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Abstract 

 
Many Sub-Saharan African economies experienced high growth rates over the last decade, a 

welcome change from the depression and stagnation which characterized them during the 1980s 

and 1990s. However, improved economic performances were mostly driven by an increase of 

both price and demand for the natural resources of which the continent is rich, so that these 

growth rates were not associated with a significant increase in industrial diversification. The 

poor quality of the power infrastructure of many African economies represents one of the major 

obstacles to their structural transformation. In this thesis we investigate the effects of an 

unstable power supply on the profitability of Sub-Saharan African firms. To avoid estimation 

issues related to the possible endogeneity of the relationship between power supply and 

productivity we develop an instrument based on the water available for hydropower production. 

Our results show that frequent power outages are indeed a very significant drag on firms’ 

performance, much more so for firms without access to back-up capacity than for the overall 

sample. The final part of the thesis also investigates the general relationship between 

hydropower production and economic activity in Sub-Saharan Africa through the use of night-

light data. 
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1 
 

Introduction. 

 
The prospects for a successful development of many economies in the African continent, 

especially in Sub-Saharan Africa (SSA), are definitely brighter today than they were at the 

beginning of the century. The gross domestic product (GDP) of the region doubled since 2000, 

experiencing an average growth rate of 5% during the period 2008-2015 and six of the fastest 

growing economies on the planet over the period 2014 to 2017 are prospected to be African 

(IMF 2015, World Bank 2016). Significant progresses have also been made in primary 

enrolment and completion rates; in reducing child mortality, in improving the quality of 

maternal health, in the incidence of HIV/AIDS and malaria and in the accessibility of 

information and communication technologies (IMF 2015, UNECA 2015). The combination of 

these factors, together with a slow-down of the economic performances of many high-income 

countries, which were more affected by the financial crises of 2008-2009 than most SSA 

economies, has led to a growing narrative of “Africa on the rise”. 

 

Although all the above achievements are not to be diminished and surely offer a more fertile 

ground for more to come, they do not represent the full picture of the socio-economic situation 

in the continent nor are easily sustainable in the long run, as the GDP growth of 3.4% in 2015 

demonstrates (IMF 2016). The impressive growth rates of the last decade were mostly driven 

by a combination of high prices and strong international demand for many of the commodit ies 

in which the continent is rich. The excessive reliance of many SSA economies on their resource 

endowment has been a source of concern for a long time. Although primary commodities have 

played an important role in the development of many industrialised countries, strategies to 
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develop industrial forward linkages in these sectors have often required intense government 

involvement and capability, and changes due to the increasing financialisation of commodity 

markets and to innovations in global value chains’ structure have only complicated the picture 

(Hirschman 1958, UNECA 2013). 

 

The nature of the sectors driving economic growth has deep implications for the characterist ics 

of the development path which a country will follow. Primary commodity sectors tend to be 

more capital than labour intensive, especially mineral and oil extraction, and normally generate 

limited value added. The marked relevance of these sectors in bringing about the recent growth 

across SSA offers a first explanation of its almost jobless nature: between 2001 and 2013 the 

percentage of Sub-Saharan Africans in vulnerable employment decreased by only 2.3%, 

standing at a level of 77.4%. Given the demographic structure of the continent and the 

impressive population growth rates in most countries, which have led the population to increase 

from 642 million in 2000 to 912 million in 2013, the creation of more decent employment 

opportunities is vital (ILO 2014). An increasing population also contributes to explain the less 

impressive performance of the region in terms of per capita GDP growth, which averaged at 

2.09% for the period 2001-2014 (which contrasts with an average of 7.71% in the East Asia-

Pacific region, UNECA 2016b). 

 

It is then clear that efforts towards a continuing structural transformation of most SSA 

economies have to be sustained, and indeed this has been the focus of many of the continents 

policy makers and of many international development organizations (UNECA 2011, 2013, 

2014, 2016a). Historically, the sectors which offered the greatest contribution to sustained and 
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economy-wide growth tend to have been within manufacturing, and surely it does not bode well 

that the contribution of manufacturing to economic output in the continent has declined by 1.5% 

between 1980 and 2013. Similarly, value added in most African manufacturing sectors is only 

half of what it was in East Asia when most of its countries reached lower-middle income status 

and in 2010 95% of SSA population, excluding South Africa, had a manufacturing value added 

of less than 100$ per capita (against 622$ in Brazil and 820$ in China, UNECA 2016b). 

 

Although the specific industrial policies which might help SSA countries to achieve a more 

balanced economic structure necessarily differ along with the national conditions, a common 

constraint across the region is the precarious status of the energy sector. The fact that modern 

energy, and electricity specifically, underpins all industrial activities and that its continuous 

development from the late 19th century onwards has led to tremendous increases in human well-

being hardly needs mentioning (Rosenberg 1998, Elias and Victor 2005). However, there are 

still almost 1.5 billion people on the planet who do not enjoy the contribution of electricity to 

daily life, and approximately half of them (620 million) are located in the African continent 

(IEA 2014). A quick exposition of a few energy statistics might help to illustrate the challenge 

which the fruitful development of the African energy sector still represents. 

 

The installed capacity in the whole of SSA stands today at 90 gigawatt (GW, approximate ly 

half of which is located in South Africa alone), a significant increase from the 68 GW of 2000 

but still significantly less than what would be required to meet demand (IEA 2014). To offer a 

comparison, the United Kingdom has an installed capacity of 80.8 GW. Moreover, a significant 

part of the installed capacity in SSA is not even operational, as many power stations have fallen 
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into disrepair due to a lack of maintenance. Transmission and distribution losses, averaging at 

18% when South Africa is excluded, are more than double the world average, adding a 

significant cost to electricity tariffs which are already amongst the highest in the world. Per 

capita electricity demand, almost unchanged since 2000, is 75% lower than in Asia, and the 

average residential electricity consumption is 317 Kwh (225 Kwh if South Africa is excluded), 

approximately half of that of China or a fifth of Europe. Electricity access varies widely across 

the continent, from a minimum of 3% of the population in Chad to a maximum of 85% in South 

Africa, with urban rates always consistently higher than rural ones. The overall access in the 

region increased from 23% in 2000 to 32% in 2012, with 145 million people being connected 

to the grid. However, as population growth outpaced electrification rates, there are today 100 

million more people without electricity access than there were in 2000 (IEA 2014). 

 

Finding a solution to the long-term under-investment in the power sector has been a priority of 

almost all governments in the continent for at least two decades. Many countries embarked in 

energy sector reforms during the end of the 1990s, as state-owned utilities were 

underperforming from both a technical and a financial perspective and states were unable to 

mobilize the required funds to expand the electricity sector. The most common reforms entailed 

the corporatization of the national utilities, so to improve their financial stance and at least 

theoretically detach tariffs setting decisions from the political process, and the opening of 

electricity markets to independent power producers, so to increase generation capacity, often 

accompanied by the institution of an independent power regulator to increase the investment 

appeal of the sector. Although it must be recognised that reforms have in some cases increased 

the efficiency of electricity markets and independent power producers have given some 

contributions to grid-capacity, neither the ability of the now-commercialized national utilit ies 
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to charge cost-recovery prices nor the amount of transmission and distribution losses have 

changed considerably (AFREPREN 2004, Eberhard et al. 2011).    

 

At the end of the last decade there was still a loud cry for increased infrastructure investment 

in SSA, exemplified by the call for 93 billion dollars per year of investment in the World Bank 

2009 report “Africa’s Infrastructure: A Time for transformation” (Foster and Briceño -

Garmendia 2009). The situation started to improve soon afterwards because of a mixture of 

factors. First, thanks to the commodity boom, and generally to a more stable macroeconomic 

stance and thorough revenue collection, domestic resources increased substantially and 

government expenditure on infrastructure followed, reaching 51.4 billion dollars, or 63% of 

total infrastructure spending, in 2012. Second, the most relevant international and institutiona l 

investors also started to increase their annual commitment to infrastructure development, which 

grew from 5 billion dollar in 2003 to 30 billion in 2012. Private participation in infrastruc ture 

investment also increased by 9.5% per year between 2002 and 2012, and both the World Bank 

and the African Development Bank significantly stepped up their commitment. One of the most 

impressive changes has though been the increased relevance of Chinese investments, which 

now represent around 20% of infrastructure commitment in the continent (Gutman et al. 2015). 

 

Energy infrastructure received a significant share of all the above investme nt, but this is 

especially true for the Chinese commitment, as energy infrastructure received 34% of their 

spending over the period 2005-2012. Chinese companies are involved in projects related to 

generation, transmission and distribution in 37 SSA countries and have secured more than 200 

green-field projects between 2010 and 2020 (counting only those already financially secured), 
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more than half of which have already been completed. Chinese contractors have been 

responsible for connecting more than 7 GW of new generation capacity between 2010 and 2015, 

or 30% of the capacity added in the period. Moreover, 56% of this new generation capacity 

exploits renewable energy sources, predominantly hydro-power, with Chinese companies 

having become the leaders of the sector in Africa, which now represents their most relevant 

export market (IEA 2016).  

 

If the contribution of Chinese companies to the development of the hydropower sector 

represents a recent development, the relevance of this technology in the African portfolio of 

generation capacity is nothing new. Currently there are 20 GW of installed hydropower capacity 

in the continent, making it the most used renewable resource in the continent and the main 

source of power generation for many countries, including the Democratic Republic of Congo, 

Kenya, Mozambique and Uganda to cite just a few. Although hydro-power is characterized by 

a high face-capital requirement, especially in large-scale hydropower plants, it offers the lowest 

average cost of generation amongst all production technologies, renewable or not. 

Notwithstanding the social impact which characterises large dam construction, which has 

received considerable attention in the literature (World Commission on Dam 2000, Duflo and 

Pande 2007), the development of the largely untapped hydropower potential in the continent 

(estimated at 283 GW) is quoted by most funders as one of the main ways to guarantee the 

required boost to the generation capacity of the region without contributing to the ever-

increasing carbon emissions, of which the energy sector is one of the main contributors. 
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However, while hydropower is seen as part of the solution to climate change, the generation of 

hydroelectricity in Africa is dependent upon a stable and predictable climate. The continent is 

already experiencing significant climate related stresses, amongst which reduction in surface 

run-off, increased competition for water resources and frequent floods coupled with an increase 

in the incidence and length of warm spells and droughts. The relevance of these factors varies 

across different SSA regions, but all of them are directly or indirectly related to the ability of 

any country to exploit its hydropower resources. Burundi, Ghana, Kenya, Rwanda, Tanzania 

and Uganda all experienced serious issues in meeting energy demand through hydropower 

production during the end of the last decade due to frequent droughts. In 2015 and 2016 rainfa ll 

failures led to a noticeable increase in the frequency of power outages in Zambia, and more 

generally in the Zambezi river basin, in which some hydropower plants are failing to meet the ir 

prospected return on investment. However, as the climate factors influencing hydropower are 

many and the modelling of future changes is subject to uncertainties connected with varying 

climate scenarios, it is unlikely that the role of hydropower in the energy mix of SSA will 

change drastically over the medium period (Niang et al. 2014, Cole et al. 2014, UNECA 2016a). 

 

In this thesis we first investigate the effects of unreliable power supply on the sales performance 

of SSA firms, using hydropower availability for electricity production as an instrument to 

resolve possible problems of endogeneity involved in one-step estimation. Although the 

significant bulk of energy used in SSA is goes to the residential sector (more than 60%, versus 

25% across other developing regions and 20% in OECD countries), the (un)availability of a 

stable electricity supply has a significant impact on all productive sectors. Across SSA, industry 

typically accounts for less employment than agriculture and contributes less to GDP than 

services but absorbs two thirds of the energy directed towards productive uses (with the three 
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of them together accounting on average for 21% of total energy consumption). Frequent power 

outages lead to damages to production equipment and foregone sales, and their overall cost 

across SSA is estimated at as much as 2.1% of GDP and 4.9% of total sales (Eberhard et al. 

2011, IEA 2014). Moreover, as firms have long identified the unreliability of electricity supply 

as one of the main obstacles to their expansion, the relevance of backup generation across the 

continent has increased significantly over the last two decades, representing a significant share 

of the installed capacity in all SSA regions.  

 

The first chapter introduces the most recent World Bank Enterprise Surveys, one of the main 

data sources for the analysis, and develops the Ordinary Least Squares framework which will 

constitute the basis for the successive instrumental variables analysis. The chapter starts with a 

review of both the macroeconomic and the microeconomic literatures connecting infrastruc ture 

development to growth performance, covering the experience of both developed (Aschauer 

1989, Canning and Pedroni 1999 amongst others) and developing countries (from Lee et al. 

1996 to Allcott et al. 2014), including both infrastructure-wide (Escribano et al. 2009. Moyo 

2012a) and sector specific studies (water, Davies et al. 2001, road network, Luo 2004, ICT, Lio 

and Liu 2006). The chapter then continues with a thorough exposition of the firm-level data on 

a continental and country level, confirming both the previous picture of endemic power outages 

(firms from 9 out of the 38 countries in the sample experienced on average more than a 1,000 

hours of power outage per year) and the relevance of generator ownership across firms of all 

sizes and in all countries. The following analysis aims at obtaining a first approximation, still 

possibly influenced by endogeneity issues, of the elasticity of firm’s output to power outages. 

Furthermore, two of the most recent models used in the literature to analyse the determinant s 

of generator ownership in developing countries, that of Foster and Steinbucks (2010) and of 
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Alby, Dethier and Straub (2011), are also applied to the data, so to obtain a better understand ing 

of the current trends in the continent. Our results confirm that power outages are indeed a 

considerable problem for firms in SSA, although particularly so for firms without access to 

backup options, which are unable to shield themselves from the bulk of the negative effects. 

Power outages also appear to be one of the main determinants in a firm’s choice of investing in 

backup generation, although this is also influenced by its access to finance, its export status 

and, to a lesser extent, the relevance of electricity as an input in production. 

 

The most recent literature does however raise serious and well-founded concerns about the 

assumption of an exogenous relationship between the performance of a firm and the quality of 

its energy supply.  For example, a firm’s decision of its initial plant location might be influenced 

by the quality of the nearby energy infrastructure, and more experienced and connected 

managers might gain access to prime locations. Another example of a possible source of 

endogenity are power holidays policies, adopted by many governments in order to ration the 

available electricity between different sectors, which inevitably take into account the relevance 

and contribution of the latter to the national economy. We are then in need of finding a suitable 

instrument, affecting the amount of power supplied but not firms’ performance, and we 

individuate it in the amount of water available for the generation of hydroelectricity, which as 

previously noted is one of the most relevant technologies in the generation portfolio of many 

SSA countries.  

 

The second chapter is therefore dedicated to the exposition of the Geospatial Streamflow Model 

developed by the US Geological Survey, the hydrological model used by the Famine Early 
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Warning System to assess the probability of occurrence of extreme weather events, the main 

cause leading to famine, constituting the basis for the construction of our instrument. After 

reviewing the most recent literature covering the hydrology of the African continent and how 

this is likely to be influenced by climate change, we move onto the assessment of why the 

scarcity of physical information about most African catchment areas makes non-data intens ive 

hydrological models such as the one used in the chapter particularly suited. After a careful 

exposition of the internal mechanics of the model, the chapter continues with the presentation 

of its results for 8 of the 9 main continental basins in Africa1 for the period 2001-2010, includ ing 

a principal component analysis aimed at isolating common hydrological groups. The final part  

of the chapter constitutes a thorough assessment of the reliability of the model’s results through 

their comparison with the historical records for 440 gauge stations, available through the Global 

Runoff Data Centre (GRDC) of the German Institute for Hydrology. This investigation, based 

upon both Copula functions, which have been receiving a growing attention in hydrology, and 

panel regressions, concludes that, although there are divergences in the model performance in 

different basins, the results are sufficiently reliable to be used as a starting point for the 

construction of the instrument. Anticipating the analysis of the following chapters, we also 

show how the instrument constructed on the GeoSFM estimate is indeed a significant predictor 

of hydroelectric production. 

 

The third chapter concludes the analyses of the effects of power outages on firms’ sales by 

connecting the economic analysis developed in the first chapter to the hydrological one 

developed in the second. To begin with, the chapter explains the procedure used to connect the 

                                                                 
1 Northern Africa has not been included in the analysis. 
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modelled streamflow with the data about power plants contained in the World Electric Power 

Plant (WEPP) database from PLATTS, a global provider of energy and commodity 

information. It then carefully discusses how we linked the power plants to the cities in which 

firms are located. Subsequently, summary statistics are presented for the two preferred forms 

of the instruments, which are either a single measure of the deviation of the yearly average 

streamflow from its long-term average or a series of 4 disaggregated indexes more directly 

accounting for the frequency of weaker and stronger negative and positive deviations from the 

long term average. The following analysis shows how the results from both 2 Stages Least 

Squares and Limited Information Maximum Likelihood are substantially different from the 

Ordinary Least Square estimates, suggesting that problems of endogeneity are indeed present 

in the relationship between a firm’s performance and the quality of its electricity supply for 

firms without access to back-up generation. Specifically, it appears that the previous analys is 

was seriously under-estimating the detrimental effect of power outages on the latter, which 

incur much higher sales losses from unreliable electricity supplies. This result appears to be 

robust to a series of different specifications and combinations of instruments, while in the 

concluding part of the chapter we also investigate the possible selection bias of the estimates 

for firms with a generator.  

 

Finally, the fourth chapter investigates a different link between economic activity in SSA and 

availability of water for hydropower generation, namely if it is possible to connect the latter 

with the luminosity of SSA countries as measured from space, which has been recently shown 

to be a valid proxy for economic activity. To do so, we rely on data collected by the Defense 

Meteorological Satellite Program – Operational Linescan System (DMSP OLS), whose 

satellites have been circling around the earth multiple time per days taking pictures in which 
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each pixel, representing approximately a square kilometre, is given a value from 1 to 63 

depending on the intensity and frequency of the light emitted in its area. These data, which have 

been collected from the 1970s and are digitally available from the early 1990s, have been 

receiving growing attention from social scientists in recent years and have been used in studies 

exploring a variety of topics (from population density and urban expansion to subnational GDP) 

as made clear by the literature review. After presenting the national level data, a methodology 

used to expand the city boundaries in the absence of reliable data on urbanization is introduced, 

as the ability to account for the growing relevance of urban centres in the continent might be 

relevant in obtaining meaningful estimates. The analysis, carried out through pooled OLS, fixed 

effects panel estimations and quantile regressions, does not validate the hypothesis of a direct 

link between hydroelectricity production and economic activity at neither the sub-national nor 

the national level. However, in the models in which the urbanization rates are allowed to vary 

by city and the sample is restricted to countries in which hydropower represents at least 30% of 

the installed capacity, we find some evidence that a higher availability of water for hydropower 

generation is, as expected, associated with more intense light emission, and the more so the 

higher the share of hydropower in the generation portfolio. 
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Chapter 1 

Energy Infrastructure in Sub-Saharan Africa: a 

Firm Level Analysis. 
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1.1 Introduction. 

 

The current level of economic diversification – and to a certain extent of economic development 

– of many Sub-Saharan African (SSA) countries is in many aspects comparable to that of 30 

years ago. It is true that since the second half of the 1990s positive growth rates of the GDP in 

many SSA countries have led to renewed hope for the continent, but these growths were mostly 

due to trends in international commodity prices and to the unearthing of new mineral reserves. 

The contributions of industrial and manufacturing sectors remain low and just in a few cases 

account for more than 30% of a country’s GDP. The share of the labour force employed in 

industry is also low, ranging from to 2% in Mauritania to a maximum of 30% in Swaziland2 

(CIA World Factbook). 

 

[Figure 1.1 about here] 

 

It is difficult to imagine that many SSA countries will be able to catch up with the standard of 

living of their economically more developed counterparts without undertaking and completing 

a process of structural transformation. The vast majority of the population of SSA still lives in 

rural areas, often maintaining themselves on a mixture of subsistence agriculture and income 

obtained through employment in the informal sectors. One of the main drivers of structural 

transformation for countries that managed to grow successfully has been industrialisation. It is 

then natural that the focus of economic policymakers has been on how to foster the development 

of the manufacturing sectors. 

                                                                 
2 For a recent review of African industrialization prospects see Page 2012, for analysis focusing on specific 

aspects see UNECA 2011, 2013, 2014, 2016a, and 2016b. 



15 
 

 

In the literature the factors deemed important for a propitious industrial development include 

the availability of capital for investment, a well-defined set of property rights, a good business 

climate, the liberalization of the labour market coupled with investment in workers skills and 

stable exchange rate policies, to name but a few. Another well recognized ingredient for success 

is an adequate level of infrastructure: energy, and often water, are vital for industrial production; 

and the presence of well-developed roads, rails, river networks and deep-sea ports is needed for 

the transport and commerce of goods and final products, both in a national and an internationa l 

markets. 

 

All of the above elements constitute somewhat of an obstacle for a fruitful industria l 

development of SSA economies, although to different extents in different countries. The poor 

quality of many African state institutions is well recognised: weak protection of property rights, 

scarce application of the rule of law, both of which increase transaction costs in often already 

inefficient markets, and low government accountability are all widespread in the region. The 

latter has often resulted in rent-seeking behaviour by government officials, and it is undeniab le 

that high corruption levels have been, and still are, another common factor in many African 

economies (Ng and Yeats 1999, Sachs et al 2004, Fosu et al 2006, Collier 2007). While these 

are all generally accepted facts, there still is much disagreement on which type of institutiona l 

development would lead to better development outcomes (Hickey 2012, Khan 2012, Noman 

and Stiglitz 2012).  

 

The lack of skills of the African workforce is also regarded as a hindrance to the diversifica t ion 

of the continent economic structure. After years of focus on primary and secondary education, 
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which led to relevant increases in both enrolment rates, the attention has recently been moving 

towards the important role of tertiary education, which seems to have, contrary to previous 

evidence (Psacharopoulos and Patrinos 2004), a higher rate of return than basic education, 

indeed as high as 25-30%, especially when the risk of unemployment is taken into account 

(Colclough et al. 2010, Diagne and Diene 2011, Barouni and Broecke 2014). However, while 

the microeconomic link between education and private earnings is seldom questioned, the effect 

of a higher endowment of human capital on firms’ productivity is less straight- forward and 

often depend on others firms’ characteristics or on which aspects of workers skills are taken 

into account (Söderbom and Teal 2000, Teal 2010, Danquah and Ouattara 2014). Similar 

tenants hold with regard to the effects that a more skilled workforce will have on the FDI 

attractiveness of African states (Cleeve et al. 2015, Ssozi and Asongu 2016).    

 

Finally, and central to this study, the level of infrastructure in Africa is often taught to play a 

large role in dampening structural transformations in the continent, as all SSA countries are 

united in facing some forms of infrastructural gap. The road network is scarcely developed (and 

rail networks virtually non-existent), which in vast and scarcely populated countries implies 

that development of internal commerce is difficult, mostly based on a few markets in bigger 

towns due to a long and costly movement of goods. Water infrastructure, mainly water storage 

facilities, are also particularly underdeveloped, with huge costs for the wellbeing of African 

citizens and agricultural output.3 

 

                                                                 
3 See for example the proceedings from the International Journal of Hydropower and Dams Confe rence Africa 

2013. 
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In terms of energy infrastructure, SSA has the worst energy outlook in the world. Of the 122.6 

Gigawatts (GW) of installed generation capacity in Africa, 39% is situated in Northern Africa 

(Morocco, Algeria, Tunisia, Libya and Egypt) and 36% in the Republic of South Africa alone. 

This leaves only 25% for the rest of SSA, slightly less than 31 GW4. Energy access figures are 

similarly daunting: only 32% of the population has access to electricity, and the level in rural 

areas is down to 14%. SSA also scores poorly in comparison with other developing regions: the 

installed capacity of 92.3 MW per million people is 20% of that of East Asia or Latin America. 

The per capita electricity consumption of 561 Kwh is five times lower than the world average, 

and it can be noted that Northern Africa and RSA account for 38% and 40% respectively (all 

the above figures come from Brown, Muller and Dobrotkova 2011, Muller, Marmion and 

Beerepot 2011, Sokona, Mulugetta and Gujba 2012, IEA 2014)5. 

 

The technical, financial and institutional capacity of many African states has been undermined 

by decades of forced structural adjustments and incomplete economic reforms. This creates a 

very different situation from the one in which energy networks have developed in many 

industrialized countries. Depending on different objectives, the resources required to fill the 

infrastructural gap vary widely: in 2007 the African Development Bank estimated that 

investments of 4 billion dollar per year were required to fill the existing demand gap. In 2008 

the African Infrastructure Country Diagnostic (AICD) estimated that to achieve an overall 

electricity access of 35% by 20156 - a goal which has been missed - the necessary investments 

ranged from 13 billion dollars in the Eastern Africa Power Pool to 68 billion dollars in the 

Southern one (Ram 2007, Eberhard et al. 2008, Agbemabies, Nkomo and Sokona 2012). In a 

                                                                 
4 Compare it, by example, with the 80.8 GW installed in UK alone. 
5 The poor quality of available information for the continent might lead to discrepancies between the statistics of 

different agencies; however those differences are small compared with the magnitude of the figures. 
6 As aimed in most of the National Development Plans of SSA. 
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situation in which many African states rely on overseas development aid (ODA), several 

African countries spend half of their foreign reserves on fossil fuel imports.  

 

Given the budget constraints faced by most SSA governments, public investment in energy 

infrastructure will divert a significant share of funds away from other destinations, such as 

education or healthcare, and the most transparent way to compare different public projects is 

through cost-benefit analysis. The difficulties existing in conducting the latter in developing 

countries, in which imperfectly competitive labour, financial and good markets might well be 

the norm and the relevance of the potential equity issues is different than in developed ones, is 

recognised in the literature (Dinwiddy and Teal 1996, Quah 2012). Both infrastructure and 

alternative investment recipients, such as education, are characterised by some degree of 

complementarity and by different types of externalities, which might be hard to quantify. 

Although some of the externalities arising from energy investment can be evaluated with regard 

to the increase in production that they generate, others relate to the expansion of the grid to 

previously unserved areas, where the outcome is unlikely to be as easily measurable in terms 

of output. Other types of social costs entailed might depend on the electricity-genera t ion 

technology, such as the destruction of natural environment and local livelihood sometimes 

caused by hydropower dams. For the latter case, it is particularly hard to find cost and benefit 

assessments which will be deemed agreeable both by opponents and proponents of the project. 

At any rate, some evidence on the high social rate of return of energy infrastructure in 

developing countries exists (World Bank 1994, Canning and Bennathan 2000), and although 

extensive comparisons with other types of investment are missing, given the vital role that a 

stable electricity supply plays in every aspects of daily life (Rosenberg 1998, Elias and Victor 

2005) we assume for the remainder of the work that this return is high enough to justify our 
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attention. 

 

It is with this background in mind that we move to the investigation of the economic effect of 

the quality of energy supply on firms’ performance, estimating the elasticity of firms’ output to 

electricity disservice. The structure of the chapter is as follows: section 2 provides a review of 

the literature, focusing on SSA; section 3 presents the data used in the study and summary 

statistics at continental and country level; section 4 covers the estimation of firms’ elasticity to 

outages; in section 5 models for generator ownership are presented while section 6 concludes. 

 

1.2 Literature Review. 

 

This paper adds to the literature on the contribution of infrastructure to development and 

economic growth. This can be divided in to two main branches, one that looks at the effects at 

the macro-level, and one that looks at effects at the micro-level. The latter is becoming 

increasingly important thanks to the recent availability of firm level data for developing 

countries7. 

 

Two early reviews of the macro-level literature are provided by Aschauer (1989) and Gramlich 

(1994). Although this early literature considered mainly developed countries (mostly intra-state 

differences in the US) similar approaches have been employed in the study of developing 

countries. The main conceptual and econometric problems were already clear: common time 

trend across countries’ expenditure in infrastructure investments; the difficulties of acquiring 

                                                                 
7 The papers reviewed in this section were selected from those found by searching for different combinations the 

words “Infrastructure”, “Electricity”, “Outage”, “Shortage”, “Africa”, “Growth” and “Firm” in EBSCOhost and 

the bibliographies found therein. 
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data to proxy the many missing variables, and especially the role of information on energy 

prices; the direction of causality between growth in infrastructure and growth in GDP; etc. 

Gramlich (1994) concludes by encouraging a greater focus on micro-level studies, which he 

argues are more likely to produce policy relevant analysis. 

 

One of the first papers to examine the firm-level effects of infrastructure deficiencies is Lee et 

al. (1996). Focusing on Nigerian, Indonesian and Thai manufacturing firms in the World Bank 

Surveys, they look at the extent of the costs that firms incurred because of low infrastruc ture 

quality; how they react through private investment and how public and private interests should 

be coordinated to achieve a second best solution when state budgets are constrained. 

 

Using a Barro-type regression, Canning and Pedroni (1999) analyse the contribution of different 

infrastructure provisions to GDP per capita. Based on a 40 year panel for countries at different 

stages of development, they construct a growth model in which infrastructure investment is 

achieved by diverting private savings and public investments. Decisive support is found for an 

endogenous growth-model in infrastructure, where investments have a positive effect on short 

run growth but are insignificant in the long run. Finally, the necessity of dividing the effect of 

different types of infrastructure provision is underlined as the authors find no evidence of global 

shortage of telephone infrastructure but do of energy capacity. 

 

In terms of infrastructure specifically, Davis et al. (2001) analyses the effect of improving water 

infrastructure on microenterprises using data for 137 Ugandan firms. The rationale for the study 

arose from the perception of business owners that obstacles related to water provision were 

amongst the most relevant in constraining their activities. The evidence gathered by the authors, 
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who exploit differences in water infrastructure quality between two neighbouring villages, 

however, points toward the fact that water connections have higher economic benefits for 

households than those experienced by microenterprises, whose use of water does not differ that 

much from that of the former. The study further stresses the importance of gathering 

information on the real needs of local communities before committing budgets on the basis of 

unsubstantiated assumptions. 

 

Returning to the macro-literature, Esfahani and Ramírez (2003) examine the role of institut ions 

in mediating the economic effect of infrastructure investments. After developing a model 

similar to that of Canning and Pedroni (1999), the authors test their hypotheses with a panel of 

75 countries over three decades. They conclude that once the simultaneity of GDP and 

infrastructure investment is taken into account, the contribution of the latter to the former is 

substantial. Moreover, they stress the relevance of institutional capacity, intended as more than 

pure project development and fund disbursement, for achieving the best result with investments 

in infrastructure8.  

 

An analysis of the role played by the road network development is provided by Luo (2004), 

who takes into account how the geographical location of firms interacted with infrastruc ture 

investment in the western region of China. Using a Solow-type growth model applied to a 

twenty year panel, the author concludes that the development of a good transport infrastruc ture 

is important for fostering intra-regional trade. She also finds evidence that, via a general 

reduction in transport costs, there are important spill-over effects for regions not directly in 

receipt of the investment.  

                                                                 
8 The authors also stress the need for improved data collection if the topic is to be thoroughly researched for 

developing countries. 



22 
 

 

The impact of information and communication technology (ICT) on agricultural productivity 

is examined by Lio and Liu (2006), who employ a 5 year panel for 81 countries. While the link 

might not appear clear at a first glance, the authors carefully analyse the role that ICT plays in 

distributing knowledge about the existence and use of new technologies, helping their adoption 

process. On the other hand, they also stress that ICT investments are not enough on their own, 

as their returns can be shown to be consistently different between countries with different level 

of human capital. 

 

One of the first papers to directly analyse the effect of power outages is Fisher-Vanden et al. 

(2008). Incorporating the effect of electricity shortages into a trans-log cost function model, the 

authors examine TFP growth rates over 5 years for 1340 Chinese firms in eleven sectors. As 

proxy for the outages, the authors develop a scarcity measure reflecting the likelihood of 

shortages in any given year based on information on the ratio between thermal electric ity 

generation and capacity from the China Electricity Yearbook. As the variable will probably 

suffer from measurement error, and furthermore there might be policies influencing both firms’ 

productivity and their demand for electricity, they consider electricity scarcity as endogenous 

and instrument it with weather variables. Although some of the results are recognized as 

tentative, the authors conclude that there is some evidence of enterprises shifting away from 

energy/electricity intensive production into more labour and material intensive activit ies 

because of electricity disservice. 

 

Another paper from 2008 is Eifert and Gelb (2008), who consider the effect of indirect costs on 

business performance indicator, specifically in the African case.  After explaining the relevance 
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of these inputs in production, the authors justify their focus on the continent due to the 

particularly high indirect costs share which African firms face, especially those infrastruc ture 

related. This is due to a series of factors, ranging from low-density of production networks, 

which hinder the emergence of economies of scale, to poor infrastructure stocks, which 

increases transportation costs that are already high for land-locked countries. The estimation of 

indirect-costs-augmented revenue and value functions for six industries in seventeen countries 

lead the author to conclude that many studies over-estimate value-added and factor productivity 

of African firms because they fail to take into account exactly this type of costs.    

 

In occasion of the launch of the AICD initiative, a few papers focused on the role that 

infrastructure might play in fostering economic and social development in Africa. Calderon 

(2009) relies on an unbalanced panel of 136 countries over the period 1960-2005 and applies 

an instrumental variable generalised methods of moments to estimate the combined effect of 

the quantity and quality of ICT, electricity and road infrastructure – with different indexes 

obtained through PCA – on growth of real GDP per worker. His results show how both the 

stock of infrastructure and its quality matter for GDP per worker growth, although the effect of 

the former greatly outstrips that of the latter. Through a simulation exercise, the author shows 

that if all African countries were to catch up with the stock of infrastructure of Mauritius, the 

region leader, this will entail an average increase in GDP growth of 2.2% per year. 

 

Another paper from the AICD series, Steinbucks and Foster (2010), looks instead at the 

determinants of generator ownership in the continent. Despite the fact that in-house generation 

is up to three times more expensive than acquiring energy from the grid, the authors claim that 

own-generation would remain high even if power supplies were to become much more reliable. 



24 
 

While benefits from generator ownership exist, especially in term of reduction of lost load, the 

difference between cost and benefits is not found to be statistically significant.  

 

Escribano et al. (2009) explore the effects of different infrastructure provision in SSA on TFP 

growth of African manufacturing firms. They further distinguish between high/low income and 

quick/slow growing countries using an unbalanced panel of 26 African countries with data 

obtained from World Bank Enterprise Surveys (WBES)9. They find evidence that different 

types of infrastructure have different effects in countries at different stage of development, and 

that electricity problems are especially relevant for poorer countries. A similar study by Iimi 

(2011), which though looks at firms in Eastern Europe and Central Asia, reaches similar 

conclusions. The estimation of a trans-log cost function for 26 countries leads him to conclude 

that while ICT provision does not seem to have a significant effect on firm costs, frequent and 

lengthy power outages create a significant burden for many firms and so does the time required 

to restore water provision after a disservice.  

 

Dinkelman (2011) exploits geographical and timing differences in the South-African roll-out 

plan for rural-electrification to estimate how big a role it plays in fostering employment. 

Looking at household level variables over a 5 year time period, the author finds that the 

strongest employment effect is for female workers in their thirties and forties (that is, when 

child care is less relevant) coming from middle-income households. The link between rural 

electrification and development is explored also by Cook (2011), who reviews the existing 

literature to assess feasibility and effectiveness of donor funded scheme. The conclusion is that 

many schemes have ended up providing cheaper access in rural areas to those who were already 

                                                                 
9 A description of the WBES questionnaires is furnished in the next section. 
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better off, so that the majority of poor households are still unable to afford the connection costs, 

in part because operators are not sufficiently incentivised to provide cheap access10.  

 

A different analysis on the effect of rural electrification is that of Peters and Vance (2010), who 

compare the profits of micro-enterprises in two areas of Northern Benin, one with and one 

without grid access, through propensity score matching. Their data, collected for the baseline 

study of a rural-electrification project implemented by the German development agency, cover 

276 firms in five electrified and five non-electrified villages. Although the authors do not find 

any significant difference in the profitability between firms in non-electrified villages and those 

in electrified villages which existed before grid-expansion, a positive effect is identified for 

firms created after that moment, which tend to use more capital intensive and electricity-reliant 

production techniques. 

 

Another paper which focuses on the role of electricity constraints for firms in developing 

countries is Alby, Dethier and Straub (2011). They develop a model, based on Holmstrom and 

Tirole (1997), to understand the extent to which size and sectoral distributions are influenced 

by poor electricity network. Using the WBES for 62 developing countries, the authors conclude 

that electricity intensive firms are those most negatively affected by poor energy infrastruc ture 

and that the initial level of assets and access to finance play a crucial role for firm survival and 

for firm growth. 

 

Moyo (2012a and 2012b) also evaluates the effect of infrastructure deficiencies in SSA. In 

Moyo (2012a) the author focuses on export performance, assessing the different impacts of 

                                                                 
10 The extents to which cross-subsidization can be exploited are also discussed, and so it is the role of rural energy 

agency and of investments in complementary infrastructures.  
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disruption from telecommunications, water, electricity, transport-network and border customs. 

Moyo (2012b) concentrates instead on the effect of power cuts on Nigerian manufactur ing 

firms. In both cases, the author concludes that there is enough evidence of a sufficiently large 

negative effect from disruptions to justify the redirection of government budget towards 

improving infrastructure.  

 

Lipscomb et al. (2013) simulate instead different developments of the Brazilian electricity grid 

in the period 1960-2000, exploiting topographic placement of hydropower plants to determine 

how big the gains from proper targeting of infrastructure development sites are11. Their results 

suggest that classical general-equilibrium models fail to take into account the endogenous 

placement of infrastructure, and consequently massively underestimate the real return from 

electrification.   

 

How varying electricity costs affect firms’ performance in India is the target of Abeberese 

(2013). The author constructs an instrument based on the interaction between the wholesale 

price of charcoal to utilities and the share of thermal generation installed in a given Indian state. 

The results suggest that production technologies are influenced by the price of electricity: as 

the latter rises, firms move to less energy and machinery intense technologies, reducing both 

output and labour productivity, therefore distorting the industrial structure of the country. 

 

Apeaning and Thollander (2013) provide a case study of the biggest Ghanaian industrial area 

focusing on a similar issue, which is barriers to energy efficiency. The results suggest two sets 

of factors being the main influences: the “lack of budget funding” and “access to capital” on 

                                                                 
11 I.e. one which takes into account the structural transformations which are likely to interest the region as opposed 

to purely geography based cost consideration. 
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the one hand, and volatility of energy prices, which dampens electric ity use, on the other. In the 

same year, Andersen and Dalgaard (2013) try to estimate how relevant poor electric ity 

infrastructure was in reducing African GDP per capita growth, exploiting variation in lightning 

density as an instrument for outages, concluding that it was indeed a drag on economic 

performance. 

 

Oseni and Pollitt (2013) also look at connections between firms’ development and quality of 

electricity supply in Africa, this time through the lenses of generator ownership. Given the high 

frequency of power outages in the continent, they are not surprise by finding that back-up 

capacity represents 20% of all installed capacity in SSA. Following the literature, the authors 

test two main hypotheses, namely that back-up capacity is able to mitigate the majority of 

outage costs and that larger firms integrated in international markets suffer fewer losses from 

outages. The first hypothesis is rejected by the data, as unmitigated losses represent the greatest 

share of outage cost due to incomplete back-up by the majority of firms. The second hypothesis 

is then also rejected: although it is true that bigger firms and exporters have a generally higher 

demand for generators, this is still not sufficient to achieve complete backup. 

 

One of the best recent paper looking at the effect of frequent outages on firm productivity is 

Allcott et al. (2014). The authors, working on the Indian manufacturing sector, also suffer ing 

from frequent and prolonged outages, are able to develop a detailed model that integrates 

electricity as a Leonthieff input in the production function relying on extremely specific data 

from 22 textile plants in an industrial park, suffering from both scheduled and unscheduled 

power holidays. The model is then extended to the whole of India thanks to a long panel dating 

back to 1992 and to the availability of energy data from India Central Electricity Authority. To 
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avoid endogeneity concerns, the level of outages is instrumented by the share of electric ity 

demand met by hydro production for each state in each year, as these data are also availab le 

through the Indian central energy agency. The final effect of outages depends on firm 

characteristics: firms with back-up capacity face increased costs, as self-generating is more 

expensive than acquiring electricity from the grid, often leading to sup-optimal combination of 

inputs. The firms without generator are though those facing the blunt of the outage cost: not 

only need these firms to stop production altogether when the supply of electricity is interrupted 

but they also waste all non-storable inputs which have already been purchased.    

 

Another recent work focusing on power outages using Indian data is Alam (2014). The author 

focuses on the heterogeneous firms’ effects of infrastructure quality using detailed firm data for 

three important sectors of the Indian economy: one which is non-electricity dependent (brick 

making) and two for which electricity is a more vital inputs, differentiated by the availability 

of strategies other than acquiring a generator for adapting to poor electricity delivery (rice and 

still mils, with the former representing the sector with alternative strategies). As a proxy for 

outages the author develops a measure based on the exploitation of different cleaning 

procedures of nigh-light data images from the Defense Meteorological Satellite Program – 

Operational Linescan System, which permits her to identify variations at the district-level. Her 

model, points toward the irrelevance of power outages for non-electricity intensive sector and 

of their short-run changes on firms’ decision to acquire a generator. Furthermore, strategies 

other than back-up capacity are also shown to be very relevant as rice mills, which can increase 

capital productivity at the expense of raw material costs, are able to completely shield 

themselves from outages’ damage leading instead to a loss of productivity in the steel sector. 
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Finally, Geginat and Ramalho (2015) consider how lengthy and complex procedures to acquire 

an electricity connection might also be playing a role in constraining economic activities. The 

main scope of the paper is to construct an index for the ease of getting electricity, combining 

the number of procedures required, the average time before the connection is operational and 

the overall cost (excluding bribes). The authors rely on 600 interviews with respondents located 

in the capitals of 183 countries, all presented with the same general “case study” to obtain 

comparable data. While the number of procedures is fairly stable in their sample, the time 

required exhibit a much greater variation, especially in SSA where the range goes from the 91 

days in the Mauritius to 455 days in Guinea Bissau. As the majority of the energy providers in 

the considered countries are state-owned, it is difficult to differentiate the overall quality of the 

service between the structures of ownership, although there are some signs that private 

providers are slightly cheaper. 

 

To conclude, from this literature review we can see how the effect of infrastructure on macro 

and micro level variables has been a long standing question in the economic field. Most of the 

initial studies looked at how the historical rates of infrastructure investments affected nationa l 

growth in developed countries, although it is also possible to find early examples of micro level 

studies investigating the connection between infrastructure provision and firms’ performance 

in developing countries. The number of these latter studies has been growing over the last 15 

years thanks to the increased availability of firm level data, which opened the possibility of 

considering a much wider set of questions. However, evolution in econometric techniques also 

led to a continuous reassessment of cross-county macro-relationships.  

 

At the macro level, most of the literature agrees in individuating a positive effect of 
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infrastructure investment on GDP growth, although with different qualifications. Some stresses 

the importance of analysing separately different types of infrastructure, while others recognise 

the need of dividing infrastructure quantity from its quality, or to specifically consider the role 

that a continuous institutional supervision plays in achieving the best outcome from those 

investments. These different perspectives reflect the main issues faced by this strand of the 

literature, namely how infrastructure investment is often endogenous to economic growth and 

how difficult it is to account for the heterogeneity of these investments, both in terms of quality 

and type. 

 

Studies at the micro level investigate a vast array of relationships, and almost all find a 

significant effect of some type of infrastructure on the variable under consideration, be that the 

effect of cleaned water provision on house-hold and microenterprise or that of ICT investment 

on adoption of new agricultural technology. Most studies covered in this section have dealt with 

issues related to energy infrastructure, as that is the subject of the current analysis. Three of the 

papers reviewed investigated the consequences of expanding rural electricity network, both 

from the point of view of the different type of schemes involved and of their outcomes, 

concluding that although positive effects exist, they might interest only certain part of the 

population or some of the firms located in those areas. Other analyses were instead concerned 

with generator ownership, especially in the African context. From these studies we can see how, 

despite the fact that electricity generation from back-up capacity is more costly than its 

acquisition from the grid, or that firms seldom achieve complete back-up regardless of their 

size, the acquisition of a generator might be the only way for them to access credit and hence 

expand their operation. 
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The remaining group of studies reviewed is that covering the direct effect of energy variables, 

either energy price or frequency of blackouts, on firms’ productivity and sales. Three of these 

studies use Indian panel data, while the other relies on a panel of Chinese firms, and all of them 

treat the energy variable as endogenous to productivity, leading to instrumental variable 

estimations. The reasons quoted for these endogeneity concerns are usually a mix between 

unobservable firms’ characteristics, measurement error in the outage variable, the quality of the 

electricity infrastructure affecting the initial decision of plant location and the existence of 

policies influencing both firms’ productivity and their energy demand.  

 

Due to the scarcity of firm level and energy data for the Africa, this type of studies has never 

before been applied to the continent, despite the fact the electricity shortages are endemic in 

most of its economies. It is this research gap which we intend to fill, contributing, to the best of 

our knowledge, with the first instrumental variable estimate of this relationship for SSA, 

thereby providing African policymakers with a reliable estimate of the detrimental effect of 

power outages. 

 

1.3 Data and Summary Statistics 

 

1.3.1 Questionnaire structure, standardization and transformation. 

The main source of data for this study are the WBES, carried out by the World Bank with the 

intention of gathering information on the business climate in developing countries. Information 

include classical balance sheet data as well as continent and country specific firms’ 
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characteristics12. To construct our dataset, we select the most recent available data for all non-

island Sub-Saharan African states, which gave us 38 countries with data collected between 2006 

and 2014. During this time, the World Bank out-sourced the study to two different companies 

that used two different questionnaires, although the main difference between the two was the 

question order. 

 

However, there are other differences that we need to take into account. The sample for each 

country study was selected from the universe of eligible firms through a procedure of stratified 

random sampling with replacement. The form of questionnaire that was submitted to the firm 

is determined by the sector of activity: manufacturing firms receive a more detailed version 

than those in service sectors13. Unfortunately, some of the differences in the questionnaires 

given to firms tend to be on their cost structure and infrastructural quality, exactly the variables 

of interest for our study. 

  

In the questionnaires given to manufacturing firms, the section that relates to infrastruc ture 

contains data on electricity, water and telecommunications services provided to the firm; while 

the service questionnaires excludes information on water infrastructure and it has inferior data 

on electricity provision. Of the 26 questions, 9 are on energy-related issues: 1) Has the firm 

ever applied for electricity connection; 2) How long did it have to wait for the connection; 3) 

Was a bribe necessary to obtain the connection; 4) Have you experienced power outages; 5) 

What is the average number of power outage per month; 6) What is the average length of a 

power outage; 7) What is the loss in production due to the outages; 8) Does the firm own a 

generator; 9) What percentage of electricity is generated in-house.  

                                                                 
12 While some questions or sections, e.g. the effect of HIV on the workforce, are continent wide. 
13 This is the last stratum. The first two strata are geographic location and firm size. 
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Finally, there are differences in the way in which capital expenditure is treated in different 

questionnaires and strata. The older version of the questionnaire includes information on capital 

expenditure only for manufacturing firms but not for service and retail; versions of the 

questionnaire used between 2006 and 2013 contain information on capital expenditure for the 

whole sample, but only for economies above a given size; after 2013 there are no more questions 

about annual depreciation.  

 

To work with cross country level data collected over a range of years it was necessary to perform 

various transformations of all the monetary data in the sample. First, all prices were deflated to 

2005 levels using the GDP deflator from the World Bank. Second, they were transformed in 

international dollars using the Purchasing Power Parity (PPP) Index, again obtained from the 

World Bank. 

 

We also constructed a number of variables using the information contained in the 

questionnaires.  Regarding the explanatory variables, the average number of outages per year 

was obtained by multiplying the average number of outages per month by 12, while the yearly 

hours of outage were obtained multiplying the latter by the average length of an outage. The 

two measures should ideally pick up the different problems that an unexpected disruption of 

electricity causes to production: first, every time the service stops, a machine which was 

supposed to be turned off may be damaged by the sudden interruption of electricity (number of 

outages); second, without the presence of a generator every activity which requires electric ity 

cannot be performed (hours of outage)14.  

                                                                 
14 To reduce over-dispersion in both outage measures, the number of power outages has been capped at ten per 

day, while to the hours of outage the upper boundary of the number of hours in a year has also been imposed. 

While the second assumption is a logical requirement, we have dropped the first and the results remain almost 

unchanged.  
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Firms were considered exporters (0/1 dummy variable) if they exported at least 1% of their 

annual production, with no distinction being made amongst trade partners. Dummy variables 

were created for small (< 20 employees), medium (20-100 employees), large (100-300 

employees) and very large firms (> 300 employees), for firms with access to credit and, fina lly, 

for publically traded companies. Finally, total sale is used as independent variable for all 

baseline results and all but one robustness checks, in which a measure of total factor 

productivity (TFP) was also created relying on the procedure used by Cui, Lapan and Moschini 

(2012)15. 

  

1.3.2 Continent wide summary statistics. 

 

The complete sample is composed of 13,310 firms16, of which 6,164 belong to manufactur ing 

sectors (the remaining are services of various kinds). The firms are not equally divided amongst 

the 38 different countries: the country accounting for the highest number of firms is the 

Republic of South Africa (1,056), followed by Nigeria (1,029) and Senegal (625). Of the 

remaining 35 countries, 14 contribute approximately 150 firms each while all the others have 

between 200 and 650 firms. The first thing to notice is how, unsurprisingly, there are great 

differences between the countries in the sample, from the industrial structure to the reliability 

of their energy infrastructure. Just to give a couple of examples, the share of manufactur ing 

firms ranges from 20% in Burkina Faso to 66% in South Africa, while the average number of 

employees (of the firms in the samples) ranges from 14.6 in Guinea Bissau to 184.5 in Malawi. 

This can also be seen by the diverse cost structure of the average firm in the different countries 

                                                                 
15 See section 4 for an exposition of their procedure. 
16 We have dropped the top one percentile by total sale to avoid the effect of outliers. 
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(see Figure 1.2):  

 

 [Figure 1.2 about here]  

 

In light of these differences, the only figures which will be presented on a continental scale are 

those relative to the diverse levels of performance of energy infrastructure and those relative to 

generator ownership, while a brief description of the different countries sampled shall follow.  

It must also be noted that all the following figures represent a description of the overall sample 

(in this section) or of that of each country (in the next section), i.e. they are not population 

weighted and cannot be taken as representative for the country or the continent.17 

 

The country which suffer the lowest number of outages is Malawi (12.44 per year on average), 

while the maximum is reached in Nigeria (more than a 1,000 outages per year on average). If 

we consider the average length of an outage, the range is from 1.35 hours in Niger to more than 

a day in the Republic of Congo. The combination of frequent and long outages means that 9 

countries in our sample have firms who face on average more than a thousand hours of outages 

each year. The reasons for such a frequent failure of the electricity networks are various: the 

improved economic performance of most countries over the last 15 years led to a quick growth 

in energy demand, which far outstripped the investment in energy supply, further increasing the 

already existing gap; installed generation capacity is often not properly maintained, and so are 

transmission and distribution networks, leading to high transmission losses; frequent droughts 

in certain regions often lead to the inability of effectively exploit the hydropower capacity on 

                                                                 
17 Although the WBES offer specific weights for each country, we did not possess the information for 

reconstructing the weight at the supra-national level, which is our level of interest. 
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which many countries rely for a significant share of their electricity18 (Karekezi 2009, IEA 

2014, IEA 2016). 

 

[Figure 1.3 about here]  

 

The perception of the damage caused by poor energy infrastructure is also varied. In each 

questionnaire the business owner was asked to estimate the loss due to outages in terms of 

percentage of their output and how relevant the electricity provision situation was in 

constraining their expansion. The correlation between losses and different measures of outage 

are not as strong as one might expect, suggesting that the industrial sector to which a firm 

belongs is important to determine how detrimental it is to have an unstable energy provision19. 

From an examination of the data it seems probable that the figures reported suffer from severe 

inaccuracies, which might be due to lack of time in compiling the questionnaires, difficulties in 

measuring output or political reasons (see Oseni and Pollitt 2013 for a discussion). For example, 

the average hours of outage for a firm without generator reporting no losses due to outages are 

364, and given these firms’ inability to keep up production in these periods (equivalent to a 

whole month assuming a 12-hours working-day) this seems highly unlikely. For this reason we 

have decided to present the numbers reported in the questionnaire but we will base our analys is 

on the direct estimation of the effect of outages on sales, without trying to validate the 

respondents’ figures.  As it can be seen in Figure 1.4, countries which are hit the most in terms 

of lost output are the Republic of Congo (27.7% of output lost due to outages) and the Central 

                                                                 
18 For recent examples of such occurrences see http://www.bbc.com/news/world-africa-34491984 , 

http://www.nytimes.com/2016/04/13/world/africa/zambia -drought-climate-change-economy.html?_r=0 or 

http://www.forbes.com/sites/riskmap/2016/02/04/drought-in-southern-africa-threatens-social-unrest-power-

supply-challenges/#1b74c0be4fdd  
19 The correlation ranges from a minimum of 0.18 between losses and number of outages and a maximum of 0.32 

between losses and hour of outages. 

http://www.bbc.com/news/world-africa-34491984
http://www.nytimes.com/2016/04/13/world/africa/zambia-drought-climate-change-economy.html?_r=0
http://www.forbes.com/sites/riskmap/2016/02/04/drought-in-southern-africa-threatens-social-unrest-power-supply-challenges/#1b74c0be4fdd
http://www.forbes.com/sites/riskmap/2016/02/04/drought-in-southern-africa-threatens-social-unrest-power-supply-challenges/#1b74c0be4fdd
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African Republic (26.1%)20, while from Figure 1.5 the damages sustained seems to be linear ly 

related to the hours of disservice. 

