
PROBABILISTIC ROADMAPS
IN UNCERTAIN ENVIRONMENTS

by

Michael Lyndon Kneebone

A thesis submitted to

The University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

Intelligent Robotics Laboratory
School of Computer Science
The University of Birmingham
June 2010

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

Abstract

Planning under uncertainty is a common requirement of robot navigation. Probabilistic
roadmaps are an efficient method for generating motion graphs through the robot’s
configuration space, but do not inherently represent any uncertainty in the environment.
In this thesis, the physical domain is abstracted into a graph search problem where the
states of some edges are unknown. This is modelled as a decision-theoretic planning
problem described through a partially observable Markov Decision Process (POMDP). It
is shown that the optimal policy can depend on accounting for the value of information
from observations. The model scalability and the graph size that can be handled is then
extended by conversion to a belief state Markov Decision Process. Approximations to both
the model and the planning algorithm are demonstrated that further extend the scalability
of the techniques for static graphs. Experiments conducted verify the viability of these
approximations by producing near-optimal plans in greatly reduced time compared to
recent POMDP solvers. Belief state approximation in the planner reduces planning time
significantly while producing plans of equal quality to those without this approximation.
This is shown to be superior to other techniques such as heuristic weighting which is not
found to give any significant benefit to the planner.

Dedication
To everyone who encouraged me.

i

ii

Acknowledgements

I have been helped by so many people during the progress of this research that I can’t do

them all justice here. My first and biggest thanks must go my supervisor, Dr. Richard

Dearden whose constant and invaluable guidance has kept pushing this work towards its

final goal. It goes without saying that I would not have been able to achieve this without

him. I especially appreciate his continued patience with my total lack of mathematical

ability. I still consider counting to ten to be a significant numerical challenge. I also thank

my thesis group members, Dr. Jeremy Wyatt and Prof. John Barnden for their support

throughout my studies as well as my examiners, Dr. Jesse Hoey and Dr. Manfred Kerber

for their time taken reading and providing corrections and improvements to my work.

My special gratitude must also go to my family who have loved and supported (and on

occasion paid for) me throughout my education, particularly my mother for proof-reading

this entire thesis and my father for keeping me interested in anything/everything technical

in the first place.

I am also greatly in debt to my varied and eclectic, but continuously fantastic group

of friends who have entertained me and reassured me through my studies. As several of

them are now studying for/writing up their own theses I know that this at least is a debt

that will be repaid. Unlike my student loan. Particular thanks must go to Nathan for

many interesting and varied geeky conversations over the years, Becky for listening to

me whine about nothing and everything all at once, Mark for repeatedly putting things

into perspective for me, Ben for showing me how to stay determined, Kat for organising

many outings to places when I couldn’t be bothered, Simon, Dave S, Jon and Henry

for their continued friendship after those awesome undergraduate years, and last but

not least, Dave B for so many humorous comments and hilarious conversations that I

can’t even remember them, as well as his encyclopædic, borderline savant knowledge of

The Simpsons and Futurama quotes. It would be a great oversight at this point for

me not to acknowledge my ever changing group of office mates over the years for their

advice, (sometimes dubious) wisdom and insight into the intricacies of Ph.D. life and

procrastination techniques. To everyone else who assisted me in someway but I have

forgotten to mention here, I am also grateful.

And as it turns out in fact, 11 6= 15.

Q.E.D.

iii

iv

Picture courtesy of http://www.willowgarage.com

v

http://www.willowgarage.com

vi

Contents

1 Introduction 1
1.1 Uncertain Navigation . 1

1.1.1 Motivation . 1
1.1.2 Example scenario . 3

1.2 Probabilistic Planning . 4
1.2.1 Disadvantages . 5
1.2.2 Basic approach . 6

1.3 Thesis Structure . 8
1.3.1 Required knowledge . 8
1.3.2 Thesis aims . 9
1.3.3 Thesis contributions . 9
1.3.4 Publications resulting from this research 10
1.3.5 Thesis layout . 10

2 Background 13
2.1 Probabilistic Roadmaps . 13

2.1.1 Configuration space . 13
2.1.2 Random path planning . 14
2.1.3 Basic algorithm . 16
2.1.4 Probabilistic completeness . 17
2.1.5 Limitations . 19
2.1.6 Extensions . 19

2.2 Markov Decision Processes . 23
2.2.1 MDP concepts . 24
2.2.2 MDP models . 25
2.2.3 LAO* . 30

2.3 Partially Observable Markov Decision Processes 38
2.3.1 Belief states . 39
2.3.2 Value function . 41
2.3.3 Solution algorithms . 43

3 Review of Related Material 47
3.1 Uncertainty in PRM . 47
3.2 Uncertain Planners . 50

3.2.1 Canadian travelling salesman problem planning 51
3.2.2 Uncertainty in forward search . 53

vii

3.2.3 Minimum Collision Cost planner 54
3.3 Markov Decision Processes . 58

3.3.1 Asynchronous dynamic programming 58
3.3.2 MDP motion planning . 62
3.3.3 Information space planning . 64
3.3.4 Symbolic LAO* . 65

3.4 Partially Observable Markov Decision Processes 65
3.4.1 Perseus: a point-based POMDP solver 65
3.4.2 Online POMDP solvers . 70

3.5 Concluding Remarks . 74

4 Solving via MDP 77
4.1 Problem Definition . 77

4.1.1 Model formulation . 79
4.2 POMDP Representation . 80

4.2.1 Belief state . 82
4.2.2 Example POMDP model of a graph 84

4.3 MDP Representation . 86
4.3.1 Belief state conversion . 87
4.3.2 Discretisation . 87
4.3.3 Belief updating . 93
4.3.4 Calculation of transitions . 94
4.3.5 MDP definition . 96
4.3.6 PRM graph example with optimal policy 97

4.4 Additional MDP Models . 101
4.4.1 Edge dependency . 102
4.4.2 Independence . 103
4.4.3 Edge clustering . 106
4.4.4 Summary . 112

4.5 Experimental Configuration . 112
4.5.1 LAO* implementation . 112
4.5.2 Simulator . 115
4.5.3 Graph pre-processor . 118
4.5.4 Hardware and software environment 119

4.6 Experimental Results . 121
4.6.1 Small example problems . 121
4.6.2 Discretisation . 126
4.6.3 Dependency and clustering . 131
4.6.4 Discussion . 150
4.6.5 Summary . 152

5 Scaling the MDP Models 155
5.1 Heuristic Weighting in LAO* . 155

5.1.1 Evaluation function decomposition 156
5.1.2 Integration into LAO* . 157
5.1.3 Heuristic weighting experimental results 158

5.2 Approximation for LAO* . 167

viii

5.2.1 Approximate LAO* design . 168
5.2.2 ALAO* experimental results . 170

5.3 Scaling . 188
5.3.1 Increasing graph size . 188
5.3.2 Increasing the number of uncertain edges 189

5.4 Concluding remarks . 194
5.4.1 Summary . 195

6 Conclusion 197
6.1 Discussion . 197
6.2 Future work . 202

A Graph Details 205

B Format Definition Examples 227
B.1 Graph Definition File . 227
B.2 POMDP Files For The 5 Point Graph . 231

C Clustering Algorithm 235

D Profiling Graphs for Graph 19 237

E Glossary of Symbols 241

Bibliography 243

ix

x

List of Figures

1.1 A simple path planning problem . 4
1.2 The representation of an uncertain obstacle vertex 7

2.1 A robot arm with one degree of freedom 14
2.2 PRM route smoothing example . 18
2.3 The reward-act cycle of an agent in an MDP 25
2.4 An MDP with 3 states and 2 actions . 33
2.5 A 2 state POMDP value function . 42

3.1 An uncertain corridor environment . 55
3.2 Nearest obstacle point determination . 57

4.1 The 5 point graph . 84
4.2 The POMDP state space for the 5 point graph 85
4.3 An example of an MDP transition . 96
4.4 Example graph where sampling can fail . 98
4.5 The belief state graph for Figure 4.1 . 101
4.6 A graph with dependence between 2 edges 102
4.7 An example of PRM graph pre-processing 120
4.8 The set of toy example graphs . 122
4.9 Sample POMDP belief space discretisation 127
4.10 The 3 edge graph . 131
4.11 A graph where the dependent MDP model can benefit 151

5.1 A graph for demonstrating non-optimal weighting 159
5.2 A small graph with 4 uncertain edges . 160
5.3 Weighted Graph 1 . 164
5.4 Weighted Graph 10 . 165
5.5 Weighted Graph 12 . 165
5.6 Weighted Graph 18 . 166
5.7 Weighted Graph 19 . 166
5.8 Graph of reduction in explicit graph size against time in ALAO* 178
5.9 Effect of maxKL on Graph 1 . 185
5.10 Effect of maxKL on Graph 5 . 185
5.11 Effect of maxKL on Graph 7 . 186
5.12 Effect of maxKL on Graph 8 . 186
5.13 Graph of maxKL against computation time 187
5.14 A comparison of |G| against the number of uncertain edges 193

xi

5.15 A comparison of solution time against the number of uncertain edges . . . 194

6.1 Example of two correlated uncertain edges 201

D.1 LAO* profiling graph . 238
D.2 ALAO* profiling graph . 239

xii

List of Tables

3.1 Comparison of uncertain planning techniques 75

4.1 A discretisation example . 89
4.2 An invalid belief state . 89
4.3 Calculation of successor node utilities from node S 98
4.4 Calculation of successor node utilities from node B 99
4.5 Belief states showing edge dependency . 103
4.6 Converting a dependent distribution to an independent distribution 105
4.7 Policy results for the 5 point graph . 123
4.8 Policy results for the 6 point graph . 123
4.9 Policy results for the 3 edge graph . 123
4.10 Varying the maximum trial length on the 3 edge graph. 126
4.11 Varying discretisation on example graphs 128
4.12 Solution times for Table 4.11 . 129
4.13 The effects of discretisation on Figure 4.8c 130
4.14 Comparison of policies in Figure 4.10 . 133
4.15 Algorithm performance comparison on larger graphs 139
4.16 POMDP policy performance with γ = 0.99 141
4.17 POMDP policy performance with γ = 0.999 141
4.18 Perseus times with 5,000 beliefs . 142
4.19 Selected Perseus results with |B| = 5, 000 142
4.20 Amount of state space explored by LAO* 144
4.21 Algorithm performance comparison with failed trials 149

5.1 Weighted performance from a uniform starting belief on Figure 5.2 160
5.2 Weighted performance from a dependent starting belief on Figure 5.2 . . . 161
5.3 Effect of weighting on policy computation time for Figure 5.2 161
5.4 LAO* and ALAO* comparison for Figure 4.8b 170
5.5 LAO* and ALAO* comparison for Figure 4.8c 171
5.6 Re-running LAO*/ALAO* on the 3 edge graph 172
5.7 Lowering maxKL on the 3 edge graph . 173
5.8 Results from ALAO* on safe version of the 3 edge graph 173
5.9 ALAO* on larger graphs . 175
5.10 An experiment on two graphs with a lower maxKL 176
5.11 Varying maxKL for Graph 10 . 176
5.12 Comparison of LAO* and ALAO* computation time 179
5.13 Effect of increasing maxKL on larger graphs 181
5.14 Comparison of |G| and number of VI iterations on two graphs 184

xiii

5.15 Using (A)LAO* on a large graph . 189
5.16 Standard LAO* scaling on Graph 19 . 191
5.17 ALAO* scaling on Graph 19 . 192

C.1 Two initial belief states for clustering . 236

xiv

List of Algorithms

2.1 PRM pre-processing phase . 17
2.2 Value Iteration . 31
2.3 LAO* . 37
2.4 Improved expansion phase for LAO* . 37

3.1 Free Space Sensing-based Navigation . 52
3.2 checkPath function for FSSN . 52
3.3 MCC adapted uniform sampling . 56
3.4 Perseus . 67

4.1 Calculation of P(o|v, w) . 82
4.2 Implementation of expand . 113
4.3 Graph pre-processing . 119

C.1 Clustering algorithm . 235

xv

xvi

Chapter 1

Introduction

1.1 Uncertain Navigation

Robot navigation has been important in artificial intelligence research for many years.

The rise in the use of robots in domestic, industrial and military settings emphasises this.

Although commonplace in certain industrial applications, the domestic use of robots has

mainly been limited to toys and low-level household chores such as the Sony® AIBO®1

robotic dog or the iRobot Roomba®.2 In a larger class of applications and machines,

researchers from various institutions have built robotic cars capable of autonomous driving

with some degree of success for competitions such as the DARPA Grand Challenge.3 All

of these implementations must include a navigation facility in order to find their way

around their environment.

1.1.1 Motivation

In this thesis we tackle one aspect of robot navigation without focus to a specific applica-

tion. The problem of uncertainty exists in nearly all navigation and route-finding domains.

Navigation—the task of moving the robot from one location to another—is inherently a

planning problem since the robot, or agent, must decide how it is going to accomplish the

task by repeatedly choosing what its next move should be from a set of possible options.

In such a problem, multiple sources of uncertainty may be present, such as an agent’s

uncertainty over its current location, uncertainty about the future state of the environ-

ment, or uncertainty in the information it collects from sensing its surroundings. We use

the term “environment” to refer to the setting the robot is in, i.e. its surroundings and

obstacles that it may interact with. Any single factor, or combination thereof, makes

1Sony® AIBO® Europe: http://support.sony-europe.com/aibo/.
2iRobot Roomba®: http://www.iroboteurope.co.uk/.
3DARPA Grand Challenge: http://www.darpa.mil/grandchallenge/.

1

http://support.sony-europe.com/aibo/
http://www.iroboteurope.co.uk/
http://www.darpa.mil/grandchallenge/

navigation planning a hard problem, one which is still not completely solved.

In this research we focus on the problem of sensor uncertainty: the fact that the

information a robot receives about its surroundings may not be (and probably is not)

completely accurate. The problem is harder than might initially be assumed because any

uncertainty present in a situation makes planning significantly harder. We can illustrate

this by considering the reverse scenario: imagine the task of planning a typical day; there

are usually several jobs that need completing with many constraints on when and in what

order they must happen. Particularly when other people are needed to complete a task

(e.g. attending a meeting), certain aspects of the day’s schedule must be deliberately

flexible in order to cope with unforeseen circumstances. Now consider the impact if the

times, duration and location of everything were already known beforehand. Every single

detail could be planned as precisely as desired under the assumption that nothing would

change and would never need updating. This would make devising the initial plan easier

as no backup plans would ever be necessary. In robot planning the uncertainty presents

similar problems: many possible plans or alternative sub-plans must be processed to find

an overall plan that works. To simplify the problem, we make specific assumptions about

the world the robot lives in, which are discussed later. However, we also make certain

assumptions about the robot to enable some parts of the problem to be abstracted away.

In particular, we assume the robot has access to sensors so it can gain information about

the local part of its environment. These sensors are allowed to be inaccurate so the robot

does not get perfect information from them; however we assume that the robot knows

how accurate its sensors are. This is a realistic assumption, since information is easily

available from training results and from simulation for most sensors which would quantify

the signal-to-noise ratio for a particular sensor type.

We assume we have a small mobile robot that can freely move around its environ-

ment and contains onboard resources to operate autonomously, e.g. a power source, the

necessary computing hardware and some (unspecified) sensors that allow it to make ob-

servations about its environment. The robot’s task is to navigate from a given starting

position (the start location) to a final position (the goal location) through the environ-

ment which may contain other objects which must be avoided, without it being given

complete information about their shape or location. We do not deal with the problem of

moving obstacles, such as other robots. We want the robot to devise a plan which yields

the lowest expected cost in order to reach the goal, where cost is defined as the distance

the robot has to travel.

When complete and perfect knowledge of the world is available to the robot, planning

the best path through the obstacles becomes a much simpler problem, assuming the

robot always knows its own location. Many planning algorithms can plot the shortest

2

route through a known map with perhaps Dijkstra (1959) being the best known example.

Examples of this type of planning can be seen in many modern applications such as video

games where routes are required. When the world knowledge is known to be incomplete

and inaccurate, the agent requires much more complex reasoning to deduce a solution

to the problem. In the former case, planning can be conducted entirely offline, before

the agent starts using the plan, with the agent simply carrying out each step in the plan

(or route) sequentially to reach the goal. When uncertainty is present, then, although

the complete plan may be generated offline (as is the case for the problems we present),

the agent still needs extra reasoning ability to use the plan (plan execution) in order to

pick its next action based on how its knowledge of the world has changed. This leads to

the fundamental question for the research that the robot must answer given the above

scenario:

Given what I know about the environment, which action from

the set of possible choices should I choose next?

Essentially, we want the agent to be able to work out how it should act in the various

situations it might find itself in, e.g. what should it do if it finds it cannot take the path

it originally wanted? The research contained in this thesis is focused on formulating

environments and navigation tasks in such a way that the agent can answer the above

question.

1.1.2 Example scenario

The typical class of problem tackled in this research can be illustrated with the following

example. The situation in Figure 1.1 shows a typical scenario. The robot at S has the

choice of taking the upper shorter route, which takes it through the narrow gap between

the two obstacles, or the lower route which is safer but longer. Since we ultimately want

the robot to incur the cheapest cost, i.e. travel the shortest distance to the goal, the

choice seems obvious: pick the shortest route. However, when the robot is uncertain if it

can fit through the gap in the shorter route, a choice must be based on its confidence of

success. It will not know for certain if the gap is wide enough until it is closer to it. If the

probability of squeezing through is too low, then the robot should decide it is not worth

the risk and choose the safe route. Conversely, a high chance of success means the risk

is likely justified, so the upper route should be chosen. In reality, the robot either can

or cannot fit, but it does not know which is the true case. Making the wrong choice in

either situation will incur a penalty: be too pessimistic and it could travel farther than

necessary, but being over-optimistic means it may pay the heavier cost of having to retrace

its path out of the corridor and around the larger object. It must sensibly trade-off the

3

G
x

S

Possible route for robot

Possible observation pointX

1

2

Figure 1.1: A simple path planning problem. The start and goal locations are marked ‘S’ and ‘G’ respectively.
The robot may initially choose either of the two possible routes shown, ignoring the observation point.

risk of taking a short, potentially unusable route against the guaranteed extra cost of a

safer route.

What if a third choice was available? In the above discussion, we assumed the un-

certainty remained until it reached the gap. More realistically, the robot could make a

reasonable observation from some distance away. Now assume the robot may make such

an observation at point X in the figure. In addition to the two previous choices, the robot

may now choose to travel to X, make an observation of the gap and then decide what to

do next. In many scenarios, this will be the better choice. Travelling to X then choosing

to use the shorter route may be longer than using the shortest route in the first place.

However, it is significantly shorter than going into the narrow gap, finding it cannot fit,

then having to retrace its route and travel the long way around.

1.2 Probabilistic Planning

The planning methods we consider are all based on probabilistic algorithms. This allows

for the creation of plans more robust to inaccuracies in knowledge than classical non-

probabilistic planners. Uncertainty features prominently in most robot navigation and

perception problems, so accounting for this in the planning stage makes sense. Using

probabilistic techniques, the agent may consider many different possibilities, each of which

may be the true case, and plan what to do based upon its confidence (the probability)

about which is correct.

4

With more traditional planning techniques, which may be limited to reasoning about

one possibility, the overall result can be of lower quality. This results from having to choose

the single possibility the agent thinks is most likely to be correct and then planning for

that case alone. For instance, in measuring the width of a doorway, a robot may sample

several measurements from the same sensor to account for noise. Conventional planners

may take some scalar value from a sample set X, e.g. the population mean x̄, or the modal

value of the set as the true width of the door and plan under that assumption. A more

flexible way is to model the width with a probability density function giving a distribution

over possible values, such as with a Gaussian distribution with N = (µ = x̄, σ2 = Var(X)).

The planner can then plan knowing that the doorway is not necessarily x̄ wide.

Probabilistic planners provide graceful degradation of performance as information

quality deteriorates. These types of planner are also more scalable to complex envi-

ronments than conventional planners; Probabilistic Roadmaps introduced in the next

Chapter are an example of this. This feature mainly arises from the way they explore the

space they plan in (e.g. the action space or robot pose space). Planners usually search

deterministically according to some algorithm to systematically explore the space. As the

complexity of the search space increases, this can drastically increase the time required

to evaluate exponentially more possibilities. Probabilistic planners generally explore the

space stochastically according to a probability distribution indicating where “good” sec-

tions of the space lie. The definition of good is task dependent.

With uncertainty in the environment, the lack of perfect information should also be

incorporated into decisions about how the agent should act. While not having access

to the complete picture of the world complicates answering the question posed in the

previous Section, it is still possible to make informed decisions. A Partially Observable

Markov Decision Process is a planning technique which computes the best plan for how

an agent should act in an environment with imperfect, incomplete information. Bayesian

probability is used to update the agent’s confidence regarding the possible states of the

world based on new information it receives. Actions are then selected according to its

beliefs about the state of the world.

1.2.1 Disadvantages

The use of such methods should by no means be considered a panacea for robotic planning

however, as there are drawbacks. Like all planners, probabilistic planners work with mod-

els of the real world, containing either approximations of the environment, the robot, or

both. Reasoning about the outcomes of actions or states of the world incurs an additional

computation penalty if they are non-deterministic. Consider a probabilistic planner that

is searching for the next action for its current state from a selection of possible actions.

5

It must ask itself “What will happen to the state of the world if I apply this action?”

for each action and then choose the action leading to the most preferable state. Discrete

probabilistic planners maintain a set of states, each with an associated likelihood, as their

current state, and therefore have to consider the effect of each action on each discrete

state. The choice of next action thus depends on which action is preferable for each state,

weighted by the planner’s belief that that is the actual world state. The probabilistic

planner therefore has increased memory and computation requirements.

That in itself may be sufficient justification not to use one. In many real-time systems,

hard time constraints exist that stipulate a maximum response time. Under such circum-

stances, a probabilistic planner may simply take too long in deciding what to do. Reactive

planners are often a good choice in such cases as they can provide a rapid decision to a

situation. Reactive planners do little to no computation, providing their answer based

on a set of rules in the form of “IF A and B are true THEN use action C”1 as well as

small, supplemental calculations. A hybrid approach can often be used to get the best

of both worlds, combining a reactive planner with a deliberative one (Muscettola et al.

2002). Given a situation, a scheduler may choose to run either a reactive planner if a

quick answer is vital, or invoke a deliberative planner when sufficient time is available or

a higher quality plan is required. Another possibility is to default to using the reactive

planner, and only invoke the deliberative planner if the reactive planner fails to produce

a good quality plan. In doing so, the planning time is minimised at the expense of plan

quality.

1.2.2 Basic approach

As we are concerned with the problem of decision making under uncertainty, the models of

the environment and the robot are kept deliberately simple. This differs from other work

where the emphasis is on planning the physical path the robot will follow and ensuring

that it will not crash. The aim of this work is to investigate how paths to the goal should

be selected and how the choice of where to go next is selected. When many choices are

available, the usability of some routes will be unknown, so the agent’s planner must decide

which route to take based on its belief about the state of the environment and any new

information it is likely to obtain.

We use a 2D representation of the world and objects within it. The environments

in this thesis are modelled through geometric descriptions of the robot and obstacles in

it. These take the form of polygonal shapes. These do not need to be closed: an L-

shaped robot consisting of two line segments is perfectly valid. The shape of the robot is

assumed to be known exactly and we assume that the robot has accurate motor control.

1For this reason they are sometimes referred to as “reflexive” planners in the literature.

6

obstacleuncertainty
ellipse

1 standard deviation
from mean

Figure 1.2: The “uncertainty ellipse” visualises the covariance matrix of the Gaussian distribution that
specifies the location of the obstacle vertex. The vertex is placed at the mean of the bi-variate Gaussian.

The general shape of an obstacle is assumed to be known and is described in the same way

as the shape of the robot. The uncertainty in the environment is present in the obstacles’

location in the environment. Obstacles are modelled as in Missiuro and Roy (2006).

Each vertex of an obstacle is represented by a bi-variate Gaussian distribution with the

mean of the Gaussian located at the most likely position of the vertex. The covariance

matrix characterises the uncertainty over the true location of that vertex. Visually this

is represented as an “uncertainty ellipse” centred around the mean (see Figure 1.2) with

greater covariances producing larger ellipses. Thus, an obstacle that is actually perfectly

square, may not appear so to an agent due to its uncertainty concerning the vertex

locations. On all diagrams, ellipses are placed at a distance of one standard deviation

from the mean. As observations are made, the Gaussian distributions are tightened, which

can be visualised as the ellipses reducing in size.

Conceptually, we abstract away the problem of how the observations are actually

gathered, as this will often be problem and platform dependent. The methods used in the

thesis are not intended to be specialised towards one type of robot architecture. In reality,

the observations may come from a variety of sensory inputs such as digital cameras, laser

range-finders and infra-red receivers.

For generating paths through the environment, we base our work off a path-planning

technique known as Probabilistic Roadmaps (PRM). The nature and details of this al-

gorithm are described fully in Chapter 2, but an introductory description is useful here.

PRM uses knowledge of the robot geometry and obstacles in the environment to generate

a random network of points (a weighted graph or roadmap) across the environment and

then connects local points together according to some criteria. Collision detection rou-

tines are heavily used in PRM to ensure that the points generated are collision free and

7

to ensure that only collision free edges between points are created. This is carried out

under the assumption that the world is static and there is no uncertainty. Obviously, this

last limitation does not correspond well with the problems described so far, so the PRM

generated graphs form the basis that other planning methods are built on. As obstacle

vertex locations are not known with certainty, those that reside close to edges in the

roadmap may influence whether those edges are actually collision free or not. There will

be some subset of edges in the roadmap that cannot be guaranteed to be collision free.

Definition 1.1 (Uncertain Edge). An uncertain graph edge is one which may be blocked

due to an obstacle.

We look at the problem from the perspective of working out which uncertain edges in

the graph are actually blocked and which ones are not, as this dictates which edges are

usable and what the shortest valid route to the goal is. As the robot makes observations

about obstacles, it gains knowledge about which uncertain edges are blocked and which

are not. This is represented as a probability pertaining to the agent’s belief about an

uncertain edge. These are always stated as the robot’s confidence that the edges are free

where:

P(A→ B = free) = 1

states that the robot knows with certainty that the edge from point A to B is open and

conversely:

P(A→ B = free) = 0

states that it is certainly blocked. We model the uncertain PRM graph as a POMDP

which is used to decide how the agent should act. Essentially, we use PRMs to explore

the environment and create a roadmap of possible routes, and then use a POMDP to

decide which route to take.

1.3 Thesis Structure

1.3.1 Required knowledge

A basic knowledge of probability and planning is assumed, but all algorithms discussed

are fully explained. Detailed knowledge of route-planning or navigation algorithms is not

a prerequisite. The necessary background in Markov Decision Processes (MDPs) and

Partially Observable Markov Decision Processes (POMDPs) which are central to this

thesis is provided in the next Chapter. A background in graph theory is not assumed and

all required notation and principles are introduced as necessary. Though by no means the

first literature on the subject, Probabilistic Robotics by Thrun et al. (2005) provides an

8

excellent insight into many aspects of the field and also contains the necessary introduction

to probability theory and statistics. It is not assumed that the reader has read this book,

though a basic familiarity with the principles outlined in the first section is advantageous.

1.3.2 Thesis aims

There are two principal aims of this thesis as stated below:

1. Show how path planning in a partially known configuration space can be represented

as a decision-theoretic planning problem.

2. Investigate how optimal plans can be generated for the domain in a way that is

scalable to real world problems.

The primary aim of the thesis is to show how the uncertain planning problem described

above can be solved using a decision-theoretic model of the problem. By modelling the

problem in the context of the POMDP framework, the optimal plan can be computed

with standard POMDP solution algorithms.

The second aim will be met by applying different techniques to make problem descrip-

tions more compact, that is, looking for ways to simplify the plan model or process. This

will extend the range of problems that can be solved. The aim here is not to trade off

plan quality for the size of problem we can handle, but to find ways to make the process

more efficient. The behaviour of the agent should still be as close to optimal as possible.

1.3.3 Thesis contributions

This thesis investigates the use of decision-theoretic planning models to compute optimal

path plans for robot navigation in PRMs with uncertain edges resulting from uncertain

obstacle locations and noisy sensor data. We make several key contributions summarised

below:

Importance of information When the robot is trying to find the lowest expected cost

path to the goal, we show that if it does not account for the value of information

gained along the route, the chosen route is unlikely to be optimal. Incorporating

the value of information enables the true lowest expected cost path to be found. We

also show that computing policies without considering the future uncertainty leads

to sub-optimal behaviour.

POMDP and MDP representation When the robot’s movement is represented as a

static PRM motion graph, we show how the navigation problem can be translated

9

into a POMDP. Since these are complex to solve, we show how that can be converted

into an MDP that exploits extra knowledge we have available, such as the robot’s

location in the environment. This conversion makes the problem easier to solve

and more realistic to use on PRM graphs with uncertain edges by reducing the

complexity of the associated probability distributions.

Edge clustering More structure present in the domain enables a novel technique to

reduce the complexity of the plan space. By reasoning about a lower number of

possible world states, the planner is able to work with more complex problems. We

show that under certain conditions, this does not reduce plan quality and reduces

the required planning time in many situations.

Approximate LAO* We show how the introduction of an approximation technique to

the planning algorithm enables plans to be computed far more quickly by exploring

a smaller section of the state space of the planner. The reduction in plan time

compared to the exact solver is highly correlated to the reduction in the amount of

state space explored.

1.3.4 Publications resulting from this research

There are two publications resulting directly from the research in this thesis:

� M. Kneebone and R. Dearden. Navigation Planning in Probabilistic Roadmaps

with Uncertainty. In Proceedings of the 19th International Conference on Automated

Planning and Scheduling (ICAPS), pages 209–216, Thessaloniki, Greece, September

2009.

� R. Dearden and M. Kneebone. Uncertain Probabilistic Roadmaps with Observa-

tions. In Proceedings of the 27th Workshop of the UK Planning and Scheduling

Special Interest Group (PlanSIG), pages 33–40, Edinburgh UK, December 2008.

1.3.5 Thesis layout

In the following chapters we introduce the required background knowledge necessary to

understand the thesis, investigate the problems laid out above and show the experimental

work conducted as part of the research. In Chapter 2 the background related to this

research is explained in detail. The PRM framework, MDPs and POMDPs are covered

separately and key algorithms are introduced for each. In Chapter 3 we review the previ-

ous work relevant to this thesis from the literature and examine how previous techniques

approach the problem. Chapter 4 describes how our navigation domain can be represented

10

as a POMDP formulation and how this can be converted into one of several MDP models.

Experimental work presented shows that optimal plans are generated by the POMDP for-

mulation in small problems, the effectiveness of the MDP models and also points to areas

for improvement. Chapter 5 examines additional techniques to improve the scalability

of the MDP planning models by incorporating approximation into the planner or adding

heuristic weighting to the search component, and presents more experimental work to

assess their impact. We review the work and indicate possible future work directions in

Chapter 6.

11

12

Chapter 2

Background

2.1 Probabilistic Roadmaps

Probabilistic Roadmaps are a random sampling path planning technique. They solve the

problem of finding a route for a robot between two given points in an environment that

can contain arbitrary numbers of obstacles that must be avoided. The robot geometry

(its shape and size) are taken into account in the route planning so the route returned

will be collision free. For instance, the route will not include narrow passage ways that

are narrower than the width of the robot. This is useful to many areas of robotics; in

this Section, we describe the algorithm and its relevance. PRM was first introduced by

Kavraki, Švestka, Latombe, and Overmars in 1996, building upon considerable earlier re-

search on random path planning and high dimensional robotics. The idea was to develop

a new approach to robot motion planning that would not suffer from the same constraints

on robot design complexity that contemporary complete space planners did. Limitations

on robot complexity hindered the use of such planners, making planning for complex sce-

narios require oversimplification of the domain, which reduced the usefulness of the plans.

Here we describe the algorithm and its internal components as well as some extensions

developed since its inception.

2.1.1 Configuration space

The configuration space (C-space) for a robot is the space of all possible poses (configura-

tions) that the robot may assume. The configuration space has the same dimensionality

as the total number of dimensions needed to completely describe the robot’s pose. Each

point in the C-space represents an exact position for the robot. Most C-space dimen-

sions are continuous since the variable may take any value within a set interval, e.g. the

arm angle in Figure 2.1. While in practice, the controls may have a specific resolution,

13

1 d.o.f.

fixed arm

movable arm

static obstacle

Figure 2.1: The darker arm is mounted behind the fixed arm with full 360◦ movement. These two poses
are close together in the one-dimensional C-space for the arm. In a PRM graph two nodes representing these
poses would also be considered close. However, the obstacle blocks the short path—the arm would need to
rotate almost a full circle to switch poses, thus the poses are not close in the action space.

thus giving the parameter range a finite size, considering each value for each control as a

separate action still results in an intractable search space.

Consider the arm in Figure 2.1; the C-space can then be divided (Kavraki et al.

1996; Kavraki and Latombe 1998) into two sub-spaces: configurations with conflicts and

those without, Cobst and Cfree respectively. In Figure 2.1 the region blocked by the static

obstacle would be part of Cobst, with the remaining space residing in Cfree. It is important

that only poses from Cfree are included in any plan; therefore collision checking the points

sampled is essential to ensure they are valid. In the original PRM algorithm, a large

proportion of PRM running time, often around 99% (Sánchez and Latombe 2002a), is

spent doing these checks.

2.1.2 Random path planning

Classic graph traversal algorithms such Dijkstra’s algorithm (Dijkstra 1959) or A* (Hart

et al. 1968) are employed to plot the optimal route over a space in simple planners. This is

usually accomplished according to some cost metric, e.g. time or distance. Such a method

relies upon being able to explore the search space in its entirety (or sufficient detail) to

compute the best path. In low dimensional domains this is a feasible solution, however

in high dimensional worlds like high degree of freedom robotics the problem becomes

intractable. When the number of dimensions increases, the size and cost of exploring the

search space grows rapidly due to the complexity.

Definition 2.1 (Degrees of Freedom). Each controllable variable in a robot’s pose con-

stitutes one degree of freedom (d.o.f.) in the robot’s movement.

This is sometimes known as the controllable degrees of freedom in robotics literature.

14

A robot has a certain number of joints and actuators it may control, such as the angle of

a joint or the rotation of a bearing, each of which is a separate degree of freedom. For

example, a simple car with Ackerman steering can control the steering angle of its two

front wheels and its forward speed, giving it two degrees of freedom, whereas a human

elbow (ignoring the wrist) has only one degree of freedom: the angle at the elbow joint.

Definition 2.2 (Dimensionality). The dimensionality (or total d.o.f.) of a space deter-

mines how many dimensions are required to uniquely specify one point in the space.

A single point in 2D Cartesian space requires only an x and y co-ordinate pair to

identify it. The car above intuitively exists in 2D space (the flat plane it drives on), but

its space is actually 3 dimensional: the third co-ordinate being θ, the orientation of the

car. We refer to a robot’s controllable d.o.f. simply as its d.o.f. and use ‘dimensionality’

to refer to the total d.o.f. of the space. The car controller cannot control its position in all

three dimensions independently so reaching a particular location and orientation generally

requires a sequence of actions to achieve. This limitation implies the car is nonholonomic.

Definition 2.3 (Nonholonomic). A nonholonomic robot has fewer controllable d.o.f than

the total d.o.f (dimensionality) of the space that it exists in.

Classic planners begin to fail in high d.o.f. scenarios because they cannot produce

a solution in any reasonable amount of time. The core difference in PRM is that it

does not explore every point in the search space. PRM planners create the roadmap

probabilistically. This is reflected in the paths it generates. The explosion in search space

is overcome by exploring the space in a random fashion. Robot poses are sampled from

the entire configuration space according to a sampling strategy . The simplest sampling

strategy is a uniform random strategy that selects values for each dimension from a

uniform distribution. Alternative strategies are discussed later. All points reachable by

a complete planner are still reachable with PRM since it may generate a sample in any

location. Sampling removes the direct link between the dimensionality of the robot and

the efficiency of the algorithm.1 By sampling from the C-space PRM planners are able

to abstract away the control actions needed to reach a configuration. A drawback is that

poses which appear close to each other in terms of configuration may not be close when

considering the action sequence required to move between them. The arm in Figure 2.1

illustrates this problem.

1It should be noted that an implicit link between the running time of PRM and the complexity of
the domain still exists, but this is related to the number of points sampled and the validity of checking
those points, not the search costs of the domain.

15

2.1.3 Basic algorithm

Given a complete map of the environment and model of the robot, the algorithm takes

as inputs the desired start and finish poses for the robot and returns either a collision

free route, or declares no such route exists. PRM works by generating a path through a

robot’s Cfree space between the given poses. A graph of points in the C-space is created

and then a route traversing it is built. The construction and use of this graph form two

separate components in the algorithm: the pre-processing phase and the query phase.

Algorithm 2.1 shows the pre-processing phase, where the roadmap is created. This

roadmap is re-used for each query, though it can be built incrementally (Kavraki and

Latombe 1998, Section 4.3) where the roadmap is extended with more nodes and edges

as queries are processed. Lines 3 to 8 generate the set of nodes V by repeatedly invoking

the sampler (the generateSample function, line 4) and collision testing the sample by

calling the isInCFree function. These are domain dependent and are deliberately left

unspecified. In basic PRM, generateSample samples nodes uniformly at random. Edges

for a node v are added (lines 9 to 17) by first finding a candidate set of local graph nodes

that are within a maximum distance Dmax of v. Distance in the basic version of PRM is

defined as the maximum Euclidean distance between all the points in the two different

poses being measured (the dist call). A local planner (Kavraki and Latombe 1998) is

used to check for a collision free path between two nodes by connecting the two poses with

a straight line through the C-space and collision checking intermediate points on that line

(the freePath function, line 13). Nodes are tested in order of increasing distance from

v and edges are added where no collision will occur. The pre-processing phase of PRM

returns as output an undirected graph GPRM = 〈V,E〉 where set V contains the sampled

nodes and set E = 〈v1, v2〉 contains the connecting edges.

The query phase is where the planner creates routes. The first stage is to connect

the start and finish poses to the graph. This is accomplished using the local planner (the

freePath function) which connects the poses to the closest collision free nodes available.

The nodes on the graph are tried in order of increasing distance from the start or finish

poses until a suitable one is found. When the start and finish poses are connected to

two graph nodes, a standard graph search algorithm (commonly A*) is used to find the

shortest route between the nodes. The three parts of the route (start pose to a graph

node, path across graph and graph to finish pose) are concatenated together to form the

complete route.

PRM created paths may require a post-processing phase due to the randomness of

the roadmap. The returned path will be the shortest route across the graph, but poor

node coverage can still result in inefficient traversal of open spaces. A common approach

is to use a smoothing routine to look for shortcuts between nodes not permitted by the

16

Algorithm 2.1 Standard PRM pre-processing phase, (Kavraki and Latombe 1998; Hsu
et al. 2006)

Input: C-space complete description of the configuration space, R robot geometry, Dmax

maximum distance between two connected nodes, e maximum number of edges per
node, N desired size of V

Output: GPRM = 〈V,E〉 where V is the set of nodes and E is the set of edges
〈v1, v2〉 | v1 6= v2

1: V ⇐ ∅
2: E ⇐ ∅
3: repeat //generate N roadmap nodes
4: q =generateSample(C-space) //call sampler to generate roadmap point
5: if isInCFree(q,R,C-space) then
6: V ⇐ V ∪ q
7: end if
8: until |V | = N
9: for all v ∈ V do //generate edges between edges

10: C ⇐ sort(v′ ∈ V | v 6= v′) //sort v’ into ascending order according to dist

11: while edges in v < e AND C 6= ∅ do //v might already have e edges
12: y ⇐ removeHead(C)
13: if freePath(v, y) AND dist(v, y) ≤ Dmax then
14: E ⇐ E ∪ 〈v, y〉
15: end if
16: end while
17: end for
18: return GPRM = 〈V,E〉

roadmap, e.g. to cut a corner from a triangle. This results in simpler paths with fewer

nodes. One smoothing strategy (Kavraki and Latombe 1998) is to select pairs of nodes at

random from the route and use the local planner to test for simple paths between them,

replacing the relevant route section if possible. A second strategy that is more suited to

low d.o.f scenarios is to exhaustively test for shortcuts between all node pairs starting

from the beginning of the route. The farthest route node reachable from each node is

stored and then a smoothed route created by attempting to reach the goal node with

as few nodes as possible. Figure 2.2 shows an example of a raw PRM route with the

equivalent smoothed route using the second strategy.

2.1.4 Probabilistic completeness

As stated before, the strength of using PRM is that it can navigate through a high

dimensional C-space without mapping it like traditional search space techniques. The

drawback to the approach is that it is no longer complete, meaning that if a path between

two robot configurations exists, it is not guaranteed to be found. Further, if a path

17

Figure 2.2: An example of a PRM graph with the route generated in the query phase shown by the grey
line and the more efficient smoothed route shown in black. Using the smoothed route, the agent would travel
directly between the nodes on the black line, e.g. it would move directly from node 0 to 6. The blue lines
represent obstacles in the environment.

is found, then it is not guaranteed to be optimal. PRM possesses a weaker property:

probabilistic completeness (Sánchez and Latombe 2002b; Hsu et al. 2000; Choset et al.

2005; González-Baños et al. 2006). Given that the planner runs in bounded time, if a

solution is not found within that time it returns failure. It can be shown (Barraquand and

Latombe 1991) that the probability of PRM returning a collision free path tends to one

as the number of graph nodes increases. Conversely, the probability of PRM incorrectly

stating that no path exists tends to zero.

Hsu et al. (2006) showed that the running time needed for PRM to create a graph

is proportional to the dimensionality of the space and the number of samples generated.

Therefore assuming suitable time is available to generate a graph for a particular space,

probabilistic completeness implies that PRM will find a path or correctly return failure

with a probability approaching one. Experimental results in Kavraki and Latombe (1998)

show that in environments where the C-space is well connected and expansive (i.e. does

not consist mainly of narrow spaces), then PRM will find the necessary paths 100% of

18

the time without needing excessive amounts of time. A more detailed discussion of the

relationship between the expansiveness of the C-space and the runtime performance can

be found in Hsu et al. (2006).

2.1.5 Limitations

In the case of the basic PRM algorithm, there are many limitations that researchers have

tried to improve upon since its conception. The original PRM algorithm was designed to

operate in a static environment with no uncertainties or moving obstacles. This implies

the planner has total knowledge of the environment including the agent it is creating a

plan for and any (stationary) obstacles present. It also assumes that no external actors

can disturb the plan created. The planner lacks the ability to plan for nonholonomic

robots, multi-agent worlds, robots with kinodynamic constraints (limits on the robot’s

kinematics such as maximum acceleration, minimum turning circle) and models where

actions are non-reversible.

2.1.6 Extensions

The original PRM algorithm was published in 1996 and many researchers have extended

and adapted it. We present a review of a few of these here.

2.1.6.1 Sampling strategies

A very common problem for PRM planners is finding routes through narrow spaces (Hsu

et al. 2006; Missiuro and Roy 2006; Sánchez and Latombe 2002a), because if nodes are

placed uniformly, then the node density through narrow spaces will be the same as in

open spaces, despite the former being harder to navigate through. Different sampling

methods that are biased towards sampling near obstacles can achieve better coverage of

difficult areas. These are known as importance sampling strategies.

Gaussian based sampling (Boor et al. 1999) tries to sample near obstacles only. A first

sample, a is chosen by a uniform sampler, and a second sample, b, is then taken uniformly

from a circle centred at a. If exactly one of the two is in Cfree it is kept, otherwise both

are discarded. The radius of the circle is itself sampled from a Gaussian distribution

based upon knowledge of the obstacle density in the C-space. A sampling strategy that

samples exclusively in narrow corridors is Bridge based sampling (Hsu et al. 2003) which

is similar to the Gaussian method. It generates pairs of samples and rejects samples that

lie in Cfree, repeatedly sampling points until both a and b are in Cobst. It then samples

the midpoint between a and b, keeping it if it lies in Cfree. As noted by Missiuro and Roy

19

(2006), since this method only keeps points in narrow corridors, it generally needs to be

combined with a more general sampling algorithm to adequately capture Cfree.

Quasi-random strategies that are not entirely stochastic in design include grid based

samplers (Bohlin 2001). These create samples based on dividing the C-space into cells

and using grid nodes as samples. When used with Lazy PRM (see Section 2.1.6.3) the grid

resolution can remain coarse during the construction phase, saving computation time. In

the query phase, the resolution can then be varied as the local obstacle density dictates.

Finer grid resolutions are used in difficult areas of Cfree as needed. Connection based

samplers detailed in Kavraki (1995), are samplers that are often combined with other

strategies to improve coverage in difficult areas of Cfree. They bias sampling nodes towards

areas where disconnected parts of the roadmap exist but Cfree is not disconnected. A

heuristic which estimates the expansiveness of the local region of space (i.e. the difficulty of

traversing that region) is used which assigns a weight to each sampled pose in the roadmap.

To expand the roadmap, a random sample is selected with probability determined by the

normalised weights and then a new sample is generated in the local region. This should

lead to improved coverage since areas where the previous two criteria are met will often

be in complex parts of the C-space.

There is strong evidence that non-uniform sampling enhances PRM performance too

(Hsu et al. 1997). Using no a priori information about the topology of the C-space,

options for sampling strategies are limited. Both Gaussian based sampling and Bridge

based sampling require some knowledge of the obstacle density of the environment. If

such information is calculated, the sampling method can be improved by exploiting it to

make more informed choices about locations for sample points. For instance, sampling

can be biased to encourage more samples in difficult areas of the C-space and less in

expansive regions.

Experimental results (Hsu et al. 2006, Section 4) show an intelligent sampling mea-

sure can give a very significant speed up to PRM. In experiments comparing sampling

strategies in narrow corridors, the running time with non-uniform sampling stays roughly

constant, whereas with uniform sampling, the time increases dramatically below a certain

corridor width.

Many other sampling methods have been studied in the literature. For a broader view

of sampling strategies, the reader is referred to Section 4 of Hsu et al. (2006) and Section

7.1.3 of Choset et al. (2005).

2.1.6.2 Multi query and single query planners

The original PRM algorithm was multi query: it generated the roadmap once in the pre-

processing phase, then ran tens and often hundreds of queries using the same roadmap;

20

although the roadmap could be improved and expanded as queries were executed. Single

query planners adopt a strategy of creating a new roadmap for each query. This is not as

wasteful as might be expected and often gives impressive speed ups (Bohlin and Kavraki

2000) by only exploring small areas of the C-space. Single query planners typically work

by “growing” a tree of nodes from the initial pose toward the goal using knowledge of the

configuration space to explore as little as possible. Examples include planners detailed

in Sánchez and Latombe (2002a); Bohlin and Kavraki (2000) and Kindel et al. (2000).

Due to the optimisations single query planners use, multi query planners are often only

faster in cases where “several dozens or even hundreds of queries use this [i.e. the current]

roadmap” (Hsu et al. 2006).

2.1.6.3 Lazy and bi-directional planners

PRM spends much of its time collision checking potential edges; therefore reducing these

checks will significantly reduce the running time of PRM. The Lazy PRM approach

(Bohlin and Kavraki 2000) can be used in single and multi query implementations of

PRM. At roadmap construction, it assumes that edges are collision free, forgoing the

normal check. At the query stage, the shortest route is found and only then are path

sections tested for usability. When a path section with a collision is found, that edge or

node is removed from the roadmap. The route is repaired by searching for a new node

from the remaining nodes. Results from experiments show that Lazy PRM carries out less

than 0.1% of collision checks compared to the original PRM. In the experiments presented,

Lazy PRM computes routes in an average of 0.7% of the time required by standard PRM.

Bi-directional PRM (Sánchez and Latombe 2003) is a slightly adapted version of single

query planners. In a typical single query planner, a tree of edges and nodes is grown from

the initial pose. Nodes are iteratively added to the roadmap until a combination of some

termination criteria are met: either the end pose is reached or the robot is within a short

distance of the end pose from where a local planner can finish the route (the ‘end-game

region’). Bi-directional planners take this a step further by growing two trees, one rooted

at the start and one at the goal, with the search terminating when a connection is found

between the two trees.

These techniques can be combined to make a planner that has the advantages of each

and can offer a substantial improvement over basic PRM. The Single query Bi-directional

Lazy collision checking planner (SBL) (Sánchez and Latombe 2003) is a planner that seeks

to minimise the amount of collision checking required. Using an algorithm that includes

the techniques listed can drastically reduce the computation time to generate a motion

plan. While figures comparing SBL to standard PRM are not available, experiments

comparing the running time of SBL to a standard single query PRM planner show it

21

computes routes faster by a factor of at least 4. This is attributable to the lazy nature of

collision checks carried out by SBL.

A closely related sampling planner is the Rapidly-exploring Random Tree (RRT) plan-

ner (Kuffner and LaValle 2000). RRT is a bi-directional, single query planner that builds

two trees in the C-space from the start and goal configurations. In the pre-processing

phase, new samples are created around the borders of the trees and connected back to

existing tree nodes. Sampling includes a bias which encourages sampling in unexplored

areas of Cfree to ensure that the tree is capable of covering all of the valid space. In the

merging step, RRT attempts to create edges between nodes in each tree. If successful,

then it has found a continuous path from start to goal and returns success.

2.1.6.4 PRM for multiple robots

When planning for multiple robots, two basic strategies are available: centralised and

de-coupled planning. Centralised planning essentially considers all the robots to be one

single robot with high d.o.f and then plans accordingly (Sánchez and Latombe 2002a,

page 16). The drawback is that this creates very high dimensional spaces which require

much more time to plan through. De-coupled planners consider each robot separately and

usually split planning into two phases (Sánchez and Latombe 2002b). The first ignores

collisions between robots and generates paths for each of them individually, while the

second phase uses a technique called velocity tuning which adjusts the velocity of each

robot. If the velocities of the moving objects are known then the planner can annotate

the route and set maximum/minimum speeds and wait-times at appropriate points to

ensure the robots do not collide with other moving objects. A two stage algorithm for

velocity tuning is used in Kant and Zucker (1986) which first computes a route free from

static obstacle collisions and then adjusts the agent’s velocity at specific route points in

the second stage. Velocity tuning can also be used in multi-robot scenarios (Sánchez and

Latombe 2002a) to ensure the various agents avoid each other. Methods for generating

velocity profiles for agents can be found in Peng and Akella (2003; 2005).

De-coupled planning has the advantage of lower dimensionality than centralised plan-

ning, but is incomplete due to not being able to solve problems that can only be solved by

a centralised planner. In experimental results presented in Sánchez and Latombe (2002b),

the de-coupled planner fails to produce a valid plan in 30-75% of cases in problems involv-

ing 6 robots. The authors note that the de-coupled planner was “at best only marginally

faster than the centralised planner when they were successful.” However, de-coupled plan-

ners are still useful in producing plans in situations where centralised planners cannot be

used.

22

2.1.6.5 Kinodynamic constraints

The original version of PRM assumes the world is static and that it is planning for a

holonomic robot. To deal with these types of constraint, a new type of PRM planner is

introduced in Kindel et al. (2000) that uses a single query, single directional planner to

build a roadmap in time × space for a robot.

The method described expands the roadmap tree by selecting a robot input control at

random and then picking a new value for that control. The equations of motion are used to

predict the robot pose a short time interval in the future under this control input to reach

a new node in the tree. This ensures that the planner implicitly obeys all kinodynamic

constraints on the robot—something which cannot be guaranteed if new configurations

are simply sampled in the neighbouring region. This change in graph construction changes

the PRM algorithm from just using the robot C-space to using its action space as well.

The query phase still operates in the C-space, but the graph is expanded by searching

through the action space. To expand a node in the graph, a control input is selected and

changed. The new configuration(s) reached is added as a child node to the graph. This

is significant because adjacent graph nodes are close to each other in the action space as

well as in the C-space, resulting from the integration of one action over a short period of

time. This avoids the problem in multi query planners where nodes near each other in

the C-space need not be close in the action space (see Section 2.1.2).

Experimental results of using the planner on a real robot with strict movement con-

straints show that the planner can successfully navigate a robot around several moving

obstacles. Kindel et al. (2000) reports that the method scales to robots with high d.o.f.

and also has the ability to re-plan in the middle of plan execution. This is needed if any of

the moving obstacles change course unexpectedly, or to account for new objects. Several

disadvantages do exist, however. Principally, the system needs to have full knowledge

of the robot’s constraints and input controls with their suitable parameters beforehand,

since these are used to build the roadmap. Secondly, it “assumes that the moving obstacles

move along straight-line trajectories with constant velocities. . . ” which is often untrue in

reality. Collisions between obstacles are also ignored—objects are allowed to overlap.

2.2 Markov Decision Processes

MDPs are a common tool allowing many problems to be formulated within a decision-

theoretic framework, especially non-deterministic control problems. If an agent’s envi-

ronment is non-deterministic, it does not necessarily react the same way to a particular

action each time it is performed; one of a number of outcomes may result. The agent has

full knowledge of the likelihood of outcomes for an action so the aim of solving an MDP

23

is to find when each action should be applied. The MDP framework is described in this

section.

2.2.1 MDP concepts

We formalise the MDP framework by defining the environment the agent lives in and

how feedback is given to the agent. In all MDP models, the current situation is defined

through the system state. This encompasses all information about the agent’s internal

state and environment that it requires in order to make decisions. In a simple example of

a light switch, the entire state can be represented by the status of the light: on or off. At

any point in time, the agent can occupy only one state of a finite set of states S—either

the light is on or off. In each state s, the agent must choose one action from a finite set of

actions A. Actions allow an agent to do something in its environment. When an action

is taken, the agent receives a numerical reward which indicates how good the choice of

action was. The environment also changes to a different state in S, which depends upon

the action selected, e.g. executing “press switch” when the system state is “light off”

changes the state to “light on”. The agent then repeats this process, selecting a further

action in the new state and receiving another reward, and so on.

This defines a two way relationship between the agent and its environment, with the

agent carrying out actions, perceiving the effect via the change of state and judging the

quality of its actions via the rewards it receives. In reality, each action may take variable

amounts of time and several may be used concurrently, but to simplify the problem, virtu-

ally all MDP models treat the environment as episodic. Each action takes one unit of time

and the resulting state change and reward received happen atomically and instantaneously

before time is advanced one step. While this might appear to restrict the applicability of

such models, this actually translates very neatly to reality in a wide variety of situations.

Figure 2.3 illustrates the reward-act cycle of a typical MDP.

Ultimately, we want the agent to achieve certain objectives or goals. The agent wants

to accumulate as much reward as possible. Therefore, the goals are not explicitly given to

the agent, but the rewards given will be structured so that the agent acts to achieve one or

more of the goals. Some problems have an explicit termination condition, delivery jobs or

games for example, whereas in other problems, the agent is expected to act indefinitely,

such as controlling flow rates in a manufacturing process. Individual rewards do not

indicate how good a choice of action is in the long-term, they are simply the immediate

pay-off for taking that action in that particular system state. Higher numbers generally

indicate more reward, with negative rewards given to penalise the agent. However, this

may be reversed with numbers simply representing costs. The exact setup is problem

dependent, but whether the agent seeks to minimise cost or maximise reward is equivalent

24

Environment

System

Agent

Time t0 t1 t2 t3

s0

a0 r0

s1

a1 r1

s2

a2 r2

s3

a3 r3

Figure 2.3: The reward-act cycle the agent repeats in the execution of an MDP. The agent observes state
st starting from time t0, receives reward rt and observes the new state st+1.

within the environment. In many of the route-finding problems discussed later, we look

to minimise the cost of various actions where the cost is determined by the length of the

route.

The output from an MDP solution algorithm is a policy which instructs the agent on

what to do in each situation. In standard models (assuming complete observability of the

state) the policy is a mapping from states to actions, typically a lookup table. The agent

looks at the current state of its environment and then examines the policy to find the best

action for that state. After the action executes, the environment will have transitioned

to a new state and the process repeats until termination.

2.2.2 MDP models

An MDP is characterised through the following formulation:

� The system occupies one state s, from a set of discrete states S = {s1, . . . , sN}. Each

state encompasses all necessary information to describe the state of the system e.g.

the position of the robot, its knowledge of the surroundings and other data such as

“have collected flag” or “door 1 is open”.

� In each state the agent selects an action a, from the set A = {a1, . . . , aK} of K pos-

sible actions. Not all actions are applicable in every state. This can be modelled by

having the action deterministically leave the system in the same state and imposing

a large negative reward.

� The next state in the succeeding time step depends on the state and action executed

in the current time step. Each state and action pair leads to another state in S with

some probability. Thus, there is a probability distribution over the possible successor

states for each 〈s ∈ S, a ∈ A〉 pair. These can be represented with an N ×N ×K

25

cube transition matrix T , containing the probability of reaching state j from i by

executing a particular action, where Ta = [tij] is an N×N square matrix containing

the transition function for action a. The matrix elements tij specify the probability

of reaching state j from state i and must satisfy

tij ≥ 0 i, j = 1, . . . , N

and
N∑
j=1

tij = 1 i = 1, . . . , N

to ensure each matrix row represents a valid probability mass function (p.m.f.). The

complete transition matrix T , consists of all K Ta matrices:

T =
⋃
a∈A

Ta

These specify the probability

P(st+1 = s′|st = s, at = a) ∀s, a, s′, t = 0, 1, 2, . . . (2.1)

where st and at represent the state and action at time t respectively and

t(s, a, s′) : S ×A× S 7→ [0, 1]

is a transition function that returns the probability in (2.1).

� A reward matrix R of dimension N ×K specifying the rewards for each 〈s, a〉 pair.

This is represented by the reward function:

r(s, a) : S ×A 7→ <

which returns the reward for executing a in state s.

The value of any state depends upon the value of the future states that will be visited

according to the policy. We want the agent to learn the optimal policy. This is the policy

that maximises the total expected reward the agent receives from any given starting state.

The emphasis is to highlight that we do not want the agent to greedily find the highest

reward action for each state, but to find the actions which lead to the best eventual reward.

Situations commonly arise where an action with a high associated reward in one state

leads to other states where only low reward can be obtained. Conversely it is common

that an agent must endure some amount of penalty before it can obtain the best rewards.

26

Blindly selecting the best immediate reward can harm the agent’s overall performance

in a task. An optimal policy is guaranteed to exist for every properly defined MDP; for

proof see Theorem 3.3.2 of Martin (1967).

2.2.2.1 Markovian Assumption

An important property of the MDP formulation is the Markovian nature of the system.

This assumes that at each time step, the current state depends solely on the previous

state, not the entire history of states since time t0. By incorporating all the relevant

environment information into the state description we relieve the agent from the burden

of tracking its state history, since all knowledge is included in the current state. In reality,

the optimal action often depends on the entire history, but this formulation allows the

following equality (Sutton and Barto 1998):

P(st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, . . . , r1, s0, a0)

= P(st+1 = s′, rt+1 = r|st, at)
(2.2)

where si, ai and ri indicate states, actions and rewards respectively at time step i.

There is no explicit encoding for goal states in an MDP (if any exist). Instead, specific

goal states are represented through absorbing states which prevent the agent from escap-

ing. The transition function for absorbing states are set so that all actions self-transition

with probability 1 and all rewards are set to zero (state ‘S2’ in Figure 2.4). Once in an

absorbing state, no further reward can be obtained and no other states can be reached.

A policy for an MDP is denoted π, and the optimal policy is denoted by π∗. These

take the form of a one to one mapping from states to actions:

π : S 7→ A ∀s ∈ S

In order to compute π∗, we need to know the utility of being in each state. This is what

a value function V π tells us. V π is a vector of size N containing the total reward we can

expect to obtain from executing policy π starting from each state in S. The value function

of π∗ is denoted V ∗. If V ∗ is known, then we can extract the optimal policy according to

the following:

π∗(s) = argmax
a

[
r(s, a) +

∑
s′

t(s, a, s′) · V ∗(s′)

]
(2.3)

A method for computing V ∗ is described in Section 2.2.2.3.

27

2.2.2.2 Infinite Horizon Problems

In many MDPs, the problem is guaranteed to terminate under any sensible policy after a

finite number of steps once the agent reaches a goal. The value for any state is then the

total reward obtained when the goal is reached:

V π(s) = rt0 + rt1 + rt2 + . . .+ rtn

=
n∑
i=0

rti (2.4)

However, in many problems, known as infinite horizon MDPs, the agent is expected to

act for an indefinite length of time. In this case, some reward will be accrued at each step

leading to infinite rewards being obtainable since the MDP will never terminate. This

presents a problem since the agent now has infinite time to obtain reward, meaning it has

no motivation to make good choices—it will always eventually obtain the infinite reward.

One policy, π′ is preferred to another policy π if

V π′
(s) ≥ V π(s) ∀s ∈ S (2.5)

thus when infinite rewards are obtainable, it can clearly be seen that all policies are

equivalent.

Obviously we still want the agent to try to act optimally, so to avoid this problem we

use discounting. The value of future rewards is reduced by some factor γ ∈ [0, 1] (the

discount factor) so that all rewards are finite (when γ < 1). Discounting is used to affect

the agent’s preference for short term rewards versus long term rewards. A low discount

factor places more importance on rewards gained a short distance into the future, in

essence making the agent greedy as it will seek to gain quick reward, even if that reduces

the amount it may eventually gain. A high discount factor encourages the agent to forego

short term gain and even suffer penalties if that enables it to obtain a higher eventual

reward. This is useful on finite horizon problems as well because we may want to limit

how far into the future it thinks, even if the MDP will terminate after a known amount

of time.

Setting γ = 1 is equivalent to an undiscounted value function and will produce the

problems outlined above, so is rarely used. Lower values for γ bias the agent more towards

short term rewards. When γ = 0 the agent ignores future rewards completely and chooses

a policy that only considers the immediate reward for the next action, i.e. the optimal

value function becomes:

V (s) = max
a

r(s, a) (2.6)

28

When using a discount for infinite horizon problems, the value function can be interpreted

as the maximum expected discounted reward when following policy π from state s:

V π(s) = E

[
∞∑
i=0

γirti

]
(2.7)

2.2.2.3 Computing V ∗

Computing the optimal value function requires finding the value of each state under the

optimal policy, π∗. Obviously, calculating this directly is impossible as π∗ is unknown. If

the value of each future state s′ of state s is known under policy π, then we can calculate

the value of s as the reward for executing a in s (specified by π) plus the weighted sum

of the future values:

V π(s) = r(s, π(s)) + γ
∑
s′

t(s, π(s), s′) · V π(s′) (2.8)

As π is not available to us beforehand, one possible way to find V ∗ is to compare

the value of states under all different policies. This is possible because N and K are

known quantities. Even for small MDPs, the combinatorial explosion in the number

of possible policies makes this approach completely unrealistic. Bellman (1957) studied

alternative methods for computing V ∗ and showed that the only efficient, scalable method

was through dynamic programming. The principle of dynamic programming (DP) is to

start with an initial estimate of state values and then revise that estimate. This initial

estimate is typically V (s) = 0 for all states; however Dearden and Boutilier (1997, Section

4.1) have shown that using approximate solution methods to pre-compute values for a

subset of states can reduce the time required to compute V ∗. The estimate of the optimal

value function is then repeatedly revised through successive approximation according to

a DP algorithm. Several DP algorithms are available, but one of the most common which

is efficient for large problems is value iteration, or simply VI. We use VI as a solution

method throughout this research so the algorithm is presented here.

VI iteratively updates the value estimate for every state in S by greedily selecting

the action that gives the highest future reward. The following is the Bellman optimality

equation for V ∗ which is central to the VI algorithm:

V ∗(s) = max
a

[
r(s, a) + γ

∑
s′

t(s, a, s′) · V ∗(s′)

]
s, s′ ∈ S (2.9)

Comparing this to Equation (2.8), the difference is the presence of the max operator

specifying that the optimal value function is greedy with respect to the action selection.

29

This is used as the update equation for VI and it is iteratively applied to each state in

the MDP to update its value. The current estimate of the optimal value function V̂ ∗, is

used as the value function for the next iteration. Thus, VI finds V ∗ through a series of

successive approximations:

V̂ ∗t+1(s) = max
a

[
r(s, a) + γ

∑
s′

t(s, a, s′) · V̂ ∗t (s′)

]
s, s′ ∈ S, t = 0, 1, 2, . . . (2.10)

Algorithm 2.2 shows the VI algorithm in full. Termination requires a little further expla-

nation. The VI update in Equation (2.10) is a contraction, i.e. every iteration brings V̂ ∗

closer to the true V ∗ (2.9). After infinite iterations, the values for all states are guaran-

teed to have converged and we will have found the optimal value function as long as two

conditions are met:

1. All rewards for all states must be finite and bounded, i.e. no action can receive an

infinite reward.

2. The algorithm must allow for the value estimate of every state in V̂ ∗ to be updated

infinitely often. This means VI must not ignore states in S.1

For proof of the convergence of V̂ ∗, the reader is referred to Bellman (1957), Theorem

3.4.2 of Martin (1967, page 45) and Szepesvári and Littman (1996). In practice, we stop

once the maximum difference between subsequent iterations (the Bellman residual) of any

state value falls below some small parameter ε, typically ε < 0.0001. The value function

is then ε-optimal.

2.2.3 LAO*

Standard value iteration is to a certain extent a näıve algorithm because each iteration

consists of a full sweep of the state space, performing one update of the value function

at each state. This is a very general solution since in many problem classes, implicit

structure in the transition matrix T means that many states have a very low probability

of being visited and many will never be reached under an optimal policy. This observation

has led to the development of several algorithms for solving MDPs (Dean et al. (1995);

Barto et al. (1993); Dai and Hansen (2007) and Sutton and Barto (1998, pp.107-108)) that

exploit this for better performance. These algorithms use varying forms of asynchronous

dynamic programming (Bertsekas and Tsitsiklis 1989) which do not update the value

at every state in the system, instead focusing updates on states which are most likely

to impact the value of the starting state. LAO* (Hansen and Zilberstein 2001) is one

1We can utilise a tighter bound and only update a certain subset of states. See the next Section.

30

Algorithm 2.2 Value Iteration algorithm, adapted from (Sutton and Barto 1998, p.102)
and (Russell and Norvig 2002, p.621)

Input: ε ≥ 0 maximum acceptable error
Output: V (s) = optimal value for s, π(s) = optimal action in state s

1: V (s) = 0 ∀s ∈ S
2: repeat
3: maxDiff⇐ 0
4: for all s ∈ S do
5: Vold ⇐ V (s)
6: V (s)⇐ maxa [r(s, a) + γ

∑
s′ t(s, a, s

′) · V (s′)]
7: π(s)⇐ argmaxa [r(s, a) + γ

∑
s′ t(s, a, s

′) · V (s′)]
8: maxDiff⇐ max(maxDiff, |V (s)− Vold|)
9: end for

10: until maxDiff < ε
11: return V, π

such algorithm which is well suited to the types of “stochastic shortest-path to the goal”

problems central to this research.

For generating the shortest path between a pair of nodes in an undirected graph, a

simple algorithm similar to Dijkstra’s (1959) algorithm could be used to find the minimum

cost to every point from the goal. The route can then be traced forwards from the start by

greedily selecting the lowest cost neighbour at each step. This is massively inefficient since

the algorithm has calculated the minimum cost to every graph node, when only those on

the optimal path will ever be visited. A* improves upon this by using best-first search

and a heuristic to guide the search forwards from the start node to the goal node and only

exploring a fraction of the nodes in the graph. If the guiding heuristic is admissible and

monotonic (consistent), then it has been proven (Nilsson 1986) that A* is optimal and no

other algorithm will explore fewer nodes under the same heuristic. The same principle is

applied to MDPs in LAO*. As the starting state is often known prior to generating the

policy, it makes sense to only reason about states that can be reached from the start. We

call this “exploiting state reachability” because it uses the transition function to ignore

unreachable states. Russell and Norvig allude to these more efficient algorithms when

discussing MDPs:

“The freedom to choose any states to work on means that we can design much

more efficient heuristic algorithms. . . if one has no intention of throwing one-

self off a cliff, one should not spend time worrying about the exact value of the

resulting states.”

(Russell and Norvig 2002, p.625, 2nd edition)

31

LAO* is a generalisation of AO* (Nilsson 1986) that computes π∗ by only consider-

ing states reachable from the start state s0, under the current estimate of π∗. AO* is a

heuristic best-first search algorithm for finding the minimal cost path through a condi-

tional AND/OR graph. AO* produces the optimal path from a given start state to a goal

in the form of an acyclic solution graph. AO* is not applicable to MDPs in general, since

in most MDPs a state may be visited more than once, violating the acyclic constraint of

AO*. A full description of LAO* can be found in (Hansen and Zilberstein 1998; 1999;

2001) but a sufficient description follows here. LAO* is heuristic based, like AO* and A*

which it is derived from. While its predecessors construct a tree through the states in

S, LAO* creates a directed graph. This distinction facilitates its application to MDPs

because any state may be visited infinitely often under an optimal policy. This implies

that any solution algorithm needs to be able to handle loops in the state history. LAO*

is designed to solve stochastic shortest-path MDPs with goals represented as absorbing

states, i.e. they are terminal as no action can transition the agent out of an absorbing

state. Shortest-path problems have an indefinite horizon because the number of steps

required to reach a goal state is not bounded.

To understand the algorithm, some additional definitions will be introduced here. An

MDP is often discussed in terms of a non-deterministic finite state machine (NFSM) where

each MDP state is a state in the NFSM. As in a standard finite state machine, several

actions are available in each state, all leading to new states. Non-determinism entails that

any action may lead probabilistically to one of several new states. Each action edge from

a state now consists of an arc to several new states, with an associated edge probability

showing the probability of that new state being reached. Arcs also have an associated

reward showing the r(s, a) value (see Figure 2.4 for an example). All the states and

arcs then form the implicit graph of the MDP. This is simply a reformulation of the

MDP model parameters S,A,T and R in terms of a graph. As LAO* runs, it explores

this implicit graph similarly to the way in which standard A* explores a weighted graph,

building an explicit graph (denoted G) of explored states. Initially, this only contains

the singleton start state but will contain the complete set of states visited by π∗ upon

algorithm termination. A smaller explicit graph implies a more efficient computation since

less of the implicit graph has been expanded. Terminal nodes in either graph represent

goal states as there are no transitions out of them. These have cost zero since no further

reward/cost can be collected.

Until the computation is completed, G will only contain a partial MDP solution,

including some unexpanded nodes without arcs (transitions) which are not goal states.

These are known as non-terminal tip nodes to distinguish them, or simply tip nodes where

no confusion may arise. The partial best solution graph (BSG), is the set of nodes which

32

S2

S1

S3

a1
a2

a1

a2

0.75
0.25

0.7
0.3a1,a2

1.0

1.0

1.0
(0)

(-1) (-1)(3)

(2)

(0)

(0)

Figure 2.4: An MDP with 3 states and 2 actions. S2 is an absorbing state. Executing a1 in S1 may lead to
S2 with probability 0.25 or S3 with probability 0.75. Both states are possible successors for the same action.
Executing a2 deterministically leads to S3. Rewards are shown in brackets.

may be visited by the current estimate of π∗. The BSG, explicit and implicit graphs exist

in a subset relation:

BSG ⊆ explicit graph ⊆ implicit graph

Each node in the explicit graph has a best action (marked na for node n) associated

with it. This is the action that is believed to be optimal in that state and which defines

the policy for the MDP. When the algorithm terminates, the set of graph nodes (MDP

states) in the BSG, along with their best actions, completely describes π∗. A fundamental

point that LAO* depends on to guarantee optimality is that only the state values in the

final BSG can affect the value of the start state. All other states in the MDP which are

not visited under π∗ have no effect on the value of states in the BSG. This fact allows

LAO* and the other algorithms mentioned earlier (Barto et al. 1993; Dean et al. 1995) to

only explore a fraction of the state space yet still be certain of finding the optimal policy.

LAO* needs a heuristic h(n), to guide its search as it generates the explicit graph. The

same heuristic constraints apply as with other best-first search algorithms. The heuristic

must be admissible and monotonic (a consistent heuristic implies both). Admissibility

requires that the heuristic never overestimates the cost of reaching the goal from any

state. Monotonicity requires local admissibility. If h(n) is the heuristic estimate of the

cost to the goal from state n and n′ is a successor state of n, then

h(n)− h(n′) ≤ c(n, n′)

33

where c(n, n′) is the edge cost between n and n′. That is, the heuristic must not over-

estimate the traversal cost between two neighbouring states. All monotonic heuristics

are admissible. Violation of these can lead to non-optimal policies being returned. The

overestimation of a node’s cost can lead LAO* to leave a branch unexplored, thus allowing

the possibility of a lower cost path to the goal remaining undiscovered.

The full description of LAO* is shown in Algorithm 2.3 (page 37). LAO* works in two

phases: graph expansion (lines 3 to 8) and convergence testing (lines 10 to 23). These

phases are interleaved and execution may switch between them several times before the

algorithm terminates. The first phase is always graph expansion. In all forms of LAO*

presented in Hansen and Zilberstein (2001), the expansion step repeatedly expands the

explicit graph by selecting a non-terminal tip node. A tip node is expanded by generating

all the successor nodes for that node and adding them to the graph (line 5). Successor

nodes are any that may be reached by following any action from that node. The successor

set Z of node i can be defined as:

Z = {all j ∈ S : t(i, a, j) > 0, a = a1, . . . , aK} (2.11)

The expand function (line 5) is problem dependent, but in general creates set Z above

and assigns each node in Z a value according to the current heuristic, or zero if it is a goal

node. Determining which node to expand next is non-deterministic—it does not matter

what order nodes are expanded in (though it can affect performance); the optimal solution

will still be found. After expanding a node, the values of some nodes in the BSG may

need revising as a result. Node values are calculated from the values of their successor

nodes, so an altered node value can affect the value of all of its ancestors. The ancestors

of a node are the set of all nodes in the explicit graph that can reach the newly expanded

node via their best action, i.e. the set of nodes in the BSG which lead to the new node

(set Y in line 6). All these values are updated by performing VI on the nodes in set Y

(line 7) until their values have converged (according to the VI stopping criteria). The

expansion step continues until there are no more unexpanded tip nodes in the graph.

When no tip nodes remain in the BSG, LAO* switches to the convergence testing

phase. Here value iteration is performed over all nodes in the BSG (usually using a depth-

first post-traversal order). Value iteration continues until one of two stopping conditions

are met: either all the node (state) values in the BSG converge to within ε of their true

value, or a new tip node is discovered (line 24). It turns out we only have to calculate

the upper and lower bounds on the starting node s0 to tell if all the other node values

in the BSG have converged. The current value f(n), provides the lower bound f(n), for

any node. Line 19 defines the mean first passage time for node n with the function φ(n).

This is the expected number of steps to reach the goal under the current policy from node

34

n. Line 17 computes the Bellman residual for the current iteration of VI. The mean first

passage times for all nodes in the BSG form a set of linear equations that can be solved

iteratively with a dynamic programming algorithm. The upper bound f(n) (line 20) is

computed based on these calculations. When s0 satisfies

|f(s0)− f(s0)| ≤ ε

LAO* terminates having found the ε-optimal solution. Under the second stopping crite-

rion, if a node’s best action changes during VI, the BSG may change to contain unex-

panded tip nodes. When this occurs, VI is terminated and LAO* returns to the expansion

phase.

2.2.3.1 Improving the expansion phase

The number of nodes evaluated (backed up) by LAO* has a large impact on its runtime.

A more accurate heuristic will expand fewer unnecessary nodes in G leading to fewer

evaluations, but improved heuristics are not always available. In Hansen and Zilberstein

(2001), it was found that LAO* often performed thousands of backups on many nodes

before the algorithm terminated, lengthening the runtime. This is exacerbated by the

need to perform VI after each tip node is expanded. They present an optimised version of

LAO* which replaces the body of the expansion phase (lines 4–7) with Algorithm 2.4. The

convergence testing phase of LAO* remains unaltered. This improved expansion phase

limits the number of node evaluations in two ways. Firstly, many tip nodes are expanded

together before revising their values and secondly, local value backups coincide with the

node expansion step and replace the value iteration step in line 7 of Algorithm 2.3. The

nodes in the BSG are visited in depth first post-traversal order and when an unexpanded

tip node is found, it is expanded (lines 2–4). Local Bellman updates (equivalent of line 6

of Algorithm 2.2) occur at each node before the next tip node is expanded (line 5). The

depth first post-traversal ordering of the BSG ensures that all ancestors are eventually

updated. We use this optimised version of LAO* for all experiments in this research.

2.2.3.2 Memory bounded algorithms

Chakrabarti et al. (1989) describe memory bounded adaptations of the well known A*

and AO* algorithms (from which LAO* is derived). In MA*, an upper bound is enforced

on the amount of memory the algorithm may use. When the number of nodes on the

open or closed list in the graph search reaches a certain limit, some nodes are pruned

from the lists. This is essentially a trade-off between the number of node expansions and

the required memory. There is a computational penalty since pruned nodes may later

35

need to be re-expanded. Heuristic estimates from pruned nodes are back propagated

through parent nodes in the search tree to ensure information from their prior expansion

is not lost. The MAO* algorithm achieves the same objective for AND/OR graphs. The

presence of AND nodes makes the pruning steps more complex—individual nodes may no

longer be pruned, only entire arcs may be pruned atomically. OR node arcs only have one

successor, so the pruning steps for an OR node remain unchanged. As in LAO*, MAO*

maintains a partial solution graph (not a specific path) and the returned result is the best

solution graph, not a path of nodes from start to goal.

Memory bounded algorithms also cause problems with heuristic consistency. Zhou and

Hansen (2002) show that even with the presence of a “pathmax” feature (Mero 1984), an

inconsistent heuristic can still cause a node to be expanded before the best path to it has

been found, something which cannot occur in standard A* with a monotonic heuristic.

Chakrabarti et al. incorrectly state that inconsistent heuristics remain consistent under

memory bounded conditions as long as pathmax is used. Zhou and Hansen (2002) show

that this is not the case:

“But in graph search, two nodes may occur in the open list before all arcs

between them have been generated. . . a node may be expanded before the best

path to it is found.”

(Zhou and Hansen 2002)

Pathmax only keeps an inconsistent heuristic consistent along paths that exist in the

explicit graph, i.e. those nodes which have already been generated and expanded. As

pruning operations remove parts of the graph after expansion, the part of the information

needed to ensure a consistent heuristic is lost.

There is not a simple generalisation of MAO* algorithm for LAO* due to the presence

of loops in LAO* solution graphs. In AO*, solution graphs are acyclic, so the cost revision

step is a single iteration, back-propagation routine that backs node values up from the

leaves towards the start node. This is replaced by the dynamic programming step in

LAO* because nodes may be visited infinitely often in a loop (as is the case in an MDP).

The authors of LAO* note that a similar memory bounding approach should be possible

with their algorithm (Hansen and Zilberstein 1998, “Forward Search”). However, we

believe the existence of cycles in the graph is what is ultimately hindering development of

an equivalent extension of LAO*. It remains conjecture at this stage, but it would be a

useful aim for future research to determine precisely whether a memory bounded version

of LAO* could be constructed.

36

Algorithm 2.3 LAO* algorithm (Hansen and Zilberstein 2001, p.47)

Input: MDP model 〈S,A, T ,R〉, starting state s0, error bound ε ≥ 0, discount factor
0 ≤ γ ≤ 1

Output: ε-optimal policy returned as a directed graph rooted at s0
1: G⇐ s0 //explicit graph only contains start node
2: BSG ⇐ create list of nodes in BSG by following best actions na in depth first post-

traversal order from s0 //initially BSG = {s0}
3: while BSG contains non-terminal tip nodes do //expansion phase
4: n⇐ unexpanded tip node in G
5: expand(n) //adds successor nodes of n to G
6: Y ⇐ {all ancestor nodes of n that can reach n by following best actions}
7: perform VI on nodes in Y , updating values and best actions
8: end while
9: BSG⇐ recompute BSG

10: repeat //convergence phase
11: r ⇐ 0
12: for all n ∈ BSG do
13: fold ⇐ f(n)
14: Z ⇐ {all successor nodes of n} //as defined in Equation (2.11)
15: f(n)⇐ mina∈A

[
r(n, a) + γ

∑
z∈Z t(n, a, z) · f(z)

]
//value backup

16: na ⇐ minimal action a in line 15
17: r ⇐ max(r, f(n)− fold) //r is Bellman residual
18: end for
19: solve φ(n) ⇐ 1 +

∑
z∈S t(n, na, z)φ(z) ∀n ∈ BSG //linear equations solvable by

dynamic programing
20: f(s0)⇐ f(s0) + φ(s0) · r //upper bound on s0
21: f(s0)⇐ f(s0) //lower bound on s0
22: BSG⇐ recompute BSG
23: until BSG changes to include a non-terminal node or |f(s0)− f(s0)| ≤ ε
24: if new non-terminal found then
25: goto line 2
26: else
27: return BSG as ε-optimal policy
28: end if

Algorithm 2.4 The improved expansion phase for LAO* (Hansen and Zilberstein 2001,
p.56)

1: for all n ∈ BSG do
2: if n is unexpanded then
3: expand(n) //adds successor nodes of n to G
4: end if
5: backup node n as in lines 15 and 16 of Algorithm 2.3
6: end for
7: BSG⇐ recompute BSG

37

2.3 Partially Observable Markov Decision Processes

In the previous Section the agent was always aware of the system state; the agent could

see all the changes in the environment. In life this will not always be the case—the

agent will not be able to see the state directly. There may be many reasons for this, but

typically it manifests due to the limited perception of the agent’s sensors. They may have

limited range or some information will not directly available. Compare playing chess to

playing poker: the game state, including all opposing pieces, is completely observable in

the former, whereas only your hand of cards and the betting money is observable in the

latter.

MDPs, which assume complete observability, are not directly applicable to this new

type of environment, so a broader formulation known as a “Partially Observable MDP”

(POMDP, pronounced pom-dee-pee) is needed. In contrast, a standard MDP can be

strictly referred to as a “Completely Observable MDP”, though this idiom has never

entered common parlance.

A POMDP model consists of the same basic system mechanics as an MDP with

S,A,T and R remaining unchanged. At any point in time the system exists in exactly

one state in S, but knowledge of the precise state is not available to the agent. Instead,

the agent receives observations from the environment based on the current state and

action choice. These allow for an abstraction of sensory input. Many sensory models

such as range finders, cameras and wall detectors can be represented through this model.

After executing action a from state s, the agent receives one observation z, from a set

of observations O. This observation set is often finite, though other models have been

explored, such as the continuous observation spaces explored in Hoey and Poupart (2005).

Observations are received probabilistically according to an observation function o(z, s, a):

o : O × S ×A 7→ [0, 1] = P(z|s, a)

which is the probability of receiving observation z after executing a in state s. The entire

model for a POMDP therefore consists of 〈S,A, T ,R,O, o〉 containing the standard MDP

components plus the observation set and observation function.

Extending the light switch example from the previous Section to a POMDP, imagine

the agent can no longer tell if the light switch is on or off. Instead it only possesses an

inaccurate light dependent sensor. The system state is still either “light on” or “light

off” but the agent can only infer the true state through observations. The set O for this

problem consists of “on” or “off”, one of which is received whenever the agent presses the

switch. The probabilistic nature of observations means the agent may still observe “on”

when the state is “light off” and vice versa. Observations do not deterministically infer

38

the state—there is a non-zero probability of observing that the light is off when it is on.

The important point from the example is that if the agent is unsure of the system state,

receiving an observation(s) will still leave a certain amount of uncertainty in the state.

The same observations can occur in multiple system states due to the non-determinism

of observations. This is known as perceptual aliasing. Imagine a corridor with several

closed doors leading off it, all looking identical. If the agent was placed randomly some-

where along the corridor, it initially would have no information about its location so

might arbitrarily decide to move forwards down the corridor. If it then observes a door

on its right then this alone does not tell it where it is. It can narrow its choices down to

corridor locations with doors on the right hand side but still cannot distinguish the exact

one. The same observation would result from being next to any of the right hand doors,

or any left hand door when facing the other way.

2.3.1 Belief states

As the agent no longer knows which state it is in, then it must have a way to represent its

uncertainty about the state of the system. While assuming that the true state is the most

likely state based on previous knowledge or the most recent observation is a possibility,

a better approach is to explicitly model the uncertainty. As opposed to storing a single

state, the agent now maintains a current belief state. This is a probability distribution

over all the possible states of the system. A belief state b is therefore a vector of size N

where b(s) is the probability of being in state s where b must satisfy

b(s) = [0, 1] s = 1, 2, . . . , N

and ∑
s∈S

b(s) = 1

to ensure a valid probability distribution. The belief state encompasses the agent’s total

knowledge about the state of the system, including its uncertainty about the states. For

example, in a completely uninformed state, then b(s) = 1
N

for all s, showing all states are

equally likely. A useful property of representing belief states as probability distributions is

that they naturally incorporate all the knowledge (i.e. observations) gained since the start

of the system. As long as the initial belief state b0, at t0 is specified, then b is a sufficient

statistic to describe the current belief at time ti based on all observations o0, o1, . . . , oi−1.

This property ensures that storing belief states alone is enough to maintain the Markovian

property of POMDPs.

The policy in a POMDP is described in a different form to an MDP policy which took

39

the form of a mapping from states to actions. A POMDP policy must be changed to

reflect the lack of precise state knowledge. Each belief state is a point in the total belief

space B, which takes the form of an |N − 1|-dimensional simplex covering every possible

belief an agent could be in. Therefore, a POMDP policy is a mapping from belief states

to actions, not states to actions:

π : B 7→ A

The life cycle of the agent in a POMDP consists of the following steps:

1. Start with initial belief b0.

2. Execute action a from A according to current policy π.

3. Receive reward r(s, a) from environment for executing a in state s.

4. Receive observation z ∈ O from environment with probability o(z, s, a).

5. Update b according to a and z and go to step 2.

Updating belief state bti after executing a and observing z to new belief state bti+1
is done

via the following belief update equation for each s′ ∈ S (taken from Kaelbling et al. (1998,

page 11), normalisation from Littman (1994)):

bti+1
(s′) = P(s′|z, a, b)

= P(z|s′, a, b)P(s′|a, b)

=
P(z|s′, a)

∑
s∈S P(s′|a, b, s)P(s|a, b)

P(z|a, b)

=
o(z, s′, a)

∑
s∈S t(s, a, s

′)bti(s)

P(z|a, b)
(2.12)

where P(z|a, b) is the normalisation constant ensuring b sums to unity:

P(z|a, b) =
∑
s′∈S

P(z, s′|a, b)

=
∑
s′∈S

P(s′|a, b)P(z|s′, a, b)

=
∑
s′∈S

∑
s∈S

P(s′, s|a, b)P(z|s′, a)

=
∑
s′∈S

∑
s∈S

P(s|a, b)P(s′|s, a, b)P(z|s′, a)

=
∑
s′∈S

o(z, s′, a)
∑
s∈S

t(s, a, s′)bti(s)

40

2.3.2 Value function

An MDP value function is specified through a vector of size N giving the expected long-

term reward of being in one particular state. In a POMDP we adapt this to specify

the value of being in a particular belief state. The first issue is that B is a continuous

space, so a value vector is no longer sufficient since it would need to be of infinite size. If

we consider an MDP value function, the value for a state specifies the expected reward

obtainable by executing the associated policy from that state. In a POMDP, the value

function is represented as a series of hyperplanes (|N |-dimensional planes; a 1D plane is

a point, a 2D plane is a line) through the belief space. These hyperplanes extend in all

directions to the edges of the belief space.

We will illustrate this with an example of a two state, two action POMDP which

conveniently restricts B to one dimension. Looking at Figure 2.5, B is represented by

the horizontal bar at the bottom of each diagram showing the complete range of belief

states. When the agent is 100% certain of being in state s1 its belief state would be at the

extreme left of the diagram, conversely the extreme right represents being 100% certain

of being in s2. The vertical axis shows the reward for acting and Figures 2.5a and 2.5b

show the expected reward for executing action a1 and a2 respectively. In the underlying

MDP, executing a1 obtains a much higher reward in state s1 than in s2, as shown by

Figure 2.5a. The opposite situation exists in 2.5b where a2 gains higher reward in s2. For

all the belief points in-between in 2.5a where there is uncertainty over whether s1 or s2

is the true state, then the expected reward decreases linearly over B as the probability

shifts from being certain of s1 to being certain of s2.

As with MDP value functions, the POMDP value function greedily selects actions

that maximise the future reward. Both of the individual action-value hyperplanes shown

assume that a sensible (if not optimal) policy is executed after the first action is selected.

The complete value function is therefore specified by combining the planes from parts 2.5a

and 2.5b as shown in Figure 2.5c. The value function is then the upper surface of all the

combined planes over the belief space (shown highlighted). This is the direct equivalent

of the max operator in Equation (2.9) because the hyperplane that dominates all other

hyperplanes at that point is the one that obtains the maximum reward. A hyperplane

dominates at a point b if it is higher than all other hyperplanes at that point in the belief

space. Formally, the optimal value function is given by the following (Littman 1994)

(compare with Equation (2.9)) where b′ can be computed via Equation (2.12):

V ∗(b) = max
a

[∑
s

b(s)r(s, a) + γ
∑
z∈O

P(z|b, a) · V ∗(b′)

]
(2.13)

41

Belief Spaces1 s2

0

reward

+

(a) The expected value of executing action a1 and
following the policy thereafter

Belief Spaces1 s2

0

reward

+

(b) The expected value of executing action a2 and
following the policy thereafter

Belief Spaces1 s2

0

reward

+

x y

p

plane 1 plane 2

(c) The combined value function from both actions

Figure 2.5: A value function for a 2 state, 2 action POMDP. Parts 2.5a and 2.5b show the reward that
can be gained by executing action a1 or a2 from any belief state. Superimposing these in part 2.5c forms the
complete value function where the upper surface (highlighted) represents the expected value from executing
the maximal action. 2 belief points x and y are shown with respective optimal actions a1 and a2.

Given that b and b′ are N dimensional vectors, in Equation (2.13) the new belief state b′,

is computed from the current belief state b, action a, and observation z. Equation (2.12)

shows how the probability for each specific element in b′ is computed.

It may seem like a convenient consequence of the example that the value function

here happens to be made of two lines where the maximum reward decreases towards

the centre of B. This is where the agent is less certain of the true state. It sounds

intuitively reasonable too, because if the agent becomes completely certain of which state

is the true one, the POMDP reduces to an MDP where the agent can be certain of the

optimal action; increased uncertainty makes it harder to work out which action is best.

However, all POMDP value functions have this form, known as piecewise linear convexivity

(PWLC), irrespective of the number of states, actions or nature of the transition and

reward models. Sondik (1971) and Smallwood and Sondik (1973) first proved this and

used it to create an initial method for computing optimal POMDP policies. This result

is of crucial importance because it means that all value functions for any POMDP can

42

be represented by a set of hyperplanes over the belief space where each hyperplane is

dominant for at least one point in B. Convexivity can be proved intuitively as well by

looking at Figure 2.5: there is no possible arrangement of the two planes on the diagram

that do not result in a PWLC value function—even if both are placed horizontally.

2.3.2.1 Policy Extraction

To extract the policy from a POMDP value function, the same logic used for MDPs

applies; we want to select the action that obtains the maximum expected reward. In

this case, this is the action associated with the maximal hyperplane at the specific belief

point b, i.e. the hyperplane that forms the upper surface at b. Fortunately, this is easy

to calculate as the dominate hyperplane is the one with the highest dot product with

b. Each hyperplane can be expressed as a vector (known as an α-vector) of size N of

the co-efficients of the hyperplane, so the value of point b represented by V (b), can be

computed according to

V (b) = max
α∈V

∑
s

b(s) · α(s) (2.14)

where V is the collection of hyperplanes defining V . In Figure 2.5c, two belief states x

and y are shown, each with a different maximal action. In all belief states to the left of

point p (including x), hyperplane 1 dominates so a1 is optimal, but hyperplane 2 (action

a2) dominates for all points to the right.

2.3.3 Solution algorithms

In symmetry to standard MDPs, extracting a policy from a given POMDP value function

is a simple task, therefore the largest proportion of computational effort is in computing

the value function. The optimal value function consists of the minimal set of α-vectors,

each of which must be dominant for at least one point in the belief space. Once V ∗ has

been found, the optimal policy can easily be found using Equation (2.14) for any b ∈ B.

In computing an optimal value function, there are two problems which make finding

set V harder. The first, sometimes referred to as the “curse of dimensionality” (Kaelbling

et al. 1998), relates to the size of the state space: N . As the POMDP belief space B is

a continuous space of dimensionality |N − 1|, the overall size of B grows exponentially

with respect to N . This was a problem for many early solution algorithms (Sondik 1971;

Monahan 1982; Cheng 1988) and even small POMDPs (in the order of about ten states)

quickly become intractable for these algorithms. More recent algorithms are better suited

to larger POMDPs, but the complexity of B is still a major issue (Papadimitriou and

Tsitsiklis 1987; Burago et al. 1996). The second problem termed the “curse of history”

(Pineau et al. 2003), refers to the explosion in the number of possible trajectories a system

43

may take as the number of time steps increases. At each time step, the agent executes

an action and receives an observation which together determine the new belief state. The

number of possible action-observation trajectories grows exponentially with respect to the

size of A and O. If the algorithm constructing the value function is essentially conducting

policy search (Hansen 1998; Poupart and Boutilier 2003), then the large number of possible

trajectories is a major obstacle in scaling to larger POMDPs. In general solving POMDPs

is PSPACE hard (Papadimitriou and Tsitsiklis 1987).

Just as with MDPs, trying to determine an optimal policy or value function through

systematic trials of possible policies becomes intractable for problems of even just a few

states. The problem is even more pronounced than for MDPs, since we must consider

belief states, actions and observations as opposed to just states and actions for each

possible trajectory. POMDP solution algorithms broadly fall into one of two categories:

exact and approximate. Both share a common approach to computing V ∗, but achieve it

in a different manner.

POMDP value functions are built by iteratively extending the planning horizon further

into the future. At some horizon t, the optimal value function for that horizon V ∗t , will

become equivalent to the true optimal value function V ∗. Point t is guaranteed to exist

so successive iteration of POMDP value iteration is guaranteed to eventually find V ∗

(Littman 1994, Section 3). The initial value function which looks one time step ahead

can be simply computed from the reward function r, because the future is not considered

at all; we only care about the maximum reward after one time step. Each successive

horizon is built from the previous iteration’s output as with VI in MDPs. We still deal

with belief states instead of system states, and having selected an action, all possible

resulting observations must be considered.

2.3.3.1 Exact algorithms

Exact solutions work by iteratively finding V ∗ for each successive horizon. The optimal

value function V ∗t1 is used to compute V ∗t2 and so on, gradually projecting further into

the future. Several exact POMDP solvers (Monahan 1982; Cheng 1988) have been pro-

posed since Sondik formalised the POMDP model, but two fairly recent algorithms with

significantly improved efficiency expanded the size of POMDP that could be solved in

reasonable time.

The “Witness” algorithm (Littman 1994) uses a different approach to the previous

POMDP solution algorithms by considering each action individually. Conceptually, it

builds value functions for each specific action and then combines these to form V ∗t from

V ∗t−1. The action-value functions are the equivalent of asking “What is the value of

executing action a and then acting optimally thereafter?” Each of these functions will

44

consist of a set of PWLC hyperplanes (α-vectors). When constructing each α-vector, a

region where that plane is known to be dominant exists. For each one, Witness searches

for a belief point where that choice of action is no longer optimal. This point is then

witness to the fact that the current set of hyperplanes is not yet sufficient to completely

describe the value function. The final step in computing V ∗t is to take the union of all the

action-value functions and purge the set of hyperplanes that are completely dominated

by others. That is, in the combined set, there will be some hyperplanes which are not

maximal at any point in B so they can be safely removed from the set: they never

contribute to the upper surface of the value function.

Incremental pruning (Zhang and Liu 1996; Cassandra et al. 1997) tries to improve

one of the most computationally intensive steps of the Witness algorithm—the pruning

stage. Deciding if a particular hyperplane is dominant for some belief state is achieved by

solving a linear program. This either finds a particular belief point where that α-vector

is dominant above all others in a set, or proves that no such point exists (in which case it

can be pruned). This pruning of α-vectors is a major component of the POMDP solution

algorithm and often a bottleneck in the derivation of a solution. The precise nature of

the pruning step is intricate and beyond the scope of this review. However, the major

contribution of the incremental pruning algorithm is, as its name suggests, that pruning

can be carried out more efficiently using an incremental strategy on a per observation basis

as opposed to pruning the larger set of alpha vectors used in earlier algorithms. Reducing

the size of the pruning sets greatly improves the speed by which the minimal set of α-

vectors V can be found to represent V ∗t . A further algorithm by Feng and Zilberstein

(2004) improves on incremental pruning by splitting the belief space into smaller regions

and pruning these regions separately.

2.3.3.2 Approximate algorithms

Approximate algorithms are a relatively recent approach to solving POMDPs which trade

the optimality of exact algorithms for speed. This bottleneck severely restricted earlier

algorithms in the size of problems they could solve (in Cassandra et al. (1997) the largest

POMDP has 16 states), which limits their applicability to real world scenarios. Thus,

the motivation for approximate algorithms is that a probabilistically optimal solution to

a much larger problem is preferable to having to massively simplify the domain, or to

having no solution at all. In one sense, these approaches shift from approximation in the

model to approximation in the solution. The latter is generally preferred since we obtain

nearly optimal solutions to models that are closer to the actual environment.

A significant, recent algorithm in this class (Pineau et al. 2003) is “Point Based Value

Iteration” (PBVI). Instead of maintaining a minimal set of α-vectors to represent the

45

value function, PBVI and similar approximate algorithms maintain a pool of belief points

B, and the dominant α-vector for each. Given the observation that most optimal policies

only visit a small proportion of the entire belief space, then a sufficiently large pool

of points distributed over the belief simplex should accurately represent the true value

function. Note that since each belief state in B has an α-vector (hyperplane) associated

with it, the PWLC nature of the value function is maintained. The value function still

extends over the entire belief space without respect to the distribution of the stored belief

states. Value iteration in PBVI continues by alternating between two stages: value backup

and belief point set expansion. The first stage updates the value α-vector at each belief

point in B to look one further step into the future (i.e. increase the horizon by one time

step). In the second stage, each point in B is stochastically simulated one step forward

using their associated actions (recall each hyperplane has an associated action from A) to

generate a set of successor belief states. In the base version of PBVI, only the belief point

farthest away from existing points in B (as measured by Euclidean distance) is added

to the set. This ensures the size of B does not grow too quickly whilst promoting good

coverage of B. B is initialised to only contain the POMDP starting belief state, so B

only includes those beliefs that can be reached by following the current estimate of the

optimal policy. This is similar to LAO* (see Section 2.2.3) which also exploits belief point

reachability. The largest problem tackled in Pineau et al. (2003) contains 870 states; far

larger than what can realistically be achieved with exact algorithms.

Many other approximate algorithms exist with the aim of improving the tractability of

POMDPs. Grid based algorithms (Lovejoy 1991; Zhou and Hansen 2001) divide the belief

space into a discrete |N − 1|-dimensional grid and distribute belief points at grid points.

Not all approaches assume a regular grid (Brafman 1997), but they differ from in PBVI

in that coverage of the full belief space is still required in order to adequately capture the

optimal value function, since values are only stored at the grid points. Another point based

algorithm (Spaan and Vlassis 2004) initialises B by randomly exploring the environment

from the initial belief and storing all the belief states encountered. The value function

is initialised with a single α-vector and then further α-vectors are added by sampling a

subset of points from B and projecting the associated α-vectors one step into the future.

The new α-vectors, that have a higher value at their respective belief points than what

the current value function predicts are added to the set, while the remaining ones are

discarded. In contrast to PBVI, not every point in B is used to update the value function;

as the iterations progress, smaller subsets of B are updated. Results show it to be an

order of magnitude faster than PBVI on standard POMDP problems while maintaining

solution quality. This algorithm is explained in more detail in the next Chapter.

46

Chapter 3

Review of Related Material

3.1 Uncertainty in PRM

Many extensions to the original PRM framework have been devised since its inception in

1996. Here, we review some of the relevant extensions to the work. As mentioned (see

Section 2.1.5), basic PRM is limited by not allowing for uncertainty directly in the plan,

forbidding the use of moving obstacles, or any inaccuracies in the agent’s perception of

the world.

Uncertainty due to moving obstacles presents a challenging planning problem. In (Hsu

et al. 2000) moving objects are treated as dynamic constraints. PRM with kinodynamic

constraints was discussed in Section 2.1.6.5. The original PRM framework is extended by

relaxing the constraint of a static environment. The trajectories of simple moving objects

represented with constant velocity (direction and speed) are incorporated into the plan so

collisions can be avoided. The planner’s ability to handle unexpected trajectory change or

the introduction of new objects is quite primitive with replanning the agent’s path being

the standard solution to such situations. The computational penalty for this action is

bounded by restricting the time the agent has to replan to fractions of a second. In the 2D

worlds investigated, the planner was allowed 0.25 seconds to re-plan which was sufficient

for cases with relatively few obstacles. More importantly, the planner needs complete

knowledge of the control input ranges of the agent it is planning for beforehand in order

to construct a conflict-free path in the C-space for the robot. This is necessary to avoid

violating the kinodynamic constraints of the robot. The problem of sensor uncertainty

is not directly addressed (in experiments, the position of objects is measured from an

overhead vision system) and the sensor measurements are assumed to be accurate. To

account for inaccuracies, the radial size of obstacles is increased over time to avoid the

planner erroneously asserting that a location is collision free. Even in simple domains, this

is a pessimistic approach as free sections of the C-space would be ignored if the planning

47

horizon extends too far into the future.

“Lazy-evaluation” (Jaillet and Siméon 2004) is another approach for planning around

moving obstacles whereby the planner updates the roadmap nodes between queries. Any

dynamic obstacles are ignored in the pre-processing phase of PRM and the roadmap is

constructed around static obstacles. During the query phase, edges are validated to check

that they are collision free, allowing for dynamic changes in obstacle positions. Repair

strategies are applied in order of computational expense to re-route around blocked edges.

A first attempt is to plan around the blocked edge using the existing roadmap nodes; if

this fails then two single-query RRT’s (see Section 2.1.6.3) rooted at the blocked edge’s

end points are grown to find a computationally cheap local route around the object. The

third option is to expand the original roadmap with new points to plot an alternative

route. In contrast to the previous approach, complete knowledge of moving obstacles at

roadmap construction time is not required, but the assumption of accurate information

at execution time is still present; there is no provision for uncertainty in the actual object

locations. However, the dynamic nature of the query phase should allow for correction

from minor inaccuracies in obstacle location data. The lazy-evaluation of roadmap edges

allows for moving objects, but the planner is essentially still planning for a static world

during repairing/replanning. An object moving close to the agent’s path would trigger

multiple repair/replan operations, potentially slowing the planner significantly. Using a

two stage planner to deal with moving obstacles as Jaillet and Siméon (2004) have done

in the above approach is a common technique. There are similarities between dealing

with moving obstacles in this way and the velocity profiling methods for multiple agents

discussed in Section 2.1.6.4. Typically in the first stage, moving obstacles and blocked

edges are ignored and then routes are refined according to appropriate constraints in the

second stage. Laumond et al. (1994) apply a similar technique in nonholonomic robot

planning by ignoring the nonholonomic constraints in the first stage, then subdividing the

route into smaller sections which can be solved while adhering to the robot constraints.

Rodŕıguez et al. (2006; 2007) have developed a heuristic planner for situations where

object movement cannot be predicted which, unlike the previous approach, account for

moving obstacles directly in the plan. Heuristic planners can compute motion plans

around moving objects without knowledge of their future trajectories by leaving certain

aspects of the plan unspecified. Rodŕıguez et al. distinguish two types of moving object:

hard objects which are known, generally static objects such as walls, and soft objects

which are smaller movable objects such as people or other agents. Collisions with hard

objects must be avoided to ensure plan success, but soft collisions may be tolerated if no

other course of action is available. The route planning algorithm described consists of two

stages, employing both a global roadmap and a local planner to complete the route. The

48

first stage of the planner uses a PRM-based global roadmap that is periodically updated

to keep track of hard objects. The dynamic constraints of the agent and soft objects are

ignored in this stage. Routes returned from querying the global roadmap should be free

of hard collisions. This route (known as the global route) is treated as the heuristic since

some objects may move. The local planner uses the global route to plan the route the

robot will actually follow.

The second stage of the planner by Rodŕıguez et al. incorporates the dynamic con-

straints of the agent motion as well as the movement of soft objects to generate a path.

Similar to the kinodynamic planner of Hsu et al. (2000), this entails that the local planner

have full knowledge of the agent’s control inputs. The planner incrementally generates

the next few stages of the plan locally, since no knowledge about future obstacle move-

ment is assumed. The global route is used as a guide by the local planner to build a

tree of possible routes from the current location to the next sub-goal. The sub-goals will

be points on or near the global route. Unlike previous methods, a complete path is not

computed beforehand, only the path to the next sub-goal is planned at each step. Using

the global route as a heuristic helps ensure the agent finds a collision free path; however,

the lack of a global plan together with proximity to several soft objects creates the risk

that the agent will become trapped in an unrecoverable position. The authors do not

mention this possibility, but do acknowledge that when no local path can be found, some

domain specific local planner may be required. Experimental data shows this effect when

more than 10 soft objects are present in the environment since the probability of plan

success drops below 80%.

Uncertainty in objects’ motion is only one type of uncertainty inherent in PRM plan-

ning domains. Inaccuracy in sensor readings causes uncertainty even if the world is static.

The available literature on planning under uncertainty is too diverse for one review, but

some relevant approaches are discussed later in Section 3.2. PRM can be extended to

deal with sensor uncertainty just as it can be extended to deal with moving objects.

Predictive PRM (Burns and Brock 2006; 2007) integrates sensor uncertainty directly

into a PRM planner but without the requirement that the planner’s world model in-

corporates uncertainty. Predictive PRM makes two contributions to the standard PRM

algorithm to accomplish this. The Predictive PRM planner uses a lazy approach in line

with many modern PRM planners which delay edge evaluation until query time. The

roadmap edge costs reflect the utility of edges to the agent, where the probability of edge

obstruction is used to alter the edge cost, making risky edges less attractive to the planner.

The following is used for estimating edge cost:

G(e) = P(e = obs.) · C(e) +
P(e = free)

U(e)

49

where P(e = obs.) is the probability that edge e is obstructed, C(e) is the cost of the

consequence of edge failure, e.g. collision, and U(e) is the utility of the edge (task specific).

The idea of replacing the standard distance metric with one that incorporates the

uncertainty about the edge usability is not novel. Fuzzy PRM (Nielsen and Kavraki

2000) annotates edges in the roadmap with a probability of success in the pre-processing

phase. The motivation in Fuzzy PRM is that roadmap is constructed lazily, so until

the local planner is used to verify a collision free connection between two nodes, success

cannot be guaranteed. In Predictive PRM, the probability is necessary to account for the

uncertainty in the world, whereas in Fuzzy PRM the edge state is only uncertain until the

local planner conducts a proper collision check to determine its usability. The Minimum

Collision Cost (MCC) planner (Missiuro and Roy 2006) also measures the probability of

success of an edge for a similar purpose to Predictive PRM, so that edge costs depend on

their usability as well as their standard distance cost.

The second contribution of Predictive PRM is that plans can be refined through ad-

ditional sensing, at some cost to the agent. The planner selects a fraction of the most

uncertain, but potentially useful edges to be refined through sensing, which either reduces

or removes the uncertainty about them. In experiments, the planner is allowed to refine

a set proportion of edges in a route, with results showing that a refinement rate of 50%

can double the fraction of correct routes returned in a 14 d.o.f. scenario. The world

model the PRM planner uses for collision detection does not need to directly incorpo-

rate uncertainty into its plan. A 3D occupancy grid model is demonstrated, as well as a

vision-based model representing obstacle poses with Gaussian distributions. The Predic-

tive PRM planner uses a sensor specific model of sensor error to allow integration with

different systems. This is a useful attribute, increasing its applicability to other world-

models, but could cause it to suffer when trying to interpret data from world-models that

have no useful estimate of sensor error. With an occupancy grid model, the sensor error

is based on explicit data obtained from a small number of example environments which

may not directly translate to real world problems.

3.2 Uncertain Planners

Domains with inherent uncertainty are typical applications for MDP and POMDP plan-

ners, but the computational costs can limit their applicability. Other non-decision-

theoretic methods for planning routes under uncertainty generally offer advantages in

terms of speed. Sacrificing optimality, heuristics are often used to find routes.

50

3.2.1 Canadian travelling salesman problem planning

The travelling salesman problem (TSP) is a well-known construct in computer science

and complexity theory, often used as a concrete illustration of an NP-complete problem.

Given a weighted graph G formed of vertex set V and edge set E, the objective is to find

the shortest cost path that visits all vertices (cities) exactly once. Of particular interest

to this research is the Canadian TSP (CTP) extension. In CTP, certain roads connecting

the cities the salesman must visit have become snowed under, thus unbeknownst to the

salesman, not all roads on his map are usable. In routing theory, this means that some

subset of edges in E are blocked before the agent begins to act, although their states

are static once the agent enters the map. To make the problem applicable to planning

research, it is assumed that the agent knows the probability that a given edge is blocked.1

Free Space Sensing Navigation (FSSN) (Bnaya et al. 2009) is an algorithm for planning

CTP routes when the agent is augmented with some remote sensors. Two types of sensing

are possible:

� Local sensing is the sensing of the states of all edges connected to the current vertex.

This has no associated cost and happens automatically when the agent reaches a

vertex.

� Remote sensing allows the agent to sense an edge not incident to the current vertex.

There is a cost associated with remote sensing, either constant or dependent upon

the distance to the vertex. In FSSN, remote sensing will never return an incorrect

reading. We relax this assumption in our research and allow noisy observations.

FSSN plans a route from the start to the goal vertex with the lowest total cost which

comprises both the travelling (sum of the traversed edge weights) and sensing costs. This

is important for agents which need to minimise total resource usage (e.g. battery power).

Bnaya et al. assert that while the problem could be modelled as a POMDP, its size is

beyond what is feasibly solvable with current planners. While this is true for the general

problem, there is much structure that allows for close approximations to the POMDP

model to be solved efficiently. Edges in the graph may be in one of three states: free,

blocked or unknown. FSSN relies on a “free space” assumption that all edges are free

(including unknown ones) until proved otherwise through sensing. Pseudo code for FSSN

is shown in Algorithms 3.1 and 3.2. FSSN creates a path from the current node n to the

goal g (line 3) and then repeatedly traverses one edge at a time towards g. Local sensing is

used at each step to remove blocked edges from G (line 8). At each vertex, the remaining

path is verified to check it is usable by calling the checkPath function (Algorithm 3.2).

1Presumably, many bitter winters have taught the salesman which roads are susceptible to bad
weather.

51

Algorithm 3.1 Free Space Sensing-based Navigation (FSSN) (Bnaya et al. 2009)

Input: G = 〈V,E〉 graph, s, g ∈ V start and goal vertices
Output: Agent at s moves to g if route available

1: n⇐ s //n is the current node
2: while n 6= g do
3: P ⇐ shortest path from n to g
4: while next edge in P not blocked do
5: checkPath(P, n, g)
6: if success then //path is OK
7: n⇐ next vertex in P //move to next node
8: remove blocked edges from G according to local sensing
9: end if

10: end while
11: end while

Algorithm 3.2 checkPath function for FSSN

Input: P path of edges in G, n, g current and goal vertices
Output: success if P represents a usable path

1: U ⇐ {uncertain edges in P between n and g} //set of unknown edge states
2: for all u ∈ U do
3: if checkEdge(u) then //if edge u should be sensed
4: remotely sense u
5: if u blocked then
6: G⇐ G \ u
7: return fail
8: end if
9: end if

10: end for
11: return success

If checkPath fails or a blocked edge is found, the inner loop fails (line 4) and a new path

is planned.

The checkPath function is crucial to algorithm behaviour as it dictates where remote

sensing is employed. The checkPath function decides whether or not to remotely sense

each “unknown” edge in path P . If it decides to sense an uncertain edge and finds it

blocked, that edge is removed, failure is returned to FSSN (lines 4 to 7) and it will replan.

The unspecified checkEdge function allows different sensing policies to be plugged

into FSSN. Simple policies such as “Always sense” and “Never sense” either sense all or

none of the uncertain edges prior to motion. More complex heuristics that estimate the

value of information from sensing can offer lower total route cost. The decision on remote

edge sensing is then based on the sensing cost and the penalty incurred if the agent does

not use sensing and has to backtrack in the case the route is blocked. Results presented

52

show that utilising the value of information in sensing strategies proved best for nearly all

examples, except where sensing cost was very cheap and uncertain edges only had a 10%

chance of being blocked. If sensing costs were exceptionally expensive or cheap, “Never

sense” or “Always sense” provided lower cost plans respectively.

The methods described above are very effective in this type of domain where the

value of information can be easily estimated; however, deriving policies based on remote

sensing narrows the range of problems that FSSN can be applied to. The reliance on a

perfect remote sensor is often unrealistic; in most real-life situations sensors are noisy. In

domains where perfect information is available, it is often provided as a “one-off” cost,

for instance phoning a telephone helpline where data about a whole route is provided

in one transaction. In other cases, such as consulting a satellite navigation system, the

information is free. In either of these cases, one of the always/never sense policies will be

optimal. Domains that provide information to the agent for a moderate cost will generally

have some probability of noise in the information.

3.2.2 Uncertainty in forward search

Uncertainty can be integrated into a search algorithm by changing the plan space of the

search. Standard path planning using best-first search algorithms such as A* plan solely

in the space of possible locations (poses) for the agent. Uncertainty can be integrated by

modelling the robot pose as a distribution over locations and planning in the extended

pose×covariance space. Censi et al. (2008) take this approach and model the robot’s

location as a Gaussian distribution with the mean centred on the desired pose. The co-

variance is determined by the previous location’s covariance and information obtained

through sensors. The world is described as a polygonal environment discretised into cells;

each action is selected from a finite set. Search is accomplished with a standard imple-

mentation of A*. The extended plan space permits plans that are optimal with respect

to different criteria other than just finding the shortest route. By changing the relation

defining the ordering of nodes in A*’s OPEN list, the planner can find the minimum cost

route (in this case execution time) while keeping uncertainty about the location below

a specified threshold (criterion 1). Alternatively, when successor nodes are generated, if

nodes with a smaller covariance are explored first, returned plans will instead minimise the

uncertainty for when the agent reaches the goal (criterion 2). Under this second criterion,

more costly routes are favoured because the agent attempts to stay localised (although

a maximum route cost is enforced). Planning in such a framework avoids the curse of

dimensionality (see Section 2.3.3) that hampers MDP solvers because the planner does

not have to consider all eventualities. The method of localisation is separated from the

control, allowing various algorithms to be used (particle filters (Doucet et al. 2001) and

53

Kalman filters (Kalman 1960) are given as examples) while keeping the implementation

flexible.

Some assumptions made by Censi et al. to aid localisation and reduce uncertainty are

not always applicable. The uncertainty in robot pose is considered to be low with respect

to the environment complexity, meaning most of the environment features are distinc-

tive (e.g. obstacles), greatly reducing localisation uncertainty when the agent observes a

feature. The produced plans make good use of the environment to find a safe path, but

the computational machinery involved is reasonably complex; simpler heuristic planners

that prefer routes close to objects would likely produce similar plans. Lastly, the sensors

are modelled as a continuous source of information; the robot can gain information by

not moving and simply observing. This is used to good effect in experiments with crite-

rion 2 above since the robot deliberately pauses during plan execution until the location

covariance drops to a permissible level. It is easy to construct problems where this will

not help. Consider the classic localisation problem of a robot moving along a straight

corridor with multiple identical doors and no other discerning features. If the robot stops

and takes a photo of a door, then it can infer it is by a door, but not which one—a

typical perceptual aliasing condition. According to the above assumption, this ambiguity

in location could be reduced by standing still and collecting more information. However,

collecting more photos (even thousands) will still only tell the robot it is standing by

a door; the uncertainty is not reduced. The key intuition is that in many localisation

problems, standing still and making more observations does not improve their quality or

value, it just validates their original hypothesis, i.e. “I can see ONE of the doors.”

3.2.3 Minimum Collision Cost planner

The Minimum Collision Cost (MCC) planner (Missiuro and Roy 2006) is a PRM motion

planner that builds risk and uncertainty directly into the PRM algorithm. Some planners

use subroutines of the PRM algorithm, such as the sampler, as an intermediary step for

an uncertain planner as in Stochastic Motion Roadmaps (see Section 3.3.2.1), or as a

high level heuristic route planner as in Rodŕıguez et al. (2006) (see Section 3.1). MCC

uses a combination of adapted sampling routines and an adapted edge cost calculation to

directly incorporate uncertainty into the standard PRM algorithm.

MCC deals with map uncertainty where the locations of obstacles in the environment

are not known precisely. This could be attributed to inaccurate sensor readings, however

unlike planners for noisy sensor data, no sensing is assumed—the agent’s knowledge is

constant through planning and execution.1 All obstacles are represented by polylines

defined by their vertices. As obstacles’ locations are uncertain, each obstacle vertex is

1This follows since standard PRM is not an online planner.

54

(a) Example environment with uncertain obsta-
cle locations

(b) Superimposed obstacle samples from the
distributions

Figure 3.1: An uncertain corridor environment with 3 obstacles. The covariance matrices are shown as ellipses
at 1 standard deviation. The larger covariances in obstacles forming the upper corridor make traversing it
much more risky.

represented by a bi-variate Gaussian distribution with the mean centred on the most likely

position for that vertex. The degree of uncertainty is described through the covariance

matrix, which in 2D can be represented as an ellipse drawn at a multiple of the standard

deviation from the mean. Figure 3.1a shows an example corridor environment with ellipses

around obstacle vertices showing the uncertainty. Possible obstacle locations can then be

generated by sampling from each of these distributions. Several possible samples for the

corridor environment are shown in 3.1b. The distributions forming the upper corridor

have greater covariances because the locations are less certain; this is reflected in the

greater variation in the samples in 3.1b. Travelling through the upper corridor represents

a much greater risk of collision to an agent.

The objective of MCC is, as its name suggests, to find the route through the graph

with the lowest collision cost, though this is not necessarily the route with the lowest

probability of collision. Risk is traded against edge cost as discussed below. Next, we

describe the MCC adaptations to PRM.

3.2.3.1 Sampling

Standard PRM uniform sampling generates a random pose p, then uses a collision checker

to verify p lies in Cfree, rejecting it otherwise. As explained in Section 2.1.6.1 this leads to

insufficient roadmap coverage in narrow areas such as corridors, driving the development

of specialised algorithms such as Gaussian sampling. In the presence of uncertainty, the

MCC sampler additionally assesses the collision risk (pcol) of candidate poses based upon

the obstacle covariances. Algorithm 3.3 shows the adapted uniform sampling for the MCC

planner. The probability of p colliding with each obstacle is calculated by the colProb

(see below) function in the main loop (line 3). Pfree is the joint probability of not colliding

55

Algorithm 3.3 Adapted uniform sampling algorithm for MCC (Missiuro and Roy 2006)

Input: p candidate pose, W set of obstacles in environment
Output: accept/reject p when it is tested for collision with set W

1: Pfree ⇐ 1 //probability of p is collision free
2: for all w ∈ W do
3: Pfree ⇐ Pfree · (1 − colProb(p, w)) //colProb(p, w)=probability p colliding with

obstacle w
4: end for
5: Pcol ⇐ 1− Pfree //probability p collides
6: return accept/reject p by sampling from Bernoulli distribution with P(reject)=Pcol

with any obstacle; this is inverted (line 5) to give Pcol. Pose p is finally accepted or rejected

based on the outcome of a sample from a Bernoulli distribution in the last line. A high

probability of collision for pose p gives it a low probability of being accepted. A Bernoulli

distribution is used instead of a simpler acceptance criterion such as a preset threshold

so that poses with a high Pcol may still be accepted occasionally. This allows the sampler

to still place nodes in risky areas of the C-space.

3.2.3.2 Query phase

Adapted sampling biases PRM against placing graph vertices in places with a high chance

of collision, such as the upper corridor in Figure 3.1, to encourage safer routes. This alone

does not guarantee a low collision cost route, so MCC also considers uncertainty in the

query stage. A modified edge cost equation is used:

Pcol(e) = 1−
∏
w∈W

(1− edgeColProb(e, w)) (3.1)

cMCC
e = Pcol(e) · Cconst + (1− Pcol(e)) · ce (3.2)

where Pcol(e) is the collision probability with obstacle set W while traversing edge e,

edgeColProb(e, w) is the collision probability of e with respect to obstacle w and cMCC
e

and ce are the MCC and standard edge costs respectively. Cconst is the problem dependent

constant cost of collision. This is a tunable parameter that governs how aggressive or

conservative the planned route should be. Pcol(e) determines the weighting between ce

and Cconst in Equation (3.2); edges with high collision probability become less attractive

as Cconst contributes more to cMCC
e .

3.2.3.3 Calculating colProb and edgeColProb

colProb(p, w) is the collision probability of a robot in pose p colliding with obstacle w.

Strictly, this is the integral of pose p colliding with w over all possible positions of w.

56

n

agent

Figure 3.2: Locating the nearest point of an obstacle. Point n is the nearest point on the obstacle to the
agent. The covariance matrix of n (shown as dotted ellipse) is interpolated from the covariances of the end
points of the line on which n resides.

This cannot be computed exactly because w has an infinite number of positions arising

from the Gaussian distributions giving a continuous space of locations for each component

vertex of w. Missiuro and Roy (2006) describe an approximation for colProb(p, w) by

finding the single nearest point on the nearest line in w to pose p, and then estimating the

probability that the robot collides with this point, since this dominates the probability

of collision with w. Figure 3.2 shows an example of this where point n is nearest to the

agent. As the obstacle’s location is uncertain, n is represented with a Gaussian distribu-

tion. This distribution has a mean centred on the nearest point and a covariance matrix

computed from the covariances of the adjacent obstacle vertices as shown in Figure 3.2.

In our implementation of MCC, we use a Monte Carlo simulation method to approxi-

mate colProb(p, w) since the returned probabilities will approximate the integral. Our

algorithm first finds the nearest line section of w to p via a Euclidean distance measure.

Multiple samples of this single line are generated from the Gaussian distributions at its

end points and pose p is tested for collision against each sampled line. The returned

collision probability is then:

colProb(p, w) =
colliding samples

total samples

As the number of samples tends to infinity, the approximate probability approaches the

true probability. With sufficient samples, we have a close approximation to the true

collision probability. To aid computation speed, if p is further than a preset distance from

w or is found to be completely contained within w (for closed objects), then sampling is

skipped and colProb(p, w) returns 0 or 1 as appropriate.

The edgeColProb(e, w) function is computed using a similar idea to edge collision

57

detection in basic PRM. Recall that collision detection for an edge is achieved by subdi-

viding the edge into a chain of points. Individual collision checks are performed as if the

agent was positioned at each point along the edge. Applying the same logic, the edge is

subdivided into a set of points P . The collision probability is then maximised over the

edge:

edgeColProb(e, w) = max
colProb(p,w)

p ∈ P

3.2.3.4 Overview

Once the pre-processing phase is complete, MCC can compute plans with minimal com-

putation owing its direct use of PRM as opposed to using it as a step in a larger algorithm.

The query phase uses an unmodified A* search that theoretically provides solutions in the

same time frame as normal PRM. In practise, computing edgeColProb for many edges

lengthens the computation somewhat, due to repeated Monte Carlo sampling of wall dis-

tributions. To mitigate this, we cache the calculated probabilities so no edge needs to

be calculated more than once. As an offline planner, MCC does not replan during plan

execution and also does not consider sensor input, thus the produced routes are static.

If the agent receives further information while executing a plan it will be ignored, for

instance if an object is found to be truly blocking an edge the agent will simply fail to

reach the goal. Finding a good heuristic for determining a sensible value for Cconst is an

open issue. While experimental data could indicate a “sweet spot” for particular classes

of map or robot, we observe that even a change in obstacle density may require re-tuning

the parameter.

3.3 Markov Decision Processes

A significant body of work relating to motion planning and uncertainty has examined

the applicability of modelling these domains as MDPs. The MDP framework is a natural

candidate for computing plans with uncertain action outcomes since Markov chains are

non-deterministic by design. While computational requirements have limited the use of

MDP solution algorithms to MDPs with smaller state spaces, advances in asynchronous

dynamic programming algorithms have increased the size of MDP that can be realistically

handled.

3.3.1 Asynchronous dynamic programming

Standard DP algorithms such as value iteration and policy iteration are synchronous in

nature; each state in the MDP is systematically backed up (updated) once per iteration.

58

The order is undefined and theoretically all DP updates may happen in parallel on a

machine with |S| processors. The succeeding value function estimate V̂ ∗t+1, is based on

the current estimate V̂ ∗t . In practice, this can be implemented with two arrays of size |S|,
one containing the state values for the previous iteration, with the second getting updated

to hold the new estimates during the iteration, with the roles reversing each iteration.

Asynchronous dynamic programming relaxes the constraint of updating states once

per iteration: state costs may be updated in any order, at any time. This also permits

the updating of states at different frequencies, e.g. state i may update multiple times in

between updates to j, i 6= j. With the requirement that an algorithm must still allow

all states to update infinitely often, convergence on an optimal policy is still guaranteed

(Bertsekas 1982; Bertsekas and Tsitsiklis 1989). The simplest, most easily implemented

form of asynchronous DP is the Gauss-Seidel method (Barrett et al. 1994, Chapter 2).

Strictly speaking, this is not a true asynchronous DP algorithm because it still performs

systematic sweeps of the state space, updating each state once per iteration. However, it

exploits the fact that the state updates do not need to occur in a lockstep fashion. Instead

of maintaining the current and next value function estimate in two distinct arrays, a single

array is used. State updates occur in place, using the current cost estimate of successor

states from the same array. This can be seen in Algorithm 2.2, line 6. During one iteration

of value iteration (VI), the algorithm is using a mixture of updated costs from the current

iteration and the previous iteration. The Gauss-Seidel method should not merely be seen

as a consequence of efficient implementation (saving extra memory allocation), as it will

generally converge faster to V ∗ because all state updates use the most recent values for

other states.

3.3.1.1 Real-time dynamic programming

Real-time DP (RTDP) (Barto et al. 1993) focuses VI on states reachable from a given start

state by exploiting belief state reachability. RTDP organises state updates by repeatedly

conducting “trials” over the state space. Each trial is initialised by setting the current

system state to the start state. Assuming a given value function (this may be pre-

seeded with a heuristic estimate from a partially computed value function), a trial step

consists of performing a single backup on the current state (i.e. performing line 6 of

Algorithm 2.2) and then selecting the current best action (line 7). Executing that action

causes a transition from the current state to a new state according to the probability

distribution in the transition matrix. This cycle repeats until an absorbing state is reached

or a maximum number of steps have occurred. Multiple trials ensure RTDP evaluates all

necessary parts of the state space due to the stochastic nature of transitions. Once RTDP

has converged, the policy can be extracted in the standard way by greedily selecting the

59

action in each state that maximises the future reward as in Equation (2.3).

Using trials to find states reachable from the start state is efficient since, if we know

that a subset of states in S will never be visited, they never need to be evaluated. Impor-

tantly, the use of RTDP does not preclude the requirement of DP convergence that all

states are visited infinitely often; RTDP will still converge with probability one. States

not reachable from the start state can be ignored since they have zero impact on the

policy; all other states will be visited with a non-zero probability. Thus, in infinite trials,

each state will be visited infinitely often, fulfilling the convergence requirement.

Compared to LAO*, a key difference with RTDP is that the probability distribution of

the transition matrix affects how often states are updated. The trial based design causes

states with a higher probability of occurring to be updated more often. States that occur

with a low probability must still be capable of being updated to ensure convergence, even

if in practice they do not occur in a finite run of trials. When a node is expanded in the

best solution graph (BSG) of LAO*, all successor nodes are generated, and successors on

the best action arc are members of the BSG. LAO* state updates are agnostic to the

probabilities of those states occurring. Results for the racetrack domain (Barto et al. 1993,

Section 4.1) in Hansen and Zilberstein (2001, p.57) show this has two effects. Firstly, both

RTDP and LAO* achieve the same eventual reward from a given start state, but RTDP

improves its reward faster. Secondly, LAO* converges to an ε-optimal solution an order

of magnitude faster than RTDP. The authors attribute both of these to the fact RTDP

spends more time updating high-probability states.

3.3.1.2 Envelope MDP

Envelope solution methods (Dean et al. 1995) enhance the DP algorithm by only updating

a subset of MDP states. Unlike other asynchronous DP algorithms, updates on a subset of

states (the envelope) are conducted systematically via policy iteration or value iteration.

The size of the envelope is expanded until it contains enough states for the value function

to converge. To guarantee finding an optimal policy for any MDP under this algorithm,

the entire state space must still be evaluated. Transitions to states outside the current

envelope are represented by an explicit “OUT” state. Fringe states are those states

that are outside the envelope, but connected to an envelope state by one transition. The

algorithm proceeds with two (or more) interleaved phases of envelope alteration and policy

generation. Policy generation updates the value function estimate and associated policy.

Envelope alteration is the process of expanding the boundary of the envelope to include

new states. An advantage of this class of algorithm is that it may be terminated at any

time prior to convergence and still provide a policy (foregoing the guarantee of optimality).

A set of reflex actions specify the agent behaviour in states outside the current envelope.

60

The envelope can be extended via different strategies. One strategy is to add the N

most likely fringe states to the envelope. These are found via a Monte-Carlo approxima-

tion technique: the MDP is simulated forwards from states in the envelope to reach the

fringe states. The probability of reaching the various fringe states are recorded so the

N most likely can be found. Dean et al. also describe “Recurrent-deliberation” models,

where the planner runs concurrently with the agent executing the current plan. Under

these models, states may be removed from the envelope for efficiency. In navigation ex-

periments (Dean et al. 1995, p.36), envelope methods performed substantially better than

RTDP, particularly in set-ups where the agent’s motion actions contained moderate levels

of noise (e.g. a 30% chance a move action would not move in the correct direction).

3.3.1.3 Prioritised sweeping

The central theme in asynchronous DP is that an intelligent scheduling of state value

backups results in faster convergence than näıve systematic sweeps of the state space.

Dai and Hansen (2007) compare the performance of different algorithms, including LAO*

under the name of Forward Value Iteration (FVI, to distinguish it from Backwards Value

Iteration which searches backwards from the goal), in terms of the convergence time and

number of states expanded. Ten example domains are compared with the largest having

a state space size of 490,000.

Particularly relevant to this research is the result that FVI performs the best out of all

the algorithms tested on 8 out of 10 domains, converging about three times faster than the

second quickest algorithm. Only FVI and one other algorithm (also forward searching)

exploit state reachability (see Section 2.2.3); the others either compute full state space

policies or a partial policy for every state that may reach the goal. FVI only computes a

policy for states that can be reached by searching forward from the start state.

The notable result is that using a sub-optimal order for state updates is generally

preferable to computing the optimal order. Prioritised sweeping (Moore and Atkeson

1993) approaches order the backups using a priority queue. The position of a state in the

queue reflects a heuristic estimate of the potential that backing it up has to improve its

values. Dai and Hansen conclude that the benefit in convergence time resulting from an

intelligent ordering is outweighed by the cost of maintaining the queue. Insertions and

deletions happen in O(log n) time and queue algorithms also perform many more backups

than queue free methods such as FVI.

61

3.3.2 MDP motion planning

3.3.2.1 Stochastic Motion Roadmaps

The Stochastic Motion Roadmap (SMR) planner (Alterovitz et al. 2007) is a motion plan-

ner for robots with uncertainty in their motor control that combines PRM and MDP

techniques. The SMR allows for the generation of motion plans that account for un-

certainty in robot motion, with the goal of maximising the probability of success. The

motivation is that in some agents with constrained movement, a deviation from the de-

sired path may result in future failure. For example, a slipped wheel near the beginning

of a route may cause the agent to inadvertently alter its course, but not to detect the

error until it has reached an unrecoverable position. The robot is assumed to have a finite

number of control actions available and the planner assumes complete knowledge of both

the environment and the robot’s motion model. Sensor uncertainty is not considered in

this work. The algorithm is divided into a roadmap construction phase and a query phase,

as with standard PRM. Graph nodes are sampled using standard PRM methods, but a

separate set of edges is generated for each of the robot’s actions. For each node v and each

action a, m samples are generated of the robot’s possible configuration after executing

a from v. Each of the m generated samples is then mapped back to its nearest node in

the graph, which then gives a probability distribution over a finite number of successor

locations when executing a from v.

For the query phase, the SMR is converted to a standard MDP. The set of PRM graph

nodes, with an additional dedicated collision state, form the MDP state space (S), and the

MDP action set (A) is the set of robot actions. Instead of being based on path length, all

rewards in R are equal, but subject to a small penalty for each transition. The transition

matrix is determined by the edge sets above. From any graph node (state), executing an

action leads to a finite set of successor nodes, where the probabilities were generated by

the sampling described above. The MDP can then be solved via standard DP methods to

produce a policy that should always favour the route with maximal probability of success.

The SMR technique is successfully demonstrated in 2D using a simple two-action car

that moves forward while either turning left or right (known as a Dubins’ movement

model) to simulate a flexible, steerable needle (Webster III et al. 2005) common in cer-

tain medical fields (e.g. drug treatment delivery or biopsy) (Alterovitz et al. 2005). The

number of states (200,000) is quite substantial for the reasonably simple environment de-

scribed, but the policies produced have high chances of success, often greater than 75%.

While the work takes a different approach to Missiuro and Roy (2006) and considers mo-

tion uncertainty as opposed to map uncertainty, the behaviour produced is very similar.

Both algorithms’ preference can be tuned towards shorter routes or “safer” routes. An

62

advantage of the SMR technique over the MCC (see Section 3.2.3) planner is that the

route is not fixed at execution time, because the MDP policy will generate an action for

each node the robot may reach.

3.3.2.2 Grid decomposition

A different approach to MDP motion planning by Burlet et al. (2004) uses quad-tree

decomposition to model a 2D environment for a mobile robot as an occupancy grid. Each

cell can subdivided into 4 equal sub-cells, then labelled as either “full”, “free” or “mixed”

to indicate the presence of an obstacle in the cell. The given map is discretised using

recursive quad-tree decomposition. A robot state is then a 〈c, o〉 tuple where c ∈ C is the

set of cells (of varying size), and o is the finite set of robot orientations. Actions are based

on a Dubin’s model of motion as in SMR above, except multiple motions are concatenated

to make a single action. Rewards are −1 for all actions unless they lead to a goal state,

where the reward is 0 to encourage the agent to find the shortest path. Transitions are

calculated from the probability of reaching a particular cell, having executed a specific

action from the previous cell as follows. A Gaussian distribution is centred on the desired

destination cell for a particular action with a covariance matrix that depends on the length

and complexity of the action’s motion. Any cells the agent may reach with a probability

higher than ε by executing the specific action (according to the Gaussian distribution)

are considered successors in the transition function. Plans are computed by solving the

MDP using value iteration.

MDPs suffer the drawback that policy generation times are polynomial in the size of

the state space and action space (a full state space sweep of standard VI has a complexity

of O(|A||S|2)). For a rigorous analysis of MDP complexity, see Littman et al. (1995b).

Asynchronous DP methods are one attempt to mitigate this, but another approach is to

reduce the state space size. In grid world navigation problems, the simple approach of

using a lower resolution grid may not allow a sufficiently detailed plan, as too much detail

may be removed. Hierarchic decomposition avoids this as described above by dynamically

increasing/decreasing the grid resolution depending on the required detail in that area.

Grid decomposition offers a large advantage in state space size over standard grid worlds

by keeping cells large in sparse regions on the map. However, sampling based methods

such as those based on PRM, do not need this type of discretisation at all, thus offering

an inherent advantage. Motion plans in grid worlds produce smooth plans since each

action causes the robot to traverse between the centres of grid cells while accounting for

uncertainty. Example plans produced show some detours that could be revised as the

robot executes the plan, much in the way that smoothing techniques can be applied to

PRM generated motion plans.

63

3.3.3 Information space planning

Using dynamic programming to generate motion plans under uncertainty in an infor-

mation state planner is considered by Barraquand and Ferbach (1995). The aim of the

planner is to plot the route from the start to the goal with the highest probability of

success (not necessarily to find the shortest route). The planner assumes a completely

known environment but non-deterministic robot motion and limited sensing so there is

also uncertainty in the robot’s location. The information state for an agent is the combi-

nation of all the domain knowledge the robot needs to function. In a navigation domain,

this typically includes it’s current location estimate and what it has observed through its

sensors. The information space is the space of all possible information states. A DP algo-

rithm is used to back-propagate the utilities of various points (states) in the information

space from the goal to the initial state. Experiments on a robot in a 2D grid environment

with discrete control inputs show the algorithm is able to achieve a probability of suc-

cess of 60-70% in cases where there is a small amount of noise in the robot motion (80%

probability of executing correct action). The demonstrated environments are sparsely

populated and some include “landmark” areas wherein agent has perfect knowledge of its

location. The discrete grid keeps the size of the information space finite, but the curse

of dimensionality is still a major obstacle, precluding the use of more complex scenarios.

This weakness in their system is acknowledged:

“Indeed, the DP method requires a memory space and a computation time

exponential in the dimension of the information space, which is often much

larger than the configuration space [of the agent]”

(p.1)

“A severe limitation. . . is the fact that the dimension[ality] of the information

space increases at each new sensing operation.”

(Barraquand and Ferbach 1995, p.4)

State aggregation is used to increase the algorithm’s scalability. This partitions the

information space into separate disjoint sections, treating each as one state. The second

quotation above is referring to the fact that the reachable region of the information space

increases with every sensing operation the agent makes. Due to the chosen model for

experiments, this increases with every action the robot takes, as the state must be updated

to include the current location estimate. Unfortunately this means that the reachable

space grows as a function of distance from the goal as more grid cells must be traversed.

The methods described in this research are distance agnostic because the algorithms do

not assume a grid based environment, thus the reachable state space only expands when

an observation is made by the agent.

64

3.3.4 Symbolic LAO*

The application of state aggregation to LAO* is first used in the Symbolic LAO* algo-

rithm (SLAO*) (Feng and Hansen 2002). Combining a reduction in state space with

belief-state reachability attacks the state explosion problem from two angles. The prin-

cipal difference in SLAO* compared to LAO* is that it handles sets of states instead of

individual states. SLAO* represents the MDP transition and reward functions and per-

forms all computations through the use of Algebraic Decision Diagrams (ADDs) (Bahar

et al. 1993; Hoey et al. 1999). A full description of ADDs is beyond the scope of this

research since they are used as a state abstraction technique (Dearden and Boutilier 1997)

for representing factored MDPs. Briefly, decision diagrams are a data structure that can

be used to efficiently represent a mapping from a set of state variables to a finite set of

values, where the state variables collectively define the state space of the factored MDP.

Each state variable takes a boolean value where the MDP state space S, is the set of all

possible instantiations of those variables. The reader is referred to Bahar et al. (1993) for

a full explanation.

SLAO* modifies the LAO* algorithm to deal with ADDs. In SLAO*, it is not necessary

to keep an explicit search graph; only a list of expanded states is tracked. In the policy

expansion phase of SLAO*, reachability analysis is performed to identify states that are

reachable but have not yet been expanded. This is the equivalent of expanding the leaf

nodes of the BSG in LAO*. The DP step and convergence testing phase in SLAO* are

the same as in LAO* with some modifications to handle ADDs.

3.4 Partially Observable Markov Decision Processes

Approximate solution methods to POMDPs (see Section 2.3.3.2) have received much

attention in recent years due to their ability to handle problems on a real world scale.

They do not look for the precise optimal value function over the entire belief simplex

(the belief space B), but instead compute the optimal value function for some subsection

(usually a set of specific belief points) of B. Importantly, the value function is still defined

over the entire space, as varying forms of interpolation are used to determine the value

and best action for all belief points not explicitly defined by the solution algorithm.

3.4.1 Perseus: a point-based POMDP solver

Point-based value iteration (PBVI) Pineau et al. (2003) was one of the earliest point-based

POMDP solvers that avoided the use of interpolation when defining a complete value

function. Earlier approaches (Lovejoy 1991; Brafman 1997; Zhang and Zhang 2001) only

65

compute the value function at specific points in the belief space, but all those approaches

choose the belief points according to some discretisation scheme. Also at each belief point,

only the value is stored. The value at other points is calculated by interpolating (the exact

method is algorithm dependent) the value of nearby, known belief points. Best actions

are selected in a similar manner. PBVI and its variants store the optimal hyperplane (α-

vector) instead of the value of that particular belief point. This gives a major advantage in

extracting the optimal policy, since interpolation is never necessary; the set of hyperplanes

define a convex hull over the entire belief space B. When backing up a belief point x that

is not at a specific grid point or finding the best action for plan execution, interpolation is

quite a costly function since it will typically involve numerous distance calculations from

x to existing grid points. In point-based algorithms, the use of hyperplanes obviates the

need to interpolate; the set of α-vectors from the belief set defines the value function V ,

so value backup and action selection continue using the same technique as in exact value

iteration (see Section 2.3.2.1).

The nature of the problems we consider in this research can produce POMDPs with

large state spaces. Although pre-processing techniques are used to minimise the number

of states, the models are still intractable to exact solvers. In light of this, we use a

recent point-based solver, Perseus, that builds on previous point-based methods and

has been shown (Spaan and Vlassis 2005) to solve larger state spaces in feasible time,

solving problems in a matter of hours not days.

Point-based solvers can be characterised by the method for selecting belief points

to include in the set of beliefs B. The set of points chosen must be distributed well

enough to adequately represent the POMDP value function, yet also be compact enough

to minimise computation time. PBVI switches between expanding the set of belief points

B, and carrying out value backups on those points (see Section 2.3.3.2). As the algorithm

progresses the size of B increases and successive stages of value backups require more

computation.

Perseus (Vlassis and Spaan 2004; Spaan and Vlassis 2004; 2005) is a point-based

solver which differs from previous solvers by keeping B constant throughout the compu-

tation. Value backups are carried out in such a way that each backup is guaranteed to

improve the value of at least one point in B, therefore improving the value at all points

in the belief space by the end of each iteration.

The Perseus solver is shown in Algorithm 3.4. The algorithm initialises by simulating

the POMDP belief state forward from the start state s0, randomly selecting actions and

observations to build the pool of belief statesB. The initial value function V0, is a singleton

set containing one belief vector with all elements set identically (line 2). This ensures the

initial value function is uniformly improvable. Perseus then enters its backup loop which

66

Algorithm 3.4 Perseus algorithm, Spaan and Vlassis (2005)

Input: ε maximum error bound between two iterations, n number of belief states to
sample, s0 the POMDP start belief state

Output: Vt optimum t step value function
1: Randomly explore environment from s0 to collect n belief points for set B
2: V0 ⇐ single α-vector with all components set to 1

1−γ mins,a r(s, a)
3: t⇐ 0
4: repeat //Perseus backup loop
5: Vt+1 ⇐ ∅
6: B̃ ⇐ copy of B
7: while B̃ 6= ∅ do
8: b =randomly sampled point from B̃
9: a = backup(b, Vt)

10: if b · a ≥ Vn(b) then
11: Vt+1 ⇐ Vt+1 ∪ a
12: else
13: Vt+1 ⇐ Vt+1 ∪ argmaxz∈{at} b · z //at is the set of α-vectors for horizon t
14: end if
15: B̃ ⇐ {b ∈ B : Vt+1(b) < Vt(b)}
16: end while
17: t⇐ t+ 1
18: until maxb∈B(|Vt(b)− Vt−1(b)|) < ε
19: return Vt: ε-optimal t step value function

iteratively generates value functions for increasing horizons (t). The set of hyperplanes

for the succeeding value function always starts as an empty set (line 5). The loop operates

by selecting a random belief point b from B̃ (line 8) and performing a value backup on

that point, where B̃ is the set of belief points whose values have not been improved this

iteration. This creates an updated α-vector a, for that belief point (line 9). If the new

α-vector improves the value at b, then it is added to the new value function, otherwise

the best α-vector at b from the previous iteration’s value function is added (lines 10 to

14). This ensures that the new vector added to Vt+1 improves the value of at least one

point in B̃—a necessary condition to ensure termination. Line 15 removes all b ∈ B̃ from

B̃ which are improved by a (or whichever vector was selected from Vt) which reduces the

number of unimproved belief points in B̃. When no points remain in B̃, Vt+1 is complete

and a new iteration begins. This process repeats until convergence. Different convergence

metrics are available, but here we demonstrate the common criterion of a maximal bound

on the Bellman residual (line 18).

The main contributions of the Perseus algorithm are, firstly that only a small subset

of belief points need to be updated to improve the value at all belief points, thus finding a

globally better value function. Secondly, updating the α-vector for any b always improves

67

the value for at least one point, keeping the value function compact by only containing the

minimal number of vectors and allowing for fast backups. The cost of the backup(b, Vt)

operator is linearly dependent on the number of vectors in Vt. Spaan and Vlassis note

that one backup operation often removes large numbers of belief points from the set B̃

in the early stages of value iteration. As with other POMDP value iteration algorithms,

the precise size of Vt fluctuates as t increases.

