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Abstract 

The capacity to oxidise lipid whilst physically active has been associated with markers of 

metabolic health and exercise performance. In a group of 305 active men and women, this 

thesis observed a substantial 6-fold inter-individual variability in the capacity to oxidise lipid 

during exercise, and explains 46% of the variability. This was largely attributed to aerobic 

capacity, biological sex, self-reported physical activity level and body composition, with new 

information provided to show that the dietary intake of carbohydrate and fat is also a 

significant contributor (~3%) to the explained inter-individual variability. 

 

Prior research in men, demonstrates that high fat, low carbohydrate diets enhance lipid 

oxidation during exercise.  This thesis demonstrates that, like men, women respond to short-

term (5 day) high fat, low carbohydrate diets by considerably (33%) increasing lipid oxidation 

during exercise. Further, by using a short term hypercaloric ‘fat supplementation’ without 

carbohydrate restriction diet, which did not alter lipid oxidation during exercise, this thesis 

suggests that carbohydrate restriction, not increased fat intake, drives the increased lipid 

oxidation observed during high fat, low carbohydrate diets. Finally, short-term dietary fat 

manipulation appears to have minimal impact upon markers of metabolic health or 

endurance exercise performance in the well-trained women studied. 
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1 THESIS OUTLINE 

This thesis explores the impact of dietary intake on substrate oxidation during exercise. The 

thesis begins with a General Introduction (Chapter 2) to the topic areas pertinent to the 

overall thesis followed by sections that discuss in more detail key areas in the current 

literature that warranted further investigation. The General Methods section (Chapter 3) 

describes the principles behind the main methods employed during the conduct of the 

research presented in this thesis, highlighting key strengths and limitations of the 

approaches taken. Chapter 4, the first experimental chapter of the thesis, presents a large 

cross sectional study that was conducted to investigate the determinants of the frequently 

reported large inter-individual variability in fat oxidation during exercise, with a particular 

focus on the role of nutrition. This Chapter is spilt into 3 sections, the first of which (Section 

4.1) is in the form of a manuscript currently under review for publication using the main data 

collected from this study. Using the same data set but split by sex, Section 4.3 explores 

whether the determinants of fat oxidation differ in men and women. Section 4.2 focused 

solely on the women from the same data set, and sought to explore the role of menstrual 

cycle and hormonal contraceptive use on fat oxidation during exercise. The conclusions 

drawn from Chapter 4 informed the design of the study described in Chapter 5, which 

presents the second experimental chapter of the thesis. This study sought to investigate the 

influence of varying short-term (i.e., 5 days) dietary fat intake on exercise metabolism and 

performance in well-trained female runners. The thesis ends with a General Discussion and 

Conclusion (Chapter 6) which discusses the new contributions made in light of the aims and 
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objectives of the thesis, as well as their relevance, limitations and implications for future 

research.
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2 GENERAL INTRODUCTION 

2.1 Introduction 

During exercise energy requirements increase many-fold and this metabolic demand is 

primarily met through an increased oxidation of carbohydrates and lipids, with the capacity 

to utilise the latter implicated as being important for both metabolic health and exercise 

performance. For instance, insulin sensitivity (a marker of metabolic health) has been 

associated with the maximal attainable rate of fat oxidation (MFO) during exercise in young 

healthy men (Robinson et al. 2015). From an exercise performance perspective, increasing 

lipid oxidation during exercise is desirable in many endurance-based sports as a way to delay 

the onset of fatigue through minimising the depletion of the body’s limited endogenous 

carbohydrate store (Jeukendrup, Saris, and Wagenmakers 1998). Thus, there is relevance 

from the perspective of the general population and those looking to improve exercise 

performance in understanding the regulation of fat oxidation and ways to enhance it.  

 

Interestingly, the relative proportion of fat and carbohydrate oxidised to meet energy 

requirements during low-moderate intensity exercise is highly variable between individuals 

(Goedecke et al. 2000). Indeed, MFO has been shown to range over 5 fold between 

individuals (0.18-1.01g/min) (Achten and Jeukendrup 2003; Venables, Achten, and 

Jeukendrup 2005). Previously, 35% of this large inter-individual variability in MFO was 

explained by self-reported physical activity level,    2max, body composition and biological 

sex (Venables, Achten, and Jeukendrup 2005). Dietary intake can affect substrate oxidation 

during low-moderate intensity exercise (Helge, Richter, and Kiens 1996; Jansson 1982), 
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although the extent to which commonly consumed habitual diets contribute to the 

frequently observed inter-individual variability in fat oxidation has not been 

comprehensively addressed. A more thorough understanding of the factors responsible for 

inter-individual variability in fat oxidation may allow for their superior prescription and 

manipulation, with the potential to improve metabolic health and/or exercise performance.  

 

Numerous sex based differences have been described in exercise metabolism and substrate 

oxidation, for instance, compared to men, women oxidise a greater proportion of fat to 

carbohydrate during exercise (Tarnopolsky et al. 1990; Tarnopolsky et al. 1995). Sex based 

differences in anatomy and physiology account for some differences as does the markedly 

greater circulating concentration of the hormone oestrogen in women, with this hormone 

shown to augment whole body fat oxidation during exercise (Maher, Akhtar, and 

Tarnopolsky 2010), and regulate the transcription of genes involved with IMTAG storage 

which can then further modulate substrate oxidation (Fu et al. 2009). With these numerous 

sex based differences in physiology and metabolism there is the potential for a sex 

difference in the response to the effect of dietary intake and substrate oxidation. Despite 

numerous studies in men of the impact of manipulating dietary fat intake on metabolism 

and exercise performance, there are few, well controlled (dietary control) studies 

characterising the response in women.  

 

The following section introduces the relevant literature related to fuel use, its variability and 

the factors influencing fuel use during exercise with a particular focus on diet and biological 

sex. In doing this, key knowledge gaps in the field are highlighted that underpin the need for 
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new research, some of which has been undertaken during the course of this doctoral 

research and is presented in this thesis. 

2.2 Fuels for exercise 

2.2.1 Storage, mobilisation & utilisation  

Adenosine Tri-Phosphate (ATP) is the chemical energy source, the hydrolysis of which 

releases energy to support energy consuming processes such as muscular contraction. The 

cellular levels of ATP however are very small and must be constantly re-synthesized in an 

energy consuming process, which during exercise of over around 60secs is primarily supplied 

through the oxidation of fatty acids and carbohydrates. The following section briefly 

overviews the storage, mobilisation and utilisation of these major energy substrates. The 

interested is referred to recent articles for further detail  (Spriet 2014; Van Hall 2015). 

 

Exercise results in an increase in the rate of delivery and muscle extraction of plasma 

glucose, with this tightly regulated so that the increased rate of extraction is matched by a 

reciprocal rise in hepatic glucose production (Ahlborg et al. 1974). The liver is able to sustain 

an increased output of glucose for 60-90mins at moderate-to-hard exercise intensities (60-

70%    2max) (Ahlborg and Felig 1982; Coyle et al. 1986) through a combination of both 

glycogenolysis and gluconeogenesis (Wahren et al. 1971; Trimmer et al. 2002), although this 

markedly diminishes the liver glycogen content (Stevenson et al. 2009) unless exogenous 

carbohydrate is also ingested (Gonzalez et al. 2015). Glycogenolysis of the hepatic glycogen 

stores is the predominant (~70-80%) source of glucose production during exercise (Trimmer 

et al. 2002). If this small (~80g) store were the only source of glucose production however, it 
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would be completely depleted in under 3hrs of exercise at 65%    2max, and so the ability to 

maintain normal glycaemia calls upon an increased contribution of gluconeogenesis to 

overall hepatic glucose production (Trimmer et al. 2002). Under such circumstances, hepatic 

glucose production is facilitated by increases in the gluconeogenic precursor pool of both 

lactate, alanine and glycerol (Friedlander et al. 1999; Chung et al. 2015).  The change in the 

gluconeogenic precursor pool is dependent on both the exercise intensity and duration 

(Friedlander et al. 1999). Although there is an increase in the absolute rate of 

gluconeogenesis with exercise intensity, the relative contribution to overall hepatic glucose 

production falls or changes minimally, with glycogenolysis the dominate (~70-80%) source of 

glucose production (Trimmer et al. 2002).  

 

Glucose is also stored within skeletal muscle in the form of glucosyl units in glycogen. 

Although the size of the muscle glycogen store is malleable and is particularly sensitive to 

dietary carbohydrate intake and physical activity level (Mc Inerney et al. 2005; Bergstrom et 

al. 1967), values of ~130mmol/ kg wet wt (560mmol/kg dry wt) are typical on a diet 

containing 50% carbohydrates (Costill et al. 1981; Sherman et al. 1981). The presence of 

glycogen localised within skeletal muscle offers a readily available glucose source for 

exercise without the mobilisation and transport limitations of liver-derived glucose. At 

exercise intensities between ~65-80%    2max muscle glycogen utilisation is substantial, with 

the onset of fatigue often associated with muscle glycogen depletion (Ahlborg et al. 1967; 

Bergstrom et al. 1967; Hermansen, Hultman, and Saltin 1967). Collectively, the onset of 

fatigue during prolonged exercise of 65-80%    2max has been attributed to reductions in 

liver and/or muscle depletion often manifesting as inability to maintain glucose and/or 
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carbohydrate oxidation at sufficiently high rates to for the required workload (Coggan and 

Coyle 1987). 

 

Fatty acids are primarily stored in subcutaneous and deep visceral adipose tissue as 

triacylglycerol (TAG), with smaller quantities also found within or between muscle fibres as 

intra or inter muscular triacylglycerol (IMTAG) respectively. IMTAG content is variable 

between individuals ranging between 2-10mmol/kg wet wt and as discussed later is related 

to a number of factors including dietary fat intake, sex and training status (Van Loon 2004). 

The sympathetic nervous system is the major positive regulator of adipose tissue lipolysis 

during exercise, through the stimulatory release of catecholamines, that phosphorylate 

perilipins resulting in a co-ordinated catabolism of TAGs initially through the rate limiting 

action of adipose triglyceride lipase (ATGL) followed by hormone sensitive lipase (HSL) and 

then monoacylglycerol lipase (MAGL) splitting the final acyl group liberating glycerol and 

non-esterified fatty acids (NEFAs) (Aon, Bhatt, and Cortassa 2014; Zimmermann et al. 2004). 

Insulin has the opposing action and acts to inhibit lipolysis by preventing the 

phosphorylation and activation of HSL (Langin, Holm, and Lafontan 1996). Other processes 

particularly pertinent during exercise such as an increase in glycolytic flux (Boyd et al. 1974) 

leading to lactate accumulation in plasma can also inhibit the rate of lipolysis through the G 

protein coupled receptor GPR81 (Liu et al. 2009) thus limiting plasma NEFA availability for 

oxidation (Frayn 2010). 
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NEFAs liberated from adipose tissue TAG lipolysis are transported in the circulation via 

albumin to skeletal muscle. Lipids are also present in much smaller quantities in the 

bloodstream, either circulating bound to albumin as NEFA or incorporated as TAG and 

transported within the core of the different types of lipoprotein particles (chylomicrons, 

very-low [VLDL], low [LDL], and high [HDL] density lipoproteins), which are hydrolysed by 

lipoprotein lipase (LPL) located in the capillary endothelium of skeletal muscle. The resulting 

NEFAs released from these lipoprotein particles are only thought to provide a small (<10%) 

contribution to total fat oxidation during exercise (Havel, Pernow, and Jones 1967). Plasma 

NEFAs taken up by myocytes are transported across the cytoplasm of the cell before crossing 

the outer and inner mitochondrial membrane to reach the mitochondrial matrix for beta-

oxidation, with anyone or a combination of these steps potentially limiting the rate of fat 

oxidation (Van Hall 2015). In a similar manner to the myocellular stores of glycogen, with 

their close proximity to the site of oxidation, IMTAG provide an immediate substrate source 

for oxidation, before the slower mobilisation and delivery of adipose derived NEFA.  

 

2.3 Factors affecting fuel use during exercise 

2.3.1 Intensity 

The intensity of exercise is arguably the most influential factor determining the absolute and 

relative contribution of the different fuels oxidised during exercise. For clarity, throughout 

this thesis, exercise intensity will be either quantified as a relative proportion of aerobic 

capacity (percentage of    2max) or by a qualitative descriptor, specifically; mild/low (<45% 

   2max), moderate (50-65%    2max), moderate to hard (65-75%    2max), hard / 
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demanding (>75%    2max). When considered on a whole-body level, the relative 

contribution of fat and carbohydrate to total energy expenditure as a function of exercise 

intensity has been described as the cross-over concept (Brooks and Mercier 1994). This 

describes a gradual decrease in the relative contribution of fat to energy expenditure from 

~60% at rest, declining to <30% at moderate intensities and declining more so during hard 

intensity exercise down to <10%, with the relative contribution of carbohydrate following 

the opposite pattern. The cross-over point is the exercise intensity at which energy derived 

from carbohydrate based fuels predominates over that derived from lipids, typically 

occurring at low-moderate intensities, with further increases in exercise intensity beyond 

this point prompting a relative increment in energy from carbohydrate and decrement in 

energy from fat oxidation (Brooks and Mercier 1994).  

 

As exercise intensity increases and so the overall demand for energy increases, the absolute 

rate of fat and carbohydrate oxidation must also change to meet the energy demands. 

Typically the absolute rate of fat oxidation as a function of exercise intensity follows an 

inverted U pattern, with rates of fat oxidation increasing from rest to a peak around 50-60% 

   2max, termed the maximal rate of fat oxidation (MFO), upon which it declines with any 

further increase in exercise intensity to negligible levels >85%    2max (see Figure 2-1 & 

Figure 2-2) (Jeukendrup and Wallis 2005; Venables, Achten, and Jeukendrup 2005; Achten, 

Gleeson, and Jeukendrup 2002; Achten and Jeukendrup 2003). On the other hand, the rate 

of carbohydrate oxidation continues to rise from resting values in line with the increasing 

workload, becoming the dominant source for oxidation from around 50-60%    2max, with 

the rate rising exponentially thereafter with further increases in exercise intensity (van Loon 
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et al. 2001; Romijn et al. 1993; Achten, Gleeson, and Jeukendrup 2002; Achten and 

Jeukendrup 2003; Achten, Venables, and Jeukendrup 2003; Venables, Achten, and 

Jeukendrup 2005; Rosenkilde et al. 2010; Stisen et al. 2006; Cheneviere et al. 2011; Nordby, 

Saltin, and Helge 2006). The greater biochemical efficiency of carbohydrate oxidation over 

lipid is represented by the ~7.7% greater energy liberated per unit of oxygen consumed 

(Brooks 2012). This makes carbohydrate the preferred substrate when the rate of energy 

demand is high and/or oxygen supply to the muscle is compromised, such as during intense 

exercise or in hypoxia (Peronnet et al. 2006). 

 

Figure 2-1 The “cross-over concept” Showing the relative increase in energy derived from 

carbohydrate utilisation and decline in energy from the oxidation of fat as a function of 

exercise intensity, taken from (Brooks and Mercier 1994). 
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Figure 2-2 The absolute rate of fat oxidation (g/min) as a function of relative exercise 

intensity (% of    2max). Taken from (Achten and Jeukendrup 2003) 

 

During exercise at a low intensity (Figure 2-3), plasma derived fuels primarily in the form of 

NEFAs are the preferred substrates for the active muscle. For instance at 25%    2max, 

Romijn et al (Romijn et al. 1993) reported the maximal contribution of plasma NEFA to 

energy expended as ~80%. Upon the transition to moderate intensity exercise there is an 

increasing reliance upon substrates stored within the muscle, in particular glycogen but also 

IMTAG, with the overall contribution of plasma sources remaining fairly constant but with a 

decline in plasma NEFA contribution and an increase in glucose (Romijn et al. 1993). As 

described above, the oxidation of all sources of lipids (plasma NEFAs, lipoproteins and 

IMTAG) is down regulated upon transition from moderate to high intensity exercise, to 

absolute rates similar or lower than at mild intensities despite the substantially greater 

energy expenditure (Romijn et al. 1993; van Loon et al. 2001). 
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Figure 2-3 The contribution of different substrates to energy expenditure at rest and 3 

exercise intensities corresponding to ~44, 57 and 72%    2max. Adapted from (van Loon et 

al. 2001) 

As can be seen in Figure 2-3 there is an ever increasing reliance on carbohydrate (plasma 

glucose muscle glycogen / lactate oxidation) with increasing exercise intensity, with the 

contribution of muscle glycogen proceeding almost exponentially with an increase in energy 

demand, supplying over half (58%) of the requirements at 72%    2max compared to 35% at 

low-moderate intensities (van Loon et al. 2001).  
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2.3.2 Duration 

It is well established that the duration of moderate to high intensity exercise has a profound 

effect on substrate oxidation. Even when the intensity of exercise is maintained, there is a 

time dependent decrease in carbohydrate and increase in fat oxidation (Ahlborg et al. 1974; 

Romijn et al. 1993). The overall reduction in carbohydrate oxidation as exercise time is 

prolonged is mostly attributed to the progressive depletion and hence availability of muscle 

glycogen (Gollnick, Piehl, and Saltin 1974; Watt et al. 2002; Coyle et al. 1986). With the more 

prominent use of muscle glycogen during the first 120mins of moderate intensity exercise, a 

maintenance of carbohydrate oxidation is met through an increased reliance on hepatic 

glucose output (Watt et al. 2002). However, there is also a gradual decrease in the 

contribution of plasma glucose during very prolonged (>3.5hrs) low to moderate intensity 

exercise, as a function of decreased plasma glucose delivery as hepatic glycogen stores are 

gradually depleted (Ahlborg et al. 1974; Ahlborg and Felig 1982; Gonzalez et al. 2015). Under 

such conditions gluconeogenesis becomes increasingly important for the maintenance of 

euglycaemia, facilitated by increased circulating gluconeogenic precursors as stated above. 

 

As the duration of moderate intensity exercise is extended, the contribution of fat to energy 

expenditure is increased, supplied by both IMTAG and the progressively increased rate of 

appearance (Ra) of plasma NEFA, with this becoming a more important substrate as exercise 

continues (Watt et al. 2002; Turcotte, Richter, and Kiens 1992; Van Hall et al. 2002). The 

contribution of IMTAG to energy expenditure appears to be greatest during the initial phase, 

before the somewhat sluggish NEFA release from adipose tissue lipolysis is adequate to 

meet the energy requirements (Romijn et al. 1993). When exercise is performed in the 
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overnight-fasted state the contribution of IMTAG to lipid oxidation is reduced after 

~120mins, and plasma NEFA becomes the dominant substrate supplying around 60% of the 

energy requirements at 57%    2max compared to ~40% over the first 120mins (Watt et al. 

2002). The increase in adipose tissue lipolysis is augmented by a gradual rise in 

catecholamine concentration and a fall in the concentration of the lipolytic inhibitor insulin. 

The continual rise of plasma NEFA concentration during prolonged moderate intensity 

exercise implies that the rate of adipose tissue lipolysis is greater than the extraction into 

the active muscle (Van Hall 2015). 

 

When discussing the impact of exercise duration on substrate oxidation, the interaction with 

exercise intensity must also be considered. For instance, substrate oxidation and availability 

in the plasma (NEFA, glucose) at 25%    2max for 120mins of exercise does not appreciably 

change, with NEFAs providing ~80% of the energy expended. In contrast, during 120mins 

exercise at 65%   2max there is a progressive increase in the reliance of both plasma NEFA 

and glucose with no change in carbohydrate or fat oxidation suggesting lesser reliance on 

muscle glycogen and IMTAG, presumably related to diminished availability (Romijn et al. 

1993). At even greater exercise intensities (~82%   2max) when carbohydrate oxidation 

dominates, small differences in substrate oxidation can still be seen as a function of duration 

with carbohydrate providing 92%, 89% and 83% of total energy over 60, 90 and 120mins 

(Torrens et al. 2016).  
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2.3.3 Training status 

It is well-established that endurance based exercise training and the concomitant 

improvements in aerobic capacity are accompanied by an increase in the reliance of fat and 

a reduction in carbohydrate during submaximal exercise, with this identified as a component 

of the cross-over concept (Brooks and Mercier 1994). A greater aerobic capacity, enables a 

trained individual to perform a given absolute workload at a lower relative exercise intensity 

(%   2max), with this already discussed as a primary determinant of fuel use, thus enabling 

greater lipid oxidation. This training induced change has been shown in both cross-sectional 

studies and longitudinally following endurance training, with greater rates of fat oxidation 

consistently seen at the same absolute and possibly relative intensity (Hurley et al. 1986; 

Achten and Jeukendrup 2003; Van Loon et al. 1999; Friedlander, Casazza, Horning, Huie, et 

al. 1998; Jansson and Kaijser 1987). Although this enhanced ability to utilise lipid is apparent, 

the importance of carbohydrate at high (>80%    2max) exercise intensities is clear, with it 

continuing to dominate in both the trained and untrained state (Bergman and Brooks 1999; 

Friedlander et al. 2006). 

 

Many physiological adaptations to endurance training contribute to the observed increases 

in fat oxidation. An increased mitochondrial density or mass (Holloszy 1967), along with 

enzymatic adaptations such as a greater content of citrate synthase and Beta-hydroxyacyl-

CoA dehydrogenase (Beta HAD) (Mogensen et al. 2009) ensure the capacity for fat oxidation 

is enhanced. Furthermore, increased capillarisation of skeletal muscle (Brodal, Ingjer, and 

Hermansen 1977) and increases in the content or activity of muscle and mitochondrial fatty 

acid transport proteins (e.g., FABP, FAT/CD36, CPT1 (Talanian et al. 2010; Mole, Oscai, and 
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Holloszy 1971), results in an increased potential for lipid delivery and uptake by exercising 

muscle (Kiens et al. 1993) and greater potential for transport across the mitochondrial 

membrane. Endurance training is also associated with increases in the local stores of fat 

and/or adaptations to sub-cellular storage locations that would facilitate the capacity for 

utilisation (Tarnopolsky et al. 2007).  In recent years tremendous advances in the 

understanding of the molecular basis behind endurance training adaptation have been 

made, and the interested reader is referred to recent review on the topic (Egan and Zierath 

2013; Drake, Wilson, and Yan 2016). Collectively, the training adaptations described above 

lead to a greater cytosolic energy charge (ATP: ADP ratio) and redox status (NADH: NAD+) 

resulting in a down regulation of the rate of glycolysis, relieving its inhibitory effect on NEFA 

uptake and oxidation into the mitochondria (Spriet, Howlett, and Heigenhauser 2000). As 

well, extra-muscular adaptations such as a greater sensitivity of adipose tissue 

adrenoreceptors to catecholamine stimulated lipolysis (Mauriege et al. 1997) supports 

greater systemic NEFA mobilisation and consequent oxidation after exercise training 

(Friedlander, Casazza, Horning, Buddinger, et al. 1998; Friedlander et al. 1999; Kiens et al. 

1993; Turcotte, Richter, and Kiens 1992). 

 

The down regulation of carbohydrate oxidation following endurance training at a given 

absolute workload results in a reduction in muscle glycogen utilisation (Hurley et al. 1986; 

Karlsson, Nordesjö, and Saltin 1974) and a reduced plasma glucose uptake and oxidation 

(Friedlander et al. 1997; Carter, Rennie, and Tarnopolsky 2001; Coggan et al. 1995). The 

impact of endurance training on glucose flux at the same relative intensity is inconclusive. 

Due to the increased total energy expenditure and so increased metabolic flux in the trained 
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state the Rd as a % of total energy from carbohydrate is perhaps the more appropriate 

expression with some (Carter, Rennie, and Tarnopolsky 2001) but not others (Friedlander, 

Casazza, Horning, Huie, et al. 1998) reporting a reduction post training. These discrepancies 

could in part be explained by the relatively small contribution that plasma glucose makes as 

a proportion of total energy expended during more intense exercise (van Loon et al. 2001; 

Friedlander, Casazza, Horning, Huie, et al. 1998). A restraint on plasma glucose use 

irrespective of training status, perhaps reflects the importance of maintaining glycaemia for 

cerebral metabolism no matter the training status of the muscle (Brooks 2012). 

 

The training induced adaptations described above, particularly those affecting skeletal 

muscle, are often used to explain greater rates of whole body lipid oxidation when 

estimated by pulmonary gas exchange. However, greater lipid oxidation in the active muscle 

following endurance training has not always been seen when investigated more invasively by 

means of femoral arterial-venous catheterisation with direct blood flow measurements. For 

instance, after 9 weeks of cycle ergometer training, the leg RQ remained essentially 

unchanged, from 0.98 at 65% pre training workload, to 0.98 and 1.01 at the same absolute 

and relative post training intensities (Bergman et al. 1999). However, a similar period of 

single leg bicycle exercise training did result is a lower RQ in the trained leg compared to the 

non-trained leg (Henriksson 1977). These discrepancies likely arise through methodological 

difficulties and limitations in measuring RQ across the working limb. Considering that muscle 

glycogen utilisation is reduced with exercise training, this is perhaps a truer reflection of 

events within the muscle.   
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2.3.4 Diet 

Dietary intake, over the short term (i.e. 1-6days) or over a more prolonged period (i.e. 

>7days) can have profound effects on substrate oxidation during exercise. For instance, the 

acute effect of carbohydrate ingested in the period immediately before exercise results in an 

insulin stimulated suppression of whole body lipolysis, a reduction in NEFA oxidation 

(Horowitz, Mora-Rodriguez et al. 1997) and a decrease in fat oxidation or MFO by ~28% 

(Achten and Jeukendrup 2003) whilst simultaneously stimulating muscle glucose uptake and 

oxidation. In contrast, the effects of a single high fat pre-exercise meal are less clear. 

Although an attenuated raise in insulin and greater elevation in plasma chylomicron TAG and 

NEFAs compared to a high carbohydrate meal is expected, this does not necessarily translate 

into an increase in lipid oxidation (Whitley et al. 1998) although others have seen this effect 

(Rowlands and Hopkins 2002a; Okano et al. 1996). Any effects seen substrate oxidation are 

likely related to effects on systemic availability of substrates and hormone levels with their 

direct influence on fuel use. 

 

Although there are many studies that have investigated the effects on metabolism though 

manipulating the intake or proportion of carbohydrate and fat in the diet, there is lack of 

consistency as to what qualifies as a high or a low fat/carbohydrate diet. For the purpose of 

this thesis a high fat diet shall comprise of 60-65% EI from fat (4-5g fat/kg body mass/ day) 

with low carbohydrate <20% EI / <2 g carbohydrate /kg body mass/ day (Hawley 2011). 

Either a high fat low carbohydrate (HFLC) or a high carbohydrate low fat (HCLF) diet 

consumed for 1-3days will substantially impact substrate oxidation during subsequent 

exercise. The effect of diet over this time period is likely a result of substrate storage and 
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availability which is a function of the dietary constituents. The pre-exercise myocellular 

substrate availability is positively correlated with its rate of utilisation (Arkinstall et al. 2004; 

Shearer et al. 2001; Jansson 1982; Bergstrom et al. 1967; Zderic et al. 2004). This association 

is evident for both glycogen and IMTAG during moderate intensity exercise (Van Proeyen et 

al. 2011; Coyle et al. 2001; Zehnder et al. 2006), although, due to its much smaller 

contribution to total energy expenditure (van Loon et al. 2001), and the dominance of 

carbohydrate oxidation, the overall impact of IMTAG content is generally less than for 

glycogen.  

 

A HFLC diet consumed for 5days can increase the rate of fat oxidation during exercise 2 fold 

compared to a HCLF diet. This substantial change in substrate oxidation following dietary 

manipulation of this duration, however, is not only an effect of substrate storage, but also 

the result of cellular adaptations. HFLC diets have been shown to stimulate a greater activity 

of key enzymes involved in FA catabolism, uptake, and transport such as LPL, HSL, CTP1, Beta 

HAD, FABp, FAT/CD36, FA translocase (Stellingwerff et al. 2006; Goedecke et al. 1999; Helge 

and Kiens 1997; Kiens et al. 1987; Cameron-Smith et al. 2003; Yeo et al. 2009), and at least in 

rodents stimulate mitochondrial biogenesis (Garcia-Roves et al. 2007) together potentially 

promoting the capacity to oxidise fat. These cellular adaptations accumulate in differences in 

substrate oxidation at the whole body level with this often referred to as being “fat 

adapted”. 
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After a period of “fat adaptation”, rates of whole body lipid oxidation during submaximal 

exercise remain elevated even after a subsequent 24hr period of high carbohydrate intake 

that elevates pre-exercise glycogen stores (Burke et al. 2000; Burke et al. 2002; Staudacher 

et al. 2001; Stellingwerff et al. 2006; Yeo, Lessard, et al. 2008). The greater lipid utilisation 

following this “fat adaptation + glycogen replenishment” protocol is robust, and persists in 

spite of additional carbohydrate provision through either a pre exercise carbohydrate meal 

and/or exogenous carbohydrate ingestion during exercise (Burke et al. 2002). The greater 

lipid oxidation accumulates in an actual reduction in the reliance of muscle glycogen, with a 

similar utilisation of plasma glucose (both endogenous (Burke et al. 2000) and exogenous 

carbohydrate (Carey et al. 2001)). This lower reliance on glycogen however might be 

attributable to an impairment of the capacity to oxidise carbohydrate, with this same dietary 

intervention showing a ~ 60% decreased activity of pyruvate dehydrogenase following 

exercise that involved 60sec sprints – a metabolic stress that should maximally stimulate 

muscle glycogenolysis, increase PDH flux and the entry of carbohydrate into the TCA cycle 

for energy production (Stellingwerff et al. 2006). Thus dietary carbohydrate restriction down 

regulates PDH and carbohydrate metabolism (Raper et al. 2014), which is potentially 

detrimental to energy production and performance during intense exercise (Stellingwerff et 

al. 2006).  

Thus, it is clear that diet can cause adaptations in substrate oxidation after only a short 

period, however, it is not clear from the studies highlighted which macro-nutrient is 

responsible for the induced adaptations. The studies highlighted above compared a high fat 

low carbohydrate diet to iso-caloric high carbohydrate low fat diet, which by design 

invariably means altering 2 substrates, it is therefore difficult to localise the source of effect 
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to a greater provision of fat or a restriction of carbohydrate. Although it was suggested by 

Bergstrom et al (Bergstrom et al. 1967) to be the latter, this has not been comprehensively 

studied. This concept is covered in more detail later where it became a focus of a dietary 

intervention in chapter 5. 

 

When the period of exposure to a HFLC diet (combined with endurance training) is 

prolonged for up to 7 weeks then a similar or greater magnitude of response is seen in 

whole body substrate oxidation. Compared to a HCLF diet consumed over the same period, 

those on a HFLC diet had a lower RER (0.86 vs 0.93), leg RQ (0.87 vs 0.91) with a greater 

uptake and oxidation of plasma NEFA and VLDL-TAG, and an apparent sparing of the lower 

starting muscle glycogen content (Helge, Richter, and Kiens 1996; Helge, Wulff, and Kiens 

1998; Helge et al. 2001). However, after a 1 week period of carbohydrate restoration, the 

effects of the HFLC diet had largely dissipated and were similar between the conditions. 

Exposure to a more extreme and divergent dietary intake of fat and carbohydrate, with 

carbohydrate restricted to <20g a day for 28days, and is designed to induce a ketogenic 

state, can result in an even greater reliance on lipid during exercise. In 5 trained cyclists, this 

dietary approach lowered the RER during exercise at ~63%    2max from 0.83 on the HC to 

0.72 after the ketogenic HFLC diet. This was accompanied by a lesser reliance on muscle 

glycogen and plasma glucose during the exercise bout although the muscle glycogen content 

was ~50% lower pre-exercise than the HC comparison.   
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Although the studies described above report profound effects on substrate oxidation by 

manipulation of the total dietary content of fat or carbohydrate, over the last decade or so 

evidence has accumulated to suggest that the timing of when these macronutrients are 

consumed in relation to training may also be as important.  As described in section 2.3.1, 

exercise training results in an alteration to the muscle phenotype, improving fatigue 

resistance and the capacity to oxidise fat. The molecular pathways activated by exercise that 

are thought to be responsible for these adaptive responses (Egan and Zierath 2013) share 

similar pathways and interact with nutrient sensing proteins such as AMPK (adenosine 

monophosphate-activated protein kinase), p38MAPK (P38 mitogen-activated protein 

kinases) or SIRT1 (sirtuin (silent mating type information regulation 2 homolog) (Hardie 

2011). These signalling proteins are thought to stimulate the transcriptional co-activator 

PGC1 alpha (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) (Jäger 

et al. 2007) ultimately leading to an increase in mitochondrial biogenesis. The provision of 

carbohydrate prior to, during or post exercise can directly down-regulate the activation of 

AMPK and expression of PGC1alpha (Philp et al. 2013; McBride et al. 2009; Psilander et al. 

2012) and so with-holding or restricting carbohydrate intake in and around training increases 

AMPK activity ultimately augmenting mitochondrial enzyme activity and content (Morton et 

al. 2009; Bartlett et al. 2013; Van Proeyen et al. 2010) and whole body lipid oxidation (Yeo, 

Paton, et al. 2008). For a recent review on the molecular mechanisms underpinning 

endurance training and nutrient interactions, the interested reader is referred to a recent 

review (Close et al. 2016). With the molecular adaptations to endurance training evidently 

augmented with a restriction in carbohydrate availability, several “train-low”  “sleep-low” 
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(regarding low carbohydrate availability) type strategies have emerged as ways to enhance 

whole body lipid oxidation (Marquet et al. 2016). 

 

To summarise, the dietary intake of both carbohydrate and fat alter the availability of 

substrates and hormones within the circulation that either directly or indirectly alter 

substrate oxidation within the muscle. Dietary macronutrient composition (in particular 

carbohydrate intake), also substantially impacts myocellular substrate storage, which effects 

substrate selection during exercise and can modulate the magnitude of training induced 

adaptations favouring fat oxidation. The diet is therefore a powerful and easily manipulated 

regulator of exercise substrate metabolism.   

 

2.3.5 Sex 

Investigating sex based differences in substrate metabolism is difficult and problematic due 

to the large number of potentially confounding variables with adjustments often needed for 

body composition or rigorous matching of subjects (Tarnopolsky 2008). Nonetheless, when 

groups have been well matched for factors such as aerobic capacity the most consistently 

reported sex related difference in exercise metabolism, is that women, compared to men, 

rely more heavily on lipid and less on carbohydrate oxidation during exercise at the same 

relative submaximal intensity (reviewed in (Tarnopolsky et al. 1990; Lundsgaard and Kiens 

2014; Tarnopolsky 2008). Using pulmonary indirect calorimetry, although only modestly 

greater than men, women demonstrate significantly greater MFO (7.4 ± 0.2 vs. 8.3 ± 0.2 

mg/kg FFM/min) (Venables, Achten, and Jeukendrup 2005) generating a greater proportion 
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of energy through fat oxidation across a range of exercise intensities (35-85%    2max) 

(Cheneviere et al. 2011). Yet when more invasive measures have been taken to determine 

the source of the different substrates oxidised, the findings have been less conclusive 

(Tarnopolsky 2008). 

 

Regarding carbohydrate metabolism, women have a lower rate of appearance (Ra), rate of 

disappearance (Rd) and metabolic clearance of glucose than men, indicating that they have a 

lower whole-body reliance on circulating blood glucose during moderate intensity exercise 

(Friedlander, Casazza, Horning, Huie, et al. 1998; Carter, Rennie, and Tarnopolsky 2001; 

Devries et al. 2006). It is not known which process is down regulated in women - hepatic 

gluconeogenesis, glycogenolysis or both. Despite apparent whole-body differences in 

glucose turnover, the contribution of blood glucose to substrate oxidation across an 

exercising limb estimated using a-v balance methods has been observed to be similar in men 

and women (Roepstorff et al. 2002). The effect of sex on muscle glycogen utilisation is 

inconsistent. Some have observed similar rates of muscle glycogen utilisation during 

prolonged cycling exercise (Tarnopolsky et al. 1995; Roepstorff et al. 2002; Zehnder et al. 

2005), whereas Tarnopolsky et al (Tarnopolsky et al. 1990) reported ~25% less muscle 

glycogen use in women as compared to men during a 90-101mins treadmill run at 

65%   2max, and a fibre specific 50% less use following high intensity bike sprinting exercise 

(Esbjörnsson-Liljedahl et al. 1999). Some of the discrepancies in the literature could be 

accounted for by differences in the mode of exercise (e.g., cycling vs. running) or other 

aspects of methodology such as measurement technique (e.g., mixed vs. fibre specific 

glycogen use, determination of total, pro- or macro-glycogen) or control for menstrual cycle 
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phase (Devries et al. 2006; Esbjörnsson-Liljedahl et al. 1999). Thus although the whole-body 

rate of carbohydrate oxidation is clearly lower in women, identifying which source of 

carbohydrate is spared has been difficult to isolate. 

 

The consistently reported greater whole body lipid utilisation in women compared to men 

appears to come from multiple sources. Determined by the Ra of glycerol expressed relative 

to BM, women have a greater whole body lipolytic response during exercise than men 

(Carter, Rennie, and Tarnopolsky 2001; Davis et al. 2000; Friedlander, Casazza, Horning, 

Huie, et al. 1998) resulting in greater NEFA availability, uptake and oxidation (Roepstorff et 

al. 2002; Mittendorfer, Horowitz, and Klein 2002; Burguera et al. 2000; Romijn et al. 2000; 

Wallis et al. 2006; Friedlander, Casazza, Horning, Buddinger, et al. 1998; Friedlander et al. 

1999). Following endurance training, women also show a 2 fold increase in the rate of NEFA 

oxidation, whereas there is a reduction in NEFA flux and oxidation seen in men post-training 

compared to the same relative pre-training intensity (Friedlander, Casazza, Horning, 

Buddinger, et al. 1998). 

 

The influence of sex on IMTAG use is less conclusive. Although a greater IMTAG utilisation 

during exercise in women has been reported (Roepstorff et al. 2002; Steffensen et al. 2002),  

this is not a universal finding (Devries et al. 2007; White et al. 2003; Zehnder et al. 2005). 

