the selection pressure, of this scheme (Blickle & Thiele, 

1995). When 𝐼𝑃𝐹 increases, the selection biases to the best few agents and reduces the 

diversity of a population. 

The second candidate is the exponential rank selection, which puts an exponential 

weight on the better-performed agents based on their ranks (Blickle & Thiele, 1995). 

Given 𝐼𝐸𝑅 is the index of this scheme’s selection intensity, and 𝑟𝑛𝑘(𝑢𝑖) is agent i’s rank 

in the population by its fitness value, this scheme defines the reproduction probability as 

𝑟𝑖 =
𝐼𝐸𝑅

−𝑟𝑛𝑘(𝑢𝑖)

∑ 𝐼𝐸𝑅
−𝑟𝑛𝑘(𝑢𝑗)𝑁

𝑗=1

.                                                     (3.13) 

The last candidate is the tournament selection (Goldberg & Deb, 1991), in which 

scenario the best agent among randomly selected 𝐼𝑇𝑅 agents is chosen. As the selection 

pressure increases with the size of the base group, the integer 𝐼𝑇𝑅 is also the index of 

this scheme’s selection intensity (Blickle & Thiele, 1995). Mathematically, the 

reproduction probability by this scheme is 

𝑟𝑖 =
𝐼𝑇𝑅
𝑁

∏
𝑁− 𝑟𝑛𝑘(𝑢𝑖) − 𝑗

𝑁 − 1 − 𝑗

𝐼𝑇𝑅−2

𝑗=0
.                                           (3.14) 
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It should be noted that, when the selection intensity is sufficiently high, the exponential 

rank selection and the tournament selection can draw extremely similar distributions 

over the reproduction rates in a population (Blickle & Thiele, 1995). However, these 

selection schemes are significantly different given low selection intensity. For example, 

when 𝐼𝑇𝑅 = 2, the tournament selection is reduced to the linear rank selection (Goldberg 

& Deb, 1991; Blickle & Thiele, 1995; Reeves, 2003), as 

𝑟𝑖 =
2

𝑁
×
𝑁 − 𝑟𝑛𝑘(𝑢𝑖)

𝑁 − 1
=

2

𝑁(𝑁 − 1)
[𝑁 − 𝑟𝑛𝑘(𝑢𝑖)].                           (3.15) 

This distribution cannot be considerably fitted by the exponential rank selection with 

any selection intensity. Hence, these two selection schemes are both kept as candidates.  

To experiment the robustness of these candidates in the proposed model, the average 

NND of the population in the 200th generation is chosen to be the index. The reason is 

as follows. As overlaps are forbidden by a hard punishment on the fitness value, agents 

quickly adapt to isolation and this tendency results in a large NND. However, flocking 

without overlaps, which implies a small NND, is more adaptive than being isolated 

because of the smaller domain of danger (Hamilton, 1971). From the computational 

aspect, it is a difficulty to develop a flocking behaviour and avoid overlaps at the same 

time. Hence, the performance of a selection scheme can be measured by the average 

NND of a population in an early generation. The 200th generation is chosen since it is 

long enough for agents to develop the tactic to flock without overlaps at the same time 

spending short computational time. However, other reasonable choices of the 

representative generation are insensitive to the findings. 
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Figure 3.6: Performance of Selection Schemes 

As flocking without overlaps is an adaptive strategy with a computational difficulty, the 

average NND of the population in the 200th generation is used as the performance index 

(the lower the better). Given a selection scheme with certain selection intensity, 100 

simulations were run and hence 100 performance indices were collected. Under this 

selection intensity, the associated point in the red solid line plots the median of these 100 

simulations’ performance indices, and the plus and minus symbols are the first quantile 

and the third quantile, respectively. The test of the three selection schemes, as subfigures 

A to C, suggests that the exponential rank selection with the selection intensity 1.16 and 

the tournament selection with the selection intensity 13 are both the best. Since the 

selection intensity of both values are sufficiently high, it can be observed that their 

distributions are in fact almost the same, as plotted in subfigure D. 

 

 

Given a selection scheme and its selection intensity, 100 simulations are made to collect 

their NND values in the 200th generation. The efficiency and robustness of the scheme 

and its given intensity are reflected by the distribution of these NND values. That is to 

say, if these simulations result in similar values, the robustness is excellent, and if most 

of them output a small NND, the efficiency is high. The experiment shows that when 

the selection intensity is set too small, the efficiency is affected, but when the selection 

intensity is considerably large, the consistency of simulation outputs is extremely low 

(Figure 3.6). Specifically, the NND value is much higher by the proportional fitness 

selection scheme (Figure 3.6 C), which means the preference of this scheme is the worst 

in the proposed model. The two best choices are the exponential rank selection with 
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𝐼𝐸𝑅 = 1.16 and the tournament selection with 𝐼𝑇𝑅 = 13, both of which provides high 

robustness and efficiency (Figure 3.6A & Figure 3.6B). By plotting the reproduction 

probabilities of these two settings (Figure 3.6D), it is observed that they draw almost the 

same distribution, where only the first one-third agents have a considerable chance to 

reproduce their offspring. In the proposed model, the exponential rank selection with 

𝐼𝐸𝑅 = 1.16 is used to replace the original niching selection scheme in NEAT. 

 
Figure 3.7: Performance of Replacement Rates 

Subfigure A shows that the outputs are highly consistent regardless the replacement rate. 

The only affected factor is the efficiency. However, from the close inspection, as the 

small plot, the performance of K=17% is slightly better than the other ones, especially 

compared to the extremely large values, as shown in subfigure B. 

 

 

The replacement rate, K, as the proportion of eliminated agents per generation, may 

influence the performance of a genetic algorithm (Syswerda, 1991; Vavak & Fogarty, 

1996). The test based on the exponential rank selection with 𝐼𝐸𝑅 = 1.16 shows that, in 

the proposed model, the efficiency is enhanced with the increase of K, and the 

robustness keeps well in all the experimental range (Figure 3.7A). When the 

replacement rate is extremely large, however, the average NND increases slightly, 

which may result from the premature situation (Figure 3.7B). According to this test, the 

replacement rate in the proposed model is set 17%. One reason is that this value 

performs slightly better than the extremely large values and is more efficient than the 
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smaller ones. The other reason is that the evolutionary trajectory is a main concern of 

the research and this value preserves the transitions better than the larger values. 

3.5.2 Other Parameter Scans 

The arena length is fixed to 500 BL in the present model. However, it does influence the 

risk distribution in the environment. A smaller arena aggravates the risk on the school 

margin (P and Fp), and a larger arena endangers the peripheral agents of a swarm (Cm). 

From the view of the risk distribution, a larger arena is similar to a slower predator, and 

vice versa (Figure 3.8). Since the analogy from the arena length to the natural 

environment is less obvious than the predator speed, this parameter is fixed in the 

proposed model. 

 
Figure 3.8: Risk Distribution by Arena Length 

The influence of the arena length to the predation risk is displayed by a comparison with 

the predator speed. Since the risk of rangers is always high and the risk of central 

positions is nearly zero, only the relations between the risks of pioneers (XP), marginal 

followers (XFm) and marginal cowards (XCm) are shown: the blue curve shows the 

condition XP = XFm , the light orange curve is XFm = XCm  and the dark brown curve is XP 

= XCm. When the arena length increases, the risk distribution is influenced as the predator 

speed becomes slower. For example, the risk distribution of 500 BL arena length and 1.8 

SPD predator speed is similar to that of 800 BL arena length and 5 SPD predator speed. 

In all other experiments in this thesis, the arena length is fixed at 500 BL so that only the 

influence of different predator speeds is experimented. This experimental range is shown 

by the grey vertical line.  

 

 

The influences of the prey speed (SPD) and the minimal turning radius (𝑅𝑇), as well as 

the maximal turning angle calculated by 𝑎𝑠𝑖𝑛 (𝑆𝑃𝐷/2/𝑅𝑇) , are insensitive given a 
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reasonable range of their values. Specifically, a larger speed and a smaller minimal 

turning radius, both of which enlarge the maximal turning angle, may cause an 

evolutionary failure due to the difficulty of making precise movement decisions. On the 

other hand, a small moving speed aggravates the computational time; a large minimal 

turning radius affects the flexibility of agents and violates the empirical data (Domenici, 

2001). The insensitive ranges of these parameters are 0.06~0.15 𝐵𝐿 per step for SPD and 

0.05~2.00 𝐵𝐿 for RT. 

The influence of the sensory range is as follows. The area of a blind zone does not 

obviously affect the simulation in the wide range 0°~90° , where the number of 

subgroups increases gradually given a larger blind zone. Although the simulation 

outputs are insensitive to this setting, it is kept in order to accord with the previous 

works and empirical data (Schellinck & White, 2011). About the sensory radius, this 

parameter is generally uninfluential to the result in the range 9𝐵𝐿 < 𝑅𝑆 < 21𝐵𝐿 . 

However, a large 𝑅𝑆 imposes a heavy load on the computational time due to the increase 

of neighbours in the sensory range. On the other hand, a small 𝑅𝑆 enhances the number 

of subgroups. It should be noted that since the influence of a neighbour is designed 

inversely proportional to the square of its distance, a larger 𝑅𝑆 is not equal to receiving 

the information from a wider area. 

Lastly, about the role of the white noise, 𝝐, although a few models have emphasised its 

importance (Schellinck & White, 2011), this parameter is dispensable in the model. It is 

because the difference between each agent’s NEAT chromosome has caused a similar 

effect. If this additional noise is added, agents need more space to avoid overlaps so that 

the number of subgroups increases. In the present model, the noise is set small, which 

propose is only to simulate random walks of isolated agents. 
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3.6 Discussion 

Simulation of fish’s behavioural evolution has been a rising topic in Ecology. However, 

the design of a model usually relies on certain ecological knowledge, and hence 

different predetermined settings have led to different, or even contradictory, simulation 

outputs. In this Chapter, efforts to construct an evolutionary model with fewer 

preconceived biases are from the two aspects: the open-ended solution space to evolve 

strategies and the validation of model settings based on the related concerns. 

In the present model, the behavioural strategy of a prey agent is a course of reactions to 

the local surroundings. In other words, it is a mapping from local information to the 

elementary behaviours. In previous works, only a small range of potential strategies 

were chosen to simulate the behavioural evolution of fish, which directly caused a bias 

as the influence of other strategies outside this range were neglected. This work 

introduces the NEAT algorithm to reduce the bias of a predesignated strategy set. 

Because this algorithm evolves its neural networks in an open-ended search space 

without the limitation of complexity, a prey agent is theoretically possible to adopt any 

strategy, as the mapping from the acquired local information to the given behaviours, 

for its fitness. This contribution further provides the present model a capability to 

evolve beneficial strategies which have not been reported. 

For the rest of model settings, according to the ecological concern, the authenticity and 

credibility of the proposed model is analysed carefully. About its authenticity, most 

settings of the model are highly consistent to the empirical data, and its unrealistic 

simplifications are also reported. About its credibility, the insensitive range of each 

parameter is reported, and the robustness of this model against noises is experimented 
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and optimised. Specifically, this work emphases the influence of selection schemes in 

ecological modelling, which issue was neglected in almost all evolutionary simulations 

in this field. These experiments may highlight the importance of these techniques in 

ecological modelling. 

It is a fact that every model is a simplification of its targeted system and there must be 

unrealistic settings in a model. For example, the constant speed and round body shape 

of every prey agent in the proposed model are different from the real fish, the arena in 

this model is a 2-dimentional plane rather than a 3-dimentional space, and the sensors 

designed for the agents are also simplified. Although these simplifications have been 

widely adopted in the related works (Schellinck & White, 2011), they may still cause a 

qualitative deviation from the real system to the simulation output. The aim of this work 

is to propose a model which has avoided some considerable biases in previous models, 

so that it can simulate the underlying mechanism of fish’s behavioural evolution more 

convincingly. In future works, whether any of the adopted simplifications in the present 

model is qualitatively influential in evolution will be studied (discussed in Chapter 

6.3.1). 
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CHAPTER IV 

EVOLVING THE ADAPTIVE STRATEGY OF PREY FISH 

 

 

This chapter addresses the second main research question, about whether the evolution 

of prey fish’s schooling pattern can be demonstrated and explained under individual 

selection, by investigating the four specific research questions: 

 Can schooling evolve under a selective force on individuals?  

 What is the adaptive strategy which causes the schooling pattern?  

 What is the profit earned from this strategy? 

 In what environment can this strategy be evolutionarily stable? 

Based on the spatial-explicit agent-based model outlined in Chapter III, the simulation 

demonstrates that, given selection at the individual level, the selfish herd scenario 

(Hamilton, 1971) is a fundamental mechanism in evolution. That is to say, prey agents 

always prefer to be at the protected centre rather than the dangerous boundary. This 

preference then leads the population into disordered swarms, that is, relatively 

stationary aggregates in which agents exhibit a low degree of coordination. 

Interestingly, as the selective force keeps falling on the agents, these swarms will finally 
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become too crowded for marginal agents to occupy the safe centre. In this situation, 

schooling consistently emerges due to an unreported adaptive strategy, named 

‘collective departure’: leaving the risky boundary with few companions to expose 

interior agents. Through the game-theoretic analysis, one can interpret how ‘collective 

departure’ brings survival fitness to a prey individual by sharing the predation risk with 

others. Moreover, a prediction is also proposed on the evolution of gregarious prey 

under various conditions. 

This chapter reveals some novel viewpoints on the evolution of fish's collective motion. 

First, fish schools can evolve by the force of individual selection, regardless of the 

group benefit. Secondly, schooling can be a self-organising phenomenon by the 

adaptive strategy for local interaction: ‘collective departure’. Thirdly, the biased risks 

among positions within a group can be the essential factor for fish to evolve into a 

schooling pattern. 

4.1 Background 

Schooling is a coordinated movement of gregarious fish that can be commonly observed 

in open waters (Breder, 1967; Shaw, 1978). Formation of this collective motion has 

been known as a self-organising phenomenon. In other words, fish only interact with 

their nearby neighbours, and these local interactions indirectly lead to the emergence of 

a schooling pattern (Couzin & Krause, 2003; Sumpter, 2006). Various self-organising 

models have demonstrated how simple behaviours to interact with adjacent individuals 

can result in this coordinated movement. This may be due to a fish aligning itself with 

its neighbours (Aoki, 1982; Couzin et al., 2002) or a fish chasing its leading neighbours 

(Huth & Wissel, 1994; Strombom, 2011). 
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Previous experiments have shown that the degree of coordination is enhanced when fish 

individuals are in danger of predation (Seghers, 1974; Magurran & Pitcher, 1987; Tien 

et al., 2004). Hence, survival pressure is considered the primary force for fish to adapt 

to this collective motion (Krause & Ruxton, 2002). To explain further why schooling 

has evolved under survival pressure, traditional focuses are mainly put on benefits to 

schooling groups. For example, the dilution effect, confusion effect, and information 

transfer effect are all on the basis that schooling can mitigate predatory attacks towards 

individuals in an aggregate (Krause & Ruxton, 2002). 

However, the benefit of a whole group cannot be regarded as the direct evolutionary 

reason for a schooling pattern, since the force of natural selection is on individuals 

rather than groups (Hamilton, 1971; Parrish & Edelstein-Keshet, 1999; Sumpter, 2009). 

Those explanations underlining the group benefit may neglect that competition does not 

only appear as fish in a school versus fish not belonging to it, but also presents among 

fish in the same school. Specifically, in a moving aggregate, those fish at the front edge 

bear higher predation risk than their followers (Bumann et al., 1997; Krause et al., 

1998). Besides, marginal fish are usually in more danger than central ones (Hamilton, 

1971; Parrish, 1991). These biased positional risks may allow selfish individuals to 

profit from occupying secure positions within a group (Hamilton, 1971; Parrish & 

Edelstein-Keshet, 1999). This possibility implies that, given the selective force at the 

individual level, a pattern with higher group benefit can be replaced by a worse one 

(Smith, 1982). 

To understand how schooling can evolve through individual selection, self-organising 

models combined with a genetic algorithm have relatively recently begun to simulate 

the adaptation of schooling behaviour, like Ward et al. (2001), Oboshi et al. 
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(2003),Wood & Ackland (2007) and Ioannou et al. (2012). So far, previous models have 

not taken the ‘internal competition’ into account, as the ability of an agent to recognise 

its position is limited or lacking in these models. This limitation omits the competition 

among individuals in the same group, and, as explained in the preceding paragraph, can 

mislead the evolutionary force away from the individual level. 

Recent studies have begun to explain the adaptation of collective motion by individual 

difference and leadership. Since fish in a group can have different needs, information or 

endowments (Krause et al, 1998; Krause et al, 2000; Couzin et al., 2011), it is inferred 

that these differences can cause a certain sub-group of ‘leaders’ to lead the group 

(Couzin et al., 2005; Conradt et al., 2009; Couzin et al., 2011). Some evolutionary 

models based on, or close to, this perspective have also been proposed (Conradt & 

Roper, 2009; Guttal & Couzin, 2010; Eshel et al., 2011). These viewpoints assumed that 

there are social roles and leadership in a fish school. However, there is scant evidence to 

support that fish’s schooling pattern under predation risk relies on the role of leaders 

(Partridge, 1980; Hoare et al., 2004). 

By connecting a self-organising model with the NEAT algorithm (Stanley & 

Miikkulainen, 2002), an evolutionary model was built in Chapter III. To address the 

research questions in this chapter by the model, its three essential features are 

emphasised as follows. First, decision making of agents is dynamically based on the 

local surroundings. Secondly, potentially profitable strategies can be developed 

automatically without a predesignated strategy set. Thirdly, overlaps between two 

agents' bodies are strictly forbidden, rather than a smooth control by a repulsive force as 

in most of the previous models (Schellinck & White, 2011). 
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4.2 Method 

In the simulation, a fixed number of prey agents (100 agents) are put into a 2D 

wrapped-around arena to interact with one another. Each agent adopts a strategy, 

implemented by the NEAT neural network (Stanley & Miikkulainen, 2002), to make 

movement decision based on its local surroundings. The movement decision can be 

attraction (approaching the neighbours), repulsion (avoiding the neighbours), or the 

interplay between these two. The endowment of each prey agent is identical, for 

example, same body length (1BL), same moving speed (1SPD), and so on. The 

predation risk of these agents is distributed by a rule-based ‘unbeatable’ predator. This 

predator always chases the nearest prey during a predatory hunt until touching one. 