3.4.1.1 Symbolic Perseus

The use of factored state spaces to reduce the intractability of large (PO)MDPs is an

approach that has received increased attention in the literature in recent years. The

state space has to capture all the important features of the environment. In many cases,

a complete system state can be described by the state of each feature. If each feature

can be in any one of a set of discrete states, then S is the cross product of all these

features. Each combination of feature states is a system state in S. In a factored MDP/

POMDP, it is assumed that the state space can be decomposed into a set of variables

X = {x1, x2, . . . , xn} where each xi ∈ X has domain Di. S is the space of possible

instantiations of each of the n variables:

S = D1 ×D2 × . . .×DN

Actions in the system have a (non-deterministic) effect on some subset of these vari-

ables, thus changing the state of the system. Actions can be described through Conditional

Probability Tables (CPTs) which show the post-action states of the variables and their

relationship to their parent variables (the pre-action states) on which they depend. CPTs

are useful, but disadvantageous in practice because they explicitly show the result of a

particular variable for each possible instantiation of its parent variables. This leads to

very large memory requirements for their storage and a large amount of redundancy, as

many separate instantiations yield the same result.

Using Algebraic Decision Diagrams (ADDs) (Bahar et al. 1993; Hoey et al. 2000) avoids

both of these problems by more compactly representing the relationships between pre and

post action variable states. ADDs are a generalisation of Binary Decision Diagrams and

take the form of a mapping from n multi-valued variables to a finite set of real values.

They are usually described as a directed, acyclic tree with the variable names at the nodes

and the outgoing edges labelled with possible values for those variables. The tree leaves

are the real valued outcomes of the mapping. ADDs can represent mappings for many

variables very compactly since only the variables that affect the outcome appear in the

tree and redundancy is avoided by merging identical sub-branches together. This makes

68

them ideal for use in factored domains.

The use of ADDs to describe each action in a system allows a complete transition

matrix to be entirely described using ADDs. The reward matrix can be similarly described

(see Hoey et al. (1999) for details). As such, a solver that can work with factored MDPs

described through ADDs could produce policies for MDPs with very large state spaces.

SPUDD (Hoey et al. 2000) is such a solver and uses ADDs for all components of the MDP

including the value function. In Hoey et al. (2000), the authors describe how to perform

standard value iteration using ADDs.

In his Ph.D. thesis, Poupart (2005) showed how the Perseus POMDP solver could

be adapted to work with factored POMDPs using an ADD representation. Symbolic

Perseus (Poupart 2005, page 100) uses ADDs to represent the α-vectors and belief states

in factored POMDPs. Poupart notes that “Since Perseus is very close to classic value

iteration, the integration described in those papers [Hoey et al. 1999; Hansen and Feng

2000] can be applied directly to Perseus.” Symbolic Perseus exploits the conditional

independence of the different variables in factored POMDPs to factor the belief state in

an intuitive way. Instead of having a single probability distribution over the entire state

space, independent probability distributions are used for each variable. Each distribution

shows the likelihood of the possible values for one variable. This allows a belief state to be

easily represented as an ADD. One further modification that Symbolic Perseus makes

is to apply an approximation to the ADDs representing α-vectors of the POMDP value

function. Similar values in the α-vector are aggregated together to help bound the size

of the ADD. In Chapter 4 we will test Symbolic Perseus on some problems from our

domain.

3.4.1.2 Continuous POMDP

Continuous space POMDPs have not received as much attention in the literature as

discrete models despite their suitability to certain domains such as robot navigation.

Discretisation of the robot’s orientation (heading) with a Cartesian grid for its location

forms the standard approach to creating a finite environment for a robot, leading to the

disadvantages already discussed (see Section 2.3.3). Further, each additional degree of

freedom causes an exponential expansion in the state space size. Continuous state spaces

seem initially attractive by removing the requirements for discretisation and methods for

estimating the required resolution. They can represent the agent’s location and orientation

exactly (modulus hardware numerical errors). The difficulty in translating this to the

POMDP framework stems from the infinite individual states possible in the continuous

state space. A standard POMDP belief state (a probability mass function (p.m.f.) over

the discrete set of states) must become a continuous probability distribution function

69

(p.d.f.) over the infinite dimension belief space. The value function α-vectors can no

longer be represented with finite dimensions (∞ dimension vectors would be required).

Continuous Perseus (Porta et al. 2005) is a generalization of Algorithm 3.4 to con-

tinuous state spaces. In the value function, α-vectors are replaced by α-functions which

approximate the value function over the entire belief space. Belief points are represented

through combinations of Gaussian distributions (Porta et al. 2005, part IV-A):

b(s) =
∑
j

wjφ(s|sj,Σj)

where b(s) is the belief that s is the true state in the continuous state space, sj and Σj are

the respective mean and covariance matrix of Guassian φ, and wj are the weightings for the

j Gaussians, summing to unity. Linear combinations of Gaussians are used to approximate

the true state value since the exact integral over the belief space B, cannot be computed

in closed form. The continuous POMDP value function does however retain several of

the properties of the discrete model. The continuous space value function is still PWLC

over B and importantly, a recursive computation of the next horizon is still a contraction

operation, thus convergence through dynamic programming is still guaranteed. Proofs

can be found in Porta et al. (2005). The general Perseus algorithm requires no changes

at the highest level to handle continuous spaces because its operation does not depend

on the nature of the backup operator in line 9 of Algorithm 3.4 as long as the value at

b improves. One limitation is that the number of components in the Gaussian mixtures

increases with the horizon distance t, a natural consequence of the approximation. In

simple perceptual aliasing experiments, a compression technique was used that reduces

the number of components in the Gaussian mixtures while retaining the nature of the

distributions, keeping computation time within reasonable bounds. Unfortunately no

comparisons to other techniques (such as conventional discretisation) are provided to

objectively evaluate performance.

3.4.2 Online POMDP solvers

Approximate techniques increased the scale of POMDPs that could be solved by an order

of magnitude. For instance, the “Tag” domain (Pineau et al. 2003) with 870 states is now

considered to be well within tractable bounds. The exact and approximate techniques

discussed so far are all offline algorithms; much like traditional planners, a policy is com-

puted given a model definition, then handed off to the executing agent. This burdens the

planner with the requirement of finding every state the agent may encounter in order to

70

devise a complete plan. This is intractable for very large problems.1 Recent POMDP

planners take an online approach where planning is concomitant with execution, either

alternating between planning and execution after each step, or allowing n steps of exe-

cution before updating the plan. The planner starts from the current belief state and

searches forward, creating a tree of reachable belief states where the tree depth is limited

by computation time. This limits the size of the search tree the planner must generate,

but sacrifices optimality as the values of leaf states in the tree are not exactly known,

with them being assigned heuristic values instead. Before introducing a very recent online

POMDP planner, two techniques that bridge the gap between offline and online planners

are described.

3.4.2.1 QMDP

Although an offline planner by design, QMDP (Littman et al. 1995a) employs a form of

approximation. A knowledge of this is useful for understanding the heuristic nature of

online algorithms. Conceptually, POMDP algorithms conduct value iteration over the

continuous space of belief points as in a standard MDP. In an MDP, we define the value

(expected reward) through Q-functions. Q(s, a) is the value of executing action a from

state s then acting optimally. The value of state s is then found by greedily selecting the

action with the highest Q-value:

V (s) = max
a∈A

Q(s, a)

This is Equation (2.9) restated in terms of Q-values for convenience (see Section 2.2.2.3

for full details). The explicitly stated goal for QMDP is to “to find an approximation

of the Q function over the continuous space of belief states” (Littman et al. 1995a, Sec-

tion 2.2). This approximation is computed by solving the underlying MDP, found by

taking the S,A,T and R components and disregarding the observation functions. The

Q-functions for this MDP can be found using any standard MDP algorithm as detailed

in Section 2.2.2.3. Given V ∗, then

QMDP(s, a) = r(s, a) + γ
∑
s′

t(s, a, s′) · V ∗(s′) ∀s, s′ ∈ S, a ∈ A (3.3)

Having computed V ∗, these can be quickly computed for all 〈s, a〉 tuples; the value for

any belief state b can then be estimated according to:

Qa(b) =
∑
s

b(s) ·QMDP(s, a) (3.4)

1As with most technologies, the precise value of “very large” changes with time.

71

where b(s) is the probability of state s being the true system state according to belief state

b (defined in Section 2.3.1). Equations (3.3) and (3.4) define the QMDP value function,

since they define the value for all b ∈ B. Two often discussed features of the QMDP

algorithm have serious consequences for the resultant policies. Firstly, approximating

the POMDP value function with MDP Q-functions generates policies that assume the

agent will know the state exactly after one transition, i.e. all uncertainty is removed.

Secondly, the agent will never attempt information gathering actions such as sensing

operations. While not a major issue in small domains, this leads to significant performance

degradation in larger problems where sensing actions are required for optimal behaviour.

Performance of the QMDP algorithm is generally poor compared to other algorithms,

however its fast speed and intuitive simplicity mean it is often used as a baseline for

comparison.

3.4.2.2 Heuristic search value iteration

POMDP value functions represented through α-vector sets represent the PWLC lower

bound on the expected reward across the belief simplex. The agent controller selects

actions associated with this lower bound. The true value for the lower bound of each

belief state is approached as value iteration progresses. Backing up one belief point is a

relatively straightforward computation. Most POMDP solvers therefore focus solely on

this computation. Heuristic Search Value Iteration (HSVI) (Smith and Simmons 2004)

differs by additionally storing the upper bound for the value function. This permits a

different convergence criterion to most value iteration algorithms. Instead of measuring

the Bellman residual between successive horizons, HSVI terminates when

|V (b0)− V (b0)| < ε (3.5)

where b0 is the starting belief state, V (b) and V (b) are the upper and lower bounds on

the value of belief state b respectively. Equation (3.5) is known as the width of V . When

a policy π is not guaranteed to be optimal, the regret of a state is the difference in the

value of that state under π and its value under an optimal policy π∗:

regret(b, π) = |V ∗(b)− V π(b)| (3.6)

When HSVI terminates, the regret is guaranteed to be less than or equal to ε at b0:

regret(b0, π) ≤ width(V (b0)) ≤ ε

72

HSVI expands the search tree in a depth-first manner, following a single path down the

tree until the width of an expanded belief node is below a threshold based on ε and the

depth of the node. Action and observation selection is based on a forward search heuristic

that selects actions and observations that are most likely to reduce width(b0) the greatest

amount. When the width of an expanded node is below the threshold, the upper and

lower bounds are updated back up the branch to b0. This exploration routine is repeated

until width(b0)≤ ε.

The lower bound V , uses a standard vector set representation common in other algo-

rithms. It is initialised with a single vector of uniform components exactly as in Perseus

(line 2 of Algorithm 3.4). The upper bound V , uses a point set representation, similar

to the way in which early point-based solvers such as Lovejoy (1991) stored the value of

belief points. The point set forms a convex hull over B on to which belief points can be

projected using linear programming techniques to obtain their upper bound.

Compared to other contemporary algorithms, HSVI matches or exceeds the reward ob-

tained in POMDP benchmark problems such as “Tag” (Pineau et al. 2003) and “Hallway”

(Littman et al. 1995a), though it is significantly slower to compute the policy. The most

likely cause is the significant overhead imposed by solving the linear programs necessary

to update V which dominates the runtime in smaller POMDPs. In larger problems with

thousands of states, this cost is proportionally reduced so does not impede algorithm scal-

ability. Compared to PBVI, HSVI obtains substantial speed-ups in larger models while

still deriving policies of identical quality (as measured by the returned value function).

3.4.2.3 Anytime error minimisation search

Unlike the QMDP or HSVI solvers, Anytime error minimisation search (AEMS) (Ross

et al. 2007) is a true online POMDP solver. The planner constantly replans after every

action is executed to determine the subsequent action. It shares characteristics with both

of the former algorithms. Heuristics are employed to estimate the value and decide the

best actions to expand in the tree. QMDP can be seen as a tree search where the tree

is only ever expanded one level ignoring observations. HSVI and AEMS can expand the

tree to an arbitrary depth, both storing the upper and lower bounds of the value function

to estimate the true value of a state. AEMS uses the estimated error at the tree root

b0, to determine whether the algorithm may terminate, i.e. if the root value is ε-optimal.

Unlike HSVI, AEMS only stores values at the belief points in its tree; no vector sets or

point sets are used to store the value function bounds. This is necessary in HSVI so it

can find the value of any belief point in B, a restriction AEMS does not have.

AEMS builds a tree out from b0 as an AND/OR tree, where OR nodes represent

an action choice and AND nodes represent the possible observations. Loops are not

73

explicitly dealt with, so duplicate belief states can appear in different sub-trees. The tree

is expanded in a best-first order as with HSVI, but expansion is not depth first. Any leaf

node on the tree may be expanded, but that path will not necessarily be followed until

the upper and lower bounds are minimised. Upper and lower bounds are propagated back

through the tree from leaves to ancestors; however, as the name suggests, the goal of the

tree expansion is to minimise the error in value, not to find the action that maximises

the upper bound as in HSVI. A provable property is that as a tree is expanded, the error

at b0 reduces and will become ε-optimal after a finite number of expansions. If the value

function is already known, then the precise contribution of each fringe node to the error at

the route node can be quantified, making selection of the largest contributing fringe node

trivial. Obviously this is not possible in practice, so AEMS uses heuristics to estimate

the contribution of fringe node errors, where ê(b) is the estimated error at fringe node b.

The best performing heuristic, known as AEMS2, selects the action at node i that

maximises the upper bound estimate on the value of the sub-tree rooted at i (similar to

HSVI). Expansion of such fringe nodes reduces the upper bound on the value function at

b0. As noted above, the lower bound of a state’s value defines the value function estimate,

and as V (b) ≤ V ∗(b), the true state error e(b) = |V ∗(b)− V (b)|. However, this cannot be

exactly known so the width defined in Equation (3.5) is used in AEMS to estimate e(b).

Expanding action arcs that maximise the upper bound are therefore likely to lead to the

largest reduction in the estimate ê(b).

Empirically, the performance of an online variant of HSVI and AEMS2 are very similar

in terms of both policy reward and computation time across multiple domains. This is

partially attributable to the many similarities in their design. HSVI exists in both on

and off-line versions, making it applicable to a wider range of problems. Following recent

trends in POMDP solvers, an anytime modification to HSVI is available making it feasible

for use in time constrained environments (Smith and Simmons 2004, Section 3.5). The

reader is referred to Ross et al. (2008) for further discussion of online POMDP solvers

including those discussed above.

3.5 Concluding Remarks

Uncertainty can be integrated into planners using a variety of techniques and the litera-

ture includes many more not discussed here. Numerous classifications are possible, but

uncertain route planners can be broadly divided according to the type(s) of uncertainty

they tolerate or by the objective of the planner. As noisy odometry is a common feature

in mobile robotics, many planners such as SMR and Censi et al. (2008) compute plans

that do not depend on the robot executing perfect actions. These planners tend to use

74

obstacles to localise and reduce uncertainty and produce plans that succeed even if the

robot deviates from the path. Other planners, such as FSSN and MCC, plan for map

uncertainty assuming the robot acts deterministically, or that lower level mechanisms

correct motion deviations; they compute plans that specifically avoid obstacles.

A different classification highlights other similarities and differences between planning

algorithms. Most of the planners reviewed here such as SMR and Censi et al. (2008),

attempt to produce plans that are safe under all conditions, i.e. the route computed

has the highest probability of reaching the goal. MCC offers the weaker condition that

the route is optimal given the estimated cost of collision, giving the user the option to

allow a greater chance of collision in domains where such collisions are not serious (e.g. a

vacuuming robot knocking into a table leg). This research, in similarity with FSSN, aims

to produce plans where no collision is encountered by using observational data to avoid

traversing graph edges that are known to be blocked. Table 3.1 shows the applicable

techniques from this review grouped according to category.

Planner Uncertainty type Probabilistically safe
Hsu et al. (2000) sensor yes/no1

Predictive PRM sensor yes
MCC sensor no
FSSN sensor yes

Barraquand and Ferbach (1995) sensor/motor yes
SMR motor yes

Burlet et al. (2004) motor yes
Censi et al. (2008) motor yes

Table 3.1: A comparison of uncertain planners by category.

In terms of technical implementation, algorithms can generally be split into two groups:

those that use decision-theoretic models to plan for all (or most) circumstances and those

which are heuristic based and plan solely on what is currently known. This research

falls into the first category along with the information space planner of Barraquand and

Ferbach (1995) and Burlet et al. (2004) and many POMDP based motion planners. FSSN

and MCC are examples of the second category.

A certain motion model with uncertain obstacles versus uncertain motion with an exact

environment should not be viewed as two versions of the same problem.2 In the first case,

this reasoning would assume that all obstacles share the same degree of uncertainty, thus

removing uncertainty for one would remove uncertainty for all of them (turning it into

a purely localisation issue). However, obstacles are often independent of each other, so

1Agent can sometimes require local domain knowledge to avoid collisions.
2A case of “Am I moving, or is the room moving around me?”

75

updating the position of one does not help infer the position of all others.

The main thrust of this review is that many categories of route planner remain the

subject of intense research. Finding the right planning algorithm still requires careful

examination of the problem domain—a single dominant plan system has yet to emerge.

Therefore, we anticipate the already diverse range of literature in this field will continue

to evolve at a fast pace, particularly with the renewed commercial interest in the use of

application specific domestic robots.

76

Chapter 4

Solving via MDP

4.1 Problem Definition

In this Chapter, we show how the problem of PRM graph traversal in uncertain graphs

can be formulated as a decision problem based on the agent’s beliefs about the world.

We abstract it into a problem of which edge should chosen based on the accumulation of

information gathered from observations. These decisions are made offline, i.e. we would

like the agent to know beforehand what it should do no matter what it finds out about

its environment (through observations of edges).

We assume that we are given a model of the robot and its environment as input.

The robot’s size and shape is specified as a 2D polygon and is used during roadmap

construction for collision detection. The environment is described via its bounding shape

(a closed 2D polygon) along with desired start and goal positions. Obstacles in the

environment are described as 2D polygons in a similar fashion to the robot. The difference

is that the robot geometry is known exactly, whereas the obstacles are not. Each vertex of

the polygon defining an obstacle is represented as a bi-variate Gaussian distribution with

the mean representing the most likely location. The covariance matrix then defines the

uncertainty over the true location of the point represented visually as an ellipse around

the vertex. An example of this can be seen in Figure 3.1 on page 55. The output is a

policy that directs the agent from the start to the goal accounting for the uncertainty

present about the environment. The policy instructs the agent how to act based on what

it currently believes about the edges in the roadmap. To simplify some details of the

problem, we do not deal with the problem of localisation and assume the robot always

knows its precise location and also assume that its actions are deterministic.

The first stage of the algorithm is to construct the roadmap for the environment.

The basic version of PRM is used (shown on page 17) to generate the graph using the

known robot geometry and obstacles. Since the standard version of PRM does not handle

77

uncertainty, the Gaussian distribution means are assumed to be the correct locations

for the obstacle vertices. We use a uniform sampling algorithm that places PRM graph

nodes uniform randomly over the environment, discarding any that fall in Cobst. All graph

edges are also collision free according to the maximum likelihood obstacle vertex positions.

Given that the obstacles in the world are unlikely to have certain locations, this entails that

some of the edges in the graph are not guaranteed to be free of obstruction. Uncertainty

about an obstacle’s location (or even part of that obstacle) may mean an agent may not

be able to traverse an edge. This complicates the planning process because the ostensibly

simple task of plotting a route across a graph becomes a problem of identifying which

parts of the graph are usable. The core dilemma for the agent is then one of risk-analysis:

when is a shorter, possibly blocked route worth taking? In reality, it will face several

choices and must always balance the trade-off between a long safe route and a short,

uncertain route.

We abstract the problem of route planning in an uncertain PRM graph into a model

identification problem and assume that the state of some of the edges in the PRM graph

will not be known precisely before the agent starts to act (i.e. they are uncertain edges

according to Definition 1.1). If the agent tries to traverse an uncertain edge that is blocked,

it will be considered to have failed to reach the goal node of the graph. The agent will

only fail if it tries to traverse an uncertain edge that is actually blocked. It is acceptable

behaviour for the agent to reach a graph node incident to a blocked edge, observe the

edge is blocked and then move away on an alternate route. Identifying the optimal route

to take across a PRM graph in the presence of these uncertain edges is the core problem

of this thesis. Conceptually, each uncertain edge in the graph is either usable or not: it

is free or blocked.

Definition 4.1 (Free Status). The true state of an uncertain edge is either “free” or

“blocked”. This is referred to as the “free status” of that edge.

Given m uncertain edges which may be blocked, there are 2m combinations of edges

that are obstacle-free or blocked. Part of the problem therefore, is to deduce which

combination—or world—is the correct one based on the observations of edges that the

agent receives. The decision over which route to take is then not only based on the agent’s

belief about which edges are usable, but also upon the value of being able to make better

observations about obstacles in the world. The agent must trade off the cost of having to

backtrack if a short route is indeed blocked against the cost of taking a longer route to

start with. However, if there is a location in between the two where an observation of the

short risky route can be made, the agent must also consider this third alternative. This

third option would allow it to reduce the uncertainty about its environment and therefore

make a more informed choice as to which route to the goal it should pick.

78

At various nodes throughout the graph, the agent can make observations of specific

uncertain edges. The agent may receive observations of multiple edges when it arrives at

a node. Each observation that the agent makes of an edge will result in it receiving a

“free” or “blocked” observation. In most cases, these observations are uncertain in that

if the edge is collision-free, we may still observe blocked some of the time, and vice versa.

The exception is at the two end-nodes of an uncertain edge, where we assume the agent

may make a perfect observation of that edge, i.e. the free status of that edge is accurately

known (it may still receive uncertain observations of other, non-incident edges). The

graph nodes where observations are received are explicitly stated to the planner, along

with the probabilities of receiving each of the two observations (free or blocked). The agent

knows these probabilities a priori (in practice these can be calculated either by sampling

or as a function of distance of the observing node from the obstacle location). For each

observation of an uncertain edge, the agent requires two values: P(blocked|blocked) and

P(blocked|free)—these are the probabilities of receiving a blocked observation given that

the edge is truly blocked or free. The complement probabilities can be calculated as

follows, since they must sum to unity:

P(free|blocked) = 1− P(blocked|blocked)

P(free|free) = 1− P(blocked|free)

4.1.1 Model formulation

The PRM graph the agent moves in can be described as follows: Let GPRM = {V,E} be

a weighted graph where the nodes in the graph V = {v1, . . . , vn}, represent locations in

the world, and the edges E = {e1, . . . , ek} where ei = 〈v, v′〉, represent paths between

locations (we assume that if there is a path 〈v, v′〉, then there is a corresponding path

〈v′, v〉). We also identify locations vS and vG, the start and goal locations. Each edge e

has an associated cost (edge weight) ce of traversing the edge in either direction. Some

of the edges are uncertain because we do not know if the agent can traverse them, whilst

the remaining edges are certain.

Although we cannot observe it directly, there is in fact a true state of the world in which

each uncertain edge {1, . . . ,m} is either collision-free or blocked. Let W = {w1, . . . , w2m}
be the set of all such worlds. While we have abstracted away the obstacle locations in this

representation, the fact that the traversability of the edges is based on obstacle locations

is important because it implies that for close edges, the probability that the edges are

blocked may not be independent. If the edges are independent, then the likelihood that

world w is the true state of the world is simply the product of the likelihoods of the

free status of each edge. If this is not true (for example, where one obstacle is likely to

79

intersect two edges), then the edge probabilities are dependent (see Section 4.4.1).

4.2 POMDP Representation

The agent has to act in an environment where it never has complete access to the state,

but can alter its belief about the true state when it receives an observation. The size of

the set of worlds W , is finite and precisely known and the set of available actions is also

finite so it is convenient to define the navigation problem within the POMDP framework.

Every uncertain edge can either be free or blocked giving 2m possible worlds. We

define a POMDP as a distribution over these worlds. If the correct world state is known

exactly, route planning becomes straightforward. The uncertainty arises from the POMDP

deciding which world is correct. Since there is no uncertainty over the agent’s location: it

always knows which node in the PRM graph it is at, this knowledge must be included in

the system state. To translate our world identification problem into a POMDP, we make

a copy of the PRM graph for each possible world w ∈ W . Therefore, in the POMDP

state space S, there is one state per graph node per world. Within each world, there is

no uncertainty about the edge statuses. S is the union of the states from each world and

one absorbing termination state sT , so

|S| = n2m + 1 (4.1)

for a PRM graph of n nodes and m uncertain edges. An example is shown in Section 4.2.2.

The action set is the set of nodes in the PRM graph so there is one action per node. Each

action indicates that the agent should travel to that node. This implies that most actions

are invalid in most states because the current node must connect directly to the desired

node for an action to be usable.

We define the function valid(v, v′, w) where w ∈ W , to represent the fact that there

is a collision-free edge in world w between v and v′. Formally, valid(v, v′, w) is true if

∃e ∈ E : e = 〈v, v′〉 and e is collision-free in w.

The POMDP model consists of state space S, action set A, transition matrix T ,

reward function R, observation set O and observation function o(z, s, a) where z ∈ O.

For full details refer to Section 2.3. We can now formally define the model identification

POMDP as follows:

� S = V ×W ∪ sT as described above. Each state is a combined 〈v ∈ V,w ∈ W 〉 pair.

� A = {a1, . . . , an} where ai represents the action instructing the agent to traverse

the edge from the current node to node vi.

80

� T is defined as follows:

All transitions have probability zero except transitions where the agent is moving

between PRM graph nodes in the same world and there is a collision-free edge in that

world between those two nodes. Recall that in reality, the agent is in a particular

system state in one world and cannot change between worlds: it is the belief about

which world is correct that changes. If v = vG then all actions transition to the

absorbing state sT which only contains a self-transition for all actions.

t(s, a, s′) = P(〈v, w〉, goto-v′, 〈v′, w′〉) =

1 if w = w′ and valid(v, v′, w)

and v 6= vG

1 v = vG or sT and v′ = sT

0 otherwise

� R is defined by the graph structure. Each reward is the negative cost of the edge

〈v, v′〉 if valid(v, v′, w) is true. Reward cG > 0 is obtained when transitioning from

a goal node to sT .

r(s, a) = r(〈v, w〉, goto-v′) =

−ce if e = 〈v, v′〉, valid(v, v′, w)

and v 6= vG

cG if v = vG and v′ = sT

0 otherwise

� O = P(o) = W where o = 〈o1, o2, . . . , om〉 and oi is an observation of uncertain

edge i. Each observation o includes an observation of all m uncertain edges. As

each w ∈ W comprises one combination of free and blocked edges, then the set of

observations equals the set of worlds.

� o(z, s, a) is defined as follows:

o(z, s, a) = P(z|s, a) = P(o|〈v, w〉, goto-v′) = P(o|v, w)

where z = o, s = 〈v, w〉 and a ∈ A as described above. o(z, s, a) is the observation

function for the POMDP which, in this case, is defined solely by the resulting

state. This is the probability of seeing observation o given that the agent is at

node v in world w and executed action a to transition to node v′. Whenever we

perform an action in the POMDP, we get an observation of whether each uncertain

edge is collision-free or blocked. From most nodes, most edges cannot be observed

81

Algorithm 4.1 Calculation of P(o|v, w)

Input: o observation, node v and world w
Output: Calculation of P(o|v, w) based on observation probabilities present in graph

1: L ⇐ {all uncertain edge observations at node v} //each observation comprises
probabilities P(blocked|blocked) and P(blocked|free) of an uncertain edge

2: p⇐ 1
3: for i = 1, . . . ,m uncertain edges do
4: if edge i 6∈ L then //i not observable from v
5: p⇐ p/2
6: else
7: if i free in world w then //choose probability based on edge i actually being free
8: o⇐ P(blocked|free) //lookup probability from L
9: else

10: o⇐ P(blocked|blocked)
11: end if
12: if i is observed as free in o then //is edge i being observed as free or blocked?
13: p⇐ p(1− o)
14: else
15: p⇐ p · o
16: end if
17: end if
18: end for
19: return P(o|v, w) = p

so the probability of observing “free” or “blocked” for those edges will be evenly

distributed. At nodes where no edge observations can be made, then

P(o|v, w) =
1

|W |
∀ o ∈ O

otherwise P(o|v, w) is the product of the edge observation probabilities

P(blocked|blocked) and P(blocked|free) for the edges observable from node v. An

algorithm for the calculation of P(o|v, w) given node v and world w is shown in

Algorithm 4.1.

4.2.1 Belief state

The POMDP belief state is a probability distribution over all the states in the system;

however, it is important to remember that the agent’s current location (the current graph

node) is always known exactly. The uncertainty concerns which world is correct. When

82

the agent is at node vi in the graph, the belief state is defined as:

b(s = 〈v, w〉) =

P(w) if v = vi

0 otherwise

That is, all system states pertaining to graph nodes other than vi have probability zero.

Thus, most states will have zero probability in any particular belief state. In reality, each

edge will either be free or blocked, so each possible world must be enumerated. We can

refer to a specific world through the free statuses of the edges, e.g. in a two uncertain

edge graph, FF refers to the world where both edges are free.

Assume a particular graph has three uncertain edges labelled A, B and C. We can

obtain the marginal probability of edge A, B or C being free or blocked by summing the

P(w) where the edge status matches, for instance:

P(A=free) =
∑
w∈Z

P(w) Z = {all w ∈ W : A is free in w} (4.2)

The belief state combines two important pieces of information: the knowledge of how

likely various edges are to be free and also how various edges are correlated to each other.

Combined with the Markovian property of the process, i.e. the agent does not need any

information other than the current state to act optimally, this entails that the starting

belief state alone is sufficient to encode any edge dependencies. If the probabilities that

two edges are blocked are not independent, this can be represented in the POMDP model

using the belief state. We can represent the fact that, for example, two edges will always

have the same status (free or blocked) by making all worlds in which one is blocked and

the other is not have prior probability zero. If two edges are independent, then the initial

belief state should be such that the sum probability of the worlds in which both edges

are blocked is the product of the marginal probabilities that each edge is blocked. In a

two uncertain edge graph, if P(free) = 0.4 and 0.3 for the two edges respectively, then

the probability of the FF world is 0.12. This POMDP model can now be solved to find

an optimal policy under the uncertainty about which world is correct. However, this also

illustrates the problems that exist with this model. Despite the fact that this POMDP

solution is intuitively the correct formulation since it is the closest match to the actual

problem we are trying to solve, it suffers from the computational complexities that affect

all non-trivial POMDPs. Even simple PRM graphs with a small number of uncertain

edges translate into POMDP models with large numbers of states and high-dimensional

belief spaces. The state space grows rapidly even with low numbers of uncertain edges

because each additional edge doubles the size of S (ignoring sT).

83

S

A

B G

C

2

2

2

2

2

1

5

P(free)=0.5

P(free)=1 for all
edges unless marked

Actual state of A→ G completely
observable at A and B

Figure 4.1: A simple 5 node roadmap with one known wall present. The agent starts from node S and must
attempt to reach node G. The dotted line shows the uncertain edge.

4.2.1.1 Implementation note

There is an alternative, more attractive set up for the POMDP formulation where cG = 0

and all rewards are negative. As the POMDP solver should always find the policy with

the highest expected reward, this should produce the same results as the model described

above that includes a positive reward for reaching the goal state. Even though it is not

the most satisfactory set up, we added the goal reward for practical reasons because

we found that the solver we used did not produce usable results unless the POMDPs

were modelled as laid out above. With larger examples, a goal reward was necessary to

ensure that reaching the goal always yielded the lowest eventual cost under the presence

of discounting. Without it, we found that in most cases, the agent did not move towards

the goal because cost would accrue more slowly if it repeatedly traversed shorter edges

in graph. In an undiscounted problem, repeatedly paying a small cost would eventually

become more expensive than reaching the goal as the horizon extends, with the latter

behaviour becoming the optimal policy. However, with the discount factor limiting how

much future rewards are considered, the agent is not guaranteed to do this.

4.2.2 Example POMDP model of a graph

We now present a worked example of converting a small PRM graph into a POMDP

model. The graph shown in Figure 4.1 has 5 nodes and 1 uncertain edge so there are

only two worlds: w1 where edge A → G is free and w2 where it is blocked. The agent

occupies one state from a space of 11 states (including the absorbing state). The complete

POMDP state space is shown in Figure 4.2. A contains the 5 actions corresponding to

the nodes. O consists of two observations: “F” and “B” as there is only one uncertain

84

S

A

B G

C

S

A

B G

C

ST

w1 w2

Figure 4.2: The POMDP state space for the graph in Figure 4.1. All transitions are deterministic in the
state space and only transitions between nodes in the same world are allowed. The goal states transition to
the absorbing state sT .

edge in this case. Each state represents a particular 〈v, w〉 pair, so the transition matrix

contains the transitions appropriate for the given node and world. For instance, in world

w1, the transition function for node A allows transitions to S, B and G with probability

1 under the appropriate action and 0 otherwise, whereas in world w2, only transitions to

nodes S and B are allowed. Trying to execute an invalid option, e.g. attempting to reach

G from node A in world w2, leaves the agent at the same node with probability 1. Most

of the nodes in this graph produce no observation about the uncertain edge, so in those

cases the two POMDP observations are received with an equal probability of 0.5. For

the purposes of this example, the agent makes a perfect observation of edge A → G at

nodes A and B, so one POMDP observation is received with probability 1 while the other

is never received, depending on the world. The agent makes any observations at a node

when it arrives there. There is no actual cost associated with making an observation.

The reward function simply contains the negative of the edge costs that are shown in

the figure and cG is set at 10 for this graph as this is higher than the maximum cost of

reaching the goal from the start.

The starting belief state gives the agent no priori knowledge about which world is

correct, assigning a probability of 0.5 to states 〈S,w1〉 and 〈S,w2〉. Solving this POMDP

can be accomplished very easily because it is a very small example. In Section 4.6.1.1 we

show that an exact POMDP solver can solve it in 97ms but takes much longer on graphs

that are only slightly more complex.

In the example in Figure 4.1, the uncertainty in the graph could easily be avoided by

adding further nodes to the PRM graph that avoid the obstacle. Another PRM node near

to the A → G edge may avoid the obstacle entirely and become the obvious path to the

85

goal. During the query phase of PRM planning, some planners attempt repair strategies

based on re-sampling nodes around the obstacle (details can be found in Section 3.1)

to avoid any uncertainty. Whilst we would expect this to work in this example, it is

not a general solution to our problem. Standard PRM is not an uncertain planner and

assumes it has complete, accurate information about its environment. Therefore, when

it samples nodes in the pre-processing phase, if it is possible to place nodes and edges

around an obstacle that avoid collisions, it is reasonable to expect PRM to have done so.

With regards to POMDP planning, each time a PRM node is added to the graph, this

change would need to be reflected in the POMDP model specification. While this may

be possible in an online planner, it would require the planning process to be re-started

in offline planners due to the modified state space, transition model and introduction of

new actions.

4.3 MDP Representation

The POMDP formulation is clearly not scalable because the cardinality of S is exponential

in the number of uncertain edges and POMDP solution algorithms traditionally scale

very poorly to larger state spaces. We would like to find ways to mitigate the state

space explosion and still compute policies in a reasonable amount of time. A common

technique is to convert a POMDP into a belief state MDP. Each POMDP belief state is

treated as a completely observable MDP state. The transition function is governed by the

belief update rule of the POMDP shown in Equation (2.12). MDP value iteration has a

lower complexity than POMDP value iteration, so if the number of belief states forming

the belief MDP state space is manageable, the optimal policy over those states can be

found more efficiently than in the POMDP formulation. If a precise list of belief states

visited by a POMDP controller under a (near) optimal policy were available, these belief

states would form the MDP state space. Performing standard MDP value iteration over

these states would yield their optimal value and a policy which could be applied to the

POMDP controller without needing a more complex POMDP solution algorithm.1 The

major obstacle in such an approach is that the resulting MDP state space is infinite due

to the continuous nature of the belief space. In our domain, there is a lot of structure in

the POMDP state space and belief space. For instance, because the agent always knows

which PRM node it is located at, only POMDP states representing that node have a non-

zero probability in the current belief state. In this Section we show how this can exploited

to convert the POMDP formulation into an MDP formulation with a much more compact

1Many POMDP solvers work in the MDP belief space, so solving the belief MDP is now considered
a basis for POMDP algorithms in itself.

86

belief state. We also show how the infinite number of belief states is kept finite for the

MDP, such that we can solve it to produce a policy for the agent. This conversion forms

the basis for a number of extensions that exploit the nature of this problem domain.

4.3.1 Belief state conversion

Two key conversions are required to convert the POMDP formulation into an equivalent

MDP formulation. Firstly, we would like to exploit the structure in the belief space to

avoid reasoning about belief states that cannot occur by the definition of the problem

(such as the agent believing it is simultaneously at multiple graph nodes). Secondly, we

must deal with the continuous nature of the belief space. This is done by discretising the

various elements of the distribution of a belief state as explained in Section 4.3.2.

The agent’s objective in the POMDP formulation is to identify which of the possible

worlds represents the true state of the environment. We can therefore encapsulate all of

the uncertainty in the domain by maintaining a probability distribution over the space

of possible worlds, i.e. a distribution over W . Augmented with a PRM graph node, this

represents the agent’s total information about the environment. This forms the basis of

a state in the MDP formulation. As an example, consider Figure 4.1 again: a state for

the MDP formulation for that graph would consist of the current node label e.g. S, and

the agent’s current belief distribution over the two worlds e.g. w1 = 0.3, w2 = 0.7. We

can write this as: “S-0.3,0.7” encoding the distribution as two variables. However, this

is slightly inefficient, the second variable is actually superfluous as all probability mass

functions must sum to unity. We can eliminate the second variable and calculate it as the

remaining probability mass once all other worlds are accounted for. Thus, MDP states for

the graph in the figure can be represented as: “S-0.3”. In a graph with two uncertain edges

(|W | = 4) an example belief state is “S-0.4,0.2,0.1”, where P(w4)=0.3 is not explicitly

stated. The number of elements in the MDP belief state has been reduced by a factor

of the PRM graph size n, compared to the POMDP belief state. We only maintain the

distribution over the set of worlds W , instead of the space of nodes and worlds V ×W ,

so the belief state will contain 2m − 1 elements. The agent’s location is always precisely

known, so given the correct world, the true state is known deterministically.

4.3.2 Discretisation

Conversion of the POMDP belief space to a set of MDP belief states reduces the dimen-

sionality of the distributions, but the resulting set is still continuous and infinite in size,

even with only one dimension. Discretising the elements in the distribution restricts the

set of belief states to a finite size. We discretise the belief state according to some granu-

87

larity, or resolution d, to construct a finite belief space for the MDP. With one element in

the belief state and a resolution of d = 0.1, each node in the PRM graph translates to 11

states in the MDP. For example, for node N we have: N -0, N -0.1,. . .,N -1. The “round

half-up” (arithmetic rounding) rule is employed to discretise each continuous variable in

a belief state independently of the others.

Definition 4.2 (Discretisation Resolution). The discretisation granularity must divide

into one and specifies the accuracy to which each element in the belief state is rounded.

Zero and one are important to distinguish in these problems as they lead to smaller

branching factors in the MDP so we discretise each element into d−1 + 1 values as follows:

D = {0, 1/d−1, 2/d−1, . . . , (d−1 − 1)/d−1, 1}

where every value in the range [i/d−1 − 1/(2 · d−1), i/d−1 + 1/(2 · d−1)) is discretised

to i/d−1, and 0 and 1 correspond to the ranges [0, 1/(2 · d−1)) and [1 − 1/(2 · d−1), 1]

respectively.

4.3.2.1 Invalid discretisation

With a coarse discretisation, it is possible for the rounding process to discretise a valid

belief state into an invalid one that no longer sums to unity. Table 4.1 shows such a

belief state where a continuous distribution of 4 elements in column (a) is discretised

to produce the invalid distribution (b) where the elements sum is greater than 1. We

correct this behaviour by iterating over the elements of the distribution according to the

following algorithm: first the elements are iterated over in order and any element that

is at least 2d in magnitude is reduced by d. As soon as the distribution sums to 1, the

algorithm terminates. This is shown in column (c) of Table 4.1. If one full iteration over

the distribution finishes and it is still invalid, a second round begins with the difference

that elements of magnitude d may now be decreased to 0. The distinction between the

two stages is to avoid reducing distribution elements to 0 if possible because this forces

the agent to believe a particular world is impossible. If a distribution sums to less than

one, then the opposite procedure is performed to increase elements in increments of d

until the distribution is corrected. In the first stage, only elements that are at least 2d

less than 1 are eligible to be incremented, while all elements may be incremented in the

second stage.

4.3.2.2 State space size

The MDP state space S, is the cross product of the finite set of belief states and the nodes

of the PRM graph. The size of the state space is exponential in the number of uncertain

88

World (a) Continuous (b) Discretised (c) Corrected
FF 0.35 0.4 0.3
FB 0.25 0.3 0.2
BF 0.25 0.3 0.3
BB 0.15 0.2 0.2∑

1.0 1.2 1.0

Table 4.1: A continuous distribution (a) that is discretised to an invalid distribution (b) and then corrected
(c). Resolution d = 0.1 for this example.

edges. If all possible discrete values for the elements in the distribution are enumerated,

the total number of MDP states is would be:

n(d−1 + 1)u (4.3)

where u = 2m − 1 is the number of elements in the distribution (minus the final element)

and n is the size of the set of PRM nodes. However, Equation (4.3) calculates the size of

state space, assuming that all possible numerical permutations of D are included, without

knowledge that they represent probability mass functions. Therefore, in the belief model,

Equation (4.3) overestimates the state space size as many of the distributions will be

invalid. As an example, if m = 2, there are 4 worlds (although only the probabilities

for the first 3 need to be recorded). If d = 0.1, systematically enumerating all possible

values for each element of the belief state creates many invalid probability distributions.

Table 4.2 shows such a distribution where the first three elements have been assigned

values summing to 2.1, making a correct choice for the last element impossible. When

every combination of element values is produced, most distributions are invalid—with 3

uncertain edges (7 explicit elements) this represents over 90%.

World Probability
FF 0.7
FB 0.6
BF 0.8
BB ??

Table 4.2: An example of an invalid discretised belief state. The first three elements sum to greater than 1,
making it an impossible probability distribution.

Theorem 4.1. For a PRM graph with n nodes, m uncertain edges, and a discretisation

resolution of d, the total number of valid (belief distributions summing to unity) MDP

states is:

|S| = n
(d−1 + 2m − 1)!

d−1!(2m − 1)!
(4.4)

89

Proof. From Definition 4.2, given a discretisation resolution of d, we have n = d−1 − 1

discrete values that each of the k = 2m− 1 elements in a belief state can be set to. Given

that every belief state must be a valid probability distribution, the sum of all k elements

plus the implicit final element must sum to unity. The total number of valid belief states

is therefore the number of ways that the n fractions of the total probability mass can be

distributed over the k belief state elements. By noting the following:

1. The order of distribution of the probability fractions is unimportant.

2. We may choose to assign multiple probability fractions (of size d) to any element.

we see that the number of distributions is the number of combinations of choosing k

elements for n probability fractions, with repetition allowed. By imagining all n fractions

as separate probability masses placed side by side in a line, we can arrange k − 1 card

markers between the masses. From the start of the line, each probability fraction is

added to the first element of the belief state until the first card is encountered. The

probability fractions between the first and second card are added to the second belief

element, and so on. An ordering of the k − 1 cards among the n probability masses is

equivalent to a distribution of the n masses over the k elements with repetition. The

number of distributions of n masses over k elements with repetition equals the number

of distributions of n + k − 1 masses over k elements without repetition. Therefore, the

number of valid belief states h, is given by:

h =

(
n+ k − 1

k

)
=

(n+ k − 1)!

(n− 1)!k!

substituting n and k:

h =
(d−1 + 1 + 2m − 1− 1)!

(d−1 + 1− 1)!(2m − 1)!

=
(d−1 + 2m − 1)!

d−1!(2m − 1)!

Each belief state is possible at each of the n nodes in the PRM graph, therefore the total

state space size is:

|S| = n · h

= n
(d−1 + 2m − 1)!

d−1!(2m − 1)!

90

Examining (4.4), we see that the major contributors to the number of states are the

discretisation resolution and the number of worlds. We can coarsen the discretisation to

make S smaller, but we tend to see instabilities in the results if we discretise too coarsely.

Conversely, increasing the resolution quickly results in an intractable state space size.

Graphs with 12 nodes, 4 uncertain edges and a discretisation of d = 0.2 have a dependent

model state space size of 186,048 states (15,504 discrete belief states per node). A slightly

finer discretisation of d = 0.1 creates an MDP of 39,225,120 states which is a massive

increase for a small gain in resolution and beyond what most standard MDP solvers

can handle. This highlights the trade-off of discretisation: we want to use as fine a

granularity as possible to more closely approximate the continuous belief space, yet stay

within the technical bounds of computation. When the discretisation resolution is too

coarse, small movements in the belief space (e.g. from a poor observation) are ignored

because discretisation ‘moves’ them back to the original belief point. This is common

when d ≥ 0.1 and will be demonstrated in Section 4.6.2.

A second influence on the choice of resolution is ensuring that it is fine enough to

allow each element to have a non-zero probability. With 6 uncertain edges and d = 0.1,

even most (valid) belief states cannot be represented. Consider the uniform belief state

where each of the 64 worlds are equally likely: each element should carry a weight of
1
64

= 0.015625. However, when discretised, this value is rounded down to zero, creating

an invalid belief state. When corrected, the distribution becomes:

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0, . . . , 0

Instead of believing every edge is P(free) = 0.5, the agent now incorrectly believes many

worlds such as the final “all edges blocked” world are impossible. Here, d needs to be

several orders of magnitude finer in order to be able to represent the belief state with

reasonable accuracy.

4.3.2.3 Maximum discretisation error

One of the disadvantages of discretisation is that it introduces some error into the belief

state due to the elimination of the continuity in the belief space; each continuous value

is moved to its nearest discrete value. An important question is: what is the minimum

discretisation resolution required to bound the maximum error? For example, we may

require that the elements of a belief state must be no more than 0.1 away from their

continuous values. With a given maximum error in the representation per element, the

discretisation resolution must be at most twice that, since a discretisation level of d may

only incur an error of d
2

due to half-up rounding. Over the entire belief state, the maximum

91

cumulative error is bounded by:

2m · d
2

(4.5)

where m is the number of uncertain edges. Therefore, if the desired maximum cumulative

error over the belief state is ∆, then the minimum resolution required in the dependent

case is given by:

d ≤ 2∆

2m
(4.6)

When an invalid discretisation (see Section 4.3.2.1) is produced as the result of a belief

state update, then the total discretisation error can be greater than the bound given in

Equation (4.5). This is due individual elements being incremented or decremented to

ensure the distribution sums to unity.

4.3.2.4 Dependent belief state

Given a PRM graph with uncertain edges, the belief state can explicitly represent the

probability that any particular combination of edge statuses—any world in W—is the

correct one. This allows the agent to make inferences about the combinations such as that

the statuses of two or more edges may be highly correlated because they are dependent

on the same obstacle, hence the dependent belief state. The purpose of this distinction is

explained in more detail in Section 4.4.1.

Definition 4.3 (Dependent Belief Space). The dependent belief space is formed by the

set of discretised belief distributions and is denoted BD. If P(w1) is the probability of w1

being the true world, then let

bD = {P(w1), . . . ,P(w2m)} (4.7)

be a discretised probability distribution over W . This is a dependent belief state. The

dependent belief space is then defined by

BD = P(bD) (4.8)

that is, the set of all possible combinations of discrete probabilities that satisfy∑
w∈W

P(w) = 1

Definition 4.4 (Dependent MDP Model). When the belief states in the MDP states are

defined according to Equations (4.7) and (4.8), we refer to the MDP model as a dependent

MDP model.

92

4.3.3 Belief updating

When the agent receives an observation, it must update its belief state to reflect the

new observation. All belief states are updated according to Bayes’ theorem which can be

stated as follows:

P(B|A) =
P(A|B) · P(B)

P(A)
(4.9)

where:

P(B|A) is the conditional probability (posterior) of event B given that A is known to be

true.

P(A|B) is the conditional probability of event A given B is true.

P(B) is the prior (marginal) probability that event B occurs, independent of any other

information.

P(A) is the prior probability of event A and also acts as the normalising constant to

ensure the resulting distribution still sums to unity.

To update the belief state, we want to find the new posterior probability for each element

in the belief distribution: P(w|observation) where w ∈ W , the set of all possible worlds.

From (4.9) we have

P(w|obs.) =
P(obs.|w) · P(w)

P(obs.)
(4.10)

The prior probability P(w), is the probability of w taken from the original belief state.

The likelihood P(obs.|w), is the probability of receiving that particular observation given

that w is the correct world. This is pre-determined since the agent knows how accurate

its observations are at various graph nodes. The P(obs.) normalisation divisor is the prior

probability of receiving that observation. This value is not stored explicitly but ensures

the resulting distribution sums to one:

P(obs.) = P(obs.|w1) · P(w1) + . . .+ P(obs.|w2m) · P(w2m)

=
2m∑
i=1

P(obs.|wi) · P(wi) (4.11)

where m is the number of uncertain edges.

93

4.3.4 Calculation of transitions

The transition function for the MDP formulation is derived from the graph topology and

the edge observations that the agent may receive. The transition function ensures the

agent may only traverse between directly connected nodes by setting all other transitions

to zero, as in the POMDP formulation. Since each MDP state includes the agent’s belief

state, edge observations must also be incorporated into the transition function. In the

POMDP formulation, we receive an observation of every uncertain edge at each node,

but uninformative (uniform) observations do not change the belief over which world is

correct. In the MDP conversion, we can ignore these uninformative observations as they

are equivalent to receiving no observation at all. In our model, the probabilities of seeing

“free” or “blocked” for different edges are independent so we can treat observations of

different edges separately. If no informative edge observations are received when an agent

traverses to a node, then the belief state will remain unchanged so only the PRM node

label in the MDP state changes and the transition function is deterministic. If one or

more observations of edges are received at the new node are informative, the transition

is no longer deterministic. Equations (4.10) and (4.11) comprise the fundamental cal-

culations for updating the agent’s belief state when new observations are received. The

MDP transition function probabilities are calculated from the probability of making each

particular observation. Next, we show an example of the set of possible transitions from

a given belief state and how they are calculated.

4.3.4.1 Worked example

Assume that in a graph with two uncertain edges J and K, the agent is at node a and we

have the belief state shown in the table below. We wish find the possible transitions when

we take action “Goto-b” to traverse the edge 〈a, b〉 to reach node b. When describing the

current world, edge J is always listed before edge K so “FB” represents the world where

J is free and K is blocked.

World Probability
FF 0.45
FB 0.1
BF 0.2
BB 0.25

An observation of uncertain edge J is available at node b. The observation probabilities

for J at b are P(blocked|blocked)=0.7 and P(blocked|free)=0.2. We may observe “free”

or “blocked” each producing a new belief state. When moving from the MDP state shown

above at node a, there are two possible successor states, one for each of the new belief

states with the agent located at node b. The new belief state is calculated as follows: the

94

dividend for each posterior probability, P(obs.|w) ·P(w), is the multiplication of the prior

and the likelihood probabilities given the figures above. The normalisation factor P(obs.)

ensures the distribution is still a valid p.m.f.

First, assume that the agent receives the “free” observation at b:

World Un-normalised probability
FF 0.8 ∗ 0.45 = 0.36
FB 0.8 ∗ 0.1 = 0.08
BF 0.3 ∗ 0.2 = 0.06
BB 0.3 ∗ 0.25 = 0.075∑

=P(obs.) 0.575

In the first two worlds FF and FB, edge J is truly free, so the likelihood of observing

“free” is P(free|free) = 1− P(blocked|free) = 1− 0.2 = 0.8. In worlds BF and BB, edge

J is truly blocked so the likelihood of observing “free” is much lower: P(free|blocked) =

1 − P(blocked|blocked) = 1 − 0.7 = 0.3. Dividing each element by the normalisation

factor P(obs.) gives us the one of the new belief states:

World Probability (3 d.p.)
FF 0.626
FB 0.139
BF 0.104
BB 0.130

Conversely, if the agent were to receive the “blocked” observation at b:

World Un-normalised Normalised
FF 0.2 ∗ 0.45 = 0.09 0.212
FB 0.2 ∗ 0.1 = 0.02 0.047
BF 0.7 ∗ 0.2 = 0.14 0.329
BB 0.7 ∗ 0.25 = 0.175 0.412∑

0.425 1.0

The transition probabilities for reaching each of these states are the probabilities of re-

ceiving the observation, i.e. the normalisation factor P(obs.). In the MDP state space,

the transition function for executing “Goto b” can be visualised in tree form as is shown

in Figure 4.3.

4.3.4.2 Multiple observations

In our model, when the observations available at a node are informative about more than

one edge, the number of reachable belief states increases because there is one for each

combination of “free” and “blocked” received for each observed edge. As there are two

possible outcomes for each observed edge, there will be 2n reachable belief states for n

observed edges. The conditional probability of a combination of observed edges is the

95

FF=0.45
FB=0.1
BF=0.2
BB=0.25

a

FF=0.626
FB=0.139
BF=0.104
BB=0.130

b
FF=0.212
FB=0.047
BF=0.329
BB=0.412

b

0.4250.575

"free"
observed

"blocked"
observed

Figure 4.3: An example MDP transition from node a with the belief state shown to node b where the
agent receives an observation of one uncertain edge, changing the resulting belief state. The numbers by the
transition arcs show the probability of the transition.

product of the individual observation probabilities. To demonstrate this, we will extend

the previous example to include a second edge observation. In addition to the observation

of edge J , the agent also receives an observation of edge K at b with the probabilities

P(blocked|blocked) = 0.8 and P(blocked|free) = 0.4. In total, 4 new beliefs are possible.

Here we show one of the possible combinations. Starting from the same initial belief state

at node a as before, the following table shows the resulting belief state for when the agent

observes J as “free” and K as “blocked”:

World Un-normalised Normalised
FF 0.8 ∗ 0.4 ∗ 0.45 = 0.144 0.493
FB 0.8 ∗ 0.8 ∗ 0.1 = 0.064 0.219
BF 0.3 ∗ 0.4 ∗ 0.2 = 0.024 0.082
BB 0.3 ∗ 0.8 ∗ 0.25 = 0.06 0.205∑

0.292 1.0

When moving from node a to b the agent will transition to this belief state with P(J =

free, K = blocked) = 0.292.

4.3.5 MDP definition

The set of actions A, for the MDP is the set of nodes in the PRM graph; taking an action

will move the agent to that node provided there is a free edge in the graph from the current

node to the one chosen. Consequently, as in the POMDP formulation, most actions are

invalid in most MDP states since nodes only have edges to a few other nodes. The

transition function is built according to the graph topology and observations as described

above. The reward function R for the MDP is straight forward with the reward for each

state and action being the negative cost for traversing that edge in the PRM graph.

The formal definition for the MDP conversion can now be formalised as follows:

96

� S = V × BD. Given the definition of the belief space in (4.8) the state space is the

cross product of the set of nodes in the PRM graph and the set of valid dependent

belief states.

� A = {a1, . . . , an} the set of PRM nodes as before.

� T is defined by t(s, a, s′) as follows:

t(s = 〈v, bD〉, a ∈ A, s′ = 〈v′, b′D〉 : v, v′ ∈ V, bD, b′D ∈ BD)

=

1 if ∃e = 〈v, v′〉 ∈ E and bD = b′D

i.e. all edge observations are uniform

P(obs.) if ∃e = 〈v, v′〉 ∈ E and bD 6= b′D

i.e. one or more edge observations are informative

0 otherwise

� R is defined by

r(s, a : s = 〈v, b〉, a = v′) =

−ce if ∃e = 〈v, v′〉 ∈ E

0 otherwise

where b is the belief state for MDP state s.

4.3.6 PRM graph example with optimal policy

4.3.6.1 Can we avoid solving the MDP?

Solving the MDP or the POMDP for the environments described here require a lot of

computation. The disadvantage to the MDP formulation is that in order to find the

optimal policy, the MDP state graph has to be rolled out from the start state, which as

we will see in the experiments, can be very large. An attractive alternative is to try and

calculate the optimal strategy by considering what the agent should do in each possible

world, and act based on the probability of each world. This would avoid any dynamic

programming element of the computation. If possible, this would allow the system to

scale to far more complex graphs with more uncertain edges. It would also be quicker

to compute the optimal policies due to the vastly reduced computational requirements.

However, as we can demonstrate, this leads to sub-optimal policies.

Given an environment with uncertain obstacles, we generate a PRM graph that avoids

those obstacles assuming the obstacle vertices are truly located at the means of the dis-

tributions representing them. With m uncertain edges giving 2m possible worlds, we can

97

S

A

B G

C

3

3.5

2

2

1

2

3

P(free)=0.5

P(free)=1 for all
edges unless marked

Actual state of A→ G completely
observable at A, but NOT at B

Figure 4.4: Adaptation of the 5-point graph (see Figure 4.1). The observation is no longer available at B
and the edge costs are slightly altered.

Successor Cost Weighted
to S w1 w2 average
A 4 10 7
B 5 7 6
C 6.5 6.5 6.5

Table 4.3: The calculation of utilities of successor nodes of S, based upon their utility in each world.

determine the probability distribution (the initial belief state) for the worlds by sampling

obstacle positions using a Monte Carlo technique. A complete sample consists of a sam-

pled location for all vertices for all obstacles. Each complete sample will render some

of the uncertain edges blocked and will correspond to one of the 2m worlds. By taking

a sufficiently high number of complete samples, we can estimate the probability of each

world occurring. This leads to a näıve algorithm for calculating what the action should

be at each node, given this dependent belief state.

We can demonstrate that the above approach is ineffective, even for small examples.

Consider Figure 4.4 which is an adaptation of the 5-point graph from earlier with modified

edge costs and the observation at B removed. We will now attempt to find an optimal

policy for this simple graph without rolling out the MDP state graph. We will assume a

uniform initial belief state at S. To find the best action at S, we will compute the utility

of each possible successor node in each possible world and then compute the final utility

by weighting these with respect to the belief state. In Table 4.3, the quantities in the

w1 (A → G free) and w2 (A → G blocked) columns are the costs of travelling from S

to the respective node and then acting optimally in that world. As we have a uniform

belief state at S, then the last column is simply the mean of the costs in both worlds.

Essentially, we are computing the shortest path to the goal via each successor of S and

98

Successor Cost Weighted
to B w1 w2 average
S 6 8.5 7.25
A 3 9 6
C 5 5 5

Table 4.4: The calculation of utilities of successor nodes of B, based upon their utility in each world.

then taking the weighted average those costs. For example, in world w1, travelling via

node A costs c〈S,A〉 + c〈A,G〉 = 3 + 1 = 4. Based on this, we see that travelling to node

B appears to be the cheapest option as it gives the lowest expected cost to reach the

goal. Now we repeat the computation at node B to select the next action in Table 4.4.

At node B, travelling to node C is the apparent cheapest option. However, this is where

the failure has occurred. The policy has instructed the agent to execute S → B → C

incurring a cost of 4, but the direct edge S → C only costs 3.5. Given that the agent

receives no information at B or C, it will always travel to C via B, so this policy is never

optimal. In this example, the true optimal policy (determined by solving the MDP) is to

always travel to C first.

The reason this strategy fails is because at S, it assumes the agent will have perfect

knowledge of the world at B and will therefore act optimally. This is of course not true

since the agent receives no information at B. In fact, at every step the agent assumes

all uncertainty is removed after one action; this is essentially the QMDP assumption,

meaning this strategy will never take information gathering actions. As will be shown in

Section 4.3.6.2, the optimal policy under uncertainty can be different from any optimal

policy in a specific world. In the MDP models the optimal action in any state depends

on the belief component of that state. As this is affected by edge observations the agent

receives, these observations must be taken into account, thus assuming uncertainty is

removed after one step is rarely going to find the optimal policy. Trying to compute the

utility of states in this fashion cannot work because their values depend on the values of

their descendant states in the MDP graph. Under uncertainty, finding the true utilities of

states can only be found by rolling the MDP state graph out forwards until the uncertainty

is removed and then propagating the costs backwards towards the start.

4.3.6.2 The value of information

Here we show the optimal policy for the graph from Figure 4.1 (page 84) using the MDP

formulation. For the purposes of this example we assume that initially, the agent believes

P(A→ G free)=0.5, i.e. it has a uniform prior over the free status of the edge. Once the

agent reaches node A or B, it obtains perfect information about the edge. The optimal

99

policy is easy to compute since the state space is small and we know there are only two

possible outcomes of the observation at A or B. Figure 4.5 shows the entire state graph

for the optimal policy. The numbers inside each node show the belief state P(A→ G =

free). If the agent never visits node A or B and travels to G via C, then the belief state

remains at 0.5 (shown in the left section of the figure). Visiting either A or B changes the

belief state as a result of the perfect observation. The middle and right columns represent

travelling to G via A or B and finding edge A → G blocked or free respectively. The

numbers to the right of each node show the minimum path cost to the goal from that

state. As an example, if the agent is currently at state S-0.5 the optimal action is derived

as follows:

1. If the agent travels to A first, then the cost to the goal will be either 2 if A→ G is

free, or 9 if not (as it would have to detour via C). From S, the expected cost to

the goal through A is therefore:

cost of choosing A = c〈S,A〉 + P(w1) · cost to goal in w1

+ P(w2) · cost to goal in w2

= 2 + 0.5 · 2 + 0.5 · 9

= 2 +

(
2 + 9

2

)
= 7.5

because there is a probability of 0.5 of receiving either observation.

2. If the agent alternatively travels to B first and makes the observation, the cost to

the goal will be 4 if the edge is free or 7 if blocked, so the expected cost is

1 +

(
4 + 7

2

)
= 6.5

3. Lastly if C is chosen then the cost to the goal is 5 + 2 = 7 since no observation is

received at C and the direct edge C → G is always available.

The best policy is therefore to go to B from S because that leads to the lowest expected

cost. This makes intuitive sense as well because the agent obtains perfect information for

a low initial cost. A key point to this example is that the optimal policy changes due to the

presence of the observation at node B. If the agent was certain of the free status of edge

A→ G from the start and no informative observation was available at B, then the optimal

policy would obviously be to travel to A or C first as appropriate. When the agent is not

100

S
0.5

B
0

A
0

B
1

A
1

C
0.5

G
0.5

S
1

C
1

G
1

S
0

C
0

G
0

7

0 0

0

2

5 5

5

4

4

7

9

Costs from S:
through A: 7.5
through B: 6.5
through C: 7

p=0.5p=0.5

Figure 4.5: The MDP state graph for Figure 4.1 showing each possible state the agent could reach from the
start state at the top. The belief P(A→ G = free) is shown under the node label and the minimum cost of
reaching the goal is to the right.

certain, then the optimal policy would still be to travel to A or C first depending on the

agent’s confidence of A→ G being free—travelling to B is never optimal. However, when

the observation is available at B, then unless the agent is already confident of the free

status of A→ G, travelling to B becomes optimal. The optimal policy under uncertainty

is different to either of the optimal policies in the two actual worlds; the agent must take

an information gathering action in order to act optimally.

4.4 Additional MDP Models

In this Section, we outline two additional ways to represent the state space of the MDP

that exploit extra structure present in our domain.

101

4.4.1 Edge dependency

Edge dependency describes the principle that the free status of one edge in a roadmap

is related to the free status of another edge; a relationship between them may exist due

to the position of the edges relative to nearby obstacles. To examine why this is useful,

consider Figure 4.6, where the location of the obstacle vertex is uncertain. The edges

are close together, therefore if the upper edge is blocked it is likely the lower edge is also

blocked; if the lower edge is blocked then the upper edge is guaranteed to be blocked: the

free statuses of these two edges are closely related. When the agent can represent this

dependency it can use that knowledge to derive better policies for acting in the world:

information learned about one edge may alter its belief about others.

obstacle

Figure 4.6: The free statuses of the two uncertain edges (shown as dashed lines) are dependent on each other.
If the lower edge is blocked by the obstacle, the upper one must also be blocked, thus if the agent observes
“blocked” for the lower edge it should deduce the free status of the upper edge. The ellipse represents the
Gaussian distribution of the obstacle vertex at 1 standard deviation from the mean.

4.4.1.1 Encoding dependency

A dependency between edges expresses the property that the probability of one edge being

free can be modified when an observation of a dependent edge is made. The degree to

which marginal edge probabilities are altered by observations of other edges depends on

how closely correlated the edges are. In Figure 4.6, the states of the two uncertain edges

are closely linked, but not completely correlated. Table 4.5 shows firstly, a uniform belief

state where the agent believes there is no correlation between the edges, a fully dependent

belief state where the free statuses of both edges must match each other, and thirdly, a

102

belief state showing a possible dependent configuration from the figure.

The knowledge of the correlation between the different edges is contained within the

probability distribution over the set W . For example, consider the fully correlated belief

state in Table 4.5: the agent knows that either both edges are free or both are blocked and

that the probability for either event is equal. The other two worlds where the edge statuses

differ (FB and BF) have zero probability so the agent does not believe they can occur. The

laws of probability dictate that this fact cannot change as the result of a Bayes’ update;

no observation the agent makes can cause it to believe world FB or BF has a non-zero

probability. The same idea can be seen in the partially correlated example in Table 4.5—

the dependency between the two edges of Figure 4.6 is encapsulated by the belief state.

The fact that the upper edge must be blocked if the bottom edge is blocked is represented

by the probability for the FB world model equalling 0. By carefully constructing the

starting belief state for the MDP, we can ensure that it infers the correct information

about dependent edges as it receives edge observations during graph traversal.

Upper edge,
Uncorrelated

Fully Partially
lower edge correlated dependent

F,F 0.25 0.5 0.3
F,B 0.25 0 0
B,F 0.25 0 0.3
B,B 0.25 0.5 0.4

Table 4.5: Different starting belief states encode any dependencies between edges

4.4.2 Independence

The dependent MDP belief state represents the agent’s knowledge as a probability distri-

bution over the set W , mirroring the POMDP belief space, but this leads to MDPs with

high numbers of states. However, there is more structure in this domain which we can

exploit to reduce the state space size. The dependent model can represent dependencies

between any combination of uncertain edges even though most are not likely to be de-

pendent on one another, especially if they are in different areas of the environment: they

are independent. This can be exploited to drastically reduce the dimensionality of the

state space. We can assume that every uncertain edge is free or blocked independently

of all other edges. Instead of maintaining one probability distribution over all w ∈ W ,

we maintain an independent, one dimensional probability distribution for each edge. The

total dimensionality of the belief space is reduced from 2m to m.

103

Theorem 4.2. The size of the state space for the dependent model given by (4.4) is

simplified for the independent model to:

|S| = n(d−1 + 1)m (4.12)

Proof. The belief about each edge in the independent MDP model is a one dimensional

probability distribution, represented in the independent belief state with one element. By

Definition 4.2, each element is discretised according to resolution d into d−1 + 1 values.

Each distribution is discretised separately, so the total number of independent belief states

is the product of the m possible distributions, therefore there are (d−1 + 1)m belief states

for m uncertain edges. Each belief state must exist for all n nodes in the PRM graph,

therefore the total number of independent belief states is given by:

|S| = n(d−1 + 1)m

thus proving the Theorem.

We are only considering two worlds per uncertain edge instead of combinations of edge

statuses. This is known as the independent model for the MDP. It is only the represen-

tation of knowledge about the edges in the world that differs between the dependent and

independent models.

Definition 4.5 (Independent MDP Model). When the belief state in an MDP state

consists of m independent, one dimensional probability distributions (one per uncertain

edge), we refer to the MDP model as an independent MDP model.

4.4.2.1 Converting between models

We can convert belief states between the dependent and the independent models, but the

independent model cannot infer any relationships between edges. To form the separate

probability distributions for each edge in the independent model, we need to calculate the

marginal probability of each edge being free (the blocked probability is implicit since the

distributions are one dimensional). The marginal probability for any edge can be calcu-

lated by summing the appropriate elements from the dependent distribution. Table 4.6

shows an example of converting a 2 edge dependent distribution to an independent one

and back. For the dependent belief states, the free status of edge 1 is listed first. Finding

the marginal probability that each edge is free is carried out by summing the probabilities

of each world in the dependent distribution where that edge is free, e.g. the value in Ta-

ble 4.6b for P(edge 1=free) = P(FF) + P(FB) from Table 4.6a. Table 4.6b shows the

conversion of the dependent belief state in Table 4.6a. Converting the independent dis-

104

World FF FB BF BB
Probability 0.4 0.2 0.1 0.3

(a) Dependent distribution. Edge 1 is listed first.

Edge 1 Edge 2
World F B F B
Probability 0.6 0.4 0.5 0.5

(b) Independent distribution

World FF FB BF BB
Probability 0.3 0.3 0.2 0.2

(c) Reformed dependent distribution

Table 4.6: Dependence information is lost during conversion to and from an independent distribution. “F”
indicates that an edge is free and “B” indicates it is blocked.

tribution to its dependent equivalent is simply a case of finding the joint probabilities for

the respective edge statuses by multiplying the independent probabilities. For example

to find the probability for world FB in Table 4.6c:

P(edge 1=free,edge 2=blocked) = P(edge 1=free) · P(edge 2=blocked)

where the two probabilities on the right hand side are taken from Table 4.6b. Table 4.6c

shows the conversion of the independent distribution back to a dependent model. The

assumed independence in Table 4.6b means a different dependent distribution is obtained

in Table 4.6c that does not express the dependency of the original distribution because

there is no way to express the correlation. Every independent belief state has a direct

equivalent in the dependent model, but not vice versa; there are many dependent belief

states which cannot be exactly represented in the independent model.

4.4.2.2 Model benefits

In Figure 4.6, assume the agent receives an observation informing it that the lower edge

is blocked and that this observation is totally accurate. With an independent belief

model, the agent knows that P(free)=0 for the lower edge and will not consider it further.

However, the upper edge represents a second opportunity to traverse this section of space

so a likely policy is to continue to travel towards the top edge in the hope it is free,

even though this cannot be the case. With a dependent belief model that can represent

this fact, when the agent receives the perfect observation of the lower edge then the

probability of the upper edge being free reduces to 0 as well. Inferring that both edges

are blocked from the single observation allows the agent to generate a superior policy

that will not waste resources on further investigation: it will start seeking an alternative

route. Representing the dependency between two or more edges must obviously come

at a price. The dependent model entails an enormous increase in state space compared

105

to an independent model, hence requires much more memory to store. There is also a

significant increase in computational effort to calculate new belief states. The trade-off

is therefore between computational and memory requirements versus policy optimality.

If the edges in the graph are in fact independent, then using a dependent model will

not offer any advantage over an independent equivalent. In a graph of several uncertain

edges, it is possible that dependencies only exist between some edges, while others remain

independent. We show how we can exploit this in the following Section.

4.4.3 Edge clustering

The state space size under the dependent model motivated the development of the inde-

pendent model with a reduced state space due to the lower dimensionality belief space.

The disadvantage of such a model is that the agent loses the ability to reason about de-

pendencies between the edges. A better approach would be a compromise between the

two that sacrifices some of the expressiveness of the dependent model in exchange for a

smaller state space, but without losing all its advantages. In the PRM graph, obstacles

can cause multiple uncertain edges in close proximity to be blocked simultaneously and it

is very likely that their probabilities of being blocked are dependent. On the other hand,

uncertain edges that are far apart in the PRM graph are almost certainly independent

of each other. In sparsely populated environments, it is likely that most edges are inde-

pendent of each other due to the positioning of obstacles. However, while the complexity

of the dependent model may seem unnecessary in such a scenario, assuming all edges

are independent can ignore a dependent edge from which the agent could gain a useful

advantage. This observation leads us to a novel approach to state space reduction that

tries to simplify the belief space by reducing its dimensionality without losing the ability

to express dependencies through combinations of edge statuses. The idea is to cluster

together edges that are close to one another (i.e. where a dependency is likely), while

leaving unrelated edges independent.

In the dependent model, all uncertain edges are considered as a single set of edges

and the agent maintains its knowledge about their free statuses through a probability

distribution over the set of all possible combinations. In the independent model, each

edge is treated separately and the agent maintains a separate probability distribution

for each edge in isolation. Clustering is a hybrid of these two models where the agent

considers groups of uncertain edges. Given the m uncertain edges in the graph, we divide

the edges into k separate clusters, with every uncertain edge being assigned to exactly

one cluster, so no edge is a member of multiple clusters. Each cluster is considered

independent of the other clusters, just as the edges are independent in the independent

model, but within each cluster, we maintain a probability distribution for those edges as

106

in the dependent model. This means that the agent can still reason about dependencies

between edges that are within the same cluster and gain the advantages of doing so,

but also gains the computational advantages of assuming independence between edges

in different clusters. Independently considering the distributions over different clusters

greatly reduces the number of elements required to record the agent’s entire belief state,

but to a lesser extent than in the independent model.

4.4.3.1 Clustered MDP model definition

As with conversion to the independent model, only the nature of a belief state for the

MDP is changed, so only the state space S and the transition function t need to be

updated.

Definition 4.6 (Cluster). A cluster is a subset of the m uncertain edges in the PRM

graph, where each edge in cluster c is not a member of any other cluster. The number of

edges in cluster c (its size) is denoted mc.

Definition 4.7 (Cluster Set). A cluster set or cluster configuration describes the arrange-

ment of the m uncertain edges in a given PRM graph into a mutually exclusive set of k

clusters where:
k∑
i=1

mci = m

Each uncertain edge is assigned to be a member of exactly one cluster. Them uncertain

edges in the environment are arranged into a set of clusters C with k = |C|. Each cluster

contains a probability distribution over the possible combinations of member edges. The

sub-worlds for cluster ci are wci,1, . . . , wci,2mc . This distribution forms the agent’s belief

about those edges. The definition for the belief space for one cluster is analogous to the

dependent belief space BD defined in (4.7) and (4.8) except that it is only defined for the

sub-worlds of the cluster.

Definition 4.8 (Cluster Belief State). Let the belief state for cluster ci be defined by:

bci = {P(wci,1), . . . ,P(wci,2mci)} (4.13)

The belief space of cluster ci then mirrors the definition of BD in (4.8):

Bci = P(bci) (4.14)

A belief state for cluster set C is the concatenation of the belief states for each cluster:

bC = {bc1 , . . . , bck} 1 ≤ i ≤ k (4.15)

107

Definition 4.9 (Clustered State Space). The clustered state space is defined by:

S = V × Bc1 × . . .× Bck

= V
k∏
i=1

Bci (4.16)

The state space for the clustered MDP model is the cross product of all the cluster

belief spaces and the set of PRM nodes.

Definition 4.10 (Clustered MDP model). When the belief states in the MDP states

consist of k probability distributions for the clusters of a given cluster set and the belief

space is defined according to Equation (4.16), we refer to the MDP model as a clustered

MDP model.

The transition function for the clustered MDP model behaves exactly as for the de-

pendent MDP (see Section 4.3.4). It can be intuitively calculated by converting the

entire clustered belief state into its dependent equivalent, computing the transitions as

described earlier and then converting back again. In practise, to determine the possible

belief states resulting from an observation, we can avoid doing the conversion by applying

the transformation to each of the k clusters in turn as follows:

Let oe = 〈e ∈ E, ob ∈ {free, blocked}〉 be an informative observation of an uncertain

edge e that has been observed as ob (we may see either free or blocked). Since in the MDP

formulation, we treat observations of different uncertain edges as separate observations,

we can assume the agent receives an observation set

O = {oe1 , . . . , oez}

of z uncertain edges when it reaches a PRM node. Assume we have a function T that

given a dependent belief state bD and an observation set O, returns a new dependent

belief state b′D that results from the making the observations:

b′D = T (bD, O)

T is calculated according to the method shown in Section 4.3.4. For the clustered model,

we use function TC , which is a modification of function T that only updates the belief

state for cluster ci. Not all of the edges in observation set O may be in the same cluster, so

function TC uses a subset of O that only contains the observations about edges in cluster

ci:

O′ = {all oe ∈ O : where oe is a member of ci}

108

If O′ is empty, then none of the observed edges in O are members of ci, in which case the

belief state for ci is unaffected by the observations. Otherwise, the belief state is updated

in the same way as before, but using the observation subset O′:

TC(bci , O) =

bci if O′ = ∅

T (bci , O
′) otherwise

To update a complete clustered belief state bC , we simply apply function TC to every

cluster in the cluster set:

b′C = {TC(bc1 , O), . . . , TC(bck , O)}

4.4.3.2 Discretisation error

The maximum discretisation error (see Section 4.3.2.3, page 91) for the independent

and clustered model are also different from the dependent model. Let δ be the desired

maximum discretisation error per one dimensional probability distribution in the inde-

pendent MDP model. Since each probability distribution only concerns one uncertain

edge, Equation (4.6) gives:

d ≤ 2δ

21
≤ δ

with m = 1. With m edges we have m distributions, so the maximum discretisation error

over the belief state ∆, is:

∆ = m · δ

therefore:

d ≤ ∆

m

The clustered case is slightly more complex since each cluster is considered indepen-

dently. Let δc be the maximum discretisation error for cluster c:

δc = 2mc · d
2

so the maximum discretisation error for clustered belief state bC is:

∆ =
k∑
i=1

δci

Each cluster may have a different quantity of member edges, so for a desired maximum

109

error over the entire belief state, d must satisfy:

d ≤ 2∆

q

where q is the total number of elements in bC :

q =
k∑
i=1

2mci

4.4.3.3 Clustered state space size

The reduction in belief space dimensionality leads to a reduction in the size of S depending

on how the edges are arranged in the cluster set. As edge combinations within one cluster

are treated the same as edges in the dependent model, the number of sub-worlds in each

cluster is still exponential in mc, i.e. there are 2mc sub-worlds for cluster c. The size of

the state space in the clustered model is a modification of Equation (4.4) to accommodate

the multiple distributions.

Theorem 4.3. Given a cluster set C, the size of the clustered state space is given by:

|S| = n
∏
c∈C

|c| (4.17)

where the size for an individual cluster c is:

|c| = (d−1 + 2mc − 1)!

d−1!(2mc − 1)!
(4.18)

Proof. Equation (4.4) calculates the total number of states in the dependent MDP model.

Each cluster contains one probability distribution over its member edges as defined by

Equation (4.13) in the same way as a dependent state contains one probability distribution

over all uncertain edges. Factoring out the number of nodes n, from Equation (4.4) and

substituting m for the number of edges in the cluster mc, gives Equation (4.18). By the

assumption of independence between clusters, each cluster in C maintains a separate prob-

ability distribution. The size of the clustered belief space in Equation (4.15) is therefore

given by:

|S| =
∏
c∈C

|c|

As in the dependent MDP model, each belief state may exist at each of the n nodes in

110

the PRM graph, so the total clustered state space size in Definition 4.9 is given by:

|S| = n
∏
c∈C

|c|

As an example, assume we have a PRM graph consisting of n = 20 nodes with m = 4

uncertain edges. If we convert this into the three different MDP models using a discreti-

sation level of d = 0.1 and using a cluster configuration of 2 clusters of 2 edges, then by

(4.4), (4.12) and (4.17) we have:

Model |S| Belief state elements
Independent 292,820 4

Clustered 1,635,920 6
Dependent 65,375,200 15

As the size of the state space is effectively determined by the dimensionality of the be-

lief space, the number of elements required to represent a complete belief state are also

shown. In the independent model, each distribution is one dimensional, hence one element

is required per uncertain edge. In the other two models, the number of elements is the

sum of the elements in each distribution. For the dependent model, this is 24 − 1 = 15

elements (-1 for the implicit last element) while for the clustered model with 2 edges per

cluster, 2 ∗ (22 − 1) = 6 are required. The benefits to the size of the state space using an

independent model are obvious with two orders of magnitude difference between it and

the dependent model. The state size of the independent model is well within the com-

putable bounds of contemporary MDP solvers, while the dependent model state space is

only solvable if the MDP can be represented with specific structures as with the SPUDD

MDP solver (Hoey et al. 1999). Of course, the independent model has the disadvantages

discussed above, which is why the clustered model represents an attractive compromise;

the state increase over the independent model is reasonable, and edge dependencies can

still be exploited. The configuration of the clusters is important here since if two depen-

dent uncertain edges are in different clusters, then they will be treated independently.

This leads to an important insight that due to the independence between clusters and

dependence within a cluster, the clustered model is a generalisation of the other two. The

independent and dependent model are the two extremes of edge assignments into clusters.

If every uncertain edge is placed into a separate cluster (effectively k = m and mc = 1 ∀c)
then they will all be treated independently, exactly mirroring the independent model.

Conversely, if all edges are simply placed in the same cluster (k = 1 and mc1 = m) it is

the equivalent of the dependent model.1

It is also important to note two concepts that should not be confused: independence/

dependence in the model and independence/dependence in the actual edges. When the

1Internally, this is exactly how our system is implemented.

111

model is discussed, it refers to the representation of the uncertain edge probabilities,

i.e. how the agent records its knowledge of the world by assuming all probabilities are

independent or dependent to some degree. When the edge independence is mentioned, it

refers to whether the edges actually are independent or not. This knowledge is encoded in

the starting belief state through the distribution of the probability mass. Some examples

are shown in Table 4.5 on page 103.

4.4.4 Summary

We have presented three models for representing the POMDP belief space in an MDP

formulation, summarised here for clarity:

� Independent (I)—Each edge is treated independently. There is only one dimension

in the belief space per edge and no ability to represent dependencies between edges.

|S| is the smallest of all three models.

� Clustered (C)—Edges believed to be dependent are placed in the same cluster. Each

edge only appears in one cluster and clusters are treated independently from each

other. |S| is determined by the cluster configuration, as more edges are placed in

the same cluster the belief space increases in dimensionality as it becomes closer to

the dependent model.

� Dependent (D)—All edges are treated as being dependent. This is the model that

most closely represents the POMDP formulation and can represent all belief states

the agent may encounter accurately (according to limits of discretisation). |S| is

the largest of all three models.

4.5 Experimental Configuration

This Section describes additional details specific to the system that are necessary to

understand the experimental work of the thesis.

4.5.1 LAO* implementation

LAO* is used to solve the MDP models throughout the experiments in this thesis unless

otherwise noted. The implementation we use is based on the optimised LAO* algorithm

shown in Algorithms 2.3 and 2.4 (page 37). The expand function (line 3 of Algorithm 2.4)

and the heuristic estimate h, are somewhat problem dependent so we define them for our

problem here.

112

Algorithm 4.2 Implementation of expand

Input: GPRM = 〈V,E〉 a PRM graph, G an LAO* explicit graph, n = 〈v ∈ V, bC〉 an
LAO* node with clustered MDP belief state bC of k clusters

Output: n is expanded by one level with arcs to successor nodes
1: for all a ∈ A do //a represents a PRM node label
2: if 〈v, a〉 ∈ E and edge not believed to be blocked then //edge exists from v to a
3: L⇐ set of observable uncertain edges at a
4: for i = 1, . . . , 2|L| possible assignments of {free,blocked} to all l ∈ L do
5: O ⇐ assignment i to L
6: b′C = {TC(bc1 , O), . . . , TC(bck , O)} //new belief state when O observed
7: n′ ⇐ find node 〈a, b′C〉 in G
8: if n′ does not exist then
9: n′ ⇐ 〈a, b′C〉 //create new node

10: n′ value ⇐

{
0 if a = vG

h(n) otherwise
//0 at goal nodes, otherwise use heuristic

11: G⇐ G ∪ n′ //add to explicit graph
12: end if
13: add arc from n to n′ under action a with transition probability P(O) and cost

c〈v,a〉
14: end for
15: end if
16: end for

4.5.1.1 Node Expansion

The expand function of LAO* should return all of the successors of a given node n, in the

MDP with each arc’s transition probability taken from the transition matrix T . For our

domain, the successor nodes are determined by the observations (if any) at the successor

PRM node and the agent’s belief state at node n. Algorithm 4.2 shows the implementation

for our MDP models. The computation of the resulting belief state given an observation

set is dependent on the MDP model currently in use. The belief state calculation assumes

a clustered model, since both the independent and dependent model can be represented

through the appropriate configuration of clusters.

4.5.1.2 Heuristic

The heuristic function h(n) must return the estimated cost to reach the goal from node

n and must be admissible. The PRM graph itself forms an ideal base for the heuristic

because the edge traversal costs are explicitly defined. For the heuristic, we use the cost

of the shortest path to the goal vG, assuming all uncertain edges are free:

h(n) = cost of shortest path from n to vG : P(w1) = 1 (4.19)

113

where w1 represents the world where all uncertain edges are free of obstruction. When all

edges are assumed to be free, the agent has the maximum number of path choices to reach

the goal from node n, so the heuristic will return the cost of the absolute shortest path.

We can pre-compute the heuristic value for all PRM nodes before the LAO* algorithm is

invoked using a version of Dijkstra’s algorithm that finds the shortest path to all points,

instead of terminating when a specific node is marked. We can show that this creates an

admissible, consistent heuristic with the following lemmas. A consistent heuristic has the

stronger property of being locally admissible.

Definition 4.11 (Local admissibility). A heuristic h, has the property of local admissi-

bility if node n′ is the successor to node n in the search graph and h obeys:

h(n) ≤ c(n, n′) + h(n′) ∀n, n′

where c(n, n′) is the cost of reaching n′ from n.

Lemma 4.1. Equation (4.19) creates an admissible heuristic where h(n) ≤ h∗(n), the

true cost of reaching the goal from node n = 〈v, b〉 for all v ∈ V .

Proof. We prove the admissibility of h by observing that in world w1 all uncertain edges

are free, so the agent has the greatest choice of routes to the goal and the shortest route

will be free. If Dijkstra’s algorithm calculates the shortest route from PRM node v to

node vG under the assumption that P(w1)=1, the associated belief state b of node n is

irrelevant. If the assumption is correct, then the heuristic estimate of h(n) will be the

true shortest path cost to the goal: h(n) = h∗(n). If the assumption is incorrect, then

some edge in the shortest route may be blocked, in which case the true shortest path to

the goal will involve a more costly route. This leads to the inequality stated in the lemma:

h(n) ≤ h∗(n)

Lemma 4.2. Equation (4.19) creates a locally admissible heuristic. If n and n′ are nodes

in the explicit graph representing nodes v and v′ in the PRM graph respectively, where v′ is

the successor to v, then the h obeys h(n) ≤ c(n, n′) +h(n′) ∀n, n′ where c(n, n′) = c〈v,v′〉,

the cost of reaching n′ from n.

Proof. If h(n) and h(n′) are the costs of the respective shortest paths to vG, then at n

there are two cases:

1. The shortest route from n to vG passes through n′. In this case, since h uses the

shortest route to calculate the cost and n′ is the direct successor to n, h(n) and

114

h(n′) must differ by exactly c(n, n′):

h(n) = c(n, n′) + h(n′)

2. The shortest route from n to vG does not pass through n′. In this case c(n, n′) must

be great enough to prevent the shortest route at n passing through n′ and there

must be an alternative path to vG, so:

h(n) < c(n, n′) + h(n′)

therefore:

h(n) ≤ c(n, n′) + h(n′)

4.5.2 Simulator

In standard MDPs, we can compare the quality of two policies by directly comparing the

values assigned to states in the value function. Equation (2.5) (page 28) can be used to

determine if one policy is strictly better than another. However, this is insufficient for our

problem since we are not directly comparing two policies for one MDP, instead we need

to compare policies for the agent acting in the environment. The policies generated by

the three different MDP models are not directly comparable for two reasons. Firstly, we

cannot compare policies directly by their value functions because these do not reflect the

true state values. In the PRM graph that the agent acts in, edges may be dependent on

one another. However, the independent and clustered MDP models compute their policies

on the assumption that all edges are independent (or partially so in the clustered model),

so equivalent states will obtain different values from the dependent model and may not

be correct. This means that a numerical comparison between states from different MDP

models will be almost meaningless. Secondly, recall that while the dependent model can

represent any belief state (ignoring discretisation) from the POMDP formulation, the

independent and clustered belief spaces are strict subsets of the dependent model belief

space. Therefore, transferring a policy from either model to the dependent model before

running a policy evaluation cycle leaves open the problem of how to handle dependent

belief states that do not exist in the smaller models. While copying the action from

the nearest equivalent independent/clustered belief state prior to policy evaluation is

possible, the results would still be misleading. However, there are two other issues which

eclipse these. LAO* by design does not produce a policy for all states, only for the

ones that are reachable from the start state, so policies are naturally incomplete with

respect to the entire state space. The most important issue however, is that we wish to

115

compare performance of policies generated using different families of algorithms, such as

POMDP solvers and other non-decision-theoretic methods like MCC. Therefore, we need

an algorithm agnostic method of comparing the agent behaviour in a PRM graph. Based

on this need, we developed a simulator that simulates the agent acting in the actual PRM

graph over repeated independent trials.

Each trial starts with the simulator selecting world wi from W with probability P(wi)

to be the true world. P(wi) is taken from a provided probability distribution over W .

In reality, this is the dependent MDP starting belief state. The true state of the world

remains hidden from the agent. The simulator then simulates the environment for the

agent, maintaining the agent’s current location in the PRM graph and executing the

action (if allowed) selected by the agent’s policy. The action set is the same as is defined

for the POMDP and MDP formulations, namely the set of labels of the PRM nodes.

After each action, the simulator samples from the observation probabilities specified in

the PRM graph to generate an observation for the agent. This allows the agent to update

its knowledge of the world, though we are careful not to use the term “belief state” here

because not all algorithms maintain one in the sense described in this thesis. An action

selection and the resulting observations form one step of a trial. This action-observation

sequence continues until either the goal is reached, resulting in a successful trial, or a

preset maximum number of trial steps is exceeded before the goal is reached, resulting in

a failure. Trials can also fail if the agent selects an illegal action in the simulator. An

action can be illegal for two reasons:

1. Trying to travel to a PRM node when there is no edge to it from the current node.

2. Trying to traverse an uncertain edge that is actually blocked.

Once a trial has ended, the agent and environment are reset for the next trial.

The method of policy selection was left deliberately vague in the above description.

We developed a system of “plugins” for the simulator to allow for different algorithms

to be used under the same conditions. Plugins are provided with the starting node and

belief state (the distribution over W). At each time step, the plugin is asked which action

should be selected next and is given any observations generated by the simulator. The

method of action selection is left completely unspecified and depends upon the algorithm

used to generate the policy.

The simulator collects a variety of data throughout the simulation; most notably it

records the cost of each step (the graph edge costs). After all trials have completed,

the minimum, mean, maximum and the standard deviation of the total trial costs are

reported. The number and percentage of failed trials are recorded separately. In a trial

of a graph where enough uncertain edges are blocked to prevent the agent reaching the

116

goal, the simulator will record a failure because it does not provide a give-up action to

plugins. Only successful trials are considered in the above data to prevent failed trials

from distorting the results. The disadvantage in not counting failed trails is due to the

reward based feedback in decision-theoretic algorithms. If the cost for failing is less than

the cost of reaching the goal, then deliberately failing appears to be the optimal plan.

In the simulator, this behaviour can put the algorithm at a disadvantage because it will

appear to be performing worse than an algorithm that is reaching the goal more often.

However, since the agent’s aim is to reach the goal, then including the cost of failed trials

can also be misleading. As an example, in a graph where the paths to the goal have a cost

in the region of a few hundred units, assume the first edge costs 50 and that algorithm

A reaches the goal but algorithm B nearly always executes an illegal action after the first

move, thus incurring a failure. By counting failed as well as successful runs, the simulator

would record all of algorithm B’s failed trials as costing 50. This would drastically lower

the average cost reported for algorithm B, making it appear to have better performance

than algorithm A unless the percentage of failed trials is taken into account. By only

including successful trial costs in the reported average, the results are not skewed in this

fashion.

The simulator does not apply discounting when reporting the costs incurred by the

agent: it reports the undiscounted cost. The discount factor γ, affects the agent’s prefer-

ence for a short-term reward versus a long-term reward. Although discounting is applied

when policies are being computed, we use a discount factor of γ = 0.999 which will not

affect the policy found even when alternate paths have very similar costs as shown below.

When comparing MDP algorithms to other algorithms, such as MCC, which do not have

a notion of short term versus long term reward, it is unclear what the discount factor

should be set to. We do not specify a planning horizon for the MDP algorithms because

we are interested in the total cost to reach the goal, and the number of time steps to do

this depends on the PRM graph. The maximum length of simulator trials are limited to

50 steps in the experiments, so using γ = 0.999, any costs at a horizon of 50 will still

contribute nearly all of their value to the utility of the start node. As shown in Equa-

tion (2.7), the reward at each time step in the future becomes more discounted than the

previous reward when considering the value of a state. For a cost that is incurred 50 time

steps into the future:

0.99950 = 0.951 (3 s.f.)

When comparing two routes, one where nearly all the cost is accrued in the first step and

another where it is accrued at step 50, as long as the difference in the costs is less than

5%, LAO* would still choose the optimal route. This is because whichever route is truly

cheaper will still appear cheaper under discounting, so LAO* will still make the correct

117

choice. As this extreme distribution of cost will not occur in practice and the majority

of successful trials will be shorter than 50 steps, the probability of LAO* choosing a

sub-optimal route due to the discount of γ = 0.999 is extremely unlikely.

Due to the randomness present in the world selection and the high difference in total

traversal costs between different worlds, a high number of trials are conducted to ensure

results truly represent the average cost of traversing a graph. In this research, we are

primarily interested in two performance measures: firstly, the cost to reach the goal and

secondly, the computation time for the policy. The first is derived from the simulator and

the second is determined separately when the respective algorithm computes the policy.

All policies for all algorithms are computed offline before being passed to the simulator.

The one exception to this is the replanning variant of MCC which must replan its route

when a blocked edge is found during simulation.

4.5.3 Graph pre-processor

In a POMDP, the belief state changes after every time step, since an observation is received

after every action choice. In our domain, not all actions produce observations, since most

PRM nodes do not contain observations. At these nodes, the belief distribution over

worlds is not changed. In the MDP models, observational PRM nodes are represented

through the transition function probabilistically leading to MDP states with different

belief states. Transitions to non-observational nodes are deterministic with only the PRM

node label component of the MDP state changing. Even so, all of these deterministic

transitions and states must still appear as nodes in the explicit graph built by LAO*

despite contributing nothing to the agent’s knowledge; the agent is essentially just passing

through these nodes between observations. These non-observational nodes therefore have

no influence on the overall agent behaviour, as it will always be taking the shortest route

between observational nodes. For example, traversing between observational nodes a and

b via a non-observational node x is directly equivalent to traversing a direct edge between

a and b where c〈a,b〉 = c〈a,x〉 + c〈x,b〉. We can exploit this in our POMDP and MDP

formulations by pre-processing the PRM graph before converting it into a POMDP or an

MDP without affecting the total traversal cost.

The graph pre-processor described in Algorithm 4.3 removes as many nodes as possible

from the PRM graph. Not all PRM nodes without observations can be removed because

some are needed to ensure “safe” routes around uncertain edges to be used if those edges

become blocked (lines 3 to 7). Any shortest paths between nodes in the pre-processed

graph must not use any uncertain edges or visit other nodes in the pre-processed graph

in their route. The MDP or POMDP state space size (see Equations (4.1),(4.4),(4.12)

and (4.17)) is reduced by a factor of r for r removed PRM nodes. Figure 4.7b shows

118

Algorithm 4.3 Graph pre-processing

Input: GPRM = 〈V,E〉 PRM graph with nodes V nodes and edges E, U = {u1, . . . , um}
set of uncertain edges

Output: G′PRM = 〈V ′, E ′〉 pre-processed graph with unnecessary nodes in V removed
1: V ′ ⇐ {all v ∈ V : no observations at v, (i.e. O = ∅)}
2: V ′ ⇐ V ′ ∪ vS ∪ vG //include start and goal nodes
3: for all u = 〈v1, v2〉 ∈ U do //for each uncertain edge
4: if path exists from v1 to v2 without crossing any uncertain edges or any v ∈ V ′

then
5: V ′ ⇐ V ′ ∪ last node in shortest path from v1 to v2
6: end if
7: end for
8: E ′ ⇐ U //include all uncertain edges
9: for all v ∈ V ′ do

10: for all v′ 6= v ∈ V ′ do //try to connect each node to every other node
11: if path exists from v to v′ without crossing any uncertain edges or any v” ∈ V ′

then
12: e⇐ 〈v, v′〉 with ce ⇐ cost of shortest path from v to v′

13: E ′ ⇐ E ′ ∪ e
14: end if
15: end for
16: end for
17: return G′PRM = 〈V ′, E ′〉

an example of using the pre-processor on the PRM graph in Figure 4.7a, illustrating the

difference in number of connected nodes. The edges in Figure 4.7b are only illustrative,

indicating that an edge exists between two nodes. The actual edge costs are not based

on edge length or the physical path the agent would follow between the end-points. We

use the pre-processor for experiments on larger graphs to reduce the memory footprint

of the algorithms and to keep the POMDPs tractable. The computation time of the pre-

processor is small, requiring between 5-15ms to complete. On average, the pre-processing

phase will remove about 75% of nodes based on the example graphs we use.

4.5.4 Hardware and software environment

All experiments in this thesis are conducted with an Intel® Xeon® E5345 processor

(2.33GHz core clock, 8MB L2 cache) with 8GB of memory running on Linux CentOS ver-

sion 5 (kernel version 2.6.18). All implementations with the exception of Perseus and

Symbolic Perseus are written and executed using Java� version 1.6.06 (Sun Microsystems

2008) with 500MB of allocated memory and the 32-bit server virtual machine. Perseus

and parts of Symbolic Perseus are written entirely in MATLAB (The MathWorks Incor-

porated 2008) and executed using 32-bit MATLAB version 7.7.0.471 (R2008b).

119

(a) An example of a PRM graph.

(b) The pre-processed version of the graph. The edges only
indicate a connection between nodes, not the physical path an
agent would follow in the cases where edges intersect obstacles.

Figure 4.7: An example of a PRM graph before and after pre-processing is applied. Uncertain edges are
shown as dashed lines. The colours of the uncertain edges indicate cluster configurations, with all uncertain
edges of the same colour in the same cluster. In this example, the number of graph nodes are reduced from
80 to 20.

120

4.6 Experimental Results

4.6.1 Small example problems

4.6.1.1 Exact value iteration POMDP

First we demonstrate finding the optimal policies on some small examples. These contain a

minimal number of uncertain edges, keeping the state space small enough to enable solving

via exact POMDP value iteration. The three example graphs are shown in Figure 4.8: 4.8a

(the “5 point” graph) shows a trivial graph with only one uncertain edge, small enough to

be solved almost instantly by all algorithms; 4.8b (the “6 point” graph) shows a similar

graph with 2 uncertain edges. The common topology between both of these graphs leads

to similar optimal policies; their main use is in testing algorithms, since their minimal

size enables policies and costs to be verified by hand. The third graph in Figure 4.8c (the

“3 edge” graph) contains 3 uncertain edges—the minimum necessary to set up an edge

cluster configuration that is distinct from fully dependent or fully independent. This is

useful in illustrating the difference in agent behaviour under the different MDP models

with different assumptions about edge dependence. This will be examined later in this

Chapter. The 3 edge graph is also an example of an “unsafe” graph: the agent must cross

at least one uncertain edge to reach the goal. If all uncertain edges are blocked, the goal

cannot be reached, preventing the agent finishing the graph. This affects the planner’s

behaviour as will be seen later.

Four algorithms are compared on the graphs in Figure 4.8 and each algorithm is

used to compute policies on each graph. The “pomdp-solve” software by Cassandra

(2005) implements exact value iteration. Incremental pruning (“inc.prune” in the results

tables) was selected for all problems shown as it is the most scalable algorithm for exact

value iteration. Approximate value iteration is carried out by the Perseus POMDP

solver which implements the point-based technique described earlier (see Section 3.4.1).

The MDP approximations developed during this research are also presented here. The

primary purpose of these experiments is to demonstrate that our techniques achieve the

same results as the POMDP models; in these cases we are finding the optimal behaviour

for the graphs. Two versions of our algorithm are shown: a standard implementation of

value iteration (denoted as “MDP” in the results) and LAO*. Standard value iteration is

a näıve MDP solver, implementing Algorithm 2.2 (page 31) to compute the policy for the

entire MDP state space. These examples have small state spaces (shown in column |S|)
compared to most problems, so standard value iteration is possible. This being the case,

a very coarse discretisation is still required to keep this method feasible. This is discussed

further below.

121

S

A

B G

C

2

2

2

2

2

1

5

P(free)=0.5

Actual state of A→ G completely
observable at A and B

(a) The 5 point graph

S

A

B G

C

2

2

2

2

2

1

5

P(free)=0.5

Actual state of A→ G and B→ G
completely observable at A

D

2

4

1

P(free)=0.5

(b) The 6 point graph

S

A

B
G

C

P(free)=0.5 for all
uncertain edges

D

1

1

1 4

2

34

4

4
C→ G observable at B:
P(block|block)=0.7
P(block|free)=0.3

(c) The 3 edge graph

Figure 4.8: Three small example graphs used for testing algorithm behaviour. In all graphs the agent must
traverse from S to G. Uncertain edges are shown as dashed lines. All other edges are certain.

4.6.1.2 Algorithm set-up

All the experiments in this Section were run in the simulator with a discretisation level of

d = 0.01 and a discount factor of γ = 0.999 unless stated otherwise. All times are stated

in milliseconds except where the experiment runtime was greater than an hour and larger

units are substituted for readers’ convenience. Each policy was run in the simulator for

50,000 trials with a maximum trial length of 50 steps. All policy generation times are

averaged over 10 runs. The starting belief state for all graphs was set to the uniform

belief state since we are interested in comparing the MDP approximations to the optimal

policy at this stage, rather than the effects of edge dependencies. For all models, this gives

the planners no bias about the free statuses of the edges, they believe that each edge is

independently blocked with probability 0.5. For Perseus, a pool of 50,000 belief states

was generated for solving each of the graphs (generation time not included in solution

time). For both POMDP solvers, the discount rate is γ = 0.95 instead of 0.999 to ensure

convergence within a feasible time. For these graphs, the goal state is reached within a

small number of steps so the small change in discount does not affect the policy. When

applied to the larger graphs, it can have a large effect on solution time with little effect on

policy. This is demonstrated later in Section 4.6.3.4 on page 140. The stopping criterion

is ε = 1× 10−5 for all algorithms.

122

4.6.1.3 Results

Algorithm |S| Avg.sim.cost Std.dev Time (ms)
Inc.prune 11 6.50 1.5 97
Perseus 11 6.51 1.5 5086

MDP 505 6.50 1.5 6
LAO* 505 6.50 1.5 2

Table 4.7: The performance of various algorithms on the 5 point graph in Figure 4.8a.

Algorithm |S| Avg.sim.cost Std.dev Time (ms)
Inc.prune 49 6.24 2.78 5hr 59m1

Perseus 49 6.26 2.78 8132
MDP (ind.) 61206 6.27 2.78 607
MDP (dep.) 1061106 6.25 2.78 7982
LAO* (ind.) 61206 6.27 2.78 4
LAO* (dep.) 1061106 6.25 2.78 5

Table 4.8: The performance of various algorithms on the 6 point graph in Figure 4.8b.

Algorithm |S| Avg.sim.cost Std.dev Time (ms)
Inc.prune 49 7.99 0.93 63502

Perseus 49 7.99 0.92 39265
MDP (ind.) 7986 8.40 2.89 16577
MDP (clus.) 18876 8.39 2.89 41060
MDP (dep.) 116688 14.92 10.18 256615
LAO* (ind.) 7986 8.40 2.89 405
LAO* (clus) 18876 8.40 2.89 457
LAO* (dep.) 116688 14.87 10.18 144

Table 4.9: The performance of various algorithms on the 3 edge graph in Figure 4.8c. For this graph, d = 0.1.

The 5 point graph (Table 4.7) is trivial to solve, even by hand. The optimal policy

can be shown diagrammatically and can be seen in Figure 4.5 (page 101). All algorithms

compute the optimal policy in a short time because the optimal policy is very simple.

Under it, there are only two paths the agent can take to the goal: either S → B →
A → G (cost 5) or S → B → C → G (cost 8), depending on the state of edge A →
G (observed perfectly at B). The standard deviation is therefore 1.5 no matter how

worlds are sampled for simulation trials. The small, highly deterministic state space

1Time to complete 6 iterations as value function had not converged.
2Time to complete 4 iterations before crashing.

123

lends itself well to incremental pruning which solves the POMDP substantially faster

than the approximate algorithm. In very small domains, the overhead of managing the

belief pool is overshadowing the more efficient computation of the approximate solver.

Incremental pruning is also benefiting from a pure C implementation as opposed to the

MATLAB implementation of Perseus which is initially interpreted.

The 6 point graph (Table 4.8) can also be solved optimally by all algorithms. The

very small differences in average simulated cost can be attributed to the randomness in

the world selection during trials. As there are two uncertain edges, we can solve the

MDP under independent and dependent models (even though no dependence exists, as

explained above) to show the effect on solution time for the näıve MDP method. The large

increase in solution time for the dependent MDP is a result of the massively increased

state space. The absolute time required for VI is still relatively small, but the memory

required to solve an MDP with greater than one million states is the limiting factor. This

MDP approaches the fringe of what the implementation can handle. LAO* does not have

the same limitation because it only requires memory for the tiny fraction of the state

space that it explores (i.e. its explicit graph), not the implicit state space which is the

same as for normal VI. In this example, LAO* only needs to evaluate 29 states to find

the optimal policy, hence the almost negligible runtimes shown.

Despite the fairly coarse discretisation of d = 0.01, the 6 point graph illustrates how

standard VI soon becomes intractable, even for tiny problems. It is not suitable for large

problems—a tiny graph of 6 points and 2 uncertain edges has a state space of over one

million states. Incremental pruning (which of course uses no discretisation) was left to

run for over 24 hours, but never converged, so results shown are from the last complete

cycle of POMDP value iteration. At this scale, Perseus is still competitive with the

standard MDP in both policy performance and runtime.

For the 3 edge graph (Table 4.9), the discretisation resolution for the standard MDP

solver had to be changed to d = 0.1 to make the MDP solvable; the same discretisation

was applied to LAO* for comparison. There are a number of important points to note

about this set of results. Firstly, the incremental pruning POMDP crashed after 4 itera-

tions after requesting too much memory, hence results are shown from the 4th iteration.

However, the policy performance matches that of Perseus. This suggests previous in-

tuition (Russell and Norvig 2002, p.623) is correct in asserting that the optimal policy

is converged upon before the state values actually converge. The degrading performance

of incremental pruning in larger examples also shows that it is not scalable as a general

approach. Another differentiating factor for the 3 edge problem is that there is no longer

a guaranteed route to the goal; this graph is “unsafe”. When the simulator selects the

world where all 3 edges are blocked, the agent can never reach the goal. The significantly

124

longer runtimes for all algorithms result from the high discount factor increasing the num-

ber of iterations VI needed to converge for the states that cannot reach the goal. In all

algorithms, the simulator reported a failure rate of at least 12.5% of the 50,000 trials.

This is expected, since according to the initial uniform belief state, the world where the

agent cannot reach the goal and inevitably fail will occur with a probability of 0.125.

The very coarse discretisation required to keep this graph solvable blocked any of

the MDP models (or equivalent LAO* tests) from finding the optimal solution. This is

especially evident under the dependent model where the policy is very poor indeed, as

evidenced by the high average cost and standard deviation. The rounding used prevents

the creation of belief states that can adequately capture the complexity of the underly-

ing belief space. This effect is present in all three models, but is exacerbated with the

dependent model because 7 variables are required to describe a belief point (the 8th is

implicit), yet only 10 units of probability mass are available to distribute. If d = 0.1, then

in order to give a non-zero probability to each of the 8 possible worlds, each must have a

probability of 0.1, but this entails that only 2 of the 8 can have a probability of 0.2, or 1

with a probability of 0.3. The coarse rounding employed causes many continuous belief

states to map to the same discrete belief state. In the next Section we will see that LAO*

does find the optimal policy once discretisation resolution is increased.

Under the dependent model MDP, Table 4.9 shows an average cost of 14.87 to reach

the goal in the 3 edge graph, even though the maximum cost of any edge is 4. The only

way the agent could incur such a high cost is by getting stuck in a loop and repeatedly

traversing the same edge. Essentially, the agent is “hopping” between two nodes. We

have observed this behaviour under many different circumstances during the course of the

research for a variety of reasons. In this case, the agent is hopping because the change

in belief state from the noisy observation at node B is hidden due to discretisation; the

information is lost and the agent is stuck in a loop. The agent visits the same node until

a different observation changes the belief state triggering a change in behaviour. We can

verify this by adjusting the maximum trial length as shown in Table 4.10. The maximum

trial cost is the important statistic. A clear pattern is present: every 10 step increase in

the maximum trial length up to 40 steps increases the maximum trial cost by 40. The

agent expends more time traversing the same edge with a cost of 4. Once the agent is

allowed more than 40 steps, the maximum stops increasing. 50,000 trials were used each

time, though when this was increased, higher maximum costs were occasionally seen when

trials were limited to 100 steps. The higher maximum costs are extremely rare because the

agent must see a particular sequence of observations to continue the hopping behaviour,

the probability of which decreases with length.

These small problems show the intractability of exact POMDP solvers. Although

125

Max.trial length Avg.sim.cost Max.cost Std.dev.
10 12.82 31 6.56
20 14.83 71 9.96
30 14.92 111 10.18
40 14.90 151 10.21
50 14.92 151 10.21
100 14.89 151 10.18

Table 4.10: Increasing the maximum trial length on the 3 edge graph (Figure 4.8c) under the dependent
model with d = 0.1.

the optimal policy was found early in value iteration, the lack of convergence shows the

problem of scalability in this method and we cannot expect the policy to stabilise after so

few iterations in bigger examples. Perseus is more scalable and converges to the optimal

value function in a reasonable amount of time, so can be used on larger examples. The

effects of low discretisation are also obvious even on graphs of this size, but the resultant

state space size precludes the use of the standard MDP solver on more complex examples.

Discretisation needs to be sufficiently fine to not “lose” observation information through

rounding. This is investigated in more detail next.

4.6.2 Discretisation

The previous results clearly show major degradation in policy performance when the

discretisation level is insufficient to represent the complexity of the belief space B. Here,

we alter the discretisation level and examine the results on the 3 edge graph and 6 larger

graphs.

4.6.2.1 Larger graphs

For the experimental work in the research, we created a series of random graphs that would

allow us to test various aspects of the techniques we have developed. Twenty random

PRM graphs were generated with between 50 and 80 nodes per graph in an environment

with manually placed obstacles. All except three graphs contain 5–6 uncertain edges.

The starting belief states were handcrafted to ensure some edges were dependent on each

other while others were independent. Observations were placed at nodes where the agent

would be able to reasonably observe the object(s) near an uncertain edge, but not obtain

perfect information. The prior probabilities of each uncertain edge being blocked were set

according to how far the closest obstacle vertex was from the uncertain edge. Unlike many

other applications, random graphs are good indicators of real world performance here

because the PRM algorithm creates random graphs. Unfortunately, the randomness (in

126

0 1

0

reward

+

0.25 0.5 0.75x y

a

b

c

Figure 4.9: The highlighted upper surface shows the true optimal value function, consisting of 3 hyperplanes
labelled a, b and c. With d = 0.25, all continuous points map to one of the five discrete numbered points.
Points between x and y are hidden through rounding, preventing α-vector b from being found.

this case mostly due to the positioning of obstacles) leads to widely varying performance,

making a statistical analysis of performance difficult. Appendix A shows the graphs and

the sizes and number of uncertain edges present in each.

4.6.2.2 Discretisation results

The results in Table 4.11 show how varying the discretisation resolution affects the per-

formance of the returned policy in larger graphs and how many states are required to

describe the policy. Table 4.12 shows the solution times for the policies. Table 4.13 shows

the effects of varying the resolution on the 3 edge graph.

In both the larger examples (Tables 4.11 and 4.12) and the 3 edge graph (Table 4.13),

the effects of coarse discretisation on the policy quality can be seen. Across most of the

graphs shown (Table 4.11), when d > 0.005, the average cost to reach the goal is unstable

as d is altered, with some graphs showing an increased cost and others not. This indicates

that the policy is no longer optimal. As explained above, if too much information is lost in

discretisation, then key inflection points in the value function will be hidden, preventing

LAO* from computing the optimal policy. Figure 4.9 shows an example of this where

the optimal value function consists of the three α-vectors (see Section 2.3.2 for a full

explanation of POMDP value functions): a,b and c. With d = 0.25, point x is rounded to

0.25 and point y to 0.5, thus hiding α-vector b because it is not optimal at either point.

The discretised value function contains only vectors a and c, so the true optimal policy

can never be discovered.

127

A
v
e
ra

g
e

co
sts

d
G
ra

p
h

1
G
ra

p
h

2
G
ra

p
h

3
G
ra

p
h

4
G
ra

p
h

5
G
ra

p
h

6
I

D
I

D
I

D
I

D
I

D
I

D
0.1

1110.61
1058.80

1437.97
1438.35

933.55
872.15

1216.82
1210.0

7
15

56
.81

1711.90
1426.89

1340.31
0.05

1048.35
1015.56

1458.44
1443.90

968.80
899.62

1188.46
1184.8

5
16

63
.51

1700.95
1502.30

1411.14
0.01

1056.82
1020.00

1481.69
1471.74

993.66
915.50

1205.61
1205.1

4
F

F
1485.94

1414.59
0.005

1054.71
1019.92

1474.02
1466.52

984.32
909.49

1211.32
1211.0

7
F

F
1494.52

1419.03
0.001

1055.37
F

1476.43
1469.13

986.65
912.83

1211.63
1210.4

7
F

F
1500.36

1422.54
0.0005

1054.23
F

1476.10
1469.37

987.62
912.01

1211.29
1211.2

3
F

F
1499.98

1425.47
0.0001

1054.71
F

1475.85
1469.32

987.10
F

1211.42
1211.3

1
F

F
1500.63

1425.46
0.00005

1053.97
F

1476.05
1469.22

986.54
F

1211.57
1211.6

7
F

F
1499.92

1425.56
0.00001

1055.62
F

1476.30
1469.73

986.57
F

1211.48
1211.6

9
F

F
1499.64

1425.75
0.000005

1055.03
F

1476.32
1469.37

986.37
F

1211.55
1211.4

5
F

F
1499.48

1425.74
0.000001

1055.22
F

1475.35
1469.37

987.57
F

1211.49
1211.4

6
F

F
1499.76

1426.96
0.0000005

1055.72
F

1475.77
1469.17

987.22
F

1211.55
1211.7

4
F

F
1500.38

1425.32
0.0000001

1055.87
F

1475.58
1469.31

986.06
F

1211.59
1211.4

8
F

F
1500.33

1425.95

B
S
G

size

d
G
ra

p
h

1
G
ra

p
h

2
G
ra

p
h

3
G
ra

p
h

4
G
ra

p
h

5
G
ra

p
h

6
I

D
I

D
I

D
I

D
I

D
I

D
0.1

101
31

137
12

127
58

145
63

313
133

126
43

0.05
119

110
137

21
54

46
145

63
285

7233
119

54
0.01

91
38

169
95

54
127

145
145

F
F

121
409

0.005
91

43
169

119
54

170
145

325
F

F
121

410
0.001

91
F

169
193

54
286

145
373

F
F

121
523

0.0005
91

F
169

200
54

502
145

608
F

F
121

554
0.0001

91
F

169
263

54
F

145
702

F
F

121
649

0.00005
91

F
169

248
54

F
145

898
F

F
121

622
0.00001

91
F

169
301

54
F

145
774

F
F

121
581

0.000005
91

F
169

304
54

F
145

826
F

F
121

585
0.000001

91
F

169
290

54
F

145
859

F
F

121
635

0.0000005
91

F
169

298
54

F
145

823
F

F
121

651
0.0000001

91
F

169
296

54
F

145
780

F
F

121
696

T
a
b
le

4
.1
1
:

K
ey:

I=
in

d
ep

en
d

en
t

M
D

P
m

o
d

el,
D

=
d

ep
en

d
en

t
m

o
d

el.
T

h
e

top
tab

le
sh

ow
s

h
ow

th
e

average
cost

varies
w

ith
d

iscretisation
resolu

tion
d

,
w

h
ile

th
e

b
ottom

tab
le

sh
ow

s
h

ow
th

e
size

of
th

e
b

est
solu

tion
grap

h
w

as
aff

ected
.

In
b

oth
tab

les
“F

”
in

d
icates

th
at

L
A

O
*

failed
to

pro
d

u
ce

a
p

olicy.

128

Times (ms)

d
Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6
I D I D I D I D I D I D

0.1 200 167 96 11 518 238 100 72 57263 4947 176 90
0.05 106 1222 120 27 357 565 98 76 182802 2182253 183 185
0.01 96 29234 152 281 525 12221 102 286 F F 419 3626

0.005 114 62720 173 310 580 18795 103 610 F F 512 5257
0.001 150 F 177 884 628 74501 98 1293 F F 883 16276

0.0005 171 F 160 977 558 83350 108 1284 F F 834 33273
0.0001 215 F 182 1832 527 F 100 1651 F F 1092 76542

0.00005 251 F 186 1838 558 F 105 2081 F F 1068 71932
0.00001 306 F 174 2263 555 F 103 1679 F F 1410 116135

0.000005 422 F 185 2314 659 F 98 1949 F F 1119 107808
0.000001 498 F 210 2457 629 F 113 2040 F F 2020 148627

0.0000005 636 F 183 2379 580 F 110 2084 F F 1530 162953
0.0000001 698 F 190 2454 584 F 114 1855 F F 1788 192036

Table 4.12: Key: I=independent MDP model, D=dependent model. The solution times for examples in
Table 4.11. “F” indicates that LAO* failed to produce a policy.

When resolution is increased enough for all the necessary inflection points to be found,

the average cost stabilises. Past the point of stabilisation, further resolution increases serve

no benefit—the cost does not decrease further. This indicates that the optimal policy has

been found, although we cannot prove it. Examining the BSG size (Table 4.11, lower) and

solution times (Table 4.12) show that in several cases, there is an inherent disadvantage

to using a finer resolution than necessary.

Examining the dependent model for the 3 edge graph (Table 4.13), a clear increase in

|G|1 as d decreases (resolution becomes finer) can be seen. Performing linear regression on

the runtime and |G| shows a strong positive correlation. The coefficient in the independent

model is 0.7290 and when the outlier at d = 0.005 is excluded, the correlation in the

dependent model is 0.8080. The BSG is always a subset of G because it only includes

states that will be visited by the optimal policy, and thus only has a very weak correlation

with the execution time. The runtime of LAO* is clearly highly dependent on the amount

of the MDP state space that is explored, but the cause is twofold. Firstly, computation

time accrues in the creation and expansion of the graph, including evaluating observations

encountered and computing the resulting belief states. Secondly, a significant fraction of

the time is spent performing VI on the nodes. Recall that although the BSG contains

a small subset of nodes from G, that subset is determined by continuously revising the

nodes’ cost and rejecting actions leading to higher cost nodes. The larger graphs all show

upwards trends in solution time with resolution under both models, even after the resulting

average cost has stabilised. More states tend to be expanded when finer resolutions are

used, even though this may not improve the policy. The resolution must be selected

carefully to minimise computation time while still enabling optimal policy to be found.

1G is the explicit belief state graph explored by LAO*, not to be confused with the PRM graph GPRM

that the MDP models are created from.

129

Independent model—3 edge graph
d Avg.cost Max.cost Std.dev |G|, |BSG| Time (ms)

0.1 8.39 40 2.87 166,25 489
0.05 10.98 55 5.88 206,31 1044

0.025 7.85 11 1.34 236,19 441
0.01 8.73 21 3.15 747,34 1558

0.005 7.85 11 1.35 519,19 1067
0.0025 7.85 11 1.35 457,19 898
0.001 7.85 11 1.35 484,19 869

0.0005 7.85 11 1.35 1049,19 1255
0.00025 7.85 11 1.35 635,19 837
0.0001 7.85 11 1.35 1113,19 1273

Dependent model—3 edge graph
d Avg.cost Max.cost Std.dev |G|, |BSG| Time (ms)

0.1 14.92 151 10.21 168,23 152
0.05 15.09 66 10.39 424,49 393

0.025 10.23 55 5.55 337,31 1156
0.01 8.28 13 1.95 1063,22 1259

0.005 8.65 21 3.10 1051,34 2033
0.0025 7.85 11 1.35 1136,19 1054
0.001 7.85 11 1.35 1179,19 1121

0.0005 7.85 11 1.35 1292,19 1461
0.00025 7.85 11 1.34 1396,19 1233
0.0001 7.85 11 1.35 1681,19 1471

Table 4.13: The effect of varying discretisation resolutions on the independent and dependent model MDPs
for the 3 edge graph. |G| is the size of LAO*’s explicit graph (the nodes explored during policy generation)
and |BSG| is the size of the best solution graph (the nodes that are part of the final policy).

For future experiments we use a constant discretisation of d = 1 × 10−5 because this

appears to give a suitable balance between discretisation accuracy and computation time,

allowing the optimal policy to be found.

Due to the way that rounding may hide some important belief points but not others,

the level of discretisation can interact with the policy performance in unexpected ways.

Several examples of this can be seen in the results. As the resolution increases, the BSG

size and average cost of the 3 edge graph with the independent model generally decreases.

An exception is at d = 0.01, where the returned policy performs worse; the same anomaly

can be seen at d = 0.005 in the dependent model. Other anomalous results can be seen

in Graphs 1, 4 and 6 when d = 0.05. Graph 6 is similar to the 3 edge problem where the

average cost peaks even though resolution was increased from the previous step. Graphs

1 and 4 show a decrease in average cost at that resolution. The interaction between d and

the final policy makes analysis difficult, but the most likely explanation is again founded

130

S

A

B
G

C

D

1

1

1 4

2

34

4

4

C→ G observable at B:
P(block|block)=0.7
P(block|free)=0.3

A→ G and C→ G
are completely
dependent

Figure 4.10: The 3 edge graph. The upper two edges A → G and C → G, are assumed to be completely
dependent, i.e. their free statuses are perfectly correlated.

in the way some belief points will be lost in discretisation. At particular resolutions, it

is likely only some of the required points can be discovered by the algorithm, leading to

policies and costs that are slightly worse than those found at similar resolutions.

4.6.3 Dependency and clustering

In this Section, we examine how the three different MDP models perform on the range

of larger example graphs. Before looking at the results, we use the 3 edge graph to

demonstrate explicitly how the dependent model can gain a cost advantage over the

independent model.

4.6.3.1 Analysis of dependency on a small example

Here, we show the optimal policies for the 3 edge graph (shown again in Figure 4.10 for

convenience) under both the independent model and the dependent model. This allows

us to clearly demonstrate the differences between the two policies and show why the

dependent model gains an advantage. We assume that the upper two uncertain edges

(A→ G and C → G) in the graph are completely dependent—their free statuses always

match. The initial dependent belief state is configured so that there is a 50% probability

of these two edges being free or blocked and the lower edge (D → G) is independently

blocked with a probability of 0.5.

Independent model Under the independent model, the belief state appears completely

uniform so the agent believes every edge is blocked independently with a probability of

0.5. The agent does not know that the free statuses of edges A → G and C → G must

match. The optimal policy can be described as a series of steps that the agent should

execute as shown below:

131

1. Start at node S.

2. Go to node A. Receive observation of A → G at A. If A → G is free, then go to

goal node G, otherwise go to step 3.

3. Go to node C via node B ignoring the observation at B.

4. Receive observation of C → G at node C. If C → G is free, then go to goal node

G, otherwise go to step 5.

5. Go to D. Receive observation of D → G are node D. If D → G free, then go to

goal G, otherwise decide that graph is unsolvable.

Visiting node A first makes intuitive sense since the path S → A → G would incur a

cost of 7 if the A→ G edge is free. If this fails, the agent tries to reach the goal through

the C → G edge, and if that is blocked, it lastly tries the D → G edge. Reaching G via

S → D → G costs 8, but travelling via S → C → G costs 7 the same as the path via A,

so why visit A first? The agent must also consider the costs when edges are blocked: if

A→ G and C → G are blocked then the agent incurs the cost of moving from A to C or

D. If D → G is free then the order above minimises the cost. If instead, C was visited

first from S and both C → G and its second choice D → G were blocked, it would then

have to retrace its steps to reach A which would increase the eventual cost to reach the

goal.

Dependent model Under the dependent model, the planner is able to find a better

plan because of the dependency between edges A→ G and C → G:

1. Start at node S.

2. Go to node D. Receive observation of D → G at D. If D → G is free, then go to

goal node G, otherwise go to step 3.

3. Go to C. Receive observation of C → G at C. If C → G is free, then go to goal

node G, otherwise decide graph is unsolvable.

This may seem suboptimal, since the policy choices made do not always give the lowest

cost of reaching the goal in all worlds. However, the expected cost to reach the goal is

minimised. An obvious question might be: Why in the dependent model does the agent

visit node D first, when the path through C has a lower cost to the goal? The free statuses

of C → G and D → G are independent of each other, so surely the cheapest path should

be tried first? The answer lies in what is optimal when all possibilities are considered.

When the agent finds the edges open, then visiting C first is the cheapest path, but 50%

132

b0 MDP Model Min. Avg. Max. Std.dev % fail |BSG|
Uniform Independent 7 7.85 11 1.34 12.58 19
Uniform Dependent 7 7.87 11 1.36 12.31 19

Dependent Independent 7 8.33 11 1.88 25.02 19
Dependent Dependent 7 7.67 8 0.47 24.74 10

Table 4.14: Comparison of policy costs for the 3 edge graph (Figure 4.10) under different starting belief states.
Costs averaged over 50,000 trials, d = 0.001. With uniform b0 all edges are independent, P(block)=0.5, with
dependent b0, edges A→ G and C → G are fully dependent (either both blocked or both free).

of the time it will be blocked, as is edge D → G, and this affects the optimal policy. To

learn the free statuses of all 3 edges requires the agent to visit either A and D or C and

D. Travelling from C to D is cheaper than A to D so we can rule out visiting A first

completely, leaving us two choices: visit C then D or D then C (assuming the first is

found blocked). The former (S → C → D) would cost 6 but the latter (S → D → C)

only costs 5, so by visiting D, first we learn the same information for a lower cost. Since

D → G is blocked 50% of the time it is cheaper on average to visit D first.

Table 4.14 shows the results of running the optimal policies from two initial belief

states (b0) under two different models in the simulator. In the uniform initial belief state,

all edges are truly independent and have an equal probability of being blocked or free.

From the dependent belief state, the upper two edges A→ G and C → G, are completely

dependent and have an equal probability of being blocked or free together. The lower

edge D → G, is independently blocked with a probability of 0.5. From the uniform

starting belief, all 8 (23) worlds may occur with equal probability, but for the dependent

start state, the 4 worlds where only one of A → G and C → G is free and the other

is blocked have zero probability of occurrence. Thus, the world where the agent cannot

reach the goal because all edges are blocked has a higher probability of occurrence than

with the uniform initial belief state. The independent model obtains the same policy from

both the uniform and dependent starting belief since it does not model the dependency

between the edges. However, this causes it to perform worse when the two upper edges

are dependent. The dependent model in the uniform belief state performs identically to

the independent model since the edges are independent. From the dependent start state,

it obtains a lower average cost by exploiting the knowledge of the dependent edges. The

reduction in possible worlds is evident in the last row of the table where the BSG for the

policy is half the size of the others. Belief states where the free statuses of edges A→ G

and C → G are not matched cannot be reached so are not included in the BSG that

describes the optimal policy.

133

4.6.3.2 Replanning MCC

For the experiments in this research, we use a modified version of the MCC planner (see

Section 3.2.3). MCC is an offline planner that computes a static route that cannot change

during plan execution. This means that during simulation, if the agent following an MCC

policy encountered a blocked edge, it would not be aware of it and would fail for trying

to traverse it. This is a consequence of not being able to make any observations, but does

not make for a very fair comparison between it and other planners that gain information

during plan execution. We make a simple modification that allows the MCC planner to

replan its route during execution if it senses a blocked edge. During simulation, the agent

checks the free status of the immediate next edge in its route to see if it is blocked (similar

to local sensing in FSSN). If it is, it marks the edge as blocked and invokes the MCC

planner to compute a new route to the goal. The computation time of any replanning is

incorporated in the reported times for the MCC planner.

4.6.3.3 Symbolic Perseus

The nature of the state space and the use of multiple probability distributions in the

independent and clustered MDP models means that the graphs used in this research

lend themselves well to factored representations. The set of variables which define a

state comprise one variable for the agent’s location, followed by a collection of variables

describing the uncertain edge statuses—one variable per cluster. The set of values for a

variable is the set of possible free statuses for the edges in that cluster so there will be 2n

values for a cluster of n edges. We use the Symbolic Perseus solver (see Section 3.4.1.1)

to solve factored POMDP versions of the independent model of the graphs and compare

the results to the other algorithms. The agent receives no reward at the goal and cannot

transition to other states, thus making it an absorbing state. In other states, it receives

a large penalty if it tries to execute an invalid action, or chooses to remain at the same

PRM node. An example of how a graph is described in the ADD format used by Symbolic

Perseus can be found in Appendix B.

4.6.3.4 Dependency in larger graphs

Table 4.15 shows the results from running the three MDP models with LAO* on each

graph. The discretisation for LAO* was d = 1× 10−5 and γ = 0.999 with a memory limit

of 500MB. All graphs were pre-processed as described earlier to remove graph nodes that

cannot affect the policy or cost. Perseus, Symbolic Perseus and the MCC planner were

also compared on each graph. For Perseus, the times are quoted in hours and minutes

instead of milliseconds for convenience (belief pool generation times are not included in

134

computation time); the belief pool was sized at 50,000 for each graph with γ = 0.95

and ε = 1 × 10−5. A time limit of 60,000 seconds was placed on the computation time

for Perseus. This is approximately 16 hours and 40 minutes, although Perseus time

limits are not honoured exactly, leading to VI continuing for a few minutes past the limit.

Symbolic Perseus uses a discount factor of γ = 0.999 in line with LAO*, with defaults

used for other settings except the belief pool size, which was adjusted to the sizes shown

in the “Alg.” column. As with standard Perseus, the generation of the belief pool is not

included in the computation time. For MCC, Cconst = 300 and replanning was allowed to

prevent MCC failing on all trials where it encountered a blocked edge in its route.

Graph Alg. Min. Avg. Max. Std.dev % fail Time (ms)

Graph 1

I 916.26 1055.47 2278.00 331.39 0 325
C 916.26 1019.44 1929.02 229.79 0 51274
D F F F F F F

MCC 916.26 1054.92 2278.00 330.69 0 2
Prs 947.19 1024.90 2036.09 252.72 0 7h40m

Sym.1000 916.26 1030.88 2114.35 274.02 0 35260
Sym.5000 916.26 1031.45 2114.35 275.30 0 43380
Sym.50000 916.26 1029.15 2114.35 271.11 0 61610

Graph 2

I 1350.84 1475.85 2096.80 188.52 0 162
C 1350.84 1476.19 2096.80 188.82 0 220
D 1350.84 1469.56 1992.75 173.22 0 2276

MCC 1350.84 1521.93 2124.93 252.10 0 1
Prs 1813.35 1813.35 1813.35 0 0 2h1m

Sym.1000 1350.84 1476.38 2096.80 188.81 0 46590
Sym.5000 1350.84 1476.37 2096.80 189.30 0 50710
Sym.50000 1350.84 1476.65 2096.80 189.50 0 48680

Graph 3

I 646.92 986.23 1430.84 365.00 0 545
C 646.92 911.73 1360.16 254.04 0 36905
D F F F F F F

MCC 646.92 987.19 1430.84 365.19 0 2
Prs 646.92 913.41 1351.74 252.69 0 3h23m

Sym.1000 646.92 912.81 1360.15 254.15 0 51350
Sym.5000 646.92 911.87 1360.15 253.51 0 66680
Sym.50000 646.92 911.55 1360.15 253.61 0 75340

Graph 4

I 1153.58 1211.50 1452.10 110.24 0 94
C 1153.58 1211.65 1452.10 110.37 0 228
D 1153.58 1211.46 1452.10 110.20 0 2022

MCC 1165.31 1217.08 1451.34 110.12 0 1
Prs 1152.82 1210.75 1451.34 110.27 0 2h36m

Sym.1000 1153.57 1211.09 1452.10 109.92 0 36420
Sym.5000 1153.57 1211.93 1452.10 110.54 0 39080
Sym.50000 1153.57 1211.20 1452.10 110.02 0 38600

Table 4.15: Key: I=independent, C=clustered, D=dependent model. “Cr” indicates a crash. “F” indicates
that LAO* failed to produce a policy.

135

Graph Alg. Min. Avg. Max. Std.dev % fail Time (ms)

Graph 5

I F F F F F F
C F F F F F F
D F F F F F F

MCC 1529.18 1649.67 1890.62 170.3 24.97 2
Prs 1433.93 1569.6 1880.27 189.77 31.93 13h33m

Sym.1000 1436.55 1460.5 1531.80 41.32 50.06 85740
Sym.5000 1433.93 1457.74 1529.18 41.24 49.66 166470
Sym.50000 1436.55 1460.52 1531.80 41.33 50.49 177670

Graph 6

I 1054.93 1500.55 2215.15 445.71 0 1534
C 1054.93 1426.42 2123.38 370.62 0 6032
D 1054.93 1425.75 2123.38 370.54 0 116135

MCC 1128.31 1525.04 2062.04 422.38 0 1
Prs 1054.93 1425.04 2123.38 370.07 0 10h48m

Sym.1000 1054.93 1388.75 2123.38 370.07 9.82 111800
Sym.5000 1054.93 1390.23 2123.38 369.60 10.00 115920
Sym.50000 1054.93 1386.72 2123.38 369.18 10.06 125150

Graph 7

I 861.99 1120.81 1340.49 237.81 0 38
C 861.99 1121.35 1340.49 237.77 0 56
D 861.99 1121.61 1340.49 237.74 0 318

MCC 861.99 1142.57 1372.37 248.47 0 3
Prs 1336.75 1336.75 1336.75 0 0 0h5m

Sym.1000 861.98 1121.76 1340.49 237.73 0 15040
Sym.5000 861.98 1122.85 1340.49 237.63 0 14970
Sym.50000 861.98 1121.79 1340.49 237.73 0 11980

Graph 8

I F F F F F F
C 903.13 1092.22 1911.36 379.36 0 28931
D F F F F F F

MCC 903.13 1092.24 1911.36 379.46 0 2
Prs 903.12 1091.94 1911.35 378.98 0 0h14m

Sym.1000 903.12 1092.13 1911.35 379.33 0 13190
Sym.5000 903.12 1090.22 1911.35 378.13 0 12690
Sym.50000 903.12 1092.55 1911.35 379.54 0 11710

Graph 9

I 775.28 1134.47 2274.68 566.44 0 912
C 775.28 1045.80 1701.29 302.98 0 1048
D 775.28 1043.69 1462.23 300.42 0 50679

MCC 775.28 1199.46 2274.68 624.70 0 6
Prs 775.28 1191.14 1382.73 264.45 0 16h40m

Sym.1000 775.28 1042.79 1462.22 302.57 0 73360
Sym.5000 775.28 1044.79 1462.22 300.55 0 84280
Sym.50000 775.28 1043.31 1462.22 300.52 0 96650

Table 4.15: Key: I=independent, C=clustered, D=dependent model. “Cr” indicates a crash. “F” indicates
that LAO* failed to produce a policy.

136

Graph Alg. Min. Avg. Max. Std.dev % fail Time (ms)

Graph 10

I 680.46 844.68 1350.08 259.59 0 172
C 678.07 838.72 1350.60 218.86 0 2482
D 678.07 839.09 1350.60 218.99 0 35396

MCC 678.07 866.02 1407.66 282.31 0 5
Prs 1005.16 1005.16 1005.16 0 0 3h16m

Sym.1000 680.45 839.10 1350.07 219.38 0 16840
Sym.5000 680.45 838.76 1350.07 218.89 0 17120
Sym.50000 680.45 840.15 1350.07 219.10 0 18370

Graph 11

I 1072.92 1218.89 1909.04 314.17 0 16546
C F F F F F F
D F F F F F F

MCC 1072.92 1219.20 1909.04 314.48 0 1
Prs - - - - 100 16h43m Cr

Sym.1000 1072.92 1155.07 1909.04 244.45 8.46 96010
Sym.5000 1072.92 1219.86 1909.04 314.86 0 107850
Sym.50000 1072.92 1220.07 1909.04 315.14 0 161190

Graph 12

I 1329.92 1329.92 1329.92 0 0 3164
C 1329.92 1329.92 1329.92 0 0 3342
D F F F F F F

MCC 801.31 1504.07 2527.64 728.40 0 3
Prs 1329.92 1329.92 1329.92 0 0 14h46m

Sym.1000 1329.92 1329.92 1329.92 0 0 146570
Sym.5000 1329.92 1329.92 1329.92 0 0 424530
Sym.50000 1329.92 1329.92 1329.92 0 0 591540

Graph 13

I F F F F F F
C F F F F F F
D F F F F F F

MCC 694.79 1374.38 2063.96 588.06 0 17
Prs F F F F F F

Sym.1000 - - - - 100 953640
Sym.5000 694.79 781.17 1587.72 122.78 61.71 3117970
Sym.50000 694.79 757.07 1587.72 113.04 72.07 11036490

Graph 14

I F F F F F F
C F F F F F F
D F F F F F F

MCC 1162.89 1188.00 1231.48 33.04 91.00 1
Prs - - - - 100 0h24m

Sym.1000 - - - - 100 39610
Sym.5000 - - - - 100 608910
Sym.50000 - - - - 100 1357150

Table 4.15: Key: I=independent, C=clustered, D=dependent model. “Cr” indicates a crash. “F” indicates
that LAO* failed to produce a policy.

137

Graph Alg. Min. Avg. Max. Std.dev % fail Time (ms)

Graph 15

I 778.82 1140.44 2022.34 526.96 0 1141
C 778.82 1140.35 2022.34 526.89 0 1465
D 778.82 1137.60 2022.34 525.77 0 17870

MCC 778.82 1211.70 3026.55 824.22 5 3
Prs 1346.38 1346.38 1346.38 0 0 4h51m

Sym.1000 778.81 785.99 1187.84 37.96 30.92 17230
Sym.5000 778.81 785.82 1187.84 37.14 31.14 20340
Sym.50000 778.81 785.60 1187.84 35.57 30.97 22310

Graph 16

I 1795.23 1795.23 1795.23 0 0 27600
C 1795.23 1795.23 1795.23 0 0 47317
D F F F F F F

MCC 628.09 2369.04 2996.09 815.01 0 5
Prs 1795.23 1795.23 1795.23 0 0 5h21m

Sym.1000 628.09 628.09 628.09 0 86.51 10160
Sym.5000 628.09 628.09 628.09 0 86.41 8740
Sym.50000 628.09 628.09 628.09 0 86.45 9540

Graph 17

I 1403.94 1724.62 2192.85 385.75 0 626
C 1403.94 1720.54 2192.85 373.42 0 6390
D F F F F F F

MCC 1403.94 1724.87 2192.86 385.82 0 2
Prs 1403.93 1721.33 2192.85 373.53 0 11h47m

Sym.1000 1403.93 1720.86 2192.85 373.58 0 53280
Sym.5000 1403.93 1723.09 2192.85 373.87 0 55190
Sym.50000 1403.93 1723.09 2192.85 373.85 0 52620

Graph 18

I 1050.69 1120.11 1663.72 153.33 0 43
C 1050.69 1120.26 1663.72 153.63 0 45
D 1050.69 1120.09 1663.72 153.22 0 590

MCC 1050.69 1123.22 1663.72 182.11 0 2
Prs 1128.47 1128.47 1128.47 0 0 16h43m

Sym.1000 - - - - 100 580870
Sym.5000 - - - - 100 1661440
Sym.50000 - - - - 100 3348150

Graph 19

I 1174.51 1337.02 1621.77 213.81 0 51
C 1174.51 1311.79 1621.77 176.70 0 62
D 1174.51 1311.54 1621.77 176.64 0 478

MCC 1174.51 1406.32 2456.24 438.10 0 2
Prs - - - - 100 16h42m Cr

Sym.1000 1174.50 1310.92 1621.76 176.36 0 49020
Sym.5000 1174.50 1336.58 1621.76 213.75 0 47810
Sym.50000 1174.50 1311.56 1621.76 176.89 0 46070

Table 4.15: Key: I=independent, C=clustered, D=dependent model. “Cr” indicates a crash. “F” indicates
that LAO* failed to produce a policy.

138

Graph Alg. Min. Avg. Max. Std.dev % fail Time (ms)

Graph 20

I F F F F F F
C F F F F F F
D F F F F F F

MCC 784.98 1303.86 2707.60 688.74 0 2
Prs 784.98 894.29 1897.92 331.23 41.31 15h1m

Sym.1000 - - - - 100 25180
Sym.5000 - - - - 100 17190
Sym.50000 - - - - 100 17280

Table 4.15: Key: I=independent, C=clustered, D=dependent model. “Cr” indicates a crash. “F” indicates
that LAO* failed to produce a policy. Comparison of 3 MDP models, MCC, Perseus and Symbolic Perseus
across range of example graphs. All times averaged over 10 runs. d = 0.00001 and graph pre-processor used
for all MDP models, Perseus and Symbolic Perseus. All costs derived from 50,000 simulator trials.

Compared to the smaller examples earlier in this chapter, the variance in the average

costs in Table 4.15 are much greater. This is to be expected because the individual edge

costs have a maximum cost of 300, contrasting with a maximum cost of 5 in the graphs of

Figure 4.8. While the high number of trials run per simulation allows us to be confident

about the accuracy of the average cost reported, the real significance of small differences

is lower. For instance, in Table 4.14, the maximum difference in average cost of 0.66

across all tests indicates a difference in policy quality, whereas with larger examples the

same difference is negligible.

The first prominent aspect of the results in Table 4.15 is the number of tests where

policy generation failed (marked ‘F’). This happens when the LAO* implementation ran

out of memory before the optimal policy was found. As mentioned in Section 4.6.2, the

BSG only constitutes a small subset of the nodes explored in the explicit graph G. In the

cases where LAO* fails, 250, 000 ≤ |G| ≤ 400, 000 depending on the number of elements

forming the belief state. This is in turn determined by the arrangement of the uncertain

edges into clusters. The quantity of states requiring expansion to find the optimal policy is

entirely dependent upon the individual graph. Graphs where multiple partially expanded

routes appear to have similar costs are more likely to fail because LAO* must explore all

paths through the MDP until they are either proved non-optimal or the optimal policy is

discovered. If similar cost paths are discovered, more of S is likely to be explored. The

dependent model is also more likely to fail than the other two models since the MDP

state space is exponentially larger and the quantity of elements required to represent one

belief state is greater, requiring more memory per belief state. The results highlight one

advantage of the clustered model, as policies can be generated for the clustered model

but not the dependent model in 5 of the graphs tested.

139

Perseus Perseus is vastly slower than all other algorithms tested, though the times

vary greatly depending on the particular graph. For some of the graphs, the maximum

computation time of 60,000 seconds (16 hours and 40 minutes) is being reached causing

Perseus to terminate. In Graphs 11 and 19, Perseus terminated after 60,000 seconds,

but the policy file produced contained α-vectors with coefficients of enormous magnitude

which caused the simulator to crash upon parsing the file. Although the solution times for

LAO* also vary according to the graph, there is only a weak correlation of 0.22 between the

times for the dependent model (the closest approximation to the POMDP) and Perseus.

This is to be expected due to the major differences in the algorithms.

In terms of performance, the average cost of the policies computed by Perseus match

the costs obtained via the dependent MDP model. This is what we expect to see because

the POMDP formulation and dependent MDP are the most similar in their represen-

tation of the belief state. In the other Graphs, the POMDP has a higher average cost

than any of the MDP models. This is surprising, since the POMDP can represent any

edge dependencies present, therefore it should be able to match the dependent MDP in

performance. The fact that we use a discount factor of γ = 0.95 is the likely cause of the

poor performance. Despite being close to 1, the discount factor is still applying too much

bias against the long-term cost to find the policy that is found by LAO*. To test this, we

re-ran the graphs where the POMDP policy performed badly, this time with γ = 0.999,

as used by LAO*. Unfortunately, only the POMDP policies on Graphs 7 and 15 improved

to match the dependent MDP. All of the other graphs tested either failed to reach the

goal in 100% of the trials or gained an average cost far worse than with γ = 0.95.

Table 4.16 shows the results of re-running Perseus on the graphs where it performed

badly, but with a discount factor of γ = 0.99. The first thing to note is that Perseus

failed to converge for all graphs except numbers 7 and 14, instead terminating at the

maximum time of 60,000 seconds. The increased discount factor means that the agent is

considering the future cost more when considering the cost of an action. It also means

that more dynamic programming iterations are likely to be required for convergence, thus

increasing the runtime. We see improvements in the average cost of Graphs 7 and 10

to the point where they match the performance of the dependent MDP model. Graph

15 also improves significantly, but the average cost of 1153.97 is still slightly higher than

the dependent model at 1137.60. The other POMDPs either show no improvement, or

continue to fail (Graphs 11,13,14 and 19). Graphs 2 and 20 show that different policies

are being found under the higher discount factor, but these are not necessarily beneficial.

In Graph 2, we see an extremely high failure rate when γ = 0.99 compared to γ = 0.95.

In Graph 20, we see a reduction in the failure rate when γ = 0.99 at the expense of much

higher average and maximum costs. The exceptionally high maximum cost indicates that

140

Graph γ Min. Avg. Max. Std.dev % fail Time

Graph 2
0.95 1813.35 1813.35 1813.35 0 0 2h1m
0.99 1478.78 1795.65 1820.51 87.63 90.7 16h41m

Graph 7
0.95 1336.75 1336.75 1336.75 0 0 0h5m
0.99 861.98 1126.67 1340.49 232.47 0 0h32m

Graph 10
0.95 1005.16 1005.16 1005.16 0 0 3h16m
0.99 680.45 838.02 1350.07 218.71 0 16h41m

Graph 11
0.95 - - - - 100 16h43m
0.99 F F F F F 11h5m Cr

Graph 13
0.95 F F F F F F
0.99 - - - - 100 16h42m

Graph 14
0.95 - - - - 100 0h24m
0.99 - - - - 100 2h24m

Graph 15
0.95 1346.38 1346.38 1346.38 0 0 4h51m
0.99 778.81 1153.97 2022.33 516.66 0 16h42m

Graph 19
0.95 - - - - 100 16h42m
0.99 F F F F F F

Graph 20
0.95 784.98 894.29 1897.92 331.23 41.31 15h1m
0.99 784.98 4910.58 12076.41 5343.2 9.37 16h41m

Table 4.16: POMDP policy performance when γ = 0.99. POMDP results from Table 4.15 repeated for
comparison. Reported times at γ = 0.99 are for a single run. “Cr” in Graph 11 indicates a crash. “F”
indicates the POMDP failed to produce a usable policy.