However, it must be recognised that the quantification of IMTAG by commonly used 

techniques such as mixed muscle biochemical analysis or MRI can be insensitive, which may 

limit interpretation of the existing literature (Watt, Heigenhauser, and Spriet 2002). 
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Nonetheless, women do appear to have greater IMTG storage than men, along with a higher 

number of small IMTAG droplet and proportion of IMTAG/mitochondria interactions post 

exercise indicating a greater propensity for IMTAG utilisation (Devries et al. 2007) or it is an 

artefact of the well-recognised finding that women have greater resting IMTAG content 

which determines the rate of use (Steffensen et al. 2002; Roepstorff et al. 2002; Devries et 

al. 2007; Tarnopolsky et al. 2007; Høeg et al. 2009).  

 

As discussed later in section 3.1 the oxidation of protein or BCAA during exercise is 

quantitatively much smaller than that of carbohydrate and fat, and so is often not 

determined or considered when making inferences about substrate oxidation. Despite this, 

women have been shown to have lower rates of leucine oxidation (representing BCAA 

oxidation) both at rest and during moderate intensity exercise (Phillips et al. 1993), with 

these differences persisting following endurance training (McKenzie et al. 2000). Therefore, 

although protein oxidation is generally not accounted for in sex based comparisons, and its 

overall contribution is only small, it could mask or obscure potentially small sex based 

differences in substrate metabolism having the effect of lessening the calculated fat 

oxidation. 

 
 

2.3.5.1 Factors responsible for sex differences in substrate metabolism 

2.3.5.1.1  Hormonal mileu  

After puberty the hormonal environment between men and women becomes markedly 

different, with this change responsible for many of the typical sex based differences in size, 



Chapter 2 General Introduction 

 
27 

adiposity, body composition, and substrate oxidation (Comitato et al. 2015). Prior to the 

menopause, the circulating concentration of oestrogen, even during the early follicular 

phase of the menstrual cycle when it is at its lowest, is still ~2 fold higher in women than 

men (Stachenfeld and Taylor 2014). With oestrogen receptors found ubiquitously 

throughout the body including skeletal muscle (even in men) then there is potential for it to 

be a driving factor behind difference in metabolism during exercise (Oosthuyse and Bosch 

2012). Circulating progesterone levels are also substantially different between men and 

women; however, as described in more detail in section 4.2, the independent role of 

progesterone on substrate metabolism has not been adequately assessed.  

 

Perhaps the most convincing evidence that oestrogen is a major regulator of substrate 

oxidation is the effect it has when administered to men or amenorrhoeic women. For 

instance,  8 days administration in men results in a ~30% increase on fat oxidation and ~10% 

decrease in carbohydrate oxidation during exercise at 65%    2max (Hamadeh, Devries, and 

Tarnopolsky 2005). This occurs alongside a reduction in hepatic glucose output (Ra) and (Rd) 

indicative of reduced flux, but does not appear to change muscle glycogen utilisation (Carter 

et al. 2001; Devries et al. 2005). Oestrogen administered for a few days also increases 

plasma NEFA concentration during exercise in either amenorrhoeic women or men although 

it does not seem to alter whole body lipolysis with similar glycerol Ra and Rd (Ruby et al. 

1997; Carter et al. 2001). Nonetheless, the directional consistency of the findings mentioned 

for oestrogen to favour lipid oxidation whilst reducing hepatic carbohydrate reliance is 

suggestive of oestrogen’s important role in the sex based differences seen in substrate 

oxidation.  
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Despite greater insulin induced glucose uptake in women than men (Høeg et al. 2009) in part 

attributed to oestrogen, oestrogen supplementation in men appears to have little effect on 

carbohydrate metabolism. Whilst oestrogen supplementation for 8 days increased mRNA 

abundance of GLUT4 (3.9 fold) and glycogen synthase (GS) (1.3 fold) there were no changes 

in abundance of glycogen phosphorylase, hexokinase II, Phosphofructokinase (Fu et al. 2009) 

with similar GLUT4 skeletal muscle protein content also shown when sampling from men 

and women matched for    2max (mg/kg FFM/min) (Høeg et al. 2009). Although small 

differences might indicate the potential for greater glycogen storage following oestrogen 

supplementation, this has not been reported when directly measured, and is consistent with 

no change in muscle glycogen breakdown during exercise following oestrogen 

supplementation (Carter et al. 2001; Devries et al. 2005).   

 

In addition to the substantial sex based differences in oestrogen concentration, the 

circulating concentration of testosterone is more than 10-fold higher in men, which could 

reasonably contribute to the differences in metabolism, although this is not thought to be 

the case. Pharmacologically inducing high (10ng/ml) or low (0.5ng/ml) testosterone in 

healthy men resulted in no difference in whole body substrate oxidation rates, liver glucose 

release or estimated muscle glycogen utilization over 90mins endurance exercise (Braun et 

al. 2005).  
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2.3.5.1.2 Catecholamines 

Differences in the autonomic nervous system response to exercise are thought to contribute 

to the sex based differences in circulatory substrate availability and oxidation. During 

endurance exercise women demonstrate lower sympathetic nerve activity than men (Jones 

et al. 1996), with lower circulating epinephrine and norepinephrine thereby attenuating the 

stimulatory effect of epinephrine on rates of muscle glycogenolysis and carbohydrate 

oxidation (Horton et al. 1998). Whilst the lower circulating epinephrine would be expected 

to result in a lower whole body lipolytic response (Mora-Rodriguez et al. 2001), it appears 

that women are more sensitive to the lipolytic actions of epinephrine with greater rates of 

lipolysis for the same amount of infused epinephrine, accumulating in greater circulatory 

glycerol and NEFA (Horton et al. 2009; Schmidt et al. 2014). The difference in lipolytic 

response between men and women is a result of differences in the stimulation of the 

different adrenergic receptors. In women, mainly the lipolytic Beta-adrenoreceptors are 

activated (Arner et al. 1990), whereas these are activated in men alongside antilipolytic 

alpha-adrenoreceptors (Wahrenberg, Bolinder, and Arner 1991; Wahrenberg, Lönnqvist, and 

Arner 1989; Schmidt et al. 2014), achieving a greater overall net lipolytic response in women. 

 

2.3.5.1.3 Muscle morphology and metabolic characterstics 

Although large inter-individual variation in fibre type distribution exists, it is generally 

reported that women have a greater number of type 1 muscle fibres and when expressed 

relative to area, the proportion of type 1 fibres are ~30% greater in women, with the 

proportion of type 2a or 2x greater in men (Steffensen et al. 2002). The greater 

preponderance of the more oxidative type 1 fibres in women along with a greater ratio of 
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the glycolytic type 2 to 1 fibres in men (Simoneau and Bouchard 1989; Høeg et al. 2009; 

Miller et al. 1993) is supportive of the differences in RER often reported. Although there are 

no sex based differences in the number of capillaries surrounding each muscle fibre, due to 

the lower total amount of type 2 fibres and smaller individual area of these fibres, women 

have a greater capillary density per muscle area, with a theoretical shorter capillary to fibre 

diffusion distance (Høeg et al. 2009; Roepstorff et al. 2006). These differences could enable a 

better perfusion of substrates and oxygen to a larger relative area of oxidative fibres, 

accumulating in less relative metabolic stress and better maintenance of cellular energy 

balance. This is reflected by a lesser increase in free AMP, the ratio of free AMP/ATP and 

AMPK phosphorylation during 90mins cycling at 60%    2max in women than well matched 

men (Roepstorff et al. 2006). 

 

In line with the often reported observation of greater IMTAG storage in women than men, 

women display increased expression of genes linked to fat storage, specifically Sterol 

regulatory element-binding protein 1 (SREBP1c) and mitochondrial glycerol phosphate acyl 

transferase (mtGPAT), of which oestrogen supplementation in men increases the mRNA 

content of (SREP-1c (3 fold) and mtGPAT (1.4 fold)) (Fu et al. 2009). Moreover, women 

express a greater mRNA content of fatty acid transport protein (FATP) and cytosolic fatty 

acid binding protein (FABPc) and CPT1 (Tarnopolsky 2008) along with greater protein 

expression of FAT/CD36 irrespective of training status (92). Thus the capacity to transport 

lipid across the plasma membrane is greater in women which could augment lipid oxidation. 
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As well, the glycolytic capacity of muscle however does appear to be greater in men than 

women, with muscle homogenates of untrained men showing greater activity of glycogen 

phosphorylase, pyruvate kinase, PFK and lactate dehydrogenase than untrained women 

(Green, Fraser, and Ranney 1984). Although this could be an artefact of the greater 

proportion of type 2 fibre types in men, it is still suggestive of a greater capacity for 

glycolysis and glycolytic flux in men. The greater ratio of the activity of 3-hydroxyacyl CoA 

dehydrogenase (HAD) to glycolytic enzymes in women indicates that women have a lower 

glycolytic potential relative to the potential for beta-oxidation (Green, Fraser, and Ranney 

1984) 

 

In summary, the fundamental differences in gene expression or molecular protein levels of 

key FA transporters, or genes involved with lipid synthesis, indicate that women are 

inherently better suited for fatty acid transport and storage in and around muscle. The 

additional greater potential for Beta oxidation and IMTAG turnover than men, along with the 

morphological differences in muscle fibre type composition and capilarisation, are likely to 

be collectively responsible for the preponderance of greater fat oxidation in women than 

men during exercise.  

 

2.4 Variability in substrate oxidation 

2.4.1 Variability of fuel use   

It was demonstrated many years ago through the measurement of RER that the contribution 

of carbohydrate and lipid to energy production varies during exercise as a function of both 
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intensity and duration (Christensen and Hansen 1939). Since these early observations 

several key factors have been identified that can influence substrate utilisation during 

exercise (see section 2.3 for further details). However, even when many of these factors are 

accounted for, there is still a large degree of inter-individual variation in the proportion of fat 

and carbohydrate oxidised during exercise. For instance, Helge and colleagues reported the 

RER to range between 0.83 and 0.95 during 60mins of bicycle exercise at 57%    2max, 

despite controlling for sex (studying men only), training status and dietary intake for the 3-

days prior to testing (Helge et al. 1999). 

A similar degree of variability in RER was also reported in a fairly homogenous cohort (n 61) 

of well-trained cyclists when exercising at 41, 63, and 80%    2max, with the degree of 

variability in resting RER (range 0.718-0.927), stable across the exercise intensities reported 

(Goedecke et al. 2000). Goedecke et al were able to explain between 42-56% of the 

variability in RER at the different exercise intensities. The variables that most consistently 

predicted RER across the 3 different exercise intensities included exercise training history 

(METS/wk), dietary fat intake (%EI), skeletal muscle CS activity and plasma NEFA 

concentration which were all negatively associated with RER (i.e., greater fat oxidation).  The 

only consistent positive predictor of RER (i.e., greater carbohydrate oxidation) was pre-

exercise muscle glycogen content. Notwithstanding the useful insights gained from the 

invasive measures taken by Goedecke et al, the relatively small and homogenous group of 

well-trained athletes measured potentially limits the applicability of the findings to normally 

active individuals. Additionally, although able to attribute variance in RER to dietary fat 

intake (% EI), with only 63 participants the study was unlikely to be adequately powered to 
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detect other subtle differences in dietary intake that might have meaningful effects on the 

variability of substrate oxidation.  

In regards to some of these pitfalls, the work of Venables et al (Venables, Achten, and 

Jeukendrup 2005) is particularly relevant. From a much larger (n 300) and broader scope of 

men and women ([age: 18-65], of varying body composition [6-41% body fat] and aerobic 

fitness [   2max: 21-83ml/kg/min]), an uphill walking/running treadmill based “Fat ax” test 

was employed to quantify MFO over a wide range of exercise intensities. A large 5-fold inter-

individual variability in MFO was seen, with this attributed to    2max, SRPAL, sex and body 

composition. However, the analysis still left 65% of the variability unexplained, with the 

authors concluding that variables not accounted for such as dietary intake likely explaining a 

sizable part of this. This suggestion is supported by the consistent negative influence of 

dietary fat intake (% EI) on the variability of RER reported by Goedecke et al (Goedecke et al. 

2000) and the robust impact that dietary manipulation has on substrate oxidation (Helge, 

Wulff, and Kiens 1998; Bergstrom et al. 1967; Phinney et al. 1983), thus, their conclusion 

seems justified and worthy of further investigation. 

 

Moreover, although the work of Venables et al offers insights and helps explain a sizeable 

proportion of the intra-individual variability in substrate oxidation, methodological 

limitations and statistical caveats perhaps conceal or preclude a true assessment. Firstly, the 

participants were not familiarised to the testing procedure prior to the measurements of 

substrate oxidation which due to the novelty of the task and potential for a catecholamine 

induced stress response could have impacted the fuels used over the exercise bout. 

Secondly, measurements of MFO were made after only a minimum of a 4hr fast, with the 



Chapter 2 General Introduction 

 
34 

effects of a pre-exercise meal still evident for 6hrs (Montain et al. 1991) this lack of 

standardisation may also have perturbed a true measurement of MFO. In addition, the fairly 

crude measurement of SRPAL by questionnaire and the estimation of body composition by 

skinfold measurement may also have impacted the findings. In spite of the fact that the men 

were heavier, taller, with more FFM, were more physically active and aerobically fitter 

(   2max) than the women who had a higher body fat%, no statistical accounts were made 

for these differences when explaining the variability seen in substrate oxidation. Thus 

although Venables et al reported sex to be a significant determinant of the variability in 

MFO, this was likely confounded by the differences in body size / composition and aerobic 

capacity that were not appropriately accounted for and so this area became an area of focus 

in Chapter 4.   

 

2.5 Sex specific nutritional aspects 

The numerous sex-based differences in physiology and metabolism (described in more detail 

in 2.3.5) accumulate in women generating a greater proportion of energy from lipid 

oxidation than men over a large range of exercise intensities (Cheneviere et al. 2011; 

Venables, Achten, and Jeukendrup 2005). Additionally, dietary intake has a substantial 

impact on substrate utilisation during exercise, for example, a HFLC adaptation diet in men 

results in greater lipid oxidation and less reliance on muscle glycogen even after 

carbohydrate restoration (Burke et al. 2002). The greater preponderance for fat oxidation 

during exercise suggests that women may have a greater capacity to adapt to a HFLC 

adaptation diet to further augment lipid oxidation. Despite substantial changes in substrate 
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oxidation seen in men following a HFLC diet these do not often translate into improvement 

in exercise performance (Burke 2015). Women on the other hand, have a greater maximal 

rate of fat oxidation than men, that also occurs at a higher exercise intensity (Venables, 

Achten, and Jeukendrup 2005) and so might be able to capitalize on this and improve 

endurance performance after a HFLC adaption diet. 

 

2.5.1 Sex differences in response to dietary intake 

As described in section (2.3.4) the availability of substrates in and around the muscle is 

heavily influenced by diet and is one of the key determinants of substrate oxidation during 

exercise. Women possess a ~30% greater insulin stimulated glucose uptake over men, with a 

56% greater HKII protein content facilitating continual glucose uptake (Høeg et al. 2009; 

Hoeg et al. 2011) which when combined with similar glycogen synthase mRNA (Fu et al. 

2009) suggests a greater capability to store carbohydrate in women. On the contrary, it was 

originally proposed that when women followed the typical carbohydrate ingestion guidelines 

(75% EI carbohydrate (Costill 1988)) to achieve glycogen super compensation, they were 

unable to achieve similar levels as men (Tarnopolsky et al. 1995). However, as acknowledged 

by the authors, this was a reflection of the lower total energy intake and therefore an 

insufficient total amount of carbohydrate ingested by the women (<8g carbohydrate kg 

FFM/day). It was later shown that  increases in carbohydrate intakes to 10-12g/kg FFM is 

sufficient to achieve glycogen super-compensation in men and women (Tarnopolsky et al. 

2001; James et al. 2001).  
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The carbohydrate induced anti-lipolytic actions of insulin are well known, with insulin 

inhibiting ATGL and HSL in adipose tissue to decrease circulating NEFA, NEFA uptake and 

lipid oxidation (Coyle et al. 1997). Exogenous carbohydrate administration during exercise 

results in a similar insulin and metabolic response between the sexes, with similar Ra of 

glucose and contribution of the exogenous carbohydrate to total energy expenditure 

(Tremblay et al. 2010; Wallis et al. 2006). This comparable response to carbohydrate 

administration between the sexes, also leads to a similar estimated minimal rates of muscle 

glycogen utilisation and rates of whole body lipid oxidation, with the exogenous 

carbohydrate almost normalising the whole body substrate oxidation in women to that of 

men (Wallis et al. 2006; Riddell et al. 2003). 

 

Despite a similar capacity for glycogen storage between men and women, it could be argued 

that the necessity to glycogen super-compensate for endurance exercise performance may 

be somewhat attenuated in women. The greater propensity for lipid oxidation during 

exercise in women, with the hormonal, physiological and molecular machinery to capitalise 

on the greater availability of IMTAG and plasma NEFAs potentially lessens the importance of 

glycogen as an energy source. 

 

As described in section 2.3.4, studies in men demonstrate that a HFLC adaptation diet 

consumed for >5days enhances the capacity to oxidise lipid during moderate intensity 

exercise, with these adaptations persisting even after carbohydrate restoration (Yeo et al. 

2011). However, most of the data pertaining to HFLC induced alterations were carried out in 
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men and with limited well controlled interventions in women. It is not clear if women 

possess the same scope as men for dietary induced fat adaptations or if women are already 

achieving near maximal rates. The few investigations of dietary fat/carbohydrate 

manipulation in women although of generally poor design are described below.    

 

Over a period of 7days, women cyclists self-selected a diet intended to be low (13% EI), 

moderate (54% EI) or high (72% EI) in carbohydrate content (O'Keeffe et al. 1989). The RER 

recorded during cycling exercise at 80%    2max was assessed at 15, 45, 90, and 120mins of 

the exercise bout. On average the RER was highest following the high carbohydrate diet 

compared to both the moderate and low diets, with no differences between the low and 

moderate. However, the “self-selected” nature of these trials also led to differences across 

all 3 macronutrients, with the fat and protein content (grams and % total EI) also decreasing 

significantly from low to moderate to high carbohydrate intakes, and so making meaningful 

inferences about the cause of the difference in RER difficult. It is also somewhat surprising 

that the relatively small ~ 16% difference in EI from carbohydrate in the high carbohydrate 

trial compared to the moderate trial induced a difference in RER that was not evident in the 

more extreme ~ 41% difference between the low carbohydrate and moderate trial. The 

greater difference in total carbohydrate intake and greater carbohydrate restriction would 

be anticipated to see the largest effect. 

 

Using a self-selected dietary intervention, men and women runners were asked to consume 

over a period of 4wks a diet that was either low (16%), moderate (31-33%) or high (44%) in 
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fat (Horvath et al. 2000). In the male runners, no differences in RER were reported between 

the different diets determined 3hrs post-prandially whilst running at 80%    2max to 

exhaustion. However, somewhat counter intuitively, in the women, the RER following the 

moderate fat diet (0.960.01) was significantly higher than after consuming the low fat diet 

(0.940.01) indicating greater fat utilisation with greater carbohydrate intake. It is difficult to 

interpret the findings from this study, with the authors ac nowledging that the “runners did 

not follow the diets accurately…..with half of the subjects in the high fat group not actually 

increasing fat inta es above the moderate inta e period”. Additionally, to highlight the poor 

dietary control, the runners were unintentionally in severe (~1000kcal/day) negative energy 

balance with this likely impacting exercise substrate oxidation (Braun and Brooks 2008). The 

substrate oxidation data were also collected at 80%    2max, with lactate levels between 11 

and 16mmol/L it was therefore likely that the substantial metabolic acidosis and buffering of 

CO2 invalidates any estimates of substrate oxidation. 

 

Whereas the work of O’Keefe et al (O'Keeffe et al. 1989) did not observe a difference in RER 

between the 13% and 54% carbohydrate diets (59% and 25% fat, respectively), this was not 

the case in a more rigorously controlled intervention. When trained men and women were 

provided with diets containing either moderate fat (35% EI) or low fat (15% EI) for 3 days, a 

higher RER over a 20min of run at ~73%    2max was reported for the low compared to the 

moderate fat trials (0.950.01 vs 0.930.01, respectively) (Larson-Meyer et al. 2008). 

Following a 24hr high carbohydrate glycogen replenishment period, no differences in RER 

were then seen over a 90min run at 63%    2max conducted 3hrs post-prandially. 

Unfortunately, the data in the aforementioned study are not provided separately for men 
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and women but the authors declared there to be no sex based differences in RER. This data 

does however support the assertion that a period longer than 3days of dietary carbohydrate 

restriction / high fat intake is required to induce true metabolic and cellular adaptations 

promoting lipid oxidation, although the small range of dietary fat intakes provided precludes 

this assertion for truly high fat intakes. Overall, the direction of change in substrate oxidation 

in women following high fat or low carbohydrate diets appears to be similar to men. 

However, there is a lack of well controlled dietary interventions conducted over sufficient 

duration to fully capture the magnitude of change and if it impacts endurance performance, 

and so this became a focus of Chapter 5.  

 

2.6 Summary and thesis aims 

A large proportion of the substantial inter-individual variability in the capacity to oxidise lipid 

during exercise is un-accounted for (Venables, Achten, and Jeukendrup 2005). It is clear that 

habitual dietary intake has the potential to profoundly impact substrate oxidation during 

exercise directly through mediating substrate storage (Bergstrom et al. 1967; Zderic et al. 

2004), or indirectly through modulating training induced adaptations that impact substrate 

oxidation (Hawley 2011). It is therefore likely that habitual dietary intake explains a degree 

of the variability seen in lipid oxidation whilst physically active although this has yet to be 

quantified. 

 

Moreover, consumption of a high fat diet has the potential to enhance lipid oxidation during 

exercise and potentially spare the limited glycogen stores (Burke et al. 2002; Carey et al. 
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2001). The majority of exercise metabolism research has been conducted in men, with the 

effects of a high or low fat dietary intake no exception. The few high fat dietary intervention 

studies that have been attempted in women have either been poorly controlled or adhered 

to (O'Keeffe et al. 1989; Patterson and Potteiger 2011)  or only short duration and of only 

moderate fat intake (Larson-Meyer et al. 2008).  There are numerous metabolic differences 

known to exist between men and women and in particular the propensity for women to 

oxidise more lipid than men during exercise. It is not known however if women respond in 

similar manner to men to dietary fat manipulation and increase the already elevated rates 

further, with the potential for this to impact exercise performance also unknown.   

 

A common virtue of well controlled iso-caloric dietary manipulation studies involves the 

substitution of one macronutrient with that of another. Any observed effect of this 

manipulation however, could be a result of either the restriction or the replacement of the 

respective macronutrient, therefore attributing causality is difficult. To this extent, hyper-

caloric dietary interventions make it possible to manipulate the intake of just a single 

macronutrient and thus enable a better detection of cause. When this model of dietary 

manipulation (additional lipid provision) has previously been employed, there were 

inconsequential differences in substrate oxidation, however, it is quite likely the dietary 

intervention period (1.5 d) was not of sufficient duration to elicit a change (Decombaz et al. 

2013; Zehnder et al. 2006).    
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Thus the primary aims of this PhD were:  

1. To better understand the determinants of the variability in substrate oxidation during 

exercise, with particular reference to the influence of nutrition. 

2. To comprehensively characterise the metabolic response in women during 

moderate-hard intensity exercise following diets high in fat but limited in 

carbohydrate or high in fat and not limited in carbohydrate. With a subsidiary aim of 

characterising this response in users of a progesterone only form of hormonal 

contraceptive. 

3. To investigate the impact of this dietary manipulation on endurance exercise 

performance, and markers of health in well-trained women. 
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3 GENERAL METHODS 

Within this chapter a description of the methods applied throughout this thesis is provided, 

detailing the key principles of specific methods along with justification for their use and 

limitations of the approaches. 

3.1 Calculation of substrate oxidation: principles, assumptions and 

measurement techniques  

3.1.1 Principles and stoichometry 

Directly measuring energy expenditure requires measuring the heat generated by the body 

dissipated into the environment, with this heat representing the combustion of 

macronutrients (Schutz 1995). This direct measure of calorimetry is considered the gold 

standard method to measure energy expenditure, however due to costs, extreme subject 

burden and the confinement to an insulated room calorimeter the methodology is not 

widely used. The more commonly used approach to determine energy expenditure is 

through indirect calorimetry. With this approach, pulmonary gas exchange measurements of 

oxygen (   2) and carbon dioxide (  CO2) are used to estimate the rate and type of substrate 

oxidised (Frayn 1983) and by inference total energy. Indirect calorimetry has been shown to 

correlate highly to direct calorimetry (Seale et al. 1990) with the advantage of the former 

being much more practical.  
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The different chemical composition of fats, carbohydrates and proteins, require varying 

amounts of O2 during the combustion of each substrate, producing varying amounts of CO2 

in the process. By measuring the ratio of   CO2 to    2 it is therefore possible to estimate the 

relative mixture of fuels being oxidised at either rest or exercise. For example, if 

carbohydrate (e.g., glucose) is the only fuel of use then the RER is 1.0, with the 

stoichiometry: 

C6H12O6 + 6O2 = 6CO2 + 6H2O 

RER = 6/6 = 1.0 

The stoichiometry can vary slightly depending upon the carbohydrate used in the calculation 

although the impact on the RER is small, especially in comparison to that of the different 

lipids and amino acids (Frayn 1983).  

Using the most common lipid of Trioleate (C57H104O6) as an example, the stoichiometry and 

RER for this FA is: 

C57H104O6 + 80O2 = 57CO2 + 52H2O 

RER = 57/80 = 0.71 

The RER of triglycerides vary between 0.69 and 0.76 with differences in the RER a result of 

the large differences in fatty acid chain length (Livesey and Elia 1988). 

 

Calculating the contribution of protein oxidation to the RER is somewhat more complicated. 

Protein must first be broken down into amino acids (AAs) and either transaminated or 

deaminated before it can be oxidised, with the resultant nitrogen or sulphur being excreted 
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in urine, faeces and sweat (Brooks 2012). The remaining keto-acid is oxidised in a similar 

manner to fat and carbohydrate, with the stoichiometry and RER for plasma albumin as a 

representative protein equating to: 

C72H112N2O22S+ 77 O2 = 63 CO2 + 38 H2O + SO3 + 9 CO (NH2)2    

RER = 63/77 = 0.82 

The RER of protein varies depending on the amino acid oxidised, with 0.85 being the typical 

value employed.  

 

Substrate oxidation rates in this thesis were calculated using the equations of Frayn (Frayn 

1983) without correcting for protein oxidation under the assumption that this would be 

negligible (see section 2.2) 

Rate of carbohydrate oxidation (g/min) = (4.55*  CO2[L/min]) – (3.21*   2[L/min]) 

Rate of fat oxidation (g/min) = (1.67*   2[L/min]) – (1.67*  CO2[L/min]) 

 

There are several different equations available to calculate substrate oxidation rates from 

   2and   CO2 measurements, each differing slightly due to small differences in stoichiometry 

with the different type of carbohydrate, amino acid or fatty acid used in the derivation of the 

equation. The use of different FAs in the different equations can be justified with many 

different FAs oxidised during exercise (Krishnan and Cooper 2014), with a rationale given for 

the FA chosen with each equation. For instance, Frayn (Frayn 1983) justified using palmytoyl-

stearoyl-oleoyl glycerol as this triacylglycerol is very similar to the average composition of 
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human adipose tissue which under resting conditions is where the bulk of FAs oxidized are 

derived from. In contrast, Consolazio (Consolazio 1963) based equations on palmitic acid as 

this is the most abundant FA in the average human diet and plasma. As summarised by 

Jeukendrup & Wallis (Jeukendrup and Wallis 2005), the different substrates used in the 

equations with differences in stoichiometry can result in variation in calculated oxidation 

rates of carbohydrate and lipid oxidation during exercise (~6% and ~3%, respectively).  

 

 The equations of Frayn (Frayn 1983) for carbohydrate oxidation is based on an exclusive 

oxidation of glucose, this disregards the potentially important contribution of muscle 

glycogen oxidation during exercise. Slightly different stoichiometry arises if glycogen is used 

instead of glucose with calculated rates of carbohydrate oxidation ~10% (Jeukendrup and 

Wallis 2005). However, without a direct measure of muscle glycogen utilisation potential 

errors of unknown magnitude could be made therefore the use of glucose as the 

representative carbohydrate was judged to be more appropriate and also enable better 

comparisons to be made with the bulk of previous literature in this area.  

 

3.1.2 Assumptions 

The measurement of whole body (pulmonary) gas exchange is often used to reach 

conclusions about the energetics of working muscle. This assumes that the working muscles 

dominate the whole body response, and the whole body response reflects that occurring in 

the working muscle. Measurements at the working muscle are rarely made due to the 

invasiveness and difficulties in measuring blood flow, O2 and CO2 contents of arterial / 
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venous blood, with further confounding of the catheter position for sampling (retrograde or 

antegrade) (Van Hall et al. 2002), which influences the mixing of blood from other non-

muscular or auxiliary muscle sites. Nevertheless, although certain assumptions are made 

through the measurement of whole body breath measurements, when they have been 

combined with invasive measures of A-V differences similar findings have been reported, 

with small (0.03) greater RQ at the muscle than whole-body (Friedlander et al. 2006; 

Bergman et al. 1999; Helge et al. 2001). This suggests that pulmonary measurements of RER 

give slightly greater rates of lipid oxidation and lower carbohydrate oxidation than is actually 

occurring within the working muscle. The lower whole body RER likely reflects a “watering 

down” effect from other non-exercising tissues that are predominately utilising lipid (and so 

a lower RQ). 

 

Measurements of pulmonary    2and   CO2 will also only reliably reflect the tissue O2 uptake 

and CO2 production during periods where the body’s bicarbonate pool is stable. At rest and 

lower exercise intensities this assumption is likely valid with no substantial accumulation of 

hydrogen ions with lactate production closely matched by clearance (oxidation / 

gluconeogenesis). Under conditions of increased glycolytic flux, at exercise intensities above 

the maximal lactate steady state there are likely shifts in the acid base balance, with an 

excess of H+ ions and lactate accumulating in the muscle. The increase in H+ ions will be 

buffered by the bicarbonate pool, eventually producing non-oxidative CO2, elevating the 

pulmonary   CO2, resulting in an artificial overestimation of any calculated rates of 

carbohydrate and underestimation of lipid oxidation. Romijn et al (Romijn et al. 1992) 

demonstrated the validity of indirect calorimetry to determine substrate oxidation by 
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comparing it to a breath 13C to 12C ratio technique which is independent of   CO2 (and thus 

not reliant on a stable bicarbonate pool). The authors reported no difference in the 

calculated substrate oxidation rates at 80-85%   2max between the two techniques, 

suggesting indirect calorimetry is valid even at these relatively high exercise intensities. 

 

Furthermore, it is typically assumed (as is the case in Chapters 4 & 5 of this thesis) that 

protein oxidation during exercise is minimal and substrate oxidation rates are calculated 

without a correction for protein oxidation. However, studies using isotopically labelled 

amino acids have revealed that branch chain amino acid (BCAA) oxidation actually increases 

during exercise, in-line with the overall increase in energy demand. Although the overall flux 

changes only marginally, with the increase in AA oxidation partially accounted for by a 

reciprocal attenuation in non-oxidative disposal of AAs (Millward et al. 1982). The increase in 

AA oxidation above resting values has been reported to be within the order of 50-400% 

(Millward et al. 1982; McKenzie et al. 2000), this however, only represents a 2-4% 

contribution to total substrate oxidation. Hypothetically, in well-nourished individuals in 

protein balance, with a typical 15% EI from protein (as was the case in Chapter 5), then the 

contribution of AA to resting EE can be assumed to be 15%. If this absolute contribution to 

EE remains constant, then even with a 15 fold increase in EE with exercise, AAs would only 

contribute 1% to total EE (Brooks 2012). Therefore, with the many complexities, 

uncertainties and costs involved in determining AA oxidation along with the likely minimal 

contribution to total EE, it was not measured in this thesis. Additionally, with endurance 

training further attenuating AA oxidation by ~25% (McKenzie et al. 2000) this offers further 

justification for not measuring AA oxidation in the trained runners in Chapter 5.  
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A further assumption of indirect calorimetry is that other metabolic processes that also 

consume O2 and produce CO2, such as gluconeogenesis, lipogenesis and ketogensis, do not 

substantially impact RER during exercise. Gluconeogenesis through the precursors lactate, 

pyruvate and glycerol, although consuming a net 4 molecules of ATP throughout the Cori 

cycle, do not involve gaseous exchange (Frayn 1983) and therefore do not impact RER or 

calculated substrate oxidation rates. However, gluconeogenesis from the major non-

carbohydrate pre-cursor alanine (Felig et al. 1970), which requires the transfer of the amino 

group via glutamate into urea, consumes energy whilst fixating CO2 into carbamoyl-

phosphate, potentially influencing RER. The rate of gluconeogenesis during exercise is 

however believed to be relatively low in comparison to energy flux, providing around 25% of 

total glucose production during 90mins of moderate intensity exercise (Bergman et al. 2000; 

Trimmer et al. 2002). Gluconeogenesis does however become increasingly important as the 

duration of exercise becomes more prolonged (>4hrs) especially under fasted conditions, 

providing closer to 45% of total glucose production. Ahlborg et al  (Ahlborg et al. 1974)  

estimated that up to 8% of glucose production under these conditions was provided by the 

gluconeogenic pre-cursor alanine, although still only contributing < 1% to total energy 

expenditure. Thus it is unlikely that gluconeogenesis during exercise has a substantial impact 

upon calculated rates of substrate oxidation.  

 

The process of lipogenesis is only thought to occur during periods of positive energy balance 

with excessive carbohydrate consumption (Acheson et al. 1988)  which can raise CO2 
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production giving an RER >1. Exercise typically incurs a state of negative energy balance, and 

so rates of lipogenesis are thought to be minimal and thus not substantially impacting 

calculations of substrate oxidation during exercise. 

 

In an O2 consuming process, the condensation of acetyl-CoA units liberated during beta-

oxidation of FAs produces ketone bodies such as acetoacetate. When this process of 

ketogenesis occurs in excess of ketone body oxidation, ketone bodies can either accumulate 

in extracellular fluid or can be excreted in the breath. During prolonged moderate intensity 

exercise when plasma NEFAs and rates of lipid oxidation are elevated, a surge in plasma 

ketone body concentration is also frequently observed, and it is these non-oxidised ketone 

bodies that can thus impact calculated rates of lipid or carbohydrate oxidation. In a similar 

manner to lactate, ketone bodies are almost entirely dissociated at physiological pH, possibly 

displacing a similar amount CO2 from bicarbonate (Lusk 1919). If ketone body concentrations 

are measured along with estimations of the distribution volume for them to dissipate into 

(Keller, Sonnenberg, and Stauffacher 1981), then an estimation of ketogenesis and its effect 

on    2 can be made with changes to substrate oxidation calculations made.  

 

Thus, with appropriate considerations given to the assumptions and potential limitations of 

indirect calorimetry, it can be used as a valid measurement of substrate oxidation during 

exercise below 80%    2max. 
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3.1.3 Measurement techniques 

3.1.3.1 Oxycon Pro 

Breath-by-breath measurements were made during exercise in both Chapter 4 and 5 by 

using an open circuit online automated gas analysis system (Oxycon Pro, CareFusion UK Ltd, 

Basingstoke, UK). Subjects either wore an airtight face mask (7450 V2, Hans Rudolph, 

Missouri, USA) or breathed through a mouthpiece whilst wearing a nose clip (to eliminate 

nasal breathing), with inspired and expired air passing through a turbine and volume 

transducer to determine   E. Expired air was also sampled through a twin-tube to measure 

O2 and CO2 through paramagnetic and infrared analysers, respectively. Immediately prior to 

use the Oxycon Pro was calibrated, firstly for the volume measurement using a 3L calibration 

syringe, with this known volume passing through the lightweight bi-directional digital 

volume transducer. The volume transducer holds a small turbine and integrates an opto-

electric reading unit. The blades of the turbine break an infrared beam detected by the 

reading unit which is counted by the computerized system thereby determining the rate of 

airflow. The integrated gas analysers were automatically calibrated using certified reference 

gases (5.07% CO2, 14.79% O2) (BOC Gases, Surrey, UK). Computer software synchronised the 

information collected on the expired O2, CO2 and the   E and averages data every 8 breath 

cycles, with this data exported for analysis in 10sec averages.  

 

The validity of the Oxycon pro for measurement of   E,    2 and   CO2 was determined on a 

regular basis by direct comparison to measurements of expired gases collected in Douglas 

bags. The comparisons were made at various submaximal exercise intensities ranging 
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between 20-75%    2max). Once an assumed steady state had been achieved (typically 

between 5-10mins), a 3min sample of expired air was taken using the Oxycon pro followed 

immediately by three separate 30-60sec samples in separate Douglas bags followed by 

another 3 minute sample using the Oxycon pro. The average of the three Douglas bags 

measurements were compared to the average of the Oxycon Pro. The volume of expired gas 

from the Douglas bags was measured using a dry gas meter (Harvard, Kent, UK) and the 

temperatures measured with a digital thermistor (model C, Edale Instruments, UK). The 

fraction of expired O2 / CO2 was assessed using paramagnetic and infrared analysers, 

respectively (Servomex 1400B4, Sussex, UK) which was calibrated prior to use, in a two-step 

process; firstly the sensors were zeroed with 100% Nitrogen gas (BOC Gases, Surrey, UK), 

before the gas-span was determined using high and low certified reference gases (High, O2 

17.9%, CO2 2.0%, N2 80.1%; Low, O2 15.04%, CO2 5.02%, N2 79.94%) (BOC Gases, Surrey, UK). 