Then it is reallocated randomly to start another hunt. The predator’s speed (PS) is an 

experimental parameter from 1.125 times to 5 times faster than the prey speed. This 

setting implies that the predation risk of a prey agent is positively correlated to its 

domain of danger, that is, the area where one becomes the nearest prey to the predator 

(Hamilton, 1971). 

Survival fitness of each prey agent is defined as the survival probability per hunt, 

subject to the overlap-free constraint, that is, 𝑢𝑖 = (1 − 𝑇𝑖
𝐸/𝑇𝐻) − 𝜆𝑇𝑖

𝑂/𝑇𝐻 (as formula 

3.5), where 𝑇𝑖
𝐸  and 𝑇𝑖

𝑂  are the eaten times and overlapping times of an agent, 

respectively. 𝑇𝐻 represents the predator’s hunting times. The multiplier λ is a penalty to 

take the constraint 𝑇𝑖
𝑂/𝑇𝐻 = 0 into account. After ranking by each agent’s fitness value, 

the worst 17 agents are eliminated, and substituted by 17 offspring of well-performed 

agents. Then, the process is repeated 1500 times, or to say, 1500 generations. (Details 

are provided in Chapter III) 
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To quantify the output of the simulation, the proposed RPFC metric in Chapter III is 

adopted to categorise an agent’s position, at each step, into the following six types: 

‘ranger’ (R), as an agent with no neighbour, ‘pioneer’ (P), as an agent at the front edge 

of a school, ‘marginal follower’ (Fm), as an agent at the other edge of a school, ‘central 

follower’ (Fc), as an agent in the centre of a school, ‘marginal coward’ (Cm), as an 

agent on the boundary of a disordered swarm, and ‘central coward’ (Cc). (Details are 

provided in Chapter III) 

Based on this categorisation, four properties of the collective behaviour exhibited by a 

prey population are measured as follows. The first property is the positional frequency, 

which is defined as the ratio of the appearance times of a certain position to the 

appearance times of all the six positions. For example, given the following observation: 

at step 0, 10 prey agents are ‘rangers’, 20 prey agents are ‘pioneers’, and 70 prey agents 

are at other positions; at step 1, 20 agents are ‘rangers’, 30 agents are ‘pioneers’, and 50 

agents are at other positions, then the frequency of the ‘ranger’ position is (10 +

20)/200 = 15%, the frequency of the ‘pioneer’ position is (20 + 30)/200 = 25% and 

the other four positional frequencies are (70 + 50)/200 = 60%  in total. In the 

simulation, the positional frequencies are measured based on 30000~50000 steps, so the 

expected frequencies can well represented. 

The second property is the frequency of an emergent pattern, that is, the dispersal, 

schooling or swarming pattern. It is the summation of the associated positional 

frequencies: the dispersal pattern’s frequency is equal to the frequency of the ‘ranger’ 

position, the schooling pattern’s frequency is the sum of the frequencies of the 

‘pioneer’, ‘peripheral follower’ and ‘central follower’ positions, and the swarming 
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pattern’s frequency is the sum of the frequencies of the ‘peripheral coward’ and ‘central 

coward’ positions. 

The third property is the positional risk, which means the probability of being eaten at a 

certain position per step (Bumann et al., 1997; Krause et al., 1998). It is not directly 

related to the survival probability, which is measured by 1 − 𝑇𝑖
𝐸/𝑇𝐻  in the proposed 

fitness function, where 𝑇𝑖
𝐸/𝑇𝐻 estimates the probability that prey i will be eaten during a 

predatory hunt, regardless of time steps. The risk of a certain position is measured as the 

ratio of the times the predator catches prey at this position to the appearance times of the 

position. The six positional risks are denoted by 𝑋𝑅 , 𝑋𝑃 , 𝑋𝐹𝑝, 𝑋𝐹𝑐 , 𝑋𝐶𝑝, 𝑋𝐶𝑐, respectively. 

The fourth property is the probabilities of positional changes. In the simulation, this 

probability is measured at the individual level. Taking the probability of changing from 

the ‘marginal coward’ position to the ‘pioneer’ position, that is, 𝑝𝑟(𝐶𝑚 → 𝑃) , for 

example, a certain prey’s 𝑝𝑟(𝐶𝑚 → 𝑃) is measured by the times it changes from the 

‘marginal coward’ position to the ‘pioneer’ position over the times it is at the ‘marginal 

coward’ position. 

4.3 Result 

4.3.1 Emergence of the Schooling Pattern 

In the experimental range of the predator speed, 578 simulations out of the total 600 

simulations demonstrate that the frequency of the schooling pattern is in the majority 

(exceeding 50%) in the final generation, and is usually significantly higher than the 

swarming pattern and the dispersal pattern (Figure 4.1A). Thus, the first question of this 

chapter is answered here. At this stage, prey agents form elongated moving groups, in 
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which the central positions are scant. In other words, agents are all on the margin of 

their schools, either being pioneers or marginal followers (Figure 4.1B). Specifically, 

when the predator speed is greater than 1.8 (organised as fast-predator situations), the 

faster the predator, the higher the frequency of the swarming pattern emerges (Figure 

4.1C). However, the majority is still the schooling pattern. 

 

 

     

Figure 4.1: Positional Frequencies at the Final Stage 

Subfigure A shows the majority of the apparent patterns in the final generation is 

schooling, regardless of the predator speed. Subfigure B and C show the detailed 

positional frequencies in the schooling pattern and swarming pattern, respectively. The 

vertical dotted line at 1.8 divides the results into slow-predator and fast-predator 

situations. These panels are plotted by 600 simulations in the range 1.125 ≤ 𝑃𝑆 ≤ 5. 

 

 

 

 

As shown in Figure 4.2, a typical evolutionary trajectory (75% of the simulations) is 

from isolated agents (stage I, named the ‘dispersal stage’ as the isolated agents do not 

form cohesive groups), via moving flocks (stage II, named the ‘grouping stage’ as small 
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cohesive herds have been observed) and few huge swarms where prey agents try to 

enter the central position with a low degree of coordination (stage III, named the 

‘swarm stage’ due to the high frequency of the swarming pattern), to a few schooling 

groups where prey agents move in coordination and lead to a collective motion (stage 

IV, named the ‘stable school stage’ due to the extremely high frequency of the 

schooling pattern). These four stages are organised in Table 4.1. The transition from the 

‘swarm stage’ to the ‘stable school stage’ can last longer than 500 generations in fast-

predator situations (PS>1.8), but the ‘stable school stage’ can be reached consistently 

before the 1000th generation. 

 

 

Figure 4.2: Emergent Patterns in Evolution 

The curves in subfigure A plot the medians of the associated frequencies among the 

simulation instances, where the bars show the interquartile ranges. It displays that the 

emergent patterns in an evolutionary trajectory consistently form four stages 

sequentially: dispersal stage (I), grouping stage (II), swarm stage (III), and stable school 

stage (IV), irrespective of a slow predator (PS<1.8) or a fast predator (PS>1.8). 

Subfigure B provides a visualisation of these four stages.  
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Table 4.1: The Four Evolutionary Stages 

Sequence Name 
Major Collective 

Pattern 

Stage I Dispersal Stage The Dispersal Pattern 

Stage II Grouping Stage The Schooling Pattern 

Stage III Swarm Stage The Swarming Pattern 

Stage IV Stable School Stage The Schooling Pattern 

 

4.3.2 Transition of Adaptive Strategies  

Evolution at the individual level is a gradient process of selection and adaptation among 

slightly variant strategies, that is, NEAT neural networks, so that the prey population in 

each generation is relatively homogeneous and the positional distributions among 

individuals are similar (Figure 4.3A). In other words, there is no considerable subgroup, 

such as permanent leaders of a school, observed in the simulations. During an 

evolutionary trajectory, the adaptive strategies in a prey population are developed and 

replaced sequentially, which lead to the emergence of the four stages at the population 

level (Figure 4.3B). The development and transitions of these strategies are discussed as 

follows. 

Within the first ten generations, since hard punishment is applied to the overlapping 

behaviour, those agents prefer to overlap their bodies with neighbours, by the attraction 

behaviour, are eliminated quickly. Hence, it is observed that an offspring will carry on 

the preference of repulsion (Figure 4.4A), which causes the early stage to be full of lone 

rangers (R) (Figure 4.3A). This ‘avoidance strategy’ (Figure 4.4A) is an adaptation to 

the overlap-free constraint. From now on, the overlapping times are measured less than 

2 times per agent per 10000 steps (𝑇𝑖
𝑂/𝑇𝐻 < 2 × 10−4), and hence prey agents will 

develop their strategies only based on the survival fitness, as their eaten times. 



89 
 

 

Figure 4.3: Positional Frequencies at the Individual Level 

Subfigure A shows the evolution of the six positional frequencies at the individual level. 

In each heat map, there are 100 rows, each of which represents one prey’s positional 

frequency. It can be observed that the prey population in every generation is generally 

homogeneous without considerable evolutionary branches. Subfigure B shows the 

frequency of patterns per prey agent by combining the corresponding positional 

frequencies, where the blue colour is used if the frequency of ‘ranger’ is greater than 

50%. This panel can be connected to the four stages observed at the population level. 

Moreover, it shows each of these stages is composed of relatively homogeneous prey 

agents. These panels are plotted based on a representative simulation given PS=1.8. The 

qualitative results given other predator speeds are the same. 

 

 

 

The first transition observed in the present simulations is that aggregated prey will 

invade isolated ones (Figure 4.2 and Figure 4.3, from I to II). In the dispersal stage, it is 

measured that being a pioneer of a school (P) has the lowest positional risk, as well as 

those followers (Fm) also incur lower risk than lone rangers (R) (Figure 4.5A). As 

analysed by Turner & Pitcher (1986), when the risk of being in groups is less than that 

of being in isolation, evolution will favour prey which live in groups. The simulations 

demonstrated that prey evolve to facilitate group formation by pursuing the neighbours 

ahead of it (being a follower) and being repelled by the rearward neighbours (being a 
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pioneer) (Figure 4.3A and Figure 4.4B). This ‘pursuit-escape strategy’, similar to what 

observed in locust aggregation (Romanczuk et al., 2009), then leads to a higher 

frequency of the schooling pattern and a lower frequency of the dispersal pattern at the 

population level, and converts the dispersal stage into the grouping stage (Figure 4.2A 

and Figure 4.3B, from I to II). The transition from isolated prey to gregarious prey has 

been demonstrated in many previous works such as Turner & Pitcher (1986), Reluga & 

Viscido (2005) and Olson et al. (2013), and the causation has been known as the 

‘dilution effect’ (Turner & Pitcher, 1986; Krause & Ruxton, 2002), that is, the larger the 

group an agent is in, the smaller chance it will be the victim of one predatory attack, 

which is known as the dilution effect.  

 

Figure 4.4: Adaptive Strategies in Evolution 

The adaptive strategies of prey agents are visualised along the four stages. About the 

'collective departure strategy’, only the tactic when being on the margin of a swarm (Cm) 

is displayed, since it is the most important tactic of this strategy. Neighbours in the red 

range will trigger the focal fish’s attraction behaviour, in the blue range will trigger its 

repulsion behaviour, and hence, in the purple range will cause a parallel movement 

mediated by repulsion and attraction. The white area is outside the sensory range. These 

panels are plotted through an input-output mapping of the evolved NEAT networks given 

PS=1.8. The qualitative results given other predator speeds are the same. 
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The second transition observed in the present simulations is that a swarming pattern will 

replace a schooling pattern if the marginal prey are available to enter the safe centre 

(Figure 4.2 and Figure 4.3, from II to III). At the grouping stage, prey agents flock into 

moving groups by the ‘pursuit-escape strategy’. Under this situation, it is measured that 

pioneers (P) become more at risk than are followers (Fm and Fc) (Figure 4.5B). Agents 

thus evolve to reduce their frequencies of being pioneers by the preference of being 

attracted to the rearward neighbours (from Figure 4.4B to Figure 4.4C). Due to the lack 

of pioneers, the schooling groups are also converted to disordered swarms (Figure 

4.3A), which scenario has been described and considered as the ‘paradox of 

individuality’ in Parrish & Edelstein-Keshet (1999). Since the centre of these swarms 

(Cc) is the safest position in the present model (Figure 4.5C), prey agents keep evolving 

to be attracted to all of its neighbours, except extremely close ones (Figure 4.4C), so 

that the probability of moving into the interior of a crowd is maximised (Figure 4.6A, 

from II to III). As a result of this adaptation, prey agents form few huge stationary 

swarms at the population level, as visualised in Figure 4.2B.  

So far, the evolutionary trajectory in the present simulation is consistent to the 

prediction in Hamilton (1971) and similar to the demonstrations in Viscido et al. (2002), 

Reluga & Viscido (2005), Olson et al. (2013) and so on. Since this transition has been 

well known as the ‘selfish herd scenario’ (Hamilton, 1971), the adaptive strategy to 

cause this transition is termed ‘selfish herd strategy’.  
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Figure 4.5: Frequency-dependent Risk Distribution 

The positional risk, defined as the probability of being eaten per step at a certain 

position, is frequency-dependent, that is, depending on the frequencies of the six 

positions (or the three patterns, in general). For example, when schooling is in the 

majority, that is, the frequency of the schooling pattern exceeds 50%, pioneers are more 

at risk than marginal followers. However, when the majority is a dispersal pattern or a 

swarming pattern, the risk of pioneers is less than marginal followers. It is worth 

mentioning that both schooling and swarming patterns are self-organised. That is to say, 

the higher the frequency of a schooling pattern, the safer is the marginal position of a 

school (P and Fm), which phenomenon also exists in the swarming pattern. Additionally, 

being a lone ranger (R) is always dangerous and being in the protected centre (Fc and 

Cc) is extremely safe. 

 

 

Prevalent spread of the ‘selfish herd strategy’ then cause those swarms denser and 

denser as more agents prefer to occupy the central position (Figure 4.7). In previous 

models, it will result into a compact swarm where physical overlaps among prey agents 

are frequent (Olson et al., 2013; Reluga & Viscido, 2005). However, because overlap is 

specifically forbidden in the present model, the centre of a swarm will finally become 

too compact for marginal agents to enter. For example, when the average NND (nearest 

neighbour’s distance) among swarming prey is less than 4 BL in the simulation (Figure 

4.7), it is measured that the probability of entering the swarm centre decreases gradually 

(Figure 4.6A). In this situation, adopting ‘selfish herd strategy’ cannot reduce a 

marginal agent’s predation risk since entering the centre of a swarm becomes extremely 
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difficult. Even worse, this agent will keep staying at the periphery of its swarm, bearing 

the predatory attacks towards the group, and providing those central members a risk-

free position (Figure 4.5C). 

 

Figure 4.6: Probabilities of Positional Changes 

The following three probabilities of positional changes are measured at the individual 

level. Panel A shows the probability to enter the swarm centre (Cc) from the swarm 

margin (Cm). Panel B shows the probability to leave the swarm margin as a pioneer with 

companions. Panel C shows the probability to leave the swarm margin as an isolated 

ranger. The broken lines divide the evolutionary trajectory into the four stages as shown 

in Fig 4.2. The probabilities are measured based on a simulation given PS=1.8. Similar 

distributions of these probabilities can be found in other simulations. 

 

 

At this point, the third evolutionary transition is originally demonstrated by the present 

work: the schooling pattern will replace the swarming pattern if marginal prey are 

unavailable to enter the safe centre (Figure 4.2 and Figure 4.3, from III to IV). At the 

late swarm stage, since the agent on the border of a swarm is difficult to reduce its 

predation risk by moving into the crowded centre (Figure 4.6A), prey then develop a 

tricky strategy, as leaving the compact swarm together (Figure 4.6B), to earn relative 
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fitness by exposing those interior neighbours and sharing the risk with the exposed ones 

(analysed in the latter subchapter). As the positional change from a marginal coward 

(Cm) to a ranger (R) seriously aggravates the predation risk (Figure 4.5C), a marginal 

coward evolves to play this trick only if it has sufficient companions (three in the 

present model) (Figure 4.4D) to avoid being a long ranger (Figure 4.6C). This adaptive 

strategy is named 'collective departure strategy'. As more agents adopt this strategy and 

avoid being on the periphery of a swarm, these swarms will finally be replaced by 

schooling groups at the population level (Figure 4.2). At the same time, the frequency of 

central positions decreases to an extremely low level (Figure 4.7). 

 

Figure 4.7: Density and Frequency of Swarm Centre 

The decrease of NND (the nearest neighbour’s distance) shows that the ‘selfish herd 

strategy’ is crowding the swarm centre and increasing the level of crowd density in the 

swarm centre. Then, since a growing number of prey agents develop ‘collective 

departure strategy’ to leave the swarm border, the frequency of the ‘central coward’ 

position decreases until there is no central position in swarms. In particular, fast 

predators (PS>1.8) will cause a denser swarm compared to slow predators (PS<1.8). 

 

 

The ‘collective departure strategy’ (denoted as CDS) can be sophisticated in order to 

adapt to different surroundings. As listed in Figure 4.8, the most important tactic is that 

when a CDS agent is on the periphery of a swarm (Cm), it will leave the border only 

when a few companions (three or more) are behind. Otherwise, it will turn back to the 
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swarm border to prevent itself from being isolated. Comparatively, when a CDS agent is 

on the boundary of a school (P and Fm), it prefers to maintain its position even if the 

companions are less than three, to prevent itself from falling behind the moving group. 

When a CDS agent becomes a ranger (R), it is attracted to any apparent neighbours. 

When being in the protected centre (Fc and Cc), it moves in coordination with 

neighbours to narrow the distance between itself and adjacent ones. 