Graph γ Min. Avg. Max. Std.dev % fail Time

Graph 1
0.95 947.19 1024.90 2036.09 252.72 0 7h40m
0.999 953.99 961.66 2141.27 81.01 31.26 7 days

Graph 6
0.95 1054.93 1425.04 2123.38 370.07 0 10h48m
0.999 1054.93 1163.44 1988.66 250.91 61.18 7 days

Table 4.17: POMDP policy performance when γ = 0.999. POMDP results from Table 4.15 repeated for
comparison. Reported times at γ = 0.999 are for a single run.

the policy is poor and the agent is essentially stuck in a loop in the graph for many steps

before going to the goal. We also ran Perseus on Graphs 1 and 6 with γ = 0.999 with

a belief pool size of 5,000, but increased the maximum time limit from 60,000 seconds to

a week (604,800 seconds). Neither of the runs converged in this time, only terminating

when the limit was reached. Table 4.17 shows the results obtained. Both policies incur a

substantial rate of failure. Adjusting the discount factor has led to moderate improvement

in some of these graphs. However, in general, the computation times for the POMDP

formulation show that a fully dependent, non-structured approach as used with standard

Perseus is not a feasible approach to this problem.

141

Graph
Solution time

Graph
Solution time

|B| = 5, 000 |B| = 50, 000 |B| = 5, 000 |B| = 50, 000
1 5h26m 7h40m 11 16h41m 16h43m
2 1h18m 2h1m 12 9h20m 14h46m
3 1h30m 3h23m 13 16h41m F
4 1h10m 2h36m 14 0h8m 0h24m
5 7h50m 13h33m 15 2h38m 4h51m
6 7h10m 10h48m 16 1h34m 5h21m
7 0h4m 0h5m 17 7h17m 11h47m
8 0h12m 0h14m 18 11h31m 16h43m
9 F 16h40m 19 16h41m 16h42m
10 3h9m 3h16m 20 8h19m 15h1m

Mean ratio of computation time 0.62:1

Table 4.18: Perseus solution times with a belief pool size of 5,000 and 50,000 beliefs. All other parameters
kept the same. ‘F” indicates the POMDP failed to produce a usable policy.

Graph Min. Avg. Max. Std.dev % fail Time
9 F F F F F F
13 725.88 1397.34 1907.79 302.75 1.08 16h41m
16 628.09 628.09 628.09 0 86.50 1h34m
17 1472.44 1818.52 2225.54 375.32 0 7h17m

Table 4.19: Results for Perseus when the belief pool is sized at 5,000. Only graphs where results differ
from Table 4.15 are shown.

Perseus with fewer belief states The size of the belief pool B, used with Perseus is

one factor which can effect the long solution times. To test this, we also ran Perseus on

the 20 graphs with a belief pool of 5,000 beliefs and compared the solution times. These

can be seen along with the times from using 50,000 beliefs (from Table 4.15) in Table 4.18.

The performance of the policies was largely the same between the two experiments. This

shows that, with the exceptions shown in Table 4.19, a belief pool of 50,000 beliefs is

not necessary to find the optimal policy with Perseus. With 5,000 beliefs, Perseus

finished a mean of 34% quicker than before. Graph 16 showed the largest difference in

computation time, though the policy is worse than with 5,000 beliefs. With 5,000 beliefs,

Perseus performs the same as Symbolic Perseus on that graph. Graph 17 is similar

except that the average policy cost has increased. Graph 9 no longer produces a policy

as Perseus crashed due to running out of memory. Graph 13 shows where decreasing

the size of the belief pool can have an advantage, since it now produces a policy whereas

originally it did not.

142

Symbolic Perseus The results from Symbolic Perseus make it clear that the factored

version of the POMDP is far quicker to solve. All problems are solved in the order

of seconds instead of hours, though LAO* is still quicker to produce policies in nearly

all cases by a large margin. Symbolic Perseus is written in MATLAB and Java as

opposed to pure Java like LAO*, so it is unreasonable to compare runtimes closely due to

the implementation differences. However, we can see that the performance of Symbolic

Perseus is close to the dependent MDP model under LAO* in Graphs 1,6 and 15, and

is superior in Graphs 10 and 8 (under the clustered model). It is actually much quicker

in Graph 16, though it produces a policy that fails to reach the goal most of the time.

Changing the number of belief states sampled by Symbolic Perseus affects the run-

time as could be expected in many of the graphs. The solution times increase massively

in some graphs (Graphs 9,11,12,13,14 and 18) when the size of belief pool increases. In

others, it only increases slightly or remains unaffected. The graphs where the belief pool

size has a large effect tend to be the graphs that are harder to solve. Graphs 11–14 are

good examples of this since dependent LAO* fails to produce a policy in all four cases

and Symbolic Perseus fails in two. We can also see in two cases that a belief pool size

of 1,000 was insufficient to find a good policy. In Graphs 11 and 13 the rate of failure

decreases once the belief pool is increased to 5,000 beliefs.

The performance of the policies is good and matches LAO* in the majority of cases.

With the exception of Graphs 16,18 and 20, Symbolic Perseus provides a good policy.

In Graphs 6,15 and 16 it produces a policy that reaches the goal in some of the trials but

not all, thus incurring a higher failure rate than LAO*. The method used by Symbolic

Perseus for sampling belief states is the likely reason for this. Changing the belief

sampling method from “QMDP” to “random” (as used by standard Perseus) improved

the policy performance for Graph 18 but had no effect on the other graphs. An interesting

feature of the results is that despite using an independent belief model, the performance

matches that of dependent LAO* in some cases where independent LAO* does not perform

as well. The use of ADDs in Symbolic Perseus is a possible cause because the merging

of approximately identical sub-branches in an ADD could be allowing it to find a superior

policy.

Policy behaviour and LAO* performance Examining the average costs across all

the graphs in Table 4.15, a distinct pattern in the results emerges. Two classes of be-

haviour are seen: in many graphs, all three MDP models achieve almost the same per-

formance (Graphs 2,4,7,12,15,16,17,18) while in others, the clustered model surpasses the

independent model by varying amounts (Graphs 1,3,6,9,10,19). In the latter category,

the computed clustered/dependent policies are exploiting knowledge of edge dependen-

143

Graph Alg. |G| |BSG| Time Graph Alg. |G| |BSG| Time

1
I 1,355 91 325

11
I 88,005 161 16546

C 287,853 45 51274 C ∼235,000 ∼8,000 F
D ∼320,000 ∼1,200 F D ≤20,000 N/A F

2
I 1,116 169 162

12
I 17,010 7 3164

C 1,546 216 220 C 18,234 7 3342
D 7,225 320 2276 D ∼332,000 ∼8,000 F

3
I 3,993 54 545

13
I ∼188,000 ∼22,000 F

C 198,120 251 36905 C ∼282,000 ∼20,000 F
D ∼281,000 ∼800 F D ∼180,000 ∼11,000 F

4
I 540 145 94

14
I ∼270,000 ∼22,000 F

C 1,089 273 228 C ∼415,000 ∼16,000 F
D 4,038 883 2022 D ∼467,000 ∼12,000 F

5
I ∼254,000 ∼4000 F

15
I 8,428 69 1141

C ∼301,000 ∼11,000 F C 11,512 69 1465
D ∼365,000 ∼5,000 F D 61,364 189 17870

6
I 5,739 121 1534

16
I 134,204 7 27600

C 24,361 150 6032 C 237,889 7 47317
D 73,494 581 116135 D ∼213,000 ∼2,000 F

7
I 430 71 38

17
I 4,239 71 626

C 715 71 56 C 47,342 385 6390
D 2,324 77 318 D ∼308,000 ∼2,000 F

8
I ∼248,000 ∼4000 F

18
I 330 48 43

C 297,562 16 28931 C 330 48 45
D ∼370,000 ∼500 F D 2,130 194 590

9
I 4,412 95 912

19
I 523 133 51

C 5,923 73 1048 C 695 185 62
D 76,084 139 50679 D 2,251 546 478

10
I 942 24 172

20
I ∼196,000 ∼10,000 F

C 13,395 44 2482 C ∼245,242 ∼2,669 F
D 71,151 75 35396 D ∼246,000 ∼6,000 F

Table 4.20: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. The number of nodes explored by LAO* and number of nodes in the BSG for the graphs in
Table 4.15. Times (ms) are re-produced for convenience.

cies in the graph to find more efficient routes to the goal. In the other graphs where

the performance remains unchanged across all three models, while edge dependencies are

present the computed policies do not exploit any dependency. This indicates that there

is no advantage to knowing about the dependencies or that the dependent edges do not

feature on the optimal route, otherwise we would expect the dependent model to have a

lower average cost. Even if edges are dependent, if the prior probability of them being

blocked is high then they will likely not be included on the optimal route—any benefit is

outweighed by the risk of them being blocked.

The solution times for the MDP models across all graphs differ greatly from very low

solution times as in Graph 18, to much greater times such as those of the clustered model

in Graph 1 or the dependent model in Graph 9. The number of states expanded in G is

the major contributing factor to the solution time and provides a good indicator of how

144

much LAO* had to explore the state space to find the BSG. Table 4.20 shows the size of

the explicit graphs and the best solution graphs for the computed LAO* policies for the

graphs in Table 4.15. Only the figures for complete policies are exact because complete

information is not reported when LAO* fails—the final policy size is never known. As is

the case when LAO* fails, if several branches in the graph appear to have similar utility

(these can alter during the VI convergence phase), this tends to cause greater exploration

of the state space, i.e. more expansion in G which will clearly increase the solution time

as well. Graphs 12 and 15 show good examples of this. The average costs of Graphs 12

and 15 show in both cases that, although there is no inherent advantage to the clustered

or dependent models, LAO* likely still explored a relatively large number of nodes in

the independent model. The independent solution time for Graphs 12 and 15 are higher

than for many other graphs where the solution time is often under a second. Looking at

Table 4.20, |G| shows that both the independent and clustered models explored similar

amounts of the MDP state space before finding the same size BSG. In Graph 15, the vastly

increased state space explored in the dependent model is also reflected in the runtime.

Conversely, in graphs where the solution time is small, this indicates that LAO* was able

to find the BSG with little exploration, suggesting that the heuristic was directing graph

expansion towards the optimal policy.

The timings for the clustered model show it always requires at least as much time as the

independent model (Graphs 12,17 and 18) and is often slower. Across all graphs, clustering

is on average, 19.0 times slower (median=1.6) to compute the optimal policy compared

to independent; ignoring outliers more than 1 standard deviation away, the figure lowers

to a mean of 3.4 times slower (median=1.4). The dependent model is equivalently 35.1

times slower (median=13.9) than the independent model, 16.2 times slower (median=13.7)

once outliers are excluded. The increased dimensionality of dependent belief states also

contributes to the increased time for that model because of the extra computation required

to expand a state in the explicit graph. This is reflected across many examples where,

even though policy performance is almost identical, the dependent model takes longer to

complete. This is also true of the clustered model to a lesser extent because it exists in

between the extremes of the other two models in terms of belief state dimensionality.

MCC In all cases, the MCC planner is the fastest by a wide margin, but policy per-

formance never surpasses the independent MDP. The MCC planner treats each edge

independently ignoring any dependencies—observing an edge never gives the agent any

information about any other edge. Since MCC never considers the value of future infor-

mation, it can rarely find an optimal policy. In some graphs (Graphs 1,3,11 and 17) it

matches the performance of the independent model, which suggests that the optimal pol-

145

icy under the assumption of independence is first to try the shortest route to the goal, then

attempt successively longer routes if blocked edges are found. In other graphs (Graphs

2,9,12,15 and 16), MCC performs significantly worse than the independent model. This

shows that the simple behaviour of the MCC algorithm cannot match the benefit pro-

vided by considering the information gain of noisy observations, or by including the cost

of blocked edges in deriving a policy. MCC also requires selecting a suitable Cconst, which

is highly problem dependent, and lacks a simple way to choose ‘good’ values to guarantee

performance. High values make the planner avoid most uncertain edges, preferring safe

routes with higher costs. Low values make the planner too optimistic causing performance

degradation due to frequent replanning causing the agent to retrace portions of its route.

Evidence for this can be seen in Graphs 12,15,16 and 19 where the maximum cost for

MCC is much higher compared to other algorithms.

Failure rates Various graphs have failed trials recorded under some of the algorithms

tested. Since for some of the graphs, the percentage of failure was substantial and the

failed runs are not included in the average cost, the results for those graphs are shown with

a cost of failure included in Table 4.21. A fixed cost was given to trials where the agent did

not successfully reach the goal and this cost is included in the average cost in Table 4.21.

By altering the cost of failure, it is possible to affect the perceived performance of various

algorithms. Assigning a cost of 0 to failure would entail that an algorithm which failed in

all trials would receive an average of 0. Conversely, assigning an extremely high cost to

failure would mean that an algorithm which outperformed others but occasionally failed

would have an unfairly inflated average cost. We set the cost of failure to 3,500 as this is

greater than the maximum cost to reach the goal in any of the graphs tested and is a good

heuristic which will not overemphasise the failed trials in the average cost. The results in

Table 4.21 show the average cost with and without failed trials included along with the

percentage of failed trials. Several of the results show that when failed trials are included

the ordering of the algorithms does change. In Graph 5 the order changes completely,

with MCC giving the lowest average cost when failures are included, as opposed to the

highest cost before. In Graph 13 the ordering of the Symbolic Perseus tests with 5,000

and 50,000 belief pool sizes switch positions and in Graph 20, Perseus is shown to be

performing worse than MCC once failures are included.

Anomalies There are some notable anomalies in the Table 4.15. Firstly in Graph 8,

the independent and dependent model fail, but the clustered model produces a result.

This is counter-intuitive because, we would expect the independent model to also succeed

due to the lower dimensionality of its belief space. Looking at the data in Table 4.20, we

can see that the amount of the explicit graph explored is very high for all models; this is

146

expected since LAO* failed from a lack of memory, however the size of the BSG provides

better insight. In many cases, the BSG will expand as LAO* explores and the policy

becomes more complex, but near the end of the computation we often observe a decrease

in |BSG| as LAO* rules out sub-optimal sections of G. This effect is very pronounced

here as the clustered BSG contains only 16 states. Therefore, the speculative cause of the

independent model’s failure was that memory ran out before this contraction of the BSG

could occur. Knowledge of edge dependencies in the clustered model probably benefitted

it, allowing it to rule out sections of G (limiting the size of the BSG) before attempting

further expansion.

The second obvious anomaly is in Graph 12 where MCC obtains a cost that is much

lower than all the other algorithms. This is again a symptom of the MCC planner being

too optimistic and perfectly illustrates the risks of not considering blocked edges in route

planning. It chooses the shortest route to the goal, which seems very attractive assuming

all uncertain edges are free. However, when some fraction of those edges are blocked,

performance rapidly degrades as shown by MCC’s average and maximum costs which are

notably higher than the other algorithms. Both LAO* and Perseus plan for edges being

blocked and therefore choose a more conservative route, thereby obtaining a lower average

cost at the expense of never using the shortest route.

Graph 14 is notable for having very few actual results in it. All three MDP models fail

to compute a policy, and while Perseus does find a policy in a relatively short amount

of time, that policy fails to reach the goal in every single simulator trial. Graph 14 is an

unsafe graph where the only route to the goal is through a narrow passageway where at

least 2 of 3 uncertain edges must be traversed, so a high failure rate is expected (the goal

is often unreachable). Due to the high probability of all edges being blocked, Perseus

may not have been able to compute a suitable policy due to the discount factor of 0.95,

which may be too low to give the necessary emphasis on the eventual cost, even in the

world where the goal was reachable. MCC plotted a route that failed to reach the goal

91% of the time and shows the rare scenario where MCC has an advantage since it does

not consider the future cost when edges are blocked, and plans directly in the PRM graph.

147

Alg. Graph
Avg. Avg.

% fail
w/ fails w/o fails

Graph 5

I F F F
C F F F
D F F F

MCC 1649.67 2107.00 24.97
Prs 1433.93 2180.62 31.93

Sym.1000 1460.5 2481.47 50.06
Sym.5000 1457.74 2488.60 49.66
Sym.50000 1460.52 2490.25 50.49

Graph 6

I 1500.55 1500.55 0
C 1426.42 1426.42 0
D 1425.75 1425.75 0

MCC 1525.04 1525.04 0
Prs 1425.04 1425.04 0

Sym.1000 1388.75 1596.07 9.82
Sym.5000 1390.23 1599.68 10.00
Sym.50000 1386.72 1599.32 10.06

Graph 11

I 1218.89 0
C F F F
D F F F

MCC 1219.20 1219.20 0
Prs - 3500 100

Sym.1000 1155.07 1353.45 8.46
Sym.5000 1219.86 1219.86 0
Sym.50000 1220.07 1220.07 0

Graph 13

I F F F
C F F F
D F F F

MCC 1374.38 1374.38 0
Prs F F F

Sym.1000 - 3500 100
Sym.5000 781.17 2384.43 61.71
Sym.50000 757.07 2733.90 72.07

Graph 14

I F F F
C F F F
D F F F

MCC 1188.00 3291.92 91.0
Prs - 3500 100

Sym.1000 - 3500 100
Sym.5000 - 3500 100
Sym.50000 - 3500 100

Table 4.21: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy.

148

Alg. Graph
Avg. Avg.

% fail
w/ fails w/o fails

Graph 15

I 1140.44 1140.44 0
C 1140.35 1140.35 0
D 1137.60 1137.60 0

MCC 1211.70 1330.51 5
Prs 1346.38 1346.38 0

Sym.1000 785.99 1625.16 30.92
Sym.5000 785.82 1637.79 31.14
Sym.50000 785.60 1626.25 30.97

Graph 16

I 1795.23 1795.23 0
C 1795.23 1795.23 0
D F F F

MCC 2369.04 2369.04 0
Prs 1795.23 1795.23 0

Sym.1000 628.09 3112.58 86.51
Sym.5000 628.09 3109.71 86.41
Sym.50000 628.09 3110.86 86.45

Graph 18

I 1120.11 1120.11 0
C 1120.26 1120.26 0
D 1120.09 1120.09 0

MCC 1123.22 1123.22 0
Prs 1128.47 1128.47 0

Sym.1000 - 3500 100
Sym.5000 - 3500 100
Sym.50000 - 3500 100

Graph 19

I 1337.02 1337.02 0
C 1311.79 1311.79 0
D 1311.54 1311.54 0

MCC 1406.32 1406.32 0
Prs - 3500 100

Sym.1000 1310.92 1310.92 0
Sym.5000 1336.58 1336.58 0
Sym.50000 1311.56 1311.56 0

Graph 20

I F F F
C F F F
D F F F

MCC 1303.86 1303.86 0
Prs 894.29 1973.76 41.31

Sym.1000 - 3500 100
Sym.5000 - 3500 100
Sym.50000 - 3500 100

Table 4.21: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. Algorithm comparison across range of example graphs when failed runs are included in
the average cost. Cost for failing set to 3,500, all other parameters remain unchanged. The averages from
Table 4.15 are included for comparison.

149

4.6.4 Discussion

Overall, the independent model is the fastest of the three MDP models, but it cannot

find the optimal policy when knowledge of edge dependencies is required to accomplish

that. The results from the MCC planner show that the average cost achieved under

independence can often be matched or closely approximated by using a simpler, vastly

quicker algorithm such as replanning MCC. The dependent model offers the best policy

performance of all the algorithms tested, but is also more likely to fail on complex graphs

and larger examples, which detracts from its usability. Solving the problem via the full,

dependent POMDP formulation is infeasible for most problems because of the required

computation time, despite good performance in several cases. Perseus, like LAO* gains

a computational advantage by exploring the belief graph out from the starting state to

reduce the plan space, however it cannot account for the low probability of reaching some

states, or for the extra structure in these problems. Although it does not suffer from

the approximation introduced by discretising the belief state, Perseus cannot exploit

the problem structure as effectively as our approach, so is orders of magnitude slower.

Symbolic Perseus is much quicker as a result of factoring the state space and its use of

efficient data structures. In many cases, its policies are as good as the dependent MDP

model. Although in a few cases its speed is comparable to dependent LAO* it is generally

significantly slower.

Given the difference in computation time between the independent and clustered mod-

els, there is little reason to choose the former over the latter, presuming sufficient time is

available. Allocating more memory to the dependent model will help mitigate the occur-

rence of failures, but it is still inherently less scalable than other models. The advantage

of the clustered model over the independent model does rely on the correct arrangement

of the uncertain edges into clusters. Since edge dependencies between edges in the same

cluster can be represented, but clusters are assumed independent, if the cluster configura-

tion is such that two highly dependent edges are in different clusters, they will be treated

as being independent of each other. The clustered model offers the benefit of exploiting

edge dependencies in the graph where present, without the extended computation time

of the dependent model and the increased risk of failure.

4.6.4.1 When does a dependency between edges offer an advantage?

The clustered/dependent models have shown a performance advantage with less than

half of the graphs despite the fact that all of them contain uncertain edges whose free

status is dependent on other edges. This suggests the conditions necessary to produce

a benefit from dependencies are complex. During the research we have found that the

conditions described below are necessary for there to be an improvement when clustered

150

S G

J

K
X

Figure 4.11: An example of where the dependent MDP model can gain a cost advantage over the independent
model. The two uncertain edges shown (dashed lines) are highly dependent on each other. The agent may
make an observation of edge J at the node marked x.

or dependent models are used.

The graph shown in Figure 4.11 will be used to illustrate the example. It has a short

route from the start (S) to the goal (G) that has a choice of two uncertain edges (labelled

J and K) whose free statuses are highly dependent on each other. The agent can observe

the status of edge J from node x, however does not observe edge K. It also has the choice

of the long safe route to the goal, represented by the lower path in the figure. For the

sake of discussion, assume that under the optimal policy, the agent moves from the start

node S to x and makes an observation of J and observes J as blocked. The agent can

either continue on the short route to one of the uncertain edges, or can select the long

safe path to the goal. The following must be true for the dependent MDP model to gain

a cost advantage over the independent model.

� The uncertain edges must exist on the shorter route to the goal. This necessity is

fairly straightforward: there is no point asking the agent to choose between a short,

safe route and a risky, longer route.

� The agent must be able to observe one of the dependent edges and not the others

before it reaches them. If both edges J and K were observable at node x, then the

independent model will obtain the same information as the dependent model and

there is unlikely to be a large difference in cost.

� The agent must be confident enough that the uncertain edges are free to cause

the agent to accept the risk of the shorter route, otherwise it will choose the long

route by default and all models will behave in the same way. This must be true of

both uncertain edges in the short route. If edge K (as yet unobserved) has a high

probability of being blocked, the independent policy will likely not consider it worth

151

the risk and will choose the long safe path at x anyway. As the dependent policy

can infer the second edge is blocked, both models will effectively choose the same

policy and obtain the same cost.

� The difference in average cost is based on differences in the agent’s behaviour. In

the dependent model, once J is observed as blocked, the agent infers that edge

K is blocked due to the dependency. It will then head for the safe path. In the

independent model, it can make the observation of J yet still believe the edge K

is free and continue towards it. When the K is found to be blocked, it must then

backtrack to find the alternate route. Avoiding travelling towards the second blocked

edge and backtracking is where the clustered/dependent models gain any advantage.

The more costly the potential backtrack, the more advantage the dependent models

will have, but conversely, the greater the perceived risk will be for the independent

model so the chance it will investigate the second edge decreases.

Random graphs tend to have many alternate routes, so the chance that all the above occur

in such a way as to give the dependent model a large cost advantage is not great. This is

why not as many graphs as might be expected show an advantage under dependent models.

Representing dependencies between edges is still an important feature. In situations where

backtracking is costly and the minimal cost path to the goal provides an advantage, the

clustering approach allows the lower cost to be obtained in a feasible amount of time.

4.6.5 Summary

A number of features have been discussed in the results so far, a summary of which is

provided below:

Discretisation This is necessary to keep the state space finite. Discretisation resolution

d, must be fine enough to ensure that a non-zero value can be given to each element

in the belief states. Generally, once d ≤ 1×10−5, the discretisation is so fine that any

belief state can be represented accurately for the graphs considered. This resolution

was sufficient for all graphs tested.

Clustering In our experiments, the clustered MDP model is the preferred model over

the alternatives because it gives the most advantageous balance between speed and

policy quality. If the cluster configuration is reasonable, then any edge dependen-

cies will be exploited without a large increase in computation requirements. Sec-

tion 4.6.4.1 gives a detailed description of when dependencies in edges are likely to

lead to a lower cost policy.

152

Graph pre-processing Applying the pre-processor to the PRM graphs significantly

shrank their size with a negligible overhead in terms of runtime. As policy costs are

not affected, this technique should always be used to minimise the state space size

and algorithm computation time.

153

154

Chapter 5

Scaling the MDP Models

In the results in the previous Chapter, the dependent MDP models failed to produce a

policy for several graphs and the other models also failed in some cases. In this Chapter,

we look at some techniques that can be used to extend the range of problems that our

approach can handle.

5.1 Heuristic Weighting in LAO*

With an admissible, consistent heuristic both A* and LAO* are guaranteed to find the

lowest cost path to the goal. Further, with any given consistent heuristic, A* is provably

optimal (Nilsson 1998, pp.146–148) in that no other algorithm will expand fewer nodes

when generating the best path. This does not entail that there is no room for improvement

however. From Pearl (1984):

“Experience shows, however, that in many problems A* spends a large

amount of time discriminating among paths whose costs do not vary signif-

icantly from each other. In such cases, the admissibility property becomes a

curse rather than a virtue. It forces A* to spend a disproportionately long

time in selecting the best among roughly equal candidates and prevents A*

from completing the search with a suboptimal but otherwise acceptable solution

path.”

(Pearl 1984, page 86)

Another relevant insight from Pearl is that the “combinatorics of the problem may

be such that an admissible A* cannot run to termination.” As is the case when trying

to evaluate larger PRM graphs with LAO*, the algorithm terminates due to memory

restrictions before the optimal solution is generated. For these reasons, we sometimes

wish to trade solution optimality for a reduction in time or space requirements of the

155

algorithm. Altering the node evaluation function so that the value is biased more towards

the heuristic value than the known value is one method of accomplishing this.

5.1.1 Evaluation function decomposition

The idea of adding a bias to the standard cost computation of A* is not a new one. Pohl

(1970) first introduced the idea of changing the “weight” of the heuristic in the standard

A* evaluation function and Chakrabarti et al. (1987) showed that a decomposition of

the evaluation function of AO* could be similarly achieved. This adaptation supports

the weighting of the heuristic function as in the original A* algorithm. In Hansen and

Zilberstein (1999; 2001) the authors show that this decomposition can be generalised to

LAO* as well.

In A*, the standard evaluation function for a node’s cost is commonly formulated as:

f(n) = g(n) + h(n)

The g(n) function is the known cost of all the graph edges from the start node to n, and

h(n) is the heuristic estimate of the cost to reach a goal from n. In LAO* each action

may result in one of several successor states (transitions in the MDP state space). Each

time a dynamic programming update is performed on a node, the value is derived from

two components: the cost of executing that node’s current best action in the MDP, and

the value of the successor nodes (line 15 of LAO* on page 37). For unexpanded tip-nodes,

their value is solely based on the heuristic. When an LAO* policy is complete, the cost of

each node is known exactly. For nodes one transition (i.e. one edge in the explicit graph)

away from a tip-node, their cost consists of the tip-node’s heuristic and the known cost

of traversing to that node. As each node in the explicit graph is backed-up (towards the

start node) the cost of each transition is included in its value. Unlike in A* where each

node stores its current lowest cost from the start, in LAO* each node’s value is the current

lowest cost to the goal, assuming the marked action at each node is chosen. This allows

for a weighting function to be introduced into the Bellman backup equation in a simple

manner explained below.

Pohl (1970) suggested the following

fw(n) = (1− w) · g(n) + w · h(n) (5.1)

to adjust the weighting of the component parts of the evaluation function for node n,

where 0 ≤ w ≤ 1 is the weight used in the policy. When w is placed at either extreme, A*

behaves identically to one of two related algorithms. With w = 0, the heuristic is ignored

156

entirely causing A* to become uniform-cost search. The optimal path will eventually be

found, though the search will generally be less efficient (analogous to the relationship

between Dijkstra’s shortest path algorithm and A*). When w = 1
2

the equal weighting

causes behaviour identical to unweighted A* and when w = 1, it becomes greedy search.

The latter case is useful where many goals of similar cost exist and we do not care which

one is found by the search, but in other domains such as ours, it can lead to very bad

policies.

When used with very optimistic heuristics similar to the one we employ, which may

underestimate the true cost by a significant amount, using a high weighting (e.g. w ≥ 0.85)

can be extremely detrimental to the resultant policy. For an admissible heuristic, they

will remain admissible as long as 0 ≤ w ≤ 1
2
, but will lose this property when w > 1

2
. Once

the heuristic becomes inadmissible, the overestimation of node costs can cause LAO* to

ignore optimal nodes in preference to expanding others that are ostensibly cheaper and

thus return a suboptimal policy. From Pearl (1984):

Definition 5.1 (Upper Support). A random variable X is said to have an upper support

r, denoted r(X), if X ≤ r and P (X ≤ x) < 1 for all x < r.

If function h∗(n) gives the true cost to the goal for node n, then

εn = max(0, h(n)− h∗(n)) (5.2)

can never be greater than 0 for admissible heuristics, where εn is the error in the heuristic

value for node n. Therefore, the upper support r(εn) equals 0. Substituting this result

into the formula for maximum optimal weight (Pearl 1984, page 206) gives the result

required:

w0 =
1

2 + r

where r is an upper support and w0 is the optimal weight, i.e. the highest weight that

guarantees the admissibility of h. Using r(εn) from (5.2) shows that any weighting above

w = 1
2

may lead to a suboptimal policy.

5.1.2 Integration into LAO*

Given the above decomposition of the value function, adjusting LAO* to incorporate

heuristic weighting becomes straightforward. Re-examining Algorithm 4.2 (page 113),

when a tip-node is first created, its value is calculated from the heuristic alone (line 10),

157

since it is unexpanded with no successors in the explicit graph:

n′ value ⇐

0 if a = vG

h(n) otherwise

This value does not include the g(n) cost, just the heuristic cost h(n). Weighting is

incorporated by substituting line 10 with:

n′ value ⇐

0 if a = vG

w · h(n) otherwise

where the heuristic is multiplied by w. The remaining component of Equation (5.1) is

incorporated in the Bellman update for a node (line 15 of Algorithm 2.3):

f(n)⇐ min
a∈A

[
r(n, a) + γ

∑
z∈Z

t(n, a, z) · f(z)

]

The Bellman update includes the cost r(n, a), the cost of executing action a from node n,

which in our domain is the edge cost of reaching neighbouring node a in the PRM graph.

Multiplying the coefficient (1−w) into the cost provides the other term for Equation (5.1):

f(n)⇐ min
a∈A

[
(1− w) · r(n, a) + γ

∑
z∈Z

t(n, a, z) · f(z)

]

5.1.3 Heuristic weighting experimental results

To investigate the effects of adding heuristic weighting to LAO*, we first show how the use

of weighting can produce a sub-optimal policy by examining a tiny example and showing

how the weighted policy differs from the non-weighted policy. We then demonstrate the

effects of weighting on a small graph to show how the differences in computed policies affect

the average cost, and finally we apply weighting to the larger examples from Chapter 4

and determine some general conclusions on the effect of heuristic weighting.

5.1.3.1 A suboptimal weighted policy

In cases where the path lengths between a shorter, risky route and a longer, safe route

are similar, then a small change to the perceived cost of a route can easily change the

policy. The obvious factor in route cost is the agent’s confidence in the success of a

route. Consider the small graph in Figure 5.1 which has only two possible routes from

the start to the goal. If the agent’s belief that the uncertain edge from A to G was free

158

S

GS
A

B

2

3

2

3

Figure 5.1: Small graph with one uncertain edge. S is the start node and G is the goal node.

was 0.66, then the optimal policy without weighting is to go to the goal via B—even a

two-thirds probability of succeeding is not worth the risk. However, if we apply even a

small weighting to the heuristic of w = 0.51, then the computed policy changes and is

no longer optimal. The returned policy under weighting chooses going to node A as the

best action at the start. This is non-optimal because the unweighted policy tells us that

on average, this will be more expensive, if only by a tiny margin. Assume that the prior

probability, P(A → G free)=0.66 and w = 0.51. LAO* will first expand S to produce

A and B with costs w · h(A) = 1.02 and w · h(B) = 1.53 respectively. The best action

at S will be to move to A. Expanding A produces the goal node G.1 At this point no

non-terminals exist in the BSG, so the cost calculation at S proceeds as follows:

Start action → A = (P (A→ G free) ∗ ((1− w) ∗ A→ G cost)

+ P (A→ G blocked) ∗ ((1− w) ∗ cost to backtrack))

+ ((1− w) ∗ S → A cost)

= (0.66 ∗ (0.49 ∗ 2) + 0.34 ∗ (0.49 ∗ 8)) + (0.49 ∗ 2)

= 2.9596

Start action → B = (w ∗ h(B)) + ((1− w) ∗ S → B cost)

= (0.51 ∗ 3) + (0.49 ∗ 3)

= 1.53 + 1.47

= 3

Due to the weighting, the expanded B node with a belief state of [0.66, 0.34] uses the

weighted heuristic cost of 1.53, resulting in the node never being expanded as LAO*

1An arc back to S is also produced but it is irrelevant here.

159

S

4

2
2

1 1
1

1

2
4

7

3
57

Start Goal

E

A
B C

D

F
H

J

G

Figure 5.2: Small graph with 4 uncertain edges. The dotted lines represent uncertain edges. The letters
represent the node labels and the numbers are the edge costs. In the clustered model, A → B and B → C
are in one cluster and C → D and D → G are in a second cluster.

w Independent Clustered Dependent
0.5 25.27 25.27 25.27
0.6 25.96 26.0 25.96
0.75 26.0 26.0 25.98
0.85 26.0 26.0 26.0
0.99 26.06 26.06 26.09

Table 5.1: Effect of w on policy cost when a uniform start belief is used.

believes the A path to be cheaper. Thus, the algorithm terminates recommending visiting

node A from the start.

5.1.3.2 Weighting on a small graph

Consider the graph in Figure 5.2 where the 4 edges across the top of the graph are

uncertain due to the presence of the shaded object. Table 5.1 shows how the average costs

of independent, clustered and dependent models change with w. The starting belief was

uniform, i.e. the true state of each edge is independent with P(free)=0.5. All simulated

costs are averaged over 50,000 trials with a maximum length of 50 steps each. When

all four edges are fully dependent upon each other this means that they are either all

free or all blocked. Table 5.2 shows how weighting affects the policy costs with this fully

dependent start state.

In the Table 5.1 (edges are independent) all models achieve a close or identical cost

to each other in the simulator. This is unchanged even as w approaches higher values

of 0.85 where the policy is heavily influenced by the heuristic. When w ∈ [0.6, 0.99] the

size of the best solution graph (BSG) stays constant at 76 nodes with an average cost

160

w Independent Clustered Dependent
0.5 22.0 20.08 17.96
0.6 25.98 19.97 18.05
0.75 26.15 20.0 17.98
0.85 26.11 19.99 17.99
0.99 25.95 20.0 18.03

Table 5.2: Effect of w on policy cost when a dependent start belief is used.

Weight w
Starting belief state Model 0.5 0.75 0.95

Uniform
I 175 200 460
C 133 34 44
D 13 12 27

Fully dependent
I 162 201 456
C 6 5 7
D 3 4 3

Table 5.3: Key: I=independent, C=clustered, D=dependent model. Effect of w on policy generation time
in independent, clustered and dependent models. All times in milliseconds.

of ∼26.0. This is down to the topology of the graph: the heuristic will direct the agent

via the cheapest route to the goal from any node just as the [unweighted] independent

policy will investigate each edge to see if a shortcut is available. Essentially, when all

edges are independent, the optimal policy turns out to be very close to the greedy policy

so weighting does not deteriorate the quality.

The results from Table 5.2 show similar trends as before. Once w > 0.5 the policy is no

longer optimal. The independent model necessarily performs identically. The lower value

of 22.0 occurs when w = 0.5 because the policy is optimal in this case and the simulator

can only select one of two possible worlds, as opposed to 16 (24) when the edges are

truly independent. The clustered and dependent policies show no change in performance

even when w = 0.99 with the respective policy sizes being constant across the range of

weightings. The graph layout is the cause again here as the optimal policy is naturally

greedy, thus an increased w does not have much effect. Table 5.3 shows the solution times

for the previous results for the three different models at different weightings. Across

all the results, the clustered and dependent models are consistently quicker than the

independent model. From the uniform start state each model produces the same policy

and LAO* explores the same amount of the explicit graph. When w = 0.5, the explicit

graph contained 198 nodes and at w = 0.95, the explicit graph contained 172 nodes in all

three models. The small difference in nodes expanded cannot explain the large increase

in solution time when w = 0.95. The longer solution time is caused by extra iterations

161

spent waiting for node values to converge under value iteration (the convergence phase of

LAO*)—this can increase quite sharply at higher weightings around 0.95. The clustered

and dependent times are much quicker which can be explained by the amount of the

graph explored. The clustered and dependent models only have 4 and 2 possible world

models respectively to consider. The dependent model knows either all edges are free

or blocked while the clustered model cannot represent the relationship between the two

clusters of two edges, hence 4 worlds. This shows the rare circumstance where, because

all edges are in the artificial condition of being fully dependent, the number of worlds and

therefore reachable state space for the clustered and dependent models is smaller than for

the independent model, hence the smaller computation times.

What we have demonstrated here is that heuristic weighting can be beneficial in some

circumstances where the heuristic estimate is close to the true cost to reach the goal. In

Figure 5.2, the optimal policy is naturally greedy, so the heuristic is a good estimate.

In these situations sacrificing admissibility can be beneficial by making the LAO* graph

search greedier so fewer nodes are explored. However, this is unlikely to be true in many

cases as the heuristic we use (see Section 4.5.1.2) can substantially underestimate the true

cost to the goal.

5.1.3.3 Larger examples

In this Section, we analyse the effects of weighting when applied across the range of larger

graphs. Three weights of 0.5,0.7 and 0.9 were chosen, with 0.5 being the unweighted

default. The graphs were pre-processed as before, other settings remain unchanged.

A selection of results can be found in Figures 5.3 to 5.7. The graphs shown were

chosen because they are representative of the behaviour seen across all graphs, and this

selection allows us to illustrate specific traits. The resulting behaviour of the policies

under weighting can be broadly divided into three classes. Several examples where the

MDP models failed with no weighting applied (i.e. w = 0.5) continue to fail even under

heavy weighting. Graphs 5,13 and 14 fall into this category. Others where the dependent

model fails with no weight applied, are solvable at higher weighting such as Graphs 1

and 3. An example of this can be seen in Figure 5.3 where no data point exists for the

dependent model at w = 0.5. Increasing w shifts the bias away from the g component of

the decomposition Equation (5.1), and places more emphasis on the heuristic h. As the

heuristic underestimates the cost to goal, this effectively makes the LAO* graph search

more greedy. This typically means that less of the state space is explored as w increases,

but in complex PRM graphs such as those listed above, LAO* still tries to explore too

many states in S to generate a complete policy.

The second type of behaviour seen is where increasing the weight has little effect on

162

the policy performance. Figure 5.6 shows an example of this, where the average policy

cost across all models is virtually identical at all weights and only increases slightly as

more weighting is applied. Graphs 4,8 and 11 share this trend. The most common pattern

is that seen in Figures 5.3, 5.4 and 5.7 where the average policy cost across all models

sharply increases once too much weighting is applied. The advantage that the clustered/

dependent models show in graphs when they are unweighted is nearly always eliminated

when w is increased. This can be seen in several graphs and is due to the greedy nature of

the heuristic. As more of the node’s value (f) is derived from the heuristic when w ≥ 0.5,

the cost to goal becomes more significant than the cost already incurred. During policy

computation, the advantage in cost that the clustered/dependent models can gain by

avoiding unnecessary edge traversal carries less importance and is more likely to be ignored

by the algorithm. Effectively, the agent becomes too preoccupied trying to minimise the

cost to goal (h) instead of trying to minimise both g and h, as in the unweighted case.

The point at which the policy performance decreases varies between graphs, so the graphs

where the average cost remains relatively stable when w is increased can occur for two

reasons. Figure 5.7 shows an example where the performance does not decrease until

w = 0.9, compared to w = 0.7 in Figures 5.3 and 5.5. Firstly, as is the case with the

small graph in Section 5.1.3.2, if the optimal policy is similar to a greedy policy, then the

increased weight is unlikely to have a large detrimental effect on average cost. Secondly,

as is the case in Figure 5.6, the difference in cost between one route and another may be

fairly small. When w = 0.5, the policy will still look to use the lowest cost route, but

when w increases, the more greedy route selected may have similar cost, so the perceived

drop in performance is almost negligible.

The results for Graph 12 (Figure 5.5) show an anomalous result: the cost for both the

clustered and independent models increases sharply then decreases again across the range

of w. No failures are reported at any weighting with Graph 12. The exact cause for this

is unknown, but is likely due to the construction of the graph. The dependent model fails

at w ≤ 0.9, indicating that LAO* had to expand many nodes to compute policies, so it

is possible that the section of MDP state space necessary to find the lower cost policies

is unexplored by LAO* when w ≈ 0.7.

The original motivation for adding weighting to the LAO* algorithm was to allow

a greater range of PRM graphs to be solved. Since increasing w tends to cause LAO*

to expand fewer nodes when computing the policy, this should allow it to find policies

for graphs where previously it had failed due to lack of memory. This would essentially

trade off memory for policy quality. We can see that adding weighting to the node value

calculation (5.1) produces an inadmissible heuristic leading to worse policies, but this is

preferable to no policy at all. However, since many graphs that fail without weighting still

163

fail when even a high weight is applied, this shows that such a strategy is not advisable.

Furthermore, the differences in average cost seen across all models when weighting is

applied can be substantial. The weighting where the average cost increases is also hard

to determine and varies between particular graph topologies. Considering both of these

conditions, it is hard to recommend heuristic weighting as a useful extension to the LAO*

algorithm for these sorts of problems. If no other method succeeds in producing policies

for a particular graph, then adding weighting to the value computation could serve as a

useful last resort, but even so, it does not appear to work in most cases. It is important not

to conclude that this applies to all MDP problems however, since if the optimal policy is

likely to be similar to a greedy policy anyway, then weighting can be of benefit. Combined

with an underestimating heuristic, adding a small weight to the algorithm may reduce the

computation time necessary as fewer nodes are expanded in G to find the optimal policy.

Figure 5.3: Graph showing the effect of weighting on average cost for Graph 1.

164

Figure 5.4: Graph showing the effect of weighting on average cost for Graph 10.

Figure 5.5: Graph showing the effect of weighting on average cost for Graph 12.

165

Figure 5.6: Graph showing the effect of weighting on average cost for Graph 18.

Figure 5.7: Graph showing the effect of weighting on average cost for Graph 19.

166

5.2 Approximation for LAO*

The results in the last Chapter show that solving the dependent MDP model with LAO*

can often fail to produce a policy whilst the other models succeed. This is attributable

to LAO* exhausting the available memory. Several experiments showed that the BSG

generally comprised only a tiny fraction of the total nodes expanded in the explicit graph

G. Part of the reason for the large amount of explored state space is that when obser-

vations alter the belief state, LAO* is actually exploring a discretised, adapted (through

one of three models) continuous POMDP belief space. Ignoring the discretisation, re-

peatedly receiving an observation from the same node would give a new belief state each

time (unless the observation was certain in which case only one new belief state can be

reached), creating an infinite belief state space for LAO* to explore. With discretisation,

the belief space and therefore implicit graph is finite but still extremely large, especially

considering the discretisation of d = 1 × 10−5 used in the experiments. In this domain

at least, LAO* needs to explore a lot of the state space to obtain the optimal policy.

Given a perfect heuristic, only nodes in the final BSG would be selected for expansion,1

so a more informed heuristic is one option for improving efficiency. However, creating

a superior heuristic that retains admissibility while not requiring substantial amounts of

computation is itself a non-trivial problem.

As in standard POMDP planning, the intractability of exact solutions to larger prob-

lems motivates the desire to create approximate solutions. As stated by Pineau et al.

(2003), the loss of optimality is compensated for by the ability to handle larger prob-

lems and in many cases, the approximate solutions are close enough to optimal that the

differences do not matter. Intuitively, the piecewise linear convex nature of a value func-

tion suggests that many belief states that are close in the belief space will have similar

utility and will share the same maximal α-vector. This is the assumption that drives

many approximate POMDP solution algorithms and is also the assumption that Bonet

and Geffner (2009) rely on to provide quality solutions in the RTDP-Bel algorithm for

POMDP solving. The underlying idea in many of these algorithms is that mapping mul-

tiple belief states onto one state (in the case of RTDP-Bel), or having one belief state

represent a small locality of the belief space (as in grid based solvers such as Lovejoy

(1991) and Hauskrecht (2000)), reduces the computational requirements for the solver.

Given that noisy observations in our domain are likely to create belief states that are

quite similar to the previous ones, we can apply a similar approximation technique to

LAO*. One of the drawbacks to grid-based approaches is that they still require coverage

of the full belief space to create a proper value function. We avoid this because, like

1Non-optimal siblings of BSG nodes are also expanded as a side-effect, since LAO* adds all of a
node’s successors to G when it is expanded.

167

point-based algorithms, LAO* exploits state reachability to avoid exploring irrelevant ar-

eas of the MDP state space. We have developed an extension to the LAO* algorithm

that is suitable for our domain. We use an approximation technique to map new belief

states to those already present in G if they are sufficiently similar. As with the belief pool

expansion phase of PBVI, we want to avoid adding belief states that are close to existing

states, instead preferring to add those that are far enough away and less likely to share

the same utility.

5.2.1 Approximate LAO* design

The key component to the approximation is that we relax the definition of equality be-

tween belief states. Normally, two belief states must be numerically identical to be equal,

but we relax this criterion to allow belief states that are similar but not identical to be

considered equal. This requires some measure of distance to decide if two belief states

are similar enough. While a range of measures are possible, such as the Euclidean dis-

tance between the belief states, we use the Kullback-Leibler (K-L) divergence (Cover and

Thomas 2006) because it measures the relative entropy between two discrete probability

distributions. The K-L divergence for two distributions a and b is defined by

KL(a, b) =
∑
i

ai log2

(
ai
bi

)

The K-L divergence between two probability distributions is always non-negative with

KL(a, a) ≡ 0. However, it is also non-symmetric and is therefore not a true distance mea-

sure, i.e. KL(a, b) 6= KL(b, a), a 6= b. Since we want to measure the distance between belief

states (the order of which cannot be predicted), we use the symmetrised K-L divergence

(AI Access 2008):

KLsym(a, b) =
1

2
KL(a, b) +

1

2
KL(b, a) (5.3)

5.2.1.1 Approximation threshold

Using Equation (5.3), the equality of two belief states can be determined using a threshold

maxKL, for the maximum symmetrised K-L distance between two approximately equal

belief states. If a and b are belief states as before then

a ≈ b ⇐⇒ KLsym(a, b) ≤ maxKL (5.4)

Essentially, the maxKL threshold can be viewed as the radius of a sphere in the belief space

around a single point (a belief state); any point within that radius will be considered equal

to it under approximation. Appropriate values for maxKL depend on the domain and the

168

sensitivity of policies to approximation. The values chosen for our experiments were

determined experimentally, both by measuring the K-L divergence between particular

belief states to examine the range of values produced, and by comparing the performance

of policies produced under different thresholds. Experimental results from the latter can

be found later in this Chapter (see Section 5.2.2.5).

5.2.1.2 Approximate LAO*

Using the above description, we now describe the changes to LAO* necessary to create

Approximate LAO* (ALAO*). This extension is not generalisable to all MDPs, only belief

state MDPs or MDPs with probability distributions in their state. The approximation

affects LAO* node equality testing, so the actual changes occur in the expansion algorithm

(Algorithm 4.2 on page 113). When the expand function creates a new successor node (i.e.

a node with the new belief state 〈a, b′C〉 in line 7), it searches G to see if that candidate

node already exists in the graph. Ostensibly, this entails performing an equality test on

all nodes in G to locate an already existing node, though in practice more efficient data

structures are used. In standard LAO*, a numerical equality test is performed on every

distribution in the belief state (for each bc1 , . . . , bck ∈ bC). If a node with the same belief

state (and same node label) is found, an arc to that node is added to G. If none is found,

then the new candidate node is added to G. In ALAO*, we substitute this exact equality

test for Equation (5.4) for each distribution, so if an approximately equal node exists in

G, it will be used instead of creating a new node. ALAO* nodes with differing PRM node

labels are never considered equal in order to maintain the agent’s perfect knowledge of

its location. The K-L distance is calculated separately for each cluster in the belief state

as clusters’ probability distributions are independent, so for two clustered belief states bC

and b′C :

bC ≈ b′C ⇐⇒ KLsym(bci , b
′
ci

) ≤ maxKL ∀ i = 1, . . . , k (5.5)

where k is the number of clusters in cluster set C. Equation (5.5) determines the ap-

proximate equality between two clustered belief states and is used to make the decision

between adding 〈a, b′C〉 to G or creating an arc to an approximately equal node.

5.2.1.3 Effects

The behaviour of ALAO* is determined completely through the single free parameter

maxKL, so choosing an appropriate value is crucial. The threshold specifies the approx-

imation tolerance for the whole algorithm. Using lower values makes the algorithm less

tolerant, causing a stricter equality test that brings the behaviour closer to that of LAO*.

Using higher values increases the tolerance and should cause fewer nodes to be created in

169

Initial belief Model ALAO*? Avg.cost Std.dev |G| Time (ms)

Uniform
I

N 6.24 2.76 29 < 2
Y 6.24 2.76 29 < 2

D
N 6.24 2.76 29 < 2
Y 6.25 2.76 29 < 2

Dependent
I

N 7.99 2.99 29 < 2
Y 7.99 2.99 29 < 2

D
N 6.49 2.49 14 < 2
Y 6.49 2.49 14 < 2

Table 5.4: Key: I=independent, C=clustered, D=dependent model. Comparison of LAO* and ALAO* for
graph in Figure 4.8b. All times averaged over 10 runs. Both edges were fully dependent in the dependent
starting state.

G. However, using a value that is very high will cause policy performance to deteriorate.

Belief states that need to be distinguishable to the agent to properly account for new infor-

mation will become equal under approximation—stopping the agent from exploiting that

information. Discretisation and ALAO* essentially serve the same purpose: they are both

approximation methods for the continuous belief space. Their aim is to reduce the quan-

tity of belief states that have to be evaluated to find a policy. The difference lies in how

the two methods determine which belief points to include in the policy. Discretisation

is, in effect, performed directly on the continuous belief space before any computation

commences. It effectively fixes which belief states are visible to the algorithm. ALAO* is

much more dynamic in belief point selection because it is integrated into the solver. The

decision on whether a particular belief point should be explicitly created depends on the

belief points previously created by the solver.

5.2.2 ALAO* experimental results

5.2.2.1 Small problems

First of all we demonstrate Approximate LAO* (ALAO*) on two of the toy problems

from earlier, specifically, the 6 point graph and the 3 edge graph from Figure 4.8 on

page 122. The results from standard LAO* and ALAO* are shown for comparison. The

discretisation resolution was kept at d = 1×10−5, the maximum K-L distance maxKL = 0.1

and no weighting was applied. Only the independent and dependent models were tested

for the 6 point graph, while all three models were tested for the 3 edge graph. The results

are shown in Tables 5.4 and 5.5.

The results in Table 5.4 are unremarkable and simply serve to show ALAO* working

on a tiny example. The size of the PRM graph means that ALAO* gains no time advan-

tage and none is expected as the amount of explored state space is identical to normal

170

Initial belief Model ALAO*? Avg.cost Std.dev |G| Time (ms)

Uniform

I
N 7.86 1.34 1594 1217
Y 8.60 4.25 123 166

C
N 7.85 1.35 2456 1352
Y 8.61 4.26 123 163

D
N 7.85 1.35 2649 1517
Y 8.59 4.22 123 168

Dependent

I
N 8.32 1.87 1594 1223
Y 8.17 3.56 123 170

C
N 7.66 0.46 432 151
Y 13.94 16.14 50 301

D
N 7.66 0.46 829 267
Y 13.95 16.19 50 31

Table 5.5: Key: I=independent, C=clustered, D=dependent model. Comparison of LAO* and ALAO* for
graph in Figure 4.8c. All times averaged over 10 runs. In the dependent belief state, edges A → G and
C → G are fully dependent on each other.

LAO*. The smaller size of G in the dependent model starting from the dependent ini-

tial belief state is due to the total dependency between the edges limiting the number of

possible worlds, as explained in Section 4.6.3.1. The same effect can be observed in the

clustered/dependent models in Table 5.5.

There are two interesting aspects to the results in Table 5.5. Firstly, the size of the

explicit graph is vastly reduced under ALAO*, where from the uniform initial belief state

it has explored at most 7.7% of the state space compared to normal LAO*, and 11.5%

from the dependent initial belief state. This is also evident in the computation times

where ALAO* finishes in a fraction of the time required by standard LAO*. Secondly,

the average cost of ALAO* on the 3 edge graph is worse in every test but one. From

the dependent initial belief under the independent model, the average cost in ALAO* is

lower than LAO*, though barely statistically significant. Repeating the test with 500,000

simulator trials (shown in Table 5.6) allows us to be more confident of the result. The costs

are similar to the previous experiment so we can be sure of the results. The percentage

of failed trials reveals the cause. Recall that the simulator does not include the costs of

failed trials in the statistics. The higher failure rate under ALAO* shows that the policy

is not superior, rather that in cases where it fails, standard LAO* succeeds in reaching

the goal with a marginally higher cost, causing the average to increase.

The higher policy costs for ALAO* in Table 5.5 show one of the drawbacks of ap-

proximation: belief states that are equal under approximation in terms of K-L distance

can hide belief states necessary to find the optimal policy in some cases. The maximum

costs for all of the ALAO* policies were massively increased compared to normal LAO*;

171

Algorithm Avg.cost % fail
LAO* 8.34 25.01

ALAO* 8.18 39.32

Table 5.6: The results of running LAO* and ALAO* on the 3 edge graph under the independent MDP model
starting from a dependent initial belief state. For this test 500,000 simulator trials were run.

in fact ALAO* produces the same behaviour witnessed in Section 4.6.1.3 where the agent

hops between nodes A and B. We can investigate this by examining the exact policy

the agent follows—we show the policy followed by the independent model from the uni-

form belief state. The standard LAO* policy has already been shown in Section 4.6.3.1

(“Independent model” on page 131), the ALAO* policy is shown below:

1. Start at S.

2. Go to node A. Receive observation of A → G at A. If A → G is free, then go to

goal node G, otherwise go to step 3.

3. Go to node B and receive observation of C → G. If “free” observed, then continue

to C as in step 3 of policy in Section 4.6.3.1, otherwise if “blocked” observed, go to

step 4.

4. Go to node A.

5. Go to node B. Receive observation of C → G at B. If “free” observed then return

to step 2, otherwise if “blocked” observed then return to step 4.

In standard LAO*, the observation received at B (step 3 above) did not affect the agent’s

actions, it continued to node C anyway. With ALAO*, it continues to C only if it receives

a “free” observation. If it receives a “blocked” observation, it hops between node A and B

until it receives a “free” observation which causes it to return to the same belief state as it

had before it ever visited node B and return to step 2. Following this to conclusion, once

the agent is trapped in the loop between nodes A and B, it must receive two consecutive

“free” observations to finish the graph. If it does, it reaches the goal with a very high

cost, otherwise it fails due to exceeding the maximum number of trial steps allowed in

the simulator.

Working from the uniform initial belief and the independent model and reducing

maxKL eventually leads ALAO* to find the same policy as standard LAO* as shown

in Table 5.7. Once maxKL = 0.0001, the policy is identical to standard LAO* and the

same average cost is achieved. The fact that the 3 edge graph is unsafe may be the un-

derlying reason for the poor policy. If we modify the graph to make it safe by adding

172

maxKL Avg.cost Max.cost |BSG| % fail
- 7.86 11 19 12.55

0.1 8.60 55 21 19.74
0.01 13.59 60 36 13.56
0.001 13.21 58 38 13.22
0.0001 7.85 11 19 12.59

Table 5.7: The effect of lowering maxKL on the 3 edge graph in Figure 4.8c. A uniform initial belief state
and independent model were used.

maxKL Avg.cost Max.cost |BSG| % fail
- 11.99 41 18 0

0.1 11.97 41 18 0

Table 5.8: Performance of ALAO* on the 3 edge graph when an extra edge S → G with cost 30 is added.

an edge from S to G with cost 30, then we obtain the results in Table 5.8. When the

agent is guaranteed to have a safe route to the goal, then ALAO* performs identically

when maxKL = 0.1. The extra edge eliminates the possibility of failure since the agent

can always give up and take the expensive path to the goal.

5.2.2.2 ALAO* on larger examples

ALAO* was run on the same set of example graphs as the algorithms demonstrated in

Section 4.6.3.4. Settings such as discretisation, memory and simulation settings remained

the same. Table 5.9 shows the equivalent results obtained with ALAO* with maxKL = 0.1.

The results in Table 5.9 can be directly compared to the results from standard LAO* in

Table 4.15 on page 139. We can see that the performance (i.e. average cost) achieved by

ALAO* is very similar. In nearly all cases, the minimum, maximum and average costs

are the same across LAO* and ALAO*, while the solution times for ALAO* are often

substantially smaller.

Graph Model Min. Avg. Max. Std.dev % fail Time (ms)

Graph 1
I 916.26 1054.64 2278.00 330.03 0 78
C 916.26 1019.06 1929.02 229.04 0 224
D 916.26 1019.62 1929.02 230.05 0 1091

Graph 2
I 1350.84 1475.76 2096.8 188.26 0 193
C 1350.84 1475.97 2096.8 188.58 0 158
D 1350.84 1469.04 1992.74 173.02 0 582

Table 5.9: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy.

173

Graph Model Min. Avg. Max. Std.dev % fail Time (ms)

Graph 3
I 646.92 985.81 1430.84 365.00 0 134
C 646.92 912.01 1360.15 254.19 0 424
D 646.48 912.05 1361.71 252.32 0 1285

Graph 4
I 1153.57 1211.44 1452.10 110.16 0 116
C 1153.57 1211.51 1452.10 110.23 0 179
D 1153.57 1211.45 1452.10 110.18 0 521

Graph 5
I 1433.93 1620.81 2964.80 235.95 25.03 69582
C 1433.93 1662.01 3778.19 303.94 25.05 4382
D 1433.93 1657.38 3690.29 294.19 25.00 5395

Graph 6
I 1054.93 1499.90 2215.14 445.85 0 247
C 1054.93 1425.81 2123.38 370.65 0 341
D 1054.93 1425.09 2123.38 370.65 0 1069

Graph 7
I 861.98 1120.64 1340.49 237.82 0 38
C 861.98 1121.49 1340.49 237.74 0 36
D 861.98 1120.18 1340.49 237.76 0 63

Graph 8
I 903.12 1094.00 1918.72 381.68 0 368
C 903.12 1091.65 1918.72 379.87 0 331
D 903.12 1092.23 1918.72 380.31 0 1009

Graph 9
I 775.28 1134.56 2274.68 566.65 0 457
C 775.28 1044.76 1701.28 302.76 0 430
D 775.28 1043.18 1462.22 300.38 0 2814

Graph 10
I 680.45 844.12 1350.07 259.30 0 78
C 678.07 844.34 1350.6 259.61 0 122
D 678.07 844.18 1350.6 259.54 0 380

Graph 11
I 1072.92 1219.76 1909.04 314.91 0 812
C 1072.92 1149.34 3125.11 231.34 10.92 1642
D 1072.92 1150.07 3024.49 233.23 10.59 7290

Graph 12
I 1329.92 1329.92 1329.92 0 0 120
C 1329.92 1329.92 1329.92 0 0 112
D 1329.92 1329.92 1329.92 0 0 392

Graph 13
I F F F F F F
C F F F F F F
D F F F F F F

Graph 14
I 1627.54 2064.01 4878.91 472.88 92.47 6844
C 1587.57 2759.57 5402.12 893.23 92.16 4631
D 1587.57 1986.20 5019.33 516.34 92.01 5625

Graph 15
I 778.81 1140.15 2022.33 526.90 0 234
C 778.81 1140.31 2022.33 526.95 0 282
D 778.81 1139.31 2022.33 526.56 0 1193

Graph 16
I 1795.23 1795.23 1795.23 0 0 481
C 1795.23 1795.23 1795.23 0 0 338
D 1795.23 1795.23 1795.23 0 0 1331

Graph 17
I 1403.93 1725.63 2192.85 385.93 0 43
C 1403.93 1722.12 2192.85 373.70 0 84
D 1403.93 1722.07 2192.85 373.66 0 232

Table 5.9: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy.

174

Graph Model Min. Avg. Max. Std.dev % fail Time (ms)

Graph 18
I 1050.69 1123.25 1663.71 182.16 0 16
C 1050.69 1123.34 1663.71 182.22 0 12
D 1050.69 1123.30 1663.71 182.16 0 43

Graph 19
I 1174.50 1337.43 1621.76 213.93 0 59
C 1174.50 1311.75 1621.76 176.64 0 80
D 1174.50 1312.40 1621.76 176.86 0 290

Graph 20
I 784.98 1298.65 2950.27 673.95 0 1098
C 784.98 1295.88 2950.27 672.33 0 1530
D 784.98 1290.00 3018.62 658.84 0 5406

Table 5.9: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. Comparison of ALAO* models across the range of example graphs. All times averaged over
10 runs. d = 0.00001, maxKL = 0.1 and the graph pre-processor is used for all MDP models. All costs derived
from 50,000 simulator trials.

ALAO* produces results for many of the graphs where LAO* failed to under the

dependent model. This can be seen in Graphs 1, 3, 12, 16 and 17. In other cases ALAO*

produces results for all models where at least two out of the three failed before, such as

Graphs 5, 8, 11, 14 and 20. This difference in behaviour is due to the approximation

employed in ALAO*. The mapping of many similar belief states to one reduces the

memory footprint of the algorithm, thereby allowing it to explore the necessary amount

of the state space to complete policies, where before, LAO* ran out of memory.

Graph 13 still fails under all models with ALAO*, showing that scalability issues still

affect the algorithm. The previously unsolved Graph 14 now has policies for all three

models under ALAO*, but the policies are unlikely to be optimal. The average cost for

the clustered model is significantly higher than the independent model and the maximum

costs for all three models are extremely high. A similar effect is seen in Graph 5 which

is also unsolvable with LAO*. The high fraction of trials that failed with both of these

graphs suggests a common factor: they are both unsafe graphs. As demonstrated earlier

with the 3 edge graph, ALAO* finds it harder to produce good policies when there is no

guaranteed path to the goal. The failure rate is an unavoidable consequence of the graphs

being unsafe—the agent cannot reach the goal in some fraction of the trials. The high

maximum signals that even in solvable trials, the path being chosen is not the best one.

Graph 11 shows an anomalous result in that both the clustered and dependent models

report failure rates of approximately 10% under ALAO*, while under the independent

model, or any model under LAO*, no failures are reported. Graph 11 has a safe route

to the goal, so there should be no circumstance where the agent cannot succeed. This

indicates that the approximation is preventing the optimal policy from being found. Ta-

ble 5.10 shows results from Graphs 11 and 14 with a lower threshold. When using a lower

threshold of maxKL = 0.01 the high maximum route costs seen in both graphs decrease

175

Graph maxKL Model Min. Avg. Max. Std.dev % fail Time

Graph 11

0.1
I 1072.92 1219.76 1909.04 314.91 0 812
C 1072.92 1149.34 3125.11 231.34 10.92 1642
D 1072.92 1150.07 3024.49 233.23 10.59 7290

0.01
I 1072.92 1216.92 1909.04 312.40 0 3515
C 1072.92 1219.20 1909.04 314.38 0 15744
D 1072.92 1217.94 1909.04 313.44 0 110898

Graph 14

0.1
I 1627.54 2064.01 4878.91 472.88 92.47 6844
C 1587.57 2759.57 5402.12 893.23 92.16 4631
D 1587.57 1986.20 5019.33 516.34 92.01 5625

0.01
I 1242.67 1561.07 2840.63 238.81 92.26 30319
C 1165.83 1380.27 3041.12 259.52 92.10 131609
D 1165.83 1322.04 2622.95 198.88 92.03 184620

Table 5.10: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. Time is in milliseconds. Demonstration of the effect of a lower maxKL of 0.01 on two
graphs. d = 0.00001 and the graph pre-processor used for all MDP models. All costs derived from 50,000
simulator trials. maxKL = 0.1 results copied from Table 5.9.

Model maxKL Min. Avg. Max. Std.dev % fail |BSG|
C 0.1 678.07 844.34 1350.60 259.61 0 44
C 0.01 678.07 840.05 1350.60 219.14 0 41
C 0.001 678.07 838.33 1350.60 218.59 0 41
C 0.0001 678.07 839.06 1350.60 219.36 0 41
D 0.1 678.07 844.18 1350.60 259.54 0 46
D 0.01 678.07 839.54 1350.60 219.28 0 43
D 0.001 678.07 838.64 1350.60 219.90 0 43
D 0.0001 678.07 839.16 1350.60 218.86 0 50

Table 5.11: Varying the maxKL threshold for Graph 10 (pre-processed) with clustered/dependent (“C”/“D”)
ALAO*. All other parameters set as in Table 5.9.

by a large amount. The small proportion of failures seen in the clustered/dependent

models in Graph 11 also no longer occur with both models now performing the same as

the independent model. The solution times have increased as a result of the lower maxKL

threshold. In Graph 14, the high failure rate remains unaffected as it is a consequence

of the graph’s construction, though the average and outlying costs reported are all much

lower, which is also reflected in the lower standard deviation. The lower threshold used

here has improved the policy in both graphs as a result of the finer grained approximation.

The final notable result from Table 5.9 is in Graph 10, where the clustered and de-

pendent models perform the same as the independent model, instead of achieving a lower

cost as they do under LAO* (see result in Table 4.15). In this case, it is likely that the

approximation threshold maxKL = 0.1 is preventing the true optimal policies from being

discovered. Table 5.11 shows the results of different maxKL thresholds for Graph 10. As

176

soon as maxKL is reduced in either model the minimum, average and maximum costs im-

prove to match standard LAO*. The precise topology of the graph plays a fundamental

role in the algorithm’s behaviour; however it highlights the fact that in marginal cases,

setting the threshold at 0.1 can be too high. This is investigated further in Section 5.2.2.5.

5.2.2.3 Cluster configuration

Table 5.9 also contains an interesting point on cluster configurations that was not visible

under standard LAO*. In Graphs 17 and 20, the dependent model produces a policy

under ALAO* with a lower average cost than the independent model. In Graph 17, the

clustered model also achieves the lower cost, whereas in Graph 20 it does not. The dif-

ference in average costs between models is small in both graphs, however the standard

deviation in both models shows that the spread of route costs is reduced in the dependent

model, suggesting better overall performance. Graph 20 contains a significant dependency

between two edges that are in different clusters, whereas Graph 17 only contains depen-

dencies between edges within the same cluster. This shows where the cluster configuration

can be important to the performance of that model. If the dependent edges are not in

the same cluster, the clustered model cannot exploit them.

5.2.2.4 ALAO* computation times

ALAO* obtains large gains in policy computation time as a result of the approximation

mechanism employed. In terms of the implementation, calculating K-L distances between

belief states does add some small overhead to the algorithm. Every equality test between

two belief states in ALAO* requires computing the K-L distance between them as opposed

to the simple numerical equality test employed in standard LAO*. Generally in a normal

run of the algorithm, several thousand such equality tests will occur, particularly during

node expansion. When new belief states are reached as the result of an observation, the

system must decide whether to create a new node in G for the new belief, or whether it

is approximately equal to an existing one based on the maxKL threshold. However, the

overhead of these calculations is far outweighed by the gain from having fewer nodes in G.

The time savings result both from the small subsection of the state space explored and

from having fewer nodes on which to run VI in the convergence phase of the algorithm.

Table 5.12 shows the performance of LAO* and ALAO* for Graphs 1 to 10 from

above under the clustered model. The reduction in the quantity of nodes explored and

computation time taken with ALAO* are shown, normalised to LAO*. The relationship

between the two is characterised in Figure 5.8 which shows the correlation between the size

of the explicit graph and the overall time needed for the LAO* algorithm to complete. The

177

correlation co-efficient for the data shown is r = 0.99 indicating a very strong relationship

between the two, backing up earlier data that showed a similar pattern.

Figure 5.8: Plot of the reduction in size of the explicit graph against the reduction in time when using ALAO*
versus LAO*.

178

Graph ALAO*? |G| |BSG| T (ms) T ALAO*
LAO*

|G| ALAO*
LAO*

Graph 1
N 287853 45 51274 1.0 1.0
Y 934 45 224 0.0043 0.0032

Graph 2
N 1546 216 220 1.0 1.0
Y 788 169 158 0.72 0.51

Graph 3
N 198120 251 36905 1.0 1.0
Y 1308 80 424 0.011 0.0066

Graph 4
N 1089 273 228 1.0 1.0
Y 548 141 179 0.79 0.50

Graph 5
N ∼300000 ∼10000 F 1.0 1.0
Y 1542 117 4382 - -

Graph 6
N 24361 150 6032 1.0 1.0
Y 1005 150 341 0.057 0.041

Graph 7
N 715 71 56 1.0 1.0
Y 318 67 36 0.64 0.44

Graph 8
N 297562 16 28931 1.0 1.0
Y 1325 18 331 0.011 0.0045

Graph 9
N 5923 73 1048 1.0 1.0
Y 1528 70 430 0.41 0.26

Graph 10
N 13395 44 2482 1.0 1.0
Y 512 44 122 0.049 0.038

Mean reduction in ALAO* 0.29 0.20

Table 5.12: Key: T=Time. Comparison of policy computation time of LAO* and ALAO* and |G| for the
clustered model over 10 graphs.

179

5.2.2.5 Effect of increasing the maxKL threshold

For these experiments, the maxKL threshold is changed and higher values are selected to

show how policy performance deteriorates as coarser approximation is used. All other

settings are left unchanged.

maxKL = 0.1 maxKL = 0.5

Graph Model |G| |BSG| % fail Time |G| |BSG| % fail Time

Graph 1
I 523 91 0 79 337 99 5.35 83
C 934 45 0 223 270 91 5.30 81
D 1129 45 0 1101 305 47 0 156

Graph 2
I 976 169 0 195 731 166 0 133
C 788 169 0 161 548 145 0 106
D 771 143 0 590 503 115 0 321

Graph 3
I 722 50 0 130 344 99 0 61
C 1308 80 0 423 562 59 0 148
D 1171 108 0 1285 590 113 30.93 468

Graph 4
I 516 145 0 111 401 121 0 89
C 548 141 0 176 341 127 0 110
D 556 145 0 523 349 131 0 302

Graph 5
I 10811 636 24.91 70261 1647 96 35.35 7696
C 1542 117 24.99 4452 670 49 44.85 3254
D 1754 81 24.94 5440 772 60 41.10 3650

Graph 6
I 973 121 0 243 295 100 26.65 71
C 1005 150 0 340 355 105 0 81
D 1077 156 0 1069 375 111 0 235

Graph 7
I 358 71 0 37 223 55 0 23
C 318 67 0 36 215 55 0 23
D 304 67 0 63 215 55 0 42

Graph 8
I 1385 18 0 362 344 17 14.22 79
C 1324 18 0 330 332 17 14.24 71
D 1365 18 0 1007 347 18 14.29 145

Graph 9
I 1673 94 0 439 755 98 0 164
C 1528 70 0 424 750 46 0 160
D 1502 56 0 2825 963 52 0 1458

Graph 10
I 430 24 0 77 125 40 20.34 26
C 512 44 0 122 135 34 0 29
D 541 46 0 380 141 35 0 70

Graph 11
I 2089 161 0 799 698 189 12.15 166
C 2804 345 10.78 1640 741 187 12.04 205
D 2955 346 10.66 7339 600 154 13.46 537

Graph 12
I 624 7 0 114 376 153 32.01 96
C 605 7 0 109 364 153 31.97 97
D 656 7 0 390 399 175 24.00 6908

Table 5.13: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. Times in ms.

180

maxKL = 0.1 maxKL = 0.5

Graph Model |G| |BSG| % fail Time |G| |BSG| % fail Time

Graph 13
I F F F F 1566 307 30.09 630
C F F F F 1859 381 28.02 968
D F F F F 2805 408 16.84 13726

Graph 14
I 731 171 92.45 6798 116 39 91.58 128
C 990 104 92.27 4496 140 43 91.96 1563
D 971 89 91.96 5505 144 43 91.90 1473

Graph 15
I 941 69 0 224 308 69 2.03 62
C 1067 69 0 279 333 68 0 69
D 1069 69 0 1193 375 68 0 239

Graph 16
I 1568 7 0 469 937 7 0 255
C 1135 7 0 336 418 7 0 92
D 1140 7 0 1336 430 7 0 330

Graph 17
I 283 64 0 41 219 63 0 33
C 452 110 0 82 161 60 31.53 31
D 466 115 0 236 162 62 0 72

Graph 18
I 94 24 0 15 67 19 0 10
C 94 24 0 51 67 19 0 20
D 99 26 0 41 72 19 0 29

Graph 19
I 508 133 0 57 400 129 0 45
C 678 185 0 78 491 155 0 60
D 686 185 0 291 508 155 0 211

Graph 20
I 2484 136 0 1085 416 103 17.56 158
C 2769 136 0 1520 428 103 17.63 142
D 2371 114 0 5404 434 103 30.75 450

Table 5.13: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. Times in ms. Experiment testing the effects of increasing the maxKL threshold on policy
performance.

The graphs in Figures 5.9 to 5.12 (shown on pages 185 to 186) show the typical

behaviours observed across the whole set of graphs. When the maximum K-L distance

threshold (maxKL) is altered, the effects can manifest in different ways as explained below.

In the range 0.1 ≤ maxKL ≤ 0.5, we see three general trends. The most common behaviour

is seen in Graphs 2,4,6,7,9,15,16,18 and 19 where the average policy cost stays relatively

flat even when high values of maxKL are used, producing policies that perform almost

identically to ones produced under a lower threshold. Typical behaviour for these graphs

is shown in Figure 5.11. If not many observations are made during execution of the policy,

or if those that are made have a high confidence (i.e. are good quality), then changes in

the belief state will be fairly large and not very frequent. We would expect ALAO* to

perform well with a high threshold under such circumstances because the few changes in

belief state will remain above the threshold for new node creation.

The second type of behaviour is where the performance suffers significantly at higher

181

thresholds. Figures 5.9 and 5.12 show this type of behaviour which is exhibited by Graphs

1,5,8,11,12 and 13. At higher thresholds, the policy may appear better due to a lower

average cost; however, consulting Table 5.13, we see that the failure rate also rises. This

can be seen in many of the graphs in Table 5.13 and the reasons for the lower cost results

are very similar to those described in Section 5.2.2.1. The cause is that the policy is

worse at higher approximation thresholds. With belief state approximation, exploration

will search the same areas of the state space as standard LAO*, but key changes in the

belief state can be hidden from the search. With a high maxKL, if a change between

two belief states necessary to find the optimal policy is hidden by the approximation,

then the algorithm will find a different, non-optimal policy. This is very similar to coarse

discretisation resolutions which can hide important belief state changes, as described in

Section 4.6.2.

The final effect on the policy that can be induced by a high threshold is shown in

Figure 5.9 at maxKL = 0.4 where there is a marked increase in the average cost for the

dependent model before decreasing again at maxKL = 0.6. There are no reported failures

in this model at 0.4 or 0.5. ALAO* is using a less efficient route than before, but avoids

making illegal moves or causing the agent to run out of time in the simulator. Figure 5.12

shows an interesting peak at maxKL = 0.3 where all three models show an isolated increase

in average cost. The effects of changing the threshold can have subtle effects specific to

some graphs. What is happening in Figure 5.12 is that the policies found at maxKL = 0.3

have a lower failure rate across all models (zero in the independent and clustered models,

8.11% in the dependent) than the policies found at neighbouring thresholds which have

failure rates in the range [10.32–14.30]%. We found the same pattern in the dependent

model in Graph 1 (Figure 5.9). A combination of the side effects of approximation are

present. At some thresholds the failures induced by the policy are reducing the average

cost as explained above, while at others, the chosen policy is simply choosing “safer”

routes to the goal, thus pushing the average cost up. Across several graphs, a correlation

between the failure rate and average cost can be seen where the average cost decreases

as the failure rate increases. Neither is a desirable property, however because we would

prefer to choose a lower maxKL where efficient routes are chosen without the presence of

failures.

Another common feature seen across many of the graphs is that the degradation in

policy performance occurs suddenly at particular thresholds, rather than gradually as

the threshold increases. Graph 1 is exceptional in that the average cost obtained by

the clustered model degrades gradually as maxKL increases from 0.2 to 0.6. The typical

pattern is seen in Figure 5.12 where the returned policy is much worse above a specific

maxKL. This is to be expected, since the average cost the agent obtains in the simulator

182

is derived from the policy it follows. Each belief state in the MDP is an approximation

of a POMDP belief state which would have an associated α-vector (as in PBVI). As

mentioned above, certain important belief states can be hidden as maxKL increases. The

removal of a belief state may prevent the discovery of an important α-vector and its

associated action which is used in the optimal policy. The resultant policy is therefore

likely to be significantly worse because it will utilise an action that leads to lower overall

performance.1 The behaviour is somewhat dependent upon the particular PRM graph,

but this implies that multiple “cliff edges” in the average cost will be observed as the

threshold increases. Once the threshold increases to the point where the belief states

are so approximate that the agent has trouble differentiating between free and blocked

edges, then failures start occurring in the simulator because the agent attempts to traverse

blocked edges.

The policy computation times for Figures 5.9 to 5.12 are shown in Figure 5.13. The

explicit graph sizes in Table 5.13 show how |G| tends to be much smaller at maxKL = 0.5

compared to 0.1 explaining the trends shown in the timings. As the greater approxima-

tion effectively reduces the number of distinguishable belief states, ALAO* creates fewer

individual nodes in G which in turn reduces the amount of computation necessary to find

the policy. As shown in Table 5.13 and Figure 5.13, Graph 5 takes much longer to solve

than all the other graphs. This is again due to the fact that it is unsafe. As mentioned

in Section 5.2.2.1, unsafe graphs can cause problems for the algorithm, making it harder

to find a policy. Table 5.14 compares the times for Graphs 1 and 5 using the clustered

model and additionally shows the number of iterations of VI used during the convergence

phase. This value should not be considered an accurate measure of how much time the

algorithm spent performing node backups since it simply counts the total number of it-

erations of the convergence phase during the execution of ALAO*. It does not account

for local backups during the expansion phase or the number of nodes backed up each

iteration (which depends on the size of the BSG). However, it can give an indication as

to how much value iteration was required before a graph converged. The amount of time

spent in VI is greatly increased in Graph 5. Due to the high discount rate of utilised

for all (A)LAO* experiments, many iterations of VI are required to reach convergence in

the states from where the goal cannot be reached. For states with paths that lead to the

goal, convergence will typically only require a few iterations. In unsafe graphs where the

goal is not reachable for some subsection of the state space, the true cost is infinite for

those states. The discounted cost will be finite, but requires many more iterations of VI

to converge. This causes the timings seen for Graph 5 and to a lesser extent Graph 14.

1ALAO* does not explicitly represent α-vectors because the value function is implicitly contained
within the state graph it creates.

183

maxKL
Graph 1 Graph 5

Time (ms) |G| VI Time (ms) |G| VI
0.05 444 1368 3 23136 4273 5159
0.1 223 934 3 4452 1542 3425
0.2 96 504 17 3700 973 6138
0.3 77 431 21 2849 649 4579
0.4 93 337 52 2671 675 4452
0.5 81 270 55 3254 670 5185
0.6 86 271 53 2878 612 4746

Table 5.14: Key: VI = value iteration. A comparison of the iterations of VI for graphs 1 and 5 under the
clustered model.

Generally, increasing the maximum K-L distance threshold for ALAO* will reduce the

computation time, since there are fewer nodes in the explicit graph, but the increased

approximation in distinguishing belief states can significantly impact the quality of the

policy returned. In all the experiments conducted, if the threshold was kept at 0.1 or

below, then the returned policy obtained simulated results that were virtually identical

to standard LAO* but with a much lower computation time. This also suggests that in

LAO*, many of the belief states in G are expanded unnecessarily and do not contribute

to improving the policy. A useful avenue for future research would be to investigate the

relationship between graph observations and their relevance to the belief states explored.

If belief states that were likely to be useful in the optimal policy could be estimated

beforehand, it could be used to estimate the largest maxKL threshold usable, without

negatively impacting the policy. One strategy would be to collect a set of beliefs via

random graph walks (as Perseus does), then calculate the K-L distance between pairs

of states for a significant subset of these. Setting maxKL close to the median of these

measured divergences would then remove many discrete belief states, but should preserve

policy quality. A possible drawback is that the chosen threshold may be too low to provide

any real benefit in computation time.

184

Figure 5.9: The effect of changing the maxKL threshold on the performance of Graph 1.

Figure 5.10: The effect of changing the maxKL threshold on the performance of Graph 5.

185

Figure 5.11: The effect of changing the maxKL threshold on the performance of Graph 7.

Figure 5.12: The effect of changing the maxKL threshold on the performance of Graph 8.

186

Figure 5.13: The effect of maxKL on computation time for the clustered model on graphs from Figures 5.9
to 5.12. Each data point averaged over 10 runs of ALAO*.

187

5.3 Scaling

In this Section we investigate how scalable the algorithms are by increasing the size of the

PRM graphs and number of uncertain edges. As has been demonstrated, the performance

of LAO* depends on the amount of state space explored, i.e. the number of belief states

and therefore MDP states that it visits. As the belief state can only change when an

observation introduces new information, then we expect that the number of uncertain

edges m, to be the primary contributing factor that affects algorithm scalability.

5.3.1 Increasing graph size

We first test the effects of increasing the number of nodes n, in the PRM graph. In all

the graphs in Appendix A, n was in the range [40, 80]. In larger real-world scenarios, we

would expect typical PRM graphs to contain more nodes either to cover a larger area,

to increase node density, or both. While more nodes will obviously have an impact on

LAO*, they are unlikely to have a major effect. Each new PRM graph node will become

an extra node in LAO*’s explicit graph. Consider a simple graph where the agent makes

one observation of an edge soon after the start node and then chooses one of two possible

routes to the goal based on the result. The BSG for the policy will consist of one chain

of states from the start node to the observation, then split into two chains leading to

the goal. Adding nodes to the PRM graph near the goal means that each of the two

branches of the BSG after the observation will increase in length because the agent must

visit each node. Each additional PRM node will add two nodes to the BSG, thus there

is a definite impact of PRM graph size on BSG size. However, now consider the impact

that the observation had: without it, the BSG would simply consist of one chain of single

child nodes from start to goal,1 but with it the chain essentially splits into two at the

point the observation is made. The number of nodes in the BSG from the observation

point to the goal is doubled—the presence of an uncertain edge has a far greater effect on

the size of the BSG. Of course, in this example we assumed the agent must traverse the

same number of nodes to reach the goal after the observation, which in most cases will

not be true.

We created a PRM graph with 2000 nodes using the same obstacles as Graph 17

(see Appendix A). Compared to graphs with lower node counts, the node density is

significantly higher in this graph which means that most edges are far shorter. To prevent

edges spanning too great a distance, Dmax (the maximum edge length) was reduced from

300 to 150. 8 uncertain edges were placed around the corners of a few obstacles that were

likely to feature on the shortest path to the goal to avoid the policy becoming a straight

1On graphs where no observations are made, this is precisely what LAO* creates.

188

Model ALAO*? Min. Avg. Max. Std.dev T (ms) |G| |BSG|
I N 1040.23 1043.04 1054.97 2.34 153 766 329
C N 1040.04 1042.97 1054.78 2.42 170 770 327
D N 1040.04 1042.96 1054.78 2.41 461 882 355

I Y 1040.23 1043.03 1054.97 2.34 166 766 329
C Y 1040.04 1042.97 1054.78 2.42 188 766 327
D Y 1040.04 1042.97 1054.78 2.42 636 832 355

No fails recorded in all trials.

Table 5.15: Key: I=independent, C=clustered, D=dependent model, T=time. The results from a large
graph with n = 2000. d = 0.00001,maxKL = 0.1 and no weighting applied. All simulator costs derived from
50,000 trials. No graph pre-processing was applied on this graph.

march to the goal. This is a little unrealistic since the high node density and short edges

should create many more uncertain edges; however, this was not done because a graph

with high numbers of uncertain edges would be beyond the capabilities of our algorithm.

Table 5.15 shows the results using LAO* and ALAO* without the pre-processor ap-

plied. In the experiment, all parameters were kept the same except for the maximum

simulator trial length which was increased to 500 steps to ensure the agent could reach

the goal when the pre-processor was not used. The costs are the same across all the tests

showing that for this graph, the choice of MDP model does not affect the performance.

The computation times are interesting because we can see that ALAO* obtains no ad-

vantage on this graph. The amount of the state graph explored is similar between LAO*

and ALAO* (identical for the independent model), so we would expect similar compu-

tation times. If few observations or only high-confidence observations are being made

then ALAO*’s performance will be very close to LAO* as explained in Section 5.2.2.5.

The time for the dependent model actually increases with ALAO* in both tables despite

a decrease in |G|. The overhead of calculating the K-L distance between belief states

is noticeably affecting the computation time, even though the number of nodes created

is similar to that of the other MDP models. The belief states in the dependent model

contain many more elements (28 = 256) than the other two models, again showing the

disadvantage of using a fully dependent representation.

5.3.2 Increasing the number of uncertain edges

The number of uncertain edges affects the size of G so is relevant to LAO*’s scalability.

We chose Graph 19 for this test because its topology meant that uncertain edges could

be created in locations likely to influence the algorithm and agent behaviour. Uncertain

edges placed in areas the agent never visits provide little information about the algo-

rithm’s scalability because LAO* will not explore them, leaving any resulting belief states

189

unexpanded in G. To see the effect of extra uncertain edges on the algorithm, we have to

ensure the agent will observe them and that they can affect the route taken. In the results

below, uncertain edges were incrementally added to the graph along with observations and

edge dependencies on existing edges where appropriate.1 Tables 5.16 and 5.17 compare

the costs reported for LAO* and ALAO* as the number of uncertain edges increases. The

number of nodes in G explored and solution times are also compared in Figures 5.14 and

5.15. As shown in the results, all versions of the algorithm failed to produce a policy

when m = 12. When m < 12 a guaranteed safe path to the goal was present, but when

m = 12, the final uncertain edge interrupted this path. Unsafe graphs are harder for

LAO*/ALAO* to solve because the goal becomes unreachable from certain sub-sections

of G. A typical behaviour in these sub-sections is for the algorithm to explore increasingly

lower utility areas of G seeking for a suitable path which can lead to the exhaustion of

available memory, as is the case here.

The tables show that the dependent model fails when three edges are added under

LAO* (Table 5.16, m = 8) and when four edges are added under ALAO* (Table 5.17,

m = 9). In earlier results in Table 4.15, the dependent model is usually the first of

the three models to fail. Figure 5.14 shows the dependent model under LAO* exploring

many more belief states than other models, thus making larger demands on the memory

system. When m = 7 with the dependent model, LAO* explored 38,329 nodes whilst

ALAO* explored just 2,500 nodes which will clearly require a fraction of the memory.

When m is greater than 7 or 8 for LAO* and ALAO* respectively, the memory runs out

before a policy can be found. In different tests on other graphs and in other models in

Graph 19, policies have been successfully generated after exploring far more than 38,000

nodes, so it is likely that the size of the explicit state graph grows quickly. The size of

the explicit state graph is also severely limited by the belief state dimensionality. In the

independent model, each new edge only adds two dimensions to the belief space; however,

in the dependent model, each edge doubles the dimensionality, thus requiring double the

memory space per node to store a distribution. This obviously has a large impact on the

memory footprint and limits the number of nodes that can be stored. The effect becomes

worse as m increases due to the exponential growth in the quantity of elements in the

probability distributions.

Tables 5.16 and 5.17 show that the performance of the actual policies is the same

across LAO* and ALAO* using the same model, as is the case in previous experiments.

In the original version of Graph 19 where m = 5, the clustered and dependent model

obtained a lower average cost of ∼ 26 compared to the independent model (see Table 4.15

1Full definitions of all graphs used in this experiment, as well as the full set of 20 graphs, are available
electronically from http://www.cs.bham.ac.uk/~mlk/graphs.zip or via the link in Appendix B. An
example is shown in Appendix B.

190

http://www.cs.bham.ac.uk/~mlk/graphs.zip

m Model Min. Avg. Max. Std.dev % fail Time (ms)

6
I 1174.50 1408.88 1764.70 225.57 0 164
C 1174.50 1384.93 1768.64 191.35 0 176
D 1174.50 1385.15 1768.64 191.33 0 5203

7
I 1174.50 1408.96 1768.64 225.44 0 343
C 1174.50 1384.88 1768.64 191.23 0 450
D 1174.50 1384.95 1768.64 191.12 0 44307

8
I 1174.50 1425.01 2258.02 227.26 0 1426
C 1174.50 1404.08 2404.90 192.25 0 3058
D F F F F F F

9
I 1174.50 1425.01 2258.35 227.29 0 4241
C 1174.50 1403.72 2405.23 192.43 0 8795
D F F F F F F

10
I 1182.22 1471.63 2408.69 271.27 0 9969
C 1182.22 1449.30 2555.27 233.45 0 16064
D F F F F F F

11
I 1182.22 1471.24 2408.69 271.17 0 13714
C 1182.22 1449.37 2555.57 233.53 0 31624
D F F F F F F

12
I F F F F F F
C F F F F F F
D F F F F F F

Table 5.16: Key: I=independent, C=clustered, D=dependent model. “F” indicates that LAO* failed to
produce a policy. The effect of increasing the number of uncertain edges m, on the policy cost for LAO*. All
times averaged over 10 runs. d = 0.00001 and graph pre-processor used for all graphs. All costs derived from
50,000 simulator trials.

on page 139). This advantage remains almost constant as more uncertain edges are

added, showing that the reduced cost is the result of an observation of one of the original

5 uncertain edges, despite the fact that the added edges were often dependent on other

edges. The average policy cost of all models increases at m = 8 and m = 10 because

edges that were previously safe become uncertain and cause the agent to switch to a more

expensive route when they are found to be blocked.

The solution times shown in Figure 5.15 and in the associated tables do not follow

the same trends observed in previous experiments. Under the dependent model, ALAO*

is much faster than standard LAO*, as is seen in previous experiments. Under the alter-

native models, LAO* computes solutions quicker than ALAO*, and when m ≥ 8 LAO*

wins out by a large margin. This is in stark contrast to previous experiments (see Sec-

tion 5.2.2.4) where ALAO* outperforms LAO* due a large reduction in the explored state

space. Figure 5.14 shows that this reduction is still present in all models, where ALAO*

never expands more nodes in G than the independent LAO* model when m ≥ 7. The

191

m Model Min. Avg. Max. Std.dev % fail Times (ms)

6
I 1174.50 1408.30 1764.70 225.45 0 159
C 1174.50 1385.01 1768.64 191.21 0 296
D 1174.50 1385.15 1768.64 191.42 0 1499

7
I 1174.50 1408.47 1768.64 225.41 0 479
C 1174.50 1385.33 1768.64 191.34 0 926
D 1174.50 1385.13 1768.64 191.27 0 9524

8
I 1174.50 1424.71 2258.02 227.21 0 2418
C 1174.50 1403.76 2404.90 192.11 0 4224
D 1174.50 1403.76 2409.90 192.19 0 100521

9
I 1174.50 1424.69 2258.35 227.12 0 9184
C 1174.50 1403.78 2405.23 192.48 0 15766
D F F F F F F

10
I 1182.22 1471.11 2408.69 271.23 0 46559
C 1182.22 1449.57 2555.57 233.22 0 65614
D F F F F F F

11
I 1182.22 1470.62 2408.69 271.21 0 96624
C 1182.22 1449.52 2555.57 233.88 0 158071
D F F F F F F

12
I F F F F F F
C F F F F F F
D F F F F F F

Table 5.17: Key: I=independent, C=clustered, D=dependent model. “F” indicates that ALAO* failed to
produce a policy. The effect of increasing the number of uncertain edges m, on the policy cost for ALAO*.
All times averaged over 10 runs. d = 0.00001, maxKL=0.1 and graph pre-processor used for all graphs. All
costs derived from 50,000 simulator trials.

reduction in |G| is more pronounced when more uncertain edges are present and the differ-

ence can clearly be seen in Figure 5.14. ALAO* always expands fewer nodes than LAO*

under the same model, though the differences are quite small when fewer uncertain edges

are present. This appears to create a contradiction, because ALAO* is exploring far fewer

nodes, yet taking longer to generate the policies. The cause is in the implementation of

the algorithm. LAO* solution graphs are cyclic by definition, so any newly expanded

node may include an arc to a node already present in the graph. An efficient method of

locating previously created nodes is therefore a necessity for a fast implementation. We

use a direct-chained hashtable for this purpose due to the approximately O(1) complexity

of a lookup operation. The hash key function for a node hashes both the node’s label

(always numerical in our implementation) and the belief state distribution to encourage

an even distribution of nodes across hash buckets. For standard LAO*, where belief states

must be identical to be considered equal, this makes keys quick to compute and nodes

easy to find in the hash chain for a bucket (which must be done through equality testing).

192

Figure 5.14: Comparison of the explicit graph size for Graph 19 as the number of uncertain edges increases
under LAO* and ALAO*.

However, this is not sufficient in ALAO* because of the approximation in belief state

equality: two nodes with different belief states and therefore different hashes can still be

considered equal. For a hashtable to function correctly, objects considered equal MUST

have the same hash key to guarantee finding them again. When a new candidate LAO*

node is generated the algorithm must check to see if one that is equal already exists by

querying the hashtable. Under approximate equality, if the new candidate node has a

different hash key to an existing, approximately equal node, it would not be able to find

it in the table, instead creating a new node where the existing one should have been used.

For this reason, the hash function under ALAO* only considers the PRM node label when

hashing, which restores the contract to ensure the correct hashtable function, but with

the side effect of placing all ALAO* nodes with the same PRM node label into the same

hash bucket. Unfortunately, this degrades the near constant time complexity of hashtable

lookups to a linear search of the hash bucket to check through every ALAO* node with

the same PRM node number. This inefficiency is compounded by the necessity to perform

a more expensive K-L distance based equality test on each node in the particular chain.

When many nodes are present in each bucket, as is the case when G is large, the over-

head of managing the hashtable dominates the algorithm runtime. As an example from

profiling data collected on a single run of the clustered model when m = 10, hashtable in-

193

Figure 5.15: Comparison of the solution times for Graph 19 as the number of uncertain edges increases under
LAO* and ALAO*.

sertions/lookups accounted for 0.7% of the runtime under LAO* and 84.3% under ALAO*.

Full profiling data can be found in Appendix D. Other hash functions were considered,

but none could guarantee that all approximately equal nodes would deterministically be

assigned to the same hash key. The correct answer is probably to replace the hashtable

entirely with a more suitable data structure; unfortunately, I had not had time to investi-

gate this thoroughly. Choosing a more suitable lookup strategy for existing nodes should

allow ALAO* to benefit from the reduced explicit graph size in larger graphs.

Considering the sizes of the explicit graph sizes in Figure 5.14, ALAO* scales better

than LAO* under all models as the number of edges increases. The rate at which G

grows in ALAO* is lower, particularly for the clustered and dependent models, whereas

the explicit graphs for the independent model grow at similar rates in both LAO* and

ALAO*. The reduced number of states explored means that ALAO* has the potential to

explore larger graphs and successfully generate policies for them.

5.4 Concluding remarks

The results from this research show that the current techniques are limited in the number

of uncertain graph edges that can be realistically handled. While some of the computation

194

time issues with ALAO* could be solved with a better choice of data structure, this is

not the fundamental limitation of the algorithm. The memory required to explore the

MDP state space is the limiting factor of this design, the consequences of which can be

seen throughout the results. The complexity and size of the explicit graph created by

(A)LAO* is always far larger than the original PRM graph (except in trivial cases) and

is dependent upon the number of uncertain edges. Graphs with more uncertain edges

require more memory when searching for a policy. The cause is actually two-fold: as

graphs become more complex, more nodes have to be explored to reach the goal and find

the optimal policy, but the dimensionality of the belief space also increases, therefore each

node requires more memory. Algorithms which plan directly in the space of the PRM

graph such as FSSN (see Section 3.2.1) and MCC (see Section 3.2.3) do not suffer from

this limitation and only incur the memory footprint required by the algorithm, rather

than a conversion to a new domain. The slower growth of G under the clustered model

helps mitigate the effect of the increasing dimensionality and approximation reduces the

size of the explored state space. However, neither can completely counteract the fact that

each additional uncertain edge and observation increases the state space that must be

explored.

5.4.1 Summary

A summary of the results from this Chapter:

Weighting Adding a weight to the heuristic can reduce the amount of graph that LAO*

explores by making the policy search more greedy. It generally reduces the policy

quality substantially in many graphs, so is not recommended. Graphs that were

previously unsolvable are often still unsolvable with weighting applied. When a

large weight is applied, a policy may be produced, but it is likely to be of poor

quality.

Approximation Adding a small approximation has been shown to have massive benefits

on computation time, without negatively affecting the policy quality. The approx-

imation threshold maxKL, should be kept small to ensure enough key belief points

can still be identified. In general, even small thresholds can have a large impact on

computation time. This is particularly noticeable when used the dependent MDP

model. Increasing maxKL too far should be avoided as it can cause many problems

in policy quality such as failure to reach the goal and increased route costs. In our

experiments, we found that maxKL should be set to less than 0.3 in nearly all cases

to retain a good policy quality.

195

Unsafe graphs These can interact badly with several aspects of the algorithms and are

generally harder to solve. We often saw LAO* fail to produce a policy on unsafe

graphs due to the greatly increased number of states it tried to explore. We also

saw ALAO* produce worse policies on unsafe graphs unless a very small threshold

was used. A long, but expensive route to the goal in a graph means that the agent

can always reach the goal and removes the unsafe aspect of the graph. If a graph is

unsafe, it can negate the advantages of clustering and approximation.

196

Chapter 6

Conclusion

6.1 Discussion

The thesis aims given in the introduction are restated below:

1. Show how path planning in a partially known configuration space can be represented

as a decision-theoretic planning problem.

2. Investigate how optimal plans can be generated for the domain in a way that is

scalable to real world problems.

The aim of this research was to examine the problem of robot navigation under un-

certainty and how path plans can be generated offline that directly incorporate this un-

certainty. Given a start and goal within a partially known environment, the agent should

compute a plan with the lowest expected cost of reaching the goal. Probabilistic roadmaps

were used as the vehicle for the basic planning mechanism. PRMs represent the possible

paths around an environment as a weighted graph and are easy to manipulate and convert

to a number of different applications. Some of these were examined in Chapter 3. Using

standard shortest path algorithms on a PRM allows the generation of shortest routes

across the environment, but suffers from the drawback of assuming perfect knowledge of

the obstacles. Removing this constraint makes planning significantly harder and gener-

ating near-optimal plans in a reasonable time forms the central aim of this thesis. We

have abstracted the route finding problem to a planning problem with the objective of

balancing the risk between long, safe paths and shorter but uncertain paths. Treating the

PRM roadmap as a graph search problem separates the planning from the spatial domain

so that the physical dimensionality of the space has a reduced impact on the complexity of

the plan space. To provide sufficient coverage of higher dimension configuration spaces,

more nodes in a PRM graph are required, which increases the complexity of the plan

197

space, so the two issues are not totally separable. Given that not all the paths in the

generated PRM graph are usable when uncertainty is taken into consideration, the agent

cannot make any assumptions about any uncertain edges. The presence of this uncertainty

about its environment, combined with the ability to reduce the uncertainty through noisy

observations, means that this domain fits closely with the POMDP framework. We have

demonstrated how this can be formulated as a POMDP (see Section 4.2) that gives us the

optimal solution for all uncertain PRM graphs, but as has been shown in this thesis and

in the large body of literature available on the subject, solving large POMDPs is a hard,

often intractable problem. One of the contributions of this thesis is in demonstrating how

the POMDP formulation of the domain could be converted into an MDP. We convert the

POMDP to a belief state MDP and also exploit the inherent structure in the belief space.

With a focus on the first aim of the thesis, reformulating the robot’s environment as a

belief state MDP by exploiting the graph structure of PRM allowed great flexibility in

how we could approach the problem. Factoring the agent’s location out of the belief state

in the MDP state space reduces the number of elements in the probability distribution

by a factor of |V |. This gives us the dependent model MDP. Exploiting more structure

present in the problem, the state space is reduced further through the use of grouping

related uncertain edges into clusters. This is an approximation technique which applies an

approximation to the model that retains the plan quality of the dependent model, while

sacrificing little in representational completeness, and is one of the primary contributions

of the thesis. The clustering of edges exploits the independence between unrelated edges

to increase the scalability of the approach, so also contributes towards the second aim.

In Chapter 5 two techniques were investigated that had the potential to extend the

scalability of the algorithm. While heuristic weighting contributed little to attaining this,

the approximate extension to LAO* that we developed decreased the computation time

required for plan generation considerably (see Section 5.2.2.4 on page 177). Unfortu-

nately, on graphs with a greater number of uncertain edges, the inefficiencies in the data

structure used in the implementation of ALAO* negate these gains. This can be seen in

Figure 5.15. Approximation via ALAO* differs from approximation via edge clustering by

applying approximation to a different part of the process. Edge clustering approximates

the model—the S component of the MDP model is modified to reduce the state space.

In contrast, ALAO* applies approximation in the solution algorithm; the MDP model

remains unchanged between LAO* and ALAO*. It provides a method for exploring a

large state space with greater expedience than an exact solver. The RTDP-Bel (Bonet

and Geffner 2009) algorithm applies a similar approach by adapting the RTDP algorithm

(see Section 3.3.1.1) to POMDPs, but relies solely on discretisation to map similar belief

states to one MDP state. Although we use discretisation in the ALAO* extension because

198

it is present in the MDP models, it is not a requirement for ALAO*. Combined with a

clustered model of the MDP state space, this forms the main contribution towards the

second aim of this research. The graph pre-processor, while not a central component

of the research, also assists in improving the scalability. It is certainly possible to ap-

ply pre-processing to other domains to reduce or remove irrelevant sections of the plan

space; however, the graph pre-processor was developed through observations about this

specific problem class. There is little intuition at the moment about how effective similar

pre-processing techniques would be in other domains. In other navigation problems, a

pre-processor could search for and short circuit chains of deterministic state transitions

into one transition. In any domain, if areas of the state space where no useful observations

are obtained can be identified, these states could be amalgamated into one. The focus of

this type of pre-processor is to combine groups of states which must be visited en route

to the goal, even if they do not affect the eventual policy.

One of the most useful results of the research is that the conversion of the POMDP

model into an MDP provides many opportunities to improve the speed of policy compu-

tation through various approximations. The MDPs we create can have fairly long search

depths and typically have a low branching factor, since most action choices will be invalid

at most nodes and edge observations are not available at every node. The first property

depends on the PRM graph, but complex graphs with many nodes mean the agent has

to traverse many edges to reach the goal. Graph pre-processing can consolidate many of

these however, so the effect is reduced.

During the progress of the research, we noticed that less certain observations in a

PRM graph tended to be taken repeatedly, i.e. the agent would “hop” between an obser-

vational node and the nearest non-observational node. The root cause was that the agent

was trying to acquire more information (reduce uncertainty) to choose between possible

routes, because the probabilistic observations were not changing the belief state enough to

convince the agent to commit to a route. The hopping behaviour is then the cheapest way

to gain more information because our domain does not provide a “standstill and observe”

action. In hindsight, providing such an action would have been beneficial, as it would have

allowed repeated observations without a movement cost (essentially free since we assume

no observation costs). While this has close parallels with the work of Censi et al. (2008)

described in Section 3.2.2, it may also be unrealistic for the same reasons: standing still

does not necessarily mean uncertainty will decrease. The consequence of these repeated

observations is that many similar belief states are created in quick succession at the same

PRM node(s). It is this attribute that motivated the initial idea and research into the

creation of an approximation belief update which was developed into ALAO*.

199

The work in this thesis also emphasised how much harder planning becomes in the

presence of even small amounts of uncertainty. Many pitfalls were discovered through

the course of research which drove the progress towards heuristic graph search algorithms

such as LAO* and the various approximations described. While the discretisation of the

POMDP belief space was necessary to create a finite MDP state space, it caused many

minor, unforeseen issues in the implementation. A prime example of this is explained in

Section 4.3.2.1, but other more subtle numerical instabilities resulting from discretisation

had to be addressed during the work. The difficulty in handling uncertainty also highlights

scalability as a weaker area of the thesis. While the scalability is assisted by a variety of

techniques, the huge state spaces created still cause difficulties for policy generation. We

can identify several promising approaches to aid scalability. One possibility is to use a

hierarchical method where, over a large environment, a high-level general motion graph

is created with a few uncertain edges which can then be passed to lower level planners.

The lower level planner would then generate the actual PRM motion graph the agent

would follow between stages of the high-level graph with more accurate uncertain edges.

This would keep the number of uncertain edges at each planning level manageable while

extending the size of the environment that could be handled. Another similar approach

would be to use a heuristic planner that could identify suitable checkpoints between the

start and goal locations and treat each successive pair of checkpoints as a separate path

planning problem. The best route between each checkpoint pair would be solved as a

new uncertain PRM graph. A third option is to improve the pre-processing stage. Before

nodes are eliminated, an “edge merging” phase could be introduced which would merge

adjacent or close uncertain edges into one edge if it was determined that the correlation

between their statuses was high and both would be needed to traverse that section of the

graph. An example is shown in Figure 6.1.

We initially expected edge clustering to yield a gain over the independent model more

often. We found that the optimal policy does not exploit edge dependencies in more

than about 30% of graphs tested, despite edge dependencies existing in all the graphs

created. Does this imply that clustering is not worthwhile? We do not believe that is

the case because the clustered models do not require much more time to solve than the

independent model and the gains in expected cost can be significant.

The abstraction away from the spatial representation provided us with a well defined

domain to solve, but separates us somewhat from the original motivation. This is a

consequence of choosing to focus on the planning and uncertainty aspects of the problem.

Some areas are left open. Particularly, we leave open the question of how uncertain edges

should be selected in the first place and how observations should be placed. The obvious

way to place uncertain edges is through repeated sampling of obstacle positions and testing

200

Figure 6.1: An example of two uncertain edges with highly correlated statuses, shown as dashed lines. Since
both edges would need to be traversed to pass between the obstacles (shaded), these would be a prime
candidate for edge merging.

which PRM edges are intersected by obstacles. This has been tested to a limited degree,

but consistently produced too many uncertain edges for the planner to solve. Deciding

cluster configurations could be achieved by analysing the starting dependent belief state

for correlations between uncertain edges. As worlds are sampled according to this belief

state, correlations between uncertain edge statuses would become apparent, indicating

which edges would be likely to need to be placed in the same cluster. Appendix C shows

a possible algorithm for assigning edges into clusters based on an initial dependent belief

state.

One benefit of the abstraction is that it allows the application of the models presented

to other problems. While closely resembling the Canadian traveller problem (CTP, de-

scribed in Section 3.2.1), it is not limited to two dimensional domains, since PRM edges

may move through many dimensions in the C-space. This work is also applicable to other

problems where a system may have two or more options for reaching a particular state

with varying resource costs, risks and the possibility of failure. As well as CTP, consider

satellite navigation systems; routes can be blocked or jammed and traffic broadcasts be-

come analogous to “ahead of time” observations of those routes. In many traffic systems,

if one main road becomes blocked, a second alternative often becomes the preferred choice

of route for drivers, thus the traffic density and usability of those two roads become cor-

related. This work could help construct plans for such domains to improve traffic flow by

taking these correlations into account.

201

6.2 Future work

There are several directions for future work for this research, some of which have already

been mentioned. One addition to the models we have proposed here would be a “stop”

action for the agent. While the MDPs we have defined are ostensibly stochastic shortest

path problems, it should be noted that in unsafe graphs, where all the routes to the goal

require the traversal of an uncertain edge, the agent can reach states where no sequence of

actions ever reaches a goal. This can cause problems for goal based solvers such as LAO*

and other heuristic solvers because the true cost of those states is infinity. In (A)LAO*,

the optimal policy tells the agent to hop between the two closest nodes in the PRM graph

when it cannot reach the goal because this incurs the lowest eventual cost. Adding a stop

action with a high cost that deterministically transitions to a “failed” accepting state

would convert the MDP into a true shortest path problem. The cost of such an action

would have to be high enough that the agent would only ever choose it if all routes to the

actual goal were found to be blocked. The optimal policy would then be to simply stop

when the agent realises it is trapped.

Another interesting area for future work is how more recent MDP solvers may be

applied to our domain. The recent work on improved value iteration is of particular

interest. Asynchronous dynamic programming (DP) relies on restricting value iteration

(VI) to relevant areas of the state space to speed up convergence; however, asynchronous

DP algorithms rarely consider how the order of state backups affects the solution time.

Since different states typically require varying numbers of backups for their value to

converge, there must be an optimal order for performing these backups. That is, when

backups are applied to selected states in this order, the value function will have converged

to become ε-optimal with the lowest number of backups. Topological Value Iteration

(TVI) (Dai and Goldsmith 2007) and the more recent Focused TVI (FTVI) (Dai et al.

2009) use the connectivity of the state space to identify which states should be backed

up first. In stochastic shortest path MDPs, this usually takes the form of backing up

states away from the goal towards the start. The version of LAO* we use performs VI in

depth first post-traversal order on nodes in the BSG. Nodes that are closer to the goal are

generally backed up first, but no further analysis is performed. FTVI and TVI partition

states in the state space into mutually exclusive, strongly connected subsets, and then

perform VI on each group separately in topological order. FTVI improves on TVI by

performing a brief forward search from the start to eliminate non-optimal actions and

reduce the size of each subset. This has been shown to outperform LAO* and RTDP by

an order of magnitude in certain domains. This is relevant to our domain if we note that

while the agent is moving between nodes with no observations, it can always take the

reverse action. When it makes an observation and changes its belief state, this is a one

202

way transition since the agent cannot forget what it has observed. Thus, the state space

will contain several strongly connected components with observations occurring at the

boundaries of the components. Applying topology analysis to our problem may further

extend the size of problem that we can handle.

One of the most interesting ideas which we have not explored is the use of ALAO*

as a POMDP solver. The MDP models we have developed are approximations of a

specific POMDP model and ALAO* has been shown to be very effective in this domain,

achieving an order of magnitude speed-up compared to a point-based POMDP solver.

This result, combined with the results in Bonet and Geffner (2009), indicate that solving

certain classes of POMDP as belief state MDPs can be very efficient. An advantage of

ALAO* over RTDP-Bel in solving POMDPs is that discretisation of belief states is no

longer a requirement, since the use of K-L divergence approximation ensures that similar

belief states are treated as equal. There are two obstacles to this that would have to be

addressed. Firstly, a superior data structure for ALAO* would need to be devised. As was

discussed in Section 5.3.2, the hashtable data structure employed in our implementation is

insufficient to handle large quantities of stored belief states efficiently. Designing a better

hash function may be enough, but we believe a more efficient data structure in general is

needed, though we do not currently have any clear intuition about how to accomplish this.

Adapting ALAO* to use Algebraic Decision Diagrams (as in Symbolic Perseus (Poupart

2005)) would certainly be of benefit since the ability to aggregate many belief states into a

single ADD would reduce the load on the data structure. However, this may not address

the need to efficiently search the graph for similar belief states. The expansion routine

of ALAO* needs to look for similar belief states to perform approximation testing on

potential new belief states and large ADDs could still be a computational bottleneck in this

process. The second issue is how to construct admissible heuristics for general POMDP

domains. Though LAO* can function optimally without a heuristic, its performance can

be greatly degraded (Hansen and Zilberstein 2001). The recent body of work regarding

online POMDP solvers already make use of heuristics, so that would seem to provide the

best source of information to solve this issue.

203

204

Appendix A

Graph Details

These are the details of the graphs that are used in experiments throughout the research.

In all these examples the robot takes the form of a small square that has the ability to

rotate on the spot. The uncertain edges are shown as dashed lines and obstacles are

shown in blue. The colours of the uncertain edges indicate cluster configurations, with

all uncertain edges of the same colour in the same cluster. The edge costs are shown

in red. It should be noted that for the pre-processed graphs, the edge costs do not

represent the Euclidean distance between the PRM nodes because an edge may represent

the concatenation of several edges in the original PRM graph. Key: N=number of nodes

in PRM graph, m=number of uncertain edges, I=independent MDP, C=clustered MDP,

D=dependent MDP. For state space size calculation a discretisation resolution of d =

1× 10−5 was assumed.

Full details of the graphs including observation functions, node positions and edge costs

can be found in the text definition files which are available electronically in a compressed

archive at http://www.cs.bham.ac.uk/~mlk/graphs.zip or via the link in Appendix B.

An example is shown in Appendix B.

205

http://www.cs.bham.ac.uk/~mlk/graphs.zip

Graph 1

N=40, m=5

Pre-processed N=15

I |S|=4.000E+26

C |S|=1.111E+35

D |S|=4.887E+122

Pre-processed graph

206

Graph 2

N=40, m=5

Pre-processed N=14

I |S|=4.000E+26

C |S|=1.111E+35

D |S|=4.887E+122

Pre-processed graph

207

Graph 3

N=40, m=5

Pre-processed N=12

I |S|=4.000E+26

C |S|=1.323E+47

D |S|=4.887E+122

Pre-processed graph

208

Graph 4

N=40, m=5

Pre-processed N=12

I |S|=4.000E+26

C |S|=1.323E+47

D |S|=4.887E+122

Pre-processed graph

209

Graph 5

N=40, m=5

Pre-processed N=15

I |S|=4.000E+26

C |S|=1.111E+35

D |S|=4.887E+122

Pre-processed graph

210

Graph 6

N=40, m=5

Pre-processed N=17

I |S|=4.000E+26

C |S|=7.938E+42

D |S|=4.887E+122

Pre-processed graph

211

Graph 7

N=40, m=4

Pre-processed N=14

I |S|=4.000E+21

C |S|=1.111E+30

D |S|=3.062E+64

Pre-processed graph

212

Graph 8

N=50, m=4

Pre-processed N=15

I |S|=5.000E+21

C |S|=8.334E+25

D |S|=3.828E+64

Pre-processed graph

213

Graph 9

N=70, m=6

Pre-processed N=16

I |S|=7.000E+31

C |S|=1.945E+40

D |S|> 1× 10307

Pre-processed graph

214

Graph 10

N=80, m=5

Pre-processed N=14

I |S|=8.000E+26

C |S|=2.646E+47

D |S|=9.774E+122

Pre-processed graph

215

Graph 11

N=80, m=5

Pre-processed N=17

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

216

Graph 12

N=80, m=5

Pre-processed N=18

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

217

Graph 13

N=80, m=6

Pre-processed N=16

I |S|=8.000E+31

C |S|=2.646E+52

D |S|> 1× 10307

Pre-processed graph

218

Graph 14

N=80, m=4

Pre-processed N=14

I |S|=8.000E+21

C |S|=1.588E+38

D |S|=6.124E+64

Pre-processed graph

219

Graph 15

N=80, m=5

Pre-processed N=13

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

220

Graph 16

N=80, m=5

Pre-processed N=14

I |S|=8.000E+26

C |S|=2.222E+35

D |S|=9.774E+122

Pre-processed graph

221

Graph 17

N=80, m=5

Pre-processed N=17

I |S|=8.000E+26

C |S|=2.646E+47

D |S|=9.774E+122

Pre-processed graph

222

Graph 18

N=80, m=5

Pre-processed N=20

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

223

Graph 19

N=80, m=5

Pre-processed N=18

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

224

Graph 20

N=80, m=5

Pre-processed N=17

I |S|=8.000E+26

C |S|=1.333E+31

D |S|=9.774E+122

Pre-processed graph

225

226

Appendix B

Format Definition Examples

Below are examples of the various file formats that are used to describe the graphs and

POMDP models throughout this research.

B.1 Graph Definition File

The graphs used in the experiments for this research are all available electronically from

http://www.cs.bham.ac.uk/~mlk/graphs.zip. Here is the definition file for Graph 8

for the purposes of illustration.

Example definition for a graph

1 #Node data

2 #N=Node ID , x, y, rotation in degrees

3 N=0, 81.00, 70.00 , 48.50

4 N=1, 90.00, 280.00 , 221.09

5 N=2, 210.00 , 327.00 , 342.27

6 N=3, 564.00 , 423.00 , 279.55

7 N=4, 389.00 , 507.00 , 61.37

8 N=5, 72.00, 222.00 , 324.77

9 N=6, 455.00 , 378.00 , 256.83

10 N=7, 685.00 , 561.00 , 152.33

11 N=8, 272.00 , 319.00 , 338.63

12 N=9, 87.00, 223.00 , 195.44

13 N=10, 587.00 , 414.00 , 224.07

14 N=11, 163.00 , 261.00 , 295.22

15 N=12, 608.00 , 428.00 , 132.51

16 N=13, 102.00 , 392.00 , 93.52

17 N=14, 2.00, 50.00 , 283.61

18 N=15, 212.00 , 550.00 , 87.77

19 N=16, 265.00 , 585.00 , 186.48

20 N=17, 281.00 , 273.00 , 131.27

21 N=18, 333.00 , 595.00 , 259.47

22 N=19, 373.00 , 207.00 , 158.75

23 N=20, 239.00 , 341.00 , 68.03

24 N=21, 382.00 , 223.00 , 354.49

25 N=22, 487.00 , 297.00 , 205.16

26 N=23, 105.00 , 267.00 , 317.40

27 N=24, 133.00 , 584.00 , 125.18

227

Graph1.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 692.00, 376.00, 193.45
N=1, 47.00, 657.00, 254.16
N=2, 350.00, 285.00, 332.41
N=3, 347.00, 672.00, 333.18
N=4, 211.00, 32.00, 111.62
N=5, 528.00, 288.00, 268.10
N=6, 508.00, 558.00, 46.96
N=7, 612.00, 119.00, 48.03
N=8, 344.00, 214.00, 21.19
N=9, 521.00, 233.00, 42.19
N=10, 204.00, 255.00, 297.28
N=11, 146.00, 188.00, 250.66
N=12, 138.00, 584.00, 102.78
N=13, 109.00, 19.00, 74.43
N=14, 537.00, 680.00, 303.10
N=15, 299.00, 376.00, 194.17
N=16, 191.00, 652.00, 23.70
N=17, 461.00, 348.00, 323.97
N=18, 273.00, 688.00, 218.16
N=19, 459.00, 159.00, 1.50
N=20, 525.00, 651.00, 129.00
N=21, 570.00, 227.00, 52.16
N=22, 591.00, 443.00, 134.83
N=23, 610.00, 663.00, 175.50
N=24, 327.00, 333.00, 93.37
N=25, 193.00, 490.00, 325.81
N=26, 41.00, 149.00, 153.49
N=27, 151.00, 612.00, 327.59
N=28, 55.00, 125.00, 164.84
N=29, 347.00, 337.00, 307.49
N=30, 541.00, 426.00, 54.95
N=31, 33.00, 538.00, 334.59
N=32, 352.00, 358.00, 235.08
N=33, 349.00, 475.00, 22.49
N=34, 641.00, 164.00, 23.91
N=35, 74.00, 37.00, 31.85
N=36, 56.00, 324.00, 352.96
N=37, 587.00, 563.00, 85.21
N=38, 522.00, 334.00, 286.52
N=39, 17.00, 378.00, 315.27

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 22, 121.20
E=0, 30, 159.06
E=0, 38, 175.11
E=0, 5, 186.12
E=1, 27, 113.32
E=1, 12, 116.66
E=1, 31, 119.82
E=1, 16, 144.09
E=2, 29, 52.09
E=2, 24, 53.23
E=2, 8, 71.25
E=2, 32, 73.03
E=3, 18, 75.71
E=3, 16, 157.28
E=3, 14, 190.17
E=3, 33, 197.01
E=4, 13, 102.83
E=4, 35, 137.09
E=4, 28, 181.62
E=5, 38, 46.39
E=5, 9, 55.44
E=5, 21, 74.06
E=6, 37, 79.16
E=6, 20, 94.54
E=6, 14, 125.40
E=6, 30, 136.06
E=7, 34, 53.54
E=7, 21, 115.88
E=7, 9, 145.87
E=8, 24, 120.21
E=8, 29, 123.04
E=8, 19, 127.48
E=9, 21, 49.37
E=9, 19, 96.54
E=10, 11, 88.62
E=10, 24, 145.65
E=10, 15, 153.84
E=10, 36, 163.29
E=11, 28, 110.68
E=11, 26, 112.01
E=11, 36, 163.08
E=12, 27, 30.87
E=12, 16, 86.21
E=12, 25, 108.91
E=13, 35, 39.36
E=13, 28, 118.96
E=13, 26, 146.71
E=14, 20, 31.38
E=14, 23, 74.95
E=15, 24, 51.31
E=15, 32, 55.97
E=15, 29, 61.85
E=16, 27, 56.57
E=17, 38, 62.59
E=17, 32, 109.46
E=17, 29, 114.53
E=17, 21, 162.86
E=18, 27, 143.74
E=19, 34, 182.07
E=19, 38, 185.99
E=20, 23, 85.84
E=20, 37, 107.65
E=22, 30, 52.81
E=22, 37, 120.07
E=23, 37, 102.61
E=25, 33, 156.72
E=25, 31, 167.04
E=26, 28, 27.78
E=26, 35, 116.76
E=31, 39, 160.80
E=32, 33, 117.04
E=36, 39, 66.61

#Start node ID
S=7

#Goal node ID
G=13

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 17, 32, 17, 29
C=1, 4, 28
C=2, 19, 34, 8, 19

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 8, 19
EO=1, 19, 34
EO=2, 4, 28
EO=3, 17, 29
EO=4, 17, 32

#Starting belief state, starting with the all F combination and working through to all B
B=0.454219, 0.000000, 0.000000, 0.026719, 0.080156, 0.000000, 0.000000, 0.151406, 0.007969, 0.000000, 0.000000, 0.000469, 0.001406, 0.000000, 0.000000, 0.002656, 0.023906, 0.000000, 0.000000, 0.001406, 0.004219, 0.000000, 0.000000, 0.007969, 0.151406, 0.000000, 0.000000, 0.008906, 0.026719, 0.000000, 0.000000, 0.050469

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=38, 17, 32, 0.800000, 0.200000
O=17, 17, 32, 1.000000, 0.000000
O=17, 17, 29, 1.000000, 0.000000
O=32, 17, 32, 1.000000, 0.000000
O=5, 17, 29, 0.700000, 0.250000
O=29, 17, 29, 1.000000, 0.000000
O=11, 4, 28, 0.900000, 0.100000
O=28, 4, 28, 1.000000, 0.000000
O=4, 4, 28, 1.000000, 0.000000
O=21, 19, 34, 1.000000, 0.000000
O=34, 19, 34, 1.000000, 0.000000
O=19, 19, 34, 1.000000, 0.000000
O=19, 8, 19, 1.000000, 0.000000
O=9, 8, 19, 0.950000, 0.100000
O=8, 8, 19, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=176.00, 80.00, 0.00, 0.00, 0.00, 0.00, 150.632202, 0.000000, 150.632202, 140.00, 0.00, 150.632202, 0.000000, 150.632202, 140.00, 80.00, 22.418215, 0.000000, 22.418215, 0.00, 80.00, 4.950720, 0.000000, 4.950720, 0.00, 0.00, 150.632202, 0.000000, 150.632202
OB=374.00, 50.00, 0.00, 0.00, 0.00, 0.00, 0.000006, 0.000000, 0.000006, 140.00, 0.00, 0.000006, 0.000000, 0.000006, 140.00, 80.00, 93.652935, 0.000000, 93.652935, 0.00, 80.00, 102.528599, 0.000000, 102.528599, 0.00, 0.00, 0.000006, 0.000000, 0.000006
OB=381.00, 539.00, 0.00, 0.00, 0.00, 0.00, 9.261146, 0.000000, 9.261146, 100.00, 0.00, 9.261146, 0.000000, 9.261146, 100.00, 100.00, 14.645202, 0.000000, 14.645202, 0.00, 100.00, 24.534724, 0.000000, 24.534724, 0.00, 0.00, 9.261146, 0.000000, 9.261146
OB=398.00, 380.00, 0.00, 0.00, 0.00, 0.00, 2.753431, 0.000000, 2.753431, 100.00, 0.00, 2.753431, 0.000000, 2.753431, 100.00, 100.00, 17.969249, 0.000000, 17.969249, 0.00, 100.00, 19.447682, 0.000000, 19.447682, 0.00, 0.00, 2.753431, 0.000000, 2.753431
OB=155.00, 337.00, 60.00, 0.00, 60.00, 0.00, 7.411848, 0.000000, 7.411848, 120.00, 30.00, 43.709358, 0.000000, 43.709358, 100.00, 110.00, 6.786103, 0.000000, 6.786103, 20.00, 110.00, 26.846094, 0.000000, 26.846094, 0.00, 30.00, 3.694854, 0.000000, 3.694854, 60.00, 0.00, 7.411848, 0.000000, 7.411848
OB=378.00, 325.00, 0.00, 132.00, 0.00, 132.00, 100.000000, 0.000000, 100.000000, 43.00, 0.00, 100.000000, 0.000000, 100.000000

Graph10.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 344.00, 196.00, 236.74
N=1, 53.00, 646.00, 19.82
N=2, 622.00, 388.00, 121.30
N=3, 303.00, 263.00, 186.29
N=4, 291.00, 26.00, 321.06
N=5, 288.00, 383.00, 341.84
N=6, 581.00, 686.00, 247.03
N=7, 265.00, 392.00, 188.08
N=8, 102.00, 150.00, 171.07
N=9, 92.00, 162.00, 154.20
N=10, 377.00, 167.00, 23.00
N=11, 658.00, 593.00, 199.72
N=12, 415.00, 556.00, 227.12
N=13, 242.00, 394.00, 160.93
N=14, 146.00, 289.00, 108.86
N=15, 361.00, 339.00, 325.62
N=16, 173.00, 602.00, 325.17
N=17, 115.00, 219.00, 45.55
N=18, 558.00, 582.00, 349.48
N=19, 223.00, 106.00, 163.13
N=20, 620.00, 332.00, 77.79
N=21, 36.00, 234.00, 220.56
N=22, 405.00, 147.00, 185.74
N=23, 69.00, 544.00, 10.45
N=24, 683.00, 382.00, 187.05
N=25, 433.00, 189.00, 235.42
N=26, 629.00, 346.00, 296.93
N=27, 582.00, 95.00, 247.15
N=28, 78.00, 286.00, 314.56
N=29, 625.00, 146.00, 124.83
N=30, 50.00, 391.00, 188.91
N=31, 679.00, 583.00, 87.01
N=32, 330.00, 21.00, 358.95
N=33, 486.00, 128.00, 175.93
N=34, 23.00, 239.00, 336.13
N=35, 499.00, 80.00, 106.03
N=36, 88.00, 358.00, 299.37
N=37, 386.00, 287.00, 323.66
N=38, 623.00, 324.00, 146.94
N=39, 541.00, 382.00, 258.51
N=40, 102.00, 404.00, 247.20
N=41, 335.00, 47.00, 49.60
N=42, 229.00, 312.00, 356.92
N=43, 465.00, 190.00, 303.36
N=44, 228.00, 575.00, 270.76
N=45, 499.00, 233.00, 132.34
N=46, 174.00, 566.00, 147.52
N=47, 123.00, 39.00, 155.51
N=48, 241.00, 452.00, 260.23
N=49, 236.00, 517.00, 183.38
N=50, 650.00, 166.00, 157.73
N=51, 556.00, 353.00, 233.51
N=52, 485.00, 59.00, 289.02
N=53, 570.00, 520.00, 100.31
N=54, 139.00, 200.00, 8.39
N=55, 447.00, 155.00, 70.11
N=56, 116.00, 584.00, 236.36
N=57, 380.00, 213.00, 101.56
N=58, 160.00, 588.00, 231.27
N=59, 367.00, 319.00, 199.21
N=60, 116.00, 147.00, 276.91
N=61, 645.00, 154.00, 351.47
N=62, 148.00, 421.00, 282.13
N=63, 80.00, 597.00, 30.16
N=64, 542.00, 334.00, 201.19
N=65, 437.00, 358.00, 17.05
N=66, 261.00, 524.00, 99.82
N=67, 592.00, 104.00, 289.44
N=68, 69.00, 11.00, 26.34
N=69, 653.00, 301.00, 190.90
N=70, 558.00, 519.00, 97.42
N=71, 630.00, 37.00, 275.74
N=72, 128.00, 376.00, 241.10
N=73, 464.00, 55.00, 261.64
N=74, 351.00, 324.00, 86.52
N=75, 314.00, 289.00, 240.98
N=76, 514.00, 96.00, 293.30
N=77, 294.00, 390.00, 184.30
N=78, 548.00, 667.00, 289.75
N=79, 490.00, 227.00, 288.34

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 57, 39.81
E=0, 10, 43.93
E=0, 22, 78.24
E=0, 3, 78.55
E=1, 63, 55.95
E=1, 56, 88.39
E=1, 23, 103.25
E=1, 58, 121.71
E=2, 26, 42.58
E=2, 20, 56.04
E=2, 24, 61.29
E=2, 38, 64.01
E=3, 75, 28.23
E=3, 74, 77.62
E=3, 59, 85.04
E=4, 32, 39.32
E=4, 41, 48.75
E=4, 19, 105.00
E=4, 10, 165.16
E=5, 77, 9.22
E=5, 7, 24.70
E=5, 13, 47.30
E=5, 15, 85.23
E=6, 78, 38.08
E=6, 18, 106.51
E=6, 39, 306.62
E=6, 51, 333.94
E=7, 13, 23.09
E=7, 77, 29.07
E=7, 48, 64.62
E=8, 60, 14.32
E=8, 9, 15.62
E=8, 54, 62.20
E=8, 17, 70.21
E=9, 60, 28.30
E=9, 54, 60.44
E=9, 17, 61.47
E=10, 22, 34.41
E=10, 57, 46.10
E=11, 31, 23.26
E=11, 53, 114.34
E=11, 70, 124.40
E=11, 24, 212.48
E=12, 18, 145.34
E=12, 44, 187.96
E=12, 46, 241.21
E=12, 16, 246.33
E=13, 77, 52.15
E=13, 48, 58.01
E=14, 28, 68.07
E=14, 17, 76.56
E=14, 42, 86.13
E=14, 72, 88.84
E=15, 74, 18.03
E=15, 59, 20.88
E=15, 37, 57.70
E=16, 58, 19.10
E=16, 46, 36.01
E=16, 56, 59.77
E=17, 54, 30.61
E=18, 70, 63.00
E=18, 53, 63.15
E=19, 60, 114.59
E=19, 47, 120.37
E=19, 54, 126.06
E=20, 38, 8.54
E=20, 26, 16.64
E=20, 69, 45.28
E=21, 34, 13.93
E=21, 28, 66.84
E=21, 60, 118.19
E=21, 36, 134.46
E=22, 55, 42.76
E=22, 25, 50.48
E=23, 63, 54.13
E=23, 56, 61.72
E=23, 58, 101.08
E=24, 26, 64.90
E=24, 38, 83.45
E=25, 43, 32.02
E=25, 55, 36.77
E=25, 57, 58.18
E=26, 38, 22.80
E=27, 67, 13.45
E=27, 29, 66.71
E=27, 76, 68.01
E=27, 71, 75.29
E=28, 34, 72.35
E=28, 36, 72.69
E=29, 61, 21.54
E=29, 50, 32.02
E=29, 67, 53.41
E=30, 36, 50.33
E=30, 40, 53.60
E=30, 72, 79.43
E=30, 62, 102.49
E=31, 53, 125.90
E=31, 70, 136.88
E=31, 39, 243.81
E=32, 41, 26.48
E=32, 73, 138.25
E=32, 52, 159.59
E=33, 76, 42.52
E=33, 55, 47.43
E=33, 35, 49.73
E=33, 43, 65.46
E=34, 36, 135.59
E=34, 72, 172.61
E=35, 76, 21.93
E=35, 52, 25.24
E=35, 73, 43.01
E=37, 59, 37.22
E=37, 74, 50.93
E=37, 75, 72.03
E=39, 51, 32.65
E=39, 64, 48.01
E=40, 72, 38.21
E=40, 62, 49.04
E=40, 42, 156.82
E=41, 73, 129.25
E=41, 52, 150.48
E=42, 75, 88.06
E=42, 77, 101.53
E=43, 55, 39.36
E=43, 79, 44.65
E=44, 46, 54.74
E=44, 49, 58.55
E=44, 66, 60.75
E=45, 79, 10.82
E=45, 64, 109.77
E=45, 57, 120.67
E=45, 51, 132.85
E=46, 58, 26.08
E=47, 68, 60.83
E=47, 75, 314.61
E=47, 73, 341.38
E=48, 49, 65.19
E=48, 66, 74.73
E=49, 66, 25.96
E=50, 61, 13.00
E=50, 67, 84.90
E=50, 71, 130.54
E=51, 64, 23.60
E=52, 76, 47.01
E=53, 70, 12.04
E=56, 63, 38.28
E=59, 74, 16.76
E=61, 67, 72.86
E=61, 71, 117.96
E=62, 65, 295.79
E=63, 66, 195.17
E=64, 65, 107.71
E=65, 79, 141.32
E=65, 69, 223.39
E=69, 79, 179.01
E=69, 71, 265.00

#Start node ID
S=73

#Goal node ID
G=6

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 6, 51, 6, 39, 31, 39
C=1, 7, 48, 48, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 48, 66
EO=1, 7, 48
EO=2, 31, 39
EO=3, 6, 39
EO=4, 6, 51

#Starting belief state, starting with the all F combination and working through to all B
B=0.295524, 0.010369, 0.010369, 0.131344, 0.042218, 0.001481, 0.001481, 0.018763, 0.021247, 0.000746, 0.000746, 0.009443, 0.027317, 0.000959, 0.000959, 0.012141, 0.042669, 0.001497, 0.001497, 0.018964, 0.006096, 0.000214, 0.000214, 0.002709, 0.098508, 0.003456, 0.003456, 0.043781, 0.126653, 0.004444, 0.004444, 0.056290

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=45, 6, 51, 0.700000, 0.200000
O=45, 31, 39, 0.700000, 0.300000
O=51, 6, 51, 1.000000, 0.000000
O=6, 6, 51, 1.000000, 0.000000
O=6, 6, 39, 1.000000, 0.000000
O=64, 6, 39, 0.800000, 0.200000
O=39, 6, 39, 1.000000, 0.000000
O=39, 31, 39, 1.000000, 0.000000
O=31, 31, 39, 1.000000, 0.000000
O=77, 7, 48, 0.900000, 0.100000
O=77, 48, 66, 0.800000, 0.200000
O=7, 7, 48, 1.000000, 0.000000
O=48, 7, 48, 1.000000, 0.000000
O=48, 48, 66, 1.000000, 0.000000
O=66, 48, 66, 1.000000, 0.000000
O=75, 7, 48, 0.700000, 0.350000
O=75, 48, 66, 0.600000, 0.300000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=83.00, 431.00, 0.00, 0.00, 0.00, 0.00, 13.950382, 0.000000, 13.950382, 100.00, 0.00, 20.417623, 0.000000, 20.417623, 100.00, 100.00, 7.948383, 0.000000, 7.948383, 0.00, 100.00, 6.454898, 0.000000, 6.454898, 0.00, 0.00, 13.950382, 0.000000, 13.950382
OB=431.00, 412.00, 0.00, 0.00, 0.00, 0.00, 36.000000, 0.000000, 36.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 121.000000, 0.000000, 121.000000, 0.00, 100.00, 36.000000, 0.000000, 36.000000, 0.00, 0.00, 36.000000, 0.000000, 36.000000
OB=274.00, 418.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=233.00, 610.00, 0.00, 0.00, 0.00, 0.00, 22.552397, 0.000000, 22.552397, 140.00, 0.00, 18.452346, 0.000000, 18.452346, 140.00, 80.00, 4.729186, 0.000000, 4.729186, 0.00, 80.00, 15.077603, 0.000000, 15.077603, 0.00, 0.00, 22.552397, 0.000000, 22.552397
OB=393.00, 609.00, 0.00, 0.00, 0.00, 0.00, 0.506507, 0.000000, 0.506507, 140.00, 0.00, 7.708212, 0.000000, 7.708212, 140.00, 80.00, 9.129720, 0.000000, 9.129720, 0.00, 80.00, 17.059348, 0.000000, 17.059348, 0.00, 0.00, 0.506507, 0.000000, 0.506507
OB=638.00, 665.00, 30.00, 70.00, 30.00, 70.00, 2.273558, 0.000000, 2.273558, 0.00, 0.00, 17.638553, 0.000000, 17.638553

Graph10PP.pomdp

//State variables
(variables
 (loc l64 l39 l6 l66 l7 l77 l73 l13 l45 l75 l51 l49 l48 l31)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob6_51 ob6_51F ob6_51B)
 (ob6_39 ob6_39F ob6_39B)
 (ob31_39 ob31_39F ob31_39B)
 (ob7_48 ob7_48F ob7_48B)
 (ob48_66 ob48_66F ob48_66B)
)

//Initial belief state
init [*
 (loc (l64 (0.0)) (l39 (0.0)) (l6 (0.0)) (l66 (0.0)) (l7 (0.0)) (l77 (0.0)) (l73 (1.0)) (l13 (0.0)) (l45 (0.0)) (l75 (0.0)) (l51 (0.0)) (l49 (0.0)) (l48 (0.0)) (l31 (0.0)))
 (c1 (c1F (0.585106382977)) (c1B (0.414893617023)))
 (c2 (c2F (0.585410334346)) (c2B (0.414589665654)))
 (c3 (c3F (0.693617021273)) (c3B (0.306382978727)))
 (c4 (c4F (0.683397683399)) (c4B (0.316602316601)))
 (c5 (c5F (0.683397683399)) (c5B (0.316602316601)))
]

