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Abstract

Strongly lensed variable quasars can serve as precise cosmological probes, provided that

time delays between the image fluxes can be accurately measured. A number of methods

have been proposed to address this problem. This thesis, explores in detail a new approach

based on kernel regression estimates, which is able to estimate a single time delay given

several data sets for the same quasar. We develop realistic artificial data sets in order to

carry out controlled experiments to test the performance of this new approach. We also

test our method on real data from strongly lensed quasar Q0957+561 and compare our

estimates against existing results. Furthermore, we attempt to resolve the problem for

smaller delays in gravitationally lensed photon streams. We test whether a more principled

treatment of delay estimation in lensed photon streams, compared with the standard

kernel estimation method, can have benefits of more accurate (less biased) and/or more

stable (less variance) estimation. To that end, we propose a delay estimation method

in which a single latent non-homogeneous Poisson process underlying the lensed photon

streams is imposed. The rate function model is formulated as a linear combination of

nonlinear basis functions. Such a unifying rate function is then used in delay estimation

based on the corresponding Innovation Process. This method is compared with a more

straightforward and less principled baseline method based on kernel estimation of the

rate function. Somewhat surprisingly, the overall emerging picture is that the theoretically

more principled method does not bring much practical benefit in terms of the bias/variance

of the delay estimation. This is in contrast to our previous findings on daily flux data.
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CHAPTER 1

INTRODUCTION

Time delays between images of strongly-lensed distant variable sources can serve as a

valuable tool for cosmography, providing an alternative to other tools, such as cosmic

microwave background measurements and distance measures based on standard candles

[e.g., 43, 70, 108, 125, 129]. Actively studied strong quasars with time-delay measurements

include RXJ1131-1231 [e.g., 125, 128] and B1608+656 [e.g., 33, 43, 126]; Q0957+561 [e.g.,

32, 46, 92]; SDSS J1650+4251 and HE 0435-1223 [e.g., 19, 59, 132]; SDSS J1029+2623

[e.g., 35]; and SDSS J1001+5027 [e.g., 107]. These have been used to infer Hubble constant

measurements with competitive accuracies.

However, time delays are difficult to measure because of the unknown intrinsic source

variability, the limited observational cadence, and the measurement noise. A number

of methods have been developed to accurately estimate time delays. These include the

dispersion spectra (DS) method [19, 100, 132]; the polynomial and curve-fitting methods

[30, 131]; the free-knot spline, variability of regression differences (based on Gaussian

process regression), and dispersion minimization [127]; Gaussian process (GP) modeling

[e.g., 51] and the combined method based on the PRH approach [50]. However, this

remains an active area of research, especially in view of the upcoming surveys such as

Large Synoptic Survey telescope (LSST), which will provide unprecedented data sets with

strongly lensed distant quasars [e.g., 129] [and the recent mock data challenge 27, 69].

A kernel-based method with variable width (K-V) for time delay estimation was pro-
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posed by [24]. This was combined with an evolutionary algorithm (EA) for parameter

optimization [25]. However, the computational time complexity of EA method is O(n6)

[21]. This restriction makes it inadequate for handling long time series, e.g.(Schild &

Thomson) data [116]1. This complexity is due to matrix inversion in kernel-based meth-

ods for weights estimation. Automatic methods for time delay estimation have been

proposed to speed up algorithms in order to deal with long time series, based on Artificial

Neural Networks [41]; these can be parallelized [22]. Alternatively, a simple hill-climbing

optimization has been proposed [23].

1.1 Motivation

Although a great deal of effort has been devoted to estimate the time delay between the

two images of Q0957+561, the problem is still open and attracts the interest of researchers.

The ongoing debate on the true value of the delay between image A and B of Q0957+56,

has been one of the main motivations of this research. We attempted to apply probabilistic

models for time delay estimation in the context of kernel methods and machine learning.

Our aim was to estimate a single time delay given several data sets for the same quasar.

Daily measurements can be used to predict longer (days and months) delays. However,

when countering the problem of shorter (hours or even minutes) delays these measure-

ments are insufficient and one needs to investigate the individual arrival times of photons.

We were motivated by our findings on daily flux data to apply more principled methods

for delay estimation in lensed photon streams. We studied whether, compared with the

standard kernel based baseline, such principled approaches can bring benefits in terms of

more stable (less variance) estimation.

1http://cfa-www.harvard.edu/∼rschild/fulldata2.txt
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1.2 Research questions

In this work a number of important research questions are to be addressed:

• What is the effect of noise and gaps on the performance of any time delay estimators?

• Since the exact time delay of Q0957+561 is unknown, the question to be asked is

how the performance of time delay estimation methods can be tested?

• How to design and generate ‘realistic’ synthetic data sets?

• How to resolve the problem of shorter time delays?

• Whether or not the photon streams can provide sufficient data to estimate shorter

delays?

• How beneficial is a more principled treatment of delay estimation in lensed photon

streams compared with standard kernel estimation?

1.3 Contribution

1.3.1 Delay estimation for gravitationally lensed fluxes (daily

measurements)

The main contribution of this thesis is a new probabilistic method that is efficient, robust

to observational gaps, capable of directly incorporating measured noise levels reported for

individual flux measurements, and able to estimate a single time delay given several data

sets for the same quasar. We also carefully construct synthetic data sets within the frame-

work of multiobjective optimization to reproduce realistic flux variability, observational

gaps, and noise levels. This allows us to test our proposed kernel regression estimate

method on synthetic as well as real data, in order to measure the bias and variance of the

method.
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1.3.2 Delay estimation for gravitationally lensed fluxes (shorter

delays)

We propose a delay estimation method in which a single latent non-homogeneous Pois-

son process underlying the lensed photon streams is imposed. The rate function model

is formulated as a linear combination of nonlinear basis functions. Such a unifying rate

function is then used in delay estimation based on the corresponding Poisson and Innova-

tion Processes. These methods are then compared with a more straightforward and less

principled baseline method based on kernel estimation of the rate function. We present

a useful study for future developments of alternative methods for the delay estimation in

lensed photon streams.

1.4 Publication

• Al Otaibi, S., Tiňo, P., Cuevas-Tello, J.C., Mandel, I. and Raychaudhury, S. Kernel

regression estimates of time delays between gravitationally lensed fluxes. Monthly

Notices of the Royal Astronomical Society, 459(1):573-584, 2016.

• Al Otaibi, S., Tiňo, P. and Raychaudhury, S. Probabilistic Modelling for Delay

Estimation in Gravitationally Lensed Photon Streams. 17th International Confer-

ence on Intelligent Data Engineering and Automated Learning (IDEAL 2016), pp.

552-559, Lecture Notes in Computer Science, Springer-Verlag, LNCS 9937, 2016.

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 presents the astronomical background of the gravitational lensing phe-

nomenon and the importance of time delay estimation. We discuss some of previously

4



proposed delay methods, namely, cross correlation and dispersion spectra, to compare

with the new approach.

Chapter 3 gives a brief overview of the application of machine learning algorithms in

astronomy. We also introduce the kernel-based approach for time delay estimation in this

chapter.

Chapter 4 presents the Nadaraya-Watson estimator with known noise levels (hence-

forth NWE ). We also extend it to a linear noise model with unknown noise (henceforth

NWE++). This chapter outlines the experimental results of synthetic and real data.

In chapter 5 we address smaller time delays in gravitationally lensed photon streams

and we propose two models: Poisson Process Based Estimation (PPE) and Innovation

Process Based Estimation (IPE) to estimate the time delay in streams of photons. This

chapter presents the experimental results for synthetic data.

In chapter 6 we summarize the main contributions of the thesis and give conclusions

of the proposed work.
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CHAPTER 2

ASTRONOMICAL BACKGROUND AND REVIEW

OF RELATED WORK

In this chapter we present the basic concepts and background knowledge necessary to

understand the problem of time delay in gravitationally lensed fluxes. We introduce

gravitational lensing phenomena and the first discovered gravitational Lens: Q0957+561.

We also describe the real data optical and radio. In the second part of this chapter, we

present a survey based on Q0957+561 for some of its time delay estimates. Further, a

review of the most popular methods in astronomy is introduced at the end of this chapter.

2.1 Gravitational lensing

Einstein’s General Theory of Relativity is one of the greatest intellectual achievements of

the 20th century. It has explained a number of interesting phenomena such as the ex-

panding universe, black holes and gravitational lenses. Einstein believed that light, which

was considered to be massless, is affected by gravity, which results from the distortion of

the four-dimensional space-time curvature due to the presence of masses (see Figure 2.1).

Light rays move along geodesic paths, i.e. the shortest path between two points; when the

space-time is curved as a consequence of the presence of massive objects, these geodesic

paths are also curved. This phenomenon is called gravitational lensing [21, 89, 114].

The gravitational lensing system requires a distant source such as quasar and a massive

6



Figure 2.1: Space-time distortion.
Source: Figure obtained from http://www.genetology.net/.

object, which acts as a lens that could be a galaxy or a cluster of galaxies between the

source and the observer. Figure 2.2 illustrates the gravitational lensing process in detail.

The bright source is located on the left (shaded circle); the the gravitational lens is in the

Figure 2.2: Gravitational lensing.
Source: https://en.wikipedia.org/.

middle, (large shaded circle) and the observer is on the right. As indicated in Figure 2.2,
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light deflection occurs in the lens plane resulting in the observation of two images of the

source [21]. Due to the gravitational lensing effect, photons taking different paths arrive

at the observer at different times. One can calculate the angular amount of deflection α

according to Einstein’s general theory of relativity

α =
4GM

c2b
(2.1)

where G is the gravitational constant, M is the lens mass, c is the speed of light and b is

the closest distance from the source to the lens [21, 89, 114]. A traveling photon of light

from the source to the observer and passing the mass M from a direction θI will delayed

by

−4GM

c3
ln θI (2.2)

This delay is another result of the gravitational lensing phenomena. The arrival times

of the photons streams of the two images of the source differ by ∆[21, 114]. This delay

between the arrival times of the photons is what this thesis is concerned with.

The observed effect of the gravitational lensing process varies from changing the shape

of the image by weak lensing effect to produce multiple images of the source by strong

lensing, depending on the mass of the lens and its relative position [114]. Figure 2.3, shows

examples of quasars with two and four images taken by the Hubble Space Telescope.

Estimating the time delay between two gravitationally lensed images for the same

source is of great importance for astronomical application. The time delay between two

light curves depends on the mass of the gravitational lens. It is, therefore, the most direct

method for estimating the masses of gravitational lenses (galaxies and clusters of galaxies)

and measuring the distribution of matter in the universe. Time delays can be also used

to measure universe parameters such as its expansion rate, mass density and the Hubble

constant. Such parameters can be used for predicting the age and future of the universe

[21, 42, 109, 114, 115].
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(a) Two-image Q0957+561 lens (b) Two-image HE0047-1756 quasar

(c) Four-image PG1115+080 lens (d) Four-image HE0435-1223 quasar

Figure 2.3: Examples of Gravitational lenses.
Source: H-band cleaned images observed by the Hubble Space telescope.

2.2 Gravitational Lens: Q0957+561

In the early 1960’s, quasars were discovered to be a strong source of radio waves. Quasars

are extremely bright and distant objects in our universe. Quasar are believed to be

produced by super massive black holes surrounded by an accretion disks. They are highly

energetic objects that emit huge amounts of electromagnetic energy (radio waves and

9



visible light) due to the presence of the super massive black holes in the centers of the

galaxies in which the quasars are located [118].

The first discovered gravitationally lensed quasar, Q0957+561, is an extremely bright

galaxy with a super massive central black hole. It is, also known as the twin quasar,

a double image quasar, that has two images: A and B due to the gravitational lensing

effect, that is a lensing galaxy (an intervening mass between the quasar and the observer)

distorts the light that traveling from the quasar resulting in, two or multiple images of the

same quasar appear in the sky. The fluctuation in the brightness of Q0957+561 can be

observed and sampled on a time scale of days [9]. For this specific quasar Q0957+561, the

time delay ∆ is around 400 days (see Section 2.3 for more details on the long controversy

over the value of the delay).

Monitoring campaigns provide us with daily observed data in the form of light fluxes,

with each flux capturing the fluctuations in the brightness of an individual image of lensed

quasar during a period of time. In other words, the brightness of the images is measured

as a function of time. It can be observed at different wavelengths, e.g. radio or optical,

and at different observational times. These observations are usually noisy, with different

levels of errors, and irregularly sampled, they contain gaps. For our purposes, the real

data are available as two irregularly sampled time series of fluxes of the two images A

and B. We used six different data sets from Q0957+56. The details on data sets are

presented in Table 2.1 and the plots are shown in Figure 2.4. We work only on the final

light curves that are reported in [44, 63, 95]. The largest optical data set was provided

by Schild, private communication [116]. The whole process of preparing and treating the

measured data is beyond the scope of our research. A full description of the data set with

explanation of reduction, correction and compilation procedures can be found in [67] for

some of the data sets.

In the following sections, we describe specific aspects of observational radio and optical

data.
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Figure 2.4: Data set Q0957+561. Image A from D1 is shifted up by 0.6 magnitudes for
clarity; image A from D2 is shifted up by 0.25 magnitudes; image A from D4 is shifted
up by 0.05 magnitudes. For more details on these data sets see Table 2.1.

11



Table 2.1: Datasets: Q0957+561

Id N ℓ Data Type Ratio/Offset Monitoring range Ref
D1 1232 optical r-band 0.05 16/11/1979 – 4/7/1998 [116]
D2 422 optical r-band 0.076 2/6/1992 – 8/4/1997 [95]
D3 100 optical r-band 0.21 3/12/1994 – 6/7/1996 [63]
D4 97 optical g-band 0.117 3/12/1994 – 6/7/1996 [63]
D5 143 radio 6cm 1/1.43 23/6/1979 – 6-Oct-1997 [44]
D6 58 radio 4cm 1/1.44 4/10/1990 – 22/9/1997 [44]

Table 2.2: Radio Data Q0957+561 at 6 cm: The final light curves

Observation Calendar Date Julian Day Image A Image B
1 23 Jun 1979 4,047.50 39.26 31.71
2 13 Oct 1979 4,160.16 39.26 29.67
3 23 Feb 1980 4,292.79 37.37 29.69
... ... ... ... ...
143 6 Oct 1997 10,728.18 33.06 22.32

2.2.1 Radio data

The gravitational lens Q0957+561 was monitored from 1979 to 1997. Radio observations

were collected from the National Radio Astronomy Observatory (NRAO) Very Large

Array radio telescope (VLA) at two different wavelengths: 4 cm and 6 cm . The 6 cm

data set (hereafter D5) has143 observations from 23 June 1979 to 6 October 1997. The

4 cm data set (hereafter D6) has 58 observations from 4 October 1990 to 22 September

1997. These data sets are reported in [44]. The Radio data sets are depicted on the

bottom row of Figure 2.4. D5 is shown in Table 2.2, where the first column shows the

observation numbers. The observational times are represented in the calendar date in the

second column and in Julian days 1 in the third column. The last two columns have the

flux densities of images A and B. The flux densities are reported in millijanskys (mJy)

and as in [44], the error involved are assumed to be 2% of the flux densities. In practice,

we only need and use the last three columns: the observational times in Julian days and

their corresponding fluxes densities for image A and B.

1Julian day (JD) is the continuous count of days that have elapsed since the beginning of the Julian
Period, which is a chronological interval of 7980 years beginning 4713 BC. This is used primarily by
astronomers as a way of representing the date as a continuous real variable.
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2.2.2 Optical data

Optical data are also available as time series where the fluxes are measured by imag-

ing devices such as Charge-Coupled Device (CCD) with filters to restrict the range of

wavelength/frequency of light observed. The green (g-) and red (r-) bands represent mea-

surements obtained with filters in the wavelength range 400-550 nm and 550-700 nm,

respectively. The measurement unit of the flux is known as magnitudes (mag), which is

a logarithmic units defined as mag = 2.5 log10 f + constant, where f can be represented

in mJy (as radio flux units above) [21].