 

[Figure 1.4 and 1.5 about here]  

 

The correlations between outage measures and the percentage of firms that find electricity the 

main obstacle for expansion are positive but very weak, ranging from 0.05 with respect to the 

number of outages and 0.15 with respect to the hours. The three countries in which more firms 

claim to be constrained mainly by electricity are Senegal (42.7% of firms in the sample), Central 

African Republic (41.5%) and Tanzania (32.3%), while the countries for which energy-related 

issues are the least relevant are Mauritania (0.8%), Sudan (0.7%) and Guinea (0.04%)21.  

 

[Figure 1.6 about  here]  

 

The final set of figures that we report at a continental level are those for generator ownership. 

As is pointed out by Foster and Steinbucks (2009), SSA shares of in-house generation are not 

particularly high when considered on a continental level. However, there is a great deal of 

variance across countries. While Foster and Steinbuks were able to track the relevance of in-

house generation at the firm level as a proportion of the installed capacity from the information 

contained in an older version of the WBES, this is no longer possible with the current 

questionnaire. Nevertheless, looking at the continental level of ownership (48%) still hides big 

                                                                 
20 It is though worth remembering that all of the estimates on lost output are self-reported and therefore likely to 

be somehow biased. 
21 Given the way in which the question was phrased, “Which of the element of the business environment … 

currently represents the biggest obstacle for the establishment?”, low percentages do not imply that electricity is 

not a major obstacle, just not the major obstacle. 
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differences amongst countries like Ivory Coast, Mozambique or South Africa, in which the 

ownership is less than 20%, and others like Chad, Congo or Nigeria in which it is above 80%. 

The picture is similar if we look at the percentages of electricity used from own-generation by 

the firm. The continental average of 32% is mostly driven by a couple of countries characterized 

by a high generator ownership and very unreliable electricity supply (e.g. Guinea Bissau, 

Liberia or Nigeria, all above 60%) and hides deep differences across SSA. 

 

Figure 1.7 presents the breakdown of generator ownership and electricity generated in-house 

by incidence of outages. As expected, both the percentage of electricity generated in-house and 

the percentage of generator ownership increase in the hours of outage. In Figure 1.8 we show 

instead the data relative to generator ownership and the share of electricity self-generated across 

size. As it can be seen, the share of firms owning a generator increases with size, but the share 

of electricity self-generated decreases. This implies that while larger firms are more likely to 

have back up option the relevance of self-generation is higher for smaller firm.22.  

 

 

[Figure 1.7 and 1.8 about here]  

 

1.3.3 Country specific summary statistics. 

 

In the following section a brief analysis of the industrial structure shall be provided for each 

country in the sample. 

                                                                 
22 Probably because of easier access to credit, more than 40% of firms above 100 employees owns a generator 

versus an average lower than 20% for firms with less than 20 employees. 
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Angola. 

In the sample there are 326 Angolan firms, 58% of which are small, 31% medium, 7% large 

and 4% very large. The majority of the firms in the sample (274) are located in Luanda, the 

country capital, while the remaining is divided between Benguela and Huambo. Non-

manufacturing firms predominate (60%) - with retail and wholesale sectors accounting for 35% 

- while the main manufacturing sector is food processing (14 %). The average number of 

outages in the country is 73.1 per year, while the average number of hours is 783.4. There is 

little geographical variation in the relevance of the outage phenomenon, and simila r ly 

comparable is the incidence across firm size.  

 

[Figure 1.9 about here] 

 

Benin. 

Benin contributes to the sample with 146 firms, almost all located in the economic capital of 

Cotonou (125), while unfortunately there is no information on the location of the remaining 21. 

The vast majority of the sample is composed of small firms (72.6%); of the remaining, 19.2% 

are medium sized, 5.4% large and 2.8% very large. The sample is almost equally divided 

between manufacturing and non-manufacturing firms (68 the former, 78 the latter) and there 

are no information on sectoral division. The national average of hours of outage is a 1361, but 

it is worth noticing that the rate of reply to the energy infrastructure questions is pretty low in 

the country (25%); moreover, there appears to be a strong difference across size in the relevance 

of outage, with small firms experiencing more than twice as many outages as medium sized 

ones. 
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Botswana. 

Botswanan firms in the sample are 233, divided between the capital Gaborone (200) and 

Francistown (33). In this case, the share of non-manufacturing firms is almost twice as high as 

that of manufacturing (145 vs. 88), with retail accounting for 30% of firms in the sample (the 

main manufacturing sectors are garments, 6%, and metals and fabricated metal products, 4.3%). 

The sample is composed by 52.3% of small firms, 31.8% of medium firms, 10.3% of large firms 

and 5.6% of very large firms. The average number of hour of outage per year is 154, and while 

it does not appear to vary much with size (a part from very large firms which are those more 

hardly hit) it shows quite a strong geographical variation: the average is 75 hours in Francistown 

and 167 in Gaborone. 

 

[Figure 1.10 about here] 

 

Burkina Faso. 

Burkina Faso is another example of a country with a low industrial base. Of the 375 firms in 

the sample, only 70 belong to a manufacturing sector, while retail and construction sector 

accounts for almost 50% of the firms. The biggest manufacturing sector are food process 

(5.54%) and metals and fabricated metal product (4.66%), not surprisingly if we consider the 

relevance of the gold mining for the country. In term of geographical diversification, the vast 

majority (294) of the firm comes from Ouagadougou, the state capital, with the remaining being 

situated in Bobo Dioulassou, the second city. There is a noticeable and high geographica l 

variation in outage relevance, with the two cities having respectively an average of 273 and 413 

hours. Similarly, there is not much variation in outage across firm dimension, again excluding 
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very large firm which appears to be much less exposed (115 hours against 383 hours for smaller 

ones). 

 

[Figure 1.11 about here] 

 

Burundi. 

Burundi’s industrial structure is strongly predominated by small and medium firms (94%), with 

almost no firms above the 100 employees threshold (8 out of 152), with a small majority of 

manufacture (51%). Firms involved in food processing activity represent a fifth of the sample, 

followed in importance by wholesale (12.5%) and hotel and restaurant (11.2%). The capital 

Bujumbura hosts two thirds of the firm (the remainder are equally split between Gitega and 

Ngozi), and there is little geographical variation in outage incidence. There is some variation 

across firm size but no clear pattern is identifiable. 

 

[Figure 1.12 about here] 

 

Cameroon. 

Cameroon contributes to the sample with 347 firms, 207 of them located in Douala, the biggest 

city in the country and the richest of the whole Central African community (106 of the 

remaining are in the capital Yaounde, 34 in Bafoussam). The retail sector accounts for 42% of 

firms in the sample, and as in many other cases the main manufacturing sector is food and 

beverage processing (8.3%). Almost half of the sample is composed of small firms (48%), 

followed by medium (32.6%). There is little geographical variation in the relevance of outages, 

which stand at a national average of 135 events equal to 366 hours without provision per year.  
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Again, for very large firms the outage phenomenon appears to be starkly less relevant (97 hours 

per year) than for the rest of the sample (376 hours). 

 

[Figure 1.13 about here] 

 

Central African Republic (CAR). 

CAR presents one of the worst energy outlooks of the whole continent, with the fourth highest 

average outages per year (2671 hours). Almost all of the firms are located in the capital Bangui 

(136 out of 142), while the remaining 6 are in Berberati, the third largest city of the country 

(and oddly enough none of these 8 firms ever experienced an hour of outage). As for Benin, 

there is no information on sectoral division of firms apart from manufacturing (24%) and 

services. The majority of the sample is composed of small firms (70%), with just 8 large firms 

(5.6%) and 2 with more than 300 employees, which in contrast with many other countries in 

the sample appear to be the more hardly hit by outages (3420 hours). 

 

Chad. 

Chad is the third country in the sample for duration of outages, with a national average at a 

staggering 2585 hours per year. All 150 firms are located in the capital N’djamena, so that no 

information on geographical variation is available. Equally unavailable are information on the 

sectoral division of the firms, apart from the usual between manufacturing (49%) and services. 

Chad is another example of a country in which the absolute minority of very large firms (2, 

1.3%) is the group most hardly hit by outages (5526 hours), while the majority of small firms 

(64%) is much less affected by the phenomenon (2689 hours). 
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Republic of Congo. 

The Republic of Congo closes the group of central African countries incurring in the heaviest 

electricity problem, as it is the only country in the sample presenting an average of hour of 

outages higher than 4000 hours (4145.6). The sample (149 firms) is composed for more than a 

half by small companies (61%), followed by medium (26.9%), large (4.7%) and very large 

(7.4%). Despite the high GDP contribution of oil and timber sector, 4 of the top 5 sectors in the 

sample are in service (72%), with food processing being the main manufacturing one (8.7%).  

There is little size variation in the relevance of the outage phenomenon, while geographica l 

variation between the capital Brazzaville and the second city Pointe-Noire is more relevant as 

the latter experiences 40% more hours of outages than the former (4822 hours vs. 2991). 

 

[Figure 1.14 about here] 

 

Cote d’Ivoire. 

Cote d’Ivoire contributes to the sample with 508 firms, 75.6% of which have less than 20 

employees. The majority of the sample belongs to service sectors (62%) – which account for a 

little more than 50% of the GDP – with the most relevant sectors being retail (23.4%), while 

the main manufacturing one is food and beverage processing (10.8%). The sample shows quite 

a strong variation of outages incidence across both size and geographical location. The vast 

majority (384) of the firms are located in Abidjan (economic centre and former capital) which 

faces 280 hours of outage per year, less than a half of those faced by the 41 firms in San Pedro 

(603 hours), while the 2 firms in the current capital of Yamoussoukro face less than 20. 

Similarly, while small and medium firms are hit by approximately the same amount of 

electricity disservice, large and very large firms are much more severely hit. 
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[Figure 1.15 about here] 

 

Democratic Republic of Congo (DRC). 

The DRC accounts for 573 firms, with a slight majority in the manufacturing sector (51.5%, 

with food and beverages being the most relevant at 15.9%), while the retail sector alone 

accounts for 24%. As usual, the vast majority of the sample is composed of small firms (74%), 

with large and very large adding up to 5%. The country energy outlook is as dire as that of many 

other central African states, with the national average of outage at almost 1000 hours. Kisangani 

and Matadi experience on average half the hours of outage of Kinshasa and Lubumbashi, 

despite the status of political capital and of biggest mining centre of the latter. As in other 

countries, small and medium companies face at least twice as many hours of outage as large 

and very large ones.  

 

[Figure 1.16 about here] 

 

Eritrea. 

The Eritrean sample is composed of 135 firms divided across the three main cities of Asmara, 

Mendefera and Massawa. The country belongs to the group of those with no sectoral 

information available, apart from the division between manufacturing (54%) and services. 

Eritrea seems to be one of the countries less affected by outages, with a national average of 180 

hours per year. While the hours of outage seem to increase with size (with large firms having 

almost twice as many hours of outages than small firms), the only noticeable geographica l 

difference is that between firms in Asmara/Mendefera and those in Massawa, with the formers 
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facing less than 120 hours of outage per year and the latter more than 400. 

 

 

Ethiopia. 

Ethiopia participates in the sample with 522 firms, with a little less than a half belonging to 

manufacturing sectors (48%).  As for most countries in the study, the retail sector accounts for 

the majority of firms in the sample (27.6%), followed by food and beverages processing (9.6%) 

and wholesale (7.5%). Again similarly to other countries, the sample is predominantly 

composed by small (53.4%) and medium (29.3%) firms. The national average of hours of 

outage is 570, and the phenomenon is equally spread across the country, maybe excluding the 

province of Tigray which shows a much smaller incidence (173 hours). The variation across 

size is very small, a part from very large firms which appear to be hit slightly more. 

 

[Figure 1.17 about here] 

 

Gabon. 

Standing at 22.3%, the manufacturing firms’ share of Gabon is the third lowest across the SSA 

sample. Of the top 5 sectors, which account altogether for 75% of firms in its sample, only one 

is in manufacturing (and that is unspecified manufacturing). This stands somehow in contrast 

with the GDP composition of the country, which enjoys a big contribution from extractive 

industries (oil and timber). It is though worth noticing that the recent growth they fuelled had 

scarce redistributive effect and 60% of the labour force is still employed in agriculture. 

Unsurprisingly, the majority of the sample is composed of small and medium enterprises (87% 

of the sample cumulatively).The national average of 570 hours of outage per year is not amongst 
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the highest in the continent, even though it shows a pretty strong variation across firm size (with 

large firms experiencing the bulk of it) and some geographical variation (Port Gentil, second 

city in the country and main seaport/site of extractive industries, experiences less disruptions 

than the national average).   

 

[Figure 1.18 about here] 

 

Ghana. 

Despite a national average of 874 hours of outage per year, Ghana is far from having the worst 

energy outlook in Western Africa. The variation across size – in an industrial structure vastly 

predominated by small firms (71%) – is fairly small, with large firms experiencing less 

disruption than the country average. Its geographical variation across the 3 different productive 

centres included in the sample (Accra, Takoradi and Tamale) is also limited, with firms located 

in Takoradi being hit slightly harder. Of the 555 firms, 59.6% belongs to manufacturing sectors, 

with both “food and beverage”, “fabricated metal products” and “publishing, printing and 

recorded media” in the top 5 sectors.  

 

[Figure 1.19 about here] 

  

Guinea. 

Guinea has the third highest average of hours of outage in Western Africa after Nigeria and 

Sierra Leone with more than 2000 hours of electricity dysfunction per year. At the same time it 

has one of the highest share of manufacturing firms in the sample (60.5% of the 223), with 

medium sized firms (7.1% of the sample, while small firms are almost 90%) appearing to be 
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those facing the highest incidence of outages, with an average well above the national one (2820 

hours). The vast majority of the firms sampled come from the capital Conakry, so that it is 

difficult to understand the relevance of geographical variation of outages (the only other city 

sampled is Kindia, which shows a lower than the average outage mean, possibly due to its role 

of military headquarter of the country). 

 

 

Guinea Bissau. 

The small country of Guinea Bissau contributes to the sample with 157 firms, 68.15% of which 

belongs to service sectors. Its industrial structure is predominated by small and medium firms, 

which account together for 98.7% of the sample, with just 2 firms with more than 100 

employees and none with more than 300. The national average of hours of outage is 1276 and 

it shows little variation across size, while it is impossible to analyse its geographical variability 

given that all firms come from the capital Bissau. 

 

Kenya. 

Kenya has a national average of hours of outage per year equal to 535 hours, in line with the 

averages for Eastern Africa. The variation across firm size is low, with very large firms being 

the only category showing a noticeable departure from the national average (784 hours). Out of 

the 4 productive sites sampled, two shows a relevantly different average: Nakuru – fourth city 

of the country – with a sensibly higher level (884 hours) despite its status of main agricultura l 

and diary production centre; Kisumu, second city in the Lake Victoria Basin, with a much lower 

average at 218 hours . The sample is almost equally divided between non-manufactur ing 

(49.8%) and manufacturing firms, with the most relevant sector amongst the latter being as 



48 
 

usual “food and beverage processing”. 

 

[Figure 1.20 about here] 

Lesotho. 

Lesotho has one of the highest preponderance of large and very large firms (17% together) in 

the sample.  59% of the firms belong to service sectors, with the main manufacturing sectors 

being garments, food and beverage processing and textiles (10.8%, 6.5% and 5% respective ly). 

All the firms sampled are based in the capital Maseru, so that it is impossible to estimate the 

geographical variation of outages relevance (which stands at a national average of 365 hours 

per year). Size wise, the only noticeable difference is with regard to very large firms, which 

seems to experience a much higher incidence of outage (646 hours on average). 

 

Liberia. 

Liberia presents a very peculiar situation. The survey has been carried out in 2009, which is 3 

years after the elections of 2006 that de facto concluded the peace process that began in 2003. 

The 149 firms in the sample are almost evenly divided between manufacturing (49%) and 

service (51%), although little information about further sectoral division is available as half of 

them were reported as either general manufacturing or service. The industrial structure is 

dominated by small firms (82%), with just one firm with more than 300 employees having 

being sampled. The low incidence of outage (251 hours per year) is surely dependent on the 

incredibly low access to public electricity (which is somewhere around 1% of the population), 

available only in the capital Monrovia (while overall access to electricity including self-

generation is 10% of population in urban areas and 2% in rural). The aim of understanding the 

geographical variability of the phenomenon is further impeded by the incredibly high 
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fragmentation of the sample across small villages, which is probably due to survey 

implementation problems and enumerators training issues. 

 

[Figure 1.21 about here] 

 

Malawi 

Malawi presents a more varied industrial structure than many other countries, at least under the 

point of view of size diversification, with large and very large firms accounting together for 

30% of the sample. The division between manufacturing and service firms is almost even (49% 

and 51% respectively), but we have unfortunately no information about the sectoral divis ion. 

The national average of 74 hours of outage per year is the third lowest in SSA, even though it 

shows quite a strong variation across firm size (standing at a mean value of 49 hours for small 

firms and 130 for large firms). Unfortunately, even for Malawi it is hard to perform a meaningful 

geographical analysis of differences in intensity of outage events due to high fragmentation of 

the sample. 

  

Mali. 

The structure of the Malian economy is similar to that of other Western African countries, with 

strong preponderance of small and medium firms (94% of the sample); of non-manufactur ing 

sectors (57%) and of “food and beverage processing” and garments amongst the manufactur ing. 

The national average of 555 hours of outage per year is still in the bottom half of the overall 

distribution; it shows considerable geographical variation, with an average of 1631 hours in 

Sikasso and one of 148 in Segou. Similarly varied is the incidence across sizes, with very large 

firms being the most hardly hit. 
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[Figure 1.22 about here] 

 

Mauritania. 

Mauritania is a further example of an industrial structure almost completely composed of small 

and medium firms (83% and 16% respectively). As in the majority of other countries in the 

sample, non-manufacturing sectors are more relevant than the manufacturing ones, the latter 

representing 34.3% of the sample. The average level of outage is 165 hours per year 

(nationally), with that of Ivory Coast one of the lowest in Western Africa. Firms located in 

Nouadibhou (second city of the country and only other included a part from the capital 

Nouakchott) seems to be more hardly hit, and the incidence of the outages phenomenon also 

increases with the size (with a mean value of 128 for small firms and of 684 for large ones). 

 

[Figure 1.23 about here] 

 

Mozambique. 

The 597 Mozambican firms were sampled across the three main cities of Beira, Maputo and 

Nampula (even though some firms are located in Matola, which lies 12 km from Maputo). The 

majority of them are either small or medium firms (73% and 22% respectively), with only 4 

firms passing the threshold of 300 employees. While manufacturing firms make up more than 

half the sample - retail alone accounts for 32%, there are 3 manufacturing sectors in the top 5 

(food and beverages processing; metals and fabricated metal products; garments). The nationa l 

average of hour of outage is 162 hours, and while it shows very little geographical variability it 

appears to be of decreasing importance in size of the firm.  
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[Figure 1.24 about here] 

 

Namibia. 

Namibia contributes to the sample with 355 firms, with the vast majority being in service sectors 

(74%) and retail and construction accounting for more than 50% alone. The size distribution of 

firms is similar to that of many other African economies, with small and medium firms 

accounting together for 95% of those in the sample. The national average of hours outage stands 

at 192 hours, with quite a strong difference in average disruption between the cities sampled, 

as the capital Windhoek experiences more than twice as many hours as the other two cities 

(Walvis Bay and Oshakati). Its relevance appears also to vary across size, although no clear 

pattern can be identified.  

 

[Figure 1.25 about here] 

 

Niger. 

Niger belongs to the group of small economies for which no information about sectoral 

distribution of firms is available. Of the 137 in the sample, 95% is either small or medium sized, 

with 57 firms (41.6%) belonging to manufacturing sectors. While the average of 482 hours of 

outage per year is not low in absolute terms, it is still in one of the lower in the region, even 

though it shows a noticeable geographical variation, with the average increasing to 743 hours 

if only the firms located in the market town of Maradi, a big agricultural hub, are considered. 

The phenomenon also appears to increase in relevance with the increase in size. 
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Nigeria. 

Nigeria has the second biggest sample, with 1,029 firms divided across nine cities. The 

industrial structure is though fairly similar to that of the other Western African countries, with 

a very high incidence of small and medium firms (73% the former, 18% the latter). Even under 

the point of view of the sectoral division, Nigeria does not depart too strongly from other 

sampled countries: manufacturing firms account for slightly more than half of the sample 

(63%), with “food and beverage processing” and “publishing, printing and recorded media” 

being the two biggest sectors. The national average of 3609 hours of outage is the second 

highest in the continent, and it shows little variation across size of firms (excluding the large 

firms which appear to be more interested by the phenomenon). On the other hand, the 

geographical variability is extremely high, ranging from an average of 2409 hours in the capital 

Abuja to one of 5037 hours in Kano.  

 

[Figure 1.26 about here] 

 

Rwanda. 

The small Eastern African economy has the lowest average of hour of outagess in the region 

(323 hours per year), which appears to be of decreasing importance in firm size (geographica l 

diversification is hard to appreciate as only 3 firms are located outside the country capital). 

Unfortunately there is no information about the sectoral division of the 191 firms sampled (51% 

of small size and 36% of medium) a part from the classic division between manufacturing sector 

(36%) and services. 

 

Senegal. 
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Senegal contributes to the sample with 625 firms, 56% of which belong to services. The main 

manufacturing sectors are “food and beverage processing” (accounting for 13% of firms 

sampled) and garments (accounting for 8%). As in almost all the other countries in the region, 

the highest share of the sample is composed by small and medium firms (88% and 9% 

respectively). The mean number of hours of outage stands at 852 per year, and appears to be 

decreasing in intensity with the size of the firm (while showing also some degree of 

geographical variation, as the mean for Saint-Louis and Kaolack, 2 of the 4 cities sampled, is 

well below the national one). 

 

[Figure 1.27 about here] 

 

Sierra Leone. 

Sierra Leone presents the 5th worse energy outlook in the whole of SSA, with a national average 

of 2046 hours of outage per year. The variation is almost inexistent both across size and 

geographically, demonstrating how the civil war left the whole of the country with very poor 

energy infrastructure (fact which might also be noted looking at the share of electric ity 

expenditure in the cost structure of firms in the country, much higher than the continenta l 

average). The vast majority of the firms in the sample is either of small (76%) or of medium 

(17%) size, with 46% of them belonging to manufacturing sectors (the most relevant of which 

are garments and “food and beverage processing”). 

 

[Figure 1.28 about here] 

 

Republic of South Africa (RSA). 
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The RSA has the biggest sample (1,062 firms) in the study and the 4th lowest mean of outages 

(118 hours per year). The share of small and medium firms is in line with that of Southern 

Africa (82% cumulatively), while that of manufacturing is one of the highest (66%). Four of 

the top five sectors are in fact manufacturing, with the chemical sector accounting for 8% of 

the firms (RSA hosts 24% of the chemical firms in the whole SSA sample). There is some 

variability across size in the incidence of outages, with smaller firms being hit less and very 

large firms more, but not much geographical variation if we exclude Port Elizabeth (which has 

an annual mean of 19 hours of outage, possibly in relation to its status as main hub of the 

automobile industry in RSA). 

 

[Figure 1.29 about here] 

 

Sudan 

The first ever World Bank Enterprise Survey was run in Sudan in 2014. Of the 263 firms 

sampled, 60% are in service sectors, with the more important manufacturing sectors represented 

by chemicals (10.6%) and food and beverages processing (9.9%). As common throughout the 

study, the majority of firms are either small or medium (96.5% cumulatively), with only one 

firm passing the threshold of 300 employees. The average level of outage is 118 hours, the 

lowest in East Africa, with the two very large firms seemingly those hit the hardest (234 and 

288 hours). It is not possible to analyse geographical variation as all firms are located in the 

capital Khartoum. 

 

[Figure 1.30 about here] 
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Swaziland. 

Swaziland’s economy is heavily dependent on South Africa. Of the 302 firms sampled, almost 

50% of them belong to the retail sector, with manufacturing sectors accounting for only 14% of 

firms, almost all in garments (6%) or “food and beverage processing” (5%). As common, the 

majority of firms are either small (73%) or medium (18%) sized. The latter appears to be slightly 

more hit by outages, experiencing on average 96 hours of disservice per year against a nationa l 

mean of 68. Geographical variation is almost completely absent a part from a lower incidence 

in the capital Mbabane. 

 

Tanzania. 

Tanzania is one of the few countries in the sample in which the highest share of firms surveyed 

belongs to manufacturing sectors (59%), with the main sectors being “food and beverage 

processing” (12%); “wood and furniture” (16%) or garments (10%). As usual, small and 

medium firms are the majority of the sample (66% and 18% respectively). The mean number 

of hours of outage per year at a national level stands at 870, even though the cities of Arusha 

and Mbeya show a much lower incidence (447 hours and 455 respectively).  

 

[Figure 1.31 about here] 

 

Togo. 

Togo is the last country for which no information on sectoral distribution is available. Of the 

147 firms sampled, all located in the capital city of Lome, 37% belong to manufacturing sectors; 

with small and medium firms accounting respectively for 64% and 23% of the sample. The 

average level of outage of 773 hours per year is slightly lower than the regional average and the 
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phenomenon appears to be more relevant for small and medium firms than it is for larger ones.  

 

 

Uganda. 

Uganda contributes to the sample with 505 firms divided across 6 cities. The majority of them 

is either small or medium (92% cumulatively), and manufacturing sectors account for 56%, 

with “food and beverage processing”; “metal and metal products” and “garments” being the 

most important of them. The national level of outage is of 1254 hours per year on average and 

shows some size variation, as large firms are those hit the most (2853 hours) and very large 

ones the least (591). The only significant geographical variation is the city of Mbale, in which 

outages seems to be much less relevant (258 hours on average). 

 

[Figure 1.32 about here] 

 

Zambia. 

The Zambian sample (531 firms) is predominantly composed by small and medium firms (97% 

cumulatively), with only two firms passing the threshold of 300 employees. Manufactur ing 

firms have a slight majority (51.4%) event though retail shops, hotels and restaurants accounts 

for 35% of the sample. The mean level of outages in the country is 255 hours per year and it is 

driven mainly by firms located in the capital Lusaka (52% of sampled firms), which experience 

a higher than average level of disservice, while the main mining centre Ndola is characterized 

by a much lower incidence (86 hours).  

 

[Figure 1.33 about here] 
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Zimbabwe. 

The last country included in the sample, Zimbabwe, has the highest incidence of outages (585 

hours per year on average) in Southern Africa. This shows almost no size variation and little 

geographical variation, excluding firms located in Manicaland which experience almost twice  

as many hours of outage (1092). The sample (594 firms) is composed for 62% by manufactur ing 

firms (mostly in “food and beverage processing” or “garmets”) and shows a similar size 

structure to that of other countries, with small and medium sized firms accounting cumulative ly 

for 78% of the sample. 

 

[Figure 1.34 about here] 

 

1.4. Productivity Analysis. 

 

As previously described in the literature review, only a small number of studies focus on 

infrastructure quality in SSA at the firm level. This is partially due to the scarcity of existing 

data and the difficulties in obtaining new ones: many SSA countries experience frequent 

instability; political and institutional turmoil are often a constant, so that the environment cannot 

be considered the most conductive for interviews (cost consideration a side). At the same time, 

these same factors have reduced the institutional capacity of many national statistical offices 

over the years, so that it is sometimes hard even to obtain a master list of existing firms. Scarcity 

and/or unreliability of data imply that it is hard to work on a panel data basis at a continenta l 

level.  
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1.4.1 Methodology. 

 

The main interest of the study is then to provide a first set of estimates of the firms’ cost of 

outages in term of sales considering the vast majority of SSA countries. The first step shall be 

the decision of which measures of performance can be used given the available information. 

The main productivity indicator used in the economic literature is TFP, the calculation of which 

though requires information about capital expenditure23 and almost always the availability of 

panel data which is not present in our case (notwithstanding other still unresolved issues with 

this type of indicator, see Cohen 2003). Cui, Lapan and Moschini (2012) have though developed 

a method to calculate TFP without information about capital expenditure: relying on the 

assumption that all firms in a given industry can be characterized by the same homogeneous 

production function, they are able to separate the contribution of the labour input from that of 

all the others, observables and unobservables. If we are then willing to assume that all firms in 

the same industry face the same price for all inputs, from the two assumptions follow that profit 

maximizing firms in the same sector will choose the same inputs’ combination and therefore 

the unobservable component can be approximated by industry specific terms24.  The 

methodology was developed for and applied to a United States’ firm-level dataset, for which 

these assumptions were not excessively unrealistic. Given the summary statistics presented in 

the previous part it is though clear that the same cannot be said about the SSA context. Even 

though this measure shall be included in the study, the result obtained will be mostly analysed 

as robustness check. 

 

                                                                 
23 Available just for a minority of firms in the sample, see section 3. 
24 It is worth remembering that none of the above assumptions implies that firms in the same sector have the 

same productivity. 
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With the available figures, the most sensible decision is then to use as dependent variable the 

revenue from total sales - used in logarithmic form - which stands as a proxy for total output. 

While this might be a somehow crude measure, it has the advantage of being available for 

almost every firm in the sample25.  

 

The explanatory variables of main interest for the study are the two different measures of power 

outages obtainable from the questionnaires, which are the number of outages per year and the 

hours of outage per year. These will be included in logarithm form to take into account possible 

non-linearities in electricity disservice.26  

 

All the classical control variables have also been included: size of the firm (as a series of 

dummies); exporter status, access to credit; age of the firm; percentage of foreign ownership; 

property structure (as dummy variable assuming a value of one if the firm has publicly traded 

share) and country dummies. The last set of information which shall be included as control is 

the 2-digit SIC code, which is however unavailable for firms in 12 countries27. A manufactur ing 

sector dummy (we have always information about manufacture/service division) is then 

included alternatively to the SIC code to check if increasing the sample leads to changes in the 

results. 

 

[Table 1.1 about here]  

 

                                                                 
25 As previously stated, all the monetary figures in the study have been deflated to 2005 level and then 

transformed into international dollars using PPP indexes. 
26 Versions of the model including the two different measures in both linear and quadratic forms have also been 

tested as robustness check. 
27 Benin, CAR, Chad, Eritrea, Guinea, Guinea Bissau, Malawi, Mauritania, Niger, Rwanda, Swaziland and Togo. 
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This leads us to estimate an empirical specification of the form: 

 

𝑌𝑖 =  𝛼 +  𝛽1𝑋𝑖 + 𝛽𝑗𝑖𝑍𝑖 +  𝜀𝑖 

 

where Yi stands for the logarithm of total sale; Xi is the logarithm of one of the two different 

measures of outages; Zi is a j-th dimension vector of control variables which includes all of the 

above. The model is estimated via OLS with robust standard errors. 

 

As all the models are going to be estimated via OLS it is surely worth mentioning that some 

endogeneity concerns exist. These are due to four main causes: the first is that there might be 

error in the reported incidence of outages; the second is that there might be some unobservable 

firm characteristics which we cannot control for as panel data are available only for a small 

sub-sample of countries for which the majority of firms are not matched; the third that the initia l 

decision of plant location might have been influenced by the quality of the electric ity 

infrastructure; the fourth that policies which affect firm’s performance might also affect black 

out levels. While the first one is inherent with the use of reported surveys and the second cannot 

be tackled in a cross-country setting, the third and fourth are more serious. We recognize the 

relevance of the issue, but it is unfortunately impossible to explore it further with the availab le 

data. 

 

1.4.2 Results. 

 

The benchmark model for the estimation is presented in Table 1.2.28 As it can be seen, only one 

                                                                 
28 While the two different measures for outages are related to two different sets of effects on production they are 

correlated by construction and therefore always included one at a time. 



61 
 

of the outage measures, the logarithm of the number of outage, is significant, while all control 

variables have the expected signs and significance. It appears then that outages are indeed a 

drag on firms’ activity, although not a huge one as an increase of 10% in the number of outages 

reduces firms’ sales of only 0.8%. With regards to the other control variables, smaller firms 

show lower sales, which increase in size; exporters and firms with higher percentage of foreign 

ownership also show higher total sales; finally it can be noted that both having access to credit 

from a bank and a public share property structure have a positive effect on sales (although it 

must be remembered that all these variables have been included simply as controls as our main 

interest lies in the effect of the outages).  

 

It is also interesting to investigate if we shall obtain different results dividing the sample 

between firms which own a generator and firms that do not, as the previously reported figure 

indicate the very high share of back-up ownership. Table 1.3 presents then the coefficients for 

firms which do not own a generator, while Table 1.4 presents those relative to firms with a 

generator.  

  

[Table 1.3 and 1.4 about here] 

 

As can be noted looking at Table 1.3, the picture for firms without a generator remains fairly 

consistent. Now both measures are negative and significant, even though only at 10% for the 

coefficient of the hours of outage. Moreover, the point estimates are always higher for firms 

without generators than they are for the overall sample, exactly as one would imagine. With 

regards to firms that own a generator, as in the overall sample only the number of outages is 

significant, and this time only at 10%. The low and partial significance for the sub-sample might 
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be due to the fact that the availability of backup generation does not automatically coincide 

with its use. Adenikinju (2003) shows for the Nigerian case how electricity production with 

back-up generation can be up to three times more expensive than buying electricity from the 

grid, so that generators are not always used and even when used they will lead to a higher 

production cost.29.  

 

Moreover, comparing the estimates from tables 3 and 4 there are other differences that can be 

noted: the benefit of growing in size up to the threshold of 300 employees seems to be stronger 

for firms without a generator, while the opposite is true after that threshold, as point estimates 

for large firms are higher for firms without a generator, while the reverse is true for very large 

firms; the positive effect of access to credit is stronger for firms without generators, while the 

reverse is true for access to export markets, foreign ownership and permanence in the market 

(although even in this case it must be born in mind that the above variables were included as 

controls).   

 

Firms that cannot afford a generator appear then to start off from a worse situation that than 

those who can: they are more exposed to electricity disservice, especially the inability to 

produce during blackout periods.  Access to credit also seems to lead to different consequences 

between the two sub-samples, but those are not so easily interpretable30. While the coefficient 

on the hours of outage might seem low, it is useful to bear in mind the dismal infrastruc ture 

condition that firm in the sample face: on average, a firm without a generator is afflicted by 562 

hours of outage per year. For it, a reduction to the average hours of outage in the Republic of 

                                                                 
29 The models for every dependent variable have been compared using the McFadden-Hausman specification 

tests and the null hypothesis of statistical equivalence between the coefficients has always been soundly rejected.  
30 This might be because ownership of a generator helps access to credit as it can be used as collateral but 

equally it might be easier to afford a generator once access to credit is obtained. 
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South Africa (118 hours), arguably the country with the best infrastructure in the sample, will 

entail an increase in sales of 3.2% (roughly 700,000 dollars at 2005 PPP). 

 

There is though an important qualifications for these results: as stated in the previous section, 

the OLS framework in which we have worked does not allow us to tackle neither endogeneity 

nor unobserved heterogeneity. While concerns about the latter are unavoidable given the nature 

of the data, a solution for the former shall be presented in the following chapters of the thesis.    

 

1.4.3 Robustness checks. 

 

Apart from ensuring that the results are not driven by any particular country, from the deflators 

and PPP indexes used or on dropping the top percentile of sales and outages, two main 

robustness checks have been performed31. The first is to drop the industry code and use instead 

a dummy indicating if the firm belongs to a manufacturing sector, increasing the sample 

between 1,300 firms ca. and 250 firms ca. depending on the specification.32  

 

[Table 1.5 about here]  

 

In Table 1.5 we present the results for the whole sample and for both sub-samples of firms with 

and without a generator. The estimates show a very similar trend to the previous: the 

coefficients on the (log) hours of outage are never significant, those on the number of outages 

                                                                 
31 Linear and quadratic specifications have also been tried, and so have quintile regressions. While the latter are 

generally unstable, the former yield comparable results, excluding the outage variables which are statistically 

significant but economically irrelevant. 
32 It is worth noting that the share of firm owning a generator is 52.08% if we consider only countries for which 

we have sectoral distribution and 53.04% if we consider the manufacture/service sample, which is almost the 

same. 
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are always significant and point estimates for firms without generator are higher than those for 

firms which own one. Some differences can also be noted in the magnitude of the size variables : 

expanding the sample to these smaller economies reduces the bonus from being very large and 

increases the deficit from being small. 

 

The last set of results utilise the TFP measure as in Cui, Lapan and Moschini (2012). Given that 

the construction of the measure requires information about sectoral distribution, this 

automatically excludes all the countries just taken into account.  

 

[Table 1.6 about here]  

 

Despite the aforementioned differences in input prices across the different countries in our 

sample (and very likely the same stands true for production technologies), the coefficients on 

the number of outages in Table 1.6 remain highly statistically significant, while that on the 

hours of outages is also significant at 10% for the sub-sample of firms without generator. All 

other covariates maintain the expected sign and significance.  

 

1.5. Generator Ownership Analysis. 

As the previous analysis makes clear, it is of great interest to understand what drives firms’ 

decision to acquire a generator, given that it appears that those who suffer more from a poor 

infrastructure quality are those without such generators. The second part of the study shall 

then concentrate on exploring the determinants of generator ownership in the SSA context. 
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1.5.1 Methodology. 

Two different models will be taken into account, moving from the simpler to the more complex; 

while their empirical specification is similar, the underlying economic logics are not the same, 

so that it is interesting to see if both find confirmation in the data.  

 

Firstly, we shall replicate Foster and Steinbucks (2010), FS from now on, to see if we obtain 

different results via an expansion of the sample with newer data33. They re-adapt the model 

developed by Reinikka and Svensson (2002) to analyse firms’ behaviour in situations of 

inadequate public service provision. In this setting, a risk neutral firm makes a capital 

investment in period 1 which return in period 2 depends on the stock of complementary capital 

available, which might be public or private in nature. The availability of public complementary 

capital is uncertain in period 2 but is observed in period 1, in which the firm might also decide 

to invest in a private substitute, incurring in a fixed cost. If it does so, it will ensure a given 

positive return from the investment in the second period, while if it does not it will face the 

uncertainty: the return will be the same as if the private substitute was acquired if public capital 

is available in sufficient quantity, lower if the required amount is not available. The decision to 

invest in substitute capital depends then on the firm characteristics (how relevant is 

complementary capital) and on what it observes in the first period. The authors consequentia l ly 

adopt the following specification: 

 

𝑌𝑖 = 𝑁 (𝑋𝑖 ,𝑍𝑖) 

 

                                                                 
33 Foster and Steinbucks also worked on a SSA sample but used older rounds of the WBES. 
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where Yi represents a firm owning a generator with probability one; Ν stands for the 

standardized normal distribution; Xi is one of the two outages measure and Zi is a vector of 

controls including firm size, exporter status, firm age, firm sector and country dummies. The 

model is estimated as a probit function with robust standard error, and the marginal effect are 

also reported. 

 

Secondly, we shall consider a comparable model, which was developed by Alby, Dethier and 

Straub (2011), ADS from now on, based on Holmstorm and Tirole (1997). As the previous one, 

it is aimed to explore the nexus between generator ownership, incidence of the outages 

phenomenon and firms’ size distribution across different sectors.  

 

The theoretical model developed is one of continuous moral hazard, in which an entrepreneur 

wanting to undertake an investment more costly than her init ial endowment has to borrow the 

difference between the two. The net return on the investment depends on the quality of the 

electricity supply, measured by the frequency of outages; furthermore, how much outages affect 

the investment depends on how reliant on electricity is the sector in which the entrepreneur 

operates34. The probability of a successful investment increases monotonically with the amount 

of effort exerted by the entrepreneur, which cannot be verified by the lender, who only observes 

the final outcome. The viability of the project depends on its net present value per unit of 

investment, assumed to be always negative when no effort is exerted but possibly positive when 

some is; given that the quality of electricity of supply affects the returns on the investment, 

there is a threshold level of outages above which the project is never viable. The model is set 

so that for sectors more reliant on electricity the threshold level is lower than for sectors less 

                                                                 
34 Only two types of sectors are assumed, a strongly reliant one and a weakly reliant one, with the effect of outages 

always more relevant for the former. 
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reliant, i.e. the same number of outages leads to a higher failure rate. 

 

The maximum amount pledgeable to the lender depends on the possible return on the project, 

on the benefit incurred by the borrower when no effort is exerted and how much the effort 

exerted influences the probability of success. Furthermore, the lender must at least break even 

and, as the credit market is assumed to be perfectly competitive, the borrower appropriates all 

surplus and invests the highest possible amount. Finally, there is always an alternat ive 

investment – a generator – that can be performed at any point. While investing in a generator 

reduces available assets for other investments, it also insures the entrepreneur against electric ity 

disservice, securing a minimum return when effort is exerted35.  

 

This setting gives rise to two different scenarios for investment in back-up generation. As long 

as the shortcomings of the energy infrastructure are not excessive (i.e. the net present value per 

unit of investment is positive for some level of effort), only big firms (that is, with high initia l 

endowment) autonomously invest in generator – obtaining easier access to credit – while 

smaller firms still obtain credit and find profitable to produce without acquiring back up 

capacity. Increases in the frequency outages, as long as their level remains below the threshold 

for which no investment is ever viable, lead to increases in generator ownership as more firms 

will find profitable to invest in generators. The alternative scenario is the one determined by 

very poor electricity infrastructure (i.e. the net present value per unit of investment is negative 

regardless of the level of effort without generators): only entrepreneurs with enough initia l 

assets to invest autonomously in a back-up capacity can access the credit market and continue 

                                                                 
35 The model is set in such a way that the return in case of generator ownership is always lower than that which 

could be obtained with an infrastructure of good quality, so to reflect the higher cost of in-house electricity  

generation. 
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production, while for those not sufficiently endowed from the beginning returns from 

production are insufficient to obtain credit.  

 

Two main hypotheses stem from the model. The first is that generator ownership is related to 

the outage phenomenon, but only if the electricity infrastructure is sufficiently developed (i.e. 

the net present value per unit of investment is positive for some level of effort), otherwise 

electricity disservices are too relevant to lead to further investment in generator when not 

autonomously available. In the latter case only firms with sufficient initial endowments to 

acquire back-up capacity from the beginning access the credit market, so that increases in 

outages are not connected with increases in generator ownership. To test the hypothesis, the 

authors employ the following specification: 

 

𝑌𝑖 =  𝜃𝑗 +  𝜃𝑐 + 𝛼 log (𝑁𝑖) +  𝛾𝑋𝑖 +  𝜀𝑖 

 

where Yi represents a dummy variable equal to 1 if the firm i owns a generator; 𝜃𝑗 is a set of 

industry dummy; 𝜃𝑐  a set of country dummy; Ni is the number of outages faced by the firm and 

Xi  is a set of control variables. The latter include a dummy equal to one when the firm is in a 

sector considered sensitive to the quality of the electric service provided36 and an interaction 

term between this dummy and the outage measure. The electricity-sensitive dummy has been 

based on the electricity share of the total cost for the average firm in the sector, and it is equal 

to one if it is above the mean across sectors. The model is estimated as a probit with standard 

error clustered at the industry-country level. 

                                                                 
36 According to the model, electricity reliant sectors are more likely to own a generator to start with, so that 

increases in outages lead to lesser increases in their probability of owning a generator. 
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The second hypothesis follows from the first and it is related to size distribution across sectors. 

In an electricity-sensitive sector, where return on investments is critically linked to the quality 

of the electricity supply, a higher incidence of outages will lead to fewer small firms, as the lack 

of initial endowments to invest in back up capacity leads to low profitability, eventually pushing 

them out of the market. Accordingly, in the remaining medium and large firms the proportion 

of generator ownership should be higher than in sectors which are not sensitive to electric ity.  

This is the specification used to test the hypothesis: 

 

𝑍𝑗𝑐 =  𝜃𝑗 +  𝜃𝑐 + 𝛽𝑂𝑗𝑐 +  𝛿 (𝑂𝑗𝑐 ∗ 𝑆ℎ ∗  𝐶ℎ) + 𝛾𝑋𝑗𝑐 + 𝜀𝑗𝑐 

 

where 𝑍𝑗𝑐  is the share of micro (less or equal to 5 employees), very small (between 5 and 10 

employees) or small (between 10 and 20 employees) firms in sector j in country c; 𝜃𝑗 is a set of 

industry dummy; 𝜃𝑐  a set of country dummy; 𝑂𝑗𝑐  is the average number/hours of outages in 

sector j  and country c; the interaction term in bracket includes the former, a dummy variable 

Sh equal to one if the firm is in an electricity-sensitive sector and a dummy variable Ch equal to 

one if the firm is located in a country with a number/hour of outage above the median across 

countries; Xjc represents the usual vector of control variables grouped at the sector-country 

level. The model is estimated as a tobit with standard error clustered at the industry-country 

level. 

 

1.5.2 Results. 

 

Table 1.7 presents our results for the FS model. They appear extremely similar to the origina ls, 

showing that little has changed in the industrial structure of SSA over the last 5 years. The main 
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differences between their results and ours is the relevance of the interaction term relative to 

small firms – insignificant in our sample while significant in theirs; also our magnitude of the 

exporter coefficient is a third of theirs. Overall though, the picture is very similar: while outages 

are definitely one of the determinants of generator ownership, looking at the elasticities they do 

not appear to be the only nor the main, although they are the second. Big firms and exporter s 

are those more likely to own a generator, probably reflecting easier access to credit or, as 

already pointed out by FS, necessity to follow more stringent regulation so to enter export 

markets. Interestingly, it appears that increases in outages for big and very big firms reduce 

their likelihood to own a generator, regardless of the measure used, fact not easily explainab le 

in FS framework. 

 

[Table 1.7 about here]  

 

The main limitation of the FS approach, as recognized also by the authors, is that their analys is 

is not able to properly explore the effect of access to finance. Without a theory which explicit ly 

takes this factor into account it becomes hard to disentangle the link: do firms which own a 

generator have a higher probability of obtaining a line of credit because of the major 

productivity which derives from it? Or does the connection run in some other direction?  

  

This issue is openly addressed by ADS, who model exactly this type of relation. The first step 

involved is that of dividing the sample between firms in electricity-sensitive sector (defined as 

sectors in which the share of electricity cost is above the inter-sectoral median) and those 

below37. Both Table 1.8 and Table 1.09 report the summary statistics of the two sub-samples 

                                                                 
37 Sector reliance on electricity in the original paper was calculated considering the cost structure of sectors in 

more advanced economies, while we calculate it over the whole sample. The decision is motivated in our eyes by 
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(overall and across size distribution), the latter when sector reliance on electricity as an input 

has been compared only to that on labour, the former when fuel and raw material costs are also 

taken into account.  

 

[Table 1.8 and 1.09 about here]  

 

The immediate difference that can be noted comparing the two tables is in the distribution of 

firms, skewed towards the non-electricity sensitive sectors in Table 1.8 and much more even 

when only labour and electricity costs are considered, suggesting complementarity between the 

two inputs in our sample. The measure used also influences, although marginally, the shares of 

generator ownership and of average electricity cost, the former almost always higher for non-

electricity- intensive sectors, the reverse for the latter. Incidence of outages also seems to be 

consistently higher for non-electricity intensive firms, suggesting that there might be more 

interest in initial plant location when electricity is a more relevant input.  

 

The first of the two tables is the one presenting the nearest picture to that of ADS, but it is hard 

to determine the reasons for it. First, we ignore which costs they have considered in calculat ing 

electricity reliance, so that differences might arise due to different measurement. Secondly,  size 

distribution in our sample is very different from the one used in their study: in their case, 

medium and large sized firms amount respectively to two-third and a half of the small sized 

ones; in our case, they amount respectively to a fourth and a tenth. Especially this second point 

highlights the relevance of small sized firms for the contexts of many SSA economies. Let us 

                                                                 
two main factors: first, ADS criteria for defining more advanced economies yield much less reasonable results in 

our context; second, while technological differences do certainly exist amongst countries in our sample, they are 

likely to be much less relevant than in that of ADS which was covering the whole world. 
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now focus on the estimation results, where the first two columns use the sectoral division which 

considers all production costs but capital depreciation and the last two the one relying only on 

labour and electricity costs; furthermore, columns 2 and 4 include an interaction term between 

electricity intense sector and number of outages. 

 

[Table 1.10 about here]  

 

The first thing that can be noticed is that the coefficient on the number of outages is remarkably 

similar to the one obtained through the application of the FS model, suggesting that despite 

ignoring factors which are now taken into account the main effect was already consistent ly 

estimated. The variable measuring the impact of possible financial constraints is relevant and 

with the expected sign; furthermore it strengthens the effect of having access to credit. The 

coefficient on electricity- intensive sectors is negative and significant when electricity reliance 

is calculated relying only on labour and electricity cost and insignificant otherwise, implying 

that, contrary from what expected from the model, firms in those sectors are less likely to 

possess a generator to start with (or equally likely, depending on significance). Finally, the 

interaction term is never significant, representing another main difference in our results. In ADS 

these were negative and significant, as a consequence of the already higher likelihood of owning 

a generator for firms in electricity-reliant sectors. Given that this is not the case in our sample, 

the latter finding should not be a surprise. The first hypothesis of the model does not then seem 

to be confirmed in the SSA context, and we control further for this as they did, i.e. dividing the 

sample between the sectors which are electricity reliant and those which are not.  

 

[Table 1.11 about here]  
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As expected, while there are differences across covariates signs and relevance, the coefficient 

on the outage variable is equally relevant in the two sub-samples and far from being 36% lower 

for the electricity-reliant sector as found by ADS, on the contrary it is slightly higher for one of 

the two measure (and identical for the other). The differences probably stem from the definit ion 

of an electricity-reliant sector and from the average level of outage: as previously noted, a 

definition based on electricity share will always depend on the proportion and cost of electric ity 

self-generated38.  

 

We shall now concentrate on the last part of the analysis, namely the one which tests the second 

prediction of the model, which is whether the quality of energy infrastructure has an influence 

on firm size distribution across sectors. We shall follow ADS exposition and start introduc ing 

some summary statistics on firm size distribution, comparing sectors more and less reliant on 

electricity and countries more and less hit by the outages phenomenon. As earlier, Tables 1.12 

and 1.13 present an overview of the sample following both sectoral division – ignoring and 

considering raw material and fuel costs. 

 

[Table 1.12 and 1.13 about here]  

 

The picture emerging from the analysis of the summary statistics is not as clear as in the ADS 

sample, although there are some similarities. In their sample, ADS found that countries more 

hardly hit by electricity disservice had a lower share of small firms in both electricity reliant 

and non-electricity reliant sectors. However, because of sector specific characteristics, sectors 

more strongly reliant on electricity had a higher share of small firms in both types of countries. 

                                                                 
38 This explanation though goes against the higher relevance of access to credit in sector less reliant on electricity, 

which already has a higher share of generator ownership. 
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In our sample, regardless of the measure of electricity reliance employed, countries suffering 

more from outages have a lower share of small firms in electricity-sensitive sectors, as in ADS, 

but a higher one in those non-electricity sensitive. Also in contrast with their sample, in our 

case sectors more sensitive to electricity always have a lower share of small firms than those 

less sensitive to it. 

 

[Table 1.14 about here]  

 

Table 1.14 presents then the results of the Tobit estimation aimed at checking the hypothesis in 

a more rigorous way.  This time the hypothesis that there is a relation amongst the relevance of 

outages and sectoral and size distribution finds some support in the data. The coefficients on 

the outage variable is always positive and significant, pointing towards a negative general effect 

of outage on firms’ ability to grow in size. The interaction term isolating the effect for electric ity 

intensive firms is insignificant for micro firms but negative and significant for small and very 

small firms (although only for one of the two electricity intensity measures for the latter) as 

predicted by the theory. This seems to indicate that the quality of the electricity supply does 

indeed play an effect on firm’s survival capacity for particular sectors, but that this becomes 

relevant only after the firm has already grown above a given threshold (which at 5 employees 

is though relatively small). 

 

There is one final point which needs to be stressed, as it is probably playing a role in driving 

the results: the industrial structure of the SSA countries in the study is much less diversified 

than that in ADS. This can be quickly understood comparing the numbers of observations of 

the Tobit model in our study and in theirs: 484 for ours; 1,777 for theirs. As these numbers stand 
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for size shares in sector-country (and we uses 2 digit industry code from the same data source), 

if we divide them by the number of countries we obtain the average number of sectors per 

country, which can be seen as a crude measure of industrial diversification: it is 19 in our study 

and 28 in theirs.  