The expired gases in the Douglas bags were measured as close to collection time as possible 

and no longer than 5mins post sample to minimise any potential losses of gas especially CO2 

that may compromise the measurement (Hopker et al. 2012). The mean coefficient of 

variation for both the Douglas Bag methodology and that of the Oxycon Pro and the average 

percentage difference between the methods can be seen in Table 3-1. Additionally, the 

Oxycon pro was validated against a metabolic simulator (Jaeger, Germany). The simulators 

mass flow controllers, valve system and pump enable gases of known concentration to be 

injected through the simulator at 4 flow rates corresponding to 20, 40, 80 and 160l/min that 

should correspond to an RER of 1.0 at each flow rate. The results of an example simulation 

can be seen in the Appendix 7.1  
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Table 3-1. Reliability measurements 

Measurement System Average coefficient of variation (%) 

    2    O2     RER 
Oxycon Pro 3.0 3.2 3.2 2.5 

Douglas Bags 1.8 2.4 1.2 2.3 

  

 Average percentage difference 

    2    O2     RER 

Oxycon vs Douglas Bag 4 5 12 1 

 

 

3.1.3.2 GEM 

Resting breath measurements were made for the determination of RMR in chapter 5 using 

an open circuit GEM Indirect Calorimeter (GEMNutrition Ltd. Cheshire, UK). Subjects lay in a 

supine position with an opaque plastic hood positioned over the head with a sampling tube 

connected to the GEM gas analyser. Expired air is drawn through the tubing to a thermal 

mass flow meter to measure gas flow rate, where it is de-humidified and passed through a 

high performance paramagnetic oxygen analyser and infra-red CO2 analyser to measure the 

concentration of the respective gases which are then integrated with the flow rate using the 

online software to determine    2and   CO2. The integrated gas analysers were automatically 

calibrated prior to each use by using certified reference gases (1.00% CO2, 21.00% O2, 

balance Nitrogen) (BOC Gases, Surrey, UK).  

 

The GEM gas analyser has a more sensitive CO2 analyser (repeatability 0.02% abs) than that 

found in the Oxycon Pro (0.05% abs). Considering the much lower flow rates of    2 and 
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  CO2 at rest compared to exercise, the greater sensitivity of the GEM gas analyser makes 

this a more appropriate system capable of detecting subtle differences in expired gases and 

thus calculated substrate oxidation rates during resting conditions.  

 

3.2 Resting Metabolic Rate 

Resting metabolic rate (RMR) represents the obligatory energy requirements whilst at 

complete rest (expressed as kcal/day or MJ/day), it is the energy required to maintain 

essential metabolic process such as the contraction of cardiac or respiratory muscle or the 

energy required for maintain active solute pumps (Fiehn and Peter 1971). In most 

individuals, especially those with low levels of physical activity, RMR represents the largest 

component of daily energy expenditure (60-75%) (Harris and Benedict 1918). Whilst RMR 

has been shown to vary between individuals, there are several known key determinants, 

making it possible to predict RMR within reasonable accuracy of a measured value using 

easily obtainable anthropometric and descriptive variables. In Chapter 4, RMR was 

estimated using the predictive equations of Harris-Benedict (see below) (Harris and Benedict 

1918) whereas in Chapter 5 it was either measured via indirect calorimetry (n =8) or 

estimated using the Harris-Benedict equation (n =7). Ideally a measured RMR value would 

have been made throughout both experimental chapters with this accounting for individual 

variation and enabling greater precision in the calculations of energy expenditure. However, 

for logistical reasons, and constraints in the testing time with the relatively large sample size 

in Chapter 4, an estimate of RMR from a prediction equation was considered an appropriate 

compromise with any small errors in the estimation at least being consistent between 
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individuals. The Harris-Benedict equation is well established, shown to be more valid than 

other equations  (Flack et al. 2016) and the equation is also based upon RMR values 

measured from a cohort fairly representative of the majority of individuals from Chapter 4 

(young, healthy Caucasian).  

 

In Chapter 5, the much smaller study sample size made it possible to measure RMR through 

indirect calorimetry using the Weir equation without correction for urinary nitrogen (Weir 

1949):  

Non protein corrected Weir Equation for RMR:  

RMR (kcal/day) = ([3.941 *    2   min   +  1.1        O2 (L/min)]) * 1440(min/day) 

Unfortunately, due to equipment failure, RMR measurements were only available on 8/15 

participants in Chapter 5, with the Harris-Benedict equation chosen to estimate RMR in the 

remaining 7 participants for consistency with chapter 4. An independent samples t-test was 

used to compare the measured RMR values (1586  221 kcal) to the Harris-Benedict 

calculated values (1514  219 kcal) and did not significantly differ (p=0.28) showing a good 

level of agreement.  

Harris Benedict Equation for estimating RMR: 

Men: 66.5 + (13.75*weight (kg)) + (5.003*height (cm)) – (6.755*age (yrs.)) 

Women: 655.1 + (9.563*weight (kg)) + (1.850*height (cm)) – (4.676*age (yrs.)) 
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Besides achieving a steady state in expired gases, there has generally been a lack of 

consistency in the protocol or approach taken to determine RMR, despite recommendations 

available (Compher et al. 2006). Protocols previously used have varied in complexity from a 

simple average over a defined period of time after steady state, to the average with the 

lowest coefficient of variation (Shook et al. 2015), or a period with <10% coefficient of 

variation (CV) for    2/   CO2, or the lowest value taken from four 5 min periods accepted as 

stable (within 100 kcal/ day) (Walhin et al. 2013). When RMR was measured in Chapter 5, it 

was measured over a 30min period, the first 10 mins and last 2 mins of which were 

discarded, with the average of the remaining 18mins used to determine the RMR provided 

the CV for    2/   CO2 was <10%. 

 

3.3 Dietary Analysis 

Obtaining accurate, reliable and valid measures of habitual dietary intake is a notoriously 

difficult process (for a comprehensive review see (Bingham 1987)). No currently employed 

methodology is considered to be a gold-standard approach, although a weighed food diary 

approach is thought to provide the most accurate and detailed nutritional information 

provided subject compliance to the burdensome methodology is high. In this thesis two 

methods were employed, in Chapter 4 detailed habitual dietary intake data was required, 

therefore a 4-day weighed food diary approach was used (see Appendix 7.2 for example 

record), whereas a 24 hr recall method was used in Chapter 5 to minimise subject burden 

whilst still providing reliable, detailed, dietary data. However, with the well-recognised 

inaccuracies and systematic underestimation of actual intake with all self-report methods 
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(IOM 2000 Dietary Reference Intakes: Applications in Dietary Assessment. Washington, DC: 

National Academy Press.), these limitations should be considered when interpreting the 

data. 

 

3.3.1 Weighed Food Diary 

Although it could be argued that a 4-day food diary might not be considered to be reflective 

of habitual dietary intake, this duration of measurement period was taken as a pragmatic 

approach to enable a sufficient level of detail on dietary intake without being overly 

cumbersome on a large sample of participants. Additionally, reliable dietary data in the 

period closest to when the metabolic testing commenced was of primary importance, and 

with subject compliance to dietary recording reduced after more than 4 days (Gersovitz, 

Madden, and Smiciklas-Wright 1978), this duration of recording was chosen. 

 

Each participant was provided with detailed instructions both verbally and in written form to 

carry out a weighed food diary (see Appendix 7.2). Participants were supplied with two sets 

of digital scales, one pocket sized to encourage and allow accurate weighing when away 

from home and a second more traditionally sized kitchen scales. Subjects were trained how 

to operate the scales and advised where possible on procedures to try and limit instances 

that might not reflect their normal dietary practice, with emphasis on the weighing 

everything and providing a high level of detail. When weights of foods / drinks were not 

possible the subjects were required to estimate and record in household items the quantity 

of food / drink consumed. All relevant details regarding dietary intake were obtained in the 
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diary including, specific food names/brands, individual food weights, cooking methods, 

leftovers etc. All food diaries were checked for completeness with the participant, using 

open ended probing questions to verify that no items were missed and all detail needed for 

dietary assessment was captured. All recorded food items, meals and homemade recipes 

were later inputted and analysed using the computer software Dietplan 6.70.67 (Forestfield 

Software Ltd. Horsham, West Sussex, UK), which makes assumptions for nutrient losses 

during the different cooking processes / technique used where applicable. In instances 

where a recorded food item was not included in the databases within Dietplan software, the 

data was obtained from the manufacturer and entered into the database to improve 

accuracy.  

 

3.3.2 24 Hour Recall 

In Chapter 5 the habitual dietary intake was assessed using the multiple pass 24hr recall 

technique on 3 separate occasions. Participants were assured that no judgement would be 

made on dietary data given, and were asked to be honest. An initial quick list of all foods and 

drinks consumed over the proceeding 24hr period was then made without interruption from 

the interviewer. This was then followed up with a list of commonly omitted foods and 

beverages, such as milk / sugar in coffee. Information was gathered on the time, location 

and occasion of the listed foods in an attempt to improve recall. A more detailed pass was 

then conducted whereby specifics on the consumed foods listed is obtained, including 

brands, cooking techniques and estimated portion sizes with use of the Foods Standards 

Agency Food Portion Sizes booklet (Nelson et al. 1997), with one final review through for any 
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forgotten foods. The data obtained were then analysed using the same computer software 

Dietplan 6.70.67 (Forestfield Software Ltd. Horsham, West Sussex, UK). 

 

3.4 Physical Activity / Energy Expenditure 

The assessment of habitual physical activity levels for the determination of energy 

expenditure is tremendously difficult because of the wide variability in lifestyles (Thompson 

and Batterham 2013). Although the gold standard method of doubly labelled water method 

largely negates this problem and so would have been useful for capturing energy 

expenditure in Chapters 4 and 5 it was unfortunately not available and so the most accurate 

methods available considering the study sample sizes, subject burden and primary objective 

of the measurement were employed.   

3.4.1 Activity Diary 

In Chapter 4, self-reported physical activity level was calculated using a factorial approach 

(Manore, Meyer, and Thompson 2009) from self-reported data recorded using a physical 

activity diary adapted from Bouchard et al (Bouchard et al. 1983) (see appendix 7.3). Over 4 

days, subjects were required to record their level of physical activity every 15 minutes using 

a code provided from a 12-point scale, each with a designated activity factor, corresponding 

to; rest (1.0), very light (1.5), light (2.5), moderate (5.0) and heavy (7.0) ((US) 1989). An 

average daily activity factor was calculated, weighted by the amount of time spent at each of 

the assigned codes per day, Total daily energy expenditure was estimated by multiplying the 

weighted activity factor value by RMR estimated using the Harris-Benedict equation (Harris 
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and Benedict 1918). A similar methodology to estimate EE has been validated in 15yr old 

adolescents against double labelled water (mean difference in calculated energy 

expenditure 1.2%) (Bratteby et al. 1997).  

 

The four days of activity recording used in Chapter 4, is unlikely to be truly reflective of 

habitual activity levels, being too short in duration to sufficiently capture the variability 

within an individual’s habitual lifestyle. However, a primary reason for the measurement of 

energy expenditure in Chapter 4 was to determine the contribution of energy balance in the 

variability in MFO. In this regard, the methodology employed was likely of sufficient detail 

and duration, with the acute energy balance likely most relevant, even if the act of 

monitoring activity levels altered behaviour (Hawthorne effect) as is often reported and 

influenced the estimate made (Wickström and Bendix 2000). Typically, self-reported physical 

activity levels are overestimated when they have been compared to objectively made 

measurements (IOM 2005; Loney et al. 2011), with high subject compliance crucial to the 

validity of data. A positive association is also often reported between BMI and the degree of 

over-reporting of subjectively measured physical activity (Warner et al. 2012) the exclusion 

of individuals with a BMI >30 potentially attenuated the impact of this limitation. In light of 

the subjectivity and limitations in methodology employed the data collected must be 

interpreted with a degree of caution. 

3.4.2 Combined Heart Rate and Accelerometer 

In Chapter 5 physical activity energy expenditure was determined objectively through the 

use of an Actiheart monitor (CamNtech, Cambridge, UK). This small monitoring device was 
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attached to the chest by long-term ECG pads (Red Dot solid gel electrodes, 3M, Bracknell, 

UK) and simultaneously measures heart rate and uni-axial accelerometer movements. Using 

a branched equation model (Brage et al. 2004) these combined measurements are used to 

determine energy expenditure, negating the pitfalls of either method used in isolation 

(Crouter, Churilla, and Bassett 2007). The Actiheart unit and the branched equation model 

used have been described in more detail previously (Brage et al. 2005; Brage et al. 2004). 

Individual heart rate-   2 calibration curves established the individual relationship between 

heart rate and energy expenditure enabling the use of the “Group Act/Ind HR+stress” energy 

model from the Actiheart software (Actiheart software version 4.0.116, CamNtech, 

Cambridge, UK), with sleeping and max heart rate,    2max and RMR also entered to account 

for individual variability, improving estimates of energy expenditure (Assah et al. 2011). 

Recordings were made in 30 sec epochs throughout the wearing time, and the raw data was 

cleaned and processed using the Actiheart 4 software. Total daily energy expenditure was 

the sum of RMR, Actiheart derived physical activity energy expenditure and an estimated 

diet induced thermogenesis (10% daily EI) (Westerterp 2004).  

 

The Actiheart monitor is able to reliably capture daily energy expenditure, showing good 

agreement with the criterion method in free living individuals (doubly labelled water) in both 

adults (Assah et al. 2011) and children (Zamora-Salas and Laclé-Murray 2015). The energy 

expenditure calculated by the Actiheart during more discrete everyday activities (MET<4.3) 

such as walking or sweeping also compare well (6% under estimation) to those measured via 

indirect calorimetry, with no fixed or proportional bias (Thompson et al. 2006). Importantly 

considering the study population (predominantly runners) in Chapter 5, the Actiheart 
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derived energy expenditure values also compare well to indirect calorimetry under more 

strenuous activities such as running (Barreira et al. 2009; Brage et al. 2005). 

 

3.5 Blood collection and analysis 

3.5.1 Blood Collection 

In Chapter 5 venous blood samples were taken both at rest and during exercise to offer 

insights to the metabolic effect of the study diets. Venous blood samples were drawn 

through an indwelling cannula (20g IV catheter, BD Venflon, Plymouth, UK) inserted into an 

antecubital vein connected to a 150 cm polyethylene extension line (V-Green I.V. Extension 

Line, Vygon, Swindon, UK). A 3-way stopcock (BD Connecta, Plymouth, UK) was attached to 

the extension line, allowing blood samples to be drawn whilst the participant was running on 

the treadmill without the need for stopping or substantial changes in running gait. Samples 

were drawn using a 10ml syringe and decanted into vacutainers containing either, EDTA, 

lithium heparin, or no additive to allow clotting, depending on the analysis required. EDTA 

and lithium heparin tubes were immediately stored on ice, with serum tubes left to clot at 

room temperature, after which all tubes were centrifuged at 1361g (3000rpm) for 15mins at 

4C. Aliquots containing plasma or serum were then flash frozen in liquid nitrogen and 

stored at -80C until analysed.   

 

Although valuable metabolic insights can be gained from the venous blood samples taken, it 

is pertinent to consider that these samples only provide a snap-shot of the metabolic 
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processes at the time of sampling. Without a measure of the Ra or Rd of a metabolite it is 

impossible to draw conclusions on the flux of relevant metabolites which may increase 

substantially during exercise without changes observed in total blood concentration. 

Additionally, the concentration of hormones and metabolites in venous blood samples can 

potentially differ to arterial blood, having specific metabolites extracted and others added 

and so might not reflect what was available to the muscle, but what was expelled or not 

extracted. However measuring arterial blood comes with an inherent risk and at high flow 

rates observed during exercise the differences between the two is minimised (Wallis et al. 

2007), thus venous blood samples were obtained in this thesis as is common practice in the 

field.  

 

3.5.2 Targeted metabolite analysis 

The concentration of plasma glucose and lactate served as markers of carbohydrate 

metabolism, with an increase in lactate characteristic of a greater rate of carbohydrate flux 

during exercise. The circulating concentration of NEFA and glycerol were representative of 

markers of lipid metabolism. Under the provision that all lipolysis of TAG is complete and 

released into the circulation without re-esterification, then plasma glycerol concentration 

serves as a marker of whole body lipolysis. Although these assumptions may not entirely 

hold true (Hall et al. 2002; Van Hall et al. 2002; Landau 1999) glycerol Ra is highly responsive 

to lipolytic activators or suppressors and so is useful at least as a marker of the minimal rate 

of whole body lipolysis (Coggan 1999). Serum TAG concentration and the lipoprotein profiles 
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were also measured to investigate the impact of the study diets from a health perspective, 

with these established markers for the development of cardiovascular disease.  

 

The concentration of targeted metabolites (glucose, lactate, NEFA, TAG, glycerol, total 

cholesterol, LDL-C and HDL-C) were determined in duplicate using enzymatic catalysed 

colorimetric assays, measured on a semi-automatic spectrophotometric analyser (ILAB 650 

Clinical Chemistry Analyser, Instrumentation Laboratory, Cheshire, UK). Following 

incubation, the absorbance value of each assay is measured and the analyte concentration 

determined by the linear relationship between concentration and absorbance of specific 

frequency light waves. Both the intra and inter-assay co-efficient of variation for the 

different analytes can be seen in Table 3-2. 
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 Table 3-2 Analyte and description of assay including variation in measurement technique 

Analyte Assay (commercially 

available kit name and 

supplier) 

General principle 

(enzymatically) 

Coefficient of 

variation (%) 

Intra-

assay 

Inter-

assay 

Plasma 

glucose 

Glucose Oxidase, 

(Instrumentation 

Laboratories, Cheshire, 

UK) 

Trinder methodology: glucose 

oxidase / peroxidase 

1.5 5.9 

Plasma 

Lactate 

L-Lac, (Randox, London, 

UK) 

Lactate Oxidase / Peroxidase 2.0 3.9 

Plasma 

NEFA 

NEFA, (Randox, London, 

UK). 

Acyl CoA Synthetase / Acyl 

CoA Oxidase / Peroxidase 

3.3 3.1 

Plasma 

glycerol 

GLY, (Randox, London 

UK) 

Glycerol kinase / peroxidase 

and glycerol phosphate 

oxidase 

2.8 5.9 

Plasma 

triglyceride 

Triglycerides, 

(Instrumentation 

Laboratories, Cheshire, 

UK) 

Lipoprotein Lipase / Glycerol 

Kinase / Glycerol 

Phosphosphate Oxidase / 

Peroxidase 

1.3 N/A 

Serum total 

cholesterol 

Total cholesterol, 

(Instrumentation 

Laboratories, Cheshire, 

UK) 

Bichromatic analysis, 

modification of the method  

of (Allain et al. 1974)  

cholesterol Esterase / 

cholesterol Oxidase / 

Peroxidase) 

4.4 N/A 

Serum HDL-

C 

HDL, (Instrumentation 

Laboratories, Cheshire, 

UK) 

 3.7 N/A 

Serum LDL-

C 

LDL, (cholesterol 

Instrumentation 

Laboratories, Cheshire, 

UK) 

cholesterol Esterase / 

cholesterol Oxidase 

3.8 N/A 

Coefficients of variation are based on analysis of 20 duplicate plasma samples ran across 2 

assays, if N/A analysis was completed within a single assay. 
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3.5.3 Hormone analysis  

Serum insulin concentration was determined in duplicate by radioimmunoassay using a 

commercially available kit (HI-1  K Human Insulin,  illipore, Hertfordshire, UK . A fixed 

concentration of 125I-labelled human insulin antigen was incubated with a constant dilution 

of human insulin antiserum such that the number of antigen binding sites on the antibody is 

limited. Upon mixing with the sample, the unlabelled insulin antigen then competes for the 

limited and constant number of binding sites on the antibody, with the amount of 125I-

labelled antigen bound to the antibody being inversely proportional to the concentration of 

insulin in the sample. After separating the antibody-bound from the free labelled tracer a 

gamma counter measures the level of radioactivity. A standard curve was set up with 6 serial 

dilutions of standard unlabelled 200 µU/mL antigen and from this curve the amount of 

antigen in unknown samples can be calculated. This analysis was undertaken by Dr Edward 

Chambers at Imperial College London due to a substantial saving in cost, safety (regarding 

the radioactivity) and greater sensitivity compared to the alternative of an in-house analysis 

through commercially available ELISA kits. The average intra-assay coefficient of variation 

was 2.8% based on 96 duplicate samples with the inter-assay coefficient of variation 0.5% 

based on 12 samples   ran across 2 assays. 

 

Serum oestrogen and progesterone concentrations were measured to confirm in which 

phase of the menstrual cycle the subjects in chapter 5 were tested. In separate analyses the 

hormone concentrations were quantified by competitive principle immunoassays using a 

Roche e602 unit on a Cobas 8000 modular analyser (Roche Diagnostics Ltd, Rotkreuz, 
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Switzerland). Both hormones were incubated with specific antibodies and a labelled 

hormone derivative that competes equally for the antibody biding site. The amount of the 

labelled hormone derivative bound in the solid phase is inversely proportional to the 

quantity of oestrogen or progesterone. The bound particles are magnetically captured onto 

an electrode which has a voltage applied inducing chemiluminescent emission which is then 

measured by a photomultiplier. This analysis was undertaken by GF and Nazir Ahmed at the 

Queen Elizabeth Hospital Birmingham because of substantial cost savings compare to the 

alternative of an ELISA, plus greater detection limits for oestrogen, which were necessary 

given the anticipated low concentrations in the phase of the cycle testing was planned to 

commence in (follicular phase). The inter-assay coefficient of variation for oestrogen (0.73%) 

and progesterone (2.0%) were based on analysis of 8 (oestrogen) and 6 (progesterone) 

serum samples ran across 2 assays.  

 

3.5.4 Metabolomics 

In Chapter 5, system level mechanistic insights into the metabolic effects of the study diet 

were obtained using non-targeted metabolomics. Metabolomics uses mass-spectrometry to 

identify and quantify small (<1500 Da) metabolites in the metabolome (Hollywood, Brison, 

and Goodacre 2006). By studying the metabolome (the complete set of small molecule 

chemicals) the overall impact of the study diets is measured, with the metabolome being 

downstream of other biochemical species and biochemical information flowing from 

genome to transcriptome to proteome to metabolome. This top-down approach to studying 

metabolism, enables the detection and quantification of more than 4000 metabolites 
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thereby generating huge amounts of exploratory data at the whole body level, offering a 

sensitive measure of the biological phenotype. This untargeted approach of metabolomics 

can better distinguish individual phenotypes than more conventional measures of only a 

small set of metabolites (Assfalg et al. 2008). 

 

There are several different analytical platforms available for the detection, identification and 

quantification of a range of different metabolites, such as UHPLC –MS or nuclear magnetic 

resonance spectroscopy available. Each platform comes with its own strengths and 

weaknesses. Due to the vast chemical diversity of metabolites, varying in physico-chemical 

properties and in concentration, no one methodology can capture the entire metabolome. 

There is also a lack of well-established and standardised methods of procedures for the 

different mass-spec approaches in identifying and discriminating metabolites, which can 

make comparisons difficult.  

 

An untargeted UHPLC-MS approach was considered to be the most appropriate 

methodology for the work in this thesis. This approach captures a holistic and unbiased 

picture of metabolism relevant for the exploratory nature of this study, with its ability to 

detect lipid soluble and insoluble compounds across wide spectra of mass. A more detailed 

description of the UHPLC-MS approach used within this thesis is provided in the appendix 

(7.6).



Chapter 4  

 
68 

4 DETERMINANTS OF THE INTER-INDIVIDUAL VARIABILITY IN THE 

CAPACITY FOR FAT OXIDATION DURING EXERCISE: IMPACT OF DIET, 

BIOLOGICAL SEX, MENSTRUAL CYCLE AND HORMONAL 

CONTRACEPTIVES 

 

4.1 Dietary intake independently predicts the maximal capacity for fat 

oxidation during exercise and does so in a sex-specific manner  

4.1.1 Introduction 

The capacity to oxidize fat (fat oxidation, FAT-OX) as a fuel is important for metabolic health, 

weight management and body composition. For instance, skeletal muscle of patients with 

type 2 diabetes is associated with an impaired ability to oxidize fat (Kelley and Simoneau 

1994). Further, a high respiratory quotient (RQ), indicative of low FAT-OX relative to 

carbohydrate oxidation (CHO-OX), is predictive of both future body mass gain (Zurlo et al. 

1990; Marra et al. 2004; Shook et al. 2015) and regain of fat mass (FM) after diet-induced 

reductions in body mass (Ellis et al. 2010). Exercise acutely increases both energy 

expenditure and FAT-OX and the capacity to oxidize fat during exercise is related to daily 

FAT-OX and insulin sensitivity (Robinson et al. 2015). Further understanding factors that are 

associated with FAT-OX during exercise could, therefore, help to optimize the use of physical 

activity for maintenance of metabolic health, body mass and composition (Brooks et al. 

2004). 
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The pattern of fuel utilization during exercise performed under a variety of experimental 

conditions has been well characterized. (Brooks and Mercier 1994; Venables, Achten, and 

Jeukendrup 2005; Achten, Gleeson, and Jeukendrup 2002; Romijn et al. 1993; Volek et al. 

2016). Despite this, substantial inter-individual variability in energy substrate partitioning 

and the maximal rate of fat oxidation (MFO) during exercise has been described (Achten and 

Jeukendrup 2003; Venables, Achten, and Jeukendrup 2005; Volek et al. 2016). A previous 

study attributed 35% of the inter-individual variability in MFO to aerobic fitness (   2max), 

Self-Reported Physical Activity Level [SRPAL], body composition (Fat Free Mass [FFM], FM) 

and sex (Venables, Achten, and Jeukendrup 2005). Dietary intake could contribute to the 

observed inter-individual variability in MFO, although its relative influence has not been 

quantified.  

 

A high fat diet can increase FAT-OX during exercise whereas an isoenergetic high CHO diet 

can reduce it (Helge, Wulff, and Kiens 1998; Volek et al. 2016; Phinney et al. 1983). However, 

the outcomes of studies exploring widely divergent macronutrient intakes may not be 

applicable to the habitual dietary patterns reported by the majority of the population 

(Statistics 2016; Bates et al. 2014). Previously, a significant inverse relationship between self-

selected dietary fat intake and exercising respiratory exchange ratio (RER) has been reported 

(Goedecke et al. 2000). This observation provides an important insight but the relatively 

small sample size, use of an exercise-trained cohort and limited range of exercise intensities 

studied precluded full exploration of the association of diet on FAT-OX across a broad 

spectrum of active individuals. 
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Understanding the independent contribution of diet relative to other known contributors to 

FAT-OX represents an important step. Diet is a modifiable variable, which could enhance 

FAT-OX during exercise. As MFO occurs at moderate intensities, diet could influence FAT-OX 

at exercise intensities consistent with current public health recommendations, with broad 

implications for public health – regarding both body composition and metabolic health. 

Therefore, the primary aim of this study was to determine the extent to which diet 

independently predicts the inter-individual variability in MFO during exercise in healthy 

young men and women. Additionally, it has been reported that women exhibit greater rates 

of FAT-OX than men during exercise (Tarnopolsky et al. 1990), yet the role of biological sex, 

independent of other factors relevant to substrate oxidation [e.g.,    2max, SRPAL, body 

size-related variables (Venables, Achten, and Jeukendrup 2005)] on MFO, has not previously 

been assessed, so will be herein.  

 

4.1.2 Methods 

4.1.2.1 Participants 

Between January 2013 and March 2014, three hundred and seventy seven individuals were 

assessed for their eligibility to participate in the study, with 364 (181 men and 183 women) 

meeting the inclusion criteria. Data collection was completed by March 2014. Participants 

were recruited from the surrounding (West Midlands, UK) local community by postal 

notices, emails and word of mouth. Participants were excluded from taking part if they were: 

<18 or > 45 years old, BMI <18.8 or > 29.9 kg/m2, > 192cm in height (maximum Dual-Energy 

X-ray Absorptiometry [DXA] scanning height), taking any medication or supplements with 
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the potential to interfere with normal metabolism (e.g., beta-blockers, insulin, 

bronchodilators, anti-inflammatory agents, thyroxine), were completely sedentary, a current 

or recent (within 30 days) smoker, engaged in prolonged periods of food abstinence, 

pregnant, breast feeding or amenorrhoeic combined with not using hormonal contraception. 

Participants provided written informed consent in accordance with the Helsinki Declaration 

of 1975 as revised in 1983 to take part in the study that was approved by the National 

Research Ethics Service Committee East Midlands, Northampton, UK (Ref: 12EM0470). A 

total of 305 (150 men and 155 women) participants completed the study, which met the a 

priori objective to achieve a similar number to prior work (Venables, Achten, and 

Jeukendrup 2005). A flow chart of participant recruitment and involvement in the study is 

shown in Figure 4-1. Participants (n = 24) withdrew after providing consent for the following 

reasons; musculoskeletal injury preventing completion of exercise testing (n = 5), 

development of cold/flu like symptoms (n = 2), personal reasons unrelated to study (n= 4), 

uncomfortable with the exercise testing (n= 5), lost to follow up – i.e. not contactable (n = 8). 

Data from 34 subjects was excluded from the analysis as they were unable to fully comply 

with the study protocol. Data from one subject was excluded on statistical grounds (see 

Statistical Analysis).  
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Figure 4-1 Flow chart of participant recruitment and involvement in the study 

 

The characteristics of the 305 participants that completed the study are shown in Table 4-1. 

All volunteers were deemed to be healthy as assessed by a general health questionnaire, 

and self-assigned ethnicity via questionnaire. The women also completed a self-report 

questionnaire to estimate the menstrual cycle phase during which testing occurred and to 
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document hormonal contraceptive (HC) use (Follicular n = 57, HC n = 19; Luteal n = 82, HC n 

= 30; amenorrhoeic and taking HC n = 16). 

 

4.1.2.2 Study Design 

The current study followed a single-centre, cross sectional design with each participant 

attending the laboratory on two occasions separated by 5-10 days. At the first visit, 

demographic data were recorded before undertaking a familiarization exercise test (identical 

to that described below). Participants were provided with digital weighing scales and a food 

and physical activity diary that they completed during the four consecutive days before the 

second visit to the laboratory. They were instructed to maintain their normal dietary habits 

and physical activity levels during this time, with the exception of the day before the second 

visit where they refrained from strenuous physical activity and alcohol consumption. 

Following a 10-12hr overnight fast except for water, participants attended the laboratory for 

the second visit between 07:00-09:00 where anthropometric measurements and body 

composition were determined. Thereafter, participants completed an exercise test to 

determine submaximal exercise substrate utilization, MFO and    2max using indirect 

calorimetry.  
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Table 4-1 Participant demographic characteristics, ethnicity, aerobic capacity and self-

reported physical activity levels 

Variable 
All Subjects 

(n = 305) 
Men  

(n = 150) 
Women 

 (n = 155) 

Age (years) 25 ± 6 24 ± 7 (18-45) 25 ± 6 (18-45) 
Height (m) 1.72 ± 0.09 1.78 ± 0.06* 1.66 ± 0.06 

Mass (kg) 68.7 ± 11.1 76.0 ± 9.1*** 61.6 ± 7.9 
BMI (kg/m2) 23.0 ± 2.0 23.9 ± 2.3*** 22.2 ± 2.2 
WC (cm) 78 ± 8 82 ± 7*** 73 ± 7 
Body fat (%) 24.7 ± 7.1 19.6 ± 4.8*** 29.7 ± 5.1 
Fat free mass (kg) 51.2 ± 10.8 60.1 ± 7.2*** 42.6 ± 5.1 
Fat mass (kg) 16.5 ± 5.0 14.8 ± 4.6*** 18.2 ± 4.8 
Visceral adipose tissue (g) 227 ± 123 274 ±118*** 181 ±110 
A/LB FM2 

0.17 ± 0.06 0.20 ± 0.06*** 0.14 ± 0.04 

   2max (L/min) 3.44 ± 0.83 4.11 ± 0.57*** 2.80 ± 0.46  
   2max (ml/kg/min) 49.9 ± 8.0 54.4 ± 6.9*** 45.6 ± 6.6 
   2max (ml/kg FFM/min) 67.1 ± 7.0 68.5 ± 7.0*** 65.7 ± 6.7 

SRPAL 1.57 ± 0.13  1.58 ± 0.14  1.56 ± 0.12 

Ethnicity    
White (n) 230 109 121 
Black (n) 12 4 8 
Asian/Indian/Pakistani (n) 27 18 9 
Chinese/Other Asian (n) 23 8 15 
Mixed (n) 13 11 2 

1 All values besides self-reported ethnicity data are Mean ± SD, 

FFM, Fat Free Mass, SRPAL, Self-Reported Physical Activity Level,    2max, maximal oxygen 

uptake; WC, waist circumference; A/LB FM, abdominal to lower body fat mass ratio.  

Significantly different from women (unless stated: independent t test, 2 Mann-Whitney U 

test) * = P<0.05; *** = P<0.001 
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4.1.2.3 Four-Day Dietary and Physical Activity Assessment 

Participants were provided with comprehensive written and verbal instructions explaining 

how to complete a four-day weighed food diary. Digital weighing scales, one portable pocket 

sized (Swees, Digital Pocket Mini Gold, Kent, UK) and one standard sized (Macallen TM 

Digital LCD Electronic Kitchen Weighing Scales 10kg, UK), were provided to allow all food and 

drink consumed to be weighed to the nearest gram. Each food diary was checked by the first 

author (GF), with any uncertainties clarified by the participant. The diaries were analyzed by 

GF using Dietplan 6.70.67 (Forestfield Software Ltd. Horsham, West Sussex, UK) to produce a 

comprehensive report of energy and nutrient intake. When a consumed food item was 

missing from the database, the nutritional data were located from the manufacturer and 

entered manually. 

 

An adapted version of the physical activity record designed by Bouchard and colleagues 

(Bouchard et al. 1983) was used to estimate energy expenditure using the factorial approach 

(Manore, Meyer, and Thompson 2009). Briefly, subjects were required to record their level 

of physical activity every 15 minutes using a code provided from a 12-point scale, each with 

a designated physical activity level (SRPAL) value. A daily SRPAL value was determined from 

the total amount of time spent at each of the assigned codes per day. Total daily energy 

expenditure was estimated by multiplying the obtained daily SRPAL (1989) value by RMR 

estimated using the Harris-Benedict equation (Harris and Benedict 1918), with energy 

balance then calculated as energy expenditure minus energy intake. All energy expenditure, 
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energy balance and dietary intake data were averaged for the four-day measurement 

period. 

 

4.1.2.4 Anthropometry and Body Composition Assessment 

After voiding and whilst wearing minimal clothing, participants were weighed to the nearest 

10g (OHaus, Champ II scales, USA) and height was measured to the nearest cm (Stadiometer, 

Seca, UK). Waist circumference was measured to the nearest mm with the tape measured 

midway between the uppermost border of the iliac crest and the lower border of the costal 

margin (rib cage). Body composition was determined by DXA (Hologic, Discovery QDR W 

series, Crawley, West Sussex, UK), with a manufacturer-recommended phantom scan 

performed daily for calibration and quality control assurance. As well, the abdominal to 

lower body FM (A/LB FM) ratio was determined from the DXA scan in a similar manner to 

that previously described (Isacco et al. 2013) differing only in the use of automated versus 

manual determination of abdominal fat (APEX version 4.0, Hologic Inc., Bedford, 

Massachusetts, USA).  

 

4.1.2.5 Exercise Test 

Participants were familiarized with the exercise test during Visit 1 to ensure that during Visit 

2 the physiological and metabolic responses measured were as near normal and maximal as 

possible and not overly influenced by the performance of a novel task. The motorized 

treadmill (PPS 70sport-I, Woodway, Weil am Rhein, Germany) / HP cosmos, Quasar, 

Nussdorf-Traunstein, Germany) based exercise test was adapted from that used previously 
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by Achten and colleagues (Achten, Venables, and Jeukendrup 2003). The test commenced at 

a speed of 3.5 km/h and a gradient of 1% (to reflect the oxygen cost of outdoor running 

(Jones and Doust 1996)), and the speed was increased by 1 km/h every 3 min until a RER of 

1.00 was reached and FAT-OX was therefore negligible thereafter (Jeukendrup and Wallis 

2005). The treadmill speed was then kept constant with the gradient increasing by 1% every 

minute until volitional exhaustion to determine    2max within the same protocol. Heart 

rate was recorded continuously by telemetry using a heart rate monitor (Polar S610i, Polar 

Electro Ltd, Oy, Finland). Environmental conditions during testing were: relative humidity 

45±7%; temperature 20±2°C. An electronic fan was positioned behind participants for use 

upon request.  

 

A face-mask (7450 V2, Hans Rudolph, Missouri, USA) was securely fitted, and breath-by-

breath respiratory measurements (minute ventilation,   E; oxygen consumption,    2; carbon 

dioxide production,   CO2) were recorded throughout the test using an automated gas 

analysis system (Oxycon Pro, CareFusion UK Ltd, Basingstoke, UK). The gas analysers were 

calibrated immediately before each exercise test according to the manufacturers 

recommendations using calibration gases (5.07% CO2, 14.79% O2) (BOC Gases, Surrey, UK), 

and the volume transducer was manually calibrated with a 3 litre bi-directional syringe 

(Jaegar, Wuerzberg, Germany). The highest rolling 60 second average    2measurement was 

considered to be maximal (   2max) if two of the three following conditions were met: 1) a 

plateau  an increase of ≤  m   g min  in    2with further increasing workload; 2) a heart 

rate within 10 beats/min of the age-predicted maximum (for males, 220 beats per minute – 
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age, for women 206 beats per minute – 0.88(age) (Gulati et al. 2010)); and 3) a respiratory 

exchange ratio of >1.1.  If a plateau in    2did not occur then a    2peak value was obtained, 

defined as the highest    2value averaged over a 30-second period. The average    2and 

  CO2 during the final minute of each 3-minute submaximal stage of the exercise test was 

used to calculate FAT-OX and CHO-OX using the stoichiometric equations of Frayn (Frayn 

1983) under the assumption of negligible urinary nitrogen losses. The highest attained rate 

of FAT-OX was identified as the MFO, and the exercise intensity (i.e., %    2max) associated 

with this rate was identified as the FatMax (Achten, Gleeson, and Jeukendrup 2002). Using 

Matlab (MathWorks Matlab 2011a, Natick, Massachusetts, USA) CHO and FAT-OX rates were 

determined for each 5% increment of 35-85%    2max by interpolation (1000 points) 

between subsequent recorded data points and logging the oxidation value nearest to the 

increment of    2max. 

 

4.1.2.6 Statistical Analysis 

Data were analysed using the SPSS statistical package for Windows, version 20.0 (SPSS, 

Chicago, IL, USA) and the R statistical software package version 3.3.0 (R Foundation for 

Statistical Computing, Vienna, Austria). Data were checked for normality using distribution 

plots and the Kolmogorov-Smirnov test. Differences in CHO and FAT-OX rates between men 

and women across different exercise intensities were tested with a mixed ANOVA. 