Table 2.3, shows an example of optical data set. The first column shows the observation

numbers. The observational time are represented in the calendar date in the second

column and in Julian days in the third column. The fourth and the fifth columns have

the flux densities of images A and B reported in (mag). Finally, the last two columns

represent the standard deviations of measurement errors at each observation for each flux

density (A and B). These errors are assumed to be zero mean Gaussian. Optical data are

more accurate than radio data since the errors represent about 0.006% - 0.474% of the

flux, i.e 0.001-0.08 mag compared with 2% of the flux in the radio data [21]. Four optical

data sets are depicted in he top and middle rows of Figure 2.4 (hereafter referred to as

D1, D2, D3 and D4) and also detailed in Table 2.1:

• D1 is the largest optical data set of Q0957+561 taken at r-band with 1232 observa-

tions from 16 November 1979 to 4 July 1998 [116].

• D2 refers to optical data at r-band with 422 observations from 2 June 1992 to 8

April 1997 [95].

• D3 and D4 are optical data sets at r-band with 100 observations and g-band with 97

observations respectively covering the same period of time from 3 December 1994

to 6 July 1996 [63].

As noticeable from Figure 2.4, specifically plots (a,e and f), there exists a time delay

between the fluxes of image A and B which is the quantity to be determined. One simple
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Table 2.3: Optical Data Q0957+561 at g-band: The final light curves

Observation Julian Day Image A Image B Error A Error B
1 9,689.009 16.9505 16.8010 0.0152 0.0152
2 9,691.007 16.9439 16.7957 0.0111 0.0111
3 9,695.001 16.9356 16.7949 0.0090 0.0090
... ... ... ... ...
97 10,270.652 17.0928 16.9597 0.0145 0.0119

way of roughly estimating the delay is to fix one of the time series and shift the other (in

time and flux) and then evaluate the goodness of the fitting.

2.3 Previous Work

Recent publications on time delays focus on the quasars RXJ1131-1231 and B1608+656

because their photometry allows precise time delays [43, 125]. However, the most studied

quasar is the Q0957+561, and it has been adopted the time delay 417.0±1.5 days [46, 92],

which was reported by [63]. A number of varied estimates have been proposed for the time

delay between the two images of Quasar Q0957+561. A review of the controversy about

the time delay estimates has been presented in [45]. Table 2.4 summarizes the estimates

for Q0957+561 from 1997 to 2005 [21]. One can easily conclude that it is difficult to

accurately estimate the time delay due to the irregular sampling of the noisy data. The

uncertainty of estimation increases in proportion to the noise levels and the gap sizes in

the data.

The most recent time delay methods include: free-knot spline, variability of regression

differences (based on Gaussian process regression), and dispersion minimization [127]. The

latter is based on dispersion spectra [100]. They have been tested on synthetic data, based

on light curves from quasar HE 0435-1223. They also have been employed to estimate

the time delay on RX J1131-1231 [128]. The regression difference method is reported as

the most accurate technique [127, 128].

Another method based on Gaussian processes, in particular the PRH method, is the

combined method [50]. This method is tested on several real data sets including the
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Q0957+561. This method shows different time delays for different data sets on the same

quasar. It proposes an automatic way to estimate time delays. They claim that there is

a single free parameter (the number of observation pairs for the structure function), but

they use smooth polynomial, another parameter to set (polynomial trend). The time delay

estimates are sensitive to these parameters. Nevertheless, methods based on a structure

function have been found to be accurate [24].

Table 2.4: Review of Time Delay Estimates of Q0957+561;(obtained from [21]).

Data Year Method Delay estimate
1997 Optical(g,r) Linear, Cross correlation, Dispersion spectra and PHR method 417± 3 [64]
1997 Optical(g) Cross correlation and Dispersion spectra 427± 3 [94]
1997 Optical(r) SOLA 425± 17 [103]
1998 Optical(g,r) Dispersion spectra 416.3± 1.7 [101]
1999 Radio(4,6) PRH method and Dispersion spectra 4.9± 30 [45]
1997 Optical(g,r) Linear, Cross correlation and Dispersion spectra 422.6± 0.6 [93]
2001 Optical(r) X 2 algorithm 423± 9 [12]
2003 Optical(r) PRH method 417.09± 0.07 [15]
2003 Optical(r) Dispersion spectra and X 2 424.9± 1.2 [96]
2005 Radio(4,6) Bayesian method 394.8± 0.5 [47]
2005 Optical(r) Bayesian method 423.5± 0.5 [47]

In the following subsections, we review the most popular methods that we used in our

experiments for this research.

2.3.1 Cross Correlation

There are two versions of the methods based on cross-correlation: the Discrete Correla-

tion Function (DCF; [28]) and its variant, the Locally Normalized Discrete Correlation

Function (LNDCF; [67]). Both calculate correlations directly on discrete pairs of light

curves. These methods avoid interpolation in the observational gaps. They are also the

simplest and quickest time delay estimation methods.

First, time differences (lags), ∆tij = tj − ti, between all pairs of observations are

binned into discrete bins. Given a bin size ∆τ , the bin centered at lag τ is the time

interval Iτ = [τ −∆τ/2, τ +∆τ/2]. The DCF at lag τ is given by
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DCF(τ) =
1

P (τ)

ti,tj∈Iτ
∑

i,j

(yA(ti)− ā)(yB(tj)− b̄)
√

(σ2
a − σ2

A(ti))(σ
2
b − σ2

B(tj))
, (2.3)

where P (τ) is the number of observational pairs in the bin centered at τ , ā and b̄ are

the means of the observed data, yA(ti) and yB(tj), and their variances are σ2
a and σ2

b ,

respectively.

Likewise,

LNDCF(τ) =
1

P (τ)

ti,tj∈Iτ
∑

i,j

(yA(ti)− ā(τ))(yB(tj)− b̄(τ))
√

(σ2
a(τ)− σ2

A(ti))(σ
2
b (τ)− σ2

B(tj))
, (2.4)

where ā(τ), b̄(τ), σ2
a(τ) and σ2

b (τ) are the lag means and variances in the bin centered at

τ .

The time delay ∆ is found when DCF(τ) and LNDCF(τ), given by equations (2.3)

and (2.4), are greatest; i.e., at the best correlation [28, 67].

2.3.2 Dispersion Spectra

The Dispersion Spectra method [99, 100] measures the dispersion of time series of two

light curves yA(ti) and yB(tj) by combining them (given a trial time delay ∆ and ratio

M) into a single signal, y(tk), k = 1, 2, . . . 2N . In other words, given the delay ∆, the

observed values of signal A, {yA(ti)}Ni=1, and (delayed and rescaled) signal B, {ỹB(ti)}Ni=1,

where ỹB(t) = MyB(t − ∆), are joined together and re-ordered in time, forming a joint

signal {y(tk)}2Nk=1 of length 2N . We employ two versions of this method [100]:

DS2
1(∆) =min

M

∑2N−1
a=1 wa (y(ta+1)− y(ta))

2

2
∑2n−1

a=1 wa

(2.5)

and

DS2
2,4(∆) =min

M

∑2N−1

a=1

∑
2N
c=a+1

Ha,cWa,cGa,c (y(ta) − y(tc))
2

2
∑2n−1

a=1

∑2n
c=a+1

Ha,cWa,cGa,c

, (2.6)

where
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wa =
1

σ2(ta+1) + σ2(ta)
,Wa,c =

1

σ2(ta) + σ2(tc)
(2.7)

are the statistical weights taking into account the measurement errors, where Ga,c = 1

only when y(ta) and y(tc) are from different images, and Ga,c = 0 otherwise, and

Ha,c =











1− |ta−tc|
δ

, if |ta − tc| ≤ δ

0, otherwise.
(2.8)

Compared with DS2
1, the DS22,4 method has an additional parameter, the decorrelation

length δ, which signifies the maximum distance between observations that we are willing

to consider when calculating the correlations [99].

The estimated time delay ∆ is found by minimizing DS2 over a range of time delay trials

∆, as above.

2.4 Summary

We started this chapter by giving a brief description of gravitational lensing phenomena

and the first discovered gravitationally lensed quasar Q0957+561. We explained the time

delay problem, i.e., the time delay ∆ between pairs of images A and B of Q0957+561,

where image B is delayed with respect to the image A in time by ∆. The time delay can

be directly estimated from the optical or radio observations of the quasar Q0957+561.

The significance of accurate prediction of the time delay in cosmology applications has

been investigated in Section (2.1).

The real data sets have been described in Section (2.2) and time delay estimates

of Q0957+561 from astronomy literature is summarized in Section (2.3). Finally, we

reviewed the most popular methods used for time delay estimation and presented some

of them in detail, namely, cross correlation and dispersion spectra methods in Section

(2.3). These methods have free parameters that are difficult to set objectively based on

the given data only. In other words, the values of such parameters cannot be resolved in
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a principled manner based on the data. In Chapter (4), we will present the results of the

above methods on synthetic data and real gravitationally lensed fluxes in the radio and

optical ranges. we will discuss the results, advantages and disadvantages of each method.
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CHAPTER 3

MACHINE LEARNING IN ASTRONOMY

In this chapter we present the basic concepts of machine learning. We also provide a

review of kernel based methods for time delay estimation in gravitationally lensed fluxes.

3.1 Machine Learning

Machine learning is one of the most challenging research fields. The ongoing debates

about whether it is a branch of the Artificial Intelligence (AI) field or whether it is derived

from statistical learning theory is still active. Moreover, there is no universal agreement

regarding the definition of what machine learning is even among the practitioners of its

techniques [48, 79]. Here we review some of the machine learning definitions :

Arthur Samuel defined machine learning as a “Field of study that gives computers the

ability to learn without being explicitly programmed”.

A recent definition by Tom Mitchell is a “ Well-posed Learning Problem: A computer

program is said to learn from experience E with respect to some task T and some perfor-

mance measure P, if its performance on T, as measured by P, improves with experience

E” [79].

It simply refers to the process of making predictions from data by using an auto-

mated (algorithms). The aim is to extract ‘knowledge’ from data, hypothesizing that the

questions about the underlying process might be answerable by the data.
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Machine learning is now applied to solve large-scale, complex problems. Applications

for machine learning include: medical diagnosis, finance, web search, computational biol-

ogy, and speech recognition. The most popular approaches of machine learning to address

real world problems are: neural networks, evolutionary computation, reinforcement learn-

ing, Bayesian networks, support vector machines and kernel methods. These approaches

are classified into three types of learning: supervised learning, unsupervised learning and

reinforcement learning. The choice of learning type is dependent on the problem to be

solved. The primary goal of supervised learning is to build models that generalize “accu-

rately predict” the future outcomes rather than predicting the existing one. The models

can learn from past examples made of inputs and outputs, then apply what they have

learned to unseen inputs in order to predict future outputs. How supervised learning

works can be summarized in two simple steps:

• Model training: where the model is learning the relationship between attributes of

training data and the outcomes.

• Model testing: by making predictions on new data when the true outcome is un-

known.

Usually, data is divided into a training set and testing set. The training set is used to

model the system, while the testing set is used to validate that model [48, 79].

Supervised learning tasks can be divided depending on the types of outputs in two

categories: classification and regression. The predicted outcomes are discrete valued

(finite number of labels) in the former and continuous (real numbers) the in latter [48].

3.2 Machine Learning in Astronomy

Machine learning algorithms can be greatly beneficial in the field of astronomy. Such pow-

erful tools are able to utilize and analyze the increasing amount of collected astronomical

data in order to provide significant scientific results. In this chapter, we present a review
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of the use of machine learning techniques in the field of astronomy. We provide examples

of the application of common machine learning algorithms in the field of astronomy.

3.2.1 Advantages of using machine learning algorithm in astron-
omy

Here we summarize some of the advantages of applying machine learning techniques in

the field of astronomy [4].

• The amount of existing and upcoming data sets in the field is overwhelmingly large.

It becomes a necessity to apply automated and intelligent methods in order to

extract applicable scientific information from these data.

• The dimensionality of astronomical data is usually high and as widely known, it is

difficult, if not impossible, to detect patterns in high dimensional data sets. Machine

learning algorithms have proven to be useful in pattern recognition for such data.

• Machine learning algorithms can be used at more than one stage in the whole

process. It can be utilized in knowledge discovery in databases as well as the clas-

sification/regression tasks.

• Machine learning algorithms can provide prior information about data that can be

fully incorporated in the data analysis process. Even though the improvement in

terms of final scientific results is not guaranteed when using these methods, they

still act as important complementary approaches of data analysis.

3.2.2 Knowledge discovery in databases

Knowledge Discovery in Databases (KDD) is a widely used data mining technique. It

can be defined as the process of extracting useful information from a collection of data.

As discussed above in machine learning algorithms, KDD can also be applied on astro-

nomical data [4, 55]. In this section, we review some possible applications of well known
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machine learning and data mining algorithms on databases (i.e., any machine-readable

astronomical data). The KDD process is commonly defined with the following stages:

Data collection

Data collection process includes transforming of all the existing data into a digital format

(so that it can be machine-readable), acquiring and archiving new data, and performing

any necessary cross-matching between data sets [4, 55].

Data preprocessing

This process is usually dependent on the problem under study and should be approached

with caution when used since the final results of many machine learning algorithms can

be significantly affected by the input data. The aim of preprocessing is to make data

readable, meaningful and prepared for the application of any given algorithm [4, 105].

One of the important steps in the preprocessing stage is the transformation of data.

Given an astronomical object, its attributes may need to be transformed. This trans-

formation is usually done in the preprocessing stage using some of the transformation

approaches. One common example of these approaches is scalarization, that is trans-

forming categorical data to numerical data by giving each categorical attributes a unique

numerical label. Another example of attributes transformations is binning, in which nu-

merical data can be made categorical [4].

In general, this is the stage when bad (incorrect or unreasonable) and missing values

should be dealt with. Bad values can be removed, ignored or replace using interpolation

for example. Some algorithms cannot deal with missing values in data sets. This can

be solved by either the removal of the object with the missing value or interpolation

(depending on the problem) of the value from the existing data. Outliers in the data set

may be removed depending on their extremity [4].

Another important process in the preprocessing stage is the normalization of the data.

Normalization is especially needed in data sets where the attributes are greatly varied in
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their ranges. In such cases, normalization can improve the accuracy of any used algorithm.

This can be done in many ways e.g. scaling by a given amount, scaling using the minimum

and maximum values, or scaling each attribute to have a mean of 0 and a standard

deviation of 1 [4].

Attribute selection

Also known as dimensionality reduction, it is the process of automatically selecting a

subset of relevant features. The goal is to select as few of attributes as possible in or-

der to retrieve the maximum amount of information. Usually date objects come with a

large number of attributes that might not be needed for the problem to be solved. In

many cases, using all of object’s attributes may lead to poor performance of the algo-

rithm. A carefully applied attribute selection method can enhance the generalization of

the model by reducing overfitting along with other advantages such as simplification of

the model and shortening the training time. Dimensionality reduction can be very use-

ful for algorithms that are unable to deal with noisy, irrelevant, or redundant attributes

[4]. Common examples of sophisticated approaches used in this stage include principal

component analysis (PCA) [57], forward selection and backward elimination [4].

3.2.3 Selection and use of machine learning algorithms

Examples of well known machine learning algorithms that gained popularity in astronomi-

cal data mining include supervised methods such as: Artificial Neural Network (ANN) [8];

Decision Tree (DT) [110] ; Support Vector Machine [122]; and k Nearest Neighbor (kNN)

[117] and unsupervised methods such as: Kernel density estimation (KDE) [117]; K-means

clustering [72]; Mixture models [77]; and the Kohonen self-organizing map (SOM) [60].

Selection of the ‘optimal’ algorithm to use depends on the data set and the actual

application of the algorithm. In many cases, one might need to use more than one

algorithm in order to reach the desired scientific results particularly for large data sets
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[4].