 

Figure 4.8: CDS’s Adaptation to Different Positions 

It is observed that the ‘collective departure strategy’ responds to prey neighbours 

variously at different positions. For example, when a CDS prey is schooling, it keeps 

aligning with its neighbours even if they are less than three. Comparatively, a CDS prey 

at the swarm border only aligns with its neighbours if they are more than three. This 

strategy has not been reported in previous works and is originally demonstrated by the 

proposed model with an open-ended search space. 
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4.4 Analysis 

When being on the boundary of a compact swarm, a prey adopting SHS (selfish herd 

strategy, Figure 4.3C) will keep staying on the periphery, instead of entering the centre. 

In contrast, a prey adopting CDS (collective departure strategy, Figure 4.3D) will leave 

the border with sufficient companions. The simulation has demonstrated that CDS can 

replace SHS and finally reaches the stable school stage (Figure 4.2), which reason has 

been described as adding predation risk to those exposed neighbours. This issue is 

investigated here through a game-theoretic analysis, to answer the last two research 

questions in this chapter. 

4.4.1 Collective Departure Scenario 

In a population of 𝑁 prey, given that there are 𝑁𝑆 schooling individuals, hence, 𝑁 −𝑁𝑆 

individuals are in disordered swarms. In a swarm, there are two positions, as marginal 

cowards (Cm) and central cowards (Cc), bearing the predation risk (probability of being 

eaten per step) 𝑋𝐶𝑚 and 𝑋𝐶𝑐, respectively. In a school, three positions were categorised, 

as pioneers (P), marginal followers (Fm), and central followers (Fc). Here these 

positions are simplified into one, as pioneers (P), since the risk of marginal followers 

(Fm) is relatively similar to that of pioneers (P) (Figure 4.5), and the central position 

(Fc) of the elongated groups is rare (Figure 4.1B). The positional risk of pioneers is 

denoted as 𝑋𝑃, which represents the risk of being in a school thereafter. It should be 

noted that a prey’s fitness is the survival probability per predatory hunt, which is 

different from the positional risk. 

Given the event that prey i is eaten at a certain step as Ei, the probability of this event, 

𝑝𝑟(𝐸𝑖), then depends on this prey’s position at this step, which value is the associated 
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positional risk. Comparatively, the survival probability of prey i can be represented as 

1 − 𝑝𝑟(𝐸𝑖|𝐸), where E is the event of a successful hunt at a certain step, or equivalently, 

the event that at least one prey is eaten at a certain step. The probability of event E can 

be represented by 

𝑝𝑟(𝐸) = 𝑝𝑟(𝐸1 ∪ 𝐸2 ∪⋯∪ 𝐸𝑁).   (4.1) 

Since the predator is set catching one prey per hunt in the present model, the probability 

of two prey being eaten at the same step is zero, or to say, prey individuals being eaten 

are mutually exclusive events: 

∀𝑖 ≠ 𝑗 , 𝑝𝑟(𝐸𝑖 ∩ 𝐸𝑗) = 0.    (4.2) 

Hence, the probability of a successful hunt at a certain step, 𝑝𝑟(𝐸) , is a simple 

summation of all prey’s positional risks: 

𝑝𝑟(𝐸) = ∑ 𝑝𝑟(𝐸𝑖)
𝑁
𝑖=1 .     (4.3) 

The survival probability of prey i, as the probability prey i not to be eaten given a 

successful hunt, then can be represented by 

𝑢𝑖 = 1 − 𝑝𝑟(𝐸𝑖|𝐸) = 1 −
𝑝𝑟(𝐸𝑖∩𝐸)

𝑝𝑟(𝐸)
=

𝑝𝑟(𝐸𝑖)

𝑝𝑟(𝐸)
=

𝑝𝑟(𝐸𝑖)

∑ 𝑝𝑟(𝐸𝑗)𝑗
  (4.4) 

where, based on equations (4.2) and (4.3), 

𝑝𝑟(𝐸𝑖 ∩ 𝐸) = 𝑝𝑟[𝐸𝑖 ∩ (𝐸1 ∪ 𝐸2 ∪⋯∪ 𝐸𝑁)] = 𝑝𝑟[(𝐸𝑖 ∩ 𝐸1) ∪ (𝐸𝑖 ∩ 𝐸2) ∪ ⋯∪ (𝐸𝑖 ∩ 𝐸𝑁)]

= 𝑝𝑟(𝐸𝑖 ∩ 𝐸𝑖) = 𝑝𝑟(𝐸𝑖). 

If a peripheral prey of a compact swarm plays SHS, it then keeps its position at the 

swarm border (Cm) and bears the corresponding predation risk, 𝑋𝐶𝑚. As derived above, 
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its survival probability is one minus 𝑝𝑟(𝐸𝑖) over ∑ 𝑝𝑟(𝐸𝑗)𝑗 , where 𝑝𝑟(𝐸𝑖) = 𝑋𝐶𝑚 as its 

positional risk. Since there are 𝑁𝑆 schooling prey, the summation of all prey’s positional 

risks  is 

∑ 𝑝𝑟(𝐸𝑗)
𝑁
𝑗=1 = 𝑁𝑆𝑋

𝑃 +𝑀𝑋𝐶𝑚 + (𝑁 − 𝑁𝑆 −𝑀 )𝑋𝐶𝑐  (4.5) 

where 𝑀 denotes the number of marginal cowards (Cm), which value will be estimated 

latter, so that 𝑁 −𝑁𝑆 −𝑀 is the number of central cowards (Cc) (Figure 4.9). Since 𝑋𝐶𝑐 

is nearly zero (Figure 4.5), the probability can be estimated as 

𝑝𝑟(𝐸) ≅ 𝑁𝑆𝑋
𝑃 +𝑀𝑋𝐶𝑚 .    (4.6) 

Hence, the survival fitness of adopting SHS at the swarm periphery is 

𝑢𝑆𝐻𝑆 = 1 −
𝑋𝐶𝑚

𝑁𝑆𝑋
𝑃 +𝑀𝑋𝐶𝑚

 .                                              (4.7) 

To qualitatively set the value of 𝑀, as the number of marginal cowards (Cm), it is 

assumed that the 𝑁 − 𝑁𝑆 swarming prey form a round compact swarm, which area is 

𝑁 − 𝑁𝑆 BL2 (Figure 4.9). Hence, the radius of this swarm is 

𝜋𝑟2 = 𝑁 −𝑁𝑆  ⟹ 𝑟 = √(𝑁 − 𝑁𝑆)/𝜋.   (4.8) 

Then, the number of marginal cowards can be calculated through the area of this 

swarm’s margin, which width is 1BL (Figure 4.9): 𝑀 = 𝜋𝑟2 − 𝜋(𝑟 − 1)2 . Since 𝑟 =

√(𝑁 − 𝑁𝑆)/𝜋, it can be derived that 

𝑀 = 𝜋𝑟2 − 𝜋(𝑟 − 1)2 = 2𝜋𝑟 − 𝜋 = √4𝜋(𝑁 − 𝑁𝑆) − 𝜋. (4.9) 
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Figure 4.9: An Idealised Circular 2D Swarm 

To estimate the number of marginal cowards (Cm) in a swarm, it is assumed that the 

swarm is an ideal circular group which area is the sum of swarming prey’s body sizes, 

that is, 1BL2.  Then, given marginal cowards form a margin with the width 1BL, the 

amount of prey in this margin can be estimated as in equation (4.9). 

 

 

Instead of staying on the periphery of a swarm, a marginal prey adopting CDS will 

leave the swarm and attracts a few followers, which then results in another survival 

probability: 𝑢𝐶𝐷𝑆 = 1 − 𝑝𝑟(𝐸′𝑖)/∑ 𝑝𝑟(𝐸′𝑗)𝑗 , where 𝑝𝑟(𝐸′𝑖) = 𝑋𝑃 as this prey has changed 

its position from a marginal coward to a pioneer. Given the number of this prey and its 

companions as 𝑛, since 𝑛 swarming prey, including itself, now become schooling, the 

new environment consists of 𝑁 −𝑁𝑆 − 𝑛 prey in swarms and 𝑁𝑆 + 𝑛 prey in schools, and 

the summation of all prey’s positional risks becomes 

∑ 𝑝𝑟(𝐸′𝑗)
𝑗

= (𝑁𝑆 + 𝑛)𝑋𝑃 +𝑀′𝑋𝐶𝑚 + (𝑁 − 𝑁𝑆 − 𝑛 −𝑀′)𝑋𝐶𝑐 ≅ (𝑁𝑆 + 𝑛)𝑋𝑃 +𝑀′𝑋𝐶𝑚 

(4.10) 

where, similar to the derivation in equations (4.8) and (4.9), 

𝑀′ = √4𝜋(𝑁 − 𝑁𝑆 − 𝑛) − 𝜋 . 

Therefore, the survival probability of adopting CDS and departing from the swarm 

periphery is 
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𝑢𝐶𝐷𝑆 = 1 −
𝑋𝑃

(𝑁𝑆 + 𝑛)𝑋𝑃 +𝑀′𝑋𝐶𝑚
 ,                                       (4.11) 

According to equations (4.7) and (4.11), the parameters which affect the values of 𝑢𝐶𝐷𝑆 

and 𝑢𝑆𝐻𝑆 are N, n, 𝑁𝑆 and the 𝑋𝑃 𝑋𝐶𝑚⁄  ratio, where N is 100 by the model setting and n 

is observed around 8 from the simulation. (The parameter n must be greater than four 

since a CDS agent only leaves the periphery with three or more companions as shown in 

Figure 4.4D, and there can be more companions outside its sensory range.) Therefore, 

as drawn in Figure 4.10A, the relation between 𝑢𝐶𝐷𝑆  and 𝑢𝑆𝐻𝑆  only depends on the 

frequency of schooling pattern (𝑁𝑆 𝑁⁄ , as the x-axis) and the  𝑋𝑃 𝑋𝐶𝑚⁄  ratio in the 

environment (as the y-axis). When 𝑢𝐶𝐷𝑆 > 𝑢𝑆𝐻𝑆, which means adopting CDS can gain 

better fitness than SHS for a marginal coward (Cm), the evolution should drive more 

prey to develop CDS with generations and increase the frequency of the schooling 

pattern at the population level (Figure 4.10A). On the other hand, when 𝑢𝐶𝐷𝑆 < 𝑢𝑆𝐻𝑆, 

adopting CDS and leaving the margin of a swarm is less beneficial, and hence prey 

should evolve to adopt SHS and lead to the collective swarming pattern (Figure 4.10A). 

 

  

Figure 4.10: Adaptive Dynamic of CDS 

The black curve is the theoretical upper bound for CDS to be more adaptive than SHS, 

by setting 𝑁 = 100 and 𝑛 = 8. Since n is set to 8, the condition that 𝑁𝑆 > 92, as the grey 

area in panel A, is neglected. In panel B, the 𝑋𝑃 𝑋𝐶𝑚⁄  ratios measured from the 

simulation are compared with the theoretical borderline, where there is no experimental 

data collected in the grey area. Panel B explains the different adaptive dynamics 

observed in the agent-based simulations. In slow-predator situations (PS<1.8), the 

environmental ratio is always lower than the upper bound, which implies pure CDS is an 

evolutionarily stable strategy. In fast-predator situations (PS>1.8), the environmental 

ratio exceeds the upper bound if the proportion of schooling prey is too large, which 

implies a mixed strategy of CDS and SHS, to let the frequency of schooling less than 1, 

is evolutionarily stable. 
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By comparing the measured 𝑋𝑃 𝑋𝐶𝑚⁄  ratio in the simulations to the theoretical 

boundary, it is evident that in slow-predator situations (PS<1.8), the environmental 

𝑋𝑃 𝑋𝐶𝑚⁄  ratio is always located in the area where 𝑢𝐶𝐷𝑆 > 𝑢𝑆𝐻𝑆 (Figure 4.10B). In other 

words, in slow-predator situations, CDS is always more beneficial than SHS for a 

marginal prey, despite the frequency of the schooling pattern. Such result indicates that, 

given a slow predator, CDS dominates SHS, and hence pure CDS is evolutionarily 

stable. The evolutionary dynamic is that, the frequency of the schooling pattern 

increases with generations and, theoretically, reaches 100% because CDS is always 

more beneficial to marginal cowards than SHS. 

On the contrary, in fast-predator situations (PS>1.8), the ratio 𝑋𝑃 𝑋𝐶𝑚⁄  can go above the 

theoretical borderline when the frequency of schooling pattern is extremely high (Figure 

4.10B). Prey should evolve to adopt a mixed strategy of CDS and SHS, to decrease the 

frequency of the schooling pattern and to let the environmental ratio equal the upper 

bound. This mixed strategy is evolutionarily stable since when the proportion of CDS in 

the population increases, the frequency of the schooling pattern also increases and the 

environmental ratio then exceeds the upper bound, which causes CDS inferior to SHS. 

Similarly, the increasing proportion of SHS in the population also causes SHS inferior 

to CDS. Compared with the slow-predator situation, where pure CDS is evolutionarily 

stable, the analysis has well explained why the frequency of the schooling pattern at the 

final stage decreases gradually when PS>1.8 (Figure 4.1). 
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4.4.2 Exceptions of Collective Departure Scenario 

In contrast to the above collective departure scenario, many species of animals still 

exhibit ‘selfish herd strategy’ and form disordered swarms in front of predators 

(Vulinec, 1990). This divergence can be due to the following three conditions. 

The first condition is that the environmental 𝑋𝑃 𝑋𝐶𝑚⁄  ratio, as the degree of predators’ 

preference to hunt schooling groups, is higher than the theoretical bound. In this case, 

adopting CDS is less beneficial than adopting SHS so that evolution cannot favour CDS 

and the corresponding schooling pattern (Figure 4.10A). In the present model, where the 

predator is set always chasing the nearest prey, the 𝑋𝑃 𝑋𝐶𝑚⁄  ratio is observed to increase 

along the predator speed (Figure 4.10B). Hence, when the predator speed is sufficiently 

high, the large 𝑋𝑃 𝑋𝐶𝑚⁄  ratio will let the swarming pattern be evolutionarily stable. For 

example, when PS = 3 , there can be an evolutionarily stable strategy to cause the 

swarming pattern in the majority (Figure 4.10B).  It should be noted that the above 

relationship between the predator speed and the risk ratio is just a modelling feature by 

setting the predator always chasing the nearest prey. The essential factor is the risk ratio 

distributed by the predator’s feeding preference. 

The second condition is that the central position is also dangerous. In this case, leaving 

the periphery and exposing interior neighbours cannot harm others’ fitness. Similar to 

the derivation in the previous section, letting 𝑋𝐶𝑐 = 𝑋𝐶𝑚, the probability of being eaten 

in a hunt then becomes 

𝑢𝑆𝐻𝑆 = 1 −
𝑋𝐶𝑚

𝑁𝑆𝑋
𝑃 + (𝑁 − 𝑁𝑆)𝑋

𝐶𝑚
,                                           (4.12) 
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𝑢𝐶𝐷𝑆 = 1 −
𝑋𝑃

(𝑁𝑆 + 𝑛)𝑋𝑃 + (𝑁 −𝑁𝑆 − 𝑛)𝑋𝐶𝑚
                                     (4.13) 

where 𝑢𝐶𝐷𝑆 > 𝑢𝑆𝐻𝑆 if and only if 𝑋𝑃 𝑋𝐶𝑚⁄ < 1. The derivation is that 

 𝑢𝐶𝐷𝑆 = 1 −
𝑋𝑃

(𝑁𝑆+𝑛)𝑋
𝑃+(𝑁−𝑁𝑆−𝑛)𝑋

𝐶𝑚 > 𝑢𝑆𝐻𝑆 = 1 −
𝑋𝐶𝑚

𝑁𝑆𝑋
𝑃+(𝑁−𝑁𝑆)𝑋𝐶𝑚

 

 ⟹ 𝑋𝑃[𝑁𝑆𝑋
𝑃 + (𝑁 −𝑁𝑆)𝑋

𝐶𝑚] < 𝑋𝐶𝑚[(𝑁𝑆 + 𝑛)𝑋𝑃 + (𝑁 − 𝑁𝑆 − 𝑛)𝑋𝐶𝑚] 

 ⟹ (𝑋𝑃 − 𝑋𝐶𝑚)[𝑁𝑆𝑋
𝑃 + (𝑁 − 𝑁𝑆 − 𝑛)𝑋𝐶𝑚] < 0 

where 𝑁𝑆𝑋
𝑃 ≥ 0 , and (𝑁 − 𝑁𝑆 − 𝑛)𝑋𝐶𝑚 ≥ 0  because 𝑁 −𝑁𝑆 − 𝑛  is the number of 

swarming prey after the departure of a CDS prey and its companions. Hence, 𝑋𝑃 𝑋𝐶𝑚⁄ <

1 is derived. As 𝑋𝑃 represents the risk of a schooling prey and 𝑋𝐶𝑚 = 𝑋𝐶𝑐 is the risk of a 

swarming prey, this condition means when the group benefit of schools is higher than 

that of swarms. 

According to the measured positional risks in fast-predator situations (Figure 4.6, also 

Figure 4.4C), the 𝑋𝑃 𝑋𝐶𝑚⁄  ratio is greater than 1 when 𝑁𝑆 𝑁⁄ < 50%, or to say, when the 

swarming pattern is in the majority. It implies ‘collective departure strategy’ cannot 

invade ‘selfish herd strategy’ if there is no biased risk within a swarm. In other words, 

pure ‘selfish herd strategy’ should be evolutionarily stable in the case of dangerous 

centres. In nature, central positions may really be unsafe, since natural predators usually 

consume multiple prey continuously during a hunt (Parrish, 1991), which can indirectly 

reduce the utility of ‘collective departure strategy’. 