 

1.6. Conclusions. 

 

Sub-Saharan African economic development is surely constrained by a number of different 

factors, and the dismal situation of the power infrastructure of almost every country in the 

continent is likely to be one of the main elements. The effect of an inadequate generation 

capacity is clear to see, ranging from excessive reliance on biomass from households, with huge 

consequent health and environmental costs; to frequent and extensive outages constraining 

firms. It is especially on the effects on the latter that this study focuses. After reviewing the 

most recent literature – both on a macro and on a micro level – and presenting extensive 

summary statistics of the World Bank Enterprise Survey for every country included in the 

analysis, we use revenue functions to explore how much of a burden outages are for firm 

profitability. In light of the results obtained we then focus on the analysis of the determinants 

of generator ownership in the Sub-Saharan context, applying to our data two of the models 

recently developed in the literature.  

 

Considering the whole sample, the first main conclusion is that power outages are indeed a drag 

on firm profitability. When we further differentiate analysis between firms with and without a 

generator, the effects appear much stronger for the latter and just about perceivable for the 

former. These results are robust to different specifications, although the estimates might suffer 
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from the presence of endogeneity as they have been obtained in an OLS framework in which 

neither endogeneity nor unobserved heterogeneity can be tackled. Ignoring the many economic 

changes which will necessarily be entailed in a decisive improvement of energy infrastructure, 

the reduction of the amount of hours faced by an average SSA firm without a generator to that 

of its Southern African counterpart will imply a ceteris paribus increase in its sales of 3.2%, 

which is roughly 700.000 2005 international dollars.   

 

It is also clear from both models of generator ownership considered that the level of outage is 

an important determinant of firms’ decision to invest in back-up generation capacity. While it 

appears that firms in sectors that rely more on electricity for production are more likely to opt 

for this type of investment to start with, there is no particular evidence in the data that their 

decision is differently influenced by changes in electric provision quality, even though this 

might depend on the way in which electricity reliance has been defined. There also are some 

signs that the growth paths for firms in these sectors are more heavily influenced by the 

frequency of outages than that for firm in sectors less reliant on electricity.  

 

Overall then, the chapter points towards the following policy suggestion: improvements in 

energy infrastructure will be favourably met by increases in profitability across firms of all 

sectors and size in SSA, and even more so for firms which do not have access to back-up 

capacity. While these improvements are not likely to reduce importantly the weight of in-house 

generation, as there are other relevant factors behind the demand of generators, many are the 

probable economic progress that will follow. At the same time, it is unlikely that these 

improvements alone will determine particular changes in the economic structure of many SSA 

states, both under the point of view of sectoral and size distribution. To meet the challenge of 
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diversifying their economies, those countries will probably need to develop a more complex set 

of industrial policies, part of which should surely be the easing of credit constraints which 

appear to be playing an important role in preventing firm expansion. 
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Figure 1.1 – GDP and employment share of industry. 

 

Share of GDP and employment of the industrial sector for selected countries, CIA World Factbook. 
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Figure 1.2 – Average cost structure across SSA. 

 

 

Average firm cost structure across SSA countries, excluding fuel costs and capital depreciation. 
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Figure 1.3 – Average hours of outage per year. 

 

 

Hours of outage per year, mean by country. 
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Figure.1.4 – Average losses to power outages as share of output. 

 

Average loss of output due to outages by country. 
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Figure 1.5 – Losses to power outages by their incidence. 

 

Losses due to outages by outages incidence 
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Figure 1.6 – Electricity as main obstacle to expansion. 

 

Percentage of firm declaring that electricity is their main obstacle by country. 
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Figure 1.7 – Generator ownership and self-generation by power outage incidence. 

 

Percentage of generator ownership and of electricity self-generated, by outage incidence. 
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Figure 1.8 – Generator ownership and self-generation by firm size. 

 

Percentage of generator ownership and electricity self-generated, by firm size. 
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Figure 1.9 – Average cost structure across industries, Angola. 

 

 

Cost structure of average Angolan firm, by industry. 
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Figure 1.10 – Average cost structure across industries, Botswana. 

 

Cost structure of average Botswanan firm, by industry. 

 

Figure 1.11 – Average cost structure across industries, Burkina Faso. 

 

Cost structure of average Burkinan firm, by industry. 
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Figure 1.12 – Average cost structure across industries, Burundi. 

 

 

Cost structure of average Burundian firm, by industry . 

 

Figure 1.13 – Average cost structure across industries, Cameroon. 

 

Cost structure of average Cameroonian firm, by industry. 
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Figure 1.14 – Average cost structure across industries, Republic of Congo. 

 

Cost structure of average Congolese (Republic of) firm, by industry. 

 

Figure 1.15 – Average cost structure across industries, Ivory Coast. 

 

Cost structure of average Ivorian firm, by industry. 
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Figure 1.16 – Average cost structure across industries, Democratic Republic of Congo. 

 

 Cost structure of average Congolese (Democratic Republic of) firm, by industry.  
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Figure 1.17 – Average cost structure across industries, Ethiopia. 

 

Cost structure of average Ethiopian firm, by industry. 
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Figure 1.18 – Average cost structure across industries, Gabon. 

 

Cost structure of average Gabonese firm, by industry. 
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Figure 1.19 – Average cost structure across industries, Ghana. 

 

Cost structure of average Ghanaian firm, by industry. 
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Figure 1.20 – Average cost structure across industries, Kenya. 

 

Cost structure of average Kenyan firm, by industry. 

 

Figure 1.21 – Average cost structure across industries, Liberia. 

  

Cost structure of average Liberian firm, by industry. 
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Figure 1.22 – Average cost structure across industries, Mali. 

 

Cost structure of average Malian firm, by industry. 

 

Figure 1.23 – Average cost structure across industries, Mozambique. 

 

Cost structure of average Mozambican firm, by industry. 
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Figure 1.24 – Average cost structure across industries, Namibia. 

 

Cost structure of average Namibian firm, by industry. 

 

Figure 1.25 – Average cost structure across industries, Nigeria. 

 

Cost structure of average Nigerian firm, by industry. 
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Figure 1.26 – Average cost structure across industries, Senegal. 

 

Cost structure of average Senegalese firm, by industry. 

 

Figure 1.27 – Average cost structure across industries, Sierra Leone. 

 

Cost structure of average Sierra Leonese firm, by industry. 
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Figure 1.28 – Average cost structure across industries, Republic of South Africa. 

 

Cost structure of average South African firm, by industry. 

 

Figure 1.29 – Average cost structure across industries, Sudan. 

 

Cost structure of average Sudanese firm, by industry. 
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Figure 1.30 – Average cost structure across industries, Tanzania. 

 

Cost structure of average Tanzanian firm, by industry. 
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Figure 1.31 – Average cost structure across industries, Uganda. 

 

Cost structure of average Ugandan firm, by industry. 
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Figure 1.32 – Average cost structure across industries, Zambia. 

 

Cost structure of average Zambian firm, by industry. 
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Figure 1.33 – Average cost structure across industries, Zimbabwe. 

 

Cost structure of average Zimbabwean firm, by industry.  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Food

Tobacco

Textiles

Garments

Leather

Wood

Paper

Publ/Print/Record

Chemicals

Plastic & rubb

Basic metals

Fabricated metal products

Machinery & equip

Electronics

Precision instrum

Transport machines

Furniture

Recycling

Construction

Service of motor veichles

Retail

Hotel and rest

Transport

IT

Electricity Cost Labour Cost Raw Material Cost



103 
 

Table 1.1 – Covariates summary statistics . 

 

 

Covariates summary statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Mean S.D. min. MAX.

Number of outage 150.95 259.16 0 3720

Hours of outage 881.05 1626.08 0 8765

Small 0.63 0.48 n.a. n.a.

Medium 0.26 0.44 n.a. n.a.

Large 0.07 0.26 n.a. n.a.

Very large 0.04 0.19 n.a. n.a.

Exporter 0.1 0.3 n.a. n.a.

Access to credit 0.21 0.41 n.a. n.a.

Publicly traded share 0.07 0.26 n.a. n.a.

Foreign ownership 0.12 0.31 0 1

Firm age 14.13 13.84 0 172

Manufacturing 0.48 0.5 n.a. n.a.

Number of employees 50.92 215.22 0 6500
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Table 1.2 – Effect of outages on firms’ revenue. 

 

 

 

OLS estimation with robust standard errors in parenthesis. The dependent variables is the logarithm of total sale, 

expressed in PPP 2005$. Both regressions include country and industry dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

(1) (2)

Total Sale Total Sale

Number of PO -0.08***

(0.03)

Hours of PO -0.03

(0.02)

small -1.40*** -1.40***

(0.06) (0.06)

large 1.10*** 1.09***

(0.10) (0.10)

very large 1.87*** 1.87***

(0.16) (0.16)

exporter 0.60*** 0.60***

(0.09) (0.09)

Credit 0.49*** 0.49***

(0.06) (0.06)

Share 0.40*** 0.40***

(0.08) (0.08)

Foreign ownership 0.92*** 0.92***

(0.09) (0.09)

Firm age 0.34*** 0.34***

(0.03) (0.03)

Constant 13.78*** 13.63***

(0.30) (0.28)

Number of obs. 6677 6677

R
2

0.58 0.58
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Table 1.3 – Effect of outages on revenue of firms without a generator. 

 

 

 

OLS estimation with robust standard errors in parenthesis. The dependent variables is the logarithm of total sale, 

expressed in PPP 2005$. Both regressions include country and industry dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

(1) (2)

Total Sale Total Sale

Number of PO -0.13***

(0.04)

Hours of PO -0.04*

(0.02)

small -1.41*** -1.41***

(0.09) (0.09)

large 1.38*** 1.37***

(0.16) (0.16)

very large 1.23*** 1.22***

(0.29) (0.29)

exporter 0.47*** 0.48***

(0.13) (0.13)

Credit 0.56*** 0.56***

(0.09) (0.09)

Share 0.46*** 0.47***

(0.14) (0.14)

Foreign ownership 0.70*** 0.70***

(0.15) (0.15)

Firm age 0.25*** 0.25***

(0.04) (0.04)

Constant 14.64*** 14.36***

(0.59) (0.57)

Number of obs. 2723 2723

R
2

0.68 0.68
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Table 1.4 – Effect of outages on revenue of firms with a generator. 

 

 

 

OLS estimation with robust standard errors in parenthesis. The dependent variable is the logarithm of total sale, 

expressed in PPP 2005$. Both regressions include country and industry dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

(1) (1)

Total Sale Total Sale

Number of PO -0.09*

(0.05)

Hours of PO -0.04

(0.03)

small -1.21*** -1.21***

(0.09) (0.09)

large 0.78*** 0.77***

(0.13) (0.13)

very large 2.06*** 2.05***

(0.19) (0.19)

exporter 0.58*** 0.59***

(0.12) (0.12)

Credit 0.33*** 0.33***

(0.09) (0.09)

Share 0.20 0.20

(0.11) (0.11)

Foreign ownership 0.87*** 0.87***

(0.13) (0.13)

Firm age 0.40*** 0.41***

(0.05) (0.05)

Constant 13.67*** 13.51***

(0.42) (0.39)

Number of obs. 2982 2982

R
2

0.54 0.54
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Table 1.5 – Robustness checks: Manufacturing dummy. 

 

 

 

OLS estimation with robust standard errors in parenthesis. The dependent variables is  the logarithm of total sale, 

expressed in PPP 2005$. Columns 1 and 2 present results for the whole sample, columns 3 and 4 for firms without 

a generator, columns 5 and 6 for firms without. All regressions include country dummies. ***=significant at the 

1% level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.07*** -0.11*** -0.08*

(0.03) (0.04) (0.04)

Hours of PO -0.02 -0.03 -0.03

(0.02) (0.02) (0.03)

small -1.50*** -1.50*** -1.53*** -1.54*** -1.30*** -1.30***

(0.05) (0.05) (0.08) (0.08) (0.08) (0.08)

large 1.19*** 1.19*** 1.36*** 1.35*** 0.90*** 0.89***

(0.09) (0.09) (0.16) (0.16) (0.12) (0.12)

very large 1.88*** 1.88*** 1.10*** 1.09*** 2.05*** 2.05***

(0.15) (0.15) (0.26) (0.26) (0.18) (0.18)

exporter 0.54*** 0.55*** 0.48*** 0.48*** 0.49*** 0.50***

(0.08) (0.08) (0.12) (0.12) (0.11) (0.11)

Credit 0.54*** 0.54*** 0.62*** 0.62*** 0.34*** 0.34***

(0.05) (0.05) (0.09) (0.09) (0.08) (0.08)

Share 0.52*** 0.52*** 0.55*** 0.55*** 0.28** 0.28**

(0.07) (0.07) (0.13) (0.13) (0.10) (0.10)

Foreign ownership 0.98*** 0.98*** 0.74*** 0.74*** 0.96*** 0.95***

(0.07) (0.07) (0.14) (0.14) (0.11) (0.11)

Firm age 0.33*** 0.33*** 0.25*** 0.25*** 0.41*** 0.41***

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)

Manuf dum -0.17*** -0.17*** -0.04 -0.04 -0.24** -0.24**

(0.04) (0.04) (0.07) (0.07) (0.08) (0.08)

Constant 14.03*** 13.88*** 14.46*** 14.20*** 13.95*** 13.83***

(0.27) (0.25) (0.56) (0.54) (0.34) (0.32)

Number of obs. 7954 7954 2981 2981 3379 3379

R
2

0.57 0.57 0.67 0.67 0.53 0.53
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Table 1.6 – Robustness checks: TFP. 

 

 

OLS estimation with robust standard errors in parenthesis. The dependent variable is the logarithm of Total Factor 

Productivity as in Cui, Lapan and Moschini (2012). Columns 1 and 2 presents the results for the whole sample, 

columns 3 and 4 results for firm without a generator; columns 5 and 6 for firms with a generator. All regressions 

include country dummy. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% 

level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

TFP TFP TFP TFP TFP TFP

Number of PO -0.08*** -0.14*** -0.05

(0.03) (0.04) (0.05)

Hours of PO -0.03 -0.04* -0.02

(0.02) (0.02) (0.03)

small 0.27*** 0.27*** 0.21** 0.21** 0.41*** 0.41***

(0.06) (0.06) (0.10) (0.10) (0.09) (0.09)

large -0.43*** -0.44*** -0.10 -0.10 -0.73*** -0.74***

(0.10) (0.10) (0.20) (0.20) (0.13) (0.13)

very large -1.17*** -1.18*** -1.58*** -1.57*** -1.10*** -1.10***

(0.16) (0.16) (0.39) (0.39) (0.18) (0.18)

exporter 0.33*** 0.34*** 0.25* 0.26* 0.35*** 0.35***

(0.09) (0.09) (0.13) (0.13) (0.12) (0.12)

Credit 0.37*** 0.37*** 0.42*** 0.42*** 0.24*** 0.24***

(0.06) (0.06) (0.09) (0.09) (0.09) (0.09)

Share 0.23** 0.23** 0.30** 0.31** 0.07 0.07

(0.08) (0.08) (0.14) (0.14) (0.11) (0.11)

Foreign ownership 0.76*** 0.76*** 0.44*** 0.45*** 0.78*** 0.78***

(0.08) (0.08) (0.14) (0.14) (0.13) (0.13)

Firm age 0.24*** 0.24*** 0.17*** 0.17*** 0.30*** 0.30***

(0.03) (0.03) (0.04) (0.04) (0.05) (0.05)

Constant 0.58 0.41 0.90 0.58 1.01* 0.89*

(0.30) (0.29) (0.58) (0.57) (0.44) (0.43)

Number of obs. 5975 5975 2389 2389 2618 2618

R
2

0.47 0.47 0.64 0.64 0.37 0.37
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Table 1.7 – Determinants of generator ownership as in FS. 

 

 Probit estimation with robust standard errors clustered at the industry -country level in parenthesis. Base country: 

Angola; base industry: food and beverage processing; base size category: medium (20-100 employees). All 

regressions include country and industry dummy. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. Elasticity calculated at base level of dummies (country=Angola and sector=Food 

and Beverage) and mean level of continuous variables . 

 

 

 

 

 

 

 

 

(1) (2)

Generator ownership Elasticity Generator ownership Elasticity

Number of outages 0.33*** 0.13

(0.02)

Small*Numb. Of outages 0.01 0

(0.01)

Large*Numb of outages -0.05*** -0.02

(0.02)

Very large*Numb. Of outages -0.17*** -0.07

(0.03)

Hours of outages 0.20*** 0.08

(0.01)

Small*Hours of outages 0.01 0

(0.01)

Large*Hours of outages -0.04*** -0.02

(0.01)

Very large*Hours of outages -0.13*** -0.05

(0.02)

Firm age 0.04** 0.02 0.02 0

(0.02) (0.02)

Number of employees 0.39*** 0.15 0.38*** 0.15

(0.03) (0.03)

Exporter 0.12** 0.5 0.12** 0.5

(0.05) (0.05)

Constant -2.60*** -2.23***

(0.12) (0.11)

Number of observation 7099 6838
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Table 1.8 – Summary statistics, sensitive and non-sensitive electricity industry, all costs. 

 

Summary statistics of firm sub-samples, electricity reliance calculated considering all production costs. 

 

 

 

 

 

 

 

Electricity sensitive Non electricity sensitive

Whole sample

Number of firms 4416 8894

Share reporting electricity as biggest obstacle 18.83% 14.28%

Average number of outage 124 165

Share of firm owning a generator 46.59% 49.36%

Average cost of electricity (share of total cost) 4.50% 3.75%

Very Large

Number of firms 224 254

Share reporting electricity as biggest obstacle 21.87% 16.06%

Average number of outage 111 167

Share of firm owning a generator 65.00% 66.36%

Average cost of electricity (share of total cost) 3.09% 4.06%

Large

Number of firms 429 522

Share reporting electricity as biggest obstacle 16.82% 16.15%

Average number of outage 96 154

Share of firm owning a generator 70.00% 70.57%

Average cost of electricity (share of total cost) 3.08% 2.22%

Medium

Number of firms 1310 2169

Share reporting electricity as biggest obstacle 17.90% 14.07%

Average number of outage 112 147

Share of firm owning a generator 55.49% 59.05%

Average cost of electricity (share of total cost) 4.06% 3.34%

Small

Number of firms 2440 5920

Share reporting electricity as biggest obstacle 19.46% 14.05%

Average number of outage 138 174

Share of firm owning a generator 35.77% 42.53%

Average cost of electricity (share of total cost) 5.30% 4.27%
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Table 1.09 – Summary statistics, sensitive and non-sensitive electricity industry, only 

labour and electricity costs 

 

Summary statistics of firm sub-sample, electricity reliance calculated considering only electricity and labour 

costs. 

 

 

 

 

 

 

 

 

 

Electricity sensitive Non electricity sensitive

Whole sample

Number of firms 6308 7002

Share reporting electricity as biggest obstacle 17.09% 14.65%

Average number of outage 122 178

Share of firm owning a generator 43.26% 53.28%

Average cost of electricity (share of total cost) 17.32% 16.56%

Very Large

Number of firms 243 235

Share reporting electricity as biggest obstacle 18% 20%

Average number of outage 111 166

Share of firm owning a generator 57% 76%

Average cost of electricity (share of total cost) 18.53% 15.84%

Large

Number of firms 387 564

Share reporting electricity as biggest obstacle 18% 15%

Average number of outage 94 152

Share of firm owning a generator 72% 69%

Average cost of electricity (share of total cost) 15.01% 16.07%

Medium

Number of firms 1548 1931

Share reporting electricity as biggest obstacle 17% 14%

Average number of outage 107 155

Share of firm owning a generator 56% 58%

Average cost of electricity (share of total cost) 15.24% 15.63%

Small

Number of firms 4115 4245

Share reporting electricity as biggest obstacle 17% 14%

Average number of outage 132 194

Share of firm owning a generator 34% 47%

Average cost of electricity (share of total cost) 18.31% 17.11%
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Table 1.10 – Determinants of generator ownership as in ADS. 

 

Probit estimation with robust standard errors clustered at the industry -country level in parenthesis. Columns 1 and 

2 presents the results for the electricity intensity measures calculate on labour and electricity costs only; columns 

3 and 4 for the one that includes all production costs . Base country: Angola; base industry: food and beverage 

processing. All regressions include country and industry dummies. ***=significant at the 1% level; **=significant 

at the 5% level; *=significant at the 10% level.  

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

Generator Generator Generator Generator

Number of outages 0.29*** 0.29*** 0.29*** 0.27***

(0.02) (0.02) (0.02) (0.02)

Electricity intensive -0.04 -0.05

(0.03) (0.14)

Outages*Elec. Int. 0.00

(0.03)

Electricity intense (E&L) -0.12*** -0.27**

(0.03) (0.14)

Outages*Elec. Int. (E&L) 0.04

(0.03)

Finance constrained -0.28*** -0.28*** -0.27*** -0.27***

(0.04) (0.04) (0.04) (0.04)

Access to credit 0.18*** 0.18*** 0.18*** 0.18***

(0.04) (0.04) (0.04) (0.04)

Firm age 0.16*** 0.16*** 0.16*** 0.16***

(0.02) (0.02) (0.02) (0.02)

Capital city 0.11*** 0.11*** 0.10** 0.10**

(0.03) (0.03) (0.03) (0.03)

Exporter 0.29*** 0.29*** 0.28*** 0.28***

(0.05) (0.05) (0.05) (0.05)

Foreign ownership (dummy) 0.32*** 0.32*** 0.31*** 0.31***

(0.04) (0.04) (0.04) (0.04)

Constant -1.64*** -1.64*** -1.58*** -1.51***

(0.09) (0.10) (0.09) (0.11)

Number of observation 7018 7018 7018 7018
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Table 1.11 – Determinants of generator ownership, sample split by electricity intensity. 

 

Probit estimation with robust standard errors clustered at the industry -country level in parenthesis  Columns 1 and 

2 presents the results for the electricity intensity measures calculate on labour and electricity costs only; columns 

3 and 4 for the one that includes all production costs . Base country: Angola; base industry: food and beverage 

processing. All regressions include country and industry dummies. ***=significant at the 1% level; **=significant 

at the 5% level; *=significant at the 10% level. 

  

Non Intensive Intensive Non Intensive Intensive

Generator Generator Generator Generator

Number of outages 0.29*** 0.29*** 0.27*** 0.31***

(0.02) (0.03) (0.02) (0.02)

Finance constrained -0.24*** -0.32*** -0.26*** -0.29***

(0.05) (0.06) (0.05) (0.05)

Access to credit 0.23*** 0.12** 0.13** 0.22***

(0.05) (0.06) (0.05) (0.06)

Firm age 0.15*** 0.18*** 0.15*** 0.16***

(0.02) (0.03) (0.03) (0.03)

Capital city -0.01 0.27*** 0.14** 0.06

(0.04) (0.05) (0.05) (0.04)

Exporter 0.28*** 0.29*** 0.19** 0.40***

(0.07) (0.08) (0.07) (0.08)

Foreign ownership (dummy) 0.31*** 0.35*** 0.35*** 0.27***

(0.06) (0.06) (0.06) (0.06)

Constant -1.58*** -1.79*** -1.50*** -1.79***

(0.11) (0.14) (0.12) (0.13)

Number of obs. 4118 2900 3483 3535

All costs Electricity & Labour
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Table 1.12 – Firm size distribution across electricity sensitiveness (all production costs) 

and infrastructure quality 

 

Firm size distribution, electricity-reliance (all costs excluding capital depreciation) and infrastructure quality. 

 

 

Table 1.13 – Firm size distribution across electricity sensitiveness (only labour and 

electricity costs) and infrastructure quality 

 

Firm size distribution, electricity-reliance (only labour and electricity) and infrastructure quality. 

 

 

 

 

 

 

 

 

Countries below outage mean Countries above outages mean Above - Below difference

Firms with <5 employees

Electricity sensitive 4.81% 3.68% -1.13%

Non electricity sensitive 12.78% 18.97% 6.19%

Sensitive-non sensitive -7.97% -15.29% -7.32%

Firm with 5-10 employees

Electricity sensitive 8.43% 5.49% -2.94%

Non electricity sensitive 18.53% 22.50% 3.97%

Sensitive-non sensitive -10.10% -17.01% -6.91%

Firm with 10-20 employees

Electricity sensitive 7.37% 3.27% -4.10%

Non electricity sensitive 13.15% 17.40% 4.25%

Sensitive-non sensitive -5.78% -14.13% -8.35%

Countries below outage mean Countries above outages mean Above - Below difference

Firms with <5 employees

Electricity sensitive 10.81% 4.03% -6.78%

Non electricity sensitive 6.77% 18.61% 11.84%

Sensitive-non sensitive 4.04% -14.58%

Firm with 5-10 employees

Electricity sensitive 14.59% 5.90% -8.69%

Non electricity sensitive 12.38% 22.09% 9.71%

Sensitive-non sensitive 2.21% -16.19%

Firm with 10-20 employees

Electricity sensitive 10.20% 4.18% -6.02%

Non electricity sensitive 10.32% 16.49% 6.17%

Sensitive-non sensitive -0.12% -12.31%
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Table 1.14 – Determinants of size distribution as in ADS. 

 

Tobit estimation with robust standard errors clustered at the industry-country level in parenthesis. The dependent variable is the share of firm with less than 20 employees 

in columns 1 and 2; with less than 10 employees in columns 3 and 4; with less than 5 employees in columns 5 and 6. Base count ry: Angola; base industry: food and 

beverage processing. All regressions include country and industry dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% 

level 

(1) (2) (3) (4) (5) (6)

Share of micro firms Share of micro firms Share of very small firms Share of very small firms Share of small firms Share of small firms

Average number of outage (/100) 0.19*** 0.22*** 0.43*** 0.43*** 0.21*** 0.40***

(0.06) (0.06) (0.07) (0.07) (0.08) (0.15)

Interaction term 0.02 -0.18** -0.04

(0.07) (0.09) (0.10)

Interaction term (E&L) -0.13 -0.18** -0.28**

(0.15) (0.09) (0.14)

Constant 0.47*** 0.46*** 0.48*** 0.47*** 0.47*** 0.46***

(0.11) (0.10) (0.06) (0.06) (0.07) (0.07)

Number of observation 484 484 484 484 484 484
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Chapter 2 

Hydrological modelling of 8 African 

continental basins with Geospatial Stream 

Flow Model (GeoSFM). 
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2.1 Introduction. 

Freshwater – apart from its direct use for drinking and sanitation – plays a vital role in 

agriculture, fishing (which might be generally grouped in “food security”) and power 

generation in the whole SSA. With 62% of the continent’s surface composed of internationa l 

river basins, the trans-boundary nature of African water resources is paramount. In fact, 

amongst the 11 biggest river basins, 5 are shared between at least 8 countries. This particular 

characteristic has important implications for the sustainable management of water resources 

and for the sustainable development of economic activity related to them (de Wit and 

Stankiewicz 2006, Goulden et al. 2009, Scheumann and Alker 2009). 

 

The continent is also characterized by many different climate regimes. The areas experienc ing 

a mean level of precipitation lower than 400 mm per year (“dry regime”) or between 400 and 

1000 mm (“intermediate regime”) jointly cover 66% of Africa, and especially the latter might 

be worryingly exposed to change in water availability due to climate change. Intermedia te 

regimes – which feature highly seasonal rainfall – include the southern part of the continent, 

the majority of East Africa and the whole stripe connecting Senegal to Eritrea. These areas host 

a disproportionally high amount of the available fresh water resources available (for example, 

the largest include the Senegal, the Upper Volta, the Niger, the Upper Nile, the Orange, the 

Limpopo and Lake Chad) and further these areas tend to be densely populated. It is therefore 

not surprising that some of those rivers, like the Orange or Limpopo in the southern part, are 

already in a situation of “water scarcity” (less than 1000 m3 available per person (UNDP 2006), 

while other, like the Nile or the Volta in the eastern and western part respectively, are 

approaching water scarcity level (Kumera et al. 2008 and Goulden et al. 2009).  
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Furthermore, there have been increasing episodes of drought39 or floods around SSA countries 

with heavy human and economic costs connected40. It is of primary importance to be able to 

forecast and prepare for these situations, as all available evidence point towards an increase in 

their frequency. The Famine Early Warning System (FEWS), created after the famine of the 

1980s by the US Agency for International Development, makes extensive use of hydrologica l 

modelling to evaluate the likelihood of extreme events which are the main causes of famine. 

Specifically, they employ the Geospatial Stream Flow Model (GeoSFM), developed by the US 

Geological Survey (USGS), which is particularly suited for areas, such as most of SSA, for 

which little geological and hydrological data is available. 

 

The GeoSFM models has also recently been employed to explore how changing patterns of 

weather and river-flow behaviour impact on socio-economic activity. A study from Cole et al. 

(2014) analyses the potential effects of different climate scenarios on the increased hydro -

dependency of many African countries, using GeoSFM to forecast future river-flow of basins 

in which hydropower plants are located. The analysis concludes that most of the planned 

investments appear to be located in regions which should experience less traumatic changes 

over time, although some concerns still remains for the viability of projects in particular areas. 

But to the extent in which the hydro-dependence of some African countries might prove 

problematic, it also offers us a chance to investigate a strong assumption made in the analys is 

of the first chapter. 

                                                                 
39 As there are no agreed upon quantifiable definition for either drought or flood the terms are going to be used 

throughout the text in the general meanings of prolonged periods of particularly low/high rainfall and river flow 

with the potential to cause human and economic damage.  
40 At the moment of writing, both Ethiopia and South Africa are experiencing heavy and persistent drought 

considered to be the worst in respectively 50 and 30 years, see 

http://www.aljazeera.com/indepth/opinion/2016/01/ethiopia-drought-happen-160121084103587.html and 

http://www.aljazeera.com/news/2016/01/south-africa-drought-160117111204356.html . 

http://www.aljazeera.com/indepth/opinion/2016/01/ethiopia-drought-happen-160121084103587.html
http://www.aljazeera.com/news/2016/01/south-africa-drought-160117111204356.html
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The estimation of the effect of power outages on firm sales through OLS regressions relies on 

the assumption that the first is exogenous to the second, an assumption which has been 

increasingly challenged in the most recent literature. Concerns that the exogeneity assumption 

could be violated are due to different reasons, ranging from measurement error in outage 

incidence to the existence of policies that affect simultaneously the outage level and firm 

performance or the simultaneity between economic activity and energy demand. We could 

though exploit the African hydro-dependency to resolve this problem, as variations in the 

discharge of river serving hydropower plants should lead to variation in potential electric ity 

production without influencing electricity demand, and therefore leading to more outages, while 

also remaining exogenous to firm performance. Therefore, through the river flow modelling of 

African basins in GeoSFM we are able to construct a city-level instrument to control for 

possible endogeneity in the outages-sales relationship in Chapter 3. Moreover, in Chapter 4 we 

will use the hydrological measures we are going to developed in this chapter to explore the link 

between hydro-power production and city- and nation-wide economic activity during the period 

2001-2013 with the use of night light data from the DMSP-OLS. Finally, we will also evaluate 

the capacity of GeoSFM to predict floods and droughts by comparing the model estimates with 

the available historical data. As this is the most widely used model for the majority of SSA a 

throughout assessment of its goodness of fit is paramount.  

 

The structure of the chapter is as follow: Section 2 presents a review of the literature; Section 

3 presents GeoSFM, the hydrological model used in our analysis; Section 4 presents the results; 

Section 5 provides a comparison between the simulated and the observed river discharge from 

a selection of stations; Section 6 concludes.  
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2.2 Hydrology, water availability and climate change in Africa. 

We begin with a review of the most recent literature on the hydrology of the African continent, 

its water availability and the consequences of possible climate change for water access. Then 

we focus on some of the issues related to the hydrological modelling of African basins and the 

particular challenges that it poses.  

 

Climate change has the potential to alter water availability through two main channels. First, 

changes in mean temperatures and, second, changes in mean precipitation. The former will 

increase evaporative demand, while the latter will have a direct effect on river flow. Climate 

models developed by the International Panel on Climate Change (IPCC, Core Writing Team et 

al. 2007) predict an increase in mean temperature between now and 2080 of 3.3°C (+1.8°C as 

a minimum and +4.7°C as maximum) for West Africa, of 3.2°C (+1.8°C/+4.3°C) in East Africa 

and of 3.4° (+1.9°C/4.8°C) in Southern Africa during all seasons41. With regard to change in 

rainfall patterns, it is often deemed more useful to present the minimum and maximum changes 

than the average ones given that seldom models agree over their directions. The annual 

precipitation in West Africa is predicted to vary between -9% and +13% according to the model 

selected, and similarly the range goes from -3% to +25% for East Africa and from -12% to +6% 

for Southern Africa (Core Writing Team et al. 2007, Kumera et al. 2008). The biggest challenge 

for the management of water resources is likely to be the increase in extreme events (both 

droughts and floods), which is already taking place and has caused significant socio-economic 

disruptions and human suffering in the last 15 years (UNDP 2006). The fluctuation of extreme 

events is connected to different climate mechanisms in different parts of the continent (e.g. El 

                                                                 
41 Results diverge too much for the Sahelian area to present any consistent values. 
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Niño for East Africa and the drying of the Sahel for West Africa) and there is need for further 

research connecting these with global climate change. 

 

Moreover, even ignoring climate change processes, African rainfall and river flow patterns 

independently show a high degree of variability. A study of Hulme et al. (2001) analyses the 

historical change in climate and rainfall across the continent between 1900 and present day 

trying to shed some light on the expected trend for the next 100 years. What they find is that 

the long term trends in variation of temperature and rainfall vary significantly both seasonally 

and spatially. While it is possible to say that overall the temperature has increased over the last 

hundred years and it is expected to keep increasing for the next century, rainfall changes are 

harder to interpret and therefore harder to predict42. Regional and local climate characterist ics 

which are hard to account for in models - or that are not yet fully understood conceptually – are 

among the main explanations. 

 

The connection between rainfall precipitation and river flow varies equally widely across the 

continent, and this is not particularly surprising when the very diverse nature of its hydro -

geology is added to the aforementioned regional climate characteristics. A comprehensive study 

from Conway et al. (2008) shows how rainfall is the main determinant of river flow variability 

in West Africa – in which it accounts for 60-70% of the latter – and in Central Africa, that 

shows a slightly weaker but still predominant link (50% of variability accounted for). Southern 

and Eastern Africa on the contrary show a much weaker relationship, maybe with the exclusion 

of the Blue Nile which is less influenced by the complex physiographical features of the Rift 

                                                                 
42 Even so, the contribution of anthropogenic climate change remains undetermined. 
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Valley. The higher variability of rainfall versus lower variability of river flows in the area is 

likely to be partially due to the peculiar nature of the geology of the Rift Valley.43 

 

It is also worth noting that the main determinant of changes in water availability over the next 

two decades is likely to remain human activity and not climate change. The continuing process 

of urbanization, which alters the land cover of substantial areas, is considered to be one of the 

most relevant climate determinant in Africa and this trend is primarily due to a growing 

demographic pressure, which in itself will reduce absolute per capita water availability (Hulme 

et al. 2001). Moreover, the trans-boundary nature of many African basins has already led to 

over-exploitation of water resources (e.g. Lake Victoria in Uganda, see Pearce 2006) in 

situations in which low institutional cooperation between riparian states is intertwined with 

their competing needs for water availability. All of these socio-economic processes are strongly 

linked to the development of energy networks, and hydro-power development in particular can 

play a very big role in increasing either international cooperation or water related conflict  

(Goulden et al. 2009, Kumar et al. 2011). 

 

We now discuss some of the main issues with hydrological analysis of African basins. The 

starting point has to be the well acknowledged scarcity of gauge stations across Africa: of the 

more than 9000 gauge station data available through the Global Runoff Data Centre (GRDC, 

one of the main providers of publicly accessible hydrological data), only 13% are situated in 

Africa44. This implies both a lack of research relative to many relevant African basins and that 

                                                                 
43 The problem of low conversion rate of rainfall to run-off and its determinant for Eastern and Southern Africa 

has already been explored by Schulze et al. (2001). 
44 A gauge station is a location used by hydrologist to monitor the water level surface elevation and volumetric 

discharge of a terrestrial water body. 
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most of the efforts for developing sustainable practices of water management have to rely on 

hydrological modelling. Many types of models are available to analyse hydrologica l 

behaviours, reproducing the cycle as precisely as possible given initial information. The 

reliance of most of these models on the availability of a wide set of other physical information 

about the basin makes them though hard to apply to ungauged rivers and in data poor regions, 

so that uncertainties remain on which is the best approach to follow when information is not 

readily available (see Kapangaziwiri et al. 2009 for a review with special focus on South 

Africa).  Lack of data makes calibration and validation hard in the majority of situations, and 

when attempted possible discrepancies are not easily explained (see for example Munzimi 2008 

also using GeoSFM and Tshimanga et al. 2011 and Tshimanga et al. 2012 with regard to the 

Congo Basin). 

 

The research which is more strongly connected with the methodology and areas of this chapter 

is that by Asante et al (2008a), the authors of the GeoSFM package for the FEWS.45 In their 

paper they analyse the performance of GeoSFM estimates for Lake Chad, Nile, Zambezi, Congo 

and Niger when compared to observed streamflow for the period 1998-2005. The authors find 

that the uncalibrated estimates of absolute streamflow can differ significantly from those 

observed. Conversely, the performance in terms of anomalies prediction is much higher, as the 

model was developed to forecast situations of extreme events such as floods or droughts.46 

 

                                                                 
45 Famine Early Warning System, funded in the second half of the 1980s by USAID in response to heavy 

famines in West and East Africa, aim to provide “objective evidence based analysis to help government decision 

makers” (FEWS website) and is active in 36 countries in Africa, Asia and the Caribbean. 
46 Anomalies are defined as difference between daily observations and long term mean scaled by the standard 

deviation. 
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2.3 The GeoSFM package. 

All the river flow estimates presented in the chapter have been obtained using the GeoSFM 

utilities for ArcView 3.x, a program widely used for the processing of geographical information. 

These utilities have been developed by USGS for the Earth Resource Observation and Science 

(EROS) as part of the FEWS. The following explanation is meant to be a summary for the 

reader, so to help understand the procedure used to obtain the estimates. For a complete 

treatment of the utilities included in the package refer to Artan G. et al. (2008) and Asante et 

al. (2008b), on which most of the first section is based. 

 

2.3.1 Pre-processing modules. 

The pre-processing modules included in the package are used to recreate a virtual representation 

of the geographical zone under analysis, in our case the majority of the African continent, first 

delimiting the basin, then characterizing its topography and hydrological behaviour. The next 

session will briefly outline the functioning of the three pre-processing routines, “Terrain 

Analysis”, “Basin Characterization” and “Unit Hydrographic Response” 

 

2.3.1.1 Terrain Analysis. 

The first routine, “Terrain Analysis”, requires two datasets as inputs: a Digital Elevation Model 

(DEM)47 and a shapefile48 containing information on river networks, which are combined to 

                                                                 
47 Digital Elevation Models are three dimensional representations of geographical surfaces based on elevation 

data. 
48 Shapefile are geospatial vector data format for geographic information system. 
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define the spatial extent of the watershed under analysis. In our case, both of these datasets 

come from Hydro1k, a geographic database developed at the USGS EROS centre derived from 

the USGS’ 30 arc-second DEM of the world, GTOPO30. This database contains hydrologica l ly 

correct DEMs for every continent, therefore reducing the need of pre-processing to fill spurious 

pits49. The shapefile in the database contains all African watersheds, obtained using information 

on stream networks and flow directions. Each of them has been classified with the Pfafstetter 

methodology, which assigns them a unique ID based on the topology of land surface. The 

method is hierarchal, with watersheds firstly delineated depending on their location within the 

overall drainage system and secondly divided into three different types. The first, “basin”, 

contains the headwater of the river that defines the watershed and does not receive drainage 

from any other watershed; the second, “interbasin”, in contrast, receives drainage from 

upstream watersheds; finally there are “internal basins”, which neither receive nor contribute 

to the flow of any other watershed or waterbody. The method is applied recursively as long as 

four tributaries can be identified for each watershed. Continental watersheds are labelled with 

level 1 Pfafstetter code (see Figure 2.1). Level 2 codes classify sub-watersheds of level 1 basins 

and interbasins. Level 3 identifies sub-watersheds of level 2 and so on.50 The final result is a 

series of 6-digit codes which uniquely identify the 7,131 African watersheds smaller than 4000 

km2 (Furnans and Olivera 2001, Verdin 1997).  

 

[Figure 2.1 about here] 

 

                                                                 
49 The program also includes a utility to fill them in case the DEMs used are not hydrologically correct.  
50 The method also permits us to identify quickly any watershed situated upstream or downstream of the one of 

interest. 
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Once these two grids are uploaded into the program, the routine determines in which direction 

water that falls on a grid-cell will flow, comparing its elevation with that of the 8 neighbouring 

grid-cells and exploiting the basic physics principle that water flows in the direction of the 

steepest descent (Jenson and Dominque 1988). Every cell is therefore assigned one of the eight 

compass directions, and a series of grids required for the following steps are subsequently 

created. These include, on top of the initial one describing flow direction, a grid with the number 

of upstream cells for any given location; one with the nearest sink; one that groups cells which 

reside within the same watershed; one identifying the most downstream cell for each river; one 

identifying every sub-basin which forms the watershed; one which measures the highest change 

in elevation in the neighbourhood of any given cell and finally one determining the sub-

watershed directly downstream of each river reach. 

 

2.3.1.2 Basin Characterization. 

The hydrological model of GeoSFM does not solely rely on elevation to determine streamflow 

behaviour, but also uses a series of information pertaining to land cover and soil characterist ics, 

which play important roles in defining a watershed rate of runoff generation and overland flow 

transport. As for the previous routine, a series of datasets are required as inputs. The first dataset 

concerns land cover data, obtained through USGS Global Land Cover Characterization (GLCC) 

database51 (Loveland et al. 2000) and is used to create an impervious area grid accounting for 

the existence of water-bodies and wetlands in the sub-basin. The second set of data are those 

that include soil characteristics, which are created from the Digital Soil Map of the world 

produced by the United Nations Food and Agriculture Organization in collaboration with the 

                                                                 
51 GLCC data were derived from 1-Km AVHRR data and are available as both Interrupted Goode Homolosine 

and Lambert Equal-Area Azimuthal projection. The second has been used to obtain the results. 
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United Nations Educational Scientific and Cultural Organization. They are (a) a grid containing 

information on soil texture, characterized using data from Zobler (1986), (b) a grid relative to 

soil top and bottom depth, as well as the mixture of salt, silt and clay in the composition of 106 

soil types, characterized using data from the Global Data Set of Soil Particle Size Properties 

developed by National Aeronautics and Space Administration (NASA, Webb et al 1993), (c) a 

grid that describes the soil hydraulic conductivity and (d) a grid relative to the soil water holding 

capacity, both based on the seven Zobler texture classes. Finally, land cover and soil data are 

combined to define the last grid needed, that relative to the soil conservation service runoff 

curve numbers, and are used in determining the amount of incident precipitation becoming 

surface runoff52. All the above information is aggregated, and all cells of the basin grid 

delineated in the previous step are assigned the appropriate value for each class of soil 

characteristics. The combination allows the program to determine a long series of other basin 

characteristics, ranging from the days of interflow residence time to the area of the basin which 

is covered by water. All of these newly obtained data are written to two different text files, one 

of which will be used by the soil moisture accounting routine and one by the river flow transport 

routine. 

 

2.3.1.3 Unit Hydrograph response. 

While GeoSFM requires information about precipitation for each watershed, its distribution 

within the catchment area is left implicit, with a unit hydrograph developed to evaluate the 

catchment response to a uniformly distributed rain event.53 The land cover grid from USGS 

                                                                 
52 Assigned based on land cover type and soil hydraulic class of the U.S. Department of Agriculture. 
53 A unit hydrograph is the theoretical response of a catchment in terms of runoff volume and timing to a unit 

input of rainfall. 
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GLCC which was used to determine the impervious area in the previous step is the last grid that 

needs to be created for the pre-processing routines. The unit hydrograph is based on a unifo rm 

land velocity for each watershed, determined by its average slope and the predominant land 

cover type as from equation: 

 

𝑉𝐸𝐿𝑂𝐶𝐼𝑇𝑌 =
1

𝑀𝐴𝑁𝑁𝐼𝑁𝐺𝑁
∗ 𝑅

𝐻

2

3 ∗ √𝐻𝐼𝐿𝐿𝑆𝐿𝑂𝑃𝐸  

 

where MANNINGN is the Manning roughness value for the predominant land cover, R is the 

hydraulic radius and HILLSLOPE is the elevation change divided by the length from each cell 

to the outlet (average)  . Once the distance along the flow path from each catchment cell to the 

outlet is calculated, the final distribution of discharge is given by the probability density 

function (PDF) of the watershed travel times. The unit hydrograph is then the discretization of 

the PDF over a routing interval, thus it is the probability mass function of flow travel times.54 

 

2.3.2 Processing modules. 

The processing routines included in the program – “Weather data processing routines”, “Soil 

moisture accounting module” and “River transport module” – are those which yield the final 

estimation of each catchment’s streamflow. 

 

 

                                                                 
54 See Asante et al. (2008) for a more in depth coverage of the passages involved. 
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2.3.2.1 Weather data processing routines. 

Weather data, and precipitation data in particular, are the main inputs of any hydrologica l 

model. It is worth remembering that GeoSFM was developed for parts of the world without 

good gauge stations coverage, widely recognized as the best source of precipitation data. Hence, 

the routines are created to work mainly with satellite-derived rainfall estimates (RFE) and, 

equally, with satellite-derived estimate of evapotranspiration, which is the second weather input 

required by the program55. Rainfall estimates come from the Climate Prediction Centre of the 

National Oceanic and Atmospheric Administration (NOAA), and are calculated using a 

methodology developed by Xie and Arkin (1997)56. Their technique exploits the fact that rain 

is formed when moisture in the atmosphere reaches the point of condensation, 235 Kelvin 

degree or below. Therefore, by measuring with satellites the temperature of the clouds it is 

possible to determine where rain events are occurring, and both gauge measurement at 

experimental sites and from the Global Telecommunications System of the World 

Meteorological Organization are used to double check the rainfall estimates. The 

evapotranspiration data, on the other hand, come from two different sources: monthly data for 

the period 1983-2000 come from the Climate Research Unit of the University of East Anglia, 

daily data for the period 2001-2010 are produced by the FEWS group at USGS EROS57. Both 

the data-sets have been obtained through the solution of the Penman-Monteith equation, whose 

                                                                 
55 Evapotranspiration is a vital part of the water cycle, including both evaporation – that is, movement of water 

from the soil or waterbody to the air – and transpiration – that is, the movement of water in a plant which 

terminates with vapour leaving its leaves. 
56 In fact, the methodology was updated during the period of the study, so that estimates from the period 1983-

2000 were obtained with the original methodology RFE 1.0 and those for the period 2001-2010 with the updated 

RFE 2.0. The two methodologies differ mostly on the ground of the availability after 2000 of technologically 

more advanced satellites and are consistent with one another. 
57 Data from the CRU are calculated on a monthly frequency, while the GeoSFM routine requires them on a daily 

frequency, format in which they do not exist for the period. The monthly mean has therefore being spread across 

the month. Also, they have a slightly higher resolution, 50km x 50km, than the one from USGS EROS, which 

are based on a 100km x 100km grid. 
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methodology takes into account many different environmental variables - from wind speed to 

fluxes of long and short wave radiation – to obtain a final value for evapotranspiration. As a 

final step before running the hydrological model itself, the routine in GeoSFM computes the 

mean areal precipitation (Xie and Arkin, 1997) and evapotranspiration (Verdin and Klavier 

2002) values for each watershed over the decided time interval. 

 

[Figure 2.2 and 2.3 about here] 

 

2.3.2.2 Soil Moisture Accounting Module. 

GeoSFM is a continuous hydrological model and hence contains a routine for computing daily 

runoff and soil moisture, thus separating the rain between atmospheric releases, surface runoff 

and subsurface flow. Two options are provided: a Linear and a Nonlinear Soil Moisture 

Accounting. Due to the dimension of the area under analysis, the less computational intens ive 

linear routine has been preferred to the non-linear routine. To begin with, the module evaluates 

the maximum storage capacity of each sub-basin, obtained multiplying its soil water holding 

capacity by its soil depth. Then the initial value of soil moisture is computed, assuming no 

storage in the ground water reservoir at time 0. Consequently, at the beginning of every period 

the fraction of incident rainfall that becomes directly surface runoff - proportional to the 

impervious share of the sub-basin - is estimated using: 

 

𝑃𝐴𝑅𝐴𝑇𝐼𝑂 =  𝑀𝐼𝑁 {

𝑀𝑎𝑥 [(
𝐺𝑊𝑆𝑇𝑂𝑅𝐸−𝑆𝑂𝐼𝐿𝐷𝐸𝑃𝑇𝐻

𝐻𝐼𝐿𝐿𝑆𝐿𝑂𝑃𝐸 −𝐻𝐼𝐿𝐿𝐿𝐸𝑁𝐺𝑇𝐻
), 0]

 
0

1 − 𝐼𝑀𝑃𝐸𝑅𝑉𝐼𝑂𝑈𝑆 𝑅𝐴𝑇𝐼𝑂
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where GWSTORE is storage in groundwater reservoir, HILLSLOPE is as above and 

HILLLENGTH is the average length between each cell and the catchment outlet. This 

determines the amount of the watershed surface area that becomes saturated by sub-surface 

storage, becoming part of the partial contributing area58. Excess precipitation, defined as the 

fraction of rainfall which falls on permanently impervious area or on partial contributing area, 

is then calculated using: 

 

𝐸𝑋𝐶𝐸𝑆𝑆𝑅𝐴𝐼𝑁 = 𝑀𝐴𝑋 {
𝑆𝑇𝑂𝑅𝐸𝑡−1 + 𝑅𝐴𝐼𝑁 − 𝑆𝑇𝑀𝐴𝑋

−
 𝑅𝐴𝐼𝑁 ∗ [𝑃𝐴𝑅𝐴𝑇𝐼𝑂 + 𝐼𝑀𝑃𝐸𝑅𝑉𝐼𝑂𝑈𝑆 𝑅𝐴𝑇𝐼𝑂]

 

 

where 𝑆𝑇𝑂𝑅𝐸𝑡−1 is the quantity of water stored in the subsurface reservoir in the previous 

period, STMAX is the maximum storage capacity of the subsurface reservoir and PARATIO is 

the expression defined above. The remaining amount is allowed to either enter the soil or 

contribute to the subsurface reservoir. The following step is the conversion of potential to actual 

evapotranspiration, which depends on the availability of moisture from rainfall, runoff sources 

or soil moisture. The routine then moves on the computation of water losses outside the river 

boundary, of the amount of water which contributes to the groundwater reservoir generating 

the base flow and, finally, of the share percolating to regional groundwater systems. Once the 

base-flow contribution to surface runoff is taken into account, a linear reservoir formulation is 

                                                                 
58 It is from this step onwards the two procedure for soil moisture accounting differ. The one used assumes a 

linear relationships between the amount of water in sub-surface storage exceeding the soil depth and the partial 

contributing area. The alternative procedure relaxes the assumption and represents more completely the various 

sub-surfaces processes. For a sub-set of the basins we tried using the non-linear routine and obtained highly 

comparable results. See Asante et al. (2008b) for a complete treatment of this issue. 
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used to calculate the amount of water contributing to the network of rivers and lakes as interflow 

following: 

 

 𝐼𝑁𝑇𝐸𝑅𝐹𝐿𝑂𝑊 = (
𝑅𝐸𝑆𝐼𝐷𝑈𝐴𝐿  𝑆𝑇𝑂𝑅𝐴𝐺𝐸

𝐼𝑁𝑇𝐸𝑅𝐹𝐿𝑂𝑊  𝐿𝐴𝐺
) ∗ exp (−

1

𝐼𝑁𝑇𝐸𝑅𝐹𝐿𝑂𝑊  𝐿𝐴𝐺
) 

where RESIDUAL STORAGE represents what is left in the groundwater reservoir after the 

base flow is generated and INTERFLOW LAG is the residence time required for the exchange 

to happen. The residual moisture in both soil layer and groundwater reservoirs are fina lly 

computed, resulting in a representation of moisture fluxes and storage in the period under 

consideration. 

 

2.3.2.3 River Transport Module. 

The final step is the simulation of the horizontal movement of the runoff generated within each 

catchment from the catchment outlets to the basin outlets. Even in this case GeoSFM offers 

different options: two linear routines, pure lag and diffusion analog, and a non-linear one, that 

is called the Muskingum Cunge. Again, due to the dimension of the area under consideration 

the less computational intensive approach has been preferred (pure lag routing), while the other 

two have been used as robustness checks for a subset of rivers. The time saving characterist ic 

of the pure lag routing routine is that it does not take account of any attenuation or deformation 

of the input, so that flow remains unaltered at the discharge point. That is, inflow to the upstream 

end of each river is moved with a time delay to its downstream end without any change to its 

magnitude. A mathematical expression for this routine can be given by: 
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 𝐷𝑡 = 𝐼𝑡−𝑡′ 

 

where 𝐷𝑡 is discharge at time t, t’ is the travel time between the input and discharge location 

and 𝐼𝑡−𝑡′ is the input at time (t-t’). Intuitively, surplus runoff from excess precipitat ion, 

interflow and base-flow is first aggregated over each sub-basin, then converted into flow units 

(cubic metres per second). Finally, it is translated to the end of the reach59, taking into account 

each sub-basin’s particular response and allowing for translational losses. The process is 

repeated, transferring each river discharge to the next downstream reach until it reaches the 

outlet and saving the discharge from every river reach. 