Differences between men and women in baseline characteristics that were normally 

distributed were assessed using independent sample t-tests, with Mann-Whitney U tests 
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used for data non-normally distributed. Significant sex-based differences were found across 

most baseline characteristics (Table 4-1 & ). 

 

Table 4-2). Therefore, all independent variables were mean-centred by sex. This 

transformation allowed tests of the effects of sex independent of sex-related differences in 

baseline characteristics relevant to substrate oxidation (e.g., aerobic fitness, body-size 

related variables and diet). Analyses employed hierarchical multiple regression, with 

previously identified variables (FM, FFM, sex, SRPAL,    2max) (Venables, Achten, and 

Jeukendrup 2005) entered on step 1 and macronutrient variables entered on step 2 to 

quantify the independent association of each variable with MFO expressed in absolute terms 

(g/min) and relative to fat free mass (mg/kg FFM/min). Predictor variables were pre-

screened for multicollinearity; if a pair of variables had a Pearson r value greater than 0.85, 

one variable was eliminated based on a priori expectations. Predictor variables with a 

tolerance value < 0.35 or a Variance inflation factor (VIF) >3 were also eliminated, as was 

one influential case identified by having a Cooks distance >1 (Field 2013). All results are 

expressed as mean ± standard deviation unless otherwise stated with statistical significance 

accepted at P  0.05. 

 

4.1.3 Results 

4.1.3.1 Participant characteristics and nutritional intake 

Participant characteristics and their nutritional intake are reported in Table 4-1 and ). 
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Table 4-2, respectively. As expected from differences between the sexes in body size, men 

were significantly taller, heavier, had a larger waist circumference, greater BMI, lower body 

fat (%), less FM, more FFM, a higher ratio of abdominal to lower body fat mass and a greater 

   2max.  imilarly, men’s total absolute energy inta e and energy expenditure was higher 

than the women’s, with men reporting a greater absolute inta e of protein, fat and  H , as 

well as alcohol. For men, there was a greater % contribution to total energy intake from 

protein and alcohol and less from CHO than women, with no significant difference in fat 

intake. There were no differences between the sexes in age, SRPAL or energy balance. 

 

4.1.3.2 Substrate oxidation 

The MFO was 0.55 ± 0.19 (range: 0.19-1.13) g/min or 10.8 ± 3.2 (range: 3.5-20.7) mg/kg 

FFM/min and occurred at 60 ± 16 (range: 19-92) %    2max (FatMax). The absolute MFO 

(g/min) was greater in men (0.62 ± 0.19 [0.21-1.13] g/min) than in women (0.48 ± 0.15 [0.19-

0.99] g/min) (P <0.0001), whereas it was lower in men when expressed relative to FFM 

(men, 10.3 ± 3.1 [3.5-19.9]; women, 11.2 ± 3.3 [4.6-20.7] mg/kg FFM/min) (P<0.05). There 

was no statistically reliable difference (P = 0.09) in the exercise intensity at which MFO 

occurred (i.e., FatMax) between men (58.7 ± 15.9% [22.9-91.4]) and women (61.8 ± 15.7% 

[19.3-92.3]    2max). The percentage contribution of FAT and CHO-OX to energy expenditure 

for each sex is displayed in Figure 4-2. Proportionally, fat contributed as the main fuel source 

at low exercise intensities until approximately 50%    2max after which CHO became the 

dominant source of energy. The relative contributions of fat and carbohydrate to energy 

expenditure were higher and lower, respectively, in women as compared to men. A similar 
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pattern for sex-differences in FAT and CHO-OX were observed when oxidation rates were 

expressed relative to FFM (Figure 4-3). 

 

Table 4-2 Macronutrient intake and related parameters 

Variable All Subjects 
(n=305) 

Men  
(n=150) 

Women  
(n=155) 

Energy Expenditure 

(kcal/day) 

2568 ± 445 2912 ± 348*** 2236 ± 219 

Energy Balance 

(kcal/day) 

75 ±553 

 

103 ± 615 

 

47 ± 486 

 

Energy Intake (kcal/day)  2608 ± 738 3001 ± 719*** 2227 ± 527 

% Fat to Energy Intake 34.3 ± 6.9 34.2 ± 7.0 34.4 ± 6.9 

% Protein to Energy 

Intake 

17.3 ± 5.8 19.1 ± 7.0*** 15.5 ± 3.6 

% Carbohydrate to 

Energy Intake 

45.4 ± 9.3 43.1 ± 9.7*** 47.5 ± 8.3 

% Alcohol to Energy 

Intake2 

2.6 ± 4.7 3.3 ± 4.9*** 2.1 ± 4.3 

Total Fat (g/day) 99 ± 34 113 ± 33*** 86 ± 28 

Total Protein (g/day) 113 ± 49 141 ± 52*** 86 ± 26 

Total Carbohydrate 

(g/day) 

313 ± 104 347 ± 114*** 281 ± 82 

Total Alcohol (g/day)2 11 ± 21 15 ± 25*** 7 ± 15 
1 All values are Mean ± SD; *** Significantly (P <0.001) different from Women (unless 

stated: independent t test, 2 Mann-Whitney U test). 

 

4.1.3.3 Determinants of MFO  

Analysis employed a two-step hierarchical regression with fitness and body size related 

variables expected to be associated with MFO entered on step 1 and macronutrient intake 

variables on step 2. The macronutrient intake values were entered in absolute terms (g/day), 
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as opposed to relative contribution to Energy Intake (%) (EI). When expressed as a % of EI, 

the macronutrients were inevitably linked to each other by the common divisor of % EI used 

in their derivation. If macronutrients were expressed as % EI, it would be impossible to 

determine their independent contribution to the variability in MFO. The simple bivariate 

correlations between energy balance or A/LB FM and MFO were not significant and were 

therefore not entered in the hierarchical regression (energy balance: r = 0.08, P = 0.18, r = 

0.09, P = 0.11; A/LB FM: r = -0.05, P = 0.35, r = -0.08, P = 0.15; for MFO expressed as g/min or 

mg/kg FFM/min, respectively). 

 

The results of hierarchical regression analysis with the dependent variable of absolute MFO 

(g/min) are summarized in Table 4-3.    2max, SRPAL and sex accounted for 43.5% of the 

variability in MFO, with no significant contribution from either FFM or FM. The step 2 

analysis improved the amount of variability explained by 2.7%, and showed CHO and fat 

intake to be significant independent predictors of MFO. The relative magnitude of the 

standardized coefficients indicates the magnitude of their independent contribution. 

Positive standardized coefficients for    2max, SRPAL, and fat intake indicate that these 

variables are positive predictors of MFO (i.e., an independent increase in any of these 

variables corresponds to a greater MFO). The negative standardized coefficient for CHO 

intake indicates a reduction in MFO following an increase in this variable, with sex also 

having a negative association by virtue of statistical coding (men, 1; women, 2).  

 

A similar two-step hierarchical regression procedure was used for MFO relative to FFM 

(mg/kg FFM/min) with one exception. FFM could not be included in the analysis summarized 
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in Table 4-4, because of its contribution to the dependent variable.    2max, SRPAL, sex and 

FM all contributed, and together accounted for 17.4% of the variability in MFO. All three 

macronutrients made significant independent contributions to the step 2 analysis, explaining 

a further 3.1% of variability.    2max, SRPAL, sex (coding: men 1, women, 2) and fat intake 

had positive relationships with MFO, whereas the associations for FM, CHO and protein 

intake were negative.  
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Table 4-3 Hierarchical Multiple Linear Regression for absolute Maximal Fat Oxidation (g/min) (n=305) 

  Absolute MFO (g/min) (n=305) 

Model Independent Variables 
Unstandardized Coefficients Standardized Coefficients R2 (95% CI) 3 Adjusted R2 

Beta (95% CI) Beta    

1 

   0.444***1(0.368–0.525) 0.435 

   2max (L/min) 0.089 (0.063 – 0.155) 0.477 ***   

SRPAL1 0.037 (0.018 – 0.055) 0.196 ***   

Sex (M = 1, W = 2) -0.005 (-0.175 – -0.112) -0.385 ***   

FM (kg) -0.017 (-0.022 – 0.013) -0.024    

FFM (kg) -0.143 (-0.041 – 0.008) -0.091    

2 

   0.476**1(0.409–0.570) 0.462 

   2max (L/min) 0.098 (0.072 – 0.124) 0.527 ***   

SRPAL1 0.044 (0.025 – 0.064) 0.238 ***   

Sex (M = 1, W = 2) -0.143 (-0.174 – -0.113) -0.385 ***   

FM (kg) -0.005 (-0.022 – 0.012) -0.025   

FFM (kg) -0.021 (-0.046 – 0.003) -0.115 †   

Protein intake (g) -0.009 (-0.027 – 0.010) -0.046   

Carbohydrate Intake (g) -0.033(-0.051 – -0.015)  -0.178 ***   

Fat Intake (g) 0.027 (0.009 – 0.044) 0.144 **   
1Significant change in R2. Significance of P value  *** P < 0.001, ** P < 0.01, * P < 0.05. † P < 0.10. 3 Bootstrapped 95% CI.  FFM, Fat Free 

Mass; MFO, Maximal Fat Oxidation; SRPAL, Self-Reported Physical Activity Level;    2max, maximal oxygen uptake. 
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Table 4-4 Hierarchical Multiple Linear Regression for MFO relative to FFM (mg/kg FFM/min) 

 Relative MFO (mg/kg FFM/min) (n=305) 

Model Independent Variables 

Unstandardized 

coefficients Standardized coefficients R2 (95% CI)3 Adjusted R2 

Beta (95% CI) Beta    

1 

   0.185***1(0.116 – 0.276) 0.174 

   2max (L/min) 0.459 (0.084 – 0.834) 0.143 *   

SRPAL1 0.838 (0.450 – 1.226) 0.261 ***   

Sex (M = 1, W = 2) 0.873 (0.214 – 1.532) 0.136 **   

FM (kg) -0.459 (-0.802 – -0.117) -0.143 **   

      

2 

   0.223**1(0.156 – 0.327) 0.205 

   2max (L/min) 0.630 (0.241 – 1.020) 0.196 **   

SRPAL1 1.025 (0.624 – 1.426) 0.319 ***   

Sex (M = 1, W = 2) 0.873 (0.226 – 1.519) 0.136 **   

FM (kg) -0.509 (-0.848 – -0.170) -0.158 **   

Protein intake (g) -0.408 (-0.786 – -0.030) -0.127 *   

Carbohydrate Intake (g) -0.609 (-0.990 – -0.228) -0.189 **   

Fat Intake (g) 0.472 (0.102 – 0.843) 0.147 *   
 1Significant change in R2 . Significance of P value  *** P < 0.001, ** P < 0.01, * P < 0.05. † P < 0.10.3 Bootstrapped 95% CI intervals.  FFM, Fat Free 

Mass; MFO, Maximal Fat Oxidation; SRPAL, Self-Reported Physical Activity Level;    2max, maximal oxygen uptake 
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Figure 4-2 Sex differences  n the propor on      tot   ener   e pen  t re  contr    on o  

  t  n  c r oh  r te o     on r tes   r n   ncre ent   e erc se  et een   -       2max 

(men n =145, women n = 135)  

Women fat oxidation ▲; women carbohydrate oxidation , men fat oxidation ■; men 

carbohydrate oxidation . # P < 0.01 for main effect of sex, * P < 0.001 for main effect of 

exercise intensity and P < 0.05 for a sex by exercise intensity interaction using a mixed 

ANOVA.   , energy expenditure     2max, maximal oxygen uptake 
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Figure 4-3  e     erences  n s  str te ener   e pen  t re re   ve to       c     n   

  r n   ncre ent   e erc se  et een   -       2max (men n=145, women n = 135) 

Values are means, error bars represent SEM. Women fat oxidation▲; women carbohydrate 

oxidation , men fat oxidation ■; men carbohydrate oxidation   

# P < 0.01 for main effect of sex, * P < 0.001 for main effect of exercise intensity and P < 0.05 

for a sex by exercise intensity interaction using a mixed ANOVA. 

 

4.1.4 Discussion 

The present study tested the association of recent self-selected dietary intake on the inter-

individual variability in MFO during exercise in healthy young men and women. The total 

amount of variability explained was 46.2% and 20.5% of absolute (g/min) and relative MFO 
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(mg/kg FFM/min), respectively, with diet accounting for ~3% of this. This study also 

demonstrated that biological sex is a determinant of MFO, independent of other important 

predictors on fat oxidation. While men had a higher absolute MFO (g/min) than women, the 

reverse was true when MFO was expressed relative to FFM. 

 

We confirm that substantial inter-individual variability exists in MFO, ranging by almost 6-

fold (0.19-1.13 g/min; 3.5-20.7 mg/kg FFM/min). The non-diet related variables in the 

analyses explained 43.5% and 17.4% of the variability in absolute (g/min) and relative MFO 

(mg/kg FFM/min), respectively. These amounts are greater than previously reported using 

similar predictor variables (35% and 12%, respectively) (Venables, Achten, and Jeukendrup 

2005). Here, participants were fully familiarized with testing procedures (vs. no 

familiarization) and MFO was determined during exercise performed in the overnight-fasted 

state (vs. minimum 4 hrs. postprandial). A detailed diary was used to assess physical activity 

rather than a brief questionnaire. Body composition was assessed with DXA scanning rather 

than the skin-fold technique. These methodological improvements, affording greater 

precision and reliability of measurement, would account for the greater explained variance. 

In addition, the main objective of the study, dietary intake, explained a further ~3% of the 

inter-individual variability in MFO during exercise.  

 

CHO and fat intake were the most consistent dietary determinants of MFO, explaining 

variability in MFO expressed in both absolute and relative terms, whereas protein intake was 

only related to the latter. Higher CHO intake was associated with reduced MFO, echoing 
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controlled short-term dietary manipulation studies where marked isoenergetic increases in 

dietary CHO decreases FAT-OX (Bergstrom et al. 1967; Lambert et al. 1994; Helge, Wulff, and 

Kiens 1998). This is likely to reflect a direct influence of CHO intake on its subsequent 

availability for oxidation during exercise (Bergstrom et al. 1967) and/or the related anti-

lipolytic effect of insulin (Horowitz et al. 1997). Increasing glycolytic flux during exercise (e.g., 

with high exercise intensities or increased CHO provision) can also directly down-regulate 

mitochondrial long-chain FAT-OX (Sidossis et al. 1997; Coyle et al. 1997). The positive 

association of fat intake with MFO is also consistent with previous studies where dietary fat 

intake was associated with FAT-OX (Goedecke et al. 2000; Cameron-Smith et al. 2003; Volek 

et al. 2016; Helge et al. 2001). Fat intake has been suggested to influence FAT-OX through 

several mechanisms including greater plasma and intramuscular lipid availability (Zderic et 

al. 2004; Johnson et al. 2003), greater expression key proteins involved in cellular fatty acid 

uptake (Helge et al. 2001; Cameron-Smith et al. 2003; Goedecke et al. 1999) and beta 

oxidation (Helge and Kiens 1997; Cameron-Smith et al. 2003) and reciprocal down regulation 

of enzymes (e.g. pyruvate dehydrogenase) involved carbohydrate oxidation (Stellingwerff et 

al. 2006; Peters 2003; Putman et al. 1993). Collectively, the present study clarifies an 

independent role of both carbohydrate and fat intake in the modulation of FAT-OX, even 

within the context of typical dietary patterns.  

 

Unexpectedly, protein intake was associated with reduced FAT-OX when MFO was 

expressed relative to FFM; the reason for this effect is unclear. I did not include measures of 

urinary nitrogen excretion, which may have affected the accuracy of estimates of substrate 

oxidation although we think this explanation unlikely, as a similar independent association of 
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protein intake on absolute MFO was not seen. Contrary to suggestions that negative energy 

balance would increase FAT-OX (Braun and Brooks 2008), but consistent with Rosenkilde et 

al (Rosenkilde et al. 2010), we found no relationship between energy balance and MFO. The 

potential limitations of estimating energy intake and expenditure using self-report in free-

living individuals are well documented (Schoeller 1995; Irwin, Ainsworth, and Conway 2001). 

Nonetheless, detailed activity diaries coupled with weighed food intake should provide 

relatively accurate data. Further, the direction of relationships for both CHO and fat intake 

with MFO matched prior expectations. Therefore, the data suggest short-term (i.e., 4 - day) 

energy balance is not a substantial contributor to inter-individual variability in MFO.  

 

The variability in MFO attributed to diet could appear modest (~3%) and thus the 

importance of this observation warrants consideration. Clearly, the large effects of aerobic 

fitness and physical activity level on MFO underline their importance when targeting FAT-OX 

for metabolic health. Nonetheless, we studied free-living participants under minimal dietary 

constraints. Variation between individuals occurred under conditions that mimicked their 

daily lives. Dietary intake emerged as an independent predictor of MFO in addition to factors 

previously shown to exert large effects. Thompson et al (Thompson et al. 2012) suggested a 

~5% increase in FAT-OX whilst physically active could make important contributions to the 

maintenance of daily fat balance. This is supported by our recent linking of the capacity for 

FAT-OX during exercise with 24 hour FAT-OX (Robinson et al. 2015). The findings here, in a 

large, diverse healthy population, suggest dietary macronutrient manipulation could exert 

modest yet meaningful effects on FAT-OX during physical activity applicable to real-world 

settings.  
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A key strength of our analysis is the minimization of the influence of typically observed sex-

related differences in the measured independent variables. This allows us to make 

conclusions not previously possible (Venables, Achten, and Jeukendrup 2005) and state with 

greater certainty that    2max, SRPAL and biological sex (i.e., women vs. men) are positive 

determinants of MFO (Venables, Achten, and Jeukendrup 2005). Our data showing a greater 

(~10%) FAT-OX in women across a range of exercise intensities (Figure 4-2) is confirmatory 

(Tarnopolsky et al. 1990; Cheneviere et al. 2011; Venables, Achten, and Jeukendrup 2005) 

but the independent effect of biological sex on MFO has not to our knowledge previously 

been reported. It is noteworthy that higher FAT-OX was observed in women despite the men 

exhibiting a small but significantly higher aerobic capacity (   2max (ml/kg FFM/min; Table 

4-1). This further highlights the independent role of sex-related differences as determinants 

of fat oxidation during exercise. Other physiological differences unaccounted for in this 

study, such as ovarian hormones or intra-muscular substrate availability, are possible 

candidates for the enhanced FAT-OX in women (see section 2.3.5, and (Tarnopolsky et al. 

1990; Lundsgaard and Kiens 2014)).  

 

Appropriate statistical adjustment for baseline sex-differences in aerobic fitness, body-size 

related variables and diet, and the robust assessment of body composition using DXA also 

clarify the role of body composition as a determinant of MFO. We observed no effect of FFM 

on MFO, contradicting Venables et al (Venables, Achten, and Jeukendrup 2005). It has 

recently been suggested that the location of FM is also related to MFO (Isacco et al. 2013), 
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however, using our much larger cohort, we see no relationship between body fat 

distribution and MFO. Nonetheless we do show total FM to be a negative determinant of 

MFO expressed relative to FFM. Our recent work shows positive relationships between MFO 

and both overnight-fasted and total daily FAT-OX (Robinson et al. 2015), both of which are 

linked with obesity risk (Zurlo et al. 1990; Shook et al. 2015). Thus, a low MFO could be a 

factor in FM accumulation through reduced FAT-OX whilst physically active, or could reflect 

a more generalized reduced capacity to oxidize fat. 

 

In summary, self-selected dietary intake was shown to have a modest association with the 

maximal rate of FAT-OX during exercise. Biological sex was also an independent predictor, 

with women showing a higher maximal fat oxidation relative to FFM than men. Collectively, 

the study highlights the importance of modifiable lifestyle factors such as fitness, physical 

activity and diet in determining FAT-OX during physical activity at intensities consistent with 

current public health recommendations, with implications for the optimization of metabolic 

health, body mass and composition. 
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4.2 Potential association of the menstrual cycle and hormonal contraceptive 

use on the maximal rate of fat oxidation during exercise  

 

The following section describes and then discusses potential differences in substrate 

oxidation in the cohort of women from section 4.1 when classified by the phase of the 

menstrual cycle and/or hormonal contraceptive use. As outlined within the methods section 

of Chapter 4.1, the data relating to both the phase of the menstrual cycle and hormone 

contraceptive use were obtained qualitatively through a questionnaire (see Appendix 7.4). 

Thus, the absence of directly measured blood sex-steroid concentrations to objectively verify 

menstrual cycle phase should be considered when interpreting the analysis presented. A 

brief background to each topic shall be given with a description of the data analysis 

undertaken for each topic and the results followed by a collective discussion. 

 

4.2.1 Menstrual Cycle 

In regularly menstruating women, the ovarian hormones; oestrogen and progesterone in 

addition to other gonadotropic hormones follow a well-defined pattern over the course of a 

full menstrual cycle (Speroff and Van De Wiele 1971) (see Figure 4-4 ). The menstrual cycle 

can be divided into three general phases based upon events in the follicles of the ovary and 

the resultant changes in hormonal milieu; the follicular phase, ovulation and the luteal 

phase. As seen in Figure 4-4, the plasma concentrations of the ovarian and gonadotropic 

hormones fluctuate markedly throughout the cycle, with oestrogen ranging from 10 – 
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300pg/ml. Oestrogen has been shown to influence metabolism during exercise. For instance, 

ovariectomised rats supplemented with oestrogen oxidise less carbohydrate, sparing both 

hepatic and muscle glycogen, with a concomitant greater lipid availability and oxidation 

(Kendrick and Ellis 1991; Rooney et al. 1993). Indeed <1 week oestrogen supplementation in 

men, results in a pattern of fuel use on a whole body level much more typical of women; 

with reductions in carbohydrate utilisation and greater lipid oxidation (Hamadeh, Devries, 

and Tarnopolsky 2005; Ruby et al. 1997; Carter et al. 2001; Devries et al. 2005) 

 

The widely divergent hormonal profiles throughout a typical menstrual cycle, in particular 

that of oestrogen, is often cited as the driving force behind differences in metabolism and 

substrate oxidation reported between the phases. Greater rates of lipid oxidation have been 

reported during the luteal phase (a sustained elevation of oestrogen) compared to the 

follicular (Hackney 1999; Zderic, Coggan, and Ruby 2001; Campbell, Angus, and Febbraio 

2001) and this is associated with greater oxidation of circulating NEFAs (Zderic, Coggan, and 

Ruby 2001; Hackney, McCracken-Compton, and Ainsworth 1994). Higher carbohydrate 

oxidation often observed during the follicular phase is associated with a greater systemic 

glucose turnover when fasted or when  the exercise intensity is greater than 55%   O2max 

(Devries et al. 2006; Campbell, Angus, and Febbraio 2001; Ruby et al. 1997). The effects on 

muscle glycogen storage are less clear, with greater repletion seen in the luteal phase 

(Nicklas, Hackney, and Sharp 1989) or no differences in storage but a greater rate of 

utilisation seen in the follicular phase than luteal following 90mins cycling at 65%   O2max 

during exercise (Devries et al. 2006). However, these differences in substrate storage, 
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oxidation and metabolism between the menstrual cycle phase have not always been 

reported (Galliven et al. 1997; Vaiksaar et al. 2011; Isacco et al. 2012; Kanaley et al. 1992) 

even when under strict dietary control and testing across three distinct hormonal phases of 

the cycle (Horton et al. 2002).  

 

Thus, there is clearly some discrepancy in the literature regarding substrate oxidation during 

exercise during the different phase of the menstrual cycle, some of which may be explained 

by limitations in statistical power with many studies using small (often only n = 5-10) 

samples sizes. It was considered pertinent therefore to explore further in our relatively large 

cohort of women to ascertain if MFO showed any evidence of variation by estimated 

menstrual cycle phase.  
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Figure 4-4 Typical monthly ovarian hormonal profile.  

Markers represent typical ovarian hormone concentration over an average 28 day cycle. The 

background colour represents the hypothetical relative proportion (%) of carbohydrate (grey 

area) and fat (white area) oxidation to total energy expenditure during moderate intensity 

exercise. 

 

4.2.1.1 Methods 

Using a calendar based approach to estimate the phase of the menstrual cycle that testing 

occurred in, the women were categorized into three groups; Follicular (FOL), Luteal (LUT) or 

Amenorrhoeic (contraceptive users only). Those tested within the first half of their average 

menstrual cycle (i.e. within 0-14days of a 28-day cycle) were classified as FOL (n = 57), 

whereas those in the second half (days 15-28) were LUT (n = 82) with contraceptive induced 

amenorrhea (n = 16) a 3rd group. This level of grouping combined both contraceptive and 
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non-contraceptive users  see row “Total” in Table 4-5), which also includes a more complete 

breakdown by use of different contraceptive type). 

 

Table 4-5. Distribution of groups split by phase of the menstrual cycle and type of 

hormonal contraception used 

 
 

Phase of Menstrual Cycle  

 Luteal Follicular Amenorrhoeic Total 

Type of Contraception 

E+P 28 17 1 46 

PROGEST 2 2 15 19 

REG 52 38 0 90 

 Total 82 57 16 155 

E+P; oestrogen and Progesterone combined contraceptive, PROGEST; Progesterone only 

contraceptive, REG; Regularly menstruating no contraceptive use 

 

4.2.1.2 Statistics 

The three groups were normally distributed as assessed by distribution and QQ plots with 

non-significant Kolmogorov-Smirnov tests. Levene's test for equality of variance was met for 

the absolute MFO but was violated for the MFO relative to FFM, therefore, differences 

between groups for absolute MFO were explored using a one-way ANOVA and Welchs 

ANOVA for MFO (mg/kg FFM/min). Hochbergs GT2 post hoc tests were carried out to 

identify where the groups differed in absolute MFO and relative to FFM due to differences in 

group sizes. Data are presented as means ± SD and the range in parenthesis, with statistical 

significance accepted at (p0.05). 
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4.2.1.3 Results 

The absolute MFO (g/min) was significantly greater in the amenorrhoeic women (0.59 ± 19) 

than both those in either the luteal (0.49 ± 0.14) (p<0.05) or follicular phase (0.43 ± 0.13) 

(p<0.01) of the menstrual cycle, with a trend (p=0.063) for the follicular phase to be lower 

than the luteal. Similarly, when expressed relative to FFM the women that were 

amenorrhoeic during testing had a significantly higher MFO (13.6 ± 4.3 mg/kg FFM/min) 

than both the follicular (10.2 ± 2.6) (p<0.01) and luteal groups (11.4 ± 3.2 mg/kg FFM/min) 

(p<0.05), with a trend (p=0.08) for the follicular phase to be lower than those in the luteal.  

 
Table 4-6. The MFO (g/min) of women split into groups by phase of the menstrual cycle 

and type of hormonal contraception used 

 
 

Phase of Menstrual Cycle  

 Luteal Follicular Amenorrhoeic Total 

Type of 
Contraception 

E+P 
0.54 ± 0.14 
(0.31-0.84)4 

0.49 ± 0.13 
(0.29-0.73) 

0.80 (n=1) 
0.53 ± 0.14 
(0.29-0.84) 

PROGEST 
0.51 ± 0.21 
(0.36-0.66) 

0.42 ± 0.16 
(0.31-0.53) 

0.58 ± 0.19 
(0.31-0.99)4,5 

0.55 ± 0.19 
(0.31-0.99) 

REG 
0.46 ± 0.13 
(0.19-0.82)5 

0.40 ± 0.12 
(0.20-0.70)4 

NA 
0.43 ± 0.13 
(0.19-0.82)3 

 Total 
0.49 ± 0.14 
0.19-0.84) 

0.43 ± 0.13 
(0.20-0.73)2 

0.59 ± 19 
(0.31-0.99)1 

0.59 ± 19 
(0.31-0.99)1 

E+P; oestrogen and Progesterone combined contraceptive, PROGEST; Progesterone only 

contraceptive, REG; Regularly menstruating no contraceptive use. Data is mean ± SD, range 

in parenthesis. 1 Amenorrhoeic significantly different (P< 0.01) than Luteal and Follicular (P< 

0.05). 2 Trend (P=0.06) for follicular to be different to Luteal. 3 REG significantly (P <0.01) 

different than E+P and PROGEST.  4 REG-FOL significantly (P <0.01) different to PROGEST-A 

and E+P-LUT. 5 Trend (P =0.06) for PROGEST-A different to REG-LUT 
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Table 4-7. The MFO (mg/kg FFM/min) of women split into groups by phase of the 

menstrual cycle and type of hormonal contraception used 

 
 

Phase of Menstrual Cycle  

 Luteal Follicular Amenorrhoeic Total 

Type of 
Contraception 

E+P 
12.5 ± 3.2 
(7.3-19.7) 

11.6 ± 2.3 
(8.6-15.8) 

19.3  
(n=1) 

12.3 ± 3.0 
(7.3-19.7) 

PROGEST 
11.8 ± 3.6 
(9.3-14.3) 

9.6 ± 1.0 
(8.9-10.3) 

13.2 ± 4.1 
(7.3-20.7) 

12.7 ± 3.9 
(7.3-20.7) 

REG 
10.8 ± 3.2 
(5.4-19.6) 

9.6 ± 2.6 
(4.6-16.8)4 NA 

10.3 ± 3.0 
(4.6-19.6)3 

 Total 
11.4 ± 3.2 
(5.4-19.7) 

10.2 ± 2.6 
(4.6-16.8)2 

13.6 ± 4.3 
(7.3-20.7)1  

E+P; oestrogen and Progesterone combined contraceptive, PROGEST; Progesterone only 

contraceptive, REG; Regularly menstruating no contraceptive use. Data is mean ± SD, range 

in parenthesis. 1 Amenorrhoeic significantly different (P< 0.01) than Luteal and Follicular (P< 

0.05). 2 Trend (P=0.08) for follicular to be different to Luteal. 3 REG significantly different 

than E+P (P <0.01) and PROGEST (P <0.05). 4 REG-FOL significantly (P <0.01) different to 

PROGEST-A and E+P-LUT. 

 

4.2.2 Hormonal contraceptive use 

There are many different types of hormonal contraceptives currently prescribed in the UK. 

They can be broadly categorized as either a combined contraceptive, containing a synthetic 

oestrogen and progestogen (which can vary in proportions over a monthly cycle if bi or tri-

phasic), or as a progestogen only type of contraceptive (PROGEST). The effect of the 

exogenous oestrogen component of the E+P contraceptives on substrate metabolism has 
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been described in section 2.3.5.1.1. The progestogen component has the primary function of 

suppressing the release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), 

inhibiting follicular development and preventing the normal mid-cycle surge in oestrogen 

and LH, (Ruan, Seeger, and Mueck 2012) accumulating in the prevention of ovulation and 

lower sustained oestrogen levels.  

 

In contrast to the administration of oestrogen which has demonstrated increased rates of 

lipid utilisation during exercise (Ruby et al. 1997), with greater activity of key enzymes 

involved in mitochondrial lipid transport and oxidation (Campbell and Febbraio 2001; Fu et 

al. 2009), the evidence for the independent effect of PROGEST is less clear. Rodent studies 

show a reduction in the potential for lipid oxidation following PROGEST administration. For 

instance, Campbell & Febbraio (Campbell and Febbraio 2001) subjected ovariectomised rats 

to 15days of PROGEST only (to correspond to normal physiological doses) and reported 

~20% reduction in the maximal activity of CPT1 and B-HAD compared to control rats. 

Unfortunately, no measures of lipid oxidation were made but with a potentially lower LCFA 

transport capacity into the mitochondria, and lower B-HAD activity, a reduction in lipid 

oxidation would be likely. Furthermore, the addition of oestrogen (to correspond to normal 

physiological doses) to PROGEST could not recover the attenuation in activity of CPT1. 

Oestrogen alone however, or in a supra-physiological dose combined with PROGEST 

increased CPT1 activity 14 and 19% respectively with a similar result for B-HAD, suggesting 

oestrogen can overcome the deleterious effects of PROGEST when the ratio of oestrogen: 

progesterone is >2 (D'Eon et al. 2002).  Oestrogen administration compared to progesterone 

also results in greater increases in PPAR-alpha mRNA and protein abundance, and increases 
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the glycolytic down-regulatory enzyme PDK4 gene expression by 23-fold compared to a 12-

fold increase with progesterone, suggesting a blunting of the response by progesterone 

(Campbell et al. 2003). With these enzymes and transcription factors important in either up 

regulating lipid oxidation or down regulating the glycolytic pathway respectively. 

 

The majority of literature concerning the metabolic effects of hormonal contraceptives on 

substrate metabolism during exercise are based on investigations using E+P contraceptives, 

using 2nd or 3rd generation synthetic hormones. The current (4th generation) contraceptives 

use different oestrogens and progestins that are typically lower in androgenocity and of 

lower hormonal doses due to increased potency (Burrows and Peters 2007). For example, 

ethinyl estradiol is over 100 fold more effective regarding its effect on serum SHBG than 

older oestrogen preparations like piperazine oestrone sulphate (Grow 2002), and so the 

applicability of investigations using older forms of contraceptives although provide useful 

insights, should be viewed with caution before extrapolating to findings using newer 

preparations.  

 

Whilst it is well established that oestrogen administration reduces glucose Ra and Rd (Ruby 

et al. 1997; Devries et al. 2005; Carter et al. 2001) and favours lipid oxidation during 

exercise, the effect of E+P contraceptives on substrate oxidation and metabolism is less 

clear. Generally, no effect on whole body lipid or carbohydrate oxidation has been reported 

when comparing triphasic E+P contraceptive (Casazza et al. 2004; Tremblay et al. 2010; 

Jacobs et al. 2005; Suh et al. 2003; Lebrun et al. 2003). Whereas the literature on 



Chapter 4  

 102 

monophasic E+P is less clear, with either no differences in whole body substrate oxidation 

seen (Isacco et al. 2012) or a lowering of carbohydrate oxidation compared to non-users 

(Bonen, Haynes, and Graham 1991; Bemben et al. 1992; McNeill and Mozingo 1981). Despite 

the discrepancies regarding whole body substrate oxidation rates, most studies still report 

other metabolic changes following E+P use indicative of altered lipid metabolism.  

 

For instance, in a longitudinal study comparing values taken 4 months prior to tri-phasic 

contraceptive use, Casazza et al (Casazza et al. 2004) found E+P to increase TAG mobilisation 

and whole body lipolysis with a ~20% greater Ra of glycerol during exercise at 45 and 65% 

  O2peak. Using the same contraceptive, the same research group also reported an increase 

in lipolytic rate, no change in plasma NEFA oxidation and an apparent increase in the rate of 

NEFA re-esterification during exercise (Casazza et al. 2004; Jacobs et al. 2005). These greater 

rates of lipolysis and an 11% fall in the Ra, Rd and MCR of glucose (Suh et al. 2003) all 

occurred despite exercise testing commencing 3hrs post-prandially, which would be 

expected to lessen any observed effect. From the work of Casazza and colleagues (Casazza et 

al. 2004; Jacobs et al. 2005) they concluded that the OCs they tested was second only to 

energy flux (exercise intensity) in effecting triglyceride mobilization, having a greater impact 

than recent CHO intake and menstrual cycle phase. Mono-phasic E+P contraceptives appear 

to demonstrate similar effects, with greater plasma NEFA and TAG mobilisation, with 

reductions also seen in glycolysis and systemic glucose availability (McNeill and Mozingo 

1981; Bonen, Haynes, and Graham 1991; Carter et al. 2001; Devries et al. 2005). 

 



Chapter 4  

 103 

Thus, it appears the exogenous oestrogen in E+P contraceptives, enhance systemic lipid 

availability whilst reducing carbohydrate availability, even if it does not always translate to 

an impact upon rates of whole body substrate oxidation. Furthermore, it could be 

hypothesized that the PROGEST contraceptive group, with its oestrogen suppressive or 

potentially antagonistic effect, might be associated with a lower MFO compared to E+P or 

REG. 

 

4.2.2.1 Methods 

Of the 155 women who participated in the study, 90 were not using any form of 

contraceptive, the remaining 65 used a total of 11 different types of hormonal 

contraceptive: with the combined (E+P) contraceptives; Femodene (ethinylestradiol and 

gestodene) (n=3); Microgynon 30 (ethinylestradiol and levonorgestrel) (n=22); Marvelon 

(ethinylestradiol and desogestrel) (n=3); Yasmin (ethinylestradiol and drospirenone) (n=11); 

Gederal (30/150 ethinylestradiol and desogestrel) (n=1); Cilest (ethinylestradiol and 

norgestimate) (n=4); Mercilon (ethinylestradiol and desogestrel) (n=1); Logynon 

(ethinylestradiol and levonorgestrel) (n=1); and the progesterone only forms of 

contraceptives (PROGEST); Nexplanon implant (etonogestrel) (n=4); Mireina Coil 

(levonorgestrel) (n=4); Depo-Provera injection (medroxyprogesterone acetate) (n=5); 

Cerazette (desogestrel) (n=5); Implanon implant (etonogestrel) (n=1). These were later 

grouped together as either PROGEST (n=19) or E+P (n=46) and were compared to those who 

were regularly menstruating and not using contraceptive (n=90) (REG). 
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4.2.2.2 Statistical analysis 

For the absolute MFO (g/min) the groups were normally distributed as assessed by 

distribution and QQ plots with non-significant Shapiro-Wilk tests, with equal variances 

between groups assessed by  evene’s test for equality of variance. When the MFO was 

expressed relative to FFM the data was not normally distributed, however, a One-way 

ANOVA is deemed to be robust against this violation and so with the equal variances 

between groups (non-significant  evene’s test for equality of variance) it was used to 

determine differences between the groups with Hochbergs GT2 post hoc tests to identify 

where the groups differed. Values for both the absolute MFO (g/min) and relative to FFM 

(mg/kg FFM/min), are expressed as means  SD with statistical significance accepted at p 

0.05. 