The third condition is that squeezing into the centre remains an option. In the present 

model, a marginal prey cannot enter the centre unless there is enough space to avoid 

overlaps. It may not be the case of some species, like in a wide variety of insects 
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(Vulinec, 1990). For those species, a marginal individual is possible to squeeze into the 

centre by pushing away its neighbours. In this case, the predation risk among swarming 

members is equal, as 𝑝𝑋𝐶𝑚, where 0 < 𝑝 < 1 is the probability of being pushed to the 

periphery. Similar to the derivation and explanation of the second condition, ‘collective 

departure strategy’ is more beneficial than ‘selfish herd strategy’ if and only if 

𝑋𝑃 𝑋𝐶𝑚⁄ < 𝑝 and hence pure ‘selfish herd strategy’ should be evolutionarily stable. 

The detailed derivation of the above statement is as follows: 

𝑢𝐶𝐷𝑆 = 1 −
𝑋𝑃

(𝑁𝑆 + 𝑛)𝑋𝑃 + (𝑁 − 𝑁𝑆 − 𝑛)𝑝𝑋𝐶𝑚
> 𝑢𝑆𝐻𝑆 = 1 −

𝑝𝑋𝐶𝑚
𝑁𝑆𝑋

𝑃 + (𝑁 − 𝑁𝑆)𝑝𝑋𝐶𝑚
 

⟹𝑋𝑃[𝑁𝑆𝑋
𝑃 + (𝑁 − 𝑁𝑆)𝑝𝑋

𝐶𝑚] < 𝑝𝑋𝐶𝑚[(𝑁𝑆 + 𝑛)𝑋𝑃 + (𝑁 − 𝑁𝑆 − 𝑛)𝑝𝑋𝐶𝑚]         

⟹ (𝑋𝑃 − 𝑝𝑋𝐶𝑚)[𝑁𝑆𝑋
𝑃 + (𝑁 − 𝑁𝑆 − 𝑛)𝑝𝑋𝐶𝑚] < 0 ⟹ 𝑋𝑃 𝑋𝐶𝑚⁄ < 𝑝 < 1.           (4.14) 

As explained in the derivation of the second condition, 𝑁 −𝑁𝑆 − 𝑛 ≥ 0 because it is the 

number of remaining cowards in the swarm after the collective departure of n prey. 

4.5 Discussion 

The findings of this research reveal that schooling can evolve under a selection pressure 

at the individual level, through the competition for safer positions within a group. As a 

complement to the selfish herd story (Hamilton, 1971), it is demonstrated that: when a 

selfish herd finally becomes too dense to provide refuge to outer prey, ‘collective 

departure strategy’, as to demolish others’ refuge, will invade ‘selfish herd strategy’ and 

reach its evolutionary stability. This adaptation then leads to the emergence of schooling 

pattern, even if the group benefit may decrease. Compared with explanations based on 
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group benefit, this interpretation may be more consistent with the principle of natural 

selection. 

In nature, schooling fish is observed to form compact groups under predatory threats 

(Partridge, 1982; Couzin & Krause, 2003), in which the unsuccessful attempt of 

marginal followers to enter the protected centre is also reported in the early literature 

(Springer, 1957). It is also informed by Iain D. Couzin that the Atlantic silverside 

(Menidia menidia) and the sunbleak (Leucaspius delineatus) exhibit a character similar 

to the ‘collective departure strategy’, that fish leaving a group will return if not 

followed, but if followed by a sufficient number of neighbours will continue to leave. 

These observations may be evidence to support the collective departure scenario, and 

leave hints for further inspection on the proposed adaptive strategy of schooling fish. 

The analysis shows a potential to predict the equilibrium of other group-living animals 

in different conditions. However, it should be emphasised that the model simplifies 

evolution into the competition among prey individuals by the setting that the predator is 

unbeatable but unable to influence the amount of prey population. It is to describe the 

situation of gregarious fish in open waters, where predators are much stronger than the 

prey and the prey is abundant (Parrish, 1991). Regarding other predator-prey 

interactions, the competition between prey and predators may also play a critical role in 

their evolutionary dynamic. In this case, further extension of this collective departure 

scenario may be necessary. 
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CHAPTER V 

COEVOLUTION BETWEEN PREY FISH AND PREDATORS 

 

 

This chapter addresses the third main research question, about the influence of 

predators’ adaptation to the evolution of schooling, by investigating the four specific 

research questions:  

 How to model the behavioural coevolution between predators and prey? 

 Are there evolutionarily stable states in the coevolution system? 

 What are the adaptive strategies of predators and prey in a stable state? 

 Are predatory fish and cetaceans really cooperative? 

Based on the collective departure scenario proposed in Chapter IV, a simplified model 

is built for the behavioural coevolution between prey fish and their predators. The 

model demonstrates that this coevolution system contains evolutionarily stable states 

(also termed ‘stable states’ or ‘ESSs’ thereafter). These ESSs are reachable from other 

states, and once any of these states are attained, no small proportion of predators or prey 

can gain excess fitness by another strategy. Generally, in a stable state, prey fish form 

the schooling pattern and predatory fish exhibit the tactic of ‘marginal predation’ 
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(Parrish, 1991), that is, feeding those marginal prey rather than the central ones. An 

exception is that when the predators are much stronger than the prey (which is described 

in the following sections). In this case, attacking the central prey becomes the adaptive 

hunting strategy in a stable state, by which prey are more likely to form stationary 

swarms but the schooling pattern is still in the majority. As discussed in Chapter 5.5, 

these outputs are consistent to the natural predator-prey interaction in open waters. 

Therefore, it is inferred that certain features of the hunting tactics adopted by predatory 

fish and cetaceans can be explained by evolutionary selfishness, or to say, by individual 

selection without additional mechanisms. 

This chapter reveals some novel viewpoints on the behavioural coevolution between 

prey fish and their predators. First, fish schools can evolve even if their predators’ 

feeding preferences are also adaptive. Secondly, the appearance of marginal predation 

in a wide range of predatory vertebrates can be an adaptation in evolution. Thirdly, the 

various hunting strategies of predatory fish and cetaceans in the pelagic ocean can be 

illustrated by evolutionary selfishness. 

5.1 Background 

The interaction between gregarious fish and their predators in the open ocean is a 

striking phenomenon. At the prey side, vigilant fish form a collective schooling pattern 

in response to the predatory attacks (Magurran & Pitcher, 1987). At the predator side, 

dramatic hunting strategies have been developed by many species of predatory fish and 

cetaceans. For example, sailfish and swordfish wield their elongated bills to slash at a 

prey aggregate (Domenici et al., 2014), thresher sharks lash their tails to whip a fish 

group (Oliver et al., 2013), dolphins herd prey fish into a milling baitball (Vaughn-
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Hirshorn et al, 2013), and humpback whales expel air bubbles to centralise prey fish for 

its feeding (Wiley et al., 2011). 

At present, advanced studies of this interaction are biased to the prey side. For example, 

self-organising models have explained how the schooling pattern can emerge from 

fish’s local interactions (Aoki, 1982; Couzin et al, 2002). The survival benefit of this 

formation has also been reported from many aspects, like the dilution effect, confusion 

effect and information transfer effect (Krause & Ruxton, 2002). About the adaptive 

dynamic in evolution, the model in Hamilton (1971) has explained the flocking 

tendency under individual selection. Following this work, various agent-based models 

have been proposed to demonstrate potential evolutionary trajectories of the collective 

motion when fish confront a survival hazard (Ward et al., 2001; Wood & Ackland, 

2007; Olson et al., 2013). 

However, these evolutionary models, as well as the work in Chapter IV, all simulated 

the evolution of prey agents by a predefined distribution of the predation risk. This 

distribution is usually drawn by a prey’s domain of danger (Hamilton, 1971), or 

equivalently, by a predator which always chases the nearest prey and only feed one prey 

per hunt. Although an evolvable predator was designed in Olson et al. (2013), its 

adaptation is from random walks to chasing the nearest prey. Unfortunately, in the 

marine world, this generalisation of predation risk is not always suitable (Hamilton, 

1971; Parrish, 1991). For example, a wide range of primary predators in the pelagic 

ocean have developed the preference to attack those prey at the central position (Simila 

& Ugarte, 1993; Oliver et al., 2013; Domenici et al., 2014). Under this situation, is prey 

fish’s schooling pattern still evolutionarily stable? 
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Obviously, both the prey and the predators have undergone the selection and adaptation. 

As predators’ feeding preferences should drive the evolution of prey aggregation, prey’s 

collective behaviours should also affect the development of predators’ hunting tactics. 

This reciprocal influence forms a coevolution system of the behavioural strategies. 

However, related works to simulate this behavioural coevolution are rare at present. 

Few attempts to model this coevolution system seem to be limited and incomplete due 

to the considerable difficulty of representing potential hunting strategies. For example, 

Olson et al. (2016b) simulated the adaptation of predators by evolving the hunting path, 

which output was only a preference between isolated prey and aggregated prey. These 

simple tactics carry little information about the sophisticated behaviours of marine 

predators. 

To address this difficulty, this work formulates the predators’ hunting strategies from an 

ex post view. The model abandons mimicking predators’ spatial movements. Instead, 

since all hunting attempts eventually end in feeding, a strategy of predators can be 

treated as a risk distribution on different positions of a prey aggregate. Two advantages 

of this mapping are as follows. First, the various hunting behaviours, which seem 

impossible to be considered comprehensively, are projected to certain distributions of 

positional risks. Through this projection, the strategy set at the predator side can be well 

defined and hence, the analysis of evolutionary stability in the system becomes 

practical. Secondly, the connection between natural hunting strategies and their 

associated risk distributions, as the most arbitrary part of this mapping, is independent 

from the theoretical analysis and can be investigated by further ecological experiments. 
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5.2 Model 

The proposed model in this chapter is an extension of the findings in Chapter IV. In 

other words, this model simulates the adaptations of predators and prey based on the 

preconceived knowledge: collective departure scenario. The reason that the 

simplification is made rather than using the spatial-explicit model in Chapter III is 

because the spatiotemporal simulation cannot withstand the scope of the following 

experiments, for its computational time. 

The model in this chapter can be divided into three components: viz. the adaptation of 

prey, the emergent pattern through a self-organising mechanism, and the adaptation of 

predators, where the self-organising part is relatively tedious. For a reader-friendly 

layout, the explanation of the self-organising mechanism is left in Chapter 5.2.3 for a 

further interest. 

5.2.1 Model Framework 

The former chapter has shown that the schooling pattern of prey fish can be 

evolutionarily stable given that entering the central position is unavailable. It has been 

demonstrated and analysed that in a wide range of environments, the collective 

departure strategy, as leaving the periphery of a swarm and being a schooling prey, is 

more adaptive than the selfish herd strategy, which tactic is equal to staying at the 

periphery and protecting those central ones. Hence, the swarming pattern is converted to 

the schooling pattern by the adaptation of collective departure. This dynamic was 

referred to as the collective departure scenario. (Details are provided in Chapter IV) 
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However, the influence of the biased risks within a school was omitted in the analysis, 

because the rule-based predator in the simulation leads to an insignificant difference of 

the risks on a school’s internal positions. This simplification cannot be universal when 

other distributions of predation risk are drawn. According to the scenario stated in 

Parrish & Edelstein-Keshet (1999), this model extends the collective departure scenario 

by an additional transition: schooling prey can be replaced by swarming prey if the 

predation risk biases to the front position of a school significantly. Under this situation, 

all schooling prey prefer to be followers so that no one can lead the group. Based on 

these two scenarios, the self-organising mechanism of the present model is designed. 

That is to say, moving schools can become stationary herds if every individual shirks 

from being a pioneer. At the same time, stationary herds can be replaced by moving 

schools if every individual adopts the collective departure strategy. 

In the model, a prey’s strategy (ci) is a set of probabilities of its positional changes, and 

a predator’s strategy (xj) is the feeding preference among prey’s positions. Based on the 

positional changes in the prey population, the collective pattern, D, emerges through the 

self-organising mechanism. A prey’s survival fitness is reflected from its positional 

distribution in the collective pattern, and a predator’s foraging fitness is linked to its 

expected feeding amount. In detail, given the feeding preferences of all predators, a prey 

which appears at the safer positions more frequently is evolutionarily selected. On the 

other hand, those predators prefer to feed on the more frequent positions of the 

collective pattern are evolutionarily selected. 

According to the definition of evolutionary stability (Smith, 1982), when the emergent 

pattern, D, is a stable state of this coevolution system, the resident strategies at the prey 
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and predator sides, termed 𝑐𝑖
𝐸𝑆𝑆 and 𝑥𝑗

𝐸𝑆𝑆, respectively, should satisfy the following two 

conditions: 

∀𝑐𝑚 ≠ 𝑐𝑖
𝐸𝑆𝑆 𝑎𝑛𝑑 𝑥𝑞 ≠ 𝑥𝑗

𝐸𝑆𝑆 ,     ∃𝜖∗ > 0, ∀𝜖 < 𝜖∗  

𝑢 (𝑐𝑖
𝐸𝑆𝑆|𝐷(1−𝜖)𝑐𝑖

𝐸𝑆𝑆+𝜖𝑐𝑚) > 𝑢 (𝑐𝑚|𝐷
(1−𝜖)𝑐𝑖

𝐸𝑆𝑆+𝜖𝑐𝑚)                              (5.1) 

𝑢 (𝑥𝑗
𝐸𝑆𝑆|𝐷(1−𝜖)𝑥𝑗

𝐸𝑆𝑆+𝜖𝑥𝑞) > 𝑢 (𝑥𝑞|𝐷
(1−𝜖)𝑥𝑗

𝐸𝑆𝑆+𝜖𝑥𝑞)                               (5.2) 

, where u(s,d) is the utility of strategy s at state d, and 𝐷(1−𝜖)𝑠𝑟+𝜖𝑠𝑚 is the perturbed state 

which consists of 1 − 𝜖  proportion of the resident strategy and 𝜖  proportion of the 

invasive one. These two conditions ensure that either for prey or for predators, a small 

proportion of any other strategy is less beneficial than the resident one. Hence, the 

invasive strategy will die out in evolution and the state will be restored. (Background 

information is provided in Chapter 2.5.3) 

5.2.2 Selection and Adaptation at the Both Sides 

The categorisation of positions in the RPFC metric is simplified based on the findings in 

Chapter IV. First, since an isolated prey is inferior to an aggregated prey in most cases 

(Figure 4.4), the ‘ranger’ position in the RPFC metric is not considered. A population of 

prey fish only consists of moving schools and stationary herds, which refer to either 

milling or disordered swarms. Subsequently, a moving school is separated into two, 

rather than three, positions: pioneers, which have no leading neighbour, and followers, 

which have leading neighbours. Here the centre and the margin of a school are not 

distinguished and the focus is put on its polarised property. Lastly, a stationary herd is 

divided into two positions: marginal cowards and central cowards, as in the RPFC 

metric. 
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A prey’s strategy is a set of three free-willed positional changes, 𝑐𝑖 = {𝑝𝑖
𝑀2𝑃, 𝑝𝑖

𝑃2𝐹 , 𝑝𝑖
𝐹2𝑃}, 

as the probabilities to move from a given position to the other one at each time step. The 

first free-willed positional change, 𝑝𝑖
𝑀2𝑃, is leaving the margin of a herd with a few 

followers and being a pioneer of a school, that is, from a marginal coward to a pioneer, 

as the collective departure strategy reported in Chapter IV. To study the influence of the 

biased risk within a school, the positional changes between pioneers and followers, as 

𝑝𝑖
𝑃2𝐹 and 𝑝𝑖

𝐹2𝑃, are reserved to prey’s free wills in the model. These two changes can 

result from the speed-up and slow-down of a schooling prey, or from the fission and 

fusion of prey schools. Apart from these three free-willed changes, other changes 

between two positions are assumed unable to be controlled by prey fish. For example, 

due to the crowding effect observed in Chapter IV, a marginal prey cannot choose to be 

a central coward, and vice versa. Also, a schooling prey cannot choose to be in a 

stationary herd because it cannot force its pioneers to stop. Similarly, a marginal coward 

cannot choose to be a follower due to the lack of pioneers. 

At the predator side, predator j’s hunting strategy is viewed as a risk distribution among 

the four positions, which can be represented by a vector 𝒙𝑗 = 𝑎𝑗(𝑥𝑗
𝑃 , 𝑥𝑗

𝐹 , 𝑥𝑗
𝐵, 𝑥𝑗

𝐶), where 

𝑥𝑗
𝑃 + 𝑥𝑗

𝐹 + 𝑥𝑗
𝑀 + 𝑥𝑗

𝐶 = 1  as a normalisation and hence the scale 𝑎𝑗 > 0  reflects the 

predatory capability, that is, the stronger predator has a larger 𝑎𝑗 . Hence, the 

environmental risk on prey aggregation is the sum of all predators’ feeding preferences, 

∑𝒙𝑗. Here the assumption is made: prey are attacked by a single species of predators, 

and the same species of predators have the same 𝑎𝑗. Under this assumption, 𝑎𝑗 becomes 

a constant and can be discarded without any influence to the result. For convenience, a 

hunting strategy is treated as 𝒙𝑗 = (𝑥𝑗
𝑃 , 𝑥𝑗

𝐹 , 𝑥𝑗
𝐵, 𝑥𝑗

𝐶)  and the environmental risk 𝑿 =
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(𝑋𝑃 , 𝑋𝐹 , 𝑋𝑀 , 𝑋𝐶) is set as the average of all 𝒙𝑗. These representations normalise the sum 

of the four elements to one, that is, |𝒙𝑗| = |𝑿| = 1. 