 

2.4 Simulation results. 

We now present the results of the stream-flow simulation for level 1 basins for the period 2001-

2010. Given the hydrological diversity and the geographical distance amongst the various 

basins, the results are presented individually, with maps referring to the average value for each 

sub-basin across the decade. To further analyse the possibility of common trends in streamflow 

behaviour across different sub-basins, we perform a principal component analysis (PCA) to 

individuate hydrological groups.  

 

PCA is a data compression technique which focuses on the eigenvectors of the correlation 

matrices, allowing for a reduction of dimension in the data without leading to a great loss of 

                                                                 
59 A reach is the length of the stream between any two points in it. 
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detail. Intuitively, the focus is on the underlying structure of the data: for a given set of N 

variables which might be correlated, PCA transformation yield at most N-1 uncorrelated 

variables, which can be seen as grouping together those amongst the original which accounted 

for similar characteristics. This is due to the nature of the procedure: the first principa l 

component (PC) represents the maximum amount of variance in the data and all the following 

express the highest unexplained residual variance.  As each PC is further uncorrelated with all 

the others, by concentrating the analysis only on the first significant components, a great deal 

of simplification of the data is achievable (Westra et. al. 2007). That is, instead of having to 

consider a great number of variables, some of which can play an almost insignificant role in the 

analysis at hand, one can concentrate on a (possibly) much smaller number which surely play 

a relevant role.  

 

Various methods have been proposed in the literature for determining the number of significant 

PC to be retained in the analysis. Due to its computational ease, we decided to use Horn’s 

parallel analysis (Horn 1965), which builds on the observation of Kaiser (Kaiser 1960) that only 

PC with eigenvalues greater than 1 must be considered meaningful. Shortly, Horn’s insight is 

that, in finite samples, eigenvalues are very likely to be overestimated due to least-square bias 

and sampling errors, and must hence be adjusted before taking the decision of which PC to 

retain.  

 

The final technical point which remains to be covered is that of component rotation, that is the 

application of linear transformation to the outcome of PCA analysis, as the technique allows 

for infinite alternative solution satisfying the original equation (Richman 1986). Unrotated 
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results presents a series of characteristics which might affect certain kind of analysis: first, the 

topography of unrotated PC is primarily affected by the shape of the area under analysis (Buell 

1979); second, unrotated solutions are more exposed to large sampling errors, especially when 

neighbouring eigenvalues are close together (North et al. 1982); finally, there are many cases 

in which the rotated solutions are more readily interpretable from a meteorological point of 

view. Taking these points into account, we decided to apply an oblimin rotation, one of the 

more commonly used in the literature.60 

 

With particular referral to hydrological applications, when the variables considered are time-

series of spatially distributed information the eigenvectors of the correlation matrix represent 

their optimal mode of spatio-temporal variability (Singh and Singh 1996). Given the possibility 

to represent these vectors in space, this technique has been receiving growing interest since the 

1980s, when climate scientist were using it to identify trend in geo-climatic data61. In our case 

the series under analysis are the daily streamflow of all the sub-basins of a continenta l 

watershed. For each continental basin we report the result of the Horn’s test and present a map 

with the groupings obtained over the loadings of the first PC, both before and after the rotation.  

 

2.4.1 Lake Chad. 

 

[Figure 2.4 to 2.9 about here]  

                                                                 
60 See Richman (1981) for a theoretical discussion of oblimin rotation and Richman  and Lamb (1985) for an 

application to the US.  
61 There are a great number of studies that use this technique in climatology. Some of the best general coverage 

of the early literature is given by O’Leanic and Levezey (1988), more recent application are covered in Westra et 

al. (2007) and Ssengane et al. (2012). For some recent economic application see Barrios, Bertinelli and Strobl 

(2010).  
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Figure 2.4 shows the spatial distribution of average stream-flow over the 2001-2010 period for 

all the sub-basins of Lake Chad, which varies from 0 to 3,246 cubic meters per second. Figure  

2.5 presents instead rivers discharges for the average month aggregated over the whole basin. 

Note that stream-flow starts to rise after April to reach its peak in September. Figure 2.6 shows 

that the unimodal behaviour peak is consistent all across the time period under consideration, 

with all maximum flows taking place between August and September and the maximum stream-

flow of the decade in 2006. Figure 2.7 represents the result of the Horn’s test: non-correction 

for finite sample bias would lead to retain the first 50 components as opposed to the 39 retained 

after correcting for the bias. Figure 2.8 shows the spatial grouping over the first PC loading, 

accounting for 41% of variation in the data, with blue areas representing negative loadings and 

red positive. Finally, Figure 2.9 shows instead the spatial grouping over the rotated component, 

highlighting how most of the variation in the component is accounted by only three sub-basins. 

 

2.4.2 Nile. 

 

[Figure 2.10 to 2.15 about here] 

 

As in the previous case, Figure 2.10 shows the spatial distribution of mean stream-flows for all 

Nile’s sub-basins, averaging between 0 and 5,708 cubic meters per second. Taking into account 

their geographical proximity, it is not surprising that the stream-flow pattern (also for the 

average month in Figure 2.11) appears similar to that of Lake Chad, with the rises in stream-
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flow starting in May and reaching their peak in August. Figure 2.12 shows the behaviour for all 

the different years taken into account, which is again consistently unimodal across time with 

all peaks taking place between August and September and the highest rivers discharge of the 

decade in 2007. Moving to the PCA, Figure 2.13 reports the result of the Horn’s test, leading 

to reduce the number of retained components from 66 to 42 after adjustments. Loading of the 

first PC (28% of data variability) is shown in Figure 2.14, with blue areas representing negative 

loadings and red positive, while oblimin rotation (Figure 2.15) does not lead to a much clearer 

picture in this case. 

 

2.4.3 Interbasin 3. 

 

[Figure 2.16 to 2.21 about here] 

 

In the case of Interbasin 3, the mean river discharge of its sub-basins varies between 0 and 879 

cubic meters per second (Figure 2.16). As Figure 2.17 shows, averaging over an inter-basin 

system gives a less clear picture than in the case of a basin, as hydro-climatic zones might differ 

consistently (in this case, the inter-basin spans from Egypt to Mozambique). This is confirmed 

also by the discharge across the ten years (Figure 2.18). Therefore, for the next interbasins we 

shall omit the discharge analysis over time. In this case, correcting for finite sample bias reduces 

the number of relevant components from 30 to 21 (Figure 2.19). Figure 2.20 presents the first 

PC loadings (50% variation), which are in this case positive all across the area, while Figure  
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2.21 shows how most of the variation is accounted for by a few sub-basins quite distant from 

one another. 

 

2.4.4 Zambezi. 

 

[Figure 2.22 to 2.27 about here] 

 

Zambesi’s sub-basins exhibit an average stream-flow ranging from 0 to 5,251 cubic meters per 

second (Figure 2.22). The behaviour of the stream-flow appears to be unimodal with peak in 

February (Figure 2.23), as confirmed by Figure 2.24 which shows how all peaks happens 

between February and March. The highest discharge of the decade has been experienced in 

2008. Horn’s test leads even in this case to a reduction of the number of retained components 

from 13 to 9, as in Figure 2.25. The first component loading (70% of data variability, Figure  

2.26) are positive all across the basin even in this case, while Figure 2.27 highlights how the 

loading of the rotated component decrease quite consistently on the north-to-south axis. 

 

2.4.5 Interbasin 5. 

 

[Figure 2.28 to 2.33 about here] 
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Figure 2.28 shows interbasin 5’ mean discharge, varying from 0 to 4,837 cubic meters per 

second. Correcting for finite sample bias reduces the components from 48 to 35 (Figure 2.31), 

with the blue areas of Figure 2.32 representing the negative loadings of the first PC (35% of 

variation in the data). Figure 2.33, presenting the rotated components, is not particula r ly 

informative in this case. 

 

2.4.6 Congo. 

 

 [Figure 2.34 to 2.39 about here] 

 

The average Congo’s simulated stream-flow ranges from 0 to 21,131 cubic meters per second 

(Figure 2.34), with the peak being reached in February as shown by Figure 2.35. While not as 

clear as in other cases, the behaviour of the river seems to be unimodal62, with peak reached 

between November and March as seen in Figure 2.36, with the highest discharge in 2004. 

Horn’s test (Figure 2.37) leads to discard components from 23 to 33 due to their irrelevance 

after bias’ correction. Figure 2.38 presents the loading of the first PC (50% variation), negative 

over the blue areas and leading to the division of the basin in 4 different quite distinct areas. 

Figure 2.39 presents the result of oblimin rotation.  

 

 

                                                                 
62 A river characterized by unimodal streamflow presents a single peak per year, as opposed to bimodal rivers 

which characterized by more than one.  
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2.4.7 Interbasin 7. 

 

[Figure 2.40 to 2.45 about here] 

Figure 2.40 illustrates the average discharge for the sub-basins of interbasin 7, which varies 

between 0 and 1,279 cubic meters per second. In this case, the darker red areas of Figure 2.44 

(48% of data variation in the first component) are the only one with positive loading, and it can 

be seen from Figure 2.45 how all of the variation is due to just one sub-basin.  

 

2.4.8 Niger. 

 

[Figure 2.46 to 2.51 about here] 

 

For Niger the average discharge varies from 0 to 7,695 cubic meters per second (Figure 2.46). 

As can be noticed in Figure 2.47, the basin behaviour seems unimodal with the highest 

discharge for the year experienced in September. Figure 2.48 confirms this picture, showing 

that maximum flow is always reached between August and September. The maximum 

discharge in the period 2001-2010 was in 2010. The result of Horn’s test are presented in Figure  

2.49, with the number of retained coefficient decreasing from 62 to 39 after bias correction. 

Figure 2.50 shows the loading for the first PC (42% of data variation), and even in this case an 

areas of positive (red) and ones of negative (blue) loading are delineated in the map, while the 

rotated components (Figure 2.51) do not present a clear pattern. 
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2.4.9 Interbasin 9. 

 

[Figure 2.52 to 2.57 about here] 

 

Lastly, Figure 2.52 presents the mean stream-flow for interbasin 9, ranging from 0 to 3,557 

cubic meters per second. Figure 2.56 presents the loadings of the first retained PC (67% of data 

variation), positive in the whole basin and apparently connected to a small number of rivers in 

the inner part of the basin (Figure 2.57). 

 

2.5 Comparison with GRDC data. 

This section presents a comparison between flow discharges simulated through GeoSFM and 

the available historical data. As previously mentioned, gauge stations are the most generally 

used tools to gather hydrological information and the ideal base from which to start any 

hydrological modelling attempt. Unfortunately, the majority of Sub-Saharan African basins are 

still ungauged; moreover some of the gauge stations installed have been lost due to poor 

maintenance, war and general unrest or a combination of the two. In comparison with many 

other areas of the world there is remarkably little historical data available for African basins, 

especially over long periods of time. 

 

Amongst the publicly available information, the biggest datasets is that of the GRDC of the 

German Federal Institute for Hydrology, an international data archive with global coverage and 
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data up to 200 hundred years old, containing river discharge data for more than 9000 gauge 

stations globally with an average record period of 41 years. To exemplify the initial point about 

scarcity of gauge stations in the continent, of the 9009 included in the GRDC datasets, 1165 are 

located in Africa, slightly less than 13%. 

 

[Figure 2.58 about here]  

 

The data for 440 GRDC (Figure 2.58) have been matched to the corresponding basins in the 

model shapefile and cross referenced using the ALCOM/WWF classification (Verheust and 

Johnson 1998) given that the Pfafstetter coding used by GeoSFM carries no connection to 

topographical meaning. This permits the indentification of the river relative to the data but it 

does not guarantee a perfect geographical association to the exact point in which the gauge 

station is located. The first assessment of the model’s goodness of fit will be given by the linear 

association between its estimates and the realized stream-flows. 

 

[Table 2.1 about here]  

 

Table 2.1 presents the number of gauge stations in each level 1 basin and the overall correlation 

between simulated and observed discharge. As it can be noted, the majority of stations show a 

significant correlation with the GeoSGM estimates, even though the proportion changes across 

the different basins. At a station level, correlation coefficients vary widely, ranging from -0.38 
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to 0.99. 52 stations (12%) show a negative correlation63. If we look at the geographica l 

distribution amongst Western, Eastern, Central and Southern Africa, it becomes apparent that 

the lowest correlation are those for rivers located in the southern area of the continent (see 

Figure 2.59). On the other hand, there is evidence of good correlation in Central Africa (see 

Figure 2.60) and in Western Africa (Figure 2.61). The only coverage in the eastern part of the 

continent is offered by the few stations in Ethiopia, with a mean correlation of 0.64 (Figure  

2.62). 

 

[Figure 2.59 to 2.62 about here]  

 

The reasons for bad fit of estimates are numerous. With regards to the correlation with pre-1998 

observed discharges the unavailability of daily evapotranspiration data and the subsequent use 

of daily data generated from monthly data is the best candidate, especially for basins in which 

intra-monthly variability is fairly high. Rainfall distribution with high seasonality might also be 

over- or under-stimated with satellite derived products, and scarcity of rain gauge makes ex-

post adjustment particularly hard with regard to the African continent. Another possibility is 

that the low resolution of the 1 km elevation grid cannot replicate with enough accuracy the 

actual topography, while also the shape of the boundaries of some of the medium-small river 

basins has elsewhere been questioned (Munzimi 2008, Werth et al 2009).   

 

                                                                 
63 Excluding Interbasin 5 the number drops to 20. 



144 
 

Following the findings by Asante et al. (2008a) we now focus on the analysis of the anomalies64, 

comparing them with those from GRDC station. Figure 2.63 shows both density and kernel 

density of the significant correlations. Overall, only 14 stations shows an insignificant 

correlation with the estimated anomalies, and for the significant ones the magnitude varies 

widely, ranging from 0.7 across Lake Chad to 0.36 in the Nile Basin. With regard to Lake Chad, 

Niger and interbasin 5, more than half the stations have a correlation higher than 0.5 (see 

Figures 2.64, 2.65 and 2.66 respectively), while the percentage lowers to 41% for Congo and 

33% for interbasin 3. Interbasin 3 also hosts the higher proportion of negative coefficients 

(66%), which are higher than 10% in the only other case of interbasin 9 (35%, see Figures 2.67 

and 2.68 respectively). 

 

[Figure 2.63 to 2.68 about here] 

 

One of the drawbacks of correlation as measure of association is that it assumes that the joint 

distribution of the two variables is elliptical, i.e. symmetric around the mean value. This is 

though not necessarily the case, as the GeoSFM model might be better suited to forecast 

droughts in certain geographical areas and floods in others. An alternative way to assess the 

goodness of fit of the GeoSFM model is then to relax the assumptions requiring the joint 

distribution to be symmetrical and hence the dependence measure to be linear. This can be done 

exploiting the properties of Copula functions. Copulas function have been recently receiving 

increasing attention in hydrology and in climate science more in general, with application 

                                                                 
64 As previously mentioned, anomalies are defined as difference between observations and long term mean 

expressed in term of standard deviation. 
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ranging from field significance to discharge-duration-frequency analysis (see Renard and Lang 

2006 for a review of case studies). 

 

More precisely, given two random variables 𝑋1 and 𝑋2, this method allows to describe their 

joint cumulative distribution function 𝐹1,2(𝑥, 𝑥) by means of their marginal distribution 

functions 𝐹1(𝑥) , 𝐹2 (𝑥) and a function (the Copula) describing their dependence. Moreover, as 

long as the 𝐹𝑗(𝑥) are continuous, the Copula always exists and it is unique. Moreover, there is 

no requirement for the two variables to follow the same distribution, as the technique divides 

the estimation of the marginal distribution of each variable from that of their dependence. 

Copulas are then particularly interesting because they allow to express the dependency between 

non-normally distributed components (as the extreme events in hydrology, which are known to 

be non-normal) and to model more openly the relationship amongst the tails of a multivar ia te 

distribution, i.e. to have a stronger dependence for lower (drought) or higher (flood) values than 

for the rest.65 Two main families of Copula are normally used in hydrology: elliptical (mostly 

Gaussian and Student t), which can be extended to arbitrary dimension but require radial 

symmetry, and Archimedean which allows to model upper and lower tail behaviour but can be 

applied only to bivariate cases.66 

 

In this study, we shall use both families to assess different characteristics of GeoSFM model. 

Firstly, we will apply elliptical copulas to evaluate how well the model reproduces the regional 

                                                                 
65 For a general statistical treatment see for example Mikosch (2006) or Fredricks and Nelsen (2007), while for 

more hydrology specific one Genest and Favre (2007) and Schölzel and Friedrichs (2008).  
66 The three Archimedean Copulas more commonly used are: Gumbel, for cases in which upper tail behaviour is 

of primary interest; Clayton, for cases in which lower tail behaviour is the main objective of the study; Frank, for 

intermediate situations.   
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dependence amongst sub-basin within the same continental watershed. This is possible because 

these functions can be extended to more than two dimensions, so that comparing the 

dependence amongst the gauge stations in a basin to that of the corresponding estimates allows 

for an assessment of the ability of the model to represent diverse regional hydrological systems. 

Secondly, Archimedean copulas, which allows for stronger dependence in one or both of the 

tails than in the central part, will be used as an alternative to the anomaly transformation to see 

if the model does indeed represents more accurately the incidence of floods and droughts than 

the average streamflow behaviour.67  

 

[Table 2.2 to 2.8 about here] 

 

Tables from 2.2 to 2.8 present the difference between the regional dependence in the 6 sub-

basins for which we have data. First, we have modelled both GRDC and GeoSFM data for each 

continental basins through Gaussian Copulas, obtaining a measure for the rank correlation 

amongst the different sub-basins in the historical and simulated data; secondly we have 

calculated the difference amongst the two simply subtracting the second (GeoSFM) from the 

first (GRDC). Hence, values above zero imply that modelled flows of each sub-basin within 

the continental one exhibit a lower dependence than that of the historical data. As can be noted 

by the prevalence of negative over positive signs in all tables, the model tends to overestima te 

the dependence across streamflow behaviour in all basins. This is not particularly surprising, as 

the GeoSFM model averages the values of rainfall and evapotranspiration over big geographica l 

                                                                 
67 This can be considered a true alternative as Copulas are invariant to positive monotonic transformation, such 

as the transformation of streamflow into anomalies. 



147 
 

areas, so that by feeding the same weather inputs to different rivers located within the same 

sub-basins, the model automatically increases the dependence amongst the streamflow. Overall, 

25% of the estimated coefficients deviates more than 0.5, either positively or negatively, from 

the historical one, with the worse situation to be found in the Zambezi and best in interbas in 

3.68 

 

[Table 2.9 about here] 

 

Table 2.9 presents instead a summary of the Kendall Tau, a non-parametric measure of 

dependence which can be applied to ranked data, obtained through the modelling of 

Archimedean Copulas. The number of stations with a long enough record to perform the 

analysis varies significantly, from a minimum of 2 for the Nile to a maximum of 64 for the 

Interbasin 5. Overall, 121 out of the 182 total stations show a significant fit for the Copula 

modelling69, of which only 4 with a negative dependence (i.e. 3%, a lower proportion than the 

12% obtained through “simple” correlation). 

 

Looking at the average Kendall’s Tau value in each basin, it can be noted how the modelling 

through Archimedean copulas does generally lead to a weaker dependence between simula ted 

and historical data than that which will be obtained through simple correlation. Moreover, in 

the majority of cases (78.5%) the best performing copula70 appears to be the Gumbel (stronger 

                                                                 
68 The results are highly comparable if a Student Copula is used instead of a Gaussian, the amount of coefficient 

deviating more than 0.5, for example, is in this case 27%. 
69 The significance of Copulas has been determined via the implementation of the Anderson-Darling test in R 

through the Copula package developed by Hofert et al. (2015). Application of the package are presented in Yan 

(2007), Kojadinovic and Yan (2010) and Hofert and Maechler (2011).   
70 The comparison amongst different possible Copulas has  been perforemd through the test based on 
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right-tail dependence), followed by the Frank (19.8%) while Clayton copulas are selected as 

the best-fit for only 2 stations across all the continental basins. The copula analysis seems then 

to confirm what previously observed: the GeoSFM model has an acceptable fit for SSA and 

fares better in assessing the incidence of flood than in assessing average streamflow as 

exemplified by the best fit of Gumbel Copulas. 

 

To conclude the comparison we perform a series of regressions aimed at verifying with different 

techniques the results of the previous analysis. To start, we estimate a panel data with fixed 

effect having as dependent variable either the daily absolute streamflow or the daily streamflow 

anomaly from each GRDC station and as explanatory the correspondent value from GeoSFM, 

the monthly mean and maximum value of rainfall and evapotranspiration (the two weather 

inputs used by the model) and year dummies71. Table 2.10 presents the results for both absolute 

streamflow and daily anomalies. 

 

[Table 2.10 and 2.11 about here] 

 

As it can be seen, while in the case of absolute streamflow GeoSFM estimates are insignificant 

in that of anomalies they are positive and significant at the 1% level, further adding weight to 

the claim that GeoSFM is better suited to estimate deviation from the mean that the mean its elf. 

Table 2.11 shows the coefficients for the GeoSFM estimates disaggregated at the basin level so 

to understand if there are differences in the fit across the continent. It is possible to notice how 

                                                                 
minimizat ion of mean squared error proposed by Barbe et al. (1996). 
71 Both models are estimated with robust standard errors. 
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the lowest point estimates are to be found in the case of the Nile, while the second lowest in the 

case of Interbasin 5, which accounts for the majority of observation in the sample. Interbasin 3, 

the Zambezi and Interbasin 9 present instead the highest estimates in the sample.72 

 

To further explore if the GeoSFM model does indeed perform better in forecast of extreme 

events than in that of general streamflow, we also perform quantile regressions73. Table 2.12 

presents the results for absolute flow, Table 2.13 for anomalies. 

 

[Table 2.12 and 2.13 about here] 

[Figure 2.69 to 2.77 about here] 

 

In both cases, GeoSFM estimates are positive and significant at 1% level, but while the point 

estimates increase in quintile for absolute flow, they decrease for anomalies. This can be 

partially explained by the fact that absolute flow is naturally lower bounded at zero, while 

anomalies, normalized by the standard deviation, can vary freely from negative to positive 

values. Figure 2.72 presents the graph for the anomalies coefficients when all basins are 

aggregated together, while Figures 2.69 to 2.77 present the results of Table 2.13 graphica lly. 

As can be seen from these figures, the same trends can be individuated across all basins with 

the exclusion of the Nile, which results are though based on only two stations in the same sub-

                                                                 
72 This is also consistent with the results of the previous analysis in terms of correlations. 
73 The model also include dummies and is estimated with robust standard error. 
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basins. The GeoSFM model always perform better in the first 2 quantiles, with point estimates 

consistently higher than the OLS ones, and then loses power.   

 

Table 2.14 presents the results for a quantile panel data regression with time fixed effect and 

individual fixed effects (at the station level) as in Powell (2014). Again, it can be noted that 

while the coefficients for absolute streamflow are significant only in the 3 highest quantile, 

those for anomalies are always positive and significant with decreasing magnitude in quintiles.  

 

[Table 2.14 about here] 

 

We also try to determinate what are the drivers of the differences between the flow forecasted 

by the model and that of historical data. To do so, we first create a dummy variable equal to 

one if the difference between the GeoSFM anomaly and the historical anomaly is greater than 

one standard deviation74. This threshold implies 17.6% of overall available data, with the 

highest concentration to be found in Lake Chad and the Nile and the lowest in Interbasin 3 and 

5. We then perform a panel probit regression using as explanatory variables latitude and 

longitude of the gauge stations, the mean elevation in the basin from Hydro1k, the predominant 

land cover type from Loveland et al. 2000 and the average soil depth from Webb et al. 1993. 

In a successive specification we further include daily rainfall and evapotranspiration anomalies 

as robustness check, while both model include year dummies. Results are reported in Table 

2.15. 

                                                                 
74 Recall that anomalies are already express in term of standard deviation from the long run mean. 
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[Table 2.15 about here] 

 

As can be seen from Table 2.15, elevation above sea level does not seem to play any significant 

role in explaining deviation of the forecasted anomalies from the historical one as the coefficient 

is significant but of irrelevant size when weather variable are excluded and become insignificant 

when included. Similarly, no role seems to play either latitude or longitude, while increases in 

the daily anomalies for evapotranspiration and rainfall diminishes the likelihood of a 

substantially different forecast from the model. Looking at the predominant land cover, the 

worse fit for the model is to be found in urban landscape (benchmark) as all other land cover 

types are significant and with negative sign. The best performance are then those for basins 

predominantly characterized by shrub-land, for those sparsely vegetated or those covered by 

evergreen forest. A few soil types seem also to influence the likelihood of relevant discrepancies 

between modelled and actual anomalies, we refer to Webb et al. 1993 for the corresponding 

soil types as the discussion of the different properties of diverse soil composition is outside the 

scope of the chapter. 

 

Lastly, we want to perform a final check of the ability of GeoSFM to forecast actual streamflow. 

This will take the form of a series of probit models where the dependent variable is a dummy 

equal to 1 if both the historical daily anomaly and the results of the model are above or below 

two given thresholds, which are 1 and 0.5 s.d. (positive, negative and in absolute value). The 

results of Table 2.16 refer to daily anomalies, while in Table 2.17 they refer to the average of 

the daily anomalies over a month. The explanatory variables always include the estimated 

anomalies (only coefficients reported) and year dummies, column 2 also includes weather 
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variables (daily values of evapotranspiration and rainfall in Table 2.16 and their monthly mean 

in Table 2.17), in column 3 we add latitude and longitude and in column 4 soil depth and land 

cover types. Standard errors are clustered at the gauge station level. 

 

[Table 2.16 and 2.17 about here] 

 

As it emerges from both tables, GeoSFM anomalies are a positive and significant predictors of 

the historical anomalies. The model has a better fit for forecasting below-average flow than 

above-average as the point estimates for negative anomalies are always higher than those for 

positive anomalies, regardless of the other coefficients included in the regression. Positive 

anomalies above 1 s.d. represents the only case in which GeoSFM seems not to perform well, 

especially when we consider the average monthly value. These situation represents though less 

than 1% of both daily and monthly anomalies, so that overall we can still conclude that the 

model furnishes a good approximation of flow behaviour. To further appreciate the spatial 

differences across the African continent, Tables 2.18 and 2.19 report the shares of cases, for 

daily and monthly anomalies respectively, in which the forecast of GeoSFM falls in the same 

range of the historical values for each of the 8 continental basins. As can be seen from the tables, 

the share is never lower than 58%, with the highest correspondence found for Bain 3 and the 

lowest for Lake Chad (if we exclude the Nile for which only two gauge stations are available). 

 

[Table 2.18 and 2.19 about here] 
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The previous analyses have demonstrated that GeoSFM is indeed a good predictor of actual 

river flow, especially in the form of deviation from the historical mean value, or anomaly. In 

the last regressions we will turn, anticipating the analyses of the following chapters, to how 

well does our anomaly measure serve the purpose of an instrument for power outages. 

Unfortunately, no longitudinal information is available regarding the frequency of outages 

throughout SSA. However, as our identification strategies relies on variation of water availab le 

for hydropower affecting actual hydroelectricity production we can rely on this relationship to 

assess if the instrument is fit for purpose. Moreover, as the exclusion restriction implies that the 

only channel through which variation of water available influences firms’ operation is through 

outages, there should not be any significant association with industrial electricity demand. As 

data regarding the latter are unavailable for the SSA region, we will look instead at the 

relationship of our hydrological variable with the electricity consumption of industry and of all 

other sectors of the economy as best available proxys. 

 

Information on actual hydroelectricity production, industrial and sectoral electric ity 

consumption (all in GWh) is available from the statistics division of the International Energy 

Agency for 18 of the countries included in the analyses of the following chapters.75 The 

anomaly measures employed in the following regressions are the same used for the nationa l 

analyses of Chapter 4, in which the average yearly anomaly of all hydropower-serving basins 

of each country are scaled by their hydro-plant contribution to the state generation portfolio, 

                                                                 
75 These countries are Angola, Cameroon, Congo, Democratic Republic of Congo , Ethiopia, Gabon, Ghana, 

Ivory Coast, Kenya, Mozambique, Namibia, Nigeria, South Africa, Sudan, Tanzania, Togo, Zambia and 

Zimbabwe. 
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either in term of installed or of operational capacity, and then aggregated together76. All the 

following regressions are run as panel OLS with fixed effects and include year dummies.  

 

[Table 2.20 and 2.21 about here] 

 

As it can be seen from the first two columns of Table 2.20, regardless of the weight used the 

yearly mean anomaly is always positively and significantly associated with actual hydroelectr ic 

production, exactly as expected. On the other hand, no meaningful relationship can be 

individuated with regard to industrial electricity consumption. In Table 2.21 we show that the 

association with all other sectoral electricity consumption is also insignificant. Although the 

ideal measure would be industrial demand, for a significant relationship between the latter and 

the anomaly to exist without it reflecting on consumption when supply increases, a similar 

effect must interest the demand some of the other sector for which access to electricity is 

prioritised, and this should reflect on consumption. As we have just shown, this is not the case, 

so that we are reassured that the exclusion restriction is not violated. 

 

2.6. Conclusion. 

The chapter presents the results of a hydrological modelling exercise aimed at obtaining the 

estimates of the river discharge for 9 of the 10 African continental basins in the period 2001-

2013. The literature suggests that a difference exists amongst the various basins from many 

points of view, ranging from water availability to rainfall-to-runoff conversion rates. 

                                                                 
76 See section 2 of Chapter 3 for a complete description of the instrument-building procedure. 
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Furthermore, many diverse pictures emerge from the perspective of the possible effects of 

climate change on water resource availability, with the main agreement being on the general 

increase of both temperature and incidence of extreme events. The scarcity of available physical 

data for most basins of the continent makes hydrological modelling particularly difficult, 

increasing the sources of uncertainties in the results of the models which underpin sustainab le 

water management policies. The basic functioning of the hydrological model GeoSFM, used to 

obtain the estimates, has been presented in the third section of the chapter. The model has been 

chosen because of its ability to yield estimates in case of little observed data, as it depends 

solely on remotely sensed information; further, it can easily handle basin of large dimens ions 

and it is fully integrated into the GIS system which makes its execution particularly tractable.  

 

The fourth part of the chapter introduces the estimates, constituting the basis for the 

construction of a measure for the availability of water for hydropower production at the city-

level, which will be used in Chapter 3 as an instrument for power outages and in Chapter 4 to 

investigate the link between hydroelectricity production and city- and country-wide economic 

activity. We present the spatial distribution of average stream-flow across each basin and the 

behaviour of river discharge across the period under consideration, while also presenting the 

grouping relative to both original and oblimin rotated principal components obtained through a 

PCA analysis of the streamflow series.  

 

The final part of the chapter covers the comparison between some of the river discharges 

simulated by the model and their historical counterparts, available through GRDC, the biggest 

public dataset for streamflow. The overall correlation across the different basins is of 0.35, but 
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many differences exists across them, with most of the divergences being situated in the southern 

part of the continent. Comparing estimates and observed data under the point of view of 

anomalies, we confirmed with regard to GRDC data what Asante et al. (2008a) did with regard 

to RivDis data - with a lesser performance of the model for rivers located in interbasins 3 and 

9. We then moved to a more rigorous assessment of the better performance of the model with 

regard to droughts and floods through the use of copula analysis, which allows us to compare 

estimated and historical streamflow across their whole distribution. The exercise wholly 

confirms the previously obtained results. 

 

We finally performed a series of checks in the form of fixed effect and quantile regression 

analysis of the relation between observed and estimated streamflow, also including an analys is 

of what might drive the discrepancies between the two. These regressions again support the 

verdict that the model seems to be able to represent the African flow behaviour fairly well as in 

no cases the correspondence between GeoSFM forecasts and the historical values falls below 

58%.Although it would be of interest for further research to investigate more deeply the reason 

for the discrepancies individuated at the end of section 5, this falls outside the scope of the 

current study. 

 

In the final part of the fourth section we introduce the measure of water availability utilised in 

the following chapters to show that the hydrological modelling exercise achieved its scope: the 

measure constructed is significantly and positively associated with actual hydropower 

production but not with industrial energy consumption, in that meeting the exclusion restriction 

of a valid instrument. 



157 
 

Figure 2.1 – Basins and countries in the study. 

The ten continental basins with political borders of countries in the study.  
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Figure 2.2 – Rainfall data. 

Example of a rainfall grid with superimposed countries’ border, 1st January 2001. 

Figure 2.3 – Evapotranspiration data. 

Example of an evapotranspiration grid, 1st January 2001. 
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Figure 2.4 – Lake Chad. 

 

Lake Chad, river network and average streamflow by quintile. 
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Figure 2.5 – Monthly average streamflow, Lake Chad. 

Lake Chad, simulated monthly average stream-flow. 

 

Figure 2.6 – Monthly streamflow 2001-2010, Lake Chad. 

Lake Chad, simulated monthly average stream-flow, 2001-2010. 
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Figure 2.7 – Horn’s test, Lake Chad. 

 

Lake Chad, result of the Horn’s test. 
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Figure 2.8 – First principal component, Lake Chad. 

Lake Chad, grouping over the loadings of the first principal component. 
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Figure 2.9 – First principal component, oblimin rotation, Lake Chad. 

Lake Chad, grouping over the loadings of the first principal component after oblimin rotation. 
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Figure 2.10 – Nile. 

 

 

Nile, river network and average streamflow by quintile. 
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Figure 2.11 – Monthly average streamflow, Nile. 

Nile, simulated monthly average stream-flow. 

Figure 2.12 – Monthly streamflow 2001-2010, Nile. 

Nile, simulated monthly average stream-flow, 2001-2010. 
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Figure 2.13 – Horn’s Test, Nile. 

 

Nile, result of the Horn’s test.  
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Figure 2.14 – First principal component, Nile. 

 

 

Nile, grouping over the loadings of the first principal component. 
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Figure 2.15 – First principal component, oblimin rotation, Nile. 

Nile, grouping over the loadings of the first principal component after oblimin rotation.   
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Figure 2.16 – Interbasin 3. 

Interbasin 3, river network and average streamflow by quintile. 
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Figurate 2.17 – Monthly average streamflow, Interbasin 3. 

Interbasin 3 simulated monthly average stream-flow. 

 

Figure 2.18 – Monthly streamflow 2001-2010, Interbasin 3. 

Interbasin 3 simulated monthly average stream-flow, 2001-2010. 
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Figure 2.19 – Horn’s Test, Interbasin 3. 

Interbasin 3, result of the Horn’s test.   
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Figure 2.20 – First principal component, Interbasin 3. 

Interbasin 3, grouping over the loadings of the first principal component. 
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Figure 2.21 – First principal component, oblimin rotation, Interbasin 3 

 

Interbasin 3, grouping over the loadings of the first principal component after oblimin rotation. 
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Figure 2.22 – Zambezi. 

 

Zambezi, river network and average streamflow by quintile. 
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Figure 2.23 – Monthly average streamflow, Zambezi. 

Zambezi, simulated monthly average stream-flow. 

Figure 2.24 –Monthly streamflow 2001-2010, Zambezi. 

Zambezi, simulated monthly average stream-flow, 2001-2010. 



176 
 

Figure 2.25 – Horn’s Test, Zambezi. 

Zambezi, result of the Horn’s test.   
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Figure 2.26 – First principal component, Zambezi. 

Zambezi, grouping over the loadings of the first principal component. 
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Figure 2.27 – First principal component, oblimin rotation, Zambezi. 

Zambezi, grouping over the loadings of the first principal component after oblimin rotation  
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Figure 2.28 – Interbasin 5. 

Interbasin 5, river network and average streamflow by quintile. 



180 
 

Figure 2.29 – Monthly average streamflow, Interbasin 5. 

 

Interbasin 5, simulated monthly average stream-flow. 

Figure 2.30 – Monthly streamflow 2001-2010, Interbasin 5. 

 

Interbasin 5 simulated monthly average stream-flow, 2001-2010. 
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Figure 2.31 – Horn’s Test, Interbasin 5. 

 

Interbasin 5, result of the Horn’s test.  
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Figure 2.32 – First principal component, Interbasin 5. 

 

Interbasin 5, grouping over the loadings of the first principal component. 
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Figure 2.33 – First principal component, oblimin rotation, Interbasin 5. 

 

Figure 33. Interbasin 5, grouping over the loadings of the first principal component after oblimin rotation.  
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Figure 2.34 – Congo. 

 

Congo, river network and average streamflow by quintile. 
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Figure 2.35 – Monthly average streamflow, Congo. 

 

Congo, simulated monthly average stream-flow. 

Figure 2.36 –Monthly streamflow 2001-2010, Congo. 

 

Congo, simulated monthly average stream-flow, 2001-2010. 
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Figure 2.37 – Horn’s Test, Congo. 

Congo, result of the Horn’s test.  
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Figure 2.38 – First principal component, Congo. 

Congo, grouping over the loadings of the first principal component. 
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Figure 2.39 – First principal component, oblimin rotation, Congo. 

Congo, grouping over the loadings of the first principal component after oblimin rotation. 
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Figure 2.40 – Interbasin 7.  

Interbasin 7, river network and average streamflow by quintile. 
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Figure 2.41 – Monthly average streamflow, Interbasin 7. 

 

Interbasin 7 simulated monthly average stream-flow. 

Figure 2.42 – Monthly streamflow 2001-2010, Interbasin 7. 

 

Interbasin 7 simulated monthly average stream-flow, 2001-2010. 
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Figure 2.43 - Horn’s Test, Interbasin 7. 

 

Interbasin 7, result of the Horn’s test.   
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Figure 2.44 – First principal component, Interbasin 7. 

Interbasin 7, grouping over the loadings of the first principal component. 
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2.45 – First principal component, oblimin rotation, Interbasin 7. 

Interbasin 7, grouping over the loadings of the first principal component after oblimin rotation  
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Figure 2.46 – Niger. 

Niger, river network and average streamflow by quintile. 

 

 

 

 

 

 

 

 

 

 

 



195 
 

Figure 2.47 – Monthly average stremflow, Niger. 

 

Niger, simulated monthly average stream-flow. 

Figure 2.48 – Monthly streamflow 2001-2010, Niger. 

 

Niger, simulated monthly average stream-flow, 2001-2010. 
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Figure 2.49 – Horn’s Test, Niger. 

Niger, result of the Horn’s test.  
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Figure 2.50 – First principal component, Niger. 

Niger, grouping over the loadings of the first principal component. 
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Figure 2.51 – First principal component, oblimin rotation, Niger. 

Niger, grouping over the loadings of the first principal component after oblimin rotation. 
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Figure 2.52 – Interbasin 9. 

 

 

Interbasin 9, river network and average streamflow by quintile. 
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Figure 2.53 – Monthly average streamflow, Interbasin 9. 

 

Interbasin 9 simulated monthly average stream-flow in 2005. 

Figure 2.54 – Monthly streamflow 2001-2010, Interbasin 9. 

 

Interbasin 9 simulated monthly average stream-flow, 2001-2010. 
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Figure 2.55 – Horn’s Test, Interbasin 9. 

 

Interbasin 9, result of the Horn’s test. 
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Figure 2.56 – First principal component, Interbasin 9. 

Interbasin 9, grouping over the loadings of the first principal component  
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Figure 2.57 – First principal component, oblimin rotation, Interbasin 9. 

Interbasin 9, grouping over the loadings of the first principal component after oblimin rotation  
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Figure 2.58 – GRDC gauge stations. 

 

GRDC gauge station location  
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Figure 2.59 – GRDC-GeoSFM correlation, Southern Africa. 

Correlation between model estimates and historical data from GRDC database in Southern Africa. 
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Figure 2.60 – GRDC-GeoSFM correlation, Central Africa. 

 

Correlation between model estimates and historical data from GRDC database in Central Africa. 
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Figure 2.61 – GRDC-GeoSFM correlation, Western Africa. 

 

Correlation between model estimates and historical data from GRDC database in Western Africa. 
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Figure 2.62 – GRDC-GeoSFM correlation, Eastern Africa. 

 

 

Correlation between model estimates  and historical data from GRDC database in Eastern Africa. 
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Figure 2.63 – Density and Kernel density of significant correlation. 

 

Density (histograms) and Kernel density (blue line) of significant correlation between GRDC stations and 

GeoSFM estimates.  
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Figure 2.64 – Historical and simulated anomalies, Lake Chad. 

 

GRDC station in Lake Chad, blue line simulated anomalies, red line observed data. 

Figure 2.65 – Historical and simulated anomalies, Niger. 

 

GRDC station in Niger, blue line simulated anomalies, red line observed data. 
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Figure 2.66 – Historical and simulated anomalies, Interbasin 5. 

 

GRDC station in Interbasin 5, blue line simulated anomalies, red line observed data. 

Figure 2.67 – Historical and simulated anomalies, Interbasin 3. 

 

GRDC station in Interbasin 3, blue line simulated anomalies, red line observed data. 
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Figure 2.68 – Historical and simulated anomalies, Interbasin 9. 

 

GRDC station in Interbasin 9, blue line simulated anomalies, red line observed data. 

Figure 2.69 – Quantile regression and OLS coefficients, all basins. 

Graphed quantile regression coefficients for GeoSFM anomalies  (blue line) including the equivalent OLS 

coefficient (dotted line) aggregated over all basins. Regression includes daily rainfall and evapotranspiration 

anomalies and their maximum yearly value. 
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Figure 2.70 – Quantile regression and OLS coefficients, Lake Chad. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for Lake Chad. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 

Figure 2.71 – Quantile regression and OLS coefficients, Nile. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for the Nile. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 
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Figure 2.72 – Quantile regression and OLS coefficients, Interbasin 3. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for Interbasin 3. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 

Figure 2.73 – Quantile regression and OLS coefficients, Zambezi. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for the Zambezi. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 
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Figure 2.74 – Quantile regression and OLS coefficients, Interbasin 5. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for Interbasin 5. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 

Figure 2.75 – Quantile regression and OLS coefficients, Congo. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey 

area) including the equivalent OLS coefficient (dashed line and area between dotted lines) for the Congo. 

Regression includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 
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Figure 2.76 – Quantile regression and OLS coefficients, Niger. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for the Niger. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value. 

Figure 2.77 – Quantile regression and OLS coefficients, Interbasin 9. 

Graphed quantile regression coefficients and confidence interval for GeoSFM anomalies (blue line and grey area) 

including the equivalent OLS coefficient (dashed line and area between dotted lines) for Interasin 9. Regression 

includes daily rainfall and evapotranspiration anomalies and their maximum yearly value.  
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Tables 2.1 – GRDC-GeoSFM correlations by basin 

 

Basins correlation between simulated and observed river discharge for GRDC dataset. The first column reports 

the average of significant correlations, the second the overall number of gauge stations per basin, the third the 

percentage of significant correlations. 

 

 

Table 2.2 – GRDC-GeoSFM dependence comparison, Lake Chad. 

Station ID 1837106 1837107 1837200 1837401 1837451 1837560 

1837106 0.00 0.02 -0.21 -0.65 -0.33 -0.81 

1837107 0.02 0.00 -0.30 -0.59 -0.11 -0.90 

1837200 -0.21 -0.30 0.00 0.21 -0.17 0.26 

1837401 -0.65 -0.59 0.21 0.00 -0.59 -0.19 

1837451 -0.33 -0.11 -0.17 -0.59 0.00 -0.76 

1837560 -0.81 -0.90 0.26 -0.19 -0.76 0.00 

 

Comparison of GRDC-GeoSFM regional dependence for Lake Chad obtained by subtracting the rank correlation  

between estimated and historical flow. Positive values indicate that the model under-estimate the dependence 

between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

 

 

 

 

 

 

 

 

Basin GRDC corr. GRDC stations num. Significant corr. (5%)

Lake Chad 0.55 8 3/8 (37%)

Nile - 1 -

Basin 3 0.64 13 11/13 (83%)

Zambezi 0.6 40 28/40 (70%)

Basin 5 0.49 239 163/239 (68%)

Congo 0.67 21 14/21 (65%)

Basin 7 - - -

Niger 0.54 46 23/46 (50%)

Basin 9 0.75 18 13/18 (69%)
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Table 2.3 - GRDC-GeoSFM dependence comparison, Interbasin 3. 

 

 

 

 

 

Comparison of GRDC-GeoSFM regional dependence for Interbasin 3 obtained by subtracting the rank correlation  

between estimated and historical flow. Positive values indicate that the model under-estimate the dependence 

between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

 

 

 

Table 2.4 - GRDC-GeoSFM dependence comparison, Zambezi. 

Station ID 1591235 1591231 1591401 1591404 1591410 1591460 1591820 

1591235 0.00 -0.05 -0.96 0.08 -0.78 -0.30 -1.10 

1591231 -0.05 0.00 -1.02 0.05 -0.77 -0.11 -1.18 

1591401 -0.96 -1.02 0.00 -0.82 -1.17 -1.27 -0.64 

1591404 0.08 0.05 -0.82 0.00 -0.71 -0.11 -1.26 

1591410 -0.78 -0.77 -1.17 -0.71 0.00 -0.69 -0.42 

1591460 -0.30 -0.11 -1.27 -0.11 -0.69 0.00 -1.04 

1591820 -1.10 -1.18 -0.64 -1.26 -0.42 -1.04 0.00 

 

Comparison of GRDC-GeoSFM regional dependence for the Zambezi obtained by subtracting the rank correlation  

between estimated and historical flow. Positive values indicate that the model under-estimate the dependence 

between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

 

 

 

 

 

 

 

 

 

 

 

Station ID 1577100 1577102 1577101 1577601 

1577100 0.00 -0.18 0.45 0.07 

1577102 -0.18 0.00 0.05 0.06 

1577101 0.45 0.05 0.00 -0.08 

1577601 0.07 0.06 -0.08 0.00 
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Table 2.5 – GRDC-GeoSFM dependence comparison, Interbasin 5. 

 

 

 

 

 

 

 

 

Comparison of GRDC-GeoSFM regional dependence for Interbasin 5 obtained by subtracting the rank correlation between estimated and historical flo w. Positive values 

indicate that the model under-estimate the dependence between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

Table 2.6 – GRDC-GeoSFM dependence comparison, Congo. 

Station ID 1593780 1593400 1593600 1593740 1593201 1593770 

1593780 0.00 -0.61 -0.60 -0.55 -0.52 -0.58 

1593400 -0.61 0.00 -0.45 -0.33 -0.32 -0.35 

1593600 -0.60 -0.45 0.00 -0.45 -0.54 -0.48 

1593740 -0.55 -0.33 -0.45 0.00 -0.28 -0.29 

1593201 -0.52 -0.32 -0.54 -0.28 0.00 -0.29 

1593770 -0.58 -0.35 -0.48 -0.29 -0.29 0.00 

Comparison of GRDC-GeoSFM regional dependence for the Congo obtained by subtracting the rank correlation between estimated and historical flow. Positive values 

indicate that the model under-estimate the dependence between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

Station ID 1159100 1159130 1160881 1196370 1196560 1196600 1159300 1155302 1159650 1159670 1160765 1160820 

1159100 0.00 0.08 0.26 0.37 0.35 0.12 0.55 0.46 0.38 0.23 0.31 0.13 

1159130 0.08 0.00 -0.45 -0.19 -0.01 -0.05 -0.37 -0.45 -0.51 -0.31 -0.42 -0.05 

1160881 0.26 -0.45 0.00 -0.12 0.12 0.10 -0.61 -0.40 -0.14 0.10 0.09 0.32 

1196370 0.37 -0.19 -0.12 0.00 0.26 0.25 -0.12 -0.14 -0.01 0.21 -0.03 0.34 

1196560 0.35 -0.01 0.12 0.26 0.00 -0.23 0.19 0.23 0.21 0.21 0.07 -0.07 

1196600 0.12 -0.05 0.10 0.25 -0.23 0.00 -0.04 -0.02 0.14 0.20 0.14 -0.06 

1159300 0.55 -0.37 -0.61 -0.12 0.19 -0.04 0.00 -0.12 -0.24 -0.06 0.08 0.14 

1155302 0.46 -0.45 -0.40 -0.14 0.23 -0.02 -0.12 0.00 -0.14 -0.06 0.04 0.12 

1159650 0.38 -0.51 -0.14 -0.01 0.21 0.14 -0.24 -0.14 0.00 0.19 0.10 0.29 

1159670 0.23 -0.31 0.10 0.21 0.21 0.20 -0.06 -0.06 0.19 0.00 0.22 0.29 

1160765 0.31 -0.42 0.09 -0.03 0.07 0.14 0.08 0.04 0.10 0.22 0.00 0.27 

1160820 0.13 -0.05 0.32 0.34 -0.07 -0.06 0.14 0.12 0.29 0.29 0.27 0.00 
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Table 2.7 – GRDC-GeoSFM dependence comparison, Niger. 

 

 

 

 

 

 

 

 

 

 

Comparison of GRDC-GeoSFM regional dependence for the Niger obtained by subtracting the rank correlation between estimated and historical flow. Positive values indicate 

that the model under-estimate the dependence between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

 

  

Station ID 1234150 1531050 1531420 1134100 1531430 1531450 1531550 1531600 1531800 1837401 1837451 

1234150 0.00 -0.52 0.00 -0.48 -0.26 -0.21 -0.57 -0.28 -0.21 -0.47 -0.68 

1531050 -0.52 0.00 0.06 0.04 0.06 0.35 -0.99 0.14 0.09 -0.10 -0.13 

1531420 0.00 0.06 0.00 0.08 0.15 0.09 -0.66 0.16 -0.35 -0.12 -0.02 

1134100 -0.48 0.04 0.08 0.00 -0.10 0.32 -0.96 -0.02 0.21 -0.09 -0.07 

1531430 -0.26 0.06 0.15 -0.10 0.00 0.21 -0.94 -0.14 0.48 0.03 -0.07 

1531450 -0.21 0.35 0.09 0.32 0.21 0.00 -0.69 0.26 0.38 0.28 0.28 

1531550 -0.57 -0.99 -0.66 -0.96 -0.94 -0.69 0.00 -0.60 -0.97 -0.98 -1.04 

1531600 -0.28 0.14 0.16 -0.02 -0.14 0.26 -0.60 0.00 0.36 0.01 0.09 

1531800 -0.21 0.09 -0.35 0.21 0.48 0.38 -0.97 0.36 0.00 0.05 0.24 

1837401 -0.47 -0.10 -0.12 -0.09 0.03 0.28 -0.98 0.01 0.05 0.00 -0.03 

1837451 -0.68 -0.13 -0.02 -0.07 -0.07 0.28 -1.04 0.09 0.24 -0.03 0.00 
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Table 2.8 – GRDC-GeoSFM dependence comparison, Interbasin 9. 

 

 

 

 

 

 

 

 

Comparison of GRDC-GeoSFM regional dependence for Interbasin 9 obtained by subtracting the rank correlation between estimated and historical flo w. Positive values 

indicate that the model under-estimate the dependence between the flow behaviour of sub-basins within the same continental basin, negative value the opposite.  

 

Table 2.9 – Archimedean Copulas, summary. 

Basin Kendal Tau 

GRDC stations 

num. Significant (5%) 

Lake Chad 0.42 8 4/8 (50%) 

Interbasin 3 0.41 13 11/13 (85%) 

Zambezi 0.17 45 42/45 (93%) 

Interbasin 5 0.3 64 44/64 (68%) 

Congo 0.39 13 3/13 (23%) 

Niger 0.43 23 12/23 (52%) 

Interbasin 9 0.48 15 5/15 (33%) 

Summary of the values for Archimedean Copulas in different basins. The first column indicates the average Kendal Tau amongst the significant copulas, the second the 

number of stations for which copulas have been modelled and the third the percentage of copulas significant at 5%. 

Station ID 1531450 1531550 1531600 1531800 1732100 1234150 1531050 1531420 1531430 

1531450 0.00 -0.17 -0.35 0.38 -0.20 -0.68 -0.21 -0.09 -0.08 

1531550 -0.17 0.00 -0.15 0.32 -0.28 -0.78 -0.20 -0.28 -0.25 

1531600 -0.35 -0.15 0.00 0.18 -0.32 -0.72 -0.28 -0.17 -0.18 

1531800 0.38 0.32 0.18 0.00 0.46 -0.18 0.38 0.26 0.36 

1732100 -0.20 -0.28 -0.32 0.46 0.00 -0.43 -0.19 -0.06 -0.09 

1234150 -0.68 -0.78 -0.72 -0.18 -0.43 0.00 -0.66 -0.36 -0.48 

1531050 -0.21 -0.20 -0.28 0.38 -0.19 -0.66 0.00 0.06 -0.07 

1531420 -0.09 -0.28 -0.17 0.26 -0.06 -0.36 0.06 0.00 -0.20 

1531430 -0.08 -0.25 -0.18 0.36 -0.09 -0.48 -0.07 -0.20 0.00 
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Table 2.10 – Fixed effect regression of historical and simulated streamflow and 

anomalies, all basins.  

  (1) (2) 

  GRDC streamflow GRDC Anomalies  

GeoSFM  0.07 0.20*** 

  (0.06) (0.01) 

Evap Max -0.22 0.01** 

  (0.21) (0.00) 

Evap Mean -1.19 -0.00*** 

  (1.01) (0.00) 

Rain Max -0.03 -0.02*** 

  (0.23) (0.01) 

Rain Mean 37.78 -0.00*** 

  (33.08) (0.00) 

Constant 217.31*** 0.16*** 

  (13.45) (0.03) 

Year dummies Yes Yes 

Num. of obs. 1065883 1065764 
 

Column 1 presents results for fixed effect regression having as dependent variable the absolute value of 

streamflow, column 2 those for fixed effect regression having as dependent variables streamflow anomalies. 