Application of algorithms and some limitations

Some problems are raised by the application of machine learning and data mining algo-

rithms in astronomical data. We are therefore summarizing some of these in this section.

The size of astronomical data sets is often very large and to be able to exploit these

data one needs an advanced database technology that can deal with large scale data.

Moreover, most astronomical data measurements have an associated error which results

in noisy data sets that require a special treatment when using machine learning and

data mining algorithms since these errors may affect the performance of such algorithms.

Another important issue related to data is that the accuracy of the results from any

given algorithm is highly dependent on the quality of the input data. Therefore, the

algorithm may suffer in terms of performance when using insufficient, poorly collected or

preprocessed input data [4].

Another limitation related to machine learning algorithms is that many of them have

a significant number of parameters that need to be optimized. The optimal configuration

of these parameters is often not obvious and usually results in further increases in the

computational requirements [4].

Although machine learning can be very helpful in data analysis and pattern recognition

tasks, it is the scientists role to successfully interpret the results and provide the final

conclusions. In addition to that, there is no guarantee that using these algorithms will

always produce accurate results. In some cases the results are either statistically invalid

or completely wrong despite the fact that they appear reasonable [4].

3.2.4 Uses in astronomy

The field of astronomy produces a huge amount of data that are amenable to the machine

learning approach. Examples of projects where astronomical data are used in machine
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learning and data mining studies include: Sky Image Cataloging and Analysis System

(SKICAT) [4, 135]; the Jet Propulsion Laboratory Adaptive Recognition Tool (JARTool)

[4, 11] ; and the Lawrence Livermore National Laboratory Sapphire project [4, 58].

The collaboration between astronomy and machine learning can bring many benefits

to both fields. Machine learning experts can employ more advanced and sophisticated

algorithms to address astronomical problems with the domain scientists help and guidance

regarding the problem details [4].

Here we briefly mention some examples of successful use of machine learning algorithms

in astronomical problems. However, a full description of these problems is beyond the

scope of this thesis.

Star-Galaxy separation

The number of astrophysical objects in typical surveys is huge (of order 108 or above) [4].

The automated separation of these astrophysical objects into stars, galaxies, and other

objects is a classical classification task. Stars are small in size and distant from earth so

they appear as point sources while galaxies, which are further away but with a a larger

angle, appear as extended sources. Other objects (quasars and supernovae) also appear

as point sources [4]. Examples of machine learning algorithms that have been used to

successfully perform this separation task include: ANN [4, 90, 91]; DT [4, 5, 134]; and

SOM [4, 78].

Morphological classification

This is another example of classification tasks that are needed in the field of astronomy.

Galaxy morphology simply means the study of the appearance (shape; size; and structure)

of galaxies. There are several systems for the morphological classification of galaxies, the

most famous being the Hubble sequence. Hubble's system broadly divides galaxies based

on their visual appearance into elliptical, spiral, lenticular, along with various subclasses

[4, 54, 130].
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ANN has been applied in galaxy morphological classification with a comparable ac-

curacy to human experts [4, 16, 66, 74, 85, 86, 87, 124]. In other cases where the initial

distribution of classes is unknown, ANN has been also used in the morphological classi-

fication of Hubble Space Telescope images [4, 130]. More examples of using ANN and

other supervised algorithms, namely DT and SOM, can be found in [4].

Other galaxy classifications

Beside the morphology, the spectrum of a galaxy can be used for classification [4, 80].

There are a number of studies that used machine learning and data mining algorithms in

spectral classification such as PCA [17, 18, 73, 137], ANN [1, 123], and ICA [71].

There are other classification tasks in the literature than that mentioned above. Us-

ing machine learning algorithms, such as Bayesian classifier and DT, has significantly

increased the new discovery of astrophysical object classes [4, 37] and the known popula-

tions of some rare object classes [4, 76].

Further classification examples in which a number of machine learning algorithms have

been used, include: ANN and SVM in stellar classifications [4, 6, 136]; and DM and SVM

in supernovae detection [3, 4].

Real time processing and the time domain

This simply means the study of changes in astronomical objects with time. It is a very

important area of study that needs to be fully explored especially with surveys like the

Large Synoptic Survey Telescope (LSST) [4, 56]. Time series analysis techniques in ma-

chine learning can be useful for real-time processing and the time domain. However, the

exploration of this area comes with many challenges. For example, observations of objects

can be irregularly sampled due to weather conditions or equipment availability. One of

the suggested solutions for this problem is using probabilistic approaches [4, 75]. Several

research studies have been done on the field of time domain. Examples include the classi-

fication of variable stars and other solar system objects. The time domain is a promising
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research area with great potential of an yet unexplored parameter space that may lead to

significant discoveries [4, 26]. Investigations in this field will help to explore new avenues

for utilizing other information such as the variability of the objects for classification tasks

[4, 31].

3.3 Machine Learning and Time Delay Estimation

Problem

Recall the problem of finding the time delay between any given pair of time series obtained

from the images of a gravitationally lensed quasar (see Chapter 2 on page 6). We will

review the Kernel based method with variable width (K-V) which is one of the most

accurate method for delay estimation. It is a novel approach based on kernel methods

in the context of machine learning as proposed in [24]. It is combined later with an

evolutionary algorithm (EA) for parameter optimization [25]. In this section, we present

an overview of these kernel based methods and their performance based on synthetic and

real data.

3.3.1 Kernel based approaches for time delay estimation

The observed fluxes of two images A and B of the same distant sources are modeled as

two time series:

xA = hA(ti) + εA(ti) and xB = hB(ti)⊖M + εB(ti) (3.1)

where ⊖ denotes either multiplication or subtraction. Hence M can be either a ratio or an

offset between the images, where {ti}ni=1 are the observational times and εA(ti) and εB(ti)

are the observation errors at ti which are modeled as zero-mean Gaussian distributions

N(0, σA(ti)) and N(0, σB(ti)) (3.2)

27



for εA(ti) and εB(ti) respectively. The “underlying” light curve that underpins image A

can be modeled as

hA(ti) =

N
∑

j=1

αjK(cj , ti) (3.3)

Given the delay δ, a time-delayed ,by δ, version of hA(ti) underpinning image B can be

modeled as

hB(ti) =

N
∑

j=1

αjK(cj +∆, ti). (3.4)

The function K(., .) is a Gaussian kernel of the form

K(c, t) = exp
−|t− c|2

r2c
(3.5)

where rc > 0 is the kernel width, {cj}Nj=1 and {cj +∆}N
j=1 are the kernels centers for

hA (3.3) and hB (3.4) respectively. The functions hA and hB are formulated within the

generalized linear regression framework [24].

Given the observed data, the likelihood of the model reads:

P (Data|Model) =
n
∏

i=1

(xA(ti), xB(ti)|∆, {αj}), (3.6)

where

p(xA(ti), xB(ti)|∆, {αj}) =
1

2πσ2
A(ti)σ

2
B(ti)

exp{−(xA(ti)− hA(ti))
2

2σ2
A(ti)

}

exp{−(xB(ti)−M ⊖ hB(ti))
2

2σ2
B(ti)

}

(3.7)

The negative log likelihood simplifies to:

Q =
n
∑

i=1

(

(xA(ti)− hA(ti))
2

σ2
A(ti)

+
(xB(ti)−M ⊖ hB(ti))

2

σ2
B(ti)

)

(3.8)
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In order to avoid extrapolation, Q (3.8) (which represents the ‘goodness of fit’) should

not be evaluated over all observations, (3.8) can be replaced with:

Q =

n−b1
∑

u=1

(xA(tu)− hA(tu))
2

σ2
A(tu)

+

n
∑

v=b2

(xB(tv)−M ⊖ hB(tv))
2

σ2
B(tv)

(3.9)

where b1 is the greatest index that satisfying tn−b1 ≤ tn − ∆max and b2 is the smallest

index that satisfying tb2 ≥ t1 +∆max where ∆max is the maximum value of time delay ∆

trial values.

This model has N free parameters αj collected in vector α that need to be determined.

Rewriting (3.8) as:

Q =

n
∑

i=1

(

[xA(ti)

σA(ti)
− hA(ti)

σA(ti)

]2

+
[xB(ti)

σB(ti)
− M ⊖ hB(ti)

σB(ti)

]2
)

(3.10)

By setting each term of (3.10) equal to zero, and replacing (3.3) and (3.5) into (3.10) ,

we obtain:

Kα = x, (3.11)

where α = (α1, α2, . . . , αN)
⊺,

K =

































KA(c1, t1) . . . KA(cN , t1)

. . . . . . . . .

KA(c1, tn) . . . kA(cN , tn)

KB(c1, t1) . . . kB(cN , t1)

. . . . . . . . .

KB(c1, tn) . . . KB(cN , tn)

































,
x =

































xA(t1)
σA(t1)

. . .

xA(tn)
σA(tn)

xB(t1)
σB(t1)

. . .

xB(tn)
σB(tn)

































kernels KA(., .) and KB(., .) are in the following forms:

KA(c, t) =
K(c, t)

σA(t)
and KB(c, t) =

M ⊖K(c+∆, t)

σB(t)
(3.12)
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Hence,

α = K+x (3.13)

where K+ is the pseudo inverse (or Moore-Penrose pseudo-inverse) of K [21, 39, 40,

65, 102, 104]. The inversion K is regularized through the singular value decomposition

(SVD), with θ is the regularization parameter (the number of singular values to set to

zero) [20, 49].

For the Gaussian kernel (3.5), two parameters need to be determined: kernels centers

and widths [24]. Centers {cj}Nj=1 are positioned at the observational times {ti}ni=1. Ac-

cording to [24], this approach of positioning the kernels outperformed other approaches

such as regular distribution of kernels across the observations period.

It is important to determine the kernel width, since it is the smoothing parameter of

the light curves (3.3) and (3.5). Two approaches have been proposed to determine the

optimal width r:

• Fixed width r, K-fold cross validation algorithm can be used to determine r.

• Variable widths {rj}Nj=1, since the center of each kernel is positioned at the obser-

vational time, the cumulative kernel width can be determined as follow:

rj =

k
∑

d=1

(tj+d − tj−d). (3.14)

where k is a smoothing parameter referring to the number d of neighboring obser-

vations of cj. The value of k can be optimized using the cross validation algorithm.

This model can be referred to as : K-F and K-V. That is, K-F corresponds to Gaussian

kernels centered at observations with fixed width, and K-V has variable width.

To summarize, the aim of this model is to determine the time delay between the two

light curves xA and xB. For every test value ∆, we determine the model parameters α

(3.13) and evaluate Q (3.10). The estimated time delay is the one with the minimal Q

for the optimized α.
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3.3.2 Evolved kernel based approaches

The proposed (EA) in [25] comes from genetic algorithms (GAs) [38, 53] and is based

on kernel methods presented in the previous section. The idea behind this algorithm is

to optimize the parameters of kernel methods (K-F) and (K-V). EA is used to evolve

and optimize the parameters of the kernel-based formulation. Following the kernel-based

approach in Section 3.3.1, there are three parameters for the model: the time delay ∆,

the smoothing parameter k (3.14) and the regularization parameter θ. As seen in (Sec-

tion 3.3.1), the inversion of (3.13) is regularized through singular value decomposition

(SVD). The singular values less than the threshold λ are set to zero and the regulariza-

tion parameter θ represents the number of singular values to set to zero. The amount

of singular values to keep may vary depending on the value of ∆. The proposed evo-

lutionary algorithm (EA) performs a stochastic global search and optimization methods

based on Evolutionary Computation in order to find a proper combination of these three

parameters.

For EA, two types of representations are used : real and mixed (real and integer)

representation. Each combination of parameters (θ,∆, k) in addition to the predefined

fitness function f(x) represents one individual in the population P1:

P 1 =

































∆1 θ1 k1 f1

∆2 θ2 k2 f2

. . . . . . . . . . . .

∆x θx kx fx

. . . . . . . . . . . .

∆np θnp knp fnp

































The population P 1, contains np individuals. The set of parameters ∆x, θx, kx in each

individual is initialized randomly.

The fitness function f(x) is used to evaluate the individuals in P 1. Genetic oper-

ators, such as selection, crossover and mutation, are used to generate other population
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P 2, . . .P gn, where gn is the total number of generations. The best individual is chosen

according to its fitness from the last population P gn.

Two objective functions are used to measure the fitness of the individuals [25]. :

• Negative log-likelihood (LL), given by (3.10) in Section 3.3.1.

Q =
n
∑

i=1

(

[xA(ti)

σA(ti)
− hA(ti)

σA(ti)

]2

+
[xB(ti)

σB(ti)
− M ⊖ hB(ti)

σB(ti)

]2
)

.

• The mean squared error (MSE) given by cross validation algorithm (CV) illustrated

in Algorithm 1 proposed [25].

Algorithm 1 CV for fitness function

Require: A the data set of all observations; its cardinality is n.

Ensure: fx

1: Fix B ← 5 ;

2: Fix L ← n/B ;

3: for i ∈ {1, ...,L} do

4: Remove the ith observation of each block and include it in the validation set V;

5: Compute hA via (3.3) and hB via (3.4) for the training set T = A− V ;

6: Obtain MSECV on the validation set V

7: R(i)← MSECV

8: end for

9: fx ← mean(R)

10: return fx

For selection, a roulette wheel method is used and the probability of parents being

selected depends on their fitness value. For crossover, linear and double point recombi-

nation are used for real and integer respectively. A mutation function from the Genetic

Algorithm Toolbox for MATLAB called Mutbga is used as the mutation operator. It is

based on Breeder Genetic Algorithm (BGA) [81]. In the BGA mutation, the mutated
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variable zi is determined as follows:

zi = xi ± rangei.δ

where xi is the variable to mutate and ± sign is selected with probability 0.5 and rangei

is the mutation range computed as

rangei = 0.5× di

where di is the domain of variable xi. δ is determined as follows

δ =
m−1
∑

i=0

αi2
−i

where αi = 1 with probability 1/m and zero otherwise. Finally, The best individuals

(offspring) from the current population are reinserted into the next one [13, 14] cited in

[25].

3.3.3 Performance of kernel based approaches

Large scale controlled experiments have been performed on a wide range of (synthetic

and real astronomical observations) data sets to compare the accuracy of kernel based

methods : K-F, K-V and EAs with that of other methods used in literature for time

delay estimation (see Chapter 2). Here we present a summary of their results and final

conclusion; more detailed analysis of the experimental results can be found in [21, 24,

25]. These experiments have been conducted on different types of artificially generated

data, which include DS-500, DS-5, PHR and Harva data. The results of experiments

on synthetic data led to the conclusion that, for all methods included the accuracy of

estimation is affected by noise levels and gaps sizes. In other words, “increasing of noise

levels and gaps size in the data sets result in increased uncertainty of the time delay

estimates“ [21]. The performance of Kernel based methods (K-V) and (EA) is more
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statistically significant than the other used methods. Kernel based methods have proven

to be promising, robust, and accurate time delay estimation methods considering the use

of noisy and irregularly sampled data.

Regarding real data, optical and radio data sets from quasar Q0957+561 are used in

the experiments (see Chapter 2) for more details on real data). Results are summarized

in Tables 3.1 and 3.2 [21]. In Table 3.2 µ and σ denote the mean and standard deviation

of estimates from 500 Monte Carlo simulations (MC). The final conclusion, and based on

D4, the time delay for Q0957+561 is claimed to be 419.6 days where a time delay of 417

days was reported on DS1 [64].

Table 3.1: Time delay estimates for real data sets.

Data K-V EA
D2 435 428.8-429.2
D3 420 418.1-420.3
D4 420 419.6
D5 449 494.4-476.4
D6 409 396.6-397.2

Table 3.2: Results of 500 Monte Carlo simulations.