//Actions and costs
action goto_l64
 loc (loc
 (l64 (locl64))
 (l39 (locl64))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl13))
 (l45 (locl64))
 (l75 (locl75))
 (l51 (locl64))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (c2'
 (c2F (ob6_39' (ob6_39F (0.8)) (ob6_39B (0.2))))
 (c2B (ob6_39' (ob6_39F (0.19999999999999996)) (ob6_39B (0.8))))
)
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (48.010415536631214))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (2000.0))
 (l45 (109.77249200050075))
 (l75 (2000.0))
 (l51 (23.600847442411894))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l39
 loc (loc
 (l64 (locl39))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl13))
 (l45 (locl45))
 (l75 (locl75))
 (l51 (locl39))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (c3
 (c3F (locl39))
 (c3B (locl31))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (c2'
 (c2F (ob6_39' (ob6_39F (1.0)) (ob6_39B (0.0))))
 (c2B (ob6_39' (ob6_39F (0.0)) (ob6_39B (1.0))))
)
 ob31_39 (c3'
 (c3F (ob31_39' (ob31_39F (1.0)) (ob31_39B (0.0))))
 (c3B (ob31_39' (ob31_39F (0.0)) (ob31_39B (1.0))))
)
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (48.010415536631214))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (2000.0))
 (l45 (2000.0))
 (l75 (2000.0))
 (l51 (32.64965543462902))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (243.81345327934633))
)
endaction

action goto_l6
 loc (loc
 (l64 (locl64))
 (l39 (c2
 (c2F (locl6))
 (c2B (locl39))
))
 (l6 (locl6))
 (l66 (locl6))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl6))
 (l13 (locl13))
 (l45 (locl6))
 (l75 (locl75))
 (l51 (c1
 (c1F (locl6))
 (c1B (locl51))
))
 (l49 (locl6))
 (l48 (locl48))
 (l31 (locl6))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (c1'
 (c1F (ob6_51' (ob6_51F (1.0)) (ob6_51B (0.0))))
 (c1B (ob6_51' (ob6_51F (0.0)) (ob6_51B (1.0))))
)
 ob6_39 (c2'
 (c2F (ob6_39' (ob6_39F (1.0)) (ob6_39B (0.0))))
 (c2B (ob6_39' (ob6_39F (0.0)) (ob6_39B (1.0))))
)
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (306.6202863477888))
 (l6 (0))
 (l66 (500.5654610166286))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (1005.1629955050265))
 (l13 (2000.0))
 (l45 (813.1246174398352))
 (l75 (2000.0))
 (l51 (333.9371198294673))
 (l49 (498.3692154958966))
 (l48 (2000.0))
 (l31 (295.5603067511703))
)
endaction

action goto_l66
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl13))
 (l45 (locl45))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl66))
 (l48 (c5
 (c5F (locl66))
 (c5B (locl48))
))
 (l31 (locl66))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (c5'
 (c5F (ob48_66' (ob48_66F (1.0)) (ob48_66B (0.0))))
 (c5B (ob48_66' (ob48_66F (0.0)) (ob48_66B (1.0))))
)
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (2000.0))
 (l45 (2000.0))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (25.96150997149434))
 (l48 (74.72616676907762))
 (l31 (583.0999477365173))
)
endaction

action goto_l7
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl7))
 (l73 (locl7))
 (l13 (locl7))
 (l45 (locl7))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (c4
 (c4F (locl7))
 (c4B (locl48))
))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (c4'
 (c4F (ob7_48' (ob7_48F (1.0)) (ob7_48B (0.0))))
 (c4B (ob7_48' (ob7_48F (0.0)) (ob7_48B (1.0))))
)
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (29.068883707497267))
 (l73 (545.3045103204414))
 (l13 (23.08679276123039))
 (l45 (444.6121519704191))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (64.62197768561404))
 (l31 (2000.0))
)
endaction

action goto_l77
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl77))
 (l77 (locl77))
 (l73 (locl77))
 (l13 (locl77))
 (l45 (locl77))
 (l75 (locl77))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (c4'
 (c4F (ob7_48' (ob7_48F (0.9)) (ob7_48B (0.1))))
 (c4B (ob7_48' (ob7_48F (0.09999999999999998)) (ob7_48B (0.9))))
)
 ob48_66 (c5'
 (c5F (ob48_66' (ob48_66F (0.8)) (ob48_66B (0.2))))
 (c5B (ob48_66' (ob48_66F (0.19999999999999996)) (ob48_66B (0.8))))
)
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (29.068883707497267))
 (l77 (2000.0))
 (l73 (529.8258767072773))
 (l13 (52.15361924162119))
 (l45 (429.133518357255))
 (l75 (189.59004563779177))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l73
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl73))
 (l77 (locl73))
 (l73 (locl73))
 (l13 (locl73))
 (l45 (locl73))
 (l75 (locl73))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl73))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (545.3045103204414))
 (l77 (529.8258767072773))
 (l73 (2000.0))
 (l13 (567.9032666115264))
 (l45 (213.67168571797532))
 (l75 (367.95392146891044))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (744.4216580367776))
)
endaction

action goto_l13
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl13))
 (l77 (locl13))
 (l73 (locl13))
 (l13 (locl13))
 (l45 (locl13))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl13))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (23.08679276123039))
 (l77 (52.15361924162119))
 (l73 (567.9032666115264))
 (l13 (2000.0))
 (l45 (467.2109082615041))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (58.008620049092706))
 (l31 (2000.0))
)
endaction

action goto_l45
 loc (loc
 (l64 (locl45))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl45))
 (l77 (locl45))
 (l73 (locl45))
 (l13 (locl45))
 (l45 (locl45))
 (l75 (locl45))
 (l51 (locl45))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl45))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (c1'
 (c1F (ob6_51' (ob6_51F (0.8)) (ob6_51B (0.2))))
 (c1B (ob6_51' (ob6_51F (0.30000000000000004)) (ob6_51B (0.7))))
)
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (c3'
 (c3F (ob31_39' (ob31_39F (0.7)) (ob31_39B (0.3))))
 (c3B (ob31_39' (ob31_39F (0.30000000000000004)) (ob31_39B (0.7))))
)
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (109.77249200050075))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (444.6121519704191))
 (l77 (429.133518357255))
 (l73 (213.67168571797532))
 (l13 (467.2109082615041))
 (l45 (2000.0))
 (l75 (267.26156311888815))
 (l51 (132.84953895290718))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (552.3832799715863))
)
endaction

action goto_l75
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl75))
 (l73 (locl75))
 (l13 (locl13))
 (l45 (locl75))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (c4'
 (c4F (ob7_48' (ob7_48F (0.65)) (ob7_48B (0.35))))
 (c4B (ob7_48' (ob7_48F (0.30000000000000004)) (ob7_48B (0.7))))
)
 ob48_66 (c5'
 (c5F (ob48_66' (ob48_66F (0.7)) (ob48_66B (0.3))))
 (c5B (ob48_66' (ob48_66F (0.4)) (ob48_66B (0.6))))
)
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (189.59004563779177))
 (l73 (367.95392146891044))
 (l13 (2000.0))
 (l45 (267.26156311888815))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l51
 loc (loc
 (l64 (locl51))
 (l39 (locl51))
 (l6 (locl6))
 (l66 (locl66))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl13))
 (l45 (locl51))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (c1'
 (c1F (ob6_51' (ob6_51F (1.0)) (ob6_51B (0.0))))
 (c1B (ob6_51' (ob6_51F (0.0)) (ob6_51B (1.0))))
)
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (23.600847442411894))
 (l39 (32.64965543462902))
 (l6 (0))
 (l66 (2000.0))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (2000.0))
 (l45 (132.84953895290718))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l49
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (locl49))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl13))
 (l45 (locl45))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl49))
 (l48 (locl49))
 (l31 (locl49))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (25.96150997149434))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (2000.0))
 (l45 (2000.0))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (2000.0))
 (l48 (65.19202405202648))
 (l31 (580.9037022157853))
)
endaction

action goto_l48
 loc (loc
 (l64 (locl64))
 (l39 (locl39))
 (l6 (locl6))
 (l66 (c5
 (c5F (locl48))
 (c5B (locl66))
))
 (l7 (c4
 (c4F (locl48))
 (c4B (locl7))
))
 (l77 (locl77))
 (l73 (locl73))
 (l13 (locl48))
 (l45 (locl45))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl48))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (ob31_39' (ob31_39F (0.5)) (ob31_39B (0.5)))
 ob7_48 (c4'
 (c4F (ob7_48' (ob7_48F (1.0)) (ob7_48B (0.0))))
 (c4B (ob7_48' (ob7_48F (0.0)) (ob7_48B (1.0))))
)
 ob48_66 (c5'
 (c5F (ob48_66' (ob48_66F (1.0)) (ob48_66B (0.0))))
 (c5B (ob48_66' (ob48_66F (0.0)) (ob48_66B (1.0))))
)
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (2000.0))
 (l6 (0))
 (l66 (74.72616676907762))
 (l7 (64.62197768561404))
 (l77 (2000.0))
 (l73 (2000.0))
 (l13 (58.008620049092706))
 (l45 (2000.0))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (65.19202405202648))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l31
 loc (loc
 (l64 (locl64))
 (l39 (c3
 (c3F (locl31))
 (c3B (locl39))
))
 (l6 (locl6))
 (l66 (locl31))
 (l7 (locl7))
 (l77 (locl77))
 (l73 (locl31))
 (l13 (locl13))
 (l45 (locl31))
 (l75 (locl75))
 (l51 (locl51))
 (l49 (locl31))
 (l48 (locl48))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob6_51 (ob6_51' (ob6_51F (0.5)) (ob6_51B (0.5)))
 ob6_39 (ob6_39' (ob6_39F (0.5)) (ob6_39B (0.5)))
 ob31_39 (c3'
 (c3F (ob31_39' (ob31_39F (1.0)) (ob31_39B (0.0))))
 (c3B (ob31_39' (ob31_39F (0.0)) (ob31_39B (1.0))))
)
 ob7_48 (ob7_48' (ob7_48F (0.5)) (ob7_48B (0.5)))
 ob48_66 (ob48_66' (ob48_66F (0.5)) (ob48_66B (0.5)))
 endobserve
 cost (loc
 (l64 (2000.0))
 (l39 (243.81345327934633))
 (l6 (0))
 (l66 (583.0999477365173))
 (l7 (2000.0))
 (l77 (2000.0))
 (l73 (744.4216580367776))
 (l13 (2000.0))
 (l45 (552.3832799715863))
 (l75 (2000.0))
 (l51 (2000.0))
 (l49 (580.9037022157853))
 (l48 (2000.0))
 (l31 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph10_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 344.00, 196.00, 236.74
N=1, 53.00, 646.00, 19.82
N=2, 622.00, 388.00, 121.30
N=3, 303.00, 263.00, 186.29
N=4, 291.00, 26.00, 321.06
N=5, 288.00, 383.00, 341.84
N=6, 581.00, 686.00, 247.03
N=7, 265.00, 392.00, 188.08
N=8, 102.00, 150.00, 171.07
N=9, 92.00, 162.00, 154.20
N=10, 377.00, 167.00, 23.00
N=11, 658.00, 593.00, 199.72
N=12, 415.00, 556.00, 227.12
N=13, 242.00, 394.00, 160.93
N=14, 146.00, 289.00, 108.86
N=15, 361.00, 339.00, 325.62
N=16, 173.00, 602.00, 325.17
N=17, 115.00, 219.00, 45.55
N=18, 558.00, 582.00, 349.48
N=19, 223.00, 106.00, 163.13
N=20, 620.00, 332.00, 77.79
N=21, 36.00, 234.00, 220.56
N=22, 405.00, 147.00, 185.74
N=23, 69.00, 544.00, 10.45
N=24, 683.00, 382.00, 187.05
N=25, 433.00, 189.00, 235.42
N=26, 629.00, 346.00, 296.93
N=27, 582.00, 95.00, 247.15
N=28, 78.00, 286.00, 314.56
N=29, 625.00, 146.00, 124.83
N=30, 50.00, 391.00, 188.91
N=31, 679.00, 583.00, 87.01
N=32, 330.00, 21.00, 358.95
N=33, 486.00, 128.00, 175.93
N=34, 23.00, 239.00, 336.13
N=35, 499.00, 80.00, 106.03
N=36, 88.00, 358.00, 299.37
N=37, 386.00, 287.00, 323.66
N=38, 623.00, 324.00, 146.94
N=39, 541.00, 382.00, 258.51
N=40, 102.00, 404.00, 247.20
N=41, 335.00, 47.00, 49.60
N=42, 229.00, 312.00, 356.92
N=43, 465.00, 190.00, 303.36
N=44, 228.00, 575.00, 270.76
N=45, 499.00, 233.00, 132.34
N=46, 174.00, 566.00, 147.52
N=47, 123.00, 39.00, 155.51
N=48, 241.00, 452.00, 260.23
N=49, 236.00, 517.00, 183.38
N=50, 650.00, 166.00, 157.73
N=51, 556.00, 353.00, 233.51
N=52, 485.00, 59.00, 289.02
N=53, 570.00, 520.00, 100.31
N=54, 139.00, 200.00, 8.39
N=55, 447.00, 155.00, 70.11
N=56, 116.00, 584.00, 236.36
N=57, 380.00, 213.00, 101.56
N=58, 160.00, 588.00, 231.27
N=59, 367.00, 319.00, 199.21
N=60, 116.00, 147.00, 276.91
N=61, 645.00, 154.00, 351.47
N=62, 148.00, 421.00, 282.13
N=63, 80.00, 597.00, 30.16
N=64, 542.00, 334.00, 201.19
N=65, 437.00, 358.00, 17.05
N=66, 261.00, 524.00, 99.82
N=67, 592.00, 104.00, 289.44
N=68, 69.00, 11.00, 26.34
N=69, 653.00, 301.00, 190.90
N=70, 558.00, 519.00, 97.42
N=71, 630.00, 37.00, 275.74
N=72, 128.00, 376.00, 241.10
N=73, 464.00, 55.00, 261.64
N=74, 351.00, 324.00, 86.52
N=75, 314.00, 289.00, 240.98
N=76, 514.00, 96.00, 293.30
N=77, 294.00, 390.00, 184.30
N=78, 548.00, 667.00, 289.75
N=79, 490.00, 227.00, 288.34

#Edge data
#E=Node number 1, Node number 2, cost
E=6, 39, 306.62
E=6, 51, 333.94
E=6, 31, 295.56
E=6, 45, 813.12
E=6, 49, 498.37
E=6, 66, 500.57
E=6, 73, 1005.16
E=7, 48, 64.62
E=7, 13, 23.09
E=7, 45, 444.61
E=7, 73, 545.30
E=7, 77, 29.07
E=13, 77, 52.15
E=13, 73, 567.90
E=13, 45, 467.21
E=13, 48, 58.01
E=31, 39, 243.81
E=31, 66, 583.10
E=31, 73, 744.42
E=31, 45, 552.38
E=31, 49, 580.90
E=39, 64, 48.01
E=39, 51, 32.65
E=45, 64, 109.77
E=45, 77, 429.13
E=45, 73, 213.67
E=45, 51, 132.85
E=45, 75, 267.26
E=48, 66, 74.73
E=48, 49, 65.19
E=49, 66, 25.96
E=51, 64, 23.60
E=73, 77, 529.83
E=73, 75, 367.95
E=75, 77, 189.59

#Start node ID
S=73

#Goal node ID
G=6

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 6, 51, 6, 39, 31, 39
C=1, 7, 48, 48, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 48, 66
EO=1, 7, 48
EO=2, 31, 39
EO=3, 6, 39
EO=4, 6, 51

#Starting belief state, starting with the all F combination and working through to all B
B=0.295524, 0.010369, 0.010369, 0.131344, 0.042218, 0.001481, 0.001481, 0.018763, 0.021247, 0.000746, 0.000746, 0.009443, 0.027317, 0.000959, 0.000959, 0.012141, 0.042669, 0.001497, 0.001497, 0.018964, 0.006096, 0.000214, 0.000214, 0.002709, 0.098508, 0.003456, 0.003456, 0.043781, 0.126653, 0.004444, 0.004444, 0.056290

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=45, 6, 51, 0.700000, 0.200000
O=45, 31, 39, 0.700000, 0.300000
O=51, 6, 51, 1.000000, 0.000000
O=6, 6, 51, 1.000000, 0.000000
O=6, 6, 39, 1.000000, 0.000000
O=64, 6, 39, 0.800000, 0.200000
O=39, 6, 39, 1.000000, 0.000000
O=39, 31, 39, 1.000000, 0.000000
O=31, 31, 39, 1.000000, 0.000000
O=77, 7, 48, 0.900000, 0.100000
O=77, 48, 66, 0.800000, 0.200000
O=7, 7, 48, 1.000000, 0.000000
O=48, 7, 48, 1.000000, 0.000000
O=48, 48, 66, 1.000000, 0.000000
O=66, 48, 66, 1.000000, 0.000000
O=75, 7, 48, 0.700000, 0.350000
O=75, 48, 66, 0.600000, 0.300000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=83.00, 431.00, 0.00, 0.00, 0.00, 0.00, 13.950382, 0.000000, 13.950382, 100.00, 0.00, 20.417623, 0.000000, 20.417623, 100.00, 100.00, 7.948383, 0.000000, 7.948383, 0.00, 100.00, 6.454898, 0.000000, 6.454898, 0.00, 0.00, 13.950382, 0.000000, 13.950382
OB=431.00, 412.00, 0.00, 0.00, 0.00, 0.00, 36.000000, 0.000000, 36.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 121.000000, 0.000000, 121.000000, 0.00, 100.00, 36.000000, 0.000000, 36.000000, 0.00, 0.00, 36.000000, 0.000000, 36.000000
OB=274.00, 418.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=233.00, 610.00, 0.00, 0.00, 0.00, 0.00, 22.552397, 0.000000, 22.552397, 140.00, 0.00, 18.452346, 0.000000, 18.452346, 140.00, 80.00, 4.729186, 0.000000, 4.729186, 0.00, 80.00, 15.077603, 0.000000, 15.077603, 0.00, 0.00, 22.552397, 0.000000, 22.552397
OB=393.00, 609.00, 0.00, 0.00, 0.00, 0.00, 0.506507, 0.000000, 0.506507, 140.00, 0.00, 7.708212, 0.000000, 7.708212, 140.00, 80.00, 9.129720, 0.000000, 9.129720, 0.00, 80.00, 17.059348, 0.000000, 17.059348, 0.00, 0.00, 0.506507, 0.000000, 0.506507
OB=638.00, 665.00, 30.00, 70.00, 30.00, 70.00, 2.273558, 0.000000, 2.273558, 0.00, 0.00, 17.638553, 0.000000, 17.638553

Graph11.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 230.00, 161.00, 269.49
N=1, 619.00, 86.00, 70.31
N=2, 201.00, 681.00, 165.17
N=3, 146.00, 683.00, 269.02
N=4, 632.00, 576.00, 182.07
N=5, 452.00, 655.00, 324.60
N=6, 197.00, 233.00, 192.27
N=7, 216.00, 119.00, 70.98
N=8, 361.00, 438.00, 185.84
N=9, 410.00, 485.00, 104.66
N=10, 230.00, 659.00, 86.38
N=11, 345.00, 643.00, 211.90
N=12, 613.00, 82.00, 257.51
N=13, 76.00, 450.00, 47.21
N=14, 523.00, 125.00, 75.99
N=15, 84.00, 662.00, 195.07
N=16, 320.00, 328.00, 232.18
N=17, 565.00, 318.00, 15.80
N=18, 614.00, 392.00, 295.85
N=19, 400.00, 74.00, 215.99
N=20, 356.00, 519.00, 324.00
N=21, 36.00, 139.00, 288.12
N=22, 624.00, 612.00, 329.81
N=23, 651.00, 347.00, 284.50
N=24, 463.00, 257.00, 35.33
N=25, 698.00, 579.00, 175.74
N=26, 657.00, 318.00, 284.36
N=27, 33.00, 353.00, 280.75
N=28, 347.00, 396.00, 249.06
N=29, 394.00, 110.00, 143.13
N=30, 581.00, 653.00, 341.61
N=31, 355.00, 268.00, 226.89
N=32, 451.00, 552.00, 220.25
N=33, 369.00, 494.00, 347.26
N=34, 174.00, 301.00, 62.55
N=35, 530.00, 109.00, 73.31
N=36, 289.00, 223.00, 198.14
N=37, 68.00, 624.00, 81.62
N=38, 620.00, 342.00, 292.16
N=39, 49.00, 556.00, 292.93
N=40, 441.00, 508.00, 331.23
N=41, 533.00, 419.00, 209.66
N=42, 375.00, 476.00, 291.25
N=43, 336.00, 89.00, 11.20
N=44, 530.00, 387.00, 193.68
N=45, 643.00, 634.00, 219.95
N=46, 523.00, 323.00, 154.93
N=47, 143.00, 498.00, 75.24
N=48, 10.00, 140.00, 318.04
N=49, 489.00, 681.00, 231.82
N=50, 246.00, 503.00, 78.54
N=51, 133.00, 233.00, 248.33
N=52, 376.00, 680.00, 204.78
N=53, 319.00, 442.00, 354.58
N=54, 321.00, 70.00, 207.78
N=55, 157.00, 598.00, 236.49
N=56, 63.00, 541.00, 174.58
N=57, 176.00, 369.00, 322.16
N=58, 324.00, 151.00, 122.93
N=59, 445.00, 376.00, 33.67
N=60, 297.00, 414.00, 78.83
N=61, 350.00, 559.00, 162.26
N=62, 241.00, 632.00, 128.25
N=63, 380.00, 454.00, 201.93
N=64, 221.00, 388.00, 229.85
N=65, 653.00, 552.00, 298.01
N=66, 508.00, 589.00, 108.19
N=67, 661.00, 89.00, 106.60
N=68, 77.00, 431.00, 0.75
N=69, 200.00, 272.00, 203.43
N=70, 336.00, 33.00, 324.41
N=71, 145.00, 236.00, 319.71
N=72, 415.00, 76.00, 120.43
N=73, 570.00, 361.00, 120.75
N=74, 414.00, 190.00, 274.38
N=75, 530.00, 171.00, 123.13
N=76, 86.00, 1.00, 87.20
N=77, 333.00, 197.00, 116.39
N=78, 535.00, 62.00, 10.23
N=79, 343.00, 402.00, 84.08

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 7, 44.27
E=0, 6, 79.20
E=0, 36, 85.59
E=0, 58, 94.53
E=1, 12, 7.21
E=1, 67, 42.11
E=1, 78, 87.36
E=1, 35, 91.92
E=2, 10, 36.40
E=2, 3, 55.04
E=2, 62, 63.25
E=2, 55, 93.94
E=3, 15, 65.46
E=3, 55, 85.71
E=3, 37, 97.80
E=4, 65, 31.89
E=4, 22, 36.88
E=4, 45, 59.03
E=4, 25, 66.07
E=5, 49, 45.22
E=5, 52, 80.01
E=5, 66, 86.56
E=5, 11, 107.67
E=6, 69, 39.12
E=6, 71, 52.09
E=6, 51, 64.00
E=7, 58, 112.64
E=7, 54, 115.87
E=7, 43, 123.69
E=8, 63, 24.84
E=8, 79, 40.25
E=8, 42, 40.50
E=8, 53, 42.19
E=9, 42, 36.14
E=9, 40, 38.60
E=9, 33, 41.98
E=9, 63, 43.14
E=10, 62, 29.15
E=10, 55, 95.13
E=10, 11, 116.11
E=11, 52, 48.27
E=11, 61, 84.15
E=12, 67, 48.51
E=12, 78, 80.52
E=12, 35, 87.28
E=13, 68, 19.03
E=13, 47, 82.42
E=13, 56, 91.92
E=13, 27, 106.10
E=14, 35, 17.46
E=14, 75, 46.53
E=14, 78, 64.13
E=14, 72, 118.60
E=15, 37, 41.23
E=15, 55, 97.08
E=15, 39, 111.63
E=16, 28, 73.16
E=16, 79, 77.49
E=16, 60, 89.02
E=16, 53, 114.00
E=17, 46, 42.30
E=17, 73, 43.29
E=17, 38, 60.01
E=17, 44, 77.37
E=18, 38, 50.36
E=18, 73, 53.82
E=18, 23, 58.26
E=18, 44, 84.15
E=19, 72, 15.13
E=19, 29, 36.50
E=19, 43, 65.73
E=19, 70, 76.01
E=20, 33, 28.18
E=20, 61, 40.45
E=20, 42, 47.01
E=20, 63, 69.29
E=21, 48, 26.02
E=21, 51, 135.07
E=21, 71, 145.91
E=21, 69, 211.15
E=22, 45, 29.07
E=22, 30, 59.41
E=22, 65, 66.64
E=23, 26, 29.61
E=23, 38, 31.40
E=23, 73, 82.20
E=24, 74, 83.01
E=24, 46, 89.20
E=24, 31, 108.56
E=24, 75, 109.02
E=25, 45, 77.78
E=25, 30, 138.44
E=25, 66, 190.26
E=26, 38, 44.10
E=26, 73, 97.05
E=26, 46, 134.09
E=27, 68, 89.55
E=27, 47, 182.00
E=27, 56, 190.38
E=28, 79, 7.21
E=28, 60, 53.14
E=28, 53, 53.85
E=29, 72, 39.96
E=29, 43, 61.68
E=29, 58, 81.12
E=30, 45, 64.85
E=30, 49, 96.17
E=31, 77, 74.33
E=31, 36, 79.88
E=31, 74, 97.80
E=32, 40, 45.12
E=32, 66, 67.96
E=32, 33, 100.44
E=32, 42, 107.48
E=33, 63, 41.48
E=34, 69, 38.95
E=34, 57, 68.03
E=34, 71, 71.18
E=34, 51, 79.40
E=35, 78, 47.27
E=36, 77, 51.11
E=36, 58, 80.06
E=37, 39, 70.60
E=37, 56, 83.15
E=39, 56, 20.52
E=39, 47, 110.45
E=40, 61, 104.32
E=40, 66, 105.12
E=41, 44, 32.14
E=41, 46, 96.52
E=41, 65, 179.13
E=41, 75, 248.02
E=43, 54, 24.21
E=44, 65, 205.80
E=47, 68, 94.05
E=48, 51, 154.20
E=48, 71, 165.65
E=48, 69, 231.35
E=49, 52, 113.00
E=49, 62, 252.79
E=50, 61, 118.12
E=50, 62, 129.10
E=50, 68, 183.70
E=50, 52, 219.61
E=53, 60, 35.61
E=54, 70, 39.92
E=54, 72, 94.19
E=57, 64, 48.85
E=57, 60, 129.10
E=57, 79, 170.23
E=59, 64, 224.32
E=67, 75, 154.55
E=67, 74, 266.85
E=70, 77, 164.03
E=70, 74, 175.31

#Start node ID
S=10

#Goal node ID
G=67

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 41, 65, 44, 65
C=1, 20, 61
C=2, 40, 61
C=3, 5, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 5, 66
EO=1, 40, 61
EO=2, 20, 61
EO=3, 44, 65
EO=4, 41, 65

#Starting belief state, starting with the all F combination and working through to all B
B=0.224179, 0.224179, 0.074726, 0.074726, 0.018682, 0.018682, 0.056045, 0.056045, 0.010675, 0.010675, 0.003558, 0.003558, 0.000890, 0.000890, 0.002669, 0.002669, 0.013412, 0.013412, 0.004471, 0.004471, 0.001118, 0.001118, 0.003353, 0.003353, 0.051734, 0.051734, 0.017245, 0.017245, 0.004311, 0.004311, 0.012933, 0.012933

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=22, 41, 65, 0.800000, 0.200000
O=65, 41, 65, 1.000000, 0.000000
O=65, 44, 65, 1.000000, 0.000000
O=41, 41, 65, 1.000000, 0.000000
O=4, 44, 65, 0.800000, 0.200000
O=44, 44, 65, 1.000000, 0.000000
O=45, 41, 65, 0.750000, 0.250000
O=11, 20, 61, 0.800000, 0.300000
O=11, 40, 61, 0.800000, 0.300000
O=11, 5, 66, 0.900000, 0.100000
O=61, 20, 61, 1.000000, 0.000000
O=61, 40, 61, 1.000000, 0.000000
O=20, 20, 61, 1.000000, 0.000000
O=40, 40, 61, 1.000000, 0.000000
O=33, 20, 61, 0.900000, 0.100000
O=32, 40, 61, 0.850000, 0.100000
O=5, 5, 66, 1.000000, 0.000000
O=66, 5, 66, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=45.00, 52.00, 0.00, 0.00, 0.00, 0.00, 0.610560, 0.000000, 0.610560, 126.00, 112.00, 9.567695, 0.000000, 9.567695
OB=247.00, 217.00, 0.00, 0.00, 0.00, 0.00, 0.811366, 0.000000, 0.811366, 95.00, 76.00, 6.034330, 0.000000, 6.034330
OB=510.00, 424.00, 116.00, 131.00, 116.00, 131.00, 0.088892, 0.000000, 0.088892, 0.00, 0.00, 21.590736, 0.000000, 21.590736
OB=455.00, 622.00, 43.00, 69.00, 43.00, 69.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 144.000000, 0.000000, 144.000000
OB=262.00, 467.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 81.00, 62.00, 36.000000, 0.000000, 36.000000
OB=279.00, 450.00, 141.00, 32.00, 141.00, 32.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 36.000000, 0.000000, 36.000000
OB=120.00, 389.00, 37.00, 136.00, 37.00, 136.00, 3.951672, 0.000000, 3.951672, 0.00, 0.00, 5.898167, 0.000000, 5.898167
OB=574.00, 183.00, 0.00, 0.00, 0.00, 0.00, 4.800228, 0.000000, 4.800228, 100.00, 0.00, 18.518566, 0.000000, 18.518566, 100.00, 100.00, 12.762368, 0.000000, 12.762368, 0.00, 100.00, 4.206651, 0.000000, 4.206651, 0.00, 0.00, 4.800228, 0.000000, 4.800228
OB=559.00, 541.00, 3.00, 71.00, 3.00, 71.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 144.000000, 0.000000, 144.000000

Graph11PP.pomdp

//State variables
(variables
 (loc l32 l33 l4 l5 l65 l66 l67 l10 l40 l41 l11 l44 l45 l20 l22 l25 l61)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob41_65 ob41_65F ob41_65B)
 (ob44_65 ob44_65F ob44_65B)
 (ob20_61 ob20_61F ob20_61B)
 (ob40_61 ob40_61F ob40_61B)
 (ob5_66 ob5_66F ob5_66B)
)

//Initial belief state
init [*
 (loc (l32 (0.0)) (l33 (0.0)) (l4 (0.0)) (l5 (0.0)) (l65 (0.0)) (l66 (0.0)) (l67 (0.0)) (l10 (1.0)) (l40 (0.0)) (l41 (0.0)) (l11 (0.0)) (l44 (0.0)) (l45 (0.0)) (l20 (0.0)) (l22 (0.0)) (l25 (0.0)) (l61 (0.0)))
 (c1 (c1F (0.782846715328)) (c1B (0.217153284672)))
 (c2 (c2F (0.79197080292)) (c2B (0.20802919708)))
 (c3 (c3F (0.8)) (c3B (0.2)))
 (c4 (c4F (0.65)) (c4B (0.35)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l32
 loc (loc
 (l32 (locl32))
 (l33 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl32))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl32))
 (l41 (locl32))
 (l11 (locl11))
 (l44 (locl32))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (c4'
 (c4F (ob40_61' (ob40_61F (0.9)) (ob40_61B (0.1))))
 (c4B (ob40_61' (ob40_61F (0.15000000000000002)) (ob40_61B (0.85))))
)
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (100.43903623591775))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (67.95586803212802))
 (l67 (0))
 (l10 (2000.0))
 (l40 (45.12205669071391))
 (l41 (1039.9105736491454))
 (l11 (2000.0))
 (l44 (1063.0569620536883))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l33
 loc (loc
 (l32 (locl33))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl33))
 (l41 (locl33))
 (l11 (locl11))
 (l44 (locl33))
 (l45 (locl45))
 (l20 (locl33))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (c3'
 (c3F (ob20_61' (ob20_61F (0.9)) (ob20_61B (0.1))))
 (c3B (ob20_61' (ob20_61F (0.09999999999999998)) (ob20_61B (0.9))))
)
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (100.43903623591775))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (80.57670185486828))
 (l41 (958.2578511682885))
 (l11 (2000.0))
 (l44 (981.4042395728313))
 (l45 (2000.0))
 (l20 (28.178005607210743))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl4))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl4))
 (l20 (locl20))
 (l22 (locl4))
 (l25 (locl4))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (c2'
 (c2F (ob44_65' (ob44_65F (0.8)) (ob44_65B (0.2))))
 (c2B (ob44_65' (ob44_65F (0.19999999999999996)) (ob44_65B (0.8))))
)
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (31.89043743820395))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (59.033888572581766))
 (l20 (2000.0))
 (l22 (36.87817782917155))
 (l25 (66.06814663663572))
 (l61 (2000.0))
)
endaction

action goto_l5
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (c5
 (c5F (locl5))
 (c5B (locl66))
))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl5))
 (l44 (locl44))
 (l45 (locl5))
 (l20 (locl20))
 (l22 (locl5))
 (l25 (locl5))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (c5'
 (c5F (ob5_66' (ob5_66F (1.0)) (ob5_66B (0.0))))
 (c5B (ob5_66' (ob5_66F (0.0)) (ob5_66B (1.0))))
)
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (86.55634003352961))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (107.67079455451233))
 (l44 (2000.0))
 (l45 (206.23416980724443))
 (l20 (2000.0))
 (l22 (200.80200156980231))
 (l25 (279.82591008487094))
 (l61 (2000.0))
)
endaction

action goto_l65
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl65))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (c1
 (c1F (locl65))
 (c1B (locl41))
))
 (l11 (locl11))
 (l44 (c2
 (c2F (locl65))
 (c2B (locl44))
))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl65))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (c1'
 (c1F (ob41_65' (ob41_65F (1.0)) (ob41_65B (0.0))))
 (c1B (ob41_65' (ob41_65F (0.0)) (ob41_65B (1.0))))
)
 ob44_65 (c2'
 (c2F (ob44_65' (ob44_65F (1.0)) (ob44_65B (0.0))))
 (c2B (ob44_65' (ob44_65F (0.0)) (ob44_65B (1.0))))
)
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (31.89043743820395))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (179.13402803487674))
 (l11 (2000.0))
 (l44 (205.80087463370995))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (66.64082832618455))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l66
 loc (loc
 (l32 (locl66))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (c5
 (c5F (locl66))
 (c5B (locl5))
))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl66))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl66))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (c5'
 (c5F (ob5_66' (ob5_66F (1.0)) (ob5_66B (0.0))))
 (c5B (ob5_66' (ob5_66F (0.0)) (ob5_66B (1.0))))
)
 endobserve
 cost (loc
 (l32 (67.95586803212802))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (86.55634003352961))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (105.11898020814318))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (190.26297590440447))
 (l61 (2000.0))
)
endaction

action goto_l67
 loc (loc
 (l32 (locl67))
 (l33 (locl67))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl67))
 (l41 (locl67))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl67))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (1065.875971278459))
 (l33 (984.2232487976021))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (1024.4781391237025))
 (l41 (402.565871753551))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (1005.4063776322764))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l10
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl10))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (116.1077086157504))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l40
 loc (loc
 (l32 (locl40))
 (l33 (locl40))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl40))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl40))
 (l11 (locl11))
 (l44 (locl40))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (c4
 (c4F (locl40))
 (c4B (locl61))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (c4'
 (c4F (ob40_61' (ob40_61F (1.0)) (ob40_61B (0.0))))
 (c4B (ob40_61' (ob40_61F (0.0)) (ob40_61B (1.0))))
)
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (45.12205669071391))
 (l33 (80.57670185486828))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (105.11898020814318))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (998.5127414943889))
 (l11 (2000.0))
 (l44 (1021.6591298989317))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (104.31682510506155))
)
endaction

action goto_l41
 loc (loc
 (l32 (locl41))
 (l33 (locl41))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (c1
 (c1F (locl41))
 (c1B (locl65))
))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl41))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl41))
 (l45 (locl45))
 (l20 (locl41))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (c1'
 (c1F (ob41_65' (ob41_65F (1.0)) (ob41_65B (0.0))))
 (c1B (ob41_65' (ob41_65F (0.0)) (ob41_65B (1.0))))
)
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (1039.9105736491454))
 (l33 (958.2578511682885))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (179.13402803487674))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (998.5127414943889))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (32.14031735997639))
 (l45 (2000.0))
 (l20 (979.4409800029628))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l11
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl11))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl11))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl11))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (c3'
 (c3F (ob20_61' (ob20_61F (0.7)) (ob20_61B (0.3))))
 (c3B (ob20_61' (ob20_61F (0.19999999999999996)) (ob20_61B (0.8))))
)
 ob40_61 (c4'
 (c4F (ob40_61' (ob40_61F (0.7)) (ob40_61B (0.3))))
 (c4B (ob40_61' (ob40_61F (0.19999999999999996)) (ob40_61B (0.8))))
)
 ob5_66 (c5'
 (c5F (ob5_66' (ob5_66F (0.9)) (ob5_66B (0.1))))
 (c5B (ob5_66' (ob5_66F (0.09999999999999998)) (ob5_66B (0.9))))
)
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (107.67079455451233))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (116.1077086157504))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (84.1486779456457))
)
endaction

action goto_l44
 loc (loc
 (l32 (locl44))
 (l33 (locl44))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (c2
 (c2F (locl44))
 (c2B (locl65))
))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl44))
 (l41 (locl44))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl44))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (c2'
 (c2F (ob44_65' (ob44_65F (1.0)) (ob44_65B (0.0))))
 (c2B (ob44_65' (ob44_65F (0.0)) (ob44_65B (1.0))))
)
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (1063.0569620536883))
 (l33 (981.4042395728313))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (205.80087463370995))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (1021.6591298989317))
 (l41 (32.14031735997639))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (1002.5873684075056))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l45
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl45))
 (l5 (locl45))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl45))
 (l25 (locl45))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (c1'
 (c1F (ob41_65' (ob41_65F (0.75)) (ob41_65B (0.25))))
 (c1B (ob41_65' (ob41_65F (0.25)) (ob41_65B (0.75))))
)
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (59.033888572581766))
 (l5 (206.23416980724443))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (29.068883707497267))
 (l25 (77.78174593052023))
 (l61 (2000.0))
)
endaction

action goto_l20
 loc (loc
 (l32 (locl32))
 (l33 (locl20))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl20))
 (l11 (locl11))
 (l44 (locl20))
 (l45 (locl45))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (c3
 (c3F (locl20))
 (c3B (locl61))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (c3'
 (c3F (ob20_61' (ob20_61F (1.0)) (ob20_61B (0.0))))
 (c3B (ob20_61' (ob20_61F (0.0)) (ob20_61B (1.0))))
)
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (28.178005607210743))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (979.4409800029628))
 (l11 (2000.0))
 (l44 (1002.5873684075056))
 (l45 (2000.0))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (40.44749683231337))
)
endaction

action goto_l22
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl22))
 (l5 (locl22))
 (l65 (locl22))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl22))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (c1'
 (c1F (ob41_65' (ob41_65F (0.8)) (ob41_65B (0.2))))
 (c1B (ob41_65' (ob41_65F (0.19999999999999996)) (ob41_65B (0.8))))
)
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (36.87817782917155))
 (l5 (200.80200156980231))
 (l65 (66.64082832618455))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (29.068883707497267))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l25
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl25))
 (l5 (locl25))
 (l65 (locl65))
 (l66 (locl25))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (locl40))
 (l41 (locl41))
 (l11 (locl11))
 (l44 (locl44))
 (l45 (locl25))
 (l20 (locl20))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (ob20_61' (ob20_61F (0.5)) (ob20_61B (0.5)))
 ob40_61 (ob40_61' (ob40_61F (0.5)) (ob40_61B (0.5)))
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (66.06814663663572))
 (l5 (279.82591008487094))
 (l65 (2000.0))
 (l66 (190.26297590440447))
 (l67 (0))
 (l10 (2000.0))
 (l40 (2000.0))
 (l41 (2000.0))
 (l11 (2000.0))
 (l44 (2000.0))
 (l45 (77.78174593052023))
 (l20 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l61
 loc (loc
 (l32 (locl32))
 (l33 (locl33))
 (l4 (locl4))
 (l5 (locl5))
 (l65 (locl65))
 (l66 (locl66))
 (l67 (locl67))
 (l10 (locl10))
 (l40 (c4
 (c4F (locl61))
 (c4B (locl40))
))
 (l41 (locl41))
 (l11 (locl61))
 (l44 (locl44))
 (l45 (locl45))
 (l20 (c3
 (c3F (locl61))
 (c3B (locl20))
))
 (l22 (locl22))
 (l25 (locl25))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob41_65 (ob41_65' (ob41_65F (0.5)) (ob41_65B (0.5)))
 ob44_65 (ob44_65' (ob44_65F (0.5)) (ob44_65B (0.5)))
 ob20_61 (c3'
 (c3F (ob20_61' (ob20_61F (1.0)) (ob20_61B (0.0))))
 (c3B (ob20_61' (ob20_61F (0.0)) (ob20_61B (1.0))))
)
 ob40_61 (c4'
 (c4F (ob40_61' (ob40_61F (1.0)) (ob40_61B (0.0))))
 (c4B (ob40_61' (ob40_61F (0.0)) (ob40_61B (1.0))))
)
 ob5_66 (ob5_66' (ob5_66F (0.5)) (ob5_66B (0.5)))
 endobserve
 cost (loc
 (l32 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l65 (2000.0))
 (l66 (2000.0))
 (l67 (0))
 (l10 (2000.0))
 (l40 (104.31682510506155))
 (l41 (2000.0))
 (l11 (84.1486779456457))
 (l44 (2000.0))
 (l45 (2000.0))
 (l20 (40.44749683231337))
 (l22 (2000.0))
 (l25 (2000.0))
 (l61 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph11_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 230.00, 161.00, 269.49
N=1, 619.00, 86.00, 70.31
N=2, 201.00, 681.00, 165.17
N=3, 146.00, 683.00, 269.02
N=4, 632.00, 576.00, 182.07
N=5, 452.00, 655.00, 324.60
N=6, 197.00, 233.00, 192.27
N=7, 216.00, 119.00, 70.98
N=8, 361.00, 438.00, 185.84
N=9, 410.00, 485.00, 104.66
N=10, 230.00, 659.00, 86.38
N=11, 345.00, 643.00, 211.90
N=12, 613.00, 82.00, 257.51
N=13, 76.00, 450.00, 47.21
N=14, 523.00, 125.00, 75.99
N=15, 84.00, 662.00, 195.07
N=16, 320.00, 328.00, 232.18
N=17, 565.00, 318.00, 15.80
N=18, 614.00, 392.00, 295.85
N=19, 400.00, 74.00, 215.99
N=20, 356.00, 519.00, 324.00
N=21, 36.00, 139.00, 288.12
N=22, 624.00, 612.00, 329.81
N=23, 651.00, 347.00, 284.50
N=24, 463.00, 257.00, 35.33
N=25, 698.00, 579.00, 175.74
N=26, 657.00, 318.00, 284.36
N=27, 33.00, 353.00, 280.75
N=28, 347.00, 396.00, 249.06
N=29, 394.00, 110.00, 143.13
N=30, 581.00, 653.00, 341.61
N=31, 355.00, 268.00, 226.89
N=32, 451.00, 552.00, 220.25
N=33, 369.00, 494.00, 347.26
N=34, 174.00, 301.00, 62.55
N=35, 530.00, 109.00, 73.31
N=36, 289.00, 223.00, 198.14
N=37, 68.00, 624.00, 81.62
N=38, 620.00, 342.00, 292.16
N=39, 49.00, 556.00, 292.93
N=40, 441.00, 508.00, 331.23
N=41, 533.00, 419.00, 209.66
N=42, 375.00, 476.00, 291.25
N=43, 336.00, 89.00, 11.20
N=44, 530.00, 387.00, 193.68
N=45, 643.00, 634.00, 219.95
N=46, 523.00, 323.00, 154.93
N=47, 143.00, 498.00, 75.24
N=48, 10.00, 140.00, 318.04
N=49, 489.00, 681.00, 231.82
N=50, 246.00, 503.00, 78.54
N=51, 133.00, 233.00, 248.33
N=52, 376.00, 680.00, 204.78
N=53, 319.00, 442.00, 354.58
N=54, 321.00, 70.00, 207.78
N=55, 157.00, 598.00, 236.49
N=56, 63.00, 541.00, 174.58
N=57, 176.00, 369.00, 322.16
N=58, 324.00, 151.00, 122.93
N=59, 445.00, 376.00, 33.67
N=60, 297.00, 414.00, 78.83
N=61, 350.00, 559.00, 162.26
N=62, 241.00, 632.00, 128.25
N=63, 380.00, 454.00, 201.93
N=64, 221.00, 388.00, 229.85
N=65, 653.00, 552.00, 298.01
N=66, 508.00, 589.00, 108.19
N=67, 661.00, 89.00, 106.60
N=68, 77.00, 431.00, 0.75
N=69, 200.00, 272.00, 203.43
N=70, 336.00, 33.00, 324.41
N=71, 145.00, 236.00, 319.71
N=72, 415.00, 76.00, 120.43
N=73, 570.00, 361.00, 120.75
N=74, 414.00, 190.00, 274.38
N=75, 530.00, 171.00, 123.13
N=76, 86.00, 1.00, 87.20
N=77, 333.00, 197.00, 116.39
N=78, 535.00, 62.00, 10.23
N=79, 343.00, 402.00, 84.08

#Edge data
#E=Node number 1, Node number 2, cost
E=4, 22, 36.88
E=4, 25, 66.07
E=4, 45, 59.03
E=4, 65, 31.89
E=5, 66, 86.56
E=5, 11, 107.67
E=5, 22, 200.80
E=5, 25, 279.83
E=5, 45, 206.23
E=10, 11, 116.11
E=11, 61, 84.15
E=20, 33, 28.18
E=20, 67, 1005.41
E=20, 41, 979.44
E=20, 44, 1002.59
E=20, 61, 40.45
E=22, 65, 66.64
E=22, 45, 29.07
E=25, 66, 190.26
E=25, 45, 77.78
E=32, 33, 100.44
E=32, 40, 45.12
E=32, 41, 1039.91
E=32, 44, 1063.06
E=32, 66, 67.96
E=32, 67, 1065.88
E=33, 40, 80.58
E=33, 41, 958.26
E=33, 44, 981.40
E=33, 67, 984.22
E=40, 66, 105.12
E=40, 67, 1024.48
E=40, 61, 104.32
E=40, 41, 998.51
E=40, 44, 1021.66
E=41, 65, 179.13
E=41, 67, 402.57
E=41, 44, 32.14
E=44, 65, 205.80

#Start node ID
S=10

#Goal node ID
G=67

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 41, 65, 44, 65
C=1, 20, 61
C=2, 40, 61
C=3, 5, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 5, 66
EO=1, 40, 61
EO=2, 20, 61
EO=3, 44, 65
EO=4, 41, 65

#Starting belief state, starting with the all F combination and working through to all B
B=0.224179, 0.224179, 0.074726, 0.074726, 0.018682, 0.018682, 0.056045, 0.056045, 0.010675, 0.010675, 0.003558, 0.003558, 0.000890, 0.000890, 0.002669, 0.002669, 0.013412, 0.013412, 0.004471, 0.004471, 0.001118, 0.001118, 0.003353, 0.003353, 0.051734, 0.051734, 0.017245, 0.017245, 0.004311, 0.004311, 0.012933, 0.012933

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=22, 41, 65, 0.800000, 0.200000
O=65, 41, 65, 1.000000, 0.000000
O=65, 44, 65, 1.000000, 0.000000
O=41, 41, 65, 1.000000, 0.000000
O=4, 44, 65, 0.800000, 0.200000
O=44, 44, 65, 1.000000, 0.000000
O=45, 41, 65, 0.750000, 0.250000
O=11, 20, 61, 0.800000, 0.300000
O=11, 40, 61, 0.800000, 0.300000
O=11, 5, 66, 0.900000, 0.100000
O=61, 20, 61, 1.000000, 0.000000
O=61, 40, 61, 1.000000, 0.000000
O=20, 20, 61, 1.000000, 0.000000
O=40, 40, 61, 1.000000, 0.000000
O=33, 20, 61, 0.900000, 0.100000
O=32, 40, 61, 0.850000, 0.100000
O=5, 5, 66, 1.000000, 0.000000
O=66, 5, 66, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=45.00, 52.00, 0.00, 0.00, 0.00, 0.00, 0.610560, 0.000000, 0.610560, 126.00, 112.00, 9.567695, 0.000000, 9.567695
OB=247.00, 217.00, 0.00, 0.00, 0.00, 0.00, 0.811366, 0.000000, 0.811366, 95.00, 76.00, 6.034330, 0.000000, 6.034330
OB=510.00, 424.00, 116.00, 131.00, 116.00, 131.00, 0.088892, 0.000000, 0.088892, 0.00, 0.00, 21.590736, 0.000000, 21.590736
OB=455.00, 622.00, 43.00, 69.00, 43.00, 69.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 144.000000, 0.000000, 144.000000
OB=262.00, 467.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 81.00, 62.00, 36.000000, 0.000000, 36.000000
OB=279.00, 450.00, 141.00, 32.00, 141.00, 32.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 36.000000, 0.000000, 36.000000
OB=120.00, 389.00, 37.00, 136.00, 37.00, 136.00, 3.951672, 0.000000, 3.951672, 0.00, 0.00, 5.898167, 0.000000, 5.898167
OB=574.00, 183.00, 0.00, 0.00, 0.00, 0.00, 4.800228, 0.000000, 4.800228, 100.00, 0.00, 18.518566, 0.000000, 18.518566, 100.00, 100.00, 12.762368, 0.000000, 12.762368, 0.00, 100.00, 4.206651, 0.000000, 4.206651, 0.00, 0.00, 4.800228, 0.000000, 4.800228
OB=559.00, 541.00, 3.00, 71.00, 3.00, 71.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 144.000000, 0.000000, 144.000000

Graph12.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 456.00, 92.00, 317.85
N=1, 509.00, 498.00, 151.06
N=2, 373.00, 43.00, 42.48
N=3, 191.00, 67.00, 337.85
N=4, 486.00, 535.00, 267.33
N=5, 308.00, 394.00, 148.50
N=6, 316.00, 650.00, 225.51
N=7, 59.00, 32.00, 282.72
N=8, 591.00, 24.00, 81.13
N=9, 241.00, 431.00, 24.04
N=10, 199.00, 659.00, 230.89
N=11, 300.00, 614.00, 44.57
N=12, 103.00, 58.00, 124.47
N=13, 159.00, 18.00, 342.23
N=14, 126.00, 657.00, 62.35
N=15, 96.00, 316.00, 149.75
N=16, 207.00, 89.00, 341.34
N=17, 606.00, 344.00, 66.90
N=18, 177.00, 68.00, 261.53
N=19, 467.00, 402.00, 321.94
N=20, 656.00, 612.00, 63.48
N=21, 524.00, 227.00, 297.17
N=22, 352.00, 623.00, 166.81
N=23, 369.00, 652.00, 149.64
N=24, 413.00, 607.00, 198.21
N=25, 72.00, 215.00, 179.92
N=26, 26.00, 160.00, 304.42
N=27, 86.00, 326.00, 206.77
N=28, 170.00, 165.00, 221.14
N=29, 340.00, 84.00, 274.29
N=30, 270.00, 173.00, 215.29
N=31, 30.00, 432.00, 32.25
N=32, 62.00, 37.00, 65.27
N=33, 109.00, 471.00, 153.96
N=34, 543.00, 213.00, 9.24
N=35, 79.00, 65.00, 287.17
N=36, 506.00, 393.00, 238.37
N=37, 443.00, 443.00, 328.12
N=38, 102.00, 105.00, 32.74
N=39, 70.00, 241.00, 134.98
N=40, 679.00, 380.00, 85.66
N=41, 67.00, 115.00, 321.89
N=42, 66.00, 306.00, 6.10
N=43, 42.00, 127.00, 302.86
N=44, 239.00, 177.00, 297.45
N=45, 218.00, 49.00, 175.47
N=46, 512.00, 77.00, 107.61
N=47, 168.00, 614.00, 75.62
N=48, 428.00, 556.00, 13.12
N=49, 68.00, 380.00, 150.75
N=50, 218.00, 406.00, 354.12
N=51, 35.00, 47.00, 346.02
N=52, 275.00, 663.00, 327.59
N=53, 38.00, 283.00, 299.54
N=54, 561.00, 187.00, 207.52
N=55, 61.00, 254.00, 74.51
N=56, 572.00, 222.00, 61.41
N=57, 3.00, 74.00, 343.04
N=58, 409.00, 644.00, 212.98
N=59, 444.00, 558.00, 31.19
N=60, 251.00, 51.00, 15.15
N=61, 543.00, 348.00, 198.87
N=62, 444.00, 55.00, 177.91
N=63, 486.00, 467.00, 73.94
N=64, 108.00, 618.00, 115.48
N=65, 34.00, 417.00, 49.39
N=66, 456.00, 481.00, 159.41
N=67, 261.00, 176.00, 31.09
N=68, 103.00, 218.00, 129.91
N=69, 63.00, 432.00, 161.41
N=70, 43.00, 359.00, 358.39
N=71, 94.00, 359.00, 129.29
N=72, 619.00, 519.00, 65.89
N=73, 327.00, 630.00, 229.38
N=74, 272.00, 349.00, 269.14
N=75, 74.00, 36.00, 352.27
N=76, 501.00, 182.00, 102.35
N=77, 513.00, 478.00, 6.71
N=78, 90.00, 239.00, 107.77
N=79, 19.00, 184.00, 268.82

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 62, 38.90
E=0, 46, 57.97
E=0, 2, 96.38
E=1, 77, 20.40
E=1, 63, 38.60
E=1, 4, 43.57
E=2, 29, 52.63
E=2, 62, 72.01
E=3, 18, 14.04
E=3, 16, 27.20
E=3, 45, 32.45
E=4, 66, 61.77
E=4, 77, 63.07
E=5, 74, 57.63
E=6, 73, 22.83
E=6, 11, 39.40
E=6, 52, 43.01
E=7, 32, 5.83
E=7, 75, 15.52
E=7, 51, 28.30
E=8, 46, 95.13
E=8, 62, 150.23
E=8, 29, 258.07
E=9, 50, 33.97
E=10, 47, 54.64
E=10, 14, 73.03
E=10, 52, 76.11
E=11, 73, 31.38
E=11, 22, 52.77
E=12, 35, 25.00
E=12, 75, 36.40
E=12, 32, 46.07
E=13, 18, 53.14
E=13, 16, 85.70
E=13, 75, 86.88
E=14, 64, 42.95
E=14, 47, 60.11
E=15, 27, 14.14
E=15, 42, 31.62
E=15, 71, 43.05
E=16, 18, 36.62
E=17, 61, 63.13
E=17, 40, 81.39
E=17, 36, 111.36
E=19, 36, 40.02
E=19, 37, 47.51
E=19, 63, 67.72
E=21, 34, 23.60
E=21, 76, 50.54
E=21, 61, 122.48
E=22, 73, 25.96
E=22, 23, 33.62
E=23, 58, 40.79
E=23, 24, 62.94
E=24, 58, 37.22
E=24, 48, 53.16
E=25, 39, 26.08
E=25, 78, 30.00
E=25, 68, 31.14
E=26, 79, 25.00
E=26, 43, 36.67
E=26, 41, 60.88
E=27, 71, 33.96
E=27, 70, 54.20
E=28, 44, 70.04
E=28, 68, 85.43
E=28, 38, 90.69
E=29, 60, 94.92
E=30, 67, 9.49
E=30, 44, 31.26
E=30, 60, 123.47
E=31, 65, 15.52
E=31, 69, 33.00
E=31, 49, 64.40
E=32, 51, 28.79
E=33, 69, 60.31
E=33, 65, 92.42
E=33, 49, 99.81
E=34, 56, 30.36
E=34, 76, 52.20
E=35, 38, 46.14
E=35, 51, 47.54
E=36, 61, 58.26
E=37, 66, 40.16
E=37, 63, 49.24
E=38, 41, 36.40
E=39, 55, 15.81
E=39, 78, 20.10
E=41, 43, 27.73
E=42, 53, 36.24
E=42, 55, 52.24
E=43, 79, 61.47
E=44, 67, 22.02
E=45, 60, 33.06
E=45, 68, 204.42
E=46, 76, 105.57
E=47, 64, 60.13
E=48, 59, 16.12
E=48, 66, 80.06
E=49, 70, 32.65
E=52, 58, 135.34
E=53, 55, 37.01
E=53, 78, 68.12
E=54, 56, 36.69
E=57, 79, 111.16
E=57, 70, 287.79
E=57, 71, 299.18
E=64, 69, 191.37

#Start node ID
S=58

#Goal node ID
G=62

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 19, 37
C=1, 17, 61, 21, 61
C=2, 28, 68
C=3, 46, 76

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 46, 76
EO=1, 28, 68
EO=2, 21, 61
EO=3, 17, 61
EO=4, 19, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.006967, 0.001229, 0.062699, 0.011065, 0.001608, 0.000284, 0.014469, 0.002553, 0.021257, 0.003751, 0.191313, 0.033761, 0.016919, 0.002986, 0.152269, 0.026871, 0.005700, 0.001006, 0.051299, 0.009053, 0.001315, 0.000232, 0.011838, 0.002089, 0.017392, 0.003069, 0.156529, 0.027623, 0.013843, 0.002443, 0.124584, 0.021985

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=66, 19, 37, 0.900000, 0.100000
O=37, 19, 37, 1.000000, 0.000000
O=19, 19, 37, 1.000000, 0.000000
O=19, 21, 61, 0.800000, 0.200000
O=48, 19, 37, 0.700000, 0.200000
O=36, 17, 61, 1.000000, 0.000000
O=36, 21, 61, 1.000000, 0.700000
O=61, 17, 61, 1.000000, 0.000000
O=61, 21, 61, 1.000000, 0.000000
O=17, 17, 61, 1.000000, 0.000000
O=21, 21, 61, 1.000000, 0.000000
O=21, 46, 76, 0.700000, 0.300000
O=78, 28, 68, 1.000000, 0.000000
O=68, 28, 68, 1.000000, 0.000000
O=28, 28, 68, 1.000000, 0.000000
O=76, 46, 76, 1.000000, 0.000000
O=46, 46, 76, 1.000000, 0.000000
O=16, 28, 68, 0.700000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=545.00, 545.00, 60.00, 0.00, 60.00, 0.00, 0.027441, 0.000000, 0.027441, 120.00, 30.00, 1.016576, 0.000000, 1.016576, 100.00, 110.00, 0.032483, 0.000000, 0.032483, 20.00, 110.00, 11.274253, 0.000000, 11.274253, 0.00, 30.00, 2.478758, 0.000000, 2.478758, 60.00, 0.00, 0.027441, 0.000000, 0.027441
OB=609.00, 375.00, 60.00, 0.00, 60.00, 0.00, 1.535078, 0.000000, 1.535078, 120.00, 30.00, 5.220101, 0.000000, 5.220101, 100.00, 110.00, 0.871423, 0.000000, 0.871423, 20.00, 110.00, 19.987564, 0.000000, 19.987564, 0.00, 30.00, 21.502131, 0.000000, 21.502131, 60.00, 0.00, 1.535078, 0.000000, 1.535078
OB=427.00, 110.00, 60.00, 0.00, 60.00, 0.00, 25.000000, 0.000000, 25.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 36.000000, 0.000000, 36.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 9.000000, 0.000000, 9.000000, 60.00, 0.00, 25.000000, 0.000000, 25.000000
OB=577.00, 56.00, 0.00, 0.00, 0.00, 0.00, 4.930965, 0.000000, 4.930965, 100.00, 0.00, 2.595731, 0.000000, 2.595731, 100.00, 100.00, 0.243608, 0.000000, 0.243608, 0.00, 100.00, 21.717417, 0.000000, 21.717417, 0.00, 0.00, 4.930965, 0.000000, 4.930965
OB=609.00, 222.00, 60.00, 0.00, 60.00, 0.00, 9.000000, 0.000000, 9.000000, 120.00, 30.00, 25.000000, 0.000000, 25.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 64.000000, 0.000000, 64.000000, 0.00, 30.00, 81.000000, 0.000000, 81.000000, 60.00, 0.00, 9.000000, 0.000000, 9.000000
OB=133.00, 502.00, 0.00, 0.00, 0.00, 0.00, 9.252828, 0.000000, 9.252828, 140.00, 0.00, 7.491036, 0.000000, 7.491036, 140.00, 80.00, 0.139142, 0.000000, 0.139142, 0.00, 80.00, 2.216434, 0.000000, 2.216434, 0.00, 0.00, 9.252828, 0.000000, 9.252828
OB=302.00, 467.00, 0.00, 0.00, 0.00, 0.00, 4.767670, 0.000000, 4.767670, 100.00, 0.00, 5.728652, 0.000000, 5.728652, 100.00, 100.00, 7.257232, 0.000000, 7.257232, 0.00, 100.00, 11.332848, 0.000000, 11.332848, 0.00, 0.00, 4.767670, 0.000000, 4.767670
OB=189.00, 304.00, 0.00, 0.00, 0.00, 0.00, 26.127402, 0.000000, 26.127402, 130.00, 140.00, 3.257772, 0.000000, 3.257772
OB=335.00, 314.00, 0.00, 0.00, 0.00, 0.00, 78.241735, 0.000000, 78.241735, 100.00, 0.00, 5.496877, 0.000000, 5.496877, 100.00, 100.00, 57.736706, 0.000000, 57.736706, 0.00, 100.00, 0.488528, 0.000000, 0.488528, 0.00, 0.00, 78.241735, 0.000000, 78.241735
OB=149.00, 347.00, 0.00, 0.00, 0.00, 0.00, 32.483320, 0.000000, 32.483320, 82.00, 124.00, 16.611301, 0.000000, 16.611301
OB=425.00, 253.00, 0.00, 0.00, 0.00, 0.00, 8.103331, 0.000000, 8.103331, 45.00, 66.00, 17.195580, 0.000000, 17.195580
OB=157.00, 202.00, 0.00, 0.00, 0.00, 0.00, 169.000000, 0.000000, 169.000000, 140.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 80.00, 49.000000, 0.000000, 49.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000

Graph12PP.pomdp

//State variables
(variables
 (loc l68 l66 l36 l37 l76 l78 l46 l45 l17 l16 l19 l48 l21 l58 l63 l62 l28 l61)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob19_37 ob19_37F ob19_37B)
 (ob17_61 ob17_61F ob17_61B)
 (ob21_61 ob21_61F ob21_61B)
 (ob28_68 ob28_68F ob28_68B)
 (ob46_76 ob46_76F ob46_76B)
)

//Initial belief state
init [*
 (loc (l68 (0.0)) (l66 (0.0)) (l36 (0.0)) (l37 (0.0)) (l76 (0.0)) (l78 (0.0)) (l46 (0.0)) (l45 (0.0)) (l17 (0.0)) (l16 (0.0)) (l19 (0.0)) (l48 (0.0)) (l21 (0.0)) (l58 (1.0)) (l63 (0.0)) (l62 (0.0)) (l28 (0.0)) (l61 (0.0)))
 (c1 (c1F (0.550000000001)) (c1B (0.449999999999)))
 (c2 (c2F (0.183406113538)) (c2B (0.816593886462)))
 (c3 (c3F (0.603711790393)) (c3B (0.396288209607)))
 (c4 (c4F (0.099999999999)) (c4B (0.900000000001)))
 (c5 (c5F (0.850000000002)) (c5B (0.149999999998)))
]

//Actions and costs
action goto_l68
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl68))
 (l46 (locl46))
 (l45 (locl68))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl68))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (c4
 (c4F (locl68))
 (c4B (locl28))
))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (c4'
 (c4F (ob28_68' (ob28_68F (1.0)) (ob28_68B (0.0))))
 (c4B (ob28_68' (ob28_68F (0.0)) (ob28_68B (1.0))))
)
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (61.14482300479487))
 (l46 (2000.0))
 (l45 (204.41624201613726))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (872.8848430740721))
 (l63 (2000.0))
 (l62 (0))
 (l28 (85.42833253669417))
 (l61 (2000.0))
)
endaction

action goto_l66
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl66))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl66))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (c1'
 (c1F (ob19_37' (ob19_37F (0.9)) (ob19_37B (0.1))))
 (c1B (ob19_37' (ob19_37F (0.09999999999999998)) (ob19_37B (0.9))))
)
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (40.162171256046406))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (80.05623023850174))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l36
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl36))
 (l16 (locl16))
 (l19 (locl36))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl36))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (c2'
 (c2F (ob17_61' (ob17_61F (1.0)) (ob17_61B (0.0))))
 (c2B (ob17_61' (ob17_61F (0.0)) (ob17_61B (1.0))))
)
 ob21_61 (c3'
 (c3F (ob21_61' (ob21_61F (0.30000000000000004)) (ob21_61B (0.7))))
 (c3B (ob21_61' (ob21_61F (0.0)) (ob21_61B (1.0))))
)
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (111.35977729862789))
 (l16 (2000.0))
 (l19 (40.024992192379))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (58.25804665451803))
)
endaction

action goto_l37
 loc (loc
 (l68 (locl68))
 (l66 (locl37))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (c1
 (c1F (locl37))
 (c1B (locl19))
))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl37))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (c1'
 (c1F (ob19_37' (ob19_37F (1.0)) (ob19_37B (0.0))))
 (c1B (ob19_37' (ob19_37F (0.0)) (ob19_37B (1.0))))
)
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (40.162171256046406))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (47.50789408087881))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (49.24428900898052))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l76
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (c5
 (c5F (locl76))
 (c5B (locl46))
))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl76))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (c5'
 (c5F (ob46_76' (ob46_76F (1.0)) (ob46_76B (0.0))))
 (c5B (ob46_76' (ob46_76F (0.0)) (ob46_76B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (105.57461816175325))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (50.53711507397311))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l78
 loc (loc
 (l68 (locl78))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl78))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (c4'
 (c4F (ob28_68' (ob28_68F (1.0)) (ob28_68B (0.0))))
 (c4B (ob28_68' (ob28_68F (0.0)) (ob28_68B (1.0))))
)
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (61.14482300479487))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (835.7629616907084))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l46
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (c5
 (c5F (locl46))
 (c5B (locl76))
))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl46))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl46))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (c5'
 (c5F (ob46_76' (ob46_76F (1.0)) (ob46_76B (0.0))))
 (c5B (ob46_76' (ob46_76F (0.0)) (ob46_76B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (105.57461816175325))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (334.9711380207853))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (526.6739361912807))
 (l61 (2000.0))
)
endaction

action goto_l45
 loc (loc
 (l68 (locl45))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl45))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl45))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl45))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (204.41624201613726))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (334.9711380207853))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (59.65290249664679))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (257.82389918976156))
 (l61 (2000.0))
)
endaction

action goto_l17
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl17))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (c2
 (c2F (locl17))
 (c2B (locl61))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (c2'
 (c2F (ob17_61' (ob17_61F (1.0)) (ob17_61B (0.0))))
 (c2B (ob17_61' (ob17_61F (0.0)) (ob17_61B (1.0))))
)
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (111.35977729862789))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (63.12685640834652))
)
endaction

action goto_l16
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl16))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (c4'
 (c4F (ob28_68' (ob28_68F (0.8)) (ob28_68B (0.2))))
 (c4B (ob28_68' (ob28_68F (0.30000000000000004)) (ob28_68B (0.7))))
)
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (59.65290249664679))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l19
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl19))
 (l37 (c1
 (c1F (locl19))
 (c1B (locl37))
))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl19))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (c1'
 (c1F (ob19_37' (ob19_37F (1.0)) (ob19_37B (0.0))))
 (c1B (ob19_37' (ob19_37F (0.0)) (ob19_37B (1.0))))
)
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (c3'
 (c3F (ob21_61' (ob21_61F (0.8)) (ob21_61B (0.2))))
 (c3B (ob21_61' (ob21_61F (0.19999999999999996)) (ob21_61B (0.8))))
)
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (40.024992192379))
 (l37 (47.50789408087881))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (67.72001181334805))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l48
 loc (loc
 (l68 (locl68))
 (l66 (locl48))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl48))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (c1'
 (c1F (ob19_37' (ob19_37F (0.8)) (ob19_37B (0.2))))
 (c1B (ob19_37' (ob19_37F (0.30000000000000004)) (ob19_37B (0.7))))
)
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (80.05623023850174))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (90.37572357186484))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l21
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl21))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (c3
 (c3F (locl21))
 (c3B (locl61))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (c3'
 (c3F (ob21_61' (ob21_61F (1.0)) (ob21_61B (0.0))))
 (c3B (ob21_61' (ob21_61F (0.0)) (ob21_61B (1.0))))
)
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (c5'
 (c5F (ob46_76' (ob46_76F (0.7)) (ob46_76B (0.3))))
 (c5B (ob46_76' (ob46_76F (0.30000000000000004)) (ob46_76B (0.7))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (50.53711507397311))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (122.48265183282079))
)
endaction

action goto_l58
 loc (loc
 (l68 (locl58))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl58))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl58))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl58))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (872.8848430740721))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (835.7629616907084))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (90.37572357186484))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (1259.558378777526))
 (l61 (2000.0))
)
endaction

action goto_l63
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl63))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl63))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (49.24428900898052))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (67.72001181334805))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l62
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl62))
 (l45 (locl62))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl62))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (96.87143284009642))
 (l45 (252.6193038876492))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (444.32210205814465))
 (l61 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l68 (c4
 (c4F (locl28))
 (c4B (locl68))
))
 (l66 (locl66))
 (l36 (locl36))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl28))
 (l45 (locl28))
 (l17 (locl17))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (locl21))
 (l58 (locl28))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (ob17_61' (ob17_61F (0.5)) (ob17_61B (0.5)))
 ob21_61 (ob21_61' (ob21_61F (0.5)) (ob21_61B (0.5)))
 ob28_68 (c4'
 (c4F (ob28_68' (ob28_68F (1.0)) (ob28_68B (0.0))))
 (c4B (ob28_68' (ob28_68F (0.0)) (ob28_68B (1.0))))
)
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (85.42833253669417))
 (l66 (2000.0))
 (l36 (2000.0))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (526.6739361912807))
 (l45 (257.82389918976156))
 (l17 (2000.0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (2000.0))
 (l58 (1259.558378777526))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

action goto_l61
 loc (loc
 (l68 (locl68))
 (l66 (locl66))
 (l36 (locl61))
 (l37 (locl37))
 (l76 (locl76))
 (l78 (locl78))
 (l46 (locl46))
 (l45 (locl45))
 (l17 (c2
 (c2F (locl61))
 (c2B (locl17))
))
 (l16 (locl16))
 (l19 (locl19))
 (l48 (locl48))
 (l21 (c3
 (c3F (locl61))
 (c3B (locl21))
))
 (l58 (locl58))
 (l63 (locl63))
 (l62 (locl62))
 (l28 (locl28))
 (l61 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob19_37 (ob19_37' (ob19_37F (0.5)) (ob19_37B (0.5)))
 ob17_61 (c2'
 (c2F (ob17_61' (ob17_61F (1.0)) (ob17_61B (0.0))))
 (c2B (ob17_61' (ob17_61F (0.0)) (ob17_61B (1.0))))
)
 ob21_61 (c3'
 (c3F (ob21_61' (ob21_61F (1.0)) (ob21_61B (0.0))))
 (c3B (ob21_61' (ob21_61F (0.0)) (ob21_61B (1.0))))
)
 ob28_68 (ob28_68' (ob28_68F (0.5)) (ob28_68B (0.5)))
 ob46_76 (ob46_76' (ob46_76F (0.5)) (ob46_76B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l66 (2000.0))
 (l36 (58.25804665451803))
 (l37 (2000.0))
 (l76 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l45 (2000.0))
 (l17 (63.12685640834652))
 (l16 (2000.0))
 (l19 (2000.0))
 (l48 (2000.0))
 (l21 (122.48265183282079))
 (l58 (2000.0))
 (l63 (2000.0))
 (l62 (0))
 (l28 (2000.0))
 (l61 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph12_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 456.00, 92.00, 317.85
N=1, 509.00, 498.00, 151.06
N=2, 373.00, 43.00, 42.48
N=3, 191.00, 67.00, 337.85
N=4, 486.00, 535.00, 267.33
N=5, 308.00, 394.00, 148.50
N=6, 316.00, 650.00, 225.51
N=7, 59.00, 32.00, 282.72
N=8, 591.00, 24.00, 81.13
N=9, 241.00, 431.00, 24.04
N=10, 199.00, 659.00, 230.89
N=11, 300.00, 614.00, 44.57
N=12, 103.00, 58.00, 124.47
N=13, 159.00, 18.00, 342.23
N=14, 126.00, 657.00, 62.35
N=15, 96.00, 316.00, 149.75
N=16, 207.00, 89.00, 341.34
N=17, 606.00, 344.00, 66.90
N=18, 177.00, 68.00, 261.53
N=19, 467.00, 402.00, 321.94
N=20, 656.00, 612.00, 63.48
N=21, 524.00, 227.00, 297.17
N=22, 352.00, 623.00, 166.81
N=23, 369.00, 652.00, 149.64
N=24, 413.00, 607.00, 198.21
N=25, 72.00, 215.00, 179.92
N=26, 26.00, 160.00, 304.42
N=27, 86.00, 326.00, 206.77
N=28, 170.00, 165.00, 221.14
N=29, 340.00, 84.00, 274.29
N=30, 270.00, 173.00, 215.29
N=31, 30.00, 432.00, 32.25
N=32, 62.00, 37.00, 65.27
N=33, 109.00, 471.00, 153.96
N=34, 543.00, 213.00, 9.24
N=35, 79.00, 65.00, 287.17
N=36, 506.00, 393.00, 238.37
N=37, 443.00, 443.00, 328.12
N=38, 102.00, 105.00, 32.74
N=39, 70.00, 241.00, 134.98
N=40, 679.00, 380.00, 85.66
N=41, 67.00, 115.00, 321.89
N=42, 66.00, 306.00, 6.10
N=43, 42.00, 127.00, 302.86
N=44, 239.00, 177.00, 297.45
N=45, 218.00, 49.00, 175.47
N=46, 512.00, 77.00, 107.61
N=47, 168.00, 614.00, 75.62
N=48, 428.00, 556.00, 13.12
N=49, 68.00, 380.00, 150.75
N=50, 218.00, 406.00, 354.12
N=51, 35.00, 47.00, 346.02
N=52, 275.00, 663.00, 327.59
N=53, 38.00, 283.00, 299.54
N=54, 561.00, 187.00, 207.52
N=55, 61.00, 254.00, 74.51
N=56, 572.00, 222.00, 61.41
N=57, 3.00, 74.00, 343.04
N=58, 409.00, 644.00, 212.98
N=59, 444.00, 558.00, 31.19
N=60, 251.00, 51.00, 15.15
N=61, 543.00, 348.00, 198.87
N=62, 444.00, 55.00, 177.91
N=63, 486.00, 467.00, 73.94
N=64, 108.00, 618.00, 115.48
N=65, 34.00, 417.00, 49.39
N=66, 456.00, 481.00, 159.41
N=67, 261.00, 176.00, 31.09
N=68, 103.00, 218.00, 129.91
N=69, 63.00, 432.00, 161.41
N=70, 43.00, 359.00, 358.39
N=71, 94.00, 359.00, 129.29
N=72, 619.00, 519.00, 65.89
N=73, 327.00, 630.00, 229.38
N=74, 272.00, 349.00, 269.14
N=75, 74.00, 36.00, 352.27
N=76, 501.00, 182.00, 102.35
N=77, 513.00, 478.00, 6.71
N=78, 90.00, 239.00, 107.77
N=79, 19.00, 184.00, 268.82

#Edge data
#E=Node number 1, Node number 2, cost
E=16, 45, 59.65
E=17, 36, 111.36
E=17, 61, 63.13
E=19, 36, 40.02
E=19, 37, 47.51
E=19, 63, 67.72
E=21, 76, 50.54
E=21, 61, 122.48
E=28, 68, 85.43
E=28, 46, 526.67
E=28, 45, 257.82
E=28, 58, 1259.56
E=28, 62, 444.32
E=36, 61, 58.26
E=37, 66, 40.16
E=37, 63, 49.24
E=45, 68, 204.42
E=45, 46, 334.97
E=45, 62, 252.62
E=46, 76, 105.57
E=46, 62, 96.87
E=48, 66, 80.06
E=48, 58, 90.38
E=58, 68, 872.88
E=58, 78, 835.76
E=68, 78, 61.14

#Start node ID
S=58

#Goal node ID
G=62

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 19, 37
C=1, 17, 61, 21, 61
C=2, 28, 68
C=3, 46, 76

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 46, 76
EO=1, 28, 68
EO=2, 21, 61
EO=3, 17, 61
EO=4, 19, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.006967, 0.001229, 0.062699, 0.011065, 0.001608, 0.000284, 0.014469, 0.002553, 0.021257, 0.003751, 0.191313, 0.033761, 0.016919, 0.002986, 0.152269, 0.026871, 0.005700, 0.001006, 0.051299, 0.009053, 0.001315, 0.000232, 0.011838, 0.002089, 0.017392, 0.003069, 0.156529, 0.027623, 0.013843, 0.002443, 0.124584, 0.021985

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=66, 19, 37, 0.900000, 0.100000
O=37, 19, 37, 1.000000, 0.000000
O=19, 19, 37, 1.000000, 0.000000
O=19, 21, 61, 0.800000, 0.200000
O=48, 19, 37, 0.700000, 0.200000
O=36, 17, 61, 1.000000, 0.000000
O=36, 21, 61, 1.000000, 0.700000
O=61, 17, 61, 1.000000, 0.000000
O=61, 21, 61, 1.000000, 0.000000
O=17, 17, 61, 1.000000, 0.000000
O=21, 21, 61, 1.000000, 0.000000
O=21, 46, 76, 0.700000, 0.300000
O=78, 28, 68, 1.000000, 0.000000
O=68, 28, 68, 1.000000, 0.000000
O=28, 28, 68, 1.000000, 0.000000
O=76, 46, 76, 1.000000, 0.000000
O=46, 46, 76, 1.000000, 0.000000
O=16, 28, 68, 0.700000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=545.00, 545.00, 60.00, 0.00, 60.00, 0.00, 0.027441, 0.000000, 0.027441, 120.00, 30.00, 1.016576, 0.000000, 1.016576, 100.00, 110.00, 0.032483, 0.000000, 0.032483, 20.00, 110.00, 11.274253, 0.000000, 11.274253, 0.00, 30.00, 2.478758, 0.000000, 2.478758, 60.00, 0.00, 0.027441, 0.000000, 0.027441
OB=609.00, 375.00, 60.00, 0.00, 60.00, 0.00, 1.535078, 0.000000, 1.535078, 120.00, 30.00, 5.220101, 0.000000, 5.220101, 100.00, 110.00, 0.871423, 0.000000, 0.871423, 20.00, 110.00, 19.987564, 0.000000, 19.987564, 0.00, 30.00, 21.502131, 0.000000, 21.502131, 60.00, 0.00, 1.535078, 0.000000, 1.535078
OB=427.00, 110.00, 60.00, 0.00, 60.00, 0.00, 25.000000, 0.000000, 25.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 36.000000, 0.000000, 36.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 9.000000, 0.000000, 9.000000, 60.00, 0.00, 25.000000, 0.000000, 25.000000
OB=577.00, 56.00, 0.00, 0.00, 0.00, 0.00, 4.930965, 0.000000, 4.930965, 100.00, 0.00, 2.595731, 0.000000, 2.595731, 100.00, 100.00, 0.243608, 0.000000, 0.243608, 0.00, 100.00, 21.717417, 0.000000, 21.717417, 0.00, 0.00, 4.930965, 0.000000, 4.930965
OB=609.00, 222.00, 60.00, 0.00, 60.00, 0.00, 9.000000, 0.000000, 9.000000, 120.00, 30.00, 25.000000, 0.000000, 25.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 64.000000, 0.000000, 64.000000, 0.00, 30.00, 81.000000, 0.000000, 81.000000, 60.00, 0.00, 9.000000, 0.000000, 9.000000
OB=133.00, 502.00, 0.00, 0.00, 0.00, 0.00, 9.252828, 0.000000, 9.252828, 140.00, 0.00, 7.491036, 0.000000, 7.491036, 140.00, 80.00, 0.139142, 0.000000, 0.139142, 0.00, 80.00, 2.216434, 0.000000, 2.216434, 0.00, 0.00, 9.252828, 0.000000, 9.252828
OB=302.00, 467.00, 0.00, 0.00, 0.00, 0.00, 4.767670, 0.000000, 4.767670, 100.00, 0.00, 5.728652, 0.000000, 5.728652, 100.00, 100.00, 7.257232, 0.000000, 7.257232, 0.00, 100.00, 11.332848, 0.000000, 11.332848, 0.00, 0.00, 4.767670, 0.000000, 4.767670
OB=189.00, 304.00, 0.00, 0.00, 0.00, 0.00, 26.127402, 0.000000, 26.127402, 130.00, 140.00, 3.257772, 0.000000, 3.257772
OB=335.00, 314.00, 0.00, 0.00, 0.00, 0.00, 78.241735, 0.000000, 78.241735, 100.00, 0.00, 5.496877, 0.000000, 5.496877, 100.00, 100.00, 57.736706, 0.000000, 57.736706, 0.00, 100.00, 0.488528, 0.000000, 0.488528, 0.00, 0.00, 78.241735, 0.000000, 78.241735
OB=149.00, 347.00, 0.00, 0.00, 0.00, 0.00, 32.483320, 0.000000, 32.483320, 82.00, 124.00, 16.611301, 0.000000, 16.611301
OB=425.00, 253.00, 0.00, 0.00, 0.00, 0.00, 8.103331, 0.000000, 8.103331, 45.00, 66.00, 17.195580, 0.000000, 17.195580
OB=157.00, 202.00, 0.00, 0.00, 0.00, 0.00, 169.000000, 0.000000, 169.000000, 140.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 80.00, 49.000000, 0.000000, 49.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000

Graph13.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 283.00, 336.00, 286.74
N=1, 549.00, 341.00, 33.85
N=2, 163.00, 288.00, 299.85
N=3, 155.00, 144.00, 287.63
N=4, 253.00, 303.00, 247.43
N=5, 148.00, 224.00, 259.74
N=6, 240.00, 135.00, 315.13
N=7, 251.00, 183.00, 278.40
N=8, 122.00, 464.00, 346.86
N=9, 157.00, 435.00, 342.23
N=10, 267.00, 169.00, 88.07
N=11, 573.00, 343.00, 356.75
N=12, 568.00, 474.00, 226.55
N=13, 316.00, 526.00, 353.08
N=14, 533.00, 486.00, 131.08
N=15, 162.00, 485.00, 58.61
N=16, 152.00, 564.00, 83.07
N=17, 150.00, 496.00, 77.04
N=18, 448.00, 146.00, 180.90
N=19, 182.00, 303.00, 145.58
N=20, 255.00, 448.00, 243.02
N=21, 166.00, 200.00, 332.30
N=22, 387.00, 603.00, 187.07
N=23, 575.00, 347.00, 132.15
N=24, 560.00, 604.00, 152.13
N=25, 412.00, 165.00, 270.25
N=26, 139.00, 453.00, 318.26
N=27, 602.00, 471.00, 112.43
N=28, 142.00, 346.00, 359.05
N=29, 556.00, 316.00, 47.01
N=30, 496.00, 434.00, 8.58
N=31, 332.00, 578.00, 158.60
N=32, 267.00, 214.00, 271.53
N=33, 584.00, 391.00, 228.03
N=34, 236.00, 166.00, 22.57
N=35, 283.00, 517.00, 5.49
N=36, 264.00, 390.00, 144.34
N=37, 274.00, 194.00, 274.93
N=38, 176.00, 536.00, 210.59
N=39, 574.00, 16.00, 15.87
N=40, 198.00, 141.00, 273.96
N=41, 220.00, 376.00, 16.58
N=42, 472.00, 123.00, 83.88
N=43, 539.00, 663.00, 251.01
N=44, 320.00, 565.00, 62.94
N=45, 227.00, 571.00, 165.67
N=46, 197.00, 307.00, 101.88
N=47, 568.00, 360.00, 331.77
N=48, 595.00, 635.00, 68.75
N=49, 315.00, 541.00, 81.44
N=50, 584.00, 231.00, 158.17
N=51, 502.00, 84.00, 18.98
N=52, 433.00, 563.00, 295.55
N=53, 559.00, 691.00, 195.31
N=54, 113.00, 174.00, 277.54
N=55, 200.00, 412.00, 13.62
N=56, 203.00, 459.00, 234.94
N=57, 312.00, 269.00, 92.91
N=58, 334.00, 138.00, 124.81
N=59, 139.00, 571.00, 356.59
N=60, 243.00, 136.00, 99.84
N=61, 569.00, 93.00, 179.54
N=62, 363.00, 123.00, 113.19
N=63, 557.00, 182.00, 252.23
N=64, 571.00, 352.00, 247.67
N=65, 259.00, 203.00, 217.57
N=66, 319.00, 576.00, 100.98
N=67, 523.00, 66.00, 242.17
N=68, 516.00, 549.00, 335.69
N=69, 221.00, 431.00, 158.46
N=70, 121.00, 531.00, 300.12
N=71, 225.00, 273.00, 4.52
N=72, 522.00, 48.00, 336.29
N=73, 532.00, 563.00, 250.74
N=74, 556.00, 665.00, 211.08
N=75, 174.00, 182.00, 299.51
N=76, 498.00, 71.00, 312.65
N=77, 157.00, 119.00, 107.99
N=78, 191.00, 486.00, 55.45
N=79, 297.00, 181.00, 21.73

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 4, 44.60
E=0, 71, 85.63
E=0, 19, 106.25
E=0, 2, 129.24
E=1, 11, 24.08
E=1, 64, 24.60
E=1, 29, 25.96
E=1, 23, 26.68
E=2, 19, 24.21
E=2, 46, 38.95
E=2, 28, 61.68
E=3, 75, 42.49
E=3, 40, 43.10
E=3, 54, 51.61
E=3, 21, 57.07
E=4, 71, 41.04
E=4, 46, 56.14
E=4, 57, 68.10
E=5, 21, 30.00
E=5, 75, 49.40
E=5, 54, 61.03
E=5, 19, 86.01
E=6, 60, 3.16
E=6, 34, 31.26
E=6, 40, 42.43
E=6, 10, 43.42
E=7, 10, 21.26
E=7, 65, 21.54
E=7, 34, 22.67
E=7, 37, 25.50
E=8, 26, 20.25
E=8, 17, 42.52
E=8, 15, 45.18
E=8, 9, 45.45
E=9, 26, 25.46
E=9, 55, 48.76
E=9, 15, 50.25
E=10, 37, 25.96
E=10, 34, 31.14
E=11, 23, 4.47
E=11, 47, 17.72
E=11, 29, 31.91
E=12, 27, 34.13
E=12, 14, 37.00
E=12, 30, 82.37
E=12, 33, 84.53
E=13, 49, 15.03
E=13, 35, 34.21
E=13, 44, 39.20
E=13, 66, 50.09
E=14, 30, 63.82
E=14, 68, 65.25
E=14, 27, 70.61
E=15, 17, 16.28
E=15, 78, 29.02
E=16, 38, 36.88
E=16, 70, 45.28
E=16, 17, 68.03
E=16, 45, 75.33
E=17, 78, 42.20
E=18, 42, 33.24
E=18, 25, 40.71
E=18, 62, 88.06
E=18, 58, 114.28
E=19, 46, 15.52
E=20, 69, 38.01
E=20, 56, 53.15
E=20, 36, 58.69
E=20, 55, 65.73
E=21, 75, 19.70
E=21, 54, 59.03
E=22, 31, 60.42
E=22, 52, 60.96
E=22, 49, 95.02
E=22, 35, 134.95
E=23, 64, 6.40
E=23, 47, 14.76
E=24, 48, 46.75
E=24, 73, 49.65
E=24, 74, 61.13
E=24, 43, 62.63
E=25, 42, 73.24
E=25, 58, 82.54
E=25, 51, 121.08
E=26, 78, 61.59
E=26, 56, 64.28
E=27, 33, 82.00
E=27, 30, 112.27
E=28, 46, 67.42
E=28, 41, 83.57
E=28, 55, 87.86
E=29, 64, 39.00
E=29, 47, 45.61
E=30, 68, 116.73
E=31, 66, 13.15
E=31, 44, 17.69
E=31, 49, 40.72
E=32, 65, 13.60
E=32, 37, 21.19
E=32, 79, 44.60
E=32, 34, 57.14
E=33, 64, 41.11
E=33, 50, 160.00
E=35, 49, 40.00
E=35, 44, 60.61
E=36, 41, 46.17
E=36, 69, 59.41
E=36, 55, 67.68
E=37, 65, 17.49
E=38, 59, 50.93
E=38, 78, 52.20
E=38, 70, 55.23
E=39, 72, 61.06
E=39, 67, 71.42
E=39, 61, 77.16
E=39, 76, 93.81
E=40, 75, 47.51
E=40, 65, 86.98
E=41, 69, 55.01
E=41, 56, 84.72
E=42, 51, 49.20
E=42, 76, 58.14
E=43, 74, 17.12
E=43, 53, 34.41
E=43, 48, 62.61
E=44, 66, 11.05
E=45, 66, 92.14
E=45, 70, 113.30
E=45, 52, 206.16
E=47, 50, 129.99
E=48, 74, 49.20
E=48, 53, 66.57
E=50, 63, 55.95
E=50, 61, 138.81
E=51, 76, 13.60
E=51, 67, 27.66
E=52, 68, 84.17
E=52, 73, 99.00
E=53, 74, 26.17
E=53, 73, 130.82
E=54, 60, 135.44
E=56, 69, 33.29
E=57, 71, 87.09
E=58, 62, 32.65
E=58, 79, 56.73
E=59, 70, 43.86
E=60, 79, 70.29
E=60, 77, 87.66
E=61, 67, 53.34
E=61, 72, 65.07
E=62, 79, 87.86
E=62, 63, 202.77
E=63, 67, 120.88
E=63, 76, 125.71
E=68, 73, 21.26
E=71, 77, 168.34

#Start node ID
S=74

#Goal node ID
G=39

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 12, 33, 27, 33
C=1, 33, 50, 47, 50, 33, 64
C=2, 18, 62

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 18, 62
EO=1, 33, 64
EO=2, 47, 50
EO=3, 33, 50
EO=4, 27, 33
EO=5, 12, 33

#Starting belief state, starting with the all F combination and working through to all B
B=0.112012, 0.112012, 0.008471, 0.008471, 0.016173, 0.016173, 0.001223, 0.001223, 0.019767, 0.019767, 0.001495, 0.001495, 0.091646, 0.091646, 0.006931, 0.006931, 0.007413, 0.007413, 0.018002, 0.018002, 0.001070, 0.001070, 0.002599, 0.002599, 0.001308, 0.001308, 0.003177, 0.003177, 0.006065, 0.006065, 0.014729, 0.014729, 0.018669, 0.018669, 0.001412, 0.001412, 0.002695, 0.002695, 0.000204, 0.000204, 0.003294, 0.003294, 0.000249, 0.000249, 0.015274, 0.015274, 0.001155, 0.001155, 0.019767, 0.019767, 0.048005, 0.048005, 0.002854, 0.002854, 0.006931, 0.006931, 0.003488, 0.003488, 0.008471, 0.008471, 0.016173, 0.016173, 0.039277, 0.039277

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=73, 12, 33, 0.700000, 0.300000
O=73, 33, 64, 0.900000, 0.100000
O=12, 12, 33, 1.000000, 0.000000
O=33, 12, 33, 1.000000, 0.000000
O=33, 27, 33, 1.000000, 0.000000
O=33, 33, 50, 1.000000, 0.000000
O=33, 33, 64, 1.000000, 0.000000
O=24, 27, 33, 0.800000, 0.300000
O=27, 27, 33, 1.000000, 0.000000
O=68, 33, 50, 0.700000, 0.200000
O=50, 33, 50, 1.000000, 0.000000
O=50, 47, 50, 1.000000, 0.000000
O=14, 47, 50, 0.750000, 0.300000
O=47, 47, 50, 1.000000, 0.000000
O=64, 33, 64, 1.000000, 0.000000
O=60, 18, 62, 0.800000, 0.200000
O=62, 18, 62, 1.000000, 0.000000
O=18, 18, 62, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=610.00, 617.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=610.00, 533.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=611.00, 454.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=609.00, 155.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=611.00, 73.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=612.00, 6.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=363.00, 607.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=207.00, 606.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=73.00, 608.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=3.00, 515.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=13.00, 402.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=11.00, 303.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=9.00, 190.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=10.00, 79.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=131.00, 8.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=237.00, 7.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=349.00, 8.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=348.00, 185.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=385.00, 268.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=388.00, 353.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=333.00, 440.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=237.00, 245.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000
OB=246.00, 363.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000
OB=603.00, 237.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 0.00, 1.000000, 0.000000, 1.000000, 140.00, 80.00, 1.000000, 0.000000, 1.000000, 0.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=610.00, 333.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000

Graph13PP.pomdp

//State variables
(variables
 (loc l68 l33 l64 l39 l12 l73 l47 l74 l14 l50 l18 l58 l24 l27 l62 l60)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
 (c6 c6F c6B)
)

//Observations
(observations
 (ob12_33 ob12_33F ob12_33B)
 (ob27_33 ob27_33F ob27_33B)
 (ob33_50 ob33_50F ob33_50B)
 (ob47_50 ob47_50F ob47_50B)
 (ob33_64 ob33_64F ob33_64B)
 (ob18_62 ob18_62F ob18_62B)
)

//Initial belief state
init [*
 (loc (l68 (0.0)) (l33 (0.0)) (l64 (0.0)) (l39 (0.0)) (l12 (0.0)) (l73 (0.0)) (l47 (0.0)) (l74 (1.0)) (l14 (0.0)) (l50 (0.0)) (l18 (0.0)) (l58 (0.0)) (l24 (0.0)) (l27 (0.0)) (l62 (0.0)) (l60 (0.0)))
 (c1 (c1F (0.624161073828)) (c1B (0.375838926172)))
 (c2 (c2F (0.601342281872)) (c2B (0.398657718128)))
 (c3 (c3F (0.535000000002)) (c3B (0.464999999998)))
 (c4 (c4F (0.550000000004)) (c4B (0.449999999996)))
 (c5 (c5F (0.67533557046)) (c5B (0.32466442954)))
 (c6 (c6F (0.5)) (c6B (0.5)))
]

//Actions and costs
action goto_l68
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl68))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl68))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl68))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (c3'
 (c3F (ob33_50' (ob33_50F (0.8)) (ob33_50B (0.2))))
 (c3B (ob33_50' (ob33_50F (0.30000000000000004)) (ob33_50B (0.7))))
)
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (21.2602916254693))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (65.25335240430181))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (948.2865122139528))
)
endaction

action goto_l33
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (c5
 (c5F (locl33))
 (c5B (locl64))
))
 (l39 (locl39))
 (l12 (c1
 (c1F (locl33))
 (c1B (locl12))
))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (c3
 (c3F (locl33))
 (c3B (locl50))
))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (c2
 (c2F (locl33))
 (c2B (locl27))
))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (c1'
 (c1F (ob12_33' (ob12_33F (1.0)) (ob12_33B (0.0))))
 (c1B (ob12_33' (ob12_33F (0.0)) (ob12_33B (1.0))))
)
 ob27_33 (c2'
 (c2F (ob27_33' (ob27_33F (1.0)) (ob27_33B (0.0))))
 (c2B (ob27_33' (ob27_33F (0.0)) (ob27_33B (1.0))))
)
 ob33_50 (c3'
 (c3F (ob33_50' (ob33_50F (1.0)) (ob33_50B (0.0))))
 (c3B (ob33_50' (ob33_50F (0.0)) (ob33_50B (1.0))))
)
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (c5'
 (c5F (ob33_64' (ob33_64F (1.0)) (ob33_64B (0.0))))
 (c5B (ob33_64' (ob33_64F (0.0)) (ob33_64B (1.0))))
)
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (41.10960958218893))
 (l39 (0))
 (l12 (84.52810183601665))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (160.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (82.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l64
 loc (loc
 (l68 (locl68))
 (l33 (c5
 (c5F (locl64))
 (c5B (locl33))
))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl64))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (c5'
 (c5F (ob33_64' (ob33_64F (1.0)) (ob33_64B (0.0))))
 (c5B (ob33_64' (ob33_64F (0.0)) (ob33_64B (1.0))))
)
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (41.10960958218893))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (21.16794729766625))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l39
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl39))
 (l18 (locl39))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (215.97499051055297))
 (l18 (181.52511739231454))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l12
 loc (loc
 (l68 (locl68))
 (l33 (c1
 (c1F (locl12))
 (c1B (locl33))
))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl12))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl12))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (c1'
 (c1F (ob12_33' (ob12_33F (1.0)) (ob12_33B (0.0))))
 (c1B (ob12_33' (ob12_33F (0.0)) (ob12_33B (1.0))))
)
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (84.52810183601665))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (37.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (34.132096331752024))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l73
 loc (loc
 (l68 (locl73))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl73))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl73))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (c1'
 (c1F (ob12_33' (ob12_33F (0.7)) (ob12_33B (0.3))))
 (c1B (ob12_33' (ob12_33F (0.30000000000000004)) (ob12_33B (0.7))))
)
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (c5'
 (c5F (ob33_64' (ob33_64F (0.9)) (ob33_64B (0.1))))
 (c5B (ob33_64' (ob33_64F (0.09999999999999998)) (ob33_64B (0.9))))
)
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (21.2602916254693))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (49.64876634922564))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (963.114070167877))
)
endaction

action goto_l47
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl47))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (c4
 (c4F (locl47))
 (c4B (locl50))
))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (c4'
 (c4F (ob47_50' (ob47_50F (1.0)) (ob47_50B (0.0))))
 (c4B (ob47_50' (ob47_50F (0.0)) (ob47_50B (1.0))))
)
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (21.16794729766625))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (129.98846102635417))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l74
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl74))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (61.1310068623117))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l68 (locl14))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl14))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl14))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (c4'
 (c4F (ob47_50' (ob47_50F (0.7)) (ob47_50B (0.3))))
 (c4B (ob47_50' (ob47_50F (0.25)) (ob47_50B (0.75))))
)
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (65.25335240430181))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (37.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (70.61161377563892))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l50
 loc (loc
 (l68 (locl68))
 (l33 (c3
 (c3F (locl50))
 (c3B (locl33))
))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (c4
 (c4F (locl50))
 (c4B (locl47))
))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl50))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl50))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (c3'
 (c3F (ob33_50' (ob33_50F (1.0)) (ob33_50B (0.0))))
 (c3B (ob33_50' (ob33_50F (0.0)) (ob33_50B (1.0))))
)
 ob47_50 (c4'
 (c4F (ob47_50' (ob47_50F (1.0)) (ob47_50B (0.0))))
 (c4B (ob47_50' (ob47_50F (0.0)) (ob47_50B (1.0))))
)
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (160.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (129.98846102635417))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (273.0317168358457))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (258.71967532327926))
 (l60 (2000.0))
)
endaction

action goto_l18
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl18))
 (l18 (locl18))
 (l58 (locl18))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (c6
 (c6F (locl18))
 (c6B (locl62))
))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (c6'
 (c6F (ob18_62' (ob18_62F (1.0)) (ob18_62B (0.0))))
 (c6B (ob18_62' (ob18_62F (0.0)) (ob18_62B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (273.0317168358457))
 (l18 (2000.0))
 (l58 (114.28035701729323))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (88.05679985100527))
 (l60 (2000.0))
)
endaction

action goto_l58
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl58))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl58))
 (l60 (locl58))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (114.28035701729323))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (32.64965543462902))
 (l60 (127.01966549789122))
)
endaction

action goto_l24
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl24))
 (l47 (locl47))
 (l74 (locl24))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (c2'
 (c2F (ob27_33' (ob27_33F (0.7)) (ob27_33B (0.3))))
 (c2B (ob27_33' (ob27_33F (0.19999999999999996)) (ob27_33B (0.8))))
)
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (49.64876634922564))
 (l47 (2000.0))
 (l74 (61.1310068623117))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l27
 loc (loc
 (l68 (locl68))
 (l33 (c2
 (c2F (locl27))
 (c2B (locl33))
))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl27))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl27))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl58))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (c2'
 (c2F (ob27_33' (ob27_33F (1.0)) (ob27_33B (0.0))))
 (c2B (ob27_33' (ob27_33F (0.0)) (ob27_33B (1.0))))
)
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (ob18_62' (ob18_62F (0.5)) (ob18_62B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (82.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (34.132096331752024))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (70.61161377563892))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l62
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl73))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl62))
 (l18 (c6
 (c6F (locl62))
 (c6B (locl18))
))
 (l58 (locl62))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl62))
 (l60 (locl62))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (c6'
 (c6F (ob18_62' (ob18_62F (1.0)) (ob18_62B (0.0))))
 (c6B (ob18_62' (ob18_62F (0.0)) (ob18_62B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (258.71967532327926))
 (l18 (88.05679985100527))
 (l58 (32.64965543462902))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (2000.0))
 (l60 (158.15577762911508))
)
endaction

action goto_l60
 loc (loc
 (l68 (locl60))
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l12 (locl12))
 (l73 (locl60))
 (l47 (locl47))
 (l74 (locl74))
 (l14 (locl14))
 (l50 (locl50))
 (l18 (locl18))
 (l58 (locl60))
 (l24 (locl24))
 (l27 (locl27))
 (l62 (locl60))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob12_33 (ob12_33' (ob12_33F (0.5)) (ob12_33B (0.5)))
 ob27_33 (ob27_33' (ob27_33F (0.5)) (ob27_33B (0.5)))
 ob33_50 (ob33_50' (ob33_50F (0.5)) (ob33_50B (0.5)))
 ob47_50 (ob47_50' (ob47_50F (0.5)) (ob47_50B (0.5)))
 ob33_64 (ob33_64' (ob33_64F (0.5)) (ob33_64B (0.5)))
 ob18_62 (c6'
 (c6F (ob18_62' (ob18_62F (0.8)) (ob18_62B (0.2))))
 (c6B (ob18_62' (ob18_62F (0.19999999999999996)) (ob18_62B (0.8))))
)
 endobserve
 cost (loc
 (l68 (948.2865122139528))
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (0))
 (l12 (2000.0))
 (l73 (963.114070167877))
 (l47 (2000.0))
 (l74 (2000.0))
 (l14 (2000.0))
 (l50 (2000.0))
 (l18 (2000.0))
 (l58 (127.01966549789122))
 (l24 (2000.0))
 (l27 (2000.0))
 (l62 (158.15577762911508))
 (l60 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph13_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 283.00, 336.00, 286.74
N=1, 549.00, 341.00, 33.85
N=2, 163.00, 288.00, 299.85
N=3, 155.00, 144.00, 287.63
N=4, 253.00, 303.00, 247.43
N=5, 148.00, 224.00, 259.74
N=6, 240.00, 135.00, 315.13
N=7, 251.00, 183.00, 278.40
N=8, 122.00, 464.00, 346.86
N=9, 157.00, 435.00, 342.23
N=10, 267.00, 169.00, 88.07
N=11, 573.00, 343.00, 356.75
N=12, 568.00, 474.00, 226.55
N=13, 316.00, 526.00, 353.08
N=14, 533.00, 486.00, 131.08
N=15, 162.00, 485.00, 58.61
N=16, 152.00, 564.00, 83.07
N=17, 150.00, 496.00, 77.04
N=18, 448.00, 146.00, 180.90
N=19, 182.00, 303.00, 145.58
N=20, 255.00, 448.00, 243.02
N=21, 166.00, 200.00, 332.30
N=22, 387.00, 603.00, 187.07
N=23, 575.00, 347.00, 132.15
N=24, 560.00, 604.00, 152.13
N=25, 412.00, 165.00, 270.25
N=26, 139.00, 453.00, 318.26
N=27, 602.00, 471.00, 112.43
N=28, 142.00, 346.00, 359.05
N=29, 556.00, 316.00, 47.01
N=30, 496.00, 434.00, 8.58
N=31, 332.00, 578.00, 158.60
N=32, 267.00, 214.00, 271.53
N=33, 584.00, 391.00, 228.03
N=34, 236.00, 166.00, 22.57
N=35, 283.00, 517.00, 5.49
N=36, 264.00, 390.00, 144.34
N=37, 274.00, 194.00, 274.93
N=38, 176.00, 536.00, 210.59
N=39, 574.00, 16.00, 15.87
N=40, 198.00, 141.00, 273.96
N=41, 220.00, 376.00, 16.58
N=42, 472.00, 123.00, 83.88
N=43, 539.00, 663.00, 251.01
N=44, 320.00, 565.00, 62.94
N=45, 227.00, 571.00, 165.67
N=46, 197.00, 307.00, 101.88
N=47, 568.00, 360.00, 331.77
N=48, 595.00, 635.00, 68.75
N=49, 315.00, 541.00, 81.44
N=50, 584.00, 231.00, 158.17
N=51, 502.00, 84.00, 18.98
N=52, 433.00, 563.00, 295.55
N=53, 559.00, 691.00, 195.31
N=54, 113.00, 174.00, 277.54
N=55, 200.00, 412.00, 13.62
N=56, 203.00, 459.00, 234.94
N=57, 312.00, 269.00, 92.91
N=58, 334.00, 138.00, 124.81
N=59, 139.00, 571.00, 356.59
N=60, 243.00, 136.00, 99.84
N=61, 569.00, 93.00, 179.54
N=62, 363.00, 123.00, 113.19
N=63, 557.00, 182.00, 252.23
N=64, 571.00, 352.00, 247.67
N=65, 259.00, 203.00, 217.57
N=66, 319.00, 576.00, 100.98
N=67, 523.00, 66.00, 242.17
N=68, 516.00, 549.00, 335.69
N=69, 221.00, 431.00, 158.46
N=70, 121.00, 531.00, 300.12
N=71, 225.00, 273.00, 4.52
N=72, 522.00, 48.00, 336.29
N=73, 532.00, 563.00, 250.74
N=74, 556.00, 665.00, 211.08
N=75, 174.00, 182.00, 299.51
N=76, 498.00, 71.00, 312.65
N=77, 157.00, 119.00, 107.99
N=78, 191.00, 486.00, 55.45
N=79, 297.00, 181.00, 21.73

#Edge data
#E=Node number 1, Node number 2, cost
E=12, 33, 84.53
E=12, 14, 37.00
E=12, 27, 34.13
E=14, 68, 65.25
E=14, 27, 70.61
E=18, 39, 181.53
E=18, 50, 273.03
E=18, 62, 88.06
E=18, 58, 114.28
E=24, 73, 49.65
E=24, 74, 61.13
E=27, 33, 82.00
E=33, 50, 160.00
E=33, 64, 41.11
E=39, 50, 215.97
E=47, 64, 21.17
E=47, 50, 129.99
E=50, 62, 258.72
E=58, 60, 127.02
E=58, 62, 32.65
E=60, 68, 948.29
E=60, 73, 963.11
E=60, 62, 158.16
E=68, 73, 21.26

#Start node ID
S=74

#Goal node ID
G=39

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 12, 33, 27, 33
C=1, 33, 50, 47, 50, 33, 64
C=2, 18, 62

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 18, 62
EO=1, 33, 64
EO=2, 47, 50
EO=3, 33, 50
EO=4, 27, 33
EO=5, 12, 33

#Starting belief state, starting with the all F combination and working through to all B
B=0.112012, 0.112012, 0.008471, 0.008471, 0.016173, 0.016173, 0.001223, 0.001223, 0.019767, 0.019767, 0.001495, 0.001495, 0.091646, 0.091646, 0.006931, 0.006931, 0.007413, 0.007413, 0.018002, 0.018002, 0.001070, 0.001070, 0.002599, 0.002599, 0.001308, 0.001308, 0.003177, 0.003177, 0.006065, 0.006065, 0.014729, 0.014729, 0.018669, 0.018669, 0.001412, 0.001412, 0.002695, 0.002695, 0.000204, 0.000204, 0.003294, 0.003294, 0.000249, 0.000249, 0.015274, 0.015274, 0.001155, 0.001155, 0.019767, 0.019767, 0.048005, 0.048005, 0.002854, 0.002854, 0.006931, 0.006931, 0.003488, 0.003488, 0.008471, 0.008471, 0.016173, 0.016173, 0.039277, 0.039277

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=73, 12, 33, 0.700000, 0.300000
O=73, 33, 64, 0.900000, 0.100000
O=12, 12, 33, 1.000000, 0.000000
O=33, 12, 33, 1.000000, 0.000000
O=33, 27, 33, 1.000000, 0.000000
O=33, 33, 50, 1.000000, 0.000000
O=33, 33, 64, 1.000000, 0.000000
O=24, 27, 33, 0.800000, 0.300000
O=27, 27, 33, 1.000000, 0.000000
O=68, 33, 50, 0.700000, 0.200000
O=50, 33, 50, 1.000000, 0.000000
O=50, 47, 50, 1.000000, 0.000000
O=14, 47, 50, 0.750000, 0.300000
O=47, 47, 50, 1.000000, 0.000000
O=64, 33, 64, 1.000000, 0.000000
O=60, 18, 62, 0.800000, 0.200000
O=62, 18, 62, 1.000000, 0.000000
O=18, 18, 62, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=610.00, 617.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=610.00, 533.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=611.00, 454.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=609.00, 155.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=611.00, 73.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=612.00, 6.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=363.00, 607.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=207.00, 606.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=73.00, 608.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=3.00, 515.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=13.00, 402.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=11.00, 303.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=9.00, 190.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=10.00, 79.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=131.00, 8.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=237.00, 7.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=349.00, 8.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=348.00, 185.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=385.00, 268.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=388.00, 353.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=333.00, 440.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=237.00, 245.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000
OB=246.00, 363.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000
OB=603.00, 237.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 0.00, 1.000000, 0.000000, 1.000000, 140.00, 80.00, 1.000000, 0.000000, 1.000000, 0.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=610.00, 333.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000

Graph14.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 82.00, 290.00, 314.35
N=1, 149.00, 359.00, 82.24
N=2, 132.00, 381.00, 203.72
N=3, 499.00, 470.00, 60.54
N=4, 271.00, 399.00, 84.63
N=5, 123.00, 248.00, 73.14
N=6, 123.00, 327.00, 227.06
N=7, 408.00, 455.00, 313.60
N=8, 182.00, 218.00, 156.85
N=9, 210.00, 519.00, 265.03
N=10, 420.00, 270.00, 352.28
N=11, 93.00, 254.00, 85.25
N=12, 202.00, 465.00, 104.03
N=13, 688.00, 547.00, 194.43
N=14, 491.00, 112.00, 178.45
N=15, 524.00, 135.00, 64.33
N=16, 579.00, 26.00, 5.47
N=17, 591.00, 131.00, 99.24
N=18, 300.00, 533.00, 114.37
N=19, 521.00, 520.00, 194.95
N=20, 183.00, 107.00, 4.47
N=21, 210.00, 515.00, 254.42
N=22, 212.00, 124.00, 311.44
N=23, 571.00, 696.00, 258.03
N=24, 81.00, 305.00, 204.83
N=25, 522.00, 22.00, 114.95
N=26, 110.00, 34.00, 43.55
N=27, 583.00, 645.00, 284.44
N=28, 649.00, 249.00, 311.00
N=29, 138.00, 308.00, 64.67
N=30, 650.00, 230.00, 27.10
N=31, 653.00, 190.00, 118.94
N=32, 112.00, 479.00, 354.76
N=33, 251.00, 508.00, 270.14
N=34, 85.00, 371.00, 87.54
N=35, 92.00, 456.00, 120.46
N=36, 262.00, 122.00, 53.19
N=37, 182.00, 416.00, 96.26
N=38, 627.00, 198.00, 50.32
N=39, 44.00, 81.00, 309.52
N=40, 447.00, 24.00, 130.82
N=41, 210.00, 208.00, 74.00
N=42, 581.00, 387.00, 22.34
N=43, 600.00, 1.00, 55.36
N=44, 242.00, 320.00, 100.91
N=45, 656.00, 234.00, 132.97
N=46, 250.00, 310.00, 307.73
N=47, 613.00, 205.00, 334.44
N=48, 352.00, 331.00, 103.17
N=49, 216.00, 503.00, 330.05
N=50, 220.00, 3.00, 1.93
N=51, 484.00, 525.00, 264.11
N=52, 472.00, 626.00, 159.75
N=53, 638.00, 691.00, 262.26
N=54, 638.00, 229.00, 286.72
N=55, 52.00, 437.00, 74.50
N=56, 606.00, 338.00, 67.39
N=57, 549.00, 66.00, 308.52
N=58, 438.00, 513.00, 267.55
N=59, 138.00, 560.00, 258.22
N=60, 568.00, 166.00, 238.28
N=61, 528.00, 130.00, 34.34
N=62, 116.00, 323.00, 7.04
N=63, 666.00, 394.00, 108.63
N=64, 542.00, 358.00, 75.07
N=65, 176.00, 71.00, 33.00
N=66, 130.00, 43.00, 221.95
N=67, 70.00, 631.00, 1.26
N=68, 211.00, 545.00, 221.00
N=69, 59.00, 636.00, 136.86
N=70, 635.00, 553.00, 261.85
N=71, 147.00, 372.00, 76.13
N=72, 460.00, 98.00, 33.37
N=73, 66.00, 482.00, 36.24
N=74, 92.00, 50.00, 309.12
N=75, 593.00, 565.00, 228.82
N=76, 34.00, 302.00, 91.07
N=77, 515.00, 237.00, 334.43
N=78, 62.00, 584.00, 298.03
N=79, 475.00, 292.00, 280.12

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 15.03
E=0, 11, 37.64
E=0, 62, 47.38
E=0, 76, 49.48
E=1, 71, 13.15
E=1, 2, 27.80
E=1, 6, 41.23
E=1, 62, 48.84
E=2, 71, 17.49
E=2, 34, 48.05
E=2, 6, 54.74
E=3, 19, 54.63
E=3, 51, 57.01
E=3, 58, 74.63
E=3, 7, 92.23
E=4, 44, 84.15
E=4, 37, 90.61
E=4, 46, 91.44
E=4, 12, 95.48
E=5, 11, 30.59
E=5, 29, 61.85
E=5, 8, 66.19
E=5, 24, 70.80
E=6, 62, 8.06
E=6, 29, 24.21
E=7, 58, 65.30
E=7, 51, 103.32
E=7, 19, 130.36
E=8, 41, 29.73
E=8, 11, 96.01
E=8, 22, 98.67
E=9, 21, 4.00
E=9, 49, 17.09
E=9, 68, 26.02
E=9, 33, 42.45
E=10, 79, 59.24
E=10, 77, 100.57
E=10, 64, 150.43
E=10, 15, 170.41
E=11, 24, 52.39
E=12, 49, 40.50
E=12, 21, 50.64
E=12, 37, 52.92
E=13, 70, 53.34
E=13, 75, 96.69
E=13, 27, 143.63
E=13, 53, 152.43
E=14, 72, 34.01
E=14, 15, 40.22
E=14, 61, 41.15
E=14, 57, 74.03
E=15, 61, 6.40
E=15, 60, 53.82
E=16, 43, 32.65
E=16, 57, 50.00
E=16, 25, 57.14
E=16, 17, 105.68
E=17, 60, 41.88
E=17, 61, 63.01
E=17, 38, 76.06
E=18, 33, 55.01
E=18, 49, 89.20
E=18, 68, 89.81
E=18, 21, 91.78
E=19, 51, 37.34
E=19, 58, 83.29
E=20, 22, 33.62
E=20, 65, 36.67
E=20, 36, 80.41
E=20, 66, 83.10
E=21, 49, 13.42
E=22, 36, 50.04
E=22, 65, 64.07
E=23, 27, 52.39
E=23, 53, 67.19
E=23, 52, 121.25
E=23, 75, 132.83
E=24, 62, 39.36
E=25, 57, 51.62
E=25, 40, 75.03
E=25, 43, 80.78
E=26, 66, 21.93
E=26, 74, 24.08
E=26, 65, 75.66
E=26, 39, 81.02
E=27, 53, 71.70
E=27, 75, 80.62
E=28, 45, 16.55
E=28, 30, 19.03
E=28, 54, 22.83
E=28, 38, 55.54
E=29, 71, 64.63
E=29, 34, 82.33
E=30, 45, 7.21
E=30, 54, 12.04
E=30, 38, 39.41
E=31, 38, 27.20
E=31, 54, 41.79
E=31, 47, 42.72
E=31, 45, 44.10
E=32, 35, 30.48
E=32, 73, 46.10
E=32, 55, 73.24
E=32, 59, 85.07
E=33, 68, 54.49
E=33, 37, 115.00
E=34, 71, 62.01
E=34, 55, 73.79
E=35, 73, 36.77
E=35, 55, 44.28
E=35, 37, 98.49
E=36, 65, 99.98
E=36, 41, 100.50
E=39, 74, 57.14
E=39, 66, 94.02
E=39, 50, 192.51
E=40, 72, 75.13
E=40, 57, 110.31
E=40, 61, 133.41
E=41, 46, 109.56
E=41, 44, 116.48
E=42, 64, 48.60
E=42, 56, 55.01
E=42, 63, 85.29
E=42, 79, 142.34
E=43, 60, 168.07
E=43, 72, 170.32
E=44, 46, 12.81
E=44, 48, 110.55
E=45, 54, 18.68
E=46, 76, 216.15
E=47, 60, 59.55
E=47, 77, 103.09
E=47, 56, 133.18
E=48, 64, 191.91
E=48, 56, 254.10
E=50, 74, 136.36
E=51, 58, 47.54
E=52, 75, 135.51
E=52, 53, 178.27
E=52, 70, 178.60
E=55, 73, 47.13
E=56, 64, 67.05
E=59, 68, 74.53
E=59, 78, 79.70
E=59, 67, 98.31
E=63, 70, 161.99
E=63, 79, 216.53
E=63, 77, 217.83
E=66, 74, 38.64
E=67, 69, 12.08
E=67, 78, 47.68
E=67, 73, 149.05
E=69, 78, 52.09
E=72, 77, 149.49
E=76, 78, 283.39

#Start node ID
S=78

#Goal node ID
G=75

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 44, 48, 48, 56, 48, 64
C=1, 18, 68

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 18, 68
EO=1, 48, 64
EO=2, 48, 56
EO=3, 44, 48

#Starting belief state, starting with the all F combination and working through to all B
B=0.028745, 0.019163, 0.018479, 0.012319, 0.003194, 0.002129, 0.011179, 0.007452, 0.012776, 0.008517, 0.008213, 0.005475, 0.114981, 0.076654, 0.402433, 0.268289

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=46, 44, 48, 1.000000, 0.000000
O=44, 44, 48, 1.000000, 0.000000
O=44, 48, 56, 0.800000, 0.300000
O=48, 44, 48, 1.000000, 0.000000
O=48, 48, 56, 1.000000, 0.000000
O=48, 48, 64, 1.000000, 0.000000
O=37, 44, 48, 0.800000, 0.200000
O=56, 48, 56, 1.000000, 0.000000
O=4, 48, 64, 0.600000, 0.400000
O=64, 48, 64, 1.000000, 0.000000
O=59, 18, 68, 0.900000, 0.100000
O=68, 18, 68, 1.000000, 0.000000
O=18, 18, 68, 1.000000, 0.000000
O=49, 18, 68, 0.900000, 0.100000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=303.00, 595.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=304.00, 490.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=304.00, 384.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=297.00, 111.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=295.00, 4.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=305.00, 214.00, 0.00, 0.00, 0.00, 0.00, 1.000000, 0.000000, 1.000000, 100.00, 0.00, 1.000000, 0.000000, 1.000000, 100.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 0.00, 1.000000, 0.000000, 1.000000
OB=164.00, 599.00, 0.00, 28.00, 0.00, 28.00, 36.000000, 0.000000, 36.000000, 92.00, 0.00, 225.000000, 0.000000, 225.000000

Graph14PP.pomdp

//State variables
(variables
 (loc l68 l33 l4 l64 l37 l78 l46 l44 l75 l49 l48 l18 l59 l56)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
)

//Observations
(observations
 (ob44_48 ob44_48F ob44_48B)
 (ob48_56 ob48_56F ob48_56B)
 (ob48_64 ob48_64F ob48_64B)
 (ob18_68 ob18_68F ob18_68B)
)

//Initial belief state
init [*
 (loc (l68 (0.0)) (l33 (0.0)) (l4 (0.0)) (l64 (0.0)) (l37 (0.0)) (l78 (1.0)) (l46 (0.0)) (l44 (0.0)) (l75 (0.0)) (l49 (0.0)) (l48 (0.0)) (l18 (0.0)) (l59 (0.0)) (l56 (0.0)))
 (c1 (c1F (0.102661596957)) (c1B (0.897338403043)))
 (c2 (c2F (0.113688212925)) (c2B (0.886311787075)))
 (c3 (c3F (0.266159695818)) (c3B (0.733840304182)))
 (c4 (c4F (0.599999999999)) (c4B (0.400000000001)))
]

//Actions and costs
action goto_l68
 loc (loc
 (l68 (locl68))
 (l33 (locl68))
 (l4 (locl68))
 (l64 (locl64))
 (l37 (locl68))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl68))
 (l48 (locl48))
 (l18 (c4
 (c4F (locl68))
 (c4B (locl18))
))
 (l59 (locl68))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (c4'
 (c4F (ob18_68' (ob18_68F (1.0)) (ob18_68B (0.0))))
 (c4B (ob18_68' (ob18_68F (0.0)) (ob18_68B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (54.48853090330111))
 (l4 (176.1381620442413))
 (l64 (2000.0))
 (l37 (133.579653756801))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (43.10723115315044))
 (l48 (2000.0))
 (l18 (89.80534505250787))
 (l59 (74.52516353554684))
 (l56 (2000.0))
)
endaction

action goto_l33
 loc (loc
 (l68 (locl33))
 (l33 (locl33))
 (l4 (locl33))
 (l64 (locl64))
 (l37 (locl33))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl33))
 (l48 (locl48))
 (l18 (locl33))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (54.48853090330111))
 (l33 (2000.0))
 (l4 (192.56890893530817))
 (l64 (2000.0))
 (l37 (115.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (59.53797804421731))
 (l48 (2000.0))
 (l18 (55.00909015790027))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l68 (locl4))
 (l33 (locl4))
 (l4 (locl4))
 (l64 (locl64))
 (l37 (locl4))
 (l78 (locl78))
 (l46 (locl4))
 (l44 (locl4))
 (l75 (locl75))
 (l49 (locl4))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (c3'
 (c3F (ob48_64' (ob48_64F (0.6)) (ob48_64B (0.4))))
 (c3B (ob48_64' (ob48_64F (0.4)) (ob48_64B (0.6))))
)
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (176.1381620442413))
 (l33 (192.56890893530817))
 (l4 (2000.0))
 (l64 (2000.0))
 (l37 (90.60905032059435))
 (l78 (2000.0))
 (l46 (91.44397191723465))
 (l44 (84.15461959987698))
 (l75 (0))
 (l49 (135.97989623967047))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l64
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (c3
 (c3F (locl64))
 (c3B (locl48))
))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl64))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (c3'
 (c3F (ob48_64' (ob48_64F (1.0)) (ob48_64B (0.0))))
 (c3B (ob48_64' (ob48_64F (0.0)) (ob48_64B (1.0))))
)
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (191.9088325221119))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (67.05221845696084))
)
endaction

action goto_l37
 loc (loc
 (l68 (locl37))
 (l33 (locl37))
 (l4 (locl37))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl37))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (c1'
 (c1F (ob44_48' (ob44_48F (0.8)) (ob44_48B (0.2))))
 (c1B (ob44_48' (ob44_48F (0.19999999999999996)) (ob44_48B (0.8))))
)
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (133.579653756801))
 (l33 (115.0))
 (l4 (90.60905032059435))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (93.42138795223013))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l78
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl78))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (79.6994353806851))
 (l56 (2000.0))
)
endaction

action goto_l46
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl46))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl46))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (c1'
 (c1F (ob44_48' (ob44_48F (1.0)) (ob44_48B (0.0))))
 (c1B (ob44_48' (ob44_48F (0.0)) (ob44_48B (1.0))))
)
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (91.44397191723465))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (12.806248474865697))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l44
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl44))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl44))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (c1
 (c1F (locl44))
 (c1B (locl48))
))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (c1'
 (c1F (ob44_48' (ob44_48F (1.0)) (ob44_48B (0.0))))
 (c1B (ob44_48' (ob44_48F (0.0)) (ob44_48B (1.0))))
)
 ob48_56 (c2'
 (c2F (ob48_56' (ob48_56F (0.7)) (ob48_56B (0.3))))
 (c2B (ob48_56' (ob48_56F (0.19999999999999996)) (ob48_56B (0.8))))
)
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (84.15461959987698))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (12.806248474865697))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (110.54863183232979))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l75
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (locl75))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl75))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (445.91075523093843))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (452.3194338679473))
)
endaction

action goto_l49
 loc (loc
 (l68 (locl49))
 (l33 (locl49))
 (l4 (locl49))
 (l64 (locl64))
 (l37 (locl49))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl49))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (c4'
 (c4F (ob18_68' (ob18_68F (0.9)) (ob18_68B (0.1))))
 (c4B (ob18_68' (ob18_68F (0.09999999999999998)) (ob18_68B (0.9))))
)
 endobserve
 cost (loc
 (l68 (43.10723115315044))
 (l33 (59.53797804421731))
 (l4 (135.97989623967047))
 (l64 (2000.0))
 (l37 (93.42138795223013))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (89.19641248391103))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l48
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (c3
 (c3F (locl48))
 (c3B (locl64))
))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (c1
 (c1F (locl48))
 (c1B (locl44))
))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (c2
 (c2F (locl48))
 (c2B (locl56))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (c1'
 (c1F (ob44_48' (ob44_48F (1.0)) (ob44_48B (0.0))))
 (c1B (ob44_48' (ob44_48F (0.0)) (ob44_48B (1.0))))
)
 ob48_56 (c2'
 (c2F (ob48_56' (ob48_56F (1.0)) (ob48_56B (0.0))))
 (c2B (ob48_56' (ob48_56F (0.0)) (ob48_56B (1.0))))
)
 ob48_64 (c3'
 (c3F (ob48_64' (ob48_64F (1.0)) (ob48_64B (0.0))))
 (c3B (ob48_64' (ob48_64F (0.0)) (ob48_64B (1.0))))
)
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (191.9088325221119))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (110.54863183232979))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (254.09643838511394))
)
endaction

action goto_l18
 loc (loc
 (l68 (c4
 (c4F (locl18))
 (c4B (locl68))
))
 (l33 (locl18))
 (l4 (locl4))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl18))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (c4'
 (c4F (ob18_68' (ob18_68F (1.0)) (ob18_68B (0.0))))
 (c4B (ob18_68' (ob18_68F (0.0)) (ob18_68B (1.0))))
)
 endobserve
 cost (loc
 (l68 (89.80534505250787))
 (l33 (55.00909015790027))
 (l4 (2000.0))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (89.19641248391103))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l59
 loc (loc
 (l68 (locl59))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (locl64))
 (l37 (locl37))
 (l78 (locl59))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (locl48))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (ob48_56' (ob48_56F (0.5)) (ob48_56B (0.5)))
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (c4'
 (c4F (ob18_68' (ob18_68F (0.9)) (ob18_68B (0.1))))
 (c4B (ob18_68' (ob18_68F (0.09999999999999998)) (ob18_68B (0.9))))
)
 endobserve
 cost (loc
 (l68 (74.52516353554684))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (2000.0))
 (l37 (2000.0))
 (l78 (79.6994353806851))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (2000.0))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l56
 loc (loc
 (l68 (locl68))
 (l33 (locl33))
 (l4 (locl4))
 (l64 (locl56))
 (l37 (locl37))
 (l78 (locl78))
 (l46 (locl46))
 (l44 (locl44))
 (l75 (locl75))
 (l49 (locl49))
 (l48 (c2
 (c2F (locl56))
 (c2B (locl48))
))
 (l18 (locl18))
 (l59 (locl59))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob44_48 (ob44_48' (ob44_48F (0.5)) (ob44_48B (0.5)))
 ob48_56 (c2'
 (c2F (ob48_56' (ob48_56F (1.0)) (ob48_56B (0.0))))
 (c2B (ob48_56' (ob48_56F (0.0)) (ob48_56B (1.0))))
)
 ob48_64 (ob48_64' (ob48_64F (0.5)) (ob48_64B (0.5)))
 ob18_68 (ob18_68' (ob18_68F (0.5)) (ob18_68B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l33 (2000.0))
 (l4 (2000.0))
 (l64 (67.05221845696084))
 (l37 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l44 (2000.0))
 (l75 (0))
 (l49 (2000.0))
 (l48 (254.09643838511394))
 (l18 (2000.0))
 (l59 (2000.0))
 (l56 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph14_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 82.00, 290.00, 314.35
N=1, 149.00, 359.00, 82.24
N=2, 132.00, 381.00, 203.72
N=3, 499.00, 470.00, 60.54
N=4, 271.00, 399.00, 84.63
N=5, 123.00, 248.00, 73.14
N=6, 123.00, 327.00, 227.06
N=7, 408.00, 455.00, 313.60
N=8, 182.00, 218.00, 156.85
N=9, 210.00, 519.00, 265.03
N=10, 420.00, 270.00, 352.28
N=11, 93.00, 254.00, 85.25
N=12, 202.00, 465.00, 104.03
N=13, 688.00, 547.00, 194.43
N=14, 491.00, 112.00, 178.45
N=15, 524.00, 135.00, 64.33
N=16, 579.00, 26.00, 5.47
N=17, 591.00, 131.00, 99.24
N=18, 300.00, 533.00, 114.37
N=19, 521.00, 520.00, 194.95
N=20, 183.00, 107.00, 4.47
N=21, 210.00, 515.00, 254.42
N=22, 212.00, 124.00, 311.44
N=23, 571.00, 696.00, 258.03
N=24, 81.00, 305.00, 204.83
N=25, 522.00, 22.00, 114.95
N=26, 110.00, 34.00, 43.55
N=27, 583.00, 645.00, 284.44
N=28, 649.00, 249.00, 311.00
N=29, 138.00, 308.00, 64.67
N=30, 650.00, 230.00, 27.10
N=31, 653.00, 190.00, 118.94
N=32, 112.00, 479.00, 354.76
N=33, 251.00, 508.00, 270.14
N=34, 85.00, 371.00, 87.54
N=35, 92.00, 456.00, 120.46
N=36, 262.00, 122.00, 53.19
N=37, 182.00, 416.00, 96.26
N=38, 627.00, 198.00, 50.32
N=39, 44.00, 81.00, 309.52
N=40, 447.00, 24.00, 130.82
N=41, 210.00, 208.00, 74.00
N=42, 581.00, 387.00, 22.34
N=43, 600.00, 1.00, 55.36
N=44, 242.00, 320.00, 100.91
N=45, 656.00, 234.00, 132.97
N=46, 250.00, 310.00, 307.73
N=47, 613.00, 205.00, 334.44
N=48, 352.00, 331.00, 103.17
N=49, 216.00, 503.00, 330.05
N=50, 220.00, 3.00, 1.93
N=51, 484.00, 525.00, 264.11
N=52, 472.00, 626.00, 159.75
N=53, 638.00, 691.00, 262.26
N=54, 638.00, 229.00, 286.72
N=55, 52.00, 437.00, 74.50
N=56, 606.00, 338.00, 67.39
N=57, 549.00, 66.00, 308.52
N=58, 438.00, 513.00, 267.55
N=59, 138.00, 560.00, 258.22
N=60, 568.00, 166.00, 238.28
N=61, 528.00, 130.00, 34.34
N=62, 116.00, 323.00, 7.04
N=63, 666.00, 394.00, 108.63
N=64, 542.00, 358.00, 75.07
N=65, 176.00, 71.00, 33.00
N=66, 130.00, 43.00, 221.95
N=67, 70.00, 631.00, 1.26
N=68, 211.00, 545.00, 221.00
N=69, 59.00, 636.00, 136.86
N=70, 635.00, 553.00, 261.85
N=71, 147.00, 372.00, 76.13
N=72, 460.00, 98.00, 33.37
N=73, 66.00, 482.00, 36.24
N=74, 92.00, 50.00, 309.12
N=75, 593.00, 565.00, 228.82
N=76, 34.00, 302.00, 91.07
N=77, 515.00, 237.00, 334.43
N=78, 62.00, 584.00, 298.03
N=79, 475.00, 292.00, 280.12

#Edge data
#E=Node number 1, Node number 2, cost
E=4, 68, 176.14
E=4, 33, 192.57
E=4, 37, 90.61
E=4, 44, 84.15
E=4, 46, 91.44
E=4, 49, 135.98
E=18, 68, 89.81
E=18, 33, 55.01
E=18, 49, 89.20
E=33, 68, 54.49
E=33, 37, 115.00
E=33, 49, 59.54
E=37, 68, 133.58
E=37, 49, 93.42
E=44, 46, 12.81
E=44, 48, 110.55
E=48, 64, 191.91
E=48, 56, 254.10
E=49, 68, 43.11
E=56, 64, 67.05
E=56, 75, 452.32
E=59, 68, 74.53
E=59, 78, 79.70
E=64, 75, 445.91

#Start node ID
S=78

#Goal node ID
G=75

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 44, 48, 48, 56, 48, 64
C=1, 18, 68

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 18, 68
EO=1, 48, 64
EO=2, 48, 56
EO=3, 44, 48

#Starting belief state, starting with the all F combination and working through to all B
B=0.028745, 0.019163, 0.018479, 0.012319, 0.003194, 0.002129, 0.011179, 0.007452, 0.012776, 0.008517, 0.008213, 0.005475, 0.114981, 0.076654, 0.402433, 0.268289

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=46, 44, 48, 1.000000, 0.000000
O=44, 44, 48, 1.000000, 0.000000
O=44, 48, 56, 0.800000, 0.300000
O=48, 44, 48, 1.000000, 0.000000
O=48, 48, 56, 1.000000, 0.000000
O=48, 48, 64, 1.000000, 0.000000
O=37, 44, 48, 0.800000, 0.200000
O=56, 48, 56, 1.000000, 0.000000
O=4, 48, 64, 0.600000, 0.400000
O=64, 48, 64, 1.000000, 0.000000
O=59, 18, 68, 0.900000, 0.100000
O=68, 18, 68, 1.000000, 0.000000
O=18, 18, 68, 1.000000, 0.000000
O=49, 18, 68, 0.900000, 0.100000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=303.00, 595.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=304.00, 490.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=304.00, 384.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=297.00, 111.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=295.00, 4.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 0.00, 0.000000, 0.000000, 0.000000, 100.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 100.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=305.00, 214.00, 0.00, 0.00, 0.00, 0.00, 1.000000, 0.000000, 1.000000, 100.00, 0.00, 1.000000, 0.000000, 1.000000, 100.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 100.00, 225.000000, 0.000000, 225.000000, 0.00, 0.00, 1.000000, 0.000000, 1.000000
OB=164.00, 599.00, 0.00, 28.00, 0.00, 28.00, 36.000000, 0.000000, 36.000000, 92.00, 0.00, 225.000000, 0.000000, 225.000000

Graph15.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 537.00, 598.00, 281.71
N=1, 531.00, 114.00, 192.28
N=2, 119.00, 353.00, 93.09
N=3, 471.00, 337.00, 329.87
N=4, 412.00, 623.00, 125.87
N=5, 24.00, 434.00, 39.61
N=6, 64.00, 352.00, 107.63
N=7, 5.00, 136.00, 317.02
N=8, 273.00, 368.00, 133.85
N=9, 287.00, 331.00, 160.44
N=10, 19.00, 194.00, 356.65
N=11, 54.00, 96.00, 120.14
N=12, 48.00, 104.00, 140.82
N=13, 51.00, 395.00, 131.25
N=14, 29.00, 49.00, 10.73
N=15, 40.00, 635.00, 320.44
N=16, 506.00, 519.00, 19.92
N=17, 211.00, 596.00, 53.74
N=18, 534.00, 61.00, 286.28
N=19, 366.00, 497.00, 259.23
N=20, 460.00, 662.00, 178.91
N=21, 124.00, 198.00, 26.37
N=22, 87.00, 517.00, 85.47
N=23, 281.00, 194.00, 246.74
N=24, 480.00, 211.00, 209.21
N=25, 675.00, 569.00, 90.07
N=26, 262.00, 52.00, 17.95
N=27, 691.00, 113.00, 132.48
N=28, 557.00, 352.00, 354.74
N=29, 283.00, 572.00, 76.76
N=30, 513.00, 81.00, 327.66
N=31, 85.00, 200.00, 154.29
N=32, 61.00, 376.00, 317.93
N=33, 220.00, 296.00, 68.87
N=34, 603.00, 613.00, 320.05
N=35, 368.00, 614.00, 98.51
N=36, 45.00, 209.00, 286.38
N=37, 398.00, 576.00, 63.29
N=38, 530.00, 78.00, 181.95
N=39, 693.00, 277.00, 175.36
N=40, 53.00, 481.00, 165.15
N=41, 692.00, 629.00, 93.98
N=42, 552.00, 423.00, 350.77
N=43, 354.00, 524.00, 331.33
N=44, 638.00, 586.00, 279.28
N=45, 193.00, 39.00, 8.73
N=46, 80.00, 218.00, 216.10
N=47, 619.00, 340.00, 301.83
N=48, 375.00, 197.00, 280.75
N=49, 180.00, 351.00, 196.91
N=50, 121.00, 465.00, 294.06
N=51, 370.00, 67.00, 100.65
N=52, 94.00, 586.00, 8.69
N=53, 426.00, 180.00, 244.38
N=54, 39.00, 190.00, 163.61
N=55, 462.00, 628.00, 178.23
N=56, 170.00, 270.00, 66.98
N=57, 265.00, 466.00, 290.56
N=58, 406.00, 525.00, 125.22
N=59, 44.00, 139.00, 256.29
N=60, 580.00, 486.00, 180.45
N=61, 632.00, 583.00, 146.18
N=62, 289.00, 605.00, 324.71
N=63, 453.00, 188.00, 319.28
N=64, 586.00, 644.00, 9.62
N=65, 482.00, 120.00, 332.64
N=66, 596.00, 420.00, 273.98
N=67, 625.00, 373.00, 154.84
N=68, 519.00, 664.00, 305.19
N=69, 448.00, 280.00, 209.58
N=70, 174.00, 373.00, 128.53
N=71, 455.00, 659.00, 98.87
N=72, 429.00, 182.00, 347.92
N=73, 71.00, 364.00, 184.15
N=74, 618.00, 647.00, 71.98
N=75, 327.00, 493.00, 51.58
N=76, 497.00, 597.00, 264.74
N=77, 412.00, 644.00, 328.95
N=78, 519.00, 55.00, 68.46
N=79, 544.00, 536.00, 341.04

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 76, 40.01
E=0, 79, 62.39
E=0, 64, 67.21
E=0, 34, 67.68
E=1, 38, 36.01
E=1, 30, 37.59
E=1, 65, 49.37
E=1, 18, 53.08
E=2, 73, 49.24
E=2, 6, 55.01
E=2, 70, 58.52
E=2, 49, 61.03
E=3, 69, 61.47
E=3, 28, 87.30
E=3, 42, 118.14
E=3, 47, 148.03
E=4, 77, 21.00
E=4, 35, 44.91
E=4, 37, 49.04
E=4, 55, 50.25
E=5, 13, 47.43
E=5, 40, 55.23
E=5, 32, 68.80
E=5, 73, 84.31
E=6, 73, 13.89
E=6, 32, 24.19
E=6, 13, 44.92
E=7, 59, 39.12
E=7, 12, 53.60
E=7, 10, 59.67
E=7, 11, 63.25
E=8, 9, 39.56
E=8, 33, 89.40
E=8, 49, 94.54
E=8, 56, 142.17
E=9, 33, 75.59
E=9, 49, 108.85
E=9, 70, 120.55
E=10, 36, 30.02
E=10, 59, 60.42
E=10, 46, 65.55
E=11, 12, 10.00
E=11, 59, 44.15
E=11, 14, 53.24
E=12, 59, 35.23
E=12, 14, 58.19
E=13, 32, 21.47
E=13, 73, 36.89
E=14, 36, 160.80
E=14, 31, 161.05
E=15, 52, 72.92
E=15, 22, 127.02
E=15, 40, 154.55
E=15, 17, 175.39
E=16, 79, 41.63
E=16, 76, 78.52
E=16, 60, 81.02
E=16, 58, 100.18
E=17, 29, 75.89
E=17, 62, 78.52
E=17, 52, 117.43
E=18, 78, 16.16
E=18, 38, 17.46
E=18, 30, 29.00
E=19, 43, 29.55
E=19, 75, 39.20
E=19, 58, 48.83
E=19, 37, 85.23
E=20, 71, 5.83
E=20, 55, 34.06
E=20, 77, 51.26
E=20, 68, 59.03
E=21, 31, 39.05
E=21, 46, 48.33
E=21, 36, 79.76
E=21, 54, 85.38
E=22, 40, 49.52
E=22, 32, 143.38
E=22, 49, 190.28
E=23, 48, 94.05
E=23, 33, 118.85
E=23, 56, 134.53
E=23, 26, 143.27
E=24, 72, 58.67
E=24, 53, 62.27
E=24, 69, 76.06
E=24, 48, 105.93
E=25, 44, 40.72
E=25, 61, 45.22
E=25, 41, 62.36
E=25, 34, 84.38
E=26, 45, 70.21
E=26, 51, 109.04
E=26, 48, 183.83
E=27, 39, 164.01
E=27, 38, 164.76
E=27, 30, 180.85
E=27, 78, 181.52
E=28, 47, 63.15
E=28, 67, 71.17
E=28, 42, 71.18
E=29, 62, 33.54
E=29, 43, 85.70
E=29, 75, 90.43
E=30, 38, 17.26
E=31, 46, 18.68
E=31, 36, 41.00
E=33, 56, 56.36
E=34, 64, 35.36
E=34, 74, 37.16
E=35, 37, 48.41
E=35, 77, 53.25
E=35, 62, 79.51
E=37, 58, 51.62
E=39, 47, 97.19
E=39, 67, 117.64
E=39, 66, 172.79
E=40, 50, 69.86
E=41, 44, 69.03
E=41, 61, 75.60
E=41, 74, 76.16
E=42, 66, 44.10
E=42, 60, 68.94
E=43, 75, 41.11
E=43, 58, 52.01
E=44, 61, 6.71
E=44, 74, 64.20
E=45, 51, 179.20
E=45, 46, 211.68
E=45, 54, 215.68
E=47, 67, 33.54
E=48, 53, 53.76
E=50, 54, 286.97
E=51, 65, 123.91
E=51, 53, 126.12
E=52, 62, 195.92
E=53, 72, 3.61
E=54, 56, 153.50
E=55, 71, 31.78
E=55, 76, 46.75
E=57, 75, 67.62
E=57, 77, 230.85
E=57, 76, 266.43
E=57, 71, 270.83
E=60, 79, 61.61
E=60, 66, 67.91
E=61, 74, 65.51
E=63, 72, 24.74
E=64, 68, 69.92
E=64, 79, 115.88
E=65, 78, 74.79
E=66, 67, 55.23
E=69, 72, 99.82
E=69, 70, 289.35

#Start node ID
S=34

#Goal node ID
G=26

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 69, 72, 24, 69
C=1, 3, 69
C=2, 51, 65
C=3, 69, 70

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 69, 70
EO=1, 51, 65
EO=2, 3, 69
EO=3, 24, 69
EO=4, 69, 72

#Starting belief state, starting with the all F combination and working through to all B
B=0.021140, 0.190262, 0.031710, 0.285393, 0.002265, 0.020385, 0.003398, 0.030578, 0.002265, 0.020385, 0.003398, 0.030578, 0.003883, 0.034946, 0.005824, 0.052419, 0.003883, 0.034946, 0.005824, 0.052419, 0.000416, 0.003744, 0.000624, 0.005616, 0.002265, 0.020385, 0.003398, 0.030578, 0.003883, 0.034946, 0.005824, 0.052419

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=3, 69, 72, 0.800000, 0.200000
O=3, 24, 69, 0.800000, 0.200000
O=3, 3, 69, 1.000000, 0.000000
O=69, 69, 72, 1.000000, 0.000000
O=69, 24, 69, 1.000000, 0.000000
O=69, 3, 69, 1.000000, 0.000000
O=69, 69, 70, 1.000000, 0.000000
O=72, 69, 72, 1.000000, 0.000000
O=24, 24, 69, 1.000000, 0.000000
O=42, 3, 69, 0.700000, 0.300000
O=1, 51, 65, 0.900000, 0.100000
O=65, 51, 65, 1.000000, 0.000000
O=51, 51, 65, 1.000000, 0.000000
O=27, 51, 65, 0.550000, 0.450000
O=8, 69, 70, 1.000000, 0.000000
O=70, 69, 70, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=111.00, 495.00, 0.00, 0.00, 0.00, 0.00, 0.287799, 0.000000, 0.287799, 140.00, 0.00, 0.002261, 0.000000, 0.002261, 140.00, 80.00, 7.340402, 0.000000, 7.340402, 0.00, 80.00, 0.563986, 0.000000, 0.563986, 0.00, 0.00, 0.287799, 0.000000, 0.287799
OB=213.00, 375.00, 60.00, 0.00, 60.00, 0.00, 18.856632, 0.000000, 18.856632, 120.00, 30.00, 3.632555, 0.000000, 3.632555, 100.00, 110.00, 0.196429, 0.000000, 0.196429, 20.00, 110.00, 1.005679, 0.000000, 1.005679, 0.00, 30.00, 1.546866, 0.000000, 1.546866, 60.00, 0.00, 18.856632, 0.000000, 18.856632
OB=474.00, 240.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=445.00, 116.00, 0.00, 0.00, 0.00, 0.00, 196.000000, 0.000000, 196.000000, 85.00, 86.00, 9.000000, 0.000000, 9.000000
OB=378.00, 306.00, 60.00, 0.00, 60.00, 0.00, 155.172328, 0.000000, 155.172328, 120.00, 30.00, 176.129462, 0.000000, 176.129462, 100.00, 110.00, 101.151661, 0.000000, 101.151661, 20.00, 110.00, 12.554367, 0.000000, 12.554367, 0.00, 30.00, 159.937289, 0.000000, 159.937289, 60.00, 0.00, 155.172328, 0.000000, 155.172328
OB=190.00, 208.00, 0.00, 114.00, 0.00, 114.00, 1.100424, 0.000000, 1.100424, 11.00, 0.00, 3.259192, 0.000000, 3.259192
OB=297.00, 246.00, 0.00, 22.00, 0.00, 22.00, 36.000000, 0.000000, 36.000000, 129.00, 0.00, 144.000000, 0.000000, 144.000000

Graph15PP.pomdp

//State variables
(variables
 (loc l34 l69 l1 l70 l3 l65 l42 l8 l72 l51 l24 l27 l26)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob69_72 ob69_72F ob69_72B)
 (ob24_69 ob24_69F ob24_69B)
 (ob3_69 ob3_69F ob3_69B)
 (ob51_65 ob51_65F ob51_65B)
 (ob69_70 ob69_70F ob69_70B)
)

//Initial belief state
init [*
 (loc (l34 (1.0)) (l69 (0.0)) (l1 (0.0)) (l70 (0.0)) (l3 (0.0)) (l65 (0.0)) (l42 (0.0)) (l8 (0.0)) (l72 (0.0)) (l51 (0.0)) (l24 (0.0)) (l27 (0.0)) (l26 (0.0)))
 (c1 (c1F (0.738828967644)) (c1B (0.261171032356)))
 (c2 (c2F (0.692604006166)) (c2B (0.307395993834)))
 (c3 (c3F (0.738828967644)) (c3B (0.261171032356)))
 (c4 (c4F (0.399999999998)) (c4B (0.600000000002)))
 (c5 (c5F (0.099999999998)) (c5B (0.900000000002)))
]