Both include year dummies.  ***=significant at the 1% level; **=significant at the 5% level; *=significant a t the 

10% level. 

Table 2.11 – Fixed effect regression of historical and simulated streamflow and 

anomalies, by basin. 

  (1) (2)   

  GRDC streamflow GRDC Anomalies Num. of obs. 

Lake Chad 0.11 0.54** 6872 

Nile 1.17 0.07* 6194 

Interbasin 3 0.67*** 0.41*** 36275 

Zambezi 0.12*** 0.32*** 60023 

Interbasin 5 0.05* 0.16*** 899257 

Congo -29.69 0.25 6188 

Niger 0.17 0.29*** 27552 

Interbasin 9 0.29*** 0.47*** 24254 

 

Column 1 presents results for fixed effect regression having as dependent variable the absolute  value of 

streamflow, column 2 those for fixed effect regression having as dependent variables streamflow anomalies. 

Both include year dummies.  ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 



223 
 

Table 2.12 – Quantile regression of historical and simulated streamflow, by basin. 

 

Absolute Streamflow, quantile regressions. Column 1 presents results relative to the first quintile, columns 2 for 

the second, column 3 for the third and column 4 for the fourth. Reported coefficients are for the simulated absolute 

flow, all regressions include mean and maximum yearly values for evapotranspiration and rainfall and year 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% lev el. 

 

 

 

Table 2.13 – Quantile regression of historical and simulated anomalies, by basin. 

 

Anomalies, quantile regressions. Column 1 presents results relative to the first quintile, columns 2 for the second, 

column 3 for the third and column 4 for the fourth. Reported coefficients are for the simulated flow anomalies, all 

regressions include mean and maximum yearly values for evapotranspiration and rainfall and year dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

(1) (2) (3) (4)

GRDC streamflow GRDC streamflow GRDC streamflow GRDC streamflow Num. of obs.

Lake Chad 0.11*** 0.12*** 0.12*** 0.11 6872

Nile 1.60*** 0.59 1.17*** 1.17 6194

Interbasin 3 0.76*** 0.49*** 0.48*** 0.67*** 36275

Zambezi 0.21*** 0.22*** 0.22*** 0.12*** 60023

Interbasin 5 0.07*** 0.06*** 0.06*** 0.05* 899257

Congo 142.18*** 203.77*** 193.08*** -29.69 6188

Niger 0.12*** 0.14*** 0.16*** 0.17 27552

Interbasin 9 0.22*** 0.22*** 0.22*** 0.29*** 24254

(1) (2) (3) (4)

GRDC Anomalies GRDC Anomalies GRDC Anomalies GRDC Anomalies Num. of obs.

Lake Chad 0.37*** 0.45*** 0.48*** 0.54** 6872

Nile 0.06*** 0.06*** 0.07*** 0.07* 6194

Interbasin 3 0.51*** 0.45*** 0.43*** 0.41*** 36275

Zambezi 0.30*** 0.31*** 0.32*** 0.32*** 60023

Interbasin 5 0.19*** 0.18*** 0.16*** 0.16*** 899257

Congo 0.47*** 0.25*** 0.25*** 0.25 6188

Niger 0.37*** 0.31*** 0.30*** 0.29*** 27552

Interbasin 9 0.54*** 0.49*** 0.48*** 0.47*** 24254
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Table 2.14 – Quantile panel regression with fixed effects of historical and simulated 

streamflow and anomalies, all basins. 

Quantile 0.1 0.2 0.3 0.4 0.5 

Streamflow -4.6 0 0 0 0 

Anomaly 0.6*** 0.4*** 0.2*** 0.1*** 0.1*** 

  0.6 0.7 0.8 0.9 Num. of obs. 

Streamflow 0 0.1*** 0.1*** 0.2*** 1065883 

Anomaly 0.1*** 0.1*** 0.1*** 0.1*** 1065883 

 

Quantile panel regression with fixed effects. The dependent variable is either absolute historical streamflow 

(Streamflow) from GRDC or correspondent anomalies (Anomaly), explanatory variable is either simulated 

streamflow or simulated anomalies. All regressions include year dummies. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

  



225 
 

Table 2.15 – Panel probit regression of GRDC-GeoSFM divergences. 

 

Panel probit regression. The dependent variable is a dummy equal to one if the difference between historical and simulated an omalies is greater than one s.d. and zero 

otherwise, both regressions include year dummies. ***=significant at the 1% level; **=significant at the 5% level; *=signific ant at the 10% level. 

 

(1) (2) (1) (2)

Anomaly difference Anomaly difference Anomaly difference Anomaly difference

Evapotranspiration Anomaly -0.01*** XK 0.29 0.29

(0.00) (0.15) (0.15)

Rainfall Anomaly -0.18*** GC/SO/VP 1.39*** 1.41***

(0.00) (0.27) (0.27)

Elevation -0.00** -0.00** AP 0.31* 0.30*

(0.00) (0.00) (0.14) (0.14)

Latitude 0.00*** 0.00*** SG/WD/WE -0.03 -0.03

(0.00) (0.00) (0.19) (0.19)

Longitude 0.00*** 0.00*** BC -0.19 -0.20

(0.00) (0.00) (0.21) (0.21)

Urban and Built-Up Land 0.00 0.00 AG/BE/BG/DG/FX/QL/RC/SM/ZM 0.35** 0.34**

(.) (.) (0.14) (0.14)

Dryland Cropland and Pasture -0.72*** -0.75*** BV -0.27 -0.28

(0.23) (0.23) (0.26) (0.26)

Cropland/Grassland Mosaic -0.69*** -0.71*** RE 0.33 0.32

(0.23) (0.23) (0.19) (0.19)

Cropland/Woodland Mosaic -0.69*** -0.72*** AH/GD/LK/WH/WS/XH -0.10 -0.11

(0.24) (0.24) (0.16) (0.16)

Grassland -0.80*** -0.82*** AO -0.06 -0.07

(0.23) (0.23) (0.17) (0.17)

Shrubland -1.11*** -1.13*** LC/LV -0.04 -0.05

(0.24) (0.24) (0.14) (0.14)

Savanna -0.74*** -0.76*** CL/QC/QF 0.01 -0.00

(0.22) (0.23) (0.13) (0.13)

Deciduous Broadleaf Forest -0.63** -0.65** NE/NH -0.19 -0.18

(0.25) (0.25) (0.20) (0.20)

Evergreen Broadleaf Forest -0.86*** -0.88*** VC -0.02 -0.03

(0.24) (0.24) (0.14) (0.14)

Water Bodies -0.52** -0.53** AF/BH/DD/FH/GE/GM/HG/HH/HL/JD/LF/LO/LP/OD/OE/OX/PG/PO/PP/TH/TM/TV/ZO 0.03 0.02

(0.23) (0.23) (0.13) (0.13)

Barren or Sparcely Vegetated -1.08*** -1.11*** FO 0.18 0.17

(0.24) (0.24) (0.14) (0.14)

PF/WX 0.00 0.00 YY 0.04 0.02

(.) (.) (0.24) (0.24)

I 0.15 0.14 Constant 0.36 0.38

(0.15) (0.15) (0.26) (0.26)

Number of obs. 1065764 1065764
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Table 2.16 – Probit regression of GRDC-GeoSFM daily anomaly correspondence for 

different values of s.d. 

 

 

 

 

 

 

Probit regressions. The dependent variable is a dummy equal to one if the historical daily anomaly correspond to 

the reported value in term of s.d. , reported values are for a dummy equal to one if the simulated anomaly  

correspond to the same value. All regression include year dummies, column 2 also include daily values of 

evapotranspiration and rainfall anomalies, column 3 further includes latitude and longitude, column 4 soil depth 

and land cover. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level.  

 

 

 

Table 2.17 – Probit regression of GRDC-GeoSFM monthly anomaly correspondence for 

different values of s.d. 

  (1) (2) (3) (4) 

Above 1 s.d. (absolute value) 0.82*** 0.75*** 0.74*** 0.77*** 

Above 1 positive s.d. 0.88** -0.08 0.15 0.09 

Below 1 negative s.d. 0.87*** 0.82*** 0.81*** 0.84*** 

Above 0.5 s.d. (absolute  value) 0.32*** 0.17*** 0.15** 0.19*** 

Above 0.5 positive s.d. 0.53*** 0.41*** 0.38*** 0.51*** 

Below 0.5 negative s.d. 0.81*** 0.77*** 0.76*** 0.79*** 

 

Probit regressions. The dependent variable is a dummy equal to one if the historical average monthly anomaly 

correspond to the reported value in term of s.d. , reported values are for a dummy equal to one if the simulated 

anomaly correspond to the same value. All regression include year dummies, column 2 also include monthly 

average values of evapotranspiration and rainfall anomalies, column 3 further includes latitude and longitude, 

column 4 soil depth and land cover. ***=significant at the 1% level; **=significant at the 5% level; 

*=significant at the 10% level. 

 

 

 

 

 

 

 

  (1) (2) (3) (4) 

Above 1 s.d. (absolute value) 0.71*** 0.64*** 0.65*** 0.67*** 

Above 1 positive s.d. 0.99*** 0.02 0.26*** 0.18*** 

Below 1 negative s.d. 0.77*** 0.72*** 0.72*** 0.74*** 

Above 0.5 s.d. (absolute value) 0.22*** 0.06*** 0.05*** 0.10*** 

Above 0.5 positive s.d. 0.42*** 0.32*** 0.31*** 0.44*** 

Below 0.5 negative  s.d. 0.73*** 0.68*** 0.68*** 0.70*** 
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Table 2.18 – GRDC-GeoSFM daily anomalies correspondence, shares. 

  > 1 s.d. < -1 s.d > 0.5 s.d  < -0.5 s.d. 

Overall 0.99 0.86 0.70 0.80 

Lake Chad 0.91 0.74 0.64 0.67 

Nile 1.00 0.75 0.59 0.68 

Basin 3 0.99 0.87 0.66 0.83 

Zambezi 0.97 0.79 0.58 0.72 

Basin 5 1.00 0.87 0.72 0.81 

Congo 0.83 0.77 0.74 0.71 

Niger 0.92 0.80 0.62 0.73 

Basin 9 0.95 0.84 0.65 0.79 

Share of time in which both the historical and simulated daily streamflow anomalies correspond to the reported 

level. 

 

 

 

Table 2.19 – GRDC-GeoSFM monthly anomalies correspondence, shares. 

  > 1 s.d. < -1 s.d > 0.5 s.d  < -0.5 s.d. 

Overall 0.99 0.88 0.76 0.80 

Lake Chad 0.92 0.72 0.65 0.69 

Nile 1.00 0.68 0.64 0.64 

Basin 3 1.00 0.88 0.67 0.84 

Zambezi 0.97 0.79 0.59 0.73 

Basin 5 1.00 0.89 0.78 0.81 

Congo 0.84 0.75 0.75 0.71 

Niger 0.92 0.81 0.64 0.73 

Basin 9 0.96 0.85 0.66 0.79 

Share of time in which both the historical and simulated monthly streamflow anomalies correspond to the 

reported level. 
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Table 2.20– Yearly mean anomaly, hydroelectric production and industrial electricity 

consumption. 

 

Fixed effect regressions. The dependent variable is yearly hydroelectric production in GWh in columns 1 and 2, 

Industrial electricity consumption in GWh in columns 3 and 4; the dependent variable is the country-wide yearly 

mean anomaly, weighted by installed capacity in columns 1 and 3 and by operational capacity in columns 2 and 

4. All regressions include year dummies.  ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level  

 

 

 

Table 2.21– Yearly mean anomaly, other sectoral electricity consumption. 

 

Fixed effect regressions. The dependent variable is residential electricity conumption in GWh in columns 1 and 

2, service electricity consumption in GWh in columns 3 and 4 and final electricity consumption in GWh in 

columns 5 and 6; the dependent variable is the country-wide yearly mean anomaly, weighted by installed capacity 

in columns 1, 3 and 5 and by operational capacity in columns 2, 4 and 6. All regressions inclu de year dummies .  

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level  

 

 

 

 

 

  

(1) (2) (3) (4)

Installed Operational Installed Operational

Yearly Mean Anomaly 1415.33** 1181.00** 289.52 144.59

(647.17) (565.53) (907.83) (792.64)

Constant 3456.74*** 3460.71*** 7426.95*** 7427.12***

(246.95) (247.22) (346.41) (346.50)

Number of obs. 234 234 234 234

Hydropower prod. Industrial electricity cons.

(1) (2) (3) (4) (5) (6)

Installed Operational Installed Operational Installed Operational

Yearly Mean Anomaly -28.75 165.72 -494.11 -402.79 -327.69 -169.50

(582.06) (507.98) (633.04) (552.72) (1778.10) (1552.30)

Constant 2908.26*** 2909.43*** 1545.32*** 1544.00*** 12751.44*** 12751.21***

(222.10) (222.06) (241.55) (241.62) (678.48) (678.58)

Number of obs. 234 234 234 234 234 234

Residential electricity cons. Service electricity cons. Final electricity cons.
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Chapter 3 

Quality of Electricity Provision and Firm’s 

Revenue: a Solution for the Endogeneity 

Problem. 
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3.1 Introduction. 

 

In the first chapter we estimated the firm’s revenue elasticity to power outages, finding that the  

frequency of power outages is negatively and significantly related to it, with a greater effect 

for firms without generators compared to those firms that have access to backup capacity. 

However, as we noted in Chapter 1, there are a number of possible sources of endogeneity that 

might be affecting these results. For example, more productive firms lead to a more profitable 

tax base, and the subsequent increase in government revenue might lead to improvements in 

infrastructure spending; or new investments in infrastructure might target zones in which there 

was previously little incentive to generate new economic activity or conversely where the 

quality is already high to favour the emergence of economies of scale, hence directly affecting 

firms’ productivity. 77  

 

These endogeneity concerns will in turn imply that the estimates of the first chapter are biased, 

and hence in this chapter we take an instrumental variable approach. The latter has been 

identified in the variation of water available for hydropower production, which is one of the 

main sources of electricity for the majority of SSA countries. Everything else equal, a lower 

flow in basins serving hydropower plants will entail a lower capacity to generate hydro-

electricity, and if this does not influence demand, the resulting increase in the gap between 

electricity supplied and demanded should translate in a higher incidence of outages. 78   

 

                                                                 
77 For a review of the relevant literature see Chapter 1. 
78 A similar instrument is recently been applied to Indian manufacturing firms (Allcott et al. 2014) 
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The remainder of the chapter is organized as follow: section 2 explains the procedure used to 

transform the river flow modelling of chapter 2 into the final instruments, section 3 presents 

the methodology, section 4 introduces the main results, section 5 discusses a series of 

robustness checks while section 6 concludes. 

 

3.2 Instrument Construction and Summary Statistics. 

3.2.1 Power Plants. 

The data about African power plants come from the World Electric Power Plant (WEPP) 

database from PLATTS, a global provider of energy and commodity information. The database 

contains information for more than 90,000 plants across the globe, ranging from generation 

technology and turbine type to installed and operative capacity. With regard to SSA, the WEPP 

dataset reports information for approximately 1,352 power plants for a total of 3,857 actual 

generating units. Table 3.1 below reports some of the most relevant summary statistics for each 

country in our sample.  

 

[Table 3.1 about here] 

 

By looking at the number of plants it is possible to notice the very uneven distribution of 

electricity infrastructure in the continent, with Nigeria and South Africa accounting for 20% of 

all power plants. This unevenness is strengthened further if we focus on the actual megawatt 

(MW) of installed capacity: South Africa alone accounts for 51.58% of the capacity of SSA. 

Given that Nigeria accounts for 16.61%, this leaves just 31.81% for the remaining 36 countries 
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in the sample. The mean plant dimension is 74.53 MW at a continental level, but of course 

there is great diversity across countries, from a minimum of 1.32 MW in Burundi to a maximum 

of 417.13 MW in the Republic of South Africa (both averages).  

 

While the majority of power plants in the continent are oil fuelled (57%), relevant differences 

are also present in the composition of each country generation portfolio. For the relative 

majority of countries in the sample (18) the main generation technology, by MW of installed 

capacity, is hydropower, which is in any case the second also by number of plants (26.4%). Of 

the 20 remaining countries, 15 have a prevalence of oil in the installed capacity, 3 of coal 

(Botswana, South Africa, Zimbabwe) and 2 of gas (Cote d’Ivoire, Nigeria). However, 

hydropower still represents an important source of electricity for many of these countries, as 

for more than 10 a quarter of the installed capacity consists of hydro, while only 7 are 

completely without any hydropower production79. As the whole identification procedure relies 

on water availability for hydro generation, these countries will be excluded from the following 

analysis.  

 

The first step in the instrument creation is to geo-locate the power plants, so to be able to 

determine which rivers feed into hydro-plants.  The WEPP database contains the latitude and 

longitude coordinates for only 47% of the plants in the study, so that we had to find a way to 

obtain information about the missing ones. Attempt to contact the relevant ministries and 

utilities to directly obtain these information were made but, as we did not receive any reply, we 

had to resort on geo-locating the remainder with Google Earth, using the name of the dam or 

of the power plant, and when these could not be found the name of the villages/cities in which 

                                                                 
79 These countries are Botswana, Chad, Eritrea, Guinea Bissau, Mauritania, Niger and Senegal. 
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the plants are located. The procedure increased the share of plants for which we possess 

coordinates to 80%. 

 

The mean dimension of an un-located plant is 19.01 MW, 50% of them has less than 1 MW 

and 89% less than 10 MW and of those above 10 MW, 60% are located in countries which are 

in the top 5 for installed capacity.  The distribution of generation technologies across the un-

located plant does also closely resemble the overall one, as 54% of them are oil fuelled and 

35% hydro fuelled. Considering only the un-located hydro plants, their mean dimension is 

14.65 MW, with more than 60% of them smaller than 1 MW and more than 95% smaller than 

20 MW (respectively the generally accepted upper boundary for mini and small hydro). Taken 

together, these facts reassure us that the absence of these un-located plants should not 

significantly affect our results.  

 

3.2.2 Power Plants & Anomalies. 

The next step is to combine information on power plants with the river flow modelling from 

chapter 2. This means taking all geo-located hydro power plants (264 out of 357) and 

combining the locations with estimates of the river flow into each plant as predicted by the 

GeoSFM model. Table 3.2 below summarizes the outcome of this matching process. 

 

[Table 3.2 about here] 

 

The first observation is that we were unable to obtain a complete match as 3.4% (or 9 plants) 

did not appear to be located on a river. Even in this case though the unmatched hydro plants 
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predominantly belong to the category of mini and small hydro, as only one of them has an 

installed capacity higher than 20 MW. Again, while it would be undoubtedly desirable to 

achieve a perfect match, the absence of these plants should not significantly affect the results 

of the analysis. 

 

Taking the matched hydro plants, the next step is to see how frequently the water available for 

electricity generation varies and how much it differs from the long run mean on which the plant 

dimension calculations are normally based upon. As all the information about outages which 

will be used in the regression analysis are only available as yearly averages, the following 

summary will also be presented in that form despite the continuous nature of the GeoSFM 

model. 

 

At a continental level, for the period 2001-2013 the mean number of negative shocks per year 

was 192.67 with an average magnitude of 0.57 s.d., while the mean number of positive shocks 

was 95.15 with an average magnitude of 1.11 s.d.. However, these figures hide differences 

across years and countries. With regard to time variation, the highest value of the positive 

anomaly80 index (corresponding to the highest flow at power plants locations) is for 2006, while 

the highest value for the negative anomaly index (lowest flow) was for 2013. As these are the 

frequencies of shocks at points where power stations are located, averaged over the whole 

continent, we do not necessarily expect them to correspond to years of general droughts or 

floods.81 Looking instead at country variations, the lowest average of negative shocks in the 

period is to be found in the Democratic Republic of Congo (DRC), while the highest is that of 

                                                                 
80 Anomalies are defined as the difference between a river daily streamflow and its long term mean expressed in 

term of standard deviation, see Chapter.2 for further discussion. 
81 For an assessment of the performance of GeoSFM modelling see Chapter 2. 
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Namibia; on the other hand, the highest mean number of positive shock is that of Gabon, while 

the lowest average is that of Swaziland. Concerning the mean size of negative shocks, the 

strongest are those of Gabon (-0.87 long term s.d. in flow) and smallest those of Swaziland (-

0.38 long term s.d.); the highest average size for positive shocks is that of Malawi (1.29 long 

term s.d.), the lowest that of Gabon (0.8 long term s.d.). 

 

Any variation of flow below or above the long run mean will count as a negative or positive 

shock despite its size, and we know from the analysis in Chapter 2 that many rivers in the 

continent have a strong seasonal behaviour, which could influence the measure of shocks over 

a year. Since we only have the average number and hours of outages in a year, to try and take 

this into account we further divide our measures between strong and weak anomalies, using as 

a cut-off point the average negative and positive shock size for the basin across the period. This 

should allow us to at least partially differentiate between the incidences of different types of 

shocks: anomalies with a magnitude higher (in absolute value) than the average negative 

anomaly in the basin are defined as “strong negative anomalies”; those with a magnitude 

between the average and 0 as “weak negative anomalies”. Conversely, anomalies with a 

magnitude between 0 and the average positive anomaly in the basin are defined as “weak 

positive anomalies” and those with a magnitude higher than the average as “strong positive 

anomalies”.82  

 

For the whole of SSA, the average level of strong negative anomaly is 109.44 per year, with 

the lowest incidence in Malawi and the highest in Guinea and the highest mean value again in 

                                                                 
82 As a robustness check we have also performed the analysis using the median value instead of the average.  
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Gabon while the lowest in Swaziland83; for weak negative anomalies the continental average 

is 83.24, the lowest incidence is found in Mali (the weakest magnitude in Lesotho) while the 

highest frequency is that of Namibia (and the strongest magnitude in Malawi). The mean 

incidence of strong positive anomalies is 39.42 at continental level (55.73 for weak positive 

anomalies), at a country level the highest incidence is that of Gabon (which also has the highest 

incidence of weak ones) and the lowest that of Swaziland (Namibia for weak anomalies) while 

with regard to magnitude the strongest is that of Swaziland (Tanzania for weak ones) and the 

weakest that of Gabon (Sierra Leone for weak anomalies).  

 

It is worth remembering that the regression analysis will be performed in a cross country setting 

given the very low availability of panel data for African firms.  If we consider only the relevant 

years, the above picture is only slightly changed. The highest incidence of weak negative shock 

is still in Namibia while the lowest is now in Togo, while the lowest magnitude is that of Guinea 

and the strongest is that of Malawi. With regard to strong negative shocks, the highest 

frequency is that of Togo while the lowest that of Malawi, while the weakest magnitude is 

again found in Swaziland and the strongest in Gabon. Considering instead weak positive 

anomalies, the highest and lowest frequencies are again that of Gabon and Namibia 

respectively (while the strongest and weakest magnitude become that of Togo and Gabon). The 

highest incidence of strong positive anomalies is that of Rwanda while the lowest becomes that 

of Namibia, the strongest magnitude that of Rwanda and the weakest that of Gabon. 

 

 

                                                                 
83 Both the figures for lowest incidence and lowest magnitude excludes Namibia as all its negative anomalies 

qualify as weak. 
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3.2.3 Power Plants and cities. 

The final step in the creation of our instrument consists of matching the power plants with the 

productive centres they serve. In this case, it is the 109 cities included in the sample. This is 

done by selecting all the closest power plants to each city, but we need to determine a criterion 

for the selection. As we can see from Table 3.3, the density of power plants around cities varies 

considerably in the sample, so that Swaziland has all power plants within one hundred 

kilometres radius from the capital while Sudan has none. While electricity is immediate ly 

available for consumption at any point of the grid once it has been generated, given the figures 

reported in the first chapter about the average condition of transmission and distribution lines 

across the continent there is little doubt that the probability of a power outage increases with 

the distance from the power plant, especially in a context in which imports and export of 

electricity seldom account for much electricity consumption in any given country. 

 

[Table 3.3 about here] 

  

In the analysis that follows we apply four different radiuses (50, 100, 200 and 300 km) to enable 

us to pick up enough variation in power plants proximity for different countries in the sample. 

As the density of power plants around any production centre (city) is clearly going to be related 

to the area of the country, we will use exactly this criterion to determine which radius is going 

to be applied to which country. We then use the smallest radius for countries which fall in the 

smallest quartile for area, the second smaller to those in the second quartile and so on.84 The 

list of countries by radius dimension is reported in Table 3.4. With regard to the last part of the 

                                                                 
84 To ensure that the results are not driven by the particular radius picked, we also performed the analysis 

dropping the biggest and smallest radius and using only the central ones. 
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analysis of Chapter 4, in which we investigate the relation between hydropower production and 

national economic activity, this step is skipped, and we consider all power plants in a country 

weighting them as of next paragraph. 

 

[Table 3.4 about here] 

 

Once the production centres have been connected to the plants, the final step is to try and 

account for the different importance of different plants, as shocks to (hydro) plants with a 

bigger generation capacity will be more relevant than shocks to plants with a smaller capacity. 

We then scale the anomaly variables by plant dimension before aggregating them at the city 

level (or country level for the version used at the end of Chapter 4). As we possess information 

about both installed and operative capacity, we use them alternatively to see how the results 

change, but given that we cannot determine if the reported operative capacity in the WEPP 

database corresponds to the period for which we have outage information we consider the 

installed capacity as the benchmark for the analysis.  

 

As more or stronger shocks hit the basins on which hydro-plants are located, there will be 

ceteris paribus less electricity generated, which should in itself increase the number and 

duration of outages. We have already shown at the end of Chapter 2 that our instrument is not 

related to the electricity consumed by any sector of the economy, as the exclusion restriction 

implies the absence of reverse causality between the level of output and the level of water 

available for hydro-production. Generally, the existence of a structural relationship between 

this two variables seems to be highly unlikely, if not maybe for producers of hydro-turbines or 

of electric generators. As both of these activities fall under the industrial category “Machine ry 
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and Equipment” which represents 1.47% of the overall sample, and at most 3.74% in any given 

country, this objection does not seem to be relevant in our case.     

 

3.3 Methodology. 

Our estimation strategy is to instrument both outage measures used in Chapter 1 with some 

combination of the information about the water available for hydro-generation using the 

following: 

 

𝑌𝑖 =  𝛼 +  𝛽1𝑋𝑖 +  𝛽𝑗𝑖 𝑍𝑖 +  𝜀𝑖 

 

where Yi  is the logarithm of total sales, Xi is the instrumented version of one of our two 

measures of outages (log-numbers or log-hours) and Zi is an array of usual control variables 

(size dummies, exporter status, age, structure of ownership and access to credit). As in the first 

chapter, country dummies are included in all specifications, while we consider both 

specifications with industry dummies and with a simple manufacturing dummy, as includ ing 

only the latter allows us to increase the sample size with the addition of a small number of 

countries. Finally, we cluster standard errors at the city level. 

 

The main challenges to the identification procedure is the need to explain firm-level variation 

in outages using city-level variation only (as the absence of more firm data prevent us from 

using a panel framework) and to account for the high variability of water availability 

throughout the year using a single average measure, which we are forced to employ given the 

structure of the questionnaires. We are ideally proxying for hydroelectricity production, and 
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we have shown in Chapter 2 that the instrument is indeed correlated with actual hydropower 

production at the national level for the sub-sample of countries for which data is availab le. 

Although it would also be preferable to further assess the performance of our instruments at a 

finer level (i.e. for some specific hydro-plant), these data are not available. We cannot but 

further stress the necessity of improved data collection for SSA, ranging from firms to energy 

information. 

 

It is hard to decide ex-ante which forms of the instruments are to be preferred. Neither the 

average value of the anomalies throughout the year, nor the frequencies or the magnitudes of 

different kinds of shocks alone will fully capture the effect on hydro generation: frequent but 

weak negative shocks can be more problematic for electricity generation than stronger and rare 

ones and the same logic stands for excessive flow which might damage hydro plants. We have 

hence opted for presenting two different sets of results: the first uses the simplest possible 

version of the instrument, that is the average yearly value of anomalies; the second uses instead 

the interactions between frequency and magnitude of strong positive and negative anomalies 

and that of weak negative anomalies85, which can be seen as relative indexes of the hydro-

shocks, as greater absolute values imply more relevant obstacle to hydro-generation. 86 To show 

that the estimates are robust to different combinations of hydro variables we will also present 

a series of alternative first stage specifications as robustness checks.  

 

 

                                                                 
85 We have decided to exclude the index for weak positive anomalies as excess flow of that magnitude is 

unlikely to cause any issue to hydro generation. A specification including is presented amongst the robustness 

checks. 
86 This is because a higher absolute value is connected with a higher frequency, a stronger magnitude or both.  
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3.4 Results. 

We start the discussion of the results by presenting in Table 3.5 estimates for an OLS regression 

on the final sample. The model estimated corresponds to that of Chapter 1 but all countries 

without any installed hydro-power capacity have been excluded, implying a decrease of 

roughly 1,600 observations. 

 

[Table 3.5 about here] 

 

As can be noted from Table 3.5, this exclusion leads to a loss of significance for the coefficients 

on the (log) hours of outages but does not alter the results for (log) numbers: a negative effect 

of power outages on firms’ sales can already be noted in the overall sample, the coefficient on 

outages is still greater for firms without back-up capacity, while this time no significant 

association between the two variables can be found for firms with a generator. Table 3.6 and 

Table 3.7 present then estimates for the first stage of 2 stages least square (2SLS) regressions 

in which our outage measures have been instrumented either with the average yearly value of 

the anomalies (Table 3.6) or with the indexes for weak and strong negative anomalies and for 

strong positive anomalies (Table 3.7). In both cases the instruments have been constructed by 

using all 4 radiuses and weighted by the installed capacity. Columns 1 and 2 of both tables 

refer to the regressions run on the whole sample, columns 3 and 4 to those run only on the firms 

without generators while columns 5 and 6 to those run only on firm with available backup. 

 

[Table 3.6 and 3.7 about here] 
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As it is possible to notice from Table 3.6, the yearly average value of the anomalies is highly 

statistically significant and with the expected sign, but only in the regressions run on the firms 

without generators. On the other hand, from Table 3.7 we can see that when we include the 

three anomaly indexes some of the instruments are always significant, regardless of the outage 

measure used and of the sample on which we run the regression. As we expected, the yearly 

average anomaly takes a negative sign (the more water available for hydro production, the less 

outages); on the other hand, the strong negative anomaly index should be negative (as it is 

upper bounded to the average negative shock) and the positive should be positive (as greater 

values correspond to stronger excess flows). Despite this, the fitted values for both outages 

measures have the expected signs and are strongly correlated with the observed ones regardless 

of the instrument combination (0.68 with regard to log-number and 0.61 with regard to log-

hours), suggesting that we are indeed picking up what we intended to and that the problems 

with signs might be related to some collinearity between our instruments.  

 

Tables 3.6 and 3.7 also report a series of test statistics. In the first row the test statistic of the 

Wooldridge Score Test, which can be used to assess the presence of endogeneity between 

regressor and dependent variable when the s.e. are clustered, is reported; the second row reports 

the Stock- Yogo F-Statistic, a minimum eigenvalue statistic elaborated from the work of Cragg 

and Donald (1993) and of Shea (1997) by Stock, Wright and Yogo (2002) and Stock and Yogo 

(2005) which aims at assessing the strength of the instrument. The authors propose a definit ion 

of weak instrument connected to either the acceptable bias of the instrumental variable estimate 

relative to the OLS one (which is equal to its absolute bias in a case with a single endogenous 

regressor such as ours) or to the bias in the size of the confidence interval. Critical values for 

assessing such biases are also provided, although they are calculated for i.i.d. error terms, which 

is not the case of our model as error terms are clustered at the city level. As critical values for 
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non i.i.d. cases have never been developed, we present them as they furnish at least a crude 

comparison. When the yearly average anomaly is used, a minimum eigenvalue of 20.29 (third 

column of Table 3.6) implies a maximum bias of less than 10% (see Table 3.8 for the critical 

values in the case of one endogenous regressor and one exogenous instrument) and would be 

acceptable also for a situation in which i.i.d. errors could be assumed. On the other hand, 

considering the case in which the anomaly indexes are used, a minimum eigenvalue of 4.39 

(third column of Table 3.7) implies an absolute bias of the IV estimate of at least 25% (see 

Table 3.9), so that we cannot exclude that the combination of these instruments is weak.  

 

There are two ways to take this into account in the following analysis. The first is to use tests 

which have the correct size even in presence of weak instruments, such as the Anderson-Rub in 

statistic (Anderson and Rubin 1949) and the conditional likelihood ratio (CLR, Moreira 2003, 

Andrews, Moreira and Stock 2007), both of which jointly test the structural parameters and the 

over-identification restriction. These are in turn the fourth and the fifth row of Table 3.6 and 

Table 3.7, while the third is a test of under-identification. The second way is to move from a 

2SLS setting to a Limited-Information Maximum Likelihood (LIML) one, which has been 

shown by the authors (Stock, Wright and Yogo 2002, Stock and Yogo 2005) to perform better 

in cases in which more than one instrument is used (such as our). In Table 3.9 we report the 

critical values for one endogenous regressor and three instruments in case of i.i.d. errors for 

both 2SLS and LIML. The behaviour of the critical values, although relative to an i.i.d. case, 

gives at least a rough indication of why the second method is to be preferred. 

 

[Table 3.8 and 3.9 about here] 
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We can now consider the results of the second stages of the 2SLS regressions. In Table 3.10 

those where the instrument is the average yearly anomaly are presented, while Table 3.11 we 

use instead the three anomaly indexes. As all coefficients other than those on the outages 

measures are almost identical to the OLS case regardless of the instrument choice, the main 

differences between instrumented and non-instrumented estimates are twofold: first, both 

outage measures are now insignificant when the whole sample is considered; second, both 

coefficients are now significant for firms without generator and of much greater magnitude 

than in the OLS case. At the same time though, results for the endogeneity, under-identifica t ion 

and over-identification test for the regression with a single instrument (first two columns of 

Table 3.6 referring to those of Table 3.10), while only the result for the endogeneity test for the 

case with the three disaggregated hydrological measure (first two columns of Table 3.7 

referring to those of Table 3.11), suggest that the OLS estimates are more efficient than the 

2SLS ones. That is, we do not find direct confirmation that outages are endogenous to 

productivity in the whole sample, so that we can conclude that they have an overall negative 

effect, at least when measured in numbers. On the other hand, when we look at all test results 

for firms without generator, these lead us to prefer 2SLS estimates over their OLS equivalent, 

confirming that there are indeed some endogeneity issues in this relationship. Furthermore, 

comparing Table 3.10 with Table 3.11 it seems that the presence of weak instruments in the 

second table biases the coefficients for firms without generator downwards, as both coefficients 

on log-numbers and log-hours are higher when the average yearly anomaly is used than in the 

specification with the three indexes. This is further confirmed by Table 3.12, in which we 

estimate the same model of Table 3.11 using LIML, which is proven to be more robust to the 

presence of weak instruments. 

 

[Tables 3.10 to 3.12 about here] 
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As it can be seen, the LIML regression of Table 3.12 also points toward a downward bias in 

the 2SLS estimates when all indexes are used, as the coefficients for both measures of outages 

remain significant at the same confidence level and are slightly bigger in magnitude, while 

again no other coefficients exhibit any relevant change. 

 

It appears then that once the possible endogeneity between the quality of electricity service and 

firms revenue is taken into account, the effect on firms which do not have access to back-up 

generation is much stronger than OLS estimates would suggest, while, as we do not find 

confirmation in the data that this relationship is endogenous for the whole sample, a much 

weaker effect is still perceivable on the overall sample. Using again the example of the first 

chapter, a reduction in the average hours of outage for the average firm without a generator in 

the sample to the level of the average South African firm (corresponding to a reduction of 

79.3%) will entail an increase of revenue of 77% as opposed to 3.2% (corresponding to roughly 

16 mln $ at 2005 PPP). The coefficient on the number of outages allows us instead to compare 

the effect between the overall sample (for which OLS estimates are preferred) and only for 

firms without generator (for which 2SLS estimates are preferred): in this case, a reduction of 

70% in their number (roughly the difference between an average firm and its South African 

counterpart) entails an increase in revenue of 5.6% in the overall sample but of almost 96% for 

a firm without generator. 
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3.5 Robustness Checks. 

3.5.1 Instrument form 

The first robustness check regards the actual choice of the instrument combination. As 

previously noted, a few different options were taken into account when deciding which 

combination was going to become our baseline, and we eventually opted for the simple yearly 

average and for the indexes for weak and strong negative anomalies and that for strong positive 

anomalies. To show that the results are not driven by this choice we present in Table 3.13 a 

summary of the different considered combinations, all weighted by the installed capacity and 

constructed using the four different radiuses. We include both the second stage coefficients of 

the outage measures from 2SLS regressions and the relevant first stage tests. The first row 

combination includes the yearly average anomaly, as in our main specification, together with 

its standard deviation; the second the magnitude of average positive and negative anomalies, 

their frequency and both indexes (without differentiating between weak and strong); the third 

and fourth rows correspond to the second but they consider only the weak and strong anomalies 

respectively; the fifth includes the positive and negative indexes alone without differentia t ing 

between weak and strong; the sixth and seventh correspond to the fifth but considering only 

the weak or the strong anomalies respectively while the eighth corresponds to our other 

baseline specification but also includes the index for weak positive anomalies. 

 

[Table 3.13 about here] 
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As it can be seen, the estimates for the number of outages never changes sign or magnitude 

considerably and remain significant in all but one case (when the strong positive and negative 

indexes are used together), although once it is significant only at 10%. The coefficients on the 

hours of outage remain significant in all but two cases (the same combination for which the 

number of outage is also insignificant plus the one in which we instrument with the frequenc y, 

magnitude and indexes of strong positive and negative anomalies), and never considerably 

deviates from the value of the baseline regression. In the same way, in all cases in which 

estimates are significant we pass all relevant tests, except once it which the endogeneity of log 

hours of outage is rejected.     

 

[Tables 3.14 and 3.15 about here]  

 

Successively, Table 3.14 and Table 3.15 present both the first and second stages regressions 

obtained by substituting the industry dummies with a simple manufacturing dummy, which 

allows us to expand the analysis to Benin, the Central African Republic, Guinea, Malawi, 

Rwanda, Swaziland and Togo. Even in this case it can be noted that the results do not vary 

substantially from the baseline specifications, possibly also because the majority of the firms 

which enter the analysis possess a generator. Similarly, switching the weight from the installed 

capacity to the operational capacity does not alter significantly any of the estimates, neither 

those obtained by instrumenting with the average yearly anomaly (Table 3.16) nor those 

obtained with the three indexes (Table 3.17). In neither case using LIML instead of 2SLS brings 

any relevant change to the estimates, which are only slightly bigger in magnitude (for these 

and all the following robustness checks we will refer to the results of LIML regressions which 

are reported in the appendix A3). 
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[Tables 3.16 and 3.17 about here] 

 

Switching the number of radiuses used to connect the cities to the power plants from four to 

two (i.e. dropping the two extremes of 50 and 300 km using instead 100 and 200 km radiuses 

respectively) has a more noticeable effect, as now the coefficients on the (log) hours of outage 

is significant only at 10% for both instrument combinations (yearly average anomaly on its 

own in Table 3.18 and the three indexes in Table 3.19). This is coupled with the failure of the 

Kleibergen-Paap under-identification test for these regressions, as both combinations of 

instruments become insignificant in the first stage. Again, it is worth noticing that the results 

remain consistent when LIML is used instead of 2SLS, with the only difference being that the 

spurious coefficients on the hours of outage for firms without generator becomes now 

insignificant. The number of observations is also lower than in other regressions as there are 

now cities for which no hydro-power plants are present within the used radiuses. 

 

[Tables 3.18 and 3.19 about here] 

 

The next robustness checks use instead only one of the two intermediate radiuses. Table 3.20 

and Table 3.21 present the results when all cities are connected to power plants within a 100 

km (instrumenting with the yearly average anomaly and the three indexes respectively), in 

Table 3.22 and Table 3.23 the 200 km radius is used instead. In all these cases the number of 

observations included in the regressions is different from the main specifications, due to either 

cities not having any hydro-power plants in the selected radius (100 km) or now having at least 
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one while previously none (200 km). The significantly smaller number of observation (3777 

instead of 5048) included when we use the 100 km radius only is probably behind the loss of 

significance of the estimates of Table 3.20, in which the yearly average anomaly is used as 

instrument. When the three indexes are used instead (Table 3.21) the log-number of outages 

remains significant for firms without generator and furthermore becomes now significant at 

10% also in the overall sample, although the endogeneity test is passed only in the regression 

for firms without generator, while log-hours are never significant.  

 

As the number of cities associated with at least one hydro-power plant grows, the results 

obtained by using only the 200 km radius are already closer to the baseline specifications. 

Regardless of the combination of instruments used, the estimates for the number of outages 

always remain significant for firms without any available backup, while the estimates for log-

hours are insignificant when instrumented with the yearly average anomaly (Table 3.22) and 

significant, although only at 10%, when instrumented with the three indexes (Table 3.23).  

 

[Tables 3.20 to 3.23 about here] 

 

The following robustness check entails instead the inclusion amongst the explanatory variables 

of the average level of sales in the different cities, to verify that the results are not driven by 

some unobservable effect at the city level correlated with our instruments (Table 3.24 and Table 

3.25, yearly average anomaly and three indexes respectively). The newly included variables 

are always positive and significant, indicating that there might indeed be some further city level 

effect which is relevant for firm revenues. At the same time the sign and significance of the 

effect of outages does not change, although there is a decrease in their magnitude. A difference 
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between the instrument combinations is perceivable: in the estimates obtained with the yearly 

average anomaly, the endogeneity test confirms that 2SLS has to be preferred over OLS, while 

the opposite stands true for the estimates obtained with the anomaly indexes, probably due to 

their weak relationship with the instrumented variable.  

 

[Tables 3.24 and 3.25 about here] 

 

Table 3.26 and Table 3.27 present the second-last robustness check, which consists in the 

inclusion of the long term values of our instruments amongst the explanatory variables (those 

used as instruments refer instead to the year for which firms data are available) as further way 

to verify the exclusion restrictions. In these cases, none of the newly included variables are 

even close to significance, while little changes interest the main estimates. The coefficients on 

log-number of outages remain significant regardless of the combination of instruments used in 

the regressions on firms without generators and become now significant at 5% also in the 

overall sample; the estimate for the log-hours of outage remains significant when the yearly 

average anomaly is used as instrument but becomes insignificant when the three indexes are 

used. 

 

[Tables 3.26 and 3.27 about here] 

 

Finally, Table 3.28 presents the results for the case in which we use as cut-off point between 

weak and strong anomalies the median anomaly in the basin instead of the average one. As it 
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can be seen, also in this case the estimates are widely consistent with all those previous ly 

presented, and they remain so if the estimation procedure is changed to LIML. 

 

[Table 3.28 about here] 

 

3.5.2 Sample Selection Bias. 

Given the high frequency of black-outs across SSA and the existence of some evidence that 

firms rarely achieve complete back-up (Oseni and Pollitt 2013), the finding of an insignificant 

effect of outages on firms owning a generator might depend on the fact that we are ignoring 

how firms self-select in this category, that is a sample selection bias is present. In this section 

of the robustness checks we will then try to control for this possible bias applying the model 

developed by Heckman (Heckman 1976, Heckman 1979, Heckman et al. 1999). The procedure 

consist of two steps: first, estimating a probit model to obtain the probability of being selected 

in the sample (the selection equation), to then include the inverse Mills ratio87 from this 

regression amongst the explanatory variable in the equation of interest (the outcome equation) 

to control for selection bias.  

 

There are two different identification criteria for sample selection issues in the Heckman 

model: one can either rely only on the nonlinearity of the inverse Mills ratio or include some 

instruments in the selection equation which should affect the probability of selection but not 

the outcome of interest. The latter identification strategy is usually preferred, as the nonlinear ity 

                                                                 
87 The Inverse Mills Ratio is the ratio between the probability density function and the cumulative density 

function of function. 
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of the inverse Mills ratio crucially depends on the normality of the link function in the initia l 

probit, although the inclusion of non-theoretically justified variables as sources of 

identification is also debated (Leung and Yu 2000, Sartori 2003).  

 

In our specific case, it has proven hard to individuate a variable which influence generator 

ownership but not firms’ sales, as the probit models for ownership presented in chapter 1 

include the same regressors of the sales analysis. Three candidates which might satisfy the 

exclusion restriction have been individuated: the mean value of the anomaly indexes used as 

an instrument in the third chapter over the 5 years preceding the WBES88; dummies for firms 

finding their expansion constrained by the quality of the electricity supply or by their access to 

finance and these last two variables as averages in the country instead that firm-level values. 

As we have seen in the robustness check of the third chapter, long-term hydrological measures 

are not a significant predictor of sales, and their past values should influence the choice of 

generator ownership. The other two variables are obtained from a question in the WBES in 

which firms are asked to decide the most relevant constraint for expansion from a series of 

different choices. As they are given the choice to answer that the question does not apply in 

their case, and only 0.7% of firms in the sample responds in that way, there should not be any 

direct connection between the level output and which particular obstacle firms’ individuate as 

the most relevant. To see if this is not the case, we will also run the models using the average 

share at the country level instead that the firms’ response.  

 

We will now present the results, all of which have been obtained through Maximum Likelihood 

estimation with either robust standard errors (for the case with no exclusion restriction and 

                                                                 
88 5 years is as far back as we can go with the hydrological data for the older firms ’ data included in the analysis. 
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when firms’ responses were included), standard error clustered at the city level (for mean value 

of the three lagged indexes) or at the country level (for the two specifications using country 

level shares). 

 

[Table 3.29 about here] 

 

As it can be seen from the table, the coefficients for the selection equation are fairly similar to 

those obtained from the probit in the first chapter, allowing for the fact that countries without 

any installed hydropower are now excluded from the analysis, so that the sample mirrors that 

of the previous sections. The overall number of observations is that for the probit selection 

equation, while the uncensored observations are those on which the outcome OLS equation is 

run. The Rho coefficients represent the correlations between the errors of the selection equation 

and those of the outcome equation, if they are significantly different from 0 than selection bias 

is present in the model, and this is the case in Table 3.29. Although it is peculiar that the 

correlation between the errors is negative in the case of the (log) numbers of outage and positive 

in the case of (log) hours, this might depend on the fact that no exclusion restriction is applied 

to the model. At any rate, it would seem that once selection bias is accounted for, the coefficient 

for number of outages becomes significant also for firms without generator, while that for hours 

remains insignificant. 

 

To see if the results are driven by the absence of an exclusion restriction we now turn on the 

different specifications of the model. First, in Table 3.30 we use as selection variables the 

average lagged anomaly indexes. We would expect both negative indexes to be negative (the 

higher their values, the nearer to the historical mean the streamflow was, hence the lower the 
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incidence of outages) while the strong positive index should be positive (as it is proxying for 

floods).  

 

[Table 3.30 about here] 

 

As it can be seen from the table, only the strong negative anomaly index is significant in the 

selection equation, and with the opposite sign from what expected, while all other variables 

maintain the same sign and significance of the previous specification. Also in this case both 

Rho coefficients are highly statistically significant, but contrary to the previous one they are 

now both positive. This leads both measure of outages to be insignificant in the outcome 

equation, while the only relevant change amongst the covariates is the now significant exporter 

dummy in the regression on the number of outages. 

 

[Table 3.31 and 3.32 about here] 

 

The next two selection models will instead use for the exclusion restriction the firm-leve l 

answer to which obstacle was more relevant in constraining their expansion. Specifically, these 

will be two dummy variables, either taking value 1 if the answer was “quality of the electric ity 

supply” (Table 3.31) or value 1 if the answer was “access to finance” (Table 3.32)89. Given the 

analysis in the first chapter, we would expect firms which find the quality of electricity supply 

the main obstacle for expansion to have a higher chance of acquiring a generator, while those 

                                                                 
89 The slightly smaller number of observations included in these two models is due to missing observations in the 

question of which was the major obstacle (2%). 
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which are constrained by finance to have a lower likelihood. As we can see from Tables 3.31 

and 3.32, both variables have the expected sign and significance, while all other covariates are 

widely comparable to previous specifications. Once again the Rho coefficients are highly 

statistically significant, confirming the presence of selection bias. However, they take the 

opposite signs in the two models: positive in Table 3.31 and negative in Table 3.32. Once again 

this lead to diverging results in the outcome equation, as both outage coefficients are 

insignificant when being constrained by electricity is used in the probit model, while they are 

both significant if being constrained by finance is used. 

 

[Table 3.33 and Table 3.34] 

 

To see if the previous results might be due to a violation of the exclusion restriction, the final 

two models use the share of firms in the country being constrained by electricity (Table 3.33) 

or by finance (Table 3.34) instead that the firm-level values. We would still expect these 

variables to take the same values as before, and indeed we can see in both tables that they do, 

as do all other covariates. Again, the significance of the Rho coefficients points toward the 

presence of selection bias, but in both cases there are difference from the previous versions in 

which the firm level value were used. In both Tables 3.33 and 3.34 we can see that to a negative  

correlation between the errors of the outcome and the selection equation correspond a negative 

and significant effect of the number of outages. This was insignificant in Table 3.31 when the 

firm level value was used, associated with a positive correlation between the errors, exactly as 

it is now for hours of outage in Table 3.34 (contrary to what was happening with the firm level 

value in Table 3.32). 
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We have then see that, although we can conclude that issues of selection bias are present when 

analysing the effect of outages on firm with generators, the direction of the bias depends to a 

great extent on which exclusion restriction are used to identify the model. All models give 

significant Rho values, corresponding to a correlation between the error terms of the selection 

and outcome equations, but the coefficients for outages are significant in the latter only when 

this correlation is negative. This happens in 4 out 6 cases with regard to the number of outages 

and only in 1 out of 6 cases with regard to the number of outages, so that further work on the 

variable to be used for the exclusion restriction is required before being able to convincingly 

identify the direction of the bias. 

 

3.6 Conclusions. 

As already noted, while there are surely many other elements which constrain the industria l 

development of many African states, the poor quality of the electricity infrastructure is without 

doubt one of the key issues that policy makers will have to tackle to spur significant structural 

transformation processes. As infrastructure upgrades are always expensive and many African 

economies have been historically financially constrained, it is paramount to be able to assess 

which are the expectable gains. This chapter focuses on one of the most relevant gains which 

will accrue from a more stable supply of electricity, namely the increase in firm revenue.  

 

Building on the previous two chapters, we are able to resolve the endogeneity issue which 

biased our initial estimates thanks to an instrument built to account for the variation in water 

available for hydro-power production. Once we switch from an OLS to a 2SLS framework, the 

true relevance of the drag represented by frequent power outages on the production of firms 

without a generator manifests itself. If the hours of outage of the average firm without a 
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generator in the sample (562 hours) could be reduced to that of the average South African firm 

in the sample (118 hours), this would entail an increase in sales of 77%, or roughly 16 million 

2005 international dollars. As we find evidence of an endogenous relationship between outages 

and firm productivity only for firms without access to back-up generation capacity, the results 

of the OLS estimates for the whole sample remain valid, indicating that, although of a much 

lower magnitude, electricity shortages are a perceivable issue also for the overall economy. No 

significant effect of outages could be individuated for the sub-sample of firms with access to 

in-house generation in either OLS or 2SLS regressions. Although from the modelling 

performed in the robustness check part there is evidence that this might depend on sample 

selection issue, no clear indication of the direction of the bias has emerged. As this might 

depend on the variable used to satisfy the exclusion restriction of the selection equation, not 

easy to find in our case, we intend to better address the issue in future research. 

 

The main policy suggestion which stems from the chapter is then that African states who have 

enough available funds should continue investing in upgrading their energy infrastructure, as 

this will lead to a general increase in profitability for all firms in their economy, and a much 

more significant one for those which cannot access back-up generation, constituting 45.7% of 

the sample. 
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Appendix A3. 

 

This appendix includes the LIML regressions equivalent to those reported in Tables 3.15, 

3.17, 3.19, 3.21, 3.23, 3.25, 3.27 and 3.28. 

 

[Table A3.1 to A3.8 about here]  
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 Table 3.1 – WEPP information by country. 

 

Selected summary statistics for Africa power plants from the PLATT WEPP database. The first column presents 

the number of power plants, the second the total installed capacity in MW, the third the main generation 

technology in the country by MW of installed capacity, the third the share of MW of installed capacity 

corresponding to hydro power, the fourth the mean plant dimension in term of MW. 