Data K-V EA
D2 436.6±6.1 432.4±8
D3 420.9±4 420.5±4
D4 419.5±0.7 422.3±4
D5 449.4±27 451.5±25
D6 408.9±11 393.8±12

As mentioned in Chapter 1, the computational time complexity of K-V and EA meth-

ods are O(n5) and O(n6) respectively [21]. This restriction makes it unable to deal with

long time series. The complexity is due to the inverse matrix in kernel based methods for

weights estimation. Automatic methods for time delay estimation have been proposed to

speed up algorithms and they are able to deal with long time series, based on ANN [41].

Moreover, a parallel version of these algorithms have been proposed [22].
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3.4 Summary

In this chapter, we presented an overview of the main concepts of machine and statis-

tical learning. We have briefly introduced the use of machine learning and data mining

algorithms in astronomy and presented many examples of their applications into different

astronomical problems. We also listed the advantages of using these algorithms and their

limitations.

Then we reviewed the kernel methodology based on kernel linear regression and evo-

lutionary algorithms, proposed by [24, 25], for time delay estimation in gravitationally

lensed signals. The basic definitions, notations, and concepts associated with kernel based

approach (K-V) for time delay estimation have been presented in Section (3.3.1) . We also

reviewed the evolved kernel based approach (EA) in detail. The parameters to evolve,

representation, fitness functions and evolutionary operators have been described in Sec-

tion (3.3.2). The chapter ended with performance analysis of kernel based methods (K-V)

and (EA). The kernel based approaches are proven to be the most accurate and stable

methodologies for time delay estimation between multiple images of a gravitationally

lensed quasar based on the results of the experiments on artificially generated data.

The main disadvantage of these approaches is that they are expensive in terms of

computational time complexity due to matrix inversion. This restriction makes large data

sets become intractable. This is one of the main concerns to deal with in the extensions of

this work. In the next chapter, we will introduce new methods within the kernel regression

framework that is faster and more efficient in dealing with large data sets.
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CHAPTER 4

ESTIMATING TIME DELAYS IN DAILY

OBSERVATION WITH NOISE AND

OBSERVATIONAL GAPS

In this chapter, we propose a new approach based on kernel regression estimates, which

is able to estimate a single time delay given several data sets for the same quasar. We

develop realistic artificial data sets in order to perform controlled experiments to test the

performance of this new approach. We also test our method on real data from strongly

lensed quasar Q0957+561 and compare our estimates against existing results.

The proposed models in this chapter are based on kernel regression and within the

same framework as the previous kernel based approaches that introduced in literature

review (see Chapter 3). The main concern with the previously proposed kernel based

approaches is expensive from a computational time perspective due to the presences of

matrix inversion for weights estimation. Our new approaches addresses this problem

and noticeably reduced the computational time as a result of eliminating the matrix

computations.
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4.1 The Model

We consider a distant point source (e.g. a quasar) with two strongly lensed images1,

referred to as A and B, and one or more time series of flux measurements, possibly

taken by different instruments and/or at different frequencies. The entire data collection

D = {D1, D2, . . .DL} consists of L data sets Dℓ, ℓ ∈ [1, L], each corresponding to a

sequence of measurements taken with a given instrument and at a given frequency. Data

sets Dℓ consist of flux measurements of both images, yℓA and yℓB, taken at a non-uniform

sequence of N ℓ observational times times tℓ1, t
ℓ
2, ..., t

ℓ
Nℓ .

Formally, each set Dℓ contains N ℓ three-tuples

(tℓk, y
ℓ
A,k, y

ℓ
B,k), k = 1, 2, . . .N ℓ,

Dℓ = {(tℓ1, yℓA,1, y
ℓ
B,1), (t

ℓ
2, y

ℓ
A,2, y

ℓ
B,2), . . . (t

ℓ
Nℓ , y

ℓ
A,Nℓ, y

ℓ
B,Nℓ)},

where yℓA,k and yℓB,k denote the observed fluxes of image A and B, respectively, in Dℓ

at time tℓk. We also assume that the standard errors σℓ
A,k and σℓ

B,k are known for each

observation yℓA,k and yℓB,k, respectively.

The fluxes corresponding to the two images A and B are collected in sets

Dℓ
A = {(tℓ1, yℓA,1), (t

ℓ
2, y

ℓ
A,2), . . . (t

ℓ
Nℓ , y

ℓ
A,Nℓ)}

and

Dℓ
B = {(tℓ1, yℓB,1), (t

ℓ
2, y

ℓ
B,2), . . . (t

ℓ
Nℓ , y

ℓ
B,Nℓ)}.

For observations at frequencies above a few tens of MHz, dispersion yields sub-hour

arrival time differences, and is not significant relative to typical time-delay measurement

accuracy. We therefore assume that the time delay between gravitationally lensed fluxes

does not depend on the wavelength at which the observations are taken. We also assume

stationarity of the lensing object (e.g., a galaxy) in the sense that the delay does not

1generalization to four images is straightforward
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change in time; in particular, we ignore micro-lensing contributions.

4.1.1 Nadaraya-Watson Estimator with Known Noise Levels (NWE)

Given a delay ∆, we seek to find a probabilistic model p(D|∆) that explains1 D. Assuming

independence of the observation sets Dℓ, we obtain

p(D|∆) =

L
∏

ℓ=1

p(Dℓ|∆).

Assuming independent observations at distinct measurement times, we get

p(Dℓ|∆) =

Nℓ
∏

k=1

p(yℓA,k, y
ℓ
B,k|tℓk,∆)

and further assumption of independence of measurement noise in images A and B leads

to

p(yℓA,k, y
ℓ
B,k|tℓk,∆) = pA(y

ℓ
A,k|tℓk,∆) pB(y

ℓ
B,k|tℓk,∆).

Modeling the source using image A

It is typically assumed that the measurement uncertainties on fluxes Dℓ
A and Dℓ

B are

normally distributed, with zero mean Gaussian noise of known standard deviation σℓ
A,k

and σℓ
B,k associated with noisy observations yℓA,k and yℓB,k, respectively. We model the

mean of image A using Nadaraya-Watson kernel regression [84], [133],

f ℓ
A(t) =

∑Nℓ

k=1 y
ℓ
A,k K(t, tℓk; h

ℓ)
∑Nℓ

j=1K(t, tℓj ; h
ℓ)

, (4.1)

1We slightly abuse mathematical notation as we are actually building conditional models of flux values,
given the observation times.
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where f ℓ(t) is the predicted flux at time t and K(t, tℓj ; h
ℓ) is a kernel positioned at tℓj with

bandwidth parameter hℓ. We use the Gaussian kernel

K(t, tk; h) = exp

{

−(t− tk)
2

κ2(tk)

}

,

where the kernel scale κ(tk) at position tk is defined as the distance spanned by the h

neighbors (to the left and to the right) of tk, i.e. κ(tk) = tk+h − tk−h. This approach to

modeling the noise should work when the autocorrelation length of the observed flux is

much longer than any gaps in the data during which the flux is modeled via the Nadaraya-

Watson kernel regression estimator. If the autocorrelation length of the observed flux,

which can be estimated from a time interval when the observations are relatively closely

spaced, is comparable to or larger than a data gap, this approach (or any other approach

that does not incorporate a physically accurate flux model) cannot be trusted.

To respect the nature of gravitationally lensed data, we impose that the mean model

for image B follows exactly that for image A, up to scaling by a constant1 M > 0 and

time shift by ∆:

f ℓ
B(t; ∆) = M f ℓ

A(t−∆).

Since the shift ∆ plays no role in modeling image A, we write

p(yℓA,k, y
ℓ
B,k|tℓk,∆) = pA(y

ℓ
A,k|tℓk) pB(yℓB,k|tℓk,∆), (4.2)

where

pA(y
ℓ
A,k|tℓk) =

1√
2π σℓ

A,k

exp

{

−1
2

(yℓA,k − f ℓ
A(t

ℓ
k))

2

(σℓ
A,k)

2

}

(4.3)

and

1assumed known, or easily estimated in a preprocessing stage using the means of the fluxes in Dℓ
A and

Dℓ
B
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pB(y
ℓ
B,k|tℓk,∆) =

1√
2π σℓ

B,k

exp

{

−1
2

(yℓB,k −Mf ℓ
A(t

ℓ
k −∆))2

(σℓ
B,k)

2

}

. (4.4)

Note that given ∆, the only free parameter of p(yℓA,k, y
ℓ
B,k|tℓk,∆) is the kernel width pa-

rameter hℓ in the formulation of the mean model (4.1).

Ignoring constant terms and scaling, the negative log likelihood, − log p(Dℓ|∆), forms

the approximation error for the set Dℓ,

Eℓ
A(h

ℓ; ∆) =
Nℓ
∑

k=1

{

(yℓA,k − f ℓ
A(t

ℓ
k))

2

(σℓ
A,k)

2
+

(yℓB,k −Mf ℓ
A(t

ℓ
k −∆))2

(σℓ
B,k)

2

}

. (4.5)

Writing down the negative log likelihood for the whole data, − log p(D|∆), and ignor-

ing scaling and constant terms leads to the total approximation error

EA(h ; ∆) =

L
∑

ℓ=1

Eℓ
A(h

ℓ; ∆),

where h = (h1, h2, . . . hL) is a vector that collects kernel width parameters for all data

sets D1, D2, . . .DL in D.

Modeling the source using image B

One can, of course, start by building a mean flux model f ℓ
B(t) for image B via Nadaraya-

Watson kernel regression,

f ℓ
B(t) =

∑Nℓ

k=1 y
ℓ
B,k K(t, tℓk; h

ℓ)
∑Nℓ

j=1K(t, tℓj ; h
ℓ)

, (4.6)

imposing that the mean model of image A is

f ℓ
A(t; ∆) =

1

M
f ℓ
B(t+∆).

Crucially, since both images A and B come from the same source, we require that the

kernel width hℓ for the mean models f ℓ
A(t) and f ℓ

B(t) (and hence for f ℓ
A(t; ∆) and f ℓ

B(t; ∆)
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as well) be the same for the whole data set Dℓ.

Using the same reasoning as in Section 4.1.1, we obtain an approximation error for

the set Dℓ:

Eℓ
B(h

ℓ; ∆) =
Nℓ

∑

k=1

{

(yℓA,k − 1

M
f ℓ
B(t

ℓ
k +∆))2

(σℓ
A,k)

2
+

(yℓB,k − f ℓ
B(t

ℓ
k))

2

(σℓ
B,k)

2

}

leading to the total approximation error

EB(h ; ∆) =
L
∑

ℓ=1

Eℓ
B(h

ℓ; ∆).

Estimating the Unique Time Delay across D

Since there is no a-priori reason to prefer one image over the other, we aim to find the

unique delay ∆ that minimizes both the errors EA(h ; ∆) and EB(h ; ∆) with the same

‘level of importance’. In other words, we are looking for ∆ and the set of kernel width

parameters h = (h1, h2, . . . hL), one for each data set Dℓ in D, that minimize the error

E(h ; ∆) = EA(h ; ∆) + EB(h ; ∆).

Note that the imposition that there is a unique delay ∆ for the whole data D and that

the kernel widths are the same throughout each set Dℓ for all the corresponding mean

models f ℓ
A(t), f

ℓ
B(t), f

ℓ
A(t; ∆) and f ℓ

B(t; ∆), not only makes sense from the point of view

of underlying physics, but is also a stabilizing factor in the analysis and modeling of D.

The structure of our problem enables us to use an efficient and practical approach to

finding the optimal time delay ∆∗. The error E(h ; ∆) to be minimized can be rewritten

as

E(h ; ∆) =
L
∑

ℓ=1

Eℓ(hℓ; ∆), (4.7)

where

Eℓ(hℓ; ∆) = Eℓ
A(h

ℓ; ∆) + Eℓ
B(h

ℓ; ∆).
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For every test value ∆ we can separately optimise Eℓ(hℓ; ∆) for hℓ within each set Dℓ.

Note that this boils down into a set of L one-dimensional optimizations of bandwidths

h1, h2, . . . hL. In addition, because of the nature of the mean models, the errors Eℓ(hℓ; ∆)

will behave ‘reasonably’ with changes in hℓ, i.e. the changes will be smooth and we

can expect a roughly unimodal shape of cross-validated Eℓ(hℓ; ∆). That enables us to

use further speed-up tricks (such as halving) in the 1-dimensional optimizations. The

estimated time delay is the one with the minimal overall E(h ; ∆) for the (cross-validation)

optimized kernel width parameters h .

4.2 Nadaraya-Watson Estimator with Linear Noise

Model (NWE++)

In Section 4.1 only the mean fluxes were modeled, the standard errors on observations

were assumed known. Our approach can be extended to full probabilistic modeling by

assuming a model for the relationship between the noise level and the observed fluxes.

Here, we consider a simple model in which the standard error on the measured flux

depends linearly on the observed flux value y, i.e., σ(y) = νy, where the proportionality

constant ν depends on the wavelength at which the flux is measured (e.g., ν could be 1%

and 0.1% for radio and optical data, respectively). Note that, this general noise model is

just an assumption. Assuming that the mean models for data set Dℓ are fitted reasonably

well, so that yℓI,k ≈ f ℓ
I (t

ℓ
k), I ∈ {A,B}, then to lowest order σ(yℓI,k) ≈ νℓf ℓ

I (t
ℓ
k).

Most of the material developed in Sections 4.1 will stay unchanged; modifications are

required only in the formulation of the noise models (4.3) and (4.4):

pA(y
ℓ
A,k|tℓk) =

1

νℓ
√
2π f ℓ

A(t
ℓ
k)

exp







−1
2(νℓ)2

[

yℓA,k

f ℓ
A(t

ℓ
k)
− 1

]2






(4.8)

and
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pB(y
ℓ
B,k|tℓk,∆) =

1

Mνℓ
√
2π f ℓ

A(t
ℓ
k −∆)

exp







−1
2(νℓ)2

[

yℓB,k

Mf ℓ
A(t

ℓ
k −∆)

− 1

]2






. (4.9)

This time, however, we can write a full probabilistic model for any time point t and

evaluate the likelihood within our model given any observation pair (yℓA(t), y
ℓ
B(t)) that

could have been measured at time t:

pA(y
ℓ
A(t)) =

1

νℓ
√
2π f ℓ

A(t)
exp

{

−1
(νℓ)2

[

yℓA(t)

f ℓ
A(t)

− 1

]2
}

(4.10)

and

pB(y
ℓ
B(t)|∆) =

1

Mνℓ
√
2π f ℓ

A(t−∆)
exp

{

−1
(νℓ)2

[

yℓB(t)

Mf ℓ
A(t−∆)

− 1

]2
}

. (4.11)

The approximation error Eℓ
A(h

ℓ; ∆) to be minimized by the choice of kernel width hℓ

now reads:

Eℓ
A(h

ℓ; ∆) =
1

(νℓ)2

Nℓ
∑

k=1







[

yℓA,k

f ℓ
A(t

ℓ
k)
− 1

]2

+

[

yℓB,k

Mf ℓ
A(t

ℓ
k −∆)

− 1

]2






.

Following analogous arguments for the case of modeling the source using image B, we

have

pA(y
ℓ
A(t)|∆) =

M

νℓ
√
2π f ℓ

B(t +∆)
exp

{

−1
(νℓ)2

[

M yℓA(t)

f ℓ
B(t +∆)

− 1

]2
}

(4.12)

and

pB(y
ℓ
B(t)) =

1

νℓ
√
2π f ℓ

B(t)
exp

{

−1
(νℓ)2

[

yℓB(t)

f ℓ
B(t)

− 1

]2
}

,

which leads to the approximation error
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Eℓ
B(h

ℓ; ∆) =
1

(νℓ)2

Nℓ
∑

k=1







[

M yℓA,k

f ℓ
B(t

ℓ
k +∆)

− 1

]2

+

[

yℓB,k

f ℓ
B(t

ℓ
k)
− 1

]2






.

Again, the final cost to be minimized is

E(h ; ∆) =

L
∑

ℓ=1

Eℓ(hℓ; ∆), (4.13)

where

Eℓ(hℓ; ∆) = Eℓ
A(h

ℓ; ∆) + Eℓ
B(h

ℓ; ∆).