Through the self-organising mechanism outlined in Chapter 5.2.3, the average 

positional distribution of each prey can emerge from the adopted strategies in the 

population. This distribution is represented as the vector 𝑫𝑖 = (𝑃𝑖 , 𝐹𝑖, 𝑀𝑖 , 𝐶𝑖) for prey i, 

where 𝑃𝑖 + 𝐹𝑖 +𝑀𝑖 + 𝐶𝑖 = 1 are the frequencies of the four corresponding positions. The 

sum of all prey’s positional distributions is equal to that of the whole population, as  

𝑫 = ∑𝑫𝑖 = (𝑃, 𝐹,𝑀, 𝐶).     (5.3) 

The predation risk of a prey is calculated by the inner product of its emergent 

distribution, 𝑫𝑖, and the environmental positional risk, 𝑿, that is,  

𝑃𝑖𝑋
𝑃 + 𝐹𝑖𝑋

𝐹 +𝑀𝑖𝑋
𝑀 + 𝐶𝑖𝑋

𝐶.     (5.4) 

The foraging fitness of a predator is defined as the expected level of the feeding amount, 

affected by an energy cost, as  

(𝑥𝑗
𝑃𝑃 + 𝑥𝑗

𝐹𝐹)𝑒𝑗 + 𝑥𝑗
𝑀𝑀+ 𝑥𝑗

𝐶𝐶,    (5.5) 

where 0 ≤ 𝑒𝑗 ≤ 1  considers the extra energy cost when predator j chases a moving 

school. Similar to the assumption on 𝑎𝑗 , the parameter 𝑒𝑗  is assumed a constant for 

predators of the same species. This parameter is used to compare the adaptations from 

larger and stronger predators to smaller and weaker predators in nature. 

To simulate the evolutionary trajectory at the prey side, each of the N prey agents is 

initially assigned three random probabilities to its strategy, 𝑐𝑖 = {𝑝𝑖
𝑀2𝑃 , 𝑝𝑖

𝑃2𝐹 , 𝑝𝑖
𝐹2𝑃}, as 

the three free-willed positional changes described above. In every generation, a prey’s 
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positional distribution, 𝑫𝑖 = (𝑃𝑖 , 𝐹𝑖, 𝑀𝑖, 𝐶𝑖), as the frequencies to appear at these four 

positions, emerges from the self-organising mechanism of the positional changes in the 

population. Those prey with higher predation risks are eliminated and replaced by the 

same amount of the offspring from the well-performed prey. Finally, when all prey 

share the same predation risk and are less in danger than any small proportion of 

mutants, an evolutionarily stable state is attained at the prey side. 

Parameter settings are as follows. The population size, N, is set 100. The reproduction 

probability and the replacement rate conform to the setting in Chapter III, as the 

exponential rank selection with 𝐼𝐸𝑅 = 1.16 and 17%, respectively. Denoting the strategy 

of a selected parent as 𝑐𝑃 = {𝑝𝑃
𝐵2𝑃 , 𝑝𝑃

𝑃2𝐹 , 𝑝𝑃
𝐹2𝑃}, the offspring’s strategy is generated by  

𝑐𝑜
𝑎𝑠𝑠𝑖𝑔𝑛
←    {𝑝𝑃

𝐵2𝑃 + 𝜖, 𝑝𝑃
𝑃2𝐹 + 𝜖, 𝑝𝑃

𝐹2𝑃 + 𝜖},    (5.6) 

where 𝜖~𝑁(0,0.2) simulates the mutation. If any of the probabilities is smaller than 0 or 

greater than 1, it is adjusted to 0 or 1, respectively. 

The simulation of the evolution at the predator side is not by a genetic algorithm. 

Instead, a game-theoretic approach is applied. First, since the fitness functions of 

predators are homogeneous, the condition 𝑿𝑟 = 𝒙𝑟 must hold in an evolutionarily stable 

state. As a simple proof of the above statement, it is wrongly assumed that there is a 

stable state, where two strategies coexist, termed x1 and x2, by the frequencies 𝑝 and 1 −

𝑝, respectively. Given a small proportion of the invasive strategy 𝒙𝑚 = 𝑞𝒙1 + (1 − 𝑞)𝒙2, 

where 𝑞 ≠ 𝑝, this strategy receives the same fitness as the resident strategies and the 

state is invaded. Hence, the contradiction happens. Therefore, the property of symmetry 

in typical evolutionary games (described in Chapter 2.5.3) is also satisfied here. 
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Now, given a population of homogeneous predators which all adopt the feeding 

preference 𝒙𝑟  and cause the environmental risk 𝑿𝑟 = 𝒙𝑟 , the present state, 𝑫𝒙𝑟 , is 

evolutionarily stable if and only if ∀𝒙𝑞 ≠ 𝒙𝑟, ∃𝜖∗ > 0, ∀𝜖 < 𝜖∗ 

𝑢(𝒙𝑟|𝑫
(1−𝜖)𝒙𝑟+𝜖𝒙𝑚) > 𝑢(𝒙𝑚|𝑫

(1−𝜖)𝒙𝑟+𝜖𝒙𝑚)                                     (5.7) 

, where 𝑫(1−𝜖)𝒙𝑟+𝜖𝒙𝑚  is the perturbed state with a small proportion of 𝒙𝑞  in the 

population. Since the utility function has been defined as (𝑥𝑗
𝑃𝑃 + 𝑥𝑗

𝐹𝐹)𝑒𝑗 + 𝑥𝑗
𝑀𝑀+ 𝑥𝑗

𝐶𝐶, 

the above condition can be rewritten by a linear combination of the strategies as 

𝑢(𝒙𝑟|𝑫
(1−𝜖)𝒙𝑟+𝜖𝒙𝑚) > (1 − 𝜖)𝑢(𝒙𝑟|𝑫

(1−𝜖)𝒙𝑟+𝜖𝒙𝑚) + 𝜖𝑢(𝒙𝑚|𝑫
(1−𝜖)𝒙𝑟+𝜖𝒙𝑚)

= 𝑢 ((1 − 𝜖)𝒙𝑟 + 𝜖𝒙𝑚|𝑫
(1−𝜖)𝒙𝑟+𝜖𝒙𝑚) 

⟹  𝑢(𝒙𝑟|𝑫
𝐴𝑑𝑗) > 𝑢(𝒙𝐴𝑑𝑗|𝑫

𝐴𝑑𝑗)     (5.8) 

This equivalent condition shows that a state is evolutionarily stable if and only if its 

resident strategy can invade the adjacent states. Therefore, by segmenting 𝑋𝑃, 𝑋𝐹, 𝑋𝑀 

and 𝑋𝐶 into sufficiently small grids, an evolutionarily stable state, 𝑫𝐸𝑆𝑆, can be detected 

through the greater fitness of its resident strategy, 𝒙𝑟
𝐸𝑆𝑆 , in any of its 34 − 1 = 80 

adjacent states. To depict the evolutionary trajectory of predators, a state is converted to 

an adjacent state if this state can be invaded by the resident strategy of the nearby one. 

When there are multiple adjacent states able to cause this transition, the one which 

strategy gains the largest fitness is chosen since this strategy should receive the highest 

growth rate. 

In the model, each of the four positional risks is divided into 100 segments, from 0 to 1 

by 0.01. Each of the 1004 grids draws a risk distribution, 𝑿 + 𝝐𝐺, in the environment, 

where 𝑿 is the average risk distribution in this grid and 𝝐𝐺 = (𝜖𝑃, 𝜖𝐹 , 𝜖𝑀, 𝜖𝐶), where each 
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𝜖~𝑈(−0.005,0.005), simulates the stochasticity inside this grid at each generation.  This 

risk distribution then causes an evolutionarily stable state, D, at the prey side, which 

experimental value is computed by the average positional distribution from the 10000th 

generation to the 15000th generation. Finally, the adaptation at the predator side is 

simulated through the transition from a given grid to its adjacent grids. 

5.2.3 Self-organising Mechanism of Prey 

In a population of 𝑁 prey, there are 𝑆 prey in moving schools and 𝐻 prey in stationary 

herds (Figure 5.1A), where 𝑆 + 𝐻 = 𝑁. Schooling prey can be categorised into pioneers 

(denoting the number as 𝑃) and followers (denoting the number as 𝐹). Herding prey are 

divided into marginal cowards (denoting the number as 𝑀 ) and central cowards 

(denoting the number as 𝐶). To summarise the above model setting, the following three 

relations always keep at any time step T:  

𝑁 = 𝑆𝑇 + 𝐻𝑇,        (5.9)  

𝑆𝑇 = 𝑃𝑇 + 𝐹𝑇,      (5.10) 

𝐻𝑇 = 𝑀𝑇 + 𝐶𝑇.     (5.11) 

Ideally, a stationary herd should be in a round shape, and hence the number of marginal 

cowards can be estimated as  

𝑀∗ = 𝑚𝑖𝑛(√4𝜋𝐻,𝐻),     (5.12) 

through the derivation from 𝐻 = 𝜋𝑟2 and 𝑀∗ = 𝑚𝑖𝑛 (2𝜋𝑟, 𝐻). Hence, once 𝐻 is decided, 

𝑀 and 𝐶 are also decided. It is possible that prey aggregation forms multiple herds in the 
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environment. In this case, assuming there are 𝑘 herds with the same size, the number of 

marginal cowards becomes 𝑀∗ = 𝑚𝑖𝑛(√4𝜋𝑘𝐻,𝐻), or equivalently,  

𝑀∗/𝑘 = 𝑚𝑖𝑛(√4𝜋𝑘𝐻,𝐻) /𝑘 = 𝑚𝑖𝑛(√4𝜋(𝐻/𝑘), 𝐻/𝑘),   (5.13) 

as inspecting a smaller population with the size 𝑁′ = 𝑁/𝑘, which consists of a single 

herd. Without the loss of generality, it is set 𝑘 = 1. 

According to the additional scenario, a moving school should become a stationary herd 

if no individual likes to be the pioneer. For example, the situation that 𝑆 > 0 and 𝑃/𝐹 =

0 must be contradictory. Since there can be multiple schools in the environment, a 

threshold, w, is used to draw this constraint. It is defined that if at any time step, 𝑃/𝐹 <

1/𝑤, then 𝐹 − 𝑤𝑃 schooling followers are converted to herding cowards.  

At each time step, six game rules are applied sequentially to simulate the self-organising 

mechanism. The first three rules illustrate the transition from a school to a herd (Figure 

5.1B), as the additional scenario, and the later three rules illustrate the transition from a 

herd to a school (Figure 5.1C), as the collective departure scenario. The reason for the 

order is that a schooling pattern usually lasts for a long time before it collapses. During 

the derivation, a time step, T+0.5, is used to mention the intermediate stage between the 

two transitions. 

 

The first three rules are as follows (Figure 5.1B). Rule 1: a pioneer which decides to be 

a follower, or a follower which decides to be a pioneer, is triggered. Rule 2: if now 𝐹 >

𝑤𝑃, the randomly chosen 𝐹 − 𝑤𝑃 followers become marginal cowards. Rule 3: if now 

𝑀 > 𝑀∗, then the randomly chosen 𝑀 −𝑀∗ marginal cowards become central cowards. 
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Figure 5.1: Diagram of the Self-organising Mechanism 

Subfigure A shows that a prey is defined either in a moving school, as a pioneer or a 

follower, or in a stationary herd, as a marginal coward or a central coward. Subfigure B 

shows the three rules which simulate the self-organising mechanism to emerge the 

swarming pattern. Subfigure C shows the three rules which simulate the self-organising 

mechanism to emerge the schooling pattern, that is, the collective departure scenario. It 

is highlighted by the red arrows that a prey can only make decision on three positional 

changes: from a pioneer to a follower, from a follower to a pioneer, and from a marginal 

coward to a pioneer (as the collective departure strategy). Other positional changes, 

drawn by the black arrows, are triggered based on the strategies of all prey individuals. 

 

 

Instead of simulating prey’s positional changes under the above rules by real 

movements, the expected positional distribution of each prey, 𝑫𝑖, as well as the whole 

population, D, are concerned in the following mathematical expressions. That is to say, 

taking Rule 1 for example, given a prey which prefers to move from the ‘follower’ 

position to the ‘pioneer’ position with the probability 0.2, that is, 𝑝𝑖
𝐹2𝑃 = 0.2, when this 

prey is a follower, it will either remain a follower or change to a pioneer at each single 

movement. However, given a long observation period, its frequency of remaining a 
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follower is expected to be 80%, and its frequency of changing to a pioneer is expected 

to be 20%. Therefore, this prey’s positional distribution, 𝑫𝑖 = (𝑃𝑖 , 𝐹𝑖, 𝑀𝑖, 𝐶𝑖), is expected 

to transform from (0,100%, 0,0)  to (20%, 80%, 0,0) , or generally speaking, from 

(𝑃𝑖, 𝐹𝑖, 𝑀𝑖, 𝐶𝑖) to (𝑃𝑖 + 𝑝𝑖
𝐹2𝑃𝐹𝑖 − 𝑝𝑖

𝑃2𝐹𝑃𝑖, 𝐹𝑖 − 𝑝𝑖
𝐹2𝑃𝐹𝑖 + 𝑝𝑖

𝑃2𝐹𝑃𝑖, 𝑀𝑖, 𝐶𝑖) after applying Rule 1, 

where 𝑝𝑖
𝑃2𝐹𝑃𝑖 is the expected frequency of moving from the ‘pioneer’ position to the 

‘follower’ position. The following expressions are all based on the expected positional 

frequencies. 

Given 𝑫𝑖
𝑇 = (𝑃𝑖

𝑇 , 𝐹𝑖
𝑇 , 𝑀𝑖

𝑇 , 𝐶𝑖
𝑇), where 𝑃𝑖

𝑇 + 𝐹𝑖
𝑇 +𝑀𝑖

𝑇 + 𝐶𝑖
𝑇 = 1, as the distribution of prey 

𝑖 ’s positions at time T, the above transition, from schooling to herding, can be 

formulated at the group level as: 

𝑃𝑇+0.5 = 𝑃𝑇 − ∑ 𝑝𝑗
𝑃2𝐹𝑃𝑗

𝑇
𝑗 + ∑ 𝑝𝑗

𝐹2𝑃𝐹𝑗
𝑇

𝑗     (5.14) 

𝐹𝑇+0.5 = 𝑚𝑖𝑛(𝑆𝑇 − 𝑃𝑇+0.5, 𝑤𝑃𝑇+0.5)     (5.15) 

𝑆𝑇+0.5 = 𝑃𝑇+0.5 + 𝐹𝑇+0.5      (5.16) 

𝐻𝑇+0.5 = 𝑁 − 𝑆𝑇+0.5       (5.17) 

𝑀𝑇+0.5 = 𝑚𝑖𝑛(√4𝜋𝐻𝑇+0.5 , 𝐻𝑇+0.5)     (5.18) 

𝐶𝑇+0.5 = 𝐻𝑇+0.5 −𝑀𝑇+0.5      (5.19) 

The first expression calculates the expected number of pioneers at time T+0.5 by the 

number of pioneers at time T minus those from pioneers to followers and plus those 

from followers to pioneers, as the first rule. The second expression describes the second 

rule. The third and fourth expressions are the fundamental relations. The latter two 



121 
 

expressions recalculate the proportions of marginal and central cowards, as mentioned 

in the third rule. 

At the individual level, this transition can be formulated as: 

𝑃𝑖
𝑇+0.5 = (1 − 𝑝𝑖

𝑃2𝐹)𝑃𝑖
𝑇 + 𝑝𝑖

𝐹2𝑃𝐹𝑖
𝑇     (5.20) 

𝐹𝑖
𝑇+0.5 = 𝐹𝑇+0.5

𝑆𝑖
𝑇 − 𝑃𝑖

𝑇+0.5

𝑆𝑇 − 𝑃𝑇+0.5
                                                                (5.21) 

𝑆𝑖
𝑇+0.5 = 𝑃𝑖

𝑇+0.5 + 𝐹𝑖
𝑇+0.5      (5.22) 

𝐻𝑖
𝑇+0.5 = 1 − 𝑆𝑖

𝑇+0.5       (5.23) 

𝑀𝑖
𝑇+0.5 = 𝑀𝑇+0.5

𝐻𝑖
𝑇+0.5 − 𝐶𝑖

𝑇

𝐻𝑇+0.5 − 𝐶𝑇
                                                             (5.24) 

𝐶𝑖
𝑇+0.5 = 𝐻𝑖

𝑇+0.5 −𝑀𝑖
𝑇+0.5      (5.25) 

About the value of 𝐹𝑖 at time T+0.5, if the total number of followers does not exceed the 

threshold, that is, 𝐹𝑇+0.5 = 𝑆𝑇 − 𝑃𝑇+0.5, prey i’s frequency of being a follower is derived 

through the fundamental relation 𝑆𝑖
𝑇 − 𝑃𝑖

𝑇+0.5, where 𝑆𝑖
𝑇 = 𝑆𝑖

𝑇+0.5  since no follower is 

converted to a coward. Otherwise, only a part of followers are kept, which number is 

𝐹𝑇+0.5 = 𝑤𝑃𝑇+0.5. Since these left followers are randomly chosen, the ratio of a prey’s 

frequency of being a follower over that of the whole population is unchanged. Hence, 

the value of 𝐹𝑖 at time T+0.5 is the amount of the kept followers times the ratio. The 

calculation of the frequency of being a marginal coward follows the same logic. 

The latter three rules describe the collective departure scenario (Figure 5.1C). Rule 4: a 

marginal coward which decides to be a pioneer is triggered. Rule 5: at the same time, it 

randomly brings n herding prey to be its followers. Rule 6: if now 𝑀 < 𝑀∗ , the 
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randomly chosen 𝑀∗ −𝑀  central cowards become marginal cowards. As a note, the 

condition 𝑀 > 𝑀∗ cannot happen at this moment since the size of the herd can only 

decrease. 

Denoting the expected number of marginal cowards which turn to be pioneers as 𝐿 =

∑ 𝑝𝑗
𝑀2𝑃𝑀𝑗

𝑇+0.5
𝑗 , this transition can be formulated at the group level as: 

𝑃𝑇+1 = 𝑃𝑇+0.5 + 𝐿       (5.26) 

𝐹𝑇+1 = 𝐹𝑇+0.5 + 𝑝𝐻2𝐹(𝐻𝑇+0.5 − 𝐿)     (5.27) 

𝑆𝑇+1 = 𝑃𝑇+1 + 𝐹𝑇+1       (5.28) 

𝐻𝑇+1 = 𝑁 − 𝑆𝑇+1       (5.29) 

𝑀𝑇+1 = 𝑚𝑖𝑛(√4𝜋𝐻𝑇+1 , 𝐻𝑇+1)     (5.30) 

𝐶𝑇+1 = 𝐻𝑇+1 −𝑀𝑇+1       (5.31) 

The first expression is based on the fourth rule. The second expression describes the 

fifth rule, where 𝐻𝑇+0.5 − 𝐿  is the number of remaining cowards and 𝑝𝐻2𝐹  is the 

probability that a remaining coward becomes a follower of some new pioneers, which 

value is discussed later. 