 

4.2.2.3 Results  

The absolute MFO (g/min) was significantly (p<0.01) lower in the REG group (0.43  1.3) 

compared to both the PROGEST (0.55  0.19) and the E+P (0.53  0.14) with no significant 

differences between the type of contraception. Similarly when the MFO was expressed 

relative to FFM the REG group had a significantly lower MFO (10.3  3.0 mg/kg FFM/min) 

than both the PROGEST (12.7  3.9 mg/kg FFM/min) (p<0.01) and the E+P (12.3  3.0 mg/kg 

FFM/min) (p<0.01), with no significant difference between the PROGEST and E+P.  
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4.2.3 Type of contraceptive and menstrual cycle phase interaction 

To investigate if there was an interaction effect between the phase of the menstrual cycle 

and contraceptive use with MFO the women were split into 8 groups. Those that were 

regularly menstruating with no contraceptive use were either; follicular (REG-FOL) or luteal 

(REG-LUT), with those using a combined type contraceptive; in the follicular phase 

(E+P+FOL), luteal (E+P+LUT) or amenorrhoeic (E+P+A); those using a progesterone type 

contraceptive; in the follicular phase (PROGEST-FOL), in the luteal phase (PROGEST-LUT) or 

amenorrhoeic (PROGEST-A), see Table 4-5 for the number of participants in each group.  

 

4.2.3.1 Statistics 

For both the absolute MFO (g/min) and the MFO relative to FFM (mg/kg FFM/min) the 

groups were normally distributed as assessed by distribution and QQ plots, and non-

significant Shapiro-Wilk tests, with the exception of the groups E+P+A (n=1), PROGEST-FOL 

(n=2) and PROGEST-LUT (n=2) where these tests were not appropriate. Levene's test for 

equality of variance was met for both the absolute MFO and when expressed relative to 

FFM, therefore, differences between groups were explored using a one-way ANOVA, with 

Hochbergs GT2 post hoc tests to identify where the groups differences occurred. Values are 

means  SD and statistical significance was set as p 0.05. 
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4.2.3.2 Results 

The One-way ANOVA revealed significant between group differences in both the absolute 

MFO and when expressed relative to FFM (p<0.001) with group differences highlighted in 

Table 4-7. Both the absolute MFO (g/min) and MFO relative to FFM (mg/kg FFM/min) were 

significantly (p<0.01) lower in the REG-FOL (0.40  0.12 / 9.6  2.6) than both the E+P+LUT 

(0.54  0.14 / 12.5  3.2 ) and the PROGEST-A (0.58  0.19 / 13.2  4.1), with a trend 

(p=0.06) for the absolute MFO to also be greater in PROGEST-A than REG-LUT (0.46  0.13). 

 

4.2.4 Discussion - Potential association of the menstrual cycle and hormonal 

contraceptive use on the maximal rate of fat oxidation during exercise on 

MFO 

 

In agreement with prior research regarding the relationship between the menstrual cycle 

and substrate oxidation during exercise, a trend for a greater MFO during the luteal than the 

follicular phase of the cycle was observed (Nicklas, Hackney, and Sharp 1989; Jurkowski et al. 

1978; Campbell, Angus, and Febbraio 2001; Zderic, Coggan, and Ruby 2001). Additionally, a 

greater MFO in women using hormonal contraceptives were seen than the MFO in regularly 

menstruating non-contraceptive users (McNeill and Mozingo 1981; Bonen, Haynes, and 

Graham 1991; Bemben et al. 1992), with  an interaction, such that either amenorrhoeic 

women using a progesterone only form of contraceptive, or combined E+P users in the luteal 
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phase had a greater MFO than regularly menstruating women in the follicular phase. These 

findings will be discussed further below. 

 

Our inconclusive finding of only a trend (p=0.06 and p=0.08) for a lower absolute and 

relative MFO respectively in the FOL vs the LUT phase unfortunately only adds to the 

inconsistency in the literature. When a difference has been reported in substrate oxidation 

by the phase of the menstrual cycle, a greater reliance of lipid and possibly protein has been 

seen in the luteal phase - when both oestrogen and progesterone levels are elevated. When 

oestrogen is administered in isolation to ovariectomized rodents, to men, amenorrhoeic 

women or women with pharmacologically suppressed ovarian hormone levels (D'Eon et al. 

2002), then a greater reliance on fat oxidation has been documented. Although oestrogen 

supplementation doesn't seem to impact whole body lipolysis (Ruby et al. 1997), it seems to 

promote lipid oxidation through several other mechanisms such as through the upregulation 

of genes and transcription factors responsible for greater IMTAG storage (Fu et al. 2009), 

lipid membrane transport and mitochondrial biogenesis (Schulz et al. 2005; D'Eon et al. 

2005) which should enhance oxidative lipid metabolism. Oestrogen supplementation also 

has an impact on carbohydrate metabolism, reducing hepatic glucose output, muscle 

glucose uptake and/or plasma metabolic clearance rate (Ruby et al. 1997; Carter et al. 2001; 

Devries et al. 2005). However, whilst oestrogen concentrations are greatest throughout the 

luteal phase of the menstrual cycle and so could explain the greater preference for lipid 

oxidation during this phase, progesterone levels are also elevated in comparison to the 

follicular phase, the independent impact of which is less clear, but could act antagonistically 

to oestrogen (D'Eon et al. 2002; Campbell and Febbraio 2001).   
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It was perhaps most surprising that we saw the greatest rate of lipid oxidation in the 

amenorrhoeic group who presumably (not measured) had a lower oestrogen level than both 

the FOL and LUT group. This group of women largely consisted of PROGEST only users 

(15/16), who had a similar MFO to those using a combined form (E+P) of contraceptive, both 

of whom had a greater MFO than those not using any contraceptive (REG). Taking this all 

into account, it implies that when the phase of the menstrual cycle is not accounted for, 

exogenous hormonal administration in general, dis-regarding the type per se, has a stronger 

positive association with MFO than no contraceptive use at all.   

 

Considering the assumed oestrogen suppressive effect of the PROGEST contraceptive, it was 

hypothesized that this group would show the lowest MFO during exercise, it was therefore 

quite surprising to find the opposite. However, in support of this somewhat contentious 

finding, the groups did not differ in other known determinants of lipid oxidation, such as 

SRPAL, FFM, FM,   O2max, and dietary intake (data not shown). The only significant (p<0.05) 

difference between the groups was in carbohydrate intake (g/day), specifically, the REG-FOL 

(239.8  70.1) vs E+P-FOL (310.5  70.6) and the REG-FOL vs E+P+LUT (310.7  67.6). The 

higher carbohydrate intake in the E+P-FOL and the E+P+LUT group would however be 

expected to be associated with a lower MFO, and so it is unlikely carbohydrate intake is 

influencing the findings. To my knowledge there are no human studies that have directly 

investigated the effects of progesterone administration in isolation on substrate oxidation 

during rest or exercise. This perhaps reflects the historically lower prevalence of PROGEST 
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type contraception’s, with E+P more commonly prescribed. From studies in rodents 

however, showing oestrogen to enhance and progesterone diminish the maximal activity of 

key lipid oxidising enzymes and transcription factors that upregulate lipid oxidation 

(Campbell and Febbraio 2001; Campbell et al. 2003), our positive association of PROGEST 

and MFO that did not differ to the relationship of E+P with MFO, is somewhat surprising.  

 

The human data to support or refute our positive association between lipid oxidation and 

PROGEST contraceptive use is limited. D’ on et al (D'Eon et al. 2002) pharmacologically 

induced three tightly controlled hormonal environments representing; baseline (low 

oestrogen and low progesterone), oestrogen only (high oestrogen, low progesterone), and 

high oestrogen high progesterone to mimic the early follicular, late follicular and mid luteal 

phases, respectively. During exercise at 60%   O2max, greater plasma NEFA concentrations 

and greater rates of fat oxidation were reported in the high oestrogen condition (0.30  

0.04g/min) than either the low E+P (0.2  0.04g/min) or the high E+P condition (0.2  

0.3g/min). Whilst this is in agreement with the suggestion that oestrogen promotes lipid 

oxidation, it is somewhat contradictory to trials reporting greater rates of lipid oxidation in 

the luteal phase of the menstrual cycle, when both oestrogen and progesterone would be 

elevated. Using 6,6-2H labelled glucose, (D'Eon et al. 2002) were also able to attribute the 

reciprocal reduction in carbohydrate oxidation in the high oestrogen condition to a ~ 32% 

lower estimated muscle glycogen use (compared to the E+P condition) with a trend for lower 

plasma glucose use in the high oestrogen condition which would be in agreement with 

others (Ruby et al. 1997; Carter et al. 2001). However, these effects were not corroborated 
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in 2 similar studies, with the main distinction being that the 3 divergent hormonal 

environments were achieved naturally using regularly menstruating women (Horton et al. 

2002; Horton et al. 2006). This investigational group saw no effect of 

oestrogen/progesterone during the different menstrual cycle phases on rates of substrate 

oxidation, plasma glucose, insulin, glycerol, NEFA, cortisol or catecholamines over a 90min 

exercise bout at 50%   O2max.  Thus the independent impact of progesterone alone on 

substrate metabolism, gene expression and protein content of regulatory sites of lipid 

metabolism in humans is mixed and do not help clarify our findings.  

 

The results and conclusions drawn from the analysis presented in this chapter must be 

viewed with caution. The simple approach used to split the menstrual cycle into 2 phases 

ignores the fluctuations in oestrogen and progesterone within the follicular and luteal phase 

(Figure 4-4), with oestrogen concentration 5 fold higher in the late follicular (days 10-14) 

than early follicular (days 0-7). Furthermore, with the substantial inter-individual and intra-

cycle variation in hormonal concentration, without measuring hormonal concentration, 

simply using the calendar approach to determine the phase limits the validity of our results. 

Indeed, the intra-cycle hormonal variation, even when under “pharmacological control” is 

substantial and can lead to subjects being outside of expected ranges when quantified 

(D'Eon et al. 2002; Casazza et al. 2004). Indeed the inconsistency in the literature regarding 

the impact of either the phase of the menstrual cycle or hormonal contraceptive use on 

substrate metabolism is quite likely a reflection the large variation in hormone 

concentrations in typically small underpowered sample sizes (Syrop and Hammond 1987; 

Bao et al. 2003).  
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Furthermore, as highlighted in a recent review (Stachenfeld and Taylor 2014) many 

otherwise well controlled studies of substrate metabolism during exercise that compared 

the effects of a tri-phasic hormonal contraceptive, have incorrectly used the “dummy pill” 

days to compare users to the early follicular phase of regularly menstruating women. This 

model incorrectly assumes both endogenous and exogenous sex hormone concentrations 

are low and comparable (Casazza et al. 2004; Jacobs et al. 2005). However, although the 

administration of exogenous hormones is low over the 7 day “placebo” period, the 

endogenous oestrogens are highly variable over this time and so this might not be an 

appropriate model (Creinin et al. 2002).  

 

Moreover, the approach taken to group contraceptive taking women into just 2 groups 

(either E+P or PROGEST) despite the differences in doses and types of synthetic oestrogen / 

progestogen was one of a pragmatism, based on the absence of detailed blood hormonal 

profiles. Notwithstanding these concerns, the finding of greater rates of lipid oxidation in 

amenorrhoeic hormonal contraceptive users is interesting and the absence of any human 

data of the independent effects of progesterone is worthy of follow up in future 

investigations. 
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4.3 Sex differences in the associations of dietary intake on the maximal rate 

of fat oxidation during exercise 

From Table 4-1 in section 4.1 it was clear that there were many differences between the 

cohort of men and women tested in Chapter 4.1. Many of these differences were expected, 

for example, height and weight, but the range of differences extended to include 

physiological and nutritional variables known to impact substrate oxidation. With this in 

mind, and with the potential for sex differences in the metabolic response to dietary intake 

(see section 2.3.5), an additional analysis of the data from Chapter 4.1 was also conducted in 

each sex separately. With the appreciably smaller sample sizes in this analysis however, the 

findings must be interpreted with caution and regarded as exploratory. Nonetheless the 

main aim of this analysis was to provide potential insights and generate hypotheses for 

future follow up work. 

 

4.3.1 Methods 

For details regarding data collection and statistical analysis please see section 4.1.2. The only 

difference being that this analysis was conducted in men and women separately. A statistical 

“rule-of-thumb” when using multiple linear regression is to have >   observations per 

predictor variable (Field 2013), therefore an extra ~ 60 participants would have been needed 

in each group thus the results below should be viewed in light of this.  

For clarity, once the hierarchical linear regression equation has been calculated, each 

independent variable entered is given a standardised Beta coeffiecient value. The greater 
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the numerical value of this Beta coeffiecient (range -1.0:+1.0) implies a greater contribution 

to the explained variability. The direction of the association (i.e. positive or negative) with 

the dependent variable (e.g. MFO) is indicated by the positive or negative Beta coefficients.  

 

4.3.2 Results 

The results of the hierarchical regressions for the absolute MFO (g/min) (Table 4-6) and MFO 

relative to FFM (Table 4-7) can be seen below. For ease of comparison, both tables also 

include the original analysis with the entire cohort using sex as an independent predictor 

variable. The adjusted R2 value in Table 4-6 & Table 4-7 represents the amount of variability 

in MFO explained at each of the hierarchical steps of the linear regressions. There was a 

greater amount of variability explained in women than men in both the absolute MFO (42.4 

vs 32.9%) and MFO relative to FFM (23.3 vs. 15.3%). 

 

For the absolute MFO (g/min) the hierarchical regressions for each sex both contained 

posi ve e ects of   O2max and SRPAL. For men, the only additional significant independent 

contributor was carbohydrate intake (negative determinant), with the step 2 analysis 

explaining a modest additional 2.1% variance (trend for a change in R2 [P = 0.06]). For 

women, both carbohydrate (negative determinant) and fat intake (positive) made additional 

contributions to the variance explained, with the step 2 analysis explaining a further 4.5% of 

the variance in MFO (g/min) (P<0.01). 
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With the MFO expressed relative to FFM the hierarchical regressions for each sex contained 

e ects of    A  with signi cant e ects of   O2max in men and FM in women. For men, the 

step 2 analysis showed a trend (P = 0.06) for a modest 2.7% increase in the amount of 

variability explained with protein intake the only significant independent contributor and a 

trend for carbohydrate intake (P = 0.06). For women the step 2 analysis explained a further 

4.0% of the variance in MFO, with carbohydrate intake a significant negative independent 

predictor and a trend for fat intake (P = 0.08), which is directionally consistent with the 

significant positive association of fat intake in the analysis for absolute MFO (g/min).  
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Table 4-8. Hierarchical regressions for absolute Maximal Fat Oxidation (g/min) for the entire group (n 305) and separated by sex 

 All Subjects (n = 305) Men (n =150) Women (n =155) 

Step Independent Variables 

Standardized 
Coefficients 

Adjusted 
R2 

Standardized Coefficients Adjusted R2 
Standardized 
Coefficients 

Adjusted R2 

Beta  Beta  Beta  

1 

  .435***  .308***1  .379***1 

  O2max (L/min) .477***  .525***  .532***  

SRPAL .196***  .184*  .275***  

Sex (M = 1, W = 2) -.385***  -  -  

FM (kg) -.024  .015  -.053  

FFM (kg) -.091  -.082  -.162  

2 

  .462**  .329†1  .424**1 

  O2max (L/min) .527***  .576***  .563***  

SRPAL .238***  .264**  .254**  

Sex (M = 1, W = 2) -.385***  -  -  

FM (kg) -.025  .0003  -.044  

FFM (kg) -.115†  -.098  -.171  

Protein intake (g) -.046  -0.91  .076  

Carbohydrate Intake (g) -.178***  -.208*  -.173*  

Fat Intake (g) .144**  .112  .180*  

 *** P <0.001, ** P < 0.01, * P <0.05. † P <0.10. FFM, Fat Free Mass; SRPAL, Self-Reported Physical Activity Level;   O2max, maximal oxygen uptake. 

1 represents P value for change in R2.  
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Table 4-9. Hierarchical regressions for absolute Maximal Fat Oxidation (mg/kg FFM/min) for the entire group (n 305) and separated by sex 

All Subjects (n = 305) Men (n =150) Women (n =155) 

Step Independent Variables 

Standardized 
Coefficients 

Adjusted R2 Standardized Coefficients Adjusted R2 Standardized Coefficients Adjusted R2 

Beta  Beta  Beta  

1 

  .174***  .126***1  .193***1 

  O2max (L/min) .143*  .184*  .095  

SRPAL .261***  .224*  .322***  

Sex (M = 1, W = 2) .136**  -  -  

FM (kg) -.143**  -.092  -.183*  

2 

  .205**  .153†1  .233*1 

  O2max (L/min) .196**  .246**  .140  

SRPAL .319***  .307***  .311***  

Sex (M = 1, W = 2) .136**  -  -  

FM (kg) -.158**  -.123  -.181*  

Protein intake (g) -.127*  -.206*  .070  

Carbohydrate Intake (g) -.189**  -.173†  -.214**  

Fat Intake (g) .147*  .097  .154†  
 *** P <0.001, ** P < 0.01, * P <0.05. †P< 0.10. FM, Fat Mass; SRPAL, Self-Reported Physical Activity Level;   O2max, maximal oxygen 

uptake. 1 represents P value for change in R2. 
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4.3.3 Discussion  

This exploratory sex-specific analysis of the determinants of MFO during exercise showed 

that a greater proportion of the variability in MFO could be explain in women (42.4 & 23.2%) 

compared to men (32.9 & 15.3%) for both the absolute MFO and relative to FFM, 

respectively. The analysis reveals aerobic capacity and physical activity to be the dominant 

predictors of MFO and to a similar extent in either sex. The analysis also suggests the 

nutritional determinants of MFO differ between men and women, specifically; dietary 

carbohydrate intake is an independent predictor of MFO in both men and women, whilst 

dietary fat intake is an independent predictor of MFO in women only.  

 

Aerobic fitness and SRPAL were the most prominent positive determinants of MFO having a 

similar magnitude of association in both sexes. The observation of enhanced fat oxidation 

with greater aerobic capacity has been reported many times (Bergman and Brooks 1999; 

Friedlander, Casazza, Horning, Huie, et al. 1998; Achten and Jeukendrup 2003). Indeed 

recent studies have demonstrated that increasing aerobic capacity through endurance 

training positively impacts MFO (Nordby et al. 2015; Rosenkilde et al. 2015). The positive 

association of aerobic capacity on MFO is likely a reflection of the exercise induced 

physiological and metabolic adaptations permitting greater lipid oxidation such as increased 

skeletal muscle capillarisation, mitochondrial mass and oxidative enzyme content, and 

greater fatty acid transport capacity across muscle and mitochondrial membranes (Holloszy 

and Coyle 1984; Coggan et al. 1992; Rosenkilde et al. 2015; Schenk and Horowitz 2006; 

Ingjer 1979). In previously sedentary individuals even low intensity exercise training that 
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does not induce improvements in    2 max, and is more a surrogate for an increase in 

physical activity, can still lead to improvements in lipid oxidation (Schrauwen et al. 2002; 

Venables and Jeukendrup 2008), demonstrating the importance of physical activity per se 

regarding the factors underpinning metabolic health. 

 

The negative relationship seen in both sexes between carbohydrate intake and MFO implies 

that an increase in habitual dietary carbohydrate intake would be associated with a 

reduction in lipid oxidation during exercise. Indeed, this is in agreement with controlled 

dietary interventions where marked increases in carbohydrate intake decrease fat oxidation 

during exercise (Bergstrom et al. 1967; Helge, Richter, and Kiens 1996; Støa et al. 2015; 

Phinney et al. 1983). This could simply reflect the direct influence of carbohydrate intake on 

its subsequent storage and availability for oxidation during exercise with similar directional 

responses seen in both men and women (Tarnopolsky et al. 2001; James et al. 2001).  

 

The hierarchical regression equations from the sex specific models can be used to predict 

the degree and direction of change in MFO for a given change in one of the significant 

predictor variables, whilst keeping all other variables constant. For instance, in the women, 

an increase of 150 g/day of dietary fat whilst maintaining aerobic capacity, physical activity 

level, body composition, carbohydrate and protein intake, would be predicted to be 

associated with an increase in MFO by 0.15 g/min. The analysis reported here suggests a 

potential sex-difference in the relationship between habitual dietary fat intake and substrate 

oxidation during exercise, with a positive association seen in women only. For the men, the 
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dominant and negative association of carbohydrate and absence of a clear relationship with 

fat intake, is consistent with intervention studies in men of acute (1.5 days) hyper-energetic 

increases in dietary fat (fat supplementation) with a maintained carbohydrate intake having 

no effect on whole-body substrate oxidation rates during exercise at 55%    2max 

(Decombaz et al. 2013; Zehnder et al. 2006). This short period of excess dietary fat was 

sufficient to elevate IMTAG pre-exercise by ~70% compared to a high carbohydrate low fat 

diet, with ~ three times greater rates of IMTAG utilisation. The greater IMTAG use was 

speculated to occur within the first hour of exercise, whilst plasma NEFA flux was likely low. 

Fat-adaptation protocols have been shown to require 5 days to achieve cellular adaptations 

favouring greater plasma NEFA extraction and use (Cameron-Smith et al. 2003; Yeo, Lessard, 

et al. 2008). It is possible therefore that either men do not respond to a period of fat 

supplementation or that a longer period of supplementation is required to achieve a similar 

shift in substrate oxidation augmenting both plasma NEFA and IMTAG utilisation, as is 

typically observed with high fat, low carbohydrate diets.    

 

Alternatively, in contrast to the current and previous observations in men (Decombaz et al. 

2013; Zehnder et al. 2006), the current analysis in women suggests that an independent 

increase in fat whilst keeping carbohydrate intake constant would be associated with an 

increase in fat oxidation during exercise, although to our knowledge this has not been 

investigated. Women have however been shown to be less susceptible than men to acute 

lipid-induced insulin resistance (Hoeg et al. 2011) providing some evidence of greater 

flexibility in metabolic response to periods of lipid excess. Thus with our sex specific 

hierarchical regression based on dietary intake data collected over 4 days, and a longer 
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duration than 1-2 days needed for true adaptations to high fat intake to occur, it is possible 

that   days of “fat supplementation” could augment fat oxidation in women. These 

observations and speculations of a sex-difference in the independent relationship of fat 

intake with MFO supports recent calls for further investigation of sex-specific influences of 

diet on exercise metabolism (Devries 2015).  

 

This exploratory analysis also revealed that protein intake was associated with reduced 

MFO, relative to FFM, in men but not in women. This finding is difficult to explain, but could 

be related to the greater amount of protein consumed by the men, with this potentially 

impacting estimates of substrate oxidation that did not account for protein metabolism. If 

this were the case, however, one would expect a similar independent relationship between 

protein intake and absolute MFO, which was not seen. Thus, the reason for this inconsistent 

association of protein intake in men is unclear and may warrant further investigation. 

 

To summarise, this exploratory sex specific analysis of the determinants of MFO during 

exercise, explained a greater proportion of the inter-individual variation in women 

compared to men. The most prominent predictors of MFO in both sexes were aerobic 

capacity and SRPAL with this likely reflective of the numerous metabolic adaptations to 

exercise training within muscle allowing a greater reliance on lipid. Carbohydrate intake was 

negatively associated with MFO consistently in both sexes whereas the independent and 

positive relationship of fat intake was more pronounced in women than men. 
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5 METABOLIC EFFECTS DURING EXERCISE AND ENDURANCE 

PERFORMANCE AFTER 5-DAYS EXPOSURE TO HIGH AND ELEVATED 

DIETARY FAT INTAKE IN ENDURANCE TRAINED WOMEN 

5.1 Introduction 

Since the pioneering work of Bergstrom and colleagues the close relationship between 

carbohydrate intake, muscle glycogen availability and fatigue during prolonged submaximal 

(60-85%    2max) endurance exercise lasting >90mins has frequently been reported, with 

the development of fatigue occurring in close temporal association with a depletion in 

muscle glycogen (Bergstrom et al. 1967; Hargreaves, McConell, and Proietto 1995; Bangsbo 

et al. 1992; Gollnick et al. 1972). This association between muscle glycogen depletion and 

fatigue is often explained by an imbalance between skeletal muscle energy supply and 

demand with a compromised rate of ATP re-synthesis (Jensen and Richter 2011). More 

recently, it has even been proposed that glycogen is also a dynamic molecule that has a 

regulatory role in other distinct myocellular functions implicit to muscle contraction. For a 

comprehensive review regarding the role of glycogen in muscular fatigue see Ortenblad, 

Westerblad, and Nielsen (2013).  

 

It is well established that altering the dietary intake of carbohydrate and fat results in 

differences in the circulating hormonal and metabolic milieu and the myocellular substrate 

storage profile, which can impact substrate utilisation during exercise and potentially 

exercise performance (Bergstrom et al. 1967; Burke et al. 2000). Therefore, substantial 
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research efforts have been made altering dietary macronutrient intake to maximise glycogen 

stores, whilst minimising its utilisation through promoting alternative (fat) energy sources 

(Burke 2015). Acute (<3days) high fat (60-65% EI), low carbohydrate (<20% EI) diets result in 

a reduction in muscle glycogen levels and an increase in whole body lipid oxidation (Burke 

2015). A greater reliance upon the substrates that are elevated following the greater lipid 

intake, principally plasma NEFA and IMTAG is observed. While this is paralleled by a decline 

in muscle glycogen utilisation, this is most likely an artefact of the reduced muscle glycogen 

availability through the limited carbohydrate intake, with glycogen availability largely 

dictating its rate of degradation during exercise (Arkinstall et al. 2004; Jansson, Hjemdahl, 

and Kaijser 1982; Weltan et al. 1998). This often comes at the cost of lower glycogen 

availability and so exercise performance tends to suffer (Burke and Hawley 2002; 

Christensen and Hansen 1939; Bergstrom et al. 1967; Starling et al. 1997; Pitsiladis and 

Maughan 1999). 

 

However, when consumed over a slightly longer period (>5days) there is evidence to suggest 

that metabolic adaptations to increased dietary fat intake occurs beyond the expected effect 

observed of fuel availability (Stellingwerff et al. 2006; Cameron-Smith et al. 2003; Stepto et 

al. 2002). For example, increased dietary fat intake for 5 days can almost double rates of fat 

oxidation over a 20min cycling bout at 70%    2max (1.04 ± 0.07 vs 0.57 ± 0.07g/min), and 

although attenuated, lipid oxidation remains elevated following a day of carbohydrate 

restoration to normalise muscle glycogen stores (0.7 ± 0.05 g/min) or through other actions 

known to down-regulate fat oxidation such as the consumption of carbohydrate pre exercise 

or during exercise (Burke et al. 2000; Staudacher et al. 2001; Burke et al. 2002). The 
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elevation in lipid oxidation occurs with similar rates of plasma glucose oxidation 

(endogenous or exogenous if provided) suggesting a true sparing of muscle glycogen (Yeo, 

Lessard, et al. 2008; Burke et al. 2000; Burke et al. 2002). 

 

The increased capacity to oxidise lipids following HF adaptation, however, comes at the 

expense of an attenuation in the capacity to oxidise carbohydrates, with a reduction in the 

active form of PDHa by >30%, at rest, submaximal and all out sprinting (Stellingwerff et al. 

2006). This reduced PDH flux and pyruvate oxidation, suggests a reduced capacity or rate of 

glycogenolysis of the spared glycogen when needed the most (Fleming et al. 2004; 

Havemann et al. 2005). Thus the aforementioned dietary strategy rarely translates to an 

improvement in exercise performance (Havemann et al. 2005; Rowlands and Hopkins 2002b; 

Burke et al. 2000; Burke et al. 2002; Carey et al. 2001). 

 

To summarise, a relatively acute (<3 day) period of exposure to a HF intake elevates lipid 

availability (plasma NEFA+IMTAG) (Zehnder et al. 2006; Zderic et al. 2004; Cameron-Smith et 

al. 2003; Tarnopolsky et al. 1995), but >5 days of exposure is needed to capitalise fully on the 

increased availability, which persist for ~ 36hrs even with glycogen restoration. However, 

this comes at the cost of an attenuation in the ability to use glycogen which is likely to be 

detrimental to exercise performance. Additionally, a caveat to the aforementioned HFLC 

studies is the manipulation of both dietary fat and carbohydrate within the same model. 

Thus, the metabolic adaptations and shifts in substrate oxidation to a HFLC intervention 

could be attributable to the addition of fat, the removal of carbohydrate or even a 
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combination of the two. An alternative approach would be to isolate the dietary change to 

just one macronutrient, keeping the intake of the other macronutrients constant. This 

hypercaloric model, only manipulates one macronutrient, making it clearer to determine the 

factor behind any shifts in substrate oxidation. 

 

In this regard, two separate studies explored the impact of increasing dietary fat intake for 

1.5days on the background of a high carbohydrate diet. The high carbohydrate (control) diet 

in these studies provided 7g carbohydrate/ kg BM/day with a small amount of fat (0.5g 

fat  g B  day , whereas the “fat supplemented”  hyper-caloric to EE) trial provided an 

equal amount of carbohydrate with an additional 2.5g fat/kg BM/day. Using magnetic 

resonance spectroscopy the authors were able to demonstrate that the fat supplemented 

trial elevated IMTAG over the control diet without compromising the ability to store or then 

use glycogen over a 3hr cycling bout at 50% of the maximum voluntary workload (Zehnder et 

al. 2006). However, this short period of high dietary fat intake did not increase the reliance 

on plasma sources of lipid to parallel the increase in IMTAG availability and use, resulting in 

no overall effect on whole-body lipid oxidation. This implies that carbohydrate restriction is 

necessary to see the typical augmentation of lipid oxidation to high dietary fat intake, 

although the short duration of exposure to high fat used may not have been sufficient to 

achieve adaptations reported to take 5 days. Therefore, it is proposed herein, that extending 

the period of exposure to high dietary fat (fat supplementation) alongside ample 

carbohydrate intake could increase the capacity to capitalise on the greater lipid availability, 

without compromising glycogen storage or the capacity for its degradation when required. 
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This could potentially manifest in overall greater rates of whole-body lipid oxidation and 

improvements in exercise performance.   

 

As described in more detail in section 2.3.5, women compared to men, preferentially 

generate a greater proportion of energy through the catabolism of lipids over a wide range 

of exercise intensities and display a greater maximal rate of fat oxidation (Venables, Achten, 

and Jeukendrup 2005; Cheneviere et al. 2011). The aforementioned studies relating to HFLC 

diets, or HFLC with carbohydrate restoration, are almost exclusively carried out in men, with 

few if any well controlled intervention studies in women athletes. It is therefore not known 

to what extent a high fat diet may alter substrate oxidation during exercise in women, and 

what implications this may have on exercise performance. In comparison to men, women 

have also been shown to exhibit greater metabolic flexibility to periods of lipid excess (Hoeg 

et al. 2011), and so where dietary “fat supplementation” models have failed to alter 

substrate oxidation in men, they seem more likely to manifest in altered fuel use in women.  

 

Additionally, despite the widespread use of hormonal contraceptives, particularly in an 

athletic population, there is a scarcity of data on the metabolic effects during exercise of the 

more recent 4th generation formulations. As discussed in section 4.2 we saw a greater MFO 

in women using a progesterone only form of hormonal contraceptive than regularly 

menstruating non-contraceptive users, but with a lack of comparative data, these results 

could not be discussed to any great extent. With the growing popularity of this form of 

contraceptive (Cea Soriano et al. 2014), the potential for a augmented lipid oxidising 
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response and the scarcity of metabolic and performance data, a comparative sub-set of 

progesterone only contraceptive users were also included in the study design.  

 

The consumption of a high fat diet carries with it the potential for adversely effecting 

markers of cardiovascular disease (CVD) risk and inducing a state of reduced insulin 

sensitivity (Brøns et al. 2009). Although the risk of developing cardiovascular disease is 

substantially lowered by regular exercise in part by its favourable effect on the plasma lipid 

profile, the diet is still thought to have an independent effect (Miller et al. 2011). A HCLF 

diet, even in individuals regularly exercising has been associated with unfavourable 

alterations in the plasma lipid profile, specifically, decreases in HDL-C and considerable 

increases in hepatic synthesis and secretion of TAG rich VLDL-C (Mittendorfer and Sidossis 

2001; Brown and Cox 1998; Thompson et al. 1984). In contrast, a diet moderate (35% EI) to 

high (>60% EI) in fat has been shown to have positive effects on certain lipoproteins, such as 

raising HDL-C and lower TAG, but also negatively raising LDL-C, total cholesterol and 

negatively impacting insulin sensitivity. There are only a few published studies of endurance-

trained women investigating the effect of alterations in dietary fat or carbohydrate on 

markers of CVD risk and so the opportunity to explore this in the current investigation was 

also taken.  

 

The recent advances in high-throughput technologies (transcriptomics, proteomics, and 

metabolomics) have enabled large-scale analyses not previously possible, with the capability 

to now characterize global alterations to the metabolic state of an organism associated to 
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different exposures such as exercise or diet (Astarita and Langridge 2013). Metabolomics 

refers to the quantitative assessment and characterisation of all metabolites (small 

molecules) within a biological system (Dunn, Broadhurst, Atherton, et al. 2011). The field of 

metabolomics is relatively new and perhaps currently underused in the area of exercise and 

nutrition, but represents a useful tool to explore the downstream effects of the interaction 

between perturbations in homeostasis due to diet or exercise and the genome, with 

biochemical information flowing from genome to transcriptome to proteome to 

metabolome. Metabolomics can be used to study the production and utilization of 1000s of 

metabolites at one snap-shot in time and can generate exploratory data mapping the 

association of phenotype with biological status of an organism. Thus, in the present study an 

untargeted mass-spec metabolomics approach was taken alongside more classical 

biochemical markers of carbohydrate and lipid metabolism to reveal in a more holistic 

approach, the extent to which dietary interventions perturbed homeostasis and what 

interaction this had during exercise.  

 

To summarise, although the metabolic and performance effects of a HF diet in men have 

been well characterised, data in women is generally lacking. Compared to men, women 

possess a greater capacity for fat oxidation during submaximal exercise, along with the 

hormonal environment and underlying physiology that is potentially more conducive to 

magnifying a response to high dietary fat intakes. Lipid supplementation on the background 

of a carbohydrate replete diet has previously shown no impact on whole body rates of lipid 

oxidation in men, however the time course for adaptation to supplementation was short and 

the subjects tested (men) were not primed to oxidise fat. In light of this and the dearth of 
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metabolic data during exercise in women using progesterone only forms of contraceptive we 

set about to address these issues with the over-arching objective to better understand the 

impact of increasing lipid availability on substrate oxidation during exercise, with more 

specific purposes: 

1. To determine if it is the restriction of carbohydrates or the provision of extra dietary 

fat, that is the stimulus evoking adaptations to a high fat diet promoting augmented 

rates of fat oxidation during exercise; 

2. To better characterize the metabolic response to exercise following manipulation of 

dietary fat intake in regularly menstruating women and those using a progesterone 

only form of hormonal contraceptive; 

3. To evaluate the impact of increased dietary fat on selected cardiovascular risk factors 

in endurance trained women; 

4. To investigate the effect of greater dietary fat provision on endurance performance 

in trained women runners.  
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5.2 Methods 

5.2.1 Participants 

Between April 2015 and February 2016, forty healthy premenopausal Caucasian women 

were assessed for their eligibility to participate in the study, with fifteen completing the 

protocol having successfully met all inclusion criteria; generally healthy, endurance running 

based training at least twice weekly for > 12 months,    2max >50ml/kg BM/min, weight 

stable for > 6 months, either regularly menstruating (>11 cycles over the last 12months, no 

hormonal contraceptive use >12months) or using a progesterone only form of hormonal 

contraceptive. Data collection was completed by May 2016, see Figure 5-1 for a flow chart of 

participant recruitment and involvement in the study. Participants were recruited by postal 

notices, emails, social media, and contacting local running and triathlon clubs. Participants 

were excluded from taking part if they were: <18 or > 45 years old, BMI <17.0 or > 24.9 

kg/m2, taking any medication or supplements with the potential to interfere with normal 

metabolism (e.g., beta-blockers, insulin, bronchodilators, anti-inflammatory agents, 

thyroxine), a current or recent (within 30 days) smoker, engaged in prolonged periods of 

food abstinence or specific dietary restraint, pregnant, breast feeding or amenorrhoeic 

combined with not using progesterone only hormonal contraception. Participants provided 

written informed consent in accordance with the Helsinki Declaration of 1975 as revised in 

1983 to take part in the study that was approved by the University of Birmingham local 

research ethics committee (Ref: ERN_15-0012) and was registered on clinicaltrials.gov 

(NCT02568592). 
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All volunteers were deemed to be healthy as assessed by a general health questionnaire (see 

section 7.5) with the characteristics at baseline of the 15 participants that completed the 

study (means ± SD): age, 34 ± 8 (yrs); height, 1.68 ± 0.06 (m); body mass, 58.1 ± 6.6 (kg); 

body fat 16.2 ± 3.6 (%);    2max 3.19 ± 0.31 (L/min);    2max 55.1 ± 2.5 (ml/kg/min). Eight 

women were regularly menstruating without using hormonal contraceptive, and 7 women 

were using a progesterone only form of contraceptive; mirena coil (Levonorgestrel) n = 3, 

Nexplanon (Etongestrel) n = 3, and Cerezarate (Desogestrel) n = 1. The women using a 

progesterone only form of contraceptive were well matched to the regularly menstruating 

women with no significant differences by way of an independent samples t-test seen in age, 

weight, body composition, aerobic capacity or habitual dietary intake. 
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Assessed for eligibilty (n = 40) 

Excluded during screening (n =13) 
Reasons: 

 Not mee ng    2max inclusion 
criteria (n=13) 

 
 

 
Eligible to participate (n= 27) 

Failed to complete familiarisation 
(n=3) 

Reasons: 

 Musculoskeletal Injury preventing 

completion of exercise test (n=1) 

 Lost to follow up (n= 2) 

 

 Drop outs pre-randomisation (n = 3) 
Reasons: 

 Musculoskeletal Injury preventing 

completion of exercise test (n = 2) 

 Time commitments (n = 1) 

 

 
Drop outs post randomisation (n =6) 
Reasons: 

 Experience of cannulation (n = 1) 

 Time commitments (n = 1) 

 Re-Location (n = 1) 

 Musculoskeletal Injury preventing 
completion of exercise test (n = 3) Completed all study 

interventions (n=15) 

Data analysed (n= 15) 

Enrolled and completed 
familiarisation (n =24) 
 

 

Randomised (n =21) 
 

 

Figure 5-1 Participant flow chart  
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5.2.2 Study Design and general overview 

This was a single-centre, randomised cross-over design study. The general overview can be 

seen in Figure 5-2. All testing took place at the University of Birmingham. Participants were 

provided with three different diets (see below) each for a period of five consecutive days 

with ~ one month wash-out period between interventions, the order of which was 

determined using on-line software to generate the randomization plan 

http://www.randomization in a randomised, partial-counterbalanced manner (i.e., the first 

12 participants were counterbalanced, the remaining 4 (one of whom dropped out) were 

randomly allocated to 1 of the 6 possible trial order combinations with a three condition 

design). 