4.3 Data

We employ six different data sets from the same quasar Q0957+561, L = 6. The data

plots are shown in Figure 2.4 in Chapter 2 on page 11 and all the details are presented in

Table 2.1 in Chapter 2 on page 12.

In order to consistently compare the performance of different time delay estimation

methods in a controlled experimental setting (CS), we also construct synthetic data on

the basis of known gravitationally lensed fluxes in the optical and radio ranges, with the

given observational noise and gaps structure. The ‘ground truth’ - the delay - is imposed

by us so that the statistics of different delay estimators can be consistently evaluated and

compared.

4.3.1 Synthetic data - realistic experimental setting

In this section we construct synthetic signals on which we will test the proposed and some

of the existing approaches to gravitational delay estimation in the presence of observa-

tional noise and gaps. We constructed synthetic fluxes in the optical range on the basis

of D1 (real r-band optical data of [116]) spanning roughly 10.5 years). In particular, we
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used D1 to fit a distribution of possible fluxes ‘compatible’ with the data (formulated as a

Gaussian process (GP)) and then sampled from this distribution synthetic fluxes of 3,500

observations.

(GP) represents a distribution over functions

f(t) ∼ GP (µgp(t), Kgp(t, t
′)), (4.14)

with mean and covariance functions µgp(t) and Kgp(t, t
′), respectively. Any sample from

the GP corresponding to a finite set of observational times t1, t2, · · · tN is Gaussian dis-

tributed with mean µgp(t1), µgp(t2), · · ·µgp(tN) and covariance matrix

Kgp =



















Kgp(t1, t1) Kgp(t1, t2) · · · Kgp(t1, tN )

Kgp(t2, t1) Kgp(t2, t2) · · · Kgp(t2, tN )

...
...

. . .
...

Kgp(tN , t1) Kgp(tN , t2) · · · Kgp(tN , tN)



















. (4.15)

For our purposes, we imposed zero mean (the mean of observations in D1 was shifted to

zero) and used the ‘squared exponential’ kernel function

Kgp(t, t
′) = exp

{

−(t− t′)2

h2
gp

}

, (4.16)

with scale parameter hgp set using cross validation on D1.

A vector (y,y∗)
T of observations sampled at observation times t and t∗ from the (GP)

is distributed as







y

y∗






∼ N













0

0






,







Kgp Kgp∗

KT
gp∗ Kgp∗∗












, (4.17)

where Kgp, Kgp∗ and Kgp∗∗ are kernel matrices corresponding to time instances t × t,

t× t∗ and t∗× t∗, respectively. However, given observations y at times t, the conditional

distribution of y∗ at times t∗ is given by
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Figure 4.1: Three Gaussian process posterior samples (dotted) based on D1 (solid).
Dashed curves signify ± 2 standard deviations.

p(y∗|t∗,y, t) = N(y∗|µ∗,Σ∗) (4.18)

with

µ∗ = KT
gp∗K

−1
gp y (4.19)

and

Σ∗ = Kgp∗∗ −KT
gp∗K

−1
gp Kgp∗. (4.20)

We sampled signals y∗ from the GP based on D1 on a regular grid of 3500 time stamps

covering the temporal range of D1. As an example, we show three such signals in Figure

4.1. Dashed curves signify ± 2 standard deviations. To create a pair of time shifted

signals A and B, the smooth long signal (signal A) yA = y∗ was shifted in time by a delay

∆ = 200 days to obtain signal B,

yB(t) = yA(t−∆). (4.21)

Figure 4.2, shows an example of this generation process.
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Figure 4.2: An example of two generated signals A and B. Signal B is delayed by 200
days.

Finally, (as explained in greater detail in the following sections), we added observa-

tional noise independently to both signals A and B, and imposed observational gaps.

Observational noise

Based on D1 data, we first calculated the empirical distribution p(ρ) of the ratio ρ of

the reported flux levels yk and their associated standard errors σk: ρk = σk/yk. For each

observation y(t) in the synthetic stream, we generated an additive observational noise from

a zero mean Gaussian distribution with standard deviation σ(t), where σ(t) = ρ(t)y(t),

with ρ(t) generated randomly i.i.d. from the empirical distribution p(ρ). Figure 4.3, shows

an example of one data set after adding the noise to the signals.

Observational gaps

Real data are irregularly sampled due to practical considerations such as weather condi-

tions, equipment availability, object visibility, etc. [21, 29]. Gaps in real data are charac-

terized by two important quantities: gap size and gap position. The histogram in Figure
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Figure 4.3: An example of the added noise; here error bars are 0.1% of the flux. Signal A
has been shifted upwards by 0.4 for visualization.

4.4(a) shows the empirical gap size distribution in D1. Shorter gaps of 1–5 days are more

frequent than longer ones (more than 6 days).

To make the synthetic data more realistic, we would like to respect constraints given

by the gap size and inter-gap distance distributions for dominant gap sizes (up to 10 days).

Gaps were imposed on the synthetic data by generating their sizes and positions through

a multiobjective optimization algorithm. The algorithm incorporated three constraints:

(1) closeness of the generated and empirical gap size distributions; (2) closeness of the

generated and empirical inter-gap interval distributions for gaps of 1-5 days; (3) closeness

of the generated and empirical inter-gap interval distributions for gaps of 6-10 days.

The particular algorithm we used was the computationally efficient Random Weighted

Genetic Algorithm (RWGA) [36, 61, 82, 83, 138]. It uses a weighted average of normalized

objectives for fitness assignment (for diversity imposition the weights are randomized).

The procedure is outlined in Algorithm 2.
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Algorithm 2 RWGA

1: S = external archive to store non-dominated solutions found during the search so far;

2: nS = number of randomly selected solutions immigrating from S to the population of

potential solutions Xι in each generation ι.

3: Generate a initial random population X1, set ι = 1.

4: Assign a fitness value to each individual solution χ ∈ Xι by performing the following

steps:

Step 4.1: Calculate the fitness zo(χ) for each objective o = 1, . . .O.

Step 4.2: Generate a random number uo in [0, 1] for each objective o = 1, . . . O

Step 4.3: Calculate the random weight of each objective o as

wo =
uo

∑O

i=1 ui

.

Step 4.4: Update the overall fitness of the solution χ as

̥(χ) =

O
∑

o=1

wozo(χ)

.

5: Calculate the selection probability ps(χ) of each solution χ ∈ Xι as follows:

ps(χ) =

∑

ΥǫXι
(̥(Υ)−̥min)

̥(χ)−̥min
,

where Fmin = min {̥(χ) | χ ∈ Xι}.

6: Select parents using the selection probabilities calculated in Step 3. Mutate offspring

with a predefined mutation rate. Copy all offspring to Xι+1.

7: To maintain diversity, randomly remove nS solutions from Xι+1 and add the same

number of solutions from S to Xι+1.

8: If the stopping condition is not satisfied, set ι = ι + 1 and go to Step 4. Otherwise,

return to S.
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The genome of each individual contains a suggestion for start positions and sizes of

observational gaps. The design of individuals allows for a variable number of gaps and

ensures that the gaps are not overlapping. Figure 4.4 shows the results of applying the

multi-objective genetic algorithm RWGA based on D1. Each objective corresponds to a

row of two plots in Figure 4.4, left and right plots showing empirical normalized histograms

from the real and synthetic data, respectively.

Generation of synthetic ‘radio’ data proceeded in the same way as described in the

previous section for optical data, this time based on data D5.

4.3.2 Synthetic data - controlled experimental setting

Generation of synthetic fluxes described above was motivated by the desire to preserve

realistic gap and noise distributions. We will refer to this approach as the ‘realistic’

experimental setting (RS). For comparing delay estimation algorithms in a large-scale

controlled setting, we also considered an alternative specification of gap and noise distri-

butions. The synthetic fluxes were first generated from the GP model fitted to D1, as

described in the previous section. The fluxes were then corrupted with observational gaps

and noise. The gap sizes g were generated as realizations from a mixture distribution

PM(g) = αPB(g;µg) + (1− α)PU(g;Lg, Ug), where PB(g;µg) is the Binomial distribution

with mean µg and PU(g;Lg, Ug) is the uniform distribution over [Lg, Ug]. We used the

following settings: α = 0.95, µg = 4, 6, 8 days, Lg = 20 and Ug = 80. The gap positions

were randomized, subject to the constraint of minimum inter-gap distance of 2 days. The

allowed range for gap size was 1 to 80 days. For the additive Gaussian zero mean ‘ob-

servational’ noise, we considered three settings for the standard deviation: 0.1%, 0.2%

and 0.3% of the flux level. We will refer to this approach as the ‘controlled’ experimental

setting.
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Figure 4.4: Empirical distributions of gap size (a),(b), inter-gap interval for gaps of 1–5
days (c),(d) and inter-gap interval for gaps of 6-10 days (e),(f). Each objective of RWGA
corresponds to a row of two plots, left and right plots showing empirical normalized
histograms from the real (D1) and synthetic data, respectively.
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4.4 Experimental Results

We performed experiments on synthetic data sets described in Section 4.3, as well as on

real gravitationally lensed fluxes in the radio and optical ranges. In the experiments we

compared our methods NWE and NWE++, introduced in Sections 4.1 (on page 37) and

4.2 (on page 42), respectively, with two DS approaches, namely DS2
1 and DS2

2,4 (Section

2.3.2 on page 16) and two cross-correlation approaches DCF and LNDCF (Section 2.3.1

on page 15).

4.4.1 Experiments on synthetic data

As mentioned above, we set the ‘true’ time delay in the synthetic data to 200 days. The

results of all approaches are based on testing time delay values in the range of 175 to 225

days (1 day increment).

It was found that the best setting for decorrelation length δ in the DS2
2,4 method was 3

days. For NWE and NWE++ the kernel width h was estimated as variable kernel width

with h = 2 neighbors1. The proportionality constant ν for NWE++ is set to 1% and

0.1% of the flux for radio and optical data, respectively. For DCF and LNDCF, the bin

size is set to 5 days. (see [24]).

For each method we show the mean (bias) µ and standard deviation σ of the maximum-

likelihood delay estimates across experiments. In all plots, the true delay is represented

by the horizontal line at µ = 200.

Realistic experimental setting

For synthetic experiments in the realistic setting we generated 500 base signals from

the GP fitted to the optical data set D1, as described in Section 4.3.1. We then ran

the RWGA algorithm to generate 500 realizations for observational gap positions and

sizes (see Section 4.3.1). Each base signal thus had a corresponding observational gap

1Two neighbors came consistently as the favorite option when cross-validating the number of neighbors
on several initial data sets.
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Figure 4.5: RS results for optical and radio data.

structure imposed on it. Finally, the signals were corrupted by observational noise (see

Section 4.3.1). The same procedure was applied for generating 500 data sets in the radio

range.

Summary results for the RS experiments on the 500 optical and radio data sets are

presented in Tables 4.1 and 4.2, respectively. We report the mean (µ) and standard

deviation (σ) of the delay estimates ∆̂i, i = 1, 2, . . . 500, the mean absolute error (MAE)

of the delay estimates (MAE=
∑500

i=1 |∆̂i − 200|/500), and the 95% Credibility Interval

(CI). The overall performance of the methods is also shown in Figure 4.5. On smaller and

noisier radio data the NWE is the best performing method, followed closely by NWE++.

On optical data, the best performing method is D2
2,4. It is important, however, to note

that, in contrast to NWE methods, the DS methods (DS) have parameters that are

difficult to set objectively based on the given data only. In the experiments, we found the

best DS parameter settings by imposing the true delay ∆ = 200, which obviously biases

the DS results towards over-optimistic better performance levels.

Controlled experimental setting

For each setting of the Binomial gap distribution µg = 4, 6, 8 days and for every noise level

ratio from 0.1%, 0.2%, 0.3% we generated 100 base signals from the underlying GP fitted
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Table 4.1: RS results for optical range.

Method µ±σ MAE CI range 95% CI
NWE 199.60±2.97 2.19 0.26 [199.34,199.86]
NWE++ 199.83±3.23 2.37 0.28 [199.55,200.11]
DS2

1 200.67±2.51 1.05 0.22 [200.45,200.89]
DS2

2,4 200.02±0.40 0.16 0.04 [199.98,200.06]
DCF 199.14±13.77 11.61 1.21 [197.93,200.35]
LNDCF 200.30±6.34 4.47 0.56 [199.74,200.86]

Table 4.2: RS results for radio range.

Method µ±σ MAE CI range 95% CI
NWE 199.47±3.71 2.95 0.32 [199.15,199.79]
NWE++ 200.37±4.31 3.38 0.38 [199.99,200.75]
DS2

1 201.02±5.42 4.42 0.47 [200.55,201.49]
DS2

2,4 204.20±9.98 8.73 0.87 [203.33,205.07]
DCF 201.50±15.23 13.10 1.33 [200.17,202.83]
LNDCF 199.94±5.83 4.73 0.51 [199.43,200.45]

on D1. We thus obtained 900 data sets. The length of the time series (after applying

observational gaps) varied from 800 to 3000 observations.

An analogous procedure was used to generate 900 data sets in the radio range. For

each setting of the Binomial gap distribution µg = 4, 6, 8 days and for every noise level

ratio from 1%, 2%, 3% we generated 100 base signals from the underlying GP fitted on

D5. The overall results across all CS optical and radio data sets are summarized in Tables

4.3 and 4.4, respectively. Figures 4.6 and 4.7 present the results in greater detail, grouped

by noise level and gap size.

The kernel-based methods lead to more stable time delay estimates. NWE is the best

performing method with respect to all performance measures, followed by NWE++. It is

interesting to note that while in general a larger noise level ratio corresponds to a larger

standard deviation of the delay estimates, the DCF method seems to be more robust to

increased noise levels. For low noise levels and with correlations between time-shifted

data streams close to unity, the DCF method is, by construction, relatively insensitive to

the level of the noise. However, it is still clearly outperformed by other techniques for the

range of noise levels explored in this thesis (see Figures 4.6 and 4.7).

54



Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

NWE
0.1% Noise
0.2% Noise
0.3% Noise

(a) NWE

Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

NWE++
0.1% Noise
0.2% Noise
0.3% Noise

(b) NWE++

Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

DS2
1

0.1% Noise
0.2% Noise
0.3% Noise

(c) DS21

Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

DS2
2,4

0.1% Noise
0.2% Noise
0.3% Noise

(d) DS2

2,4

Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

DCF
0.1% Noise
0.2% Noise
0.3% Noise

(e) DCF

Gaps
4 6 8

M
ea

n

160

170

180

190

200

210

220

230

240

LNDCF
0.1% Noise
0.2% Noise
0.3% Noise

(f) LNDCF

Figure 4.6: CS optical range results for NWE, NWE++, DS2
1, DS22,4, DCF and LNDCF

methods (plots (a), (b), (c), (d), (e) and (f), respectively) shown as functions of µg =
4, 6, 8 days (mean of the binomial gap size distribution) and observational noise level.
In each case we present the mean and standard deviation of the delay estimates for the
corresponding 100 data sets.
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Figure 4.7: CS radio range results for NWE, NWE++, DS2
1, DS22,4, DCF and LNDCF

methods (plots (a), (b), (c), (d), (e) and (f), respectively) shown as functions of µg =
4, 6, 8 days (mean of the binomial gap size distribution) and observational noise level.
In each case we present the mean and standard deviation of the delay estimates for the
corresponding 100 data sets.
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Table 4.3: Overall CS results across all observational gap and noise settings for optical
range.

Method µ±σ MAE CI range 95% CI
NWE 199.69±4.91 3.76 0.32 [199.37,200.01]
NWE++ 199.69±5.78 4.41 0.38 [199.31,200.07]
DS2

1 200.61±9.86 7.62 0.64 [199.97,201.25]
DS2

2,4 199.97±14.10 11.98 0.92 [199.05,200.89]
DCF 202.71±16.26 14.22 1.06 [201.65,203.77]
LNDCF 200.63±10.56 8.37 0.69 [199.94,201.32]

Table 4.4: Overall CS results across all observational gap and noise settings for radio
range.