At the individual level, this transition can be formulated as: 

𝑃𝑖
𝑇+1 = 𝑃𝑖

𝑇+0.5 + 𝑝𝑖
𝑀2𝑃𝑀𝑖

𝑇+0.5      (5.32) 

𝐹𝑖
𝑇+1 = 𝐹𝑖

𝑇+0.5 + 𝑝𝑖
𝐻2𝐹(𝐻𝑖

𝑇+0.5 − 𝑝𝑖
𝑀2𝑃𝑀𝑖

𝑇+0.5)    (5.33) 

𝑆𝑖
𝑇+1 = 𝑃𝑖

𝑇+1 + 𝐹𝑖
𝑇+1       (5.34) 

𝐻𝑖
𝑇+1 = 1 − 𝑆𝑖

𝑇+1       (5.35) 
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𝐶𝑖
𝑇+1 = 𝐶𝑇+1

(1 − 𝑝𝑖
𝐻2𝐹)𝐶𝑖

𝑇+0.5

∑ [(1 − 𝑝𝑗
𝐻2𝐹)𝐶𝑗

𝑇+0.5]𝑗

                                                 (5.36) 

𝑀𝑖
𝑇+1 = 𝐻𝑖

𝑇+1 − 𝐶𝑖
𝑇+1       (5.37) 

where 𝑝𝑖
𝑀2𝑃𝑀𝑖

𝑇+0.5 is the frequency of being a new pioneer from a marginal coward, and 

𝑝𝑖
𝐻2𝐹 is the probability that prey 𝑖 becomes a follower of a new pioneer, given that prey 𝑖 

is herding. Hence, the calculation of 𝐹𝑖
𝑇+1 is the frequency of being a remaining coward 

times 𝑝𝑖
𝐻2𝐹 and finally plus the original frequency of being a follower. The calculation 

of 𝐶𝑖
𝑇+1 is related to the sixth rule, explained as follows. After randomly caught by the 

new pioneers and being their followers, prey i’s frequency of being a central coward 

becomes the numerator part, and the denominator portion is the addition of these 

frequencies in the population. When some central cowards are randomly chosen to be 

the marginal ones, as the sixth rule, this ratio is unchanged. Hence, the final frequency 

of being a central coward is the amount of central cowards times the ratio. 

At the group level, the probability 𝑝𝐻2𝐹 is supposed to be 𝑛𝐿 (the number of remaining 

cowards going to be brought by the 𝐿 new pioneers) over 𝐻𝑇+0.5 − 𝐿 (the number of 

remaining cowards), or one if 𝑛𝐿 ≥ 𝐻𝑇+0.5 − 𝐿 . However, the derivation of the 

associated probability at the individual level, 𝑝𝑖
𝐻2𝐹, then becomes difficult. Since a prey 

cannot follow itself, this probability at the individual level should be negatively 

correlated to 𝑝𝑖
𝑀2𝑃. Here it is estimated in the model by 

𝑝𝑖
𝐻2𝐹 = 𝑚𝑖𝑛 [

𝑛(𝐿 − 𝑝𝑖
𝑀2𝑃𝑀𝑖

𝑇+0.5)

𝐻𝑇+0.5 − 𝐿
, 1].                                        (5.38) 

To coordinate with 𝑝𝑖
𝐻2𝐹, the probability 𝑝𝐻2𝐹 is derived as 
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𝑝𝐻2𝐹 =
∑ [𝑝𝑗

𝐻2𝐹(𝐻𝑗
𝑇+0.5 − 𝑝𝑗

𝑀2𝑃𝑀𝑗
𝑇+0.5)]𝑗

𝐻𝑇+0.5 − 𝐿
,                                      (5.39) 

whic is the expected amount of being followers from cowards over the expected amount 

of cowards.  

So far, the explanation of the self-organising mechanism has been completed. To solve 

this discrete Markov process, one method is to derive the final state by letting 𝑫𝑖
𝑇 =

𝑫𝑖
𝑇+1, and the other is to approach this state by a computer. Generally, a process of this 

self-organising mechanism converges in less than 10 time steps, so the second method 

is chosen due to its simplicity. In the following experiments, the average positional 

distribution of each prey, 𝑫𝑖, and that of the population, 𝑫, are set by the outputs at the 

60th time step. In addition, the population size (N) is set at 100, the maximal F/P ratio 

(w) is set at 8 and the number of followers brought by a departure pioneer (n) is set at 8. 

As a compliment, the above self-organising mechanism is referred to as a Markov 

process since the individual positional distributions at time T+1 only depends on those 

distributions at time T, regardless of the preceding distributions or the time stamp, as the 

Markov property of ‘memorylessness’, or to say, time independence (Karlin, 2014). 

However, this mechanism is unsuitable to be represented by typical transition matrices 

or transition functions for two reasons. The first one is that each prey’s positional 

distribution at time T+1 depends not only on its strategy and its distribution at time T, 

but also on other N-1 prey’s strategies and distributions at time T, that is, 𝐷𝑖
𝑇+1 =

𝑓(𝑐𝑖, 𝐷𝑖
𝑇 , 𝑐0, 𝐷0

𝑇 , 𝑐1, 𝐷1
𝑇 , ⋯ , 𝑐𝑁 , 𝐷𝑁

𝑇) , given f is the transition function. Hence, the 

expression by an equivalent transition function becomes tedious and difficult to be 

understood. The second reason is that this mechanism contains ‘if-else’ branches, like 

the condition “if there is no pioneer in a school, the followers become cowards” (Rule 
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2). These ‘if-else’ branches block the usage of those analytical tools derived from a 

transition function, like the Jacobian ratio or the Chapman–Kolmogorov equation 

(Bharucha-Reid, 2012), and hence reduces the significance to represent the above 

mechanism by typical transition matrices or transition functions. 

5.3 Result 

5.3.1 Adaptation of Prey 

In the previous chapter, it has been demonstrated and analysed that under a slow-

predator situation, the 𝑋𝑃/𝑋𝑀  ratio (referred to as 𝑋𝑃/𝑋𝐶𝑚) is less than one and the 

schooling pattern is expected to emerge in the evolutionarily stable state. In contrast, 

under a fast-predator situation, the 𝑋𝑃/𝑋𝑀 ratio is greater than one, and given this ratio 

is not too high, the schooling pattern is still in the majority due to the adaptive tactic of 

the collective departure. In the both cases, generally, the followers are slightly less at 

risk than the pioneers and the central cowards bear no risk. These findings are 

duplicated by the model. 

Given 𝑿 = (𝑋𝑃 , 0.9𝑋𝑃 , 𝑋𝑀 , 0), as a similar risk distribution to that in the spatial-explicit 

agent-based simulation, the evolutionarily stable states in the present model are 

displayed in Figure 5.2. It shows the frequency of the emergent schooling pattern, as the 

sum of pioneers (𝑃𝑖 ) and followers (𝐹𝑖 ), decreases when the 𝑋𝑃/𝑋𝑀  ratio increases. 

There is a threshold of the ratio that when 𝑋𝑃/𝑋𝑀 > 1.28, the swarming pattern emerges 

and the schooling pattern disappears. However, when 1.14 < 𝑋𝑃/𝑋𝑀 < 1.28 , both 

schooling and swarming patterns can be the emergent state depending on the initial 

strategies in the population. These findings were predicted in Chapter 4.5 as an 

exceptional environment where the swarming pattern can be evolutionarily stable. 
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Figure 5.2: Prey’s Adaptation under 𝐗 = (𝑿𝑷, 𝟎. 𝟗𝑿𝑷, 𝑿𝑴, 𝟎) 

The simulated adaptation of prey fish and their emergent patterns in the previous chapter 

can be duplicated by setting a similar environmental risk 𝐗 = (𝑋𝑃 , 0.9𝑋𝑃, 𝑋𝑀, 0), where 

|X|=1. Subfigure A displays the evolutionarily stable states under different XP/XM ratios 

given the initial strategies are randomly assigned. It is observed that schooling can 

emerge when XP/XM<1.28. Subfigure B shows there are two potential evolutionarily 

stable states in the range 1.14<XP/XM<1.28, depending on the setting of initial strategies.  

These outputs are consistent with the demonstrations and analyses in Chapter IV. The 

discontinuous changes among collective patterns display the non-linear structure of the 

self-organising mechanism, for example, the ‘if-else’ conditions. 

 

 

In the range of schooling patterns, a marginal coward evolves a probability of around 

0.13 to exhibit the collective departure strategy, that is, 𝑝𝑖
𝑀2𝑃. This small probability is 

because although leaving the boundary is beneficial to marginal cowards, the best 

situation of a departure is being brought by other leaving pioneers to acquire the 

positional risk 𝑋𝐹 = 0.9𝑋𝑃. This advantage of being free riders leads to a remaining herd 

even in a slow-predator situation (𝑋𝑃/𝑋𝑀 < 1), which phenomenon is also observed in 

the spatial-explicit simulation (Figure 4.1). When the 𝑋𝑃/𝑋𝑀 ratio is less than around 

0.6, the pioneers are more hesitant about changing to the follower position since this 

action implies a possibility to convert itself to a herding coward. 
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The analysis in Chapter 4.5 predicted that the swarming pattern can emerge in the three 

conditions: first, the risk on a school is extremely high; secondly, the central position is 

not safe; thirdly, prey can squeeze into the centre, which is equal to the second 

condition from the view of the risk distribution. The first condition has been supported 

in Figure 5.2. About the second condition, as well as the third condition, it was derived 

that when 𝑋𝐶 = 𝑋𝑀  and 𝑋𝑃/𝑋𝑀 > 1 , the swarming pattern is evolutionarily stable. 

Given 𝑿 = (𝑋𝑃 , 0.9𝑋𝑃 , 𝑋𝑀 , 𝑋𝑀), this prediction is also supported by the present model 

(Figure 5.3A). 

 
Figure 5.3: Prey’s Adaptation given a Dangerous Centre 

When the central position of a herd is as dangerous as the margin, schooling can only 

emerge in a smaller range of the XP/XM ratio compared to the case that the centre is risk-

free. However, when the risk of the central position keeps increasing, the range where 

schooling can emerge expands again. It should be noted that the case XC>XM may 

conflict the precondition of the model. 

 

 

When the central position becomes more dangerous than the margin (Figure 5.3B), the 

schooling pattern is more likely to emerge compared to the case 𝑋𝐶 = 𝑋𝑀 (Figure 5.3A). 

In this kind of schools, a pioneer reduces its tendency to change its position due to the 

avoidance of being buried into the centre of a stationary herd. However, it is 
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questionable whether this risk distribution accords with the precondition of the model. 

As an extension from the simulation outputs in Chapter IV, this model assumes that 

prey groups are compact, which can be explained by the selfish herd scenario when 

𝑋𝐶 ≤ 𝑋𝑀, where 𝑋𝐶 = 𝑋𝑀 draws the bound. When 𝑋𝐶 > 𝑋𝑀, the precondition to cause 

compact groups may not be satisfied. 

Apart from the schooling pattern and the swarming pattern, a stable state which usually 

appears in the model is that all prey become pioneers. This pattern can emerge when 

𝑋𝑃 < 𝑋𝐹 , under which condition, all followers are more beneficial by leaving their 

leading neighbours and being pioneers themselves. This appearance can be linked to the 

dispersal pattern in Chapter IV, which is composed of isolated prey. However, to avoid 

unnecessary ambiguity, this pattern is termed the line abreast formation. 

5.3.2 The Emergent Patterns 

By computing prey’s adaptive dynamics in the full range of risk distributions, all 

possible emergent patterns can be plotted as a map in Figure 5.4. It is implemented by 

dividing each of the four positional risks into 100 segments, and then simulating prey’s 

adaptation given the predation risk 𝑿 + 𝝐𝐺  in each of the 1004 grids, where 𝑿 is the 

average risk distribution in a grid and 𝝐𝐺  provides stochasticity to the distribution in 

every generation. In general, the emergent pattern in each grid is evolutionarily stable at 

the prey side, since it is demonstrated that any small proportion of different positional 

changes cannot perturb the state. 

Three primary types of emergent patterns in the map are as follows (Figure 5.4A). The 

first type is the line abreast formation, which only consists of pioneers. This state can 

emerge when the risk of pioneers is less than that of followers. The second type is the 
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swarming pattern, which consists of cowards in a herd. This state can be observed when 

the risk of pioneers is much higher than the others. The third type is the schooling 

pattern, where a few pioneers, many followers and few cowards are present. It happens 

when the risk of pioneers is slightly higher than that of followers, at the same time 

lower or slightly higher than the risk of cowards. 

 
Figure 5.4: Full-range Map of Emergent Patterns 

The emergent patterns of prey aggregation under all possible risk distributions are 

displayed. To plot these states in a 3-D panel, the major position in a state is used to 

represent the general type, as in subfigure A. If the pioneers are in the majority, the state 

is a line abreast formation. If the followers are in the majority, it is a schooling pattern. 

Lastly, if central cowards are in the majority, it is a swarming pattern. Subfigure B 

provides complete information of the positional frequencies when XC=0, which is the 

surface slice in subfigure A. Subfigure B shows the case when XC=XM, which is the blue 

slice in subfigure A. The white rectangle on the XC=0 slice marks the experimental range 

in Chapter IV. 

 

The boundary between the line abreast formation and the other types is generally fixed 

on the surface 𝑋𝑃 = 𝑋𝐹. In contrast, the boundary between the schooling pattern and the 

swarming pattern shifts when the risk of central cowards alters. When this risk equals 

that of marginal cowards (Figure 5.4C), the range of schooling patterns shrinks to the 

minimum. As noted in the previous section, the stable states in the area 𝑋𝐶 > 𝑋𝑀 can be 



130 
 

less reasonable considering that the prey group cannot become compact through the 

selfish herd scenario. 

 
Figure 5.5: Two Specific Risk Distributions 

The risk distribution, 𝐗 + 𝛜𝐺, of those grids on the junction of the three types cannot lead 

to an evolutionarily stable state, as subfigure A. It is because the noise, 𝛜𝐺, randomly 

converts the expected stable state from one to another, which is an error due to the 

discretisation. Subfigure B shows a special type of the emergent pattern when XP=XF. 

Under this condition, a prey with even frequencies to be a pioneer and a follower can 

average the noise from  𝛜𝐺 and avoid being eliminated.  

 

The adaptive strategy, 𝑐𝑖, of all prey in a line abreast formation is {𝑝𝑖
𝑀2𝑃 , 𝑝𝑖

𝑃2𝐹 , 𝑝𝑖
𝐹2𝑃} =

{1,0,1} due to the avoidance of being a follower. In a swarming pattern, since being a 

pioneer is highly in danger, the typical strategy of all prey is 𝑐𝑖 = {0,1,0}. The adaptive 

strategy to cause a schooling pattern contains two features. One is that the probability to 

turn from a marginal coward to a pioneer,  𝑝𝑖
𝑀2𝑃, is small (around 0.13), even if the risk 

of marginal cowards is much higher than that of pioneers. As explained in the former 

section, it is because being brought as a follower is more beneficial than being a pioneer 

itself. The other feature is that the probability to turn from a follower to a pioneer, 𝑝𝑖
𝐹2𝑃, 

is always zero and the opposite probability, 𝑝𝑖
𝑃2𝐹, is significantly greater than zero. This 
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adaptation leads to a behavioural dynamic similar to the natural fish, which often form a 

temporary milling herd, that is, a stationary aggregate where individuals move around 

the centre, during their collective movement. 

There is a group of grids which evolutionarily stable states cannot be computed, as 

those fall on the junction of the three types, for example, 𝑿 = (0.36,0.36,0.28,0)  in 

Figure 5.5A. In these grids, prey’s adaptive strategies cannot be converged permanently 

because the noise to the positional risk, 𝝐𝐺, converts the evolutionarily stable state from 

one type to another with generations. This is a phenomenon caused by the error of 

discretisation, and if further segments are applied, these grids are actually composed of 

three types of evolutionarily stable states. The expected states of these grids are 

estimated by averaging the positional distributions from the 10000th generation to the 

15000th generation. Another special case happens on the boundary of the line abreast 

formation. The noise 𝝐𝐺 in this kind of grids creates a subtle type of stable states, as 𝑫 =

(50,50,0,0) (Figure 5.5B). It is because a prey with even frequencies of being a pioneer 

and a follower can average the noises at the two positions, and hence is less likely to be 

the worst-performed ones (as well as the best-performed ones). In addition, on the 

boundary of the swarming pattern, there can be multiple evolutionarily stable states 

(Figure 5.2). These states are averaged based on their frequencies of being reached by 

simulations, which does not influence the adaptation at the predator side, as analysed in 

Chapter 5.4. 

5.3.3 Adaptation of Predators 

The adaptation of predators’ feeding preference is simulated through the transition from 

a state to its adjacent state in the full-range map. In the previous sections, 𝑿  is 
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considered as the risk distribution in the environment from the view at the prey side. 

Here, from the view at the predator side, 𝑿 = 𝒙 is treated as the feeding preference 

adopted by a homogeneous population of predators, which leads to its associated state, 

𝑫. Therefore, the evolution of predators should convert a state to an adjacent one if the 

resident strategy of the nearby state is more adaptive than the original tactic. 