 

In women regularly menstruating and not using hormonal contraceptives (n = 8), the dietary 

treatments were initiated so that the post-diet testing session commenced during the early 

to mid-follicular phase (day 1-10) of the menstrual cycle (average day 6  2 for each dietary 

intervention). For logistical reasons it was not always possible for testing to follow from one 

menstrual cycle to the next as originally intended, with the average time between tests 1.8 ± 

0.9 months. The women (n = 7) using progesterone only hormonal contraceptives, which 

typically suppress menstruation, started dietary interventions started approximately one 

month apart (1.3 ± 0.2).  

5.2.2.1 Screening and Familirisation 

Following informed consent and completion of a general health screening questionnaire, 

demographic data was recorded before undertaking an exercise test to determine the    2 
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and running speed relationship along with a    2max test (see below) to confirm eligibility. 

Within a few days of the screening visit, participants wore an Actiheart monitor (see below) 

(CamNtech, Cambridge, UK) for 5 consecutive days to monitor typical activity levels to 

determine energy requirements, and refrained from exercise on the 5th day. Habitual 

energy intake was assessed during this period using the multiple pass 24hr recall method 

(described in section 3.3.2). Immediately following the 5 days of baseline physical activity 

monitoring, participants attended the study site after a 10-12hr overnight-fast to be 

familiarised with the RMR measurement and the pre-loaded time trial (TT) test to be used in 

the main experimental trials (see below). Participants were familiarized with the testing 

procedures to ensure that the physiological and metabolic responses measured were as near 

normal and maximal as possible, not overly influenced by the novelty of the measurement 

and to minimise any possible learning effect regarding the TT (Doyle and Martinez 1998; 

Hopkins, Schabort, and Hawley 2001). 

 

5.2.2.2 Main experimental trials 

On day 1 of dietary intervention period, following a 10-12hr overnight fast except for water 

participants arrived at the laboratory between 6.00-09.00am for: anthropometric 

measurements (height, weight, waist circumference and s infold measurements   before 

carrying out a treadmill based test to determine the running speed and    2 rela onship  

followed by a    2max  and then the comple on of a   -min treadmill run at        2max 

immediately before a 5km self-paced TT. Subjects were encouraged to drink at least 500ml 

of tap water upon waking before arrival at the laboratory for testing to minimise the 
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potential for differences in hydration status between dietary interventions. The running 

speed and   O2 relationship and maximal aerobic capacity were determined at the start of 

each dietary intervention period to monitor potential changes in fitness and to ensure that 

the steady state exercise was performed at the same relative exercise intensity allowing 

better between trial comparisons. The study diet commenced that day with the first meal 

provided on site and all remaining meals provided for the following 4 consecutive days (i.e., 

5 days in total) during which the Actiheart activity monitor was worn throughout. 

Participants were instructed to consume only the meals provided and to follow similar 

physical activity / exercise patterns as captured during the familiarisation period, with 

exercise permitted during days 2-4 and only light activities on day 5.  On day 6, following a 

10-12hr overnight fast except for water, participants arrived at the laboratory between 6.00-

09.00am for: anthropometric measurements (height, weight, waist circumference and 

skinfold measurements); RMR, a 90min treadmill run at 65    O2max followed by a self-

paced 5km TT. Blood samples were obtained at rest and during exercise. 

 

Figure 5-2. Schematic of study overview 
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5.2.3 Dietary intervention and analysis 

The 3 dietary conditions and their respective macro-nutrient distributions as a percentage of 

total energy intake (carbohydrate/fat/protein) can be seen below in Figure 5-3, and were as 

follows; a “normal” diet  N      50/35/15)  a “high fat” (HF) (20/65/15), and a hypercaloric 

 1     “normal diet + fat supplement”  N+HF         1  . The exact macronutrient 

composition of the study diets and the participant’s habitual dietary inta e can be seen in 

(Table 5-2) and is described in more detail below. The NORM diet was designed to be fairly 

typical of an endurance type athlete and so acted as a control diet. The composition of the 

HF diet is consistent with recommendations regarding the definition of a “high fat” diet 

(Hawley 2011) and is sufficiently low in carbohydrates to enable adaptations to high fat diet 

to occur within 5 days as previously demonstrated in men (Cameron-Smith et al. 2003). The 

amount of extra fat in the N+HF diet was based both on previous overfeeding studies 

(Cornier et al. 2007; Van Proeyen et al. 2011) and was an amount considered achievable by 

the study population without giving cause for concern of weight gain. 
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Figure 5-3 Relative contribution (%) of macronutrient intake to total energy intake of the 

study diets. 

All study meals were prepared by GF from raw ingredients in the metabolic research kitchen 

at the University of Birmingham. Adjustments were made to recipes accounting for weight 

lost from pre to post through the cooking process (Chappell 1954). This allowed a greater 

level of control and precision over the composition of each meal or snack that the subjects 

consumed. Special considerations were made when composing the diets to make them as 

appetizing and healthy as possible in-light of the study population whom are notoriously 

restrictive eaters especially regarding the avoidance of high fat foods (Horvath et al. 2000). 

The subjects were instructed to consume all meals provided in their entirety, and were 

additionally asked to weigh and record any left-overs / unconsumed prescribed foods. In 

general, the diets were well tolerated with only minimal amendments made to the 

prescribed diets. Thus the overall impact to the consumed dietary intakes of the study diets 
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was negligible (± 1-2% of planned intake) regarding either total intake or the macronutrient 

distributions. 

 

Habitual dietary intake was determined by the multiple pass 24hr recall method, which 

utilises prompting to reduce food omission (Hebert et al. 2002)  and was performed on 3 

occasions to include two weekdays and one weekend, with 3 days considered the minimum 

number of days to reliably estimate energy and macronutrient intake (Hebert et al. 1998). 

The Foods Standards Agency Food Portion Sizes booklet (Nelson et al. 1997) was also used to 

aid in the estimation of food portion sizes, with data analysed using the computer software 

Dietplan 6.70.67 (Forestfield Software Ltd. Horsham, West Sussex, UK). 

 

5.2.4 Physical activity and energy expenditure monitoring  

5.2.4.1 Daily physical activity 

Throughout the 5 day dietary intervention period, subjects wore a combined accelerometer 

and heart rate monitor (CamNtech, Cambridge, UK) described in more detail in section 3.4.2) 

and elsewhere (Brage et al. 2005). Briefly, in accordance with the manufacturer’s 

instructions, this monitoring device was attached to the chest by long-term ECG pads (Red 

Dot solid gel electrodes, 3M, Bracknell, UK) simultaneously measuring heart rate and uni-

axial accelerometer counts which are combined using a branched equation model to 

determine physical activity energy expenditure (Brage et al. 2004). Recordings were made in 

30 sec epochs throughout the wear time and the raw data was cleaned and processed using 

Actiheart software (version 4.0.116; CamNtech Ltd, Cambridge UK). Individual heart rate-   2 
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calibration curves were established for the individual relationship between heart rate and 

energy expenditure enabling the use of the “Group Act Ind H +stress” energy model from 

the Actiheart software for improved estimates of energy expenditure (Assah et al. 2011). 

Total daily energy expenditure was the sum of RMR (see below), Actiheart derived physical 

activity energy expenditure and an estimated diet induced thermogenesis (10% daily EI 

(Westerterp 2004). 

 

5.2.4.2 Resting Metabolic Rate 

Resting Metabolic Rate was measured in the overnight fasted state by using an indirect 

calorimeter fitted with a ventilated hood (GEMNutrition Ltd. Cheshire, UK). Ambient room 

temperature was set to a comfortable (21-24°C) in a dimly light room, subjects lay awake, 

undisturbed and motionless in a supine position, for 30mins whilst exhaled gases were 

collected over a constant airflow of 40L/min.    2 and   CO2 measurements were averaged 

over 30sec periods, with values discarded from the first 10 and last 2mins, with the average 

of the remaining 18mins used to determine the RMR provided the CV for    2 and   CO2 was 

<10%. RMR was calculated using the Weir equation without correction for urinary nitrogen 

(Weir 1949). The gas analysers were automatically calibrated immediately before each use 

by using certified reference gases (1.00% CO2, 21.00% O2, balance Nitrogen) (BOC Gases, 

Surrey, UK). Unfortunately, due to equipment failure, RMR measurements were only 

available on 8/15 participants and so RMR was estimated using the Harris-Benedict equation 

(Harris and Benedict 1918) for the remaining 7 participants. In those subjects where RMR 

could be measured, an independent samples t-test was used to compare the measured RMR 
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values (1586  221 kcal) to the Harris-Benedict calculated values (1514  219 kcal) and did 

not significantly differ (P=0.28).  

 

5.2.5 Anthropometry and Body Composition Assessment 

After voiding and whilst wearing minimal clothing, participants were weighed to the nearest 

10g (OHaus, Champ II scales, USA) and height was measured to the nearest cm (Stadiometer, 

Seca, UK). Waist circumference was measured to the nearest mm with the tape measured 

midway between the uppermost border of the iliac crest and the lower border of the costal 

margin (rib cage). Body composition measurements were performed by an International 

Society for the Advancement of Kinanthropometry (ISAK) Level 1 Accredited 

Anthropometrist and followed International Standards for Anthropometric Assessment. 

Skinfold thickness was measured to the nearest 0.1 mm in duplicate (triplicate when the 

second measure was ≥   different to the first at which point the median value was used  

using calibrated callipers (Harpenden, West Sussex, England) at 4 skinfold sites; triceps, 

subscapular, biceps and supraspinale, the sum of which was used to estimate body 

composition (Davidson et al. 2011). 

 

5.2.6 Exercise Tests 

All exercise tests were carried out on a motorised treadmill (HP cosmos, Quasar, Nussdorf-

Traunstein, Germany), with the initial starting gradient set to 1% in all tests to reflect the 

oxygen cost of outdoor running (Jones and Doust 1996). Heart rate was recorded 

continuously throughout each test by telemetry using a heart rate monitor (Polar M400, 
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Polar Electro Ltd, Oy, Finland). Environmental conditions during testing were controlled to 

minimise the possible effect of thermal stress and any impact this may have on substrate 

metabolism (O'Hearn et al. 2016), with: relative humidity 47±8%; temperature 20±2°C. An 

electronic fan was positioned behind participants for use upon request. Water was provided 

ad-libitum but monitored and did not significantly differ throughout all the exercise trials 

averaging 458  275, 467  319 and 364  315ml in the post diet NORM, HF and N+HF trial 

respectively. 

 

Either a mouthpiece and a nose clip or a face-mask with head-strap (7450 V2, Hans Rudolph, 

Missouri, USA) was securely fitted to the subject to allow breath-by-breath respiratory 

measurements  minute ven la on,      oxygen consump on,   O2  carbon dioxide 

produc on,    O2) to be recorded throughout the exercise tests (besides the TT where no 

such measurements were made) using an automated gas analysis system (Oxycon Pro, 

CareFusion UK Ltd, Basingstoke, UK). The gas analysers were calibrated immediately before 

each exercise test according to the manufacturers recommendations using calibration gases 

(5.07% CO2, 14.79% O2) (BOC Gases, Surrey, UK), and the volume transducer was manually 

calibrated with a 3 litre bi-directional syringe (Jaegar, Wuerzberg, Germany). 

 

5.2.6.1 Pre-diet,    2 running speed relationship 

On the treadmill, participants ran at 4 incremental submaximal speeds, each for a period of 

4 minutes with expired air continuously monitored. The average expired air over the final 
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minute of each stage was used to calculate the linear relationship between   O2 and running 

speed.  

 

5.2.6.2    -         2max test 

Following the test to determine the rela onship between    2 and running speed, a 5min 

rest was given before initiating a graded treadmill exercise test adapted from that used by 

Scrimgeour et al (Scrimgeour et al. 1986) to determine maximal aerobic capacity. The 

treadmill was started at 8km/h and the speed increased every minute by 1km/h until either 

an RER of 1 was reached or the subject indicated difficulty maintaining the speed at which 

point the treadmill gradient was increased by 1  every minute un l voli onal exhaus on. 

Breath by breath measures were recorded throughout to measure    ,    2 and     2, with 

the highest rolling    second average    2 measurement considered to be maximal     2max  

if   of the   following condi ons were met  1  a levelling o  of    2 with further increasing 

wor loads  an increase of ≤  m   g min      a heart rate within 1  beats min of the age-

predicted maximum (206 beats per minute – 0.88(age)) (Gulati et al. 2010); or 3) a 

respiratory exchange ratio of >1.0. 

 

5.2.6.3 Pre-diet, 45 Pre-loaded 5km Time Trial test 

Following a 5min recovery from the    2max test an adapted version of the preloaded 

treadmill based time trial test used by Russell et al (Russell et al. 2004) was started. This 

protocol has been shown to be a reliable measure of endurance performance, with the CV to 

complete repeated 9 min preloaded 1  m TT’s in women runners being 1.26%. The shorter 
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45min preloaded 5km TT used here served 2 purposes; Firstly, to act as an additional 

familiarisation session with it demonstrated on numerous occasions that a familiarisation 

session is required to reduce the variation within subjects during laboratory based 

performance tests, with variability reduced further with additional familiarisation sessions 

(Andrews et al. 2003). And secondly to lower the subject’s glycogen stores in an effort to 

standardise the subjects muscle substrate availability prior to the dietary treatment. 

 

Heart rate and breath by breath indirect calorimetry were recorded throughout the 45min 

steady state treadmill run at 65% of the recently measured    2max, with RPE measured 

every 15mins (Borg 1982). Upon completing the steady state run, a short toilet break was 

enforced and stretching permitted, before the 5 km self-paced treadmill TT was initiated, 

during which only heart rate was recorded. Participants were given the same instructions 

prior to each TT, and were asked to cover the 5 km in as short a time as possible. 

Participants had full control over the treadmill speed operated either by a hand-held remote 

or treadmill mounted display that only showed the distance covered. There were no visible 

clocks or other means of monitoring time / speed available to the subjects. No 

encouragement or distractions (audio/visual) were permitted. Blinding the subjects to the 

dietary treatment conditions was not possible. To reduce bias on the TT, subjects were not 

informed of their performances until the completion of the study (Doyle and Martinez 

1998). 
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5.2.6.4 Post diet, 90 Pre-loaded 5km Time Trial test 

Approximately 10mins after collection of the resting blood sample (see below) the 90min 

steady state run at 65% of the    2max measured at the start of each dietary intervention 

was initiated. A blood sample was drawn at 30, 60 and 90mins of exercise along with 

measures of heart rate and RPE. Breath by breath measurements of    2/   CO2 were 

recorded over a 5min period every 30mins, with the average values taken during the final 

minute used to calculate rates of substrate oxidation using the stoichiometric equations of 

Frayn (Frayn 1983) under the assumption of negligible urinary nitrogen losses. Upon 

completion of the 90min run, the cannula was removed and a short toilet break was 

enforced and stretching permitted, before the 5 km self-paced TT was initiated under the 

same conditions as the pre diet TT described above. 

 

5.2.7 Post diet, blood sampling and analysis 

Venous blood samples were drawn through an indwelling cannula (20g IV catheter, BD 

Venflon, Plymouth, UK) inserted into an antecubital vein connected to a 150cm polyethylene 

extension line (V-Green I.V. Extension Line, Vygon, Swindon, UK). A 3-way stopcock (BD 

Connecta, Plymouth, UK) was attached to the extension line, allowing blood samples to be 

drawn whilst the participant was running on the treadmill without the need for stopping or 

substantial changes in running gait. A 20ml resting sample was drawn immediately following 

the RMR measurement whilst the subject remained in a supine position, with 10ml samples 

taken at 30,60 and 90mins of the steady state exercise. The cannula was kept patent 

throughout the duration of insertion by regular flushing of a 0.9% sodium chloride (B Braun, 
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Melsungen, Germany). Whole blood was drawn into EDTA or lithium heparin tubes that 

were immediately stored on ice with additional blood drawn was into serum tubes and left 

to clot at room temperature for ~60mins, after which all tubes were centrifuged at 1361g 

(3000rpm) for 15mins at 4C. Aliquots containing plasma or serum were then flash frozen in 

liquid nitrogen and stored at -80C until analysed.  

 

Sample analysis was performed in duplicate using enzymatic colorimetric assays for plasma 

glucose (Glucose Oxidase, Instrumentation Laboratories, Cheshire, UK), NEFAs (NEFA, 

Randox, London, UK), glycerol (GLY, Randox, London, UK) lactate (L-Lac, Randox, London, 

UK), triglycerides, (Triglycerides, Instrumentation Laboratories, Cheshire, UK), Total 

cholesterol, (Cholesterol, Instrumentation Laboratories, Cheshire, UK), HDL cholesterol, (HDL 

cholesterol, Instrumentation Laboratories, Cheshire, UK) and LDL cholesterol (LDL 

cholesterol, Instrumentation Laboratories, Cheshire, UK) using an ILAB 650 clinical chemistry 

analyser (Instrumentation Laboratories, Cheshire, UK). Serum insulin concentration was 

determined in duplicate by radioimmunoassay using a commercially available kit (HI-1  K 

Human Insulin, Millipore, Hertfordshire, UK). Finally, serum oestrogen and progesterone 

concentrations were measured in separate analyses quantified by immunoassays using a 

Roche e602 unit on a Cobas 8000 modular analyser (Roche Diagnostics Ltd, Rotkreuz, 

Switzerland). 
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5.2.8 Metabolomics 

The metabolomics sample preparation, analysis and data processing was carried out by the 

Phenome Centre Birmingham. A thorough description of the methods for this process is 

provided in the Appendix (section 7.6) produced by Dr Giovanny Bianco and Dr Warwick 

Dunn. A shorter adapted version is provided below.  

 

5.2.8.1 Sample Preparation and Metabolite extraction / Untargeted metabolomics 

Following a monophasic extraction protocol, plasma samples were centrifuged at 14,000 x g 

for 1  minutes at  °  and 1   μ  of the supernatants were then transferred into separate 

glass HPLC vials for Ultra High Performance Liquid Chromatography-Mass Spectrometry 

(UHPLC-MS) analysis. UHPLC-MS analysis was performed applying an Ultimate3000 RSLC 

UHPLC system coupled to an electrospray Q-Exactive Focus mass spectrometer operating in 

both positive and negative ion modes. Mass calibration was performed for each polarity 

immediately before each analysis batch.  

Two different columns were used for metabolite separation, for polar compounds, an 

Accucore-150-Amide-HILIC (100 x 2.1 x 2.6 µm, Thermo Scientific) was used with column 

temperature set to 30°C and the flow rate was 500 µL min-1. Separation of lipids species was 

performed using a Hypersil Gold C18 column (100 x 2.1 x 1.9 µm, Thermo Scientific) with the 

column maintained at 55°C and the flow rate set at 250 µL min.   
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5.2.8.2 Data pre-processing and analysis 

UHPLC-MS raw data files (.RAW) were converted to a .mzML format by using the MS-Convert 

software available in the ProteoWizard package (available at  

http://proteowizard.sourceforge.net/tools.shtml). Data deconvolution was then performed 

using XCMS to provide a 2D matrix of chromatographic peaks responses where each peak 

was defined by the m/z ratio and retention time (Dunn et al. 2008). This 2D matrix was 

exported as a .csv file for data analysis. Post metabolite annotation, data filtering was 

performed to remove all metabolite features with more than 40% missing values for all QC 

samples. 

 

5.2.9 Statistical analyses 

Data were analysed using the SPSS statistical package for Windows, version 23.0.0 (SPSS, 

Chicago, IL, USA). Data were checked for normality using distribution plots and the Shapiro-

Wilk test and is presented as mean  SD with statistical significance accepted at P 0.05. 

Summary data including; AUC, total substrates oxidized, RER, RPE, energy expenditure and 

the TT data were assessed for differences using a repeated-measures one-way ANOVA. The 

effects of diet on responses during exercise were evaluated using a two-way (diet X time) 

ANOVA with repeated measures with significance accepted at P 0.05 for all analyses. 

Violations to assumptions of sphericity were adjusted using the Greenhouse-Geisser 

correction factor. Significant interactions were followed up using post hoc tests with 

Bonferroni adjustments for multiple comparisons. 

 

http://proteowizard.sourceforge.net/tools.shtml
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As identified in section 4.2, the literature is unclear whether hormonal contraceptive use has 

an impact on substrate oxidation during exercise. For this reason, all variables were 

compared by an independent samples t-test for differences between contraceptive users 

and non-users. The only significant difference (p<0.05) was seen in the oestrogen 

concentration in the HF trial (lower in contraceptive users). Therefore, with the general lack 

of effect concerning contraceptive use, the groups were collapsed across all conditions 

however for specific variables of interest contraceptive use was still used as a between 

groups factor.  

Oestrogen and progesterone data were log-transformed accounting for non-normal 

distribution and substantial outliers. A repeated-measures one-way ANOVA showed no 

differences (P> 0.05) in the hormone concentrations (between diets with contraceptive use 

as a between subjects factor or when the groups were collapsed), therefore no further 

analysis with these variables as covariates were undertaken.  

 

The area under the plasma / serum metabolite concentration versus time curve (AUC) was 

used a summary statistic for the blood metabolite responses over exercise and were 

calculated using the trapezoidal rule (Matthews 1988). The homeostasis model assessment 

of insulin resistance (HOMA-IR) was calculated using the formula of (Matthews et al. 1985) 

(fasting insulin (µU/ml) x fasting glucose (mmol/L)/22.5) 

Post-hoc power calculations were computed using G*Power version 3.1.9.2 (Heinrich Heine, 

University Dusseldorf, Germany). 
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Statistical analysis for the metabolomics data was performed by the Phenome Centre 

Birmingham using the software package MetaboAnalyst (Xia et al. 2012). There were no 

missing value imputations made. The normalisation to the sum of the peak areas for each 

sample were used and no transformations or scaling were performed. Where two 

metabolite classes were compared, a non-parametric Mann-Whitney U test was performed 

with correction for false discovery rate (FDR) applying the Benjamini-Hochberg method. 

Where three metabolite classes were compared a parametric one-way ANOVA test was 

performed with correction for FDR applying the Benjamini-Hochberg method. Fold changes 

were calculated applying the mean response for each class. 

 

5.3 Results 

5.3.1 Anthoropometric and physiological characteristics 

There were no significant differences in aerobic capacity, body mass or composition at the 

start of 3 different dietary interventions (see Table 5-1) or compared to baseline. 

Importantly, this indicates that the dietary interventions were started under similar fitness 

and physiological conditions, with any differences in the post diet measurements a reflection 

of the dietary intervention.  

Body mass was maintained from the pre to post measurements on the NHF diet, whereas 

there was a slight decrease from pre-post in both the NORM and the HF diets with the loss 

significantly (p<0.05) greater in the HF than NORM and the NHF. The small loss of weight in 
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both the NORM and HF diets arose from a loss of both body fat and FFM resulting in a 

significant change in body fat (%) in the HF compared to the NHF. 

 
 
Table 5-1 Participant characteristics 

Parameter NORM HF NHF 

Pre diet mass (kg) 58.6 ± 6.5 58.8 ± 6.7 58.7 ± 6.3 

Post diet  mass (kg) 58.0 ± 6.4*b 57.3 ± 6.4*ac 58.6 ± 6.2 b 

Body mass change (kg) -0.63 ± 0.56 -1.45 ± 0.61 -0.14 ± 0.68 

Pre BMI 20.7 ± 1.8 20.7 ± 1.8 20.7 ± 1.8 

Post BMI 20.4 ± 1.7 20.2 ± 1.7 20.6 ± 1.7 
Pre WC 68.9 ± 3.5 68.8 ± 3.0 69.2 ± 3.7 
Pre body fat (%) 16.6 ± 3.6 16.5 ± 3.8 16.7 ± 4.0 

Post body fat (%) 16.4 ± 3.6 15.7 ± 3.9*c 16.8 ± 3.7 
Body fat (%) change -0.2 ± 0.6 -0.8 ± 0.7 0.1 ± 0.6 
Pre FM (kg) 9.9 ± 3.0 9.9 ± 3.1 9.9 ± 3.1 
Post FM (kg) 9.6 ± 2.9* 9.1 ± 3.0*ac 9.9 ± 2.9 
Pre FFM (kg) 48.8 ± 4.3 48.9 ± 4.4 48.8 ± 4.2 
Post FFM (kg) 48.4 ± 4.2* 48.2 ± 4.1*c 48.6 ± 4.3 

FFM change -0.4 ± 0.6 -0.7 ± 0.6 -0.2 ± 0.7 

   2 max (L) 3168 ± 345 3123 ± 353 3157 ± 383 
   2 max (ml/kg/min) 54.1 ± 2.8 53.2 ± 2.8 53.8 ± 3.4 

Data are means ± SD for all parameters (n = 15). Superscript symbols/letters represent; * 

significantly different pre to post diet, a significantly different to NORM (P<0.05), b 

significantly different to HF (P<0.01), c significantly different to N+HF (P<0.01). BMI; body 

mass index, WC, waist circumference; FFM, fat free mass; FM, fat mass;    2 max, maximal 

aerobic capacity. NORM, normal diet; HF, high fat diet; NHF, Normal + extra fat diet 

intervention.   

5.3.2 Dietary intake and physical activity level 

The NORM diet was very similar to the estimated habitual dietary intake, differing only by a 

lower amount of fibre consumed (g/day) and a lack of alcohol in the study interventions 
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(Table 5-2). The study diets achieved their objectives regarding a well matched intake 

(absolute amounts) of fibre and protein across all 3 diets, with the NORM and NHF diet 

differing only by the amount (g/day) of fat and thus energy (attributed entirely to the 30% 

greater fat intake). The HF diet had a significantly higher intake of total fat and lower intake 

of carbohydrate compared to both the NORM and the NHF diets. Although statistically 

different, the marginally greater fat intake in the HF diet compared to the NHF amounted to 

only ~ 5g/day difference, and is considered unlikely to be physiologically meaningful. 

Importantly there were also no differences in the estimated energy expenditure between 

the study diet conditions or when compared to the baseline period (Table 5-2), indicating 

that as requested, the subjects maintained a similar level of daily activity and exercise 

training over the course of the study. 
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Table 5-2. Calculated daily intake and expenditure of energy and nutrients 

 Dietary intervention 

Variable Habitual NORM HF NHF 

Protein (g/day) 99 ± 16 100 ± 14 99 ± 12 101 ± 13 

Fat (g/day) 104 ± 33 99 ± 12 191 ± 21abd 186 ± 20abc 

carbohydrate (g/day) 333 ± 94 359 ± 47 138 ± 15abd 358 ± 39 

Alcohol (g/day) 9 ± 13 - - - 

Fibre (g/day) 31 ± 7bcd 22 ± 7 20 ± 3 23 ± 8 
     

Protein (%) 14.9 ± 2.6 15.0 ± 0.4 14.9 ± 0.3 11.6 ± 0.3abc 

Fat (%) 34.3 ± 4.6 33.2 ± 0.8 64.3 ± 0.7abd 48.4 ± 0.8abc 

carbohydrate (%) 46.0 ± 6.2 50.1 ± 0.3 19.3 ± 0.6abd 38.7 ± 0.4abc 

Alcohol (%) 
2.5 ± 3.2 - - - 

Fibre (%) 2.3 ± 0.4bcd 1.7 ± 0.4ad 1.5 ± 0.3a 1.3 ± 0.4ab 

     

Protein (g/kg BM) 1.7 ± 0.3 1.7 ± 0.2 1.7 ± 0.2 1.7 ± 0.2 

Fat (g/kg BM) 1.8 ± 0.6 1.7 ± 0.1 3.3 ± 0.3ab 3.2 ± 0.3ab 

carbohydrate (g/kg BM) 5.7 ± 1.6 6.1 ± 0.6 2.4 ± 0.3abd 6.1 ± 0.5 

Alcohol (g/kg BM) 0.2 ± 0.2 - - - 

Fibre (g/kg BM) 0.5 ± 0.1 0.4 ± 0.1 0.4  ± 0.1 0.4  ± 0.1 

     

Energy Intake (kcal/day) 2708 ± 631 2683 ± 340 2673 ± 292 3463 ± 384abc 

Energy Expenditure (kcal/day) 2825 ± 283 2698 ± 350 2658 ± 386 2771 ± 259 

Energy Balance (kcal/day) 118 ± 755 -15 ± 288 14 ± 278 692 ± 352abc 

Data provided are means ± SD (n = 15). Superscript letters signify; a significantly different to 

Habitual (P<0.01), b significantly different to NORM (P<0.01), c significantly different to HF 

(P<0.01), d significantly different to N+HF (P<0.01).  
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5.3.3 Submaximal steady state exercise 

5.3.3.1 Exercise intensity, speed, heart rate, rating of percieved exhaustion  

There were no significant differences between the diets in the relative or absolute intensity 

that the submaximal treadmill test was performed at with similar treadmill speeds between 

the interventions  (see  

Table 5-3). There were no differences between the trials in the change in weight from the 

start to the finish of exercise (NORM -0.6 ± 0.4kg; HF -0.3 ± 0.9kg; NHF -0.6 ± 0.7kg) implying 

a similar level of environmental stress and sweat rates. 
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Table 5-3 Selected parameters of interest over the 90min submaximal exercise bout 

Parameter NORM HF NHF 

Time           

0-30 
(mins) 

   2 (L/min) 2076 ± 263 2111 ± 253 2113 ± 234 

  O2 (ml/kg/bm) 35.8 ± 2.6 36.9 ± 2.2 36.1 ± 2.2 

Heart rate (beats/min)* 131 ± 12 134 ± 11 133 ± 9 
           

30-60 
(mins) 

   2 (L/min) 2095 ± 260 2094 ± 252 2097 ± 227 

   2 (ml/kg/bm) 36.2 ± 2.7 36.6 ± 2.3 35.9 ± 2.4 

Heart rate (beats/min)* 135 ± 11 136 ± 10 137 ± 8 

           

60-90 
(mins) 

   2 (L/min) 2088 ± 279 2080 ± 249 2105 ± 269 

  O2 (ml/kg/bm) 36.0 ± 2.5 36.3 ± 2.6 36.0 ± 2.6 

Heart rate (beats/min)* 136 ± 13 138 ± 10 138 ± 9 

           

0-90 
(mins) 

 

   2 (L/min) 2087 ± 266 2095 ± 250 2105 ± 249 

   2 (ml/kg/bm) 36.0 ± 2.5 36.6 ± 2.3 36.0 ± 2.0 

%    2 max 65.8 ± 2.8 67.1 ± 2.5 66.8 ± 2.4 

Heart rate (beats/min) 134 ± 12 136 ± 10 136 ± 8 

RER 0.83 ± 0.03 0.77 ± 0.03 a 0.82 ± 0.03 

Running speed km/h 9.9 ± 0.7 10.2 ± 0.8 10.3 ± 1.4 

RPE 11 ± 2 11 ± 1 10 ± 1 

Data provided are means ± SD (n = 15). Superscript symbols signify; a significantly different to 

NORM and NHF (P<0.01), * trend (p=0.07) for main effect of diet.  RER; respiratory exchange 

ratio, RPE; rating of perceived exertion. 

Other than the RER which was significantly lower in the HF trial than the NORM and the NHF 

trial (p<0.01) there were no significant differences between any of the parameters shown in  

Table 5-3. Nonetheless a main effect of time (p<0.05), was apparent, with cardiovascular 

drift seen with a gradual increase in heart rate as time of the exercise bout increased, along 

with a trend (p=0.07) for a main effect of diet, with heart rate appearing to be lower in the 

NORM than the HF and NHF diets. 
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5.3.3.2 Substrate oxidation 

The rates of fat oxidation were significantly greater, and carbohydrate significantly lower in 

the HF trial than the NORM and the NHF (p<0.01), with no differences seen between the 

NORM and NHF. The relative contribution of fat oxidation to energy expenditure was also 

therefore significantly (p<0.01) greater in the HF trial than both the NORM and NHF (76, 57 

and 59% respectively). There was also a significant main effect of time across all trials with 

rates of fat oxidation marginally (0.04g/min) greater at 90 than 30mins and the reciprocal 

relationship regarding carbohydrate oxidation being greater (0.11g/min) at 30 than 90mins 

(p<0.05). 

 

Figure 5-4 Rate of fat oxidation over 90min exercise bout 

Data are means with error bars SEM, symbols represent; # main effect of time (p<0.05), 

*significantly different from both NORM and NHF (p<0.01). 
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Figure 5-5 Rate of carbohydrate oxidation over 90min exercise bout 

Data are means with error bars SEM, symbols represent; # main effect of time (p<0.05), 

*significantly different from both NORM and NHF (p<0.01). 
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Figure 5-6 Relative contribution of fat and carbohydrate oxidation to energy expenditure 

Data are means with error bars SEM, symbols represent significantly different (p<0.01), to 

both NORM and NHF for fat * and # carbohydrate contribution to energy expenditure 

respectively. 
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5.3.3.3 Substrate oxidation and contraceptive use 

 

Figure 5-7 Relative contribution (%) to energy expenditure for women regularly 

menstruating (REG) (n 8) and using progesterone contraceptive (n 7) 

There were no significant differences in rates of substrate oxidation during exercise between 

regularly menstruating women and women using progesterone only hormonal 

contraceptive. Figure 5-7 shows the relative contribution of fat and carbohydrate to total 

energy expenditure (%) across the different dietary conditions separated by contraceptive 

use.   
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5.3.4 Blood metabolites 

5.3.4.1 Resting values 

The resting plasma glucose, lactate and glycerol concentrations, did not significantly differ 

after the dietary interventions (Table 5-4). The resting serum insulin level in the NORM trial 

was similar to both the HF and NHF, whereas it was significantly (p<0.05) lower in the HF 

trial compared to the NHF. The calculated HOMA-IR showed a main effect of diet (P <0.05) 

however none of the pairwise comparisons was statistically significant, although there was a 

trend (P = 0.07) for the HF to marginally lower than the NHF. The resting plasma NEFA values 

did not significantly differ between trials but there was a trend for a main effect of diet 

(P=0.07) with the HF trial appearing greater than the NHF (P=0.07). There was a main effect 

of diet for the total plasma cholesterol levels, which were 9% higher in the HF trial than the 

NORM (p<0.01) with a non-significant 5% difference between the HF the NHF (p=0.09). 

There were no significant differences between the study diets in the LDL -C whilst HDL -C 

was ~8% (p<0.05) lower and TAGs 38% higher (p<0.01) following the NORM than either the 

HF or NHF diets. 

 

The serum sex hormone data demonstrated a wide range of values for both oestrogen and 

progesterone. Although not as substantial as the regularly menstruating women, variability 

was still evident within the hormonal contraceptive users Figure 5-8 & Figure 5-9. The 

resting serum oestrogen and progesterone levels can be seen in Table 5-4 with the median 

values and individual dot plots demonstrating the intra individual variability and outliers 

separated by contraceptive use. Typical reference ranges for the early, mid-follicular, 
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ovulatory and mid-luteal phases of the menstrual cycle can be also be seen in Table 5-5 for a 

comparison. Regrettably, despite great efforts to test within the mid follicular phase to 

control for menstrual cycle hormonal fluctuation, it appears the hormonal environment was 

more varied than originally planned. There were no significant differences in either 

oestrogen or progesterone concentration between the different diet conditions, when 

compared with or without contraceptive use as between subjects factor. 

 

Figure 5-8 The resting serum oestrogen concentration split by contraceptive use 

Horizontal bars represent the group median values for resting oestrogen concentration over 

the different dietary interventions split by groups into non-contraceptive users regularly 

menstruating (REG) (n 8) and those using progesterone only form of contraceptive 

(Contraceptive) (n 7).  
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Figure 5-9 The resting serum progesterone concentration split by contraceptive use 

Horizontal bars represent the group median values for resting progesterone concentration 

over the different dietary interventions split by groups into non-contraceptive users 

regularly menstruating (REG) (n 8) and those using progesterone only form of contraceptive 

(Contraceptive) (n 8). 
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Table 5-4 Resting blood parameters 

Parameter NORM HF NHF 

Glucose (mmol/l) 5.2 ± 0.5 5.2 ± 0.6 5.3 ± 0.5 

NEFA (mmol/l) 0.40 ± 0.20 0.45 ± 0.20 0.24 ± 0.17 
Glycerol (µmol/l) 28.5 ± 64.0 36.0 ± 23.5 24.0 ± 53.0 

Lactate (mmol/l) 0.70 ± 0.17 0.77 ± 0.18 0.96 ± 0.51 

Insulin (µU/ml) 9.0 ± 2.5 8.2 ± 3.7 c 9.9 ± 2.7b 
HOMA-IR 2.1 ± 0.6 1.9 ± 0.9 2.3 ± 0.7 
TAG  (mmol/l) 0.55 ± 0.17 0.39 ± 0.11a 0.41 ± 0.10a 

Total cholesterol (mmol/l) 4.2  ± 0.6b 4.6 ± 0.6a 4.4 ± 0.6 

LDL (mmol/l) 2.1 ± 0.4 2.3 ± 0.4 2.1 ± 0.4 

HDL (mmol/l) 1.8 ± 0.3 2.0  ± 0.3a 1.9 ± 0.3a 
Oestrogen (pmol/l) 205 ± 289 232 ± 487 200 ± 386 
Progesterone (nmol/l) 1.5 ± 1.0 2.1 ± 7.7 1.7 ± 2.8 

Data are means ± SD for all parameters other than NEFA, glycerol, oestrogen and 

progesterone which as presented as median ± 25-75 percentiles (n = 15). HOMA-IR; 

Homeostasis model assessment of insulin resistance. Superscript letters represent; a 

significantly different to NORM (P<0.05), b significantly different to HF (P<0.01), c significantly 

different to N+HF (P<0.01). 