Method µ±σ MAE CI range 95% CI
NWE 199.70±4.23 3.24 0.28 [199.42,199.98]
NWE++ 199.89±5.07 3.90 0.33 [199.56,200.22]
DS2

1 200.49±7.79 5.92 0.51 [199.98,201.00]
DS2

4,2 201.31±11.70 9.36 0.76 [200.57,202.09]
DCF 201.13±15.70 13.45 1.03 [200.10,202.16]
LNDCF 200.90±7.92 5.96 0.52 [200.38,201.42]

4.4.2 Experiments on real data

In this section, we present results of methods studied in this thesis using real data - see

Table 2.1 and Figure 2.4. Since for real data the noise levels related to observations are

available, the NWE++ method was not used.

We have L = 6 data sets D1 — D6 and for all methods, we test values for time delay

on the range of ∆ = [400, 450] (increments of 1 day). The NWE cost to be minimised is

E(h; ∆) (4.7), with cross-validated kernel scale parameters h = (3, 2, 2, 2, 2, 2).

For DCF and LNDCF, the bin size ∆τ was set to 5, 5, 5, 5, 45, and 30 for D1, D2, D3,

D4, D5, and D6, respectively. As mentioned before, unlike in NWE, there is no objective

way of setting such parameters based on the data only and we used the setting giving

most robust results in the test range of delays 400-450 days. For a fixed delay ∆, the

(LN)DCF function values at lag ∆ are averaged across the 6 data sets D1 −D6 and the

combined delay estimate is obtained at the maximum of the averaged (LN)DCF curve.

For the Dispersion Spectra method DS22,4, as argued above, the value of the decorrela-

tion length parameter cannot be resolved in a principled manner based on the data and
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Table 4.5: The unique time delay across Q0957+561.

Method µ (days)
NWE 420
DS21 435
DS22,4 435
DCF 408.78
LNDCF 426.31

Table 4.6: Q0957+561: Results of 500 Monte Carlo simulations.

Method µ (d) σ (d)
NWE 418.65 0.49
DS2

1 434.98 0.22
DS2

2,4 434.92 1.08
DCF 408.77 0.42
LNDCF 431.09 15.04

hence it was set to δ = 3, since at this value DS2
1 and DS2

2,4 have more agreement. Again,

for a fixed delay ∆, the DS21(∆) and DS2
2,4(∆) values are averaged across the six data sets

and the combined delay estimate is obtained at the minimum of such averaged curves.

The results (unique time delay across Q0957+561) are presented in Table 4.5.

To measure the uncertainty of time delay estimations, following [44, 93, 94, 95], we

also performed Monte Carlo simulations by adding white noise generated according to

the reported errors to each observation1. For each data set, we generated 500 randomized

Monte Carlo realizations. The results (mean and standard deviation across the 500 delay

estimates) are presented in Table 4.6.

Although we cannot compare these results against a known true value, it is apparent

that time delay estimates obtained with different methods are not mutually consistent,

unlike estimates on synthetic data. For example, DS21 and DCF estimates appear to

lie more than 50 σ apart. Moreover, we find that estimates using different frequency

estimates on Q0957+561 data appear to be inconsistent even when the same method is

used. This suggests that the claimed measurement errors on the data are significantly

1Note that this effectively adds noise to already noisy observations, resulting in a different noise
distribution. For example, assuming the original noise is Gaussian, and adding random Gaussian noise
from the same distribution, the standard deviation of the noise distribution in this Monte Carlo data will
be
√
2 larger than the original one.
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under-estimated. Alternatively, there may be unmodeled systematics (e.g., micro-lensing)

that lead to varied biases for different analysis techniques.

Finally, a summary of results of applying NWE on each data set is shown in Figure

4.8 and Table 4.7. Full flux reconstructions on real data sets are shown in Figure 4.9.

Table 4.7: Q0957+561 Summary of Results using NWE.

Data NEW
D1 414
D2 422
D3 428
D4 422
D5 450
D6 418

4.5 Summary

We have introduced a new probabilistic efficient model-based methodology for estimating

time delays between two gravitationally lensed images of the same variable point source.

The methods were tested and compared on synthetic data sets generated from a GP

fitted to the real data. In the controlled experimental setting, the signals were subject to

controlled levels of observational noise and gap sizes. In the realistic setting, the data were

generated so that multiple aspects of the real data were preserved: noise-to-observed flux

ratio, observational gap size distribution and the inter-gap interval distributions. We also

performed experiments on real observed optical and radio fluxes from quasar Q0957+561

as a combined data set. Our NWE estimator on the combined optical and radio data

suggests a delay of approximately 420 days.
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Figure 4.8: Q0957+561 Summary of Results using NWE. Each plot represents E versus
∆ for one real data sets.
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Figure 4.9: Reconstructions on Real data using NWE.
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CHAPTER 5

SMALLER TIME DELAYS - RESOLVING THE

TIME DELAY PROBLEM IN STREAMS OF

PHOTONS

As seen in the previous chapter, available data are usually in the form of daily measure-

ments which can be used to predict longer (days and months) delays. Current methods

in astrophysics are solely rooted in this scenario. However, when countering the prob-

lem of shorter delays (e.g. hours), daily measurements are insufficient and one needs to

investigate the individual arrival times of photons.

Poisson processes can be applied as a model for photon streams [106]. To resolve

the delay in gravitationally lensed photon streams one can use the standard kernel based

estimation of the non-homogeneous Poisson process rate function on individual photon

streams and then try to time-shift the rate function estimates so the overlap is maxi-

mized. Another, more principled alternative is to impose that the source of the delayed

photon streams is the same and we simply observe different realizations from the same

non-homogeneous Poisson process, gravitationally delayed in time. We study whether,

compared with the standard kernel based baseline, such a principled approach can bring

benefits in terms of more stable (less variance) estimation.

Normally, delay estimation would be done over streams of photons from a given energy

band and then unified over a multitude of energy bands. The baseline and principled

delay estimation methods are then compared in a controlled experimental setting using
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synthetic photon fluxes with known imposed delay from a variety of non-homogeneous

processes assumed to come from a single energy band. To our best knowledge this is the

first systematic study that addresses the problem of delay estimation on lensed photon

streams. We did not perform experiments on real data, since no large real photon streams

from known delayed systems with short time delay are available.

5.1 Kernel Based Delay Estimation in Lensed Pho-

ton Streams

For the sake of simplicity we will deal with the case of two lensed photon streams, A and

B, from the same source. All techniques presented in this paper can be easily generalized

to multiple streams. We assume that the observed photon streams can be accounted for

by a Poisson process, the key ingredient of which is the Poisson Distribution - a discrete

probability distribution that describes the probability of a number of events occurring in

a given period of time:

P (X = x) =
e−λλx

x!
, (5.1)

where λ ≥ 0 is the rate parameter (average number of events in the time period).

Poisson process (e.g. [7, 62, 111, 113]) is a stochastic (point) process that can be used

to model arrival times. There are two types of Poisson process: homogeneous Poisson

process (HPP), where the rate parameter λ is constant and non-homogeneous Poisson

process (NHPP), where λ(s) is a function of time s. Given a series of arrival times

s1, s2, ..., sS, the rate function is commonly estimated by imposing a (Gaussian) kernel of

width r on top of each arrival time si,

Kg(s; si, r) = exp

{

−(s− si)
2

2r2

}

. (5.2)
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The rate function estimate (up to scaling) reads [88, 97, 98]:

λ̂(s) =
S
∑

i=1

Kg(s; si, r) (5.3)

We will refer to this method as Kernel Rate Estimation (KRE1).

Suppose that we observe two lensed photon streams {sAi }S
A

i=1 and {sBi }S
B

i=1 from the

same source. On each stream we produce a kernel based estimate of the rate function

λ̂A(s), λ̂B(s). Given a suggested time delay ∆, the closeness of the rate estimates (under

the delay ∆) can be evaluated e.g. through the mean square difference evaluated on a

regular grid of time stamps {zj}Zj=1in a relevant interval [0, T ],

d2(λ̂
A, λ̂B; ∆) =

1

Z

Z
∑

j=1

(λ̂A(zj)− λ̂B(zj))
2
. (5.4)

We will refer to this variant of the method as (KRE1). The delay also can be estimated

through minimization of d2(λ̂
A, λ̂B; ∆) w.r.t the estimated ∆ by KRE1 (e.g. via gradient

descent).

∂d2
∂∆

=
1

Z

Z
∑

j=1

2(λ̂A(zj)− λ̂B(zj)).
∂(λ̂A(zj)− λ̂B(zj))

∂∆
, (5.5)

and we will refer to this variant of the method as (KRE2).

In the following sections we will introduce two types of delay estimation based on

Poisson process and its related renewal process.

5.2 Poisson Process Based Estimation (PPE)

Given a suggested delay ∆, the photon steam {sBi }S
B

i=1 is shifted in time to the corre-

sponding stream {s̃Bi }S
B

i=1, where s̃Bi = sBi − ∆. The right and left ∆-portions of the

streams {sAi }S
A

i=1 and {s̃Bi }S
B

i=1, respectively, are then cut out to ensure that both streams

occur within the same time interval. Assuming the rate function does not change (much)
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within interval of length β, we partition the time interval into Nb bins of length β. For

each bin i, we denote its mid-time stamp by bi and the photon counts in steams A and

B by CA
i and CB

i , respectively. We thus turn the streams of photon arrival times {sAi }S
A

i=1

and {s̃Bi }S
B

i=1 into the corresponding count streams {CA
i }Nb

i=1 and {CB
i }Nb

i=1 associated with

bin times {bi}Nb

i=1.

The crucial aspect of our approach is the imposition of the same (unobserved) Poisson

process with rate λ(s) capable of accounting for both {CA
i }Nb

i=1 and {CB
i }Nb

i=1:

P (CA, CB|λ(s)) =

Nb
∏

i=1

P (CA
i , C

B
i |λ(bi)). (5.6)

Assuming independence (conditional on the rate) of the streams A and B, we have

P (CA
i , C

B
i |λ(bi)) = P (CA

i |λ(bi)) · P (CB
i |λ(bi)), (5.7)

where

P (C|λ(bi)) = e−λ(bi)
λ(bi)

C

C!
. (5.8)

We impose a kernel based model on the common rate function:

λ(s) = Ψ

(

J
∑

j=1

wjKg(s; cj, rb)

)

= Ψ (w⊺Kg(s; c, rb)) , (5.9)

with kernels of width rb, centered at cj, j = 1, 2 . . . J and the J free parameters wj

collected in vector w. Kg(s; c, rb) as a vector of kernel evaluations Kg(s; cj, rb) at all

centers of c = (c1, c2, ..., cJ). The function Ψ(x) = ex is introduced to constrain the model

to positive rates. In the experiments we set the kernel centers cj to the bin mid-points bj

and the kernel width rb to a multiple of bin width β.

Using (5.8), we obtain

P (CA
i |λ(bi))P (CB

i |λ(bi)) = e−λ(bi)
λ(bi)

CA
i

CA
i !

e−λ(bi)
λ(bi)

CB
i

CB
i !

(5.10)
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leading to negative log likelihood playing the role of error functional:

E(w) = −
Nb
∑

i=1

ln

[(

e−λ(bi)
λ(bi)

CA
i

CA
i !

)(

e−λ(bi)
λ(bi)

CB
i

CB
i !

)]

, (5.11)

which is equivalent to:

E(w) = −
Nb
∑

i=1

−λ(bi) ln e+CA
i lnλ(bi)− lnCA

i !− λ(bi) ln e+CB
i lnλ(bi)− lnCB

i ! (5.12)

The negative log-likelihood (without constant terms) simplifies to

E(w) = −
Nb
∑

i=1

−2λ(bi) + lnλ(bi)
[

CA
i + CB

i

]

(5.13)

where the vector w collects the model parameters wj. Denoting ϕi =
[

CA
i + CB

i

]

, we

have

E(w) = 2

Nb
∑

i=1

Ψ(w⊺Kg(bi; c, rb))−
Nb
∑

i=1

ϕi ln(Ψ(w⊺Kg(bi; c, rb))) (5.14)

In order to minimize E(w), we calculate

∂Ψ(w⊺Kg(bi; c, rb))

∂wj

= Ψ
′

(w⊺Kg(bi; c, rb))φj(bi) (5.15)

and

∂ lnΨ(w⊺Kg(bi; c, rb))

∂wj

=
Ψ

′

(w⊺Kg(bi; c, rb))

Ψ(w⊺Kg(bi; c, rb))
φj(bi), (5.16)

where

φj(bi) =
∂(w⊺Kg(bi; c, rb))

∂wj

(5.17)

leading to the optimality criterion

2

Nb
∑

i=1

Ψ
′

(w⊺Kg(bi; c, rb))φj(bi)−
Nb
∑

i=1

ϕi

Ψ
′

(w⊺Kg(bi; c, rb))

Ψ(w⊺Kg(bi; c, rb))
φj(bi) = 0. (5.18)

Hence, we arrive at a very intuitive solution - E(w) is minimized for the model yielding
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the average bin counts:

λ(bi) = Ψ(w⊺Kg(bi; c, rb) =
ϕi

2
=

CA
i + CB

i

2
. (5.19)

Denoting the average count (CA
i + CB

i )/2 in bin i by Ci, we obtain

w⊺Kg(bi; c, rb) = Ψ−1(Ci) (5.20)

Defining a vector C as

C =
[

Ψ−1(C1),Ψ
−1(C2), · · · ,Ψ−1(CNb

)
]

⊺

(5.21)

we have

w⊺Kg = C⊺, (5.22)

where Kg is an Nb ×Nb matrix

Kg = [Kg(b1; c, rb), Kg(b2; c, rb), . . .Kg(bNb
; c, rb)] , (5.23)

we obtain the model estimate

w = K+C, (5.24)

where K+ is the Moore-Penrose pseudo-inverse1 of K = K⊺

g.

5.3 Innovation Process Based Estimation (IPE)

The previous approach was based on modeling count data within individual time bins.

Bin width is a free parameter that needs to be set and the delay estimation can be

sensitive to this value. To avoid this problem, we introduce a different approach based

on modeling inter-arrival times. It is well known that if event counts can be modeled by

1In case of ill-conditioned K one can use e.g. SVD decomposition to regularize the matrix inversion.
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Poisson distribution with mean rate λ, then the inter-arrival times are distributed with

exponential distribution with mean λ−1.

As in the previous approach,given a suggested delay ∆, the photon stream {sBi }S
B

i=1 is

shifted in time to the corresponding stream {s̃Bi }S
B

i=1, where s̃Bi = sBi −∆. The right and

left ∆-portions of the streams {sAi }S
A

i=1 and {s̃Bi }S
B

i=1, respectively, are then cut out to ensure

that both streams occur within the same time interval. We denote the differences between

two consecutive arrival times by dA = {dAi }D
A

i=1 and dB = {dBi }D
B

i=1, where dAi = sAi+1 − sAi

and dBi = sBi+1 − sBi , respectively.

5.3.1 IPE1

We aim to find a probabilistic model that maximizes the probability P (dA, dB|λ(s)).

Assuming that streams A and B are independent, we have

P (dA, dB|λ(s)) =
DA
∏

i=1

P (dAi |λ(sAi ))
DB
∏

i=1

P (dBi |λ(sBi )), (5.25)

where

P (d|λ) = λe−λd. (5.26)

As in the previous model, we impose a kernel based model on the common rate function1

λ(s) =
J
∑

j=1

wjKg(s; cj, ro) = w⊺Kg(s; c, ro), (5.27)

with kernels of width ro, centered at cj, j = 1, 2 . . . J and the J free parameters wj

collected in vector w. Kg(s; c, ro) is a vector of kernel evaluations Kg(s; cj, ro) at all

centers of c = (c1, c2, ..., cJ).