 

  

Number of power plants Installed Capacity (MW) Main generation technology Share of HP Mean plant dimension

Angola 67 1,319.41 Hydropower 66.84% 19.69

Benin 17 104.194 Oil 0.48% 6.13

Botswana 9 244.238 Coal 0% 27.15

Burkina Faso 46 275.061 Oil 13.06% 5.98

Burundi 32 42.283 Hydropower 82.93% 1.32

Cameroon 27 1,032.86 Hydropower 71.71% 38.25

Central African Republic 18 42.558 Oil 44.03% 2.36

Chad 38 187.562 Oil 0% 4.94

Congo 11 196.408 Hydropower 50.41% 17.86

Cote d'Ivoire 14 1,378.45 Gas 47.66% 98.46

DRC 90 2,631.66 Hydropower 97.66% 29.24

Eritrea 7 167.346 Oil 0% 23.91

Ethiopia 60 932.373 Hydropower 74.20% 15.54

Gabon 43 401.579 Hydropower 42.42% 9.34

Ghana 29 2,473.66 Hydropower 48.62% 85.3

Guinea 21 929.52 Hydropower 70.59% 44.26

Guinea Bissau 3 33.115 Oil 0% 11.04

Kenya 65 1,917.90 Hydropower 52.62% 29.51

Lesotho 14 79.546 Hydropower 97.69% 5.69

Liberia 24 528.407 Oil 32.15% 22.02

Malawi 18 337.161 Hydropower 84.44% 18.73

Mali 28 602.304 Oil 43.11% 21.51

Mauritania 27 236.793 Oil 0% 8.77

Mozambique 27 2,439.33 Hydropower 89.52% 90.35

Namibia 12 450.76 Hydropower 57.68% 75.13

Niger 13 135.9 Oil 0% 10.45

Nigeria 134 16,791.68 Gas 31.49% 125.31

Rwanda 25 67.906 Oil 41.59% 2.72

Senegal 54 787.066 Oil 0% 14.58

Sierra Leone 22 207.934 Oil 26.93% 9.45

South Africa 125 52,141.71 Coal 4.35% 417.13

Sudan 80 1,961.10 Oil 33.74% 49.03

Swaziland 16 132.093 Hydropower 48.82% 8.26

Tanzania 92 1,447.53 Hydropower 44.10% 15.73

Togo 8 251.64 Oil 26.75% 31.46

Uganda 30 1,094.18 Hydropower 77.89% 36.47

Zambia 32 1,906.61 Hydropower 92.04% 59.58

Zimbabwe 20 4,862.55 Coal 30.46% 243.13
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Table 3.2 – Hydropower plants in WEPP. 

 

The first columns present the number of hydro power plants present in the WEPP PLATT database, the second 

the number of hydro power plants for which coordinates have been obtained, the third the number of power plants 

which coordinates correspond a basin in the GeoSFM model. 

  

WEPP WEPP, geo-located Joined with GeoSFM

Angola 28 25 24

Benin 1 1 1

Burkina 4 3 3

Burundi 28 21 21

Cameroon 7 6 5

Central African Republic 3 3 3

Congo 3 3 3

Cote d'Ivoire 5 5 5

DRC 49 37 37

Ethiopia 14 9 9

Gabon 6 5 2

Ghana 2 2 2

Guinea 8 6 6

Kenya 23 17 17

Lesotho 8 4 4

Liberia 2 2 2

Malawi 7 5 5

Mali 5 2 2

Mozambique 6 6 6

Namibia 2 1 1

Nigeria 13 6 6

Rwanda 15 9 9

Sierra Leone 2 2 2

South Africa 26 20 19

Sudan 5 5 5

Swaziland 8 6 6

Tanzania 41 30 28

Togo 2 1 1

Uganda 10 6 5

Zambia 13 11 11

Zimbabwe 11 5 5

Total 357 264 255
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Table 3.3 – Power plants and radiuses. 

 

The first column present the average number of power plants present in a 50km radius from the city, the second 

in a 100 km radius, the third in a 200km radius, the fourth in a 300 km radius while the fifth presents the country 

dimension in squared kilometres. 

 

  

50 km 100 km 200 km 300 km Country size, Km²

Angola 0 6 12.58 24.98 1,246,700

Benin 0 8 9 9 114,763

Burkina 1.66 5.97 18.57 29.82 274,200

Burundi 7.24 17.96 22 22 27,384

Cameroon 1.97 5.66 10.77 19.23 475,442

Central African Republic 1 3 5.52 7 622,984

Congo 3.33 4 5.67 7 342,000

Cote d'Ivoire 4.04 4.83 6.11 12.07 322,463

DRC 2.31 2.96 5.03 8.32 2,345,409

Ethiopia 3.08 4.89 11.15 17.18 1,104,300

Gabon 3 4.41 11.41 18.77 267,667

Ghana 4.57 6.79 12.56 20.56 238,535

Guinea 2.48 5.52 12.52 14.04 245,836

Kenya 3.32 11.71 22.78 29.96 581,309

Lesotho 2 2 8 8 30,355

Liberia 3.84 6.42 8.99 14.21 111,369

Malawi 4.05 5.79 7.29 9.68 118,484

Mali 1.65 1.65 5.97 11.03 1,240,192

Mozambique 2.24 2.85 4.47 5.18 801,590

Namibia 2.3 2.3 2.18 3.73 825,615

Nigeria 0 0 36.53 45.65 923,768

Rwanda 3.11 9.32 13 13 1,221,037

Sierra Leone 3 3.56 7.56 10 26,338

South Africa 7.76 14.28 21.86 28.7 71,740

Sudan 0 0 11 16 1,886,068

Swaziland 5.69 13 13 13 17,364

Tanzania 4.47 4.89 11.16 16.36 947,303

Togo 5 5 6 6 56,785

Uganda 4.7 7.64 9.79 15.33 241,038

Zambia 4.54 5.55 7.35 10.5 752,618

Zimbabwe 1 1.25 1.75 5.5 390,757
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Table 3.4 – Country quartiles and radiuses. 

 

 

Countries by dimension quartile with associated radius. 

Table 3.5 – OLS baseline estimation results. 

 

OLS estimation with robust standard errors in parenthesis. The dependent variables is the logarithm of total sale 

expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of number of power outages 

per year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

1st Quartile: 50 km 2nd Quartile: 100 km 3rd Quartile: 200 km 4th Quartile: 300 km

Swaziland Benin Congo Namibia

Rwanda Malawi Zimbabwe Nigeria

Burundi Ghana Cameroon Tanzania

Lesotho Uganda Kenya Ethiopia

Togo Guinea CAR RSA

Sierra Gabon Zambia Mali

Liberia Burkina Mozambique Angola 

Cote Sudan

DRC

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.08** -0.12** -0.07

(0.03) (0.05) (0.06)

Hours of PO -0.03 -0.03 -0.03

(0.02) (0.03) (0.03)

small -1.35*** -1.35*** -1.37*** -1.37*** -1.20*** -1.20***

(0.07) (0.07) (0.10) (0.10) (0.10) (0.10)

large 1.07*** 1.06*** 1.31*** 1.30*** 0.74*** 0.73***

(0.12) (0.12) (0.19) (0.19) (0.16) (0.16)

very large 1.79*** 1.79*** 1.20*** 1.19*** 2.04*** 2.04***

(0.18) (0.18) (0.31) (0.31) (0.23) (0.23)

exporter 0.66*** 0.67*** 0.56*** 0.57*** 0.60*** 0.61***

(0.10) (0.10) (0.14) (0.14) (0.14) (0.14)

Credit 0.54*** 0.54*** 0.56*** 0.56*** 0.40*** 0.41***

(0.07) (0.07) (0.10) (0.10) (0.11) (0.11)

Share 0.37*** 0.37*** 0.43*** 0.44*** 0.15 0.14

(0.10) (0.10) (0.16) (0.16) (0.13) (0.13)

Foreign ownership 0.97*** 0.97*** 0.76*** 0.76*** 0.93*** 0.93***

(0.10) (0.10) (0.17) (0.17) (0.14) (0.14)

Firm age 0.38*** 0.39*** 0.27*** 0.27*** 0.46*** 0.46***

(0.04) (0.04) (0.05) (0.05) (0.06) (0.06)

Constant 13.81*** 13.67*** 14.57*** 14.30*** 13.68*** 13.56***

(0.32) (0.31) (0.62) (0.59) (0.47) (0.43)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table 3.6 – First stage regression, baseline specification, single instrument. 

 

First stage regression for the baseline specification. The dependent variables are either the log number of outage 

per year or the log hour of outage per year. ***=significant at the 1% level; **=significant at the 5% level; 

*=significant at the 10% level. 

Table 3.7 – First stage regression, baseline specification, multiple instruments . 

 

First stage regression for the baseline specification. The dependent variables are either the log number of outage 

per year or the log hour of outage per year. ***=significant at the 1% level; **=significant at the 5% level; 

*=significant at the 10% level. 

Table 3.8 – Stock and Yogo 2005 critical values, single instrument. 

Critical value for one endogenous regressor and one exogenous instrument  from Stock and Yogo 2005. 

 

 

 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Number Hours Number Hours Number Hours

Yearly Mean Anomaly -0.75 -0.33 -2.34*** -3.31*** 0.05 0.55

Wooldridge Score Test 0.09 0.11 9.82*** 10.38*** 0.46 0.45

F-Statistic (Stock - Yogo) 2.3 0.15 20.29 13.96 0 0.34

Kleibergen-Paap Wald statistic 2.36 0.16 21.16*** 14.56*** 0 0.37

Anderson-Rubin Wald Chi² 0.12 0.12 12.28*** 12.28*** 0.47 0.47

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Number Hours Number Hours Number Hours

Strong Negative Anomaly Index 0.11** 0.15** 0 -0.02 0.16*** 0.21***

Strong Positive Anomaly Index 0 0.02 -0.06** -0.09* 0.02 0.06

Weak Negative Anomaly Index -0.14** -0.17 -0.28*** -0.45*** -0.04 -0.04

Wooldridge Score Test 0.11 0.7 10.18*** 11.88*** 0.14 0.01

F-Statistic (Stock - Yogo) 5.55 2.39 4.39 3.49 3.74 2.84

Kleibergen-Paap Wald statistic 17.07*** 7.35* 16.58*** 10.93** 11.68*** 8.85**

Anderson-Rubin Wald Chi² 6.25* 6.25* 16.58*** 16.58*** 3.28 3.28

Conditional Likelihood Ratio 5.26** 5.72** 15.57*** 15.83*** 1.15 2.07

2SLS

10% bias 16.38

15% bias 8.96

20% bias 6.66

25% bias 5.53
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Table 3.9 – Stock and Yogo 2005 critical values, three instruments. 

Critical value for one endogenous regressor and three exogenous instrument from Stock and Yogo 2005. 

Table 3.10 – Second stage regression, baseline specification, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country and industry dummies. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level 

 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.60 -1.37*** -33.99

(1.54) (0.42) (520.67)

Hours of PO -1.35 -0.97*** -2.84

(4.78) (0.35) (5.66)

small -1.35*** -1.37*** -1.33*** -1.35*** -0.67 -1.18***

(0.15) (0.16) (0.22) (0.21) (8.04) (0.19)

large 1.09*** 0.83 1.40*** 1.32*** 1.92 0.17

(0.21) (0.82) (0.24) (0.26) (18.04) (1.30)

very large 1.82*** 1.88*** 1.39* 1.46* 1.64 1.82**

(0.30) (0.45) (0.55) (0.64) (7.25) (0.65)

exporter 0.61** 0.66*** 0.44** 0.52** -2.23 0.70

(0.23) (0.19) (0.14) (0.19) (43.66) (0.39)

Credit 0.53*** 0.59** 0.57*** 0.61*** -0.77 0.56

(0.09) (0.20) (0.12) (0.13) (17.91) (0.40)

Share 0.35** 0.28 0.35* 0.50** 1.51 -0.13

(0.13) (0.35) (0.15) (0.18) (21.18) (0.73)

Foreig ownership 0.94*** 0.76 0.55* 0.38 0.59 0.75

(0.17) (0.74) (0.26) (0.30) (5.75) (0.42)

Firm age 0.37*** 0.47 0.27*** 0.36*** -1.88 0.47**

(0.06) (0.32) (0.06) (0.07) (36.30) (0.15)

Constant 15.85** 20.88 19.25*** 18.87*** 149.06 28.92

(6.02) (25.99) (1.64) (1.73) (2079.96) (31.30)

Number of obs. 5048 5048 2116 2116 2407 2407

2SLS LIML

10% maximal size 22.3 6.46

15% maximal size 12.83 4.36

20% maximal size 9.54 3.69

25% maximal size 7.8 3.32
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Table 3.11 – Second stage regression, baseline specification, multiple instruments . 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country and industry dummies. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.33 -1.33*** 0.63

(0.79) (0.48) (1.93)

Hours of PO -0.40 -0.86** -0.08

(0.47) (0.38) (1.12)

small -1.35*** -1.36*** -1.33*** -1.35*** -1.21*** -1.20***

(0.15) (0.15) (0.22) (0.21) (0.19) (0.19)

large 1.08*** 0.99*** 1.40*** 1.32*** 0.72*** 0.72*

(0.18) (0.18) (0.23) (0.25) (0.21) (0.28)

very large 1.81*** 1.82*** 1.39* 1.42* 2.05*** 2.03***

(0.28) (0.28) (0.54) (0.63) (0.21) (0.22)

exporter 0.64*** 0.67*** 0.45** 0.52** 0.66* 0.61**

(0.16) (0.15) (0.14) (0.18) (0.29) (0.22)

Credit 0.54*** 0.56*** 0.57*** 0.60*** 0.43** 0.41***

(0.09) (0.09) (0.12) (0.12) (0.16) (0.11)

Share 0.36** 0.35** 0.36* 0.49** 0.12 0.14

(0.11) (0.13) (0.15) (0.17) (0.22) (0.13)

Foreig ownership 0.96*** 0.91*** 0.55* 0.43 0.93*** 0.92***

(0.14) (0.16) (0.25) (0.28) (0.15) (0.16)

Firm age 0.38*** 0.41*** 0.27*** 0.35*** 0.51** 0.46***

(0.06) (0.05) (0.06) (0.07) (0.19) (0.08)

Constant 14.82*** 15.68*** 19.08*** 18.30*** 10.90 13.85*

(2.87) (2.47) (1.87) (1.88) (7.62) (6.12)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table 3.12 – LIML regression, baseline specification, multiple instruments. 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country and industry dummies. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.43 -1.35*** 1.02

(1.09) (0.50) (3.09)

Hours of PO -0.64 -0.87** -0.30

(0.84) (0.39) (5.52)

small -1.35*** -1.36*** -1.33*** -1.35*** -1.21*** -1.20***

(0.15) (0.15) (0.22) (0.21) (0.20) (0.18)

large 1.08*** 0.95*** 1.40*** 1.32*** 0.70*** 0.68

(0.19) (0.21) (0.23) (0.25) (0.23) (1.10)

very large 1.81*** 1.83*** 1.39** 1.43** 2.05*** 2.02***

(0.28) (0.28) (0.54) (0.63) (0.22) (0.46)

exporter 0.63*** 0.66*** 0.44*** 0.52*** 0.69 0.62**

(0.18) (0.15) (0.15) (0.18) (0.36) (0.28)

Credit 0.53*** 0.56*** 0.57*** 0.60*** 0.44** 0.42

(0.10) (0.10) (0.12) (0.12) (0.19) (0.28)

Share 0.36*** 0.33** 0.35** 0.50*** 0.10 0.12

(0.11) (0.13) (0.15) (0.17) (0.27) (0.47)

Foreign ownership 0.95*** 0.87*** 0.55** 0.42 0.94*** 0.91**

(0.15) (0.19) (0.25) (0.28) (0.17) (0.39)

Firm age 0.38*** 0.43*** 0.27*** 0.35*** 0.53** 0.46***

(0.06) (0.06) (0.06) (0.07) (0.26) (0.08)

Constant 15.20*** 17.00*** 19.17*** 18.39*** 9.34 15.01

(4.02) (4.43) (1.93) (1.94) (12.26) (30.11)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table 3.13 – Second stage results and first stage tests for different instrument 

combinations. 

 

Summary of the different considered combinations of instruments. The first column show the combination to 

which the others refer, the second indicates which outage measures is considered, the third shows the value and 

significance of coefficients  for firms without a generator, the fourth presents the Wooldridge Score Test, the fifth  

for the Stock-Yogo F-test, the sixtth for the Kleibergen-Paap Wald Test, the seventh for the Anderson-Rubin Wald 

Chi² Test and the eighth for the Conditional Likelihood Ratio Test.  

 

  

Instrument Combination Outage Measure Coefficient W S T S-Y K-P W A-R C CLR

Anomaly - S.D. Number -1.36*** 9.34*** 9.98 20.83*** 12.04*** 12.04***

Hours -0.98*** 10.22*** 6.37 13.3*** 12.04*** 12.03***

Positive - Negative Number -1.43*** 14.97*** 8.61 54.03*** 20.86*** 17.17***

Hours -1.05*** 14.79*** 4.39 27.52*** 20.86*** 18.46***

Weak Positive - Negative Number -1.28*** 8.01*** 4.91 30.78*** 24.57*** 19.16***

Hours -0.43* 2.71 4.14 26.02*** 24.57*** 6.83**

Strong Positive - Negative Number -1.58*** 5.14** 4.96 31.1*** 43.29*** 24.38***

Hours -0.47 0.85 0.73 4.6 9.44 1.96

Index (Positive - Negative) Number -1.55*** 11.87*** 5.26 10.99*** 15.88*** 15.07***

Hours -0.95*** 12.37*** 8.03 16.76*** 15.88*** 13.76***

Weak Index (Positive - Negative) Number -1.24* 4.94** 3.25 6.78** 7.4** 7.4**

Hours -0.69* 5.34** 3.18 6.65** 7.4** 7.14**

Strong Index (Postive -Negative) Number 0.07 0.01 0.38 0.8 0.01 0

Hours 0.08 0.08 0.21 0.45 0.01 0

Strong - Weak Index (Positive - Negative) Number -1.38*** 12.99*** 3.12 13.04** 18.91*** 17.81***

Hours -0.76** 7.69*** 2.79 11.65** 18.91*** 15.32***
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Table 3.14 – 2SLS regression, manufacturing dummy, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test and the Anderson-Rubin Wald Chi² Test. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.53 -1.29*** -30.39

(1.34) (0.41) (448.51)

Hours of PO -1.24 -0.87*** -1.94

(4.27) (0.34) (3.53)

small -1.45*** -1.45*** -1.44*** -1.47*** -0.74 -1.20***

(0.14) (0.14) (0.21) (0.21) (8.06) (0.23)

large 1.18*** 0.96 1.42*** 1.31*** 2.26 0.51

(0.20) (0.65) (0.24) (0.25) (20.95) (0.72)

very large 1.82*** 1.89*** 1.30** 1.29* 1.63 1.86***

(0.29) (0.47) (0.49) (0.56) (6.18) (0.40)

exporter 0.58** 0.58* 0.45*** 0.47** -2.33 0.61*

(0.20) (0.25) (0.13) (0.17) (42.98) (0.26)

Credit 0.58*** 0.65** 0.67*** 0.73*** -0.66 0.47*

(0.09) (0.24) (0.11) (0.12) (15.58) (0.21)

Share 0.41** 0.32 0.44** 0.52** 0.48 -0.01

(0.14) (0.42) (0.16) (0.18) (4.49) (0.51)

Foreig ownership 1.01*** 0.88* 0.59* 0.44 2.90 0.93***

(0.13) (0.44) (0.24) (0.26) (27.78) (0.22)

Firm age 0.36*** 0.43 0.25*** 0.33*** -1.52 0.45***

(0.05) (0.23) (0.05) (0.07) (29.59) (0.12)

Manuf dummy -0.18 -0.09 -0.01 0.02 -0.73 -0.12

(0.09) (0.31) (0.17) (0.16) (7.91) (0.23)

Constant 15.82** 20.68 18.87*** 18.44*** 141.81 24.94

(5.44) (24.18) (1.57) (1.68) (1894.17) (20.99)

Number of obs. 5752 5752 2277 2277 2698 2698

Yearly Mean Anomaly -0.83* -0.35 -2.29*** -3.4*** 0.05 0.76

Wooldridge Score Test 0.09 0.11 7.24*** 7.77*** 0.44 0.42

F-Statistic (Stock - Yogo) 2.84 0.17 22.04 18.18 0 0.61

Kleibergen-Paap Wald statistic 2.8 0.17 22.67*** 18.7*** 0 0.62

Anderson-Rubin Wald Chi² 0.13 0.13 8.56*** 8.56*** 0.44 0.44
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Table 3.15 – 2SLS regression, manufacturing dummy, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.09 -1.23*** 1.03

(0.74) (0.42) (1.82)

Hours of PO -0.29 -0.82** 0.27

(0.52) (0.34) (1.10)

small -1.45*** -1.45*** -1.45*** -1.47*** -1.31*** -1.30***

(0.14) (0.14) (0.21) (0.20) (0.17) (0.18)

large 1.15*** 1.10*** 1.41*** 1.31*** 0.79*** 0.88***

(0.18) (0.17) (0.23) (0.25) (0.21) (0.25)

very large 1.79*** 1.81*** 1.29** 1.28* 2.00*** 2.01***

(0.27) (0.27) (0.49) (0.56) (0.21) (0.23)

exporter 0.63*** 0.62*** 0.45*** 0.47** 0.67* 0.56**

(0.15) (0.13) (0.13) (0.17) (0.28) (0.20)

Credit 0.59*** 0.60*** 0.67*** 0.73*** 0.44** 0.40***

(0.09) (0.09) (0.11) (0.12) (0.15) (0.11)

Share 0.43*** 0.41*** 0.45** 0.52** 0.20 0.24

(0.12) (0.12) (0.16) (0.18) (0.18) (0.13)

Foreign ownership 1.00*** 0.98*** 0.60** 0.46 0.95*** 1.02***

(0.13) (0.15) (0.23) (0.24) (0.19) (0.14)

Firm age 0.37*** 0.39*** 0.25*** 0.32*** 0.53** 0.47***

(0.05) (0.04) (0.05) (0.07) (0.17) (0.07)

Manuf dummy -0.18 -0.16 -0.02 0.02 -0.18 -0.21

(0.09) (0.10) (0.16) (0.15) (0.12) (0.12)

Constant 14.03*** 15.31*** 18.65*** 18.16*** 9.17 11.90

(2.80) (2.81) (1.62) (1.75) (7.51) (6.40)

Number of obs. 5752 5752 2277 2277 2698 2698

Strong Negative Anomaly Index 0.12*** 0.14** 0.02 -0.02 0.16*** 0.22***

Strong Positive Anomaly Index -0.01 0.02 -0.06** -0.09** 0.02 0.06

Weak Negative Anomaly Index -0.16** -0.15 -0.3*** -0.47*** -0.05 -0.02

Wooldridge Score Test 0.01 0.26 10.35*** 14.17*** 0.4 0.08

F-Statistic (Stock - Yogo) 7.13 1.86 6.12 4.2 4.41 3.2

Kleibergen-Paap Wald statistic 21.78*** 5.76 18.92*** 12.97*** 13.59*** 9.86**

Anderson-Rubin Wald Chi² 5.12 5.12 20.79*** 20.79*** 1.99 1.99

Conditional Likelihood Ratio 3.7* 4.48* 20.19*** 20.36*** 0.05 0.45
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Table 3.16 – 2SLS regression, operational capacity, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-

test, the Kleibergen-Paap Wald Test and the Anderson-Rubin Wald Chi² Test. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.44 -1.32*** 33.69

(1.46) (0.43) (462.37)

Hours of PO -0.95 -0.94*** -5.85

(3.92) (0.36) (19.51)

small -1.35*** -1.36*** -1.33*** -1.35*** -1.72 -1.17***

(0.15) (0.15) (0.22) (0.21) (7.43) (0.34)

large 1.08*** 0.90 1.40*** 1.32*** -0.43 -0.43

(0.20) (0.67) (0.24) (0.26) (16.47) (4.11)

very large 1.81*** 1.85*** 1.39* 1.45* 2.44 1.59

(0.29) (0.39) (0.55) (0.63) (5.74) (1.79)

exporter 0.63** 0.66*** 0.45** 0.52** 3.42 0.81

(0.22) (0.17) (0.14) (0.18) (38.62) (0.91)

Credit 0.53*** 0.57*** 0.57*** 0.61*** 1.57 0.72

(0.09) (0.17) (0.12) (0.13) (16.27) (1.19)

Share 0.36** 0.31 0.36* 0.50** -1.21 -0.43

(0.12) (0.27) (0.15) (0.18) (18.52) (2.14)

Foreign ownership 0.95*** 0.83 0.55* 0.40 1.27 0.55

(0.16) (0.61) (0.25) (0.29) (5.07) (1.26)

Firm age 0.38*** 0.45 0.27*** 0.36*** 2.79 0.47

(0.06) (0.26) (0.06) (0.07) (31.69) (0.27)

Constant 15.24** 18.67 19.05*** 18.70*** -121.07 45.35

(5.59) (21.21) (1.61) (1.73) (1844.15) (106.95)

Number of obs. 5048 5048 2116 2116 2407 2407

Yearly Main Anomaly -0.73* -0.34 -2.17*** -3.06*** -0.05 0.28

Wooldridge Score Test 0.05 0.07 16.73*** 9.5*** 0.5 0.49

F-Statistic (Stock - Yogo) 3.07 0.17 14.97 9.19 0.01 0.09

Kleibergen-Paap Wald statistic 3.15* 0.17 15.61*** 9.59*** 0.01 0.1

Anderson-Rubin Wald Chi² 0.08 0.08 11.05*** 11.05*** 0.51 0.51



271 
 

Table 3.17 – 2SLS regression, operational capacity, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.63 -1.53*** 2.01

(0.90) (0.41) (2.73)

Hours of PO -0.47 -1.01** 0.87

(0.55) (0.35) (1.63)

small -1.35*** -1.36*** -1.32*** -1.35*** -1.23*** -1.20***

(0.15) (0.15) (0.23) (0.21) (0.21) (0.22)

large 1.09*** 0.98*** 1.42*** 1.32*** 0.67** 0.91**

(0.19) (0.19) (0.24) (0.26) (0.24) (0.34)

very large 1.82*** 1.82*** 1.42** 1.47* 2.06*** 2.11***

(0.28) (0.28) (0.54) (0.64) (0.25) (0.29)

exporter 0.61*** 0.67*** 0.43** 0.52** 0.77* 0.58*

(0.17) (0.15) (0.15) (0.19) (0.37) (0.26)

Credit 0.53*** 0.56*** 0.57*** 0.61*** 0.47* 0.36*

(0.10) (0.09) (0.12) (0.13) (0.19) (0.16)

Share 0.35** 0.34** 0.34* 0.50** 0.06 0.23

(0.11) (0.13) (0.15) (0.18) (0.29) (0.17)

Foreig ownership 0.94*** 0.90*** 0.52* 0.37 0.95*** 0.98***

(0.14) (0.16) (0.25) (0.29) (0.21) (0.19)

Firm age 0.37*** 0.41*** 0.27*** 0.37*** 0.60* 0.46***

(0.06) (0.05) (0.06) (0.07) (0.25) (0.08)

Constant 15.97*** 16.03*** 19.85*** 19.07*** 5.38 8.63

(3.20) (2.76) (1.61) (1.78) (10.66) (8.66)

Number of obs. 5048 5048 2116 2116 2407 2407

Strong Negative Anomaly Index 0.05 0.09 -0.05 -0.08 0.09** 0.14**

Strong Positive Anomaly Index -0.04* -0.01 -0.09*** -0.11** -0.01 0.02

Weak Negative Anomaly Index -0.22*** -0.27** -0.36*** -0.52*** -0.11 -0.15

Wooldridge Score Test 0.38 0.75 16.15*** 16.15*** 0.6 0.29

F-Statistic (Stock - Yogo) 7.1 2.64 8.8 5.8 4.29 1.69

Kleibergen-Paap Wald statistic 21.82*** 8.11** 27.57*** 18.17**** 13.38*** 5.26

Anderson-Rubin Wald Chi² 3.57 3.57 21.26*** 21.26*** 1.28 1.28

Conditional Likelihood Ratio 1.71 1.7 15.65*** 16.31*** 0.04 0.18



272 
 

Table 3.18 – 2SLS regression, 100 and 200 km radius, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regre ssions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test and the Anderson-Rubin Wald Chi² Test. ***=significant at the 1% level; 

**=significant at the 5% level; *=s ignificant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -5.83 -1.75** 3.01

(5.92) (0.60) (5.67)

Hours of PO 4.66 -1.81* 1.49

(7.99) (1.09) (2.23)

small -1.33*** -1.27*** -1.32*** -1.30*** -1.22*** -1.18***

(0.19) (0.35) (0.23) (0.23) (0.24) (0.26)

large 1.34** 1.85 1.46*** 1.45*** 0.63* 1.04*

(0.45) (1.43) (0.25) (0.33) (0.31) (0.49)

very large 2.09*** 1.30 1.33* 1.74* 2.04*** 2.14***

(0.54) (1.12) (0.57) (0.88) (0.30) (0.38)

exporter 0.09 0.93 0.38* 0.40 0.97 0.69*

(0.73) (0.51) (0.17) (0.30) (0.56) (0.28)

Credit 0.48 0.35 0.58*** 0.70*** 0.51* 0.33

(0.27) (0.49) (0.13) (0.17) (0.25) (0.24)

Share 0.23 0.64 0.37* 0.58* 0.00 0.28

(0.30) (0.60) (0.15) (0.24) (0.39) (0.30)

Foreign ownership 0.72* 1.67 0.44 0.01 0.94*** 1.03***

(0.31) (1.21) (0.24) (0.53) (0.26) (0.23)

Firm age 0.27 0.09 0.27*** 0.45** 0.69 0.47***

(0.19) (0.54) (0.06) (0.14) (0.45) (0.10)

Constant 36.49 -12.05 20.63*** 22.93*** 1.35 5.29

(23.51) (43.77) (2.32) (5.34) (22.90) (12.25)

Number of obs. 4945 4945 2065 2065 2367 2367

Yearly Main Anomaly -0.34 0.42 -1.77*** -1.72 0.54 1.09

Wooldridge Score Test 2.74 2.86* 9.59*** 10.07*** 0.66 0.64

F-Statistic (Stock - Yogo) 0.82 0.45 8.52 2.58 1.15 2.51

Kleibergen-Paap Wald statistic 0.84 0.46 8.91*** 2.7 1.19 2.61

Anderson-Rubin Wald Chi² 2.86* 2.86* 11.48*** 11.48*** 0.63 0.63
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Table 3.19 – 2SLS regression, 100 and 200 km radius, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.93 -1.26** -0.17

(0.72) (0.55) (1.24)

Hours of PO -0.32 -0.73* -0.18

(0.57) (0.42) (0.89)

small -1.34*** -1.35*** -1.33*** -1.34*** -1.19*** -1.19***

(0.15) (0.15) (0.22) (0.21) (0.19) (0.19)

large 1.10*** 1.00*** 1.42*** 1.37*** 0.74*** 0.70**

(0.20) (0.19) (0.24) (0.25) (0.22) (0.27)

very large 1.79*** 1.77*** 1.25* 1.32 2.01*** 1.99***

(0.29) (0.30) (0.58) (0.68) (0.22) (0.22)

exporter 0.64*** 0.73*** 0.43** 0.50** 0.70** 0.72***

(0.16) (0.14) (0.15) (0.16) (0.22) (0.19)

Credit 0.55*** 0.58*** 0.58*** 0.63*** 0.41*** 0.43***

(0.10) (0.10) (0.12) (0.12) (0.13) (0.13)

Share 0.34** 0.34* 0.39** 0.49** 0.14 0.11

(0.13) (0.14) (0.15) (0.17) (0.16) (0.18)

Foreign ownership 0.94*** 0.94*** 0.53* 0.46 0.95*** 0.94***

(0.15) (0.19) (0.26) (0.31) (0.13) (0.15)

Firm age 0.36*** 0.40*** 0.27*** 0.35*** 0.45** 0.46***

(0.05) (0.06) (0.06) (0.07) (0.14) (0.09)

Constant 17.16*** 15.25*** 18.81*** 17.71*** 14.08** 14.40**

(3.15) (3.39) (2.12) (2.09) (5.27) (5.17)

Number of obs. 4945 4945 2065 2065 2367 2367

Strong Negative Anomaly Index 0.13*** 0.15* 0.04 0.03 0.16*** 0.19**

Strong Positive Anomaly Index 0.03 0.06** 0 0.03 0.04** 0.06**

Weak Negative Anomaly Index -0.08 -0.04 -0.16* -0.14 0 -0.02

Wooldridge Score Test 1.27 0.23 7.74*** 3.87* 0.01 0.03

F-Statistic (Stock - Yogo) 4.15 3.1 3.22 1.47 4.06 4.14

Kleibergen-Paap Wald statistic 12.78*** 9.56** 10.11** 4.6 12.69*** 12.92***

Anderson-Rubin Wald Chi² 10.9** 10.9** 10** 10** 6.85* 6.85*

Conditional Likelihood Ratio 6.92** 4.37** 8.81*** 8.07** 1.75 1.1
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Table 3.20 – 2SLS regression, 100 km radius, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test and the Anderson-Rubin Wald Chi² Test. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -2.83 -1.22 -3.74

(4.29) (0.76) (25.43)

Hours of PO -3.04 -0.67 -0.64

(11.84) (0.43) (3.12)

small -1.46*** -1.39* -1.49*** -1.49*** -1.12 -1.29***

(0.17) (0.62) (0.25) (0.23) (1.76) (0.36)

large 1.46** 0.78 1.49*** 1.38*** 1.31 0.81*

(0.47) (1.62) (0.26) (0.25) (2.93) (0.46)

very large 2.18*** 2.17* 1.75*** 1.83** 2.26* 2.02***

(0.39) (0.86) (0.51) (0.62) (1.18) (0.45)

exporter 0.32 0.67* 0.42** 0.53** 0.30 0.65*

(0.52) (0.33) (0.20) (0.19) (2.02) (0.34)

Credit 0.49** 0.78 0.63*** 0.70*** 0.13 0.37

(0.17) (1.05) (0.12) (0.13) (1.26) (0.27)

Share 0.55** 0.59 0.51*** 0.59** 0.72 0.30

(0.21) (0.64) (0.16) (0.19) (3.08) (0.20)

Foreig ownership 0.81** 0.51 0.57** 0.52* 0.96*** 0.96***

(0.25) (1.79) (0.27) (0.29) (0.28) (0.20)

Firm age 0.31*** 0.53 0.28*** 0.36*** 0.18 0.37***

(0.09) (0.77) (0.06) (0.08) (1.29) (0.07)

Constant 28.06 34.40 20.44*** 19.29*** 32.21 19.90

(18.00) (70.89) (3.69) (3.04) (109.51) (18.59)

Number of obs. 3777 3777 1722 1722 1616 1616

Yearly Mean Anomaly -0.22 -0.2 -0.89* -1.62** 0.09 0.51

Wooldridge Score Test 0.9 0.89 1.96 2.16 0.83 0.04

F-Statistic (Stock - Yogo) 0.32 0.08 3.17 4.65 0.05 0.34

Kleibergen-Paap Wald statistic 0.33 0.08 3.34* 4.91** 0.05 0.55

Anderson-Rubin Wald Chi² 0.94 0.94 2.57 2.57 0.05 0.05
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Table 3.21 – 2SLS regression, 100 km radius, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.97* -1.00** -0.01

(0.53) (0.34) (0.95)

Hours of PO -0.08 -0.25 -0.04

(0.29) (0.23) (0.39)

small -1.51*** -1.54*** -1.49*** -1.51*** -1.36*** -1.36***

(0.14) (0.13) (0.24) (0.23) (0.16) (0.15)

large 1.27*** 1.16*** 1.47*** 1.37*** 0.89*** 0.88***

(0.17) (0.16) (0.23) (0.22) (0.22) (0.19)

very large 2.07*** 2.02*** 1.73*** 1.73*** 2.10*** 2.09***

(0.23) (0.21) (0.49) (0.49) (0.21) (0.20)

exporter 0.53*** 0.64*** 0.45** 0.57*** 0.60*** 0.60***

(0.13) (0.14) (0.16) (0.14) (0.22) (0.20)

Credit 0.51*** 0.52*** 0.63*** 0.65*** 0.31** 0.32**

(0.11) (0.10) (0.11) (0.11) (0.13) (0.13)

Share 0.48*** 0.44*** 0.52** 0.57*** 0.27 0.27**

(0.09) (0.10) (0.16) (0.17) (0.17) (0.12)

Foreig ownership 0.93*** 0.98*** 0.61* 0.69** 0.98*** 0.98***

(0.16) (0.18) (0.27) (0.28) (0.14) (0.15)

Firm age 0.33*** 0.34*** 0.28*** 0.31*** 0.37*** 0.37***

(0.04) (0.04) (0.06) (0.06) (0.09) (0.06)

Constant 20.27*** 16.70*** 19.56*** 16.96*** 16.14*** 16.36***

(2.58) (2.17) (2.56) (2.40) (4.35) (2.66)

Number of obs. 3777 3777 1722 1722 1616 1616

Strong Negative Anomaly Index 0.16*** 0.17*** 0.17*** 0.12* 0.08* 0.18***

Strong Positive Anomaly Index 0.04* 0.09*** 0.02 0.06 0.05** 0.09***

Weak Negative Anomaly Index -0.07 -0.11 -0.13* -0.16 0.02 -0.12

Wooldridge Score Test 2.26 0.02 3.63* 0.62 0.01 0.01

F-Statistic (Stock - Yogo) 7.56 7.56 10.28 6.04 2.08 6.7

Kleibergen-Paap Wald statistic 23.48*** 23.49*** 32.63*** 16.88*** 6.6* 21.25***

Anderson-Rubin Wald Chi² 19.25*** 19.25*** 16.88*** 19.18*** 12.93*** 12.93***

Conditional Likelihood Ratio 14.89*** 0.34 4.03** 0.44 6.52** 0.4
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Table 3.22 – 2SLS regression, 200 km radius, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regre ssions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -8.44 -1.78** 2.97

(15.91) (0.72) (5.83)

Hours of PO -6.09 -1.50 3.51

(14.69) (0.92) (7.39)

small -1.45*** -1.46*** -1.32*** -1.31*** -1.16*** -1.16**

(0.40) (0.40) (0.23) (0.23) (0.24) (0.37)

large 1.70 0.43 1.44*** 1.46*** 0.56 1.31

(1.21) (1.65) (0.26) (0.31) (0.44) (1.31)

very large 2.37* 2.58 1.29** 1.66* 1.88*** 2.05***

(1.28) (2.14) (0.59) (0.85) (0.30) (0.52)

exporter -0.32 0.53 0.32* 0.41 1.05 0.70*

(1.96) (0.60) (0.17) (0.25) (0.74) (0.42)

Credit 0.42 0.60* 0.53*** 0.57*** 0.48* 0.28

(0.40) (0.36) (0.13) (0.15) (0.26) (0.40)

Share -0.03 -0.10 0.37** 0.55** 0.14 0.56

(0.91) (1.48) (0.16) (0.21) (0.25) (0.95)

Foreig ownership 0.52 -0.00 0.40 0.11 0.99*** 1.21*

(0.77) (2.36) (0.24) (0.44) (0.29) (0.66)

Firm age 0.12 0.66 0.26*** 0.40*** 0.69 0.47**

(0.54) (0.71) (0.06) (0.11) (0.49) (0.16)

Constant 47.14 47.18 20.72*** 21.44*** 1.30 -6.25

(63.73) (81.52) (2.76) (4.54) (23.71) (41.30)

Number of obs. 5234 5234 2081 2081 2440 2440

Yearly Mean Anomaly -0.23 -0.32 -1.62** -1.92* 0.53 0.45

Wooldridge Score Test 1.74 1.72 7.17*** 7.29*** 0.6 0.56

F-Statistic (Stock - Yogo) 0.23 0.19 6.02 2.85 1.09 0.45

Kleibergen-Paap Wald statistic 0.23 0.2 6.29** 2.98* 1.13 0.47

Anderson-Rubin Wald Chi² 1.79 1.79 8.45*** 8.45*** 0.57 0.45
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Table 3.23 – 2SLS regression, 200 km radius, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value the Wooldridge Score Test, for the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test and the Anderson-Rubin Wald Chi² Test. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.94 -1.24** -0.32

(0.67) (0.51) (1.08)

Hours of PO -0.68 -0.71* -0.46

(0.56) (0.39) (0.83)

small -1.35*** -1.35*** -1.34*** -1.34*** -1.15*** -1.15***

(0.15) (0.14) (0.22) (0.21) (0.19) (0.18)

large 1.15*** 1.01*** 1.40*** 1.37*** 0.77*** 0.68***

(0.20) (0.19) (0.25) (0.26) (0.23) (0.25)

very large 1.80*** 1.82*** 1.20** 1.31 1.96*** 1.94***

(0.30) (0.31) (0.60) (0.70) (0.24) (0.22)

exporter 0.58*** 0.67*** 0.38** 0.45** 0.66*** 0.70***

(0.16) (0.14) (0.15) (0.17) (0.23) (0.18)

Credit 0.51*** 0.53*** 0.54*** 0.57*** 0.37*** 0.39***

(0.09) (0.09) (0.12) (0.11) (0.12) (0.11)

Share 0.36*** 0.36** 0.41*** 0.52** 0.15 0.10

(0.13) (0.15) (0.15) (0.17) (0.15) (0.19)

Foreig ownership 0.89*** 0.83*** 0.49* 0.42 0.90*** 0.87***

(0.15) (0.18) (0.26) (0.29) (0.14) (0.18)

Firm age 0.35*** 0.41*** 0.26*** 0.33*** 0.43*** 0.45***

(0.06) (0.06) (0.06) (0.07) (0.13) (0.09)

Constant 17.16*** 17.18*** 18.70*** 17.57*** 14.58** 15.83**

(2.99) (3.39) (2.00) (1.99) (4.69) (4.96)

Number of obs. 5234 5234 2081 2081 2440 2440

Strong Negative Anomaly Index 0.14*** 0.16* 0.05 -0.01 0.19*** 0.24**

Strong Positive Anomaly Index 0.04* 0.05* 0.01 0.03 0.04*** 0.06**

Weak Negative Anomaly Index -0.07 -0.08 -0.14* -0.16 -0.01 -0.08

Wooldridge Score Test 1.5 1.41 8.56*** 3.83* 0.04 0.26

F-Statistic (Stock - Yogo) 5.58 3.01 10.34** 1.57 7.67 5.09

Kleibergen-Paap Wald statistic 17.16*** 9.26** 10.91** 4.93 23.94*** 15.9***

Anderson-Rubin Wald Chi² 9.86** 9.86** 3.29 3.48** 6.86* 6.86*

Conditional Likelihood Ratio 6.97** 7.02** 9.71*** 8.3*** 2.11 2.69
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Table 3.24 – 2SLS regression, average city sale, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value the Wooldridge Score Test, for the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO 0.71 -0.83** -39.41

(1.26) (0.40) (563.53)

Hours of PO 1.53 -0.53* -3.64

(4.19) (0.27) (6.30)

small -1.29*** -1.26*** -1.32*** -1.33*** -0.51 -1.06***

(0.16) (0.19) (0.21) (0.20) (8.00) (0.22)

large 1.07*** 1.36 1.37*** 1.32*** 2.15 0.07

(0.16) (0.75) (0.22) (0.23) (19.19) (1.45)

very large 1.75*** 1.68** 1.26* 1.27* 1.60 1.80*

(0.33) (0.53) (0.57) (0.62) (8.18) (0.75)

exporter 0.72*** 0.66** 0.48*** 0.53*** -2.70 0.70

(0.21) (0.21) (0.13) (0.14) (47.07) (0.45)

Credit 0.49*** 0.43* 0.54*** 0.56*** -1.01 0.51

(0.08) (0.17) (0.11) (0.11) (18.86) (0.49)

Share 0.40** 0.48 0.35** 0.44** 1.78 -0.13

(0.14) (0.37) (0.14) (0.15) (22.50) (0.85)

Foreig ownership 0.98*** 1.18 0.64** 0.57* 0.49 0.63

(0.16) (0.67) (0.24) (0.25) (5.89) (0.47)

Firm age 0.36*** 0.25 0.26*** 0.31*** -2.30 0.40*

(0.05) (0.28) (0.05) (0.06) (38.91) (0.18)

City Average Sale 0.79*** 0.77*** 0.44*** 0.51*** 0.49 0.86***

(0.13) (0.12) (0.11) (0.10) (5.42) (0.23)

Constant -0.61 -5.89 11.14*** 9.56*** 163.59 20.78

(6.44) (23.77) (2.82) (2.34) (2326.01) (35.35)

Number of obs. 5048 5048 2116 2116 2407 2407

Yearly Main Anomaly -0.69 -0.32 -2.07*** -3.28*** 0.05 0.54

Wooldridge Score Test 0.53 0.46 3.73* 4.06** 5.36** 5.14**

F-Statistic (Stock - Yogo) 2.25 0.14 17.7 11.51 0.01 0.36

Kleibergen-Paap Wald statistic 2.31 0.15 18.48*** 12.01*** 0 0.37

Anderson-Rubin Wald Chi² 0.47 0.47 5.03** 5.03** 5.42** 5.42**
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Table 3.25– 2SLS regression, average city sale, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.42 -0.75** -0.75

(0.38) (0.36) (0.68)

Hours of PO -0.31 -0.41* -0.73

(0.27) (0.24) (0.61)

small -1.28*** -1.29*** -1.32*** -1.33*** -1.07*** -1.08***

(0.15) (0.15) (0.21) (0.20) (0.18) (0.17)

large 1.12*** 1.05*** 1.36*** 1.32*** 0.82*** 0.65**

(0.17) (0.16) (0.22) (0.22) (0.21) (0.23)

very large 1.81*** 1.80*** 1.24* 1.23* 2.07*** 2.03***

(0.29) (0.29) (0.58) (0.62) (0.23) (0.21)

exporter 0.60*** 0.64*** 0.49*** 0.53*** 0.51* 0.60**

(0.15) (0.15) (0.12) (0.13) (0.21) (0.21)

Credit 0.47*** 0.49*** 0.54*** 0.55*** 0.29** 0.36**

(0.09) (0.09) (0.11) (0.11) (0.11) (0.12)

Share 0.37*** 0.36*** 0.36** 0.43** 0.25* 0.15

(0.09) (0.10) (0.13) (0.15) (0.11) (0.14)

Foreig ownership 0.93*** 0.90*** 0.66** 0.62* 0.85*** 0.81***

(0.13) (0.14) (0.24) (0.25) (0.11) (0.14)

Firm age 0.34*** 0.37*** 0.26*** 0.30*** 0.34*** 0.40***

(0.05) (0.05) (0.05) (0.06) (0.09) (0.08)

City Average Sale 0.73*** 0.75*** 0.45*** 0.52*** 0.84*** 0.85***

(0.11) (0.10) (0.11) (0.09) (0.11) (0.11)

Constant 4.73 4.49* 10.69*** 8.86*** 4.17 5.06

(2.56) (2.19) (2.60) (2.13) (3.29) (3.59)

Number of obs. 5048 5048 2116 2116 2407 2407

Strong Negative Anomaly Index 0.12** 0.15** 0.01 -0.02 0.16*** 0.21**

Strong Positive Anomaly Index 0 0.02 -0.05** -0.09* 0.02 0.06

Weak Negative Anomaly Index -0.12* -0.17 -0.24*** -0.44*** -0.03 -0.04

Wooldridge Score Test 0.84 1.01 2.71 2.41 1.03 1.78

F-Statistic (Stock - Yogo) 4.62 2.35 3.04 2.96 3.91 2.87

Kleibergen-Paap Wald statistic 14.21*** 7.23* 9.53** 9.28** 12.21*** 8.95**

Anderson-Rubin Wald Chi² 1.35 1.35 4.86 4.86 2.55 2.55

Conditional Likelihood Ratio 0.94 1.12 3.95* 2.93 0.56 0.99
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Table 3.26 – 2SLS, long term anomaly, single instrument. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.60 -1.31*** -1.40

(2.82) (0.50) (3.58)

Hours of PO 18.03 -0.85** -0.73

(396.10) (0.37) (2.24)

small -1.33*** -1.17 -1.33*** -1.36*** -1.18*** -1.20***

(0.16) (4.11) (0.22) (0.21) (0.19) (0.17)

large 1.13*** 4.25 1.40*** 1.32*** 0.77** 0.58

(0.25) (70.23) (0.24) (0.25) (0.26) (0.53)

very large 1.86*** 0.72 1.39* 1.43* 2.00*** 1.96***

(0.31) (23.54) (0.55) (0.63) (0.29) (0.31)

exporter 0.52 0.74 0.44** 0.52** 0.52 0.65**

(0.31) (2.18) (0.14) (0.17) (0.31) (0.24)

Credit 0.52*** -0.07 0.56*** 0.60*** 0.36 0.44**

(0.11) (13.66) (0.12) (0.12) (0.20) (0.15)

Share 0.34* 1.38 0.35* 0.48** 0.22 0.09

(0.14) (21.89) (0.15) (0.17) (0.26) (0.23)

Foreig ownership 0.86*** 4.01 0.56* 0.45 0.87*** 0.85***

(0.22) (66.93) (0.25) (0.29) (0.14) (0.21)

Firm age 0.37*** -0.94 0.27*** 0.34*** 0.39 0.48***

(0.06) (29.16) (0.06) (0.07) (0.26) (0.09)

Long term MA 2.41E+07 -2.06E+08 -3.42E+06 -1.01E+07 3.57E+07 2.77E+07

(4.04E+07) (4.62E+09) (9.82E+06) (1.13E+07) (4.71E+07) (3.38E+07)

Constant 20.11 -87.56 18.99*** 18.14*** 19.42 17.72

(11.66) (2221.29) (2.03) (1.97) (14.94) (12.68)

Number of obs. 5048 5048 2116 2116 2407 2407

Yearly Main Anomaly -0.4 0.04 -2.15*** -3.32*** 0.64 1.22

Wooldridge Score Test 0.05 0.08 10.21*** 10.36*** 0.47 0.22

F-Statistic (Stock - Yogo) 2.3 0.15 20.28 13.95 0 0.36

Kleibergen-Paap Wald statistic 2.36 0.16 21.16*** 14.56*** 0 0.37

Anderson-Rubin Wald Chi² 0.21 0.21 10.59*** 10.59*** 0.11 0.11
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Table 3.27 – 2SLS, long term anomaly, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependen t variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4) (5) (6)

All All No generatorNo generatorGenerator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.31** -1.26*** -3.41

(0.65) (0.47) (2.22)

Hours of PO -1.09 -0.76 -2.39

(0.85) (0.49) (2.14)

small -1.33*** -1.35*** -1.32*** -1.34*** -1.11*** -1.15***

(0.15) (0.15) (0.22) (0.21) (0.21) (0.18)

large 1.14*** 0.89*** 1.39*** 1.30*** 0.90** 0.30

(0.20) (0.25) (0.23) (0.24) (0.35) (0.58)

very large 1.87*** 1.88*** 1.38* 1.40* 2.04*** 1.90***

(0.27) (0.29) (0.54) (0.61) (0.39) (0.37)

exporter 0.54*** 0.67*** 0.45** 0.53** 0.33 0.71*

(0.15) (0.16) (0.14) (0.17) (0.27) (0.28)

Credit 0.51*** 0.56*** 0.57*** 0.60*** 0.23 0.47*

(0.10) (0.11) (0.12) (0.12) (0.20) (0.24)

Share 0.33** 0.30 0.35* 0.47** 0.32 -0.05

(0.12) (0.17) (0.15) (0.17) (0.24) (0.39)

Foreig ownership 0.88*** 0.77*** 0.56* 0.46 0.83*** 0.71*

(0.13) (0.20) (0.25) (0.31) (0.19) (0.30)

Firm age 0.37*** 0.46*** 0.28*** 0.35*** 0.21 0.45***

(0.05) (0.09) (0.06) (0.07) (0.19) (0.13)

Long term Weak N.A. Index 1.75 2.00 0.82 1.30 2.92 2.37

(1.21) (1.43) (0.63) (0.89) (2.21) (2.07)

Long term Strong N.A. Index -0.27 -0.33 -0.16 -0.28 -0.26 -0.07

(0.27) (0.34) (0.20) (0.30) (0.41) (0.37)

Long term Strong P.A. Index 0.13 0.15 0.06 0.08 0.23 0.25

(0.09) (0.11) (0.04) (0.05) (0.18) (0.21)

Constant 19.71*** 20.49*** 19.20*** 18.35*** 29.47** 28.58*

(3.07) (5.00) (1.89) (2.33) (10.19) (12.95)

Number of obs. 5048 5048 2116 2116 2407 2407

Strong Negative Anomaly Index 0.08 0.2 -0.26 -0.6* 0.16 0.36

Strong Positive Anomaly Index 0 0.04 -0.09** -0.15** 0.03 0.08

Weak Negative Anomaly Index -0.21 -0.1 -0.74** -1.4** -0.06 0.19

Wooldridge Score Test 5.74** 2.73 5.76** 4.16** 2.95* 2.33

F-Statistic (Stock - Yogo) 4.01 1.52 3.97 2.71 2.66 1.3

Kleibergen-Paap Wald statistic 12.34*** 4.67 12.44*** 8.49** 8.29* 4.06

Anderson-Rubin Wald Chi² 6.53* 6.53* 10.72*** 10.72** 4.51 4.51

Conditional Likelihood Ratio 6.39** 6.46** 10.55*** 8.3*** 3.55* 3.93*
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Table 3.28 – 2SLS, median as cutting point, multiple instruments. 