//Actions and costs
action goto_l34
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl34))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl34))
 (l8 (locl34))
 (l72 (locl72))
 (l51 (locl51))
 (l24 (locl24))
 (l27 (locl34))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (984.887381426905))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (260.630686810867))
 (l8 (994.8630331420709))
 (l72 (2000.0))
 (l51 (2000.0))
 (l24 (2000.0))
 (l27 (596.4072600961646))
 (l26 (0))
)
endaction

action goto_l69
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (c5
 (c5F (locl69))
 (c5B (locl70))
))
 (l3 (c3
 (c3F (locl69))
 (c3B (locl3))
))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl8))
 (l72 (c1
 (c1F (locl69))
 (c1B (locl72))
))
 (l51 (locl51))
 (l24 (c2
 (c2F (locl69))
 (c2B (locl24))
))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (c1'
 (c1F (ob69_72' (ob69_72F (1.0)) (ob69_72B (0.0))))
 (c1B (ob69_72' (ob69_72F (0.0)) (ob69_72B (1.0))))
)
 ob24_69 (c2'
 (c2F (ob24_69' (ob24_69F (1.0)) (ob24_69B (0.0))))
 (c2B (ob24_69' (ob24_69F (0.0)) (ob24_69B (1.0))))
)
 ob3_69 (c3'
 (c3F (ob3_69' (ob3_69F (1.0)) (ob3_69B (0.0))))
 (c3B (ob3_69' (ob3_69F (0.0)) (ob3_69B (1.0))))
)
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (c5'
 (c5F (ob69_70' (ob69_70F (1.0)) (ob69_70B (0.0))))
 (c5B (ob69_70' (ob69_70F (0.0)) (ob69_70B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (289.35272592460575))
 (l3 (61.465437442517235))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (2000.0))
 (l72 (99.82484660644363))
 (l51 (2000.0))
 (l24 (76.05918747922567))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l1
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl70))
 (l3 (locl3))
 (l65 (locl1))
 (l42 (locl42))
 (l8 (locl8))
 (l72 (locl72))
 (l51 (locl51))
 (l24 (locl24))
 (l27 (locl1))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (c4'
 (c4F (ob51_65' (ob51_65F (0.9)) (ob51_65B (0.1))))
 (c4B (ob51_65' (ob51_65F (0.09999999999999998)) (ob51_65B (0.9))))
)
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (2000.0))
 (l3 (2000.0))
 (l65 (49.36598018878993))
 (l42 (2000.0))
 (l8 (2000.0))
 (l72 (2000.0))
 (l51 (2000.0))
 (l24 (2000.0))
 (l27 (200.7743183538957))
 (l26 (0))
)
endaction

action goto_l70
 loc (loc
 (l34 (locl70))
 (l69 (c5
 (c5F (locl70))
 (c5B (locl69))
))
 (l1 (locl1))
 (l70 (locl70))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl70))
 (l8 (locl70))
 (l72 (locl70))
 (l51 (locl51))
 (l24 (locl70))
 (l27 (locl70))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (c5'
 (c5F (ob69_70' (ob69_70F (1.0)) (ob69_70B (0.0))))
 (c5B (ob69_70' (ob69_70F (0.0)) (ob69_70B (1.0))))
)
 endobserve
 cost (loc
 (l34 (984.887381426905))
 (l69 (289.35272592460575))
 (l1 (2000.0))
 (l70 (2000.0))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (1041.001982967803))
 (l8 (160.1129738454528))
 (l72 (466.4046726063903))
 (l51 (2000.0))
 (l24 (514.9696227610148))
 (l27 (1376.7785562531005))
 (l26 (0))
)
endaction

action goto_l3
 loc (loc
 (l34 (locl34))
 (l69 (c3
 (c3F (locl3))
 (c3B (locl69))
))
 (l1 (locl1))
 (l70 (locl70))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl3))
 (l8 (locl8))
 (l72 (locl72))
 (l51 (locl51))
 (l24 (locl24))
 (l27 (locl3))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (c1'
 (c1F (ob69_72' (ob69_72F (0.8)) (ob69_72B (0.2))))
 (c1B (ob69_72' (ob69_72F (0.19999999999999996)) (ob69_72B (0.8))))
)
 ob24_69 (c2'
 (c2F (ob24_69' (ob24_69F (0.8)) (ob24_69B (0.2))))
 (c2B (ob24_69' (ob24_69F (0.19999999999999996)) (ob24_69B (0.8))))
)
 ob3_69 (c3'
 (c3F (ob3_69' (ob3_69F (1.0)) (ob3_69B (0.0))))
 (c3B (ob3_69' (ob3_69F (0.0)) (ob3_69B (1.0))))
)
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (61.465437442517235))
 (l1 (2000.0))
 (l70 (2000.0))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (118.1397477566293))
 (l8 (2000.0))
 (l72 (2000.0))
 (l51 (2000.0))
 (l24 (2000.0))
 (l27 (409.2279867998162))
 (l26 (0))
)
endaction

action goto_l65
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl65))
 (l70 (locl70))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl8))
 (l72 (locl72))
 (l51 (c4
 (c4F (locl65))
 (c4B (locl51))
))
 (l24 (locl24))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (c4'
 (c4F (ob51_65' (ob51_65F (1.0)) (ob51_65B (0.0))))
 (c4B (ob51_65' (ob51_65F (0.0)) (ob51_65B (1.0))))
)
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (49.36598018878993))
 (l70 (2000.0))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (2000.0))
 (l72 (2000.0))
 (l51 (123.90722335683259))
 (l24 (2000.0))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l42
 loc (loc
 (l34 (locl42))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl42))
 (l3 (locl42))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl42))
 (l72 (locl72))
 (l51 (locl51))
 (l24 (locl24))
 (l27 (locl42))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (c3'
 (c3F (ob3_69' (ob3_69F (0.7)) (ob3_69B (0.3))))
 (c3B (ob3_69' (ob3_69F (0.30000000000000004)) (ob3_69B (0.7))))
)
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (260.630686810867))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (1041.001982967803))
 (l3 (118.1397477566293))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (1050.9776346829688))
 (l72 (2000.0))
 (l51 (2000.0))
 (l24 (2000.0))
 (l27 (380.90902465487153))
 (l26 (0))
)
endaction

action goto_l8
 loc (loc
 (l34 (locl8))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl8))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl8))
 (l8 (locl8))
 (l72 (locl8))
 (l51 (locl51))
 (l24 (locl8))
 (l27 (locl8))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (c5'
 (c5F (ob69_70' (ob69_70F (1.0)) (ob69_70B (0.0))))
 (c5B (ob69_70' (ob69_70F (0.0)) (ob69_70B (1.0))))
)
 endobserve
 cost (loc
 (l34 (994.8630331420709))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (160.1129738454528))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (1050.9776346829688))
 (l8 (2000.0))
 (l72 (359.664354241476))
 (l51 (2000.0))
 (l24 (408.2293043961005))
 (l27 (1386.7542079682662))
 (l26 (0))
)
endaction

action goto_l72
 loc (loc
 (l34 (locl34))
 (l69 (c1
 (c1F (locl72))
 (c1B (locl69))
))
 (l1 (locl1))
 (l70 (locl72))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl72))
 (l72 (locl72))
 (l51 (locl72))
 (l24 (locl72))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (c1'
 (c1F (ob69_72' (ob69_72F (1.0)) (ob69_72B (0.0))))
 (c1B (ob69_72' (ob69_72F (0.0)) (ob69_72B (1.0))))
)
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (99.82484660644363))
 (l1 (2000.0))
 (l70 (466.4046726063903))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (359.664354241476))
 (l72 (2000.0))
 (l51 (129.7205781358663))
 (l24 (58.66856057549052))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l51
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl70))
 (l3 (locl3))
 (l65 (c4
 (c4F (locl51))
 (c4B (locl65))
))
 (l42 (locl42))
 (l8 (locl8))
 (l72 (locl51))
 (l51 (locl51))
 (l24 (locl51))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (c4'
 (c4F (ob51_65' (ob51_65F (1.0)) (ob51_65B (0.0))))
 (c4B (ob51_65' (ob51_65F (0.0)) (ob51_65B (1.0))))
)
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (2000.0))
 (l3 (2000.0))
 (l65 (123.90722335683259))
 (l42 (2000.0))
 (l8 (2000.0))
 (l72 (129.7205781358663))
 (l51 (2000.0))
 (l24 (188.3805871646347))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l24
 loc (loc
 (l34 (locl34))
 (l69 (c2
 (c2F (locl24))
 (c2B (locl69))
))
 (l1 (locl1))
 (l70 (locl24))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl24))
 (l72 (locl24))
 (l51 (locl24))
 (l24 (locl24))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (c2'
 (c2F (ob24_69' (ob24_69F (1.0)) (ob24_69B (0.0))))
 (c2B (ob24_69' (ob24_69F (0.0)) (ob24_69B (1.0))))
)
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (76.05918747922567))
 (l1 (2000.0))
 (l70 (514.9696227610148))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (408.2293043961005))
 (l72 (58.66856057549052))
 (l51 (188.3805871646347))
 (l24 (2000.0))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l27
 loc (loc
 (l34 (locl27))
 (l69 (locl69))
 (l1 (locl27))
 (l70 (locl27))
 (l3 (locl27))
 (l65 (locl65))
 (l42 (locl27))
 (l8 (locl27))
 (l72 (locl72))
 (l51 (locl51))
 (l24 (locl24))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (c4'
 (c4F (ob51_65' (ob51_65F (0.55)) (ob51_65B (0.45))))
 (c4B (ob51_65' (ob51_65F (0.44999999999999996)) (ob51_65B (0.55))))
)
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (596.4072600961646))
 (l69 (2000.0))
 (l1 (200.7743183538957))
 (l70 (1376.7785562531005))
 (l3 (409.2279867998162))
 (l65 (2000.0))
 (l42 (380.90902465487153))
 (l8 (1386.7542079682662))
 (l72 (2000.0))
 (l51 (2000.0))
 (l24 (2000.0))
 (l27 (2000.0))
 (l26 (0))
)
endaction

action goto_l26
 loc (loc
 (l34 (locl34))
 (l69 (locl69))
 (l1 (locl1))
 (l70 (locl26))
 (l3 (locl3))
 (l65 (locl65))
 (l42 (locl42))
 (l8 (locl26))
 (l72 (locl72))
 (l51 (locl26))
 (l24 (locl26))
 (l27 (locl27))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob69_72 (ob69_72' (ob69_72F (0.5)) (ob69_72B (0.5)))
 ob24_69 (ob24_69' (ob24_69F (0.5)) (ob24_69B (0.5)))
 ob3_69 (ob3_69' (ob3_69F (0.5)) (ob3_69B (0.5)))
 ob51_65 (ob51_65' (ob51_65F (0.5)) (ob51_65B (0.5)))
 ob69_70 (ob69_70' (ob69_70F (0.5)) (ob69_70B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l69 (2000.0))
 (l1 (2000.0))
 (l70 (458.258028770596))
 (l3 (2000.0))
 (l65 (2000.0))
 (l42 (2000.0))
 (l8 (351.5177104056818))
 (l72 (2000.0))
 (l51 (109.03669107231748))
 (l24 (289.7606661884275))
 (l27 (2000.0))
 (l26 (0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph15_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 537.00, 598.00, 281.71
N=1, 531.00, 114.00, 192.28
N=2, 119.00, 353.00, 93.09
N=3, 471.00, 337.00, 329.87
N=4, 412.00, 623.00, 125.87
N=5, 24.00, 434.00, 39.61
N=6, 64.00, 352.00, 107.63
N=7, 5.00, 136.00, 317.02
N=8, 273.00, 368.00, 133.85
N=9, 287.00, 331.00, 160.44
N=10, 19.00, 194.00, 356.65
N=11, 54.00, 96.00, 120.14
N=12, 48.00, 104.00, 140.82
N=13, 51.00, 395.00, 131.25
N=14, 29.00, 49.00, 10.73
N=15, 40.00, 635.00, 320.44
N=16, 506.00, 519.00, 19.92
N=17, 211.00, 596.00, 53.74
N=18, 534.00, 61.00, 286.28
N=19, 366.00, 497.00, 259.23
N=20, 460.00, 662.00, 178.91
N=21, 124.00, 198.00, 26.37
N=22, 87.00, 517.00, 85.47
N=23, 281.00, 194.00, 246.74
N=24, 480.00, 211.00, 209.21
N=25, 675.00, 569.00, 90.07
N=26, 262.00, 52.00, 17.95
N=27, 691.00, 113.00, 132.48
N=28, 557.00, 352.00, 354.74
N=29, 283.00, 572.00, 76.76
N=30, 513.00, 81.00, 327.66
N=31, 85.00, 200.00, 154.29
N=32, 61.00, 376.00, 317.93
N=33, 220.00, 296.00, 68.87
N=34, 603.00, 613.00, 320.05
N=35, 368.00, 614.00, 98.51
N=36, 45.00, 209.00, 286.38
N=37, 398.00, 576.00, 63.29
N=38, 530.00, 78.00, 181.95
N=39, 693.00, 277.00, 175.36
N=40, 53.00, 481.00, 165.15
N=41, 692.00, 629.00, 93.98
N=42, 552.00, 423.00, 350.77
N=43, 354.00, 524.00, 331.33
N=44, 638.00, 586.00, 279.28
N=45, 193.00, 39.00, 8.73
N=46, 80.00, 218.00, 216.10
N=47, 619.00, 340.00, 301.83
N=48, 375.00, 197.00, 280.75
N=49, 180.00, 351.00, 196.91
N=50, 121.00, 465.00, 294.06
N=51, 370.00, 67.00, 100.65
N=52, 94.00, 586.00, 8.69
N=53, 426.00, 180.00, 244.38
N=54, 39.00, 190.00, 163.61
N=55, 462.00, 628.00, 178.23
N=56, 170.00, 270.00, 66.98
N=57, 265.00, 466.00, 290.56
N=58, 406.00, 525.00, 125.22
N=59, 44.00, 139.00, 256.29
N=60, 580.00, 486.00, 180.45
N=61, 632.00, 583.00, 146.18
N=62, 289.00, 605.00, 324.71
N=63, 453.00, 188.00, 319.28
N=64, 586.00, 644.00, 9.62
N=65, 482.00, 120.00, 332.64
N=66, 596.00, 420.00, 273.98
N=67, 625.00, 373.00, 154.84
N=68, 519.00, 664.00, 305.19
N=69, 448.00, 280.00, 209.58
N=70, 174.00, 373.00, 128.53
N=71, 455.00, 659.00, 98.87
N=72, 429.00, 182.00, 347.92
N=73, 71.00, 364.00, 184.15
N=74, 618.00, 647.00, 71.98
N=75, 327.00, 493.00, 51.58
N=76, 497.00, 597.00, 264.74
N=77, 412.00, 644.00, 328.95
N=78, 519.00, 55.00, 68.46
N=79, 544.00, 536.00, 341.04

#Edge data
#E=Node number 1, Node number 2, cost
E=1, 27, 200.77
E=1, 65, 49.37
E=3, 69, 61.47
E=3, 27, 409.23
E=3, 42, 118.14
E=8, 34, 994.86
E=8, 70, 160.11
E=8, 42, 1050.98
E=8, 24, 408.23
E=8, 26, 351.52
E=8, 27, 1386.75
E=8, 72, 359.66
E=24, 69, 76.06
E=24, 70, 514.97
E=24, 72, 58.67
E=24, 51, 188.38
E=24, 26, 289.76
E=26, 70, 458.26
E=26, 51, 109.04
E=27, 34, 596.41
E=27, 70, 1376.78
E=27, 42, 380.91
E=34, 42, 260.63
E=34, 70, 984.89
E=42, 70, 1041.00
E=51, 65, 123.91
E=51, 72, 129.72
E=69, 72, 99.82
E=69, 70, 289.35
E=70, 72, 466.40

#Start node ID
S=34

#Goal node ID
G=26

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 69, 72, 24, 69
C=1, 3, 69
C=2, 51, 65
C=3, 69, 70

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 69, 70
EO=1, 51, 65
EO=2, 3, 69
EO=3, 24, 69
EO=4, 69, 72

#Starting belief state, starting with the all F combination and working through to all B
B=0.021140, 0.190262, 0.031710, 0.285393, 0.002265, 0.020385, 0.003398, 0.030578, 0.002265, 0.020385, 0.003398, 0.030578, 0.003883, 0.034946, 0.005824, 0.052419, 0.003883, 0.034946, 0.005824, 0.052419, 0.000416, 0.003744, 0.000624, 0.005616, 0.002265, 0.020385, 0.003398, 0.030578, 0.003883, 0.034946, 0.005824, 0.052419

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=3, 69, 72, 0.800000, 0.200000
O=3, 24, 69, 0.800000, 0.200000
O=3, 3, 69, 1.000000, 0.000000
O=69, 69, 72, 1.000000, 0.000000
O=69, 24, 69, 1.000000, 0.000000
O=69, 3, 69, 1.000000, 0.000000
O=69, 69, 70, 1.000000, 0.000000
O=72, 69, 72, 1.000000, 0.000000
O=24, 24, 69, 1.000000, 0.000000
O=42, 3, 69, 0.700000, 0.300000
O=1, 51, 65, 0.900000, 0.100000
O=65, 51, 65, 1.000000, 0.000000
O=51, 51, 65, 1.000000, 0.000000
O=27, 51, 65, 0.550000, 0.450000
O=8, 69, 70, 1.000000, 0.000000
O=70, 69, 70, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=111.00, 495.00, 0.00, 0.00, 0.00, 0.00, 0.287799, 0.000000, 0.287799, 140.00, 0.00, 0.002261, 0.000000, 0.002261, 140.00, 80.00, 7.340402, 0.000000, 7.340402, 0.00, 80.00, 0.563986, 0.000000, 0.563986, 0.00, 0.00, 0.287799, 0.000000, 0.287799
OB=213.00, 375.00, 60.00, 0.00, 60.00, 0.00, 18.856632, 0.000000, 18.856632, 120.00, 30.00, 3.632555, 0.000000, 3.632555, 100.00, 110.00, 0.196429, 0.000000, 0.196429, 20.00, 110.00, 1.005679, 0.000000, 1.005679, 0.00, 30.00, 1.546866, 0.000000, 1.546866, 60.00, 0.00, 18.856632, 0.000000, 18.856632
OB=474.00, 240.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=445.00, 116.00, 0.00, 0.00, 0.00, 0.00, 196.000000, 0.000000, 196.000000, 85.00, 86.00, 9.000000, 0.000000, 9.000000
OB=378.00, 306.00, 60.00, 0.00, 60.00, 0.00, 155.172328, 0.000000, 155.172328, 120.00, 30.00, 176.129462, 0.000000, 176.129462, 100.00, 110.00, 101.151661, 0.000000, 101.151661, 20.00, 110.00, 12.554367, 0.000000, 12.554367, 0.00, 30.00, 159.937289, 0.000000, 159.937289, 60.00, 0.00, 155.172328, 0.000000, 155.172328
OB=190.00, 208.00, 0.00, 114.00, 0.00, 114.00, 1.100424, 0.000000, 1.100424, 11.00, 0.00, 3.259192, 0.000000, 3.259192
OB=297.00, 246.00, 0.00, 22.00, 0.00, 22.00, 36.000000, 0.000000, 36.000000, 129.00, 0.00, 144.000000, 0.000000, 144.000000

Graph16.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 77.00, 143.00, 328.80
N=1, 163.00, 619.00, 106.19
N=2, 319.00, 38.00, 1.53
N=3, 60.00, 431.00, 55.47
N=4, 166.00, 451.00, 59.70
N=5, 512.00, 634.00, 292.22
N=6, 594.00, 407.00, 140.31
N=7, 28.00, 319.00, 232.73
N=8, 238.00, 462.00, 97.59
N=9, 694.00, 30.00, 136.85
N=10, 496.00, 55.00, 255.00
N=11, 51.00, 555.00, 216.25
N=12, 454.00, 624.00, 116.97
N=13, 596.00, 518.00, 2.00
N=14, 319.00, 470.00, 173.89
N=15, 638.00, 462.00, 40.07
N=16, 645.00, 53.00, 36.45
N=17, 616.00, 220.00, 16.48
N=18, 65.00, 221.00, 32.50
N=19, 17.00, 204.00, 316.39
N=20, 669.00, 356.00, 67.54
N=21, 63.00, 133.00, 165.17
N=22, 46.00, 119.00, 68.70
N=23, 554.00, 75.00, 162.66
N=24, 631.00, 274.00, 245.21
N=25, 564.00, 644.00, 23.30
N=26, 359.00, 14.00, 66.49
N=27, 573.00, 153.00, 276.93
N=28, 103.00, 605.00, 276.31
N=29, 611.00, 449.00, 293.21
N=30, 226.00, 637.00, 100.92
N=31, 78.00, 23.00, 108.94
N=32, 316.00, 601.00, 23.96
N=33, 625.00, 298.00, 53.24
N=34, 456.00, 72.00, 149.92
N=35, 500.00, 46.00, 310.92
N=36, 606.00, 429.00, 141.05
N=37, 620.00, 483.00, 258.18
N=38, 646.00, 116.00, 294.95
N=39, 95.00, 136.00, 344.01
N=40, 613.00, 637.00, 271.36
N=41, 665.00, 143.00, 61.16
N=42, 256.00, 646.00, 55.56
N=43, 100.00, 513.00, 254.04
N=44, 158.00, 9.00, 41.24
N=45, 591.00, 349.00, 4.12
N=46, 619.00, 482.00, 243.78
N=47, 457.00, 442.00, 23.22
N=48, 586.00, 205.00, 145.09
N=49, 161.00, 415.00, 66.18
N=50, 113.00, 479.00, 236.33
N=51, 34.00, 152.00, 24.77
N=52, 592.00, 266.00, 279.68
N=53, 609.00, 312.00, 318.09
N=54, 36.00, 289.00, 285.59
N=55, 425.00, 437.00, 98.37
N=56, 173.00, 447.00, 80.68
N=57, 416.00, 640.00, 272.34
N=58, 98.00, 525.00, 295.30
N=59, 422.00, 631.00, 201.73
N=60, 582.00, 57.00, 331.16
N=61, 101.00, 622.00, 30.51
N=62, 64.00, 347.00, 16.62
N=63, 666.00, 31.00, 149.69
N=64, 675.00, 646.00, 226.87
N=65, 586.00, 298.00, 349.03
N=66, 435.00, 688.00, 243.62
N=67, 581.00, 109.00, 226.00
N=68, 674.00, 230.00, 112.64
N=69, 598.00, 530.00, 354.88
N=70, 646.00, 153.00, 254.50
N=71, 423.00, 621.00, 144.68
N=72, 654.00, 352.00, 154.99
N=73, 584.00, 418.00, 297.27
N=74, 194.00, 12.00, 103.18
N=75, 53.00, 337.00, 208.47
N=76, 59.00, 632.00, 137.72
N=77, 551.00, 139.00, 342.02
N=78, 297.00, 460.00, 43.54
N=79, 434.00, 66.00, 223.52

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 21, 17.20
E=0, 39, 19.31
E=0, 22, 39.20
E=0, 51, 43.93
E=1, 61, 62.07
E=1, 30, 65.52
E=1, 42, 96.84
E=1, 76, 104.81
E=2, 26, 46.65
E=2, 79, 118.36
E=2, 74, 127.68
E=2, 44, 163.59
E=3, 50, 71.51
E=3, 62, 84.10
E=3, 43, 91.24
E=3, 75, 94.26
E=4, 56, 8.06
E=4, 49, 36.35
E=4, 50, 59.94
E=4, 8, 72.84
E=5, 25, 52.95
E=5, 66, 94.05
E=5, 57, 96.19
E=5, 40, 101.04
E=6, 73, 14.87
E=6, 36, 25.06
E=6, 29, 45.31
E=6, 45, 58.08
E=7, 75, 30.81
E=7, 54, 31.05
E=7, 62, 45.61
E=7, 18, 104.75
E=8, 78, 59.03
E=8, 56, 66.71
E=8, 14, 81.39
E=9, 63, 28.02
E=9, 16, 54.13
E=9, 38, 98.49
E=9, 60, 115.21
E=10, 35, 9.85
E=10, 34, 43.46
E=10, 23, 61.35
E=10, 79, 62.97
E=11, 58, 55.76
E=11, 43, 64.54
E=11, 28, 72.14
E=11, 76, 77.41
E=12, 71, 31.14
E=12, 59, 32.76
E=12, 57, 41.23
E=12, 66, 66.76
E=13, 69, 12.17
E=13, 37, 42.44
E=13, 46, 42.72
E=13, 15, 70.00
E=14, 78, 24.17
E=14, 55, 111.02
E=14, 47, 140.81
E=15, 46, 27.59
E=15, 37, 27.66
E=15, 29, 29.97
E=16, 63, 30.41
E=16, 38, 63.01
E=16, 60, 63.13
E=17, 48, 33.54
E=17, 52, 51.88
E=17, 24, 56.04
E=17, 68, 58.86
E=18, 19, 50.92
E=18, 54, 73.93
E=18, 51, 75.64
E=19, 51, 54.71
E=19, 21, 84.60
E=19, 54, 87.10
E=20, 72, 15.52
E=20, 33, 72.80
E=20, 53, 74.40
E=20, 45, 78.31
E=21, 22, 22.02
E=21, 39, 32.14
E=22, 51, 35.11
E=22, 39, 51.87
E=23, 60, 33.29
E=23, 67, 43.42
E=23, 35, 61.29
E=24, 33, 24.74
E=24, 52, 39.81
E=24, 53, 43.91
E=25, 40, 49.50
E=25, 64, 111.02
E=25, 69, 118.96
E=26, 79, 91.26
E=26, 34, 113.02
E=26, 35, 144.59
E=27, 77, 26.08
E=27, 67, 44.72
E=27, 48, 53.60
E=27, 70, 73.00
E=28, 76, 51.62
E=28, 58, 80.16
E=28, 43, 92.05
E=29, 36, 20.62
E=29, 46, 33.96
E=30, 42, 31.32
E=30, 32, 96.93
E=30, 61, 125.90
E=31, 44, 81.22
E=31, 39, 114.27
E=31, 74, 116.52
E=31, 54, 269.30
E=32, 71, 108.85
E=33, 53, 21.26
E=33, 65, 39.00
E=34, 79, 22.80
E=34, 35, 51.11
E=36, 73, 24.60
E=36, 46, 54.57
E=37, 69, 51.89
E=37, 73, 74.30
E=38, 41, 33.02
E=38, 70, 37.00
E=40, 64, 62.65
E=40, 69, 108.05
E=41, 70, 21.47
E=41, 68, 87.46
E=41, 67, 90.62
E=42, 61, 156.85
E=43, 58, 12.17
E=44, 74, 36.12
E=45, 53, 41.15
E=45, 65, 51.24
E=47, 55, 32.39
E=47, 78, 161.01
E=47, 56, 284.04
E=48, 52, 61.29
E=48, 77, 74.71
E=49, 56, 34.18
E=49, 50, 80.00
E=49, 78, 143.25
E=50, 58, 48.38
E=52, 65, 32.56
E=55, 73, 160.13
E=57, 59, 10.82
E=59, 71, 10.05
E=59, 66, 58.46
E=60, 67, 52.01
E=61, 76, 43.17
E=62, 75, 14.87
E=63, 70, 123.63
E=63, 77, 157.76
E=64, 66, 243.65
E=64, 71, 253.24
E=65, 72, 86.83
E=68, 72, 123.63
E=68, 77, 153.00

#Start node ID
S=76

#Goal node ID
G=64

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 32, 71, 30, 32
C=1, 55, 73, 47, 55
C=2, 25, 69

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 25, 69
EO=1, 47, 55
EO=2, 55, 73
EO=3, 30, 32
EO=4, 32, 71

#Starting belief state, starting with the all F combination and working through to all B
B=0.005503, 0.005503, 0.001975, 0.001975, 0.026667, 0.026667, 0.033016, 0.033016, 0.000767, 0.000767, 0.000275, 0.000275, 0.003719, 0.003719, 0.004604, 0.004604, 0.000676, 0.000676, 0.000243, 0.000243, 0.003275, 0.003275, 0.004055, 0.004055, 0.034021, 0.034021, 0.012212, 0.012212, 0.164869, 0.164869, 0.204123, 0.204123

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=1, 32, 71, 0.900000, 0.200000
O=1, 30, 32, 0.912267, 0.000000
O=32, 32, 71, 1.000000, 0.000000
O=32, 30, 32, 1.000000, 0.000000
O=71, 32, 71, 1.000000, 0.000000
O=30, 30, 32, 1.000000, 0.000000
O=14, 55, 73, 0.671720, 0.213788
O=14, 47, 55, 1.000000, 0.000000
O=55, 55, 73, 1.000000, 0.000000
O=55, 47, 55, 1.000000, 0.000000
O=73, 55, 73, 1.000000, 0.000000
O=73, 25, 69, 0.700000, 0.300000
O=8, 55, 73, 0.638357, 0.197119
O=69, 25, 69, 1.000000, 0.000000
O=25, 25, 69, 1.000000, 0.000000
O=47, 47, 55, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=139.00, 53.00, 0.00, 0.00, 0.00, 0.00, 5.971813, 0.000000, 5.971813, 100.00, 0.00, 12.362123, 0.000000, 12.362123, 100.00, 100.00, 0.059182, 0.000000, 0.059182, 0.00, 100.00, 8.651183, 0.000000, 8.651183, 0.00, 0.00, 5.971813, 0.000000, 5.971813
OB=137.00, 161.00, 0.00, 0.00, 0.00, 0.00, 13.247264, 0.000000, 13.247264, 100.00, 0.00, 0.008879, 0.000000, 0.008879, 100.00, 100.00, 0.518538, 0.000000, 0.518538, 0.00, 100.00, 1.225044, 0.000000, 1.225044, 0.00, 0.00, 13.247264, 0.000000, 13.247264
OB=135.00, 269.00, 0.00, 0.00, 0.00, 0.00, 21.010328, 0.000000, 21.010328, 100.00, 0.00, 0.605032, 0.000000, 0.605032, 100.00, 100.00, 0.748041, 0.000000, 0.748041, 0.00, 100.00, 17.077000, 0.000000, 17.077000, 0.00, 0.00, 21.010328, 0.000000, 21.010328
OB=251.00, 69.00, 0.00, 0.00, 0.00, 0.00, 0.738121, 0.000000, 0.738121, 140.00, 0.00, 7.199850, 0.000000, 7.199850, 140.00, 80.00, 3.023170, 0.000000, 3.023170, 0.00, 80.00, 1.734140, 0.000000, 1.734140, 0.00, 0.00, 0.738121, 0.000000, 0.738121
OB=249.00, 156.00, 0.00, 0.00, 0.00, 0.00, 8.166647, 0.000000, 8.166647, 140.00, 0.00, 2.586536, 0.000000, 2.586536, 140.00, 80.00, 0.112611, 0.000000, 0.112611, 0.00, 80.00, 12.747937, 0.000000, 12.747937, 0.00, 0.00, 8.166647, 0.000000, 8.166647
OB=249.00, 238.00, 0.00, 0.00, 0.00, 0.00, 0.648393, 0.000000, 0.648393, 140.00, 0.00, 24.306392, 0.000000, 24.306392, 140.00, 80.00, 0.068014, 0.000000, 0.068014, 0.00, 80.00, 1.399257, 0.000000, 1.399257, 0.00, 0.00, 0.648393, 0.000000, 0.648393
OB=247.00, 325.00, 0.00, 0.00, 0.00, 0.00, 11.898583, 0.000000, 11.898583, 140.00, 0.00, 0.000014, 0.000000, 0.000014, 140.00, 80.00, 23.533275, 0.000000, 23.533275, 0.00, 80.00, 10.940758, 0.000000, 10.940758, 0.00, 0.00, 11.898583, 0.000000, 11.898583
OB=415.00, 79.00, 0.00, 0.00, 0.00, 0.00, 0.135124, 0.000000, 0.135124, 100.00, 0.00, 8.870986, 0.000000, 8.870986, 100.00, 100.00, 3.264356, 0.000000, 3.264356, 0.00, 100.00, 5.183781, 0.000000, 5.183781, 0.00, 0.00, 0.135124, 0.000000, 0.135124
OB=423.00, 193.00, 0.00, 0.00, 0.00, 0.00, 14.233417, 0.000000, 14.233417, 100.00, 0.00, 5.535229, 0.000000, 5.535229, 100.00, 100.00, 8.092769, 0.000000, 8.092769, 0.00, 100.00, 19.375212, 0.000000, 19.375212, 0.00, 0.00, 14.233417, 0.000000, 14.233417
OB=427.00, 312.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=398.00, 623.00, 112.00, 5.00, 112.00, 5.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=426.00, 511.00, 0.00, 0.00, 0.00, 0.00, 64.000000, 0.000000, 64.000000, 140.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 80.00, 64.000000, 0.000000, 64.000000, 0.00, 0.00, 64.000000, 0.000000, 64.000000
OB=278.00, 493.00, 0.00, 0.00, 0.00, 0.00, 24.467826, 0.000000, 24.467826, 140.00, 0.00, 0.247494, 0.000000, 0.247494, 140.00, 80.00, 13.330889, 0.000000, 13.330889, 0.00, 80.00, 9.077036, 0.000000, 9.077036, 0.00, 0.00, 24.467826, 0.000000, 24.467826
OB=201.00, 482.00, 60.00, 0.00, 60.00, 0.00, 0.004815, 0.000000, 0.004815, 120.00, 30.00, 22.299684, 0.000000, 22.299684, 100.00, 110.00, 13.727628, 0.000000, 13.727628, 20.00, 110.00, 19.933146, 0.000000, 19.933146, 0.00, 30.00, 4.245508, 0.000000, 4.245508, 60.00, 0.00, 0.004815, 0.000000, 0.004815

Graph16PP.pomdp

//State variables
(variables
 (loc l1 l69 l32 l71 l64 l76 l8 l40 l73 l47 l14 l55 l25 l30)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob32_71 ob32_71F ob32_71B)
 (ob30_32 ob30_32F ob30_32B)
 (ob55_73 ob55_73F ob55_73B)
 (ob25_69 ob25_69F ob25_69B)
 (ob47_55 ob47_55F ob47_55B)
)

//Initial belief state
init [*
 (loc (l1 (0.0)) (l69 (0.0)) (l32 (0.0)) (l71 (0.0)) (l64 (0.0)) (l76 (1.0)) (l8 (0.0)) (l40 (0.0)) (l73 (0.0)) (l47 (0.0)) (l14 (0.0)) (l55 (0.0)) (l25 (0.0)) (l30 (0.0)))
 (c1 (c1F (0.15305490574)) (c1B (0.84694509426)))
 (c2 (c2F (0.15081876978)) (c2B (0.84918123022)))
 (c3 (c3F (0.111344537814)) (c3B (0.888655462186)))
 (c4 (c4F (0.47899159664)) (c4B (0.52100840336)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l1
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl1))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl1))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (c1'
 (c1F (ob32_71' (ob32_71F (0.8)) (ob32_71B (0.2))))
 (c1B (ob32_71' (ob32_71F (0.09999999999999998)) (ob32_71B (0.9))))
)
 ob30_32 (c2'
 (c2F (ob30_32' (ob30_32F (1.0)) (ob30_32B (0.0))))
 (c2B (ob30_32' (ob30_32F (0.08773333333333355)) (ob30_32B (0.9122666666666664))))
)
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (104.80935072788114))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (65.52098900352466))
)
endaction

action goto_l69
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl69))
 (l8 (locl69))
 (l40 (locl69))
 (l73 (locl69))
 (l47 (locl69))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl69))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (c5'
 (c5F (ob25_69' (ob25_69F (1.0)) (ob25_69B (0.0))))
 (c5B (ob25_69' (ob25_69F (0.0)) (ob25_69B (1.0))))
)
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (1624.5359729518937))
 (l8 (1595.631048779342))
 (l40 (108.04628637764465))
 (l73 (126.19755493435618))
 (l47 (1814.901886263522))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (118.96217886370441))
 (l30 (2000.0))
)
endaction

action goto_l32
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (c1
 (c1F (locl32))
 (c1B (locl71))
))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl32))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (c1'
 (c1F (ob32_71' (ob32_71F (1.0)) (ob32_71B (0.0))))
 (c1B (ob32_71' (ob32_71F (0.0)) (ob32_71B (1.0))))
)
 ob30_32 (c2'
 (c2F (ob30_32' (ob30_32F (1.0)) (ob30_32B (0.0))))
 (c2B (ob30_32' (ob30_32F (0.0)) (ob30_32B (1.0))))
)
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (108.85311203635843))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (96.93296652842108))
)
endaction

action goto_l71
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl71))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl71))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl71))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (c1'
 (c1F (ob32_71' (ob32_71F (1.0)) (ob32_71B (0.0))))
 (c1B (ob32_71' (ob32_71F (0.0)) (ob32_71B (1.0))))
)
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (108.85311203635843))
 (l71 (2000.0))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (218.09839133135426))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (170.00665587829616))
 (l30 (2000.0))
)
endaction

action goto_l64
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (locl64))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl64))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl64))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (253.23704310388715))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (62.64982043070834))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (111.01801655587259))
 (l30 (2000.0))
)
endaction

action goto_l76
 loc (loc
 (l1 (locl76))
 (l69 (locl76))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl76))
 (l40 (locl40))
 (l73 (locl76))
 (l47 (locl76))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl76))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (104.80935072788114))
 (l69 (1624.5359729518937))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (2000.0))
 (l8 (312.9406865406834))
 (l40 (2000.0))
 (l73 (1505.2506011824921))
 (l47 (532.2115240248637))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (169.07084940998752))
)
endaction

action goto_l8
 loc (loc
 (l1 (locl1))
 (l69 (locl8))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl8))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (locl8))
 (l47 (locl8))
 (l14 (locl8))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (c3'
 (c3F (ob55_73' (ob55_73F (0.8028806584362139)) (ob55_73B (0.19711934156378605))))
 (c3B (ob55_73' (ob55_73F (0.36164251207729436)) (ob55_73B (0.6383574879227056))))
)
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (1595.631048779342))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (312.9406865406834))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (1476.3456770099406))
 (l47 (220.04320507321162))
 (l14 (81.39410298049853))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l40
 loc (loc
 (l1 (locl1))
 (l69 (locl40))
 (l32 (locl32))
 (l71 (locl40))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl40))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (108.04628637764465))
 (l32 (2000.0))
 (l71 (218.09839133135426))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (49.49747468305833))
 (l30 (2000.0))
)
endaction

action goto_l73
 loc (loc
 (l1 (locl1))
 (l69 (locl73))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl73))
 (l8 (locl73))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl73))
 (l14 (locl14))
 (l55 (locl73))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (c3'
 (c3F (ob55_73' (ob55_73F (1.0)) (ob55_73B (0.0))))
 (c3B (ob55_73' (ob55_73F (0.0)) (ob55_73B (1.0))))
)
 ob25_69 (c5'
 (c5F (ob25_69' (ob25_69F (0.7)) (ob25_69B (0.3))))
 (c5B (ob25_69' (ob25_69F (0.30000000000000004)) (ob25_69B (0.7))))
)
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (126.19755493435618))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (1505.2506011824921))
 (l8 (1476.3456770099406))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (1695.6165144941206))
 (l14 (2000.0))
 (l55 (160.13119621110684))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l47
 loc (loc
 (l1 (locl1))
 (l69 (locl47))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl47))
 (l8 (locl47))
 (l40 (locl40))
 (l73 (locl47))
 (l47 (locl47))
 (l14 (locl47))
 (l55 (c4
 (c4F (locl47))
 (c4B (locl55))
))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (c4'
 (c4F (ob47_55' (ob47_55F (1.0)) (ob47_55B (0.0))))
 (c4B (ob47_55' (ob47_55F (0.0)) (ob47_55B (1.0))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (1814.901886263522))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (532.2115240248637))
 (l8 (220.04320507321162))
 (l40 (2000.0))
 (l73 (1695.6165144941206))
 (l47 (2000.0))
 (l14 (140.81193131265547))
 (l55 (32.38826948140329))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl14))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl14))
 (l14 (locl14))
 (l55 (locl14))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (c3'
 (c3F (ob55_73' (ob55_73F (0.7862121212121211)) (ob55_73B (0.21378787878787883))))
 (c3B (ob55_73' (ob55_73F (0.3282795698924731)) (ob55_73B (0.6717204301075269))))
)
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (c4'
 (c4F (ob47_55' (ob47_55F (1.0)) (ob47_55B (0.0))))
 (c4B (ob47_55' (ob47_55F (0.0)) (ob47_55B (1.0))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (2000.0))
 (l8 (81.39410298049853))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (140.81193131265547))
 (l14 (2000.0))
 (l55 (111.01801655587259))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l55
 loc (loc
 (l1 (locl1))
 (l69 (locl69))
 (l32 (locl32))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (c3
 (c3F (locl55))
 (c3B (locl73))
))
 (l47 (locl55))
 (l14 (locl55))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (c3'
 (c3F (ob55_73' (ob55_73F (1.0)) (ob55_73B (0.0))))
 (c3B (ob55_73' (ob55_73F (0.0)) (ob55_73B (1.0))))
)
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (c4'
 (c4F (ob47_55' (ob47_55F (1.0)) (ob47_55B (0.0))))
 (c4B (ob47_55' (ob47_55F (0.0)) (ob47_55B (1.0))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (2000.0))
 (l32 (2000.0))
 (l71 (2000.0))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (160.13119621110684))
 (l47 (32.38826948140329))
 (l14 (111.01801655587259))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l25
 loc (loc
 (l1 (locl1))
 (l69 (c5
 (c5F (locl25))
 (c5B (locl69))
))
 (l32 (locl32))
 (l71 (locl25))
 (l64 (locl64))
 (l76 (locl76))
 (l8 (locl8))
 (l40 (locl25))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (ob30_32' (ob30_32F (0.5)) (ob30_32B (0.5)))
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (c5'
 (c5F (ob25_69' (ob25_69F (1.0)) (ob25_69B (0.0))))
 (c5B (ob25_69' (ob25_69F (0.0)) (ob25_69B (1.0))))
)
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l69 (118.96217886370441))
 (l32 (2000.0))
 (l71 (170.00665587829616))
 (l64 (0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l40 (49.49747468305833))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l30
 loc (loc
 (l1 (locl30))
 (l69 (locl69))
 (l32 (c2
 (c2F (locl30))
 (c2B (locl32))
))
 (l71 (locl71))
 (l64 (locl64))
 (l76 (locl30))
 (l8 (locl8))
 (l40 (locl40))
 (l73 (locl73))
 (l47 (locl47))
 (l14 (locl14))
 (l55 (locl55))
 (l25 (locl25))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob32_71 (ob32_71' (ob32_71F (0.5)) (ob32_71B (0.5)))
 ob30_32 (c2'
 (c2F (ob30_32' (ob30_32F (1.0)) (ob30_32B (0.0))))
 (c2B (ob30_32' (ob30_32F (0.0)) (ob30_32B (1.0))))
)
 ob55_73 (ob55_73' (ob55_73F (0.5)) (ob55_73B (0.5)))
 ob25_69 (ob25_69' (ob25_69F (0.5)) (ob25_69B (0.5)))
 ob47_55 (ob47_55' (ob47_55F (0.5)) (ob47_55B (0.5)))
 endobserve
 cost (loc
 (l1 (65.52098900352466))
 (l69 (2000.0))
 (l32 (96.93296652842108))
 (l71 (2000.0))
 (l64 (0))
 (l76 (169.07084940998752))
 (l8 (2000.0))
 (l40 (2000.0))
 (l73 (2000.0))
 (l47 (2000.0))
 (l14 (2000.0))
 (l55 (2000.0))
 (l25 (2000.0))
 (l30 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph16_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 77.00, 143.00, 328.80
N=1, 163.00, 619.00, 106.19
N=2, 319.00, 38.00, 1.53
N=3, 60.00, 431.00, 55.47
N=4, 166.00, 451.00, 59.70
N=5, 512.00, 634.00, 292.22
N=6, 594.00, 407.00, 140.31
N=7, 28.00, 319.00, 232.73
N=8, 238.00, 462.00, 97.59
N=9, 694.00, 30.00, 136.85
N=10, 496.00, 55.00, 255.00
N=11, 51.00, 555.00, 216.25
N=12, 454.00, 624.00, 116.97
N=13, 596.00, 518.00, 2.00
N=14, 319.00, 470.00, 173.89
N=15, 638.00, 462.00, 40.07
N=16, 645.00, 53.00, 36.45
N=17, 616.00, 220.00, 16.48
N=18, 65.00, 221.00, 32.50
N=19, 17.00, 204.00, 316.39
N=20, 669.00, 356.00, 67.54
N=21, 63.00, 133.00, 165.17
N=22, 46.00, 119.00, 68.70
N=23, 554.00, 75.00, 162.66
N=24, 631.00, 274.00, 245.21
N=25, 564.00, 644.00, 23.30
N=26, 359.00, 14.00, 66.49
N=27, 573.00, 153.00, 276.93
N=28, 103.00, 605.00, 276.31
N=29, 611.00, 449.00, 293.21
N=30, 226.00, 637.00, 100.92
N=31, 78.00, 23.00, 108.94
N=32, 316.00, 601.00, 23.96
N=33, 625.00, 298.00, 53.24
N=34, 456.00, 72.00, 149.92
N=35, 500.00, 46.00, 310.92
N=36, 606.00, 429.00, 141.05
N=37, 620.00, 483.00, 258.18
N=38, 646.00, 116.00, 294.95
N=39, 95.00, 136.00, 344.01
N=40, 613.00, 637.00, 271.36
N=41, 665.00, 143.00, 61.16
N=42, 256.00, 646.00, 55.56
N=43, 100.00, 513.00, 254.04
N=44, 158.00, 9.00, 41.24
N=45, 591.00, 349.00, 4.12
N=46, 619.00, 482.00, 243.78
N=47, 457.00, 442.00, 23.22
N=48, 586.00, 205.00, 145.09
N=49, 161.00, 415.00, 66.18
N=50, 113.00, 479.00, 236.33
N=51, 34.00, 152.00, 24.77
N=52, 592.00, 266.00, 279.68
N=53, 609.00, 312.00, 318.09
N=54, 36.00, 289.00, 285.59
N=55, 425.00, 437.00, 98.37
N=56, 173.00, 447.00, 80.68
N=57, 416.00, 640.00, 272.34
N=58, 98.00, 525.00, 295.30
N=59, 422.00, 631.00, 201.73
N=60, 582.00, 57.00, 331.16
N=61, 101.00, 622.00, 30.51
N=62, 64.00, 347.00, 16.62
N=63, 666.00, 31.00, 149.69
N=64, 675.00, 646.00, 226.87
N=65, 586.00, 298.00, 349.03
N=66, 435.00, 688.00, 243.62
N=67, 581.00, 109.00, 226.00
N=68, 674.00, 230.00, 112.64
N=69, 598.00, 530.00, 354.88
N=70, 646.00, 153.00, 254.50
N=71, 423.00, 621.00, 144.68
N=72, 654.00, 352.00, 154.99
N=73, 584.00, 418.00, 297.27
N=74, 194.00, 12.00, 103.18
N=75, 53.00, 337.00, 208.47
N=76, 59.00, 632.00, 137.72
N=77, 551.00, 139.00, 342.02
N=78, 297.00, 460.00, 43.54
N=79, 434.00, 66.00, 223.52

#Edge data
#E=Node number 1, Node number 2, cost
E=1, 30, 65.52
E=1, 76, 104.81
E=8, 69, 1595.63
E=8, 76, 312.94
E=8, 14, 81.39
E=8, 47, 220.04
E=8, 73, 1476.35
E=14, 47, 140.81
E=14, 55, 111.02
E=25, 69, 118.96
E=25, 71, 170.01
E=25, 64, 111.02
E=25, 40, 49.50
E=30, 32, 96.93
E=30, 76, 169.07
E=32, 71, 108.85
E=40, 69, 108.05
E=40, 71, 218.10
E=40, 64, 62.65
E=47, 69, 1814.90
E=47, 76, 532.21
E=47, 73, 1695.62
E=47, 55, 32.39
E=55, 73, 160.13
E=64, 71, 253.24
E=69, 73, 126.20
E=69, 76, 1624.54
E=73, 76, 1505.25

#Start node ID
S=76

#Goal node ID
G=64

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 32, 71, 30, 32
C=1, 55, 73, 47, 55
C=2, 25, 69

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 25, 69
EO=1, 47, 55
EO=2, 55, 73
EO=3, 30, 32
EO=4, 32, 71

#Starting belief state, starting with the all F combination and working through to all B
B=0.005503, 0.005503, 0.001975, 0.001975, 0.026667, 0.026667, 0.033016, 0.033016, 0.000767, 0.000767, 0.000275, 0.000275, 0.003719, 0.003719, 0.004604, 0.004604, 0.000676, 0.000676, 0.000243, 0.000243, 0.003275, 0.003275, 0.004055, 0.004055, 0.034021, 0.034021, 0.012212, 0.012212, 0.164869, 0.164869, 0.204123, 0.204123

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=1, 32, 71, 0.900000, 0.200000
O=1, 30, 32, 0.912267, 0.000000
O=32, 32, 71, 1.000000, 0.000000
O=32, 30, 32, 1.000000, 0.000000
O=71, 32, 71, 1.000000, 0.000000
O=30, 30, 32, 1.000000, 0.000000
O=14, 55, 73, 0.671720, 0.213788
O=14, 47, 55, 1.000000, 0.000000
O=55, 55, 73, 1.000000, 0.000000
O=55, 47, 55, 1.000000, 0.000000
O=73, 55, 73, 1.000000, 0.000000
O=73, 25, 69, 0.700000, 0.300000
O=8, 55, 73, 0.638357, 0.197119
O=69, 25, 69, 1.000000, 0.000000
O=25, 25, 69, 1.000000, 0.000000
O=47, 47, 55, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=139.00, 53.00, 0.00, 0.00, 0.00, 0.00, 5.971813, 0.000000, 5.971813, 100.00, 0.00, 12.362123, 0.000000, 12.362123, 100.00, 100.00, 0.059182, 0.000000, 0.059182, 0.00, 100.00, 8.651183, 0.000000, 8.651183, 0.00, 0.00, 5.971813, 0.000000, 5.971813
OB=137.00, 161.00, 0.00, 0.00, 0.00, 0.00, 13.247264, 0.000000, 13.247264, 100.00, 0.00, 0.008879, 0.000000, 0.008879, 100.00, 100.00, 0.518538, 0.000000, 0.518538, 0.00, 100.00, 1.225044, 0.000000, 1.225044, 0.00, 0.00, 13.247264, 0.000000, 13.247264
OB=135.00, 269.00, 0.00, 0.00, 0.00, 0.00, 21.010328, 0.000000, 21.010328, 100.00, 0.00, 0.605032, 0.000000, 0.605032, 100.00, 100.00, 0.748041, 0.000000, 0.748041, 0.00, 100.00, 17.077000, 0.000000, 17.077000, 0.00, 0.00, 21.010328, 0.000000, 21.010328
OB=251.00, 69.00, 0.00, 0.00, 0.00, 0.00, 0.738121, 0.000000, 0.738121, 140.00, 0.00, 7.199850, 0.000000, 7.199850, 140.00, 80.00, 3.023170, 0.000000, 3.023170, 0.00, 80.00, 1.734140, 0.000000, 1.734140, 0.00, 0.00, 0.738121, 0.000000, 0.738121
OB=249.00, 156.00, 0.00, 0.00, 0.00, 0.00, 8.166647, 0.000000, 8.166647, 140.00, 0.00, 2.586536, 0.000000, 2.586536, 140.00, 80.00, 0.112611, 0.000000, 0.112611, 0.00, 80.00, 12.747937, 0.000000, 12.747937, 0.00, 0.00, 8.166647, 0.000000, 8.166647
OB=249.00, 238.00, 0.00, 0.00, 0.00, 0.00, 0.648393, 0.000000, 0.648393, 140.00, 0.00, 24.306392, 0.000000, 24.306392, 140.00, 80.00, 0.068014, 0.000000, 0.068014, 0.00, 80.00, 1.399257, 0.000000, 1.399257, 0.00, 0.00, 0.648393, 0.000000, 0.648393
OB=247.00, 325.00, 0.00, 0.00, 0.00, 0.00, 11.898583, 0.000000, 11.898583, 140.00, 0.00, 0.000014, 0.000000, 0.000014, 140.00, 80.00, 23.533275, 0.000000, 23.533275, 0.00, 80.00, 10.940758, 0.000000, 10.940758, 0.00, 0.00, 11.898583, 0.000000, 11.898583
OB=415.00, 79.00, 0.00, 0.00, 0.00, 0.00, 0.135124, 0.000000, 0.135124, 100.00, 0.00, 8.870986, 0.000000, 8.870986, 100.00, 100.00, 3.264356, 0.000000, 3.264356, 0.00, 100.00, 5.183781, 0.000000, 5.183781, 0.00, 0.00, 0.135124, 0.000000, 0.135124
OB=423.00, 193.00, 0.00, 0.00, 0.00, 0.00, 14.233417, 0.000000, 14.233417, 100.00, 0.00, 5.535229, 0.000000, 5.535229, 100.00, 100.00, 8.092769, 0.000000, 8.092769, 0.00, 100.00, 19.375212, 0.000000, 19.375212, 0.00, 0.00, 14.233417, 0.000000, 14.233417
OB=427.00, 312.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=398.00, 623.00, 112.00, 5.00, 112.00, 5.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=426.00, 511.00, 0.00, 0.00, 0.00, 0.00, 64.000000, 0.000000, 64.000000, 140.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 80.00, 100.000000, 0.000000, 100.000000, 0.00, 80.00, 64.000000, 0.000000, 64.000000, 0.00, 0.00, 64.000000, 0.000000, 64.000000
OB=278.00, 493.00, 0.00, 0.00, 0.00, 0.00, 24.467826, 0.000000, 24.467826, 140.00, 0.00, 0.247494, 0.000000, 0.247494, 140.00, 80.00, 13.330889, 0.000000, 13.330889, 0.00, 80.00, 9.077036, 0.000000, 9.077036, 0.00, 0.00, 24.467826, 0.000000, 24.467826
OB=201.00, 482.00, 60.00, 0.00, 60.00, 0.00, 0.004815, 0.000000, 0.004815, 120.00, 30.00, 22.299684, 0.000000, 22.299684, 100.00, 110.00, 13.727628, 0.000000, 13.727628, 20.00, 110.00, 19.933146, 0.000000, 19.933146, 0.00, 30.00, 4.245508, 0.000000, 4.245508, 60.00, 0.00, 0.004815, 0.000000, 0.004815

Graph17.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 78.00, 417.00, 135.73
N=1, 420.00, 157.00, 100.14
N=2, 655.00, 258.00, 240.56
N=3, 315.00, 579.00, 30.34
N=4, 300.00, 230.00, 7.37
N=5, 600.00, 518.00, 46.62
N=6, 354.00, 381.00, 340.54
N=7, 650.00, 439.00, 252.14
N=8, 692.00, 222.00, 190.38
N=9, 519.00, 544.00, 142.53
N=10, 317.00, 664.00, 146.43
N=11, 471.00, 41.00, 167.89
N=12, 374.00, 145.00, 236.73
N=13, 98.00, 343.00, 356.46
N=14, 203.00, 226.00, 142.94
N=15, 637.00, 528.00, 302.93
N=16, 334.00, 321.00, 107.60
N=17, 474.00, 413.00, 201.62
N=18, 422.00, 105.00, 226.64
N=19, 527.00, 42.00, 85.53
N=20, 340.00, 194.00, 206.03
N=21, 141.00, 579.00, 182.00
N=22, 153.00, 251.00, 134.28
N=23, 106.00, 79.00, 157.16
N=24, 388.00, 314.00, 6.46
N=25, 229.00, 128.00, 127.86
N=26, 107.00, 182.00, 161.17
N=27, 280.00, 26.00, 7.87
N=28, 15.00, 541.00, 271.97
N=29, 158.00, 104.00, 144.92
N=30, 377.00, 243.00, 96.22
N=31, 419.00, 73.00, 243.56
N=32, 259.00, 619.00, 280.53
N=33, 288.00, 313.00, 327.93
N=34, 472.00, 323.00, 58.24
N=35, 500.00, 587.00, 123.73
N=36, 284.00, 192.00, 212.73
N=37, 99.00, 280.00, 89.56
N=38, 449.00, 627.00, 144.05
N=39, 386.00, 183.00, 328.18
N=40, 538.00, 321.00, 99.23
N=41, 628.00, 285.00, 312.54
N=42, 337.00, 618.00, 48.37
N=43, 497.00, 454.00, 180.27
N=44, 657.00, 549.00, 140.82
N=45, 267.00, 89.00, 246.26
N=46, 382.00, 197.00, 87.95
N=47, 45.00, 665.00, 157.16
N=48, 47.00, 275.00, 44.16
N=49, 616.00, 132.00, 351.32
N=50, 60.00, 212.00, 304.66
N=51, 367.00, 67.00, 218.31
N=52, 678.00, 316.00, 59.93
N=53, 154.00, 108.00, 109.08
N=54, 371.00, 208.00, 114.92
N=55, 89.00, 93.00, 224.91
N=56, 463.00, 504.00, 53.51
N=57, 267.00, 285.00, 184.09
N=58, 658.00, 631.00, 177.11
N=59, 434.00, 528.00, 239.96
N=60, 316.00, 170.00, 310.42
N=61, 421.00, 590.00, 77.99
N=62, 601.00, 305.00, 152.20
N=63, 203.00, 323.00, 327.01
N=64, 580.00, 28.00, 132.94
N=65, 453.00, 581.00, 73.22
N=66, 478.00, 533.00, 124.19
N=67, 469.00, 531.00, 50.27
N=68, 259.00, 85.00, 282.41
N=69, 282.00, 428.00, 219.23
N=70, 11.00, 9.00, 344.09
N=71, 307.00, 272.00, 240.23
N=72, 187.00, 308.00, 56.90
N=73, 384.00, 507.00, 84.97
N=74, 328.00, 343.00, 336.94
N=75, 324.00, 475.00, 320.20
N=76, 340.00, 23.00, 29.19
N=77, 461.00, 639.00, 77.30
N=78, 169.00, 76.00, 20.71
N=79, 108.00, 232.00, 349.27

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 37, 138.60
E=0, 28, 139.09
E=0, 48, 145.34
E=0, 22, 182.16
E=1, 39, 42.80
E=1, 12, 47.54
E=1, 18, 52.04
E=1, 46, 55.17
E=2, 41, 38.18
E=2, 8, 51.62
E=2, 62, 71.59
E=2, 49, 131.90
E=3, 42, 44.78
E=3, 10, 85.02
E=3, 73, 99.72
E=3, 75, 104.39
E=4, 36, 41.23
E=4, 71, 42.58
E=4, 20, 53.81
E=4, 60, 62.10
E=5, 15, 38.33
E=5, 44, 64.88
E=5, 7, 93.49
E=5, 40, 206.53
E=6, 74, 46.04
E=6, 16, 63.25
E=6, 69, 85.98
E=6, 33, 94.76
E=7, 15, 89.94
E=7, 44, 110.22
E=7, 62, 142.68
E=8, 41, 89.81
E=8, 52, 95.04
E=8, 49, 117.80
E=9, 66, 42.45
E=9, 35, 47.01
E=9, 67, 51.66
E=9, 56, 68.82
E=10, 42, 50.16
E=10, 32, 73.41
E=10, 61, 127.64
E=11, 19, 56.01
E=11, 31, 61.06
E=11, 18, 80.60
E=11, 51, 107.20
E=12, 39, 39.85
E=12, 46, 52.61
E=12, 20, 59.64
E=13, 37, 63.01
E=13, 48, 85.00
E=13, 72, 95.63
E=13, 63, 106.89
E=14, 22, 55.90
E=14, 72, 83.55
E=14, 57, 87.05
E=14, 79, 95.19
E=15, 44, 29.00
E=15, 58, 105.12
E=16, 74, 22.80
E=16, 33, 46.69
E=16, 71, 55.95
E=17, 43, 47.01
E=17, 34, 90.02
E=17, 56, 91.66
E=17, 40, 112.07
E=18, 31, 32.14
E=18, 51, 66.85
E=19, 64, 54.82
E=19, 31, 112.36
E=19, 49, 126.57
E=20, 60, 33.94
E=20, 54, 34.01
E=21, 47, 128.89
E=21, 28, 131.61
E=22, 79, 48.85
E=22, 37, 61.29
E=23, 55, 22.02
E=23, 53, 56.08
E=23, 29, 57.70
E=23, 78, 63.07
E=24, 30, 71.85
E=24, 34, 84.48
E=24, 54, 107.35
E=24, 46, 117.15
E=25, 68, 52.43
E=25, 45, 54.45
E=25, 29, 74.95
E=25, 78, 79.40
E=26, 79, 50.01
E=26, 50, 55.76
E=26, 37, 98.33
E=26, 48, 110.68
E=27, 76, 60.07
E=27, 68, 62.63
E=27, 45, 64.33
E=27, 51, 96.18
E=28, 47, 127.58
E=28, 48, 267.92
E=29, 53, 5.66
E=29, 78, 30.08
E=30, 54, 35.51
E=30, 46, 46.27
E=30, 39, 60.67
E=31, 51, 52.35
E=32, 42, 78.01
E=32, 61, 164.58
E=32, 38, 190.17
E=33, 57, 35.00
E=33, 74, 50.00
E=34, 40, 66.03
E=34, 62, 130.25
E=35, 65, 47.38
E=35, 66, 58.31
E=35, 67, 64.01
E=36, 60, 38.83
E=36, 71, 83.24
E=36, 54, 88.46
E=38, 77, 16.97
E=38, 65, 46.17
E=38, 61, 46.40
E=39, 60, 71.20
E=40, 62, 65.00
E=41, 52, 58.83
E=41, 49, 153.47
E=42, 61, 88.54
E=43, 56, 60.46
E=43, 66, 81.25
E=43, 67, 81.93
E=44, 58, 82.01
E=45, 68, 8.94
E=45, 76, 98.41
E=50, 79, 52.00
E=50, 72, 159.20
E=50, 63, 181.02
E=53, 78, 35.34
E=53, 55, 66.71
E=55, 70, 114.63
E=55, 68, 170.19
E=56, 67, 27.66
E=57, 71, 42.06
E=57, 63, 74.43
E=58, 77, 197.16
E=58, 66, 204.95
E=59, 73, 54.23
E=59, 65, 56.30
E=59, 77, 114.24
E=59, 75, 122.10
E=63, 72, 21.93
E=64, 76, 240.05
E=65, 77, 58.55
E=69, 75, 63.03
E=69, 74, 96.65
E=69, 73, 129.02
E=73, 75, 68.00

#Start node ID
S=21

#Goal node ID
G=70

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 4, 71, 36, 71
C=1, 43, 56, 43, 67, 43, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 43, 66
EO=1, 43, 67
EO=2, 43, 56
EO=3, 36, 71
EO=4, 4, 71

#Starting belief state, starting with the all F combination and working through to all B
B=0.253935, 0.013365, 0.018810, 0.000990, 0.001485, 0.028215, 0.008910, 0.169290, 0.023085, 0.001215, 0.001710, 0.000090, 0.000135, 0.002565, 0.000810, 0.015390, 0.028215, 0.001485, 0.002090, 0.000110, 0.000165, 0.003135, 0.000990, 0.018810, 0.207765, 0.010935, 0.015390, 0.000810, 0.001215, 0.023085, 0.007290, 0.138510

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=57, 4, 71, 1.000000, 0.000000
O=71, 4, 71, 1.000000, 0.000000
O=71, 36, 71, 1.000000, 0.000000
O=4, 4, 71, 1.000000, 0.000000
O=72, 4, 71, 0.435333, 0.300000
O=14, 36, 71, 0.800000, 0.200000
O=36, 36, 71, 1.000000, 0.000000
O=22, 36, 71, 0.476667, 0.400000
O=59, 43, 56, 0.900000, 0.100000
O=56, 43, 56, 1.000000, 0.000000
O=43, 43, 56, 1.000000, 0.000000
O=43, 43, 67, 1.000000, 0.000000
O=43, 43, 66, 1.000000, 0.000000
O=73, 43, 67, 0.800000, 0.200000
O=67, 43, 67, 1.000000, 0.000000
O=35, 43, 66, 0.900000, 0.100000
O=66, 43, 66, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=502.00, 115.00, 60.00, 0.00, 60.00, 0.00, 4.607717, 0.000000, 4.607717, 120.00, 30.00, 5.635444, 0.000000, 5.635444, 100.00, 110.00, 25.442033, 0.000000, 25.442033, 20.00, 110.00, 3.004288, 0.000000, 3.004288, 0.00, 30.00, 12.374269, 0.000000, 12.374269, 60.00, 0.00, 4.607717, 0.000000, 4.607717
OB=499.00, 492.00, 0.00, 0.00, 0.00, 0.00, 121.000000, 0.000000, 121.000000, 130.00, 88.00, 9.000000, 0.000000, 9.000000
OB=107.00, 382.00, 0.00, 0.00, 0.00, 0.00, 1.313949, 0.000000, 1.313949, 100.00, 0.00, 29.385197, 0.000000, 29.385197, 100.00, 100.00, 1.903049, 0.000000, 1.903049, 0.00, 100.00, 7.294870, 0.000000, 7.294870, 0.00, 0.00, 1.313949, 0.000000, 1.313949
OB=315.00, 252.00, 0.00, 0.00, 0.00, 0.00, 81.000000, 0.000000, 81.000000, 87.00, 122.00, 9.000000, 0.000000, 9.000000
OB=431.00, 477.00, 58.00, 130.00, 58.00, 130.00, 9.198087, 0.000000, 9.198087, 0.00, 0.00, 14.664851, 0.000000, 14.664851
OB=262.00, 227.00, 96.00, 66.00, 96.00, 66.00, 7.129762, 0.000000, 7.129762, 0.00, 0.00, 0.152416, 0.000000, 0.152416
OB=155.00, 167.00, 128.00, 89.00, 128.00, 89.00, 2.175681, 0.000000, 2.175681, 0.00, 0.00, 0.587072, 0.000000, 0.587072
OB=198.00, 489.00, 0.00, 0.00, 0.00, 0.00, 23.169495, 0.000000, 23.169495, 100.00, 0.00, 0.415016, 0.000000, 0.415016, 100.00, 100.00, 2.109429, 0.000000, 2.109429, 0.00, 100.00, 7.579830, 0.000000, 7.579830, 0.00, 0.00, 23.169495, 0.000000, 23.169495

Graph17PP.pomdp

//State variables
(variables
 (loc l35 l70 l71 l4 l66 l36 l67 l43 l72 l73 l14 l17 l21 l22 l59 l57 l56)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob4_71 ob4_71F ob4_71B)
 (ob36_71 ob36_71F ob36_71B)
 (ob43_56 ob43_56F ob43_56B)
 (ob43_67 ob43_67F ob43_67B)
 (ob43_66 ob43_66F ob43_66B)
)

//Initial belief state
init [*
 (loc (l35 (0.0)) (l70 (0.0)) (l71 (0.0)) (l4 (0.0)) (l66 (0.0)) (l36 (0.0)) (l67 (0.0)) (l43 (0.0)) (l72 (0.0)) (l73 (0.0)) (l14 (0.0)) (l17 (0.0)) (l21 (1.0)) (l22 (0.0)) (l59 (0.0)) (l57 (0.0)) (l56 (0.0)))
 (c1 (c1F (0.54)) (c1B (0.46)))
 (c2 (c2F (0.55)) (c2B (0.45)))
 (c3 (c3F (0.58)) (c3B (0.42)))
 (c4 (c4F (0.6)) (c4B (0.4)))
 (c5 (c5F (0.572)) (c5B (0.428)))
]

//Actions and costs
action goto_l35
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl35))
 (l36 (locl36))
 (l67 (locl35))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl35))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (c5'
 (c5F (ob43_66' (ob43_66F (0.9)) (ob43_66B (0.1))))
 (c5B (ob43_66' (ob43_66F (0.09999999999999998)) (ob43_66B (0.9))))
)
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (58.309518948453004))
 (l36 (2000.0))
 (l67 (64.00781202322104))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (103.68418400296552))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l70
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl70))
 (l66 (locl66))
 (l36 (locl70))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl70))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (723.504334466828))
 (l66 (2000.0))
 (l36 (715.3415456187913))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (909.3389793340427))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l71
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (c1
 (c1F (locl71))
 (c1B (locl4))
))
 (l66 (locl66))
 (l36 (c2
 (c2F (locl71))
 (c2B (locl36))
))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl71))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl71))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (c1'
 (c1F (ob4_71' (ob4_71F (1.0)) (ob4_71B (0.0))))
 (c1B (ob4_71' (ob4_71F (0.0)) (ob4_71B (1.0))))
)
 ob36_71 (c2'
 (c2F (ob36_71' (ob36_71F (1.0)) (ob36_71B (0.0))))
 (c2B (ob36_71' (ob36_71F (0.0)) (ob36_71B (1.0))))
)
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (42.579337712087536))
 (l66 (2000.0))
 (l36 (83.24061508662703))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (304.41426330181173))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (42.05948168962618))
 (l56 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (c1
 (c1F (locl4))
 (c1B (locl71))
))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl4))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl4))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (c1'
 (c1F (ob4_71' (ob4_71F (1.0)) (ob4_71B (0.0))))
 (c1B (ob4_71' (ob4_71F (0.0)) (ob4_71B (1.0))))
)
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (42.579337712087536))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (41.23105625617661))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (369.6867381809917))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l66
 loc (loc
 (l35 (locl66))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl66))
 (l43 (c5
 (c5F (locl66))
 (c5B (locl43))
))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl66))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (c5'
 (c5F (ob43_66' (ob43_66F (1.0)) (ob43_66B (0.0))))
 (c5B (ob43_66' (ob43_66F (0.0)) (ob43_66B (1.0))))
)
 endobserve
 cost (loc
 (l35 (58.309518948453004))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (94.1123359659402))
 (l43 (81.25269226308751))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (111.26857268992326))
)
endaction

action goto_l36
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (c2
 (c2F (locl36))
 (c2B (locl71))
))
 (l4 (locl36))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl36))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (c2'
 (c2F (ob36_71' (ob36_71F (1.0)) (ob36_71B (0.0))))
 (c2B (ob36_71' (ob36_71F (0.0)) (ob36_71B (1.0))))
)
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (83.24061508662703))
 (l4 (41.23105625617661))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (370.3165693540776))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l67
 loc (loc
 (l35 (locl67))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl67))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (c4
 (c4F (locl67))
 (c4B (locl43))
))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl67))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (c4'
 (c4F (ob43_67' (ob43_67F (1.0)) (ob43_67B (0.0))))
 (c4B (ob43_67' (ob43_67F (0.0)) (ob43_67B (1.0))))
)
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (64.00781202322104))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (94.1123359659402))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (81.93289937503738))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (27.65863337187866))
)
endaction

action goto_l43
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (c5
 (c5F (locl43))
 (c5B (locl66))
))
 (l36 (locl36))
 (l67 (c4
 (c4F (locl43))
 (c4B (locl67))
))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl43))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (c3
 (c3F (locl43))
 (c3B (locl56))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (c3'
 (c3F (ob43_56' (ob43_56F (1.0)) (ob43_56B (0.0))))
 (c3B (ob43_56' (ob43_56F (0.0)) (ob43_56B (1.0))))
)
 ob43_67 (c4'
 (c4F (ob43_67' (ob43_67F (1.0)) (ob43_67B (0.0))))
 (c4B (ob43_67' (ob43_67F (0.0)) (ob43_67B (1.0))))
)
 ob43_66 (c5'
 (c5F (ob43_66' (ob43_66F (1.0)) (ob43_66B (0.0))))
 (c5B (ob43_66' (ob43_66F (0.0)) (ob43_66B (1.0))))
)
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (81.25269226308751))
 (l36 (2000.0))
 (l67 (81.93289937503738))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (47.01063709417264))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (60.4648658313239))
)
endaction

action goto_l72
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl72))
 (l17 (locl17))
 (l21 (locl72))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl72))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (c1'
 (c1F (ob4_71' (ob4_71F (0.7)) (ob4_71B (0.3))))
 (c1B (ob4_71' (ob4_71F (0.5646666666666667)) (ob4_71B (0.43533333333333335))))
)
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (83.54639429682169))
 (l17 (2000.0))
 (l21 (567.9345771895294))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (96.3628884631749))
 (l56 (2000.0))
)
endaction

action goto_l73
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl73))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl73))
 (l57 (locl73))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (c4'
 (c4F (ob43_67' (ob43_67F (0.8)) (ob43_67B (0.2))))
 (c4B (ob43_67' (ob43_67F (0.19999999999999996)) (ob43_67B (0.8))))
)
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (304.41426330181173))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (54.230987451824994))
 (l57 (310.66435187703155))
 (l56 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl14))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl14))
 (l59 (locl59))
 (l57 (locl14))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (c2'
 (c2F (ob36_71' (ob36_71F (0.8)) (ob36_71B (0.2))))
 (c2B (ob36_71' (ob36_71F (0.19999999999999996)) (ob36_71B (0.8))))
)
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (83.54639429682169))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (55.90169943749474))
 (l59 (2000.0))
 (l57 (87.04596486914255))
 (l56 (2000.0))
)
endaction

action goto_l17
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl17))
 (l66 (locl66))
 (l36 (locl17))
 (l67 (locl67))
 (l43 (locl17))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl17))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (369.6867381809917))
 (l66 (2000.0))
 (l36 (370.3165693540776))
 (l67 (2000.0))
 (l43 (47.01063709417264))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (91.6624241442479))
)
endaction

action goto_l21
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl21))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl21))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (567.9345771895294))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (452.84830125107413))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l22
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl22))
 (l17 (locl17))
 (l21 (locl22))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (c2'
 (c2F (ob36_71' (ob36_71F (0.6)) (ob36_71B (0.4))))
 (c2B (ob36_71' (ob36_71F (0.5233333333333333)) (ob36_71B (0.4766666666666667))))
)
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (55.90169943749474))
 (l17 (2000.0))
 (l21 (452.84830125107413))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l59
 loc (loc
 (l35 (locl59))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl72))
 (l73 (locl59))
 (l14 (locl14))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (c3'
 (c3F (ob43_56' (ob43_56F (0.9)) (ob43_56B (0.1))))
 (c3B (ob43_56' (ob43_56F (0.09999999999999998)) (ob43_56B (0.9))))
)
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (103.68418400296552))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (2000.0))
 (l73 (54.230987451824994))
 (l14 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l57
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl57))
 (l4 (locl4))
 (l66 (locl66))
 (l36 (locl36))
 (l67 (locl67))
 (l43 (locl43))
 (l72 (locl57))
 (l73 (locl57))
 (l14 (locl57))
 (l17 (locl17))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (c1'
 (c1F (ob4_71' (ob4_71F (1.0)) (ob4_71B (0.0))))
 (c1B (ob4_71' (ob4_71F (0.0)) (ob4_71B (1.0))))
)
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (ob43_56' (ob43_56F (0.5)) (ob43_56B (0.5)))
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (42.05948168962618))
 (l4 (2000.0))
 (l66 (2000.0))
 (l36 (2000.0))
 (l67 (2000.0))
 (l43 (2000.0))
 (l72 (96.3628884631749))
 (l73 (310.66435187703155))
 (l14 (87.04596486914255))
 (l17 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

action goto_l56
 loc (loc
 (l35 (locl35))
 (l70 (locl70))
 (l71 (locl71))
 (l4 (locl4))
 (l66 (locl56))
 (l36 (locl36))
 (l67 (locl56))
 (l43 (c3
 (c3F (locl56))
 (c3B (locl43))
))
 (l72 (locl72))
 (l73 (locl73))
 (l14 (locl14))
 (l17 (locl56))
 (l21 (locl21))
 (l22 (locl22))
 (l59 (locl59))
 (l57 (locl57))
 (l56 (locl56))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob4_71 (ob4_71' (ob4_71F (0.5)) (ob4_71B (0.5)))
 ob36_71 (ob36_71' (ob36_71F (0.5)) (ob36_71B (0.5)))
 ob43_56 (c3'
 (c3F (ob43_56' (ob43_56F (1.0)) (ob43_56B (0.0))))
 (c3B (ob43_56' (ob43_56F (0.0)) (ob43_56B (1.0))))
)
 ob43_67 (ob43_67' (ob43_67F (0.5)) (ob43_67B (0.5)))
 ob43_66 (ob43_66' (ob43_66F (0.5)) (ob43_66B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l70 (0))
 (l71 (2000.0))
 (l4 (2000.0))
 (l66 (111.26857268992326))
 (l36 (2000.0))
 (l67 (27.65863337187866))
 (l43 (60.4648658313239))
 (l72 (2000.0))
 (l73 (2000.0))
 (l14 (2000.0))
 (l17 (91.6624241442479))
 (l21 (2000.0))
 (l22 (2000.0))
 (l59 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph17_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 78.00, 417.00, 135.73
N=1, 420.00, 157.00, 100.14
N=2, 655.00, 258.00, 240.56
N=3, 315.00, 579.00, 30.34
N=4, 300.00, 230.00, 7.37
N=5, 600.00, 518.00, 46.62
N=6, 354.00, 381.00, 340.54
N=7, 650.00, 439.00, 252.14
N=8, 692.00, 222.00, 190.38
N=9, 519.00, 544.00, 142.53
N=10, 317.00, 664.00, 146.43
N=11, 471.00, 41.00, 167.89
N=12, 374.00, 145.00, 236.73
N=13, 98.00, 343.00, 356.46
N=14, 203.00, 226.00, 142.94
N=15, 637.00, 528.00, 302.93
N=16, 334.00, 321.00, 107.60
N=17, 474.00, 413.00, 201.62
N=18, 422.00, 105.00, 226.64
N=19, 527.00, 42.00, 85.53
N=20, 340.00, 194.00, 206.03
N=21, 141.00, 579.00, 182.00
N=22, 153.00, 251.00, 134.28
N=23, 106.00, 79.00, 157.16
N=24, 388.00, 314.00, 6.46
N=25, 229.00, 128.00, 127.86
N=26, 107.00, 182.00, 161.17
N=27, 280.00, 26.00, 7.87
N=28, 15.00, 541.00, 271.97
N=29, 158.00, 104.00, 144.92
N=30, 377.00, 243.00, 96.22
N=31, 419.00, 73.00, 243.56
N=32, 259.00, 619.00, 280.53
N=33, 288.00, 313.00, 327.93
N=34, 472.00, 323.00, 58.24
N=35, 500.00, 587.00, 123.73
N=36, 284.00, 192.00, 212.73
N=37, 99.00, 280.00, 89.56
N=38, 449.00, 627.00, 144.05
N=39, 386.00, 183.00, 328.18
N=40, 538.00, 321.00, 99.23
N=41, 628.00, 285.00, 312.54
N=42, 337.00, 618.00, 48.37
N=43, 497.00, 454.00, 180.27
N=44, 657.00, 549.00, 140.82
N=45, 267.00, 89.00, 246.26
N=46, 382.00, 197.00, 87.95
N=47, 45.00, 665.00, 157.16
N=48, 47.00, 275.00, 44.16
N=49, 616.00, 132.00, 351.32
N=50, 60.00, 212.00, 304.66
N=51, 367.00, 67.00, 218.31
N=52, 678.00, 316.00, 59.93
N=53, 154.00, 108.00, 109.08
N=54, 371.00, 208.00, 114.92
N=55, 89.00, 93.00, 224.91
N=56, 463.00, 504.00, 53.51
N=57, 267.00, 285.00, 184.09
N=58, 658.00, 631.00, 177.11
N=59, 434.00, 528.00, 239.96
N=60, 316.00, 170.00, 310.42
N=61, 421.00, 590.00, 77.99
N=62, 601.00, 305.00, 152.20
N=63, 203.00, 323.00, 327.01
N=64, 580.00, 28.00, 132.94
N=65, 453.00, 581.00, 73.22
N=66, 478.00, 533.00, 124.19
N=67, 469.00, 531.00, 50.27
N=68, 259.00, 85.00, 282.41
N=69, 282.00, 428.00, 219.23
N=70, 11.00, 9.00, 344.09
N=71, 307.00, 272.00, 240.23
N=72, 187.00, 308.00, 56.90
N=73, 384.00, 507.00, 84.97
N=74, 328.00, 343.00, 336.94
N=75, 324.00, 475.00, 320.20
N=76, 340.00, 23.00, 29.19
N=77, 461.00, 639.00, 77.30
N=78, 169.00, 76.00, 20.71
N=79, 108.00, 232.00, 349.27

#Edge data
#E=Node number 1, Node number 2, cost
E=4, 70, 723.50
E=4, 71, 42.58
E=4, 17, 369.69
E=4, 36, 41.23
E=14, 72, 83.55
E=14, 22, 55.90
E=14, 57, 87.05
E=17, 70, 909.34
E=17, 36, 370.32
E=17, 43, 47.01
E=17, 56, 91.66
E=21, 72, 567.93
E=21, 22, 452.85
E=35, 59, 103.68
E=35, 66, 58.31
E=35, 67, 64.01
E=36, 70, 715.34
E=36, 71, 83.24
E=43, 66, 81.25
E=43, 67, 81.93
E=43, 56, 60.46
E=56, 66, 111.27
E=56, 67, 27.66
E=57, 71, 42.06
E=57, 72, 96.36
E=57, 73, 310.66
E=59, 73, 54.23
E=66, 67, 94.11
E=71, 73, 304.41

#Start node ID
S=21

#Goal node ID
G=70

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 4, 71, 36, 71
C=1, 43, 56, 43, 67, 43, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 43, 66
EO=1, 43, 67
EO=2, 43, 56
EO=3, 36, 71
EO=4, 4, 71

#Starting belief state, starting with the all F combination and working through to all B
B=0.253935, 0.013365, 0.018810, 0.000990, 0.001485, 0.028215, 0.008910, 0.169290, 0.023085, 0.001215, 0.001710, 0.000090, 0.000135, 0.002565, 0.000810, 0.015390, 0.028215, 0.001485, 0.002090, 0.000110, 0.000165, 0.003135, 0.000990, 0.018810, 0.207765, 0.010935, 0.015390, 0.000810, 0.001215, 0.023085, 0.007290, 0.138510

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=57, 4, 71, 1.000000, 0.000000
O=71, 4, 71, 1.000000, 0.000000
O=71, 36, 71, 1.000000, 0.000000
O=4, 4, 71, 1.000000, 0.000000
O=72, 4, 71, 0.435333, 0.300000
O=14, 36, 71, 0.800000, 0.200000
O=36, 36, 71, 1.000000, 0.000000
O=22, 36, 71, 0.476667, 0.400000
O=59, 43, 56, 0.900000, 0.100000
O=56, 43, 56, 1.000000, 0.000000
O=43, 43, 56, 1.000000, 0.000000
O=43, 43, 67, 1.000000, 0.000000
O=43, 43, 66, 1.000000, 0.000000
O=73, 43, 67, 0.800000, 0.200000
O=67, 43, 67, 1.000000, 0.000000
O=35, 43, 66, 0.900000, 0.100000
O=66, 43, 66, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=502.00, 115.00, 60.00, 0.00, 60.00, 0.00, 4.607717, 0.000000, 4.607717, 120.00, 30.00, 5.635444, 0.000000, 5.635444, 100.00, 110.00, 25.442033, 0.000000, 25.442033, 20.00, 110.00, 3.004288, 0.000000, 3.004288, 0.00, 30.00, 12.374269, 0.000000, 12.374269, 60.00, 0.00, 4.607717, 0.000000, 4.607717
OB=499.00, 492.00, 0.00, 0.00, 0.00, 0.00, 121.000000, 0.000000, 121.000000, 130.00, 88.00, 9.000000, 0.000000, 9.000000
OB=107.00, 382.00, 0.00, 0.00, 0.00, 0.00, 1.313949, 0.000000, 1.313949, 100.00, 0.00, 29.385197, 0.000000, 29.385197, 100.00, 100.00, 1.903049, 0.000000, 1.903049, 0.00, 100.00, 7.294870, 0.000000, 7.294870, 0.00, 0.00, 1.313949, 0.000000, 1.313949
OB=315.00, 252.00, 0.00, 0.00, 0.00, 0.00, 81.000000, 0.000000, 81.000000, 87.00, 122.00, 9.000000, 0.000000, 9.000000
OB=431.00, 477.00, 58.00, 130.00, 58.00, 130.00, 9.198087, 0.000000, 9.198087, 0.00, 0.00, 14.664851, 0.000000, 14.664851
OB=262.00, 227.00, 96.00, 66.00, 96.00, 66.00, 7.129762, 0.000000, 7.129762, 0.00, 0.00, 0.152416, 0.000000, 0.152416
OB=155.00, 167.00, 128.00, 89.00, 128.00, 89.00, 2.175681, 0.000000, 2.175681, 0.00, 0.00, 0.587072, 0.000000, 0.587072
OB=198.00, 489.00, 0.00, 0.00, 0.00, 0.00, 23.169495, 0.000000, 23.169495, 100.00, 0.00, 0.415016, 0.000000, 0.415016, 100.00, 100.00, 2.109429, 0.000000, 2.109429, 0.00, 100.00, 7.579830, 0.000000, 7.579830, 0.00, 0.00, 23.169495, 0.000000, 23.169495

Graph18.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 51.00, 105.00, 212.96
N=1, 528.00, 539.00, 174.55
N=2, 565.00, 346.00, 57.17
N=3, 282.00, 22.00, 69.11
N=4, 194.00, 679.00, 234.25
N=5, 199.00, 66.00, 24.45
N=6, 678.00, 629.00, 201.59
N=7, 441.00, 490.00, 214.49
N=8, 647.00, 490.00, 45.99
N=9, 316.00, 319.00, 134.54
N=10, 35.00, 65.00, 315.36
N=11, 318.00, 459.00, 224.92
N=12, 78.00, 486.00, 91.67
N=13, 526.00, 453.00, 199.82
N=14, 66.00, 376.00, 55.24
N=15, 133.00, 63.00, 266.18
N=16, 32.00, 135.00, 81.97
N=17, 255.00, 571.00, 112.48
N=18, 268.00, 599.00, 151.61
N=19, 152.00, 3.00, 63.62
N=20, 603.00, 384.00, 167.07
N=21, 326.00, 363.00, 107.23
N=22, 161.00, 110.00, 107.68
N=23, 648.00, 374.00, 190.32
N=24, 156.00, 165.00, 251.43
N=25, 124.00, 619.00, 273.68
N=26, 468.00, 190.00, 98.54
N=27, 216.00, 653.00, 125.56
N=28, 203.00, 656.00, 228.54
N=29, 355.00, 199.00, 264.22
N=30, 522.00, 576.00, 348.81
N=31, 598.00, 83.00, 164.59
N=32, 537.00, 465.00, 354.15
N=33, 358.00, 648.00, 117.12
N=34, 606.00, 672.00, 145.93
N=35, 156.00, 61.00, 14.94
N=36, 160.00, 26.00, 113.75
N=37, 278.00, 588.00, 10.20
N=38, 62.00, 347.00, 289.66
N=39, 41.00, 655.00, 211.16
N=40, 151.00, 34.00, 180.27
N=41, 194.00, 602.00, 103.66
N=42, 610.00, 622.00, 81.55
N=43, 102.00, 635.00, 295.09
N=44, 387.00, 48.00, 35.78
N=45, 68.00, 233.00, 237.56
N=46, 629.00, 99.00, 129.17
N=47, 327.00, 359.00, 80.31
N=48, 48.00, 256.00, 41.77
N=49, 537.00, 598.00, 216.12
N=50, 68.00, 501.00, 38.05
N=51, 12.00, 577.00, 326.22
N=52, 567.00, 141.00, 245.98
N=53, 135.00, 533.00, 200.19
N=54, 96.00, 78.00, 315.52
N=55, 9.00, 163.00, 294.58
N=56, 197.00, 259.00, 93.04
N=57, 320.00, 516.00, 72.01
N=58, 431.00, 687.00, 263.56
N=59, 226.00, 45.00, 68.71
N=60, 664.00, 414.00, 260.34
N=61, 551.00, 306.00, 155.70
N=62, 416.00, 82.00, 92.32
N=63, 236.00, 367.00, 223.99
N=64, 647.00, 112.00, 135.29
N=65, 116.00, 503.00, 271.34
N=66, 352.00, 128.00, 238.86
N=67, 67.00, 398.00, 162.99
N=68, 45.00, 436.00, 326.54
N=69, 393.00, 49.00, 11.69
N=70, 568.00, 376.00, 158.96
N=71, 182.00, 271.00, 232.97
N=72, 640.00, 346.00, 87.13
N=73, 285.00, 559.00, 160.28
N=74, 42.00, 403.00, 261.74
N=75, 597.00, 179.00, 133.15
N=76, 533.00, 411.00, 2.40
N=77, 525.00, 497.00, 286.56
N=78, 141.00, 637.00, 34.59
N=79, 50.00, 106.00, 55.86

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 79, 1.41
E=0, 10, 43.08
E=0, 54, 52.48
E=0, 55, 71.61
E=1, 30, 37.48
E=1, 77, 42.11
E=1, 49, 59.68
E=1, 32, 74.55
E=2, 70, 30.15
E=2, 61, 42.38
E=2, 20, 53.74
E=2, 76, 72.45
E=3, 59, 60.54
E=3, 5, 93.94
E=3, 44, 108.17
E=3, 69, 114.24
E=4, 28, 24.70
E=4, 27, 34.06
E=4, 78, 67.62
E=4, 41, 77.00
E=5, 59, 34.21
E=5, 35, 43.29
E=5, 36, 55.87
E=6, 42, 68.36
E=6, 34, 83.86
E=6, 8, 142.41
E=6, 49, 144.37
E=7, 77, 84.29
E=7, 13, 92.70
E=7, 32, 99.20
E=7, 76, 121.26
E=8, 32, 112.81
E=8, 20, 114.77
E=8, 23, 116.00
E=9, 47, 41.48
E=9, 21, 45.12
E=9, 63, 93.30
E=9, 56, 133.27
E=10, 79, 43.66
E=10, 54, 62.37
E=10, 16, 70.06
E=11, 57, 57.04
E=11, 21, 96.33
E=11, 47, 100.40
E=11, 73, 105.30
E=12, 50, 18.03
E=12, 65, 41.63
E=12, 68, 59.91
E=12, 53, 73.88
E=13, 32, 16.28
E=13, 76, 42.58
E=13, 77, 44.01
E=14, 67, 22.02
E=14, 38, 29.27
E=14, 74, 36.12
E=14, 68, 63.57
E=15, 35, 23.09
E=15, 40, 34.13
E=15, 54, 39.92
E=15, 36, 45.80
E=16, 79, 34.13
E=16, 55, 36.24
E=16, 54, 85.70
E=17, 37, 28.60
E=17, 18, 30.87
E=17, 73, 32.31
E=17, 41, 68.43
E=18, 37, 14.87
E=18, 73, 43.46
E=18, 41, 74.06
E=19, 36, 24.35
E=19, 40, 31.02
E=19, 35, 58.14
E=19, 59, 85.09
E=20, 70, 35.90
E=20, 23, 46.10
E=21, 47, 4.12
E=21, 63, 90.09
E=22, 35, 49.25
E=22, 24, 55.23
E=22, 40, 76.66
E=22, 36, 84.01
E=23, 72, 29.12
E=23, 60, 43.08
E=24, 56, 102.55
E=24, 71, 109.14
E=24, 45, 111.21
E=25, 78, 24.76
E=25, 43, 27.20
E=25, 41, 72.03
E=25, 53, 86.70
E=26, 29, 113.36
E=26, 75, 129.47
E=26, 66, 131.53
E=26, 61, 142.64
E=27, 28, 13.34
E=27, 78, 76.69
E=27, 37, 89.83
E=28, 78, 64.85
E=28, 37, 101.24
E=29, 66, 71.06
E=29, 62, 131.95
E=29, 44, 154.35
E=30, 49, 26.63
E=30, 77, 79.06
E=30, 42, 99.30
E=31, 46, 34.89
E=31, 64, 56.94
E=31, 52, 65.76
E=31, 75, 96.01
E=33, 58, 82.76
E=33, 73, 115.11
E=33, 57, 137.36
E=33, 34, 249.16
E=34, 42, 50.16
E=34, 49, 101.18
E=38, 67, 51.24
E=38, 74, 59.46
E=38, 68, 90.61
E=39, 43, 64.20
E=39, 51, 83.22
E=39, 53, 154.01
E=39, 50, 156.35
E=40, 59, 75.80
E=42, 58, 190.44
E=43, 51, 107.07
E=43, 53, 107.21
E=44, 69, 6.08
E=44, 62, 44.69
E=45, 48, 30.48
E=45, 55, 91.55
E=45, 71, 120.17
E=46, 64, 22.20
E=46, 52, 74.89
E=46, 75, 86.16
E=47, 63, 91.35
E=48, 55, 100.85
E=48, 71, 134.84
E=48, 67, 143.27
E=50, 65, 48.04
E=50, 68, 68.95
E=51, 65, 127.64
E=51, 74, 176.57
E=52, 75, 48.41
E=52, 64, 85.09
E=56, 71, 19.21
E=56, 63, 114.83
E=57, 65, 204.41
E=60, 72, 72.11
E=60, 70, 103.25
E=60, 76, 131.03
E=61, 70, 72.03
E=61, 66, 266.99
E=62, 66, 78.82
E=67, 74, 25.50

#Start node ID
S=34

#Goal node ID
G=10

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 2, 61, 61, 70
C=1, 56, 63
C=2, 9, 56
C=3, 26, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 26, 66
EO=1, 9, 56
EO=2, 56, 63
EO=3, 61, 70
EO=4, 2, 61

#Starting belief state, starting with the all F combination and working through to all B
B=0.060472, 0.090707, 0.020157, 0.030236, 0.040314, 0.060472, 0.013438, 0.020157, 0.003890, 0.005835, 0.001297, 0.001945, 0.002593, 0.003890, 0.000864, 0.001297, 0.004774, 0.007161, 0.001591, 0.002387, 0.003183, 0.004774, 0.001061, 0.001591, 0.110864, 0.166297, 0.036955, 0.055432, 0.073910, 0.110864, 0.024637, 0.036955

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=70, 2, 61, 0.950000, 0.050000
O=70, 61, 70, 1.000000, 0.000000
O=2, 2, 61, 1.000000, 0.000000
O=61, 2, 61, 1.000000, 0.000000
O=61, 61, 70, 1.000000, 0.000000
O=61, 26, 66, 0.500000, 0.500000
O=20, 61, 70, 0.900000, 0.100000
O=8, 2, 61, 0.600000, 0.400000
O=76, 61, 70, 0.700000, 0.300000
O=11, 56, 63, 0.600000, 0.400000
O=63, 56, 63, 1.000000, 0.000000
O=56, 56, 63, 1.000000, 0.000000
O=56, 9, 56, 1.000000, 0.000000
O=21, 9, 56, 0.800000, 0.200000
O=9, 9, 56, 1.000000, 0.000000
O=26, 26, 66, 1.000000, 0.000000
O=66, 26, 66, 1.000000, 0.000000
O=13, 2, 61, 0.650000, 0.450000
O=32, 61, 70, 0.600000, 0.350000
O=60, 2, 61, 0.700000, 0.300000
O=57, 9, 56, 0.550000, 0.450000
O=57, 56, 63, 0.550000, 0.450000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=567.00, 221.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 49.000000, 0.000000, 49.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=379.00, 525.00, 0.00, 0.00, 0.00, 0.00, 23.536915, 0.000000, 23.536915, 100.00, 0.00, 15.743941, 0.000000, 15.743941, 100.00, 100.00, 3.841093, 0.000000, 3.841093, 0.00, 100.00, 6.366589, 0.000000, 6.366589, 0.00, 0.00, 23.536915, 0.000000, 23.536915
OB=140.00, 414.00, 0.00, 0.00, 0.00, 0.00, 2.553428, 0.000000, 2.553428, 140.00, 0.00, 3.621864, 0.000000, 3.621864, 140.00, 80.00, 7.500924, 0.000000, 7.500924, 0.00, 80.00, 0.270715, 0.000000, 0.270715, 0.00, 0.00, 2.553428, 0.000000, 2.553428
OB=101.00, 311.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 81.000000, 0.000000, 81.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000
OB=235.00, 155.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 4.000000, 0.000000, 4.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 121.000000, 0.000000, 121.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=438.00, 51.00, 0.00, 0.00, 0.00, 0.00, 4.062727, 0.000000, 4.062727, 100.00, 0.00, 14.556566, 0.000000, 14.556566, 100.00, 100.00, 11.726677, 0.000000, 11.726677, 0.00, 100.00, 18.638179, 0.000000, 18.638179, 0.00, 0.00, 4.062727, 0.000000, 4.062727
OB=396.00, 312.00, 0.00, 0.00, 0.00, 0.00, 25.987836, 0.000000, 25.987836, 100.00, 0.00, 14.081323, 0.000000, 14.081323, 100.00, 100.00, 20.578206, 0.000000, 20.578206, 0.00, 100.00, 5.051367, 0.000000, 5.051367, 0.00, 0.00, 25.987836, 0.000000, 25.987836

Graph18PP.pomdp

//State variables
(variables
 (loc l34 l32 l2 l70 l66 l76 l8 l9 l10 l11 l13 l21 l20 l57 l26 l56 l29 l63 l61 l60)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob2_61 ob2_61F ob2_61B)
 (ob61_70 ob61_70F ob61_70B)
 (ob56_63 ob56_63F ob56_63B)
 (ob9_56 ob9_56F ob9_56B)
 (ob26_66 ob26_66F ob26_66B)
)

//Initial belief state
init [*
 (loc (l34 (1.0)) (l32 (0.0)) (l2 (0.0)) (l70 (0.0)) (l66 (0.0)) (l76 (0.0)) (l8 (0.0)) (l9 (0.0)) (l10 (0.0)) (l11 (0.0)) (l13 (0.0)) (l21 (0.0)) (l20 (0.0)) (l57 (0.0)) (l26 (0.0)) (l56 (0.0)) (l29 (0.0)) (l63 (0.0)) (l61 (0.0)) (l60 (0.0)))
 (c1 (c1F (0.357563850687)) (c1B (0.642436149313)))
 (c2 (c2F (0.362475442041)) (c2B (0.637524557959)))
 (c3 (c3F (0.599999999999)) (c3B (0.400000000001)))
 (c4 (c4F (0.75)) (c4B (0.25)))
 (c5 (c5F (0.400000000001)) (c5B (0.599999999999)))
]

//Actions and costs
action goto_l34
 loc (loc
 (l34 (locl34))
 (l32 (locl34))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl34))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl34))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl34))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (235.4058423566738))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (226.27787035322402))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (246.97892282070762))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (386.5194227079012))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l32
 loc (loc
 (l34 (locl32))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl32))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl32))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl32))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (c2'
 (c2F (ob61_70' (ob61_70F (0.65)) (ob61_70B (0.35))))
 (c2B (ob61_70' (ob61_70F (0.4)) (ob61_70B (0.6))))
)
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (235.4058423566738))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (112.80514172678478))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (16.278820596099706))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (621.8880571000223))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l2
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl2))
 (l66 (locl66))
 (l76 (locl2))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl2))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (c1
 (c1F (locl2))
 (c1B (locl61))
))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (1.0)) (ob2_61B (0.0))))
 (c1B (ob2_61' (ob2_61F (0.0)) (ob2_61B (1.0))))
)
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (30.14962686336267))
 (l66 (2000.0))
 (l76 (72.44998274671983))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (53.74011537017761))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (42.37924020083418))
 (l60 (2000.0))
)
endaction

action goto_l70
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl70))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl70))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (c2
 (c2F (locl70))
 (c2B (locl61))
))
 (l60 (locl70))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (0.95)) (ob2_61B (0.05))))
 (c1B (ob2_61' (ob2_61F (0.050000000000000044)) (ob2_61B (0.95))))
)
 ob61_70 (c2'
 (c2F (ob61_70' (ob61_70F (1.0)) (ob61_70B (0.0))))
 (c2B (ob61_70' (ob61_70F (0.0)) (ob61_70B (1.0))))
)
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (30.14962686336267))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (35.90264614203248))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (72.03471385380801))
 (l60 (103.24727599312246))
)
endaction

action goto_l66
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl66))
 (l26 (c5
 (c5F (locl66))
 (c5B (locl26))
))
 (l56 (locl66))
 (l29 (locl66))
 (l63 (locl63))
 (l61 (locl66))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (c5'
 (c5F (ob26_66' (ob26_66F (1.0)) (ob26_66B (0.0))))
 (c5B (ob26_66' (ob26_66F (0.0)) (ob26_66B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (1149.8870988624608))
 (l26 (131.52946437965906))
 (l56 (575.94007350223))
 (l29 (71.06335201775947))
 (l63 (2000.0))
 (l61 (266.9925092582187))
 (l60 (2000.0))
)
endaction

action goto_l76
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl76))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl76))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl76))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (c2'
 (c2F (ob61_70' (ob61_70F (0.7)) (ob61_70B (0.3))))
 (c2B (ob61_70' (ob61_70F (0.30000000000000004)) (ob61_70B (0.7))))
)
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (72.44998274671983))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (42.579337712087536))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (131.03434664239754))
)
endaction

action goto_l8
 loc (loc
 (l34 (locl8))
 (l32 (locl8))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl8))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl8))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (0.6)) (ob2_61B (0.4))))
 (c1B (ob2_61' (ob2_61F (0.4)) (ob2_61B (0.6))))
)
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (226.27787035322402))
 (l32 (112.80514172678478))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (114.76933388322858))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (159.08562872182438))
)
endaction

action goto_l9
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl9))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (c4
 (c4F (locl9))
 (c4B (locl56))
))
 (l29 (locl29))
 (l63 (locl9))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (c4'
 (c4F (ob9_56' (ob9_56F (1.0)) (ob9_56B (0.0))))
 (c4B (ob9_56' (ob9_56F (0.0)) (ob9_56B (1.0))))
)
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (45.12205669071391))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (133.27040181525678))
 (l29 (2000.0))
 (l63 (93.29523031752481))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l10
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl10))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl10))
 (l26 (locl26))
 (l56 (locl10))
 (l29 (locl10))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (494.2879882094903))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (741.9544554438816))
 (l26 (2000.0))
 (l56 (332.4152589620104))
 (l29 (525.1374306898608))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l11
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl11))
 (l20 (locl20))
 (l57 (locl11))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (c3'
 (c3F (ob56_63' (ob56_63F (0.6)) (ob56_63B (0.4))))
 (c3B (ob56_63' (ob56_63F (0.4)) (ob56_63B (0.6))))
)
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (96.33275663033837))
 (l20 (2000.0))
 (l57 (57.0350769263968))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l13
 loc (loc
 (l34 (locl13))
 (l32 (locl13))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl13))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl13))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (0.55)) (ob2_61B (0.45))))
 (c1B (ob2_61' (ob2_61F (0.35)) (ob2_61B (0.65))))
)
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (246.97892282070762))
 (l32 (16.278820596099706))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (42.579337712087536))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (632.9277428974283))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l21
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl21))
 (l10 (locl10))
 (l11 (locl21))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl21))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (c4'
 (c4F (ob9_56' (ob9_56F (0.8)) (ob9_56B (0.2))))
 (c4B (ob9_56' (ob9_56F (0.19999999999999996)) (ob9_56B (0.8))))
)
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (45.12205669071391))
 (l10 (0))
 (l11 (96.33275663033837))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (90.08884503644167))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l20
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl20))
 (l70 (locl20))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl20))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl20))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (c2'
 (c2F (ob61_70' (ob61_70F (0.9)) (ob61_70B (0.1))))
 (c2B (ob61_70' (ob61_70F (0.09999999999999998)) (ob61_70B (0.9))))
)
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (53.74011537017761))
 (l70 (35.90264614203248))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (114.76933388322858))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (89.17904074354047))
)
endaction

action goto_l57
 loc (loc
 (l34 (locl57))
 (l32 (locl57))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl57))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl57))
 (l13 (locl57))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl57))
 (l29 (locl57))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (c3'
 (c3F (ob56_63' (ob56_63F (0.55)) (ob56_63B (0.45))))
 (c3B (ob56_63' (ob56_63F (0.44999999999999996)) (ob56_63B (0.55))))
)
 ob9_56 (c4'
 (c4F (ob9_56' (ob9_56F (0.55)) (ob9_56B (0.45))))
 (c4B (ob9_56' (ob9_56F (0.44999999999999996)) (ob9_56B (0.55))))
)
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (386.5194227079012))
 (l32 (621.8880571000223))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (1149.8870988624608))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (57.0350769263968))
 (l13 (632.9277428974283))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (688.8547507450853))
 (l29 (1180.7365413428313))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l26
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (c5
 (c5F (locl26))
 (c5B (locl66))
))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl26))
 (l63 (locl63))
 (l61 (locl26))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (c5'
 (c5F (ob26_66' (ob26_66F (1.0)) (ob26_66B (0.0))))
 (c5B (ob26_66' (ob26_66F (0.0)) (ob26_66B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (131.52946437965906))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (113.35784048754634))
 (l63 (2000.0))
 (l61 (142.63590010933433))
 (l60 (2000.0))
)
endaction

action goto_l56
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl56))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (c4
 (c4F (locl56))
 (c4B (locl9))
))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl56))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl56))
 (l63 (c3
 (c3F (locl56))
 (c3B (locl63))
))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (c3'
 (c3F (ob56_63' (ob56_63F (1.0)) (ob56_63B (0.0))))
 (c3B (ob56_63' (ob56_63F (0.0)) (ob56_63B (1.0))))
)
 ob9_56 (c4'
 (c4F (ob9_56' (ob9_56F (1.0)) (ob9_56B (0.0))))
 (c4B (ob9_56' (ob9_56F (0.0)) (ob9_56B (1.0))))
)
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (575.94007350223))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (133.27040181525678))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (688.8547507450853))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (606.7895159826005))
 (l63 (114.82595525402782))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l29
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl29))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl29))
 (l26 (locl29))
 (l56 (locl29))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (71.06335201775947))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (1180.7365413428313))
 (l26 (113.35784048754634))
 (l56 (606.7895159826005))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l63
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl70))
 (l66 (locl66))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl63))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl63))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (c3
 (c3F (locl63))
 (c3B (locl56))
))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (ob2_61' (ob2_61F (0.5)) (ob2_61B (0.5)))
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (c3'
 (c3F (ob56_63' (ob56_63F (1.0)) (ob56_63B (0.0))))
 (c3B (ob56_63' (ob56_63F (0.0)) (ob56_63B (1.0))))
)
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (2000.0))
 (l66 (2000.0))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (93.29523031752481))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (90.08884503644167))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (114.82595525402782))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l61
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (c1
 (c1F (locl61))
 (c1B (locl2))
))
 (l70 (c2
 (c2F (locl61))
 (c2B (locl70))
))
 (l66 (locl61))
 (l76 (locl76))
 (l8 (locl8))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl20))
 (l57 (locl57))
 (l26 (locl61))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (1.0)) (ob2_61B (0.0))))
 (c1B (ob2_61' (ob2_61F (0.0)) (ob2_61B (1.0))))
)
 ob61_70 (c2'
 (c2F (ob61_70' (ob61_70F (1.0)) (ob61_70B (0.0))))
 (c2B (ob61_70' (ob61_70F (0.0)) (ob61_70B (1.0))))
)
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (c5'
 (c5F (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5))))
 (c5B (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (42.37924020083418))
 (l70 (72.03471385380801))
 (l66 (266.9925092582187))
 (l76 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (2000.0))
 (l57 (2000.0))
 (l26 (142.63590010933433))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

action goto_l60
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l2 (locl2))
 (l70 (locl60))
 (l66 (locl66))
 (l76 (locl60))
 (l8 (locl60))
 (l9 (locl9))
 (l10 (locl10))
 (l11 (locl11))
 (l13 (locl13))
 (l21 (locl21))
 (l20 (locl60))
 (l57 (locl57))
 (l26 (locl26))
 (l56 (locl56))
 (l29 (locl29))
 (l63 (locl63))
 (l61 (locl61))
 (l60 (locl60))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob2_61 (c1'
 (c1F (ob2_61' (ob2_61F (0.7)) (ob2_61B (0.3))))
 (c1B (ob2_61' (ob2_61F (0.30000000000000004)) (ob2_61B (0.7))))
)
 ob61_70 (ob61_70' (ob61_70F (0.5)) (ob61_70B (0.5)))
 ob56_63 (ob56_63' (ob56_63F (0.5)) (ob56_63B (0.5)))
 ob9_56 (ob9_56' (ob9_56F (0.5)) (ob9_56B (0.5)))
 ob26_66 (ob26_66' (ob26_66F (0.5)) (ob26_66B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l2 (2000.0))
 (l70 (103.24727599312246))
 (l66 (2000.0))
 (l76 (131.03434664239754))
 (l8 (159.08562872182438))
 (l9 (2000.0))
 (l10 (0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l21 (2000.0))
 (l20 (89.17904074354047))
 (l57 (2000.0))
 (l26 (2000.0))
 (l56 (2000.0))
 (l29 (2000.0))
 (l63 (2000.0))
 (l61 (2000.0))
 (l60 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph18_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 51.00, 105.00, 212.96
N=1, 528.00, 539.00, 174.55
N=2, 565.00, 346.00, 57.17
N=3, 282.00, 22.00, 69.11
N=4, 194.00, 679.00, 234.25
N=5, 199.00, 66.00, 24.45
N=6, 678.00, 629.00, 201.59
N=7, 441.00, 490.00, 214.49
N=8, 647.00, 490.00, 45.99
N=9, 316.00, 319.00, 134.54
N=10, 35.00, 65.00, 315.36
N=11, 318.00, 459.00, 224.92
N=12, 78.00, 486.00, 91.67
N=13, 526.00, 453.00, 199.82
N=14, 66.00, 376.00, 55.24
N=15, 133.00, 63.00, 266.18
N=16, 32.00, 135.00, 81.97
N=17, 255.00, 571.00, 112.48
N=18, 268.00, 599.00, 151.61
N=19, 152.00, 3.00, 63.62
N=20, 603.00, 384.00, 167.07
N=21, 326.00, 363.00, 107.23
N=22, 161.00, 110.00, 107.68
N=23, 648.00, 374.00, 190.32
N=24, 156.00, 165.00, 251.43
N=25, 124.00, 619.00, 273.68
N=26, 468.00, 190.00, 98.54
N=27, 216.00, 653.00, 125.56
N=28, 203.00, 656.00, 228.54
N=29, 355.00, 199.00, 264.22
N=30, 522.00, 576.00, 348.81
N=31, 598.00, 83.00, 164.59
N=32, 537.00, 465.00, 354.15
N=33, 358.00, 648.00, 117.12
N=34, 606.00, 672.00, 145.93
N=35, 156.00, 61.00, 14.94
N=36, 160.00, 26.00, 113.75
N=37, 278.00, 588.00, 10.20
N=38, 62.00, 347.00, 289.66
N=39, 41.00, 655.00, 211.16
N=40, 151.00, 34.00, 180.27
N=41, 194.00, 602.00, 103.66
N=42, 610.00, 622.00, 81.55
N=43, 102.00, 635.00, 295.09
N=44, 387.00, 48.00, 35.78
N=45, 68.00, 233.00, 237.56
N=46, 629.00, 99.00, 129.17
N=47, 327.00, 359.00, 80.31
N=48, 48.00, 256.00, 41.77
N=49, 537.00, 598.00, 216.12
N=50, 68.00, 501.00, 38.05
N=51, 12.00, 577.00, 326.22
N=52, 567.00, 141.00, 245.98
N=53, 135.00, 533.00, 200.19
N=54, 96.00, 78.00, 315.52
N=55, 9.00, 163.00, 294.58
N=56, 197.00, 259.00, 93.04
N=57, 320.00, 516.00, 72.01
N=58, 431.00, 687.00, 263.56
N=59, 226.00, 45.00, 68.71
N=60, 664.00, 414.00, 260.34
N=61, 551.00, 306.00, 155.70
N=62, 416.00, 82.00, 92.32
N=63, 236.00, 367.00, 223.99
N=64, 647.00, 112.00, 135.29
N=65, 116.00, 503.00, 271.34
N=66, 352.00, 128.00, 238.86
N=67, 67.00, 398.00, 162.99
N=68, 45.00, 436.00, 326.54
N=69, 393.00, 49.00, 11.69
N=70, 568.00, 376.00, 158.96
N=71, 182.00, 271.00, 232.97
N=72, 640.00, 346.00, 87.13
N=73, 285.00, 559.00, 160.28
N=74, 42.00, 403.00, 261.74
N=75, 597.00, 179.00, 133.15
N=76, 533.00, 411.00, 2.40
N=77, 525.00, 497.00, 286.56
N=78, 141.00, 637.00, 34.59
N=79, 50.00, 106.00, 55.86

#Edge data
#E=Node number 1, Node number 2, cost
E=2, 61, 42.38
E=2, 20, 53.74
E=2, 70, 30.15
E=2, 76, 72.45
E=8, 34, 226.28
E=8, 32, 112.81
E=8, 20, 114.77
E=8, 60, 159.09
E=9, 56, 133.27
E=9, 21, 45.12
E=9, 63, 93.30
E=10, 66, 494.29
E=10, 29, 525.14
E=10, 56, 332.42
E=10, 57, 741.95
E=11, 21, 96.33
E=11, 57, 57.04
E=13, 34, 246.98
E=13, 32, 16.28
E=13, 76, 42.58
E=13, 57, 632.93
E=20, 70, 35.90
E=20, 60, 89.18
E=21, 63, 90.09
E=26, 66, 131.53
E=26, 29, 113.36
E=26, 61, 142.64
E=29, 66, 71.06
E=29, 57, 1180.74
E=29, 56, 606.79
E=32, 34, 235.41
E=32, 57, 621.89
E=34, 57, 386.52
E=56, 66, 575.94
E=56, 57, 688.85
E=56, 63, 114.83
E=57, 66, 1149.89
E=60, 70, 103.25
E=60, 76, 131.03
E=61, 70, 72.03
E=61, 66, 266.99

#Start node ID
S=34

#Goal node ID
G=10

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 2, 61, 61, 70
C=1, 56, 63
C=2, 9, 56
C=3, 26, 66

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 26, 66
EO=1, 9, 56
EO=2, 56, 63
EO=3, 61, 70
EO=4, 2, 61

#Starting belief state, starting with the all F combination and working through to all B
B=0.060472, 0.090707, 0.020157, 0.030236, 0.040314, 0.060472, 0.013438, 0.020157, 0.003890, 0.005835, 0.001297, 0.001945, 0.002593, 0.003890, 0.000864, 0.001297, 0.004774, 0.007161, 0.001591, 0.002387, 0.003183, 0.004774, 0.001061, 0.001591, 0.110864, 0.166297, 0.036955, 0.055432, 0.073910, 0.110864, 0.024637, 0.036955

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=70, 2, 61, 0.950000, 0.050000
O=70, 61, 70, 1.000000, 0.000000
O=2, 2, 61, 1.000000, 0.000000
O=61, 2, 61, 1.000000, 0.000000
O=61, 61, 70, 1.000000, 0.000000
O=61, 26, 66, 0.500000, 0.500000
O=20, 61, 70, 0.900000, 0.100000
O=8, 2, 61, 0.600000, 0.400000
O=76, 61, 70, 0.700000, 0.300000
O=11, 56, 63, 0.600000, 0.400000
O=63, 56, 63, 1.000000, 0.000000
O=56, 56, 63, 1.000000, 0.000000
O=56, 9, 56, 1.000000, 0.000000
O=21, 9, 56, 0.800000, 0.200000
O=9, 9, 56, 1.000000, 0.000000
O=26, 26, 66, 1.000000, 0.000000
O=66, 26, 66, 1.000000, 0.000000
O=13, 2, 61, 0.650000, 0.450000
O=32, 61, 70, 0.600000, 0.350000
O=60, 2, 61, 0.700000, 0.300000
O=57, 9, 56, 0.550000, 0.450000
O=57, 56, 63, 0.550000, 0.450000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=567.00, 221.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 49.000000, 0.000000, 49.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=379.00, 525.00, 0.00, 0.00, 0.00, 0.00, 23.536915, 0.000000, 23.536915, 100.00, 0.00, 15.743941, 0.000000, 15.743941, 100.00, 100.00, 3.841093, 0.000000, 3.841093, 0.00, 100.00, 6.366589, 0.000000, 6.366589, 0.00, 0.00, 23.536915, 0.000000, 23.536915
OB=140.00, 414.00, 0.00, 0.00, 0.00, 0.00, 2.553428, 0.000000, 2.553428, 140.00, 0.00, 3.621864, 0.000000, 3.621864, 140.00, 80.00, 7.500924, 0.000000, 7.500924, 0.00, 80.00, 0.270715, 0.000000, 0.270715, 0.00, 0.00, 2.553428, 0.000000, 2.553428
OB=101.00, 311.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 81.000000, 0.000000, 81.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000
OB=235.00, 155.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 4.000000, 0.000000, 4.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 121.000000, 0.000000, 121.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=438.00, 51.00, 0.00, 0.00, 0.00, 0.00, 4.062727, 0.000000, 4.062727, 100.00, 0.00, 14.556566, 0.000000, 14.556566, 100.00, 100.00, 11.726677, 0.000000, 11.726677, 0.00, 100.00, 18.638179, 0.000000, 18.638179, 0.00, 0.00, 4.062727, 0.000000, 4.062727
OB=396.00, 312.00, 0.00, 0.00, 0.00, 0.00, 25.987836, 0.000000, 25.987836, 100.00, 0.00, 14.081323, 0.000000, 14.081323, 100.00, 100.00, 20.578206, 0.000000, 20.578206, 0.00, 100.00, 5.051367, 0.000000, 5.051367, 0.00, 0.00, 25.987836, 0.000000, 25.987836

Graph19.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 54, 64
EO=1, 50, 63
EO=2, 45, 49
EO=3, 46, 57
EO=4, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.068040, 0.045360, 0.126360, 0.084240, 0.045360, 0.030240, 0.084240, 0.056160, 0.005040, 0.003360, 0.009360, 0.006240, 0.003360, 0.002240, 0.006240, 0.004160, 0.007560, 0.005040, 0.014040, 0.009360, 0.005040, 0.003360, 0.009360, 0.006240, 0.045360, 0.030240, 0.084240, 0.056160, 0.030240, 0.020160, 0.056160, 0.037440

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=63, 50, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=438.00, 548.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 115.00, 63.00, 144.000000, 0.000000, 144.000000
OB=514.00, 361.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 36.000000, 0.000000, 36.000000, 100.00, 110.00, 49.000000, 0.000000, 49.000000, 20.00, 110.00, 81.000000, 0.000000, 81.000000, 0.00, 30.00, 121.000000, 0.000000, 121.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000
OB=481.00, 136.00, 0.00, 0.00, 0.00, 0.00, 3.287303, 0.000000, 3.287303, 140.00, 0.00, 1.984381, 0.000000, 1.984381, 140.00, 80.00, 4.925793, 0.000000, 4.925793, 0.00, 80.00, 13.982384, 0.000000, 13.982384, 0.00, 0.00, 3.287303, 0.000000, 3.287303
OB=60.00, 283.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=102.00, 533.00, 0.00, 0.00, 0.00, 0.00, 8.519276, 0.000000, 8.519276, 140.00, 0.00, 12.551009, 0.000000, 12.551009, 140.00, 80.00, 1.665906, 0.000000, 1.665906, 0.00, 80.00, 18.365854, 0.000000, 18.365854, 0.00, 0.00, 8.519276, 0.000000, 8.519276
OB=289.00, 124.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 16.000000, 0.000000, 16.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 100.000000, 0.000000, 100.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000

Graph19PP.pomdp

//State variables
(variables
 (loc l33 l64 l39 l67 l37 l42 l78 l46 l14 l45 l50 l49 l54 l25 l57 l56 l63 l28)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob46_67 ob46_67F ob46_67B)
 (ob46_57 ob46_57F ob46_57B)
 (ob45_49 ob45_49F ob45_49B)
 (ob50_63 ob50_63F ob50_63B)
 (ob54_64 ob54_64F ob54_64B)
)

//Initial belief state
init [*
 (loc (l33 (0.0)) (l64 (0.0)) (l39 (1.0)) (l67 (0.0)) (l37 (0.0)) (l42 (0.0)) (l78 (0.0)) (l46 (0.0)) (l14 (0.0)) (l45 (0.0)) (l50 (0.0)) (l49 (0.0)) (l54 (0.0)) (l25 (0.0)) (l57 (0.0)) (l56 (0.0)) (l63 (0.0)) (l28 (0.0)))
 (c1 (c1F (0.58)) (c1B (0.42)))
 (c2 (c2F (0.6)) (c2B (0.4)))
 (c3 (c3F (0.6)) (c3B (0.4)))
 (c4 (c4F (0.35)) (c4B (0.65)))
 (c5 (c5F (0.6)) (c5B (0.4)))
]

//Actions and costs
action goto_l33
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl33))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl33))
 (l46 (locl33))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl33))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl33))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl33))
 (l28 (locl33))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (c1'
 (c1F (ob46_67' (ob46_67F (0.9)) (ob46_67B (0.1))))
 (c1B (ob46_67' (ob46_67F (0.09999999999999998)) (ob46_67B (0.9))))
)
 ob46_57 (c2'
 (c2F (ob46_57' (ob46_57F (0.9)) (ob46_57B (0.1))))
 (c2B (ob46_57' (ob46_57F (0.09999999999999998)) (ob46_57B (0.9))))
)
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (583.5993267291261))
 (l37 (0))
 (l42 (2000.0))
 (l78 (216.453228204155))
 (l46 (51.31276644267))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (484.05698847696783))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (469.99737493979853))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (161.0372627685903))
 (l28 (540.1283513544397))
)
endaction

action goto_l64
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (c5
 (c5F (locl64))
 (c5B (locl54))
))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl64))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (c5'
 (c5F (ob54_64' (ob54_64F (1.0)) (ob54_64B (0.0))))
 (c5B (ob54_64' (ob54_64F (0.0)) (ob54_64B (1.0))))
)
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (154.30165261590687))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (78.44743462982075))
)
endaction

action goto_l39
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl39))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (144.73593676988816))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l67
 loc (loc
 (l33 (locl67))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl67))
 (l78 (locl78))
 (l46 (c1
 (c1F (locl67))
 (c1B (locl46))
))
 (l14 (locl67))
 (l45 (locl67))
 (l50 (locl67))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl67))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl67))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (c1'
 (c1F (ob46_67' (ob46_67F (1.0)) (ob46_67B (0.0))))
 (c1B (ob46_67' (ob46_67F (0.0)) (ob46_67B (1.0))))
)
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (583.5993267291261))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (230.0927048057124))
 (l78 (2000.0))
 (l46 (221.41589825484527))
 (l14 (115.17800327528795))
 (l45 (192.68167952501142))
 (l50 (488.10568553905966))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (650.9156864720321))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (721.0466628866733))
)
endaction

action goto_l37
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl37))
 (l54 (locl37))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (317.0592151414262))
 (l54 (154.11683879446787))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l42
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl42))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl42))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl42))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (c3'
 (c3F (ob45_49' (ob45_49F (0.9)) (ob45_49B (0.1))))
 (c3B (ob45_49' (ob45_49F (0.09999999999999998)) (ob45_49B (0.9))))
)
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (230.0927048057124))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (86.81589716175259))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (133.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l78
 loc (loc
 (l33 (locl78))
 (l64 (locl64))
 (l39 (locl78))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl78))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (c4'
 (c4F (ob50_63' (ob50_63F (0.8)) (ob50_63B (0.2))))
 (c4B (ob50_63' (ob50_63F (0.19999999999999996)) (ob50_63B (0.8))))
)
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (216.453228204155))
 (l64 (2000.0))
 (l39 (144.73593676988816))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (202.2992832414391))
 (l28 (2000.0))
)
endaction

action goto_l46
 loc (loc
 (l33 (locl46))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (c1
 (c1F (locl46))
 (c1B (locl67))
))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (c2
 (c2F (locl46))
 (c2B (locl57))
))
 (l56 (locl56))
 (l63 (locl46))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (c1'
 (c1F (ob46_67' (ob46_67F (1.0)) (ob46_67B (0.0))))
 (c1B (ob46_67' (ob46_67F (0.0)) (ob46_67B (1.0))))
)
 ob46_57 (c2'
 (c2F (ob46_57' (ob46_57F (1.0)) (ob46_57B (0.0))))
 (c2B (ob46_57' (ob46_57F (0.0)) (ob46_57B (1.0))))
)
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (51.31276644267))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (221.41589825484527))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (168.23792675850473))
 (l56 (2000.0))
 (l63 (208.4034548657963))
 (l28 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl14))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl14))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl14))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (c3'
 (c3F (ob45_49' (ob45_49F (0.7)) (ob45_49B (0.3))))
 (c3B (ob45_49' (ob45_49F (0.30000000000000004)) (ob45_49B (0.7))))
)
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (115.17800327528795))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (180.47370093898314))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (31.622776601683793))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l45
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl45))
 (l37 (locl37))
 (l42 (locl45))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl45))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (c3
 (c3F (locl45))
 (c3B (locl49))
))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl45))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (c3'
 (c3F (ob45_49' (ob45_49F (1.0)) (ob45_49B (0.0))))
 (c3B (ob45_49' (ob45_49F (0.0)) (ob45_49B (1.0))))
)
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (192.68167952501142))
 (l37 (0))
 (l42 (86.81589716175259))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (180.47370093898314))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (93.04837451562494))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (163.6001222493431))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l50
 loc (loc
 (l33 (locl50))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl50))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl50))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (c4
 (c4F (locl50))
 (c4B (locl63))
))
 (l28 (locl50))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (c4'
 (c4F (ob50_63' (ob50_63F (1.0)) (ob50_63B (0.0))))
 (c4B (ob50_63' (ob50_63F (0.0)) (ob50_63B (1.0))))
)
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (484.05698847696783))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (488.10568553905966))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (551.3733482198738))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (144.00694427700353))
 (l28 (621.504324634515))
)
endaction

action goto_l49
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (c3
 (c3F (locl49))
 (c3B (locl45))
))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl49))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (c3'
 (c3F (ob45_49' (ob45_49F (1.0)) (ob45_49B (0.0))))
 (c3B (ob45_49' (ob45_49F (0.0)) (ob45_49B (1.0))))
)
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (93.04837451562494))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (149.093930124603))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l54
 loc (loc
 (l33 (locl33))
 (l64 (c5
 (c5F (locl54))
 (c5B (locl64))
))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl54))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (c5'
 (c5F (ob54_64' (ob54_64F (1.0)) (ob54_64B (0.0))))
 (c5B (ob54_64' (ob54_64F (0.0)) (ob54_64B (1.0))))
)
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (154.30165261590687))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (63.953107821277925))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l25
 loc (loc
 (l33 (locl25))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl25))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl25))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl25))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (c5'
 (c5F (ob54_64' (ob54_64F (0.8)) (ob54_64B (0.2))))
 (c5B (ob54_64' (ob54_64F (0.19999999999999996)) (ob54_64B (0.8))))
)
 endobserve
 cost (loc
 (l33 (469.99737493979853))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (650.9156864720321))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (551.3733482198738))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (94.33981132056604))
)
endaction

action goto_l57
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl57))
 (l78 (locl78))
 (l46 (c2
 (c2F (locl57))
 (c2B (locl46))
))
 (l14 (locl57))
 (l45 (locl45))
 (l50 (locl50))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (c2'
 (c2F (ob46_57' (ob46_57F (1.0)) (ob46_57B (0.0))))
 (c2B (ob46_57' (ob46_57F (0.0)) (ob46_57B (1.0))))
)
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (133.0))
 (l78 (2000.0))
 (l46 (168.23792675850473))
 (l14 (31.622776601683793))
 (l45 (2000.0))
 (l50 (2000.0))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l56
 loc (loc
 (l33 (locl33))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl56))
 (l50 (locl50))
 (l49 (locl56))
 (l54 (locl56))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (2000.0))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (163.6001222493431))
 (l50 (2000.0))
 (l49 (149.093930124603))
 (l54 (63.953107821277925))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l63
 loc (loc
 (l33 (locl63))
 (l64 (locl64))
 (l39 (locl39))
 (l67 (locl67))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl63))
 (l46 (locl63))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (c4
 (c4F (locl63))
 (c4B (locl50))
))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl25))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (c4'
 (c4F (ob50_63' (ob50_63F (1.0)) (ob50_63B (0.0))))
 (c4B (ob50_63' (ob50_63F (0.0)) (ob50_63B (1.0))))
)
 ob54_64 (ob54_64' (ob54_64F (0.5)) (ob54_64B (0.5)))
 endobserve
 cost (loc
 (l33 (161.0372627685903))
 (l64 (2000.0))
 (l39 (2000.0))
 (l67 (2000.0))
 (l37 (0))
 (l42 (2000.0))
 (l78 (202.2992832414391))
 (l46 (208.4034548657963))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (144.00694427700353))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (2000.0))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l33 (locl28))
 (l64 (locl28))
 (l39 (locl39))
 (l67 (locl28))
 (l37 (locl37))
 (l42 (locl42))
 (l78 (locl78))
 (l46 (locl46))
 (l14 (locl14))
 (l45 (locl45))
 (l50 (locl28))
 (l49 (locl49))
 (l54 (locl54))
 (l25 (locl28))
 (l57 (locl57))
 (l56 (locl56))
 (l63 (locl63))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob46_67 (ob46_67' (ob46_67F (0.5)) (ob46_67B (0.5)))
 ob46_57 (ob46_57' (ob46_57F (0.5)) (ob46_57B (0.5)))
 ob45_49 (ob45_49' (ob45_49F (0.5)) (ob45_49B (0.5)))
 ob50_63 (ob50_63' (ob50_63F (0.5)) (ob50_63B (0.5)))
 ob54_64 (c5'
 (c5F (ob54_64' (ob54_64F (0.8)) (ob54_64B (0.2))))
 (c5B (ob54_64' (ob54_64F (-29.8)) (ob54_64B (30.8))))
)
 endobserve
 cost (loc
 (l33 (540.1283513544397))
 (l64 (78.44743462982075))
 (l39 (2000.0))
 (l67 (721.0466628866733))
 (l37 (0))
 (l42 (2000.0))
 (l78 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l45 (2000.0))
 (l50 (621.504324634515))
 (l49 (2000.0))
 (l54 (2000.0))
 (l25 (94.33981132056604))
 (l57 (2000.0))
 (l56 (2000.0))
 (l63 (2000.0))
 (l28 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph19_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=14, 67, 115.18
E=14, 45, 180.47
E=14, 57, 31.62
E=25, 33, 470.00
E=25, 67, 650.92
E=25, 50, 551.37
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=28, 67, 721.05
E=28, 50, 621.50
E=33, 46, 51.31
E=33, 50, 484.06
E=33, 63, 161.04
E=33, 67, 583.60
E=33, 78, 216.45
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 78, 144.74
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 67, 192.68
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 488.11
E=50, 63, 144.01
E=54, 64, 154.30
E=54, 56, 63.95
E=63, 78, 202.30

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 54, 64
EO=1, 50, 63
EO=2, 45, 49
EO=3, 46, 57
EO=4, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.068040, 0.045360, 0.126360, 0.084240, 0.045360, 0.030240, 0.084240, 0.056160, 0.005040, 0.003360, 0.009360, 0.006240, 0.003360, 0.002240, 0.006240, 0.004160, 0.007560, 0.005040, 0.014040, 0.009360, 0.005040, 0.003360, 0.009360, 0.006240, 0.045360, 0.030240, 0.084240, 0.056160, 0.030240, 0.020160, 0.056160, 0.037440

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=63, 50, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=438.00, 548.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 115.00, 63.00, 144.000000, 0.000000, 144.000000
OB=514.00, 361.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 36.000000, 0.000000, 36.000000, 100.00, 110.00, 49.000000, 0.000000, 49.000000, 20.00, 110.00, 81.000000, 0.000000, 81.000000, 0.00, 30.00, 121.000000, 0.000000, 121.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000
OB=481.00, 136.00, 0.00, 0.00, 0.00, 0.00, 3.287303, 0.000000, 3.287303, 140.00, 0.00, 1.984381, 0.000000, 1.984381, 140.00, 80.00, 4.925793, 0.000000, 4.925793, 0.00, 80.00, 13.982384, 0.000000, 13.982384, 0.00, 0.00, 3.287303, 0.000000, 3.287303
OB=60.00, 283.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=102.00, 533.00, 0.00, 0.00, 0.00, 0.00, 8.519276, 0.000000, 8.519276, 140.00, 0.00, 12.551009, 0.000000, 12.551009, 140.00, 80.00, 1.665906, 0.000000, 1.665906, 0.00, 80.00, 18.365854, 0.000000, 18.365854, 0.00, 0.00, 8.519276, 0.000000, 8.519276
OB=289.00, 124.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 16.000000, 0.000000, 16.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 100.000000, 0.000000, 100.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000

Graph1PP.pomdp

//State variables
(variables
 (loc l34 l32 l38 l4 l5 l7 l8 l9 l11 l13 l17 l19 l21 l29 l28)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob17_32 ob17_32F ob17_32B)
 (ob17_29 ob17_29F ob17_29B)
 (ob4_28 ob4_28F ob4_28B)
 (ob19_34 ob19_34F ob19_34B)
 (ob8_19 ob8_19F ob8_19B)
)

//Initial belief state
init [*
 (loc (l34 (0.0)) (l32 (0.0)) (l38 (0.0)) (l4 (0.0)) (l5 (0.0)) (l7 (1.0)) (l8 (0.0)) (l9 (0.0)) (l11 (0.0)) (l13 (0.0)) (l17 (0.0)) (l19 (0.0)) (l21 (0.0)) (l29 (0.0)) (l28 (0.0)))
 (c1 (c1F (0.725)) (c1B (0.275)))
 (c2 (c2F (0.75)) (c2B (0.25)))
 (c3 (c3F (0.675)) (c3B (0.325)))
 (c4 (c4F (0.75)) (c4B (0.25)))
 (c5 (c5F (0.75)) (c5B (0.25)))
]

//Actions and costs
action goto_l34
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl34))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (c4
 (c4F (locl34))
 (c4B (locl19))
))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (c4'
 (c4F (ob19_34' (ob19_34F (1.0)) (ob19_34B (0.0))))
 (c4B (ob19_34' (ob19_34F (0.0)) (ob19_34B (1.0))))
)
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (53.53503525729669))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (182.0686683644388))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l32
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl32))
 (l4 (locl4))
 (l5 (locl32))
 (l7 (locl7))
 (l8 (locl32))
 (l9 (locl9))
 (l11 (locl32))
 (l13 (locl13))
 (l17 (c1
 (c1F (locl32))
 (c1B (locl17))
))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl32))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (c1'
 (c1F (ob17_32' (ob17_32F (1.0)) (ob17_32B (0.0))))
 (c1B (ob17_32' (ob17_32F (0.0)) (ob17_32B (1.0))))
)
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (1059.6295879792938))
 (l4 (2000.0))
 (l5 (1070.6364368466227))
 (l7 (2000.0))
 (l8 (144.2804622303333))
 (l9 (2000.0))
 (l11 (298.42793865618927))
 (l13 (0))
 (l17 (109.45775440780794))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (117.81979226089103))
 (l28 (2000.0))
)
endaction

action goto_l38
 loc (loc
 (l34 (locl34))
 (l32 (locl38))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl38))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl38))
 (l19 (locl38))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (c1'
 (c1F (ob17_32' (ob17_32F (0.8)) (ob17_32B (0.2))))
 (c1B (ob17_32' (ob17_32F (0.19999999999999996)) (ob17_32B (0.8))))
)
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (1059.6295879792938))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (46.389654018972806))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (62.5859409132754))
 (l19 (185.9946235782099))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (c3
 (c3F (locl4))
 (c3B (locl28))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (c3'
 (c3F (ob4_28' (ob4_28F (1.0)) (ob4_28B (0.0))))
 (c3B (ob4_28' (ob4_28F (0.0)) (ob4_28B (1.0))))
)
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (181.61773041198373))
)
endaction

action goto_l5
 loc (loc
 (l34 (locl34))
 (l32 (locl5))
 (l38 (locl5))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl5))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl5))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (c2'
 (c2F (ob17_29' (ob17_29F (0.75)) (ob17_29B (0.25))))
 (c2B (ob17_29' (ob17_29F (0.30000000000000004)) (ob17_29B (0.7))))
)
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (1070.6364368466227))
 (l38 (46.389654018972806))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (55.44366510251645))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (74.06078584514209))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l7
 loc (loc
 (l34 (locl7))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl7))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl7))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (53.53503525729669))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (145.86637720873168))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (115.8792474949678))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l8
 loc (loc
 (l34 (locl34))
 (l32 (locl8))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl8))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (c5
 (c5F (locl8))
 (c5B (locl19))
))
 (l21 (locl21))
 (l29 (locl8))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (c5'
 (c5F (ob8_19' (ob8_19F (1.0)) (ob8_19B (0.0))))
 (c5B (ob8_19' (ob8_19F (0.0)) (ob8_19B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (144.2804622303333))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (354.4721400245546))
 (l13 (0))
 (l17 (2000.0))
 (l19 (127.47548783981962))
 (l21 (2000.0))
 (l29 (123.03657992645927))
 (l28 (2000.0))
)
endaction

action goto_l9
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl9))
 (l7 (locl9))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl9))
 (l21 (locl9))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (c5'
 (c5F (ob8_19' (ob8_19F (0.9)) (ob8_19B (0.1))))
 (c5B (ob8_19' (ob8_19F (0.050000000000000044)) (ob8_19B (0.95))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (55.44366510251645))
 (l7 (145.86637720873168))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (96.54014708917737))
 (l21 (49.36598018878993))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l11
 loc (loc
 (l34 (locl34))
 (l32 (locl11))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl11))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl11))
 (l28 (locl11))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (c3'
 (c3F (ob4_28' (ob4_28F (0.9)) (ob4_28B (0.1))))
 (c3B (ob4_28' (ob4_28F (0.09999999999999998)) (ob4_28B (0.9))))
)
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (298.42793865618927))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (354.4721400245546))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (304.30131516382806))
 (l28 (110.67971810589327))
)
endaction

action goto_l13
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl13))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl13))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (102.82509421342633))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (118.96217886370441))
)
endaction

action goto_l17
 loc (loc
 (l34 (locl34))
 (l32 (c1
 (c1F (locl17))
 (c1B (locl32))
))
 (l38 (locl17))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl17))
 (l29 (c2
 (c2F (locl17))
 (c2B (locl29))
))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (c1'
 (c1F (ob17_32' (ob17_32F (1.0)) (ob17_32B (0.0))))
 (c1B (ob17_32' (ob17_32F (0.0)) (ob17_32B (1.0))))
)
 ob17_29 (c2'
 (c2F (ob17_29' (ob17_29F (1.0)) (ob17_29B (0.0))))
 (c2B (ob17_29' (ob17_29F (0.0)) (ob17_29B (1.0))))
)
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (109.45775440780794))
 (l38 (62.5859409132754))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (162.85576440519384))
 (l29 (114.5294721894762))
 (l28 (2000.0))
)
endaction

action goto_l19
 loc (loc
 (l34 (c4
 (c4F (locl19))
 (c4B (locl34))
))
 (l32 (locl32))
 (l38 (locl19))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (c5
 (c5F (locl19))
 (c5B (locl8))
))
 (l9 (locl19))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (c4'
 (c4F (ob19_34' (ob19_34F (1.0)) (ob19_34B (0.0))))
 (c4B (ob19_34' (ob19_34F (0.0)) (ob19_34B (1.0))))
)
 ob8_19 (c5'
 (c5F (ob8_19' (ob8_19F (1.0)) (ob8_19B (0.0))))
 (c5B (ob8_19' (ob8_19F (0.0)) (ob8_19B (1.0))))
)
 endobserve
 cost (loc
 (l34 (182.0686683644388))
 (l32 (2000.0))
 (l38 (185.9946235782099))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (127.47548783981962))
 (l9 (96.54014708917737))
 (l11 (2000.0))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l21
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl21))
 (l7 (locl21))
 (l8 (locl8))
 (l9 (locl21))
 (l11 (locl11))
 (l13 (locl13))
 (l17 (locl21))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (c4'
 (c4F (ob19_34' (ob19_34F (1.0)) (ob19_34B (0.0))))
 (c4B (ob19_34' (ob19_34F (0.0)) (ob19_34B (1.0))))
)
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (74.06078584514209))
 (l7 (115.8792474949678))
 (l8 (2000.0))
 (l9 (49.36598018878993))
 (l11 (2000.0))
 (l13 (0))
 (l17 (162.85576440519384))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l29
 loc (loc
 (l34 (locl34))
 (l32 (locl29))
 (l38 (locl38))
 (l4 (locl4))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl29))
 (l9 (locl9))
 (l11 (locl29))
 (l13 (locl13))
 (l17 (c2
 (c2F (locl29))
 (c2B (locl17))
))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (c2'
 (c2F (ob17_29' (ob17_29F (1.0)) (ob17_29B (0.0))))
 (c2B (ob17_29' (ob17_29F (0.0)) (ob17_29B (1.0))))
)
 ob4_28 (ob4_28' (ob4_28F (0.5)) (ob4_28B (0.5)))
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (117.81979226089103))
 (l38 (2000.0))
 (l4 (2000.0))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (123.03657992645927))
 (l9 (2000.0))
 (l11 (304.30131516382806))
 (l13 (0))
 (l17 (114.5294721894762))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l34 (locl34))
 (l32 (locl32))
 (l38 (locl38))
 (l4 (c3
 (c3F (locl28))
 (c3B (locl4))
))
 (l5 (locl5))
 (l7 (locl7))
 (l8 (locl8))
 (l9 (locl9))
 (l11 (locl28))
 (l13 (locl13))
 (l17 (locl17))
 (l19 (locl19))
 (l21 (locl21))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob17_32 (ob17_32' (ob17_32F (0.5)) (ob17_32B (0.5)))
 ob17_29 (ob17_29' (ob17_29F (0.5)) (ob17_29B (0.5)))
 ob4_28 (c3'
 (c3F (ob4_28' (ob4_28F (1.0)) (ob4_28B (0.0))))
 (c3B (ob4_28' (ob4_28F (0.0)) (ob4_28B (1.0))))
)
 ob19_34 (ob19_34' (ob19_34F (0.5)) (ob19_34B (0.5)))
 ob8_19 (ob8_19' (ob8_19F (0.5)) (ob8_19B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l32 (2000.0))
 (l38 (2000.0))
 (l4 (181.61773041198373))
 (l5 (2000.0))
 (l7 (2000.0))
 (l8 (2000.0))
 (l9 (2000.0))
 (l11 (110.67971810589327))
 (l13 (0))
 (l17 (2000.0))
 (l19 (2000.0))
 (l21 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph1_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 692.00, 376.00, 193.45
N=1, 47.00, 657.00, 254.16
N=2, 350.00, 285.00, 332.41
N=3, 347.00, 672.00, 333.18
N=4, 211.00, 32.00, 111.62
N=5, 528.00, 288.00, 268.10
N=6, 508.00, 558.00, 46.96
N=7, 612.00, 119.00, 48.03
N=8, 344.00, 214.00, 21.19
N=9, 521.00, 233.00, 42.19
N=10, 204.00, 255.00, 297.28
N=11, 146.00, 188.00, 250.66
N=12, 138.00, 584.00, 102.78
N=13, 109.00, 19.00, 74.43
N=14, 537.00, 680.00, 303.10
N=15, 299.00, 376.00, 194.17
N=16, 191.00, 652.00, 23.70
N=17, 461.00, 348.00, 323.97
N=18, 273.00, 688.00, 218.16
N=19, 459.00, 159.00, 1.50
N=20, 525.00, 651.00, 129.00
N=21, 570.00, 227.00, 52.16
N=22, 591.00, 443.00, 134.83
N=23, 610.00, 663.00, 175.50
N=24, 327.00, 333.00, 93.37
N=25, 193.00, 490.00, 325.81
N=26, 41.00, 149.00, 153.49
N=27, 151.00, 612.00, 327.59
N=28, 55.00, 125.00, 164.84
N=29, 347.00, 337.00, 307.49
N=30, 541.00, 426.00, 54.95
N=31, 33.00, 538.00, 334.59
N=32, 352.00, 358.00, 235.08
N=33, 349.00, 475.00, 22.49
N=34, 641.00, 164.00, 23.91
N=35, 74.00, 37.00, 31.85
N=36, 56.00, 324.00, 352.96
N=37, 587.00, 563.00, 85.21
N=38, 522.00, 334.00, 286.52
N=39, 17.00, 378.00, 315.27

#Edge data
#E=Node number 1, Node number 2, cost
E=4, 28, 181.62
E=4, 13, 102.83
E=5, 32, 1070.64
E=5, 38, 46.39
E=5, 9, 55.44
E=5, 21, 74.06
E=7, 34, 53.54
E=7, 9, 145.87
E=7, 21, 115.88
E=8, 32, 144.28
E=8, 19, 127.48
E=8, 11, 354.47
E=8, 29, 123.04
E=9, 19, 96.54
E=9, 21, 49.37
E=11, 32, 298.43
E=11, 28, 110.68
E=11, 29, 304.30
E=13, 28, 118.96
E=17, 32, 109.46
E=17, 38, 62.59
E=17, 29, 114.53
E=17, 21, 162.86
E=19, 34, 182.07
E=19, 38, 185.99
E=29, 32, 117.82
E=32, 38, 1059.63

#Start node ID
S=7

#Goal node ID
G=13

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 17, 32, 17, 29
C=1, 4, 28
C=2, 19, 34, 8, 19

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 8, 19
EO=1, 19, 34
EO=2, 4, 28
EO=3, 17, 29
EO=4, 17, 32

#Starting belief state, starting with the all F combination and working through to all B
B=0.454219, 0.000000, 0.000000, 0.026719, 0.080156, 0.000000, 0.000000, 0.151406, 0.007969, 0.000000, 0.000000, 0.000469, 0.001406, 0.000000, 0.000000, 0.002656, 0.023906, 0.000000, 0.000000, 0.001406, 0.004219, 0.000000, 0.000000, 0.007969, 0.151406, 0.000000, 0.000000, 0.008906, 0.026719, 0.000000, 0.000000, 0.050469

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=38, 17, 32, 0.800000, 0.200000
O=17, 17, 32, 1.000000, 0.000000
O=17, 17, 29, 1.000000, 0.000000
O=32, 17, 32, 1.000000, 0.000000
O=5, 17, 29, 0.700000, 0.250000
O=29, 17, 29, 1.000000, 0.000000
O=11, 4, 28, 0.900000, 0.100000
O=28, 4, 28, 1.000000, 0.000000
O=4, 4, 28, 1.000000, 0.000000
O=21, 19, 34, 1.000000, 0.000000
O=34, 19, 34, 1.000000, 0.000000
O=19, 19, 34, 1.000000, 0.000000
O=19, 8, 19, 1.000000, 0.000000
O=9, 8, 19, 0.950000, 0.100000
O=8, 8, 19, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=176.00, 80.00, 0.00, 0.00, 0.00, 0.00, 150.632202, 0.000000, 150.632202, 140.00, 0.00, 150.632202, 0.000000, 150.632202, 140.00, 80.00, 22.418215, 0.000000, 22.418215, 0.00, 80.00, 4.950720, 0.000000, 4.950720, 0.00, 0.00, 150.632202, 0.000000, 150.632202
OB=374.00, 50.00, 0.00, 0.00, 0.00, 0.00, 0.000006, 0.000000, 0.000006, 140.00, 0.00, 0.000006, 0.000000, 0.000006, 140.00, 80.00, 93.652935, 0.000000, 93.652935, 0.00, 80.00, 102.528599, 0.000000, 102.528599, 0.00, 0.00, 0.000006, 0.000000, 0.000006
OB=381.00, 539.00, 0.00, 0.00, 0.00, 0.00, 9.261146, 0.000000, 9.261146, 100.00, 0.00, 9.261146, 0.000000, 9.261146, 100.00, 100.00, 14.645202, 0.000000, 14.645202, 0.00, 100.00, 24.534724, 0.000000, 24.534724, 0.00, 0.00, 9.261146, 0.000000, 9.261146
OB=398.00, 380.00, 0.00, 0.00, 0.00, 0.00, 2.753431, 0.000000, 2.753431, 100.00, 0.00, 2.753431, 0.000000, 2.753431, 100.00, 100.00, 17.969249, 0.000000, 17.969249, 0.00, 100.00, 19.447682, 0.000000, 19.447682, 0.00, 0.00, 2.753431, 0.000000, 2.753431
OB=155.00, 337.00, 60.00, 0.00, 60.00, 0.00, 7.411848, 0.000000, 7.411848, 120.00, 30.00, 43.709358, 0.000000, 43.709358, 100.00, 110.00, 6.786103, 0.000000, 6.786103, 20.00, 110.00, 26.846094, 0.000000, 26.846094, 0.00, 30.00, 3.694854, 0.000000, 3.694854, 60.00, 0.00, 7.411848, 0.000000, 7.411848
OB=378.00, 325.00, 0.00, 132.00, 0.00, 132.00, 100.000000, 0.000000, 100.000000, 43.00, 0.00, 100.000000, 0.000000, 100.000000