 
Table 5-5 Reference ranges of oestrogen and progesterone during different phases of the 

menstrual cycle 

 Phase of the menstrual cycle 

Hormone 
Early-

follicular 
Mid-late 
follicular 

Ovulatory 
Early-
luteal 

Mid-luteal 
Late-
Luteal 

Days from 
peak LH 

-15 : -6 -5 : -1 0 +1 : +4 +5 : +9 +10 : +14 

Oestrogen 
(pmol/l) 

150 
(78-266) 

451 
(195-1147) 

672 
 (482 -1425) 

313  
(178 -566) 

496 
(276 -762) 

328 
(101-787) 

Progesterone 
(nmol/l) 

0.6 
(0.3-1.9) 

0.6 
 (0.3-1.6) 

2.5 
 (1.2-4.1) 

13.7  
(3.2 -39.7) 

36.3 
(21.2 -54.3) 

14.0 
(2.0-49.0) 

Reference values are median and 95 percentiles in parenthesis taken from (Stricker et al. 

2006), LH; Luteinising hormone. 
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Using the reference ranges from the table above the number of subjects tested in the 

various different phases of the menstrual cycle can be seen in Table 5-6 separated by those 

regularly menstruating and those using progesterone only form of contraceptive - 

demonstrating that more of the regularly menstruating women were tested outside of the 

follicular phase. 

Table 5-6 Frequency of post diet testing by menstrual cycle phase 

  Phase of the menstrual cycle 

  
Early-

follicular 
Mid-late 
follicular 

Ovulatory 
Early-
luteal 

Mid-
luteal 

Late-
Luteal 

Regularly 
menstruating 

NORM 4 1 2   1 

HF 2 2 1  1 2 

NHF 4  1  1 2 

 

Contraceptive 
users 

NORM 6  1    

HF 5    1 1 

NHF 5 1  1   

 

5.3.4.2 During exercise 

Figure 5-10 though to Figure 5-18 show the blood metabolite response over the 90minute 

exercise bout. Throughout exercise the plasma glycerol concentrations were significantly 

elevated above resting values of 24 – 36 µmol/l and continued to increase over time in all 

conditions (p<0.001) reaching a peak at 90mins, with the HF trial significantly (p<0.001) 

higher than both the NORM and N+HF trial at all exercise time points accumulating in a 

~30% greater AUC (Figure 5-11), with no differences between the NORM and N+HF trials. 

The plasma NEFA concentrations were significantly elevated from resting values (0.24 - 0.45 

mmol/l) during exercise and continued to rise as exercise progressed in all trials from 30-
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90mins peaking at 381-535 mmol/l (p<0.01). Throughout exercise the plasma NEFA 

concentration was greater in the HF trial than the NHF (p<0.01) accumulating in a 38% 

greater AUC, with a weak trend for NEFAs to be higher (AUC 18% greater) in the HF than the 

NORM (p=0.11). There was no significant difference between the NORM and NHF over the 

exercise bout, but there was a trend (p=0.06) for the AUC to be 24% greater in the NORM 

than the NHF.    

 

 

Figure 5-10 Plasma glycerol 

Data are means with error bars SEM, symbols represent; # main effect of time (p<0.001), 

*significantly different from NORM and NHF (p<0.01). 
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Figure 5-11 Plasma glycerol area under the curve 

Data are means with error bars SEM, * represents significantly different from both NORM 

and NHF (p<0.01). 

 

 

Figure 5-12 Plasma NEFA 

Data are means with error bars SEM, Symbols represent; # main effect of time (p<0.01), 

*significantly different between HF and NHF (p<0.05). 
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Figure 5-13 Plasma NEFA area under the curve 

Data are means with error bars as SEM, * represent significantly different between HF and 

both NORM and NHF (p<0.05), # trend (p=0.06) for NORM vs. NHF. 

 

Plasma glucose did not change from rest (5.1 – 5.5mmol/l) in the HF trial, whereas there was 

a significant increase from rest in both the NORM and NHF trials (5.2 – 5.3mmol/l), with 

glucose level then remaining stable throughout the exercise bout in all trials (5.4 – 

5.8mmol/l). There was a main effect of diet and a diet by time interaction, with the plasma 

glucose level elevated in the NHF compared to the HF trial at all exercise time points 

(p<0.01), accumulating in a 6% greater AUC (p<0.05). The plasma lactate levels during 

exercise were similar to resting values and remained stable between trials over the course of 

the exercise bout (0.7-0.82mmol/l) with no significant differences in the AUC. Serum insulin 

levels showed a significant (p<0.05) main effect for time with the concentration declining 

from resting values of 8.2 – 9.9 µU/ml to 6.7 - 8.0 µU/ml at 60mins, with no differences 

between the other time points. There were however, no significant differences in serum 



Chapter 5 

 166 

insulin concentrations between the study diets, although there was a trend for an effect of 

diet (p=0.06) with insulin appearing to be lower in the HF diet than the NHF (p=0.07). When 

summarised using the AUC this difference reached statistical significance, accumulating in a 

14% lower AUC in the HF than NHF (p<0.05) but with still no differences compared to the 

NORM. 

 

 

Figure 5-14 Plasma glucose 

Data are means with error bars SEM, * symbols represent significant (p<0.05) difference 

between HF and NHF. 
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Figure 5-15 Plasma glucose area under the curve 

Data are means with error bars SEM, * identifies significant difference (p<0.05) between HF 

and NHF 

 

 

Figure 5-16 Serum Insulin 

Data are means with error bars representing the SEM. # represents main effect of time 

(p<0.05) with 60mins lower than 0mins, with no significant differences between trials, 

although a trend (p=0.06) for lower insulin in the HF trial compared to the NHF. 
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Figure 5-17 Serum Insulin area under the curve 

Data are means with error bars representing the SEM. * identifies significant difference 

(p<0.05) between HF and NHF. 

 

 

Figure 5-18 Plasma Lactate 

Data are means with error bars representing the SEM. No significant differences between 

trials or over time.  
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Figure 5-19 Plasma lactate AUC 

Data are means with error bars representing the SEM. No significant differences between 

trials. 

 

5.3.5 Metabolomics 

Using an UHPLC-MS metabolomics approach, a total of 217 and 233 metabolites were 

identified as significantly different across the study diets at rest and at the 90min point of 

the exercise bout, respectively. After correcting for FDR, the number of significantly different 

metabolites reduced to 93 at rest and 60 at the 90min point of the exercise bout. Using the 

FDR corrected data set, at rest, there were 28 significantly different metabolites in the 

NORM trial vs both the HF and the NHF trial, with this predominantly from the 

triacylglyceride (21) and diacylglyceride (6) class of metabolites. There were 39 metabolites 

identified as significantly different in the HF diet vs both the NORM and the NHF trial with 

these largely belonging to the glycerophospholipid (11) and acyl carnitine (9) class of 

metabolites. At the 90min point of the exercise bout there were no longer any significant 
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differences in metabolites when comparing the NORM to both the HF and the NHF, whereas 

there were 52 significant different metabolites in the HF vs both the NORM and NHF trials, 

with these mainly belonging to the acyl carnitine (21) or sphingolipids (7) class of 

metabolites.  

 

Using the non-FDR corrected data set, a total of 153, 152 and 148 metabolites were 

significantly perturbed (either an increase or decrease) when comparing rest to exercise in 

the NORM, NHF and HF trial respectively. Figure 5-22 shows the number of significant 

metabolites from each metabolite class where at least 4 metabolites changed from rest to 

exercise in at least one dietary condition. The metabolites that significantly changed from 

rest to exercise mainly belong (>35 individual metabolites in each dietary condition) to the 

acyl carnitine metabolite class, and 27 individual metabolites from the triglyceride class of 

metabolites in the NORM trial. Using the FDR corrected data set however, the number of 

metabolites significantly perturbed from rest to the 90min point of the exercise bout 

decreased to 70, 51, 81 for the NORM, NHF and the HF respectively. Figure 5-20 & Figure 

5-21 have been included to demonstrate the fold change in the two most perturbed 

metabolite classes, with a fold change <1 indicative of an increase from rest to the 90min 

time point of the exercise bout and a value >1 a decrease. 
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Figure 5-20 Change in triacylglyceride metabolite concentration (non-FDR corrected) from 

rest to the 90min time point of the exercise bout 

 

 

Figure 5-21 Change in acyl carnitine metabolite concentration (non-FDR corrected) from 

rest to the 90min time point of the exercise bout 
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Figure 5-22 Metabolite classes containing > 4 individual metabolites with a statistically 

significant non FDR corrected (p<0.05) fold change from rest to 90mins of moderate-hard 

intensity exercise 

 

5.3.6 Time trial  

There were no significant differences in the time taken to complete the pre-diet intervention 

5km TTs; NORM (1322.5 ± 91.5sec), HF (1325.2 ± 85.0sec) and NHF (1321.9 ± 79.1sec), with 

the average intra-individual coefficient of variation for these “familiarisation” TTs  .  ± 

1.8%). There were also no significant differences in the time taken to complete the post diet 

TTs between any of the dietary interventions; NORM (1328.4 ± 82.7sec), HF (1349.4 ± 

75.9sec) and NHF (1332.6 ± 75.9sec), see Figure 5-23, with no order or learning effect 
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apparent with the time taken for the first (1334.5 ± 85.9sec), second (1336.7 ± 85.0secs) and 

third (1339.2 ± 85.0secs) post diet TT not significantly different. Nor were there any 

significant differences between the pre – post diet TTs. There were also no significant 

differences between the post diets TTs for the pacing strategy employed (Figure 5-24), 

although a main effect of distance was seen, with the first km ran the slowest and the final 

km ran the quickest, with no change between km 2-4. Heart rates showed a progressive 

increase from the first to last km (p<0.01) with a similar response seen between the trials 

although there was a weak trend (p=0.08) for the heart rate to be lower in the NORM 

compared to both HF and NHF which is consistent with the trend seen during the steady 

state run.  
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Figure 5-23 Time trial 

Bars represent the mean time (secs) taken to complete the 5km TT, with connected points 

representing individual subjects TT responses to the different dietary condition. 

 

Figure 5-24 Time splits over the 5km TT 

Data are means with error bars representing the SEM. * Represents km 1 and 5 significantly 

different (p<0.05) to all other time points.  
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Figure 5-25 Heart response over the 5km TT 

Data are means with error bars representing the SEM represents significant main effect 

(p<0.01) for time. 

 

Figure 5-26 Time trial order effect 

Bars represent the mean time (secs) taken to complete the 5km TT, with connected points 

representing individual subjects TT responses in relation to the order trials were ran in.   
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5.4 Discussion 

This investigation aimed to determine whether increasing the amount and availability of fat 

in the diet independent to carbohydrate intake would affect rates of whole-body substrate 

oxidation during exercise. A further aim was to better characterise the metabolic response 

to dietary fat manipulation in both regularly menstruating women and those using 

progesterone only form of hormonal contraceptives and determine if this translated to 

differences in exercise performance. In line with the primary aim, the data show that a 

greater provision of dietary fat per se has little if any influence upon rates of whole body 

substrate oxidation during exercise. Rather it is the removal or at least restriction of 

carbohydrate from the diet that appears to be an obligatory step in eliciting dietary induced 

alterations in whole body substrate oxidation. This study also shows for the first time, that 

women using progesterone only forms of hormonal contraceptive share a similar metabolic 

response during exercise per se and to alterations in dietary fat content as regularly 

menstruating non-hormonal contraceptive using women. In addition, within the ranges of 

macronutrients supplied herein, the total amount and proportion of dietary fat or 

carbohydrate consumed over five days was shown to have no impact on preloaded 5km 

endurance performance in women runners.  

 

5.4.1 Substrate oxidation 

To our knowledge, this is the first study characterising the metabolic effects during 

moderate-hard intensity exercise after a HFLC diet consumed for 5 days in trained women. 
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Akin to previous studies in men, we confirm a substantially (33%) greater contribution of 

lipid oxidation to energy expenditure during exercise following the HFLC diet than either an 

iso-energetic NORM diet or an equivalent diet supplemented with extra fat (NHF)  (Jansson, 

Hjemdahl, and Kaijser 1982; Bergstrom et al. 1967; Burke et al. 2000; Decombaz et al. 2013).  

 

In the present study, each dietary intervention commenced with an exercise bout designed 

to stress and reduce both glycogen and IMTAG stores, with the intention that the ensuing 

metabolic status of the muscle a reflection of the dietary provision thereafter. Although 

intramyocellular substrate content was not quantified in the current investigation, based on 

prior work following similar dietary manipulations, it is reasonable to assume that the 

myocellular content of glycogen and IMTAG were vastly different following the 3 trials (Fox, 

Kaufman, and Horowitz 2004; Zehnder et al. 2006). Specifically, that the muscle glycogen 

content after the HF diet would have been lowest, with the content higher and comparable 

in both the NORM and NHF due to an equal intake of total carbohydrate. In contrast, the 

IMTAG content was expected to be lowest after the NORM trial and elevated after the HF 

and NHF to a similar degree with their comparable intake of total fat. As described in section 

2.3 the intramyocellular availability of these substrates are strong determinants of their 

respective contribution to energy expenditure and overall substrate oxidation during 

exercise and so likely explain a substantial proportion of the observed difference between 

the NORM and HF trials. Although, given the duration of the dietary intervention period, it is 

also likely that the HF diet also induced other adaptations permitting greater uptake, 

transport and oxidation of plasma sources of fatty acids.  
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During exercise, the most striking difference between the trials in blood metabolites was 

that of glycerol and to a lesser extent NEFA. The substantially greater glycerol concentration 

in the HF than the NORM and NHF trials indicates a much stronger whole body (inclusive of 

the suggested elevated IMTAG stores) lipolytic response. The somewhat greater NEFA (AUC) 

availability following the HF trial compared to the NORM (18% p=0.06) and substantially 

higher than the NHF trial (38% p<0.01), likely contributed towards the greater rates of lipid 

oxidation in the HF trial. A 5-day a high fat diet has previously been shown to induce greater 

sympathetic response, promoting lipolysis and elevating plasma NEFA concentration and 

extraction into the muscle during exercise at 65%    2max (Jansson, Hjemdahl, and Kaijser 

1982). This likely compensated for the potentially lower availability of carbohydrate 

substrates for oxidation with the marginally lower availability of plasma glucose with the 

assumed substantially limited glycogen availability in the HF trial.  

 

The trend for an overall suppression of plasma NEFA in the NHF compared to the 2 

eucalorific trials is in accordance with some prior short term (3-9days) overfeeding studies 

with samples taken at rest (Samocha-Bonet et al. 2010; Cornier et al. 2007; Brons et al. 2010; 

Gillberg et al. 2014). However, this is not a consistent finding with others showing short-

term lipid overfeeding to not affect or indeed increase resting NEFA concentration 

(Dirlewanger et al. 2000). In the most similar study to the present, Zehnder et al (Zehnder et 

al. 2006) did not observe a suppression of plasma NEFA concentrations over the course of a 

3hr exercise bout after a 1.5-day lipid supplemented diet compared to a high carbohydrate 

control diet. However, a small reduction in the contribution of plasma NEFA to total fat 

oxidation was reported following the lipid supplementation (25 ± 3% vs 32 ± 3%). In the 
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Zehnder et al study, the lower availability of plasma NEFA was compensated for with a 

reciprocal rise in IMTAG use, maintaining a similar overall rate of whole-body fat oxidation. 

The greater IMTAG storage observed following the 1.5-day fat supplemented diet was 

unlikely to be directly causing the suppression in plasma NEFA. Rather the suppression of 

plasma NEFA was more likely a result of the greater insulin response over the first 45mins of 

exercise, suppressing adipose tissue lipolysis and accentuating the translocation of fatty acid 

transporters (FAT/CD36) to the plasma membrane for greater plasma NEFA clearance 

(Luiken et al. 2002). 

 

With only a trend (p=0.07) for marginally lower (~1.2µU/ml) concentrations of the lipolytic 

suppressive hormone insulin after the HF diet, it seems unlikely that this hormone 

contributed largely to the greater rates of fat oxidation observed between the N and HF 

trials. While speculative, other potent regulators of lipolysis such as the catecholamines 

adrenaline and noradrenaline that were not measured in the current study, but are 

stimulated to a greater extent after a HF diet could be responsible for the greater whole 

body lipolytic response seen between HF and NORM (Jansson, Hjemdahl, and Kaijser 1982; 

Helge, Richter, and Kiens 1996). However, the 14% lower insulin AUC after the HF diet 

compared to the NHF combined with the substantially lower plasma NEFA in the NHF trial 

suggests a possible role for insulin in explaining differences in fat oxidation between HF and 

NHF.  
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In contrast to when carbohydrate is restricted, simply adding fat to the diet did not augment 

lipid oxidation during exercise. The blood measurements made suggest a largely similar 

metabolic response between N and NHF, which may support the substrate oxidation data at 

least from the perspective of the circulating milieu measured. The similar plasma NEFA 

concentrations between the NORM and the NHF trials is in agreement with the plasma NEFA 

data from (Zehnder et al. 2006). Although the catecholamine response was also not 

measured in the study of Zehnder et al, other lipolytic hormones such as growth hormone 

and cortisol also did not differ between the two dietary conditions suggesting a similar 

stimulation of whole body lipolysis. Regardless, what the data do allow us to suggest is that 

with the almost identical rates of substrate oxidation in the NHF and NORM diets and the 

~33% greater fat oxidation seen in the HF trial, it appears that dietary carbohydrate 

availability is primarily responsible for this disparity in substrate oxidation.  

 

The abovementioned findings are consistent with the work of Zehnder and colleagues 

(Decombaz et al. 2013; Zehnder et al. 2006), although important methodological differences 

in our study led us to initially hypothesize a different outcome would arise. Firstly, in the 

aforementioned studies, the much shorter duration of lipid excess (1.5days) was unlikely to 

induce any major metabolic adaptations that would enhance lipid oxidation other than an 

increase in IMTAG, with changes in protein content of genes involved in fatty acid transport 

and oxidation needing closer to 5-days to materialise and take advantage of greater lipid 

availability. Secondly, the difference in the biological sex of the participants. Women have a 

greater preponderance to use lipid during exercise, with greater potential IMTAG storage 

and utilisation than men, and a more favourable hormonal milieu to take advantage of 
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excess dietary lipid even prior to adapting to a HF diet. Nevertheless, there were no 

substantial differences reported here, compared to the previous studies that employed men 

supplemented for a shorter time frame, in the rate of substrate oxidation or in plasma 

metabolites indicative of carbohydrate or fat metabolism (Decombaz et al. 2013; Zehnder et 

al. 2006). Our combined findings therefore demonstrate that dietary fat intake is not 

matched by an up regulation in lipid oxidation unless carbohydrate intake is simultaneously 

restricted, at least when studied over a 5-day intervention period. This supports the 

suggestion that carbohydrate availability per se is the key determinant of the rate of lipid 

oxidation during exercise (Sidossis et al. 1996).  

 

These findings though must be viewed in light of the absence of measurements made of the 

myocellular substrate availability or proposed cellular adaptations to the different dietary 

interventions. We therefore cannot be certain if any changes in substrate availability or 

metabolic adaptations occurred following the dietary interventions employed. Although 

based on prior research following a HFLC diet for an equivalent period it seems likely that 

the HF trial would have induced at least some of the previously mentioned adaptations, but 

we are left to speculate somewhat on the adaptations to the NHF trial with insufficient data 

to the myocellular response to lipid excess without concomitant carbohydrate restriction.  

 

5.4.2 Metabolomics 

Using the more holistic approach of metabolomics to explore the independent effect of both 

the dietary intervention per se and of exercise per se, was an a-priori objective of this study. 
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Unfortunately, due to delays in processing and analysing the metabolomics data, a more 

thorough interrogation and exploration of the data has not been possible, however the 

preliminary analysis allows us to generate some initial insights into the impact of the dietary 

intervention and exercise on the plasma metabolome. 

 

The snap shot metabolomics data at both rest and at the 90min time point of the exercise 

bout showed a substantially greater number of sphingolipids, glycerophospholipids and acyl 

carnitine metabolites to be perturbed following the HF trial than either the NORM or NHF 

diet. Although we do not have substrate oxidation data at rest, it is possible that this would 

have matched that of exercise, with greater rates of fat oxidation in the HF trial than the 

NORM and the NHF trial. Previously acyl carnitines have been suggested as a biomarker of 

beta oxidation during exercise (Lehmann et al. 2010) . The greater number of acyl carnitine 

metabolites (in addition to the elevated plasma NEFA data) perturbed in HF as compared to 

NORM or NHF coupled with the corresponding differences in fat oxidation observed in those 

trials is thus consistent with the notion of a greater activation and flux through the beta 

oxidation pathway in the HF trial than the NORM and NHF trials. A further interesting 

observation from the resting metabolome data was that a large number of triacylglyceride 

and diacylglyceride class of metabolites were significantly different in the NORM compared 

to both the NHF and the HF diet. This is in agreement with the resting triglyceride data 

presented in Table 5-4 and could reflect differences potentially in hepatic triglyceride 

synthesis in relation to the proportion and/or amount of dietary carbohydrate and fat intake 
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(Mittendorfer and Sidossis 2001). The change in triglyceride metabolites from rest to 

exercise however, was similar across the 3 diets as evident in Figure 5-20. 

In contrast to the single time point analysis, the response of the metabolome from rest to 

exercise (Figure 5-22) was remarkably similar between the dietary conditions regarding the 

number of metabolite classes and the individual number of metabolites that changed. This 

suggests that similar pathways were perturbed, and to a similar degree in response to the 

increased metabolic demand from rest to exercise. An example of this is the acyl carnitine 

data, which while pronounced across all dietary conditions was quite similar in the direction, 

magnitude and number of metabolites perturbed regardless of dietary intake. This most 

likely reflects that fat oxidation was activated in all conditions, although the single time point 

acyl carnitine data perhaps provide more insight into the magnitude of fat oxidation across 

the diets. One exception with respect to the exercise response was the triglyceride data, 

which using the non-FDR corrected data showed a substantially greater number of changes 

in individual triglycerides in the NORM trial compared to the NHF and the HF trials.  The 

significance of this finding is not clear, but perhaps reflects the greater availability and 

utilisation of plasma triglyceride species in the NORM trial.  

 

Collectively, the metabolomics data suggest there is some discrimination in the metabolite 

responses similar in relation to the clear differences observed in fat oxidation between HF 

and the NORM/NHF conditions (i.e., acyl carnitines). Nonetheless, there are clear large 

exercise effects and possibly diet-exercise interactions that are worthy of further 

investigation in order to fully understand the significance of the metabolomics investigation. 
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5.4.3 Selected blood markers of cardiovascular disease risk and insulin sensitivity 

The study diets elicited small yet significant changes in the plasma lipid profiles of this cohort 

of healthy regularly exercising women. After the dietary intervention, no differences were 

seen in the LDL-C between the trials, with the higher total cholesterol following the HF diet 

mainly mediated by the 9% greater HDL-C compared to the NORM, which had a substantially 

(38%) elevated TAG compared to both the HF and the NHF trials. Similar alterations in the 

plasma lipid profile following either a high fat low carbohydrate or high carbohydrate low fat 

diet have been reported previously in endurance trained individuals, with elevations of TAG 

as high as 50% following a diet higher in carbohydrate and more restricted in fat than the 

present study (Thompson et al. 1984; Larson-Meyer et al. 2008; Brown and Cox 1998; 

Hamzah et al. 2009). The effect that carbohydrate intake has on TAG however is also related 

to the total amount of dietary fat, with no significant differences seen between the HF and 

the NHF diets, the extra dietary fat offset the adverse reduction in HDL and increase in TAG 

seen in the NORM which is similar to 5-days of fat overfeeding (extra 50% EI) in men (Brøns 

et al. 2009). A meta-analysis from the Institute of Medicine suggest that for every 5% 

decrease in total fat, TAG levels will increase by 6% and HDL will decrease by 2.2%, this 

association was only apparent in the present study when the macronutrient change was iso-

caloric (IOM 2005). The finding that TAG levels are only reduced when carbohydrate content 

is reduced is partially supported by prior high fat over feeding interventions, whereby an 

extra 1275 kcal (94% fat) a day for 5 days had no impact on fasting TAG (Bakker et al. 2014), 

i.e. the change of fat per se had little impact. 
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The mechanisms whereby a fat restricted, high-carbohydrate diet adversely alter plasma 

TAG and HDL -C is thought to involve a carbohydrate and insulin induced activation of both 

sterol regulatory element–binding protein (SREBP-1c) (a transcription factor that regulates 

triglyceride synthesis) (Horton, Goldstein, and Brown 2002), and through a suppression of 

LPL activity (Kiens et al. 1987). LPL catalyses the hydrolysis of TAG rich chylomicrons and 

VLDL-C in the capillary endothelium, and through the actions of cholesterol ester transfer 

protein, a reciprocal transfer of cholesterol and TAG occurs between these TAG rich 

lipoproteins and HDL (Davidson 2010). For a more thorough review of the mechanisms and 

factors responsible for altering the plasma lipid profile please see a comprehensive review 

by the American Heart Association (Miller et al. 2011). 

 

Although the NORM diet had this adverse effect on the plasma lipid profile, the effects were 

only marginal regarding implications for the risk of developing cardiovascular disease. For 

instance when compared to the current recommendations for women without family history 

/ increased risk of coronary heart disease of (Total cholesterol <5mmol/l, LDL < 2mmol/l, 

HDL >1mmol/l and TAG <1.7mmol/l) (Miller et al. 2011) none of the subjects was outside of 

these recommended ranges after any of the study diets. Accordingly, when combined with 

regular exercise over a period of 5 days in healthy pre-menopausal women, diets vastly 

different in intakes of total fat and carbohydrate appear able to maintain plasma lipids 

within the recommended ranges.  
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Although there was a significant main effect of diet on HOMA-IR, the pairwise comparisons 

did not indicate which trials significantly differed, but suggested a trend (P =0.07) for a slight 

blunting of insulin sensitivity in the NHF trial compared to the HF trial. Using a hyper-

insulinaemic euglycaemic clamp, an almost twofold increase in the hepatic insulin resistance 

index was observed following 5-days of high fat overfeeding in previously healthy men 

compared to a diet similar to the current study NORM (Brøns et al. 2009). The daily exercise 

(days 1-4) performed by the volunteers in the present study that can increase insulin 

sensitivity for hours to days afterwards (Keshel and Coker 2015) may have masked any 

deleterious effect of the excess fat in the NHF trial on the calculated HOMA-IR.  

 

5.4.4 Hormonal status and progesterone only contraceptive 

This study shows for the first time that the metabolic response during moderate-hard 

intensity exercise following controlled dietary provision and manipulation does not differ in 

women using a progesterone only form of contraceptive to those that are regularly 

menstruating. We also saw no differences in the oestrogen or progesterone values between 

the different diets (p>0.05) when the group was considered as a whole or when compared 

separately by contraceptive use. The literature is mixed regarding the effect of dietary fat 

intake and endogenous oestrogen concentration (Wu, Pike, and Stram 1999). Two recent 

cross sectional analyses of >259 regularly menstruating women however, concluded that 

there was no association between total and/or specific types of dietary fat intake and sex 

steroid hormone concentrations (Cui et al. 2010; Mumford et al. 2016). Taken alongside the 

similar sex steroid values between the diet conditions, it was not considered necessary to 



Chapter 5 

 187 

account for the hormone status or contraceptive use of the subjects in any subsequent 

analyses. 

 

The data from the current study suggest it is unlikely that either the progesterone only 

contraceptives used in this investigation or the circulating oestrogen and progesterone 

concentrations are responsible for changes in substrate metabolism reported. However, our 

measurements of both hormones were obtained at rest, whereas both these hormones have 

been shown to increase to varying degrees during exercise (Jurkowski et al. 1978), and so 

our resting values may not have reflected the hormone concentration when the substrate 

oxidation measures were made and so this cannot excluded. Additionally, as seen in Figure 

5-8 & Figure 5-9, considerable variability existed in the gonadal hormone concentration, 

both within and between subjects even with the progesterone only contraceptive group, 

likely reflecting the athletic population studied who often present with menstrual cycle 

irregularities (Bonen et al. 1979; De Souza et al. 1998). Table 5-6 shows that 45% of the 

testing sessions of the regularly menstruating women commenced outside of the expected 

follicular phase of the menstrual cycle and although this is not uncommon (D'Eon et al. 2002; 

Casazza et al. 2004) it may confound the interpretation.  

 

5.4.5 Time trial performance 

A final objective of this investigation was to delineate the effect of increasing dietary lipid 

availability on endurance performance in trained women runners. Sample size calculations 

performed post analysis, using a power of 0.8 with an alpha of 0.05, and the calculated η2 



Chapter 5 

 188 

effect size 0.06, suggest an additional 7 subjects were needed to observe a true effect 

between the different dietary groups. Nonetheless, from the sample size used, this 

investigation shows for the first time in women that a HFLC diet, and a fat supplemented 

diet not restricted in carbohydrate has minimal impact on the performance of a 5km fasted 

TT. Although the time taken to complete the 5km TT after the HF diet was 1.6% and 1.3% 

longer than the NORM and N+HF trials respectively, this did not amount to a statistically 

significant difference, neither was the 0.3% difference between the NORM and NHF trials.  

 

Despite the substantial differences in substrate oxidation rates between the trials, there 

were no positive or negative effects of a HF diet consumed for 5 days compared to both a 

normal diet and one supplemented with extra fat. Although it could be argued than a more 

suitable comparison diet would have been a high carbohydrate diet, an initial aim was to 

investigate the effects of a diet more typically followed by women runners, and with no 

difference to the subject’s habitual diet our prescribed N    diet fulfilled this objective. 

Whilst this inevitably meant the fat intake between the NORM and HF diets were less 

contrasting than if a HCLF diet had been used, this study still observed vastly greater rates of 

lipid oxidation during the HF trial, which is inferred as reduced rate of muscle glycogen 

oxidation, likely through lower availability and/or a diminished capacity to use it 

(Stellingwerff et al. 2006).  

 

In the current study to ensure no interference with the assessment of performance, no 

metabolic observations were made that might have offered insights into differences in 
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metabolism reflective of myocellular substrate depletion during or at the end of the TT. 

Nonetheless, with similar times taken to complete the TT and no differences between trials 

in the pacing strategy used, it could be suggested that dietary carbohydrate intake and by 

inference muscle glycogen content, was not a major determinant of endurance performance 

in women following 5-days adaptation to a HF diet in the present study.  

 

Although no pre-intervention dietary control was implemented in this study, participants 

were required to refrain from strenuous exercise the day prior to commencing an 

intervention diet. In this regards, and with no differences seen in body mass or aerobic 

fitness at the start of each dietary intervention, the pre-diet “re-familiarisation” TT’s provide 

a useful measure of the reliability of the 5km TT. The average intra-individual CV of 2.8 ± 

1.8%, and the average intra-class correlation coefficient 0.87 (95%CI 0.70 – 0.96) is similar to 

the CV of 1.26 ± 0.45% reported for a 10km run after a similar 90min preload at 65%   2 max 

suggesting a reasonably good repeatability of the test (Russell et al. 2004). Additionally, the 

lack of an order effect implies that any potential learning effect was accounted for by the 

multiple familiarisations / practice TT runs at the start of each trial.  

 

Our trend for a lower heart rate in the NORM trial throughout both the submaximal 90min 

preload and over the course of the 5km TT despite similar running speeds and times 

between trials is indicative of a greater catecholamine response to the extra dietary fat in 

the HF and NHF trials (Jansson, Hjemdahl, and Kaijser 1982; Helge, Richter, and Kiens 1996). 
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The marginal elevation in heart rate is suggestive of a dietary fat induced greater 

cardiovascular demand, although this did not transpire into any change in performance.  

 

5.4.6 Body composition  

In both the HF and the NORM diets, as intended, the participants were estimated to be in 

state of energy balance with the prescribed diets closely matching the estimated energy 

expenditure, whereas the NHF diet induced a state of positive energy balance (~125%). 

Despite the close matching of intake and expenditure in the NORM and HF diets, there was a 

significant 0.63 and 1.45kg loss of body mass seen from pre to post diets respectively, with 

no change in body mass following the NHF diet. The lack of change in body mass following 

the NHF is similar to other overfeeding studies of this duration and magnitude of caloric 

excess (Gillberg et al. 2014), with an amplification of either of these parameters likely to 

induce significant weight gain. The significantly greater body mass loss in the HF trial (than 

both the NORM and NHF) was likely related to the assumed greater reduction in glycogen 

stores and the associated storage of the 3-4g of water alongside each molecule of glycogen 

(Olsson and Saltin 1970). This equally could explain the attenuated loss of weight in the 

NORM trial where the intake of carbohydrate was not limited to the same extent as the HF 

diet but with the daily exercise (day 1-4) may still have induced net glycogen degradation.  
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5.4.7 Conclusion 

In endurance-trained women, it is the removal of carbohydrate from the diet that is the 

decisive component of a high fat (60-65% EI) diet that augments greater rates of whole body 

lipid oxidation during moderate-hard intensity exercise. The provision of supplemental 

dietary fat (additional 1.5g/kg BM/day) on the background of a carbohydrate replete diet 

(6.1g/kg BM/day) does not alter whole body substrate oxidation compared to a diet 

containing less fat and an equal amount of carbohydrate (6.1g/kg BM/day). Both regularly 

menstruating women and women using a progesterone only form of hormonal 

contraceptive had a similar metabolic response during exercise per se and following high fat 

diets consumed for 5 days, which did not display any deleterious effect on long-term plasma 

markers of CVD or insulin sensitivity. Finally, the dietary fat and carbohydrate content in the 

proportion and amounts consumed in the present investigation for a period of 5 days did not 

substantially impact preloaded (90 min at 65%   O2max) 5km running performance 

performed in the overnight-fasted state. 
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6 GENERAL DISSCUSSION 

The overarching theme of this thesis was to investigate the effect of nutrition on substrate 

metabolism, metabolic health and endurance exercise performance.  

More specifically the aims of the thesis were: 

1. To better understand the determinants of the variability in maximal rate of fat 

oxidation during exercise, with particular reference to the influence of nutrition; 

2. To comprehensively characterise the metabolic response in women during 

moderate-hard intensity exercise following diets high in fat but limited in 

carbohydrate or high in fat and not limited in carbohydrate. A subsidiary aim was to 

characterise the metabolic response to dietary fat manipulation in users of a 

progesterone only form of hormonal contraceptive; 

To investigate the impact of dietary fat manipulation on endurance exercise 

performance and markers of health in well-trained women. 

This section will discuss the key findings providing further comments on limitations and 

considerations of the findings along with the practical relevance and a concluding summary. 

 

6.1  Inter-individual variation 

Using a relatively large cross-sectional study of 305 healthy men and women, Chapter 4 was 

able to explain ~ 46% of the inter-individual variation in the maximal rate of fat oxidation 

during exercise, with dietary intake accounting for ~3% of the explained variability. The 
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other determinants of the variability in MFO were attributed to aerobic capacity, biological 

sex, fat-mass and self-reported physical activity level.   

 

The substantial 6 fold variability in MFO recorded in Chapter 4 is comparable although 

slightly greater than that reported by a previous and similarly focused study (Venables, 

Achten, and Jeukendrup 2005).  Indeed, many of the same independent variables identified 

in Chapter 4 to be key determinants of the variability in substrate oxidation during exercise 

were the same as the aforementioned study. However, the improvements in methodology 

and statistical analysis highlighted in Chapter 4 that remove the confounding present in the 

previous work make the findings in this thesis more robust. Additionally, the analysis in 

Chapter 4 was also able, for the first time, to associate a modest yet meaningful proportion 

of the variability in MFO to the intake of carbohydrate and fat. This was directionally 

consistent with what would be expected from prior dietary manipulation studies (Helge, 

Richter, and Kiens 1996) whereby a greater intake of fat was associated with a higher MFO 

with carbohydrate intake showing the opposite association. As well, exploratory analysis 

indicated that the associations of nutrition with MFO appeared clearer in women than men. 

As a follow-up to the observations in Chapter 4, the impact of manipulating fat oxidation 

during exercise through increases in dietary fat intake consistent with the regression analysis 

was later investigated in women in Chapter 5.  

 

Although an improvement on prior research (Venables, Achten, and Jeukendrup 2005), the 

work in Chapter 4 still left the majority (54%) of the variance in MFO unaccounted for. This is 
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likely to be an amalgamation of, as of yet unidentified determinants (e.g. altered single 

nucleotide polymorphisms in key lipid oxidising regulatory enzymes), random error in 

measurement, and factors that are known to impact substrate metabolism during exercise 

that were simply not measured. For instance, the intake and subsequent storage of 

carbohydrate as muscle glycogen, is known to be one of the main determinants of substrate 

oxidation during exercise. Based on the work of Goedecke et al (Goedecke et al. 2000), it is 

quite likely that a measure of resting muscle glycogen content in Chapter 4 would have 

either added to the amount of variability explained by the regression analysis or lessened 

the importance of carbohydrate intake to the regression analysis by likely sharing some of 

the explained variance. Indeed, this perhaps explains why carbohydrate intake does not 

feature in any of the stepwise multiple linear regression models used to predict RER during 

exercise whereas muscle glycogen content features in all (Goedecke et al. 2000).  

 

A limitation not previously addressed in the study from Chapter 4 was that no insights were 

gained on either a cellular level or of the circulating metabolites known to influence 

substrate oxidation during exercise. Both of these measures would likely have contributed to 

the unexplained variance (Robinson et al. 2016). However, at the onset of the study it was 

decided for practical and recruitment reasons that measuring the plasma metabolite 

response during exercise at the same time as the measurement of MFO in such a large 

sample of individuals would have been unfeasible. As an alternative, a resting urine or single 

blood sample could more easily have been collected for metabolomics profiling, which could 

have been combined with a measure of resting substrate oxidation perhaps helping to 

explain a greater proportion of the variability seen (Goedecke et al. 2000). In this regards a 
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measurement of resting IMTAG content was only relevant in explaining RER at the exercise 

intensity (50%W peak) most closely matching the average FatMax of Chapter 4 and would 

likely have contributed substantially (Goedecke et al. 2000). 

 

6.2 Carbohydrate intake as the key dietary regulator of fat oxidation 

As suggested from Chapter 4 and confirmed in Chapter 5, carbohydrate intake seems to be 

the central dietary factor determining the relative proportion of fat and carbohydrate 

oxidised during exercise. Using the regression analysis from Chapter 4, carbohydrate intake 

was the only consistent diet related determinant of MFO when the data set was split and 

explored separately for both men and women. In addition, in the main regression analysis, 

compared to the other macronutrients, carbohydrate intake had the largest standardised 

Beta weights, indicating a greater importance in predicting MFO than either fat or protein 

intake.  