The adaptive dynamic of predators is largely influenced by the energy cost, 𝑒𝑗 . For 

example, assuming that the central position is always risk-free (Figure 5.6A), the 

evolutionarily stable states of the strongest predators (𝑒𝑗 = 1) fall around the junction of 

the three emergent types. The junction is not directly attained because of the errors 

brought by a computational simulation. On average, the adaptive strategy is 𝑿 =

(0.37,0.35,0.28,0) , or 𝑿 = (1.32𝑋𝑀, 1.25𝑋𝑀 , 𝑋𝑀 , 0) , which can be linked to the risk 

distribution of fast-predator situations in Chapter IV. In contrast, when predators are 

weaker (𝑒𝑗 < 1), that is, their energy costs of chasing a moving school is higher than the 

costs of attacking a stationary herd, the evolutionarily stable state shifts along the 

boundary of school patterns and line abreast formations (Figure 5.6). For example, 

when 𝑒𝑗 = 0.1 , the average feeding preference is 𝑿 = (0.2,0.19,0.61,0)  or equivalently, 

(0.33𝑋𝑀 , 0.31𝑋𝑀, 𝑋𝑀 , 0), similar to the slow-predator situations in the previous chapter. 

This kind of adaptive dynamics can be observed in any 𝑋𝐶 = 𝑘𝑋𝑀 situation, even if 𝑘 >

1 . The adaptation of predators given 𝑋𝐶 = 𝑋𝑀  is shown in Figure 5.6B as another 

example. 
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Figure 5.6: Adaptive Dynamic of Predators 

The adaptation of predators causes the transition of states, as plotted by the grey paths 

and the black arrows. Given the environment where 𝑋𝐶 is fixed to zero, as in subfigure 

A, these paths are toward to the junction of the three emergent types when 𝑒𝑗 = 1. It is an 

evolutionarily stable state in the coevolution system. When 𝑒𝑗 < 1, for example, 𝑒𝑗 = 0.1, 

the equilibrium shifts towards the zero point. Subfigure B shows the case of 𝑋𝐶 = 𝑋𝑀. 

 

 

When predators can evolve their feeding preferences freely, those weaker predators 

(𝑒𝑗 < 0.8) still evolve the preference of marginal predation, that is, 𝑋𝐶 = 0 (Figure 5.7 & 

Figure 5.8). However, the extremely strong predators which 𝑒𝑗 > 0.8 lead to different 

evolutionarily stable states which resident strategies are 𝑿 = (0.23,0.19,0.16,0.42)  on 

average (Figure 5.7 & Figure 5.8), or 𝑿 = (0.27,0.24,0.25,0.25)  subject to 𝑋𝐶 ≤ 𝑋𝑀 . 

Since these final states of predators’ adaptation have been evolutionarily stable at the 

prey side, they are the evolutionarily stable states in the coevolution system. It is 

observed that the coevolution of predators and prey can only drive extremely strong 

predators to hunt the central position of fish aggregation. In contrast, the weaker 

predators should evolve to feed on marginal prey of a stationary herd based on 
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evolutionary selfishness. On the other hand, prey evolve into the schooling pattern, 

composed of pioneers and followers equally, in front of any predators (Figure 5.7). 

 
Figure 5.7: Evolutionarily Stable States 

Given a group of predators, which energy difference is ej , and a group of prey, the 

evolutionarily stable state of their behavioural adaptations is plotted. In a stable state, 

prey generally form a schooling pattern with an equal amount of pioneers and followers, 

and the frequency of herding prey increases when ej becomes larger. On the other hand, 

only those extremely strong predators (𝑒𝑗 > 0.8) can adopt the preference to hunt the 

central position of a prey group. The preference to hunt the margin of a stationary herd is 

enhanced when ej decreases. 

 

 

For those extremely strong predators ( 𝑒𝑗 > 0.8 ), the feeding preference in an 

evolutionarily stable state can lead to the maximal foraging benefit, which is defined as 

(𝑥𝑗
𝑃𝑃 + 𝑥𝑗

𝐹𝐹)𝑒𝑗 + 𝑥𝑗
𝑀𝑀+ 𝑥𝑗

𝐶𝐶 , among almost all strategies in their emergent states 

(Figure 5.8A). However, the adaptive strategies of weaker predators are not the optimal 

ones to the population (Figure 5.8B), which situation becomes worse with the decrease 

of 𝑒𝑗 (Figure 5.8C & Figure 5.8D). If cooperation is allowed in evolution, a species of 

group-hunting predators should add risk on the central cowards unselfishly so that they 

can gain better fitness from the emergent swarming pattern (Figure 5.8). Another 

possibility to reach these optimal states in evolution is when a species of predators have 

evolved to hunt alone. In this case, a predator’s feeding preference is directly equal to 
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the risk distribution on prey aggregation, so that it can add risk on the central positions 

without the worry of selfish predators. 

 

 
Figure 5.8: ESSs versus Optimal States 

The azure paths draw the adaptive dynamic when predators evolve freely, which move 

towards the evolutionarily stable states pointed by the black arrows. These evolutionarily 

stable states can be different from the optimal states where the predator population 

receives the maximal foraging fitness. Those states which provide higher group benefit 

to the predator population are plotted in the figure, which colours are based on their 

types, as green for swarming patterns and orange for schooling patterns. 

 

 

5.4 Analysis 

The computational simulation has demonstrated all possibilities of adaptations between 

predators and prey in their coevolution. In this subchapter, theoretical analyses are 

provided to validate the experimental outputs. These derivations are partly based on the 

knowledge acquired from the simulation, so the analysis and the simulation are 

complements to each other. 
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5.4.1 Deriving ESSs at the Prey Side 

The simulation of prey’s adaptation has shown that the emergent pattern can be a line 

abreast formation, a schooling pattern or a swarming pattern. The boundaries of these 

three types have been drawn by experiments. Here these boundaries are derived 

theoretically. 

Considering the case 𝑋𝐶 = 𝑘𝑋𝑀 , where 𝑘 ≥ 0 , if the ideal swarming pattern, 𝑫𝑆𝑤 =

(0,0, √4𝜋𝑁,𝑁 − √4𝜋𝑁), is evolutionarily stable, the adaptive probability to turn from a 

marginal coward to a pioneer, 𝑝𝑖
𝑀2𝑃 , must be zero. From the aspect of evolution, it 

implies that this positional change should harm the survival benefit of a prey in the state 

𝑫𝑆𝑤. That is to say, if a marginal coward in the ideal swarming pattern chooses to be a 

pioneer with n followers, the probability of being caught during a predatory hunt should 

be greater than the original status, as 

𝑋𝑀

𝑀𝑋𝑀 + 𝐶𝑘𝑋𝑀
<

𝑋𝑃

𝑋𝑃 + 𝑛𝑋𝐹 +𝑀′𝑋𝑀 + 𝐶′𝑘𝑋𝑀
 ,                           (5.40) 

𝑤ℎ𝑒𝑟𝑒 𝑀′ = √4𝜋(𝑁 − 𝑛 − 1) 𝑎𝑛𝑑 𝐶′ = 𝑁 − 𝑛 − 1 −𝑀′. 

Similar to the analysis in Chapter 4.4, the numerator parts are the probabilities of being 

caught per step (𝑋𝑀 for stay and 𝑋𝑃 for departure) at the same time there is a successful 

hunt, which is inevitable if the former event holds. The denominator parts are the 

probabilities of a successful hunt per step, which is the addition of all prey’s positional 

risks. As a note, there is no pioneer and follower in the ideal swarming pattern before a 

departure, and if a prey decides to leave, there is one pioneer, as itself, and n followers. 

When a departure happens, the size of the herd becomes 𝑁 − 𝑛 − 1 and the amounts of 
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marginal cowards and central cowards are recalculated as 𝑀′ and 𝐶′, respectively. This 

condition draws the area where an ideal swarming pattern is evolutionarily stable. 

Considering the ideal line abreast formation 𝑫𝐿𝑎 = (𝑁, 0,0,0) , if it is evolutionarily 

stable, becoming a follower from a pioneer must increase the probability of being eaten 

per hunt. Mathematically to say, the condition to ensure 𝑝𝑖
𝑃2𝐹 = 0 is 

𝑋𝑃

𝑁𝑋𝑃
<

𝑋𝐹

𝑋𝐹 + (𝑁 − 1)𝑋𝑃
 ,                                            (5.41) 

which is equivalent to 𝑋𝑃 < 𝑋𝐹, through the derivation 

𝑋𝑃

𝑁𝑋𝑃
=
1

𝑁
<

𝑋𝐹

𝑋𝐹 + (𝑁 − 1)𝑋𝑃
 ⟹ 𝑋𝐹 + (𝑁 − 1)𝑋𝑃 < 𝑁𝑋𝐹  ⟹ (𝑁 − 1)𝑋𝑃 < (𝑁 − 1)𝑋𝐹  

⟹ 𝑋𝑃 < 𝑋𝐹 . 

 
Figure 5.9: ESSs at the Prey Side 

The subfigure at the left hand side plots the two boundaries given 𝑋𝐶 = 𝑘𝑋𝑀, where the 

solid borderline of the ideal swarming pattern is when 𝑋𝐶 = 0 and the dashed line is its 

boundary when 𝑋𝐶 = 𝑋𝑀, which shows the area where the ideal swarming pattern can be 

evolutionarily stable is extended. The subfigure at the right hand side plots the two 

areas in a full-range map. 

 

As plotted in Figure 5.9, there is an area where both the ideal line abreast formation and 

the ideal swarming pattern cannot be evolutionarily stable. The stable states in this area 

are observed as schooling patterns from the simulation. Furthermore, there is an area 
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where both the two patterns are evolutionarily stable. It means evolution can drive prey 

into any of these two types. However, the probability for a stable state to be attained is 

not considered in the game-theoretic analysis. In the simulation, the line abreast 

formation is more likely to emerge given prey’s initial strategies are randomly assigned. 

5.4.2 Deriving ESSs at the Predator Side 

When the adaptive strategy of predators causes a swarming pattern, evolution should 

drive the predator population to add risk on cowards. Similarly, when a line abreast 

formation is present, the risk on pioneers should rise through the adaptation at the 

predator side. Lastly, when the emergent pattern is schooling, predators’ preference to 

hunt followers should be enhanced in evolution. By observing these adaptive dynamics 

of the three emergent types on the map (Figure 5.10A), it is expected that the 

evolutionarily stable state should fall on the junction of the three types given 𝑋𝐶 = 𝑘𝑋𝑀 

and 𝑒𝑗 = 1 . The apparent states in the overlap area of line abreast formations and 

swarming patterns may influence the adaptive path, but cannot change the tendency to 

reach the junction in evolution. 

For each 𝑋𝐶 = 𝑘𝑋𝑀 situation, this junction can be derived from the equations of the two 

borderlines. Since the junctions of all 𝑋𝐶 = 𝑘𝑋𝑀 situations are the turning points of the 

three emergent types, it is assumed that their emergent states consist of an equal amount 

of pioneers, followers and central cowards, as the corresponding major positions of the 

three types. Mathematically to say, the states on the junction are estimated by 𝑫𝐽 =

(𝑑, 𝑑,𝑀, 𝑑), where |𝑫𝐽| = 𝑁, as the population size, and the amount of marginal cowards 

can be derived from the definition 𝑀 = √4𝜋(𝑀 + 𝐶). It implies that the emergent states 

of these turning points are set identical. Hence, the feeding preference which gains 
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better fitness in 𝑫𝐽 should be selected in evolution, which is 𝑿 = (0.33,0.33,0.29,0.05) 

theoretically (Figure 5.10B). The derived risk on central cowards is much smaller than 

the simulation output. It is because in this analysis, the schooling pattern is simplified to 

the formation of followers. However, in the simulation, the amount of cowards 

increases in a schooling pattern when the risk distribution is close to the border of the 

swarming pattern (Figure 5.2). Given that the emergent state on the junction contains 

slightly more cowards, as 𝑫𝐽 = (𝑑, 𝑑,𝑀, 𝑡𝑑), where t is slightly greater than one, the 

adaptive strategy on the junction then put much more risk on the central position 

(Figure 5.10C). 

 
Figure 5.10: ESSs at the Predator Side 

Subfigure A shows the expected directions during the transition of states in every 𝑋𝐶 =

𝑘𝑋𝑀 situation, where the dashed line draws the boundary of the ideal swarming pattern 

when 𝑘 = 1, as explained in Figure 5.9. Assuming the state on the junction is the same in 

any 𝑋𝐶 = 𝑘𝑋𝑀  situation, where there is an equal amount of pioneers, followers and 

central cowards, the fittest feeding preference happens when 𝑋𝐶 = 0.16𝑋𝑀 , as in 

subfigure B, which shows that the marginal predation is not adaptive for the strongest 

predator (𝑒𝑗 = 1). Subfigure C shows that if the state on the junction contains slightly 

more central cowards, the fittest strategy largely increases the risk on the central prey. 

 

When 𝑒𝑗 < 1, the payoff of 𝑋𝑀 is weighted. As a reminder, a schooling pattern usually 

contains an obvious frequency of marginal cowards due to the expectation of being a 

free rider during a collective departure (Figure 5.2 & Figure 5.4). Hence, the stable state 
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in each 𝑋𝐶 = 𝑘𝑋𝑀  situation should shift from the junction toward to the zero point 

because the increase of 𝑋𝑀  is proportional to the decrease of 𝑋𝑃 + 𝑋𝐹 . This shifting 

causes the stable state away from the boundary of the swarming pattern, which implies 

the frequency of central cowards in the state should be zero or extremely small. 

Therefore, reducing the risk on central cowards must earn excess short-term fitness and 

the adaptation of predators should lead to the 𝑋𝐶 = 0 situation. 

5.5 Discussion 

The findings in this research infer that when gregarious fish are under predation risk, 

their schooling pattern can be evolutionarily stable even if the feeding preference of 

predators is also adaptive. In the stable states of this coevolution system, prey fish 

always form moving schools, in which the amounts of pioneers and followers are equal. 

In contrast, the adaptive strategies at the predator side are various, depending on the 

level of the extra energy cost when chasing the schooling prey. If the extra energy cost 

is smaller than a threshold, predators should evolve to hunt the central position of prey 

aggregates. Otherwise, predators adopt the marginal predation, that is, attacking the 

margin of stationary prey herds and keeping the prey at the central position secure. This 

tendency is enhanced when the extra energy cost is getting larger. 

It has been observed that when a group of dusky dolphins (Lagenorhynchus obscurus) 

hunt prey fish, they exhibit this marginal predation behaviour (Vaughn-Hirshorn et al., 

2013). In contrast, when a group of killer whales (Clupea harengus) (around 10 times 

larger than typical dolphins) hunt prey fish, they attack the central positions by their 

tails (Simila & Ugarte, 1993). For those smaller predators in fresh waters, like bass 

(Micropterous salmoides), goldfish (Carassius auratus), and bullgill (Lepomis 
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macrochirus), the strong preference of marginal predation has been reported (Romey et 

al., 2008; Ioannou et al., 2012). Although these predatory fish do not exhibit a 

coordinative hunting behaviour like the cetaceans, they are still group-hunting predators 

since they are group-living fish themselves. These observations all accord with the 

prediction of the model. 

Ecological fieldworks usually mentioned the cetaceans as ‘cooperative’ predators due to 

the appearance of coordinative hunting behaviours. However, from the evolutionary 

point of view (Nowak, 2006; Hammerstein & Selten, 1994), it is not answered whether 

these organised behaviours really deviate from the equilibrium of  short-term 

selfishness. The findings of this work infer that some features of group-hunting 

predators in the open ocean can be explained by short-term selfishness. Moreover, these 

adaptations are not mutually beneficial, since they usually decrease the individual 

fitness. For example, although the best strategy for predators is to attack the centre of 

prey aggregates, dolphins still evolve into the marginal predation behaviour as the 

prediction based on evolutionary selfishness. From the opposite aspect, when predators 

hunt in isolation, it is predicted that they should attack the central prey due to the excess 

benefit compared to the marginal predation. This adaptation has been observed from 

swordfish (Xiphias gladius), sailfish (Istiophorus albicans) and thresher sharks (Alopias 

pelagicus), which are isolated hunters and have evolved tactics to attack the centre of a 

prey group (Oliver et al., 2013; Domenici et al., 2014). 

To connect the findings with other predator-prey systems, the precondition of this 

model should be noted. In this work, the competition between predators and prey, as the 

evolution of their population sizes, is not considered. It implies that a prey only 

competes with other prey, and a predator only competes with other predators. This 
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setting is due to the fact that, in the marine world, the predators are much stronger than 

the prey and the prey are abundant. If extinction is a possibility of the adaptation, the 

equilibrium of a predator-prey system may deviate from the prediction of this work. 
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CHAPTER VI 

CONCLUSION 

 

 

 

This thesis aims to propose a holistic answer to the pending question, that is, why fish 

have evolved into schooling behaviour. To investigate this scientific issue 

systematically, three main research questions have been studied from Chapter III to 

Chapter V sequentially: viz., whether a model can be built with less preconceived bias 

on the setting, whether the evolution of schooling can be simulated under individual 

selection, and whether schooling can be evolutionarily stable in the predator-prey 

coevolution. The works in the thesis have resulted in fruitful findings by which the 

proposed main research questions were addressed to a significant extent. Through the 

efforts step by step, this thesis has proposed a novel explanation for the schooling 

behaviour when fish are in danger of predation. 

In the following section, the works to address the three research questions are reviewed 

and summarised. The contribution of these efforts, then, is evaluated in Chapter 6.2. 

Lastly, the limitations and future works are discussed in Chapter 6.3. 
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6.1 Summation of Research Works 

The research works in this thesis were all aimed to solve the question why fish evolve to 

form collective schooling behaviour when facing predators. As reviewed in Chapter 

2.3.2, the traditional explanations of this question, which were based on the group 

benefit, cannot completely satisfy the principle of natural evolution, that is, individual 

selection and adaptation. However, the explanations which took individual selection 

into account, such as the individual difference and the evolutionary trade-off, have not 

been widely accepted due to the significant conflicts with empirical data (reviewed in 

Chapter 2.3.3). To discover the mechanism by which fish evolve into coordinated 

schools, the spatial-explicit agent-based models, which were widely used to simulate the 

self-organising mechanism of animal collective behaviour (reviewed in Chapter 2.4.1), 

have been adopted to demonstrate the behavioural adaptation of a prey population and 

infer the evolutionary dynamic of fish schools (reviewed in Chapter 2.4.2). However, 

the various simulation outputs based on different model designs have caused concerns 

and criticisms on the validity of an ecological model and its inference (reviewed in 

Chapter 2.5.1). 