Graph2.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 99.00, 663.00, 226.84
N=1, 526.00, 157.00, 267.12
N=2, 85.00, 413.00, 31.22
N=3, 199.00, 604.00, 315.66
N=4, 224.00, 572.00, 336.34
N=5, 201.00, 586.00, 333.29
N=6, 458.00, 558.00, 187.66
N=7, 103.00, 121.00, 236.03
N=8, 429.00, 342.00, 253.97
N=9, 476.00, 652.00, 299.78
N=10, 242.00, 238.00, 192.70
N=11, 140.00, 268.00, 314.91
N=12, 272.00, 297.00, 198.18
N=13, 584.00, 622.00, 265.44
N=14, 605.00, 185.00, 16.59
N=15, 470.00, 569.00, 195.12
N=16, 14.00, 309.00, 315.99
N=17, 101.00, 350.00, 246.91
N=18, 684.00, 582.00, 85.56
N=19, 460.00, 66.00, 298.95
N=20, 664.00, 214.00, 150.95
N=21, 658.00, 258.00, 236.22
N=22, 195.00, 165.00, 215.24
N=23, 280.00, 101.00, 343.09
N=24, 590.00, 404.00, 37.89
N=25, 642.00, 377.00, 158.28
N=26, 338.00, 161.00, 180.64
N=27, 95.00, 417.00, 26.56
N=28, 59.00, 163.00, 239.45
N=29, 643.00, 520.00, 131.04
N=30, 79.00, 485.00, 13.09
N=31, 486.00, 157.00, 271.67
N=32, 219.00, 154.00, 201.72
N=33, 375.00, 357.00, 62.76
N=34, 517.00, 74.00, 59.88
N=35, 271.00, 451.00, 70.10
N=36, 287.00, 155.00, 224.92
N=37, 453.00, 392.00, 335.36
N=38, 318.00, 11.00, 53.00
N=39, 508.00, 123.00, 74.07

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 3, 116.11
E=0, 5, 127.80
E=0, 4, 154.62
E=0, 30, 179.12
E=1, 39, 38.47
E=1, 31, 40.00
E=1, 34, 83.49
E=1, 14, 83.82
E=2, 27, 10.77
E=2, 17, 65.00
E=2, 30, 72.25
E=2, 16, 125.92
E=3, 5, 18.11
E=3, 4, 40.61
E=3, 30, 169.00
E=4, 5, 26.93
E=4, 35, 129.81
E=5, 35, 152.07
E=6, 15, 16.28
E=6, 9, 95.71
E=6, 13, 141.32
E=7, 28, 60.83
E=7, 22, 101.98
E=7, 32, 120.60
E=7, 11, 151.58
E=8, 37, 55.46
E=8, 33, 56.04
E=8, 24, 172.53
E=9, 15, 83.22
E=9, 13, 112.09
E=10, 12, 66.19
E=10, 22, 86.82
E=10, 32, 87.09
E=10, 36, 94.41
E=11, 17, 90.80
E=11, 22, 116.76
E=11, 16, 132.50
E=12, 32, 152.51
E=12, 22, 152.82
E=12, 35, 154.00
E=13, 18, 107.70
E=13, 29, 117.83
E=14, 20, 65.74
E=14, 21, 90.21
E=14, 39, 115.12
E=16, 17, 96.18
E=16, 27, 135.00
E=17, 27, 67.27
E=18, 29, 74.33
E=19, 34, 57.56
E=19, 39, 74.52
E=19, 31, 94.64
E=19, 38, 152.28
E=20, 21, 44.41
E=20, 25, 164.48
E=20, 39, 180.60
E=21, 25, 120.07
E=21, 24, 161.06
E=23, 36, 54.45
E=23, 32, 80.81
E=23, 26, 83.45
E=23, 38, 97.69
E=24, 25, 58.59
E=24, 29, 127.53
E=25, 29, 143.00
E=26, 36, 51.35
E=26, 31, 148.05
E=26, 38, 151.33
E=27, 30, 69.86
E=31, 34, 88.60
E=33, 37, 85.49
E=36, 38, 147.30

#Start node ID
S=9

#Goal node ID
G=4

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 26, 31, 1, 31
C=1, 12, 35
C=2, 10, 36, 12, 32

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 12, 32
EO=1, 10, 36
EO=2, 12, 35
EO=3, 1, 31
EO=4, 26, 31

#Starting belief state, starting with the all F combination and working through to all B
B=0.633942, 0.014299, 0.000693, 0.005641, 0.167808, 0.003785, 0.005888, 0.047945, 0.014299, 0.000323, 0.000016, 0.000127, 0.003785, 0.000085, 0.000133, 0.001081, 0.002523, 0.000057, 0.000089, 0.000721, 0.000668, 0.000015, 0.000753, 0.006128, 0.020548, 0.000463, 0.000721, 0.005871, 0.005439, 0.000123, 0.006128, 0.049902

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=1, 26, 31, 0.950000, 0.100000
O=1, 1, 31, 1.000000, 0.000000
O=31, 26, 31, 1.000000, 0.000000
O=31, 1, 31, 1.000000, 0.000000
O=26, 26, 31, 1.000000, 0.000000
O=26, 10, 36, 0.770000, 0.300000
O=10, 12, 35, 1.000000, 0.000000
O=10, 10, 36, 1.000000, 0.000000
O=12, 12, 35, 1.000000, 0.000000
O=12, 12, 32, 1.000000, 0.000000
O=35, 12, 35, 1.000000, 0.000000
O=36, 10, 36, 1.000000, 0.000000
O=36, 12, 32, 0.800000, 0.200000
O=32, 12, 32, 1.000000, 0.000000
O=14, 1, 31, 0.700000, 0.300000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=293.00, 581.00, 0.00, 0.00, 0.00, 0.00, 22.707297, 0.000000, 22.707297, 137.00, 98.00, 1.318976, 0.000000, 1.318976
OB=435.00, 181.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 132.00, 127.00, 25.000000, 0.000000, 25.000000
OB=409.00, 443.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=289.00, 231.00, 0.00, 0.00, 0.00, 0.00, 225.000000, 0.000000, 225.000000, 137.00, 55.00, 25.000000, 0.000000, 25.000000
OB=89.00, 16.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=573.00, 18.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=194.00, 328.00, 60.00, 0.00, 60.00, 0.00, 225.000000, 0.000000, 225.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 36.000000, 0.000000, 36.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 9.000000, 0.000000, 9.000000, 60.00, 0.00, 225.000000, 0.000000, 225.000000

Graph20.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 437.00, 561.00, 132.62
N=1, 483.00, 467.00, 188.91
N=2, 399.00, 293.00, 314.07
N=3, 290.00, 473.00, 334.07
N=4, 391.00, 633.00, 182.38
N=5, 414.00, 529.00, 295.02
N=6, 587.00, 663.00, 176.83
N=7, 648.00, 164.00, 271.17
N=8, 388.00, 347.00, 326.95
N=9, 268.00, 420.00, 88.44
N=10, 137.00, 490.00, 173.01
N=11, 521.00, 404.00, 303.56
N=12, 171.00, 72.00, 264.76
N=13, 635.00, 144.00, 340.34
N=14, 276.00, 611.00, 310.20
N=15, 365.00, 480.00, 272.74
N=16, 290.00, 393.00, 138.22
N=17, 581.00, 642.00, 265.59
N=18, 204.00, 414.00, 307.18
N=19, 245.00, 653.00, 17.33
N=20, 156.00, 45.00, 266.34
N=21, 283.00, 507.00, 274.78
N=22, 344.00, 362.00, 24.97
N=23, 537.00, 366.00, 340.80
N=24, 140.00, 77.00, 120.64
N=25, 386.00, 397.00, 262.83
N=26, 565.00, 601.00, 43.97
N=27, 66.00, 236.00, 81.91
N=28, 698.00, 343.00, 132.89
N=29, 71.00, 60.00, 223.62
N=30, 108.00, 652.00, 35.77
N=31, 70.00, 489.00, 327.30
N=32, 194.00, 456.00, 45.98
N=33, 598.00, 400.00, 285.82
N=34, 404.00, 306.00, 240.79
N=35, 246.00, 645.00, 330.83
N=36, 149.00, 456.00, 303.48
N=37, 414.00, 389.00, 219.11
N=38, 641.00, 430.00, 151.29
N=39, 631.00, 639.00, 161.00
N=40, 543.00, 382.00, 78.72
N=41, 332.00, 360.00, 7.61
N=42, 92.00, 603.00, 175.95
N=43, 392.00, 274.00, 85.65
N=44, 130.00, 619.00, 65.86
N=45, 487.00, 396.00, 87.13
N=46, 196.00, 334.00, 332.28
N=47, 140.00, 404.00, 116.70
N=48, 460.00, 607.00, 340.35
N=49, 289.00, 604.00, 325.76
N=50, 67.00, 313.00, 105.84
N=51, 86.00, 586.00, 264.00
N=52, 162.00, 650.00, 256.65
N=53, 379.00, 115.00, 130.85
N=54, 418.00, 50.00, 227.05
N=55, 36.00, 62.00, 43.24
N=56, 550.00, 657.00, 130.36
N=57, 297.00, 490.00, 113.48
N=58, 56.00, 272.00, 33.73
N=59, 366.00, 3.00, 62.34
N=60, 265.00, 384.00, 46.63
N=61, 17.00, 577.00, 250.27
N=62, 529.00, 650.00, 106.79
N=63, 359.00, 410.00, 102.98
N=64, 265.00, 61.00, 290.92
N=65, 188.00, 459.00, 329.93
N=66, 385.00, 62.00, 299.80
N=67, 427.00, 240.00, 51.81
N=68, 183.00, 413.00, 48.37
N=69, 609.00, 100.00, 321.06
N=70, 594.00, 634.00, 311.56
N=71, 482.00, 239.00, 194.56
N=72, 58.00, 116.00, 122.21
N=73, 616.00, 264.00, 10.54
N=74, 63.00, 350.00, 312.86
N=75, 594.00, 251.00, 31.35
N=76, 359.00, 609.00, 200.32
N=77, 447.00, 63.00, 186.72
N=78, 589.00, 239.00, 182.69
N=79, 293.00, 409.00, 37.53

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 5, 39.41
E=0, 48, 51.43
E=0, 4, 85.44
E=0, 76, 91.59
E=1, 45, 71.11
E=1, 11, 73.57
E=1, 5, 92.76
E=1, 40, 104.04
E=2, 34, 13.93
E=2, 43, 20.25
E=2, 8, 55.11
E=2, 67, 59.94
E=3, 57, 18.38
E=3, 21, 34.71
E=3, 9, 57.38
E=3, 79, 64.07
E=4, 76, 40.00
E=4, 49, 106.04
E=4, 5, 106.51
E=5, 15, 69.30
E=6, 17, 21.84
E=6, 70, 29.83
E=6, 56, 37.48
E=6, 39, 50.12
E=7, 13, 23.85
E=7, 69, 74.95
E=7, 78, 95.43
E=7, 75, 102.40
E=8, 34, 44.01
E=8, 22, 46.49
E=8, 37, 49.40
E=9, 79, 27.31
E=9, 16, 34.83
E=9, 60, 36.12
E=10, 36, 36.06
E=10, 65, 59.68
E=10, 32, 66.37
E=10, 31, 67.01
E=11, 40, 31.11
E=11, 45, 34.93
E=11, 23, 41.23
E=12, 20, 30.89
E=12, 24, 31.40
E=12, 64, 94.64
E=12, 29, 100.72
E=13, 69, 51.11
E=13, 78, 105.55
E=13, 75, 114.59
E=14, 49, 14.76
E=14, 35, 45.34
E=14, 19, 52.20
E=14, 76, 83.02
E=15, 57, 68.73
E=15, 63, 70.26
E=15, 25, 85.62
E=16, 79, 16.28
E=16, 60, 26.57
E=16, 41, 53.41
E=17, 70, 15.26
E=17, 56, 34.44
E=17, 26, 44.01
E=18, 68, 21.02
E=18, 32, 43.17
E=18, 65, 47.76
E=18, 47, 64.78
E=19, 35, 8.06
E=19, 49, 65.86
E=19, 52, 83.05
E=20, 24, 35.78
E=20, 29, 86.31
E=20, 64, 110.17
E=21, 57, 22.02
E=21, 49, 97.19
E=21, 79, 98.51
E=22, 41, 12.17
E=22, 63, 50.29
E=22, 25, 54.67
E=23, 40, 17.09
E=23, 45, 58.31
E=23, 33, 69.84
E=24, 29, 71.06
E=24, 72, 90.80
E=25, 37, 29.12
E=25, 63, 29.97
E=26, 70, 43.93
E=26, 56, 57.97
E=26, 62, 60.80
E=27, 58, 37.36
E=27, 50, 77.01
E=27, 72, 120.27
E=27, 29, 176.07
E=28, 38, 104.01
E=28, 73, 113.86
E=28, 33, 115.10
E=28, 75, 138.85
E=30, 44, 39.66
E=30, 42, 51.55
E=30, 52, 54.04
E=30, 61, 117.92
E=31, 36, 85.62
E=31, 51, 98.31
E=31, 61, 102.73
E=32, 65, 6.71
E=32, 68, 44.38
E=33, 38, 52.43
E=33, 40, 57.87
E=34, 43, 34.18
E=34, 67, 69.89
E=35, 52, 84.15
E=35, 76, 118.60
E=36, 65, 39.12
E=36, 47, 52.77
E=37, 63, 58.87
E=37, 45, 73.33
E=38, 73, 167.87
E=38, 75, 185.07
E=39, 70, 37.34
E=39, 56, 82.98
E=39, 62, 102.59
E=41, 60, 71.17
E=41, 43, 104.86
E=42, 51, 18.03
E=42, 44, 41.23
E=42, 61, 79.38
E=43, 67, 48.80
E=44, 52, 44.55
E=44, 61, 120.55
E=46, 68, 80.06
E=46, 60, 85.21
E=46, 47, 89.64
E=46, 57, 185.84
E=47, 68, 43.93
E=48, 62, 81.30
E=50, 74, 37.22
E=50, 58, 42.45
E=50, 72, 197.21
E=51, 74, 237.12
E=53, 66, 53.34
E=53, 54, 75.80
E=53, 77, 85.60
E=53, 59, 112.75
E=54, 77, 31.78
E=54, 66, 35.11
E=54, 59, 70.09
E=55, 72, 58.31
E=55, 58, 210.95
E=55, 64, 229.00
E=59, 66, 61.98
E=59, 77, 100.80
E=64, 66, 120.00
E=67, 71, 55.01
E=69, 78, 140.43
E=69, 73, 164.15
E=71, 78, 107.00
E=71, 77, 179.45

#Start node ID
S=19

#Goal node ID
G=20

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 31, 51, 51, 74
C=1, 67, 71
C=2, 50, 74
C=3, 12, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 12, 64
EO=1, 50, 74
EO=2, 67, 71
EO=3, 51, 74
EO=4, 31, 51

#Starting belief state, starting with the all F combination and working through to all B
B=0.163384, 0.070022, 0.028833, 0.012357, 0.245077, 0.105033, 0.043249, 0.018535, 0.008832, 0.003785, 0.001559, 0.000668, 0.013247, 0.005677, 0.002338, 0.001002, 0.001259, 0.000539, 0.007133, 0.003057, 0.001888, 0.000809, 0.010700, 0.004586, 0.010350, 0.004436, 0.058651, 0.025136, 0.015525, 0.006654, 0.087976, 0.037704

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=30, 31, 51, 0.800000, 0.200000
O=51, 31, 51, 1.000000, 0.000000
O=51, 51, 74, 1.000000, 0.000000
O=31, 31, 51, 1.000000, 0.000000
O=31, 50, 74, 0.700000, 0.300000
O=42, 51, 74, 0.900000, 0.100000
O=74, 51, 74, 1.000000, 0.000000
O=74, 50, 74, 1.000000, 0.000000
O=43, 67, 71, 0.800000, 0.200000
O=67, 67, 71, 1.000000, 0.000000
O=71, 67, 71, 1.000000, 0.000000
O=34, 67, 71, 0.800000, 0.300000
O=50, 50, 74, 1.000000, 0.000000
O=61, 51, 74, 0.600000, 0.400000
O=66, 12, 64, 0.700000, 0.300000
O=64, 12, 64, 1.000000, 0.000000
O=12, 12, 64, 1.000000, 0.000000
O=24, 12, 64, 0.900000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=98.00, 535.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 150.00, 54.00, 9.000000, 0.000000, 9.000000
OB=511.00, 488.00, 0.00, 0.00, 0.00, 0.00, 0.154848, 0.000000, 0.154848, 140.00, 0.00, 2.240912, 0.000000, 2.240912, 140.00, 80.00, 5.902000, 0.000000, 5.902000, 0.00, 80.00, 19.814455, 0.000000, 19.814455, 0.00, 0.00, 0.154848, 0.000000, 0.154848
OB=484.00, 255.00, 0.00, 0.00, 0.00, 0.00, 4.045329, 0.000000, 4.045329, 100.00, 0.00, 4.137123, 0.000000, 4.137123, 100.00, 100.00, 14.607344, 0.000000, 14.607344, 0.00, 100.00, 12.555222, 0.000000, 12.555222, 0.00, 0.00, 4.045329, 0.000000, 4.045329
OB=447.00, 358.00, 0.00, 112.00, 0.00, 112.00, 16.000000, 0.000000, 16.000000, 11.00, 0.00, 144.000000, 0.000000, 144.000000
OB=488.00, 36.00, 0.00, 0.00, 0.00, 0.00, 24.024226, 0.000000, 24.024226, 100.00, 0.00, 10.203155, 0.000000, 10.203155, 100.00, 100.00, 0.092139, 0.000000, 0.092139, 0.00, 100.00, 1.151175, 0.000000, 1.151175, 0.00, 0.00, 24.024226, 0.000000, 24.024226
OB=209.00, 82.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 100.00, 81.000000, 0.000000, 81.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000
OB=240.00, 207.00, 0.00, 0.00, 0.00, 0.00, 21.937022, 0.000000, 21.937022, 100.00, 0.00, 14.101863, 0.000000, 14.101863, 100.00, 100.00, 2.048286, 0.000000, 2.048286, 0.00, 100.00, 1.060977, 0.000000, 1.060977, 0.00, 0.00, 21.937022, 0.000000, 21.937022
OB=90.00, 221.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000

Graph20PP.pomdp

//State variables
(variables
 (loc l34 l71 l64 l66 l67 l42 l43 l12 l74 l51 l50 l19 l20 l24 l61 l31 l30)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob31_51 ob31_51F ob31_51B)
 (ob51_74 ob51_74F ob51_74B)
 (ob67_71 ob67_71F ob67_71B)
 (ob50_74 ob50_74F ob50_74B)
 (ob12_64 ob12_64F ob12_64B)
)

//Initial belief state
init [*
 (loc (l34 (0.0)) (l71 (0.0)) (l64 (0.0)) (l66 (0.0)) (l67 (0.0)) (l42 (0.0)) (l43 (0.0)) (l12 (0.0)) (l74 (0.0)) (l51 (0.0)) (l50 (0.0)) (l19 (1.0)) (l20 (0.0)) (l24 (0.0)) (l61 (0.0)) (l31 (0.0)) (l30 (0.0)))
 (c1 (c1F (0.723596574692)) (c1B (0.276403425308)))
 (c2 (c2F (0.716460513796)) (c2B (0.283539486204)))
 (c3 (c3F (0.399999999998)) (c3B (0.600000000002)))
 (c4 (c4F (0.656517602285)) (c4B (0.343482397715)))
 (c5 (c5F (0.7)) (c5B (0.3)))
]

//Actions and costs
action goto_l34
 loc (loc
 (l34 (locl34))
 (l71 (locl34))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl34))
 (l42 (locl34))
 (l43 (locl34))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl34))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl34))
 (l30 (locl34))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (c3'
 (c3F (ob67_71' (ob67_71F (0.7)) (ob67_71B (0.3))))
 (c3B (ob67_71' (ob67_71F (0.19999999999999996)) (ob67_71B (0.8))))
)
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (832.9744233785415))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (69.8927750200262))
 (l42 (598.0910514406371))
 (l43 (34.17601498127012))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (433.9059224677798))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (487.076017096239))
 (l30 (566.343680708995))
)
endaction

action goto_l71
 loc (loc
 (l34 (locl71))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl71))
 (l67 (c3
 (c3F (locl71))
 (c3B (locl67))
))
 (l42 (locl71))
 (l43 (locl71))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl71))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl71))
 (l31 (locl71))
 (l30 (locl71))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (c3'
 (c3F (ob67_71' (ob67_71F (1.0)) (ob67_71B (0.0))))
 (c3B (ob67_71' (ob67_71F (0.0)) (ob67_71B (1.0))))
)
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (832.9744233785415))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (246.3409677149936))
 (l67 (55.00909015790027))
 (l42 (1216.5202311586609))
 (l43 (864.3205008743467))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (1054.649415885246))
 (l20 (0))
 (l24 (2000.0))
 (l61 (1295.8420678582322))
 (l31 (1219.936990086996))
 (l30 (1184.7728604270185))
)
endaction

action goto_l64
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl64))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (c5
 (c5F (locl64))
 (c5B (locl12))
))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (c5'
 (c5F (ob12_64' (ob12_64F (1.0)) (ob12_64B (0.0))))
 (c5B (ob12_64' (ob12_64F (0.0)) (ob12_64B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (120.00416659433121))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (94.64142856064674))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l66
 loc (loc
 (l34 (locl34))
 (l71 (locl66))
 (l64 (locl66))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (c5'
 (c5F (ob12_64' (ob12_64F (0.7)) (ob12_64B (0.3))))
 (c5B (ob12_64' (ob12_64F (0.30000000000000004)) (ob12_64B (0.7))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (246.3409677149936))
 (l64 (120.00416659433121))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l67
 loc (loc
 (l34 (locl67))
 (l71 (c3
 (c3F (locl67))
 (c3B (locl71))
))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl67))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (c3'
 (c3F (ob67_71' (ob67_71F (1.0)) (ob67_71B (0.0))))
 (c3B (ob67_71' (ob67_71F (0.0)) (ob67_71B (1.0))))
)
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (69.8927750200262))
 (l71 (55.00909015790027))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (48.79549159502341))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l42
 loc (loc
 (l34 (locl42))
 (l71 (locl42))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl42))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl42))
 (l50 (locl50))
 (l19 (locl42))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl42))
 (l31 (locl31))
 (l30 (locl42))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (c2'
 (c2F (ob51_74' (ob51_74F (0.9)) (ob51_74B (0.1))))
 (c2B (ob51_74' (ob51_74F (0.09999999999999998)) (ob51_74B (0.9))))
)
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (598.0910514406371))
 (l71 (1216.5202311586609))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (600.2894208453788))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (18.027756377319946))
 (l50 (2000.0))
 (l19 (168.838594247452))
 (l20 (0))
 (l24 (2000.0))
 (l61 (79.37883848986453))
 (l31 (2000.0))
 (l30 (51.54609587543949))
)
endaction

action goto_l43
 loc (loc
 (l34 (locl43))
 (l71 (locl43))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl43))
 (l42 (locl43))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl43))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl43))
 (l30 (locl43))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (c3'
 (c3F (ob67_71' (ob67_71F (0.8)) (ob67_71B (0.2))))
 (c3B (ob67_71' (ob67_71F (0.19999999999999996)) (ob67_71B (0.8))))
)
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (34.17601498127012))
 (l71 (864.3205008743467))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (48.79549159502341))
 (l42 (600.2894208453788))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (436.1042918725214))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (489.2743865009806))
 (l30 (568.5420501137364))
)
endaction

action goto_l12
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (c5
 (c5F (locl12))
 (c5B (locl64))
))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl12))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (c5'
 (c5F (ob12_64' (ob12_64F (1.0)) (ob12_64B (0.0))))
 (c5B (ob12_64' (ob12_64F (0.0)) (ob12_64B (1.0))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (94.64142856064674))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (31.400636936215164))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l74
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (c2
 (c2F (locl74))
 (c2B (locl51))
))
 (l50 (c4
 (c4F (locl74))
 (c4B (locl50))
))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (c2'
 (c2F (ob51_74' (ob51_74F (1.0)) (ob51_74B (0.0))))
 (c2B (ob51_74' (ob51_74F (0.0)) (ob51_74B (1.0))))
)
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (c4'
 (c4F (ob50_74' (ob50_74F (1.0)) (ob50_74B (0.0))))
 (c4B (ob50_74' (ob50_74F (0.0)) (ob50_74B (1.0))))
)
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (237.11811402758752))
 (l50 (37.21558813185679))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l51
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl51))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (c2
 (c2F (locl51))
 (c2B (locl74))
))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (c1
 (c1F (locl51))
 (c1B (locl31))
))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (c1'
 (c1F (ob31_51' (ob31_51F (1.0)) (ob31_51B (0.0))))
 (c1B (ob31_51' (ob31_51F (0.0)) (ob31_51B (1.0))))
)
 ob51_74 (c2'
 (c2F (ob51_74' (ob51_74F (1.0)) (ob51_74B (0.0))))
 (c2B (ob51_74' (ob51_74F (0.0)) (ob51_74B (1.0))))
)
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (18.027756377319946))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (237.11811402758752))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (98.3107318658548))
 (l30 (2000.0))
)
endaction

action goto_l50
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (c4
 (c4F (locl50))
 (c4B (locl74))
))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl50))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (c4'
 (c4F (ob50_74' (ob50_74F (1.0)) (ob50_74B (0.0))))
 (c4B (ob50_74' (ob50_74F (0.0)) (ob50_74B (1.0))))
)
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (37.21558813185679))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (288.0074589545956))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l19
 loc (loc
 (l34 (locl19))
 (l71 (locl19))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl19))
 (l43 (locl19))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl19))
 (l31 (locl31))
 (l30 (locl19))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (433.9059224677798))
 (l71 (1054.649415885246))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (168.838594247452))
 (l43 (436.1042918725214))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (248.16043094702326))
 (l31 (2000.0))
 (l30 (137.09122351580965))
)
endaction

action goto_l20
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl20))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl20))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl20))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (110.16805344563369))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (30.886890422961002))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (35.77708763999664))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l24
 loc (loc
 (l34 (locl34))
 (l71 (locl71))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl43))
 (l12 (locl24))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl24))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (c5'
 (c5F (ob12_64' (ob12_64F (0.8)) (ob12_64B (0.2))))
 (c5B (ob12_64' (ob12_64F (0.09999999999999998)) (ob12_64B (0.9))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (2000.0))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (2000.0))
 (l12 (31.400636936215164))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (288.0074589545956))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l61
 loc (loc
 (l34 (locl34))
 (l71 (locl61))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl61))
 (l43 (locl43))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl61))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl61))
 (l31 (locl61))
 (l30 (locl61))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (ob31_51' (ob31_51F (0.5)) (ob31_51B (0.5)))
 ob51_74 (c2'
 (c2F (ob51_74' (ob51_74F (0.6)) (ob51_74B (0.4))))
 (c2B (ob51_74' (ob51_74F (0.4)) (ob51_74B (0.6))))
)
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l71 (1295.8420678582322))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (79.37883848986453))
 (l43 (2000.0))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (248.16043094702326))
 (l20 (0))
 (l24 (2000.0))
 (l61 (2000.0))
 (l31 (102.7277956543408))
 (l30 (117.92370414806346))
)
endaction

action goto_l31
 loc (loc
 (l34 (locl31))
 (l71 (locl31))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl42))
 (l43 (locl31))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (c1
 (c1F (locl31))
 (c1B (locl51))
))
 (l50 (locl50))
 (l19 (locl19))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl31))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (c1'
 (c1F (ob31_51' (ob31_51F (1.0)) (ob31_51B (0.0))))
 (c1B (ob31_51' (ob31_51F (0.0)) (ob31_51B (1.0))))
)
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (c4'
 (c4F (ob50_74' (ob50_74F (0.7)) (ob50_74B (0.3))))
 (c4B (ob50_74' (ob50_74F (0.30000000000000004)) (ob50_74B (0.7))))
)
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (487.076017096239))
 (l71 (1219.936990086996))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (2000.0))
 (l43 (489.2743865009806))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (98.3107318658548))
 (l50 (2000.0))
 (l19 (2000.0))
 (l20 (0))
 (l24 (2000.0))
 (l61 (102.7277956543408))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

action goto_l30
 loc (loc
 (l34 (locl30))
 (l71 (locl30))
 (l64 (locl64))
 (l66 (locl66))
 (l67 (locl67))
 (l42 (locl30))
 (l43 (locl30))
 (l12 (locl12))
 (l74 (locl74))
 (l51 (locl51))
 (l50 (locl50))
 (l19 (locl30))
 (l20 (locl20))
 (l24 (locl24))
 (l61 (locl30))
 (l31 (locl31))
 (l30 (locl30))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob31_51 (c1'
 (c1F (ob31_51' (ob31_51F (0.8)) (ob31_51B (0.2))))
 (c1B (ob31_51' (ob31_51F (0.19999999999999996)) (ob31_51B (0.8))))
)
 ob51_74 (ob51_74' (ob51_74F (0.5)) (ob51_74B (0.5)))
 ob67_71 (ob67_71' (ob67_71F (0.5)) (ob67_71B (0.5)))
 ob50_74 (ob50_74' (ob50_74F (0.5)) (ob50_74B (0.5)))
 ob12_64 (ob12_64' (ob12_64F (0.5)) (ob12_64B (0.5)))
 endobserve
 cost (loc
 (l34 (566.343680708995))
 (l71 (1184.7728604270185))
 (l64 (2000.0))
 (l66 (2000.0))
 (l67 (2000.0))
 (l42 (51.54609587543949))
 (l43 (568.5420501137364))
 (l12 (2000.0))
 (l74 (2000.0))
 (l51 (2000.0))
 (l50 (2000.0))
 (l19 (137.09122351580965))
 (l20 (0))
 (l24 (2000.0))
 (l61 (117.92370414806346))
 (l31 (2000.0))
 (l30 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph20_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 437.00, 561.00, 132.62
N=1, 483.00, 467.00, 188.91
N=2, 399.00, 293.00, 314.07
N=3, 290.00, 473.00, 334.07
N=4, 391.00, 633.00, 182.38
N=5, 414.00, 529.00, 295.02
N=6, 587.00, 663.00, 176.83
N=7, 648.00, 164.00, 271.17
N=8, 388.00, 347.00, 326.95
N=9, 268.00, 420.00, 88.44
N=10, 137.00, 490.00, 173.01
N=11, 521.00, 404.00, 303.56
N=12, 171.00, 72.00, 264.76
N=13, 635.00, 144.00, 340.34
N=14, 276.00, 611.00, 310.20
N=15, 365.00, 480.00, 272.74
N=16, 290.00, 393.00, 138.22
N=17, 581.00, 642.00, 265.59
N=18, 204.00, 414.00, 307.18
N=19, 245.00, 653.00, 17.33
N=20, 156.00, 45.00, 266.34
N=21, 283.00, 507.00, 274.78
N=22, 344.00, 362.00, 24.97
N=23, 537.00, 366.00, 340.80
N=24, 140.00, 77.00, 120.64
N=25, 386.00, 397.00, 262.83
N=26, 565.00, 601.00, 43.97
N=27, 66.00, 236.00, 81.91
N=28, 698.00, 343.00, 132.89
N=29, 71.00, 60.00, 223.62
N=30, 108.00, 652.00, 35.77
N=31, 70.00, 489.00, 327.30
N=32, 194.00, 456.00, 45.98
N=33, 598.00, 400.00, 285.82
N=34, 404.00, 306.00, 240.79
N=35, 246.00, 645.00, 330.83
N=36, 149.00, 456.00, 303.48
N=37, 414.00, 389.00, 219.11
N=38, 641.00, 430.00, 151.29
N=39, 631.00, 639.00, 161.00
N=40, 543.00, 382.00, 78.72
N=41, 332.00, 360.00, 7.61
N=42, 92.00, 603.00, 175.95
N=43, 392.00, 274.00, 85.65
N=44, 130.00, 619.00, 65.86
N=45, 487.00, 396.00, 87.13
N=46, 196.00, 334.00, 332.28
N=47, 140.00, 404.00, 116.70
N=48, 460.00, 607.00, 340.35
N=49, 289.00, 604.00, 325.76
N=50, 67.00, 313.00, 105.84
N=51, 86.00, 586.00, 264.00
N=52, 162.00, 650.00, 256.65
N=53, 379.00, 115.00, 130.85
N=54, 418.00, 50.00, 227.05
N=55, 36.00, 62.00, 43.24
N=56, 550.00, 657.00, 130.36
N=57, 297.00, 490.00, 113.48
N=58, 56.00, 272.00, 33.73
N=59, 366.00, 3.00, 62.34
N=60, 265.00, 384.00, 46.63
N=61, 17.00, 577.00, 250.27
N=62, 529.00, 650.00, 106.79
N=63, 359.00, 410.00, 102.98
N=64, 265.00, 61.00, 290.92
N=65, 188.00, 459.00, 329.93
N=66, 385.00, 62.00, 299.80
N=67, 427.00, 240.00, 51.81
N=68, 183.00, 413.00, 48.37
N=69, 609.00, 100.00, 321.06
N=70, 594.00, 634.00, 311.56
N=71, 482.00, 239.00, 194.56
N=72, 58.00, 116.00, 122.21
N=73, 616.00, 264.00, 10.54
N=74, 63.00, 350.00, 312.86
N=75, 594.00, 251.00, 31.35
N=76, 359.00, 609.00, 200.32
N=77, 447.00, 63.00, 186.72
N=78, 589.00, 239.00, 182.69
N=79, 293.00, 409.00, 37.53

#Edge data
#E=Node number 1, Node number 2, cost
E=12, 64, 94.64
E=12, 20, 30.89
E=12, 24, 31.40
E=19, 34, 433.91
E=19, 71, 1054.65
E=19, 42, 168.84
E=19, 43, 436.10
E=19, 30, 137.09
E=19, 61, 248.16
E=20, 64, 110.17
E=20, 24, 35.78
E=24, 50, 288.01
E=30, 34, 566.34
E=30, 71, 1184.77
E=30, 42, 51.55
E=30, 43, 568.54
E=30, 61, 117.92
E=31, 34, 487.08
E=31, 71, 1219.94
E=31, 43, 489.27
E=31, 51, 98.31
E=31, 61, 102.73
E=34, 42, 598.09
E=34, 43, 34.18
E=34, 67, 69.89
E=34, 71, 832.97
E=42, 71, 1216.52
E=42, 43, 600.29
E=42, 51, 18.03
E=42, 61, 79.38
E=43, 71, 864.32
E=43, 67, 48.80
E=50, 74, 37.22
E=51, 74, 237.12
E=61, 71, 1295.84
E=64, 66, 120.00
E=66, 71, 246.34
E=67, 71, 55.01

#Start node ID
S=19

#Goal node ID
G=20

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 31, 51, 51, 74
C=1, 67, 71
C=2, 50, 74
C=3, 12, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 12, 64
EO=1, 50, 74
EO=2, 67, 71
EO=3, 51, 74
EO=4, 31, 51

#Starting belief state, starting with the all F combination and working through to all B
B=0.163384, 0.070022, 0.028833, 0.012357, 0.245077, 0.105033, 0.043249, 0.018535, 0.008832, 0.003785, 0.001559, 0.000668, 0.013247, 0.005677, 0.002338, 0.001002, 0.001259, 0.000539, 0.007133, 0.003057, 0.001888, 0.000809, 0.010700, 0.004586, 0.010350, 0.004436, 0.058651, 0.025136, 0.015525, 0.006654, 0.087976, 0.037704

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=30, 31, 51, 0.800000, 0.200000
O=51, 31, 51, 1.000000, 0.000000
O=51, 51, 74, 1.000000, 0.000000
O=31, 31, 51, 1.000000, 0.000000
O=31, 50, 74, 0.700000, 0.300000
O=42, 51, 74, 0.900000, 0.100000
O=74, 51, 74, 1.000000, 0.000000
O=74, 50, 74, 1.000000, 0.000000
O=43, 67, 71, 0.800000, 0.200000
O=67, 67, 71, 1.000000, 0.000000
O=71, 67, 71, 1.000000, 0.000000
O=34, 67, 71, 0.800000, 0.300000
O=50, 50, 74, 1.000000, 0.000000
O=61, 51, 74, 0.600000, 0.400000
O=66, 12, 64, 0.700000, 0.300000
O=64, 12, 64, 1.000000, 0.000000
O=12, 12, 64, 1.000000, 0.000000
O=24, 12, 64, 0.900000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=98.00, 535.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 150.00, 54.00, 9.000000, 0.000000, 9.000000
OB=511.00, 488.00, 0.00, 0.00, 0.00, 0.00, 0.154848, 0.000000, 0.154848, 140.00, 0.00, 2.240912, 0.000000, 2.240912, 140.00, 80.00, 5.902000, 0.000000, 5.902000, 0.00, 80.00, 19.814455, 0.000000, 19.814455, 0.00, 0.00, 0.154848, 0.000000, 0.154848
OB=484.00, 255.00, 0.00, 0.00, 0.00, 0.00, 4.045329, 0.000000, 4.045329, 100.00, 0.00, 4.137123, 0.000000, 4.137123, 100.00, 100.00, 14.607344, 0.000000, 14.607344, 0.00, 100.00, 12.555222, 0.000000, 12.555222, 0.00, 0.00, 4.045329, 0.000000, 4.045329
OB=447.00, 358.00, 0.00, 112.00, 0.00, 112.00, 16.000000, 0.000000, 16.000000, 11.00, 0.00, 144.000000, 0.000000, 144.000000
OB=488.00, 36.00, 0.00, 0.00, 0.00, 0.00, 24.024226, 0.000000, 24.024226, 100.00, 0.00, 10.203155, 0.000000, 10.203155, 100.00, 100.00, 0.092139, 0.000000, 0.092139, 0.00, 100.00, 1.151175, 0.000000, 1.151175, 0.00, 0.00, 24.024226, 0.000000, 24.024226
OB=209.00, 82.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 100.00, 64.000000, 0.000000, 64.000000, 0.00, 100.00, 81.000000, 0.000000, 81.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000
OB=240.00, 207.00, 0.00, 0.00, 0.00, 0.00, 21.937022, 0.000000, 21.937022, 100.00, 0.00, 14.101863, 0.000000, 14.101863, 100.00, 100.00, 2.048286, 0.000000, 2.048286, 0.00, 100.00, 1.060977, 0.000000, 1.060977, 0.00, 0.00, 21.937022, 0.000000, 21.937022
OB=90.00, 221.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000

Graph2PP.pomdp

//State variables
(variables
 (loc l34 l1 l35 l32 l4 l5 l36 l9 l10 l12 l14 l19 l26 l31)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob26_31 ob26_31F ob26_31B)
 (ob12_35 ob12_35F ob12_35B)
 (ob10_36 ob10_36F ob10_36B)
 (ob12_32 ob12_32F ob12_32B)
 (ob1_31 ob1_31F ob1_31B)
)

//Initial belief state
init [*
 (loc (l34 (0.0)) (l1 (0.0)) (l35 (0.0)) (l32 (0.0)) (l4 (0.0)) (l5 (0.0)) (l36 (0.0)) (l9 (1.0)) (l10 (0.0)) (l12 (0.0)) (l14 (0.0)) (l19 (0.0)) (l26 (0.0)) (l31 (0.0)))
 (c1 (c1F (0.899850624007)) (c1B (0.100149375993)))
 (c2 (c2F (0.890954815891)) (c2B (0.109045184109)))
 (c3 (c3F (0.700332482049)) (c3B (0.299667517951)))
 (c4 (c4F (0.868163638993)) (c4B (0.131836361007)))
 (c5 (c5F (0.863432572471)) (c5B (0.136567427529)))
]

//Actions and costs
action goto_l34
 loc (loc
 (l34 (locl34))
 (l1 (locl34))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl34))
 (l26 (locl26))
 (l31 (locl34))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (83.48652585896721))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (57.55866572463264))
 (l26 (2000.0))
 (l31 (88.60022573334675))
)
endaction

action goto_l1
 loc (loc
 (l34 (locl1))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl1))
 (l19 (locl1))
 (l26 (locl26))
 (l31 (c2
 (c2F (locl1))
 (c2B (locl31))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (c1'
 (c1F (ob26_31' (ob26_31F (0.9)) (ob26_31B (0.1))))
 (c1B (ob26_31' (ob26_31F (0.050000000000000044)) (ob26_31B (0.95))))
)
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (c2'
 (c2F (ob1_31' (ob1_31F (1.0)) (ob1_31B (0.0))))
 (c2B (ob1_31' (ob1_31F (0.0)) (ob1_31B (1.0))))
)
 endobserve
 cost (loc
 (l34 (83.48652585896721))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (83.81527307120105))
 (l19 (112.98922221358802))
 (l26 (2000.0))
 (l31 (40.0))
)
endaction

action goto_l35
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl35))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (c3
 (c3F (locl35))
 (c3B (locl12))
))
 (l14 (locl14))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (c3'
 (c3F (ob12_35' (ob12_35F (1.0)) (ob12_35B (0.0))))
 (c3B (ob12_35' (ob12_35F (0.0)) (ob12_35B (1.0))))
)
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (152.0690632574555))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (154.00324671902212))
 (l14 (2000.0))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l32
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl32))
 (l36 (locl32))
 (l9 (locl9))
 (l10 (locl32))
 (l12 (c5
 (c5F (locl32))
 (c5B (locl12))
))
 (l14 (locl14))
 (l19 (locl32))
 (l26 (locl32))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (c5'
 (c5F (ob12_32' (ob12_32F (1.0)) (ob12_32B (0.0))))
 (c5B (ob12_32' (ob12_32F (0.0)) (ob12_32B (1.0))))
)
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (687.2254827017138))
 (l36 (135.26022896359564))
 (l9 (2000.0))
 (l10 (87.09190547921202))
 (l12 (152.50573759698355))
 (l14 (2000.0))
 (l19 (330.78116190493944))
 (l26 (164.25899958344797))
 (l31 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl4))
 (l32 (locl4))
 (l4 (locl4))
 (l5 (locl4))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl4))
 (l12 (locl4))
 (l14 (locl14))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (129.80754985747168))
 (l32 (709.7225934339328))
 (l4 (0))
 (l5 (26.92582403567252))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (641.1213573713244))
 (l12 (707.1165849706792))
 (l14 (2000.0))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l5
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl5))
 (l32 (locl5))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl5))
 (l12 (locl5))
 (l14 (locl14))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (152.0690632574555))
 (l32 (687.2254827017138))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (618.6242466391052))
 (l12 (684.6194742384602))
 (l14 (2000.0))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l36
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl36))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (c4
 (c4F (locl36))
 (c4B (locl10))
))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl36))
 (l26 (locl36))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (c4'
 (c4F (ob10_36' (ob10_36F (1.0)) (ob10_36B (0.0))))
 (c4B (ob10_36' (ob10_36F (0.0)) (ob10_36B (1.0))))
)
 ob12_32 (c5'
 (c5F (ob12_32' (ob12_32F (0.8)) (ob12_32B (0.2))))
 (c5B (ob12_32' (ob12_32F (0.19999999999999996)) (ob12_32B (0.8))))
)
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (135.26022896359564))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (94.41398201537736))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (299.5783641781363))
 (l26 (51.35172830587107))
 (l31 (2000.0))
)
endaction

action goto_l9
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl9))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (583.2090530295392))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l10
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl10))
 (l4 (locl4))
 (l5 (locl10))
 (l36 (c4
 (c4F (locl10))
 (c4B (locl36))
))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl10))
 (l14 (locl14))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (c3'
 (c3F (ob12_35' (ob12_35F (1.0)) (ob12_35B (0.0))))
 (c3B (ob12_35' (ob12_35F (0.0)) (ob12_35B (1.0))))
)
 ob10_36 (c4'
 (c4F (ob10_36' (ob10_36F (1.0)) (ob10_36B (0.0))))
 (c4B (ob10_36' (ob10_36F (0.0)) (ob10_36B (1.0))))
)
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (87.09190547921202))
 (l4 (0))
 (l5 (618.6242466391052))
 (l36 (94.41398201537736))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (66.18912297349165))
 (l14 (2000.0))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l12
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (c3
 (c3F (locl12))
 (c3B (locl35))
))
 (l32 (c5
 (c5F (locl12))
 (c5B (locl32))
))
 (l4 (locl4))
 (l5 (locl12))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl12))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl19))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (c3'
 (c3F (ob12_35' (ob12_35F (1.0)) (ob12_35B (0.0))))
 (c3B (ob12_35' (ob12_35F (0.0)) (ob12_35B (1.0))))
)
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (c5'
 (c5F (ob12_32' (ob12_32F (1.0)) (ob12_32B (0.0))))
 (c5B (ob12_32' (ob12_32F (0.0)) (ob12_32B (1.0))))
)
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (154.00324671902212))
 (l32 (152.50573759698355))
 (l4 (0))
 (l5 (684.6194742384602))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (66.18912297349165))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (2000.0))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l34 (locl34))
 (l1 (locl14))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl14))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl14))
 (l26 (locl26))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (c2'
 (c2F (ob1_31' (ob1_31F (0.7)) (ob1_31B (0.3))))
 (c2B (ob1_31' (ob1_31F (0.30000000000000004)) (ob1_31B (0.7))))
)
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (83.81527307120105))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (583.2090530295392))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (189.64012885221183))
 (l26 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l19
 loc (loc
 (l34 (locl19))
 (l1 (locl19))
 (l35 (locl35))
 (l32 (locl19))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl19))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl19))
 (l19 (locl19))
 (l26 (locl19))
 (l31 (locl19))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (ob26_31' (ob26_31F (0.5)) (ob26_31B (0.5)))
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (57.55866572463264))
 (l1 (112.98922221358802))
 (l35 (2000.0))
 (l32 (330.78116190493944))
 (l4 (0))
 (l5 (2000.0))
 (l36 (299.5783641781363))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (189.64012885221183))
 (l19 (2000.0))
 (l26 (303.6068080712488))
 (l31 (94.64142856064674))
)
endaction

action goto_l26
 loc (loc
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l32 (locl26))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl26))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl26))
 (l26 (locl26))
 (l31 (c1
 (c1F (locl26))
 (c1B (locl31))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (c1'
 (c1F (ob26_31' (ob26_31F (1.0)) (ob26_31B (0.0))))
 (c1B (ob26_31' (ob26_31F (0.0)) (ob26_31B (1.0))))
)
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (c4'
 (c4F (ob10_36' (ob10_36F (0.7)) (ob10_36B (0.3))))
 (c4B (ob10_36' (ob10_36F (0.22999999999999998)) (ob10_36B (0.77))))
)
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (ob1_31' (ob1_31F (0.5)) (ob1_31B (0.5)))
 endobserve
 cost (loc
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (2000.0))
 (l32 (164.25899958344797))
 (l4 (0))
 (l5 (2000.0))
 (l36 (51.35172830587107))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (303.6068080712488))
 (l26 (2000.0))
 (l31 (148.05404418657398))
)
endaction

action goto_l31
 loc (loc
 (l34 (locl31))
 (l1 (c2
 (c2F (locl31))
 (c2B (locl1))
))
 (l35 (locl35))
 (l32 (locl32))
 (l4 (locl4))
 (l5 (locl5))
 (l36 (locl36))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l14 (locl14))
 (l19 (locl31))
 (l26 (c1
 (c1F (locl31))
 (c1B (locl26))
))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob26_31 (c1'
 (c1F (ob26_31' (ob26_31F (1.0)) (ob26_31B (0.0))))
 (c1B (ob26_31' (ob26_31F (0.0)) (ob26_31B (1.0))))
)
 ob12_35 (ob12_35' (ob12_35F (0.5)) (ob12_35B (0.5)))
 ob10_36 (ob10_36' (ob10_36F (0.5)) (ob10_36B (0.5)))
 ob12_32 (ob12_32' (ob12_32F (0.5)) (ob12_32B (0.5)))
 ob1_31 (c2'
 (c2F (ob1_31' (ob1_31F (1.0)) (ob1_31B (0.0))))
 (c2B (ob1_31' (ob1_31F (0.0)) (ob1_31B (1.0))))
)
 endobserve
 cost (loc
 (l34 (88.60022573334675))
 (l1 (40.0))
 (l35 (2000.0))
 (l32 (2000.0))
 (l4 (0))
 (l5 (2000.0))
 (l36 (2000.0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l14 (2000.0))
 (l19 (94.64142856064674))
 (l26 (148.05404418657398))
 (l31 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph2_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 99.00, 663.00, 226.84
N=1, 526.00, 157.00, 267.12
N=2, 85.00, 413.00, 31.22
N=3, 199.00, 604.00, 315.66
N=4, 224.00, 572.00, 336.34
N=5, 201.00, 586.00, 333.29
N=6, 458.00, 558.00, 187.66
N=7, 103.00, 121.00, 236.03
N=8, 429.00, 342.00, 253.97
N=9, 476.00, 652.00, 299.78
N=10, 242.00, 238.00, 192.70
N=11, 140.00, 268.00, 314.91
N=12, 272.00, 297.00, 198.18
N=13, 584.00, 622.00, 265.44
N=14, 605.00, 185.00, 16.59
N=15, 470.00, 569.00, 195.12
N=16, 14.00, 309.00, 315.99
N=17, 101.00, 350.00, 246.91
N=18, 684.00, 582.00, 85.56
N=19, 460.00, 66.00, 298.95
N=20, 664.00, 214.00, 150.95
N=21, 658.00, 258.00, 236.22
N=22, 195.00, 165.00, 215.24
N=23, 280.00, 101.00, 343.09
N=24, 590.00, 404.00, 37.89
N=25, 642.00, 377.00, 158.28
N=26, 338.00, 161.00, 180.64
N=27, 95.00, 417.00, 26.56
N=28, 59.00, 163.00, 239.45
N=29, 643.00, 520.00, 131.04
N=30, 79.00, 485.00, 13.09
N=31, 486.00, 157.00, 271.67
N=32, 219.00, 154.00, 201.72
N=33, 375.00, 357.00, 62.76
N=34, 517.00, 74.00, 59.88
N=35, 271.00, 451.00, 70.10
N=36, 287.00, 155.00, 224.92
N=37, 453.00, 392.00, 335.36
N=38, 318.00, 11.00, 53.00
N=39, 508.00, 123.00, 74.07

#Edge data
#E=Node number 1, Node number 2, cost
E=1, 34, 83.49
E=1, 31, 40.00
E=1, 14, 83.82
E=1, 19, 112.99
E=4, 35, 129.81
E=4, 32, 709.72
E=4, 5, 26.93
E=4, 10, 641.12
E=4, 12, 707.12
E=5, 35, 152.07
E=5, 32, 687.23
E=5, 10, 618.62
E=5, 12, 684.62
E=9, 14, 583.21
E=10, 32, 87.09
E=10, 36, 94.41
E=10, 12, 66.19
E=12, 35, 154.00
E=12, 32, 152.51
E=14, 19, 189.64
E=19, 34, 57.56
E=19, 32, 330.78
E=19, 36, 299.58
E=19, 26, 303.61
E=19, 31, 94.64
E=26, 32, 164.26
E=26, 36, 51.35
E=26, 31, 148.05
E=31, 34, 88.60
E=32, 36, 135.26

#Start node ID
S=9

#Goal node ID
G=4

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 26, 31, 1, 31
C=1, 12, 35
C=2, 10, 36, 12, 32

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 12, 32
EO=1, 10, 36
EO=2, 12, 35
EO=3, 1, 31
EO=4, 26, 31

#Starting belief state, starting with the all F combination and working through to all B
B=0.633942, 0.014299, 0.000693, 0.005641, 0.167808, 0.003785, 0.005888, 0.047945, 0.014299, 0.000323, 0.000016, 0.000127, 0.003785, 0.000085, 0.000133, 0.001081, 0.002523, 0.000057, 0.000089, 0.000721, 0.000668, 0.000015, 0.000753, 0.006128, 0.020548, 0.000463, 0.000721, 0.005871, 0.005439, 0.000123, 0.006128, 0.049902

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=1, 26, 31, 0.950000, 0.100000
O=1, 1, 31, 1.000000, 0.000000
O=31, 26, 31, 1.000000, 0.000000
O=31, 1, 31, 1.000000, 0.000000
O=26, 26, 31, 1.000000, 0.000000
O=26, 10, 36, 0.770000, 0.300000
O=10, 12, 35, 1.000000, 0.000000
O=10, 10, 36, 1.000000, 0.000000
O=12, 12, 35, 1.000000, 0.000000
O=12, 12, 32, 1.000000, 0.000000
O=35, 12, 35, 1.000000, 0.000000
O=36, 10, 36, 1.000000, 0.000000
O=36, 12, 32, 0.800000, 0.200000
O=32, 12, 32, 1.000000, 0.000000
O=14, 1, 31, 0.700000, 0.300000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=293.00, 581.00, 0.00, 0.00, 0.00, 0.00, 22.707297, 0.000000, 22.707297, 137.00, 98.00, 1.318976, 0.000000, 1.318976
OB=435.00, 181.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 132.00, 127.00, 25.000000, 0.000000, 25.000000
OB=409.00, 443.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 140.00, 0.00, 25.000000, 0.000000, 25.000000, 140.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 80.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=289.00, 231.00, 0.00, 0.00, 0.00, 0.00, 225.000000, 0.000000, 225.000000, 137.00, 55.00, 25.000000, 0.000000, 25.000000
OB=89.00, 16.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 0.00, 9.000000, 0.000000, 9.000000, 140.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 80.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=573.00, 18.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=194.00, 328.00, 60.00, 0.00, 60.00, 0.00, 225.000000, 0.000000, 225.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 36.000000, 0.000000, 36.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 9.000000, 0.000000, 9.000000, 60.00, 0.00, 225.000000, 0.000000, 225.000000

Graph3.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 62.00, 607.00, 104.91
N=1, 57.00, 265.00, 131.79
N=2, 19.00, 242.00, 234.55
N=3, 617.00, 573.00, 187.39
N=4, 125.00, 536.00, 106.69
N=5, 642.00, 508.00, 288.42
N=6, 262.00, 249.00, 109.51
N=7, 226.00, 630.00, 64.77
N=8, 173.00, 302.00, 107.36
N=9, 557.00, 629.00, 294.39
N=10, 470.00, 105.00, 14.33
N=11, 421.00, 508.00, 108.52
N=12, 113.00, 652.00, 327.39
N=13, 669.00, 546.00, 217.51
N=14, 583.00, 180.00, 337.18
N=15, 322.00, 402.00, 252.05
N=16, 453.00, 647.00, 235.28
N=17, 565.00, 329.00, 262.60
N=18, 8.00, 390.00, 263.02
N=19, 335.00, 488.00, 275.91
N=20, 527.00, 645.00, 77.13
N=21, 464.00, 586.00, 160.28
N=22, 325.00, 682.00, 221.03
N=23, 70.00, 152.00, 48.17
N=24, 106.00, 227.00, 299.16
N=25, 176.00, 221.00, 84.82
N=26, 133.00, 42.00, 181.54
N=27, 507.00, 342.00, 33.25
N=28, 96.00, 261.00, 249.48
N=29, 303.00, 294.00, 20.19
N=30, 79.00, 536.00, 355.21
N=31, 384.00, 271.00, 306.96
N=32, 475.00, 383.00, 178.94
N=33, 592.00, 306.00, 287.99
N=34, 152.00, 398.00, 104.75
N=35, 362.00, 311.00, 132.87
N=36, 582.00, 520.00, 72.87
N=37, 357.00, 667.00, 339.71
N=38, 191.00, 456.00, 69.90
N=39, 410.00, 130.00, 87.45

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 12, 68.01
E=0, 30, 73.01
E=0, 4, 94.92
E=0, 7, 165.60
E=1, 28, 39.20
E=1, 2, 44.42
E=1, 24, 62.01
E=1, 23, 113.75
E=2, 28, 79.31
E=2, 24, 88.28
E=2, 23, 103.45
E=3, 13, 58.59
E=3, 36, 63.51
E=3, 5, 69.64
E=3, 9, 82.07
E=4, 30, 46.00
E=4, 38, 103.71
E=4, 12, 116.62
E=5, 13, 46.62
E=5, 36, 61.19
E=5, 9, 147.87
E=6, 29, 60.88
E=6, 25, 90.44
E=6, 8, 103.59
E=6, 35, 117.66
E=7, 22, 111.83
E=7, 12, 115.12
E=7, 37, 136.12
E=8, 25, 81.06
E=8, 28, 87.24
E=8, 34, 98.27
E=9, 20, 34.00
E=9, 21, 102.46
E=10, 39, 65.00
E=11, 19, 88.29
E=11, 21, 89.07
E=11, 32, 136.17
E=11, 16, 142.64
E=12, 30, 120.88
E=13, 36, 90.80
E=13, 20, 173.10
E=14, 33, 126.32
E=14, 17, 150.08
E=15, 19, 86.98
E=15, 35, 99.40
E=15, 29, 109.66
E=15, 38, 141.69
E=16, 21, 61.98
E=16, 20, 74.03
E=16, 37, 98.06
E=17, 33, 35.47
E=17, 27, 59.44
E=17, 32, 104.96
E=18, 34, 144.22
E=18, 28, 156.16
E=18, 30, 162.35
E=18, 24, 190.19
E=19, 38, 147.51
E=19, 21, 162.00
E=20, 36, 136.57
E=22, 37, 35.34
E=23, 24, 83.19
E=23, 25, 126.48
E=25, 29, 146.49
E=27, 32, 52.01
E=27, 33, 92.31
E=27, 31, 142.02
E=29, 35, 61.40
E=31, 35, 45.65
E=31, 39, 143.38
E=31, 32, 144.31
E=34, 38, 69.89

#Start node ID
S=13

#Goal node ID
G=0

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 7, 37, 7, 22
C=1, 19, 21, 11, 19, 19, 38

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 19, 38
EO=1, 11, 19
EO=2, 19, 21
EO=3, 7, 22
EO=4, 7, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.335791, 0.019752, 0.005891, 0.003119, 0.010604, 0.000624, 0.067158, 0.035554, 0.010604, 0.000624, 0.000186, 0.000098, 0.000930, 0.000055, 0.005891, 0.003119, 0.003119, 0.005891, 0.000055, 0.000930, 0.000098, 0.000186, 0.000624, 0.010604, 0.035554, 0.067158, 0.000624, 0.010604, 0.003119, 0.005891, 0.019752, 0.335791

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=16, 7, 37, 0.800000, 0.200000
O=16, 7, 22, 0.600000, 0.450000
O=37, 7, 37, 1.000000, 0.000000
O=7, 7, 37, 1.000000, 0.000000
O=7, 7, 22, 1.000000, 0.000000
O=22, 7, 22, 1.000000, 0.000000
O=9, 19, 21, 0.800000, 0.300000
O=21, 19, 21, 1.000000, 0.000000
O=21, 11, 19, 0.900000, 0.100000
O=19, 19, 21, 1.000000, 0.000000
O=19, 11, 19, 1.000000, 0.000000
O=19, 19, 38, 1.000000, 0.000000
O=11, 11, 19, 1.000000, 0.000000
O=11, 19, 38, 0.850000, 0.300000
O=38, 19, 38, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=218.00, 16.00, 0.00, 0.00, 0.00, 0.00, 0.862534, 0.000000, 0.862534, 140.00, 0.00, 20.451138, 0.000000, 20.451138, 140.00, 80.00, 31.710725, 0.000000, 31.710725, 0.00, 80.00, 0.455940, 0.000000, 0.455940, 0.00, 0.00, 0.862534, 0.000000, 0.862534
OB=194.00, 120.00, 0.00, 0.00, 0.00, 0.00, 3.333641, 0.000000, 3.333641, 140.00, 0.00, 2.696081, 0.000000, 2.696081, 140.00, 80.00, 14.264966, 0.000000, 14.264966, 0.00, 80.00, 0.623399, 0.000000, 0.623399, 0.00, 0.00, 3.333641, 0.000000, 3.333641
OB=307.00, 506.00, 60.00, 0.00, 60.00, 0.00, 144.000000, 0.000000, 144.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 81.000000, 0.000000, 81.000000, 20.00, 110.00, 144.000000, 0.000000, 144.000000, 0.00, 30.00, 49.000000, 0.000000, 49.000000, 60.00, 0.00, 144.000000, 0.000000, 144.000000
OB=441.00, 161.00, 0.00, 0.00, 0.00, 0.00, 0.028477, 0.000000, 0.028477, 100.00, 0.00, 17.762997, 0.000000, 17.762997, 100.00, 100.00, 13.198055, 0.000000, 13.198055, 0.00, 100.00, 0.003124, 0.000000, 0.003124
OB=533.00, 377.00, 0.00, 0.00, 0.00, 0.00, 0.211691, 0.000000, 0.211691, 100.00, 0.00, 9.395201, 0.000000, 9.395201, 100.00, 100.00, 23.985120, 0.000000, 23.985120, 0.00, 100.00, 22.402987, 0.000000, 22.402987, 0.00, 0.00, 0.211691, 0.000000, 0.211691

Graph3PP.pomdp

//State variables
(variables
 (loc l0 l16 l19 l38 l21 l22 l7 l37 l9 l11 l13 l15)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob7_37 ob7_37F ob7_37B)
 (ob7_22 ob7_22F ob7_22B)
 (ob19_21 ob19_21F ob19_21B)
 (ob11_19 ob11_19F ob11_19B)
 (ob19_38 ob19_38F ob19_38B)
)

//Initial belief state
init [*
 (loc (l0 (0.0)) (l16 (0.0)) (l19 (0.0)) (l38 (0.0)) (l21 (0.0)) (l22 (0.0)) (l7 (0.0)) (l37 (0.0)) (l9 (0.0)) (l11 (0.0)) (l13 (1.0)) (l15 (0.0)))
 (c1 (c1F (0.5)) (c1B (0.5)))
 (c2 (c2F (0.5)) (c2B (0.5)))
 (c3 (c3F (0.5)) (c3B (0.5)))
 (c4 (c4F (0.5)) (c4B (0.5)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l0
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl19))
 (l38 (locl0))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (locl0))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l38 (198.63215710038767))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (165.60495161679194))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l16
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl19))
 (l38 (locl38))
 (l21 (locl16))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl16))
 (l9 (locl16))
 (l11 (locl16))
 (l13 (locl16))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (c1'
 (c1F (ob7_37' (ob7_37F (0.8)) (ob7_37B (0.2))))
 (c1B (ob7_37' (ob7_37F (0.19999999999999996)) (ob7_37B (0.8))))
)
 ob7_22 (c2'
 (c2F (ob7_22' (ob7_22F (0.55)) (ob7_22B (0.45))))
 (c2B (ob7_22' (ob7_22F (0.4)) (ob7_22B (0.6))))
)
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l21 (61.98386886924694))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (98.0612053770501))
 (l9 (108.02702209328699))
 (l11 (142.63590010933433))
 (l13 (247.1310370669438))
 (l15 (2000.0))
)
endaction

action goto_l19
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl19))
 (l38 (c5
 (c5F (locl19))
 (c5B (locl38))
))
 (l21 (c3
 (c3F (locl19))
 (c3B (locl21))
))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (c4
 (c4F (locl19))
 (c4B (locl11))
))
 (l13 (locl13))
 (l15 (locl19))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (c3'
 (c3F (ob19_21' (ob19_21F (1.0)) (ob19_21B (0.0))))
 (c3B (ob19_21' (ob19_21F (0.0)) (ob19_21B (1.0))))
)
 ob11_19 (c4'
 (c4F (ob11_19' (ob11_19F (1.0)) (ob11_19B (0.0))))
 (c4B (ob11_19' (ob11_19F (0.0)) (ob11_19B (1.0))))
)
 ob19_38 (c5'
 (c5F (ob19_38' (ob19_38F (1.0)) (ob19_38B (0.0))))
 (c5B (ob19_38' (ob19_38F (0.0)) (ob19_38B (1.0))))
)
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l38 (147.5127113166862))
 (l21 (162.00308639035245))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (88.29496021857646))
 (l13 (2000.0))
 (l15 (86.97700845625813))
)
endaction

action goto_l38
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (c5
 (c5F (locl38))
 (c5B (locl19))
))
 (l38 (locl38))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (locl38))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl38))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (c5'
 (c5F (ob19_38' (ob19_38F (1.0)) (ob19_38B (0.0))))
 (c5B (ob19_38' (ob19_38F (0.0)) (ob19_38B (1.0))))
)
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (147.5127113166862))
 (l38 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (335.4518499585859))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (141.69333082400175))
)
endaction

action goto_l21
 loc (loc
 (l0 (locl0))
 (l16 (locl21))
 (l19 (c3
 (c3F (locl21))
 (c3B (locl19))
))
 (l38 (locl38))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl21))
 (l11 (locl21))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (c3'
 (c3F (ob19_21' (ob19_21F (1.0)) (ob19_21B (0.0))))
 (c3B (ob19_21' (ob19_21F (0.0)) (ob19_21B (1.0))))
)
 ob11_19 (c4'
 (c4F (ob11_19' (ob11_19F (0.9)) (ob11_19B (0.1))))
 (c4B (ob11_19' (ob11_19F (0.09999999999999998)) (ob11_19B (0.9))))
)
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (61.98386886924694))
 (l19 (162.00308639035245))
 (l38 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (102.45974819410792))
 (l11 (89.06739021662193))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l22
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl19))
 (l38 (locl38))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (c2
 (c2F (locl22))
 (c2B (locl7))
))
 (l37 (locl22))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (c2'
 (c2F (ob7_22' (ob7_22F (1.0)) (ob7_22B (0.0))))
 (c2B (ob7_22' (ob7_22F (0.0)) (ob7_22B (1.0))))
)
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (111.8257573191436))
 (l37 (35.34119409414458))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l7
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl19))
 (l38 (locl7))
 (l21 (locl21))
 (l22 (c2
 (c2F (locl7))
 (c2B (locl22))
))
 (l7 (locl7))
 (l37 (c1
 (c1F (locl7))
 (c1B (locl37))
))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (c1'
 (c1F (ob7_37' (ob7_37F (1.0)) (ob7_37B (0.0))))
 (c1B (ob7_37' (ob7_37F (0.0)) (ob7_37B (1.0))))
)
 ob7_22 (c2'
 (c2F (ob7_22' (ob7_22F (1.0)) (ob7_22B (0.0))))
 (c2B (ob7_22' (ob7_22F (0.0)) (ob7_22B (1.0))))
)
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (2000.0))
 (l38 (335.4518499585859))
 (l21 (2000.0))
 (l22 (111.8257573191436))
 (l7 (2000.0))
 (l37 (136.12494260788506))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l37
 loc (loc
 (l0 (locl0))
 (l16 (locl37))
 (l19 (locl19))
 (l38 (locl38))
 (l21 (locl21))
 (l22 (locl37))
 (l7 (c1
 (c1F (locl37))
 (c1B (locl7))
))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (c1'
 (c1F (ob7_37' (ob7_37F (1.0)) (ob7_37B (0.0))))
 (c1B (ob7_37' (ob7_37F (0.0)) (ob7_37B (1.0))))
)
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (98.0612053770501))
 (l19 (2000.0))
 (l38 (2000.0))
 (l21 (2000.0))
 (l22 (35.34119409414458))
 (l7 (136.12494260788506))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l9
 loc (loc
 (l0 (locl0))
 (l16 (locl9))
 (l19 (locl19))
 (l38 (locl38))
 (l21 (locl9))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl9))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (c3'
 (c3F (ob19_21' (ob19_21F (0.7)) (ob19_21B (0.3))))
 (c3B (ob19_21' (ob19_21F (0.19999999999999996)) (ob19_21B (0.8))))
)
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (108.02702209328699))
 (l19 (2000.0))
 (l38 (2000.0))
 (l21 (102.45974819410792))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (140.66494641589378))
 (l15 (2000.0))
)
endaction

action goto_l11
 loc (loc
 (l0 (locl0))
 (l16 (locl11))
 (l19 (c4
 (c4F (locl11))
 (c4B (locl19))
))
 (l38 (locl38))
 (l21 (locl11))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl11))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (c4'
 (c4F (ob11_19' (ob11_19F (1.0)) (ob11_19B (0.0))))
 (c4B (ob11_19' (ob11_19F (0.0)) (ob11_19B (1.0))))
)
 ob19_38 (c5'
 (c5F (ob19_38' (ob19_38F (0.7)) (ob19_38B (0.3))))
 (c5B (ob19_38' (ob19_38F (0.15000000000000002)) (ob19_38B (0.85))))
)
 endobserve
 cost (loc
 (l0 (0))
 (l16 (142.63590010933433))
 (l19 (88.29496021857646))
 (l38 (2000.0))
 (l21 (89.06739021662193))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (425.528105673254))
)
endaction

action goto_l13
 loc (loc
 (l0 (locl0))
 (l16 (locl13))
 (l19 (locl19))
 (l38 (locl38))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl13))
 (l11 (locl11))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (247.1310370669438))
 (l19 (2000.0))
 (l38 (2000.0))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (140.66494641589378))
 (l11 (2000.0))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l15
 loc (loc
 (l0 (locl0))
 (l16 (locl16))
 (l19 (locl15))
 (l38 (locl15))
 (l21 (locl21))
 (l22 (locl22))
 (l7 (locl7))
 (l37 (locl37))
 (l9 (locl9))
 (l11 (locl15))
 (l13 (locl13))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob7_37 (ob7_37' (ob7_37F (0.5)) (ob7_37B (0.5)))
 ob7_22 (ob7_22' (ob7_22F (0.5)) (ob7_22B (0.5)))
 ob19_21 (ob19_21' (ob19_21F (0.5)) (ob19_21B (0.5)))
 ob11_19 (ob11_19' (ob11_19F (0.5)) (ob11_19B (0.5)))
 ob19_38 (ob19_38' (ob19_38F (0.5)) (ob19_38B (0.5)))
 endobserve
 cost (loc
 (l0 (0))
 (l16 (2000.0))
 (l19 (86.97700845625813))
 (l38 (141.69333082400175))
 (l21 (2000.0))
 (l22 (2000.0))
 (l7 (2000.0))
 (l37 (2000.0))
 (l9 (2000.0))
 (l11 (425.528105673254))
 (l13 (2000.0))
 (l15 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph3_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 62.00, 607.00, 104.91
N=1, 57.00, 265.00, 131.79
N=2, 19.00, 242.00, 234.55
N=3, 617.00, 573.00, 187.39
N=4, 125.00, 536.00, 106.69
N=5, 642.00, 508.00, 288.42
N=6, 262.00, 249.00, 109.51
N=7, 226.00, 630.00, 64.77
N=8, 173.00, 302.00, 107.36
N=9, 557.00, 629.00, 294.39
N=10, 470.00, 105.00, 14.33
N=11, 421.00, 508.00, 108.52
N=12, 113.00, 652.00, 327.39
N=13, 669.00, 546.00, 217.51
N=14, 583.00, 180.00, 337.18
N=15, 322.00, 402.00, 252.05
N=16, 453.00, 647.00, 235.28
N=17, 565.00, 329.00, 262.60
N=18, 8.00, 390.00, 263.02
N=19, 335.00, 488.00, 275.91
N=20, 527.00, 645.00, 77.13
N=21, 464.00, 586.00, 160.28
N=22, 325.00, 682.00, 221.03
N=23, 70.00, 152.00, 48.17
N=24, 106.00, 227.00, 299.16
N=25, 176.00, 221.00, 84.82
N=26, 133.00, 42.00, 181.54
N=27, 507.00, 342.00, 33.25
N=28, 96.00, 261.00, 249.48
N=29, 303.00, 294.00, 20.19
N=30, 79.00, 536.00, 355.21
N=31, 384.00, 271.00, 306.96
N=32, 475.00, 383.00, 178.94
N=33, 592.00, 306.00, 287.99
N=34, 152.00, 398.00, 104.75
N=35, 362.00, 311.00, 132.87
N=36, 582.00, 520.00, 72.87
N=37, 357.00, 667.00, 339.71
N=38, 191.00, 456.00, 69.90
N=39, 410.00, 130.00, 87.45

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 7, 165.60
E=0, 38, 198.63
E=7, 38, 335.45
E=7, 22, 111.83
E=7, 37, 136.12
E=9, 16, 108.03
E=9, 21, 102.46
E=9, 13, 140.66
E=11, 16, 142.64
E=11, 19, 88.29
E=11, 21, 89.07
E=11, 15, 425.53
E=13, 16, 247.13
E=15, 19, 86.98
E=15, 38, 141.69
E=16, 21, 61.98
E=16, 37, 98.06
E=19, 21, 162.00
E=19, 38, 147.51
E=22, 37, 35.34

#Start node ID
S=13

#Goal node ID
G=0

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 7, 37, 7, 22
C=1, 19, 21, 11, 19, 19, 38

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 19, 38
EO=1, 11, 19
EO=2, 19, 21
EO=3, 7, 22
EO=4, 7, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.335791, 0.019752, 0.005891, 0.003119, 0.010604, 0.000624, 0.067158, 0.035554, 0.010604, 0.000624, 0.000186, 0.000098, 0.000930, 0.000055, 0.005891, 0.003119, 0.003119, 0.005891, 0.000055, 0.000930, 0.000098, 0.000186, 0.000624, 0.010604, 0.035554, 0.067158, 0.000624, 0.010604, 0.003119, 0.005891, 0.019752, 0.335791

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=16, 7, 37, 0.800000, 0.200000
O=16, 7, 22, 0.600000, 0.450000
O=37, 7, 37, 1.000000, 0.000000
O=7, 7, 37, 1.000000, 0.000000
O=7, 7, 22, 1.000000, 0.000000
O=22, 7, 22, 1.000000, 0.000000
O=9, 19, 21, 0.800000, 0.300000
O=21, 19, 21, 1.000000, 0.000000
O=21, 11, 19, 0.900000, 0.100000
O=19, 19, 21, 1.000000, 0.000000
O=19, 11, 19, 1.000000, 0.000000
O=19, 19, 38, 1.000000, 0.000000
O=11, 11, 19, 1.000000, 0.000000
O=11, 19, 38, 0.850000, 0.300000
O=38, 19, 38, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=218.00, 16.00, 0.00, 0.00, 0.00, 0.00, 0.862534, 0.000000, 0.862534, 140.00, 0.00, 20.451138, 0.000000, 20.451138, 140.00, 80.00, 31.710725, 0.000000, 31.710725, 0.00, 80.00, 0.455940, 0.000000, 0.455940, 0.00, 0.00, 0.862534, 0.000000, 0.862534
OB=194.00, 120.00, 0.00, 0.00, 0.00, 0.00, 3.333641, 0.000000, 3.333641, 140.00, 0.00, 2.696081, 0.000000, 2.696081, 140.00, 80.00, 14.264966, 0.000000, 14.264966, 0.00, 80.00, 0.623399, 0.000000, 0.623399, 0.00, 0.00, 3.333641, 0.000000, 3.333641
OB=307.00, 506.00, 60.00, 0.00, 60.00, 0.00, 144.000000, 0.000000, 144.000000, 120.00, 30.00, 100.000000, 0.000000, 100.000000, 100.00, 110.00, 81.000000, 0.000000, 81.000000, 20.00, 110.00, 144.000000, 0.000000, 144.000000, 0.00, 30.00, 49.000000, 0.000000, 49.000000, 60.00, 0.00, 144.000000, 0.000000, 144.000000
OB=441.00, 161.00, 0.00, 0.00, 0.00, 0.00, 0.028477, 0.000000, 0.028477, 100.00, 0.00, 17.762997, 0.000000, 17.762997, 100.00, 100.00, 13.198055, 0.000000, 13.198055, 0.00, 100.00, 0.003124, 0.000000, 0.003124
OB=533.00, 377.00, 0.00, 0.00, 0.00, 0.00, 0.211691, 0.000000, 0.211691, 100.00, 0.00, 9.395201, 0.000000, 9.395201, 100.00, 100.00, 23.985120, 0.000000, 23.985120, 0.00, 100.00, 22.402987, 0.000000, 22.402987, 0.00, 0.00, 0.211691, 0.000000, 0.211691

Graph4.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 72.00, 536.00, 39.36
N=1, 407.00, 609.00, 155.69
N=2, 500.00, 328.00, 262.96
N=3, 485.00, 335.00, 214.80
N=4, 306.00, 107.00, 140.52
N=5, 581.00, 270.00, 278.79
N=6, 209.00, 622.00, 52.70
N=7, 268.00, 77.00, 288.92
N=8, 653.00, 602.00, 64.79
N=9, 118.00, 512.00, 19.28
N=10, 25.00, 416.00, 275.96
N=11, 35.00, 317.00, 185.66
N=12, 236.00, 541.00, 3.04
N=13, 593.00, 142.00, 354.51
N=14, 567.00, 209.00, 185.10
N=15, 241.00, 328.00, 106.51
N=16, 148.00, 596.00, 212.05
N=17, 117.00, 583.00, 117.87
N=18, 561.00, 108.00, 31.25
N=19, 382.00, 328.00, 41.69
N=20, 94.00, 624.00, 115.03
N=21, 461.00, 372.00, 282.08
N=22, 272.00, 662.00, 343.18
N=23, 292.00, 306.00, 45.83
N=24, 73.00, 46.00, 55.99
N=25, 641.00, 266.00, 293.82
N=26, 412.00, 531.00, 255.29
N=27, 587.00, 128.00, 29.84
N=28, 140.00, 521.00, 87.31
N=29, 33.00, 119.00, 299.29
N=30, 95.00, 583.00, 198.96
N=31, 487.00, 101.00, 40.74
N=32, 214.00, 174.00, 103.70
N=33, 95.00, 515.00, 132.83
N=34, 32.00, 152.00, 86.25
N=35, 101.00, 288.00, 96.24
N=36, 497.00, 370.00, 217.07
N=37, 74.00, 568.00, 148.20
N=38, 173.00, 522.00, 340.29
N=39, 515.00, 93.00, 257.93

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 33, 31.14
E=0, 37, 32.06
E=0, 9, 51.88
E=0, 30, 52.33
E=1, 26, 78.16
E=1, 22, 145.03
E=1, 12, 184.02
E=1, 6, 198.43
E=2, 3, 16.55
E=2, 36, 42.11
E=2, 21, 58.80
E=2, 5, 99.62
E=3, 36, 37.00
E=3, 21, 44.10
E=3, 19, 103.24
E=4, 7, 48.41
E=4, 32, 113.81
E=4, 31, 181.10
E=5, 25, 60.13
E=5, 14, 62.59
E=5, 13, 128.56
E=6, 16, 66.31
E=6, 22, 74.63
E=6, 12, 85.38
E=7, 32, 111.02
E=7, 24, 197.45
E=9, 33, 23.19
E=9, 28, 23.77
E=9, 38, 55.90
E=10, 11, 99.50
E=10, 33, 121.25
E=10, 35, 148.86
E=10, 28, 155.72
E=11, 35, 72.09
E=11, 29, 198.01
E=12, 38, 65.80
E=12, 28, 98.06
E=13, 27, 15.23
E=13, 18, 46.69
E=13, 14, 71.87
E=14, 27, 83.43
E=14, 25, 93.41
E=15, 23, 55.54
E=15, 19, 141.00
E=15, 35, 145.60
E=15, 32, 156.35
E=16, 17, 33.62
E=16, 30, 54.57
E=16, 20, 60.83
E=17, 30, 22.00
E=17, 37, 45.54
E=17, 20, 47.01
E=18, 27, 32.80
E=18, 39, 48.38
E=18, 31, 74.33
E=19, 21, 90.43
E=19, 36, 122.43
E=20, 30, 41.01
E=20, 37, 59.46
E=21, 36, 36.06
E=22, 38, 171.47
E=22, 26, 191.73
E=23, 32, 153.32
E=23, 35, 191.85
E=24, 29, 83.24
E=24, 34, 113.65
E=25, 27, 148.19
E=28, 38, 33.02
E=29, 34, 33.02
E=31, 39, 29.12
E=33, 37, 57.01

#Start node ID
S=1

#Goal node ID
G=25

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 15, 19, 15, 23, 23, 32
C=1, 9, 38, 10, 28

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 10, 28
EO=1, 9, 38
EO=2, 23, 32
EO=3, 15, 23
EO=4, 15, 19

#Starting belief state, starting with the all F combination and working through to all B
B=0.278557, 0.014661, 0.014661, 0.278557, 0.092852, 0.004887, 0.004887, 0.092852, 0.004422, 0.000233, 0.000233, 0.004422, 0.013265, 0.000698, 0.000698, 0.013265, 0.013265, 0.000698, 0.000698, 0.013265, 0.004422, 0.000233, 0.000233, 0.004422, 0.017055, 0.000898, 0.000898, 0.017055, 0.051164, 0.002693, 0.002693, 0.051164

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=35, 15, 19, 0.700000, 0.400000
O=35, 15, 23, 0.750000, 0.340000
O=35, 23, 32, 0.800000, 0.200000
O=15, 15, 19, 1.000000, 0.000000
O=15, 15, 23, 1.000000, 0.000000
O=19, 15, 19, 1.000000, 0.000000
O=23, 15, 23, 1.000000, 0.000000
O=23, 23, 32, 1.000000, 0.000000
O=32, 23, 32, 1.000000, 0.000000
O=12, 9, 38, 0.900000, 0.100000
O=38, 9, 38, 1.000000, 0.000000
O=38, 10, 28, 0.800000, 0.200000
O=9, 9, 38, 1.000000, 0.000000
O=28, 10, 28, 1.000000, 0.000000
O=10, 10, 28, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=75.00, 127.00, 0.00, 0.00, 0.00, 0.00, 11.746202, 0.000000, 11.746202, 100.00, 0.00, 11.746202, 0.000000, 11.746202, 100.00, 100.00, 6.441550, 0.000000, 6.441550, 0.00, 100.00, 15.855324, 0.000000, 15.855324, 0.00, 0.00, 11.746202, 0.000000, 11.746202
OB=145.00, 407.00, 0.00, 0.00, 0.00, 0.00, 86.366150, 0.000000, 86.366150, 140.00, 0.00, 86.366150, 0.000000, 86.366150, 140.00, 80.00, 110.930149, 0.000000, 110.930149, 0.00, 80.00, 215.282687, 0.000000, 215.282687, 0.00, 0.00, 86.366150, 0.000000, 86.366150
OB=615.00, 350.00, 60.00, 0.00, 60.00, 0.00, 3.209989, 0.000000, 3.209989, 120.00, 30.00, 3.209989, 0.000000, 3.209989, 100.00, 110.00, 23.984907, 0.000000, 23.984907, 20.00, 110.00, 7.198721, 0.000000, 7.198721, 0.00, 30.00, 0.003271, 0.000000, 0.003271, 60.00, 0.00, 3.209989, 0.000000, 3.209989
OB=410.00, 167.00, 0.00, 0.00, 0.00, 0.00, 109.771883, 0.000000, 109.771883, 100.00, 0.00, 109.771883, 0.000000, 109.771883, 100.00, 100.00, 15.197378, 0.000000, 15.197378, 0.00, 100.00, 55.558940, 0.000000, 55.558940
OB=330.00, 353.00, 0.00, 0.00, 0.00, 0.00, 157.194080, 0.000000, 157.194080, 140.00, 107.00, 157.194080, 0.000000, 157.194080
OB=492.00, 500.00, 0.00, 0.00, 0.00, 0.00, 5.536675, 0.000000, 5.536675, 55.00, 149.00, 5.536675, 0.000000, 5.536675
OB=296.00, 167.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 64.000000, 0.000000, 64.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000

Graph4PP.pomdp

//State variables
(variables
 (loc l35 l1 l32 l19 l38 l23 l25 l9 l10 l12 l28 l15)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob15_19 ob15_19F ob15_19B)
 (ob15_23 ob15_23F ob15_23B)
 (ob23_32 ob23_32F ob23_32B)
 (ob9_38 ob9_38F ob9_38B)
 (ob10_28 ob10_28F ob10_28B)
)

//Initial belief state
init [*
 (loc (l35 (0.0)) (l1 (1.0)) (l32 (0.0)) (l19 (0.0)) (l38 (0.0)) (l23 (0.0)) (l25 (0.0)) (l9 (0.0)) (l10 (0.0)) (l12 (0.0)) (l28 (0.0)) (l15 (0.0)))
 (c1 (c1F (0.819148936168)) (c1B (0.180851063832)))
 (c2 (c2F (0.819148936168)) (c2B (0.180851063832)))
 (c3 (c3F (0.659574468084)) (c3B (0.340425531916)))
 (c4 (c4F (0.5)) (c4B (0.5)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l35
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl35))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl35))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (locl35))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (c1'
 (c1F (ob15_19' (ob15_19F (0.6)) (ob15_19B (0.4))))
 (c1B (ob15_19' (ob15_19F (0.30000000000000004)) (ob15_19B (0.7))))
)
 ob15_23 (c2'
 (c2F (ob15_23' (ob15_23F (0.6599999999999999)) (ob15_23B (0.34))))
 (c2B (ob15_23' (ob15_23F (0.25)) (ob15_23B (0.75))))
)
 ob23_32 (c3'
 (c3F (ob23_32' (ob23_32F (0.8)) (ob23_32B (0.2))))
 (c3B (ob23_32' (ob23_32F (0.19999999999999996)) (ob23_32B (0.8))))
)
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (191.84629264074925))
 (l25 (0))
 (l9 (2000.0))
 (l10 (148.86235252742716))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (145.60219778561037))
)
endaction

action goto_l1
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl1))
 (l28 (locl28))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (184.0244548966251))
 (l28 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l32
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl32))
 (l38 (locl38))
 (l23 (c3
 (c3F (locl32))
 (c3B (locl23))
))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (locl32))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (c3'
 (c3F (ob23_32' (ob23_32F (1.0)) (ob23_32B (0.0))))
 (c3B (ob23_32' (ob23_32F (0.0)) (ob23_32B (1.0))))
)
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (763.9075803888143))
 (l38 (2000.0))
 (l23 (153.32318807016765))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (156.348968656656))
)
endaction

action goto_l19
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl19))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (c1
 (c1F (locl19))
 (c1B (locl15))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (c1'
 (c1F (ob15_19' (ob15_19F (1.0)) (ob15_19B (0.0))))
 (c1B (ob15_19' (ob15_19F (0.0)) (ob15_19B (1.0))))
)
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (763.9075803888143))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (141.0))
)
endaction

action goto_l38
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (c4
 (c4F (locl38))
 (c4B (locl9))
))
 (l10 (locl10))
 (l12 (locl38))
 (l28 (locl38))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (c4'
 (c4F (ob9_38' (ob9_38F (1.0)) (ob9_38B (0.0))))
 (c4B (ob9_38' (ob9_38F (0.0)) (ob9_38B (1.0))))
)
 ob10_28 (c5'
 (c5F (ob10_28' (ob10_28F (0.8)) (ob10_28B (0.2))))
 (c5B (ob10_28' (ob10_28F (0.19999999999999996)) (ob10_28B (0.8))))
)
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (55.90169943749474))
 (l10 (2000.0))
 (l12 (65.80273550544841))
 (l28 (33.015148038438355))
 (l15 (2000.0))
)
endaction

action goto_l23
 loc (loc
 (l35 (locl23))
 (l1 (locl1))
 (l32 (c3
 (c3F (locl23))
 (c3B (locl32))
))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (c2
 (c2F (locl23))
 (c2B (locl15))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (c2'
 (c2F (ob15_23' (ob15_23F (1.0)) (ob15_23B (0.0))))
 (c2B (ob15_23' (ob15_23F (0.0)) (ob15_23B (1.0))))
)
 ob23_32 (c3'
 (c3F (ob23_32' (ob23_32F (1.0)) (ob23_32B (0.0))))
 (c3B (ob23_32' (ob23_32F (0.0)) (ob23_32B (1.0))))
)
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (191.84629264074925))
 (l1 (2000.0))
 (l32 (153.32318807016765))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (55.54277630799526))
)
endaction

action goto_l25
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl25))
 (l19 (locl25))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (550.2325185493096))
 (l19 (279.5480151498308))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l9
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (c4
 (c4F (locl9))
 (c4B (locl38))
))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl9))
 (l12 (locl12))
 (l28 (locl9))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (c4'
 (c4F (ob9_38' (ob9_38F (1.0)) (ob9_38B (0.0))))
 (c4B (ob9_38' (ob9_38F (0.0)) (ob9_38B (1.0))))
)
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (55.90169943749474))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (144.44250739966952))
 (l12 (2000.0))
 (l28 (23.769728648009426))
 (l15 (2000.0))
)
endaction

action goto_l10
 loc (loc
 (l35 (locl10))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl38))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl10))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (c5
 (c5F (locl10))
 (c5B (locl28))
))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (c5'
 (c5F (ob10_28' (ob10_28F (1.0)) (ob10_28B (0.0))))
 (c5B (ob10_28' (ob10_28F (0.0)) (ob10_28B (1.0))))
)
 endobserve
 cost (loc
 (l35 (148.86235252742716))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (2000.0))
 (l23 (2000.0))
 (l25 (0))
 (l9 (144.44250739966952))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (155.72411502397438))
 (l15 (2000.0))
)
endaction

action goto_l12
 loc (loc
 (l35 (locl35))
 (l1 (locl12))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl12))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl12))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (c4'
 (c4F (ob9_38' (ob9_38F (0.9)) (ob9_38B (0.1))))
 (c4B (ob9_38' (ob9_38F (0.09999999999999998)) (ob9_38B (0.9))))
)
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (184.0244548966251))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (65.80273550544841))
 (l23 (2000.0))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (98.0612053770501))
 (l15 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l35 (locl35))
 (l1 (locl1))
 (l32 (locl32))
 (l19 (locl19))
 (l38 (locl28))
 (l23 (locl23))
 (l25 (locl25))
 (l9 (locl28))
 (l10 (c5
 (c5F (locl28))
 (c5B (locl10))
))
 (l12 (locl28))
 (l28 (locl28))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (ob15_19' (ob15_19F (0.5)) (ob15_19B (0.5)))
 ob15_23 (ob15_23' (ob15_23F (0.5)) (ob15_23B (0.5)))
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (c5'
 (c5F (ob10_28' (ob10_28F (1.0)) (ob10_28B (0.0))))
 (c5B (ob10_28' (ob10_28F (0.0)) (ob10_28B (1.0))))
)
 endobserve
 cost (loc
 (l35 (2000.0))
 (l1 (2000.0))
 (l32 (2000.0))
 (l19 (2000.0))
 (l38 (33.015148038438355))
 (l23 (2000.0))
 (l25 (0))
 (l9 (23.769728648009426))
 (l10 (155.72411502397438))
 (l12 (98.0612053770501))
 (l28 (2000.0))
 (l15 (2000.0))
)
endaction

action goto_l15
 loc (loc
 (l35 (locl15))
 (l1 (locl1))
 (l32 (locl15))
 (l19 (c1
 (c1F (locl15))
 (c1B (locl19))
))
 (l38 (locl38))
 (l23 (c2
 (c2F (locl15))
 (c2B (locl23))
))
 (l25 (locl25))
 (l9 (locl9))
 (l10 (locl10))
 (l12 (locl12))
 (l28 (locl28))
 (l15 (locl15))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob15_19 (c1'
 (c1F (ob15_19' (ob15_19F (1.0)) (ob15_19B (0.0))))
 (c1B (ob15_19' (ob15_19F (0.0)) (ob15_19B (1.0))))
)
 ob15_23 (c2'
 (c2F (ob15_23' (ob15_23F (1.0)) (ob15_23B (0.0))))
 (c2B (ob15_23' (ob15_23F (0.0)) (ob15_23B (1.0))))
)
 ob23_32 (ob23_32' (ob23_32F (0.5)) (ob23_32B (0.5)))
 ob9_38 (ob9_38' (ob9_38F (0.5)) (ob9_38B (0.5)))
 ob10_28 (ob10_28' (ob10_28F (0.5)) (ob10_28B (0.5)))
 endobserve
 cost (loc
 (l35 (145.60219778561037))
 (l1 (2000.0))
 (l32 (156.348968656656))
 (l19 (141.0))
 (l38 (2000.0))
 (l23 (55.54277630799526))
 (l25 (0))
 (l9 (2000.0))
 (l10 (2000.0))
 (l12 (2000.0))
 (l28 (2000.0))
 (l15 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph4_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 72.00, 536.00, 39.36
N=1, 407.00, 609.00, 155.69
N=2, 500.00, 328.00, 262.96
N=3, 485.00, 335.00, 214.80
N=4, 306.00, 107.00, 140.52
N=5, 581.00, 270.00, 278.79
N=6, 209.00, 622.00, 52.70
N=7, 268.00, 77.00, 288.92
N=8, 653.00, 602.00, 64.79
N=9, 118.00, 512.00, 19.28
N=10, 25.00, 416.00, 275.96
N=11, 35.00, 317.00, 185.66
N=12, 236.00, 541.00, 3.04
N=13, 593.00, 142.00, 354.51
N=14, 567.00, 209.00, 185.10
N=15, 241.00, 328.00, 106.51
N=16, 148.00, 596.00, 212.05
N=17, 117.00, 583.00, 117.87
N=18, 561.00, 108.00, 31.25
N=19, 382.00, 328.00, 41.69
N=20, 94.00, 624.00, 115.03
N=21, 461.00, 372.00, 282.08
N=22, 272.00, 662.00, 343.18
N=23, 292.00, 306.00, 45.83
N=24, 73.00, 46.00, 55.99
N=25, 641.00, 266.00, 293.82
N=26, 412.00, 531.00, 255.29
N=27, 587.00, 128.00, 29.84
N=28, 140.00, 521.00, 87.31
N=29, 33.00, 119.00, 299.29
N=30, 95.00, 583.00, 198.96
N=31, 487.00, 101.00, 40.74
N=32, 214.00, 174.00, 103.70
N=33, 95.00, 515.00, 132.83
N=34, 32.00, 152.00, 86.25
N=35, 101.00, 288.00, 96.24
N=36, 497.00, 370.00, 217.07
N=37, 74.00, 568.00, 148.20
N=38, 173.00, 522.00, 340.29
N=39, 515.00, 93.00, 257.93

#Edge data
#E=Node number 1, Node number 2, cost
E=1, 12, 184.02
E=9, 38, 55.90
E=9, 10, 144.44
E=9, 28, 23.77
E=10, 35, 148.86
E=10, 28, 155.72
E=12, 38, 65.80
E=12, 28, 98.06
E=15, 35, 145.60
E=15, 32, 156.35
E=15, 19, 141.00
E=15, 23, 55.54
E=19, 32, 763.91
E=19, 25, 279.55
E=23, 35, 191.85
E=23, 32, 153.32
E=25, 32, 550.23
E=28, 38, 33.02

#Start node ID
S=1

#Goal node ID
G=25

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 15, 19, 15, 23, 23, 32
C=1, 9, 38, 10, 28

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 10, 28
EO=1, 9, 38
EO=2, 23, 32
EO=3, 15, 23
EO=4, 15, 19

#Starting belief state, starting with the all F combination and working through to all B
B=0.278557, 0.014661, 0.014661, 0.278557, 0.092852, 0.004887, 0.004887, 0.092852, 0.004422, 0.000233, 0.000233, 0.004422, 0.013265, 0.000698, 0.000698, 0.013265, 0.013265, 0.000698, 0.000698, 0.013265, 0.004422, 0.000233, 0.000233, 0.004422, 0.017055, 0.000898, 0.000898, 0.017055, 0.051164, 0.002693, 0.002693, 0.051164

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=35, 15, 19, 0.700000, 0.400000
O=35, 15, 23, 0.750000, 0.340000
O=35, 23, 32, 0.800000, 0.200000
O=15, 15, 19, 1.000000, 0.000000
O=15, 15, 23, 1.000000, 0.000000
O=19, 15, 19, 1.000000, 0.000000
O=23, 15, 23, 1.000000, 0.000000
O=23, 23, 32, 1.000000, 0.000000
O=32, 23, 32, 1.000000, 0.000000
O=12, 9, 38, 0.900000, 0.100000
O=38, 9, 38, 1.000000, 0.000000
O=38, 10, 28, 0.800000, 0.200000
O=9, 9, 38, 1.000000, 0.000000
O=28, 10, 28, 1.000000, 0.000000
O=10, 10, 28, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=75.00, 127.00, 0.00, 0.00, 0.00, 0.00, 11.746202, 0.000000, 11.746202, 100.00, 0.00, 11.746202, 0.000000, 11.746202, 100.00, 100.00, 6.441550, 0.000000, 6.441550, 0.00, 100.00, 15.855324, 0.000000, 15.855324, 0.00, 0.00, 11.746202, 0.000000, 11.746202
OB=145.00, 407.00, 0.00, 0.00, 0.00, 0.00, 86.366150, 0.000000, 86.366150, 140.00, 0.00, 86.366150, 0.000000, 86.366150, 140.00, 80.00, 110.930149, 0.000000, 110.930149, 0.00, 80.00, 215.282687, 0.000000, 215.282687, 0.00, 0.00, 86.366150, 0.000000, 86.366150
OB=615.00, 350.00, 60.00, 0.00, 60.00, 0.00, 3.209989, 0.000000, 3.209989, 120.00, 30.00, 3.209989, 0.000000, 3.209989, 100.00, 110.00, 23.984907, 0.000000, 23.984907, 20.00, 110.00, 7.198721, 0.000000, 7.198721, 0.00, 30.00, 0.003271, 0.000000, 0.003271, 60.00, 0.00, 3.209989, 0.000000, 3.209989
OB=410.00, 167.00, 0.00, 0.00, 0.00, 0.00, 109.771883, 0.000000, 109.771883, 100.00, 0.00, 109.771883, 0.000000, 109.771883, 100.00, 100.00, 15.197378, 0.000000, 15.197378, 0.00, 100.00, 55.558940, 0.000000, 55.558940
OB=330.00, 353.00, 0.00, 0.00, 0.00, 0.00, 157.194080, 0.000000, 157.194080, 140.00, 107.00, 157.194080, 0.000000, 157.194080
OB=492.00, 500.00, 0.00, 0.00, 0.00, 0.00, 5.536675, 0.000000, 5.536675, 55.00, 149.00, 5.536675, 0.000000, 5.536675
OB=296.00, 167.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 64.000000, 0.000000, 64.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000

Graph5.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 568.00, 186.00, 254.98
N=1, 68.00, 404.00, 272.34
N=2, 450.00, 31.00, 74.63
N=3, 77.00, 71.00, 186.21
N=4, 319.00, 355.00, 290.20
N=5, 157.00, 445.00, 172.72
N=6, 692.00, 224.00, 102.42
N=7, 304.00, 173.00, 5.66
N=8, 446.00, 354.00, 141.70
N=9, 564.00, 147.00, 60.47
N=10, 655.00, 155.00, 88.27
N=11, 678.00, 400.00, 171.25
N=12, 506.00, 608.00, 300.12
N=13, 204.00, 154.00, 242.99
N=14, 419.00, 567.00, 41.19
N=15, 70.00, 208.00, 123.50
N=16, 356.00, 586.00, 206.12
N=17, 305.00, 590.00, 49.17
N=18, 352.00, 197.00, 32.81
N=19, 385.00, 619.00, 11.27
N=20, 278.00, 374.00, 152.72
N=21, 48.00, 691.00, 192.28
N=22, 459.00, 66.00, 225.43
N=23, 585.00, 19.00, 23.16
N=24, 203.00, 58.00, 337.83
N=25, 331.00, 152.00, 174.28
N=26, 29.00, 173.00, 46.08
N=27, 401.00, 519.00, 10.96
N=28, 208.00, 603.00, 298.87
N=29, 406.00, 257.00, 222.75
N=30, 97.00, 617.00, 168.83
N=31, 478.00, 462.00, 157.90
N=32, 90.00, 280.00, 109.49
N=33, 233.00, 24.00, 356.61
N=34, 473.00, 210.00, 54.36
N=35, 636.00, 242.00, 333.80
N=36, 376.00, 25.00, 315.46
N=37, 434.00, 359.00, 81.48
N=38, 427.00, 280.00, 339.47
N=39, 156.00, 477.00, 246.71

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 9, 39.20
E=0, 35, 88.09
E=0, 10, 92.36
E=0, 34, 97.98
E=1, 5, 97.99
E=1, 39, 114.34
E=1, 32, 125.94
E=1, 15, 196.01
E=2, 22, 36.14
E=2, 36, 74.24
E=2, 23, 135.53
E=2, 9, 162.64
E=3, 26, 112.73
E=3, 24, 126.67
E=3, 15, 137.18
E=3, 13, 151.72
E=4, 20, 45.19
E=4, 37, 115.07
E=4, 8, 127.00
E=4, 38, 131.49
E=5, 39, 32.02
E=5, 20, 140.29
E=5, 28, 166.03
E=6, 35, 58.82
E=6, 10, 78.29
E=6, 9, 149.38
E=6, 11, 176.56
E=7, 25, 34.21
E=7, 18, 53.67
E=7, 13, 101.79
E=7, 29, 132.14
E=8, 37, 13.00
E=8, 38, 76.40
E=8, 29, 104.92
E=9, 10, 91.35
E=10, 35, 89.05
E=11, 35, 163.49
E=12, 14, 96.18
E=12, 19, 121.50
E=13, 24, 96.01
E=13, 25, 127.02
E=14, 27, 51.26
E=14, 19, 62.13
E=14, 16, 65.80
E=15, 26, 53.91
E=15, 32, 74.73
E=16, 19, 43.93
E=16, 17, 51.16
E=16, 27, 80.71
E=17, 19, 85.09
E=17, 28, 97.87
E=17, 27, 119.40
E=18, 25, 49.66
E=18, 29, 80.72
E=18, 38, 111.87
E=20, 37, 156.72
E=20, 39, 159.67
E=21, 30, 88.75
E=22, 36, 92.57
E=22, 23, 134.48
E=22, 34, 144.68
E=24, 33, 45.34
E=24, 25, 158.81
E=26, 32, 123.17
E=27, 37, 163.37
E=28, 39, 136.31
E=29, 38, 31.14
E=33, 36, 143.00

#Start node ID
S=11

#Goal node ID
G=12

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 27, 37, 14, 27
C=1, 4, 38
C=2, 5, 28, 28, 39

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 28, 39
EO=1, 5, 28
EO=2, 4, 38
EO=3, 14, 27
EO=4, 27, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.093750, 0.000000, 0.000000, 0.093750, 0.093750, 0.000000, 0.000000, 0.093750, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.093750, 0.000000, 0.000000, 0.093750, 0.093750, 0.000000, 0.000000, 0.093750

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=8, 27, 37, 1.000000, 0.000000
O=37, 27, 37, 1.000000, 0.000000
O=37, 14, 27, 0.700000, 0.200000
O=27, 27, 37, 1.000000, 0.000000
O=27, 14, 27, 1.000000, 0.000000
O=14, 14, 27, 1.000000, 0.000000
O=29, 4, 38, 0.900000, 0.100000
O=38, 4, 38, 1.000000, 0.000000
O=4, 4, 38, 1.000000, 0.000000
O=20, 5, 28, 0.800000, 0.200000
O=20, 28, 39, 0.700000, 0.100000
O=5, 5, 28, 1.000000, 0.000000
O=28, 5, 28, 1.000000, 0.000000
O=28, 28, 39, 1.000000, 0.000000
O=1, 28, 39, 0.800000, 0.200000
O=1, 5, 28, 0.800000, 0.200000
O=39, 28, 39, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=351.00, 46.00, 0.00, 0.00, 0.00, 0.00, 7.275845, 0.000000, 7.275845, 57.00, 143.00, 8.225261, 0.000000, 8.225261
OB=423.00, 210.00, 0.00, 0.00, 0.00, 0.00, 15.361345, 0.000000, 15.361345, 130.00, 150.00, 3.592935, 0.000000, 3.592935
OB=539.00, 379.00, 0.00, 0.00, 0.00, 0.00, 12.773163, 0.000000, 12.773163, 83.00, 127.00, 8.862873, 0.000000, 8.862873
OB=230.00, 225.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 112.00, 81.00, 100.000000, 0.000000, 100.000000
OB=182.00, 270.00, 60.00, 0.00, 60.00, 0.00, 6.991335, 0.000000, 6.991335, 120.00, 30.00, 7.814957, 0.000000, 7.814957, 100.00, 110.00, 0.064917, 0.000000, 0.064917, 20.00, 110.00, 19.580410, 0.000000, 19.580410, 0.00, 30.00, 6.757026, 0.000000, 6.757026, 60.00, 0.00, 6.991335, 0.000000, 6.991335
OB=209.00, 530.00, 0.00, 38.00, 0.00, 38.00, 169.000000, 0.000000, 169.000000, 120.00, 0.00, 100.000000, 0.000000, 100.000000
OB=436.00, 440.00, 0.00, 0.00, 0.00, 0.00, 64.000000, 0.000000, 64.000000, 100.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 64.000000, 0.000000, 64.000000

Graph5PP.pomdp

//State variables
(variables
 (loc l1 l38 l4 l39 l5 l37 l8 l11 l12 l14 l16 l20 l27 l29 l28)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob27_37 ob27_37F ob27_37B)
 (ob14_27 ob14_27F ob14_27B)
 (ob4_38 ob4_38F ob4_38B)
 (ob5_28 ob5_28F ob5_28B)
 (ob28_39 ob28_39F ob28_39B)
)

//Initial belief state
init [*
 (loc (l1 (0.0)) (l38 (0.0)) (l4 (0.0)) (l39 (0.0)) (l5 (0.0)) (l37 (0.0)) (l8 (0.0)) (l11 (1.0)) (l12 (0.0)) (l14 (0.0)) (l16 (0.0)) (l20 (0.0)) (l27 (0.0)) (l29 (0.0)) (l28 (0.0)))
 (c1 (c1F (0.5)) (c1B (0.5)))
 (c2 (c2F (0.5)) (c2B (0.5)))
 (c3 (c3F (0.5)) (c3B (0.5)))
 (c4 (c4F (0.5)) (c4B (0.5)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l1
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl1))
 (l5 (locl1))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl1))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (c4'
 (c4F (ob5_28' (ob5_28F (0.8)) (ob5_28B (0.2))))
 (c4B (ob5_28' (ob5_28F (0.19999999999999996)) (ob5_28B (0.8))))
)
 ob28_39 (c5'
 (c5F (ob28_39' (ob28_39F (0.8)) (ob28_39B (0.2))))
 (c5B (ob28_39' (ob28_39F (0.19999999999999996)) (ob28_39B (0.8))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (114.33722053644648))
 (l5 (97.98979538707079))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (1175.870421027996))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l38
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (c3
 (c3F (locl38))
 (c3B (locl4))
))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl38))
 (l11 (locl38))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl38))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (c3'
 (c3F (ob4_38' (ob4_38F (1.0)) (ob4_38B (0.0))))
 (c3B (ob4_38' (ob4_38F (0.0)) (ob4_38B (1.0))))
)
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (131.48764200486676))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (76.40026177965623))
 (l11 (1036.3455296096204))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (31.144823004794873))
 (l28 (2000.0))
)
endaction

action goto_l4
 loc (loc
 (l1 (locl1))
 (l38 (c3
 (c3F (locl4))
 (c3B (locl38))
))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl4))
 (l8 (locl4))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl4))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (c3'
 (c3F (ob4_38' (ob4_38F (1.0)) (ob4_38B (0.0))))
 (c3B (ob4_38' (ob4_38F (0.0)) (ob4_38B (1.0))))
)
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (131.48764200486676))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (115.06954418958998))
 (l8 (127.00393694685216))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (45.18849411078001))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l39
 loc (loc
 (l1 (locl39))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl39))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl39))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (c5
 (c5F (locl39))
 (c5B (locl28))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (c5'
 (c5F (ob28_39' (ob28_39F (1.0)) (ob28_39B (0.0))))
 (c5B (ob28_39' (ob28_39F (0.0)) (ob28_39B (1.0))))
)
 endobserve
 cost (loc
 (l1 (114.33722053644648))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (32.01562118716424))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (159.66527487215245))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (136.3084736911099))
)
endaction

action goto_l5
 loc (loc
 (l1 (locl5))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl5))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl5))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (c4
 (c4F (locl5))
 (c4B (locl28))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (c4'
 (c4F (ob5_28' (ob5_28F (1.0)) (ob5_28B (0.0))))
 (c4B (ob5_28' (ob5_28F (0.0)) (ob5_28B (1.0))))
)
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (97.98979538707079))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (32.01562118716424))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (140.29255147726127))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (166.02710622064097))
)
endaction

action goto_l37
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl37))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl37))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl37))
 (l27 (c1
 (c1F (locl37))
 (c1B (locl27))
))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (c1'
 (c1F (ob27_37' (ob27_37F (1.0)) (ob27_37B (0.0))))
 (c1B (ob27_37' (ob27_37F (0.0)) (ob27_37B (1.0))))
)
 ob14_27 (c2'
 (c2F (ob14_27' (ob14_27F (0.8)) (ob14_27B (0.2))))
 (c2B (ob14_27' (ob14_27F (0.30000000000000004)) (ob14_27B (0.7))))
)
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (115.06954418958998))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (13.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (156.71949463930773))
 (l27 (163.36768346279504))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l8
 loc (loc
 (l1 (locl1))
 (l38 (locl8))
 (l4 (locl8))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl8))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl8))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (c1'
 (c1F (ob27_37' (ob27_37F (1.0)) (ob27_37B (0.0))))
 (c1B (ob27_37' (ob27_37F (0.0)) (ob27_37B (1.0))))
)
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (76.40026177965623))
 (l4 (127.00393694685216))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (13.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (104.92378186092989))
 (l28 (2000.0))
)
endaction

action goto_l11
 loc (loc
 (l1 (locl11))
 (l38 (locl11))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl11))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (1175.870421027996))
 (l38 (1036.3455296096204))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (1005.2012826346657))
 (l28 (2000.0))
)
endaction

action goto_l12
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl12))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl12))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (96.17692030835673))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (304.4602938243538))
)
endaction

action goto_l14
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl14))
 (l20 (locl20))
 (l27 (c2
 (c2F (locl14))
 (c2B (locl27))
))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (c2'
 (c2F (ob14_27' (ob14_27F (1.0)) (ob14_27B (0.0))))
 (c2B (ob14_27' (ob14_27F (0.0)) (ob14_27B (1.0))))
)
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (65.80273550544841))
 (l20 (2000.0))
 (l27 (51.264022471905186))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l16
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl16))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl16))
 (l29 (locl29))
 (l28 (locl16))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (65.80273550544841))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (80.7093550959243))
 (l29 (2000.0))
 (l28 (149.02387928698937))
)
endaction

action goto_l20
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl20))
 (l39 (locl20))
 (l5 (locl20))
 (l37 (locl20))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (c4'
 (c4F (ob5_28' (ob5_28F (0.8)) (ob5_28B (0.2))))
 (c4B (ob5_28' (ob5_28F (0.19999999999999996)) (ob5_28B (0.8))))
)
 ob28_39 (c5'
 (c5F (ob28_39' (ob28_39F (0.9)) (ob28_39B (0.1))))
 (c5B (ob28_39' (ob28_39F (0.30000000000000004)) (ob28_39B (0.7))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (45.18849411078001))
 (l39 (159.66527487215245))
 (l5 (140.29255147726127))
 (l37 (156.71949463930773))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l27
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (c1
 (c1F (locl27))
 (c1B (locl37))
))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (c2
 (c2F (locl27))
 (c2B (locl14))
))
 (l16 (locl27))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl27))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (c1'
 (c1F (ob27_37' (ob27_37F (1.0)) (ob27_37B (0.0))))
 (c1B (ob27_37' (ob27_37F (0.0)) (ob27_37B (1.0))))
)
 ob14_27 (c2'
 (c2F (ob14_27' (ob14_27F (1.0)) (ob14_27B (0.0))))
 (c2B (ob14_27' (ob14_27F (0.0)) (ob14_27B (1.0))))
)
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (163.36768346279504))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (51.264022471905186))
 (l16 (80.7093550959243))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (217.26993707419854))
)
endaction

action goto_l29
 loc (loc
 (l1 (locl1))
 (l38 (locl29))
 (l4 (locl4))
 (l39 (locl39))
 (l5 (locl5))
 (l37 (locl37))
 (l8 (locl29))
 (l11 (locl29))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl16))
 (l20 (locl20))
 (l27 (locl27))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (c3'
 (c3F (ob4_38' (ob4_38F (0.9)) (ob4_38B (0.1))))
 (c3B (ob4_38' (ob4_38F (0.09999999999999998)) (ob4_38B (0.9))))
)
 ob5_28 (ob5_28' (ob5_28F (0.5)) (ob5_28B (0.5)))
 ob28_39 (ob28_39' (ob28_39F (0.5)) (ob28_39B (0.5)))
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (31.144823004794873))
 (l4 (2000.0))
 (l39 (2000.0))
 (l5 (2000.0))
 (l37 (2000.0))
 (l8 (104.92378186092989))
 (l11 (1005.2012826346657))
 (l12 (0))
 (l14 (2000.0))
 (l16 (2000.0))
 (l20 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l1 (locl1))
 (l38 (locl38))
 (l4 (locl4))
 (l39 (c5
 (c5F (locl28))
 (c5B (locl39))
))
 (l5 (c4
 (c4F (locl28))
 (c4B (locl5))
))
 (l37 (locl37))
 (l8 (locl8))
 (l11 (locl11))
 (l12 (locl12))
 (l14 (locl14))
 (l16 (locl28))
 (l20 (locl20))
 (l27 (locl28))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob27_37 (ob27_37' (ob27_37F (0.5)) (ob27_37B (0.5)))
 ob14_27 (ob14_27' (ob14_27F (0.5)) (ob14_27B (0.5)))
 ob4_38 (ob4_38' (ob4_38F (0.5)) (ob4_38B (0.5)))
 ob5_28 (c4'
 (c4F (ob5_28' (ob5_28F (1.0)) (ob5_28B (0.0))))
 (c4B (ob5_28' (ob5_28F (0.0)) (ob5_28B (1.0))))
)
 ob28_39 (c5'
 (c5F (ob28_39' (ob28_39F (1.0)) (ob28_39B (0.0))))
 (c5B (ob28_39' (ob28_39F (0.0)) (ob28_39B (1.0))))
)
 endobserve
 cost (loc
 (l1 (2000.0))
 (l38 (2000.0))
 (l4 (2000.0))
 (l39 (136.3084736911099))
 (l5 (166.02710622064097))
 (l37 (2000.0))
 (l8 (2000.0))
 (l11 (2000.0))
 (l12 (0))
 (l14 (2000.0))
 (l16 (149.02387928698937))
 (l20 (2000.0))
 (l27 (217.26993707419854))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph5_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 568.00, 186.00, 254.98
N=1, 68.00, 404.00, 272.34
N=2, 450.00, 31.00, 74.63
N=3, 77.00, 71.00, 186.21
N=4, 319.00, 355.00, 290.20
N=5, 157.00, 445.00, 172.72
N=6, 692.00, 224.00, 102.42
N=7, 304.00, 173.00, 5.66
N=8, 446.00, 354.00, 141.70
N=9, 564.00, 147.00, 60.47
N=10, 655.00, 155.00, 88.27
N=11, 678.00, 400.00, 171.25
N=12, 506.00, 608.00, 300.12
N=13, 204.00, 154.00, 242.99
N=14, 419.00, 567.00, 41.19
N=15, 70.00, 208.00, 123.50
N=16, 356.00, 586.00, 206.12
N=17, 305.00, 590.00, 49.17
N=18, 352.00, 197.00, 32.81
N=19, 385.00, 619.00, 11.27
N=20, 278.00, 374.00, 152.72
N=21, 48.00, 691.00, 192.28
N=22, 459.00, 66.00, 225.43
N=23, 585.00, 19.00, 23.16
N=24, 203.00, 58.00, 337.83
N=25, 331.00, 152.00, 174.28
N=26, 29.00, 173.00, 46.08
N=27, 401.00, 519.00, 10.96
N=28, 208.00, 603.00, 298.87
N=29, 406.00, 257.00, 222.75
N=30, 97.00, 617.00, 168.83
N=31, 478.00, 462.00, 157.90
N=32, 90.00, 280.00, 109.49
N=33, 233.00, 24.00, 356.61
N=34, 473.00, 210.00, 54.36
N=35, 636.00, 242.00, 333.80
N=36, 376.00, 25.00, 315.46
N=37, 434.00, 359.00, 81.48
N=38, 427.00, 280.00, 339.47
N=39, 156.00, 477.00, 246.71

#Edge data
#E=Node number 1, Node number 2, cost
E=1, 5, 97.99
E=1, 11, 1175.87
E=1, 39, 114.34
E=4, 38, 131.49
E=4, 8, 127.00
E=4, 20, 45.19
E=4, 37, 115.07
E=5, 39, 32.02
E=5, 28, 166.03
E=5, 20, 140.29
E=8, 38, 76.40
E=8, 37, 13.00
E=8, 29, 104.92
E=11, 38, 1036.35
E=11, 29, 1005.20
E=12, 14, 96.18
E=12, 28, 304.46
E=14, 27, 51.26
E=14, 16, 65.80
E=16, 27, 80.71
E=16, 28, 149.02
E=20, 39, 159.67
E=20, 37, 156.72
E=27, 37, 163.37
E=27, 28, 217.27
E=28, 39, 136.31
E=29, 38, 31.14

#Start node ID
S=11

#Goal node ID
G=12

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 27, 37, 14, 27
C=1, 4, 38
C=2, 5, 28, 28, 39

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 28, 39
EO=1, 5, 28
EO=2, 4, 38
EO=3, 14, 27
EO=4, 27, 37

#Starting belief state, starting with the all F combination and working through to all B
B=0.093750, 0.000000, 0.000000, 0.093750, 0.093750, 0.000000, 0.000000, 0.093750, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.031250, 0.000000, 0.000000, 0.031250, 0.093750, 0.000000, 0.000000, 0.093750, 0.093750, 0.000000, 0.000000, 0.093750

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=8, 27, 37, 1.000000, 0.000000
O=37, 27, 37, 1.000000, 0.000000
O=37, 14, 27, 0.700000, 0.200000
O=27, 27, 37, 1.000000, 0.000000
O=27, 14, 27, 1.000000, 0.000000
O=14, 14, 27, 1.000000, 0.000000
O=29, 4, 38, 0.900000, 0.100000
O=38, 4, 38, 1.000000, 0.000000
O=4, 4, 38, 1.000000, 0.000000
O=20, 5, 28, 0.800000, 0.200000
O=20, 28, 39, 0.700000, 0.100000
O=5, 5, 28, 1.000000, 0.000000
O=28, 5, 28, 1.000000, 0.000000
O=28, 28, 39, 1.000000, 0.000000
O=1, 28, 39, 0.800000, 0.200000
O=1, 5, 28, 0.800000, 0.200000
O=39, 28, 39, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=351.00, 46.00, 0.00, 0.00, 0.00, 0.00, 7.275845, 0.000000, 7.275845, 57.00, 143.00, 8.225261, 0.000000, 8.225261
OB=423.00, 210.00, 0.00, 0.00, 0.00, 0.00, 15.361345, 0.000000, 15.361345, 130.00, 150.00, 3.592935, 0.000000, 3.592935
OB=539.00, 379.00, 0.00, 0.00, 0.00, 0.00, 12.773163, 0.000000, 12.773163, 83.00, 127.00, 8.862873, 0.000000, 8.862873
OB=230.00, 225.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 112.00, 81.00, 100.000000, 0.000000, 100.000000
OB=182.00, 270.00, 60.00, 0.00, 60.00, 0.00, 6.991335, 0.000000, 6.991335, 120.00, 30.00, 7.814957, 0.000000, 7.814957, 100.00, 110.00, 0.064917, 0.000000, 0.064917, 20.00, 110.00, 19.580410, 0.000000, 19.580410, 0.00, 30.00, 6.757026, 0.000000, 6.757026, 60.00, 0.00, 6.991335, 0.000000, 6.991335
OB=209.00, 530.00, 0.00, 38.00, 0.00, 38.00, 169.000000, 0.000000, 169.000000, 120.00, 0.00, 100.000000, 0.000000, 100.000000
OB=436.00, 440.00, 0.00, 0.00, 0.00, 0.00, 64.000000, 0.000000, 64.000000, 100.00, 0.00, 25.000000, 0.000000, 25.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 64.000000, 0.000000, 64.000000

Graph6.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 324.00, 461.00, 232.39
N=1, 600.00, 89.00, 358.64
N=2, 606.00, 339.00, 128.59
N=3, 343.00, 449.00, 322.96
N=4, 284.00, 530.00, 266.58
N=5, 327.00, 686.00, 257.00
N=6, 443.00, 245.00, 101.89
N=7, 5.00, 335.00, 317.47
N=8, 68.00, 208.00, 68.81
N=9, 615.00, 18.00, 91.40
N=10, 10.00, 550.00, 326.52
N=11, 620.00, 442.00, 140.05
N=12, 443.00, 688.00, 176.11
N=13, 440.00, 310.00, 233.44
N=14, 184.00, 594.00, 254.80
N=15, 446.00, 571.00, 138.37
N=16, 585.00, 353.00, 171.99
N=17, 34.00, 276.00, 183.71
N=18, 94.00, 656.00, 284.67
N=19, 482.00, 605.00, 73.25
N=20, 381.00, 394.00, 255.01
N=21, 376.00, 592.00, 21.92
N=22, 286.00, 219.00, 180.11
N=23, 453.00, 266.00, 237.49
N=24, 557.00, 135.00, 320.27
N=25, 99.00, 378.00, 255.21
N=26, 125.00, 86.00, 151.41
N=27, 679.00, 531.00, 116.05
N=28, 162.00, 347.00, 142.45
N=29, 53.00, 318.00, 45.98
N=30, 404.00, 636.00, 267.50
N=31, 297.00, 460.00, 14.89
N=32, 587.00, 232.00, 169.92
N=33, 535.00, 477.00, 25.54
N=34, 294.00, 59.00, 182.50
N=35, 618.00, 506.00, 307.72
N=36, 332.00, 279.00, 330.98
N=37, 140.00, 127.00, 258.93
N=38, 122.00, 307.00, 27.92
N=39, 231.00, 287.00, 347.87

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 3, 22.47
E=0, 31, 27.02
E=0, 4, 79.76
E=0, 20, 87.97
E=1, 24, 62.97
E=1, 9, 72.57
E=1, 32, 143.59
E=2, 16, 25.24
E=2, 11, 103.95
E=2, 32, 108.67
E=2, 35, 167.43
E=3, 31, 47.30
E=3, 20, 66.85
E=3, 4, 100.21
E=4, 31, 71.20
E=4, 21, 110.94
E=5, 30, 91.81
E=5, 21, 106.00
E=5, 12, 116.02
E=5, 15, 165.49
E=6, 23, 23.26
E=6, 13, 65.07
E=6, 36, 116.09
E=6, 32, 144.59
E=7, 29, 50.92
E=7, 17, 65.74
E=7, 25, 103.37
E=7, 38, 120.30
E=8, 17, 76.03
E=8, 37, 108.37
E=8, 29, 111.02
E=8, 38, 112.77
E=9, 24, 130.59
E=10, 18, 135.25
E=10, 14, 179.48
E=10, 25, 193.66
E=11, 35, 64.03
E=11, 33, 91.92
E=11, 16, 95.63
E=12, 30, 65.00
E=12, 19, 91.71
E=12, 15, 117.04
E=13, 23, 45.88
E=13, 20, 102.65
E=13, 36, 112.36
E=14, 18, 109.29
E=14, 31, 175.29
E=14, 21, 192.01
E=15, 19, 49.52
E=15, 21, 73.08
E=16, 32, 121.02
E=16, 35, 156.52
E=17, 38, 93.30
E=17, 25, 120.95
E=19, 30, 83.93
E=20, 36, 125.00
E=22, 36, 75.60
E=22, 39, 87.46
E=22, 34, 160.20
E=22, 37, 172.57
E=23, 24, 167.26
E=25, 28, 70.21
E=26, 37, 43.66
E=26, 34, 171.14
E=27, 35, 65.92
E=27, 33, 153.79
E=28, 38, 56.57
E=28, 39, 91.44
E=28, 29, 112.79
E=29, 39, 180.68
E=34, 37, 168.34

#Start node ID
S=27

#Goal node ID
G=19

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 13, 20, 0, 20, 3, 20
C=1, 14, 31
C=2, 25, 28

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 25, 28
EO=1, 14, 31
EO=2, 3, 20
EO=3, 0, 20
EO=4, 13, 20

#Starting belief state, starting with the all F combination and working through to all B
B=0.141016, 0.084609, 0.084609, 0.141016, 0.000391, 0.000234, 0.000234, 0.000391, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.000391, 0.000234, 0.000234, 0.000391, 0.141016, 0.084609, 0.084609, 0.141016

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=32, 13, 20, 0.700000, 0.300000
O=13, 13, 20, 1.000000, 0.000000
O=13, 0, 20, 0.800000, 0.200000
O=13, 3, 20, 0.900000, 0.100000
O=20, 13, 20, 1.000000, 0.000000
O=20, 0, 20, 1.000000, 0.000000
O=20, 3, 20, 1.000000, 0.000000
O=23, 13, 20, 0.900000, 0.100000
O=0, 0, 20, 1.000000, 0.000000
O=3, 3, 20, 1.000000, 0.000000
O=3, 14, 31, 0.900000, 0.100000
O=10, 14, 31, 0.800000, 0.350000
O=14, 14, 31, 1.000000, 0.000000
O=31, 14, 31, 1.000000, 0.000000
O=39, 25, 28, 0.700000, 0.100000
O=28, 25, 28, 1.000000, 0.000000
O=25, 25, 28, 1.000000, 0.000000
O=7, 25, 28, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=480.00, 17.00, 60.00, 0.00, 60.00, 0.00, 12.870644, 0.000000, 12.870644, 120.00, 30.00, 0.009145, 0.000000, 0.009145, 100.00, 110.00, 11.981677, 0.000000, 11.981677, 20.00, 110.00, 2.036274, 0.000000, 2.036274, 0.00, 30.00, 23.133949, 0.000000, 23.133949, 60.00, 0.00, 12.870644, 0.000000, 12.870644
OB=389.00, 114.00, 60.00, 0.00, 60.00, 0.00, 21.395523, 0.000000, 21.395523, 120.00, 30.00, 28.325470, 0.000000, 28.325470, 100.00, 110.00, 1.408621, 0.000000, 1.408621, 20.00, 110.00, 23.977312, 0.000000, 23.977312, 0.00, 30.00, 31.210124, 0.000000, 31.210124, 60.00, 0.00, 21.395523, 0.000000, 21.395523
OB=138.00, 383.00, 0.00, 0.00, 0.00, 0.00, 225.000000, 0.000000, 225.000000, 76.00, 147.00, 144.000000, 0.000000, 144.000000
OB=435.00, 346.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=606.00, 662.00, 104.00, 122.00, 104.00, 122.00, 99.296869, 0.000000, 99.296869, 0.00, 0.00, 4.179845, 0.000000, 4.179845
OB=300.00, 300.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 41.00, 117.00, 100.000000, 0.000000, 100.000000
OB=482.00, 512.00, 0.00, 46.00, 0.00, 46.00, 25.000000, 0.000000, 25.000000, 12.00, 0.00, 25.000000, 0.000000, 25.000000
OB=160.00, 12.00, 147.00, 0.00, 147.00, 0.00, 25.000000, 0.000000, 25.000000, 0.00, 115.00, 25.000000, 0.000000, 25.000000

Graph6PP.pomdp

//State variables
(variables
 (loc l0 l32 l3 l4 l39 l36 l7 l10 l13 l14 l19 l20 l23 l25 l27 l28 l31)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
)

//Observations
(observations
 (ob13_20 ob13_20F ob13_20B)
 (ob0_20 ob0_20F ob0_20B)
 (ob3_20 ob3_20F ob3_20B)
 (ob14_31 ob14_31F ob14_31B)
 (ob25_28 ob25_28F ob25_28B)
)

//Initial belief state
init [*
 (loc (l0 (0.0)) (l32 (0.0)) (l3 (0.0)) (l4 (0.0)) (l39 (0.0)) (l36 (0.0)) (l7 (0.0)) (l10 (0.0)) (l13 (0.0)) (l14 (0.0)) (l19 (0.0)) (l20 (0.0)) (l23 (0.0)) (l25 (0.0)) (l27 (1.0)) (l28 (0.0)) (l31 (0.0)))
 (c1 (c1F (0.5)) (c1B (0.5)))
 (c2 (c2F (0.5)) (c2B (0.5)))
 (c3 (c3F (0.5)) (c3B (0.5)))
 (c4 (c4F (0.5)) (c4B (0.5)))
 (c5 (c5F (0.5)) (c5B (0.5)))
]

//Actions and costs
action goto_l0
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl0))
 (l4 (locl0))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (c2
 (c2F (locl0))
 (c2B (locl20))
))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl0))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (c2'
 (c2F (ob0_20' (ob0_20F (1.0)) (ob0_20B (0.0))))
 (c2B (ob0_20' (ob0_20F (0.0)) (ob0_20B (1.0))))
)
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (22.47220505424423))
 (l4 (79.75587752636166))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (87.96590248499699))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (27.018512172212592))
)
endaction

action goto_l32
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl32))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl32))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl32))
 (l25 (locl25))
 (l27 (locl32))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (c1'
 (c1F (ob13_20' (ob13_20F (0.7)) (ob13_20B (0.3))))
 (c1B (ob13_20' (ob13_20F (0.30000000000000004)) (ob13_20B (0.7))))
)
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (260.6760967281241))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (209.65480871545765))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (167.8450214746939))
 (l25 (2000.0))
 (l27 (342.0286054211091))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l3
 loc (loc
 (l0 (locl3))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl3))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (c3
 (c3F (locl3))
 (c3B (locl20))
))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl3))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (c3'
 (c3F (ob3_20' (ob3_20F (1.0)) (ob3_20B (0.0))))
 (c3B (ob3_20' (ob3_20F (0.0)) (ob3_20B (1.0))))
)
 ob14_31 (c4'
 (c4F (ob14_31' (ob14_31F (0.9)) (ob14_31B (0.1))))
 (c4B (ob14_31' (ob14_31F (0.09999999999999998)) (ob14_31B (0.9))))
)
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (22.47220505424423))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (100.20977996183805))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (66.85057965343307))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (47.29693436154187))
)
endaction

action goto_l4
 loc (loc
 (l0 (locl4))
 (l32 (locl32))
 (l3 (locl4))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl4))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl4))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (79.75587752636166))
 (l32 (2000.0))
 (l3 (100.20977996183805))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (302.9518423709811))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (71.19691004531025))
)
endaction

action goto_l39
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl39))
 (l7 (locl39))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl39))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (c5'
 (c5F (ob25_28' (ob25_28F (0.9)) (ob25_28B (0.1))))
 (c5B (ob25_28' (ob25_28F (0.30000000000000004)) (ob25_28B (0.7))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (163.0627943020881))
 (l7 (231.60078207876495))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (91.43850392476902))
 (l31 (2000.0))
)
endaction

action goto_l36
 loc (loc
 (l0 (locl0))
 (l32 (locl36))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl36))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl36))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl36))
 (l23 (locl36))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (260.6760967281241))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (163.0627943020881))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (112.36102527122117))
 (l14 (2000.0))
 (l19 (0))
 (l20 (125.00399993600205))
 (l23 (139.34988865188222))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l7
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl7))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl7))
 (l27 (locl27))
 (l28 (locl7))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (c5'
 (c5F (ob25_28' (ob25_28F (0.8)) (ob25_28B (0.2))))
 (c5B (ob25_28' (ob25_28F (0.19999999999999996)) (ob25_28B (0.8))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (231.60078207876495))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (103.36827366266692))
 (l27 (2000.0))
 (l28 (163.71335190264426))
 (l31 (2000.0))
)
endaction

action goto_l10
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl10))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl10))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (c4'
 (c4F (ob14_31' (ob14_31F (0.65)) (ob14_31B (0.35))))
 (c4B (ob14_31' (ob14_31F (0.19999999999999996)) (ob14_31B (0.8))))
)
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (179.47701802737865))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (193.6620768245554))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l13
 loc (loc
 (l0 (locl0))
 (l32 (locl13))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl13))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (c1
 (c1F (locl13))
 (c1B (locl20))
))
 (l23 (locl13))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (c1'
 (c1F (ob13_20' (ob13_20F (1.0)) (ob13_20B (0.0))))
 (c1B (ob13_20' (ob13_20F (0.0)) (ob13_20B (1.0))))
)
 ob0_20 (c2'
 (c2F (ob0_20' (ob0_20F (0.8)) (ob0_20B (0.2))))
 (c2B (ob0_20' (ob0_20F (0.19999999999999996)) (ob0_20B (0.8))))
)
 ob3_20 (c3'
 (c3F (ob3_20' (ob3_20F (0.9)) (ob3_20B (0.1))))
 (c3B (ob3_20' (ob3_20F (0.09999999999999998)) (ob3_20B (0.9))))
)
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (209.65480871545765))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (112.36102527122117))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (102.6498904042279))
 (l23 (45.880278987817846))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l14
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl14))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl14))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (c4
 (c4F (locl14))
 (c4B (locl31))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (c4'
 (c4F (ob14_31' (ob14_31F (1.0)) (ob14_31B (0.0))))
 (c4B (ob14_31' (ob14_31F (0.0)) (ob14_31B (1.0))))
)
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (302.9518423709811))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (179.47701802737865))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (175.28548142958104))
)
endaction

action goto_l19
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl19))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl19))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (233.54124516180298))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (314.6102355590455))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l20
 loc (loc
 (l0 (c2
 (c2F (locl20))
 (c2B (locl0))
))
 (l32 (locl32))
 (l3 (c3
 (c3F (locl20))
 (c3B (locl3))
))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl20))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (c1
 (c1F (locl20))
 (c1B (locl13))
))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (c1'
 (c1F (ob13_20' (ob13_20F (1.0)) (ob13_20B (0.0))))
 (c1B (ob13_20' (ob13_20F (0.0)) (ob13_20B (1.0))))
)
 ob0_20 (c2'
 (c2F (ob0_20' (ob0_20F (1.0)) (ob0_20B (0.0))))
 (c2B (ob0_20' (ob0_20F (0.0)) (ob0_20B (1.0))))
)
 ob3_20 (c3'
 (c3F (ob3_20' (ob3_20F (1.0)) (ob3_20B (0.0))))
 (c3B (ob3_20' (ob3_20F (0.0)) (ob3_20B (1.0))))
)
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (87.96590248499699))
 (l32 (2000.0))
 (l3 (66.85057965343307))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (125.00399993600205))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (102.6498904042279))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l23
 loc (loc
 (l0 (locl0))
 (l32 (locl23))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl23))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl23))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (c1'
 (c1F (ob13_20' (ob13_20F (0.9)) (ob13_20B (0.1))))
 (c1B (ob13_20' (ob13_20F (0.09999999999999998)) (ob13_20B (0.9))))
)
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (167.8450214746939))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (139.34988865188222))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (45.880278987817846))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l25
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl25))
 (l10 (locl25))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (c5
 (c5F (locl25))
 (c5B (locl28))
))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (c5'
 (c5F (ob25_28' (ob25_28F (1.0)) (ob25_28B (0.0))))
 (c5B (ob25_28' (ob25_28F (0.0)) (ob25_28B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (103.36827366266692))
 (l10 (193.6620768245554))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (70.21395872616783))
 (l31 (2000.0))
)
endaction

action goto_l27
 loc (loc
 (l0 (locl0))
 (l32 (locl27))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (342.0286054211091))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l28
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l3 (locl3))
 (l4 (locl4))
 (l39 (locl28))
 (l36 (locl36))
 (l7 (locl28))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (locl14))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (c5
 (c5F (locl28))
 (c5B (locl25))
))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (ob14_31' (ob14_31F (0.5)) (ob14_31B (0.5)))
 ob25_28 (c5'
 (c5F (ob25_28' (ob25_28F (1.0)) (ob25_28B (0.0))))
 (c5B (ob25_28' (ob25_28F (0.0)) (ob25_28B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l3 (2000.0))
 (l4 (2000.0))
 (l39 (91.43850392476902))
 (l36 (2000.0))
 (l7 (163.71335190264426))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (70.21395872616783))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

action goto_l31
 loc (loc
 (l0 (locl31))
 (l32 (locl32))
 (l3 (locl31))
 (l4 (locl31))
 (l39 (locl39))
 (l36 (locl36))
 (l7 (locl7))
 (l10 (locl10))
 (l13 (locl13))
 (l14 (c4
 (c4F (locl31))
 (c4B (locl14))
))
 (l19 (locl19))
 (l20 (locl20))
 (l23 (locl23))
 (l25 (locl25))
 (l27 (locl27))
 (l28 (locl28))
 (l31 (locl31))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 observe
 ob13_20 (ob13_20' (ob13_20F (0.5)) (ob13_20B (0.5)))
 ob0_20 (ob0_20' (ob0_20F (0.5)) (ob0_20B (0.5)))
 ob3_20 (ob3_20' (ob3_20F (0.5)) (ob3_20B (0.5)))
 ob14_31 (c4'
 (c4F (ob14_31' (ob14_31F (1.0)) (ob14_31B (0.0))))
 (c4B (ob14_31' (ob14_31F (0.0)) (ob14_31B (1.0))))
)
 ob25_28 (ob25_28' (ob25_28F (0.5)) (ob25_28B (0.5)))
 endobserve
 cost (loc
 (l0 (27.018512172212592))
 (l32 (2000.0))
 (l3 (47.29693436154187))
 (l4 (71.19691004531025))
 (l39 (2000.0))
 (l36 (2000.0))
 (l7 (2000.0))
 (l10 (2000.0))
 (l13 (2000.0))
 (l14 (175.28548142958104))
 (l19 (0))
 (l20 (2000.0))
 (l23 (2000.0))
 (l25 (2000.0))
 (l27 (2000.0))
 (l28 (2000.0))
 (l31 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph6_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 324.00, 461.00, 232.39
N=1, 600.00, 89.00, 358.64
N=2, 606.00, 339.00, 128.59
N=3, 343.00, 449.00, 322.96
N=4, 284.00, 530.00, 266.58
N=5, 327.00, 686.00, 257.00
N=6, 443.00, 245.00, 101.89
N=7, 5.00, 335.00, 317.47
N=8, 68.00, 208.00, 68.81
N=9, 615.00, 18.00, 91.40
N=10, 10.00, 550.00, 326.52
N=11, 620.00, 442.00, 140.05
N=12, 443.00, 688.00, 176.11
N=13, 440.00, 310.00, 233.44
N=14, 184.00, 594.00, 254.80
N=15, 446.00, 571.00, 138.37
N=16, 585.00, 353.00, 171.99
N=17, 34.00, 276.00, 183.71
N=18, 94.00, 656.00, 284.67
N=19, 482.00, 605.00, 73.25
N=20, 381.00, 394.00, 255.01
N=21, 376.00, 592.00, 21.92
N=22, 286.00, 219.00, 180.11
N=23, 453.00, 266.00, 237.49
N=24, 557.00, 135.00, 320.27
N=25, 99.00, 378.00, 255.21
N=26, 125.00, 86.00, 151.41
N=27, 679.00, 531.00, 116.05
N=28, 162.00, 347.00, 142.45
N=29, 53.00, 318.00, 45.98
N=30, 404.00, 636.00, 267.50
N=31, 297.00, 460.00, 14.89
N=32, 587.00, 232.00, 169.92
N=33, 535.00, 477.00, 25.54
N=34, 294.00, 59.00, 182.50
N=35, 618.00, 506.00, 307.72
N=36, 332.00, 279.00, 330.98
N=37, 140.00, 127.00, 258.93
N=38, 122.00, 307.00, 27.92
N=39, 231.00, 287.00, 347.87

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 20, 87.97
E=0, 3, 22.47
E=0, 4, 79.76
E=0, 31, 27.02
E=3, 20, 66.85
E=3, 4, 100.21
E=3, 31, 47.30
E=4, 14, 302.95
E=4, 19, 233.54
E=4, 31, 71.20
E=7, 39, 231.60
E=7, 25, 103.37
E=7, 28, 163.71
E=10, 14, 179.48
E=10, 25, 193.66
E=13, 32, 209.65
E=13, 36, 112.36
E=13, 20, 102.65
E=13, 23, 45.88
E=14, 31, 175.29
E=14, 19, 314.61
E=20, 36, 125.00
E=23, 32, 167.85
E=23, 36, 139.35
E=25, 28, 70.21
E=27, 32, 342.03
E=28, 39, 91.44
E=32, 36, 260.68
E=36, 39, 163.06

#Start node ID
S=27

#Goal node ID
G=19

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 13, 20, 0, 20, 3, 20
C=1, 14, 31
C=2, 25, 28

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 25, 28
EO=1, 14, 31
EO=2, 3, 20
EO=3, 0, 20
EO=4, 13, 20

#Starting belief state, starting with the all F combination and working through to all B
B=0.141016, 0.084609, 0.084609, 0.141016, 0.000391, 0.000234, 0.000234, 0.000391, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.007422, 0.004453, 0.004453, 0.007422, 0.000391, 0.000234, 0.000234, 0.000391, 0.141016, 0.084609, 0.084609, 0.141016

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=32, 13, 20, 0.700000, 0.300000
O=13, 13, 20, 1.000000, 0.000000
O=13, 0, 20, 0.800000, 0.200000
O=13, 3, 20, 0.900000, 0.100000
O=20, 13, 20, 1.000000, 0.000000
O=20, 0, 20, 1.000000, 0.000000
O=20, 3, 20, 1.000000, 0.000000
O=23, 13, 20, 0.900000, 0.100000
O=0, 0, 20, 1.000000, 0.000000
O=3, 3, 20, 1.000000, 0.000000
O=3, 14, 31, 0.900000, 0.100000
O=10, 14, 31, 0.800000, 0.350000
O=14, 14, 31, 1.000000, 0.000000
O=31, 14, 31, 1.000000, 0.000000
O=39, 25, 28, 0.700000, 0.100000
O=28, 25, 28, 1.000000, 0.000000
O=25, 25, 28, 1.000000, 0.000000
O=7, 25, 28, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=480.00, 17.00, 60.00, 0.00, 60.00, 0.00, 12.870644, 0.000000, 12.870644, 120.00, 30.00, 0.009145, 0.000000, 0.009145, 100.00, 110.00, 11.981677, 0.000000, 11.981677, 20.00, 110.00, 2.036274, 0.000000, 2.036274, 0.00, 30.00, 23.133949, 0.000000, 23.133949, 60.00, 0.00, 12.870644, 0.000000, 12.870644
OB=389.00, 114.00, 60.00, 0.00, 60.00, 0.00, 21.395523, 0.000000, 21.395523, 120.00, 30.00, 28.325470, 0.000000, 28.325470, 100.00, 110.00, 1.408621, 0.000000, 1.408621, 20.00, 110.00, 23.977312, 0.000000, 23.977312, 0.00, 30.00, 31.210124, 0.000000, 31.210124, 60.00, 0.00, 21.395523, 0.000000, 21.395523
OB=138.00, 383.00, 0.00, 0.00, 0.00, 0.00, 225.000000, 0.000000, 225.000000, 76.00, 147.00, 144.000000, 0.000000, 144.000000
OB=435.00, 346.00, 0.00, 0.00, 0.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 0.00, 100.000000, 0.000000, 100.000000, 100.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 100.00, 100.000000, 0.000000, 100.000000, 0.00, 0.00, 100.000000, 0.000000, 100.000000
OB=606.00, 662.00, 104.00, 122.00, 104.00, 122.00, 99.296869, 0.000000, 99.296869, 0.00, 0.00, 4.179845, 0.000000, 4.179845
OB=300.00, 300.00, 0.00, 0.00, 0.00, 0.00, 25.000000, 0.000000, 25.000000, 41.00, 117.00, 100.000000, 0.000000, 100.000000
OB=482.00, 512.00, 0.00, 46.00, 0.00, 46.00, 25.000000, 0.000000, 25.000000, 12.00, 0.00, 25.000000, 0.000000, 25.000000
OB=160.00, 12.00, 147.00, 0.00, 147.00, 0.00, 25.000000, 0.000000, 25.000000, 0.00, 115.00, 25.000000, 0.000000, 25.000000

Graph7.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 642.00, 94.00, 5.51
N=1, 315.00, 285.00, 96.78
N=2, 494.00, 85.00, 340.88
N=3, 133.00, 225.00, 204.19
N=4, 175.00, 374.00, 199.62
N=5, 538.00, 380.00, 177.80
N=6, 439.00, 597.00, 326.32
N=7, 290.00, 94.00, 245.17
N=8, 77.00, 264.00, 215.49
N=9, 395.00, 586.00, 132.57
N=10, 117.00, 35.00, 2.68
N=11, 408.00, 657.00, 354.35
N=12, 657.00, 618.00, 180.00
N=13, 406.00, 159.00, 59.66
N=14, 412.00, 309.00, 22.07
N=15, 204.00, 262.00, 140.68
N=16, 179.00, 591.00, 344.63
N=17, 181.00, 628.00, 91.87
N=18, 229.00, 112.00, 72.10
N=19, 205.00, 431.00, 34.67
N=20, 450.00, 605.00, 190.87
N=21, 185.00, 238.00, 172.86
N=22, 309.00, 377.00, 218.25
N=23, 433.00, 67.00, 143.41
N=24, 81.00, 559.00, 32.04
N=25, 121.00, 219.00, 118.14
N=26, 54.00, 697.00, 271.49
N=27, 387.00, 249.00, 49.30
N=28, 252.00, 562.00, 51.51
N=29, 439.00, 121.00, 67.37
N=30, 137.00, 310.00, 209.68
N=31, 164.00, 628.00, 347.23
N=32, 149.00, 187.00, 222.21
N=33, 367.00, 252.00, 211.92
N=34, 456.00, 339.00, 307.90
N=35, 451.00, 691.00, 184.50
N=36, 318.00, 283.00, 232.85
N=37, 25.00, 309.00, 234.35
N=38, 520.00, 512.00, 55.83
N=39, 5.00, 241.00, 268.04