 

2SLS estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. The table also reports the value for the Wooldridge Score Test, the Stock-Yogo F-test, 

the Kleibergen-Paap Wald Test, the Anderson-Rubin Wald Chi² Test and the Conditional Likelihood Ratio Test. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.47 -1.45** 0.30

(1.11) (0.56) (2.36)

Hours of PO -0.57 -0.88** -0.47

(0.58) (0.37) (1.25)

small -1.35*** -1.36*** -1.32*** -1.35*** -1.20*** -1.19***

(0.15) (0.15) (0.23) (0.21) (0.19) (0.18)

large 1.09*** 0.96*** 1.41*** 1.32*** 0.73*** 0.64***

(0.19) (0.20) (0.24) (0.25) (0.22) (0.32)

very large 1.81*** 1.83*** 1.41*** 1.43** 2.04*** 2.00***

(0.28) (0.28) (0.54) (0.63) (0.21) (0.23)

exporter 0.62*** 0.67*** 0.43*** 0.52*** 0.63** 0.62***

(0.18) (0.15) (0.15) (0.18) (0.30) (0.21)

Credit 0.53*** 0.56*** 0.57*** 0.60*** 0.42** 0.43***

(0.10) (0.09) (0.12) (0.12) (0.17) (0.12)

Share 0.36*** 0.33** 0.35** 0.50*** 0.13 0.10

(0.11) (0.13) (0.15) (0.17) (0.23) (0.15)

Foreig ownership 0.95*** 0.88*** 0.53** 0.42 0.93*** 0.90***

(0.15) (0.17) (0.25) (0.28) (0.14) (0.16)

Firm age 0.38*** 0.42*** 0.27*** 0.35*** 0.48** 0.46***

(0.06) (0.05) (0.06) (0.07) (0.21) (0.09)

Constant 15.36*** 16.62*** 19.53*** 18.43*** 12.21 15.96*

(4.12) (3.08) (2.17) (1.84) (9.35) (6.88)

Number of obs. 5048 5048 2116 2116 2407 2407

Strong Negative Anomaly Index 0.1* 0.15* -0.03 -0.06 0.15** 0.21**

Strong Positive Anomaly Index 0.01 0.04 -0.06* -0.09* 0.03 0.08*

Weak Negative Anomaly Index -0.09 -0.11 -0.25*** -0.42*** 0.03 0.03

Wooldridge Score Test 0.12 0.95 9.38*** 10.45*** 0.03 0.13

F-Statistic (Stock - Yogo) 1.99 1.95 2.99 3.56 2.77 2.99

Kleibergen-Paap Wald statistic 6.11 6 9.4** 11.16** 8.62** 9.33**

Anderson-Rubin Wald Chi² 8.69** 8.69** 15.67*** 15.67*** 5.97 5.97

Conditional Likelihood Ratio 7.96** 8.4** 15.39*** 15.38*** 3.51* 4.84**
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Table 3.29 – Heckman selection model for generator ownership, inverse Mills ratio as 

exclusion restriction. 

 

Heckman selection model with robust standard error. The dependent variables are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

  

Number of PO 0.15*** -0.19***

(0.05) (0.07)

Hours of PO 0.05** 0.03

(0.02) (0.04)

small -0.52*** -0.50*** -0.79*** -1.69***

(0.07) (0.07) (0.25) (0.18)

large 0.30*** 0.29*** 0.53** 1.02***

(0.08) (0.08) (0.21) (0.22)

very large 0.17 0.18 1.93*** 2.17***

(0.23) (0.22) (0.30) (0.27)

exporter 0.26*** 0.23** 0.41 0.84***

(0.07) (0.07) (0.22) (0.24)

Credit 0.08 0.09 0.30** 0.51***

(0.06) (0.06) (0.13) (0.14)

Share 0.11 0.09 0.05 0.27

(0.10) (0.09) (0.15) (0.20)

Foreign ownership 0.37*** 0.36*** 0.60*** 1.31***

(0.09) (0.09) (0.20) (0.14)

Firm age 0.07** 0.09** 0.37*** 0.54***

(0.03) (0.04) (0.08) (0.09)

Constant 0.64* 0.86*** 14.85*** 12.48***

(0.28) (0.26) (0.92) (0.95)

Number of obs. 4523 4523

Censored 2116 2116

Uncensored 2407 2407

Rho -0.7*** 0.79***

Selection Equation

Generator Ownership Total Sales

Outcome Equation
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Table 3.30 – Heckman selection model for generator ownership, lagged hydrological 

indexes as exclusion restriction. 

 

 

Heckman selection model with robust standard error. The dependent variables are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

Number of PO 0.13*** 0.08

(0.04) (0.09)

Hours of PO 0.05** 0.03

(0.02) (0.04)

small -0.51*** -0.50*** -1.70*** -1.70***

(0.07) (0.07) (0.18) (0.18)

large 0.27*** 0.28*** 1.01*** 1.02***

(0.08) (0.08) (0.22) (0.22)

very large 0.18 0.18 2.16*** 2.17***

(0.22) (0.21) (0.28) (0.28)

exporter 0.25*** 0.24*** 0.84*** 0.84***

(0.07) (0.07) (0.25) (0.24)

Credit 0.09 0.08 0.51*** 0.50***

(0.06) (0.06) (0.13) (0.14)

Share 0.08 0.09 0.27 0.26

(0.09) (0.09) (0.20) (0.20)

Foreign ownership 0.36*** 0.36*** 1.30*** 1.30***

(0.09) (0.09) (0.14) (0.14)

Firm age 0.10** 0.09** 0.55*** 0.54***

(0.03) (0.03) (0.09) (0.09)

Weak neg. anomaly Index, -5 year mean 0.13 0.13

(0.14) (0.15)

Strong neg. anomaly Index, -5 year mean 0.11** 0.12**

(0.04) (0.05)

Strong pos. anomaly index, -5 year mean 0.07 0.07

(0.05) (0.05)

Constant 0.77** 1.06*** 12.30*** 12.47***

(0.33) (0.28) (1.05) (0.95)

Number of obs. 4523 4523

Censored 2116 2116

Uncensored 2407 2407

Rho 0.79*** 0.79***

Selection Equation Outcome Equation

Generator Ownership Total Sales
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Table 3.31 – Heckman selection model for generator ownership, electricity as main 

obstacle (firm-level) as exclusion restriction. 

 

Heckman selection model with robust standard error. The dependent variables  are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

Number of PO 0.13*** 0.08

(0.05) (0.11)

Hours of PO 0.04** 0.02

(0.02) (0.04)

small -0.51*** -0.50*** -1.67*** -1.67***

(0.06) (0.06) (0.22) (0.22)

large 0.28*** 0.29*** 1.03*** 1.04***

(0.11) (0.11) (0.28) (0.29)

very large 0.22 0.22 2.19*** 2.20***

(0.26) (0.26) (0.27) (0.27)

exporter 0.24*** 0.23*** 0.85** 0.84**

(0.07) (0.07) (0.28) (0.27)

Credit 0.09 0.08 0.50** 0.50**

(0.07) (0.07) (0.19) (0.19)

Share 0.10 0.10 0.27 0.26

(0.15) (0.14) (0.28) (0.28)

Foreign ownership 0.37*** 0.37*** 1.32*** 1.32***

(0.09) (0.09) (0.16) (0.16)

Firm age 0.10** 0.09** 0.54*** 0.54***

(0.04) (0.04) (0.09) (0.09)

Constrained by elec., firm level 0.16** 0.16**

(0.07) (0.06)

Constant 0.63** 0.90*** 12.36*** 12.53***

(0.23) (0.18) (0.59) (0.39)

Number of obs. 4443 4443

Censored 2086 2086

Uncensored 2357 2357

Rho 0.78*** 0.78***

Selection Equation Outcome Equation

Generator Ownership Total Sales
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Table 3.32 – Heckman selection model for generator ownership, finance as main 

obstacle (firm-level) as exclusion restriction. 

 

Heckman selection model with robust standard error. The dependent variables are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

Number of PO 0.15** -0.17***

(0.06) (0.05)

Hours of PO 0.05** -0.08*

(0.02) (0.04)

small -0.52*** -0.51*** -0.76** -0.77**

(0.06) (0.06) (0.34) (0.34)

large 0.29*** 0.31*** 0.55** 0.53*

(0.10) (0.11) (0.27) (0.28)

very large 0.21 0.23 1.89*** 1.88***

(0.26) (0.27) (0.35) (0.35)

exporter 0.27*** 0.26*** 0.41* 0.43*

(0.06) (0.06) (0.23) (0.24)

Credit 0.07 0.07 0.31** 0.32**

(0.06) (0.06) (0.13) (0.13)

Share 0.10 0.10 0.02 0.02

(0.15) (0.14) (0.15) (0.15)

Foreign ownership 0.36*** 0.36*** 0.62** 0.62**

(0.09) (0.08) (0.25) (0.25)

Firm age 0.07** 0.07** 0.36*** 0.37***

(0.03) (0.03) (0.07) (0.08)

Constrained by finance., firm-level -0.18** -0.18**

(0.07) (0.08)

Constant 0.69** 0.97*** 14.79*** 14.51***

(0.22) (0.18) (0.30) (0.33)

Number of obs. 4443 4443

Censored 2086 2086

Uncensored 2357 2357

Rho -0.7*** 0.7***

Selection Equation Outcome Equation

Generator Ownership Total Sales
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Table 3.33 – Heckman selection model for generator ownership, electricity as main 

obstacle (country-level) as exclusion restriction. 

 

Heckman selection model with robust standard error. The dependent variables are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

Number of PO 0.15** -0.19***

(0.06) (0.05)

Hours of PO 0.05** 0.03

(0.02) (0.04)

small -0.52*** -0.50*** -0.79* -1.69***

(0.06) (0.06) (0.34) (0.22)

large 0.30** 0.29** 0.53* 1.02***

(0.10) (0.11) (0.26) (0.28)

very large 0.17 0.18 1.93*** 2.17***

(0.24) (0.24) (0.34) (0.26)

exporter 0.26*** 0.23** 0.41 0.84**

(0.06) (0.07) (0.23) (0.27)

Credit 0.08 0.09 0.30* 0.51**

(0.06) (0.07) (0.13) (0.19)

Share 0.11 0.09 0.05 0.27

(0.15) (0.15) (0.15) (0.28)

Foreign ownership 0.37*** 0.36*** 0.60* 1.31***

(0.09) (0.09) (0.24) (0.16)

Firm age 0.07* 0.09* 0.37*** 0.54***

(0.03) (0.04) (0.08) (0.09)

Constrained by elec., country share 18.37*** 16.40***

(1.35) (1.07)

Constant -0.27 0.05 14.85*** 12.48***

(0.23) (0.16) (0.29) (0.39)

Number of obs. 4523 4523

Censored 2116 2116

Uncensored 2407 2407

Rho -0.7*** 0.79***

Selection Equation Outcome Equation

Generator Ownership Total Sales



288 
 

Table 3.33 – Heckman selection model for generator ownership, finance as main 

obstacle (country-level) as exclusion restriction. 

 

Heckman selection model with robust standard error. The dependent variables are a dummy equal to one if the 

firm owns a generator in the selection equation and the logarithm of total sale expressed in PPP 2005$ in the 

outcome equation, the explanatory variables of main interest are the logarithm of number of power outages per 

year and the logarithm of the hours of power outages per year. All regressions include country and industry 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

Number of PO 0.15** -0.19***

(0.06) (0.05)

Hours of PO 0.05** 0.03

(0.02) (0.04)

small -0.52*** -0.50*** -0.79* -1.69***

(0.06) (0.06) (0.34) (0.22)

large 0.30** 0.29** 0.53* 1.02***

(0.10) (0.11) (0.26) (0.28)

very large 0.17 0.18 1.93*** 2.17***

(0.24) (0.24) (0.34) (0.26)

exporter 0.26*** 0.23** 0.41 0.84**

(0.06) (0.07) (0.23) (0.27)

Credit 0.08 0.09 0.30* 0.51**

(0.06) (0.07) (0.13) (0.19)

Share 0.11 0.09 0.05 0.27

(0.15) (0.15) (0.15) (0.28)

Foreign ownership 0.37*** 0.36*** 0.60* 1.31***

(0.09) (0.09) (0.24) (0.16)

Firm age 0.07** 0.09** 0.37*** 0.54***

(0.03) (0.04) (0.08) (0.09)

Constrained by finance, country share -11.37*** -10.15***

(0.84) (0.66)

Constant 0.64** 0.86*** 14.85*** 12.48***

(0.22) (0.18) (0.29) (0.39)

Number of obs. 4523 4523

Censored 2116 2116

Uncensored 2407 2407

Rho -0.7*** 0.79***

Selection Equation Outcome Equation

Generator Ownership Total Sales
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Table A3.1 – LIML regression, manufacturing dummy, multiple instruments 

(equivalent to 3.15). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per y ear. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.09 -1.26** 1.36

(0.97) (0.44) (2.44)

Hours of PO -0.60 -0.83* 0.79

(1.22) (0.35) (3.07)

small -1.45*** -1.45*** -1.45*** -1.47*** -1.32*** -1.33***

(0.14) (0.13) (0.21) (0.20) (0.17) (0.22)

large 1.15*** 1.05*** 1.41*** 1.31*** 0.77*** 0.97

(0.18) (0.23) (0.23) (0.25) (0.23) (0.53)

very large 1.79*** 1.83*** 1.30** 1.28* 2.00*** 2.04***

(0.28) (0.29) (0.49) (0.56) (0.22) (0.32)

exporter 0.63*** 0.61*** 0.45*** 0.47** 0.70* 0.55*

(0.16) (0.15) (0.13) (0.17) (0.33) (0.23)

Credit 0.59*** 0.62*** 0.67*** 0.73*** 0.45** 0.38*

(0.09) (0.10) (0.11) (0.12) (0.17) (0.16)

Share 0.43*** 0.38** 0.44** 0.52** 0.19 0.29

(0.12) (0.14) (0.16) (0.18) (0.19) (0.31)

Foreign ownership 1.00*** 0.94*** 0.59** 0.45 0.93*** 1.04***

(0.13) (0.18) (0.23) (0.25) (0.22) (0.20)

Firm age 0.37*** 0.40*** 0.25*** 0.32*** 0.55** 0.47***

(0.06) (0.06) (0.05) (0.07) (0.20) (0.08)

Manuf dummy -0.18 -0.14 -0.01 0.02 -0.17 -0.23

(0.10) (0.13) (0.16) (0.15) (0.13) (0.17)

Constant 14.05*** 17.07* 18.77*** 18.24*** 7.75 8.82

(3.74) (6.78) (1.69) (1.80) (10.12) (18.00)

Number of obs. 5752 5752 2277 2277 2698 2698
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Table A3.2 – LIML regression, operational capacity, multiple instruments (equivalent 

to Table 3.17). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.96 -1.58*** 2.56

(1.47) (0.43) (3.43)

Hours of PO -1.27 -1.09** 2.72

(2.28) (0.40) (6.05)

small -1.34*** -1.37*** -1.32*** -1.34*** -1.24*** -1.21***

(0.15) (0.15) (0.23) (0.21) (0.22) (0.32)

large 1.11*** 0.84* 1.42*** 1.32*** 0.65* 1.28

(0.21) (0.42) (0.24) (0.27) (0.26) (1.27)

very large 1.84*** 1.87*** 1.43** 1.49* 2.07*** 2.25***

(0.28) (0.33) (0.54) (0.65) (0.27) (0.66)

exporter 0.57** 0.66*** 0.42** 0.51* 0.82 0.51

(0.21) (0.17) (0.15) (0.20) (0.43) (0.45)

Credit 0.52*** 0.58*** 0.57*** 0.61*** 0.49* 0.26

(0.11) (0.14) (0.13) (0.13) (0.22) (0.42)

Share 0.34*** 0.29 0.34* 0.51** 0.04 0.41

(0.10) (0.20) (0.16) (0.19) (0.33) (0.67)

Foreign ownership 0.93*** 0.78* 0.51* 0.34 0.95*** 1.10*

(0.15) (0.37) (0.25) (0.30) (0.24) (0.49)

Firm age 0.37*** 0.47** 0.27*** 0.37*** 0.64* 0.46***

(0.06) (0.15) (0.06) (0.08) (0.30) (0.13)

Constant 17.30** 20.42 20.02*** 19.45*** 3.17 -1.48

(5.42) (12.19) (1.69) (2.00) (13.51) (32.90)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table A3.3 – LIML regression, 100 and 200 km radius, multiple instruments 

(equivalent to Table 3.19). 

 
LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the lo garithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.33 -1.34** -0.27

(1.13) (0.62) (2.51)

Hours of PO -0.94 -1.06 -1.84

(2.08) (0.81) (14.06)

small -1.34*** -1.36*** -1.33*** -1.32*** -1.19*** -1.20***

(0.16) (0.15) (0.22) (0.22) (0.20) (0.18)

large 1.12*** 0.90* 1.43*** 1.39*** 0.75** 0.36

(0.22) (0.36) (0.24) (0.29) (0.24) (2.89)

very large 1.82*** 1.83*** 1.26* 1.45 2.01*** 1.85

(0.30) (0.38) (0.58) (0.76) (0.22) (1.25)

exporter 0.59** 0.71*** 0.42** 0.47* 0.69* 0.75*

(0.19) (0.18) (0.15) (0.21) (0.29) (0.32)

Credit 0.54*** 0.60*** 0.58*** 0.65*** 0.41** 0.53

(0.11) (0.14) (0.12) (0.13) (0.14) (0.87)

Share 0.33* 0.30 0.38** 0.52* 0.14 -0.05

(0.13) (0.20) (0.15) (0.20) (0.19) (1.39)

Foreign ownership 0.92*** 0.85* 0.52 0.32 0.95*** 0.86

(0.16) (0.38) (0.27) (0.45) (0.12) (0.75)

Firm age 0.36*** 0.44** 0.27*** 0.38*** 0.44 0.45**

(0.06) (0.14) (0.06) (0.11) (0.23) (0.14)

Constant 18.74*** 18.64 19.12*** 19.29*** 14.50 23.48

(4.73) (11.58) (2.38) (3.93) (10.35) (77.03)

Number of obs. 4945 4945 2065 2065 2367 2367
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Table A3.4 – LIML regression, 100 km radius, multiple instruments (equivalent to 

Table 3.21). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.35 -1.19** 56.07

(0.78) (0.42) (60850.23)

Hours of PO -0.21 -0.67 0.16

(1.02) (0.68) (17.26)

small -1.50*** -1.53*** -1.49*** -1.49*** -5.08 -1.38

(0.14) (0.14) (0.24) (0.23) (4029.12) (1.93)

large 1.31*** 1.15*** 1.49*** 1.38*** -5.50 0.91

(0.18) (0.18) (0.24) (0.26) (6926.86) (2.18)

very large 2.10*** 2.03*** 1.74*** 1.83** -0.26 2.12

(0.25) (0.23) (0.51) (0.65) (2556.89) (2.19)

exporter 0.49** 0.64*** 0.42* 0.53** 5.15 0.59

(0.15) (0.14) (0.17) (0.19) (4937.65) (1.45)

Credit 0.50*** 0.53*** 0.63*** 0.70*** 3.05 0.30

(0.12) (0.13) (0.12) (0.13) (2972.56) (1.38)

Share 0.49*** 0.45*** 0.51** 0.59** -6.41 0.26

(0.10) (0.12) (0.16) (0.20) (7249.82) (0.77)

Foreign ownership 0.90*** 0.96*** 0.58* 0.52 1.33 0.99

(0.16) (0.27) (0.27) (0.42) (379.67) (0.70)

Firm age 0.32*** 0.35*** 0.28*** 0.36** 3.29 0.37

(0.05) (0.07) (0.06) (0.11) (3165.37) (0.21)

Constant 21.85*** 17.45** 20.32*** 19.32*** -225.54 15.12

(3.52) (6.31) (2.76) (4.26) (262251.67) (102.43)

Number of obs. 3777 3777 1722 1722 1616 1616
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Table A3.5 – LIML regression, 200 km radius, multiple instruments (equivalent to 

Table 3.23). 

 
LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.17 -1.33** -0.47

(0.89) (0.58) (1.77)

Hours of PO -1.11 -1.01 -1.23

(1.11) (0.73) (2.65)

small -1.35*** -1.36*** -1.34*** -1.33*** -1.15*** -1.15***

(0.15) (0.14) (0.22) (0.22) (0.19) (0.17)

large 1.17*** 0.97*** 1.41*** 1.41*** 0.78** 0.56

(0.21) (0.22) (0.25) (0.29) (0.25) (0.50)

very large 1.82*** 1.88*** 1.22* 1.45 1.97*** 1.92***

(0.30) (0.35) (0.60) (0.78) (0.25) (0.25)

exporter 0.55** 0.66*** 0.37* 0.44* 0.65* 0.70***

(0.17) (0.16) (0.15) (0.20) (0.28) (0.19)

Credit 0.51*** 0.54*** 0.54*** 0.57*** 0.37** 0.42**

(0.10) (0.10) (0.12) (0.12) (0.13) (0.15)

Share 0.35* 0.32 0.40** 0.53** 0.15 0.01

(0.14) (0.18) (0.15) (0.19) (0.15) (0.38)

Foreign ownership 0.88*** 0.76** 0.48 0.30 0.90*** 0.81**

(0.15) (0.25) (0.26) (0.40) (0.15) (0.31)

Firm age 0.34*** 0.43*** 0.26*** 0.35*** 0.41* 0.44***

(0.06) (0.08) (0.06) (0.09) (0.18) (0.11)

Constant 18.12*** 19.55** 19.04*** 19.05*** 15.19* 20.13

(3.85) (6.39) (2.26) (3.60) (7.45) (15.05)

Number of obs. 5234 5234 2081 2081 2440 2440
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Table A3.6 – LIML regression, average city sale, multiple instruments (equivalent to 

Table. 3.25). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.43 -0.77** -0.81

(0.39) (0.36) (0.74)

Hours of PO -0.32 -0.42* -0.77

(0.28) (0.25) (0.65)

small -1.28*** -1.29*** -1.32*** -1.33*** -1.07*** -1.08***

(0.15) (0.15) (0.21) (0.20) (0.18) (0.17)

large 1.12*** 1.04*** 1.37*** 1.32*** 0.83*** 0.65**

(0.17) (0.16) (0.22) (0.22) (0.22) (0.24)

very large 1.81*** 1.81*** 1.25* 1.24* 2.07*** 2.02***

(0.29) (0.29) (0.58) (0.62) (0.23) (0.21)

exporter 0.60*** 0.64*** 0.48*** 0.53*** 0.51* 0.60**

(0.15) (0.15) (0.12) (0.13) (0.21) (0.21)

Credit 0.47*** 0.49*** 0.54*** 0.55*** 0.29** 0.36**

(0.09) (0.09) (0.11) (0.11) (0.11) (0.12)

Share 0.37*** 0.36*** 0.36** 0.43** 0.25* 0.15

(0.09) (0.10) (0.13) (0.15) (0.11) (0.14)

Foreign ownership 0.93*** 0.90*** 0.65** 0.61* 0.85*** 0.81***

(0.13) (0.14) (0.24) (0.25) (0.11) (0.14)

Firm age 0.34*** 0.37*** 0.26*** 0.30*** 0.34*** 0.40***

(0.05) (0.05) (0.05) (0.06) (0.09) (0.08)

City Average Sale 0.73*** 0.75*** 0.45*** 0.52*** 0.84*** 0.85***

(0.11) (0.10) (0.11) (0.09) (0.11) (0.11)

Constant 4.76 4.54* 10.77*** 8.93*** 4.41 5.25

(2.59) (2.23) (2.65) (2.18) (3.52) (3.78)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table A3.7 – LIML, long term anomaly, multiple instruments (equivalent to Table 

3.27). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -1.40* -1.27*** -4.78

(0.73) (0.48) (3.72)

Hours of PO -1.20 -0.79 -2.98

(1.00) (0.52) (2.96)

small -1.33*** -1.35*** -1.32*** -1.34*** -1.08*** -1.15***

(0.15) (0.15) (0.22) (0.21) (0.24) (0.20)

large 1.14*** 0.87** 1.39*** 1.30*** 0.96* 0.19

(0.20) (0.27) (0.23) (0.25) (0.44) (0.74)

very large 1.87*** 1.88*** 1.38* 1.41* 2.03*** 1.86***

(0.27) (0.30) (0.54) (0.61) (0.49) (0.45)

exporter 0.53*** 0.67*** 0.45** 0.53** 0.22 0.73*

(0.16) (0.17) (0.14) (0.17) (0.39) (0.33)

Credit 0.50*** 0.56*** 0.57*** 0.60*** 0.17 0.49

(0.11) (0.12) (0.12) (0.12) (0.27) (0.29)

Share 0.32** 0.29 0.35* 0.48** 0.39 -0.10

(0.12) (0.18) (0.15) (0.17) (0.33) (0.48)

Foreign ownership 0.88*** 0.76*** 0.56* 0.45 0.80** 0.66

(0.13) (0.22) (0.25) (0.31) (0.26) (0.38)

Firm age 0.37*** 0.47*** 0.28*** 0.36*** 0.12 0.45**

(0.05) (0.10) (0.06) (0.08) (0.29) (0.15)

Long term Weak N.A. Index -0.27 -0.34 -0.16 -0.29 -0.29 -0.04

(0.27) (0.34) (0.20) (0.30) (0.48) (0.42)

Long term Strong N.A. Index 0.13 0.16 0.06 0.08 0.28 0.28

(0.09) (0.12) (0.04) (0.05) (0.22) (0.25)

Long term Strong P.A. Index 1.78 2.07 0.82 1.32 3.49 2.58

(1.22) (1.48) (0.63) (0.90) (2.69) (2.33)

Constant 20.08*** 21.10*** 19.26*** 18.49*** 35.48* 32.03

(3.38) (5.81) (1.92) (2.47) (16.65) (17.83)

Number of obs. 5048 5048 2116 2116 2407 2407
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Table A3.8 – LIML, median as cutting point, multiple instruments (equivalent to Table 

3.28). 

 

LIML estimation with standard errors clustered at the city level in parenthesis. The dependent variables is the 

logarithm of total sale expressed in PPP 2005$, the explanatory variables of main interest are the logarithm of 

number of power outages per year and the logarithm of the hours of power outages per year. All regressions 

include country dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

  

(1) (2) (3) (4) (5) (6)

All All No generator No generator Generator Generator

Total Sale Total Sale Total Sale Total Sale Total Sale Total Sale

Number of PO -0.76 -1.45** 0.93

(1.93) (0.56) (6.82)

Hours of PO -0.90 -0.88** -1.62

(1.05) (0.37) (4.82)

small -1.35*** -1.36*** -1.32*** -1.35*** -1.21*** -1.19***

(0.15) (0.15) (0.23) (0.21) (0.20) (0.17)

large 1.10*** 0.91*** 1.41*** 1.32*** 0.71** 0.41

(0.22) (0.25) (0.24) (0.25) (0.32) (1.01)

very large 1.83*** 1.85*** 1.41** 1.43* 2.05*** 1.92***

(0.29) (0.29) (0.54) (0.63) (0.23) (0.45)

exporter 0.59** 0.66*** 0.43** 0.52** 0.69 0.66*

(0.24) (0.16) (0.15) (0.18) (0.61) (0.28)

Credit 0.53*** 0.57*** 0.57*** 0.61*** 0.44 0.49

(0.11) (0.11) (0.12) (0.12) (0.30) (0.28)

Share 0.35*** 0.31** 0.35** 0.50** 0.11 -0.01

(0.10) (0.15) (0.15) (0.17) (0.40) (0.46)

Foreign ownership 0.94*** 0.83*** 0.53* 0.42 0.94*** 0.82**

(0.17) (0.22) (0.25) (0.28) (0.18) (0.36)

Firm age 0.37*** 0.44*** 0.27*** 0.35*** 0.53 0.47***

(0.07) (0.07) (0.06) (0.07) (0.51) (0.11)

Constant 16.48* 18.42** 19.54*** 18.44*** 9.66 22.26

(7.30) (5.60) (2.17) (1.85) (27.17) (26.39)

Number of obs. 5048 5048 2116 2116 2407 2407
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Chapter 4 

Water availability for electricity generation 

and night lights. 
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4.1 Introduction. 

To avoid problems related to endogeneity, the analysis presented in the previous chapter 

exploited the high reliance of many Sub-Saharan African (SSA) countries on hydropower to 

construct a valid instrument for assessing how detrimental power outages are to firms. The 

hydrological measures of water available for hydroelectricity generation developed in Chapter 

2 and Chapter 3 can though also be used as a starting point to explore other interesting empirica l 

questions related to the effect of relying so heavily on a single technology to generate 

electricity. One such question is if yearly variations in hydro-power generation impact on the 

general economic activity of African countries, and to this analysis we turn in this Chapter.  

 

The question is motivated by the fact that over the last two decades there have been several 

reports of rain failures or droughts leading to a diminished hydropower production in different 

SSA countries, with some projects failing to meet expected returns on investments (Karekezi 

et al. 2009, Cole et al 2014, UNECA 2016a). For countries in which hydropower represents 

more than 60% of installed capacity, this is likely to also result in diminished economic activity. 

To investigate this issue we have though to abandon the firm data used in Chapter 1 and 3, as 

they are not collected in a timely enough manner to allow for longitudinal exploration. The 

most widely available longitudinal measure of general economic activity is GDP, but as our 

hydrological variables have been developed at the city level we would ideally look for more 

disaggregated information, which are though hard to come by for the African continent. 

 

As it has been recently demonstrated, one of the best candidates for a sub-national measure of 

economic activity in developing countries is the night light data collected by the Defense 

Meteorological Satellite Program – Operational Linescan System (DMSP OLS) and processed 
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by the National Oceanic and Atmospheric Administration (NOAA). This data has been 

collected since the 1970s by satellites circling around every location of the earth multiple time 

per days and take the form of world-wide pictures in which each pixel, representing an area 

equal to 30 arc-second (slightly less than a square kilometre at the equator), is assigned a value 

ranging from 1 to 63 depending on the intensity and frequency of the light emitted in its area.  

 

DSMP OLS data has been receiving a fair amount of attention from social scientists since it 

became available in digital format in the 1990s. The reason for this attention is easy to grasp: 

as most human activities require electricity, and most usage of electricity after the sun sets 

happen in an environment in which lighting is required, a measure of the intensity of night 

lights can give information about many interesting aspects of human behaviour. To give a few 

examples, over the last few years the DMSP OLS data has been used for applications as diverse 

as measuring urban extension, mapping nocturnal squid-fishing, connecting anthropogenic 

emissions to sea-life breeding behaviour or estimating sub-national level GDP. It is the 

definition of the data which makes them so suitable for diverse uses, as each researcher can 

focus on a specific area of the globe and aggregate the information at the necessary level, be 

that a borough, a city, a region, a state or a continent.  

 

In our specific case, the data is first aggregated at the city-level so to cover the same sample 

for which city-level instruments were developed in Chapter 3. As the urban masks availab le 

for SSA cities were constructed in the year 2000, we also explore how accounting for the 

urbanisation process who took place over the last 15 years influences the results. Furthermore, 

using the hydrological variables constructed at the country-level, the resolution of the DSMP-

OLS data allows us to explore the relationship between hydroelectric generation and economic 
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activity also at the national level. The remainder of the chapter is organized as follow: section 

2 reviews the relevant literature; section 3 introduces the data used in the study; section 4 

presents the methodology; section 5 discusses the results and section 6 concludes. 

 

 4.2 Literature Review. 

The use of satellite data has become much more common in the social sciences over the last 

couple of decades, so much so that the Center for International Earth Science Information 

Network (CIESIN), together with the Socioeconomic Data and Applications Center (SEDAC) 

of the US National Aeronautics and Space Administration (NASA) published in 2002 a guide 

called “Social Science Applications of Remote Sensing” (de Sherbinin et al. 2002), meant to 

be a useful starting point for someone taking its first steps into the field. This section of the 

chapter reviews the most relevant literature related to the application in social sciences of night 

light imagery. The majority of these papers have investigated questions related to urbaniza t ion 

processes, estimation of the earth’s population, energy use and, more recently, estimation of 

economic activity at sub-national levels or some combination of the above90. 

 

The first application of night light satellite imagery is that of Tobler (1969), who used a portion 

of a picture taken by the Apollo VI on Texas to add further empirical weight to a series of claim 

made by investigators on the possibility of estimating the radius of settlements and their built 

up area with knowledge of its number of inhabitant. In the paper, the author proves that also 

the reverse is true by deriving within a 2% accuracy the population of Dallas from the picture, 

                                                                 
90 The papers reviewed in this section were selected from those found by searching for different combinations of 

the terms “DMSP OLS”, “Night Light”, “Population”, “GDP”, “Africa” and “Infrastructure” in EBSCO host and 

the bibliographies therein.  
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concluding that further studies need to be directed towards the development of the concept of 

build-up areas. 

 

Following further developments, the first author to find a practical application of an earlier 

version of DMSP OLS data was Welch in 1980, who recognized the potential of satellite data 

for understanding the quality of urban planning trends in developing countries and of energy 

demands in developed ones (Welch 1980). Specifically, the DMSP OLS data was found to be 

highly correlated with the known distribution of urban centres in the US and a good starting 

point to monitor and evaluate differences in urban population and energy utilization at 

subnational scales. However, the author concludes that further technological advancements in 

satellites’ sensors are required before this data can be fully evaluated, and similarly the 

complementary data needed must be gathered with a higher precision. 

 

As technology advances, with the development of sensors capable of discerning more sources 

of lights (Foster 1983) and the first complete satellite picture of the whole earth being 

composed (Sullivan 1989), more complex applications of DMSP OLS became available, such 

as that of Imhoff et al. in 1997 (Imhoff et al. 1997). The authors look at the conflict between 

the preservation of the best agricultural soils and the continuing process of urbanization in the 

US, first creating spatial masks for all urban areas by experimenting with different levels of 

light threshold in the DMSP, then joining those with FAO Digital Soil Map of the World dataset 

described in Chapter 2. Through their analysis, they were able to determine that only 3.14% of 

the US soil which can be classified as agriculturally productive had been urbanized, but 

focusing on cities with higher than average urban expansion and high agricultural productivity 



302 
 

they also noticed how urbanization was often taking place on the most productive lands or on 

the second best when the best were preserved.  

 

Also in 1997, Elvidge et al. similarly analyses the potential of DMSP OLS for updating 

urbanization data at a lower processing power cost than with other datasets (Elvdige et al. 

1997). Furthermore, they show how with the recent development in technologies the analyses 

first proposed by Tobler and Welch were now easier to conduct, demonstrating how there exists 

a significant linear relationship between area lit, population, energy consumption and GDP for 

21 countries using a composite of pictures taken between 1994 and 1995. However, especially 

with regard to population the said relationship was stronger in developed than in developing 

countries, as advances in sensor technology were still needed to fully appreciate light emissions 

from rural areas and to properly record light intensity. In any case, the night light dataset was 

praised for being a further tool which could be utilized in various types of analysis, amongst 

which rural electrification and frequency of power outages. 

 

The first attempt to use the DMSP OLS dataset at a global scale is that of Doll et al. (2000), 

who stress how relevant the knowledge of the spatial distribution of global population is to 

understand dynamics such as anthropogenic climate change. By combining the same composite 

DMSP OLS image of the previous study with a series of other geo-referenced data, the authors 

show how the significant regional or country relationship found between area lit, population, 

energy consumption and GDP hold also at a global level. They further shows how area lit also 

relates to CO2 emissions, although they also stress how these, like the previous relationship s, 

should be analysed separately for countries at different development stages. 

 



303 
 

Two studies of Sutton and other authors from the early 2000s analyse other possible 

applications of the DMSP OLS night light imagery to population questions (Sutton 2001, 

Sutton et al. 2003). Sutton 2001 shows how, combining the relationship between extension of 

urban areas and population empirically proved by Tobler with knowledge of the divis ion 

between urban and rural areas in each country, 1,383 geo-located city masks could be used to 

estimate the global population for the year 2000 with a margin of error of 7%. As suggested in 

the previous literature, the author further uses a series of different light intensity thresholds to 

try and differentiate the urban expansion of cities in different countries. Sutton et al. 2003 

combines DMSP OLS with two other geo-located datasets (LandScan and Gridded Population 

of the World) to obtain a first approximation of a method to calculate a temporally averaged 

density of population, relevant for many policy uses amongst which decision of where to focus 

population censuses in countries with scarce resources.  

 

This author looked at two other questions in the same period: firstly in 2002, along with 

Costanza (Sutton and Costanza 2002), he combined the DMSP OLS data with a dataset on land 

cover and GDP to obtain a spatially explicit ecologically-augmented measure of GDP, 

accounting for non-marketed ecosystem services, which positively correlates with other 

sustainability index and environmental impact measures; alone in 2003 (Sutton 2003) he tries 

instead to develop a city-specific aggregate measure of per capita land consumption, also in 

this case experimenting on how to best set the threshold of light luminosity to define the urban 

extent, depending on the interest for commuter zones contiguous to city which tend to emit 

fewer lights. 
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In the following years, three different papers looked more in depth at how to use night light 

data as a starting point for the estimation of sub-national GDP. Doll et al. (2005) analysed how 

the relationship between night lights and economic activity changed moving from the nationa l 

to different sub-national levels for the US and 11 European countries, finding that it is still 

correlated with gross regional product but that the relationship varied across different regions. 

While incorporating land use in the analyses improved the estimates, for some regions it was 

still impossible to identify any significant linear relationship between the two (Doll et al. 2005).  

 

In the same year, Ebener et al. (2005) made a similar attempt using GDP figures representative 

for the regions of 26 countries across all 5 continents in order to obtain an approximation of 

the distribution of health indicators which normally correlate with income per capita (Ebener 

et al. 2005). The authors found that, with access to income per capita figures at sub-nationa l 

level, a country specific model relating economic activity to night light could be developed for 

many different countries, but, given the impossibility of identifying any general regional 

model, other data were still needed as a starting point to fully exploit DMSP OLS.  

 

Finally, Sutton et al. (2007) compared the methodology developed by Ebener et al. (2005) to 

one which also took into account differences in population density across regions through an 

application to China, India, Turkey and the US (Sutton et al. 2007). The authors conclude that 

the estimation of GDP through night lights could be helpful in countries in which statistica l 

offices have little capacity but can add little to the measures produced by those with more 

substantial budgets and advanced techniques. They also note how the increasing use of satellite 

data in the social sciences and in society in general was critically leading to a rise in the ethical, 

political and legal challenges associated with the increase in spatio-demographic information. 
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Elvidge et al. in 2009 investigates instead if the DMSP OLS data could also be used for creating 

a poverty map, which had been used often since the early 2000s to target program intervention 

but are normally based on rounds of surveys which do not have complete coverage and regular 

roll out (Elvidge et al. 2009). They found that a simple index constructed by dividing the 

average value of light intensity by the number of people had a very strong correlation with that 

constructed by the World Development Index (WDI) based on the 2$ poverty line. The final 

estimate of global poverty obtained through this method was 2.2 billion, lower but comparable 

to the 2.6 billion calculated by the WDI, with the underestimation probably due to the 

difficulties in accounting for settlements with very low emissions in rural areas. 

 

A paper from the following year, Doll and Pachauri (2010), focuses exactly on rural areas, 

specifically trying to derive an estimate of the rural population without access to electricity in 

the developing world. The authors rely on a combination of the DMSP OLS, gridded 

population of the world data and the residual areas from urban masks to estimate the share of 

rural population without electricity access in different countries. They then compare the figures 

with those from the International Energy Agency, finding that the former generally 

overestimate the latter. The two main reasons for the overestimation are found in the very low 

density of population of rural unlit areas, which is often missed by dataset assuming 

homogeneous population density across administrative boundaries, and in the energy use of 

rural areas being undetectable by satellites, either because not dense enough or because mostly 

happening indoors.  

 

Another two papers from the end of the 2000s use night light data as a mean to improve on the 

calculation of GDP at sub-national level, either to assess the contribution of informal 
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economies in different states (Gosh et al. 2009), or to further try to spatially distribute the 

contribution of agriculture (Gosh et al. 2010). The motivation of the first paper lies in the fact 

that many economic activities, especially in countries at lower level of income, take place in 

informal settings which will not be reflected in official GDP estimates but which might 

influence energy consumption and light emitted. By analysing the differences between officia l 

figures and those obtained through country-calibrated models based on night lights, one can 

have a further approximation of the contribution of informal activities. After developing a 

model based on the US and “blindly applying” it to Mexico, a country in which the relevance 

of informal activities is well established, the analysis of the results suggests to the authors that 

official estimates of their contribution might seriously underestimate their relevance. While 

recognizing that the methodology needs to be further developed, the authors stress how a 

refined model developed through the use of night time data might be useful to address many 

different socio-economic variables (Gosh et al. 2009).  

 

In the second paper, the authors expand the previous sub-regional analysis to include also China 

and India and apply it globally at a national scale. The authors also develop a method to 

spatially distribute the contribution of agriculture to GDP, relating it to population density so 

to obtain a global map for economic activity for the year 2006 similar to that developed by Doll 

et al. for the population (Doll et al. 2000, Gosh et al. 2010). Despite recognizing that there are 

limited ways to verify the procedure, apart from comparing its results to the available sub-

national figures for the US, Mexico, China and India, the initial attempt is deemed promising 

and seems to point towards a general underestimation of GDP in almost all countries of the 

world. Given the frequency with which satellite data becomes available, the method offers a 

further way to analyse the trends in the global distribution of wealth. 
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Ma et al. 2011 provide instead a comparative analysis of how the relationship between night 

time emissions and different socio-economic variables varies across cities in the same country 

using data from 200 prefectural level Chinese municipalities (Ma et al. 2011). Specifically, the 

authors look at which functional forms amongst linear, power law and exponential best fit the 

relationship between the average night- light emission of each city and its population, GDP, 

built-up area and electric consumption. As urbanization is a complex phenomenon, 

encompassing a nexus of dynamics between demographic pressure, land cover and energy 

flow, the authors are not surprised that different functional forms best fit different relationships, 

with night light-population better described by a linear form and night light-GDP/electr ic 

consumption better described by exponential forms. 

 

Two papers from the beginning of the 2010s, Xi and Nordhaus 2011 and Henderson et al. 2012, 

reassess the contribution that night light can give in the adjustment of GDP figures at a nationa l 

and sub-national level in light of the longer data series now available and of a more explic it 

modelling of the relationship between the measurement errors in the two data generation 

processes (Xi and Nordhaus 2011, Henderson et al. 2012). These authors confirm the previous 

finding that the procedure adds very little to GDP estimates from developed countries. 

However, the analysis for countries whose statistical offices receives the lowest grades in either 

indexes of the Penn World Table or of the World Bank points to significant contribution to be 

had by augmenting the figure with nigh light data, with the estimates of Henderson et al. 

suggesting that real GDP growth for the 30 countries with the lowest grade might differ by up 

to 3.2% per year.  
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Following these last improvements in methodology, a series of recent papers have been finding 

different empirical applications for night light data across the globe, and we will review those 

referring specifically to the African continent. To start with, two works from the same authors, 

Michaloupoulos and Papaioannou 2013 and 2014, combine anthropological data on the 

different political and economic traits of various African ethnic groups before colonisation with 

contemporary sub-national development as proxied by night light data. In the first work, the 

authors explore how pre-colonial African institutions and ethnicity have shaped regional 

development. Their results show a strong positive relationships between pre-colonial politica l 

centralisation (i.e. the existence of an early state hierarchically organised) and modern regional 

development, robust to the inclusion of different control, to diverse estimation strategies and 

to different level of analysis (i.e. original ethnic homeland or pixel level), while other pre-

colonial characteristics seem to be insignificant.  

 

In their second work (Michaloupolous and Papaioannou 2014), the authors exploit the same 

data to answer the opposite question, namely how contemporary national institutions have 

influenced the development of regions originally belonging to the same pre-colonial homeland 

partitioned in different states when the African border were drawn. The analysis confirms their 

previous findings, as the economic performance of areas who belonged to the same ethnic 

homeland, again as proxied by night light, does not systematically differ across borders 

regardless of differences in national institutions, and also in this case the findings are robust to 

a different specifications and estimation strategies. The results are further qualified by a more 

in depth analysis of the ethnic groups for which national institutions, contrary to the overall 

pattern, significantly shape economic performances. The reason for this heterogeneous effect 

is individuated in the closeness of both the partitioned area of the pre-colonial state to their 

respective capital cities.  
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Finally, Mveyange 2015 explores the extent to which income inequality at a regional level can 

be proxied by regional inequalities in night lights, given that the latter have been proved to be 

valid proxies for both income and wealth, with an application to the whole of Africa . 

Combining spatially explicit income data available for 32 of the 54 African countries with their 

respective DMSP-OLS, the author first derives inequality indexes for both at a regional level, 

to subsequently establish in a panel setting a significant and robust relationship between the 

two. This allows him to extend the analysis to the whole continent and to show the existence 

of heterogeneous inequality trends across different regions. Although no general trend exists 

between 1992 and 2003, a decrease in inequality can be observed between 2004 and 2012, 

although the effect of the financial crisis of 2008-2010 is noticeable. Moreover, these trends 

appear to be mostly dominated by between-regions inequalities, as within-region inequality 

across all countries analysed has been fairly low in the period under consideration. 

 

To conclude, over the last 35 years DMSP-OLS data has been used to investigate a growing 

number of socio-economic relationships. Many of the first studies have been concerned with 

the urbanisation process in more developed economies, as the data lent themselves to the 

investigation of the expansion of urban areas over time in countries were night light emission 

was intense enough to be picked up with the technology of the date. The necessity to account 

for differences amongst the economic activities taking place in diverse countries and cities, so 

to properly assess how much they were expanding, was one of the main results of this first 

wave of analyses. Once the link between night lights and extension of cities was firmly 

established and the improvement in satellite technology allowed to detect the more feeble lights 

characterising remote areas of developing countries, it was only natural to move onto the 

analysis of population patterns at national and global scales, as cities represent the most densely 

populated areas on the planet and now rural population could be accounted for. 
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The data proved to be a good starting point also for this type of analyses, so that the successive 

step was to connect night -light with measures of national and sub-national economic activity, 

as urban conglomerates are generally the most productive areas of any country. Various 

analyses confirmed that DMSP-OLS can indeed be used as a proxy for both national and sub-

national GDP, and that especially for poorer countries, in which statistical offices are not so-

well developed and informal activities account for a relevant share of the economy, the use of 

night light data might lead to significant improvements over official GDP estimates. 

 

At this point, a series of empirical investigations of the effects of different socio-economic 

variables on sub-national development became possible for countries in which regional 

economic data was previously available. It is to this strand of the literature that this chapter 

contributes. To the best of our knowledge, this is the first work which analyses the city-wide 

effect of energy infrastructure in Africa using night light data with the aim of assessing their 

contribution to local development. Following various examples in the literature, we also try to 

account for the process of urbanisation which affected SSA cities by experimenting with 

different level of thresholding, some common across all cities in the continent and some 

allowed to vary from city to city, so to explore how this might influence the results. 

   

4.3 Data and Summary Statistics. 

The two sources of the data used in the chapter are the DMSP OLS for the night time light 

values and the GeoSFM simulation for the water available for hydropower generation. As the 

latter has been extensively discussed in Chapter 2 and Chapter 3, we refer to those for the 

general presentation. The hydro-related variables used in the city level analysis are the same 

used for the analysis in Chapter 3, so that the only difference regards those used in the nationa l 
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level analysis, as the final step in their construction, joining each city to the nearest power 

plants91, has been skipped and the anomalies of all hydro-power plants in the country have been 

used.  

 

Beginning in the 1970s, satellites from the US Air Force DMSP have orbited around the planet 

14 times per day registering the emission of light from earth. The OLS sensor mounted on the 

satellites is able to pick up both very low intensity visible and near-infrared (VNIR) light 

sources and thermal infrared, a range covering from fires and moonlit clouds to city lights. The 

data are first processed by the satellites, which smooth the finer 0.5 km resolutio n picture 

originally taken over a 5x5 area, and then further processed by researchers at NOAA, who 

clean them from a series of spurious light emissions which might be due to forest fires, auroral 

activities or other sources, so that man-made light remains the main source of emissions picked 

up. The presence of cloud cover is also taken into account, as heavy clouds might restrain the 

ability of the sensor to pick up VNIR emissions and light cloud cover might instead diffuse 

light creating a further source of spurious emissions. The final dataset are then constructed as 

an average over all nights of all orbits of each satellite, and can be accessed either in their raw 

format (i.e. as taken by the satellites, including light by fires, auroral activities etc.) or in their 

processed version, called “stable lights”, which is the one used in this study (an example for 

the year 2010 is presented in Figure 4.1). 

 

[Figure 4.1 about here]  

  

                                                                 
91 Described in Capter 3, Section 2.3. 
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These data are represented in a grid in which each pixel, corresponding to 30 arc-second or 

slightly less than a square kilometres at the equator, is given a light-intensity value as a six-bit 

digital number, which is an integer ranging from 0 (or no lights) to 63. A couple of points have 

to be noted: first, the data cover from 180° W to 180° E longitude and 75° N to 65° S, hence 

excluding the whole of the Antarctic Circle and a sensible part of Artic Circle, although only 

approximately 10,000 people live in these areas. Second, the digital number describing each 

pixel is not perfectly proportional to the quantity of light emitted, partially because of sensor 

saturation, i.e. the incapacity of the satellite sensor to distinguish differences in intensity in the 

very bright cores of urban centres which are all coded with the maximum value of 63, and 

partially because the scaling factor which the sensor uses to convert light into digital numbers 

varies for unexplained reasons.  This night light emission are then a reflection of both indoor 

and outdoor lighting, which are connected to a plethora of different human activities and are 

likely to be influenced by socio-cultural characteristics varying across the world, so that cross 

country analysis has to account for these. 

 

[Figure 4.2 about here]  

 

The analysis in the chapter focuses on the subset of the 29 SSA countries which have at least 

some hydropower capacity installed (the same on which the analysis in Chapter 3 is focused, 

see Figure 4.2) during the period 2001-2013. To give an overview of how data vary across 

different countries, Table 4.1 presents the distribution of the digital numbers both for the whole 

set of countries included in the studies and for 6 selected countries, while Figure 4.3 to Figure 

4.8 presents their respective DMSP OLS pictures for the year 2010. 
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[Table 4.1 about here]  

[Figure 4.3 to 4.8 about here] 

 

As can be seen from Table 4.1 and from Figure 4.2 to Figure 4.8, the vast majority of pixels in 

all countries in the study are unlit (97.58%), with the lowest fraction of unlit pixels at a country 

level being the one reported for the Republic of South Africa (RSA, 86.23%), followed by that 

of Nigeria (90.85%, not reported), while the highest fractions are those of DRC and Mali (both 

99.75%, not reported). Looking instead at the most luminous pixels, those with a value of 63, 

they represent only 0.02% of all the pixels included in the study, with the highest share at a 

country level being that of RSA (0.2%), followed by that of Ghana (0.07%) and that of Nigeria 

(0.06%), while five countries (Burundi, Central African Republic, Guinea, Liberia and Sierra 

Leone) do not have a single pixel with a value of 63 across the whole period. This implies that 

some of the problems which other studies (for examples Xi and Nordhaus 2011 or Ma et al. 

2011) have reported with sensor saturation will be almost irrelevant in our application as the 

core of urban areas are not bright enough for top-coding to be a problem. 

 

Table 4.1 also reports the sum of nigh light intensity averaged over the country dimension and 

its average yearly growth rate in the period 2001-2013, both considering and excluding unlit 

cells. In the case of the average value including unlit cells, the highest is that of RSA (1.48), 

followed by Nigeria (1.14) and Ghana (0.68); if we exclude unlit cells, the highest value 

becomes that of the Republic of Congo (13.67), followed by DRC (12.97) and Gabon (12.54). 

The growth rate also varies significantly across the continent, with Gabon representing the only 

country having experienced a negative average growth rate over the period when unlit cells are 

included (-1.34%), while Liberia has experienced the most dramatic average increase in light 
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intensity (+21.52%). Nigeria represents instead the only country in which the average growth 

rate excluding unlit cells is negative, although only just (-0.79%), while the fastest one is that 

of Togo (+6.59%). 

 

As the original hydro-related variables were developed for a series of cities across the countries 

included in the study, the main interest is investigating the hydropower-night light intens ity 

relationship at that level. SEDAC, a data centre part of NASA’s Earth Observing System Data  

and Information System hosted by the Center for International Earth Science Information 

Network at Columbia University, provides a raster representation of urban areas at 30 arc-

second developed through a combination of population counts in the year 2000 and  night time 

light. Specifically, where city buffers were not already provided by the national statistica l 

agencies, all contiguous lighted cells for which the total combined population was greater than 

5,000 inhabitants were considered as urban areas. Joining these rasters with the centroids of 

the administrative boundaries of the Gridded Population of the World, also developed by 

SEDAC, has permitted to identify the urban extent of 83 of the 133 cities included in Chapter 

3. 92 Table 4.2 presents then the same statistics of Table 4.1 but only for the cities of the selected 

countries. 