 

The importance of carbohydrate intake determining substrate oxidation was further 

highlighted in Chapter 5 where rates of fat oxidation during exercise were only changed 

when the carbohydrate content of the diet was restricted. The increase in fat intake per se 

only achieved an elevation in the rate of fat oxidation when carbohydrate intake was also 

limited. This is the first study to demonstrate this following a period of dietary change 

assumed to be of sufficient duration to elicit dietary fat induced adaptations. During 

exercise, under these conditions of restricted carbohydrate availability the increase in 

energy demand must be met by an increase in the available substrate – lipid. Under 
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conditions of ample carbohydrate availability, the increase in energy demand during exercise 

is met by oxidation of the available substrates – carbohydrate and fat. The disparity between 

fat availability and fat oxidation when carbohydrate intake is not restricted (seen in the NHF 

diet) suggests that the presence of carbohydrate negates the need to oxidise the available 

lipid. This has been described previously as a reverse-Randle cycle (Sidossis and Wolfe 1996), 

whereby despite the greater availability of fat, which in the original concept of Randle 

(Randle et al. 1963) would down-regulate carbohydrate oxidation, it appears that during 

exercise the availability of carbohydrate acts as a brake on the oxidation of fat even when 

lipid availability is plentiful. 

 

6.3 Menstrual phase and hormonal contraceptives 

In Chapter 4 using a questionnaire to document hormonal contraceptive use and a crude 

calendar based approach to estimate the phase of the menstrual cycle that MFO was 

determined in, we observed; firstly, that there was no significant difference (p=0.07) in the 

MFO between regularly menstruating women in the follicular compared to luteal phase of 

the menstrual cycle. Secondly, we observed that those using a hormonal form of 

contraceptive, irrespective of the type, had a significantly higher MFO than regularly 

menstruating non-hormonal contraceptive users. Given the oestrogen suppressive effect of 

PROGEST (Ruan, Seeger, and Mueck 2012; Mäkäräinen et al. 1998) it was surprising to 

observe greater rates of fat oxidation in this group compared to the regularly menstruating 

group and to have an equal rate as the women using a combined (exogenous oestrogen) 

form of contraceptive. 
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Chapter 5 presented the opportunity to test the observation of greater lipid oxidation when 

using PROGEST and to better characterise substrate metabolism in these women compared 

to regularly menstruating women during exercise in response to high fat dietary 

manipulation. The women using PROGEST were well matched to the regularly menstruating 

women with no significant differences seen in age, weight, body composition, aerobic 

capacity or habitual diet. In contrast to the observations in Chapter 4, using the stronger 

study design in Chapter 5 (parallel, matched groups vs. cross-sectional observation) we 

report for the first time, that there are no significant differences in substrate oxidation 

during exercise, or differences in markers of carbohydrate and fat metabolism in the blood 

at rest or during exercise following what might considered a normal-balanced diet or in 

response to dietary fat manipulation between PROGEST users and regularly menstruating 

women. 

 

In Chapter 5, neither the sex hormone concentrations nor the use of a PROGEST 

contraceptive, were found to statistically influence the outcomes in respect of substrate 

metabolism during exercise. However, a somewhat unexpected observation was the large 

variability in sex hormone concentrations even within the PROGEST users. Similar variations 

in sex hormone concentrations despite efforts to control for the phase of the menstrual 

cycle have however previously been reported (Casazza et al. 2004) possibly reflecting the 

pulsatile nature of their release for instance progesterone can fluctuate >17 fold within an 

hour (Filicori, Butler, and Crowley Jr 1984). Furthermore, despite PROGESTs suppressive 
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effect, ovarian activity and growth is still known to be present (albeit of a lesser absolute 

magnitude) and so hormone concentration can still fluctuate in this population (Mäkäräinen 

et al. 1998; Croxatto and Mäkäräinen 1998). In future studies, if the outcome is expected to 

be strongly influenced by the concentration of the sex steroids then this is something worthy 

of consideration, with recommendations provided in a recent article (Stachenfeld and Taylor 

2014). 

 

6.4 Exercise Performance  

In Chapter 5, we observed no significant effect a HF diet consumed for 5 days compared to 

both a normal diet and one supplemented with extra fat on the time taken to complete a 

5km TT. The vastly lower rates of carbohydrate oxidation in the HF trial were inferred to 

mean there was a reduced rate of glycogen oxidation compared the NORM and NHF trials, 

either through reduced availability of glycogen or the capacity to utilise it (Stellingwerff et al. 

2006; Bergstrom et al. 1967). Nevertheless, the similar pacing strategy and overall time 

taken to complete the TT compared to the two trials with presumably greater glycogen 

availability, suggest that glycogen availability was not a major determinant of endurance 

performance in women in the exercise model used. It could be argued that the 90min 

preload and the 5km performance measure was not either intense enough or long enough 

to fully stress muscle glycogen stores and so this did not limit exercise performance. Indeed 

there were no clear differences in performance or whole body substrate oxidation following 

the NORM and NHF trial with assumed equal availability of glycogen, which is in accordance 

with respect to both substrate oxidation and similarity in exercise performance reported 
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after a similar but higher carbohydrate diet for 1.5days (Decombaz et al. 2013; Zehnder et al. 

2006). Although we saw no difference using a measure of performance, had we chosen a 

measure of exercise capacity, then perhaps we would have truly stressed the glycogen 

content and seen similar positive effects to higher dietary carbohydrate intake and 

availability (O'Keeffe et al. 1989; Bergstrom et al. 1967).  

 

It is also possible that we have a type 2 error, reflecting the notoriously difficult objective of 

measuring exercise performance or capacity in the laboratory with the reliability of the tests 

often used insufficiently sensitive to detect a real or meaningful change in performance 

(Currell and Jeukendrup 2008). Knowing that the determinants of exercise performance are 

complex and multi-factorial, particularly in endurance events where pacing and the 

perception of effort can be just as important in determining performance outcome as 

substrate provision (Hampson et al. 2001), and so other often uncontrolled factors could be 

playing a part (Halperin, Pyne, and Martin 2015).  

 

6.5 Health perspective and practical implications  

Evidence suggests that a low capacity to oxidise fat is an important determinant in the 

development of obesity and overall metabolic health. For instance, a high resting respiratory 

quotient (RQ) which is indicative of low relative rates of fat oxidation, is predictive of future 

weight gain (Zurlo et al. 1990; Marra et al. 2004; Shook et al. 2015; Ellis et al. 2010), the 

development and progression of NIDDM, hypertension and atherosclerosis (Montalcini et al. 
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2016; Ferro et al. 2013; Montalcini et al. 2012). As well, a strong association exists between 

the MFO achieved during exercise and both the rate of fat oxidation measured over a 24hr 

period in a whole room respiratory chamber and insulin sensitivity (Robinson et al. 2015). 

Thus the better understanding of the determinants of MFO observed in chapter 4  may help 

both metabolic health through exercise prescription and body composition improvements / 

maintenance (Venables and Jeukendrup 2008). 

 

With the consistent finding between Chapter 4 and the work of Venables et al (Venables, 

Achten, and Jeukendrup 2005), aerobic capacity and physical activity appear to be the most 

robust modifiable determinants of MFO that could be the focus of public health 

interventions aimed at improving metabolic health and body composition. Whilst dietary 

intake is also a modifiable factor, the substantially greater Beta coefficient weighting in the 

regression analysis for aerobic capacity and physical activity indicate that these would likely 

induce greater effects on MFO and by inference metabolic health. Although the cross 

sectional study design that identified these associations does not permit causality and firm 

conclusions to be drawn. 

 

From the sex specific regression analysis from chapter 4 in women, it would be predicted 

that a 150g/day increase in the total amount of fat in the diet whilst keeping all other 

determinants of MFO constant (aerobic capacity, physical activity level, body composition, 

carbohydrate and protein intake), would be associated with an increase MFO of 0.15 g/min. 

This prediction however, was not substantiated in Chapter 5 with the extra dietary fat 
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provided in the NHF trial not changing whole body fat oxidation compared to the NORM 

trial. As described previously, this implies that rather than a push to oxidise more fat during 

periods of high fat availability the carbohydrate brake must also be removed to augment fat 

oxidation (Sidossis and Wolfe 1996).  

 

The lipid overfeeding model used in Chapter 5 although providing insights into the metabolic 

effect during exercise to short term periods of over-consumption, is not a model to consider 

from the perspective of inducing an increase in fat oxidation to improve metabolic health or 

body composition. In this regard, a state of dietary induced negative energy balance would 

be sought with the composition of the reduced macronutrient intake needing to be fat. 

Recent data suggest that under dietary induced negative energy balance conditions, a 

restriction of dietary fat leads to a greater body fat mass loss than an isocaloric restriction of 

carbohydrate. This is despite the restriction of carbohydrate augmenting a greater rate of fat 

oxidation, the overall net fat loss after accounting for fat intake is greater (Hall et al. 2015).   

 

In Chapter 5, minimal adverse health effects were seen following the acute (5day) lipid 

overfeeding on markers of CVD risk, body composition and insulin sensitivity. This is 

suggestive that short periods of lipid overfeeding are not overly detrimental to health. It is 

quite likely that the regular exercise and physical activity of the women studied in Chapter 5 

offset to some extent the expected deleterious effects of the excess dietary fat, thus when 

overconsumption is likely, staying as physically active as possible may offer some metabolic 

protection (Walhin et al. 2013). However, had the diet continued for a period longer than 
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5days, then the positive fat and energy balance would undoubtedly have led to greater body 

fat accumulation which is an independent risk factor for metabolic disorders such as Type 2 

diabetes. It would seem sensible to suggest that periods of overconsumption must be met 

with a similar increase in energy expenditure in order to mitigate against body fat 

accumulation.  

 

6.6 Limitations 

The limitations of methods used per se or in the study designs have been addressed 

throughout the thesis as they became relevant, however two further potential 

considerations not previously discussed are addressed below. In Chapter 5 it could be 

argued that the Actiheart activity monitors that were used to estimate EE, are not valid for 

this purpose during periods of over feeding due to the potential impact overfeeding has on 

resting heart rate (Walhin et al. 2013). Indeed, 6 weeks of overfeeding by 150%EI was 

previously shown to increase resting heart rate by 5bpm (Norgan and Durnin 1980) and so 

this may have resulted in small increase in calculated EE in the current investigation as may 

well of the extra fat in the HF trial (Helge, Richter, and Kiens 1996). However, this is unlikely 

given that the branched chain equation used by the Actiheart software prioritises activity 

counts rather than heart rate when at low physical activity levels that occupy the majority of 

the time. Furthermore, overestimation of energy expenditure would have been offset by a 

methodological oversight of not accounting for potential dietary induced changes to diet 

induced thermogenesis (DIT). Although only the smallest component of total energy 

expenditure, DIT is influenced by the macronutrient composition of the diet, with a 
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macronutrient hierarchy in the magnitude of DIT, ranging from 20-30% for protein, 5-10% 

for carbohydrate and 1-3% for fat (Westerterp 2004). The EI and EE calculated for each trial 

did not account for these differences, rather the standard mixed diet fixed factor of 10% EI 

was used (Westerterp 2004; Tappy 1996). Thus with both the HF and the NHF diet the EE 

through DIT would likely have been less than 10%. DIT was not however measured, and so 

with the small overall contribution to total EE, and the inter-individual variation in DIT it was 

not individually accounted for. 

 

In Chapter 5, no attempts were made to control the timing of meals / snacks in relation to 

exercise training sessions over the dietary manipulation period. Recent work however 

(Marquet et al. 2016) suggests that nutrient availability independent of macronutrient 

composition can augment or blunt training induced cellular adaptations that later impact 

substrate oxidation and exercise performance and thus should have been controlled. 

Moreover, it could also be argued that the 30% excess fat (~kcal700 daily) provided in the 

NHF trial in Chapter 5 was not sufficient lipid surplus to perturb homeostasis and 

substantially induce metabolic adaptations to a level detectable in an active cohort of 

women. However, from a practical perspective, subject compliance would be a major factor 

in achieving greater than a 30% EI in a cohort of individuals with notoriously restrictive 

eating habits.  

6.7 Future research 

Considering that the majority of the inter-individual variability in MFO is unaccounted for, 

this should be a focus of future research. Utilising substantially larger sample sizes than 
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those used in Chapter 4, future work should use multiple omics based approaches, with the 

aim of identifying currently unknown factors regulating substrate oxidation during exercise. 

This should be combined with measures already known to impact substrate oxidation such 

as the determinants identified in this thesis but to also factors not measured here but 

already thought to be important, such as the myocellular substrate availability. With the 

greater understanding yielded from this combined approach, a better tailoring and 

individualised prescription of ways to augment lipid oxidation to improve metabolic health 

could be provided.   

 

Following on from the augmented rates of fat oxidation in women to the HFLC diet in 

Chapter 5, future research should determine if the cellular adaptations to this intervention 

are a) similar to men, and b) if they persist after carbohydrate restoration, c) if this elicits 

improvements in endurance performance.   

 

Despite showing no differences in substrate oxidation between regularly menstruating 

women and those using a PROGEST only form of contraceptive, the work in animal models 

suggests a potential for a down-regulation of lipid oxidation. The many metabolic differences 

seen between rodents and humans require future pharmacological longitudinal based 

approaches in human, measuring at the cellular level, pre and post intervention to confirm 

or refute whether the effect seen in rodents is translatable to humans.  
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6.8 Conclusions 

This thesis demonstrated that there is substantial inter-individual variation in the capacity to 

oxidise fat whilst physically active. Just under half of this variability was explained by aerobic 

capacity, self-reported physical activity, biological sex, body composition and the dietary 

intake of fat and carbohydrate. The contribution of diet to the explained variability was 

modest at ~3%, with the intake of fat associated with an increase in MFO and the opposite 

relationship observed for carbohydrate intake. Further research utilising a variety of 

different “omic” based approaches and large cohorts are li ely required to delineate the 

remaining unexplained variance. This thesis also showed that despite initial data that might 

have suggested the contrary, regularly menstruating women and women using a 

progesterone only form of hormonal contraceptive exhibited a similar metabolic response 

during moderate-hard intensity exercise following normal and high fat diets. A major finding 

of the present thesis was that augmented rates of fat oxidation during exercise following 5 

days of high fat intake are reliant on the simultaneous or instead restriction of carbohydrate 

from the diet, with no substantial difference seen in substrate oxidation to increased fat 

availability per se. Although no differences on substrate oxidation were apparent on a whole 

body level after this dietary manipulation, confirmation of no changes on a cellular level is 

worthy of follow up. Finally, in trained women runners, a high fat low carbohydrate diet and 

a fat supplemented diet not restricted in carbohydrate had minimal impact on surrogate 

markers of metabolic health or the performance of a pre-loaded (90 min at 65%   O2max) 

5km time-trial performed in the overnight-fasted state. 
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7 APPENDIX 

7.1 Metabolic simulator output 

Oxycon Pro: 808776 Expected Achieved 

 

Breathing frequency: 20 (l/min) 2.00 ± 0.05 2.01 

   2(L/min) 1.009 ± 0.05 1.036 

    2 (L/min) 1.020 ± 0.05 1.054 

RER 1.011 ± 0.04 1.02 

 

Breathing frequency: 40 (l/min 2.00 ± 0.05 2.03 

   2 (L/min) 2.008 ± 0.08 2.035 

    2 (L/min) 2.029 ±0.08 2.069 

RER 1.010 ± 0.04 1.02 

 

Breathing frequency: 60 (l/min) 2.00 ± 0.05 2.04 

   2(L/min) 3.030 ± 0.115 3.101 

    2 (L/min) 3.062 ± 0.115 3.111 

RER 1.011 ± 0.04 1.00 

 

Breathing frequency: 80 (l/min) 2.00 ± 0.05 2.04 

   2(L/min) 4.039 ± 0.15 4.140 

    2 (L/min) 4.082 ± 0.15 4.070 

RER 1.011 ± 0.04 0.99 
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7.2 Food Diary 

PLEASE READ THROUGH THESE PAGES BEFORE STARTING YOUR DIARY 

 

We would like you to keep this diary of everything you eat and drink over 4 consecutive 
days. 

Please include all food consumed at home and outside the home e.g. work, college or 
restaurants.  It is very important that you do not change what you normally eat and drink 
just because you are keeping this record.  Please eat as you normally would do. 

 

Day and Date 

Please circle the study day (1,2,3,4) and write the date at the top of the page each time you 
start a new day of recording. 

 

Time Slots 

Please note the time of each eating occasion into the space provided. 

 

What did you eat? 

Please describe the foods you eat in as much detail as possible. Be as specific as you can.  
The example day shows the level of detail needed such as –  

Cooking methods: (fried, grilled, baked, micro-waved etc). 

Any additions (sugar/sweeteners, sauces, pepper, salt, mustard, etc). 

Type and amount of fat / oil used for cooking, e.g. teaspoon peanut oil, 15g butter. 

What brands, e.g. Kellogg’s corn fla es, places food bought, fresh, frozen, tinned, raw. 

What variety – e.g. semi skimmed milk, low fat pro-biotic yogurt, reduced salt, reduced 
sugar?     

Whether soft drinks were low calorie (diet) or decaffeinated? 

Were fruit juices UHT, pasteurised or freshly squeezed, made from concentrate 

Products such as cheese, fish and meat were they smoked or not 

Meats – what part of the animal? Chicken breast? Legs? Wings? back bacon, streaky bacon, 
extra lean beef mince, value beef mince.  

E.g. a cheese sandwich is really 3 foods – Bread, Margarine and Cheese.  What type / amount 
of bread? Type / amount of spread? Type / amount of cheese?  

 



Chapter 7 Appendix 

208 

 

Remember to record all snacks and drinks throughout the day. 

 

Portion sizes 

Please use the kitchen weighing scales provided to weigh every item of food / drink 
consumed –  emember to Zero after each item of food, and chec  it’s in grams.  Eat the 
amount you would normally eat – don’t use the scales to determine when to stop! 

On rare occasions when weighing is not possible, food quantities can be described using: 

• household measures, e.g. one teaspoon  tsp  of sugar, two thic  slices of bread, 4 
tablespoons (tbsp) of peas, ½ cup of gravy, large portion of takeaway chips.  Be careful when 
describing amounts in spoons that you are referring to the correct spoon size. 

• use weights from labels, e.g.  oz stea ,    g tin of ba ed beans, 1  g pot of Yoghurt – but 
only if everything is eaten – did you eat the fat /skin / bones? 

•  number of items, e.g.   fish fingers, 1  ich Tea biscuit, 1  ing size mars bar 

With foods such as fruit, remember to record the weight of the skin/core/stone in the 
weight leftover column 

 

For drinks, quantity should be described using weights: 

•  n rare occasions when weighing isn’t possible, use the size of glass, cup etc  e.g. large 
glass) or the volume (e.g. 300ml, 1 pint). 

•  use volumes from labels  e.g.    ml can of fizzy drink, 500ml strawberry Innocent 
smoothie). 

 

We would like to know the amount that was actually eaten which means taking into account 
leftovers. You can do this in two ways: 

1. Record what was served and note what was not eaten e.g. 30g of peas, only 12g eaten; 1 
Weetabix, ate ½ 

2. Only record the amount actually eaten i.e. 18g of peas; ½ Weetabix 

 

Homemade dishes 

If you have eaten any homemade dishes e.g. chicken casserole, please record the name of 
the recipe, ingredients with amounts (including water or other fluids)  for the whole recipe, 
the number of people the recipe serves, and the cooking methods used. Write this down in 
the recipe section at the end of the diary.  Record how much of the whole recipe you have 
eaten in the portion size column. 

Take-aways and eating out 
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If you have eaten a take-aways or eaten dishes not prepared at home such as at a restaurant 
or a friend’s house, please record as much detail about the ingredients as you can e.g. 
vegetable curry containing chickpeas, aubergine, onion and tomato.  Please also record the 
name of the restaurant, ta eaway, and the name of the meal, e.g. Domino’s pizza, 1 inch 
meat feast, thin base. 

 

Brand name 

Please note the brand name (if known).  Most packed foods will list a brand name, e.g. Bird’s 
eye, Hovis, or Supermarket own brands.  For ready-made meals or for less well known 
brands, please  eep the pac et’s nutritional information in the bag provided. 

 

Supplements / Medications 

Please also provide information about any supplements you took.  Please record the brand 
name, full name of supplement, strength and the amount taken should be recorded, e.g.  
Maximuscle cyclone powder – 40g (2 scoops), Holland and Barret Cod Liver Oil and 
Glucosamine Capsules (500mg) – 1 capsule. 

If you take any new medicines or stop taking ones we know about please record it here. 

 

Was it a typical day? 

After each day of recording please tell us whether this was a typical day or whether there 
were any reasons why you ate and drank more or less than usual.  E.g. Drank 4 pints of 
Guinness as it was St Patricks day, day 2 ate very little as not feeling well. 

 

When to fill in the diary 

Please record your eating as you go, not from memory at the end of the day. Use written 
notes if you forget to take your diary with you and fill out your diary ASAP.  Each diary day 
covers a 24hr period, so please include any food or drinks that you may have had during the 
night.  Remember to include foods and drinks between meals (snacks) including water. 

 

Overleaf you can see an example day that have been filled in. These examples show you how 
we would like you to record your food and drink, and how to record a homemade dish. 

 

Please document what you ate & drank in as much detail as possible, Remember If it has 
passed your lips record it!   

It only takes a few minutes for each eating occasion! 

We thank you for your efforts in filling out this diary. 
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Recipes / Takeaways 

 

Write in recipes of ingredients of homemade dishes or take-aways 

  

Name of Dish    Fairy Cakes                                 Serves: makes 20 cakes 

Ingredients – Description, Brand,  Amounts 

Tate & Lyle caster sugar 175g 

Anchor butter, unsalted 175g 

ASDA, free range eggs 3 eggs, 172g (no shell) 

ASDA Self raising flour 175g 

Co-op Baking powder 1 teaspoon 

Silver Spoon Icing Sugar 140g  

Water  10ml  

   

   

   

   

   

Description of cooking method 
 
Mix all ingredients (1-5)  together, then separate into 20 equal portions in cup-cases, cook in 
oven for 15mins 
 
Mix ingredients 6 and 7, pour on top of individual cakes after they are cooked and cooled. 
 

Name of Dish  Big Joe’s 1 ”  eat Feast pizza          Serves: 2 equal portions 

Ingredients Amounts 

Deep pan pizza base 16 inch, weight unknown 

Tomato Sauce based 1 ladle 

Green peppers Half green bell pepper 

Spicy salami ~ 12 large slices 

Pepperoni ~ 20 small slices 

Tandoori chicken pieces ~ half chicken breast 

Beef meatballs  6 small meatballs  

Onion Half 

Garlic mayo dip 75ml pot 

Description of cooking method 
 
Oven cooked 
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Time Item / Description Brand / variety Preparation Amount Left-

overs 

07.00 Coco pops Asda  82g  

 Skimmed Milk Asda  322g  

 Pure Orange Juice, not 

from concentrate 

Tropicana – 

with the bits 

 1 large Glass 

- 457g 

 

09.15 Crunchy Granola Oats 

and Honey flavour 

Cereal Bar 

Nature Valley  1 bar – 42g  

 Mug of strong tea Tetley 1 bag 

Water 

Sugar  

Semi  milk 

 

226g 

5g 

27g 

 

10.30 Apple Golden 

Delicious 

Raw 120g 17g 

core 

12.00 Sandwich Home made    

 Bread (Tesco the 

finest) 

Tesco, sliced, 

multigrain 

 2 slices – 98g total  

 Tomato On the vine  84g  

 Lettuce Iceberg  35g  

 Chicken Sandwich  Previously 

roasted leftover 

chicken breast 

meat, no skin 

105g  

 Butter Anchor  8g - Thin layer  

 Cucumber Market  47g  

 Mug of strong tea – 

Same as above 

Same as above    

14.30 Can of Coca-Cola zero Coca-Cola  1 can 330ml  

15.45 Grande Latte Starbucks Extra shot of 

coffee + 

vanilla syrup 

Grande size  

15:45 Chocolate Brownie Starbucks  154g  

16.30 Water Tap  1 pint  

18.30 Pizza - meat feast Big Joe’s – see 

recipe 

Takeaway Half of 16 inch   

18.45 Diet Lemonade Aldi  1.5pints  

20.00 Beer normal strength Carlsberg 5%  4 pints  

22.00 Red-bull, normal (not diet)  300ml  

 Vodka Smirnoff  Double measure  

22.30 Toast (Tesco the 

finest) 

Tesco, sliced, 

multigrain 

toast 2 slice  

 Baked beans.  Tesco Microwave 420g  

Notes This day I drank more alcohol than normal as it was a colleagues birthday 
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Time Item / Description Brand / variety Preparation Amount Left-overs 
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Write in recipes of ingredients of homemade dishes or take-aways 
  
 

Name of Dish                                                                                    Serves:  

Ingredients – Description, Brand,  Amounts 

  

  

  

  

  

   

   

   

   

   

   

   

Description of cooking method 
 
 
 
 

 

Name of Dish                                                                                   Serves:  

Ingredients Amounts 

  

  

  

  

  

  

  

  

  

  

  

  

Description of cooking method 
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7.3 24 hr Physical Activity Diary 

We would like to find out about your normal physical activity levels.  
 
Please fill in this diary continuously throughout the day, starting from when you get out of bed in the morning 
to when you go back to bed at night. The diary is split into the hours of the day, and then four fifteen-minute 
periods for that hour. In each box, write the code number (see below) which corresponds to the activity which 
you have carried out during this fifteen minute period. Please fill in all the boxes.  
 
Make any notes you feel appropriate during the hours or at the bottom. 
 
The first page is an example which has been done for you. 

Please do not wait until the end of the day to fill this out – fill out as you go! 

Code Number Description and Activity examples 

1. Sleeping  Sleeping, resting in bed, or lying down. 

2. Lying down (not sleeping)  Resting in bed, lying down (still awake) 

3. Sitting  Sitting, eating, watching TV, reading, listening to music, 
writing, sewing, talking on phone etc. 

4. Standing or Driving  Standing fairly still for example in a Que, or showering, 
driving a car 

5. Light activity / standing with light activities  Standing tasks – dish washing, cooking, vacuuming, 
ironing, playing a musical instrument, dressing, yoga, slow 
walk <2.5mph 

6. Light movements / light manual work  Walking at a moderate pace (2.8 – 3.5mph), playing with 
children (moving), brushing/cleaning, gardening, washing 
windows. 

7. Leisure & sports in a recreational environment 
low intensity   

Golf, bowling, darts, very gentle cycling, juggling, non-
competitive volleyball, table tennis, tai chi, archery, yoga 
 

8. Manual work at a moderate intensity  Digging, sawing, mowing lawn, walking 3mph whilst 
carrying 10kg, cycling ~10mph 

9. Leisure & sports in a recreational environment 
low to moderate intensity  

Cycling >10mph, Heavy Resistance (weight) training, hard 
exercise class, ballet, basketball, volleyball, wrestling, 
Tennis (doubles), general dancing 

10. Leisure & sports in a recreational environment 
moderate intensity 

Hockey, fencing, Cricket, Badminton (competitive), 
Squash, Tennis (singles) Gym Cross-trainer, rock climbing, 
circuits class, intense aerobics, rowing, recreational 
football, lacrosse, running 5mph 

11. Leisure & recreational sports at a high intensity 
(competitive) 

Swimming fast laps, hard hiking, water polo, boxing, 
cycling > 14mph, canoeing, football, Rugby etc., running 
7mph 

12. Intense manual work, very high intensity sports:  Running > 9 mph, cycling >19 mph, competitive rowing, 
boxing 
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Date __/__/__ For Office Use 

Time 0 - 15 
mins 

16 - 30 
mins 

31 - 45 
mins 

46 - 60 
mins 

Activity / Intensity notes Code MET EE 

00:00-01.00 1 1 1 1     

01:00-02:00 1 1 1 1     

02:00-03:00 1 1 1 1     

03:00-04:00 1 1 1 1     

04:00-0500 1 1 1 1     

05:00-06:00 1 1 1 1     

06:00-0700 1 1 1 1     

07:00-08:00 1 1 1 1     

08:00-09:00 1 1 1 2     

09:00-10:00 2 4 4 3     

10:00-11:00 3 3 3 4     

11:00-12:00 3 3 3 3 Working from home and 
listening to radio 

   

12:00-13:00 3 3 3 3     

13:00-14:00 5 5 3 3 Walk to lectures    

14:00-15:00 4 3 4 3     

15:00-16:00 3 3 3 3 Lectures    

16:00-17:00 5 3 2 2     

17:00-18:00 5 3 3 3 Reading course work    

18:00-19:00 3 3 3 4     

19:00-20:00 5 5 3 4 Deep House clean!    

20:00-21:00 10 10 10 10 Hockey training    

21:00-22:00 4 4 3 5     

22:00-23:00 3 2 2 1     

23:00-24:00 1 1 1 1     
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Date __/__/__ For Office Use 

Time 0 - 15 
mins 

16 - 30 
mins 

31 - 45 
mins 

46 - 60 
mins 

Activity / Intensity Notes Code MET EE 

00:00-01.00         

01:00-02:00         

02:00-03:00         

03:00-04:00         

04:00-0500         

05:00-06:00         

06:00-0700         

07:00-08:00         

08:00-09:00         

09:00-10:00         

10:00-11:00         

11:00-12:00         

12:00-13:00         

13:00-14:00         

14:00-15:00         

15:00-16:00         

16:00-17:00         

17:00-18:00         

18:00-19:00         

19:00-20:00         

20:00-21:00         

21:00-22:00         

22:00-23:00         

23:00-24:00         
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7.4 Questionnaire to determine menstrual cycle phase 

Taken from the visit 2 data collection sheet from study 1. 

1.Have you had regular periods in the last 2 years?Yes □No □   

2.Typically how long is your menstrual cycle, from day 1 of menses/period to day one of the 

next period?  _________Days 

3.Is the above time the same between periods? Yes □No □   

4.If the above was No, please state the irregularity: ______________________________ 

__________________________________________________________________________ 

5.How many days does your menstrual (blood) flow last? ________ Days 

6.Number of days since the start of your last period?  ____________Days 

 

  



Chapter 7 Appendix 

218 

 

7.5 General health questionnaire 

 

The University of Birmingham 

 

School of Sport and Exercise Sciences 

 

General Health and Screening Questionnaire 

 

 

 

Phone/Email:.................................................................................... 

 

Name of the responsible investigator for the study: 

 

................................................................................... 

 

Please answer the following questions.  If you have any doubts or difficulty with the 
questions, please ask the investigator for guidance.  Your answers will be kept strictly 
confidential. 

 

1.  

You are....... 

 

 

Male 

 

Female 

2. What is your exact date of birth?   

 

 Day........... Month...........Year 19........ 

 

So your age is........................... Years 

 

  

3.  

When did you last see your doctor?     In the: 
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Last week............ Last month.......... Last six months............ 
Year................. More than a year........... 

 

4.  

Are you currently taking any medication? 

 

YES 

 

NO 

5.  

Has your doctor ever advised you not to take vigorous 
exercise? 

 

YES 

 

NO 

6.  

Has your doctor ever said you have “heart trouble”? 

 

YES 

 

NO 

7.  

Has your doctor ever said you have high blood pressure? 

 

YES 

 

NO 

8.  

Have you ever taken medication for blood pressure or your 
heart? 

 

YES 

 

NO 

9.  

Do you feel pain in your chest when you undertake physical 
activity? 

 

YES 

 

NO 

 

10.  

In the last month have you had pains in your chest when not 
doing any physical activity? 

 

YES 

 

NO 

 

 

 

11.  

Has your doctor (or anyone else) said that you have a raised 
blood cholesterol? 

 

YES 

 

NO 

12.  

Have you had a cold or feverish illness in the last month? 

 

YES 

 

NO 

13.  

Do you ever lose balance because of dizziness, or do you 
ever lose consciousness? 

 

YES 

 

NO 
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14.  

a) Do you suffer from back pain 

b)  if so, does it ever prevent you from exercising? 

 

YES 

YES 

 

NO 

NO 

 

15.  

Do you suffer from asthma? 

 

YES 

 

NO 

16.  

Do you have any joint or bone problems which may be made 
worse by exercise? 

 

YES 

 

NO 

17.  

Has your doctor ever said you have diabetes? 

 

YES 

 

NO 

18.  

Have you ever had viral hepatitis? 

 

YES 

 

NO 

19. 

 

 

 

Do you know of any reason, not mentioned above, why you 
should not exercise? 

 

YES 

 

NO 

20. Are you accustomed to vigorous exercise (an hour or so a 
week)? 

 

YES 

 

NO 

21. Do you take part in physical activity one or more times a 
week? 

 

YES 

 

NO 

 

 

I have completed the questionnaire to the best of my knowledge and any questions I had 
have been answered to my full satisfaction. 

 

 

Signed:.............................................................  Date: 
...................................................................... 
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7.6 Detailed metabolomics methods 

The following section was written and produced by Dr Giovanny Bianco and Dr Warwick 

Dunn describing the methods used at the Phenome Centre Birmingham for processing and 

analysis of the metabolomics data presented in Chapter 5. 

 

Collection and preparation of specimens 

Plasma samples were collected by GF and transferred to the Phenome Centre Birmingham 

on dry ice. Biological characteristics of the subjects enrolled in this study are described in 

Table 5-1 Participant characteristics. 

Chemicals 

Acetonitrile (ACN), Methanol (MeOH), Isopropanol (IPA) and HPLC-MS quality water (H2O) 

were obtained from Fisher Scientific (UK). Ammonium acetate, ammonium formate, LC-MS 

quality formic acid, and low binding tubes were obtained from Sigma Aldrich (UK). 

 

Metabolite extraction  

Metabolites from plasma samples were extracted applying a monophasic extraction protocol 

in a randomised order to produce 90 extractions. For each sample, 50 µL of plasma were 

transferred to an Eppendorf tube (Eppendorf, Cambridge, U.K.). Into each tube at room 

temperature, the extraction solvent was added in a ratio of 4:1 to precipitate the proteins. 

100% acetonitrile and 100% isopropanol were used as extraction solvents for polar and lipid 
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metabolites, respectively. Samples were centrifuged at 14,000 x g for 15 minutes at 4°C and 

1   μ  of the supernatants were then transferred into separate glass H    vials for UH   -

MS analysis. Remaining aliquots of the extraction solutions were collected in to a single 

pooled Q  sample of which     μ  was transferred to a new H    glass vial and analysed as 

described for the biological samples. 

 

Untargeted metabolomics analysis of plasma 

Ultra High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) analysis 

was performed applying an Ultimate3000 RSLC UHPLC system coupled to an electrospray Q-

Exactive Focus mass spectrometer operating in positive and negative ion modes. MS 

parameters were adjusted as follows: Resolution 70,000 (FWHM at m/z 200), AGC target 1 x 

106, Scan Range (m/z) 75–1050, Sheath gas 50, Auxiliary gas 20 and Capillary temperature 

275 °C. For positive mode ionisation: Source voltage 4.5 kV, Capillary voltage 40 V, Tube lens 

voltage 70 V and Skimmer voltage 20 V. For negative mode ionisation: Source voltage -3.5 

kV, Capillary voltage -40 V, Tube lens voltage -70 V, Skimmer voltage -20 V. Mass calibration 

was performed for each polarity immediately before each analysis batch.  

For chromatographic separation,   μ  of each extracted sample were injected on to the 

UHPLC system. Two different columns were used. For polar compounds, an Accucore-150-

Amide-HILIC (100 x 2.1 x 2.6 µm, Thermo Scientific) was used. Mobile phase A and B for the 

HILIC method consisted in 10 mM ammonium formate in 95% ACN and 10 mM ammonium 

formate in 50% ACN, respectively. Metabolites were separated using a multi-step gradient 
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elution program starting in 99% A up to 5% of B in 8 min, where the composition was 

maintained for 2 min, a final step where the column was re-equilibrated to reach the initial 

back pressure was then performed. Total analysis time was 15 min, column temperature was 

30°C and the flow rate was 500µL min-1. Separation of lipids species was performed using a 

Hypersil Gold C18 column (100 x 2.1 x 1.9 µm, Thermo Scientific). Mobile Phase A consisted in 

a 10 mM solution of ammonium acetate in H2O/ACN (60:40), and mobile phase B was a 

solution containing 10mM ammonium acetate in IPA/ACN (90:10). The multi-step gradient 

separation started at 60% A up to 99% in 8 min, where the system was maintained for 2 min. 

Subsequently, the composition of A was set at 60% to re-equilibrate the column for 5 min. 

The column was maintained at 55°C and the flow rate was 250µL min-1. All samples were 

analysed in a random order in one analytical batch with 10 QC samples analysed at the start 

of the analytical batch, after every 6 biological samples and with 2 QC samples analysed at 

the end of the analytical batch. Two blank samples were also analysed. 

 

Data pre-processing and analysis 

UHPLC-MS raw data files (.RAW) were converted to a .mzML format by using the MS-Convert 

software available in the ProteoWizard package (available at 

http://proteowizard.sourceforge.net/tools.shtml). Data deconvolution was then performed 

using XCMS to provide a 2D matrix of chromatographic peaks responses where each peak 

was defined by the m/z ratio and retention time (Dunn et al. 2008). This 2D matrix was 

exported as a .csv file for data analysis. Metabolites were annotated to levels 2 of the MSI 

http://proteowizard.sourceforge.net/tools.shtml


Chapter 7 Appendix 

224 

 

reporting standards (Sumner et al. 2007) applying PUTMEDID_LCMS (Brown et al. 2011). 

Data filtering was performed to remove all metabolite features with more than 40% missing 

values for all QC samples. Considering the relative standard deviation for QC samples 

analysed from injection 9 onwards, features were also removed when the calculated relative 

standard deviation was greater than 20% (Dunn, Broadhurst, Begley, et al. 2011). The 

acquired LC-MS spectra were manually filtered in this was to achieve data of high quality 

prior to statistical analysis. Statistical analysis was performed in the software package 

MetaboAnalyst (Xia et al. 2012) with no missing value imputation, normalisation to the sum 

of peak areas for each sample and with no transformations or scaling performed. Where two 

classes were compared a non-parametric Mann-Whitney U test was performed with 

correction for false discovery performed applying the Benjamini-Hochberg method. Where 

three classes were compared a parametric one-way ANOVA test was performed with 

correction for false discovery performed applying the Benjamini-Hochberg method. Fold 

changes were calculated applying the mean response for each class. 
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