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 2, 148.27
E=0, 29, 204.79
E=0, 23, 210.74
E=1, 36, 3.61
E=1, 27, 80.50
E=1, 22, 92.20
E=1, 14, 99.92
E=1, 15, 113.36
E=2, 23, 63.60
E=2, 29, 65.73
E=2, 13, 114.98
E=2, 7, 204.20
E=3, 25, 13.42
E=3, 32, 41.23
E=3, 21, 53.60
E=3, 8, 68.24
E=3, 15, 80.06
E=4, 30, 74.43
E=4, 15, 115.69
E=4, 22, 134.03
E=4, 21, 136.37
E=4, 8, 147.32
E=5, 34, 91.68
E=5, 38, 133.22
E=5, 14, 144.63
E=5, 27, 199.90
E=5, 33, 213.60
E=6, 20, 13.60
E=6, 9, 45.35
E=6, 11, 67.54
E=6, 35, 94.76
E=6, 38, 117.41
E=7, 18, 63.60
E=7, 13, 132.97
E=7, 23, 145.53
E=7, 29, 151.43
E=8, 25, 62.94
E=8, 37, 68.77
E=8, 39, 75.58
E=9, 20, 58.19
E=9, 11, 72.18
E=9, 35, 119.00
E=9, 28, 145.00
E=10, 18, 135.92
E=10, 32, 155.33
E=10, 25, 184.04
E=10, 21, 214.09
E=10, 39, 234.48
E=11, 35, 54.82
E=11, 20, 66.84
E=11, 28, 182.65
E=12, 38, 173.22
E=12, 20, 207.41
E=12, 35, 218.55
E=13, 29, 50.33
E=13, 27, 91.98
E=13, 23, 95.88
E=14, 34, 53.25
E=14, 27, 65.00
E=14, 33, 72.62
E=15, 21, 30.61
E=15, 30, 82.42
E=16, 17, 37.05
E=16, 31, 39.92
E=16, 28, 78.55
E=16, 24, 103.09
E=16, 19, 162.10
E=17, 31, 17.00
E=17, 28, 96.94
E=17, 24, 121.49
E=17, 26, 144.53
E=18, 23, 208.90
E=19, 28, 139.18
E=19, 24, 178.21
E=19, 21, 194.03
E=19, 31, 201.22
E=20, 35, 86.01
E=22, 36, 94.43
E=22, 33, 137.80
E=22, 27, 149.89
E=24, 31, 107.94
E=24, 26, 140.62
E=25, 32, 42.52
E=25, 30, 92.40
E=26, 31, 129.85
E=29, 33, 149.48
E=30, 37, 112.00
E=30, 32, 123.58
E=32, 39, 153.79
E=33, 34, 124.46
E=34, 36, 148.93
E=34, 38, 184.46
E=36, 37, 294.15
E=37, 39, 70.88

#Start node ID
S=0

#Goal node ID
G=35

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 5, 38, 12, 38
C=1, 29, 33, 13, 27

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 13, 27
EO=1, 29, 33
EO=2, 12, 38
EO=3, 5, 38

#Starting belief state, starting with the all F combination and working through to all B
B=0.153683, 0.020871, 0.020871, 0.229576, 0.027121, 0.003683, 0.003683, 0.040513, 0.027121, 0.003683, 0.003683, 0.040513, 0.153683, 0.020871, 0.020871, 0.229576

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=34, 5, 38, 0.800000, 0.200000
O=34, 12, 38, 0.600000, 0.300000
O=5, 5, 38, 1.000000, 0.000000
O=38, 5, 38, 1.000000, 0.000000
O=38, 12, 38, 1.000000, 0.000000
O=12, 12, 38, 1.000000, 0.000000
O=2, 29, 33, 0.900000, 0.100000
O=2, 13, 27, 0.800000, 0.200000
O=29, 29, 33, 1.000000, 0.000000
O=29, 13, 27, 1.000000, 0.000000
O=33, 29, 33, 1.000000, 0.000000
O=13, 13, 27, 1.000000, 0.000000
O=27, 13, 27, 1.000000, 0.000000
O=14, 5, 38, 0.600000, 0.350000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=548.00, 431.00, 0.00, 0.00, 0.00, 0.00, 73.815374, 0.000000, 73.815374, 140.00, 0.00, 0.783300, 0.000000, 0.783300, 140.00, 80.00, 30.802830, 0.000000, 30.802830, 0.00, 80.00, 45.092259, 0.000000, 45.092259, 0.00, 0.00, 73.815374, 0.000000, 73.815374
OB=346.00, 360.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=311.00, 462.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=69.00, 364.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 16.000000, 0.000000, 16.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 16.000000, 0.000000, 16.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000
OB=514.00, 269.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 148.00, 121.00, 16.000000, 0.000000, 16.000000
OB=493.00, 154.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=275.00, 189.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 101.00, 4.00, 100.000000, 0.000000, 100.000000
OB=270.00, 237.00, 92.00, 133.00, 92.00, 133.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000

Graph7PP.pomdp

//State variables
(variables
 (loc l0 l34 l1 l35 l2 l33 l38 l5 l6 l12 l13 l14 l27 l29)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
)

//Observations
(observations
 (ob5_38 ob5_38F ob5_38B)
 (ob12_38 ob12_38F ob12_38B)
 (ob29_33 ob29_33F ob29_33B)
 (ob13_27 ob13_27F ob13_27B)
)

//Initial belief state
init [*
 (loc (l0 (1.0)) (l34 (0.0)) (l1 (0.0)) (l35 (0.0)) (l2 (0.0)) (l33 (0.0)) (l38 (0.0)) (l5 (0.0)) (l6 (0.0)) (l12 (0.0)) (l13 (0.0)) (l14 (0.0)) (l27 (0.0)) (l29 (0.0)))
 (c1 (c1F (0.5)) (c1B (0.5)))
 (c2 (c2F (0.5)) (c2B (0.5)))
 (c3 (c3F (0.410714285714)) (c3B (0.589285714286)))
 (c4 (c4F (0.410714285714)) (c4B (0.589285714286)))
]

//Actions and costs
action goto_l0
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl0))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl13))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl0))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (0))
 (l2 (148.27339613025663))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (204.78769494283586))
)
endaction

action goto_l34
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl34))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl34))
 (l38 (locl34))
 (l5 (locl34))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl13))
 (l14 (locl34))
 (l27 (locl27))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (c1'
 (c1F (ob5_38' (ob5_38F (0.8)) (ob5_38B (0.2))))
 (c1B (ob5_38' (ob5_38F (0.19999999999999996)) (ob5_38B (0.8))))
)
 ob12_38 (c2'
 (c2F (ob12_38' (ob12_38F (0.7)) (ob12_38B (0.3))))
 (c2B (ob12_38' (ob12_38F (0.4)) (ob12_38B (0.6))))
)
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (152.5350648045157))
 (l35 (0))
 (l2 (2000.0))
 (l33 (124.45882853377658))
 (l38 (184.45866745696716))
 (l5 (91.67878707749138))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (2000.0))
 (l14 (53.25410782277739))
 (l27 (2000.0))
 (l29 (2000.0))
)
endaction

action goto_l1
 loc (loc
 (l0 (locl0))
 (l34 (locl1))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl1))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl1))
 (l14 (locl1))
 (l27 (locl1))
 (l29 (locl1))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (152.5350648045157))
 (l1 (2000.0))
 (l35 (0))
 (l2 (761.7688896017977))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (690.5403781097193))
 (l14 (99.92497185388645))
 (l27 (80.49844718999243))
 (l29 (708.9970065506332))
)
endaction

action goto_l35
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl35))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl35))
 (l12 (locl35))
 (l13 (locl35))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl35))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (0))
 (l2 (1188.478061729171))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (94.76286192385707))
 (l12 (218.55205329623422))
 (l13 (1117.2495502370925))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (1135.7061786780064))
)
endaction

action goto_l2
 loc (loc
 (l0 (locl2))
 (l34 (locl34))
 (l1 (locl2))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl2))
 (l12 (locl2))
 (l13 (locl2))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl2))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (c3'
 (c3F (ob29_33' (ob29_33F (0.9)) (ob29_33B (0.1))))
 (c3B (ob29_33' (ob29_33F (0.09999999999999998)) (ob29_33B (0.9))))
)
 ob13_27 (c4'
 (c4F (ob13_27' (ob13_27F (0.8)) (ob13_27B (0.2))))
 (c4B (ob13_27' (ob13_27F (0.19999999999999996)) (ob13_27B (0.8))))
)
 endobserve
 cost (loc
 (l0 (148.27339613025663))
 (l34 (2000.0))
 (l1 (761.7688896017977))
 (l35 (0))
 (l2 (2000.0))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (1141.364404909524))
 (l12 (1361.607399977803))
 (l13 (114.97825881443848))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (65.73431371817918))
)
endaction

action goto_l33
 loc (loc
 (l0 (locl0))
 (l34 (locl33))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl33))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl13))
 (l14 (locl33))
 (l27 (locl27))
 (l29 (c3
 (c3F (locl33))
 (c3B (locl29))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (c3'
 (c3F (ob29_33' (ob29_33F (1.0)) (ob29_33B (0.0))))
 (c3B (ob29_33' (ob29_33F (0.0)) (ob29_33B (1.0))))
)
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (124.45882853377658))
 (l1 (2000.0))
 (l35 (0))
 (l2 (2000.0))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (213.60009363293827))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (2000.0))
 (l14 (72.62231062146122))
 (l27 (2000.0))
 (l29 (149.4824404403407))
)
endaction

action goto_l38
 loc (loc
 (l0 (locl0))
 (l34 (locl38))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (c1
 (c1F (locl38))
 (c1B (locl5))
))
 (l6 (locl38))
 (l12 (c2
 (c2F (locl38))
 (c2B (locl12))
))
 (l13 (locl13))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (c1'
 (c1F (ob5_38' (ob5_38F (1.0)) (ob5_38B (0.0))))
 (c1B (ob5_38' (ob5_38F (0.0)) (ob5_38B (1.0))))
)
 ob12_38 (c2'
 (c2F (ob12_38' (ob12_38F (1.0)) (ob12_38B (0.0))))
 (c2B (ob12_38' (ob12_38F (0.0)) (ob12_38B (1.0))))
)
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (184.45866745696716))
 (l1 (2000.0))
 (l35 (0))
 (l2 (2000.0))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (133.2216198670471))
 (l6 (117.41379816699569))
 (l12 (173.21951391226105))
 (l13 (2000.0))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
)
endaction

action goto_l5
 loc (loc
 (l0 (locl0))
 (l34 (locl5))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl5))
 (l38 (c1
 (c1F (locl5))
 (c1B (locl38))
))
 (l5 (locl5))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl13))
 (l14 (locl5))
 (l27 (locl5))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (c1'
 (c1F (ob5_38' (ob5_38F (1.0)) (ob5_38B (0.0))))
 (c1B (ob5_38' (ob5_38F (0.0)) (ob5_38B (1.0))))
)
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (91.67878707749138))
 (l1 (2000.0))
 (l35 (0))
 (l2 (2000.0))
 (l33 (213.60009363293827))
 (l38 (133.2216198670471))
 (l5 (2000.0))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (2000.0))
 (l14 (144.62710672622887))
 (l27 (199.90497742677644))
 (l29 (2000.0))
)
endaction

action goto_l6
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl6))
 (l33 (locl33))
 (l38 (locl6))
 (l5 (locl5))
 (l6 (locl6))
 (l12 (locl6))
 (l13 (locl6))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl6))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (0))
 (l2 (1141.364404909524))
 (l33 (2000.0))
 (l38 (117.41379816699569))
 (l5 (2000.0))
 (l6 (2000.0))
 (l12 (221.00928135490392))
 (l13 (1070.1358934174455))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (1088.5925218583593))
)
endaction

action goto_l12
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl1))
 (l35 (locl35))
 (l2 (locl12))
 (l33 (locl33))
 (l38 (c2
 (c2F (locl12))
 (c2B (locl38))
))
 (l5 (locl5))
 (l6 (locl12))
 (l12 (locl12))
 (l13 (locl12))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl12))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (c2'
 (c2F (ob12_38' (ob12_38F (1.0)) (ob12_38B (0.0))))
 (c2B (ob12_38' (ob12_38F (0.0)) (ob12_38B (1.0))))
)
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (2000.0))
 (l35 (0))
 (l2 (1361.607399977803))
 (l33 (2000.0))
 (l38 (173.21951391226105))
 (l5 (2000.0))
 (l6 (221.00928135490392))
 (l12 (2000.0))
 (l13 (1290.3788884857242))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (1308.8355169266379))
)
endaction

action goto_l13
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl13))
 (l35 (locl35))
 (l2 (locl13))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl13))
 (l12 (locl13))
 (l13 (locl13))
 (l14 (locl14))
 (l27 (c4
 (c4F (locl13))
 (c4B (locl27))
))
 (l29 (locl13))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (c4'
 (c4F (ob13_27' (ob13_27F (1.0)) (ob13_27B (0.0))))
 (c4B (ob13_27' (ob13_27F (0.0)) (ob13_27B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (690.5403781097193))
 (l35 (0))
 (l2 (114.97825881443848))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (1070.1358934174455))
 (l12 (1290.3788884857242))
 (l13 (2000.0))
 (l14 (2000.0))
 (l27 (91.98369420718001))
 (l29 (50.32891812864648))
)
endaction

action goto_l14
 loc (loc
 (l0 (locl0))
 (l34 (locl14))
 (l1 (locl14))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl14))
 (l38 (locl38))
 (l5 (locl14))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (locl13))
 (l14 (locl14))
 (l27 (locl14))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (c1'
 (c1F (ob5_38' (ob5_38F (0.65)) (ob5_38B (0.35))))
 (c1B (ob5_38' (ob5_38F (0.4)) (ob5_38B (0.6))))
)
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (ob13_27' (ob13_27F (0.5)) (ob13_27B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (53.25410782277739))
 (l1 (99.92497185388645))
 (l35 (0))
 (l2 (2000.0))
 (l33 (72.62231062146122))
 (l38 (2000.0))
 (l5 (144.62710672622887))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (2000.0))
 (l14 (2000.0))
 (l27 (65.0))
 (l29 (2000.0))
)
endaction

action goto_l27
 loc (loc
 (l0 (locl0))
 (l34 (locl34))
 (l1 (locl27))
 (l35 (locl35))
 (l2 (locl2))
 (l33 (locl33))
 (l38 (locl38))
 (l5 (locl27))
 (l6 (locl6))
 (l12 (locl12))
 (l13 (c4
 (c4F (locl27))
 (c4B (locl13))
))
 (l14 (locl27))
 (l27 (locl27))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (ob29_33' (ob29_33F (0.5)) (ob29_33B (0.5)))
 ob13_27 (c4'
 (c4F (ob13_27' (ob13_27F (1.0)) (ob13_27B (0.0))))
 (c4B (ob13_27' (ob13_27F (0.0)) (ob13_27B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l34 (2000.0))
 (l1 (80.49844718999243))
 (l35 (0))
 (l2 (2000.0))
 (l33 (2000.0))
 (l38 (2000.0))
 (l5 (199.90497742677644))
 (l6 (2000.0))
 (l12 (2000.0))
 (l13 (91.98369420718001))
 (l14 (65.0))
 (l27 (2000.0))
 (l29 (2000.0))
)
endaction

action goto_l29
 loc (loc
 (l0 (locl29))
 (l34 (locl34))
 (l1 (locl29))
 (l35 (locl35))
 (l2 (locl29))
 (l33 (c3
 (c3F (locl29))
 (c3B (locl33))
))
 (l38 (locl38))
 (l5 (locl5))
 (l6 (locl29))
 (l12 (locl29))
 (l13 (locl29))
 (l14 (locl14))
 (l27 (locl27))
 (l29 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob5_38 (ob5_38' (ob5_38F (0.5)) (ob5_38B (0.5)))
 ob12_38 (ob12_38' (ob12_38F (0.5)) (ob12_38B (0.5)))
 ob29_33 (c3'
 (c3F (ob29_33' (ob29_33F (1.0)) (ob29_33B (0.0))))
 (c3B (ob29_33' (ob29_33F (0.0)) (ob29_33B (1.0))))
)
 ob13_27 (c4'
 (c4F (ob13_27' (ob13_27F (1.0)) (ob13_27B (0.0))))
 (c4B (ob13_27' (ob13_27F (0.0)) (ob13_27B (1.0))))
)
 endobserve
 cost (loc
 (l0 (204.78769494283586))
 (l34 (2000.0))
 (l1 (708.9970065506332))
 (l35 (0))
 (l2 (65.73431371817918))
 (l33 (149.4824404403407))
 (l38 (2000.0))
 (l5 (2000.0))
 (l6 (1088.5925218583593))
 (l12 (1308.8355169266379))
 (l13 (50.32891812864648))
 (l14 (2000.0))
 (l27 (2000.0))
 (l29 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph7_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 642.00, 94.00, 5.51
N=1, 315.00, 285.00, 96.78
N=2, 494.00, 85.00, 340.88
N=3, 133.00, 225.00, 204.19
N=4, 175.00, 374.00, 199.62
N=5, 538.00, 380.00, 177.80
N=6, 439.00, 597.00, 326.32
N=7, 290.00, 94.00, 245.17
N=8, 77.00, 264.00, 215.49
N=9, 395.00, 586.00, 132.57
N=10, 117.00, 35.00, 2.68
N=11, 408.00, 657.00, 354.35
N=12, 657.00, 618.00, 180.00
N=13, 406.00, 159.00, 59.66
N=14, 412.00, 309.00, 22.07
N=15, 204.00, 262.00, 140.68
N=16, 179.00, 591.00, 344.63
N=17, 181.00, 628.00, 91.87
N=18, 229.00, 112.00, 72.10
N=19, 205.00, 431.00, 34.67
N=20, 450.00, 605.00, 190.87
N=21, 185.00, 238.00, 172.86
N=22, 309.00, 377.00, 218.25
N=23, 433.00, 67.00, 143.41
N=24, 81.00, 559.00, 32.04
N=25, 121.00, 219.00, 118.14
N=26, 54.00, 697.00, 271.49
N=27, 387.00, 249.00, 49.30
N=28, 252.00, 562.00, 51.51
N=29, 439.00, 121.00, 67.37
N=30, 137.00, 310.00, 209.68
N=31, 164.00, 628.00, 347.23
N=32, 149.00, 187.00, 222.21
N=33, 367.00, 252.00, 211.92
N=34, 456.00, 339.00, 307.90
N=35, 451.00, 691.00, 184.50
N=36, 318.00, 283.00, 232.85
N=37, 25.00, 309.00, 234.35
N=38, 520.00, 512.00, 55.83
N=39, 5.00, 241.00, 268.04

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 2, 148.27
E=0, 29, 204.79
E=1, 34, 152.54
E=1, 2, 761.77
E=1, 13, 690.54
E=1, 14, 99.92
E=1, 27, 80.50
E=1, 29, 709.00
E=2, 35, 1188.48
E=2, 6, 1141.36
E=2, 12, 1361.61
E=2, 13, 114.98
E=2, 29, 65.73
E=5, 34, 91.68
E=5, 33, 213.60
E=5, 38, 133.22
E=5, 14, 144.63
E=5, 27, 199.90
E=6, 35, 94.76
E=6, 38, 117.41
E=6, 12, 221.01
E=6, 13, 1070.14
E=6, 29, 1088.59
E=12, 35, 218.55
E=12, 38, 173.22
E=12, 13, 1290.38
E=12, 29, 1308.84
E=13, 35, 1117.25
E=13, 27, 91.98
E=13, 29, 50.33
E=14, 34, 53.25
E=14, 33, 72.62
E=14, 27, 65.00
E=29, 35, 1135.71
E=29, 33, 149.48
E=33, 34, 124.46
E=34, 38, 184.46

#Start node ID
S=0

#Goal node ID
G=35

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 5, 38, 12, 38
C=1, 29, 33, 13, 27

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 13, 27
EO=1, 29, 33
EO=2, 12, 38
EO=3, 5, 38

#Starting belief state, starting with the all F combination and working through to all B
B=0.153683, 0.020871, 0.020871, 0.229576, 0.027121, 0.003683, 0.003683, 0.040513, 0.027121, 0.003683, 0.003683, 0.040513, 0.153683, 0.020871, 0.020871, 0.229576

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=34, 5, 38, 0.800000, 0.200000
O=34, 12, 38, 0.600000, 0.300000
O=5, 5, 38, 1.000000, 0.000000
O=38, 5, 38, 1.000000, 0.000000
O=38, 12, 38, 1.000000, 0.000000
O=12, 12, 38, 1.000000, 0.000000
O=2, 29, 33, 0.900000, 0.100000
O=2, 13, 27, 0.800000, 0.200000
O=29, 29, 33, 1.000000, 0.000000
O=29, 13, 27, 1.000000, 0.000000
O=33, 29, 33, 1.000000, 0.000000
O=13, 13, 27, 1.000000, 0.000000
O=27, 13, 27, 1.000000, 0.000000
O=14, 5, 38, 0.600000, 0.350000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=548.00, 431.00, 0.00, 0.00, 0.00, 0.00, 73.815374, 0.000000, 73.815374, 140.00, 0.00, 0.783300, 0.000000, 0.783300, 140.00, 80.00, 30.802830, 0.000000, 30.802830, 0.00, 80.00, 45.092259, 0.000000, 45.092259, 0.00, 0.00, 73.815374, 0.000000, 73.815374
OB=346.00, 360.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=311.00, 462.00, 0.00, 0.00, 0.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 0.00, 9.000000, 0.000000, 9.000000, 100.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 100.00, 9.000000, 0.000000, 9.000000, 0.00, 0.00, 9.000000, 0.000000, 9.000000
OB=69.00, 364.00, 60.00, 0.00, 60.00, 0.00, 16.000000, 0.000000, 16.000000, 120.00, 30.00, 16.000000, 0.000000, 16.000000, 100.00, 110.00, 16.000000, 0.000000, 16.000000, 20.00, 110.00, 16.000000, 0.000000, 16.000000, 0.00, 30.00, 16.000000, 0.000000, 16.000000, 60.00, 0.00, 16.000000, 0.000000, 16.000000
OB=514.00, 269.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 148.00, 121.00, 16.000000, 0.000000, 16.000000
OB=493.00, 154.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 0.00, 16.000000, 0.000000, 16.000000, 140.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 80.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=275.00, 189.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 101.00, 4.00, 100.000000, 0.000000, 100.000000
OB=270.00, 237.00, 92.00, 133.00, 92.00, 133.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000

Graph8.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 81.00, 70.00, 48.50
N=1, 90.00, 280.00, 221.09
N=2, 210.00, 327.00, 342.27
N=3, 564.00, 423.00, 279.55
N=4, 389.00, 507.00, 61.37
N=5, 72.00, 222.00, 324.77
N=6, 455.00, 378.00, 256.83
N=7, 685.00, 561.00, 152.33
N=8, 272.00, 319.00, 338.63
N=9, 87.00, 223.00, 195.44
N=10, 587.00, 414.00, 224.07
N=11, 163.00, 261.00, 295.22
N=12, 608.00, 428.00, 132.51
N=13, 102.00, 392.00, 93.52
N=14, 2.00, 50.00, 283.61
N=15, 212.00, 550.00, 87.77
N=16, 265.00, 585.00, 186.48
N=17, 281.00, 273.00, 131.27
N=18, 333.00, 595.00, 259.47
N=19, 373.00, 207.00, 158.75
N=20, 239.00, 341.00, 68.03
N=21, 382.00, 223.00, 354.49
N=22, 487.00, 297.00, 205.16
N=23, 105.00, 267.00, 317.40
N=24, 133.00, 584.00, 125.18
N=25, 363.00, 283.00, 94.32
N=26, 80.00, 193.00, 251.60
N=27, 560.00, 119.00, 62.89
N=28, 73.00, 39.00, 130.73
N=29, 141.00, 55.00, 229.14
N=30, 469.00, 44.00, 131.20
N=31, 543.00, 644.00, 353.59
N=32, 454.00, 152.00, 245.01
N=33, 519.00, 39.00, 161.74
N=34, 100.00, 485.00, 339.11
N=35, 511.00, 574.00, 46.75
N=36, 241.00, 293.00, 70.37
N=37, 286.00, 650.00, 133.51
N=38, 340.00, 193.00, 310.63
N=39, 449.00, 484.00, 137.12
N=40, 661.00, 291.00, 274.55
N=41, 547.00, 452.00, 316.18
N=42, 199.00, 662.00, 329.38
N=43, 216.00, 429.00, 130.89
N=44, 122.00, 356.00, 268.16
N=45, 9.00, 630.00, 354.50
N=46, 189.00, 228.00, 88.75
N=47, 677.00, 468.00, 105.29
N=48, 472.00, 449.00, 171.17
N=49, 194.00, 312.00, 290.22

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 28, 32.02
E=0, 29, 61.85
E=0, 14, 81.49
E=0, 26, 123.00
E=1, 23, 19.85
E=1, 9, 57.08
E=1, 5, 60.73
E=1, 11, 75.43
E=2, 49, 21.93
E=2, 20, 32.20
E=2, 36, 46.01
E=2, 8, 62.51
E=3, 10, 24.70
E=3, 41, 33.62
E=3, 12, 44.28
E=3, 48, 95.60
E=4, 39, 64.26
E=4, 48, 101.26
E=4, 18, 104.31
E=4, 35, 139.19
E=5, 9, 15.03
E=5, 26, 30.08
E=5, 23, 55.80
E=6, 48, 73.01
E=6, 22, 87.09
E=6, 39, 106.17
E=6, 41, 118.07
E=7, 47, 93.34
E=7, 12, 153.68
E=7, 31, 164.48
E=7, 35, 174.48
E=8, 20, 39.66
E=8, 36, 40.46
E=8, 17, 46.87
E=9, 26, 30.81
E=9, 23, 47.54
E=10, 12, 25.24
E=10, 41, 55.17
E=10, 47, 104.96
E=11, 46, 42.01
E=11, 23, 58.31
E=11, 49, 59.68
E=12, 41, 65.55
E=13, 44, 41.18
E=13, 34, 93.02
E=13, 43, 119.85
E=13, 49, 121.92
E=14, 28, 71.85
E=14, 29, 139.09
E=14, 26, 162.89
E=15, 16, 63.51
E=15, 24, 86.01
E=15, 42, 112.75
E=15, 43, 121.07
E=16, 37, 68.31
E=16, 18, 68.73
E=16, 42, 101.41
E=17, 36, 44.72
E=17, 20, 79.92
E=17, 25, 82.61
E=18, 37, 72.35
E=18, 42, 149.82
E=19, 21, 18.36
E=19, 38, 35.85
E=19, 25, 76.66
E=19, 32, 97.91
E=20, 36, 48.04
E=21, 38, 51.61
E=21, 25, 62.94
E=21, 32, 101.12
E=22, 25, 124.79
E=22, 32, 148.71
E=22, 48, 152.74
E=24, 42, 102.18
E=24, 34, 104.36
E=24, 37, 166.63
E=27, 33, 89.89
E=27, 32, 111.02
E=27, 30, 117.92
E=27, 40, 199.46
E=28, 29, 69.86
E=28, 46, 221.76
E=29, 44, 301.60
E=30, 33, 50.25
E=30, 38, 197.08
E=30, 40, 312.85
E=31, 35, 76.97
E=31, 39, 185.57
E=31, 47, 221.21
E=33, 38, 236.13
E=33, 40, 289.25
E=34, 43, 128.81
E=34, 44, 130.86
E=35, 39, 109.29
E=37, 43, 231.82
E=40, 47, 177.72
E=44, 49, 84.38

#Start node ID
S=14

#Goal node ID
G=33

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 17, 25
C=1, 28, 46, 29, 44
C=2, 22, 32

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 22, 32
EO=1, 29, 44
EO=2, 28, 46
EO=3, 17, 25

#Starting belief state, starting with the all F combination and working through to all B
B=0.089083, 0.089083, 0.010480, 0.010480, 0.062882, 0.062882, 0.237555, 0.237555, 0.022271, 0.022271, 0.002620, 0.002620, 0.015721, 0.015721, 0.059389, 0.059389

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=36, 17, 25, 0.800000, 0.200000
O=17, 17, 25, 1.000000, 0.000000
O=25, 17, 25, 1.000000, 0.000000
O=8, 17, 25, 0.700000, 0.200000
O=29, 28, 46, 1.000000, 0.000000
O=29, 29, 44, 1.000000, 0.000000
O=28, 28, 46, 1.000000, 0.000000
O=28, 29, 44, 0.900000, 0.100000
O=46, 28, 46, 1.000000, 0.000000
O=44, 29, 44, 1.000000, 0.000000
O=0, 29, 44, 0.900000, 0.100000
O=6, 22, 32, 0.800000, 0.200000
O=22, 22, 32, 1.000000, 0.000000
O=32, 22, 32, 1.000000, 0.000000
O=48, 22, 32, 0.600000, 0.350000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=599.00, 309.00, 103.00, 91.00, 103.00, 91.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000
OB=546.00, 382.00, 1.00, 87.00, 1.00, 87.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=618.00, 381.00, 0.00, 68.00, 0.00, 68.00, 25.000000, 0.000000, 25.000000, 6.00, 0.00, 25.000000, 0.000000, 25.000000
OB=298.00, 410.00, 0.00, 112.00, 0.00, 112.00, 225.000000, 0.000000, 225.000000, 32.00, 0.00, 225.000000, 0.000000, 225.000000
OB=381.00, 589.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=224.00, 67.00, 60.00, 0.00, 60.00, 0.00, 21.307086, 0.000000, 21.307086, 120.00, 30.00, 78.733990, 0.000000, 78.733990, 100.00, 110.00, 9.270729, 0.000000, 9.270729, 20.00, 110.00, 73.907519, 0.000000, 73.907519, 0.00, 30.00, 71.670428, 0.000000, 71.670428, 60.00, 0.00, 21.307086, 0.000000, 21.307086
OB=424.00, 343.00, 128.00, 0.00, 128.00, 0.00, 1.193371, 0.000000, 1.193371, 0.00, 145.00, 1.488505, 0.000000, 1.488505
OB=532.00, 539.00, 0.00, 71.00, 0.00, 71.00, 1.324871, 0.000000, 1.324871, 57.00, 0.00, 29.013699, 0.000000, 29.013699

Graph8PP.pomdp

//State variables
(variables
 (loc l0 l32 l33 l36 l6 l8 l46 l14 l44 l17 l48 l22 l25 l29 l28)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
)

//Observations
(observations
 (ob17_25 ob17_25F ob17_25B)
 (ob28_46 ob28_46F ob28_46B)
 (ob29_44 ob29_44F ob29_44B)
 (ob22_32 ob22_32F ob22_32B)
)

//Initial belief state
init [*
 (loc (l0 (0.0)) (l32 (0.0)) (l33 (0.0)) (l36 (0.0)) (l6 (0.0)) (l8 (0.0)) (l46 (0.0)) (l14 (1.0)) (l44 (0.0)) (l17 (0.0)) (l48 (0.0)) (l22 (0.0)) (l25 (0.0)) (l29 (0.0)) (l28 (0.0)))
 (c1 (c1F (0.800000000002)) (c1B (0.199999999998)))
 (c2 (c2F (0.248908296942)) (c2B (0.751091703058)))
 (c3 (c3F (0.379912663755)) (c3B (0.620087336245)))
 (c4 (c4F (0.5)) (c4B (0.5)))
]

//Actions and costs
action goto_l0
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl0))
 (l6 (locl0))
 (l8 (locl0))
 (l46 (locl0))
 (l14 (locl0))
 (l44 (locl0))
 (l17 (locl17))
 (l48 (locl0))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl0))
 (l28 (locl0))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (c3'
 (c3F (ob29_44' (ob29_44F (0.9)) (ob29_44B (0.1))))
 (c3B (ob29_44' (ob29_44F (0.09999999999999998)) (ob29_44B (0.9))))
)
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l33 (0))
 (l36 (387.28395854572796))
 (l6 (1089.1589073433347))
 (l8 (403.78708869676973))
 (l46 (301.67078789465023))
 (l14 (81.49233092751734))
 (l44 (403.72147050387326))
 (l17 (2000.0))
 (l48 (1019.9890350343671))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (61.84658438426491))
 (l28 (32.01562118716424))
)
endaction

action goto_l32
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl6))
 (l8 (locl8))
 (l46 (locl46))
 (l14 (locl14))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (c4
 (c4F (locl32))
 (c4B (locl22))
))
 (l25 (locl32))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (c4'
 (c4F (ob22_32' (ob22_32F (1.0)) (ob22_32B (0.0))))
 (c4B (ob22_32' (ob22_32F (0.0)) (ob22_32B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l33 (0))
 (l36 (2000.0))
 (l6 (2000.0))
 (l8 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (148.70776711389354))
 (l25 (164.05521799102166))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l33
 loc (loc
 (l0 (locl0))
 (l32 (locl33))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl6))
 (l8 (locl8))
 (l46 (locl46))
 (l14 (locl14))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (locl22))
 (l25 (locl33))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (200.91239902774902))
 (l33 (0))
 (l36 (2000.0))
 (l6 (2000.0))
 (l8 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (2000.0))
 (l25 (348.6311701661381))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l36
 loc (loc
 (l0 (locl36))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl36))
 (l8 (locl36))
 (l46 (locl36))
 (l14 (locl36))
 (l44 (locl36))
 (l17 (locl36))
 (l48 (locl36))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (c1'
 (c1F (ob17_25' (ob17_25F (0.8)) (ob17_25B (0.2))))
 (c1B (ob17_25' (ob17_25F (0.19999999999999996)) (ob17_25B (0.8))))
)
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (387.28395854572796))
 (l32 (2000.0))
 (l33 (0))
 (l36 (2000.0))
 (l6 (837.7601097591481))
 (l8 (40.45985664828782))
 (l46 (169.63697680147777))
 (l14 (427.16942669209))
 (l44 (152.32267291968662))
 (l17 (44.721359549995796))
 (l48 (768.5902374501804))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l6
 loc (loc
 (l0 (locl6))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl6))
 (l6 (locl6))
 (l8 (locl6))
 (l46 (locl6))
 (l14 (locl6))
 (l44 (locl6))
 (l17 (locl17))
 (l48 (locl6))
 (l22 (locl6))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (c4'
 (c4F (ob22_32' (ob22_32F (0.8)) (ob22_32B (0.2))))
 (c4B (ob22_32' (ob22_32F (0.19999999999999996)) (ob22_32B (0.8))))
)
 endobserve
 cost (loc
 (l0 (1089.1589073433347))
 (l32 (2000.0))
 (l33 (0))
 (l36 (837.7601097591481))
 (l6 (2000.0))
 (l8 (854.2632399101899))
 (l46 (871.5119255990845))
 (l14 (1129.044375489697))
 (l44 (689.0820446093))
 (l17 (2000.0))
 (l48 (73.00684899377592))
 (l22 (87.09190547921202))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l8
 loc (loc
 (l0 (locl8))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl8))
 (l6 (locl8))
 (l8 (locl8))
 (l46 (locl8))
 (l14 (locl8))
 (l44 (locl8))
 (l17 (locl8))
 (l48 (locl8))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (c1'
 (c1F (ob17_25' (ob17_25F (0.8)) (ob17_25B (0.2))))
 (c1B (ob17_25' (ob17_25F (0.30000000000000004)) (ob17_25B (0.7))))
)
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (403.78708869676973))
 (l32 (2000.0))
 (l33 (0))
 (l36 (40.45985664828782))
 (l6 (854.2632399101899))
 (l8 (2000.0))
 (l46 (186.14010695251955))
 (l14 (443.6725568431318))
 (l44 (168.8258030707284))
 (l17 (46.87216658103186))
 (l48 (785.0933676012223))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l46
 loc (loc
 (l0 (locl46))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl46))
 (l6 (locl46))
 (l8 (locl46))
 (l46 (locl46))
 (l14 (locl46))
 (l44 (locl46))
 (l17 (locl17))
 (l48 (locl46))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (c2
 (c2F (locl46))
 (c2B (locl28))
))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (c2'
 (c2F (ob28_46' (ob28_46F (1.0)) (ob28_46B (0.0))))
 (c2B (ob28_46' (ob28_46F (0.0)) (ob28_46B (1.0))))
)
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (301.67078789465023))
 (l32 (2000.0))
 (l33 (0))
 (l36 (169.63697680147777))
 (l6 (871.5119255990845))
 (l8 (186.14010695251955))
 (l46 (2000.0))
 (l14 (341.55625604101226))
 (l44 (186.07448875962308))
 (l17 (2000.0))
 (l48 (802.3420532901171))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (221.75887806353998))
)
endaction

action goto_l14
 loc (loc
 (l0 (locl14))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl14))
 (l6 (locl14))
 (l8 (locl14))
 (l46 (locl14))
 (l14 (locl14))
 (l44 (locl14))
 (l17 (locl17))
 (l48 (locl14))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl14))
 (l28 (locl14))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (81.49233092751734))
 (l32 (2000.0))
 (l33 (0))
 (l36 (427.16942669209))
 (l6 (1129.044375489697))
 (l8 (443.6725568431318))
 (l46 (341.55625604101226))
 (l14 (2000.0))
 (l44 (443.6069386502353))
 (l17 (2000.0))
 (l48 (1059.8745031807293))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (139.0898989862312))
 (l28 (71.84705978674423))
)
endaction

action goto_l44
 loc (loc
 (l0 (locl44))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl44))
 (l6 (locl44))
 (l8 (locl44))
 (l46 (locl44))
 (l14 (locl44))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl44))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (c3
 (c3F (locl44))
 (c3B (locl29))
))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (c3'
 (c3F (ob29_44' (ob29_44F (1.0)) (ob29_44B (0.0))))
 (c3B (ob29_44' (ob29_44F (0.0)) (ob29_44B (1.0))))
)
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (403.72147050387326))
 (l32 (2000.0))
 (l33 (0))
 (l36 (152.32267291968662))
 (l6 (689.0820446093))
 (l8 (168.8258030707284))
 (l46 (186.07448875962308))
 (l14 (443.6069386502353))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (619.9121723003325))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (301.5990716166083))
 (l28 (2000.0))
)
endaction

action goto_l17
 loc (loc
 (l0 (locl0))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl17))
 (l6 (locl6))
 (l8 (locl17))
 (l46 (locl46))
 (l14 (locl14))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (locl22))
 (l25 (c1
 (c1F (locl17))
 (c1B (locl25))
))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (c1'
 (c1F (ob17_25' (ob17_25F (1.0)) (ob17_25B (0.0))))
 (c1B (ob17_25' (ob17_25F (0.0)) (ob17_25B (1.0))))
)
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (2000.0))
 (l33 (0))
 (l36 (44.721359549995796))
 (l6 (2000.0))
 (l8 (46.87216658103186))
 (l46 (2000.0))
 (l14 (2000.0))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (2000.0))
 (l25 (82.60750571225353))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l48
 loc (loc
 (l0 (locl48))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl48))
 (l6 (locl48))
 (l8 (locl48))
 (l46 (locl48))
 (l14 (locl48))
 (l44 (locl48))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (locl48))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (c4'
 (c4F (ob22_32' (ob22_32F (0.65)) (ob22_32B (0.35))))
 (c4B (ob22_32' (ob22_32F (0.4)) (ob22_32B (0.6))))
)
 endobserve
 cost (loc
 (l0 (1019.9890350343671))
 (l32 (2000.0))
 (l33 (0))
 (l36 (768.5902374501804))
 (l6 (73.00684899377592))
 (l8 (785.0933676012223))
 (l46 (802.3420532901171))
 (l14 (1059.8745031807293))
 (l44 (619.9121723003325))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (152.73833834371774))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l22
 loc (loc
 (l0 (locl0))
 (l32 (c4
 (c4F (locl22))
 (c4B (locl32))
))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl22))
 (l8 (locl8))
 (l46 (locl46))
 (l14 (locl14))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl22))
 (l22 (locl22))
 (l25 (locl22))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (c4'
 (c4F (ob22_32' (ob22_32F (1.0)) (ob22_32B (0.0))))
 (c4B (ob22_32' (ob22_32F (0.0)) (ob22_32B (1.0))))
)
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (148.70776711389354))
 (l33 (0))
 (l36 (2000.0))
 (l6 (87.09190547921202))
 (l8 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (152.73833834371774))
 (l22 (2000.0))
 (l25 (124.78781991845197))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l25
 loc (loc
 (l0 (locl0))
 (l32 (locl25))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl6))
 (l8 (locl8))
 (l46 (locl46))
 (l14 (locl14))
 (l44 (locl44))
 (l17 (c1
 (c1F (locl25))
 (c1B (locl17))
))
 (l48 (locl48))
 (l22 (locl25))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (c1'
 (c1F (ob17_25' (ob17_25F (1.0)) (ob17_25B (0.0))))
 (c1B (ob17_25' (ob17_25F (0.0)) (ob17_25B (1.0))))
)
 ob28_46 (ob28_46' (ob28_46F (0.5)) (ob28_46B (0.5)))
 ob29_44 (ob29_44' (ob29_44F (0.5)) (ob29_44B (0.5)))
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (2000.0))
 (l32 (164.05521799102166))
 (l33 (0))
 (l36 (2000.0))
 (l6 (2000.0))
 (l8 (2000.0))
 (l46 (2000.0))
 (l14 (2000.0))
 (l44 (2000.0))
 (l17 (82.60750571225353))
 (l48 (2000.0))
 (l22 (124.78781991845197))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (2000.0))
)
endaction

action goto_l29
 loc (loc
 (l0 (locl29))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl6))
 (l8 (locl8))
 (l46 (locl46))
 (l14 (locl29))
 (l44 (c3
 (c3F (locl29))
 (c3B (locl44))
))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl29))
 (l28 (locl29))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (c2'
 (c2F (ob28_46' (ob28_46F (1.0)) (ob28_46B (0.0))))
 (c2B (ob28_46' (ob28_46F (0.0)) (ob28_46B (1.0))))
)
 ob29_44 (c3'
 (c3F (ob29_44' (ob29_44F (1.0)) (ob29_44B (0.0))))
 (c3B (ob29_44' (ob29_44F (0.0)) (ob29_44B (1.0))))
)
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (61.84658438426491))
 (l32 (2000.0))
 (l33 (0))
 (l36 (2000.0))
 (l6 (2000.0))
 (l8 (2000.0))
 (l46 (2000.0))
 (l14 (139.0898989862312))
 (l44 (301.5990716166083))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (2000.0))
 (l28 (69.85699678629192))
)
endaction

action goto_l28
 loc (loc
 (l0 (locl28))
 (l32 (locl32))
 (l33 (locl33))
 (l36 (locl36))
 (l6 (locl6))
 (l8 (locl8))
 (l46 (c2
 (c2F (locl28))
 (c2B (locl46))
))
 (l14 (locl28))
 (l44 (locl44))
 (l17 (locl17))
 (l48 (locl48))
 (l22 (locl22))
 (l25 (locl25))
 (l29 (locl28))
 (l28 (locl28))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 observe
 ob17_25 (ob17_25' (ob17_25F (0.5)) (ob17_25B (0.5)))
 ob28_46 (c2'
 (c2F (ob28_46' (ob28_46F (1.0)) (ob28_46B (0.0))))
 (c2B (ob28_46' (ob28_46F (0.0)) (ob28_46B (1.0))))
)
 ob29_44 (c3'
 (c3F (ob29_44' (ob29_44F (0.9)) (ob29_44B (0.1))))
 (c3B (ob29_44' (ob29_44F (0.09999999999999998)) (ob29_44B (0.9))))
)
 ob22_32 (ob22_32' (ob22_32F (0.5)) (ob22_32B (0.5)))
 endobserve
 cost (loc
 (l0 (32.01562118716424))
 (l32 (2000.0))
 (l33 (0))
 (l36 (2000.0))
 (l6 (2000.0))
 (l8 (2000.0))
 (l46 (221.75887806353998))
 (l14 (71.84705978674423))
 (l44 (2000.0))
 (l17 (2000.0))
 (l48 (2000.0))
 (l22 (2000.0))
 (l25 (2000.0))
 (l29 (69.85699678629192))
 (l28 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph8_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 81.00, 70.00, 48.50
N=1, 90.00, 280.00, 221.09
N=2, 210.00, 327.00, 342.27
N=3, 564.00, 423.00, 279.55
N=4, 389.00, 507.00, 61.37
N=5, 72.00, 222.00, 324.77
N=6, 455.00, 378.00, 256.83
N=7, 685.00, 561.00, 152.33
N=8, 272.00, 319.00, 338.63
N=9, 87.00, 223.00, 195.44
N=10, 587.00, 414.00, 224.07
N=11, 163.00, 261.00, 295.22
N=12, 608.00, 428.00, 132.51
N=13, 102.00, 392.00, 93.52
N=14, 2.00, 50.00, 283.61
N=15, 212.00, 550.00, 87.77
N=16, 265.00, 585.00, 186.48
N=17, 281.00, 273.00, 131.27
N=18, 333.00, 595.00, 259.47
N=19, 373.00, 207.00, 158.75
N=20, 239.00, 341.00, 68.03
N=21, 382.00, 223.00, 354.49
N=22, 487.00, 297.00, 205.16
N=23, 105.00, 267.00, 317.40
N=24, 133.00, 584.00, 125.18
N=25, 363.00, 283.00, 94.32
N=26, 80.00, 193.00, 251.60
N=27, 560.00, 119.00, 62.89
N=28, 73.00, 39.00, 130.73
N=29, 141.00, 55.00, 229.14
N=30, 469.00, 44.00, 131.20
N=31, 543.00, 644.00, 353.59
N=32, 454.00, 152.00, 245.01
N=33, 519.00, 39.00, 161.74
N=34, 100.00, 485.00, 339.11
N=35, 511.00, 574.00, 46.75
N=36, 241.00, 293.00, 70.37
N=37, 286.00, 650.00, 133.51
N=38, 340.00, 193.00, 310.63
N=39, 449.00, 484.00, 137.12
N=40, 661.00, 291.00, 274.55
N=41, 547.00, 452.00, 316.18
N=42, 199.00, 662.00, 329.38
N=43, 216.00, 429.00, 130.89
N=44, 122.00, 356.00, 268.16
N=45, 9.00, 630.00, 354.50
N=46, 189.00, 228.00, 88.75
N=47, 677.00, 468.00, 105.29
N=48, 472.00, 449.00, 171.17
N=49, 194.00, 312.00, 290.22

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 6, 1089.16
E=0, 8, 403.79
E=0, 14, 81.49
E=0, 28, 32.02
E=0, 29, 61.85
E=0, 36, 387.28
E=0, 44, 403.72
E=0, 46, 301.67
E=0, 48, 1019.99
E=6, 36, 837.76
E=6, 8, 854.26
E=6, 14, 1129.04
E=6, 22, 87.09
E=6, 44, 689.08
E=6, 46, 871.51
E=6, 48, 73.01
E=8, 36, 40.46
E=8, 14, 443.67
E=8, 17, 46.87
E=8, 44, 168.83
E=8, 46, 186.14
E=8, 48, 785.09
E=14, 36, 427.17
E=14, 46, 341.56
E=14, 28, 71.85
E=14, 29, 139.09
E=14, 44, 443.61
E=14, 48, 1059.87
E=17, 36, 44.72
E=17, 25, 82.61
E=22, 32, 148.71
E=22, 48, 152.74
E=22, 25, 124.79
E=25, 32, 164.06
E=25, 33, 348.63
E=28, 46, 221.76
E=28, 29, 69.86
E=29, 44, 301.60
E=32, 33, 200.91
E=36, 44, 152.32
E=36, 46, 169.64
E=36, 48, 768.59
E=44, 46, 186.07
E=44, 48, 619.91
E=46, 48, 802.34

#Start node ID
S=14

#Goal node ID
G=33

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 17, 25
C=1, 28, 46, 29, 44
C=2, 22, 32

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 22, 32
EO=1, 29, 44
EO=2, 28, 46
EO=3, 17, 25

#Starting belief state, starting with the all F combination and working through to all B
B=0.089083, 0.089083, 0.010480, 0.010480, 0.062882, 0.062882, 0.237555, 0.237555, 0.022271, 0.022271, 0.002620, 0.002620, 0.015721, 0.015721, 0.059389, 0.059389

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=36, 17, 25, 0.800000, 0.200000
O=17, 17, 25, 1.000000, 0.000000
O=25, 17, 25, 1.000000, 0.000000
O=8, 17, 25, 0.700000, 0.200000
O=29, 28, 46, 1.000000, 0.000000
O=29, 29, 44, 1.000000, 0.000000
O=28, 28, 46, 1.000000, 0.000000
O=28, 29, 44, 0.900000, 0.100000
O=46, 28, 46, 1.000000, 0.000000
O=44, 29, 44, 1.000000, 0.000000
O=0, 29, 44, 0.900000, 0.100000
O=6, 22, 32, 0.800000, 0.200000
O=22, 22, 32, 1.000000, 0.000000
O=32, 22, 32, 1.000000, 0.000000
O=48, 22, 32, 0.600000, 0.350000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=599.00, 309.00, 103.00, 91.00, 103.00, 91.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000
OB=546.00, 382.00, 1.00, 87.00, 1.00, 87.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 25.000000, 0.000000, 25.000000
OB=618.00, 381.00, 0.00, 68.00, 0.00, 68.00, 25.000000, 0.000000, 25.000000, 6.00, 0.00, 25.000000, 0.000000, 25.000000
OB=298.00, 410.00, 0.00, 112.00, 0.00, 112.00, 225.000000, 0.000000, 225.000000, 32.00, 0.00, 225.000000, 0.000000, 225.000000
OB=381.00, 589.00, 0.00, 0.00, 0.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 0.00, 16.000000, 0.000000, 16.000000, 100.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 100.00, 16.000000, 0.000000, 16.000000, 0.00, 0.00, 16.000000, 0.000000, 16.000000
OB=224.00, 67.00, 60.00, 0.00, 60.00, 0.00, 21.307086, 0.000000, 21.307086, 120.00, 30.00, 78.733990, 0.000000, 78.733990, 100.00, 110.00, 9.270729, 0.000000, 9.270729, 20.00, 110.00, 73.907519, 0.000000, 73.907519, 0.00, 30.00, 71.670428, 0.000000, 71.670428, 60.00, 0.00, 21.307086, 0.000000, 21.307086
OB=424.00, 343.00, 128.00, 0.00, 128.00, 0.00, 1.193371, 0.000000, 1.193371, 0.00, 145.00, 1.488505, 0.000000, 1.488505
OB=532.00, 539.00, 0.00, 71.00, 0.00, 71.00, 1.324871, 0.000000, 1.324871, 57.00, 0.00, 29.013699, 0.000000, 29.013699

Graph9.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 685.00, 171.00, 198.42
N=1, 348.00, 580.00, 275.69
N=2, 555.00, 489.00, 120.70
N=3, 486.00, 558.00, 317.25
N=4, 611.00, 654.00, 191.17
N=5, 263.00, 72.00, 187.82
N=6, 385.00, 64.00, 212.56
N=7, 74.00, 371.00, 43.61
N=8, 560.00, 238.00, 26.03
N=9, 651.00, 80.00, 39.39
N=10, 91.00, 130.00, 282.35
N=11, 86.00, 529.00, 238.88
N=12, 270.00, 92.00, 239.94
N=13, 319.00, 379.00, 347.40
N=14, 50.00, 53.00, 284.52
N=15, 576.00, 158.00, 325.63
N=16, 339.00, 583.00, 88.57
N=17, 460.00, 385.00, 199.12
N=18, 70.00, 608.00, 298.00
N=19, 323.00, 691.00, 248.29
N=20, 135.00, 684.00, 212.86
N=21, 273.00, 360.00, 66.54
N=22, 544.00, 297.00, 270.98
N=23, 560.00, 297.00, 330.40
N=24, 596.00, 105.00, 166.85
N=25, 560.00, 526.00, 277.65
N=26, 374.00, 13.00, 349.96
N=27, 511.00, 482.00, 208.06
N=28, 678.00, 110.00, 102.06
N=29, 54.00, 193.00, 280.30
N=30, 573.00, 227.00, 130.34
N=31, 250.00, 576.00, 322.68
N=32, 620.00, 45.00, 298.31
N=33, 656.00, 87.00, 82.95
N=34, 250.00, 331.00, 140.41
N=35, 326.00, 553.00, 166.02
N=36, 77.00, 57.00, 169.17
N=37, 70.00, 412.00, 309.15
N=38, 575.00, 425.00, 84.81
N=39, 593.00, 471.00, 136.32
N=40, 641.00, 489.00, 83.26
N=41, 209.00, 639.00, 329.57
N=42, 103.00, 561.00, 19.38
N=43, 256.00, 498.00, 269.09
N=44, 601.00, 616.00, 31.17
N=45, 670.00, 624.00, 15.21
N=46, 364.00, 112.00, 194.17
N=47, 379.00, 332.00, 61.74
N=48, 325.00, 374.00, 49.09
N=49, 126.00, 253.00, 30.51
N=50, 580.00, 8.00, 38.98
N=51, 607.00, 479.00, 324.17
N=52, 528.00, 29.00, 23.08
N=53, 266.00, 76.00, 282.44
N=54, 89.00, 636.00, 299.52
N=55, 76.00, 646.00, 239.63
N=56, 217.00, 672.00, 241.44
N=57, 596.00, 401.00, 271.04
N=58, 328.00, 169.00, 279.19
N=59, 163.00, 596.00, 263.56
N=60, 508.00, 479.00, 347.63
N=61, 342.00, 604.00, 2.11
N=62, 583.00, 65.00, 321.64
N=63, 588.00, 548.00, 212.77
N=64, 343.00, 276.00, 166.43
N=65, 61.00, 534.00, 276.87
N=66, 27.00, 650.00, 227.45
N=67, 206.00, 71.00, 358.06
N=68, 413.00, 539.00, 222.81
N=69, 304.00, 384.00, 26.63

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 28, 61.40
E=0, 33, 88.87
E=0, 9, 97.14
E=0, 15, 109.77
E=0, 24, 110.80
E=1, 35, 34.83
E=1, 68, 76.85
E=1, 31, 98.08
E=1, 19, 113.78
E=1, 43, 123.24
E=2, 25, 37.34
E=2, 39, 42.05
E=2, 27, 44.55
E=2, 60, 48.05
E=2, 51, 52.95
E=3, 68, 75.43
E=3, 27, 80.01
E=3, 25, 80.62
E=3, 60, 82.01
E=3, 63, 102.49
E=4, 44, 39.29
E=4, 45, 66.19
E=4, 63, 108.47
E=4, 25, 137.79
E=4, 40, 167.71
E=5, 53, 5.00
E=5, 12, 21.19
E=5, 67, 57.01
E=5, 46, 108.63
E=5, 58, 116.76
E=6, 26, 52.17
E=6, 46, 52.39
E=6, 12, 118.36
E=6, 53, 119.60
E=6, 52, 147.22
E=7, 37, 41.19
E=7, 49, 128.95
E=7, 65, 163.52
E=7, 29, 179.12
E=7, 34, 180.49
E=8, 30, 17.03
E=8, 23, 59.00
E=8, 22, 61.13
E=8, 15, 81.58
E=8, 24, 137.79
E=9, 33, 8.60
E=9, 28, 40.36
E=9, 32, 46.75
E=9, 24, 60.42
E=10, 29, 73.06
E=10, 36, 74.33
E=10, 14, 87.24
E=10, 67, 129.25
E=10, 12, 182.99
E=11, 65, 25.50
E=11, 18, 80.60
E=11, 54, 107.04
E=11, 55, 117.43
E=11, 37, 118.09
E=12, 53, 16.49
E=12, 67, 67.36
E=13, 48, 7.81
E=13, 69, 15.81
E=13, 21, 49.77
E=13, 47, 76.22
E=13, 34, 84.05
E=14, 36, 27.29
E=14, 29, 140.06
E=14, 67, 157.04
E=14, 53, 217.22
E=15, 24, 56.65
E=15, 30, 69.07
E=15, 62, 93.26
E=16, 61, 21.21
E=16, 35, 32.70
E=16, 68, 86.09
E=16, 31, 89.27
E=16, 19, 109.18
E=17, 47, 96.80
E=17, 22, 121.66
E=17, 23, 133.21
E=17, 34, 216.83
E=18, 54, 33.84
E=18, 55, 38.47
E=18, 42, 57.43
E=18, 66, 60.11
E=19, 61, 89.05
E=19, 56, 107.69
E=19, 41, 125.30
E=20, 54, 66.48
E=20, 55, 70.18
E=20, 56, 82.87
E=20, 41, 86.61
E=20, 59, 92.35
E=21, 34, 37.01
E=21, 69, 39.20
E=21, 48, 53.85
E=21, 64, 109.34
E=22, 23, 16.00
E=22, 30, 75.77
E=22, 57, 116.28
E=23, 30, 71.20
E=23, 57, 110.05
E=24, 62, 42.06
E=25, 63, 35.61
E=25, 39, 64.14
E=26, 46, 99.50
E=26, 53, 125.03
E=26, 52, 154.83
E=26, 67, 177.73
E=27, 60, 4.24
E=27, 39, 82.73
E=27, 38, 85.70
E=28, 33, 31.83
E=28, 32, 87.11
E=28, 62, 105.12
E=29, 49, 93.72
E=29, 36, 137.93
E=30, 62, 162.31
E=31, 41, 75.17
E=31, 35, 79.40
E=31, 59, 89.27
E=32, 62, 42.06
E=32, 50, 54.49
E=32, 33, 55.32
E=33, 50, 109.62
E=34, 69, 75.66
E=35, 61, 53.45
E=35, 68, 88.12
E=36, 49, 202.03
E=36, 58, 274.85
E=37, 65, 122.33
E=37, 49, 168.57
E=37, 55, 234.08
E=38, 57, 31.89
E=38, 39, 49.40
E=38, 51, 62.77
E=38, 60, 86.05
E=39, 51, 16.12
E=40, 51, 35.44
E=40, 63, 79.31
E=40, 57, 98.84
E=40, 44, 133.15
E=41, 56, 33.96
E=41, 59, 62.97
E=42, 65, 49.93
E=42, 59, 69.46
E=42, 54, 76.30
E=42, 55, 89.19
E=43, 69, 123.69
E=43, 61, 136.50
E=43, 48, 141.90
E=43, 47, 206.60
E=44, 63, 69.23
E=44, 45, 69.46
E=44, 51, 137.13
E=45, 60, 217.41
E=45, 57, 234.96
E=45, 68, 270.69
E=46, 58, 67.42
E=46, 64, 165.34
E=47, 64, 66.57
E=47, 48, 68.41
E=48, 69, 23.26
E=49, 64, 218.22
E=50, 52, 56.08
E=54, 66, 63.56
E=56, 59, 93.23
E=56, 61, 142.30
E=58, 64, 108.05
E=65, 66, 120.88

#Start node ID
S=37

#Goal node ID
G=40

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 3, 68, 45, 68
C=1, 47, 64
C=2, 17, 34, 17, 47
C=3, 6, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 6, 46
EO=1, 17, 47
EO=2, 17, 34
EO=3, 47, 64
EO=4, 45, 68
EO=5, 3, 68

#Starting belief state, starting with the all F combination and working through to all B
B=0.015263, 0.137365, 0.000126, 0.001131, 0.001696, 0.015263, 0.001131, 0.010175, 0.002544, 0.022894, 0.001696, 0.015263, 0.000283, 0.002544, 0.015263, 0.137365, 0.001205, 0.010845, 0.000010, 0.000089, 0.000134, 0.001205, 0.000089, 0.000803, 0.000201, 0.001807, 0.000134, 0.001205, 0.000022, 0.000201, 0.001205, 0.010845, 0.000803, 0.007230, 0.000007, 0.000060, 0.000089, 0.000803, 0.000060, 0.000536, 0.000134, 0.001205, 0.000089, 0.000803, 0.000015, 0.000134, 0.000803, 0.007230, 0.022894, 0.206048, 0.000188, 0.001696, 0.002544, 0.022894, 0.001696, 0.015263, 0.003816, 0.034341, 0.002544, 0.022894, 0.000424, 0.003816, 0.022894, 0.206048

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=35, 3, 68, 0.800000, 0.200000
O=35, 45, 68, 0.800000, 0.200000
O=68, 3, 68, 1.000000, 0.000000
O=68, 45, 68, 1.000000, 0.000000
O=3, 3, 68, 1.000000, 0.000000
O=45, 45, 68, 1.000000, 0.000000
O=34, 47, 64, 1.000000, 0.000000
O=34, 17, 34, 1.000000, 0.000000
O=34, 17, 47, 0.900000, 0.100000
O=64, 47, 64, 1.000000, 0.000000
O=47, 47, 64, 1.000000, 0.000000
O=47, 17, 47, 1.000000, 0.000000
O=7, 17, 34, 0.600000, 0.450000
O=17, 17, 34, 1.000000, 0.000000
O=17, 17, 47, 1.000000, 0.000000
O=58, 6, 46, 0.800000, 0.200000
O=46, 6, 46, 1.000000, 0.000000
O=6, 6, 46, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=433.00, 592.00, 0.00, 0.00, 0.00, 0.00, 85.043142, 0.000000, 85.043142, 100.00, 0.00, 68.765516, 0.000000, 68.765516, 100.00, 100.00, 10.794499, 0.000000, 10.794499, 0.00, 100.00, 24.048251, 0.000000, 24.048251, 0.00, 0.00, 85.043142, 0.000000, 85.043142
OB=392.00, 90.00, 0.00, 0.00, 0.00, 0.00, 169.000000, 0.000000, 169.000000, 100.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000
OB=102.00, 425.00, 0.00, 0.00, 0.00, 0.00, 0.566666, 0.000000, 0.566666, 140.00, 0.00, 10.062388, 0.000000, 10.062388, 140.00, 80.00, 3.352863, 0.000000, 3.352863, 0.00, 80.00, 4.777544, 0.000000, 4.777544, 0.00, 0.00, 0.566666, 0.000000, 0.566666
OB=142.00, 158.00, 0.00, 0.00, 0.00, 0.00, 2.956830, 0.000000, 2.956830, 140.00, 0.00, 0.527329, 0.000000, 0.527329, 140.00, 80.00, 0.015329, 0.000000, 0.015329, 0.00, 80.00, 7.751553, 0.000000, 7.751553, 0.00, 0.00, 2.956830, 0.000000, 2.956830
OB=404.00, 393.00, 60.00, 0.00, 60.00, 0.00, 144.000000, 0.000000, 144.000000, 120.00, 30.00, 81.000000, 0.000000, 81.000000, 100.00, 110.00, 25.000000, 0.000000, 25.000000, 20.00, 110.00, 25.000000, 0.000000, 25.000000, 0.00, 30.00, 25.000000, 0.000000, 25.000000, 60.00, 0.00, 144.000000, 0.000000, 144.000000
OB=397.00, 216.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 36.000000, 0.000000, 36.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000

Graph9PP.pomdp

//State variables
(variables
 (loc l68 l34 l35 l3 l64 l6 l37 l7 l40 l46 l47 l45 l17 l21 l58 l26)
 (c1 c1F c1B)
 (c2 c2F c2B)
 (c3 c3F c3B)
 (c4 c4F c4B)
 (c5 c5F c5B)
 (c6 c6F c6B)
)

//Observations
(observations
 (ob3_68 ob3_68F ob3_68B)
 (ob45_68 ob45_68F ob45_68B)
 (ob47_64 ob47_64F ob47_64B)
 (ob17_34 ob17_34F ob17_34B)
 (ob6_46 ob6_46F ob6_46B)
 (ob17_47 ob17_47F ob17_47B)
)

//Initial belief state
init [*
 (loc (l68 (0.0)) (l34 (0.0)) (l35 (0.0)) (l3 (0.0)) (l64 (0.0)) (l6 (0.0)) (l37 (1.0)) (l7 (0.0)) (l40 (0.0)) (l46 (0.0)) (l47 (0.0)) (l45 (0.0)) (l17 (0.0)) (l21 (0.0)) (l58 (0.0)) (l26 (0.0)))
 (c1 (c1F (0.410000000001)) (c1B (0.589999999999)))
 (c2 (c2F (0.399999999999)) (c2B (0.600000000001)))
 (c3 (c3F (0.479338842974)) (c3B (0.520661157026)))
 (c4 (c4F (0.51652892562)) (c4B (0.48347107438)))
 (c5 (c5F (0.520661157026)) (c5B (0.479338842974)))
 (c6 (c6F (0.1)) (c6B (0.9)))
]

//Actions and costs
action goto_l68
 loc (loc
 (l68 (locl68))
 (l34 (locl68))
 (l35 (locl68))
 (l3 (c1
 (c1F (locl68))
 (c1B (locl3))
))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl68))
 (l45 (c2
 (c2F (locl68))
 (c2B (locl45))
))
 (l17 (locl17))
 (l21 (locl68))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (c1'
 (c1F (ob3_68' (ob3_68F (1.0)) (ob3_68B (0.0))))
 (c1B (ob3_68' (ob3_68F (0.0)) (ob3_68B (1.0))))
)
 ob45_68 (c2'
 (c2F (ob45_68' (ob45_68F (1.0)) (ob45_68B (0.0))))
 (c2B (ob45_68' (ob45_68F (0.0)) (ob45_68B (1.0))))
)
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (399.4470067720321))
 (l35 (88.11923740024082))
 (l3 (75.43208866258443))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (406.6935932171618))
 (l45 (270.69170655932555))
 (l17 (2000.0))
 (l21 (362.9878685877497))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l34
 loc (loc
 (l68 (locl34))
 (l34 (locl34))
 (l35 (locl34))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl34))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (c4
 (c4F (locl34))
 (c4B (locl17))
))
 (l21 (locl34))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (c3'
 (c3F (ob47_64' (ob47_64F (1.0)) (ob47_64B (0.0))))
 (c3B (ob47_64' (ob47_64F (0.0)) (ob47_64B (1.0))))
)
 ob17_34 (c4'
 (c4F (ob17_34' (ob17_34F (1.0)) (ob17_34B (0.0))))
 (c4B (ob17_34' (ob17_34F (0.0)) (ob17_34B (1.0))))
)
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (c5'
 (c5F (ob17_47' (ob17_47F (0.9)) (ob17_47B (0.1))))
 (c5B (ob17_47' (ob17_47F (0.09999999999999998)) (ob17_47B (0.9))))
)
 endobserve
 cost (loc
 (l68 (399.4470067720321))
 (l34 (2000.0))
 (l35 (357.42465207920475))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (180.48822676285565))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (216.83173199511182))
 (l21 (37.013511046643494))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l35
 loc (loc
 (l68 (locl35))
 (l34 (locl35))
 (l35 (locl35))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl35))
 (l7 (locl35))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl35))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl35))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (c1'
 (c1F (ob3_68' (ob3_68F (0.8)) (ob3_68B (0.2))))
 (c1B (ob3_68' (ob3_68F (0.19999999999999996)) (ob3_68B (0.8))))
)
 ob45_68 (c2'
 (c2F (ob45_68' (ob45_68F (0.8)) (ob45_68B (0.2))))
 (c2B (ob45_68' (ob45_68F (0.19999999999999996)) (ob45_68B (0.8))))
)
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (88.11923740024082))
 (l34 (357.42465207920475))
 (l35 (2000.0))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (410.3969734182566))
 (l7 (451.58303978123104))
 (l40 (0))
 (l46 (2000.0))
 (l47 (364.6712385243344))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (320.9655138949223))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l3
 loc (loc
 (l68 (c1
 (c1F (locl3))
 (c1B (locl68))
))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl3))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl3))
 (l17 (locl3))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl3))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (c1'
 (c1F (ob3_68' (ob3_68F (1.0)) (ob3_68B (0.0))))
 (c1B (ob3_68' (ob3_68F (0.0)) (ob3_68B (1.0))))
)
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (75.43208866258443))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (841.0086877337199))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (241.18273947248457))
 (l17 (435.53044807429916))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (848.6167031712871))
)
endaction

action goto_l64
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl64))
 (l47 (c3
 (c3F (locl64))
 (c3B (locl47))
))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl64))
 (l58 (locl64))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (c3'
 (c3F (ob47_64' (ob47_64F (1.0)) (ob47_64B (0.0))))
 (c3B (ob47_64' (ob47_64F (0.0)) (ob47_64B (1.0))))
)
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (165.33904560024533))
 (l47 (66.57326790837296))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (109.34349546269316))
 (l58 (108.04628637764465))
 (l26 (2000.0))
)
endaction

action goto_l6
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl6))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl6))
 (l40 (locl40))
 (l46 (c6
 (c6F (locl6))
 (c6B (locl46))
))
 (l47 (locl47))
 (l45 (locl6))
 (l17 (locl6))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl6))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (c6'
 (c6F (ob6_46' (ob6_46F (1.0)) (ob6_46B (0.0))))
 (c6B (ob6_46' (ob6_46F (0.0)) (ob6_46B (1.0))))
)
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (841.0086877337199))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (553.5303814959202))
 (l40 (0))
 (l46 (52.392747589718944))
 (l47 (2000.0))
 (l45 (878.366468050476))
 (l17 (657.482873065368))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (52.172789842982326))
)
endaction

action goto_l37
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl37))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl37))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (410.3969734182566))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (41.19465984809196))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l7
 loc (loc
 (l68 (locl68))
 (l34 (locl7))
 (l35 (locl7))
 (l3 (locl3))
 (l64 (locl64))
 (l6 (locl7))
 (l37 (locl7))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl7))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (c4'
 (c4F (ob17_34' (ob17_34F (0.55)) (ob17_34B (0.45))))
 (c4B (ob17_34' (ob17_34F (0.4)) (ob17_34B (0.6))))
)
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (180.48822676285565))
 (l35 (451.58303978123104))
 (l3 (2000.0))
 (l64 (2000.0))
 (l6 (553.5303814959202))
 (l37 (41.19465984809196))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (559.1635142406005))
)
endaction

action goto_l40
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl40))
 (l64 (locl64))
 (l6 (locl40))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl40))
 (l17 (locl40))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl40))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (181.79854403814505))
 (l64 (2000.0))
 (l6 (742.2472767998634))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (202.61251097209058))
 (l17 (336.76903714044283))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (749.8552922374306))
)
endaction

action goto_l46
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl3))
 (l64 (locl46))
 (l6 (c6
 (c6F (locl46))
 (c6B (locl6))
))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl46))
 (l26 (locl46))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (c6'
 (c6F (ob6_46' (ob6_46F (1.0)) (ob6_46B (0.0))))
 (c6B (ob6_46' (ob6_46F (0.0)) (ob6_46B (1.0))))
)
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (2000.0))
 (l64 (165.33904560024533))
 (l6 (52.392747589718944))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (67.4166151627327))
 (l26 (99.50376877284599))
)
endaction

action goto_l47
 loc (loc
 (l68 (locl47))
 (l34 (locl34))
 (l35 (locl47))
 (l3 (locl3))
 (l64 (c3
 (c3F (locl47))
 (c3B (locl64))
))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (c5
 (c5F (locl47))
 (c5B (locl17))
))
 (l21 (locl47))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (c3'
 (c3F (ob47_64' (ob47_64F (1.0)) (ob47_64B (0.0))))
 (c3B (ob47_64' (ob47_64F (0.0)) (ob47_64B (1.0))))
)
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (c5'
 (c5F (ob17_47' (ob17_47F (1.0)) (ob17_47B (0.0))))
 (c5B (ob17_47' (ob17_47F (0.0)) (ob17_47B (1.0))))
)
 endobserve
 cost (loc
 (l68 (406.6935932171618))
 (l34 (2000.0))
 (l35 (364.6712385243344))
 (l3 (2000.0))
 (l64 (66.57326790837296))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (96.79876032264049))
 (l21 (122.26217357729332))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l45
 loc (loc
 (l68 (c2
 (c2F (locl45))
 (c2B (locl68))
))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl45))
 (l64 (locl64))
 (l6 (locl45))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (locl45))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl45))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (c2'
 (c2F (ob45_68' (ob45_68F (1.0)) (ob45_68B (0.0))))
 (c2B (ob45_68' (ob45_68F (0.0)) (ob45_68B (1.0))))
)
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (270.69170655932555))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (241.18273947248457))
 (l64 (2000.0))
 (l6 (878.366468050476))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (472.88822839105546))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (885.9744834880432))
)
endaction

action goto_l17
 loc (loc
 (l68 (locl68))
 (l34 (c4
 (c4F (locl17))
 (c4B (locl34))
))
 (l35 (locl35))
 (l3 (locl17))
 (l64 (locl64))
 (l6 (locl17))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (c5
 (c5F (locl17))
 (c5B (locl47))
))
 (l45 (locl17))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl17))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (c4'
 (c4F (ob17_34' (ob17_34F (1.0)) (ob17_34B (0.0))))
 (c4B (ob17_34' (ob17_34F (0.0)) (ob17_34B (1.0))))
)
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (c5'
 (c5F (ob17_47' (ob17_47F (1.0)) (ob17_47B (0.0))))
 (c5B (ob17_47' (ob17_47F (0.0)) (ob17_47B (1.0))))
)
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (216.83173199511182))
 (l35 (2000.0))
 (l3 (435.53044807429916))
 (l64 (2000.0))
 (l6 (657.482873065368))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (96.79876032264049))
 (l45 (472.88822839105546))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (665.0908885029354))
)
endaction

action goto_l21
 loc (loc
 (l68 (locl21))
 (l34 (locl21))
 (l35 (locl21))
 (l3 (locl3))
 (l64 (locl21))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl46))
 (l47 (locl21))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (362.9878685877497))
 (l34 (37.013511046643494))
 (l35 (320.9655138949223))
 (l3 (2000.0))
 (l64 (109.34349546269316))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (2000.0))
 (l47 (122.26217357729332))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l58
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl3))
 (l64 (locl58))
 (l6 (locl6))
 (l37 (locl37))
 (l7 (locl7))
 (l40 (locl40))
 (l46 (locl58))
 (l47 (locl47))
 (l45 (locl45))
 (l17 (locl17))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (c6'
 (c6F (ob6_46' (ob6_46F (0.8)) (ob6_46B (0.2))))
 (c6B (ob6_46' (ob6_46F (0.19999999999999996)) (ob6_46B (0.8))))
)
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (2000.0))
 (l64 (108.04628637764465))
 (l6 (2000.0))
 (l37 (2000.0))
 (l7 (2000.0))
 (l40 (0))
 (l46 (67.4166151627327))
 (l47 (2000.0))
 (l45 (2000.0))
 (l17 (2000.0))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

action goto_l26
 loc (loc
 (l68 (locl68))
 (l34 (locl34))
 (l35 (locl35))
 (l3 (locl26))
 (l64 (locl64))
 (l6 (locl26))
 (l37 (locl37))
 (l7 (locl26))
 (l40 (locl40))
 (l46 (locl26))
 (l47 (locl47))
 (l45 (locl26))
 (l17 (locl26))
 (l21 (locl21))
 (l58 (locl58))
 (l26 (locl26))
)
 c1 (SAMEc1)
 c2 (SAMEc2)
 c3 (SAMEc3)
 c4 (SAMEc4)
 c5 (SAMEc5)
 c6 (SAMEc6)
 observe
 ob3_68 (ob3_68' (ob3_68F (0.5)) (ob3_68B (0.5)))
 ob45_68 (ob45_68' (ob45_68F (0.5)) (ob45_68B (0.5)))
 ob47_64 (ob47_64' (ob47_64F (0.5)) (ob47_64B (0.5)))
 ob17_34 (ob17_34' (ob17_34F (0.5)) (ob17_34B (0.5)))
 ob6_46 (ob6_46' (ob6_46F (0.5)) (ob6_46B (0.5)))
 ob17_47 (ob17_47' (ob17_47F (0.5)) (ob17_47B (0.5)))
 endobserve
 cost (loc
 (l68 (2000.0))
 (l34 (2000.0))
 (l35 (2000.0))
 (l3 (848.6167031712871))
 (l64 (2000.0))
 (l6 (52.172789842982326))
 (l37 (2000.0))
 (l7 (559.1635142406005))
 (l40 (0))
 (l46 (99.50376877284599))
 (l47 (2000.0))
 (l45 (885.9744834880432))
 (l17 (665.0908885029354))
 (l21 (2000.0))
 (l58 (2000.0))
 (l26 (2000.0))
)
endaction

discount 0.999
tolerance 1.0E-5

Graph9_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 685.00, 171.00, 198.42
N=1, 348.00, 580.00, 275.69
N=2, 555.00, 489.00, 120.70
N=3, 486.00, 558.00, 317.25
N=4, 611.00, 654.00, 191.17
N=5, 263.00, 72.00, 187.82
N=6, 385.00, 64.00, 212.56
N=7, 74.00, 371.00, 43.61
N=8, 560.00, 238.00, 26.03
N=9, 651.00, 80.00, 39.39
N=10, 91.00, 130.00, 282.35
N=11, 86.00, 529.00, 238.88
N=12, 270.00, 92.00, 239.94
N=13, 319.00, 379.00, 347.40
N=14, 50.00, 53.00, 284.52
N=15, 576.00, 158.00, 325.63
N=16, 339.00, 583.00, 88.57
N=17, 460.00, 385.00, 199.12
N=18, 70.00, 608.00, 298.00
N=19, 323.00, 691.00, 248.29
N=20, 135.00, 684.00, 212.86
N=21, 273.00, 360.00, 66.54
N=22, 544.00, 297.00, 270.98
N=23, 560.00, 297.00, 330.40
N=24, 596.00, 105.00, 166.85
N=25, 560.00, 526.00, 277.65
N=26, 374.00, 13.00, 349.96
N=27, 511.00, 482.00, 208.06
N=28, 678.00, 110.00, 102.06
N=29, 54.00, 193.00, 280.30
N=30, 573.00, 227.00, 130.34
N=31, 250.00, 576.00, 322.68
N=32, 620.00, 45.00, 298.31
N=33, 656.00, 87.00, 82.95
N=34, 250.00, 331.00, 140.41
N=35, 326.00, 553.00, 166.02
N=36, 77.00, 57.00, 169.17
N=37, 70.00, 412.00, 309.15
N=38, 575.00, 425.00, 84.81
N=39, 593.00, 471.00, 136.32
N=40, 641.00, 489.00, 83.26
N=41, 209.00, 639.00, 329.57
N=42, 103.00, 561.00, 19.38
N=43, 256.00, 498.00, 269.09
N=44, 601.00, 616.00, 31.17
N=45, 670.00, 624.00, 15.21
N=46, 364.00, 112.00, 194.17
N=47, 379.00, 332.00, 61.74
N=48, 325.00, 374.00, 49.09
N=49, 126.00, 253.00, 30.51
N=50, 580.00, 8.00, 38.98
N=51, 607.00, 479.00, 324.17
N=52, 528.00, 29.00, 23.08
N=53, 266.00, 76.00, 282.44
N=54, 89.00, 636.00, 299.52
N=55, 76.00, 646.00, 239.63
N=56, 217.00, 672.00, 241.44
N=57, 596.00, 401.00, 271.04
N=58, 328.00, 169.00, 279.19
N=59, 163.00, 596.00, 263.56
N=60, 508.00, 479.00, 347.63
N=61, 342.00, 604.00, 2.11
N=62, 583.00, 65.00, 321.64
N=63, 588.00, 548.00, 212.77
N=64, 343.00, 276.00, 166.43
N=65, 61.00, 534.00, 276.87
N=66, 27.00, 650.00, 227.45
N=67, 206.00, 71.00, 358.06
N=68, 413.00, 539.00, 222.81
N=69, 304.00, 384.00, 26.63

#Edge data
#E=Node number 1, Node number 2, cost
E=3, 68, 75.43
E=3, 6, 841.01
E=3, 17, 435.53
E=3, 26, 848.62
E=3, 40, 181.80
E=3, 45, 241.18
E=6, 46, 52.39
E=6, 7, 553.53
E=6, 17, 657.48
E=6, 26, 52.17
E=6, 40, 742.25
E=6, 45, 878.37
E=7, 34, 180.49
E=7, 35, 451.58
E=7, 37, 41.19
E=7, 26, 559.16
E=17, 34, 216.83
E=17, 40, 336.77
E=17, 47, 96.80
E=17, 45, 472.89
E=17, 26, 665.09
E=21, 68, 362.99
E=21, 34, 37.01
E=21, 35, 320.97
E=21, 64, 109.34
E=21, 47, 122.26
E=26, 40, 749.86
E=26, 46, 99.50
E=26, 45, 885.97
E=34, 68, 399.45
E=34, 35, 357.42
E=35, 68, 88.12
E=35, 37, 410.40
E=35, 47, 364.67
E=40, 45, 202.61
E=45, 68, 270.69
E=46, 64, 165.34
E=46, 58, 67.42
E=47, 68, 406.69
E=47, 64, 66.57
E=58, 64, 108.05

#Start node ID
S=37

#Goal node ID
G=40

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 3, 68, 45, 68
C=1, 47, 64
C=2, 17, 34, 17, 47
C=3, 6, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 6, 46
EO=1, 17, 47
EO=2, 17, 34
EO=3, 47, 64
EO=4, 45, 68
EO=5, 3, 68

#Starting belief state, starting with the all F combination and working through to all B
B=0.015263, 0.137365, 0.000126, 0.001131, 0.001696, 0.015263, 0.001131, 0.010175, 0.002544, 0.022894, 0.001696, 0.015263, 0.000283, 0.002544, 0.015263, 0.137365, 0.001205, 0.010845, 0.000010, 0.000089, 0.000134, 0.001205, 0.000089, 0.000803, 0.000201, 0.001807, 0.000134, 0.001205, 0.000022, 0.000201, 0.001205, 0.010845, 0.000803, 0.007230, 0.000007, 0.000060, 0.000089, 0.000803, 0.000060, 0.000536, 0.000134, 0.001205, 0.000089, 0.000803, 0.000015, 0.000134, 0.000803, 0.007230, 0.022894, 0.206048, 0.000188, 0.001696, 0.002544, 0.022894, 0.001696, 0.015263, 0.003816, 0.034341, 0.002544, 0.022894, 0.000424, 0.003816, 0.022894, 0.206048

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=35, 3, 68, 0.800000, 0.200000
O=35, 45, 68, 0.800000, 0.200000
O=68, 3, 68, 1.000000, 0.000000
O=68, 45, 68, 1.000000, 0.000000
O=3, 3, 68, 1.000000, 0.000000
O=45, 45, 68, 1.000000, 0.000000
O=34, 47, 64, 1.000000, 0.000000
O=34, 17, 34, 1.000000, 0.000000
O=34, 17, 47, 0.900000, 0.100000
O=64, 47, 64, 1.000000, 0.000000
O=47, 47, 64, 1.000000, 0.000000
O=47, 17, 47, 1.000000, 0.000000
O=7, 17, 34, 0.600000, 0.450000
O=17, 17, 34, 1.000000, 0.000000
O=17, 17, 47, 1.000000, 0.000000
O=58, 6, 46, 0.800000, 0.200000
O=46, 6, 46, 1.000000, 0.000000
O=6, 6, 46, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=433.00, 592.00, 0.00, 0.00, 0.00, 0.00, 85.043142, 0.000000, 85.043142, 100.00, 0.00, 68.765516, 0.000000, 68.765516, 100.00, 100.00, 10.794499, 0.000000, 10.794499, 0.00, 100.00, 24.048251, 0.000000, 24.048251, 0.00, 0.00, 85.043142, 0.000000, 85.043142
OB=392.00, 90.00, 0.00, 0.00, 0.00, 0.00, 169.000000, 0.000000, 169.000000, 100.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 0.00, 169.000000, 0.000000, 169.000000
OB=102.00, 425.00, 0.00, 0.00, 0.00, 0.00, 0.566666, 0.000000, 0.566666, 140.00, 0.00, 10.062388, 0.000000, 10.062388, 140.00, 80.00, 3.352863, 0.000000, 3.352863, 0.00, 80.00, 4.777544, 0.000000, 4.777544, 0.00, 0.00, 0.566666, 0.000000, 0.566666
OB=142.00, 158.00, 0.00, 0.00, 0.00, 0.00, 2.956830, 0.000000, 2.956830, 140.00, 0.00, 0.527329, 0.000000, 0.527329, 140.00, 80.00, 0.015329, 0.000000, 0.015329, 0.00, 80.00, 7.751553, 0.000000, 7.751553, 0.00, 0.00, 2.956830, 0.000000, 2.956830
OB=404.00, 393.00, 60.00, 0.00, 60.00, 0.00, 144.000000, 0.000000, 144.000000, 120.00, 30.00, 81.000000, 0.000000, 81.000000, 100.00, 110.00, 25.000000, 0.000000, 25.000000, 20.00, 110.00, 25.000000, 0.000000, 25.000000, 0.00, 30.00, 25.000000, 0.000000, 25.000000, 60.00, 0.00, 144.000000, 0.000000, 144.000000
OB=397.00, 216.00, 0.00, 0.00, 0.00, 0.00, 49.000000, 0.000000, 49.000000, 100.00, 0.00, 36.000000, 0.000000, 36.000000, 100.00, 100.00, 25.000000, 0.000000, 25.000000, 0.00, 100.00, 144.000000, 0.000000, 144.000000, 0.00, 0.00, 49.000000, 0.000000, 49.000000

Scaling Graph 19/Graph19_10_edges.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49, 10, 45
C=2, 50, 63, 50, 55
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 55
EO=4, 50, 63
EO=5, 10, 45
EO=6, 45, 49
EO=7, 33, 78
EO=8, 46, 57
EO=9, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.019814, 0.000874, 0.000874, 0.001238, 0.013209, 0.000583, 0.000583, 0.000826, 0.002831, 0.000125, 0.000125, 0.000177, 0.001887, 0.000083, 0.000083, 0.000118, 0.012266, 0.000541, 0.000541, 0.000767, 0.008177, 0.000361, 0.000361, 0.000511, 0.015770, 0.000696, 0.000696, 0.000986, 0.010514, 0.000464, 0.000464, 0.000657, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.019814, 0.000874, 0.000874, 0.001238, 0.013209, 0.000583, 0.000583, 0.000826, 0.002831, 0.000125, 0.000125, 0.000177, 0.001887, 0.000083, 0.000083, 0.000118, 0.012266, 0.000541, 0.000541, 0.000767, 0.008177, 0.000361, 0.000361, 0.000511, 0.015770, 0.000696, 0.000696, 0.000986, 0.010514, 0.000464, 0.000464, 0.000657, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.000652, 0.000029, 0.000029, 0.000041, 0.000435, 0.000019, 0.000019, 0.000027, 0.000093, 0.000004, 0.000004, 0.000006, 0.000062, 0.000003, 0.000003, 0.000004, 0.000404, 0.000018, 0.000018, 0.000025, 0.000269, 0.000012, 0.000012, 0.000017, 0.000519, 0.000023, 0.000023, 0.000032, 0.000346, 0.000015, 0.000015, 0.000022, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.000652, 0.000029, 0.000029, 0.000041, 0.000435, 0.000019, 0.000019, 0.000027, 0.000093, 0.000004, 0.000004, 0.000006, 0.000062, 0.000003, 0.000003, 0.000004, 0.000404, 0.000018, 0.000018, 0.000025, 0.000269, 0.000012, 0.000012, 0.000017, 0.000519, 0.000023, 0.000023, 0.000032, 0.000346, 0.000015, 0.000015, 0.000022, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.002202, 0.000097, 0.000097, 0.000138, 0.001468, 0.000065, 0.000065, 0.000092, 0.000315, 0.000014, 0.000014, 0.000020, 0.000210, 0.000009, 0.000009, 0.000013, 0.001363, 0.000060, 0.000060, 0.000085, 0.000909, 0.000040, 0.000040, 0.000057, 0.001752, 0.000077, 0.000077, 0.000110, 0.001168, 0.000052, 0.000052, 0.000073, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.002202, 0.000097, 0.000097, 0.000138, 0.001468, 0.000065, 0.000065, 0.000092, 0.000315, 0.000014, 0.000014, 0.000020, 0.000210, 0.000009, 0.000009, 0.000013, 0.001363, 0.000060, 0.000060, 0.000085, 0.000909, 0.000040, 0.000040, 0.000057, 0.001752, 0.000077, 0.000077, 0.000110, 0.001168, 0.000052, 0.000052, 0.000073, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.005871, 0.000259, 0.000259, 0.000367, 0.003914, 0.000173, 0.000173, 0.000245, 0.000839, 0.000037, 0.000037, 0.000052, 0.000559, 0.000025, 0.000025, 0.000035, 0.003634, 0.000160, 0.000160, 0.000227, 0.002423, 0.000107, 0.000107, 0.000151, 0.004673, 0.000206, 0.000206, 0.000292, 0.003115, 0.000137, 0.000137, 0.000195, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.005871, 0.000259, 0.000259, 0.000367, 0.003914, 0.000173, 0.000173, 0.000245, 0.000839, 0.000037, 0.000037, 0.000052, 0.000559, 0.000025, 0.000025, 0.000035, 0.003634, 0.000160, 0.000160, 0.000227, 0.002423, 0.000107, 0.000107, 0.000151, 0.004673, 0.000206, 0.000206, 0.000292, 0.003115, 0.000137, 0.000137, 0.000195, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=42, 10, 45, 0.900000, 0.200000
O=45, 45, 49, 1.000000, 0.000000
O=45, 10, 45, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000
O=10, 10, 45, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_10_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=10, 67, 154.08
E=10, 42, 102.12
E=10, 45, 38.60
E=10, 14, 141.87
E=14, 67, 115.18
E=14, 57, 31.62
E=24, 33, 257.66
E=24, 67, 325.94
E=24, 50, 329.19
E=24, 55, 32.28
E=24, 25, 324.98
E=24, 28, 395.11
E=25, 33, 470.00
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 63, 161.04
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 581.92
E=50, 63, 144.01
E=50, 55, 194.12
E=54, 64, 154.30
E=54, 56, 63.95
E=55, 67, 293.99
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49, 10, 45
C=2, 50, 63, 50, 55
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 55
EO=4, 50, 63
EO=5, 10, 45
EO=6, 45, 49
EO=7, 33, 78
EO=8, 46, 57
EO=9, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.019814, 0.000874, 0.000874, 0.001238, 0.013209, 0.000583, 0.000583, 0.000826, 0.002831, 0.000125, 0.000125, 0.000177, 0.001887, 0.000083, 0.000083, 0.000118, 0.012266, 0.000541, 0.000541, 0.000767, 0.008177, 0.000361, 0.000361, 0.000511, 0.015770, 0.000696, 0.000696, 0.000986, 0.010514, 0.000464, 0.000464, 0.000657, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.019814, 0.000874, 0.000874, 0.001238, 0.013209, 0.000583, 0.000583, 0.000826, 0.002831, 0.000125, 0.000125, 0.000177, 0.001887, 0.000083, 0.000083, 0.000118, 0.012266, 0.000541, 0.000541, 0.000767, 0.008177, 0.000361, 0.000361, 0.000511, 0.015770, 0.000696, 0.000696, 0.000986, 0.010514, 0.000464, 0.000464, 0.000657, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.000652, 0.000029, 0.000029, 0.000041, 0.000435, 0.000019, 0.000019, 0.000027, 0.000093, 0.000004, 0.000004, 0.000006, 0.000062, 0.000003, 0.000003, 0.000004, 0.000404, 0.000018, 0.000018, 0.000025, 0.000269, 0.000012, 0.000012, 0.000017, 0.000519, 0.000023, 0.000023, 0.000032, 0.000346, 0.000015, 0.000015, 0.000022, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.000652, 0.000029, 0.000029, 0.000041, 0.000435, 0.000019, 0.000019, 0.000027, 0.000093, 0.000004, 0.000004, 0.000006, 0.000062, 0.000003, 0.000003, 0.000004, 0.000404, 0.000018, 0.000018, 0.000025, 0.000269, 0.000012, 0.000012, 0.000017, 0.000519, 0.000023, 0.000023, 0.000032, 0.000346, 0.000015, 0.000015, 0.000022, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.002202, 0.000097, 0.000097, 0.000138, 0.001468, 0.000065, 0.000065, 0.000092, 0.000315, 0.000014, 0.000014, 0.000020, 0.000210, 0.000009, 0.000009, 0.000013, 0.001363, 0.000060, 0.000060, 0.000085, 0.000909, 0.000040, 0.000040, 0.000057, 0.001752, 0.000077, 0.000077, 0.000110, 0.001168, 0.000052, 0.000052, 0.000073, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.002202, 0.000097, 0.000097, 0.000138, 0.001468, 0.000065, 0.000065, 0.000092, 0.000315, 0.000014, 0.000014, 0.000020, 0.000210, 0.000009, 0.000009, 0.000013, 0.001363, 0.000060, 0.000060, 0.000085, 0.000909, 0.000040, 0.000040, 0.000057, 0.001752, 0.000077, 0.000077, 0.000110, 0.001168, 0.000052, 0.000052, 0.000073, 0.000978, 0.000043, 0.000043, 0.000061, 0.000652, 0.000029, 0.000029, 0.000041, 0.000140, 0.000006, 0.000006, 0.000009, 0.000093, 0.000004, 0.000004, 0.000006, 0.000606, 0.000027, 0.000027, 0.000038, 0.000404, 0.000018, 0.000018, 0.000025, 0.000779, 0.000034, 0.000034, 0.000049, 0.000519, 0.000023, 0.000023, 0.000032, 0.001468, 0.000065, 0.000065, 0.000092, 0.000978, 0.000043, 0.000043, 0.000061, 0.000210, 0.000009, 0.000009, 0.000013, 0.000140, 0.000006, 0.000006, 0.000009, 0.000909, 0.000040, 0.000040, 0.000057, 0.000606, 0.000027, 0.000027, 0.000038, 0.001168, 0.000052, 0.000052, 0.000073, 0.000779, 0.000034, 0.000034, 0.000049, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.005871, 0.000259, 0.000259, 0.000367, 0.003914, 0.000173, 0.000173, 0.000245, 0.000839, 0.000037, 0.000037, 0.000052, 0.000559, 0.000025, 0.000025, 0.000035, 0.003634, 0.000160, 0.000160, 0.000227, 0.002423, 0.000107, 0.000107, 0.000151, 0.004673, 0.000206, 0.000206, 0.000292, 0.003115, 0.000137, 0.000137, 0.000195, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292, 0.013209, 0.000583, 0.000583, 0.000826, 0.008806, 0.000389, 0.000389, 0.000550, 0.001887, 0.000083, 0.000083, 0.000118, 0.001258, 0.000056, 0.000056, 0.000079, 0.008177, 0.000361, 0.000361, 0.000511, 0.005451, 0.000241, 0.000241, 0.000341, 0.010514, 0.000464, 0.000464, 0.000657, 0.007009, 0.000309, 0.000309, 0.000438, 0.005871, 0.000259, 0.000259, 0.000367, 0.003914, 0.000173, 0.000173, 0.000245, 0.000839, 0.000037, 0.000037, 0.000052, 0.000559, 0.000025, 0.000025, 0.000035, 0.003634, 0.000160, 0.000160, 0.000227, 0.002423, 0.000107, 0.000107, 0.000151, 0.004673, 0.000206, 0.000206, 0.000292, 0.003115, 0.000137, 0.000137, 0.000195, 0.008806, 0.000389, 0.000389, 0.000550, 0.005871, 0.000259, 0.000259, 0.000367, 0.001258, 0.000056, 0.000056, 0.000079, 0.000839, 0.000037, 0.000037, 0.000052, 0.005451, 0.000241, 0.000241, 0.000341, 0.003634, 0.000160, 0.000160, 0.000227, 0.007009, 0.000309, 0.000309, 0.000438, 0.004673, 0.000206, 0.000206, 0.000292

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=42, 10, 45, 0.900000, 0.200000
O=45, 45, 49, 1.000000, 0.000000
O=45, 10, 45, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000
O=10, 10, 45, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_11_edges.txt

			#Node data

			#N=Node ID			 x			 y			 rotation in degrees

			N=0			 285.00			 482.00			 157.53

			N=1			 542.00			 220.00			 8.64

			N=2			 357.00			 289.00			 241.94

			N=3			 44.00			 448.00			 224.84

			N=4			 675.00			 243.00			 108.92

			N=5			 389.00			 251.00			 140.96

			N=6			 343.00			 364.00			 309.81

			N=7			 162.00			 47.00			 18.70

			N=8			 122.00			 76.00			 221.69

			N=9			 271.00			 77.00			 67.00

			N=10			 275.00			 241.00			 13.83

			N=11			 391.00			 285.00			 289.71

			N=12			 103.00			 659.00			 223.96

			N=13			 439.00			 595.00			 301.39

			N=14			 383.00			 333.00			 227.39

			N=15			 380.00			 398.00			 42.84

			N=16			 378.00			 379.00			 311.13

			N=17			 688.00			 148.00			 195.56

			N=18			 621.00			 38.00			 43.27

			N=19			 458.00			 181.00			 6.07

			N=20			 420.00			 397.00			 222.53

			N=21			 182.00			 74.00			 255.66

			N=22			 627.00			 348.00			 198.29

			N=23			 40.00			 120.00			 192.90

			N=24			 304.00			 497.00			 349.73

			N=25			 97.00			 473.00			 318.59

			N=26			 542.00			 313.00			 204.41

			N=27			 220.00			 439.00			 215.96

			N=28			 17.00			 423.00			 345.48

			N=29			 89.00			 573.00			 93.00

			N=30			 603.00			 123.00			 176.07

			N=31			 415.00			 664.00			 250.86

			N=32			 356.00			 600.00			 22.23

			N=33			 493.00			 546.00			 132.39

			N=34			 437.00			 76.00			 194.41

			N=35			 401.00			 215.00			 258.70

			N=36			 358.00			 388.00			 62.02

			N=37			 46.00			 39.00			 130.69

			N=38			 262.00			 427.00			 71.13

			N=39			 625.00			 313.00			 198.68

			N=40			 203.00			 429.00			 68.50

			N=41			 320.00			 443.00			 253.09

			N=42			 280.00			 343.00			 70.79

			N=43			 114.00			 440.00			 348.21

			N=44			 212.00			 662.00			 241.89

			N=45			 244.00			 264.00			 69.10

			N=46			 465.00			 503.00			 46.07

			N=47			 116.00			 35.00			 60.33

			N=48			 35.00			 558.00			 89.55

			N=49			 211.00			 177.00			 203.14

			N=50			 488.00			 612.00			 147.46

			N=51			 383.00			 502.00			 159.11

			N=52			 202.00			 24.00			 65.92

			N=53			 42.00			 627.00			 273.51

			N=54			 52.00			 193.00			 73.13

			N=55			 313.00			 528.00			 121.67

			N=56			 81.00			 250.00			 15.60

			N=57			 413.00			 343.00			 26.66

			N=58			 266.00			 574.00			 293.15

			N=59			 416.00			 631.00			 191.15

			N=60			 611.00			 70.00			 184.29

			N=61			 424.00			 175.00			 313.64

			N=62			 36.00			 682.00			 273.41

			N=63			 631.00			 629.00			 204.26

			N=64			 32.00			 346.00			 268.77

			N=65			 227.00			 455.00			 159.78

			N=66			 655.00			 354.00			 76.09

			N=67			 421.00			 286.00			 160.55

			N=68			 425.00			 32.00			 97.43

			N=69			 149.00			 118.00			 243.13

			N=70			 369.00			 146.00			 179.09

			N=71			 539.00			 275.00			 287.18

			N=72			 189.00			 390.00			 5.97

			N=73			 409.00			 31.00			 11.77

			N=74			 55.00			 501.00			 247.52

			N=75			 318.00			 530.00			 263.64

			N=76			 382.00			 235.00			 93.55

			N=77			 378.00			 659.00			 79.11

			N=78			 677.00			 432.00			 51.25

			N=79			 93.00			 50.00			 342.20

			

			#Edge data

			#E=Node number 1			 Node number 2			 cost

			E=0			 24			 24.21

			E=0			 41			 52.40

			E=0			 55			 53.85

			E=0			 75			 58.25

			E=1			 71			 55.08

			E=1			 26			 93.00

			E=1			 39			 124.65

			E=1			 4			 134.97

			E=2			 11			 34.23

			E=2			 5			 49.68

			E=2			 14			 51.11

			E=2			 67			 64.07

			E=3			 28			 36.80

			E=3			 74			 54.13

			E=3			 25			 58.60

			E=3			 43			 70.46

			E=4			 39			 86.02

			E=4			 66			 112.79

			E=4			 22			 115.45

			E=5			 76			 17.46

			E=5			 11			 34.06

			E=5			 35			 37.95

			E=6			 36			 28.30

			E=6			 16			 38.08

			E=6			 15			 50.25

			E=6			 14			 50.61

			E=7			 21			 33.60

			E=7			 52			 46.14

			E=7			 47			 47.54

			E=7			 8			 49.41

			E=8			 79			 38.95

			E=8			 47			 41.44

			E=8			 69			 49.93

			E=9			 52			 87.01

			E=9			 21			 89.05

			E=9			 49			 116.62

			E=9			 69			 128.71

			E=10			 45			 38.60

			E=10			 42			 102.12

			E=10			 11			 124.06

			E=10			 14			 141.87

			E=11			 67			 30.02

			E=12			 62			 70.84

			E=12			 44			 109.04

			E=12			 77			 275.00

			E=13			 59			 42.72

			E=13			 31			 73.05

			E=13			 32			 83.15

			E=13			 77			 88.41

			E=14			 57			 31.62

			E=15			 16			 19.10

			E=15			 36			 24.17

			E=15			 20			 40.01

			E=16			 36			 21.93

			E=16			 20			 45.69

			E=17			 60			 109.60

			E=17			 18			 128.80

			E=17			 34			 261.12

			E=17			 68			 287.45

			E=18			 60			 33.53

			E=18			 30			 86.88

			E=18			 34			 187.88

			E=19			 61			 34.53

			E=19			 35			 66.37

			E=19			 76			 93.23

			E=19			 34			 107.08

			E=20			 57			 54.45

			E=20			 36			 62.65

			E=21			 52			 53.85

			E=21			 69			 55.00

			E=22			 66			 28.64

			E=22			 39			 35.06

			E=22			 26			 91.92

			E=23			 54			 73.98

			E=23			 37			 81.22

			E=23			 79			 87.80

			E=23			 69			 109.02

			E=24			 55			 32.28

			E=24			 75			 35.85

			E=24			 41			 56.32

			E=25			 43			 37.12

			E=25			 74			 50.48

			E=25			 28			 94.34

			E=26			 71			 38.12

			E=26			 39			 83.00

			E=27			 65			 17.46

			E=27			 40			 19.72

			E=27			 38			 43.68

			E=27			 41			 100.08

			E=28			 64			 78.45

			E=28			 74			 86.76

			E=29			 48			 56.04

			E=29			 74			 79.62

			E=29			 62			 121.20

			E=29			 64			 234.05

			E=30			 60			 53.60

			E=30			 34			 172.53

			E=30			 68			 199.91

			E=31			 59			 33.02

			E=31			 77			 37.34

			E=31			 32			 87.05

			E=32			 77			 62.97

			E=32			 59			 67.54

			E=33			 46			 51.31

			E=33			 63			 161.04

			E=33			 41			 201.34

			E=33			 78			 216.45

			E=35			 76			 27.59

			E=35			 61			 46.14

			E=37			 79			 48.27

			E=37			 47			 70.11

			E=37			 54			 154.12

			E=38			 65			 44.82

			E=38			 40			 59.03

			E=38			 72			 81.84

			E=40			 65			 35.38

			E=40			 72			 41.44

			E=42			 45			 86.82

			E=42			 57			 133.00

			E=42			 76			 148.55

			E=43			 72			 90.14

			E=43			 65			 113.99

			E=44			 62			 177.13

			E=44			 59			 206.34

			E=44			 50			 280.49

			E=45			 49			 93.05

			E=45			 56			 163.60

			E=46			 57			 168.24

			E=46			 63			 208.40

			E=46			 67			 221.42

			E=47			 79			 27.46

			E=48			 53			 69.35

			E=48			 62			 124.00

			E=48			 72			 227.90

			E=49			 56			 149.09

			E=49			 52			 153.26

			E=50			 63			 144.01

			E=50			 55			 194.12

			E=50			 58			 225.23

			E=51			 75			 70.77

			E=51			 55			 74.67

			E=51			 58			 137.38

			E=51			 67			 219.32

			E=53			 64			 281.18

			E=54			 56			 63.95

			E=54			 64			 154.30

			E=58			 75			 68.12

			E=60			 68			 189.84

			E=61			 70			 62.18

			E=61			 68			 143.00

			E=63			 78			 202.30

			E=66			 78			 81.04

			E=66			 71			 140.35

			E=70			 73			 121.76

			E=71			 78			 209.03

			

			#Start node ID

			S=39

			

			#Goal node ID

			G=37

			

			#Cluster and uncertain edge data

			#C=Cluster ID			 <Edge pair 1>			 <Edge pair 2>			...

			#<Edge pair>=node ID 1			 node ID 2 being an uncertain edge

			C=0			 46			 67			 46			 57			 33			 78

			C=1			 45			 49			 10			 45			 9			 49

			C=2			 50			 63			 50			 55

			C=3			 54			 64

			C=4			 46			 63			 33			 46

			

			#Edge ordering

			#The start belief state is given as a series of edge status combinations.

			#In a graph of 3 uncertain edges			 there are 8 combinations: FFF			FFB			FBF			FBB			...			BBB

			#The bit positions of the statuses for each edge are given below. So the last character

			#in the example above would be the status of the edge at bit position 0			 the middle character

			#refers to the edge at position 1			 and so on.

			#EO=Bit position for edge			 <Edge pair>

			EO=0			 33			 46

			EO=1			 46			 63

			EO=2			 54			 64

			EO=3			 50			 55

			EO=4			 50			 63

			EO=5			 9			 49

			EO=6			 10			 45

			EO=7			 45			 49

			EO=8			 33			 78

			EO=9			 46			 57

			EO=10			 46			 67

			

			#Starting belief state			 starting with the all F combination and working through to all B

			B=0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.016842			 0.000743			 0.000743			 0.001053			 0.011228			 0.000495			 0.000495			 0.000702			 0.002406			 0.000106			 0.000106			 0.000150			 0.001604			 0.000071			 0.000071			 0.000100			 0.010426			 0.000460			 0.000460			 0.000652			 0.006951			 0.000307			 0.000307			 0.000434			 0.013405			 0.000591			 0.000591			 0.000838			 0.008937			 0.000394			 0.000394			 0.000559			 0.002972			 0.000131			 0.000131			 0.000186			 0.001981			 0.000087			 0.000087			 0.000124			 0.000425			 0.000019			 0.000019			 0.000027			 0.000283			 0.000012			 0.000012			 0.000018			 0.001840			 0.000081			 0.000081			 0.000115			 0.001227			 0.000054			 0.000054			 0.000077			 0.002366			 0.000104			 0.000104			 0.000148			 0.001577			 0.000070			 0.000070			 0.000099			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.016842			 0.000743			 0.000743			 0.001053			 0.011228			 0.000495			 0.000495			 0.000702			 0.002406			 0.000106			 0.000106			 0.000150			 0.001604			 0.000071			 0.000071			 0.000100			 0.010426			 0.000460			 0.000460			 0.000652			 0.006951			 0.000307			 0.000307			 0.000434			 0.013405			 0.000591			 0.000591			 0.000838			 0.008937			 0.000394			 0.000394			 0.000559			 0.002972			 0.000131			 0.000131			 0.000186			 0.001981			 0.000087			 0.000087			 0.000124			 0.000425			 0.000019			 0.000019			 0.000027			 0.000283			 0.000012			 0.000012			 0.000018			 0.001840			 0.000081			 0.000081			 0.000115			 0.001227			 0.000054			 0.000054			 0.000077			 0.002366			 0.000104			 0.000104			 0.000148			 0.001577			 0.000070			 0.000070			 0.000099			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.000098			 0.000004			 0.000004			 0.000006			 0.000065			 0.000003			 0.000003			 0.000004			 0.000014			 0.000001			 0.000001			 0.000001			 0.000009			 0.000000			 0.000000			 0.000001			 0.000061			 0.000003			 0.000003			 0.000004			 0.000040			 0.000002			 0.000002			 0.000003			 0.000078			 0.000003			 0.000003			 0.000005			 0.000052			 0.000002			 0.000002			 0.000003			 0.000554			 0.000024			 0.000024			 0.000035			 0.000370			 0.000016			 0.000016			 0.000023			 0.000079			 0.000003			 0.000003			 0.000005			 0.000053			 0.000002			 0.000002			 0.000003			 0.000343			 0.000015			 0.000015			 0.000021			 0.000229			 0.000010			 0.000010			 0.000014			 0.000441			 0.000019			 0.000019			 0.000028			 0.000294			 0.000013			 0.000013			 0.000018			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.000098			 0.000004			 0.000004			 0.000006			 0.000065			 0.000003			 0.000003			 0.000004			 0.000014			 0.000001			 0.000001			 0.000001			 0.000009			 0.000000			 0.000000			 0.000001			 0.000061			 0.000003			 0.000003			 0.000004			 0.000040			 0.000002			 0.000002			 0.000003			 0.000078			 0.000003			 0.000003			 0.000005			 0.000052			 0.000002			 0.000002			 0.000003			 0.000554			 0.000024			 0.000024			 0.000035			 0.000370			 0.000016			 0.000016			 0.000023			 0.000079			 0.000003			 0.000003			 0.000005			 0.000053			 0.000002			 0.000002			 0.000003			 0.000343			 0.000015			 0.000015			 0.000021			 0.000229			 0.000010			 0.000010			 0.000014			 0.000441			 0.000019			 0.000019			 0.000028			 0.000294			 0.000013			 0.000013			 0.000018			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.001871			 0.000083			 0.000083			 0.000117			 0.001248			 0.000055			 0.000055			 0.000078			 0.000267			 0.000012			 0.000012			 0.000017			 0.000178			 0.000008			 0.000008			 0.000011			 0.001158			 0.000051			 0.000051			 0.000072			 0.000772			 0.000034			 0.000034			 0.000048			 0.001489			 0.000066			 0.000066			 0.000093			 0.000993			 0.000044			 0.000044			 0.000062			 0.000330			 0.000015			 0.000015			 0.000021			 0.000220			 0.000010			 0.000010			 0.000014			 0.000047			 0.000002			 0.000002			 0.000003			 0.000031			 0.000001			 0.000001			 0.000002			 0.000204			 0.000009			 0.000009			 0.000013			 0.000136			 0.000006			 0.000006			 0.000009			 0.000263			 0.000012			 0.000012			 0.000016			 0.000175			 0.000008			 0.000008			 0.000011			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.001871			 0.000083			 0.000083			 0.000117			 0.001248			 0.000055			 0.000055			 0.000078			 0.000267			 0.000012			 0.000012			 0.000017			 0.000178			 0.000008			 0.000008			 0.000011			 0.001158			 0.000051			 0.000051			 0.000072			 0.000772			 0.000034			 0.000034			 0.000048			 0.001489			 0.000066			 0.000066			 0.000093			 0.000993			 0.000044			 0.000044			 0.000062			 0.000330			 0.000015			 0.000015			 0.000021			 0.000220			 0.000010			 0.000010			 0.000014			 0.000047			 0.000002			 0.000002			 0.000003			 0.000031			 0.000001			 0.000001			 0.000002			 0.000204			 0.000009			 0.000009			 0.000013			 0.000136			 0.000006			 0.000006			 0.000009			 0.000263			 0.000012			 0.000012			 0.000016			 0.000175			 0.000008			 0.000008			 0.000011			 0.000147			 0.000006			 0.000006			 0.000009			 0.000098			 0.000004			 0.000004			 0.000006			 0.000021			 0.000001			 0.000001			 0.000001			 0.000014			 0.000001			 0.000001			 0.000001			 0.000091			 0.000004			 0.000004			 0.000006			 0.000061			 0.000003			 0.000003			 0.000004			 0.000117			 0.000005			 0.000005			 0.000007			 0.000078			 0.000003			 0.000003			 0.000005			 0.000832			 0.000037			 0.000037			 0.000052			 0.000554			 0.000024			 0.000024			 0.000035			 0.000119			 0.000005			 0.000005			 0.000007			 0.000079			 0.000003			 0.000003			 0.000005			 0.000515			 0.000023			 0.000023			 0.000032			 0.000343			 0.000015			 0.000015			 0.000021			 0.000662			 0.000029			 0.000029			 0.000041			 0.000441			 0.000019			 0.000019			 0.000028			 0.000220			 0.000010			 0.000010			 0.000014			 0.000147			 0.000006			 0.000006			 0.000009			 0.000031			 0.000001			 0.000001			 0.000002			 0.000021			 0.000001			 0.000001			 0.000001			 0.000136			 0.000006			 0.000006			 0.000009			 0.000091			 0.000004			 0.000004			 0.000006			 0.000175			 0.000008			 0.000008			 0.000011			 0.000117			 0.000005			 0.000005			 0.000007			 0.001248			 0.000055			 0.000055			 0.000078			 0.000832			 0.000037			 0.000037			 0.000052			 0.000178			 0.000008			 0.000008			 0.000011			 0.000119			 0.000005			 0.000005			 0.000007			 0.000772			 0.000034			 0.000034			 0.000048			 0.000515			 0.000023			 0.000023			 0.000032			 0.000993			 0.000044			 0.000044			 0.000062			 0.000662			 0.000029			 0.000029			 0.000041			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.000881			 0.000039			 0.000039			 0.000055			 0.000587			 0.000026			 0.000026			 0.000037			 0.000126			 0.000006			 0.000006			 0.000008			 0.000084			 0.000004			 0.000004			 0.000005			 0.000545			 0.000024			 0.000024			 0.000034			 0.000363			 0.000016			 0.000016			 0.000023			 0.000701			 0.000031			 0.000031			 0.000044			 0.000467			 0.000021			 0.000021			 0.000029			 0.004990			 0.000220			 0.000220			 0.000312			 0.003327			 0.000147			 0.000147			 0.000208			 0.000713			 0.000031			 0.000031			 0.000045			 0.000475			 0.000021			 0.000021			 0.000030			 0.003089			 0.000136			 0.000136			 0.000193			 0.002059			 0.000091			 0.000091			 0.000129			 0.003972			 0.000175			 0.000175			 0.000248			 0.002648			 0.000117			 0.000117			 0.000165			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.011228			 0.000495			 0.000495			 0.000702			 0.007485			 0.000330			 0.000330			 0.000468			 0.001604			 0.000071			 0.000071			 0.000100			 0.001069			 0.000047			 0.000047			 0.000067			 0.006951			 0.000307			 0.000307			 0.000434			 0.004634			 0.000204			 0.000204			 0.000290			 0.008937			 0.000394			 0.000394			 0.000559			 0.005958			 0.000263			 0.000263			 0.000372			 0.001981			 0.000087			 0.000087			 0.000124			 0.001321			 0.000058			 0.000058			 0.000083			 0.000283			 0.000012			 0.000012			 0.000018			 0.000189			 0.000008			 0.000008			 0.000012			 0.001227			 0.000054			 0.000054			 0.000077			 0.000818			 0.000036			 0.000036			 0.000051			 0.001577			 0.000070			 0.000070			 0.000099			 0.001051			 0.000046			 0.000046			 0.000066			 0.000881			 0.000039			 0.000039			 0.000055			 0.000587			 0.000026			 0.000026			 0.000037			 0.000126			 0.000006			 0.000006			 0.000008			 0.000084			 0.000004			 0.000004			 0.000005			 0.000545			 0.000024			 0.000024			 0.000034			 0.000363			 0.000016			 0.000016			 0.000023			 0.000701			 0.000031			 0.000031			 0.000044			 0.000467			 0.000021			 0.000021			 0.000029			 0.004990			 0.000220			 0.000220			 0.000312			 0.003327			 0.000147			 0.000147			 0.000208			 0.000713			 0.000031			 0.000031			 0.000045			 0.000475			 0.000021			 0.000021			 0.000030			 0.003089			 0.000136			 0.000136			 0.000193			 0.002059			 0.000091			 0.000091			 0.000129			 0.003972			 0.000175			 0.000175			 0.000248			 0.002648			 0.000117			 0.000117			 0.000165			 0.001321			 0.000058			 0.000058			 0.000083			 0.000881			 0.000039			 0.000039			 0.000055			 0.000189			 0.000008			 0.000008			 0.000012			 0.000126			 0.000006			 0.000006			 0.000008			 0.000818			 0.000036			 0.000036			 0.000051			 0.000545			 0.000024			 0.000024			 0.000034			 0.001051			 0.000046			 0.000046			 0.000066			 0.000701			 0.000031			 0.000031			 0.000044			 0.007485			 0.000330			 0.000330			 0.000468			 0.004990			 0.000220			 0.000220			 0.000312			 0.001069			 0.000047			 0.000047			 0.000067			 0.000713			 0.000031			 0.000031			 0.000045			 0.004634			 0.000204			 0.000204			 0.000290			 0.003089			 0.000136			 0.000136			 0.000193			 0.005958			 0.000263			 0.000263			 0.000372			 0.003972			 0.000175			 0.000175			 0.000248

			

			#Observation data

			#O=Node ID making the observation			 <Edge pair> being observed			 P(block|block)			 P(block|free)

			O=33			 46			 67			 0.900000			 0.100000

			O=33			 46			 57			 0.900000			 0.100000

			O=33			 33			 78			 1.000000			 0.000000

			O=33			 33			 46			 1.000000			 0.000000

			O=46			 46			 67			 1.000000			 0.000000

			O=46			 46			 57			 1.000000			 0.000000

			O=46			 46			 63			 1.000000			 0.000000

			O=46			 33			 46			 1.000000			 0.000000

			O=67			 46			 67			 1.000000			 0.000000

			O=57			 46			 57			 1.000000			 0.000000

			O=42			 45			 49			 0.900000			 0.100000

			O=42			 10			 45			 0.900000			 0.200000

			O=45			 45			 49			 1.000000			 0.000000

			O=45			 10			 45			 1.000000			 0.000000

			O=45			 9			 49			 0.800000			 0.100000

			O=49			 45			 49			 1.000000			 0.000000

			O=49			 9			 49			 1.000000			 0.000000

			O=14			 45			 49			 0.700000			 0.300000

			O=78			 50			 63			 0.800000			 0.200000

			O=78			 33			 78			 1.000000			 0.000000

			O=78			 46			 63			 0.700000			 0.300000

			O=78			 33			 46			 0.700000			 0.300000

			O=63			 50			 63			 1.000000			 0.000000

			O=63			 46			 63			 1.000000			 0.000000

			O=63			 50			 55			 0.800000			 0.200000

			O=50			 50			 63			 1.000000			 0.000000

			O=50			 50			 55			 1.000000			 0.000000

			O=28			 54			 64			 30.800000			 0.200000

			O=64			 54			 64			 1.000000			 0.000000

			O=54			 54			 64			 1.000000			 0.000000

			O=25			 54			 64			 0.800000			 0.200000

			O=66			 33			 78			 0.800000			 0.200000

			O=55			 50			 55			 1.000000			 0.000000

			O=10			 10			 45			 1.000000			 0.000000

			O=9			 9			 49			 1.000000			 0.000000

			

			#Obstacle data

			#OB=x			 y coordinates of obstacle in world space			 x			 y of obstacle handle in obstacle co-ordinates

			#then a comma separated list of <Point data>

			#<Point data>=x			 y coordinates of vertex (Gaussian mean) in obstacle space			 cov(1			1)			 cov(1			2)			 cov(2			2)

			#cov(n			n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2			1)==cov(1			2).

			OB=4.00			 6.00			 0.00			 0.00			 0.00			 0.00			 400.000000			 0.000000			 400.000000			 0.00			 100.00			 400.000000			 0.000000			 400.000000

			OB=300.00			 122.00			 60.00			 0.00			 60.00			 0.00			 0.000000			 0.000000			 0.000000			 120.00			 30.00			 0.000000			 0.000000			 0.000000			 100.00			 110.00			 0.000000			 0.000000			 0.000000			 20.00			 110.00			 0.000000			 0.000000			 0.000000			 0.00			 30.00			 0.000000			 0.000000			 0.000000			 60.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=524.00			 349.00			 60.00			 0.00			 60.00			 0.00			 0.000000			 0.000000			 0.000000			 120.00			 30.00			 0.000000			 0.000000			 0.000000			 100.00			 110.00			 0.000000			 0.000000			 0.000000			 20.00			 110.00			 0.000000			 0.000000			 0.000000			 0.00			 30.00			 0.000000			 0.000000			 0.000000			 60.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=95.00			 535.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=71.00			 291.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=515.00			 139.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=420.00			 542.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 125.00			 66.00			 0.000000			 0.000000			 0.000000

Scaling Graph 19/Graph19_11_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=9, 37, 240.30
E=9, 49, 116.62
E=9, 52, 87.01
E=9, 54, 311.70
E=10, 67, 154.08
E=10, 42, 102.12
E=10, 45, 38.60
E=10, 14, 141.87
E=14, 67, 115.18
E=14, 57, 31.62
E=24, 33, 257.66
E=24, 67, 325.94
E=24, 50, 329.19
E=24, 55, 32.28
E=24, 25, 324.98
E=24, 28, 395.11
E=25, 33, 470.00
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 63, 161.04
E=37, 52, 163.79
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 52, 153.26
E=49, 56, 149.09
E=50, 67, 581.92
E=50, 63, 144.01
E=50, 55, 194.12
E=52, 54, 282.92
E=54, 64, 154.30
E=54, 56, 63.95
E=55, 67, 293.99
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49, 10, 45, 9, 49
C=2, 50, 63, 50, 55
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 55
EO=4, 50, 63
EO=5, 9, 49
EO=6, 10, 45
EO=7, 45, 49
EO=8, 33, 78
EO=9, 46, 57
EO=10, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.016842, 0.000743, 0.000743, 0.001053, 0.011228, 0.000495, 0.000495, 0.000702, 0.002406, 0.000106, 0.000106, 0.000150, 0.001604, 0.000071, 0.000071, 0.000100, 0.010426, 0.000460, 0.000460, 0.000652, 0.006951, 0.000307, 0.000307, 0.000434, 0.013405, 0.000591, 0.000591, 0.000838, 0.008937, 0.000394, 0.000394, 0.000559, 0.002972, 0.000131, 0.000131, 0.000186, 0.001981, 0.000087, 0.000087, 0.000124, 0.000425, 0.000019, 0.000019, 0.000027, 0.000283, 0.000012, 0.000012, 0.000018, 0.001840, 0.000081, 0.000081, 0.000115, 0.001227, 0.000054, 0.000054, 0.000077, 0.002366, 0.000104, 0.000104, 0.000148, 0.001577, 0.000070, 0.000070, 0.000099, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.016842, 0.000743, 0.000743, 0.001053, 0.011228, 0.000495, 0.000495, 0.000702, 0.002406, 0.000106, 0.000106, 0.000150, 0.001604, 0.000071, 0.000071, 0.000100, 0.010426, 0.000460, 0.000460, 0.000652, 0.006951, 0.000307, 0.000307, 0.000434, 0.013405, 0.000591, 0.000591, 0.000838, 0.008937, 0.000394, 0.000394, 0.000559, 0.002972, 0.000131, 0.000131, 0.000186, 0.001981, 0.000087, 0.000087, 0.000124, 0.000425, 0.000019, 0.000019, 0.000027, 0.000283, 0.000012, 0.000012, 0.000018, 0.001840, 0.000081, 0.000081, 0.000115, 0.001227, 0.000054, 0.000054, 0.000077, 0.002366, 0.000104, 0.000104, 0.000148, 0.001577, 0.000070, 0.000070, 0.000099, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.000098, 0.000004, 0.000004, 0.000006, 0.000065, 0.000003, 0.000003, 0.000004, 0.000014, 0.000001, 0.000001, 0.000001, 0.000009, 0.000000, 0.000000, 0.000001, 0.000061, 0.000003, 0.000003, 0.000004, 0.000040, 0.000002, 0.000002, 0.000003, 0.000078, 0.000003, 0.000003, 0.000005, 0.000052, 0.000002, 0.000002, 0.000003, 0.000554, 0.000024, 0.000024, 0.000035, 0.000370, 0.000016, 0.000016, 0.000023, 0.000079, 0.000003, 0.000003, 0.000005, 0.000053, 0.000002, 0.000002, 0.000003, 0.000343, 0.000015, 0.000015, 0.000021, 0.000229, 0.000010, 0.000010, 0.000014, 0.000441, 0.000019, 0.000019, 0.000028, 0.000294, 0.000013, 0.000013, 0.000018, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.000098, 0.000004, 0.000004, 0.000006, 0.000065, 0.000003, 0.000003, 0.000004, 0.000014, 0.000001, 0.000001, 0.000001, 0.000009, 0.000000, 0.000000, 0.000001, 0.000061, 0.000003, 0.000003, 0.000004, 0.000040, 0.000002, 0.000002, 0.000003, 0.000078, 0.000003, 0.000003, 0.000005, 0.000052, 0.000002, 0.000002, 0.000003, 0.000554, 0.000024, 0.000024, 0.000035, 0.000370, 0.000016, 0.000016, 0.000023, 0.000079, 0.000003, 0.000003, 0.000005, 0.000053, 0.000002, 0.000002, 0.000003, 0.000343, 0.000015, 0.000015, 0.000021, 0.000229, 0.000010, 0.000010, 0.000014, 0.000441, 0.000019, 0.000019, 0.000028, 0.000294, 0.000013, 0.000013, 0.000018, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.001871, 0.000083, 0.000083, 0.000117, 0.001248, 0.000055, 0.000055, 0.000078, 0.000267, 0.000012, 0.000012, 0.000017, 0.000178, 0.000008, 0.000008, 0.000011, 0.001158, 0.000051, 0.000051, 0.000072, 0.000772, 0.000034, 0.000034, 0.000048, 0.001489, 0.000066, 0.000066, 0.000093, 0.000993, 0.000044, 0.000044, 0.000062, 0.000330, 0.000015, 0.000015, 0.000021, 0.000220, 0.000010, 0.000010, 0.000014, 0.000047, 0.000002, 0.000002, 0.000003, 0.000031, 0.000001, 0.000001, 0.000002, 0.000204, 0.000009, 0.000009, 0.000013, 0.000136, 0.000006, 0.000006, 0.000009, 0.000263, 0.000012, 0.000012, 0.000016, 0.000175, 0.000008, 0.000008, 0.000011, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.001871, 0.000083, 0.000083, 0.000117, 0.001248, 0.000055, 0.000055, 0.000078, 0.000267, 0.000012, 0.000012, 0.000017, 0.000178, 0.000008, 0.000008, 0.000011, 0.001158, 0.000051, 0.000051, 0.000072, 0.000772, 0.000034, 0.000034, 0.000048, 0.001489, 0.000066, 0.000066, 0.000093, 0.000993, 0.000044, 0.000044, 0.000062, 0.000330, 0.000015, 0.000015, 0.000021, 0.000220, 0.000010, 0.000010, 0.000014, 0.000047, 0.000002, 0.000002, 0.000003, 0.000031, 0.000001, 0.000001, 0.000002, 0.000204, 0.000009, 0.000009, 0.000013, 0.000136, 0.000006, 0.000006, 0.000009, 0.000263, 0.000012, 0.000012, 0.000016, 0.000175, 0.000008, 0.000008, 0.000011, 0.000147, 0.000006, 0.000006, 0.000009, 0.000098, 0.000004, 0.000004, 0.000006, 0.000021, 0.000001, 0.000001, 0.000001, 0.000014, 0.000001, 0.000001, 0.000001, 0.000091, 0.000004, 0.000004, 0.000006, 0.000061, 0.000003, 0.000003, 0.000004, 0.000117, 0.000005, 0.000005, 0.000007, 0.000078, 0.000003, 0.000003, 0.000005, 0.000832, 0.000037, 0.000037, 0.000052, 0.000554, 0.000024, 0.000024, 0.000035, 0.000119, 0.000005, 0.000005, 0.000007, 0.000079, 0.000003, 0.000003, 0.000005, 0.000515, 0.000023, 0.000023, 0.000032, 0.000343, 0.000015, 0.000015, 0.000021, 0.000662, 0.000029, 0.000029, 0.000041, 0.000441, 0.000019, 0.000019, 0.000028, 0.000220, 0.000010, 0.000010, 0.000014, 0.000147, 0.000006, 0.000006, 0.000009, 0.000031, 0.000001, 0.000001, 0.000002, 0.000021, 0.000001, 0.000001, 0.000001, 0.000136, 0.000006, 0.000006, 0.000009, 0.000091, 0.000004, 0.000004, 0.000006, 0.000175, 0.000008, 0.000008, 0.000011, 0.000117, 0.000005, 0.000005, 0.000007, 0.001248, 0.000055, 0.000055, 0.000078, 0.000832, 0.000037, 0.000037, 0.000052, 0.000178, 0.000008, 0.000008, 0.000011, 0.000119, 0.000005, 0.000005, 0.000007, 0.000772, 0.000034, 0.000034, 0.000048, 0.000515, 0.000023, 0.000023, 0.000032, 0.000993, 0.000044, 0.000044, 0.000062, 0.000662, 0.000029, 0.000029, 0.000041, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.000881, 0.000039, 0.000039, 0.000055, 0.000587, 0.000026, 0.000026, 0.000037, 0.000126, 0.000006, 0.000006, 0.000008, 0.000084, 0.000004, 0.000004, 0.000005, 0.000545, 0.000024, 0.000024, 0.000034, 0.000363, 0.000016, 0.000016, 0.000023, 0.000701, 0.000031, 0.000031, 0.000044, 0.000467, 0.000021, 0.000021, 0.000029, 0.004990, 0.000220, 0.000220, 0.000312, 0.003327, 0.000147, 0.000147, 0.000208, 0.000713, 0.000031, 0.000031, 0.000045, 0.000475, 0.000021, 0.000021, 0.000030, 0.003089, 0.000136, 0.000136, 0.000193, 0.002059, 0.000091, 0.000091, 0.000129, 0.003972, 0.000175, 0.000175, 0.000248, 0.002648, 0.000117, 0.000117, 0.000165, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.011228, 0.000495, 0.000495, 0.000702, 0.007485, 0.000330, 0.000330, 0.000468, 0.001604, 0.000071, 0.000071, 0.000100, 0.001069, 0.000047, 0.000047, 0.000067, 0.006951, 0.000307, 0.000307, 0.000434, 0.004634, 0.000204, 0.000204, 0.000290, 0.008937, 0.000394, 0.000394, 0.000559, 0.005958, 0.000263, 0.000263, 0.000372, 0.001981, 0.000087, 0.000087, 0.000124, 0.001321, 0.000058, 0.000058, 0.000083, 0.000283, 0.000012, 0.000012, 0.000018, 0.000189, 0.000008, 0.000008, 0.000012, 0.001227, 0.000054, 0.000054, 0.000077, 0.000818, 0.000036, 0.000036, 0.000051, 0.001577, 0.000070, 0.000070, 0.000099, 0.001051, 0.000046, 0.000046, 0.000066, 0.000881, 0.000039, 0.000039, 0.000055, 0.000587, 0.000026, 0.000026, 0.000037, 0.000126, 0.000006, 0.000006, 0.000008, 0.000084, 0.000004, 0.000004, 0.000005, 0.000545, 0.000024, 0.000024, 0.000034, 0.000363, 0.000016, 0.000016, 0.000023, 0.000701, 0.000031, 0.000031, 0.000044, 0.000467, 0.000021, 0.000021, 0.000029, 0.004990, 0.000220, 0.000220, 0.000312, 0.003327, 0.000147, 0.000147, 0.000208, 0.000713, 0.000031, 0.000031, 0.000045, 0.000475, 0.000021, 0.000021, 0.000030, 0.003089, 0.000136, 0.000136, 0.000193, 0.002059, 0.000091, 0.000091, 0.000129, 0.003972, 0.000175, 0.000175, 0.000248, 0.002648, 0.000117, 0.000117, 0.000165, 0.001321, 0.000058, 0.000058, 0.000083, 0.000881, 0.000039, 0.000039, 0.000055, 0.000189, 0.000008, 0.000008, 0.000012, 0.000126, 0.000006, 0.000006, 0.000008, 0.000818, 0.000036, 0.000036, 0.000051, 0.000545, 0.000024, 0.000024, 0.000034, 0.001051, 0.000046, 0.000046, 0.000066, 0.000701, 0.000031, 0.000031, 0.000044, 0.007485, 0.000330, 0.000330, 0.000468, 0.004990, 0.000220, 0.000220, 0.000312, 0.001069, 0.000047, 0.000047, 0.000067, 0.000713, 0.000031, 0.000031, 0.000045, 0.004634, 0.000204, 0.000204, 0.000290, 0.003089, 0.000136, 0.000136, 0.000193, 0.005958, 0.000263, 0.000263, 0.000372, 0.003972, 0.000175, 0.000175, 0.000248

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=42, 10, 45, 0.900000, 0.200000
O=45, 45, 49, 1.000000, 0.000000
O=45, 10, 45, 1.000000, 0.000000
O=45, 9, 49, 0.800000, 0.100000
O=49, 45, 49, 1.000000, 0.000000
O=49, 9, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000
O=10, 10, 45, 1.000000, 0.000000
O=9, 9, 49, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_12_edges.txt

			#Node data

			#N=Node ID			 x			 y			 rotation in degrees

			N=0			 285.00			 482.00			 157.53

			N=1			 542.00			 220.00			 8.64

			N=2			 357.00			 289.00			 241.94

			N=3			 44.00			 448.00			 224.84

			N=4			 675.00			 243.00			 108.92

			N=5			 389.00			 251.00			 140.96

			N=6			 343.00			 364.00			 309.81

			N=7			 162.00			 47.00			 18.70

			N=8			 122.00			 76.00			 221.69

			N=9			 271.00			 77.00			 67.00

			N=10			 275.00			 241.00			 13.83

			N=11			 391.00			 285.00			 289.71

			N=12			 103.00			 659.00			 223.96

			N=13			 439.00			 595.00			 301.39

			N=14			 383.00			 333.00			 227.39

			N=15			 380.00			 398.00			 42.84

			N=16			 378.00			 379.00			 311.13

			N=17			 688.00			 148.00			 195.56

			N=18			 621.00			 38.00			 43.27

			N=19			 458.00			 181.00			 6.07

			N=20			 420.00			 397.00			 222.53

			N=21			 182.00			 74.00			 255.66

			N=22			 627.00			 348.00			 198.29

			N=23			 40.00			 120.00			 192.90

			N=24			 304.00			 497.00			 349.73

			N=25			 97.00			 473.00			 318.59

			N=26			 542.00			 313.00			 204.41

			N=27			 220.00			 439.00			 215.96

			N=28			 17.00			 423.00			 345.48

			N=29			 89.00			 573.00			 93.00

			N=30			 603.00			 123.00			 176.07

			N=31			 415.00			 664.00			 250.86

			N=32			 356.00			 600.00			 22.23

			N=33			 493.00			 546.00			 132.39

			N=34			 437.00			 76.00			 194.41

			N=35			 401.00			 215.00			 258.70

			N=36			 358.00			 388.00			 62.02

			N=37			 46.00			 39.00			 130.69

			N=38			 262.00			 427.00			 71.13

			N=39			 625.00			 313.00			 198.68

			N=40			 203.00			 429.00			 68.50

			N=41			 320.00			 443.00			 253.09

			N=42			 280.00			 343.00			 70.79

			N=43			 114.00			 440.00			 348.21

			N=44			 212.00			 662.00			 241.89

			N=45			 244.00			 264.00			 69.10

			N=46			 465.00			 503.00			 46.07

			N=47			 116.00			 35.00			 60.33

			N=48			 35.00			 558.00			 89.55

			N=49			 211.00			 177.00			 203.14

			N=50			 488.00			 612.00			 147.46

			N=51			 383.00			 502.00			 159.11

			N=52			 202.00			 24.00			 65.92

			N=53			 42.00			 627.00			 273.51

			N=54			 52.00			 193.00			 73.13

			N=55			 313.00			 528.00			 121.67

			N=56			 81.00			 250.00			 15.60

			N=57			 413.00			 343.00			 26.66

			N=58			 266.00			 574.00			 293.15

			N=59			 416.00			 631.00			 191.15

			N=60			 611.00			 70.00			 184.29

			N=61			 424.00			 175.00			 313.64

			N=62			 36.00			 682.00			 273.41

			N=63			 631.00			 629.00			 204.26

			N=64			 32.00			 346.00			 268.77

			N=65			 227.00			 455.00			 159.78

			N=66			 655.00			 354.00			 76.09

			N=67			 421.00			 286.00			 160.55

			N=68			 425.00			 32.00			 97.43

			N=69			 149.00			 118.00			 243.13

			N=70			 369.00			 146.00			 179.09

			N=71			 539.00			 275.00			 287.18

			N=72			 189.00			 390.00			 5.97

			N=73			 409.00			 31.00			 11.77

			N=74			 55.00			 501.00			 247.52

			N=75			 318.00			 530.00			 263.64

			N=76			 382.00			 235.00			 93.55

			N=77			 378.00			 659.00			 79.11

			N=78			 677.00			 432.00			 51.25

			N=79			 93.00			 50.00			 342.20

			

			#Edge data

			#E=Node number 1			 Node number 2			 cost

			E=0			 24			 24.21

			E=0			 41			 52.40

			E=0			 55			 53.85

			E=0			 75			 58.25

			E=1			 71			 55.08

			E=1			 26			 93.00

			E=1			 39			 124.65

			E=1			 4			 134.97

			E=2			 11			 34.23

			E=2			 5			 49.68

			E=2			 14			 51.11

			E=2			 67			 64.07

			E=3			 28			 36.80

			E=3			 74			 54.13

			E=3			 25			 58.60

			E=3			 43			 70.46

			E=4			 39			 86.02

			E=4			 66			 112.79

			E=4			 22			 115.45

			E=5			 76			 17.46

			E=5			 11			 34.06

			E=5			 35			 37.95

			E=6			 36			 28.30

			E=6			 16			 38.08

			E=6			 15			 50.25

			E=6			 14			 50.61

			E=7			 21			 33.60

			E=7			 52			 46.14

			E=7			 47			 47.54

			E=7			 8			 49.41

			E=8			 79			 38.95

			E=8			 47			 41.44

			E=8			 69			 49.93

			E=9			 52			 87.01

			E=9			 21			 89.05

			E=9			 49			 116.62

			E=9			 69			 128.71

			E=10			 45			 38.60

			E=10			 42			 102.12

			E=10			 11			 124.06

			E=10			 14			 141.87

			E=11			 67			 30.02

			E=12			 62			 70.84

			E=12			 44			 109.04

			E=12			 77			 275.00

			E=13			 59			 42.72

			E=13			 31			 73.05

			E=13			 32			 83.15

			E=13			 77			 88.41

			E=14			 57			 31.62

			E=15			 16			 19.10

			E=15			 36			 24.17

			E=15			 20			 40.01

			E=16			 36			 21.93

			E=16			 20			 45.69

			E=17			 60			 109.60

			E=17			 18			 128.80

			E=17			 34			 261.12

			E=17			 68			 287.45

			E=18			 60			 33.53

			E=18			 30			 86.88

			E=18			 34			 187.88

			E=19			 61			 34.53

			E=19			 35			 66.37

			E=19			 76			 93.23

			E=19			 34			 107.08

			E=20			 57			 54.45

			E=20			 36			 62.65

			E=21			 52			 53.85

			E=21			 69			 55.00

			E=22			 66			 28.64

			E=22			 39			 35.06

			E=22			 26			 91.92

			E=23			 54			 73.98

			E=23			 37			 81.22

			E=23			 79			 87.80

			E=23			 69			 109.02

			E=24			 55			 32.28

			E=24			 75			 35.85

			E=24			 41			 56.32

			E=25			 43			 37.12

			E=25			 74			 50.48

			E=25			 28			 94.34

			E=26			 71			 38.12

			E=26			 39			 83.00

			E=27			 65			 17.46

			E=27			 40			 19.72

			E=27			 38			 43.68

			E=27			 41			 100.08

			E=28			 64			 78.45

			E=28			 74			 86.76

			E=29			 48			 56.04

			E=29			 74			 79.62

			E=29			 62			 121.20

			E=29			 64			 234.05

			E=30			 60			 53.60

			E=30			 34			 172.53

			E=30			 68			 199.91

			E=31			 59			 33.02

			E=31			 77			 37.34

			E=31			 32			 87.05

			E=32			 77			 62.97

			E=32			 59			 67.54

			E=33			 46			 51.31

			E=33			 63			 161.04

			E=33			 41			 201.34

			E=33			 78			 216.45

			E=35			 76			 27.59

			E=35			 61			 46.14

			E=37			 79			 48.27

			E=37			 47			 70.11

			E=37			 54			 154.12

			E=38			 65			 44.82

			E=38			 40			 59.03

			E=38			 72			 81.84

			E=40			 65			 35.38

			E=40			 72			 41.44

			E=42			 45			 86.82

			E=42			 57			 133.00

			E=42			 76			 148.55

			E=43			 72			 90.14

			E=43			 65			 113.99

			E=44			 62			 177.13

			E=44			 59			 206.34

			E=44			 50			 280.49

			E=45			 49			 93.05

			E=45			 56			 163.60

			E=46			 57			 168.24

			E=46			 63			 208.40

			E=46			 67			 221.42

			E=47			 79			 27.46

			E=48			 53			 69.35

			E=48			 62			 124.00

			E=48			 72			 227.90

			E=49			 56			 149.09

			E=49			 52			 153.26

			E=50			 63			 144.01

			E=50			 55			 194.12

			E=50			 58			 225.23

			E=51			 75			 70.77

			E=51			 55			 74.67

			E=51			 58			 137.38

			E=51			 67			 219.32

			E=53			 64			 281.18

			E=54			 56			 63.95

			E=54			 64			 154.30

			E=58			 75			 68.12

			E=60			 68			 189.84

			E=61			 70			 62.18

			E=61			 68			 143.00

			E=63			 78			 202.30

			E=66			 78			 81.04

			E=66			 71			 140.35

			E=70			 73			 121.76

			E=71			 78			 209.03

			

			#Start node ID

			S=39

			

			#Goal node ID

			G=37

			

			#Cluster and uncertain edge data

			#C=Cluster ID			 <Edge pair 1>			 <Edge pair 2>			...

			#<Edge pair>=node ID 1			 node ID 2 being an uncertain edge

			C=0			 46			 67			 46			 57			 33			 78

			C=1			 45			 49			 10			 45			 9			 49

			C=2			 50			 63			 50			 55

			C=3			 54			 64			 42			 45

			C=4			 46			 63			 33			 46

			

			#Edge ordering

			#The start belief state is given as a series of edge status combinations.

			#In a graph of 3 uncertain edges			 there are 8 combinations: FFF			FFB			FBF			FBB			...			BBB

			#The bit positions of the statuses for each edge are given below. So the last character

			#in the example above would be the status of the edge at bit position 0			 the middle character

			#refers to the edge at position 1			 and so on.