To investigate the ‘why’ question of fish schools based on an agent-based simulation, 

the first research question in this thesis is how to reduce the bias of model setting so that 

the simulation outputs can be more informative for the understanding of fish’s 

adaptation in evolution. The works in Chapter III addressed this question from the 

following two aspects. One is that the predesignated set of potential strategies (for prey 

agents to adopt in evolution) in most of the previous works was replaced by an open-

ended solution space. Since the outcome of an evolutionary simulation is crucially 
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affected by the candidate strategies which are chosen for agents to adopt, the proposed 

model was designed to include all possible strategies (mappings from local information 

to elementary behaviours), whether known or unknown at present, by introducing the 

NEAT algorithm (Stanley & Miikkulainen, 2002). This algorithm can increase the 

complexity of its neural networks during an evolutionary process, without an upper 

bound of the number of nodes and links. Hence, a profitable strategy, regardless of its 

complexity, can be generated automatically without the necessity of being designed in 

advance. These works are in Chapter 3.2. The other aspect of the efforts to reduce 

modelling biases is to adjust and validate the proposed model based on the big concerns 

in the ecological domain, which are the accordance of model settings and the empirical 

data (analysed in Chapter 3.4), the robustness of a model against noises and the 

sensitivity of parameters (analysed in Chapter 3.5). By heeding these concerns, the 

proposed model has avoided many biases present in previous works. Therefore, the 

simulation outputs can be more persuasive. 

Then, the next research question, about whether the evolution of fish’s schooling 

behaviour can be simulated and explained reasonably, was proposed and addressed in 

Chapter IV. It is worth mentioning that although few previous works had proposed 

inspiring findings on this research question, those explanations may be not as complete 

due to the significant conflict between their agent designs and the real fish, which will 

be discussed in Chapter 6.2.1. In Chapter IV, based on the proposed model in Chapter 

III, the evolutionary trajectory from isolated prey agents to the schooling pattern was 

observed and reported in Chapter 4.3. The simulation demonstrated that under 

individual selection, these fish-like agents with local sensors and local responses evolve 

along the transitions from being isolated, via the formation of swarms, to the formation 
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of schools. While the dynamic of the transition from isolated individuals to cohesive 

swarms have been widely understood as the selfish herd scenario, the proposed model 

in this thesis originally demonstrated that, in the swarming stage, fish agents will evolve 

to leave the boundary of a tightly packed swarm if it is followed by a number of nearby 

agents (3 or more in the simulation). When this ‘collective departure strategy’ is widely 

adopted in the population, the transition from the swarming pattern to the schooling 

pattern emerges. Through the game-theoretic analysis in Chapter 4.4, it was derived that 

this ‘collective departure strategy’, which has not been noticed and proposed in previous 

models, can be evolutionarily stable in a considerable range of the risk distributions 

among positions. The simulation and analysis revealed that schooling can be self-

organised by the 'collective departure strategy', and the 'collective departure' can be 

evolutionarily stable in a wide range of the risk distribution among positions. 

Since the positional risk distribution is affected by the feeding preference at the predator 

side, the follow-up research question is whether the ‘collective departure strategy’ and 

its emerged schooling pattern can still be evolutionarily stable given predators are also 

adaptive. To address this issue, an extensive agent-based model was built in Chapter 5.2 

to simulate the coevolution between predators and prey. The simulations in Chapter 5.3 

and analyses in Chapter 5.4 demonstrated that there are evolutionarily stable states in 

this behavioural coevolutionary system. In these stable states, prey agents always adopt 

the collective departure strategy and lead to the emergence of a schooling pattern. In 

contrast, the adaptive hunting strategies can be varied depending on the strength of the 

predators. If predators are extremely strong so that the energy cost has no difference 

between chasing a moving school and chasing a stationary swarm, they evolve to hunt 

the central position of a prey aggregate. Otherwise, they exhibit the ‘marginal predation’ 
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behaviour, which means hunting those on the boundary of a prey group. Moreover, the 

game-theoretic analysis implied that marginal predation is no longer evolutionarily 

stable when predators evolve to hunt in isolation. In this case, hunting the central 

position should be evolutionarily stable regardless of the strength of a predator. As 

discussed in Chapter 5.5, the significant consistency between these theoretical 

predictions and the observed behaviours of predatory fish and prey fish in the marine 

world has largely highlighted the validity of this study. 

6.2 Contribution 

Through the systematic experiments and analyses, this thesis has brought a unique 

viewpoint on the behavioural evolution of prey fish as well as their predators. It is 

evaluated that these findings have considerably revealed the essence of fish’s schooling 

adaptation, which had provoked disputes for decades. Here three points of this thesis’s 

contributions are indicated, from the major ones to the minor ones sequentially. 

6.2.1 The Proposed Collective Departure Strategy 

The collective departure strategy, that is, leaving the swarm periphery together to 

expose the central prey and share the predation risk, was originally observed from the 

spatial-explicit agent-based simulations in Chapter IV. The game-theoretic analysis in 

Chapter IV has shown that given prey groups are too crowded to be entered, this 

strategy can invade the well-known ‘selfish herd scenario’ (Hamilton, 1971), where 

prey individuals always attempt to get into the centre of a group. Through this invasion, 

a stationary swarm then converts into moving schools and reaches the evolutionary 

stability. As being at the front edge of a school can be slightly more at risk than being a 
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follower, Chapter 5.3.1 further demonstrated how the collective departure scenario 

reaches its evolutionary stability under this kind of risk distribution. 

Previous explanations of the evolution of fish schools are mainly from the two aspects. 

One is that the higher predation risk of being at the front edge of a school could be 

balanced by the better foraging opportunity, which implies fish are more likely to 

exhibit schooling behaviour at the foraging stage (Krause, 1992; Krause, 1993; DeBlois 

& Rose, 1996). As not favoured by the empirical data (Hoare et al., 2004; Tien et al., 

2004), this explanation has been less proposed in recent works. The other explanation is 

that the individual difference may drive a sub-group of fish to lead the other ones, 

which implies there is leadership in fish schools (Krause et al., 2000). There have been 

many modelling works to demonstrate this kind of 'leader-follower' movement can be 

self-organised (Couzin et al., 2005; Conradt et al., 2009; Couzin et al., 2011) or evolved 

(Conradt & Roper, 2009; Guttal & Couzin, 2010; Eshel et al., 2011) by heterogeneous 

prey agents. As supportive evidence, some empirical data showed that fish do have 

leaders at the foraging stage (Krause et al., 1992; Couzin et al., 2011). However, the 

schooling pattern under predation risk has long been considered composed of relatively 

homogeneous fish individuals (Partridge, 1980; Ward et al., 2001; Ioannou et al., 2012). 

Therefore, the originally proposed ‘collective departure scenario’, which is purely based 

on the survival benefit of homogeneous prey, may be a more reasonable explanation of 

fish’s schooling behaviour in danger. 

Although few modelling works, like Oboshi et al. (2003), Wood & Ackland (2007) and 

Ioannou et al. (2012), have demonstrated that relatively homogeneous prey agents can 

evolve into the schooling behaviour, the agents in these works were all designed 

without sensors to detect the environmental information. In other words, an agent is 
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constrained to exhibit the same response at different positions in these works. However, 

the different response based on the acquisition of local information is essential to the 

evolution of collective animal behaviour (Hamilton, 1971; Krause et al., 1998; Parrish 

& Edelstein-Keshet, 1999). Also, it has been reported that the schooling behaviour of 

real fish is maintained by a fish’s eyes and lateral lines (Partridge, 1982; Faucher et al., 

2010). Nevertheless, previous modelling works which allowed their agents (with 

identical endowments) to make decisions based on their local surroundings have not 

demonstrated the evolution of schooling behaviour. Instead, these works usually 

demonstrated an evolutionary trajectory from isolated prey to stationary swarms 

(Viscido et al., 2002; Reluga & Viscido, 2005; Olson et al. 2013). 

An important reason that the previous works did not demonstrate the collective 

departure scenario is the neglect of body overlaps among agents. In the proposed model, 

physical overlaps between two agent’s bodies were strictly forbidden through a hard 

penalty on the fitness value, which setting avoids an agent’s attempt to enter a compact 

group. However, almost all of previous works in this domain, like all the above 

mentioned works, allowed overlaps. As analysed in Chapter 4.5.2, if outer agents can 

squeeze into the centre of a group, the condition to let the collective departure scenario 

evolutionarily stable can no longer exist. 

6.2.2 The ESS in Predator-Prey Coevolution 

There have been few modelling works which simulated the behavioural coevolution 

between the predator(s) and the prey aggregation (Ward et al., 2001; Olson et al., 

2016b). So far, the findings from these works are rarely considered an informative 

analogy to the adaptations of natural predators and prey. For example, Olson et al. 
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(2016b) demonstrated that when prey evolve into a cohesive swarm, the predator will 

evolve to attack large groups. Prey then evolve to form a dispersal pattern, which drives 

the predator evolves to attack the nearest prey and the prey evolve into a cohesive 

swarm again. This simulation output seems difficult to be linked to the natural predator-

prey coevolution. 

In these works, the evolution of predators’ hunting strategies depended on the 

development of a geometric movement in a virtual arena. That is to say, these works 

expected that the predator agent, which made its decision based on simple 

environmental information, can evolve into a hunting movement similar to that of some 

natural predators. Considering the sophisticated hunting behaviours exhibited by natural 

predators, like the ‘marginal predation’ by bass and the ‘herding pass’ by dolphins 

(reviewed in Chapter 2.2.2), the attempt to evolve a predator agent into such kind of 

movement would be difficult to succeed. 

As mentioned in Chapter V, an original breakthrough by the proposed coevolutionary 

model was to project predators’ hunting strategies into the feeding preferences among 

different positions. Since a feeding preference can be represented by a vector, the 

adaptation at the predator side then can be easily simulated. Through the literature 

search by the author, there are no related works which proposed a similar idea to 

formulate the predator’s hunting behaviour. By connecting the feeding preferences of 

predators to the positional risks at the prey side, the coevolutionary system, as the 

interaction between predators’ adaptation and prey’s adaptation, can be built, which 

details are in Chapter 5.2. 
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As summarised in Chapter 6.1, this coevolutionary model illustrated a comprehensive 

framework to explain various predatory behaviours in the marine world. Compared to 

previous related works, such as Ward et al. (2001), Olson (2016a) and Olson (2016b), 

the findings of the present work provided a more realistic analogy to the behaviours of 

predatory fish and cetaceans. Moreover, the game-theoretic analysis in Chapter 5.4 also 

originally explained how these adaptive strategies in the predator-prey coevolution can 

be evolutionarily stable. These contributions have highlighted the significance of the 

works in Chapter V. 

6.2.3 The Adjustments to Reduce Modelling Biases  

It is obvious that those model settings which may let the simulation deviate from the 

targeted system should be avoided. However, whether a design is a reasonable 

simplification or a modelling bias has been a difficult question in ecological modelling. 

At the same time introducing many model settings developed in previous works, this 

thesis also highlights a few modifications which significantly increase the validity of a 

model.  

The most significant modification is to provide an open-ended solution space to the 

evolution of prey agents’ strategies. Although techniques to search solutions in an open-

ended space have already been developed in Computer Science for a long time (Ficici & 

Pollack, 1998; Stanley & Miikkulainen, 2002), introducing this kind of algorithms into 

the ecological modelling domain is still an excellent contribution. As demonstrated in 

Chapter IV, this modification allowed prey agents to adopt beneficial strategies even if 

they were unknown in advance. This advantage makes the proposed model distinct from 

previous related works, like Reluga & Viscido (2005), Wood & Ackland (2007), 
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Ioannou et al. (2012) and Olson (2016b). The agents in these works can only adopt 

strategies among the predesignated candidates. Once a beneficial strategy is neglected 

by the model designer, the simulation output then deviates from the real system. 

A simple but important modification is to forbid body overlaps strictly. The influence of 

physical overlaps between two prey agents’ bodies has long been ignored in previous 

evolutionary and coevolutionary models, such as Viscido et al. (2002), Oboshi et al. 

(2003), Reluga & Viscido (2005), Wood & Ackland (2007), Ioannou et al. (2012), 

Olson et al. (2013), Olson et al. (2016a) and Olson et al. (2016b). Although some of 

these works, like Wood & Ackland (2007) and Ioannou et al. (2012), forced an agent to 

repulse from those extremely close neighbours to reduce the level of overlapping, this 

smooth control is far from enough to forbid agents to adopt the unrealistic strategy as 

entering a crowded group by passing through others' bodies. The present work has 

originally shown that when entering a group with body overlaps is strictly forbidden, 

the schooling pattern can replace the swarming pattern through the collective departure 

scenario. 

The individual paralleling behaviour was widely adopted in related agent-based models 

(reviewed in Chapter 2.4). However, this setting has been criticised due to the 

inconsistency with the empirical data (reviewed in Chapter 2.5.1). Romanczuk et al. 

(2009) and Strombom (2011) have demonstrated how a collective motion can be self-

organised only by individual attraction and repulsion. Based on the knowledge from 

these works, the proposed model further demonstrated that the evolution of schooling 

behaviour can be well simulated without the design of individual paralleling behaviour. 
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6.3 Limitations and Future Works 

The present works in this thesis have proposed fruitful findings to the topic why fish 

adopt the schooling behaviour in evolution. However, these works also contain 

limitations which are waiting for further investigations and studies. As discussed in 

Chapter 3.6, there were few potentially influential factors of the model setting which 

have not been experimented in the proposed spatial-explicit agent-based model, such as 

the adaptation of fish’s speed and the influence of fish’s body shape. Besides, the 

collective departure scenario proposed in Chapter IV can be more significant if 

biological evidence from the empirical data is reported. Lastly, the research outputs 

have revealed a potential to explain the evolution of collective behaviour in other 

animals or even in human society. It is expected that through more experiments and 

validations, further models based on this thesis can discover the evolutionary reasons of 

more collective behaviours. These future works are discussed sequentially in the 

following sub-sections. 

6.3.1 Influence of Other Factors to the Simulation 

The proposed spatial-explicit agent-based model in this thesis followed most of the 

popular simplifications in previous works, at the same time modifying some previous 

settings which may cause the bias of simulation. For example, one significant 

modification is to forbid the body overlaps. However, two simplifications in the present 

model, which were also adopted by most of the related modelling works, are evaluated 

worthy of further experiments. One is the fixed speed of prey agents, and the other is 

the round body shape of an agent. 
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The moving speed of an agent was fixed as a constant in the proposed model and many 

other works (Schellinck & White, 2011). However, in Couzin et al. (2002) and Wood & 

Ackland (2007), the influence of speed on schooling behaviour has been demonstrated. 

In fact, the schooling behaviour of natural fish also involves coordinated changes of 

speeds (Magurran & Pitcher, 1987). Therefore, one future work is to investigate 

whether the involvement of speed adaptation can affect the collective departure 

scenario. 

The other potentially influential factor is the setting of agents’ body shape. A fish agent 

is usually designed with a round shape (Schellinck & White, 2011), even though many 

species of schooling fish are in an elongated shape. It may be because the demonstrated 

self-organising mechanisms are qualitatively the same compared with the agents with 

elongated body shapes. However, according to the findings in this thesis, the body 

shape may be influential when simulating the adaptation of schooling fish in evolution. 

It is because a longer body shape may imply a longer schooling group, which could 

affect the distribution of positional risks and hence affect the behavioural adaptation. 

6.3.2 Evidence of Collective Departure Scenario in Fish 

As the collective departure strategy is originally proposed in this thesis, the empirical 

data to validate whether fish exhibit this tactic are scant. Although it was informed by a 

biologist, Iain D. Couzin, that some species of fish do exhibit the collective departure 

behaviour, more biological experiments are still needed to know whether the proposed 

theoretical scenario exactly explains the adaptation of fish's schooling behaviour. 

Additionally, the coevolutionary model in Chapter V has predicted various 

evolutionarily stable strategies at the predator side given different conditions. Although 
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supportive evidence has been presented in Chapter 5.6 through a literature search by the 

author, a more detailed investigation with the cooperation of biological experts will be 

helpful to construct a complete validation of these theoretical predations. 

6.3.3 Analogy of Collective Departure Scenario to Other Animals 

The research works in this thesis were all carefully focused on fish which are under 

predation risk. However, it is obvious that some findings have revealed a potential to 

explain other group-living animals, for example, the collective motion of a herd of 

sheep or a flock of birds. For two reasons the research domain of this thesis was strictly 

put on gregarious prey fish. One is that the evolutionary mechanisms to drive different 

animal individuals into the collective motion can be various. For example, the 

coordinated movement of locust has been reported due to the cannibalism phenomenon 

(Romanczuk et al., 2009; Guttal et al., 2012). The other reason is that a generalised 

inference and analogy to other animals may reduce the authority of the model design. 

For example, some species of ungulates have been observed to make decisions based on 

their social roles (Leuthold, 2012). To maintain the authenticity of the model design and 

findings, the thesis only considered the schooling behaviour of prey fish. 

Nevertheless, the findings in Chapter IV and Chapter V, as the collective departure 

scenario and its extension under the predator-prey coevolution, would be more 

significant if these demonstrations and derivations can be compared with a wider range 

of animal behaviour. It can be expected that some cluster of organisms may better fit the 

theoretical analysis as prey fish, and some others may be the exceptions. By analysing 

these differences, meaningful adjustments of the model can be made, so that a more 
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convincing framework could be constructed to explain the evolution of collective 

behaviours in animals. 

Furthermore, an ambition remained in the future work is to extend the evolutionary 

model and its inferences into the human social dynamics, which is a domain about the 

self-organising phenomenon in human society. As intimated by the name of the 

proposed RPFC metric (abbreviations of ‘ranger’, ‘pioneer’, ‘follower’ and ‘coward’) in 

Chapter 3.5, it has been noticed that the proposed scenario of fish, as an unfair group 

may collapse due to the collective departure of suffering individuals, could be linked to 

some features in human society. It will be studied whether certain adaptations of human 

social roles can be explained by an extension of the collective departure scenario. 
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