1In the experiments, we almost never encountered the solution with negative values of λ. Therefore,
to simplify presentation, we do not apply the transformation function Ψ.
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Using (5.26), we obtain

P (dA, dB|λ(s)) =
DA
∏

i=1

λ(sAi )e
−λ(sAi )dAi

DB
∏

i=1

λ(sBi )e
(−λ(sBi )dBi ). (5.28)

The error functional (taking the negative log-likelihood of (5.28)) is

E = −ΣDA

i=1(log λ(s
A
i )− λ(sAi )d

A
i )− ΣDB

i=1(log λ(s
B
i )− λ(sBi )d

B
i ). (5.29)

We minimize E(w) via gradient descent,

w(m+ 1) = w(m)− γ1
∂E

∂w
, (5.30)

where γ1 > 0 is the learning rate controlling the step size and

∂E

∂w
= −

DA
∑

i=1

Kg(s
A
i ; c, ro)

w⊺Kg(sAi ; c, ro)
− dAi Kg(s

A
i ; c, ro)

−
DB
∑

i=1

Kg(s
B
i ; c, ro)

w⊺Kg(s
B
i ; c, ro)

− dBi Kg(s
B
i ; c, ro). (5.31)

5.3.2 IPE2

In this approach, we performed gradient descent not only on the model parameters w,

but also on the delay ∆. In this case we do not need to cut the photon streams. For

presentation simplicity, we will still use the notation dA = {dAi }D
A

i=1 and dB = {dBi }D
B

i=1 for

the inter-arrival times.

Again, our goal is to find a a probabilistic model that maximizes the probability P (dA, dB|λ(s))

P (dA, dB|λA(s), λB(s)) =

DA
∏

i=1

P (dAi |λA(si;w))

DB
∏

i=1

P (dBi |λB(si;w,∆)) (5.32)

We impose a kernel based model on the common rate function (expressed for stream
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A):

λA(s) =

J
∑

j=1

wjKg(s; cj, ro) = w⊺Kg(s; c, ro). (5.33)

We suppose that the rate function of stream B is a time-delayed (by ∆) version of the

one for stream A:

λB(s) =

(

J
∑

j=1

wjKg(s; cj −∆, ro)

)

= w⊺Kg(s; c−∆, ro), (5.34)

using (5.26), we obtain

P (dA, dB|λA(s), λB(s)) =

DA
∏

i=1

λA(si)e
−λA(si)d

A
i

DB
∏

i=1

λB(si)e
−λB(si)d

B
i , (5.35)

leading to the error functional

E = −
DA
∑

i=1

(log λA(si)− λA(si)d
A
i )−

DB
∑

i=1

(log λB(si)− λB(si)d
B
i ). (5.36)

We will minimize E w.r.t two parameters (w,∆). To that end we plug (5.33) and

(5.34) into (5.36):

E = −
DA
∑

i=1

(

log

J
∑

j=1

wjKg(s
A
i ; cj, ro)− dAi

J
∑

j=1

wjKg(s
A
i ; cj, ro)

)

−
DB
∑

i=1

(

log
J
∑

j=1

wjKg(s
B
i ; cj −∆, ro)− dBi

J
∑

j=1

wjKg(s
B
i ; cj −∆, ro)

)

.

(5.37)

We have,

∂E

∂w
= −

DA
∑

i=1

(

Kg(s
A
i ; c, ro)

w⊺Kg(sAi ; c, ro)
− dAi Kg(s

A
i ; c, ro)

)

−
DB
∑

i=1

(

Kg(s
B
i ; c−∆ · 1, ro)

w⊺Kg(sBi ; c−∆ · 1, ro)
− dBi Kg(s

B
i ; c−∆ · 1, ro)

)

, (5.38)
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where 1 is a vector of 1’s and

∂E

∂∆
= −

DB
∑

i=1

(

1
J
∑

j=1

wj exp

{

−(sBi −(cj−∆))2

2r2o

}

J
∑

j=1

wj exp

{−(sBi − (cj −∆))2

2r2o

}−2(sBi − (cj −∆))

2r2o

− dBi

J
∑

j=1

wj exp

{−(sBi − (cj −∆))2

2r2o

}−2(sBi − (cj −∆))

2r2o

)

(5.39)

Finally ∆ is updated as follows:

∆(m+ 1) = ∆(m)− γ2
∂E

∂∆
(5.40)

where γ2 > 0 is the learning rate and w is updated using (5.30) and (5.31).

5.3.3 IPE3

Finally, in the last variation of our method (IPE3) we optimize E w.r.t the model param-

eters, delay and kernel band-width ro.

∂E

∂ro
= −

DA
∑

i=1

1
J
∑

j=1

wj exp

{

−(sAi −cj)2

2r2

}

J
∑

j=1

wj exp

{−(sAi − cj)
2

2r2

}

(sAi − cj)
2

r3

− dAi

J
∑

j=1

wj exp

{−(sAi − cj)
2

2r2

}

(sAi − cj)
2

r3

−
DB
∑

i=1

1
J
∑

j=1

wj exp

{

−(sBi −(cj−∆))2

2r2

}

J
∑

j=1

wj exp

{−(sBi − (cj −∆))2

2r2

}

(sBi − (cj −∆))2

r3

− dBi

J
∑

j=1

(wj exp

{−(sBi − (cj −∆))2

2r2

}

(sBi − (cj −∆))2

r3
.

(5.41)
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updated as follows

r(m+ 1) = r(m)− γ3
∂E

∂r
(5.42)

where γ3 > 0 is the learning rate. w is updated according to (5.30) and(5.31) where ∆ is

updated according to (5.39) and (5.40).

5.3.4 Gradient descent parameters

The values of our learning rates γ1 (5.30) , γ2 (5.40) and γ3 (5.42) are chosen based on

previous preliminary experiments where we tested a range of values for each parameter.

In these experiments, we started by optimizing our models with large learning rates (e.g.

0.1), and then progressively reducing these rates, by an order of magnitude ( 0.01, then

0.001, 0.0001, etc.). We selected the values that seem to be causing E -(5.29) and (5.36)-

to decrease rapidly. For the final experiments (Section 5.6), we set γ1 , γ2 and γ3 to 10−6,

10−4 and 10−5 respectively. For convergence condition, we used an automatic test that

declares convergence if E decreases by less than a small number ǫ in one iteration. In

other words, if E goes below a small number ǫ, we stop and declare convergence. The

value of ǫ is chosen based on previous preliminary experiments where we tested a range

of values for ǫ. For the final experiments (Section 5.6), we set ǫ to 0.1. Examples of

parameters estimation using Gradient descent algorithms for IPE1, IPE2 and IPE3 are

shown in Figure 5.1.

5.4 Parameters Initialization

In this section we describe in detail how the free parameters of the proposed methods are

initialized.
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Figure 5.1: Examples of parameters estimation using Gradient descent algorithm: (a)
IPE1, (b) IPE2 and (c) IPE3.

5.4.1 Kernel parameters

Gaussian kernels have two parameters that need to be determined, in particular kernel

centers {cj}Jj=1 and the kernel width r. We use three approaches to position the kernels:

• for KRE, kernels are centered at each photon’s arrival time.

• for PPE, kernels are centered at each bin center.

• for IPE, the centers cj are uniformly distributed across the time period [0, T ].

The kernel width determines the degree of smoothing for the underlying rate function.

For KRE, we apply a method for selecting the width based on the principle of minimizing
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the mean integrated square error (MISE) proposed by [120]. In this method, given a time

delay ∆, the photon streams A and B are first superimposed into a single stream {si}.

The optimal band-width value r is then found by minimizing

C(r) =
1

22

∑

i,j

F(si, sj)−
2

22

∑

i 6=j

Kr(si − sj)

where

F(si, sj) =
∫ b

a

Kr(s− si)Kr(s− sj) ds

and

Kr(s) =
1√
2πr

exp

{

− s2

2r2

}

.

To find the kernel width (and bin size) rb in PPE, the ‘optimal’ bin width selection

method proposed by [119] summarized in Algorithm 3.
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Algorithm 3 A method for the bin width β selection ([119]).

1: for all βi ∈ (Lβ , Uβ) do

2: Divide the observation period T into Nβ bins of width β

3: Count the number of arrivals ki from stream A and B that enter the ith bin.

4: Calculate the mean and of the arrivals count ki as follows

k̄ =
1

Nβ

Nβ
∑

i=1

ki

5: Calculate the variance of the arrivals count ki as follows

var =
1

Nβ − 1

Nβ
∑

i=1

(ki − k̄)
2

6: Calculate the cost function

C(β) =
2k̄ − var

(2β)2

7: end for

8: β ← argminβi
(C)

The algorithm needs a search range [Lβ , Uβ] for bin width β. We determine this

interval by finding the minimum of (5.14) for a series of trial values of rb = β. The search

interval [Lβ , Uβ] then corresponds to the largest stable delay estimation region of β values

- i.e., the interval of β values for which the estimated delay ∆ does not change (see Figure

5.2).

For IPE models, kernel width ro is optimized using cross validation algorithm (CVA)

[24, 48]. The algorithm partitions the data into 10 blocks of equal length L. The i-th

validation set V i, i = 1, 2 . . .L, is obtained by collecting the i-th element of each block.

The rest of the data is the “training set”. We then fit our models on the training set

and use the validation set V i to calculate the cost function E over a range of suggested

width values ro ∈ (Lro , Uro). This procedure is repeated L times for each validation set

V i, i = 1, 2 . . .L. The chosen ro is the one yielding the smallest average cost E across the
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plotted; ∆ = [10, 40] with 1 unit increment; The range is at β ∈ [21, 32].

folds i = 1, 2 . . .L.

5.4.2 IPE parameter initialization using KRE1

The IPE weight vector w is initialized using the rate function estimates readily provided

by the KRE1 model. However, the rate functions obtained by KRE1 on streams A and

B need to be scaled to represent the underlying rate of the non-homogeneous Poisson

process. Note that for the delay detection task for which the KRE1 method is used, no

such scaling was needed - the delay is invariant to scaling the estimated rate functions

by the same factor. In contrast, the IPE methods need to operate with the non-scaled

estimates of the true rate function.

Given the KRE1-estimated rate functions on streams A and B, λ̂A(s), λ̂B(s), respec-

tively, the overall KRE1 rate function is their average

λ̂(s) =
λ̂A(s) + λ̂B(s)

2
. (5.43)
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The scaling factor ϑ is obtained as follows: By imposing the rate function

λ(s) = ϑλ̂(s) (5.44)

the ϑ value is found using maximum likelihood (minimizing negative log-likelihood) see

(5.29) in Section (5.3.1) on page 69. By replacing λ(s) with ϑλ̂(s) in (5.29), we have,

E = −
DA
∑

i=1

(log(ϑλ̂(sAi ))− ϑλ̂(sAi )d
A
i )−

DB
∑

i=1

(log(ϑλ̂(sBi ))− ϑλ̂(sBi )d
B
i ) (5.45)

with

∂E

∂ϑ
= −

DA
∑

i=1

(
λ̂(sAi )

ϑλ̂(sAi )
− λ̂(sAi )d

A
i )−

DB
∑

i=1

(
λ̂(sBi )

ϑλ̂(sBi )
− λ̂(sBi )d

B
i ). (5.46)

Denoting λ̂(sAi )d
A
i and λ̂(sBi )d

B
i by qAi and qBi , respectively, we obtain

∂E

∂ϑ
=

1

ϑ

(

−
DA
∑

i=1

(1− ϑqAi )−
DB
∑

i=1

(1− ϑqBi )
)

=
1

ϑ

(

−DA + ϑ
DA
∑

i=1

qAi −DB + ϑ
DB
∑

i=1

qBi

)

. (5.47)

Setting the derivative to zero, we get

ϑ =
DA +DB

DA
∑

i=1

qAi +
DB
∑

i=1

qBi

. (5.48)

Setting of IPE weights to match the rate function λ(s) can then be done by imposing

a regular (s1, s2, ..., sN) grid on [0, T ], evaluating the rate values on the grid,

x = (λ̂(s1), λ̂(s2) . . . λ̂(sN))
⊺, (5.49)

and solving

w = K⊺+x, (5.50)
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where K is an N ×N matrix

K = [Kg(s1; c, ro), Kg(s2; c, ro), . . .Kg(sN ; c, ro)] . (5.51)

and K⊺+ is the Moore-Penrose pseudo-inverse1 of K⊺.

5.5 Data

To test and compare different methodologies suggested above, we performed controlled

experiments on synthetic data generated from non-homogeneous Poisson processes. From

each given non-homogeneous Poisson process we generated two series A and B of arrival

times, the series B was then time-shifted by a known delay.

The rate functions defining non-homogeneous Poisson processes were obtained by su-

perimposing G Gaussian functions of fixed width rg positioned on a regular grid {cg}Gg=1

in [0, T ],

λ(s) =
G
∑

g=1

wg · exp
{−(s− cg)

2

2r2g

}

, (5.52)

where wg ∈ R are the mixing weights generated randomly from uniform distribution on

[Lw, Uw]. The kernel widths were set to a multiple of the kernel separation (distance

between the two consecutive kernel centers) dg, rg = αg · dg. We used T = 400, G = 80,

αg = 3, Lw = −1 and Uw = 1. The synthetic rate functions were then rescaled to the

interval [0, 2]. Figure 5.3 shows examples of rate functions created using the method

outlined above.

1In case of ill-conditioned K one can use e.g. SVD decomposition to regularize the matrix inversion.
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Figure 5.3: Examples of randomly generated rate functions.

Given a rate function λ(s), the arrival times were generated using the Thinning tech-

nique [10, 34, 68, 112, 121] summarized in Algorithm 4. An example of the resulting

stream is shown in Figure 5.4.

Algorithm 4 Thinning technique algorithm. Source [34].

1: Start with s = 0 and repeat until the end of period T is reached.

2: Set ω = supt≥s λ(s).

3: Generate a realization d from exponential distribution with mean ω−1.

4: Generate a realization u from uniform distribution over (0, 1).

5: If u ≤ λ(s+ d)/ω, the next arrival time is s+ d; otherwise s← s+ d and go to (2).

Using this process, we generate two photon streams from the same rate function: {sAi }
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Figure 5.4: An example of a test rate function and the corresponding photon stream.

and {sBj }, i = 1, 2, · · · , SA and j = 1, 2, · · · , SB. To create a pair of time shifted streams,

sB is shifted in time by a delay ∆ > 0

sBi ← sBi +∆, ∀i = 1, 2, · · · , SB (5.53)

To prepare the streams for experiments, we cut the two streams to ensure they have the

same start and end point in time. Figure 5.5 shows an example of the data generation

and preparation process.

5.6 Experiments

We performed experiments on synthetic data sets described in Section 5.5. In the ex-

periments we compared our models: PPE and IPEs introduced in Sections 5.2 and 5.3

respectively, with baseline KRE1 and KRE2 (see Section 5.1).

We performed controlled experiments where 100 test rate functions were generated

as described in Section 5.5. For each test rate function we imposed four delay values
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Figure 5.5: An example of the data generation and preparation process.

∆ ∈ {20, 22, 25, 28}, resulting in 400 individual experiments. The time delay trial values

were taken from the interval [10, 40] with increments of 1.

For each model and each imposed delay ∆ ∈ {20, 22, 25, 28}, we report the mean

µ and standard deviation σ of the maximum-likelihood delay estimates
{

∆̂i

}100

i=1
across

the set of 100 test rate functions. We also report the mean absolute error (MAE) of

the delay estimates and the 95% Credibility Interval (CI). A summary of the results is

presented in Figure 5.6 and Tables 5.1, 5.2, 5.3 and 5.4. Furthermore, we produced a

global report of the standard deviation, MAE and CI range of the delay estimates across

all 400 experiments in Table 5.5.
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Figure 5.6: Results of experiments across different values of true delay: (a) 20, (b) 22, (c)
25 and (d) 28. ∆ = [10, 40] with increments of 1.

Table 5.1: Statistical analysis of delay estimates. True delay = 20. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 1.