			#EO=Bit position for edge			 <Edge pair>

			EO=0			 33			 46

			EO=1			 46			 63

			EO=2			 42			 45

			EO=3			 54			 64

			EO=4			 50			 55

			EO=5			 50			 63

			EO=6			 9			 49

			EO=7			 10			 45

			EO=8			 45			 49

			EO=9			 33			 78

			EO=10			 46			 57

			EO=11			 46			 67

			

			#Starting belief state			 starting with the all F combination and working through to all B

			B=0.012655			 0.000558			 0.000558			 0.000791			 0.006814			 0.000301			 0.000301			 0.000426			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.001808			 0.000080			 0.000080			 0.000113			 0.000973			 0.000043			 0.000043			 0.000061			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.007834			 0.000346			 0.000346			 0.000490			 0.004218			 0.000186			 0.000186			 0.000264			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.010072			 0.000444			 0.000444			 0.000630			 0.005424			 0.000239			 0.000239			 0.000339			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.000394			 0.000017			 0.000017			 0.000025			 0.000212			 0.000009			 0.000009			 0.000013			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000056			 0.000002			 0.000002			 0.000004			 0.000030			 0.000001			 0.000001			 0.000002			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000244			 0.000011			 0.000011			 0.000015			 0.000131			 0.000006			 0.000006			 0.000008			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000314			 0.000014			 0.000014			 0.000020			 0.000169			 0.000007			 0.000007			 0.000011			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.003350			 0.000148			 0.000148			 0.000209			 0.001804			 0.000080			 0.000080			 0.000113			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.000479			 0.000021			 0.000021			 0.000030			 0.000258			 0.000011			 0.000011			 0.000016			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.002074			 0.000091			 0.000091			 0.000130			 0.001117			 0.000049			 0.000049			 0.000070			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.002666			 0.000118			 0.000118			 0.000167			 0.001436			 0.000063			 0.000063			 0.000090			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.003350			 0.000148			 0.000148			 0.000209			 0.001804			 0.000080			 0.000080			 0.000113			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.000479			 0.000021			 0.000021			 0.000030			 0.000258			 0.000011			 0.000011			 0.000016			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.002074			 0.000091			 0.000091			 0.000130			 0.001117			 0.000049			 0.000049			 0.000070			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.002666			 0.000118			 0.000118			 0.000167			 0.001436			 0.000063			 0.000063			 0.000090			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000394			 0.000017			 0.000017			 0.000025			 0.000212			 0.000009			 0.000009			 0.000013			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000056			 0.000002			 0.000002			 0.000004			 0.000030			 0.000001			 0.000001			 0.000002			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000244			 0.000011			 0.000011			 0.000015			 0.000131			 0.000006			 0.000006			 0.000008			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000314			 0.000014			 0.000014			 0.000020			 0.000169			 0.000007			 0.000007			 0.000011			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.012655			 0.000558			 0.000558			 0.000791			 0.006814			 0.000301			 0.000301			 0.000426			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.001808			 0.000080			 0.000080			 0.000113			 0.000973			 0.000043			 0.000043			 0.000061			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.007834			 0.000346			 0.000346			 0.000490			 0.004218			 0.000186			 0.000186			 0.000264			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.010072			 0.000444			 0.000444			 0.000630			 0.005424			 0.000239			 0.000239			 0.000339			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.012655			 0.000558			 0.000558			 0.000791			 0.006814			 0.000301			 0.000301			 0.000426			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.001808			 0.000080			 0.000080			 0.000113			 0.000973			 0.000043			 0.000043			 0.000061			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.007834			 0.000346			 0.000346			 0.000490			 0.004218			 0.000186			 0.000186			 0.000264			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.010072			 0.000444			 0.000444			 0.000630			 0.005424			 0.000239			 0.000239			 0.000339			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.000394			 0.000017			 0.000017			 0.000025			 0.000212			 0.000009			 0.000009			 0.000013			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000056			 0.000002			 0.000002			 0.000004			 0.000030			 0.000001			 0.000001			 0.000002			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000244			 0.000011			 0.000011			 0.000015			 0.000131			 0.000006			 0.000006			 0.000008			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000314			 0.000014			 0.000014			 0.000020			 0.000169			 0.000007			 0.000007			 0.000011			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.003350			 0.000148			 0.000148			 0.000209			 0.001804			 0.000080			 0.000080			 0.000113			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.000479			 0.000021			 0.000021			 0.000030			 0.000258			 0.000011			 0.000011			 0.000016			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.002074			 0.000091			 0.000091			 0.000130			 0.001117			 0.000049			 0.000049			 0.000070			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.002666			 0.000118			 0.000118			 0.000167			 0.001436			 0.000063			 0.000063			 0.000090			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.003350			 0.000148			 0.000148			 0.000209			 0.001804			 0.000080			 0.000080			 0.000113			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.000479			 0.000021			 0.000021			 0.000030			 0.000258			 0.000011			 0.000011			 0.000016			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.002074			 0.000091			 0.000091			 0.000130			 0.001117			 0.000049			 0.000049			 0.000070			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.002666			 0.000118			 0.000118			 0.000167			 0.001436			 0.000063			 0.000063			 0.000090			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000394			 0.000017			 0.000017			 0.000025			 0.000212			 0.000009			 0.000009			 0.000013			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000056			 0.000002			 0.000002			 0.000004			 0.000030			 0.000001			 0.000001			 0.000002			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000244			 0.000011			 0.000011			 0.000015			 0.000131			 0.000006			 0.000006			 0.000008			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000314			 0.000014			 0.000014			 0.000020			 0.000169			 0.000007			 0.000007			 0.000011			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.012655			 0.000558			 0.000558			 0.000791			 0.006814			 0.000301			 0.000301			 0.000426			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.001808			 0.000080			 0.000080			 0.000113			 0.000973			 0.000043			 0.000043			 0.000061			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.007834			 0.000346			 0.000346			 0.000490			 0.004218			 0.000186			 0.000186			 0.000264			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.010072			 0.000444			 0.000444			 0.000630			 0.005424			 0.000239			 0.000239			 0.000339			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000625			 0.000028			 0.000028			 0.000039			 0.000337			 0.000015			 0.000015			 0.000021			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000089			 0.000004			 0.000004			 0.000006			 0.000048			 0.000002			 0.000002			 0.000003			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.000387			 0.000017			 0.000017			 0.000024			 0.000208			 0.000009			 0.000009			 0.000013			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000497			 0.000022			 0.000022			 0.000031			 0.000268			 0.000012			 0.000012			 0.000017			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000019			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000001			 0.000000			 0.000000			 0.000000			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000012			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000015			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000074			 0.000003			 0.000003			 0.000005			 0.000040			 0.000002			 0.000002			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000011			 0.000000			 0.000000			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000046			 0.000002			 0.000002			 0.000003			 0.000025			 0.000001			 0.000001			 0.000002			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000059			 0.000003			 0.000003			 0.000004			 0.000032			 0.000001			 0.000001			 0.000002			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000074			 0.000003			 0.000003			 0.000005			 0.000040			 0.000002			 0.000002			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000011			 0.000000			 0.000000			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000046			 0.000002			 0.000002			 0.000003			 0.000025			 0.000001			 0.000001			 0.000002			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000059			 0.000003			 0.000003			 0.000004			 0.000032			 0.000001			 0.000001			 0.000002			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000019			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000001			 0.000000			 0.000000			 0.000000			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000012			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000015			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000625			 0.000028			 0.000028			 0.000039			 0.000337			 0.000015			 0.000015			 0.000021			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000089			 0.000004			 0.000004			 0.000006			 0.000048			 0.000002			 0.000002			 0.000003			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.000387			 0.000017			 0.000017			 0.000024			 0.000208			 0.000009			 0.000009			 0.000013			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000497			 0.000022			 0.000022			 0.000031			 0.000268			 0.000012			 0.000012			 0.000017			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000625			 0.000028			 0.000028			 0.000039			 0.000337			 0.000015			 0.000015			 0.000021			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000089			 0.000004			 0.000004			 0.000006			 0.000048			 0.000002			 0.000002			 0.000003			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.000387			 0.000017			 0.000017			 0.000024			 0.000208			 0.000009			 0.000009			 0.000013			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000497			 0.000022			 0.000022			 0.000031			 0.000268			 0.000012			 0.000012			 0.000017			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000019			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000001			 0.000000			 0.000000			 0.000000			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000012			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000015			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000074			 0.000003			 0.000003			 0.000005			 0.000040			 0.000002			 0.000002			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000011			 0.000000			 0.000000			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000046			 0.000002			 0.000002			 0.000003			 0.000025			 0.000001			 0.000001			 0.000002			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000059			 0.000003			 0.000003			 0.000004			 0.000032			 0.000001			 0.000001			 0.000002			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000074			 0.000003			 0.000003			 0.000005			 0.000040			 0.000002			 0.000002			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000011			 0.000000			 0.000000			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000046			 0.000002			 0.000002			 0.000003			 0.000025			 0.000001			 0.000001			 0.000002			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000059			 0.000003			 0.000003			 0.000004			 0.000032			 0.000001			 0.000001			 0.000002			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000019			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000001			 0.000000			 0.000000			 0.000000			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000012			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000015			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000625			 0.000028			 0.000028			 0.000039			 0.000337			 0.000015			 0.000015			 0.000021			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000089			 0.000004			 0.000004			 0.000006			 0.000048			 0.000002			 0.000002			 0.000003			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.000387			 0.000017			 0.000017			 0.000024			 0.000208			 0.000009			 0.000009			 0.000013			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000497			 0.000022			 0.000022			 0.000031			 0.000268			 0.000012			 0.000012			 0.000017			 0.001406			 0.000062			 0.000062			 0.000088			 0.000757			 0.000033			 0.000033			 0.000047			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000201			 0.000009			 0.000009			 0.000013			 0.000108			 0.000005			 0.000005			 0.000007			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000870			 0.000038			 0.000038			 0.000054			 0.000469			 0.000021			 0.000021			 0.000029			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.001119			 0.000049			 0.000049			 0.000070			 0.000603			 0.000027			 0.000027			 0.000038			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000044			 0.000002			 0.000002			 0.000003			 0.000024			 0.000001			 0.000001			 0.000001			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000027			 0.000001			 0.000001			 0.000002			 0.000015			 0.000001			 0.000001			 0.000001			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000372			 0.000016			 0.000016			 0.000023			 0.000200			 0.000009			 0.000009			 0.000013			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000053			 0.000002			 0.000002			 0.000003			 0.000029			 0.000001			 0.000001			 0.000002			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000230			 0.000010			 0.000010			 0.000014			 0.000124			 0.000005			 0.000005			 0.000008			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000296			 0.000013			 0.000013			 0.000019			 0.000160			 0.000007			 0.000007			 0.000010			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000372			 0.000016			 0.000016			 0.000023			 0.000200			 0.000009			 0.000009			 0.000013			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000053			 0.000002			 0.000002			 0.000003			 0.000029			 0.000001			 0.000001			 0.000002			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000230			 0.000010			 0.000010			 0.000014			 0.000124			 0.000005			 0.000005			 0.000008			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000296			 0.000013			 0.000013			 0.000019			 0.000160			 0.000007			 0.000007			 0.000010			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000044			 0.000002			 0.000002			 0.000003			 0.000024			 0.000001			 0.000001			 0.000001			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000027			 0.000001			 0.000001			 0.000002			 0.000015			 0.000001			 0.000001			 0.000001			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.001406			 0.000062			 0.000062			 0.000088			 0.000757			 0.000033			 0.000033			 0.000047			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000201			 0.000009			 0.000009			 0.000013			 0.000108			 0.000005			 0.000005			 0.000007			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000870			 0.000038			 0.000038			 0.000054			 0.000469			 0.000021			 0.000021			 0.000029			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.001119			 0.000049			 0.000049			 0.000070			 0.000603			 0.000027			 0.000027			 0.000038			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.001406			 0.000062			 0.000062			 0.000088			 0.000757			 0.000033			 0.000033			 0.000047			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000201			 0.000009			 0.000009			 0.000013			 0.000108			 0.000005			 0.000005			 0.000007			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000870			 0.000038			 0.000038			 0.000054			 0.000469			 0.000021			 0.000021			 0.000029			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.001119			 0.000049			 0.000049			 0.000070			 0.000603			 0.000027			 0.000027			 0.000038			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.000044			 0.000002			 0.000002			 0.000003			 0.000024			 0.000001			 0.000001			 0.000001			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000027			 0.000001			 0.000001			 0.000002			 0.000015			 0.000001			 0.000001			 0.000001			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000372			 0.000016			 0.000016			 0.000023			 0.000200			 0.000009			 0.000009			 0.000013			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000053			 0.000002			 0.000002			 0.000003			 0.000029			 0.000001			 0.000001			 0.000002			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000230			 0.000010			 0.000010			 0.000014			 0.000124			 0.000005			 0.000005			 0.000008			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000296			 0.000013			 0.000013			 0.000019			 0.000160			 0.000007			 0.000007			 0.000010			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000372			 0.000016			 0.000016			 0.000023			 0.000200			 0.000009			 0.000009			 0.000013			 0.000248			 0.000011			 0.000011			 0.000016			 0.000134			 0.000006			 0.000006			 0.000008			 0.000053			 0.000002			 0.000002			 0.000003			 0.000029			 0.000001			 0.000001			 0.000002			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000230			 0.000010			 0.000010			 0.000014			 0.000124			 0.000005			 0.000005			 0.000008			 0.000154			 0.000007			 0.000007			 0.000010			 0.000083			 0.000004			 0.000004			 0.000005			 0.000296			 0.000013			 0.000013			 0.000019			 0.000160			 0.000007			 0.000007			 0.000010			 0.000197			 0.000009			 0.000009			 0.000012			 0.000106			 0.000005			 0.000005			 0.000007			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000165			 0.000007			 0.000007			 0.000010			 0.000089			 0.000004			 0.000004			 0.000006			 0.000110			 0.000005			 0.000005			 0.000007			 0.000059			 0.000003			 0.000003			 0.000004			 0.000024			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.000016			 0.000001			 0.000001			 0.000001			 0.000008			 0.000000			 0.000000			 0.000001			 0.000102			 0.000005			 0.000005			 0.000006			 0.000055			 0.000002			 0.000002			 0.000003			 0.000068			 0.000003			 0.000003			 0.000004			 0.000037			 0.000002			 0.000002			 0.000002			 0.000132			 0.000006			 0.000006			 0.000008			 0.000071			 0.000003			 0.000003			 0.000004			 0.000088			 0.000004			 0.000004			 0.000005			 0.000047			 0.000002			 0.000002			 0.000003			 0.000044			 0.000002			 0.000002			 0.000003			 0.000024			 0.000001			 0.000001			 0.000001			 0.000029			 0.000001			 0.000001			 0.000002			 0.000016			 0.000001			 0.000001			 0.000001			 0.000006			 0.000000			 0.000000			 0.000000			 0.000003			 0.000000			 0.000000			 0.000000			 0.000004			 0.000000			 0.000000			 0.000000			 0.000002			 0.000000			 0.000000			 0.000000			 0.000027			 0.000001			 0.000001			 0.000002			 0.000015			 0.000001			 0.000001			 0.000001			 0.000018			 0.000001			 0.000001			 0.000001			 0.000010			 0.000000			 0.000000			 0.000001			 0.000035			 0.000002			 0.000002			 0.000002			 0.000019			 0.000001			 0.000001			 0.000001			 0.000023			 0.000001			 0.000001			 0.000001			 0.000013			 0.000001			 0.000001			 0.000001			 0.001406			 0.000062			 0.000062			 0.000088			 0.000757			 0.000033			 0.000033			 0.000047			 0.000937			 0.000041			 0.000041			 0.000059			 0.000505			 0.000022			 0.000022			 0.000032			 0.000201			 0.000009			 0.000009			 0.000013			 0.000108			 0.000005			 0.000005			 0.000007			 0.000134			 0.000006			 0.000006			 0.000008			 0.000072			 0.000003			 0.000003			 0.000005			 0.000870			 0.000038			 0.000038			 0.000054			 0.000469			 0.000021			 0.000021			 0.000029			 0.000580			 0.000026			 0.000026			 0.000036			 0.000312			 0.000014			 0.000014			 0.000020			 0.001119			 0.000049			 0.000049			 0.000070			 0.000603			 0.000027			 0.000027			 0.000038			 0.000746			 0.000033			 0.000033			 0.000047			 0.000402			 0.000018			 0.000018			 0.000025			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.005624			 0.000248			 0.000248			 0.000352			 0.003029			 0.000134			 0.000134			 0.000189			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.000803			 0.000035			 0.000035			 0.000050			 0.000433			 0.000019			 0.000019			 0.000027			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.003482			 0.000154			 0.000154			 0.000218			 0.001875			 0.000083			 0.000083			 0.000117			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.004477			 0.000197			 0.000197			 0.000280			 0.002410			 0.000106			 0.000106			 0.000151			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000175			 0.000008			 0.000008			 0.000011			 0.000094			 0.000004			 0.000004			 0.000006			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000025			 0.000001			 0.000001			 0.000002			 0.000013			 0.000001			 0.000001			 0.000001			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000108			 0.000005			 0.000005			 0.000007			 0.000058			 0.000003			 0.000003			 0.000004			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.000139			 0.000006			 0.000006			 0.000009			 0.000075			 0.000003			 0.000003			 0.000005			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000662			 0.000029			 0.000029			 0.000041			 0.000356			 0.000016			 0.000016			 0.000022			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000095			 0.000004			 0.000004			 0.000006			 0.000051			 0.000002			 0.000002			 0.000003			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.000410			 0.000018			 0.000018			 0.000026			 0.000221			 0.000010			 0.000010			 0.000014			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000527			 0.000023			 0.000023			 0.000033			 0.000284			 0.000013			 0.000013			 0.000018			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000662			 0.000029			 0.000029			 0.000041			 0.000356			 0.000016			 0.000016			 0.000022			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000095			 0.000004			 0.000004			 0.000006			 0.000051			 0.000002			 0.000002			 0.000003			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.000410			 0.000018			 0.000018			 0.000026			 0.000221			 0.000010			 0.000010			 0.000014			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000527			 0.000023			 0.000023			 0.000033			 0.000284			 0.000013			 0.000013			 0.000018			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000175			 0.000008			 0.000008			 0.000011			 0.000094			 0.000004			 0.000004			 0.000006			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000025			 0.000001			 0.000001			 0.000002			 0.000013			 0.000001			 0.000001			 0.000001			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000108			 0.000005			 0.000005			 0.000007			 0.000058			 0.000003			 0.000003			 0.000004			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.000139			 0.000006			 0.000006			 0.000009			 0.000075			 0.000003			 0.000003			 0.000005			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.005624			 0.000248			 0.000248			 0.000352			 0.003029			 0.000134			 0.000134			 0.000189			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.000803			 0.000035			 0.000035			 0.000050			 0.000433			 0.000019			 0.000019			 0.000027			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.003482			 0.000154			 0.000154			 0.000218			 0.001875			 0.000083			 0.000083			 0.000117			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.004477			 0.000197			 0.000197			 0.000280			 0.002410			 0.000106			 0.000106			 0.000151			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.005624			 0.000248			 0.000248			 0.000352			 0.003029			 0.000134			 0.000134			 0.000189			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.000803			 0.000035			 0.000035			 0.000050			 0.000433			 0.000019			 0.000019			 0.000027			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.003482			 0.000154			 0.000154			 0.000218			 0.001875			 0.000083			 0.000083			 0.000117			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.004477			 0.000197			 0.000197			 0.000280			 0.002410			 0.000106			 0.000106			 0.000151			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000175			 0.000008			 0.000008			 0.000011			 0.000094			 0.000004			 0.000004			 0.000006			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000025			 0.000001			 0.000001			 0.000002			 0.000013			 0.000001			 0.000001			 0.000001			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000108			 0.000005			 0.000005			 0.000007			 0.000058			 0.000003			 0.000003			 0.000004			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.000139			 0.000006			 0.000006			 0.000009			 0.000075			 0.000003			 0.000003			 0.000005			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.002233			 0.000099			 0.000099			 0.000140			 0.001203			 0.000053			 0.000053			 0.000075			 0.001489			 0.000066			 0.000066			 0.000093			 0.000802			 0.000035			 0.000035			 0.000050			 0.000319			 0.000014			 0.000014			 0.000020			 0.000172			 0.000008			 0.000008			 0.000011			 0.000213			 0.000009			 0.000009			 0.000013			 0.000115			 0.000005			 0.000005			 0.000007			 0.001382			 0.000061			 0.000061			 0.000086			 0.000744			 0.000033			 0.000033			 0.000047			 0.000922			 0.000041			 0.000041			 0.000058			 0.000496			 0.000022			 0.000022			 0.000031			 0.001777			 0.000078			 0.000078			 0.000111			 0.000957			 0.000042			 0.000042			 0.000060			 0.001185			 0.000052			 0.000052			 0.000074			 0.000638			 0.000028			 0.000028			 0.000040			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000662			 0.000029			 0.000029			 0.000041			 0.000356			 0.000016			 0.000016			 0.000022			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000095			 0.000004			 0.000004			 0.000006			 0.000051			 0.000002			 0.000002			 0.000003			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.000410			 0.000018			 0.000018			 0.000026			 0.000221			 0.000010			 0.000010			 0.000014			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000527			 0.000023			 0.000023			 0.000033			 0.000284			 0.000013			 0.000013			 0.000018			 0.000993			 0.000044			 0.000044			 0.000062			 0.000534			 0.000024			 0.000024			 0.000033			 0.000662			 0.000029			 0.000029			 0.000041			 0.000356			 0.000016			 0.000016			 0.000022			 0.000142			 0.000006			 0.000006			 0.000009			 0.000076			 0.000003			 0.000003			 0.000005			 0.000095			 0.000004			 0.000004			 0.000006			 0.000051			 0.000002			 0.000002			 0.000003			 0.000614			 0.000027			 0.000027			 0.000038			 0.000331			 0.000015			 0.000015			 0.000021			 0.000410			 0.000018			 0.000018			 0.000026			 0.000221			 0.000010			 0.000010			 0.000014			 0.000790			 0.000035			 0.000035			 0.000049			 0.000425			 0.000019			 0.000019			 0.000027			 0.000527			 0.000023			 0.000023			 0.000033			 0.000284			 0.000013			 0.000013			 0.000018			 0.000263			 0.000012			 0.000012			 0.000016			 0.000141			 0.000006			 0.000006			 0.000009			 0.000175			 0.000008			 0.000008			 0.000011			 0.000094			 0.000004			 0.000004			 0.000006			 0.000038			 0.000002			 0.000002			 0.000002			 0.000020			 0.000001			 0.000001			 0.000001			 0.000025			 0.000001			 0.000001			 0.000002			 0.000013			 0.000001			 0.000001			 0.000001			 0.000163			 0.000007			 0.000007			 0.000010			 0.000088			 0.000004			 0.000004			 0.000005			 0.000108			 0.000005			 0.000005			 0.000007			 0.000058			 0.000003			 0.000003			 0.000004			 0.000209			 0.000009			 0.000009			 0.000013			 0.000113			 0.000005			 0.000005			 0.000007			 0.000139			 0.000006			 0.000006			 0.000009			 0.000075			 0.000003			 0.000003			 0.000005			 0.008437			 0.000372			 0.000372			 0.000527			 0.004543			 0.000200			 0.000200			 0.000284			 0.005624			 0.000248			 0.000248			 0.000352			 0.003029			 0.000134			 0.000134			 0.000189			 0.001205			 0.000053			 0.000053			 0.000075			 0.000649			 0.000029			 0.000029			 0.000041			 0.000803			 0.000035			 0.000035			 0.000050			 0.000433			 0.000019			 0.000019			 0.000027			 0.005223			 0.000230			 0.000230			 0.000326			 0.002812			 0.000124			 0.000124			 0.000176			 0.003482			 0.000154			 0.000154			 0.000218			 0.001875			 0.000083			 0.000083			 0.000117			 0.006715			 0.000296			 0.000296			 0.000420			 0.003616			 0.000160			 0.000160			 0.000226			 0.004477			 0.000197			 0.000197			 0.000280			 0.002410			 0.000106			 0.000106			 0.000151

			

			#Observation data

			#O=Node ID making the observation			 <Edge pair> being observed			 P(block|block)			 P(block|free)

			O=33			 46			 67			 0.900000			 0.100000

			O=33			 46			 57			 0.900000			 0.100000

			O=33			 33			 78			 1.000000			 0.000000

			O=33			 33			 46			 1.000000			 0.000000

			O=46			 46			 67			 1.000000			 0.000000

			O=46			 46			 57			 1.000000			 0.000000

			O=46			 46			 63			 1.000000			 0.000000

			O=46			 33			 46			 1.000000			 0.000000

			O=67			 46			 67			 1.000000			 0.000000

			O=57			 46			 57			 1.000000			 0.000000

			O=57			 42			 45			 0.800000			 0.100000

			O=42			 45			 49			 0.900000			 0.100000

			O=42			 10			 45			 0.900000			 0.200000

			O=42			 42			 45			 1.000000			 0.000000

			O=45			 45			 49			 1.000000			 0.000000

			O=45			 10			 45			 1.000000			 0.000000

			O=45			 9			 49			 0.800000			 0.100000

			O=45			 42			 45			 1.000000			 0.000000

			O=49			 45			 49			 1.000000			 0.000000

			O=49			 9			 49			 1.000000			 0.000000

			O=14			 45			 49			 0.700000			 0.300000

			O=78			 50			 63			 0.800000			 0.200000

			O=78			 33			 78			 1.000000			 0.000000

			O=78			 46			 63			 0.700000			 0.300000

			O=78			 33			 46			 0.700000			 0.300000

			O=63			 50			 63			 1.000000			 0.000000

			O=63			 46			 63			 1.000000			 0.000000

			O=63			 50			 55			 0.800000			 0.200000

			O=50			 50			 63			 1.000000			 0.000000

			O=50			 50			 55			 1.000000			 0.000000

			O=28			 54			 64			 30.800000			 0.200000

			O=64			 54			 64			 1.000000			 0.000000

			O=54			 54			 64			 1.000000			 0.000000

			O=25			 54			 64			 0.800000			 0.200000

			O=66			 33			 78			 0.800000			 0.200000

			O=55			 50			 55			 1.000000			 0.000000

			O=10			 10			 45			 1.000000			 0.000000

			O=9			 9			 49			 1.000000			 0.000000

			

			#Obstacle data

			#OB=x			 y coordinates of obstacle in world space			 x			 y of obstacle handle in obstacle co-ordinates

			#then a comma separated list of <Point data>

			#<Point data>=x			 y coordinates of vertex (Gaussian mean) in obstacle space			 cov(1			1)			 cov(1			2)			 cov(2			2)

			#cov(n			n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2			1)==cov(1			2).

			OB=4.00			 6.00			 0.00			 0.00			 0.00			 0.00			 400.000000			 0.000000			 400.000000			 0.00			 100.00			 400.000000			 0.000000			 400.000000

			OB=300.00			 122.00			 60.00			 0.00			 60.00			 0.00			 0.000000			 0.000000			 0.000000			 120.00			 30.00			 0.000000			 0.000000			 0.000000			 100.00			 110.00			 0.000000			 0.000000			 0.000000			 20.00			 110.00			 0.000000			 0.000000			 0.000000			 0.00			 30.00			 0.000000			 0.000000			 0.000000			 60.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=524.00			 349.00			 60.00			 0.00			 60.00			 0.00			 0.000000			 0.000000			 0.000000			 120.00			 30.00			 0.000000			 0.000000			 0.000000			 100.00			 110.00			 0.000000			 0.000000			 0.000000			 20.00			 110.00			 0.000000			 0.000000			 0.000000			 0.00			 30.00			 0.000000			 0.000000			 0.000000			 60.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=95.00			 535.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=71.00			 291.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=515.00			 139.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 0.00			 0.000000			 0.000000			 0.000000			 140.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 80.00			 0.000000			 0.000000			 0.000000			 0.00			 0.00			 0.000000			 0.000000			 0.000000

			OB=420.00			 542.00			 0.00			 0.00			 0.00			 0.00			 0.000000			 0.000000			 0.000000			 125.00			 66.00			 0.000000			 0.000000			 0.000000

Scaling Graph 19/Graph19_12_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=9, 37, 240.30
E=9, 49, 116.62
E=9, 52, 87.01
E=9, 54, 311.70
E=10, 67, 154.08
E=10, 42, 102.12
E=10, 45, 38.60
E=10, 14, 141.87
E=14, 67, 115.18
E=14, 57, 31.62
E=24, 33, 257.66
E=24, 67, 325.94
E=24, 50, 329.19
E=24, 55, 32.28
E=24, 25, 324.98
E=24, 28, 395.11
E=25, 33, 470.00
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 63, 161.04
E=37, 52, 163.79
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 52, 153.26
E=49, 56, 149.09
E=50, 67, 581.92
E=50, 63, 144.01
E=50, 55, 194.12
E=52, 54, 282.92
E=54, 64, 154.30
E=54, 56, 63.95
E=55, 67, 293.99
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49, 10, 45, 9, 49
C=2, 50, 63, 50, 55
C=3, 54, 64, 42, 45
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 42, 45
EO=3, 54, 64
EO=4, 50, 55
EO=5, 50, 63
EO=6, 9, 49
EO=7, 10, 45
EO=8, 45, 49
EO=9, 33, 78
EO=10, 46, 57
EO=11, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.012655, 0.000558, 0.000558, 0.000791, 0.006814, 0.000301, 0.000301, 0.000426, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.001808, 0.000080, 0.000080, 0.000113, 0.000973, 0.000043, 0.000043, 0.000061, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.007834, 0.000346, 0.000346, 0.000490, 0.004218, 0.000186, 0.000186, 0.000264, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.010072, 0.000444, 0.000444, 0.000630, 0.005424, 0.000239, 0.000239, 0.000339, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.000394, 0.000017, 0.000017, 0.000025, 0.000212, 0.000009, 0.000009, 0.000013, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000056, 0.000002, 0.000002, 0.000004, 0.000030, 0.000001, 0.000001, 0.000002, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000244, 0.000011, 0.000011, 0.000015, 0.000131, 0.000006, 0.000006, 0.000008, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000314, 0.000014, 0.000014, 0.000020, 0.000169, 0.000007, 0.000007, 0.000011, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.003350, 0.000148, 0.000148, 0.000209, 0.001804, 0.000080, 0.000080, 0.000113, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.000479, 0.000021, 0.000021, 0.000030, 0.000258, 0.000011, 0.000011, 0.000016, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.002074, 0.000091, 0.000091, 0.000130, 0.001117, 0.000049, 0.000049, 0.000070, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.002666, 0.000118, 0.000118, 0.000167, 0.001436, 0.000063, 0.000063, 0.000090, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.003350, 0.000148, 0.000148, 0.000209, 0.001804, 0.000080, 0.000080, 0.000113, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.000479, 0.000021, 0.000021, 0.000030, 0.000258, 0.000011, 0.000011, 0.000016, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.002074, 0.000091, 0.000091, 0.000130, 0.001117, 0.000049, 0.000049, 0.000070, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.002666, 0.000118, 0.000118, 0.000167, 0.001436, 0.000063, 0.000063, 0.000090, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000394, 0.000017, 0.000017, 0.000025, 0.000212, 0.000009, 0.000009, 0.000013, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000056, 0.000002, 0.000002, 0.000004, 0.000030, 0.000001, 0.000001, 0.000002, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000244, 0.000011, 0.000011, 0.000015, 0.000131, 0.000006, 0.000006, 0.000008, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000314, 0.000014, 0.000014, 0.000020, 0.000169, 0.000007, 0.000007, 0.000011, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.012655, 0.000558, 0.000558, 0.000791, 0.006814, 0.000301, 0.000301, 0.000426, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.001808, 0.000080, 0.000080, 0.000113, 0.000973, 0.000043, 0.000043, 0.000061, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.007834, 0.000346, 0.000346, 0.000490, 0.004218, 0.000186, 0.000186, 0.000264, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.010072, 0.000444, 0.000444, 0.000630, 0.005424, 0.000239, 0.000239, 0.000339, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.012655, 0.000558, 0.000558, 0.000791, 0.006814, 0.000301, 0.000301, 0.000426, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.001808, 0.000080, 0.000080, 0.000113, 0.000973, 0.000043, 0.000043, 0.000061, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.007834, 0.000346, 0.000346, 0.000490, 0.004218, 0.000186, 0.000186, 0.000264, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.010072, 0.000444, 0.000444, 0.000630, 0.005424, 0.000239, 0.000239, 0.000339, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.000394, 0.000017, 0.000017, 0.000025, 0.000212, 0.000009, 0.000009, 0.000013, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000056, 0.000002, 0.000002, 0.000004, 0.000030, 0.000001, 0.000001, 0.000002, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000244, 0.000011, 0.000011, 0.000015, 0.000131, 0.000006, 0.000006, 0.000008, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000314, 0.000014, 0.000014, 0.000020, 0.000169, 0.000007, 0.000007, 0.000011, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.003350, 0.000148, 0.000148, 0.000209, 0.001804, 0.000080, 0.000080, 0.000113, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.000479, 0.000021, 0.000021, 0.000030, 0.000258, 0.000011, 0.000011, 0.000016, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.002074, 0.000091, 0.000091, 0.000130, 0.001117, 0.000049, 0.000049, 0.000070, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.002666, 0.000118, 0.000118, 0.000167, 0.001436, 0.000063, 0.000063, 0.000090, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.003350, 0.000148, 0.000148, 0.000209, 0.001804, 0.000080, 0.000080, 0.000113, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.000479, 0.000021, 0.000021, 0.000030, 0.000258, 0.000011, 0.000011, 0.000016, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.002074, 0.000091, 0.000091, 0.000130, 0.001117, 0.000049, 0.000049, 0.000070, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.002666, 0.000118, 0.000118, 0.000167, 0.001436, 0.000063, 0.000063, 0.000090, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000394, 0.000017, 0.000017, 0.000025, 0.000212, 0.000009, 0.000009, 0.000013, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000056, 0.000002, 0.000002, 0.000004, 0.000030, 0.000001, 0.000001, 0.000002, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000244, 0.000011, 0.000011, 0.000015, 0.000131, 0.000006, 0.000006, 0.000008, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000314, 0.000014, 0.000014, 0.000020, 0.000169, 0.000007, 0.000007, 0.000011, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.012655, 0.000558, 0.000558, 0.000791, 0.006814, 0.000301, 0.000301, 0.000426, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.001808, 0.000080, 0.000080, 0.000113, 0.000973, 0.000043, 0.000043, 0.000061, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.007834, 0.000346, 0.000346, 0.000490, 0.004218, 0.000186, 0.000186, 0.000264, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.010072, 0.000444, 0.000444, 0.000630, 0.005424, 0.000239, 0.000239, 0.000339, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000625, 0.000028, 0.000028, 0.000039, 0.000337, 0.000015, 0.000015, 0.000021, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000089, 0.000004, 0.000004, 0.000006, 0.000048, 0.000002, 0.000002, 0.000003, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.000387, 0.000017, 0.000017, 0.000024, 0.000208, 0.000009, 0.000009, 0.000013, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000497, 0.000022, 0.000022, 0.000031, 0.000268, 0.000012, 0.000012, 0.000017, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000019, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000001, 0.000000, 0.000000, 0.000000, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000012, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000015, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000074, 0.000003, 0.000003, 0.000005, 0.000040, 0.000002, 0.000002, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000011, 0.000000, 0.000000, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000046, 0.000002, 0.000002, 0.000003, 0.000025, 0.000001, 0.000001, 0.000002, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000059, 0.000003, 0.000003, 0.000004, 0.000032, 0.000001, 0.000001, 0.000002, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000074, 0.000003, 0.000003, 0.000005, 0.000040, 0.000002, 0.000002, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000011, 0.000000, 0.000000, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000046, 0.000002, 0.000002, 0.000003, 0.000025, 0.000001, 0.000001, 0.000002, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000059, 0.000003, 0.000003, 0.000004, 0.000032, 0.000001, 0.000001, 0.000002, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000019, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000001, 0.000000, 0.000000, 0.000000, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000012, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000015, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000625, 0.000028, 0.000028, 0.000039, 0.000337, 0.000015, 0.000015, 0.000021, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000089, 0.000004, 0.000004, 0.000006, 0.000048, 0.000002, 0.000002, 0.000003, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.000387, 0.000017, 0.000017, 0.000024, 0.000208, 0.000009, 0.000009, 0.000013, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000497, 0.000022, 0.000022, 0.000031, 0.000268, 0.000012, 0.000012, 0.000017, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000625, 0.000028, 0.000028, 0.000039, 0.000337, 0.000015, 0.000015, 0.000021, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000089, 0.000004, 0.000004, 0.000006, 0.000048, 0.000002, 0.000002, 0.000003, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.000387, 0.000017, 0.000017, 0.000024, 0.000208, 0.000009, 0.000009, 0.000013, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000497, 0.000022, 0.000022, 0.000031, 0.000268, 0.000012, 0.000012, 0.000017, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000019, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000001, 0.000000, 0.000000, 0.000000, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000012, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000015, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000074, 0.000003, 0.000003, 0.000005, 0.000040, 0.000002, 0.000002, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000011, 0.000000, 0.000000, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000046, 0.000002, 0.000002, 0.000003, 0.000025, 0.000001, 0.000001, 0.000002, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000059, 0.000003, 0.000003, 0.000004, 0.000032, 0.000001, 0.000001, 0.000002, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000074, 0.000003, 0.000003, 0.000005, 0.000040, 0.000002, 0.000002, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000011, 0.000000, 0.000000, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000046, 0.000002, 0.000002, 0.000003, 0.000025, 0.000001, 0.000001, 0.000002, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000059, 0.000003, 0.000003, 0.000004, 0.000032, 0.000001, 0.000001, 0.000002, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000019, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000001, 0.000000, 0.000000, 0.000000, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000012, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000015, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000625, 0.000028, 0.000028, 0.000039, 0.000337, 0.000015, 0.000015, 0.000021, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000089, 0.000004, 0.000004, 0.000006, 0.000048, 0.000002, 0.000002, 0.000003, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.000387, 0.000017, 0.000017, 0.000024, 0.000208, 0.000009, 0.000009, 0.000013, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000497, 0.000022, 0.000022, 0.000031, 0.000268, 0.000012, 0.000012, 0.000017, 0.001406, 0.000062, 0.000062, 0.000088, 0.000757, 0.000033, 0.000033, 0.000047, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000201, 0.000009, 0.000009, 0.000013, 0.000108, 0.000005, 0.000005, 0.000007, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000870, 0.000038, 0.000038, 0.000054, 0.000469, 0.000021, 0.000021, 0.000029, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.001119, 0.000049, 0.000049, 0.000070, 0.000603, 0.000027, 0.000027, 0.000038, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000044, 0.000002, 0.000002, 0.000003, 0.000024, 0.000001, 0.000001, 0.000001, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000027, 0.000001, 0.000001, 0.000002, 0.000015, 0.000001, 0.000001, 0.000001, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000372, 0.000016, 0.000016, 0.000023, 0.000200, 0.000009, 0.000009, 0.000013, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000053, 0.000002, 0.000002, 0.000003, 0.000029, 0.000001, 0.000001, 0.000002, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000230, 0.000010, 0.000010, 0.000014, 0.000124, 0.000005, 0.000005, 0.000008, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000296, 0.000013, 0.000013, 0.000019, 0.000160, 0.000007, 0.000007, 0.000010, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000372, 0.000016, 0.000016, 0.000023, 0.000200, 0.000009, 0.000009, 0.000013, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000053, 0.000002, 0.000002, 0.000003, 0.000029, 0.000001, 0.000001, 0.000002, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000230, 0.000010, 0.000010, 0.000014, 0.000124, 0.000005, 0.000005, 0.000008, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000296, 0.000013, 0.000013, 0.000019, 0.000160, 0.000007, 0.000007, 0.000010, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000044, 0.000002, 0.000002, 0.000003, 0.000024, 0.000001, 0.000001, 0.000001, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000027, 0.000001, 0.000001, 0.000002, 0.000015, 0.000001, 0.000001, 0.000001, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.001406, 0.000062, 0.000062, 0.000088, 0.000757, 0.000033, 0.000033, 0.000047, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000201, 0.000009, 0.000009, 0.000013, 0.000108, 0.000005, 0.000005, 0.000007, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000870, 0.000038, 0.000038, 0.000054, 0.000469, 0.000021, 0.000021, 0.000029, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.001119, 0.000049, 0.000049, 0.000070, 0.000603, 0.000027, 0.000027, 0.000038, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.001406, 0.000062, 0.000062, 0.000088, 0.000757, 0.000033, 0.000033, 0.000047, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000201, 0.000009, 0.000009, 0.000013, 0.000108, 0.000005, 0.000005, 0.000007, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000870, 0.000038, 0.000038, 0.000054, 0.000469, 0.000021, 0.000021, 0.000029, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.001119, 0.000049, 0.000049, 0.000070, 0.000603, 0.000027, 0.000027, 0.000038, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.000044, 0.000002, 0.000002, 0.000003, 0.000024, 0.000001, 0.000001, 0.000001, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000027, 0.000001, 0.000001, 0.000002, 0.000015, 0.000001, 0.000001, 0.000001, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000372, 0.000016, 0.000016, 0.000023, 0.000200, 0.000009, 0.000009, 0.000013, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000053, 0.000002, 0.000002, 0.000003, 0.000029, 0.000001, 0.000001, 0.000002, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000230, 0.000010, 0.000010, 0.000014, 0.000124, 0.000005, 0.000005, 0.000008, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000296, 0.000013, 0.000013, 0.000019, 0.000160, 0.000007, 0.000007, 0.000010, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000372, 0.000016, 0.000016, 0.000023, 0.000200, 0.000009, 0.000009, 0.000013, 0.000248, 0.000011, 0.000011, 0.000016, 0.000134, 0.000006, 0.000006, 0.000008, 0.000053, 0.000002, 0.000002, 0.000003, 0.000029, 0.000001, 0.000001, 0.000002, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000230, 0.000010, 0.000010, 0.000014, 0.000124, 0.000005, 0.000005, 0.000008, 0.000154, 0.000007, 0.000007, 0.000010, 0.000083, 0.000004, 0.000004, 0.000005, 0.000296, 0.000013, 0.000013, 0.000019, 0.000160, 0.000007, 0.000007, 0.000010, 0.000197, 0.000009, 0.000009, 0.000012, 0.000106, 0.000005, 0.000005, 0.000007, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000165, 0.000007, 0.000007, 0.000010, 0.000089, 0.000004, 0.000004, 0.000006, 0.000110, 0.000005, 0.000005, 0.000007, 0.000059, 0.000003, 0.000003, 0.000004, 0.000024, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.000016, 0.000001, 0.000001, 0.000001, 0.000008, 0.000000, 0.000000, 0.000001, 0.000102, 0.000005, 0.000005, 0.000006, 0.000055, 0.000002, 0.000002, 0.000003, 0.000068, 0.000003, 0.000003, 0.000004, 0.000037, 0.000002, 0.000002, 0.000002, 0.000132, 0.000006, 0.000006, 0.000008, 0.000071, 0.000003, 0.000003, 0.000004, 0.000088, 0.000004, 0.000004, 0.000005, 0.000047, 0.000002, 0.000002, 0.000003, 0.000044, 0.000002, 0.000002, 0.000003, 0.000024, 0.000001, 0.000001, 0.000001, 0.000029, 0.000001, 0.000001, 0.000002, 0.000016, 0.000001, 0.000001, 0.000001, 0.000006, 0.000000, 0.000000, 0.000000, 0.000003, 0.000000, 0.000000, 0.000000, 0.000004, 0.000000, 0.000000, 0.000000, 0.000002, 0.000000, 0.000000, 0.000000, 0.000027, 0.000001, 0.000001, 0.000002, 0.000015, 0.000001, 0.000001, 0.000001, 0.000018, 0.000001, 0.000001, 0.000001, 0.000010, 0.000000, 0.000000, 0.000001, 0.000035, 0.000002, 0.000002, 0.000002, 0.000019, 0.000001, 0.000001, 0.000001, 0.000023, 0.000001, 0.000001, 0.000001, 0.000013, 0.000001, 0.000001, 0.000001, 0.001406, 0.000062, 0.000062, 0.000088, 0.000757, 0.000033, 0.000033, 0.000047, 0.000937, 0.000041, 0.000041, 0.000059, 0.000505, 0.000022, 0.000022, 0.000032, 0.000201, 0.000009, 0.000009, 0.000013, 0.000108, 0.000005, 0.000005, 0.000007, 0.000134, 0.000006, 0.000006, 0.000008, 0.000072, 0.000003, 0.000003, 0.000005, 0.000870, 0.000038, 0.000038, 0.000054, 0.000469, 0.000021, 0.000021, 0.000029, 0.000580, 0.000026, 0.000026, 0.000036, 0.000312, 0.000014, 0.000014, 0.000020, 0.001119, 0.000049, 0.000049, 0.000070, 0.000603, 0.000027, 0.000027, 0.000038, 0.000746, 0.000033, 0.000033, 0.000047, 0.000402, 0.000018, 0.000018, 0.000025, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.005624, 0.000248, 0.000248, 0.000352, 0.003029, 0.000134, 0.000134, 0.000189, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.000803, 0.000035, 0.000035, 0.000050, 0.000433, 0.000019, 0.000019, 0.000027, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.003482, 0.000154, 0.000154, 0.000218, 0.001875, 0.000083, 0.000083, 0.000117, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.004477, 0.000197, 0.000197, 0.000280, 0.002410, 0.000106, 0.000106, 0.000151, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000175, 0.000008, 0.000008, 0.000011, 0.000094, 0.000004, 0.000004, 0.000006, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000025, 0.000001, 0.000001, 0.000002, 0.000013, 0.000001, 0.000001, 0.000001, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000108, 0.000005, 0.000005, 0.000007, 0.000058, 0.000003, 0.000003, 0.000004, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.000139, 0.000006, 0.000006, 0.000009, 0.000075, 0.000003, 0.000003, 0.000005, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000662, 0.000029, 0.000029, 0.000041, 0.000356, 0.000016, 0.000016, 0.000022, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000095, 0.000004, 0.000004, 0.000006, 0.000051, 0.000002, 0.000002, 0.000003, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.000410, 0.000018, 0.000018, 0.000026, 0.000221, 0.000010, 0.000010, 0.000014, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000527, 0.000023, 0.000023, 0.000033, 0.000284, 0.000013, 0.000013, 0.000018, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000662, 0.000029, 0.000029, 0.000041, 0.000356, 0.000016, 0.000016, 0.000022, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000095, 0.000004, 0.000004, 0.000006, 0.000051, 0.000002, 0.000002, 0.000003, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.000410, 0.000018, 0.000018, 0.000026, 0.000221, 0.000010, 0.000010, 0.000014, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000527, 0.000023, 0.000023, 0.000033, 0.000284, 0.000013, 0.000013, 0.000018, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000175, 0.000008, 0.000008, 0.000011, 0.000094, 0.000004, 0.000004, 0.000006, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000025, 0.000001, 0.000001, 0.000002, 0.000013, 0.000001, 0.000001, 0.000001, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000108, 0.000005, 0.000005, 0.000007, 0.000058, 0.000003, 0.000003, 0.000004, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.000139, 0.000006, 0.000006, 0.000009, 0.000075, 0.000003, 0.000003, 0.000005, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.005624, 0.000248, 0.000248, 0.000352, 0.003029, 0.000134, 0.000134, 0.000189, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.000803, 0.000035, 0.000035, 0.000050, 0.000433, 0.000019, 0.000019, 0.000027, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.003482, 0.000154, 0.000154, 0.000218, 0.001875, 0.000083, 0.000083, 0.000117, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.004477, 0.000197, 0.000197, 0.000280, 0.002410, 0.000106, 0.000106, 0.000151, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.005624, 0.000248, 0.000248, 0.000352, 0.003029, 0.000134, 0.000134, 0.000189, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.000803, 0.000035, 0.000035, 0.000050, 0.000433, 0.000019, 0.000019, 0.000027, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.003482, 0.000154, 0.000154, 0.000218, 0.001875, 0.000083, 0.000083, 0.000117, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.004477, 0.000197, 0.000197, 0.000280, 0.002410, 0.000106, 0.000106, 0.000151, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000175, 0.000008, 0.000008, 0.000011, 0.000094, 0.000004, 0.000004, 0.000006, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000025, 0.000001, 0.000001, 0.000002, 0.000013, 0.000001, 0.000001, 0.000001, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000108, 0.000005, 0.000005, 0.000007, 0.000058, 0.000003, 0.000003, 0.000004, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.000139, 0.000006, 0.000006, 0.000009, 0.000075, 0.000003, 0.000003, 0.000005, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.002233, 0.000099, 0.000099, 0.000140, 0.001203, 0.000053, 0.000053, 0.000075, 0.001489, 0.000066, 0.000066, 0.000093, 0.000802, 0.000035, 0.000035, 0.000050, 0.000319, 0.000014, 0.000014, 0.000020, 0.000172, 0.000008, 0.000008, 0.000011, 0.000213, 0.000009, 0.000009, 0.000013, 0.000115, 0.000005, 0.000005, 0.000007, 0.001382, 0.000061, 0.000061, 0.000086, 0.000744, 0.000033, 0.000033, 0.000047, 0.000922, 0.000041, 0.000041, 0.000058, 0.000496, 0.000022, 0.000022, 0.000031, 0.001777, 0.000078, 0.000078, 0.000111, 0.000957, 0.000042, 0.000042, 0.000060, 0.001185, 0.000052, 0.000052, 0.000074, 0.000638, 0.000028, 0.000028, 0.000040, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000662, 0.000029, 0.000029, 0.000041, 0.000356, 0.000016, 0.000016, 0.000022, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000095, 0.000004, 0.000004, 0.000006, 0.000051, 0.000002, 0.000002, 0.000003, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.000410, 0.000018, 0.000018, 0.000026, 0.000221, 0.000010, 0.000010, 0.000014, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000527, 0.000023, 0.000023, 0.000033, 0.000284, 0.000013, 0.000013, 0.000018, 0.000993, 0.000044, 0.000044, 0.000062, 0.000534, 0.000024, 0.000024, 0.000033, 0.000662, 0.000029, 0.000029, 0.000041, 0.000356, 0.000016, 0.000016, 0.000022, 0.000142, 0.000006, 0.000006, 0.000009, 0.000076, 0.000003, 0.000003, 0.000005, 0.000095, 0.000004, 0.000004, 0.000006, 0.000051, 0.000002, 0.000002, 0.000003, 0.000614, 0.000027, 0.000027, 0.000038, 0.000331, 0.000015, 0.000015, 0.000021, 0.000410, 0.000018, 0.000018, 0.000026, 0.000221, 0.000010, 0.000010, 0.000014, 0.000790, 0.000035, 0.000035, 0.000049, 0.000425, 0.000019, 0.000019, 0.000027, 0.000527, 0.000023, 0.000023, 0.000033, 0.000284, 0.000013, 0.000013, 0.000018, 0.000263, 0.000012, 0.000012, 0.000016, 0.000141, 0.000006, 0.000006, 0.000009, 0.000175, 0.000008, 0.000008, 0.000011, 0.000094, 0.000004, 0.000004, 0.000006, 0.000038, 0.000002, 0.000002, 0.000002, 0.000020, 0.000001, 0.000001, 0.000001, 0.000025, 0.000001, 0.000001, 0.000002, 0.000013, 0.000001, 0.000001, 0.000001, 0.000163, 0.000007, 0.000007, 0.000010, 0.000088, 0.000004, 0.000004, 0.000005, 0.000108, 0.000005, 0.000005, 0.000007, 0.000058, 0.000003, 0.000003, 0.000004, 0.000209, 0.000009, 0.000009, 0.000013, 0.000113, 0.000005, 0.000005, 0.000007, 0.000139, 0.000006, 0.000006, 0.000009, 0.000075, 0.000003, 0.000003, 0.000005, 0.008437, 0.000372, 0.000372, 0.000527, 0.004543, 0.000200, 0.000200, 0.000284, 0.005624, 0.000248, 0.000248, 0.000352, 0.003029, 0.000134, 0.000134, 0.000189, 0.001205, 0.000053, 0.000053, 0.000075, 0.000649, 0.000029, 0.000029, 0.000041, 0.000803, 0.000035, 0.000035, 0.000050, 0.000433, 0.000019, 0.000019, 0.000027, 0.005223, 0.000230, 0.000230, 0.000326, 0.002812, 0.000124, 0.000124, 0.000176, 0.003482, 0.000154, 0.000154, 0.000218, 0.001875, 0.000083, 0.000083, 0.000117, 0.006715, 0.000296, 0.000296, 0.000420, 0.003616, 0.000160, 0.000160, 0.000226, 0.004477, 0.000197, 0.000197, 0.000280, 0.002410, 0.000106, 0.000106, 0.000151

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=57, 42, 45, 0.800000, 0.100000
O=42, 45, 49, 0.900000, 0.100000
O=42, 10, 45, 0.900000, 0.200000
O=42, 42, 45, 1.000000, 0.000000
O=45, 45, 49, 1.000000, 0.000000
O=45, 10, 45, 1.000000, 0.000000
O=45, 9, 49, 0.800000, 0.100000
O=45, 42, 45, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=49, 9, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000
O=10, 10, 45, 1.000000, 0.000000
O=9, 9, 49, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_6_edges.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 54, 64
EO=1, 50, 63
EO=2, 45, 49
EO=3, 33, 78
EO=4, 46, 57
EO=5, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.034020, 0.022680, 0.063180, 0.042120, 0.022680, 0.015120, 0.042120, 0.028080, 0.034020, 0.022680, 0.063180, 0.042120, 0.022680, 0.015120, 0.042120, 0.028080, 0.002520, 0.001680, 0.004680, 0.003120, 0.001680, 0.001120, 0.003120, 0.002080, 0.002520, 0.001680, 0.004680, 0.003120, 0.001680, 0.001120, 0.003120, 0.002080, 0.003780, 0.002520, 0.007020, 0.004680, 0.002520, 0.001680, 0.004680, 0.003120, 0.003780, 0.002520, 0.007020, 0.004680, 0.002520, 0.001680, 0.004680, 0.003120, 0.022680, 0.015120, 0.042120, 0.028080, 0.015120, 0.010080, 0.028080, 0.018720, 0.022680, 0.015120, 0.042120, 0.028080, 0.015120, 0.010080, 0.028080, 0.018720

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=63, 50, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_6_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=14, 67, 115.18
E=14, 45, 180.47
E=14, 57, 31.62
E=25, 33, 470.00
E=25, 67, 650.92
E=25, 50, 551.37
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=28, 67, 721.05
E=28, 50, 621.50
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 50, 484.06
E=33, 63, 161.04
E=33, 67, 583.60
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 67, 192.68
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 488.11
E=50, 63, 144.01
E=54, 64, 154.30
E=54, 56, 63.95
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 54, 64
EO=1, 50, 63
EO=2, 45, 49
EO=3, 33, 78
EO=4, 46, 57
EO=5, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.034020, 0.022680, 0.063180, 0.042120, 0.022680, 0.015120, 0.042120, 0.028080, 0.034020, 0.022680, 0.063180, 0.042120, 0.022680, 0.015120, 0.042120, 0.028080, 0.002520, 0.001680, 0.004680, 0.003120, 0.001680, 0.001120, 0.003120, 0.002080, 0.002520, 0.001680, 0.004680, 0.003120, 0.001680, 0.001120, 0.003120, 0.002080, 0.003780, 0.002520, 0.007020, 0.004680, 0.002520, 0.001680, 0.004680, 0.003120, 0.003780, 0.002520, 0.007020, 0.004680, 0.002520, 0.001680, 0.004680, 0.003120, 0.022680, 0.015120, 0.042120, 0.028080, 0.015120, 0.010080, 0.028080, 0.018720, 0.022680, 0.015120, 0.042120, 0.028080, 0.015120, 0.010080, 0.028080, 0.018720

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=63, 50, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_7_edges.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64
C=4, 46, 63

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 46, 63
EO=1, 54, 64
EO=2, 50, 63
EO=3, 45, 49
EO=4, 33, 78
EO=5, 46, 57
EO=6, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.027216, 0.006804, 0.018144, 0.004536, 0.050544, 0.012636, 0.033696, 0.008424, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.027216, 0.006804, 0.018144, 0.004536, 0.050544, 0.012636, 0.033696, 0.008424, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.001344, 0.000336, 0.000896, 0.000224, 0.002496, 0.000624, 0.001664, 0.000416, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.001344, 0.000336, 0.000896, 0.000224, 0.002496, 0.000624, 0.001664, 0.000416, 0.003024, 0.000756, 0.002016, 0.000504, 0.005616, 0.001404, 0.003744, 0.000936, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.003024, 0.000756, 0.002016, 0.000504, 0.005616, 0.001404, 0.003744, 0.000936, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.012096, 0.003024, 0.008064, 0.002016, 0.022464, 0.005616, 0.014976, 0.003744, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.012096, 0.003024, 0.008064, 0.002016, 0.022464, 0.005616, 0.014976, 0.003744

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_7_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=14, 67, 115.18
E=14, 45, 180.47
E=14, 57, 31.62
E=25, 33, 470.00
E=25, 67, 650.92
E=25, 50, 551.37
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=28, 67, 721.05
E=28, 50, 621.50
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 50, 484.06
E=33, 63, 161.04
E=33, 67, 583.60
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 67, 192.68
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 488.11
E=50, 63, 144.01
E=54, 64, 154.30
E=54, 56, 63.95
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64
C=4, 46, 63

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 46, 63
EO=1, 54, 64
EO=2, 50, 63
EO=3, 45, 49
EO=4, 33, 78
EO=5, 46, 57
EO=6, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.027216, 0.006804, 0.018144, 0.004536, 0.050544, 0.012636, 0.033696, 0.008424, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.027216, 0.006804, 0.018144, 0.004536, 0.050544, 0.012636, 0.033696, 0.008424, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.001344, 0.000336, 0.000896, 0.000224, 0.002496, 0.000624, 0.001664, 0.000416, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.001344, 0.000336, 0.000896, 0.000224, 0.002496, 0.000624, 0.001664, 0.000416, 0.003024, 0.000756, 0.002016, 0.000504, 0.005616, 0.001404, 0.003744, 0.000936, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.003024, 0.000756, 0.002016, 0.000504, 0.005616, 0.001404, 0.003744, 0.000936, 0.002016, 0.000504, 0.001344, 0.000336, 0.003744, 0.000936, 0.002496, 0.000624, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.012096, 0.003024, 0.008064, 0.002016, 0.022464, 0.005616, 0.014976, 0.003744, 0.018144, 0.004536, 0.012096, 0.003024, 0.033696, 0.008424, 0.022464, 0.005616, 0.012096, 0.003024, 0.008064, 0.002016, 0.022464, 0.005616, 0.014976, 0.003744

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_8_edges.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 63
EO=4, 45, 49
EO=5, 33, 78
EO=6, 46, 57
EO=7, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.029564, 0.001304, 0.001304, 0.001848, 0.019709, 0.000870, 0.000870, 0.001232, 0.054904, 0.002422, 0.002422, 0.003432, 0.036603, 0.001615, 0.001615, 0.002288, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.029564, 0.001304, 0.001304, 0.001848, 0.019709, 0.000870, 0.000870, 0.001232, 0.054904, 0.002422, 0.002422, 0.003432, 0.036603, 0.001615, 0.001615, 0.002288, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.001460, 0.000064, 0.000064, 0.000091, 0.000973, 0.000043, 0.000043, 0.000061, 0.002711, 0.000120, 0.000120, 0.000169, 0.001808, 0.000080, 0.000080, 0.000113, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.001460, 0.000064, 0.000064, 0.000091, 0.000973, 0.000043, 0.000043, 0.000061, 0.002711, 0.000120, 0.000120, 0.000169, 0.001808, 0.000080, 0.000080, 0.000113, 0.003285, 0.000145, 0.000145, 0.000205, 0.002190, 0.000097, 0.000097, 0.000137, 0.006100, 0.000269, 0.000269, 0.000381, 0.004067, 0.000179, 0.000179, 0.000254, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.003285, 0.000145, 0.000145, 0.000205, 0.002190, 0.000097, 0.000097, 0.000137, 0.006100, 0.000269, 0.000269, 0.000381, 0.004067, 0.000179, 0.000179, 0.000254, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.013139, 0.000580, 0.000580, 0.000821, 0.008760, 0.000386, 0.000386, 0.000547, 0.024402, 0.001077, 0.001077, 0.001525, 0.016268, 0.000718, 0.000718, 0.001017, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.013139, 0.000580, 0.000580, 0.000821, 0.008760, 0.000386, 0.000386, 0.000547, 0.024402, 0.001077, 0.001077, 0.001525, 0.016268, 0.000718, 0.000718, 0.001017

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_8_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=14, 67, 115.18
E=14, 45, 180.47
E=14, 57, 31.62
E=25, 33, 470.00
E=25, 67, 650.92
E=25, 50, 551.37
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=28, 67, 721.05
E=28, 50, 621.50
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 50, 484.06
E=33, 63, 161.04
E=33, 67, 583.60
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 67, 192.68
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 488.11
E=50, 63, 144.01
E=54, 64, 154.30
E=54, 56, 63.95
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 63
EO=4, 45, 49
EO=5, 33, 78
EO=6, 46, 57
EO=7, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.029564, 0.001304, 0.001304, 0.001848, 0.019709, 0.000870, 0.000870, 0.001232, 0.054904, 0.002422, 0.002422, 0.003432, 0.036603, 0.001615, 0.001615, 0.002288, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.029564, 0.001304, 0.001304, 0.001848, 0.019709, 0.000870, 0.000870, 0.001232, 0.054904, 0.002422, 0.002422, 0.003432, 0.036603, 0.001615, 0.001615, 0.002288, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.001460, 0.000064, 0.000064, 0.000091, 0.000973, 0.000043, 0.000043, 0.000061, 0.002711, 0.000120, 0.000120, 0.000169, 0.001808, 0.000080, 0.000080, 0.000113, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.001460, 0.000064, 0.000064, 0.000091, 0.000973, 0.000043, 0.000043, 0.000061, 0.002711, 0.000120, 0.000120, 0.000169, 0.001808, 0.000080, 0.000080, 0.000113, 0.003285, 0.000145, 0.000145, 0.000205, 0.002190, 0.000097, 0.000097, 0.000137, 0.006100, 0.000269, 0.000269, 0.000381, 0.004067, 0.000179, 0.000179, 0.000254, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.003285, 0.000145, 0.000145, 0.000205, 0.002190, 0.000097, 0.000097, 0.000137, 0.006100, 0.000269, 0.000269, 0.000381, 0.004067, 0.000179, 0.000179, 0.000254, 0.002190, 0.000097, 0.000097, 0.000137, 0.001460, 0.000064, 0.000064, 0.000091, 0.004067, 0.000179, 0.000179, 0.000254, 0.002711, 0.000120, 0.000120, 0.000169, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.013139, 0.000580, 0.000580, 0.000821, 0.008760, 0.000386, 0.000386, 0.000547, 0.024402, 0.001077, 0.001077, 0.001525, 0.016268, 0.000718, 0.000718, 0.001017, 0.019709, 0.000870, 0.000870, 0.001232, 0.013139, 0.000580, 0.000580, 0.000821, 0.036603, 0.001615, 0.001615, 0.002288, 0.024402, 0.001077, 0.001077, 0.001525, 0.013139, 0.000580, 0.000580, 0.000821, 0.008760, 0.000386, 0.000386, 0.000547, 0.024402, 0.001077, 0.001077, 0.001525, 0.016268, 0.000718, 0.000718, 0.001017

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=50, 50, 63, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_9_edges.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=0, 24, 24.21
E=0, 41, 52.40
E=0, 55, 53.85
E=0, 75, 58.25
E=1, 71, 55.08
E=1, 26, 93.00
E=1, 39, 124.65
E=1, 4, 134.97
E=2, 11, 34.23
E=2, 5, 49.68
E=2, 14, 51.11
E=2, 67, 64.07
E=3, 28, 36.80
E=3, 74, 54.13
E=3, 25, 58.60
E=3, 43, 70.46
E=4, 39, 86.02
E=4, 66, 112.79
E=4, 22, 115.45
E=5, 76, 17.46
E=5, 11, 34.06
E=5, 35, 37.95
E=6, 36, 28.30
E=6, 16, 38.08
E=6, 15, 50.25
E=6, 14, 50.61
E=7, 21, 33.60
E=7, 52, 46.14
E=7, 47, 47.54
E=7, 8, 49.41
E=8, 79, 38.95
E=8, 47, 41.44
E=8, 69, 49.93
E=9, 52, 87.01
E=9, 21, 89.05
E=9, 49, 116.62
E=9, 69, 128.71
E=10, 45, 38.60
E=10, 42, 102.12
E=10, 11, 124.06
E=10, 14, 141.87
E=11, 67, 30.02
E=12, 62, 70.84
E=12, 44, 109.04
E=12, 77, 275.00
E=13, 59, 42.72
E=13, 31, 73.05
E=13, 32, 83.15
E=13, 77, 88.41
E=14, 57, 31.62
E=15, 16, 19.10
E=15, 36, 24.17
E=15, 20, 40.01
E=16, 36, 21.93
E=16, 20, 45.69
E=17, 60, 109.60
E=17, 18, 128.80
E=17, 34, 261.12
E=17, 68, 287.45
E=18, 60, 33.53
E=18, 30, 86.88
E=18, 34, 187.88
E=19, 61, 34.53
E=19, 35, 66.37
E=19, 76, 93.23
E=19, 34, 107.08
E=20, 57, 54.45
E=20, 36, 62.65
E=21, 52, 53.85
E=21, 69, 55.00
E=22, 66, 28.64
E=22, 39, 35.06
E=22, 26, 91.92
E=23, 54, 73.98
E=23, 37, 81.22
E=23, 79, 87.80
E=23, 69, 109.02
E=24, 55, 32.28
E=24, 75, 35.85
E=24, 41, 56.32
E=25, 43, 37.12
E=25, 74, 50.48
E=25, 28, 94.34
E=26, 71, 38.12
E=26, 39, 83.00
E=27, 65, 17.46
E=27, 40, 19.72
E=27, 38, 43.68
E=27, 41, 100.08
E=28, 64, 78.45
E=28, 74, 86.76
E=29, 48, 56.04
E=29, 74, 79.62
E=29, 62, 121.20
E=29, 64, 234.05
E=30, 60, 53.60
E=30, 34, 172.53
E=30, 68, 199.91
E=31, 59, 33.02
E=31, 77, 37.34
E=31, 32, 87.05
E=32, 77, 62.97
E=32, 59, 67.54
E=33, 46, 51.31
E=33, 63, 161.04
E=33, 41, 201.34
E=33, 78, 216.45
E=35, 76, 27.59
E=35, 61, 46.14
E=37, 79, 48.27
E=37, 47, 70.11
E=37, 54, 154.12
E=38, 65, 44.82
E=38, 40, 59.03
E=38, 72, 81.84
E=40, 65, 35.38
E=40, 72, 41.44
E=42, 45, 86.82
E=42, 57, 133.00
E=42, 76, 148.55
E=43, 72, 90.14
E=43, 65, 113.99
E=44, 62, 177.13
E=44, 59, 206.34
E=44, 50, 280.49
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 57, 168.24
E=46, 63, 208.40
E=46, 67, 221.42
E=47, 79, 27.46
E=48, 53, 69.35
E=48, 62, 124.00
E=48, 72, 227.90
E=49, 56, 149.09
E=49, 52, 153.26
E=50, 63, 144.01
E=50, 55, 194.12
E=50, 58, 225.23
E=51, 75, 70.77
E=51, 55, 74.67
E=51, 58, 137.38
E=51, 67, 219.32
E=53, 64, 281.18
E=54, 56, 63.95
E=54, 64, 154.30
E=58, 75, 68.12
E=60, 68, 189.84
E=61, 70, 62.18
E=61, 68, 143.00
E=63, 78, 202.30
E=66, 78, 81.04
E=66, 71, 140.35
E=70, 73, 121.76
E=71, 78, 209.03

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63, 50, 55
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 55
EO=4, 50, 63
EO=5, 45, 49
EO=6, 33, 78
EO=7, 46, 57
EO=8, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.033023, 0.001457, 0.001457, 0.002064, 0.022016, 0.000971, 0.000971, 0.001376, 0.004718, 0.000208, 0.000208, 0.000295, 0.003145, 0.000139, 0.000139, 0.000197, 0.020443, 0.000902, 0.000902, 0.001278, 0.013629, 0.000601, 0.000601, 0.000852, 0.026284, 0.001160, 0.001160, 0.001643, 0.017523, 0.000773, 0.000773, 0.001095, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.033023, 0.001457, 0.001457, 0.002064, 0.022016, 0.000971, 0.000971, 0.001376, 0.004718, 0.000208, 0.000208, 0.000295, 0.003145, 0.000139, 0.000139, 0.000197, 0.020443, 0.000902, 0.000902, 0.001278, 0.013629, 0.000601, 0.000601, 0.000852, 0.026284, 0.001160, 0.001160, 0.001643, 0.017523, 0.000773, 0.000773, 0.001095, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.001631, 0.000072, 0.000072, 0.000102, 0.001087, 0.000048, 0.000048, 0.000068, 0.000233, 0.000010, 0.000010, 0.000015, 0.000155, 0.000007, 0.000007, 0.000010, 0.001010, 0.000045, 0.000045, 0.000063, 0.000673, 0.000030, 0.000030, 0.000042, 0.001298, 0.000057, 0.000057, 0.000081, 0.000865, 0.000038, 0.000038, 0.000054, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.001631, 0.000072, 0.000072, 0.000102, 0.001087, 0.000048, 0.000048, 0.000068, 0.000233, 0.000010, 0.000010, 0.000015, 0.000155, 0.000007, 0.000007, 0.000010, 0.001010, 0.000045, 0.000045, 0.000063, 0.000673, 0.000030, 0.000030, 0.000042, 0.001298, 0.000057, 0.000057, 0.000081, 0.000865, 0.000038, 0.000038, 0.000054, 0.003669, 0.000162, 0.000162, 0.000229, 0.002446, 0.000108, 0.000108, 0.000153, 0.000524, 0.000023, 0.000023, 0.000033, 0.000349, 0.000015, 0.000015, 0.000022, 0.002271, 0.000100, 0.000100, 0.000142, 0.001514, 0.000067, 0.000067, 0.000095, 0.002920, 0.000129, 0.000129, 0.000183, 0.001947, 0.000086, 0.000086, 0.000122, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.003669, 0.000162, 0.000162, 0.000229, 0.002446, 0.000108, 0.000108, 0.000153, 0.000524, 0.000023, 0.000023, 0.000033, 0.000349, 0.000015, 0.000015, 0.000022, 0.002271, 0.000100, 0.000100, 0.000142, 0.001514, 0.000067, 0.000067, 0.000095, 0.002920, 0.000129, 0.000129, 0.000183, 0.001947, 0.000086, 0.000086, 0.000122, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.014677, 0.000648, 0.000648, 0.000917, 0.009785, 0.000432, 0.000432, 0.000612, 0.002097, 0.000093, 0.000093, 0.000131, 0.001398, 0.000062, 0.000062, 0.000087, 0.009086, 0.000401, 0.000401, 0.000568, 0.006057, 0.000267, 0.000267, 0.000379, 0.011682, 0.000515, 0.000515, 0.000730, 0.007788, 0.000344, 0.000344, 0.000487, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.014677, 0.000648, 0.000648, 0.000917, 0.009785, 0.000432, 0.000432, 0.000612, 0.002097, 0.000093, 0.000093, 0.000131, 0.001398, 0.000062, 0.000062, 0.000087, 0.009086, 0.000401, 0.000401, 0.000568, 0.006057, 0.000267, 0.000267, 0.000379, 0.011682, 0.000515, 0.000515, 0.000730, 0.007788, 0.000344, 0.000344, 0.000487

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Scaling Graph 19/Graph19_9_edges_gpp.txt

#Node data
#N=Node ID, x, y, rotation in degrees
N=0, 285.00, 482.00, 157.53
N=1, 542.00, 220.00, 8.64
N=2, 357.00, 289.00, 241.94
N=3, 44.00, 448.00, 224.84
N=4, 675.00, 243.00, 108.92
N=5, 389.00, 251.00, 140.96
N=6, 343.00, 364.00, 309.81
N=7, 162.00, 47.00, 18.70
N=8, 122.00, 76.00, 221.69
N=9, 271.00, 77.00, 67.00
N=10, 275.00, 241.00, 13.83
N=11, 391.00, 285.00, 289.71
N=12, 103.00, 659.00, 223.96
N=13, 439.00, 595.00, 301.39
N=14, 383.00, 333.00, 227.39
N=15, 380.00, 398.00, 42.84
N=16, 378.00, 379.00, 311.13
N=17, 688.00, 148.00, 195.56
N=18, 621.00, 38.00, 43.27
N=19, 458.00, 181.00, 6.07
N=20, 420.00, 397.00, 222.53
N=21, 182.00, 74.00, 255.66
N=22, 627.00, 348.00, 198.29
N=23, 40.00, 120.00, 192.90
N=24, 304.00, 497.00, 349.73
N=25, 97.00, 473.00, 318.59
N=26, 542.00, 313.00, 204.41
N=27, 220.00, 439.00, 215.96
N=28, 17.00, 423.00, 345.48
N=29, 89.00, 573.00, 93.00
N=30, 603.00, 123.00, 176.07
N=31, 415.00, 664.00, 250.86
N=32, 356.00, 600.00, 22.23
N=33, 493.00, 546.00, 132.39
N=34, 437.00, 76.00, 194.41
N=35, 401.00, 215.00, 258.70
N=36, 358.00, 388.00, 62.02
N=37, 46.00, 39.00, 130.69
N=38, 262.00, 427.00, 71.13
N=39, 625.00, 313.00, 198.68
N=40, 203.00, 429.00, 68.50
N=41, 320.00, 443.00, 253.09
N=42, 280.00, 343.00, 70.79
N=43, 114.00, 440.00, 348.21
N=44, 212.00, 662.00, 241.89
N=45, 244.00, 264.00, 69.10
N=46, 465.00, 503.00, 46.07
N=47, 116.00, 35.00, 60.33
N=48, 35.00, 558.00, 89.55
N=49, 211.00, 177.00, 203.14
N=50, 488.00, 612.00, 147.46
N=51, 383.00, 502.00, 159.11
N=52, 202.00, 24.00, 65.92
N=53, 42.00, 627.00, 273.51
N=54, 52.00, 193.00, 73.13
N=55, 313.00, 528.00, 121.67
N=56, 81.00, 250.00, 15.60
N=57, 413.00, 343.00, 26.66
N=58, 266.00, 574.00, 293.15
N=59, 416.00, 631.00, 191.15
N=60, 611.00, 70.00, 184.29
N=61, 424.00, 175.00, 313.64
N=62, 36.00, 682.00, 273.41
N=63, 631.00, 629.00, 204.26
N=64, 32.00, 346.00, 268.77
N=65, 227.00, 455.00, 159.78
N=66, 655.00, 354.00, 76.09
N=67, 421.00, 286.00, 160.55
N=68, 425.00, 32.00, 97.43
N=69, 149.00, 118.00, 243.13
N=70, 369.00, 146.00, 179.09
N=71, 539.00, 275.00, 287.18
N=72, 189.00, 390.00, 5.97
N=73, 409.00, 31.00, 11.77
N=74, 55.00, 501.00, 247.52
N=75, 318.00, 530.00, 263.64
N=76, 382.00, 235.00, 93.55
N=77, 378.00, 659.00, 79.11
N=78, 677.00, 432.00, 51.25
N=79, 93.00, 50.00, 342.20

#Edge data
#E=Node number 1, Node number 2, cost
E=14, 67, 115.18
E=14, 45, 180.47
E=14, 57, 31.62
E=24, 33, 257.66
E=24, 67, 325.94
E=24, 50, 329.19
E=24, 55, 32.28
E=24, 25, 324.98
E=24, 28, 395.11
E=25, 33, 470.00
E=25, 28, 94.34
E=28, 33, 540.13
E=28, 64, 78.45
E=33, 78, 216.45
E=33, 46, 51.31
E=33, 63, 161.04
E=37, 49, 317.06
E=37, 54, 154.12
E=39, 66, 63.69
E=42, 67, 230.09
E=42, 45, 86.82
E=42, 57, 133.00
E=45, 67, 192.68
E=45, 49, 93.05
E=45, 56, 163.60
E=46, 67, 221.42
E=46, 57, 168.24
E=46, 63, 208.40
E=49, 56, 149.09
E=50, 67, 581.92
E=50, 63, 144.01
E=50, 55, 194.12
E=54, 64, 154.30
E=54, 56, 63.95
E=55, 67, 293.99
E=63, 78, 202.30
E=66, 78, 81.04

#Start node ID
S=39

#Goal node ID
G=37

#Cluster and uncertain edge data
#C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...
#<Edge pair>=node ID 1, node ID 2 being an uncertain edge
C=0, 46, 67, 46, 57, 33, 78
C=1, 45, 49
C=2, 50, 63, 50, 55
C=3, 54, 64
C=4, 46, 63, 33, 46

#Edge ordering
#The start belief state is given as a series of edge status combinations.
#In a graph of 3 uncertain edges, there are 8 combinations: FFF,FFB,FBF,FBB,...,BBB
#The bit positions of the statuses for each edge are given below. So the last character
#in the example above would be the status of the edge at bit position 0, the middle character
#refers to the edge at position 1, and so on.
#EO=Bit position for edge, <Edge pair>
EO=0, 33, 46
EO=1, 46, 63
EO=2, 54, 64
EO=3, 50, 55
EO=4, 50, 63
EO=5, 45, 49
EO=6, 33, 78
EO=7, 46, 57
EO=8, 46, 67

#Starting belief state, starting with the all F combination and working through to all B
B=0.033023, 0.001457, 0.001457, 0.002064, 0.022016, 0.000971, 0.000971, 0.001376, 0.004718, 0.000208, 0.000208, 0.000295, 0.003145, 0.000139, 0.000139, 0.000197, 0.020443, 0.000902, 0.000902, 0.001278, 0.013629, 0.000601, 0.000601, 0.000852, 0.026284, 0.001160, 0.001160, 0.001643, 0.017523, 0.000773, 0.000773, 0.001095, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.033023, 0.001457, 0.001457, 0.002064, 0.022016, 0.000971, 0.000971, 0.001376, 0.004718, 0.000208, 0.000208, 0.000295, 0.003145, 0.000139, 0.000139, 0.000197, 0.020443, 0.000902, 0.000902, 0.001278, 0.013629, 0.000601, 0.000601, 0.000852, 0.026284, 0.001160, 0.001160, 0.001643, 0.017523, 0.000773, 0.000773, 0.001095, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.001631, 0.000072, 0.000072, 0.000102, 0.001087, 0.000048, 0.000048, 0.000068, 0.000233, 0.000010, 0.000010, 0.000015, 0.000155, 0.000007, 0.000007, 0.000010, 0.001010, 0.000045, 0.000045, 0.000063, 0.000673, 0.000030, 0.000030, 0.000042, 0.001298, 0.000057, 0.000057, 0.000081, 0.000865, 0.000038, 0.000038, 0.000054, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.001631, 0.000072, 0.000072, 0.000102, 0.001087, 0.000048, 0.000048, 0.000068, 0.000233, 0.000010, 0.000010, 0.000015, 0.000155, 0.000007, 0.000007, 0.000010, 0.001010, 0.000045, 0.000045, 0.000063, 0.000673, 0.000030, 0.000030, 0.000042, 0.001298, 0.000057, 0.000057, 0.000081, 0.000865, 0.000038, 0.000038, 0.000054, 0.003669, 0.000162, 0.000162, 0.000229, 0.002446, 0.000108, 0.000108, 0.000153, 0.000524, 0.000023, 0.000023, 0.000033, 0.000349, 0.000015, 0.000015, 0.000022, 0.002271, 0.000100, 0.000100, 0.000142, 0.001514, 0.000067, 0.000067, 0.000095, 0.002920, 0.000129, 0.000129, 0.000183, 0.001947, 0.000086, 0.000086, 0.000122, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.003669, 0.000162, 0.000162, 0.000229, 0.002446, 0.000108, 0.000108, 0.000153, 0.000524, 0.000023, 0.000023, 0.000033, 0.000349, 0.000015, 0.000015, 0.000022, 0.002271, 0.000100, 0.000100, 0.000142, 0.001514, 0.000067, 0.000067, 0.000095, 0.002920, 0.000129, 0.000129, 0.000183, 0.001947, 0.000086, 0.000086, 0.000122, 0.002446, 0.000108, 0.000108, 0.000153, 0.001631, 0.000072, 0.000072, 0.000102, 0.000349, 0.000015, 0.000015, 0.000022, 0.000233, 0.000010, 0.000010, 0.000015, 0.001514, 0.000067, 0.000067, 0.000095, 0.001010, 0.000045, 0.000045, 0.000063, 0.001947, 0.000086, 0.000086, 0.000122, 0.001298, 0.000057, 0.000057, 0.000081, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.014677, 0.000648, 0.000648, 0.000917, 0.009785, 0.000432, 0.000432, 0.000612, 0.002097, 0.000093, 0.000093, 0.000131, 0.001398, 0.000062, 0.000062, 0.000087, 0.009086, 0.000401, 0.000401, 0.000568, 0.006057, 0.000267, 0.000267, 0.000379, 0.011682, 0.000515, 0.000515, 0.000730, 0.007788, 0.000344, 0.000344, 0.000487, 0.022016, 0.000971, 0.000971, 0.001376, 0.014677, 0.000648, 0.000648, 0.000917, 0.003145, 0.000139, 0.000139, 0.000197, 0.002097, 0.000093, 0.000093, 0.000131, 0.013629, 0.000601, 0.000601, 0.000852, 0.009086, 0.000401, 0.000401, 0.000568, 0.017523, 0.000773, 0.000773, 0.001095, 0.011682, 0.000515, 0.000515, 0.000730, 0.014677, 0.000648, 0.000648, 0.000917, 0.009785, 0.000432, 0.000432, 0.000612, 0.002097, 0.000093, 0.000093, 0.000131, 0.001398, 0.000062, 0.000062, 0.000087, 0.009086, 0.000401, 0.000401, 0.000568, 0.006057, 0.000267, 0.000267, 0.000379, 0.011682, 0.000515, 0.000515, 0.000730, 0.007788, 0.000344, 0.000344, 0.000487

#Observation data
#O=Node ID making the observation, <Edge pair> being observed, P(block|block), P(block|free)
O=33, 46, 67, 0.900000, 0.100000
O=33, 46, 57, 0.900000, 0.100000
O=33, 33, 78, 1.000000, 0.000000
O=33, 33, 46, 1.000000, 0.000000
O=46, 46, 67, 1.000000, 0.000000
O=46, 46, 57, 1.000000, 0.000000
O=46, 46, 63, 1.000000, 0.000000
O=46, 33, 46, 1.000000, 0.000000
O=67, 46, 67, 1.000000, 0.000000
O=57, 46, 57, 1.000000, 0.000000
O=42, 45, 49, 0.900000, 0.100000
O=45, 45, 49, 1.000000, 0.000000
O=49, 45, 49, 1.000000, 0.000000
O=14, 45, 49, 0.700000, 0.300000
O=78, 50, 63, 0.800000, 0.200000
O=78, 33, 78, 1.000000, 0.000000
O=78, 46, 63, 0.700000, 0.300000
O=78, 33, 46, 0.700000, 0.300000
O=63, 50, 63, 1.000000, 0.000000
O=63, 46, 63, 1.000000, 0.000000
O=63, 50, 55, 0.800000, 0.200000
O=50, 50, 63, 1.000000, 0.000000
O=50, 50, 55, 1.000000, 0.000000
O=28, 54, 64, 30.800000, 0.200000
O=64, 54, 64, 1.000000, 0.000000
O=54, 54, 64, 1.000000, 0.000000
O=25, 54, 64, 0.800000, 0.200000
O=66, 33, 78, 0.800000, 0.200000
O=55, 50, 55, 1.000000, 0.000000

#Obstacle data
#OB=x, y coordinates of obstacle in world space, x, y of obstacle handle in obstacle co-ordinates
#then a comma separated list of <Point data>
#<Point data>=x, y coordinates of vertex (Gaussian mean) in obstacle space, cov(1,1), cov(1,2), cov(2,2)
#cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov(2,1)==cov(1,2).
OB=4.00, 6.00, 0.00, 0.00, 0.00, 0.00, 400.000000, 0.000000, 400.000000, 0.00, 100.00, 400.000000, 0.000000, 400.000000
OB=300.00, 122.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=524.00, 349.00, 60.00, 0.00, 60.00, 0.00, 0.000000, 0.000000, 0.000000, 120.00, 30.00, 0.000000, 0.000000, 0.000000, 100.00, 110.00, 0.000000, 0.000000, 0.000000, 20.00, 110.00, 0.000000, 0.000000, 0.000000, 0.00, 30.00, 0.000000, 0.000000, 0.000000, 60.00, 0.00, 0.000000, 0.000000, 0.000000
OB=95.00, 535.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=71.00, 291.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=515.00, 139.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 0.00, 0.000000, 0.000000, 0.000000, 140.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 80.00, 0.000000, 0.000000, 0.000000, 0.00, 0.00, 0.000000, 0.000000, 0.000000
OB=420.00, 542.00, 0.00, 0.00, 0.00, 0.00, 0.000000, 0.000000, 0.000000, 125.00, 66.00, 0.000000, 0.000000, 0.000000

Michael Kneebone
Archive of PRM graphs
An electronic archive of all the graphs used in this research.

http://www.cs.bham.ac.uk/~mlk/graphs.zip

28 N=25, 363.00 , 283.00 , 94.32

29 N=26, 80.00, 193.00 , 251.60

30 N=27, 560.00 , 119.00 , 62.89

31 N=28, 73.00, 39.00, 130.73

32 N=29, 141.00 , 55.00, 229.14

33 N=30, 469.00 , 44.00, 131.20

34 N=31, 543.00 , 644.00 , 353.59

35 N=32, 454.00 , 152.00 , 245.01

36 N=33, 519.00 , 39.00, 161.74

37 N=34, 100.00 , 485.00 , 339.11

38 N=35, 511.00 , 574.00 , 46.75

39 N=36, 241.00 , 293.00 , 70.37

40 N=37, 286.00 , 650.00 , 133.51

41 N=38, 340.00 , 193.00 , 310.63

42 N=39, 449.00 , 484.00 , 137.12

43 N=40, 661.00 , 291.00 , 274.55

44 N=41, 547.00 , 452.00 , 316.18

45 N=42, 199.00 , 662.00 , 329.38

46 N=43, 216.00 , 429.00 , 130.89

47 N=44, 122.00 , 356.00 , 268.16

48 N=45, 9.00, 630.00 , 354.50

49 N=46, 189.00 , 228.00 , 88.75

50 N=47, 677.00 , 468.00 , 105.29

51 N=48, 472.00 , 449.00 , 171.17

52 N=49, 194.00 , 312.00 , 290.22

53

54 #Edge data

55 #E=Node number 1, Node number 2, cost

56 E=0, 28, 32.02

57 E=0, 29, 61.85

58 E=0, 14, 81.49

59 E=0, 26, 123.00

60 E=1, 23, 19.85

61 E=1, 9, 57.08

62 E=1, 5, 60.73

63 E=1, 11, 75.43

64 E=2, 49, 21.93

65 E=2, 20, 32.20

66 E=2, 36, 46.01

67 E=2, 8, 62.51

68 E=3, 10, 24.70

69 E=3, 41, 33.62

70 E=3, 12, 44.28

71 E=3, 48, 95.60

72 E=4, 39, 64.26

73 E=4, 48, 101.26

74 E=4, 18, 104.31

75 E=4, 35, 139.19

76 E=5, 9, 15.03

77 E=5, 26, 30.08

78 E=5, 23, 55.80

79 E=6, 48, 73.01

80 E=6, 22, 87.09

81 E=6, 39, 106.17

82 E=6, 41, 118.07

83 E=7, 47, 93.34

84 E=7, 12, 153.68

85 E=7, 31, 164.48

86 E=7, 35, 174.48

87 E=8, 20, 39.66

88 E=8, 36, 40.46

89 E=8, 17, 46.87

90 E=9, 26, 30.81

91 E=9, 23, 47.54

92 E=10, 12, 25.24

93 E=10, 41, 55.17

94 E=10, 47, 104.96

95 E=11, 46, 42.01

96 E=11, 23, 58.31

97 E=11, 49, 59.68

228

98 E=12, 41, 65.55

99 E=13, 44, 41.18

100 E=13, 34, 93.02

101 E=13, 43, 119.85

102 E=13, 49, 121.92

103 E=14, 28, 71.85

104 E=14, 29, 139.09

105 E=14, 26, 162.89

106 E=15, 16, 63.51

107 E=15, 24, 86.01

108 E=15, 42, 112.75

109 E=15, 43, 121.07

110 E=16, 37, 68.31

111 E=16, 18, 68.73

112 E=16, 42, 101.41

113 E=17, 36, 44.72

114 E=17, 20, 79.92

115 E=17, 25, 82.61

116 E=18, 37, 72.35

117 E=18, 42, 149.82

118 E=19, 21, 18.36

119 E=19, 38, 35.85

120 E=19, 25, 76.66

121 E=19, 32, 97.91

122 E=20, 36, 48.04

123 E=21, 38, 51.61

124 E=21, 25, 62.94

125 E=21, 32, 101.12

126 E=22, 25, 124.79

127 E=22, 32, 148.71

128 E=22, 48, 152.74

129 E=24, 42, 102.18

130 E=24, 34, 104.36

131 E=24, 37, 166.63

132 E=27, 33, 89.89

133 E=27, 32, 111.02

134 E=27, 30, 117.92

135 E=27, 40, 199.46

136 E=28, 29, 69.86

137 E=28, 46, 221.76

138 E=29, 44, 301.60

139 E=30, 33, 50.25

140 E=30, 38, 197.08

141 E=30, 40, 312.85

142 E=31, 35, 76.97

143 E=31, 39, 185.57

144 E=31, 47, 221.21

145 E=33, 38, 236.13

146 E=33, 40, 289.25

147 E=34, 43, 128.81

148 E=34, 44, 130.86

149 E=35, 39, 109.29

150 E=37, 43, 231.82

151 E=40, 47, 177.72

152 E=44, 49, 84.38

153

154 #Start node ID

155 S=14

156

157 #Goal node ID

158 G=33

159

160 #Cluster and uncertain edge data

161 #C=Cluster ID, <Edge pair 1>, <Edge pair 2>,...

162 #<Edge pair >=node ID 1, node ID 2 being an uncertain edge

163 C=0, 17, 25

164 C=1, 28, 46, 29, 44

165 C=2, 22, 32

166

167 #Edge ordering

229

168 #The start belief state is given as a series of edge status combinations.

169 #In a graph of 3 uncertain edges , there are 8 combinations: FFF ,FFB ,FBF ,FBB ,...,BBB

170 #The bit positions of the statuses for each edge are given below. So the last

character

171 #in the example above would be the status of the edge at bit position 0, the middle

character

172 #refers to the edge at position 1, and so on.

173 #EO=Bit position for edge , <Edge pair >

174 EO=0, 22, 32

175 EO=1, 29, 44

176 EO=2, 28, 46

177 EO=3, 17, 25

178

179 #Starting belief state , starting with the all F combination and working through to

all B

180 B=0.089083 , 0.089083 , 0.010480 , 0.010480 , 0.062882 , 0.062882 , 0.237555 , 0.237555 ,

0.022271 , 0.022271 , 0.002620 , 0.002620 , 0.015721 , 0.015721 , 0.059389 , 0.059389

181

182 #Observation data

183 #O=Node ID making the observation , <Edge pair > being observed , P(block|block), P(

block|free)

184 O=36, 17, 25, 0.800000 , 0.200000

185 O=17, 17, 25, 1.000000 , 0.000000

186 O=25, 17, 25, 1.000000 , 0.000000

187 O=8, 17, 25, 0.700000 , 0.200000

188 O=29, 28, 46, 1.000000 , 0.000000

189 O=29, 29, 44, 1.000000 , 0.000000

190 O=28, 28, 46, 1.000000 , 0.000000

191 O=28, 29, 44, 0.900000 , 0.100000

192 O=46, 28, 46, 1.000000 , 0.000000

193 O=44, 29, 44, 1.000000 , 0.000000

194 O=0, 29, 44, 0.900000 , 0.100000

195 O=6, 22, 32, 0.800000 , 0.200000

196 O=22, 22, 32, 1.000000 , 0.000000

197 O=32, 22, 32, 1.000000 , 0.000000

198 O=48, 22, 32, 0.600000 , 0.350000

199

200 #Obstacle data

201 #OB=x, y coordinates of obstacle in world space , x, y of obstacle handle in obstacle

co-ordinates

202 #then a comma separated list of <Point data >

203 #<Point data >=x, y coordinates of vertex (Gaussian mean) in obstacle space , cov(1,1),

cov(1,2), cov(2,2)

204 #cov(n,n) specifies co-variances matrix for bi-variate Gaussian distribution with cov

(2,1)==cov(1,2).

205 OB=599.00 , 309.00 , 103.00 , 91.00, 103.00 , 91.00, 16.000000 , 0.000000 , 16.000000 ,

0.00, 0.00, 169.000000 , 0.000000 , 169.000000

206 OB=546.00 , 382.00 , 1.00, 87.00 , 1.00, 87.00, 25.000000 , 0.000000 , 25.000000 , 0.00,

0.00, 25.000000 , 0.000000 , 25.000000

207 OB=618.00 , 381.00 , 0.00, 68.00 , 0.00, 68.00, 25.000000 , 0.000000 , 25.000000 , 6.00,

0.00, 25.000000 , 0.000000 , 25.000000

208 OB=298.00 , 410.00 , 0.00, 112.00 , 0.00, 112.00 , 225.000000 , 0.000000 , 225.000000 ,

32.00, 0.00, 225.000000 , 0.000000 , 225.000000

209 OB=381.00 , 589.00 , 0.00, 0.00, 0.00, 0.00, 16.000000 , 0.000000 , 16.000000 , 100.00 ,

0.00, 16.000000 , 0.000000 , 16.000000 , 100.00 , 100.00 , 16.000000 , 0.000000 ,

16.000000 , 0.00, 100.00 , 16.000000 , 0.000000 , 16.000000 , 0.00, 0.00, 16.000000 ,

0.000000 , 16.000000

210 OB=224.00 , 67.00, 60.00, 0.00, 60.00, 0.00, 21.307086 , 0.000000 , 21.307086 , 120.00 ,

30.00, 78.733990 , 0.000000 , 78.733990 , 100.00 , 110.00 , 9.270729 , 0.000000 ,

9.270729 , 20.00, 110.00 , 73.907519 , 0.000000 , 73.907519 , 0.00, 30.00, 71.670428 ,

0.000000 , 71.670428 , 60.00, 0.00, 21.307086 , 0.000000 , 21.307086

211 OB=424.00 , 343.00 , 128.00 , 0.00, 128.00 , 0.00, 1.193371 , 0.000000 , 1.193371 , 0.00,

145.00 , 1.488505 , 0.000000 , 1.488505

212 OB=532.00 , 539.00 , 0.00, 71.00 , 0.00, 71.00, 1.324871 , 0.000000 , 1.324871 , 57.00,

0.00, 29.013699 , 0.000000 , 29.013699

230

B.2 POMDP Files For The 5 Point Graph

Throughout this research we utilise the common POMDP model description format cre-

ated by Cassandra (2003). The format contains the complete description of all POMDP

components 〈S,A, T ,R,O, o, b0〉. For problems run using Symbolic Perseus, we use

an ADD model description format. The details for the format can be found in the

“problems/README” and “problems/SYNTAX” text files contained in the Symbolic

Perseus downloadable archive (Poupart 2009).

The following Sections show the conversion of the graph in Figure 4.1 (see page 84)

to the two POMDP file specifications. For design convenience in the POMDP files, PRM

nodes are labelled numerically not alphabetically, so node S becomes 0, A becomes 1 and

so on.

Cassandra POMDP format

1 #Cassandra POMDP model generated automatically from policy graph

2 #Graph generated on Tue Jun 16 12:46:05 BST 2009

3 discount: 0.950

4 values: reward

5 states: s0F s1F s2F s3F s4F s0B s1B s2B s3B s4B absorb

6 actions: Goto0 Goto1 Goto2 Goto3 Goto4

7 observations: F B

8

9 start: 0.50000000 0 0 0 0 0.50000000 0 0 0 0 0

10

11 T: Goto0

12 1 0 0 0 0 0 0 0 0 0 0

13 1 0 0 0 0 0 0 0 0 0 0

14 1 0 0 0 0 0 0 0 0 0 0

15 1 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 1

17 0 0 0 0 0 1 0 0 0 0 0

18 0 0 0 0 0 1 0 0 0 0 0

19 0 0 0 0 0 1 0 0 0 0 0

20 0 0 0 0 0 1 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 0 1

22 0 0 0 0 0 0 0 0 0 0 1

23

24 T: Goto1

25 0 1 0 0 0 0 0 0 0 0 0

26 0 1 0 0 0 0 0 0 0 0 0

27 0 1 0 0 0 0 0 0 0 0 0

28 0 0 0 1 0 0 0 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 1

30 0 0 0 0 0 0 1 0 0 0 0

31 0 0 0 0 0 0 1 0 0 0 0

32 0 0 0 0 0 0 1 0 0 0 0

33 0 0 0 0 0 0 0 0 1 0 0

34 0 0 0 0 0 0 0 0 0 0 1

35 0 0 0 0 0 0 0 0 0 0 1

36

37 T: Goto2

38 0 0 1 0 0 0 0 0 0 0 0

39 0 0 1 0 0 0 0 0 0 0 0

40 0 0 1 0 0 0 0 0 0 0 0

41 0 0 1 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 0 0 1

43 0 0 0 0 0 0 0 1 0 0 0

44 0 0 0 0 0 0 0 1 0 0 0

231

45 0 0 0 0 0 0 0 1 0 0 0

46 0 0 0 0 0 0 0 1 0 0 0

47 0 0 0 0 0 0 0 0 0 0 1

48 0 0 0 0 0 0 0 0 0 0 1

49

50 T: Goto3

51 0 0 0 1 0 0 0 0 0 0 0

52 0 1 0 0 0 0 0 0 0 0 0

53 0 0 0 1 0 0 0 0 0 0 0

54 0 0 0 1 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 0 1

56 0 0 0 0 0 0 0 0 1 0 0

57 0 0 0 0 0 0 1 0 0 0 0

58 0 0 0 0 0 0 0 0 1 0 0

59 0 0 0 0 0 0 0 0 1 0 0

60 0 0 0 0 0 0 0 0 0 0 1

61 0 0 0 0 0 0 0 0 0 0 1

62

63 T: Goto4

64 1 0 0 0 0 0 0 0 0 0 0

65 0 0 0 0 1 0 0 0 0 0 0

66 0 0 1 0 0 0 0 0 0 0 0

67 0 0 0 0 1 0 0 0 0 0 0

68 0 0 0 0 0 0 0 0 0 0 1

69 0 0 0 0 0 1 0 0 0 0 0

70 0 0 0 0 0 0 1 0 0 0 0

71 0 0 0 0 0 0 0 1 0 0 0

72 0 0 0 0 0 0 0 0 0 1 0

73 0 0 0 0 0 0 0 0 0 0 1

74 0 0 0 0 0 0 0 0 0 0 1

75

76 O: *

77 0.5 0.5

78 1.0 0.0

79 1.0 0.0

80 0.5 0.5

81 0.5 0.5

82 0.5 0.5

83 0.0 1.0

84 0.0 1.0

85 0.5 0.5

86 0.5 0.5

87 0.5 0.5

88

89 R: * : s0F : * : * 0

90 R: * : s1F : * : * 0

91 R: * : s2F : * : * 0

92 R: * : s3F : * : * 0

93 R: * : s4F : * : * 0

94 R: * : s0B : * : * 0

95 R: * : s1B : * : * 0

96 R: * : s2B : * : * 0

97 R: * : s3B : * : * 0

98 R: * : s4B : * : * 0

99 R: * : absorb : * : * 0

100

101 R: * : s0F : s1F : * -2.0

102 R: * : s0F : s2F : * -1.0

103 R: * : s0F : s3F : * -2.0

104

105 R: * : s1F : s0F : * -2.0

106 R: * : s1F : s2F : * -2.0

107 R: * : s1F : s4F : * -2.0

108

109 R: * : s2F : s0F : * -1.0

110 R: * : s2F : s1F : * -2.0

111 R: * : s2F : s3F : * -2.0

112

113 R: * : s3F : s0F : * -2.0

114 R: * : s3F : s2F : * -2.0

232

115 R: * : s3F : s4F : * -5.0

116

117 R: * : s4F : * : * 10

118

119 R: * : s0B : s1B : * -2.0

120 R: * : s0B : s2B : * -1.0

121 R: * : s0B : s3B : * -2.0

122

123 R: * : s1B : s0B : * -2.0

124 R: * : s1B : s2B : * -2.0

125 R: * : s1B : s4B : * -2.0

126

127 R: * : s2B : s0B : * -1.0

128 R: * : s2B : s1B : * -2.0

129 R: * : s2B : s3B : * -2.0

130

131 R: * : s3B : s0B : * -2.0

132 R: * : s3B : s2B : * -2.0

133 R: * : s3B : s4B : * -5.0

134

135 R: * : s4B : * : * 10

ADD POMDP format

1 (variables

2 (loc l0 l1 l2 l3 l4)

3 (c1 c1F c1B)

4)

5

6 (observations (obc1 obc1F obc1B)

7)

8

9 init [* (loc (l0 (1.0)) (l1 (0.0)) (l2 (0.0)) (l3 (0.0)) (l4 (0.0)))

10 (c1 (c1F (0.5)) (c1B (0.5)))

11]

12

13 action goto_l0

14 loc (loc (l0 (locl0))

15 (l1 (locl0))

16 (l2 (locl0))

17 (l3 (locl0))

18 (l4 (locl4)))

19 c1 (SAMEc1)

20 observe

21 obc1 (obc1 ’ (obc1F (0.5)) (obc1B (0.5)))

22 endobserve

23 cost (loc (l0 (2000))

24 (l1 (2))

25 (l2 (1))

26 (l3 (2))

27 (l4 (0)))

28 endaction

29

30 action goto_l1

31 loc (loc (l0 (locl1))

32 (l1 (locl1))

33 (l2 (locl1))

34 (l3 (locl3))

35 (l4 (locl4))

36)

37 c1 (SAMEc1)

38 observe

39 obc1 (c1’ (c1F (obc1 ’ (obc1F (1.0)) (obc1B (0.0))))

40 (c1B (obc1 ’ (obc1F (0.0)) (obc1B (1.0)))))

41 endobserve

42 cost (loc (l0 (2))

43 (l1 (2000))

44 (l2 (2))

45 (l3 (2000))

233

46 (l4 (0)))

47 endaction

48

49 action goto_l2

50 loc (loc (l0 (locl2))

51 (l1 (locl2))

52 (l2 (locl2))

53 (l3 (locl2))

54 (l4 (locl4)))

55 c1 (SAMEc1)

56 observe

57 obc1 (c1’ (c1F (obc1 ’ (obc1F (1.0)) (obc1B (0.0))))

58 (c1B (obc1 ’ (obc1F (0.0)) (obc1B (1.0)))))

59 endobserve

60 cost (loc (l0 (1))

61 (l1 (2))

62 (l2 (2000))

63 (l3 (2))

64 (l4 (0)))

65 endaction

66

67 action goto_l3

68 loc (loc (l0 (locl3))

69 (l1 (locl1))

70 (l2 (locl3))

71 (l3 (locl3))

72 (l4 (locl4)))

73 c1 (SAMEc1)

74 observe

75 obc1 (obc1 ’ (obc1F (0.5)) (obc1B (0.5)))

76 endobserve

77 cost (loc (l0 (2))

78 (l1 (2000))

79 (l2 (2))

80 (l3 (2000))

81 (l4 (0)))

82 endaction

83

84 action goto_l4

85 loc (loc (l0 (locl0))

86 (l1 (c1 (c1F (locl4))

87 (c1B (locl1))))

88 (l2 (locl2))

89 (l3 (locl4))

90 (l4 (locl4)))

91 c1 (SAMEc1)

92 observe

93 obc1 (c1’ (c1F (obc1 ’ (obc1F (1.0)) (obc1B (0.0))))

94 (c1B (obc1 ’ (obc1F (0.0)) (obc1B (1.0)))))

95 endobserve

96 cost (loc (l0 (2000))

97 (l1 (2))

98 (l2 (2000))

99 (l3 (5))

100 (l4 (0)))

101 endaction

102

103 discount 0.999

104 tolerance 0.001

234

Appendix C

Clustering Algorithm

The following algorithm could be used to decide how uncertain edges should be arranged

into a cluster set, given a dependent initial belief state and a clustering threshold.

Algorithm C.1 Clustering algorithm to create clusters based on edge dependencies

Input: M set of m uncertain edges, 0 ≤ t ≤ 1 dependency threshold, bD initial dependent
belief state

Output: cluster set C containing k ≤ m clusters for edge set M
1: C ⇐ set of m clusters, one edge per cluster //initially assume independence
2: for all ei ∈M do
3: for all e′i 6= ei ∈M do

4: p ⇐
∑
w∈bD

P(w) : freeStatus(ei) = freeStatus(e′i) //sum probabilities of all

worlds where statuses match
5: q ⇐

∑
w∈bD

P(w) : freeStatus(ei) 6= freeStatus(e′i) //sum probabilities of all

worlds where statuses differ
6: if |q − p| ≥ t then //is there a dependency?
7: c1 ⇐ cluster containing ei
8: c2 ⇐ cluster containing e′i
9: merge(c1, c2)

10: end if
11: end for
12: end for
13: return cluster set C

Example

The following example will demonstrate the output from Algorithm C.1 given two different

two initial belief states. Assume we have a graph with two uncertain edges A and B, and

235

two initial dependent belief states as shown in Table C.1.

World
bD

Dependent Independent
FF 0.5 0.25
FB 0 0.25
BF 0 0.25
BB 0.5 0.25

Table C.1: Two initial belief states for the clustering algorithm. One shows both edges fully correlated and
the other shows complete independence.

If the dependent starting belief state is given to the clustering algorithm, the free

statuses of edges A and B are fully correlated. When comparing the probabilities of the

statuses of edges A and B matching in line 4, then

p = P(FF) + P(BB) = 0.5 + 0.5 = 1

and in line 5 when they differ

q = P(FB) + P(BF) = 0 + 0 = 0

The difference in the probabilities of matching and differing statuses is then |q − p| =

|1− 0| = 1, the greatest it can ever be. Thus, edges A and B will be deemed dependent

on each other (line 6) and will be placed into the same cluster. The algorithm will return

one cluster containing both edges A and B.

Alternatively, if the independent starting belief state is given to the algorithm it will

decide to keep edges A and B in separate clusters. Comparing the probabilities as before,

we find

p = P(FF) + P(BB) = 0.25 + 0.25 = 0.5

and

q = P(FB) + P(BF) = 0.25 + 0.25 = 0.5

so |q− p| = |0.5− 0.5| = 0. Edges A and B will remain in separate clusters, keeping them

independent.

236

Appendix D

Profiling Graphs for Graph 19

These are the profiling graphs for a run of LAO* and ALAO* for Graph 19 (pre-processed)

with 10 uncertain edges using the clustered model. The highlighted lines show the method

call that either creates a new node in the explicit graph or finds an equal, pre-existing one.

This involves a hashtable lookup, and additionally, an insertion operation if a new node

is created. The absolute times seen here are only roughly comparable to other runtimes

in this thesis because the profiling data was collected on an Intel® Pentium® IV 3GHz

with 1GB of memory instead of the configuration described in Section 4.5.4. The profiler

also adds some overhead to method calls so the total runtime is increased compared to a

normal execution of the algorithm.

In standard LAO* (Figure D.1) we see that determining new belief states as the result

of an observation dominates the runtime (the observe method), taking 83.9% of the total

time and hashtable manipulation (the findOrCreate method) accounts for only 0.7%. In

ALAO* (Figure D.2), hashtable manipulation now accounts for 84.3% and belief state

calculation only accounts for 13.2% of the runtime.

237

Figure D.1: The profiling data for LAO* solving Graph 19.

238

Figure D.2: The profiling data for ALAO* solving Graph 19.

239

240

Appendix E

Glossary of Symbols

Symbol Meaning Section Page
C-space total configuration space 2.1.1 13
Cfree collision free configuration space 2.1.1 14
Cobst obstructed configuration space 2.1.1 14
Dmax maximum PRM edge length 2.1.3 16
GPRM a PRM graph 2.1.3 16
S MDP state space of N states 2.2.2 25
A MDP action set of K actions 2.2.2 25
T MDP transition matrix 2.2.2 25
t(s, a, s′) probability of transition from s to s′ with action a 2.2.2 26
R MDP reward matrix 2.2.2 26
r(s, a) MDP reward function for action a in state s 2.2.2 26
t0 time zero, the start of state history 2.2.2.1 27
π a policy vector: π : S 7→ A 2.2.2.1 27
π∗ the optimal policy vector 2.2.2.1 27
V π(s) the value of state s under policy π 2.2.2.1 27
γ the value function discount factor 2.2.2.2 28
DP dynamic programming 2.2.2.3 29
VI value iteration 2.2.2.3 29
ε Bellman residual 2.2.2.3 30
s0 an MDP initial state 2.2.3 32
NFSM non-deterministic finite state machine 2.2.3 32
G explicit graph 2.2.3 32
BSG best partial solution graph 2.2.3 32
O POMDP observation set 2.3 38
b(s) the agent’s belief that s is the true POMDP state 2.3.1 39
b0 a POMDP initial belief state 2.3.1 39
B N dimensional simplex, the belief space for a POMDP 2.3.1 40
PWLC piecewise linear convex 2.3.2 42
V set of N size α-vectors representing a POMDP value

function, each representing one hyperplane over B
2.3.2.1 43

Cconst tuneable cost of collision for the MCC planner 3.2.3.2 56

241

Symbol Meaning Section Page
p.m.f. probability mass function 3.4.1.2 69
p.d.f. probability density function 3.4.1.2 69
m number of uncertain edges in a PRM graph 4.1 78
ce cost of edge e 4.1.1 79
V set of size n PRM graph nodes 4.1.1 79
E set of PRM graph edges 4.1.1 79
vS start node in a PRM graph 4.1.1 79
vG goal node in a PRM graph 4.1.1 79
W set of possible worlds for a PRM graph 4.1.1 79
sT absorbing terminal POMDP state 4.2 80
cG reward for reach the goal in POMDP formulation 4.2 81
d the discretisation resolution for the MDP 4.3.2 87
BD the discretised dependent belief space 4.3.2.4 92
bD a dependent belief state 4.3.2.4 92
∆ maximum desired discretisation error 4.3.2.3 92
mc number of uncertain edges in cluster c 4.4.3.1 107
C set of clusters 4.4.3.1 107
k number of clusters in C 4.4.3.1 107
wc,i sub-world i of cluster c 4.4.3.1 107
bc a belief state for cluster c 4.4.3.1 107
Bc the discretised belief space for cluster c 4.4.3.1 107
bC a discretised belief state for cluster set C 4.4.3.1 107
maxKL the maximum Kullback-Leibler divergence allowed be-

tween two approximately equal belief states
5.2.1.1 168

242

Bibliography

AI Access. Kullback-Leibler distance. In Glossary of Data Modeling. AI Access, 2008. URL
http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_kullbak.htm.

R. Alterovitz, A. Lim, K. Goldberg, G. S. Chirikjian, and A. M. Okamura. Steering
flexible needles under Markov motion uncertainty. In Proceedings of the IEEE/RSJ
International Joint Conference on Intelligent Robots and Systems (IROS), pages 120–
125, August 2005. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.

1.1.60.1597.

R. Alterovitz, T. Siméon, and K. Y. Goldberg. The Stochastic Motion Roadmap: A
Sampling Framework for Planning with Markov Motion Uncertainty. In Robotics:
Science and Systems 2007, Atlanta, GA, USA, June 2007. URL http://www.

roboticsproceedings.org/rss03/p30.pdf.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo, and
F. Somenzi. Algebraic decision diagrams and their applications. In M. R. Light-
ner and J. A. G. Jess, editors, Proceedings of the IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), pages 188–191, Santa Clara, California,
USA, November 1993. ISBN 0-8186-4490-7. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.47.2128.

J. Barraquand and P. Ferbach. Motion planning with uncertainty: The information space
approach. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), volume 2, pages 1341–1348, May 1995. doi: 10.1109/ROBOT.1995.
525465. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=525465.

J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation
approach. International Journal of Robotics Research, 10(6):628–649, 1991.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, second edition,
1994. ISBN 978-0898713282. URL http://netlib.org/linalg/html_templates/

report.html.

A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic pro-
gramming. Technical Report UM-CS-1993-002, University of Massachusetts, Amherst
MA 01003, March 1993. URL http://citeseer.ist.psu.edu/barto93learning.

html.

243

http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_kullbak.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1597
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.1597
http://www.roboticsproceedings.org/rss03/p30.pdf
http://www.roboticsproceedings.org/rss03/p30.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.2128
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.47.2128
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=525465
http://netlib.org/linalg/html_templates/report.html
http://netlib.org/linalg/html_templates/report.html
http://citeseer.ist.psu.edu/barto93learning.html
http://citeseer.ist.psu.edu/barto93learning.html

R. E. Bellman. Dynamic Programming. Princeton University Press, 1957.

D. Bertsekas. Distributed dynamic programming. IEEE Transactions on Automatic
Control, 27(3):610–616, Jun 1982. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=1102980.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Athena Scientific, P.O. Box 805, Nashua, NH 03061-0805, U.S.A., 1989. ISBN
1-886529-01-9. URL http://hdl.handle.net/1721.1/3719.

Z. Bnaya, A. Felner, and S. E. Shimony. The Canadian traveller problem with remote
sensing. In Proceedings of the 21st International Joint Conference on Artificial In-
telligence (IJCAI), Pasadena, California, 2009. URL http://www.ise.bgu.ac.il/

faculty/felner/research/felner126.pdf.

R. Bohlin. Path planning in practice: Lazy evaluation on a multi-resolution grid. In
Proceedings of the IEEE/RSJ International Joint Conference on Intelligent Robots
and Systems (IROS), volume 1, pages 49–54, Maui, Hi, USA, 2001. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=973335.

R. Bohlin and L. Kavraki. Path planning using lazy PRM. In Proceedings of the IEEE/RSJ
International Joint Conference on Robotics and Automation (ICRA), volume 1, pages
521–528, 2000. URL http://citeseer.ist.psu.edu/article/bohlin00path.html.

B. Bonet and H. Geffner. Solving POMDPs: RTDP-Bel vs. point-based algorithms.
In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI), pages 1641–1646, Pasadena, California, July 2009. AAAI. URL http:

//www.ldc.usb.ve/~bonet/reports/IJCAI09-rtdpbel.pdf.

V. Boor, M. H. Overmars, and A. F. van der Stappen. Gaussian sampling for probabilistic
roadmap planners. In Proceedings of the IEEE/RSJ International Joint Conference on
Robotics and Automation (ICRA), volume 2, pages 1018–1023, Detroit, Michigan, May
1999. URL http://citeseer.ist.psu.edu/boor01gaussian.html.

R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings
of the 14th National Conference on AI (AAAI), pages 727–733, 1997. URL http:

//www.aaai.org/Papers/AAAI/1997/AAAI97-113.pdf.

D. Burago, M. De Rougemont, and A. Slissenko. On the complexity of partially observed
Markov decision processes. Theoretical Computer Science, 157:161–183, 1996. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.8947.

J. Burlet, O. Aycard, and T. Fraichard. Robust motion planning using Markov decision
processes and quadtree decomposition. In Proceedings of the IEEE/RSJ International
Joint Conference on Robotics and Automation (ICRA), pages 2820–2825, New Orleans,
Los Angeles, April 2004. URL http://emotion.inrialpes.fr/bibemotion/2004/

BAF04.

B. Burns and O. Brock. Sampling-based motion planning using uncertain knowl-
edge. Technical report, University of Massachusetts Amherst, 2006. URL http:

//www-robotics.cs.umass.edu/~oli/publications/src/tr06-30.pdf.

244

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1102980
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1102980
http://hdl.handle.net/1721.1/3719
http://www.ise.bgu.ac.il/faculty/felner/research/felner126.pdf
http://www.ise.bgu.ac.il/faculty/felner/research/felner126.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=973335
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=973335
http://citeseer.ist.psu.edu/article/bohlin00path.html
http://www.ldc.usb.ve/~bonet/reports/IJCAI09-rtdpbel.pdf
http://www.ldc.usb.ve/~bonet/reports/IJCAI09-rtdpbel.pdf
http://citeseer.ist.psu.edu/boor01gaussian.html
http://www.aaai.org/Papers/AAAI/1997/AAAI97-113.pdf
http://www.aaai.org/Papers/AAAI/1997/AAAI97-113.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.8947
http://emotion.inrialpes.fr/bibemotion/2004/BAF04
http://emotion.inrialpes.fr/bibemotion/2004/BAF04
http://www-robotics.cs.umass.edu/~oli/publications/src/tr06-30.pdf
http://www-robotics.cs.umass.edu/~oli/publications/src/tr06-30.pdf

B. Burns and O. Brock. Sampling-Based Motion Planning With Sensing Uncertainty. In
Proceedings of the IEEE/RSJ International Joint Conference on Robotics and Automa-
tion (ICRA), pages 3313–3318, Rome, Italy, April 2007. URL http://robotics.cs.

umass.edu/~oli/publications/src/2007-icra-a.pdf.

A. Cassandra, M. L. Littman, and N. L. Zhang. Incremental Pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the 13th Conference on Uncertainty in Artificial Intelligence (UAI), pages 54–61, San
Francisco, CA, 1997. Morgan Kaufmann Publishers. URL http://citeseer.ist.psu.

edu/cassandra97incremental.html.

A. R. Cassandra. Input POMDP file format, 2003. URL http://www.pomdp.org/pomdp/

code/pomdp-file-spec.shtml.

A. R. Cassandra. pomdp-solve v5.3, 2005. URL http://www.pomdp.org/pomdp/code/

index.shtml.

A. Censi, D. Calisi, A. De Luca, and G. Oriolo. A Bayesian framework for optimal motion
planning with uncertainty. In Proceedings of the IEEE/RSJ International Joint Con-
ference on Robotics and Automation (ICRA), pages 1798–1805, Pasadena, California,
2008. URL http://purl.org/censi/research/2008-icra-ppu.pdf.

P. P. Chakrabarti, S. Ghose, and S. C. DeSarkar. Admissibility of AO* when heuristics
overestimate. Journal of Artificial Intelligence Research, 34(1):97–113, 1987. URL
http://portal.acm.org/citation.cfm?id=42946.

P. P. Chakrabarti, S. Ghose, A. Acharya, and S. C. de Sarkar. Heuristic search in restricted
memory. Journal of Artificial Intelligence Research, 41:197–221, 1989. URL http:

//portal.acm.org/citation.cfm?id=74117.

H. Cheng. Algorithms for Partially Observable Markov Decision Processes. PhD thesis,
School of Commerce, University of British Columbia, 1988.

H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun. Principles of Robot Motion: Theory, Algorithms, and Implementations. The
MIT Press, 55 Hayward Street, Cambridge, MA 02142-1493, USA, 2005.

T. M. Cover and J. A. Thomas. Element of Information Theory. John Wiley and Sons,
inc., 111 River Street, Hoboken, NJ 07030-5774, second edition, 2006. ISBN 978-0-471-
24195-9. URL http://www.elementsofinformationtheory.com/.

P. Dai and J. Goldsmith. Topological value iteration algorithm for Markov deci-
sion processes. In Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 1860–1865, Hyderbad, India, January 2007. URL
http://www.cs.washington.edu/homes/daipeng/papers/IJCAI07-300.pdf.

P. Dai and E. A. Hansen. Prioritizing Bellman backups without a priority queue. In
Proceedings of the 17th International Conference on Automated Planning and Schedul-
ing (ICAPS), pages 113–119, Providence, Rhode Island, September 2007. URL
http://www.cse.msstate.edu/~hansen/papers/ICAPS07-015.pdf.

245

http://robotics.cs.umass.edu/~oli/publications/src/2007-icra-a.pdf
http://robotics.cs.umass.edu/~oli/publications/src/2007-icra-a.pdf
http://citeseer.ist.psu.edu/cassandra97incremental.html
http://citeseer.ist.psu.edu/cassandra97incremental.html
http://www.pomdp.org/pomdp/code/pomdp-file-spec.shtml
http://www.pomdp.org/pomdp/code/pomdp-file-spec.shtml
http://www.pomdp.org/pomdp/code/index.shtml
http://www.pomdp.org/pomdp/code/index.shtml
http://purl.org/censi/research/2008-icra-ppu.pdf
http://portal.acm.org/citation.cfm?id=42946
http://portal.acm.org/citation.cfm?id=74117
http://portal.acm.org/citation.cfm?id=74117
http://www.elementsofinformationtheory.com/
http://www.cs.washington.edu/homes/daipeng/papers/IJCAI07-300.pdf
http://www.cse.msstate.edu/~hansen/papers/ICAPS07-015.pdf

P. Dai, Mausam, and D. P. Weld. Focused topological value iteration. In Proceeed-
ings of the 19th International Conference on Automated Planning and Scheduling
(ICAPS), pages 82–89, Thessaloniki, Greece, September 2009. URL http://www.cs.

washington.edu/homes/weld/papers/dai-icaps09.pdf.

T. Dean, L. P. Kaelbling, J. Kirman, and A. Nicholson. Planning under time constraints
in stochastic domains. Journal of Artificial Intelligence Research, 76(1–2):35–74, July
1995. URL http://citeseer.ist.psu.edu/article/dean95planning.html.

R. Dearden and C. Boutilier. Abstraction and approximate decision-theoretic planning.
Journal of Artificial Intelligence Research, 89:219–283, 1997.

R. Dearden and M. Kneebone. Uncertain probabilistic roadmaps with observations. In
Proceedings of the 27th Workshop of the UK Planning and Scheduling Special Interest
Group (PlanSIG), pages 33–40, Edinburgh, UK, December 2008. URL http://www.

cs.bham.ac.uk/~mlk/uncertain_prm.pdf.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-
ematik, 1:269–271, 1959. URL http://jmvidal.cse.sc.edu/library/dijkstra59a.

pdf.

A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods In Practice.
Springer-Verlag, Springer Publishing Company, 11 West 42nd Street, 15th Floor, New
York, NY 10036, June 2001. ISBN 0-387-95146-6.

Z. Feng and E. A. Hansen. Symbolic heuristic search for factored Markov decision
processes. In Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI), pages 455–460, Edmonton, Alberta, Canada, July 2002. AAAI Press. URL
http://www.cse.msstate.edu/~hansen/papers/aaai02.pdf.

Z. Feng and S. Zilberstein. Region-based incremental pruning for POMDPs. In Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence (UAI), pages 146–153,
Banff, Canada, 2004. AUAI Press. ISBN 0-9749039-0-6. URL http://anytime.cs.

umass.edu/shlomo/papers/uai04.pdf.

H. H. González-Baños, D. Hsu, and J. C. Latombe. Motion planning: Recent develop-
ments, chapter 10. CRC Press, 2006. URL http://motion.comp.nus.edu.sg/papers/

amr05.pdf.

E. A. Hansen. Solving POMDPs by searching in policy space. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 211–219, Madison,
Wisconsin, July 1998. URL http://www.cse.msstate.edu/~hansen/papers/uai98.

ps.

E. A. Hansen and Z. Feng. Dynamic programming for POMDPs using a factored state
representation. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors, Proceedings
of the 5th International Conference on AI Planning Systems (AIPS), pages 130–139,
Breckenridge, Colorado, April 2000. ISBN 1-57735-111-8. URL http://www.cse.

msstate.edu/~hansen/papers/aips00.pdf.

246

http://www.cs.washington.edu/homes/weld/papers/dai-icaps09.pdf
http://www.cs.washington.edu/homes/weld/papers/dai-icaps09.pdf
http://citeseer.ist.psu.edu/article/dean95planning.html
http://www.cs.bham.ac.uk/~mlk/uncertain_prm.pdf
http://www.cs.bham.ac.uk/~mlk/uncertain_prm.pdf
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf
http://jmvidal.cse.sc.edu/library/dijkstra59a.pdf
http://www.cse.msstate.edu/~hansen/papers/aaai02.pdf
http://anytime.cs.umass.edu/shlomo/papers/uai04.pdf
http://anytime.cs.umass.edu/shlomo/papers/uai04.pdf
http://motion.comp.nus.edu.sg/papers/amr05.pdf
http://motion.comp.nus.edu.sg/papers/amr05.pdf
http://www.cse.msstate.edu/~hansen/papers/uai98.ps
http://www.cse.msstate.edu/~hansen/papers/uai98.ps
http://www.cse.msstate.edu/~hansen/papers/aips00.pdf
http://www.cse.msstate.edu/~hansen/papers/aips00.pdf

E. A. Hansen and S. Zilberstein. Heuristic search in cyclic AND/OR graphs. In
Proceedings of the 15th National/Tenth Conference on Artificial Intelligence/Innova-
tive Applications of Artificial Intelligence (AAAI/IAAI), pages 412–418, 1998. URL
http://citeseer.ist.psu.edu/article/hansen98heuristic.html.

E. A. Hansen and S. Zilberstein. A heuristic search algorithm for Markov decision prob-
lems. In Bar-Ilan Symposium on the Foundation of Artificial Intelligence (BISFAI),
Ramat Gan, Israel, 1999. URL http://rbrserver.cs.umass.edu/shlomo/papers/

bisfai99b.pdf.

E. A. Hansen and S. Zilberstein. LAO* : A heuristic search algorithm that finds solutions
with loops. Journal of Artificial Intelligence Research, 129(1–2):35–62, 2001. URL
http://citeseer.ist.psu.edu/hansen01lao.html.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):
100–107, July 1968. ISSN 0536-1567. doi: 10.1109/TSSC.1968.300136. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4082128.

M. Hauskrecht. Value-function approximations for partially observable Markov decision
processes. Journal of Artificial Intelligence Research, 13:33–94, 2000. URL http:

//www.jair.org/media/678/live-678-1858-jair.pdf.

J. Hoey and P. Poupart. Solving POMDPs with continuous or large discrete obser-
vation spaces. In Proceedings of the 19th International Joint Conference on Artifi-
cial Intelligence (IJCAI), pages 1332–1338, Edinburgh, Scotland, August 2005. URL
http://www.ijcai.org/papers/1376.pdf.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using decision
diagrams. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
(UAI), pages 279–288, Stockholm, Sweden, August 1999. URL http://www.cs.ubc.

ca/~jhoey/papers/spudd99.ps.gz.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. Optimal and approximate stochastic
planning using decision diagrams. Technical Report TR-00-05, University of British
Columbia, Vancouver, BC Canada, June 2000. URL http://www.computing.dundee.

ac.uk/staff/jessehoey/papers/TR-00-05.ps.gz.

D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces.
In Proceedings of the IEEE/RSJ International Joint Conference on Robotics and Au-
tomation (ICRA), volume 3, pages 2719–2726, Albuquerque, New Mexico, April 1997.
ISBN 0-7803-3612-7. doi: 10.1109/ROBOT.1997.619371. URL http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.34.448&rep=rep1&type=pdf.

D. Hsu, R. Kindel, J. Latombe, and S. Rock. Randomized kinodynamic motion planning
with moving obstacles. In Workshop on the Algorithmic Foundations of Robotics, 2000.
URL http://citeseer.ist.psu.edu/article/hsu00randomized.html.

247

http://citeseer.ist.psu.edu/article/hansen98heuristic.html
http://rbrserver.cs.umass.edu/shlomo/papers/bisfai99b.pdf
http://rbrserver.cs.umass.edu/shlomo/papers/bisfai99b.pdf
http://citeseer.ist.psu.edu/hansen01lao.html
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4082128
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4082128
http://www.jair.org/media/678/live-678-1858-jair.pdf
http://www.jair.org/media/678/live-678-1858-jair.pdf
http://www.ijcai.org/papers/1376.pdf
http://www.cs.ubc.ca/~jhoey/papers/spudd99.ps.gz
http://www.cs.ubc.ca/~jhoey/papers/spudd99.ps.gz
http://www.computing.dundee.ac.uk/staff/jessehoey/papers/TR-00-05.ps.gz
http://www.computing.dundee.ac.uk/staff/jessehoey/papers/TR-00-05.ps.gz
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.448&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.34.448&rep=rep1&type=pdf
http://citeseer.ist.psu.edu/article/hsu00randomized.html

D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with
probabilistic roadmap planners. In Proceedings of the IEEE/RSJ International Joint
Conference on Robotics and Automation (ICRA), volume 3, pages 4420–4426, Taipei,
Taiwan, September 2003. ISBN 0-7803-7736-2. doi: 10.1109/ROBOT.2003.1242285.
URL http://citeseer.ist.psu.edu/hsu03bridge.html.

D. Hsu, J. C. Latombe, and H. Kurniawati. On the probabilistic foundations of proba-
bilistic roadmap planning. International Journal of Robotics Research, 25(7):627–643,
2006. URL http://citeseer.ist.psu.edu/748393.html.

L. Jaillet and T. Siméon. A PRM-based motion planner for dynamically changing en-
vironments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 2, pages 1606–1611, Sendai, Japan, 2004. URL
http://citeseer.ist.psu.edu/745552.html.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Journal of Artificial Intelligence Research, 101:99–134,
February 1998. URL http://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960. URL http:

//www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf.

K. Kant and S. W. Zucker. Toward efficient trajectory planning: The path-velocity
decomposition. International Journal of Robotics Research, 5(3):72–89, 1986. URL
http://ijr.sagepub.com/cgi/content/abstract/5/3/72.

L. E. Kavraki. Random Networks in Configuration Space for Fast Path Planning. PhD
thesis, Stanford University, 1995.

L. E. Kavraki and J. C. Latombe. Probabilistic roadmaps for robot path planning. In
Practical Motion Planning in Robotics: Current Approaches and Future Challenges,
pages 33–53. John Wiley, West Sussex, England, 1998. URL http://citeseer.csail.

mit.edu/article/kavraki98probabilistic.html.

L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. In Proceed-
ings of the IEEE/RSJ International Joint Conference on Robotics and Automation
(ICRA), volume 12, pages 566–580, 1996. URL http://citeseer.ist.psu.edu/

kavraki96probabilistic.html.

R. Kindel, D. Hsu, J. Latombe, and S. Rock. Kinodynamic motion planning amidst
moving obstacles. In Proceedings of the IEEE/RSJ International Joint Conference on
Robotics and Automation (ICRA), volume 1, pages 537–543, San Francisco, California,
April 2000. ISBN 0-7803-5886-4. doi: 10.1109/ROBOT.2000.844109. URL http:

//citeseer.ist.psu.edu/kindel00kinodynamic.html.

M. Kneebone and R. Dearden. Navigation planning in probabilistic roadmaps with un-
certainty. In Proceedings of 19th International Conference on Automated Planning

248

http://citeseer.ist.psu.edu/hsu03bridge.html
http://citeseer.ist.psu.edu/748393.html
http://citeseer.ist.psu.edu/745552.html
http://people.csail.mit.edu/lpk/papers/aij98-pomdp.pdf
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
http://ijr.sagepub.com/cgi/content/abstract/5/3/72
http://citeseer.csail.mit.edu/article/kavraki98probabilistic.html
http://citeseer.csail.mit.edu/article/kavraki98probabilistic.html
http://citeseer.ist.psu.edu/kavraki96probabilistic.html
http://citeseer.ist.psu.edu/kavraki96probabilistic.html
http://citeseer.ist.psu.edu/kindel00kinodynamic.html
http://citeseer.ist.psu.edu/kindel00kinodynamic.html

and Scheduling (ICAPS), pages 209–216, Thessaloniki, Greece, September 2009. URL
http://www.cs.bham.ac.uk/~mlk/ICAPS09.pdf.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query
path planning. In Proceedings of the IEEE/RSJ International Joint Conference on
Robotics and Automation (ICRA), volume 2, pages 995–1001, San Francisco, Califor-
nia, April 2000. doi: 10.1109/ROBOT.2000.844730. URL http://www.kuffner.org/

james/papers/kuffner_icra2000.pdf.

J. P. Laumond, P. E. Jacobs, M. Täıx, and R. M. Murray. A motion planner for nonholo-
nomic mobile robots. IEEE Transactions on Robotics and Automation, 10(5):577–593,
October 1994. URL http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=

&arnumber=326564&k2dockey=326564@ieeejrns.

M. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially ob-
servable environments: Scaling up. In A. Prieditis and S. Russell, editors, Proceedings
of the 12th International Joint Conference on Machine Learning, pages 362–370, San
Francisco, California, 1995a. Morgan Kaufmann. URL http://www.pomdp.org/pomdp/

papers/ml95.ps.gz.

M. L. Littman. The Witness algorithm: Solving partially observable Markov decision
processes. Technical report, Brown University, Providence, RI, USA, December 1994.
URL http://www.cs.duke.edu/~mlittman/docs/witness-tm.ps.

M. L. Littman, T. L. Dean, and L. P. Kaelbling. On the complexity of solving Markov
decision problems. In Proceedings of the 11th Conference on Uncertainty in Artificial
Intelligence (UAI), pages 394–402, Montreal, Québec, Canada, 1995b. URL http:

//citeseer.ist.psu.edu/littman95complexity.html.

W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision
processes. Operations Research, 39(1):162–175, 1991. URL http://www.jstor.org/

stable/171496.

J. J. Martin. Bayesian Decision Problems and Markov Chains. John Wiley and Sons,
inc., 111 River Street, Hoboken, NJ 07030-5774, 1967. ISBN 978-0471573517.

L. Mero. A heuristic search algorithm with modifiable estimate. Journal of Artificial
Intelligence Research, 23(1):13–27, 1984. ISSN 0004-3702. URL http://portal.acm.

org/citation.cfm?id=322944.

P. E. Missiuro and N. Roy. Adapting probabilistic roadmaps to handle uncertain maps.
In Proceedings of the IEEE/RSJ International Joint Conference on Robotics and Au-
tomation (ICRA), pages 1261–1267, Orlando, Florida, May 2006. ISBN 0-7803-9505-0.
doi: 10.1109/ROBOT.2006.1641882.

G. E. Monahan. A survery of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science, 28(1):1–16, January 1982. URL http:

//mansci.journal.informs.org/cgi/content/abstract/28/1/1.

249

http://www.cs.bham.ac.uk/~mlk/ICAPS09.pdf
http://www.kuffner.org/james/papers/kuffner_icra2000.pdf
http://www.kuffner.org/james/papers/kuffner_icra2000.pdf
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=326564&k2dockey=326564@ieeejrns
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=326564&k2dockey=326564@ieeejrns
http://www.pomdp.org/pomdp/papers/ml95.ps.gz
http://www.pomdp.org/pomdp/papers/ml95.ps.gz
http://www.cs.duke.edu/~mlittman/docs/witness-tm.ps
http://citeseer.ist.psu.edu/littman95complexity.html
http://citeseer.ist.psu.edu/littman95complexity.html
http://www.jstor.org/stable/171496
http://www.jstor.org/stable/171496
http://portal.acm.org/citation.cfm?id=322944
http://portal.acm.org/citation.cfm?id=322944
http://mansci.journal.informs.org/cgi/content/abstract/28/1/1
http://mansci.journal.informs.org/cgi/content/abstract/28/1/1

A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learning with less
data and less real time. Machine Learning, 13(1):103–130, October 1993. doi: 10.1007/
BF00993104. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

28.7241.

N. Muscettola, G. Dorais, C. Fry, R. Levinson, and C. Plaunt. IDEA: Planning at the
core of autonomous reactive agents. In Proceedings of the 3rd International NASA
Workshop on Planning and Scheduling for Space, Houston, Texas, October 2002. URL
http://citeseer.ist.psu.edu/muscettola02idea.html.

C. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation planning.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 3, pages 1716–1722. IEEE Press, November 2000. URL
http://citeseer.ist.psu.edu/nielsen00two.html.

N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers, Inc.
San Francisco, California, 1986. ISBN 978-0934613101.

N. J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers,
Inc. San Francisco, California, 1998. ISBN 1-55860-535-5.

C. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.
Mathematics of Operations Research, 12(3):441–450, August 1987. URL http://web.

mit.edu/jnt/www/Papers/J016-87-mdp-complexity.pdf.

J. Pearl. Heuristics: Intelligent search strategies for computer problem solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984. ISBN 0-201-05594-5.

J. Peng and S. Akella. Coordinating the motions of multiple robots with kinodynamic con-
straints. In Proceedings of the IEEE/RSJ International Joint Conference on Robotics
and Automation (ICRA), volume 3, pages 4066–4073, Taipei, Taiwan, September 2003.
URL http://www.cs.rpi.edu/~sakella/papers/ICRA03.pdf.

J. Peng and S. Akella. Coordinating multiple robots with kinodynamic constraints
along specified paths. International Journal of Robotics Research, 24(4), April
2005. doi: 10.1177/0278364905051974. URL http://ijr.sagepub.com/cgi/content/

abstract/24/4/295.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algo-
rithm for POMDPs. In Proceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 1025–1032, Acapulco, Mexico, August 2003. URL
http://www-2.cs.cmu.edu/~jpineau/files/jpineau-waml03.ps.

I. Pohl. First results on the effect of error in heuristic search. Machine Intelligence, 5:
219–236, 1970.

J. M. Porta, M. T. J. Spaan, and N. Vlassis. Robot planning in partially observable contin-
uous domains. In Proceedings of Robotics: Science and Systems, Cambridge, USA, June
2005. URL ftp://ftp.science.uva.nl/pub/computer-systems/aut-sys/reports/

Porta05rss.pdf.

250

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.7241
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.7241
http://citeseer.ist.psu.edu/muscettola02idea.html
http://citeseer.ist.psu.edu/nielsen00two.html
http://web.mit.edu/jnt/www/Papers/J016-87-mdp-complexity.pdf
http://web.mit.edu/jnt/www/Papers/J016-87-mdp-complexity.pdf
http://www.cs.rpi.edu/~sakella/papers/ICRA03.pdf
http://ijr.sagepub.com/cgi/content/abstract/24/4/295
http://ijr.sagepub.com/cgi/content/abstract/24/4/295
http://www-2.cs.cmu.edu/~jpineau/files/jpineau-waml03.ps
ftp://ftp.science.uva.nl/pub/computer-systems/aut-sys/reports/Porta05rss.pdf
ftp://ftp.science.uva.nl/pub/computer-systems/aut-sys/reports/Porta05rss.pdf

P. Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Observable
Markov Decision Processes. PhD thesis, University of Toronto, Toronto, Canada,
2005. URL http://www.cs.uwaterloo.ca/~ppoupart/publications/ut-thesis/

ut-thesis.pdf.

P. Poupart. Symbolic perseus, 2009. URL http://www.cs.uwaterloo.ca/~ppoupart/

software.html.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Proceedings of the
17th Annual Conference on Neural Information Processing Systems (NIPS), Vancou-
ver, Canada, December 2003. URL http://www.cs.toronto.edu/kr/publications/

bfsc.pdf.

S. Rodŕıguez, J. M. Lien, and N. M. Amato. A framework for planning motion in uncertain
environments. Technical report, Texas A&M University, September 2006. URL http:

//parasol.tamu.edu/groups/amatogroup/research/movingobjs/.

S. Rodŕıguez, J. M. Lien, and N. M. Amato. A framework for planning motion
in environments with moving obstacles. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 3309–3314, San
Diego, CA, USA, November 2007. doi: 10.1109/IROS.2007.4399540. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4399540.

S. Ross, J. Pineau, and B. Chaib-draa. Theoretical analysis of heuristic search methods for
online POMDPs. In Proceedings of the 21th Annural Conference on Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2007. URL http://www.

cs.mcgill.ca/~jpineau/files/sross-nips07-aems.pdf.

S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Online planning algorithms for
POMDPs. Journal of Artificial Intelligence Research, 32:663–704, 2008. URL http:

//www.cs.mcgill.ca/~jpineau/files/sross-jair08.pdf.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2002.

G. Sánchez and J. C. Latombe. On delaying collision checking in PRM planning : Appli-
cation to multi-robot co-ordination. International Journal of Robotics Research, 21(1):
5–26, January 2002a. URL http://citeseer.csail.mit.edu/sanchez02delaying.

html.

G. Sánchez and J. C. Latombe. Using a PRM planner to compare centralized and de-
coupled planning for multi-robot systems. In Proceedings of the IEEE/RSJ Interna-
tional Joint Conference on Robotics and Automation (ICRA), volume 2, pages 2112–
2119, 2002b. doi: 10.1109/ROBOT.2002.1014852. URL http://ai.stanford.edu/

~latombe/papers/icra02-gil/final.pdf.

G. Sánchez and J. C. Latombe. A single-query bi-directional probabilistic roadmap plan-
ner with lazy collision checking. In R.A. Jarvis and A. Zelinsky, editors, Robotics

251

http://www.cs.uwaterloo.ca/~ppoupart/publications/ut-thesis/ut-thesis.pdf
http://www.cs.uwaterloo.ca/~ppoupart/publications/ut-thesis/ut-thesis.pdf
http://www.cs.uwaterloo.ca/~ppoupart/software.html
http://www.cs.uwaterloo.ca/~ppoupart/software.html
http://www.cs.toronto.edu/kr/publications/bfsc.pdf
http://www.cs.toronto.edu/kr/publications/bfsc.pdf
http://parasol.tamu.edu/groups/amatogroup/research/movingobjs/
http://parasol.tamu.edu/groups/amatogroup/research/movingobjs/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4399540
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4399540
http://www.cs.mcgill.ca/~jpineau/files/sross-nips07-aems.pdf
http://www.cs.mcgill.ca/~jpineau/files/sross-nips07-aems.pdf
http://www.cs.mcgill.ca/~jpineau/files/sross-jair08.pdf
http://www.cs.mcgill.ca/~jpineau/files/sross-jair08.pdf
http://citeseer.csail.mit.edu/sanchez02delaying.html
http://citeseer.csail.mit.edu/sanchez02delaying.html
http://ai.stanford.edu/~latombe/papers/icra02-gil/final.pdf
http://ai.stanford.edu/~latombe/papers/icra02-gil/final.pdf

Research: The Tenth International Symposium, pages 403–417. Springer Tracts in Ad-
vanced Robotics, Springer, 2003. URL http://ai.stanford.edu/~latombe/papers/

isrr01/spinger/latombe.pdf.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov
processes over a finite horizon. Operations Research, 21:1071–1088, 1973.

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proceedings
of the 20th conference on Uncertainty in Artificial Intelligence (UAI), volume 70, pages
520–527, Banff, Canada, 2004. URL http://www.ee.duke.edu/~lcarin/smith04_

hsvi_POMDP.pdf.

E. J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis,
Stanford University, Stanford, CA, 1971.

M. T. J. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning.
In Proceedings of the IEEE/RSJ International Joint Conference on Robotics and Au-
tomation (ICRA), volume 3, pages 2399–2404, New Orleans, Louisiana, 2004. doi:
10.1109/ROBOT.2004.1307420. URL http://users.isr.ist.utl.pt/~mtjspaan/

pub/Spaan04icra.pdf.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005. URL http:

//staff.science.uva.nl/~mtjspaan/pub/Spaan05jair.pdf.

Sun Microsystems. Java standard edition, 2008. URL http://java.sun.com/.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction (Adaptive Com-
putation and Machine Learning). The MIT Press, March 1998. ISBN 0262193981. URL
http://www.cs.ualberta.ca/~sutton/book/the-book.html.

C. Szepesvári and M. L. Littman. Generalized Markov decision processes: Dynamic-
programming and reinforcement-learning algorithms. Technical report, Brown Uni-
versity, Providence, RI, USA, 1996. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.39.5887&rep=rep1&type=pdf.

The MathWorks Incorporated. Matlab, 2008. URL http://www.mathworks.com/

products/matlab/.

S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT Press, Cambridge,
Massachusetts, 2005. ISBN 978-0-262-20162-9.

N. Vlassis and M. T. J. Spaan. A fast point-based algorithm for POMDPs. In A. Nowe T.
Lenaerts and K. Steenhou, editors, Proceedings of the 13th Belgian-Dutch Conference
on Machine Learning, pages 170–176, Brussels, Belgium, January 2004. URL http:

//www.dpem.tuc.gr/users/vlassis/publications/Vlassis04benelearn.pdf.

R. J. Webster III, J. Memisevic, and A. M. Okamura. Design considerations for robotic
needle steering. In Proceedings of the IEEE/RSJ International Joint Conference on
Robotics and Automation (ICRA), pages 3588–3594, Barcelona, Spain, April 2005. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570666.

252

http://ai.stanford.edu/~latombe/papers/isrr01/spinger/latombe.pdf
http://ai.stanford.edu/~latombe/papers/isrr01/spinger/latombe.pdf
http://www.ee.duke.edu/~lcarin/smith04_hsvi_POMDP.pdf
http://www.ee.duke.edu/~lcarin/smith04_hsvi_POMDP.pdf
http://users.isr.ist.utl.pt/~mtjspaan/pub/Spaan04icra.pdf
http://users.isr.ist.utl.pt/~mtjspaan/pub/Spaan04icra.pdf
http://staff.science.uva.nl/~mtjspaan/pub/Spaan05jair.pdf
http://staff.science.uva.nl/~mtjspaan/pub/Spaan05jair.pdf
http://java.sun.com/
http://www.cs.ualberta.ca/~sutton/book/the-book.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.5887&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.5887&rep=rep1&type=pdf
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.dpem.tuc.gr/users/vlassis/publications/Vlassis04benelearn.pdf
http://www.dpem.tuc.gr/users/vlassis/publications/Vlassis04benelearn.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1570666

N. L. Zhang and W. Liu. Planning in stochastic domains: Problem characteristics and
approximation. Technical Report HKUST-CS96-31, Hong Kong University of Science
and Technology, 1996. URL http://citeseer.ist.psu.edu/zhang96planning.html.

N. L. Zhang and W. Zhang. Speeding up the convergence of value iteration in partially
observable Markov decision processes. Journal of Artificial Intelligence Research, 14:
29–51, 2001. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

26.6282.

R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for
POMDPs. In Proceedings of the 17th International Joint Conference on Artificial In-
telligence (IJCAI), pages 707–716, Seattle, Washington, August 2001. ISBN 1-55860-
777-3. URL http://www.cse.msstate.edu/~hansen/papers/ijcai01.pdf.

R. Zhou and E. A. Hansen. Memory-bounded A* graph search. In Proceedings of
the Fifteenth International Florida Artificial Intelligence Research Society Conference,
pages 203–209. AAAI Press, 2002. ISBN 1-57735-141-X. URL http://www.aaai.org/

Papers/FLAIRS/2002/FLAIRS02-041.pdf.

253

http://citeseer.ist.psu.edu/zhang96planning.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6282
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.6282
http://www.cse.msstate.edu/~hansen/papers/ijcai01.pdf
http://www.aaai.org/Papers/FLAIRS/2002/FLAIRS02-041.pdf
http://www.aaai.org/Papers/FLAIRS/2002/FLAIRS02-041.pdf

15 = 15 X

254

	Introduction
	Uncertain Navigation
	Motivation
	Example scenario

	Probabilistic Planning
	Disadvantages
	Basic approach

	Thesis Structure
	Required knowledge
	Thesis aims
	Thesis contributions
	Publications resulting from this research
	Thesis layout

	Background
	Probabilistic Roadmaps
	Configuration space
	Random path planning
	Basic algorithm
	Probabilistic completeness
	Limitations
	Extensions

	Markov Decision Processes
	MDP concepts
	MDP models
	LAO*

	Partially Observable Markov Decision Processes
	Belief states
	Value function
	Solution algorithms

	Review of Related Material
	Uncertainty in PRM
	Uncertain Planners
	Canadian travelling salesman problem planning
	Uncertainty in forward search
	Minimum Collision Cost planner

	Markov Decision Processes
	Asynchronous dynamic programming
	MDP motion planning
	Information space planning
	Symbolic LAO*

	Partially Observable Markov Decision Processes
	Perseus: a point-based POMDP solver
	Online POMDP solvers

	Concluding Remarks

	Solving via MDP
	Problem Definition
	Model formulation

	POMDP Representation
	Belief state
	Example POMDP model of a graph

	MDP Representation
	Belief state conversion
	Discretisation
	Belief updating
	Calculation of transitions
	MDP definition
	PRM graph example with optimal policy

	Additional MDP Models
	Independence
	Edge clustering
	Summary

	Experimental Configuration
	LAO* implementation
	Simulator
	Graph pre-processor
	Hardware and software environment

	Experimental Results
	Small example problems
	Discretisation
	Dependency and clustering
	Discussion
	Summary

	Scaling the MDP Models
	Heuristic Weighting in LAO*
	Evaluation function decomposition
	Integration into LAO*
	Heuristic weighting experimental results

	Approximation for LAO*
	Approximate LAO* design
	ALAO* experimental results

	Scaling
	Increasing graph size
	Increasing the number of uncertain edges

	Concluding remarks
	Summary

	Conclusion
	Discussion
	Future work

	Graph Details
	Format Definition Examples
	Graph Definition File
	POMDP Files For The 5 Point Graph

	Clustering Algorithm
	Profiling Graphs for Graph 19
	Glossary of Symbols
	Bibliography