Method µ±σ MAE CI range 95% CI
KRE1 20.78±4.11 3.08 0.81 [19.97,21.59]
KRE2 20.76±4.11 3.10 0.81 [19.95,21.57]
PPE 22.31±9.69 8.25 1.90 [20.41,24.21]
IPE1 20.65±5.68 4.25 1.11 [19.54,21.76]
IPE2 20.65±4.16 3.12 0.82 [19.83,21.47]
IPE3 20.65±4.16 3.12 0.82 [19.83,21.47]

In order test the performance of all methods in the cases when trial delay values are

not rightly specified, we performed controlled experiments on the same test rate functions

but this time the delay trial values were taken from the interval [10, 40] with increments
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Table 5.2: Statistical analysis of delay estimates. True delay = 22. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 1.

Method µ±σ MAE CI range 95% CI
KRE1 22.53±4.14 3.19 0.81 [21.72,23.34]
KRE2 22.54±4.15 3.20 0.81 [21.73,23.35]
PPE 23.78±10.64 9.44 2.09 [21.69,25.87]
IPE1 22.43±6.14 4.79 1.20 [21.23,23.63]
IPE2 22.44±4.17 3.21 0.82 [21.62,23.26]
IPE3 22.44±4.17 3.21 0.82 [21.62,23.26]

Table 5.3: Statistical analysis of delay estimates. True delay = 25. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 1.

Method µ±σ MAE CI range 95% CI
KRE1 25.59±4.15 3.23 0.81 [24.78,26.40]
KRE2 25.59±4.12 3.21 0.81 [24.78,26.40]
PPE 24.14±10.68 9.40 2.09 [22.05,26.23]
IPE1 24.93±5.34 4.17 1.05 [23.88,25.98]
IPE2 25.54±4.17 3.25 0.82 [24.72,26.36]
IPE3 25.54±4.17 3.25 0.82 [24.72,26.36]

Table 5.4: Statistical analysis of delay estimates. True delay = 28. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 1.

Method µ±σ MAE CI range 95% CI
KRE1 28.46±4.08 3.24 0.80 [27.66,29.26]
KRE2 28.45±4.06 3.22 0.80 [27.65,29.25]
PPE 25.20±10.07 8.88 1.97 [23.23,27.17]
IPE1 28.08±5.06 4.00 0.99 [27.09,29.07]
IPE2 28.44±4.09 3.25 0.80 [27.64,29.24]
IPE3 28.44±4.09 3.25 0.80 [27.64,29.24]

Table 5.5: Overall results across all true delay values where the time delay trial values
were taken from the interval [10, 40] with increments of 1.

Method σ MAE CI range
KRE1 5.05 3.19 0.49
KRE2 5.04 3.18 0.49
PPE 10.29 8.99 1.01
IPE1 6.21 4.30 0.61
IPE2 5.09 3.21 0.50
IPE3 5.09 3.21 0.50
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of 10. A summary of the results is presented in Figure 5.7 and tables 5.6, 5.7,5.8 and

5.9. A global report of the standard deviation, MAE and CI range of the delay estimates

across all 400 experiments in table 5.10.
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Figure 5.7: Results of experiments across different values of true delay: (a) 20, (b) 22,
(c) 25 and (d) 28. The time delay trial values were taken from the interval [10, 40] with
increments of 10.

We also performed The Wilcoxon Rank-Sum Test on time delay estimates from selected

methods, namely KRE2 and IPE2. The test suggests that the results from KRE2 are

more statistically significant than IPE2 only when the time delay trial values were taken

from the interval [10, 40] with increments of 10. Examples of reconstructions on test rate

functions using KRE1, PPE and IPE1 are shown in Figure 5.8.

Finally, to illustrate robustness of the delay estimators, we plot in Figure 5.9 the values
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Table 5.6: Statistical analysis of delay estimates. True delay = 20. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 10.

Method µ±σ MAE CI range 95% CI
KRE1 21.00±3.89 1.60 0.76 [20.24,21.76]
KRE2 21.20±3.81 1.87 0.75 [20.26,21.76]
PPE 22.10±10.47 8.20 2.05 [19.15,23.25]
IPE1 22.10±6.40 3.30 1.25 [20.85,23.35]
IPE2 20.88±3.93 1.73 0.77 [20.11,21.65]
IPE3 20.88±3.93 1.73 0.77 [20.11,21.65]

Table 5.7: Statistical analysis of delay estimates. True delay = 22; The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 10.

Method µ±σ MAE CI range 95% CI
KRE1 22.50±4.58 3.66 0.90 [21.60,23.40]
KRE2 22.68±4.50 3.49 0.88 [21.80,23.56]
PPE 22.50±10.86 9.18 2.13 [20.37,24.63]
IPE1 23.10±5.98 4.50 1.17 [21.93,24.27]
IPE2 22.40±4.61 3.74 0.90 [21.50,23.30]
IPE3 22.40±4.61 3.74 0.90 [21.50,23.30]

Table 5.8: Statistical analysis of delay estimates. True delay = 25. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 10.

Method µ±σ MAE CI range 95% CI
KRE1 25.60±5.92 5.50 1.16 [24.44,26.76]
KRE2 25.44±5.70 5.09 1.12 [24.32,26.56]
PPE 26.10±12.05 11.00 2.36 [23.74,28.46]
IPE1 25.20±6.43 5.80 1.26 [23.94,26.46]
IPE2 25.55±5.96 5.54 1.17 [24.38,26.72]
IPE3 25.55±5.96 5.54 1.17 [24.38,26.72]

of E for KRE1, PPE and IPE1 methods, for suggested delays 10, 11, ..., 40, with the true

imposed delay set to 20 for one the test rate functions. This picture represents a fairly

typical situation - the PPE method suffers from the highest bias, while KRE1 and IPE1

point to a neighborhood of the right delay. Typically, the dip in E around delay of 20

was sharper (more confident estimation) for the IPE1 method than for KRE1. On the

other hand, the KRE1 method usually suffers less from local optima. Since the IPE1

method initializes the weights and delay from KRE1, the estimated KRE1 delay typically
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Table 5.9: Statistical analysis of delay estimates. True delay = 28. The results for each
method are averaged over 100 test rate functions. The time delay trial values were taken
from the interval [10, 40] with increments of 10.

Method µ±σ MAE CI range 95% CI
KRE1 28.60±4.27 3.32 0.84 [27.76,29.44]
KRE2 28.56±4.30 3.27 0.84 [27.72,29.40]
PPE 26.70±12.23 10.94 2.40 [24.30,29.10]
IPE1 28.60±5.51 3.92 1.08 [27.52,29.68]
IPE2 28.58±4.32 3.34 0.85 [27.73,29.43]
IPE3 28.58±4.31 3.34 0.84 [27.74,29.42]

Table 5.10: Overall results across all true delay values where the time delay trial values
were taken from the interval [10, 40] with increments of 10.

Method σ MAE CI range
KRE1 5.54 3.52 0.54
KRE2 5.43 3.43 0.53
PPE 11.62 9.83 1.14
IPE1 6.56 4.38 0.64
IPE2 5.60 3.59 0.55
IPE3 5.60 3.59 0.55

positions IPE1 in a local neighborhood of the true delay value.

5.6.1 Sensitivity to baseline intensity and variability of rate
function

In this Section we test the sensitivity of the studied methods with respect to two factors

related to the test rate functions:

1. Baseline intensity - the test rate functions λ(s), originally in the range [0, 2], are

shifted by a constant S ∈ [0, 2], λ(s)← λ(s)+S. Increasing baseline intensity S can

potentially mask the underlying rate function variability (as implicitly represented

by the structure of arrival times) and thus destabilize the delay estimations.

2. Variability - increasing the number G of kernels when constructing test rate func-

tions will in general increase their variability. For lower number of Gaussians the

rate functions will be more “rigid”, potentially preventing effective detection of the

imposed delay, especially if the delay is small relative to the variability scale of the
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Figure 5.8: Examples of reconstructions on test rate functions.

rate function. On the other hand, if the rate functions vary fast, the delay estimation

can be hampered by the fact that the highly varying nature of the rate functions

will not be adequately reflected in the arrival time structure.

Recall that in the previous experiments, the test rate functions were generated using

G = 80 Gaussian kernels with a fixed scale (distance between consecutive centers) of 5

units. We will now use G ∈ {40, 100, 400, 800} Gaussian kernels. As before, the kernels

are regularly distributed in the time period from [0, 400] with interval 400/G. We also

shift the test rate functions (scaled to [0, 2] by S ∈ {0, 0.5, 1, 2}. The imposed delay

was ∆ = 20. The results are shown in Figure 5.10. Each plot depicts the average delay

estimated over 100 pairs of streams and the error bars represented as 95% confidence
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Figure 5.9: E versus ∆ for: (a) KRE1, (b) PPE and (c) IPE1.

intervals.

The results indicate that for our setting the optimal rate variability corresponds to

100–400 kernel positions and that the methods, apart from PPE, are reasonably robust

with respect to increasing baseline rate intensity. This shows the advantages of using

KRE1 in parameters initialization for IPE methods.

5.7 Summary

We proposed a more principled delay estimation relied on imposing a single latent non-

homogeneous Poisson process underlying the lensed photon streams. The rate function
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Figure 5.10: Results of the experiments of sensitivity to baseline intensity and variability
of rate function. Each plot depicts the average delay estimated over 100 pairs of streams
and the error bars represented as 95% confidence intervals for: (a) KRE1, (b) KRE2, (c)
PPE, (d)IPE1, (e) IPE2 and (f) IPE3.
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model was formulated as a linear combination of nonlinear basis functions. We tested

this idea in two scenarios - Poisson Process Based Estimation (PPE) and Innovation Pro-

cess Based Estimation (IPE1, IPE2 and IPE3). In addition, we formulated two baseline

methods, KRE1 and KRE2, based on kernel estimation of the rate function of non-

homogeneous Poisson process. KRE1 and IPE1 formulation needs a range of suggested

trial delays, while KRE2, IPE2 and IPE3 optimize for the delay internally through gra-

dient descent. The IPE3 method optimizes for the kernel width as well using gradient

descent while IPE1 and IPE2 use cross-validation for kernel width optimization. We per-

formed controlled experiments on synthetic photon fluxes with known imposed delay in

order to compare the baseline with the principled delay estimation methods. We did not

perform experiments on real data, since no large real photon streams from known delayed

systems with short time delay are available.
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CHAPTER 6

CONCLUSIONS

In this chapter we present the general and final conclusions in Sections 6.1 and 6.2.

In Section 6.3, we discuss some possible application areas for our methods proposed in

Chapter 4 and 5. Finally we briefly introduce some ideas for future research directions in

Section 6.4.

6.1 Delay Estimation in Gravitationally Lensed Fluxes

We have introduced a new probabilistic efficient model-based methodology for estimating

time delays between two gravitationally lensed images of the same variable point source.

The method enables one to use directly the noise levels reported for individual flux mea-

surements. It is more robust to observational gaps than purely ‘unmodeled’ techniques,

since the imposition of an identical smooth model behind multiple lensed fluxes effectively

regularizes the overall model fit, and consequently, the time delay estimate itself. Methods

such as these will be useful in the automated search for time-delay systems as well as in

the accurate measurement of delays in targeted systems in future very large time-domain

surveys such as those planned for the LSST (e.g. [52, 69]).

The methods were tested and compared in two experimental settings. In the realistic

setting the synthetic data were generated so that multiple aspects of the real data were

preserved: noise-to-observed flux ratio, observational gap size distribution and the inter-
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gap interval distributions. The core synthetic signals were generated from a GP fitted to

the real data. In the larger controlled experimental setting the signals generated from the

GP were subject to controlled levels of observational noise and gap sizes. Our method,

while being computationally efficient, showed robustness with respect to noise levels and

observational gap sizes.

We also applied our method to real observed optical and radio fluxes from quasar

Q0957+561 as a combined data set. Of course, with real data one can estimate the

variance of the estimator estimations, but never the bias, since the true time delay for

Q0957+561 is not known. Our NWE estimator on the combined optical and radio data

suggests a delay of approximately 420 days; however, we find that different estimators

produce inconsistent results, indicating the presence of statistical or systematic measure-

ment errors in the data in excess of the claimed measurement uncertainty. In particular,

the impact of microlensing corrections was not accounted for in this thesis, and needs to

be quantified in the future.

6.2 Delay Estimation in Gravitationally Lensed Pho-

ton Streams

We tested whether a more principled treatment of delay estimation in lensed photon

streams, compared with the standard kernel estimation method, can have benefits of a

more accurate (less biased) and/or more stable (less variance) estimation. In particular,

we formulated two baseline methods, KRE1 and KRE2, based on kernel estimation of the

rate function of non-homogeneous Poisson process. Unlike KRE1, KRE2 does not have

to rely on the rightly specified trial delay values. Instead, the delay estimate is refined

using gradient descent in the delay parameter on the error functional.

A more principled delay estimation relied on imposing a single latent non-homogeneous

Poisson process underlying the lensed photon streams. The rate function model was

formulated as a linear combination of nonlinear basis functions, thus making the non-linear
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model linear in the mixing parameters. We tested this idea in two scenarios - Poisson

Process Based Estimation (PPE) and Innovation Process Based Estimation (IPE1, IPE2

and IPE3). As KRE1, the IPE1 formulation needs a range of suggested trial delays, while

IPE2 optimizes for the delay internally through gradient descent. In addition, the IPE3

method optimizes for the kernel width using gradient descent (unlike IPE1 and IPE2 that

use cross-validation).

Somewhat surprisingly, the overall emerging picture is that the theoretically more

principled methods do not bring much practical benefit in terms of the bias/variance

of the delay estimation. This is in contrast to our previous findings on daily flux data

[2, 24, 25]. It appears that the fact that underlying latent rate function is represented only

implicitly through the streams of arrival times weakens the stabilizing factor of the single

unified intensity function that proved so useful in the case of daily flux data [2, 24, 25].

Indeed, in that case, knowing the amount of observational noise and observing noisy flux

levels gave much better clues as to what the common source variability could be, thus

stabilizing the delay estimation. Nevertheless, we propose that a study of the kind is useful

and necessary for future developments of alternative methods for time delay estimation

in lensed photon streams.

6.3 Applications

An accurate estimation of the time delay between two gravitationally lensed fluxes can

be used to measure the parameters of the universe such as the Hubble constant, and the

expansion rate, which used to predict the age and future of the universe. It also indicates

the distribution of matter in the universe and, therefore, it is considered to be the most

direct way to measure the matter in the universe. The proposed methodology in this

thesis (see Chapters 4 and 5) can be successfully applied to real world problems such as

the gravitational lensing phenomenon or to any other quasars. This is an active area of

research in astrophysics, especially in view of the upcoming surveys such as Large Synoptic
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Survey telescope (LSST), which will provide unprecedented data sets with strongly lensed

distant quasars.

Problems with irregularly sampled noisy data can be found in all research areas. The

proposed methods in Chapter 4 are able to cope with the inevitable noise and gap features

of the data. In general these methods can be applied in any other scenarios involving

similar time series data that are delayed or corrupted by gaps and noise where the source

is represented by a hidden underlying function.

6.4 Future work

Many research directions arise in this area. In this section we will introduce some ideas

of possible extensions for the current work.

6.4.1 Delay estimation in gravitationally lensed fluxes

As mentioned in the discussion of Chapter 4, we find that estimates using different fre-

quency estimates on Q0957+561 data appear to be inconsistent even when the same

method is used. This suggests that, there may be unmodeled systematics (e.g., micro-

lensing) that lead to varied biases for different analysis techniques. Therefore, studying

the effect of micro-lensing is a research direction to follow. Another research direction is

Supernova modeling and effect since supernova events can cause multiple time delays for

the same quasar.

6.4.2 Delay estimation in gravitationally lensed photon streams

We will test our methods on real data when it is made available to us by the astronomers

and comparing the results to the ones obtained by other researchers on the same data

sets. Prior information from real data can also be incorporated to improve our models.
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