 

[Table 4.2 about here] 

 

As it can be seen from Table 4.2, once the analysis is moved to the city level the relevance of 

unlit cells decreases significantly, as their average share across all considered cities is now 

                                                                 
92 No cities could be individuated following the described procedure in Liberia and Togo, while cities other than 

the capital could be individuated for the Central African Republic and Guinea. 
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2.41%, while the majority of lit cells, both overall and in most urban areas of considered 

countries, are in the 21-62 range. The highest average value of all considered urban pixels is 

that reported for Angola (42.33), followed by that of RSA (38.05) and that of Ghana (35.77), 

while the lowest are those of Burundi (14.76), Sierra Leone (14.71) and Central African 

Republic (8.8). The lowest growth rate of light intensity in the sample is that of Zimbabwean 

cities (+0.06%), while the fastest is that of Guinean ones (+62.01%); if we focus only on capital 

cities, the growth rate of Harare, Zimbabwe, remains the slowest one (+0.15%) while that of 

Kigali, Rwanda, becomes the fastest (+6.56%). 

 

As the urban masks used for the above analysis were developed with reference to population 

and night time data of the year 2000 and most countries in SSA have been experiencing high 

urbanization rates over the last 16 years, we have decided to try and account for the likely 

expansion of the urban boundaries. Two different procedures have been used. In the first case, 

the lowest average value of light intensity amongst all the original boundaries of the capital 

cities for each year has been used as benchmark, and all the pixels contiguous to the urban 

boundaries having that value have been added to the boundaries determined in the previous 

year (that is, a single value has been used to update the boundaries of all cities of all countries 

every single year). We also repeated the same exercise with half of the average values and with 

a quarter of it as alternative cut-off points for the expansion of the boundaries. 

 

The actual procedure consists of, after transforming the original DMSP-OLS picture into an 

array of points, each representing a pixel of the original, first selecting all points falling within 

the original city boundaries, then selecting only the points with night- light values higher than 

the benchmark, then merging the two together and reshaping the points as polygons. If any of 
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the points/pixels contiguous to the original boundaries were equal to or higher than the 

benchmark, they will now be part of the expanded city polygons, while all the spurious 

polygons corresponding to other cluster of lights scattered through the countries were dropped. 

 

There are some suggestions in the literature that each country (Sutton et al. 2001), if not city 

(Ma et al. 2011), should be analysed on its own. The reasons for this lie both with different 

cultural uses of light at different levels of standard of living (e.g. how long after sunset would 

a child keep on reading a book, presence of garden lights to deter burglars and so on) and with 

a different association between night light and economic activity at different stages of 

industrialization (e.g. relevance of chemical sector and other heavy industries whose machinery 

is never shut off), so that an unique relationship between night light and economic activity is 

unlikely to exist. This implies that the previous procedure, by using a unique threshold for 

expanding the boundaries of all cities across the continent, is likely to either over- or 

underestimate the urbanization rate in many cases. To account for this, for the second procedure 

we have then restricted the analysis to only the capital of each country in the study, and for 

each year we have updated each capital’s boundaries using the specific mean value (or a half 

or a quarter of it) of the pixels contained in its original boundaries, so to have a single threshold 

for each city every year. 

 

[Table 4.3 about here] 

[Figure 4.9 to Figure 4.14 about here] 
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Table 4.3 presents a comparison of the results of the two procedures across all the capitals in 

the study and those of selected countries. The first thing to notice is how the average values of 

lights when the capital boundaries are expanded using the mean value in both procedures is 

always very close to those of the original boundaries: the average across all original boundaries 

is 30.0622 (see Table 4.2), that across boundaries expanded with the first procedure 30.587, 

that across boundaries expanded with the second procedure 29.7007. Secondly, we can notice 

how changes in the average values obtained using different threshold (i.e. half or a quarter of 

the mean instead of the mean) vary depending on the procedure used, and specifically how 

using city specific values leads to smaller changes than using a single value across the whole 

continent. Similar differences can also be noted amongst the growth rates of light intensity. 

 

This is made clearer by Figures from 4.9 to 4.14. Figure 4.9 shows Accra, the Ghanaian capital, 

in 2010 when the boundaries have been expanded using a single mean value common for the 

whole continent, while in Figure 4.10 the Accra-specific mean has been used; Figure 4.11 and 

Figure 4.12 present the same for half the mean (common and specific respectively) and Figure 

4.13 and Figure 4.14 for a quarter of the mean (again common and specific respectively). The 

boundaries of the city expanded using the common mean (Figure 4.9) are slightly larger than 

that obtained using half of the Accra-specific mean (Figure 4.12), and those obtained by using 

half of the common mean (Figure 4.11) are slightly larger than those obtained by using a quarter 

of the Accra-specific mean (Figure 4.13). This confirms what it has been previously noted, 

most recently by Ma et al. 2011, i.e. that relevant differences in the analysis will arise 

depending on the choice of using or not country or city specific values when updating urban 

boundaries.  
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4.4 Methodology. 

Our aim is to estimate the impact of the quality of energy infrastructure on sub-nationa l 

development, using water availability for hydro-generation as measure of the former and night 

lights captured from space as proxy for the former. We use the following specification: 

 

𝑌𝑖𝑡 =  𝛼 + 𝛽1𝑋𝑖𝑡 +  𝜀𝑖𝑡  

 

where Yit   is the yearly average night light intensity in the city or country i (depending on the 

setting) in the year t, furthermore, for the country level regressions we will consider both an 

average calculated using unlit cells and one without them given their relevant share in all 

countries in the sample (the minimum value, that of RSA, is 86.23%); Xit  will alternatively be 

the yearly mean anomaly or the same set of indexes for weak/strong positive/negat ive 

anomalies used in Chapter 3 for the city or country i in the year t. The models are firstly 

estimated in level as pooled OLS regression, and then, to correct for possible sources of 

endogeneity, both as first-difference in a pooled OLS setting and in a panel OLS setting with 

fixed effect 

 

Alternative specifications explored include a restriction of the sample to different subsets of 

countries in which hydropower represents at least a given share - either 30%, 40%, 50% - of 

installed capacity, listed in Table 4.4; the substitution of year fixed effects with country- or 

city-specific linear time trends; finally, quantile regression will be performed instead of panel 

regression to explore if the effect of variations in water available for hydro-power changes with 

light intensity. 



319 
 

 

[Table 4.4 about here] 

 

4.5 Results. 

4.5.1 City level. 

The first results to be presented are those relative to the 83 cities for which we were able to 

determine the urban boundaries, so that both the average night light intensity and the 

hydrological variables refer to the city-level. Tables 4.5, 4.6 and 4.7 present the benchmark 

results for the specification using the yearly mean anomaly, first in level (Table 4.5), then in 

first difference (Table 4.6) and last with fixed effect (Table 4.7). As can be noted from all 

tables, the yearly mean anomaly is always insignificant, regardless of the weight, the radius or 

the estimation strategy used. 

 

[Table 4.5 to 4.7 about here] 

 

Tables 4.8, 4.9 and 4.10 present instead the results for the specifications using the same indexes 

developed in Chapter 3, which further disaggregate water available amongst strong/weak and 

positive/negative shocks. As a higher value of the indexes for the negative shock implies more 

water available for hydro-electricity production (as these are upper bounded to 0, the situation 

in which the streamflow is equal to the long-term mean), we expect both of them to take 

positive signs, while we expect the strong positive shock index to take a negative sign because 

in flood situation damages can be incurred by the hydro-turbines. We would instead expect the 
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weak positive shock index to be insignificant, as having a slightly higher flow than the long 

term mean should not have an influence on the generation of hydro-electricity. 

 

These expectations are though not met by the models’ results, as across all three estimation 

strategies and all different weights only twice we have some significant coefficients, and then 

only at 10%: that on the weak positive anomalies index, which we expected to be insignificant, 

in the level form regression (Table 4.8) and that on the strong negative anomalies index in the 

first difference regression (Table 4.9), although only for the version of the instrument 

calculated using only two radiuses. None of the hydrological variables are ever significant in 

the fixed effect regression (Table 4.10). 

 

[Table 4.8 to Table 4.10 about here] 

 

All the above regressions do not account in any way for the process of urbanization which 

interested the continent during the period under consideration. In Table 4.11 to Table 4.16 we 

then replicate the exercise after having adjusted the data so to account at least crudely for this 

process following the first procedure outlined in the third section of the chapter, that relying 

on the lowest average light intensity amongst the continent capitals. Again as before, no effect 

is to be found when the yearly average anomaly is used as regressor, regardless of weight, 

radius, estimation strategy or definition of urban growth, as all coefficients in Tables 4.11 to 

4.13 are always insignificant. Tables 4.14 to 4.16 also closely resemble those where the 

urbanization process is ignored, as again the only significant variables are the weak positive 

anomaly index and the strong negative anomaly index, and also in this case only at 10%. 
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[Table 4.11 to 4.16 about here] 

 

Finally, Tables 4.17 to 4.22 present the results for the models in which the boundaries of the 

capital cities have been expanded using city-specific values. Once again, the results closely 

resemble those run on the original sample. In this case, the only difference lies in the fact that 

now the only disaggregated hydrological variable which remains significant is the weak 

positive anomaly index in the first difference regression of Table 4.22, exactly the one we 

expected to be insignificant 

 

[Table 4.17 to 4.22 about here] 

 

From our baseline specifications it appears then that we cannot find a stable direct effect of the 

availability of water for hydropower generation on the general economic activity in SSA, as 

the first of our measures of water availability, the yearly mean anomaly, is insignificant across 

all specifications, while only two of our four disaggregated indexes are sometimes significant, 

one of which we expected to be irrelevant and in any case often only at 10%, and further show 

an erratic behaviour across the different models.   

 

4.5.2 Alternative specifications. 

Three main alternative specifications have been tried to explore possible differences from the 

baseline estimates: the first entails the restriction of the sample to cities in countries which have 
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at least a minimum share of installed generation capacity taking the form of hydro-power 

plants; the second consists of switching the year dummies with country specific time trends 

and the third in using quantile regressions instead of pooled or panel OLS. Furthermore, all 

alternative specifications have also been tried on the urbanization-adjusted datasets, but, as for 

the benchmarks, in all cases the results are extremely similar to those which ignore the process 

of urbanization so that they will be reported only when significant divergences exist. 

 

The first set of alternative results to be presented are those regarding the restriction of the 

sample to only the cities in countries in which hydropower represents at least a given share of 

the installed capacity (30%, 40% and 50%).93 Tables 4.24 to 4.26 present the results for the 

specifications in which the simple yearly mean anomaly was used (in level, first difference and 

fixed effects respectively), Tables 4.27 to 4.28 present those in which the disaggrega ted 

hydrological measures have been used (again in level, first difference and fixed effects 

respectively).  

 

[Table 4.24 to 4.28 about here] 

 

As can be seen from Tables 4.23 and 4.24, all the coefficients on the yearly mean anomaly 

appear to be insignificant in both the level and the first difference regression regardless of the 

weight and radius used or of the threshold applied. On the other hand, both measures using four 

radiuses have the right sign and are statistically significant, although only at 10%, in the fixed 

effect regressions when we consider only countries in which hydropower represents at least 

                                                                 
93 See Table 4.4 in the methodology section for a list of the countries included in each sample. 
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50% of the installed capacity (Table 4.23). The results relative to the specifications using the 

disaggregated forms of the hydrological variables closely resemble those of the baseline 

specifications, as almost none of the indexes is ever significant, excluding again the strong 

negative anomaly index in the first difference regression on the sample of cities for which 

hydropower represents at least 30% of the installed capacity when only two radiuses are used, 

and also in this case only at 10% (Table 4.27). 

 

This is the specification for which the expansion of the urban boundaries plays a significant 

role, at least when they are updated using the capital-specific values of the second procedure. 

Table 4.29 and Table 4.30 present the results for the case in which we estimate the model with 

panel fixed effects, the explanatory variable is the yearly mean anomaly and urban boundaries 

have been updated using the mean light intensity in the core-area of the capital or half the mean 

light intensity respectively. As it appears from both tables, once the city boundaries are updated 

there is a significant association, although often only at 10%, between an higher value of yearly 

mean anomaly and an higher intensity of night- light, and this could already be perceived from 

the restriction of the sample to countries in which hydropower represent at least 30% of 

installed capacity. Furthermore, as we would expect, the higher the relevance of hydropower 

in the energy portfolio of the country, the stronger the effect which water availability for 

electricity generation has on light intensity. When the boundaries are updated with a quarter of 

the mean light intensity the relationship turns insignificant again, and similarly no significance 

could be found for the regressions in which the indexes were used.  

 

[Table 4.29 and 4.30 about here] 
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These results indicate that a relationship between hydroelectricity production and night- light 

intensity, and hence economic activity, might exist, although we are able to individuate it only 

for the capital cities of countries in which hydropower represents a significant share in the 

generation portfolio. In addition, it is necessary to also consider how the urbanisation process 

which interested the SSA region over the last decade is accounted for, as the estimates are 

significant only in the case in which the urban boundaries of the capital cities are updated with 

city specific values.  

 

Next we focus on the specifications in which the time dummies are substituted by city-specific 

linear time trends. Tables 4.31 to Table 4.33 present the results for the regressions using the 

yearly average anomaly as explanatory variable (in level, first difference and fixed effect 

respectively), while Tables 4.34 to Table 4.36 those in which the disaggregated forms of the 

variables are used. Again, the results are not particularly instructive, as there is no significant 

relationship between the yearly average anomalies and night lights across all specifications, 

while in the case of the more disaggregated indexes we have both the strong positive anomaly 

index and the weak negative anomaly index significant in the level regression (Tables 4.34), 

the first with the wrong sign and the second when expected insignificant, while in the first 

difference regression the strong negative anomaly index turns positive and significant (Table 

4.35). 

 

[Table 4.31 to 4.36 about here] 

 

The final set of results for the city-level analysis is the one in which we switch the estimation 

method from OLS to quantile regression, as we are interested to see if the effect of a variation 
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in the water available for hydropower generation changes with night- light intensity. Table 4.37 

and Table 4.38 present the results for the case in which the yearly average anomaly is used as 

regressor in growth and level form respectively, while Table 4.39 and Table 4.40 present the 

equivalent results for the disaggregated forms of the variable. As it can be seen from Table 

4.37, a growth in the yearly mean anomaly is almost always significantly and positively related 

to a growth in night light regardless of the weight or radius used, with the coefficients 

decreasing in size as the quantile increases, suggesting that the influence of variation in water 

availability is more relevant for dimmer than for brighter lights (consistently with the load-base 

nature of hydropower). A significant, although less stable, relationship can also be found in the 

level form regression (Table 4.38), although in this case the coefficients’ size grows bigger 

with the quantile. Table 4.39 and Table 4.40 on the other hand seem to show a very significant 

relationship between all disaggregated form of the hydrological variables and night lights, but 

a more careful examination reveals sign switching from quantile to quantile, so that most 

variables take the wrong sign in at least one quantile of each specification. This does not seem 

to be restricted to any particular form of the dependent variable (growth/level) or weight used 

for the construction of the hydrological variables (installed/operational), so that it becomes 

hard to give any satisfactory explanation. 

  

[Table 4.37 to Table 4.40 about here] 

 

4.5.3 National Level. 

We now move away from the city level analysis to focus on the national level. In all the 

following regressions the night light intensity has been averaged over the entirety of each 
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country, while for the construction of the hydrological variables all hydropower plants have 

been considered, so that each power plant weight corresponds to its contribution to the nationa l 

generation portfolio. The first results to be presented are those relative to the regressions having 

as dependent variable the average night light intensity, either in level (Table 4.41), in first 

difference (Table 4.42) or with fixed effects (Table 4.33). The average has been calculated 

including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4. 

 

[Table 4.41 to 4.43 about here]  

 

As it can be seen from the above tables, changes in the yearly average surplus or deficit of 

water available for hydropower generation are never significantly related to changes in night 

light intensity, regardless of the weight used for the calculation of the hydrological variables 

(installed or operative capacity), of the exclusion or inclusion of unlit cells, or the estimation 

strategy. In Table 4.44 and Table 4.46 the disaggregated forms of the hydrological variables 

are used instead. 

 

[Table 4.44 to 4.46 about here] 

 

The picture emerging from these regressions resemble those of the city level regression in 

which the disaggregated indexes were used. In the level regression, no index is ever significant 

when the dependent variable includes unlit cells, while if unlit cells are excluded there is, 

contrary to what expected, a negative and significant relationship between night light intens ity 

and the weak negative anomaly, although only at 10% if the operational capacity is used as 
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weight (columns 3 and columns 4 of Table 4.44). All variables are instead insignificant when 

the equivalent regression in first difference is run (Table 4.45), while when it is estimated with 

fixed effects the only significant result is a positive association between the values of the strong 

negative anomaly index and that of night lights when unlit cells are excluded, although only at 

10% when the installed capacity is used as a weight (Table 4.46, columns 3 and 4), this time in 

line with the original hypothesis. 

 

It is worth noting that we have also tried to include, alternatively, only the indexes for the weak 

anomalies or the indexes for the strong anomalies (and for this latter case we also tried each 

index at a time). In all those cases, the estimates are very closely in line with those reported, 

and as we do not feel that these models add significantly to the analysis we have decided not 

to report the results. Similarly, all the alternative specifications which were considered for the 

city-level analysis have also been applied to the country-level one, but they give a limited 

contribution to the understanding of the relationship between hydropower production and night 

light intensity, so that we leave their discussion to the Appendix A.4. 

 

4.6 Conclusions. 

In the last two decades, the increase in quality and frequency of satellite-based data collection 

efforts has allowed the exploration of a series of questions relevant for social scientists and 

policy makers which could not previously be tackled. Specifically, observation of night- light 

emitted by human settlements from space has led to an increased understanding of the 

geographical distribution of human population and of the drivers and effects of an ever 

increasing urbanization trend. More recently, the focus in the literature has been on establishing 
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a link between night light and GDP at both national and sub-national level, and various analyses 

have proven that this data is indeed a good proxy for economic activity, especially in 

developing countries. More nuanced empirical investigations have swiftly followed. 

 

The chapter presents the results of the initial attempt of connecting the intensity of night- light 

from SSA cities and countries with the water available for hydro-electricity production, to the 

best of our knowledge the first time that this data has been used to analyse the city-wide 

economic effect of infrastructure in Africa. Two different line of inquiries have been attempted, 

carrying out the analysis for the period 2001-2013 both at the city level for 83 of the 113 cities 

which composed the sample of Chapter 3 and at the national level for 29 countries. 

Furthermore, as suggested by the literature, we have developed a method to update the 

boundaries of the cities included in the study in order to account for the changes brought about 

by the high urbanization rates which characterised the continent in the last two decades.  

 

Overall, the results presented in the chapter point towards an irrelevant contribution of 

hydropower production to the city- and country-wide economic activity as measured by night 

lights. Some signs of the existence of the relationship under investigation have emerged, but 

they are not conclusive and interest only the city-level analysis, where it has proven important 

which procedure to update the city boundaries is chosen and which countries enter the analys is. 

Specifically, the only significant results are those for the capital cities of countries in which 

hydropower represents a significant share of installed capacity (>30%) if the urbaniza t ion 

trends over the period 2001-2013 are allowed to vary from city to city. In this case, fixed effect 

estimates using the yearly average anomaly are significant and with the expected sign (see 

Appendix B4 for a summary of the results). On the other hand, estimates in which the more 
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disaggregated hydro measures have been used have proven less stable than the latter also in 

this case. Similar points can be made for the national level analysis, in which signs of the same 

relationship between the yearly average anomaly and night light intensity could be found only 

in some alternative specifications, and only when unlit cells were excluded, discussed in 

Appendix A.4.  

 

Future improvements on this analysis will then have to continue the work started in the chapter 

by further expanding the sample of cities for which a specific urbanisation trend is constructed 

from only the capitals to all cities, to see if this influence the results, both overall and for 

countries in which hydropower represents a significant share of installed generation capacity. 

Moreover, when better and updated household and industrial connection data, or data relative 

to the energy infrastructure in general, will become available, new procedures of scaling the 

night- light intensity by usage/capacity of the network instead than by dimension of the country 

could also be attempted. 
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Appendix A.4. 

 

In this appendix we present the same set of alternative specifications of the country level 

analysis which were considered for the city level one. Tables A4.1 to A4.6 present the results 

relative to the first alternative, the restriction of the sample to countries in which hydropower 

represents a significant share of installed capacity, when the simple yearly mean anomaly is 

used. Three different threshold levels have been used: in columns 1 and 2 of each table 

countries with less than 30% of installed capacity consisting in hydropower have been excluded 

from the analysis94, in columns 3 and 4 the threshold is increased to 40% and in columns 5 and 

6 it is further increased to 50%.  

 

[Table A4.1 to A4.6 about here] 

 

As the tables makes clear, the restriction of the sample does not lead to any noticeable change 

from the regression using the entire one, as the yearly mean anomaly remains statistica l ly 

insignificant regardless of the weight used, the inclusion or exclusion of unlit cells and the 

estimation strategy. Almost exactly the same can be said of all regressions run on the restricted 

samples using instead the more disaggregated forms of the hydrological variables, shown in 

Tables 4.7 to 4.12. In these cases, the only significant variables are in regression where the 

dependent variable excludes unlit cells, namely the weak negative anomaly index in the level 

                                                                 
94 See Table 4.4 in the methodology section for a list of the countries included in each sample. 
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regression (with the wrong sign, Table A4.10) and the strong positive anomaly index in the 

fixed effect regression, this time with the right sign (Table A4.12).   

 

[Table A4.7 to A4.12 about here] 

 

The next set of results to be introduced is the one in which the time dummies have been replaced 

with country-specific (linear) time trends. As usual, the first results presented are those relative 

to the use of the simple yearly average anomaly, in level form in Table A4.13, in first difference 

in Table A4.14 and with fixed effects in Table A4.15. The main difference for this set of results 

appears in columns Tables A4.14 and A4.15: the yearly mean anomaly is now positively related 

to night light intensity regardless of the weight used, but only when unlit cells are included in 

first differences and only when they are excluded in with fixed effects. 

 

[Table A4.13 to A4.15 about here] 

 

Once again the results relative to the use of the more disaggregated hydro-variables (Table 

A4.16 to Table A4.18) present an erratic behaviour: all variables are insignificant in the level 

form regression (Table A4.16), only the weak negative anomaly index is significant in first 

difference (as in the other cases with the wrong sign, Table A4.17) and only when the 

dependent variable includes unlit cells, while only the strong negative anomaly index is 

significant with fixed effects, this time with the expected sign (Table A4.18). 
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[Table A4.16 to A4.18 about here] 

 

The final set of results for the country-level analysis is the one in which we switch the 

estimation method from panel OLS to quantile regression, as we are interested to see if the 

effect of a variation in the water available for hydropower generation changes with night- light 

intensity. Table A4.19 to Table A4.22 above present the results for the specification using the 

simple yearly mean anomaly. This is the set of results using a single hydrological variable for 

which the inclusion or exclusion of unlit cells make the biggest difference: as it can be seen 

from Table A4.19 and A4.20, as long as they are included the yearly average mean is significant 

and takes the opposite sign from what expected in all but the highest quantile of light intens ity 

(columns 4 and 8 in both tables); on the other hand, when unlit cells are excluded (Table A4.21 

and Table A4.22) the yearly average anomaly is almost always significant and takes the wrong 

sign in only one case (column 1 of Table A4.21).  

 

[Table A4.19 to 4.26 about here] 

 

As in all the previous cases, the specifications using the more disaggregated hydro-measures 

(Table A4.23 to Table A4.26 above) are the least consistent, with sign switching from quantile 

to quantile and consequently m most variables taking the wrong sign in at least one quantile of 

each specification. This does not seem to be restricted to any particular form of the dependent 

variable (growth/level) or weight used for the construction of the hydrological variables 

(installed/operational), so that it becomes hard to give any satisfactory explanation. 
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Appendix B.4. 

 

Although the overall results of Chapter 4 point towards the insignificance of hydroelectr ic 

production as a direct determinant of economic activity across SSA, the fixed effect regressions 

in the sample of capital cities of states in which hydropower accounts for a significant share of 

installed capacity yielded some stable and significant results. In these regressions the masks 

used to individuate the boundaries of the city were expanded through the procedure described 

in the end of section 4.3, so to account for the strong urbanisation rates characterising the 

African continent since the year 2000, year when the original urban masks were created.  

 

Tables B4.1 and B4.2 report the coefficients for the effect of an increase of one standard 

deviation in the streamflow of the rivers serving hydropower stations connected to the capital 

cities on their average night light intensity, expressed in term of the digital numbers used to 

measure night light intensity. To better contextualise the results, the tables also report the 

average night-light intensity across the capitals in the sample and the average value of the 

measure for water availability. In Table B4.1 the urban masks have been expanded each year 

by including all contiguous pixels with a night light intensity at least equal to the mean value 

of the previous year, in Table B4.2 by including all pixels in which the intensity was at least 

half of this value. 

 

[Table B4.1 and B4.2 about here] 
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As can be expected, the higher the relevance of hydropower in the installed capacity of the 

country, the higher is the coefficient, and similarly higher are all coefficients in which the mean 

anomaly is scaled by the operational capacity. For countries in which hydropower accounts for 

at least 30% or 40% of the installed capacity, when the urban masks are expanded with the 

mean night light intensity an increase of one s.d. leads to an increase in intensity of around 

10% of the average city value. Although this effect might seem high, it must be noted that the 

average anomaly values, however scaled, are much lower than one full s.d,, so that an increase 

of this magnitude is unlikely to ever take place. These effects are of a lower size and 

significance when the boundaries are expanded with half of the mean value of the previous 

year mask, as in this case the areas of capital cities are bigger and include neighbourhoods with 

a lower average light intensity. 
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Figure 4.1 – DMSP OLS, 2010. 

 

DMSP OLS composite for the year 2010. 

 

Figure 4.2 – DMSP OLS, countries in the sample, 2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DMSP OLS composite for the countries in the sample, year 2010. 
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Figure 4.3 – DMSP OLS, Angola, 2010. 

DMSP OLS composite for Angola, year 2010. 

 

Figure 4.4 – DMSP OLS, Ethiopia, 2010. 

DMSP OLS composite for Ethiopia, year 2010. 
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Figure 4.5 – DMSP OLS, Ghana, 2010. 

DMSP OLS composite for Ghana, year 2010. 

Figure. 4.6- DMSP OLS, Kenya, 2010. 

DMSP OLS composite for Kenya, year 2010. 
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Figure 4.7 – DMSP OLS, South Africa, 2010. 

DMSP OLS composite for the Republic of South Africa, year 2010. 

Figure 4.8 – DMSP OLS, Tanzania, 2010. 

DMSP OLS composite for Tanzania, year 2010. 
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Figure 4.9 – Accra, continental benchmark, mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value common to the whole 

continent, mean value, year 2010. 

 

 

Figure 4.10 – Accra, city specific benchmark, mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value specific to each 

capital, mean value, year 2010. 
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Figure 4.11 – Accra, continental benchmark, half the mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value common to the whole 

continent, half the mean value, year 2010. 

 

Figure 4.12 – Accra, city specific benchmark, half the mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value specific to each 

capital, half the mean value, year 2010. 
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Figure 4.13 – Accra, continental benchmark, quarter of the mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value common to the whole 

continent, quarter of the mean value, year 2010. 

 

Figure 4.14 – Accra, city specific benchmark, quarter of the mean value, 2010. 

 

Dimension and luminosity of Accra obtained by updating city boundaries with a mean value specific to each 

capital, a quarter of the mean value, year 2010. 
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Table 4.1 – Summary statistics, country sample.  

 

Summary statistics and night light distribution for the full country-sample (SSA) and for selected countries. 

 

 

Table 4.2 – Summary statistics, city sample. 

 

Summary statistics and night light distribution for the full city-sample (SSA), and for the cities of selected 

countries. 

 

 

  

 

 

 

 

 

SSA Angola Ethiopia Ghana Kenya RSA Tanzania

0 97.58% 99.18% 99.28% 92.65% 98.08% 86.23% 99.17%

1-5 1.18% 0.27% 0.32% 3.74% 0.81% 6.72% 0.32%

6-10 0.70% 0.29% 0.28% 2.36% 0.77% 3.73% 0.34%

11-20 0.27% 0.10% 0.07% 0.62% 0.21% 1.62% 0.10%

21-62 0.25% 0.10% 0.05% 0.57% 0.13% 1.51% 0.06%

63 0.02% 0.02% 0.00% 0.07% 0.00% 0.20% 0.00%

Average 0.2608 0.0954 0.0646 0.6815 0.1723 1.4823 0.0792

Average Growth 7.20% 13.85% 9.52% 5.38% 6.74% 2.76% 6.66%

Average (no 0) 10.5700 11.4808 8.5338 9.2631 8.7962 10.7685 9.3608

Average Growth (no 0) 3.13% 5.50% 3.50% 4.42% 2.82% 1.91% 2.82%

SSA Angola Ethiopia Ghana Kenya RSA Tanzania

0 2.41% 0.36% 7.64% 0.38% 1.56% 0.08% 4.47%

1-5 4.86% 4.17% 8.19% 1.72% 4.81% 2.23% 8.12%

6-10 16.56% 9.66% 22.22% 11.32% 25.84% 9.60% 22.25%

11-20 20.63% 11.29% 21.23% 18.86% 30.59% 17.95% 24.28%

21-62 46.52% 46.13% 39.79% 58.64% 36.99% 54.39% 37.73%

63 9.02% 28.39% 0.94% 9.07% 0.22% 15.76% 3.14%

Average 30.4054 42.3306 22.4019 35.7673 21.9318 38.0467 22.5120

Average Growth 5.49% 13.44% 6.79% 4.37% 5.10% 1.08% 4.14%

Average (capital) 30.0622 45.5484 28.6991 44.6935 23.9188 30.2293 32.1226

Average Growth (capital) 3.66% 6.07% 4.53% 2.83% 3.91% 0.91% 3.33%
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Table 4.3 – Summary statistics, urbanization procedure. 

 

Average value of night light and of night light yearly growth for the full sample (SSA) and for the capital of selected countries. Columns under the heading “Capital sp.” present 

the data for the second procedure (each capital’s boundary is updated using its  specific mean of light intensity); columns under the heading “Lowest” present the data for first  

procedure (each city’s boundary has been updated using the lowest mean value of light intensity amongst all capitals). 

 

 

 

 

 

 

 

 

 

 

 

Capital sp. Lowest Capital sp. Lowest Capital sp. Lowest Capital sp. Lowest Capital sp. Lowest Capital sp. Lowest Capital sp. Lowest

Average (Mean) 29.7007 30.5870 45.5271 42.2562 28.6682 30.5817 44.8292 42.7686 23.8997 24.8176 30.3650 30.8768 32.4748 33.4775

Average Growth (Mean) 3.74% 4.14% 6.16% 4.21% 4.70% 5.39% 2.85% 1.71% 3.99% 4.57% 0.89% 1.77% 3.34% 3.39%

Average (Mean/2) 29.0396 26.5292 43.6617 34.9837 28.5323 27.0678 43.8529 34.8838 23.6566 22.5824 29.8491 24.4143 32.2134 29.7113

Average Growth (Mean/2) 3.41% 3.10% 5.51% 3.07% 4.59% 3.14% 2.33% 1.70% 3.74% 3.27% 0.75% 1.39% 3.08% 1.53%

Average (Mean/4) 25.0494 17.7081 38.4191 24.3567 24.7411 18.3615 39.4228 22.1276 17.9616 13.8965 24.7574 13.5878 28.9124 19.9193

Average Growth (Mean/4) 3.66% 2.10% 6.10% 1.65% 0.19% 0.71% 0.30% 2.85% 3.32% 2.46% 0.24% 0.15% -1.02% 1.68%

RSA TanzaniaSSA Angola Ethiopia Ghana Kenya
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Table 4.4 – List of countries in the full and in restricted samples. 

  

Countries in the full-sample and in the sample restricted to countries in which hydropower represents at least a 

given share; shares in the heading. 

 

 

 

 

  

Full Sample HP > 30% HP > 40% HP > 50%

Angola Angola Angola Angola

Benin Burundi Burundi Burundi

Burkina Cameroon Cameroon Cameroon

Burundi Congo Congo DRC

Cameroon DRC DRC Ethiopia

Congo Ethiopia Ethiopia Kenya

DRC Gabon Gabon Malawi

Ethiopia Ghana Ghana Mozambique

Gabon Ivory Kenya Namibia

Ghana Kenya Malawi Sudan

Ivory Malawi Mali Uganda

Kenya Mali Mozambique Zambia

Malawi Mozambique Namibia

Mali Namibia Rwanda

Mozambique Nigeria Sudan

Namibia Rwanda Tanzania

Nigeria Sudan Uganda

RSA Tanzania Zambia

Rwanda Uganda

Sierra Zambia

Sudan Zimbabwe

Tanzania

Uganda

Zambia

Zimbabwe
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Table 4.5 – Level regression, city-level baseline specification, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night-late intensity, 

the explanatory variable is the yearly mean anomaly, weighted by installed capacity in columns 1 and 3 and by 

operational capacity in columns 2 and 4, constructed using 4 radiuses changing with country dimension in columns 1 

and 2 and with 2 radiuses in columns 3 and 4. All regressions include time dummies. ***=significant at the 1% level; 

**=significant at the 5% level; *=significant at the 10% level. 

Table 4.6 – First difference regression, city-level baseline specification, yearly mean 

anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference in average night-late 

intensity, the explanatory variable is the first difference in the yearly mean anomaly, weighted by installed capacity in columns 

1 and 3 and by operational capacity in columns 2 and 4, constructed using 4 radiuses changing with country dimension in 

columns 1 and 2 and with 2 radiuses in columns 3 and 4. All regressions include time dummies. ***=significant at the 1% 

level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4)

Mean Anomaly (Inst, 4 rad) 2.97

(2.21)

Mean Anomaly (Op, 4 rad) 2.70

(1.73)

Mean Anomaly (Inst, 2 rad) 2.13

(1.90)

Mean Anomaly (Op, 2 rad) 2.53

(2.40)

Constant 19.42*** 19.41*** 19.29*** 19.26***

(1.02) (1.02) (1.02) (1.02)

Num of obs. 1079 1079 1092 1092

R
2

0.13 0.13 0.13 0.13

Night Lights

(1) (2) (3) (4)

Δ Mean Anomaly (Inst, 4 rad) 0.33

(0.29)

Δ Mean Anomaly (Op, 4 rad) 0.33

(0.21)

Δ Mean Anomaly (Inst, 2 rad) 0.04

(0.32)

Δ Mean Anomaly (Op, 2 rad) 0.05

(0.32)

Constant 1.03*** 1.02*** 1.04*** 1.05***

(0.17) (0.17) (0.17) (0.17)

Num of obs. 996 996 1008 1008

R
2

0.67 0.67 0.67 0.67

Δ Night Lights
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Table 4.7 – Fixed effect panel regression, city-level baseline specification, yearly mean 

anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the explanatory 

variable is the yearly mean anomaly, weighted by installed capacity in columns 1 and 3 and by operational capacity in columns 

2 and 4, constructed using 4 radiuses changing with country dimension in columns 1 and 2 and with only two radiuses in 

columns 3 and 4. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; 

*=significant at the 10% level. 

Table 4.8 – Level regression, city-level baseline specification, strong/weak 

positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night-late intensity, 

the explanatory variables are the weak/strong positive/negative anomalies, weighted by installed capacity in columns 1 

and 3 and by operational capacity in columns 2 and 4, constructed using 4 radiuses changing with country dimension in 

columns 1 and 2 and with only two radiuses in columns 3 and 4. All regressions include time dummies. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4)

 Mean Anomaly (Inst, 4 rad) 0.72

(0.83)

Mean Anomaly (Op, 4 rad) 0.34

(0.70)

Mean Anomaly (Inst, 2 rad) 0.66

(0.92)

Mean Anomaly (Op, 2 rad) 0.57

(0.92)

Constant 19.50*** 19.51*** 19.34*** 19.34***

(0.41) (0.41) (0.41) (0.41)

Num of obs. 1079 1079 1092 1092

Night Lights

Installed Operative Installed Operative

 St. Neg. Anomaly Index -0.21 -0.30 -0.05 -0.34

(0.82) (0.81) (0.81) (0.86)

St. Pos. Anomaly Index -0.16 -0.08 -0.02 -0.03

(0.20) (0.22) (0.24) (0.25)

Wk. Neg. Anomaly Index 1.01 1.14 2.33 1.96

(1.85) (1.93) (2.30) (2.34)

Wk. Pos. Anomaly Index -2.85* -2.49 -0.67 -0.61

(1.63) (1.68) (2.08) (2.21)

Constant 23.19*** 22.48*** 21.42*** 20.77***

(1.40) (1.35) (1.41) (1.32)

Num of obs. 1079 1079 1092 1092

R
2

0.23 0.20 0.17 0.16

Night Lights

4 Radiuses 2 Radiuses
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Table 4.9 – First difference regression, city-level baseline specification, strong/weak 

positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of average night-late 

intensity, the explanatory variables are the first differences of weak/strong positive/negative anomalies, weighted by installed 

capacity in columns 1 and 3 and by operational capacity  in columns 2 and 4, constructed using 4 radiuses changing with 

country dimension in columns 1 and 2 and with only two radiuses in columns 3 and 4. All regressions include time dummies. 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

Table 4.10 – Fixed effect panel regression, city-level baseline specification, strong/weak 

positive/negative anomalies. 

 

 

 

Installed Operative Installed Operative

 Δ St. Neg. Anomaly Index 0.14 0.12 0.22* 0.20

(0.13) (0.13) (0.13) (0.13)

Δ  St. Pos. Anomaly Index -0.03 -0.03 -0.02 -0.01

(0.02) (0.02) (0.02) (0.02)

Δ Wk. Neg. Anomaly Index -0.18 -0.15 -0.19 -0.08

(0.28) (0.29) (0.27) (0.28)

Δ Wk. Pos. Anomaly Index -0.13 -0.18 0.06 0.01

(0.13) (0.13) (0.14) (0.14)

Constant 1.06*** 1.06*** 1.05*** 1.06***

(0.17) (0.18) (0.17) (0.18)

Num of obs. 996 996 1008 1008

R
2

0.68 0.68 0.67 0.67

Δ Night Lights

4 Radiuses 2 Radiuses

Installed Operative Installed Operative

 St. Neg. Anomaly Index 0.26 0.38 0.07 0.12

(0.42) (0.41) (0.44) (0.44)

St. Pos. Anomaly Index 0.02 0.03 -0.00 -0.01

(0.07) (0.07) (0.07) (0.07)

Wk. Neg. Anomaly Index 0.61 0.42 0.91 1.18

(0.79) (0.81) (0.83) (0.86)

Wk. Pos. Anomaly Index -0.49 -0.22 -0.50 -0.24

(0.43) (0.44) (0.44) (0.46)

Constant 20.68*** 20.36*** 20.45*** 20.42***

(0.62) (0.60) (0.60) (0.58)

Num of obs. 1079 1079 1092 1092

Night Lights

4 Radiuses 2 Radiuses
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Note for Table 4.10 Panel estimation with city fixed effect. The dependent variables is the yearly average night-

late intensity, the explanatory variable are the weak/strong positive/negative anomalies, weighted by installed 

capacity in columns 1 and 3 and by operational capacity in columns 2 and 4, constructed using 4 radiuses changing 

with country dimension in columns 1 and 2 and with only two radiuses in columns 3 and 4. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level.  
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Table 4.11 – Level regression, city-level sample expanded through the first urbanization procedure, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night -late intensity, the explanatory variable is the yearly mean anomaly, 

weighted by installed capacity in odd columns and by operational capacity in even columns, constructed using 4 radiuses chang ing with country dimension in columns 1, 2, 5, 

6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night light intensity amongst all capitals in  

columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mean Anomaly (Inst, 4 rad) 2.38 1.58 0.60

(1.69) (1.27) (0.86)

Mean Anomaly (Op, 4 rad) 2.16 1.18 0.18

(1.31) (1.02) (0.75)

Mean Anomaly (Inst, 2 rad) 1.95 1.57 0.65

(1.50) (1.15) (0.83)

Mean Anomaly (Op, 2 rad) 2.24 1.63 0.68

(1.83) (1.37) (0.94)

Constant 19.91*** 19.90*** 19.76*** 19.73*** 18.61*** 18.62*** 18.47*** 18.45*** 14.41*** 14.42*** 14.30*** 14.30***

(1.02) (1.02) (1.02) (1.02) (0.89) (0.89) (0.89) (0.89) (0.60) (0.60) (0.60) (0.60)

Num of obs. 1079 1079 1092 1092 1079 1079 1092 1092 1066 1066 1079 1079

R
2

0.22 0.22 0.22 0.22 0.20 0.20 0.19 0.19 0.17 0.17 0.17 0.17

Night Lights, Mean Night Lights, Mean/2  Night Lights, Mean/4
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Table 4.12 – First difference regression, city-level sample expanded through the first urbanization procedure, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is first difference of average night-late intensity, the explanatory variable is the first  

difference of the yearly mean anomaly, weighted by installed capacity in odd columns and by operational capacity  in even columns, constructed using 4 radiuses changing with 

country dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night 

light intensity amongst all capitals in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Δ Mean Anomaly (Inst, 4 rad) -0.03 -0.19 -0.26

(0.37) (0.31) (0.25)

Δ Mean Anomaly (Op, 4 rad) -0.13 -0.25 -0.28

(0.26) (0.22) (0.18)

Δ Mean Anomaly (Inst, 2 rad) 0.34 0.18 -0.07

(0.36) (0.30) (0.31)

Δ Mean Anomaly (Op, 2 rad) 0.46 0.29 -0.02

(0.38) (0.31) (0.31)

Constant 1.06*** 1.06*** 1.08*** 1.09*** 0.92*** 0.91*** 0.94*** 0.95*** 0.55** 0.55** 0.57** 0.57**

(0.17) (0.17) (0.17) (0.17) (0.16) (0.16) (0.15) (0.15) (0.17) (0.17) (0.17) (0.17)

Num of obs. 996 996 1008 1008 996 996 1008 1008 984 984 996 996

R
2

0.72 0.72 0.71 0.71 0.73 0.73 0.73 0.73 0.71 0.71 0.71 0.71

Δ Night Lights, Mean Δ Night Lights, Mean/2 Δ Night Lights, Mean/4
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Table 4.13 – Fixed effect panel regression, city-level sample expanded through the first urbanization procedure, yearly mean anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the average night -late intensity, the explanatory variable is the yearly mean anomaly, weighted by installed  

capacity in odd columns and by operational capacity in even columns, constructed using 4 radiuses changing with country dimen sion in columns 1, 2, 5, 6, 9, 10 and with only 

two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night light intensity amongst all capitals in columns 1 to 4, half of that 

value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant  at the 1% level; **=significant at the 5% level; *=significant  

at the 10% level. 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

 Mean Anomaly (Inst, 4 rad) 0.43 0.12 -0.30

(0.68) (0.52) (0.38)

Mean Anomaly (Op, 4 rad) 0.08 -0.27 -0.49

(0.57) (0.44) (0.32)

Mean Anomaly (Inst, 2 rad) 0.65 0.50 -0.18

(0.76) (0.58) (0.42)

Mean Anomaly (Op, 2 rad) 0.54 0.25 -0.35

(0.76) (0.58) (0.42)

Constant 19.97*** 19.98*** 19.80*** 19.80*** 18.66*** 18.68*** 18.50*** 18.51*** 14.44*** 14.45*** 14.33*** 14.34***

(0.34) (0.34) (0.34) (0.34) (0.26) (0.26) (0.26) (0.26) (0.19) (0.19) (0.19) (0.19)

Num of obs. 1079 1079 1092 1092 1079 1079 1092 1092 1066 1066 1079 1079

Night Lights, Mean Night Lights, Mean/2 Night Lights, Mean/4
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Table 4.14 – Level regression, city-level sample expanded through the first urbanization procedure, strong/weak positive/negative 

anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night -late intensity, the explanatory variables are the weak/strong 

positive/negative anomalies, weighted by installed capacity in odd columns and by operational capacity in even colu mns, constructed using 4 radiuses changing with country 

dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night light  

intensity amongst all capitals in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at 

the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index -0.34 -0.44 -0.15 -0.46 -0.26 -0.36 -0.06 -0.33 0.06 0.00 0.20 0.07

(0.86) (0.86) (0.85) (0.90) (0.74) (0.74) (0.74) (0.78) (0.49) (0.48) (0.48) (0.49)

St. Pos. Anomaly Index -0.17 -0.10 -0.03 -0.04 -0.15 -0.10 -0.02 -0.04 -0.11 -0.09 -0.02 -0.02

(0.21) (0.22) (0.24) (0.26) (0.18) (0.19) (0.21) (0.22) (0.13) (0.13) (0.14) (0.15)

Wk. Neg. Anomaly Index 0.52 0.70 1.85 1.54 0.23 0.31 1.44 1.18 0.17 0.14 0.87 0.73

(1.91) (2.01) (2.39) (2.46) (1.68) (1.76) (2.12) (2.18) (1.18) (1.21) (1.41) (1.43)

Wk. Pos. Anomaly Index -3.11* -2.72 -0.90 -0.81 -2.72* -2.43 -0.71 -0.62 -1.20 -1.11 -0.07 -0.04

(1.70) (1.76) (2.19) (2.33) (1.48) (1.53) (1.93) (2.07) (0.99) (1.01) (1.18) (1.27)

Constant 23.40*** 22.69*** 21.68*** 21.04*** 21.53*** 20.95*** 20.05*** 19.50*** 16.14*** 15.86*** 15.22*** 14.94***

(1.35) (1.31) (1.37) (1.29) (1.12) (1.10) (1.17) (1.10) (0.75) (0.75) (0.78) (0.74)

Num of obs. 1079 1079 1092 1092 1079 1079 1092 1092 1066 1066 1079 1079

R
2

0.31 0.29 0.25 0.24 0.29 0.27 0.23 0.22 0.24 0.23 0.20 0.19

Night Lights, Mean Night Lights, Mean/2 Night Lights, Mean/4

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.15 – First difference regression, city-level sample expanded through the first urbanization procedure, strong/weak 

positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of average night-late intensity, the explanatory variables are the first  

differences of weak/strong positive/negative anomalies, weighted by installed capacity in odd columns and by operational capacity in even  columns, constructed using 4 radiuses 

changing with country dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest 

average night light intensity amongst all capitals in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 Δ St. Neg. Anomaly Index 0.14 0.11 0.25* 0.21 0.12 0.10 0.18 0.14 0.13 0.12 0.16* 0.16*

(0.14) (0.14) (0.15) (0.15) (0.12) (0.12) (0.12) (0.12) (0.09) (0.09) (0.09) (0.09)

Δ  St. Pos. Anomaly Index -0.01 -0.02 0.00 0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.03 -0.02 -0.02

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Δ Wk. Neg. Anomaly Index -0.22 -0.19 -0.26 -0.14 -0.17 -0.15 -0.16 -0.05 -0.33* -0.33 -0.25 -0.21

(0.29) (0.30) (0.30) (0.32) (0.24) (0.25) (0.25) (0.26) (0.19) (0.20) (0.20) (0.21)

Δ Wk. Pos. Anomaly Index -0.20 -0.26* -0.01 -0.08 -0.16 -0.20 -0.03 -0.08 -0.12 -0.13 -0.03 -0.03

(0.14) (0.14) (0.14) (0.15) (0.12) (0.12) (0.12) (0.12) (0.10) (0.10) (0.11) (0.11)

Constant 1.08*** 1.09*** 1.07*** 1.09*** 0.94*** 0.95*** 0.94*** 0.95*** 0.56** 0.56** 0.56** 0.56**

(0.18) (0.18) (0.18) (0.18) (0.16) (0.16) (0.16) (0.16) (0.18) (0.18) (0.18) (0.18)

Num of obs. 996 996 1008 1008 996 996 1008 1008 984 984 996 996

R
2

0.72 0.72 0.71 0.71 0.73 0.73 0.73 0.73 0.71 0.71 0.71 0.71

Δ Night Lights, Mean Δ Night Lights, Mean/2 Δ Night Lights, Mean/4

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.16 – Fixed effect panel regression, growth form in the city-level sample expanded through the first urbanization procedure, 

strong/weak positive/negative anomalies. 

 

Panel estimation with city fixed effect. The dependent variables is the average night -late intensity, the explanatory variable are the weak/strong positive/negative anomalies, 

weighted by installed capacity in odd columns and by operational capacity in even columns, constructed using 4 radiuses chang ing with country dimension in columns 1, 2, 5, 

6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night light intensity amongst all capitals in  

columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index 0.07 0.09 0.01 -0.05 0.14 0.16 0.11 0.07 0.14 0.14 -0.03 -0.05

(0.34) (0.34) (0.36) (0.36) (0.26) (0.26) (0.28) (0.28) (0.19) (0.19) (0.20) (0.20)

St. Pos. Anomaly Index 0.02 0.03 0.00 -0.00 0.00 -0.00 -0.00 -0.02 0.01 0.00 -0.00 -0.01

(0.05) (0.05) (0.06) (0.06) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03)

Wk. Neg. Anomaly Index 0.47 0.33 0.90 1.18* -0.21 -0.36 0.28 0.35 -0.61 -0.70 -0.24 -0.22

(0.65) (0.66) (0.68) (0.71) (0.50) (0.51) (0.52) (0.54) (0.36) (0.37) (0.38) (0.39)

Wk. Pos. Anomaly Index -0.49 -0.30 -0.47 -0.30 -0.43 -0.32 -0.39 -0.33 -0.14 -0.08 -0.19 -0.14

(0.35) (0.36) (0.36) (0.38) (0.27) (0.28) (0.28) (0.29) (0.19) (0.20) (0.20) (0.21)

Constant 20.80*** 20.49*** 20.78*** 20.73*** 19.09*** 18.89*** 19.15*** 19.10*** 14.27*** 14.15*** 14.31*** 14.29***

(0.51) (0.49) (0.49) (0.48) (0.39) (0.38) (0.38) (0.37) (0.28) (0.28) (0.27) (0.27)

Num of obs. 1079 1079 1092 1092 1079 1079 1092 1092 1066 1066 1079 1079

Night Lights, Mean Night Lights, Mean/2 Night Lights, Mean/4

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.17 – Level regression, capital sample expanded through the second urbanization procedure, yearly mean anomaly. 

 

Pooled OLS regression with s.e clustered at the city level. The dependent variables is the average night-late intensity, the explanatory variable is the yearly mean anomaly , 

weighted by installed capacity in odd columns and by operational capacity in even columns, constructed using 4 radiuses cha nging with country dimension in columns 1, 2, 5, 

6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All capitals’ boundaries were expanded using their specific yearly average night light intensity in columns 1 

to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=sign ificant at the 5% 

level; *=significant at the 10% level. 

 

  

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mean Anomaly (Inst, 4 rad) 4.85 4.37 3.13

(4.62) (4.07) (3.33)

Mean Anomaly (Op, 4 rad) 1.94 1.73 1.20

(3.04) (2.67) (2.12)

Mean Anomaly (Inst, 2 rad) 5.10 4.58 3.19

(4.78) (4.20) (3.47)

Mean Anomaly (Op, 2 rad) 6.76 5.88 4.31

(5.03) (4.46) (3.68)

Constant 26.16*** 26.15*** 26.17*** 26.16*** 26.08*** 26.08*** 26.09*** 26.08*** 24.29*** 24.29*** 24.30*** 24.29***

(1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.40) (1.39) (1.40) (1.40)

Num of obs. 325 325 325 325 325 325 325 325 325 325 325 325

R
2

0.32 0.32 0.32 0.33 0.31 0.30 0.31 0.31 0.17 0.16 0.16 0.17

Night Lights, Mean Night Lights, Mean/2  Night Lights, Mean/4
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Table 4.18 – First difference regression, capital sample expanded through the second urbanization procedure, yearly mean anomaly. 

 

Pooled OLS regression with s.e clustered at the city level. The dependent variables is the first difference of average night-late intensity, the explanatory variable is the first  

difference of the yearly mean anomaly, weighted by installed capacity in odd columns and by operational capacity in even columns, construct ed using 4 radiuses changing with 

country dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All capitals’ boundaries were expanded using their specific yearly  

average night light intensity in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at 

the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Δ Mean Anomaly (Inst, 4 rad) -0.00 -0.05 -0.32

(0.48) (0.43) (0.39)

Δ Mean Anomaly (Op, 4 rad) -0.11 -0.14 -0.22

(0.25) (0.22) (0.20)

Δ Mean Anomaly (Inst, 2 rad) 0.12 0.13 -0.32

(0.66) (0.59) (0.50)

Δ Mean Anomaly (Op, 2 rad) 0.25 0.22 -0.22

(0.61) (0.54) (0.47)

Constant 1.55*** 1.54*** 1.55*** 1.56*** 1.44*** 1.44*** 1.45*** 1.45*** 0.45 0.45 0.45 0.45

(0.25) (0.25) (0.25) (0.25) (0.25) (0.25) (0.25) (0.26) (0.25) (0.25) (0.25) (0.25)

Num of obs. 300 300 300 300 300 300 300 300 300 300 300 300

R
2

0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.74 0.74 0.74 0.74

Δ Night Lights, Mean Δ Night Lights, Mean/2 Δ Night Lights, Mean/4
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Table 4.19 – Fixed effect panel regression, level form in the capital sample expanded through the second urbanization procedure, yearly 

mean anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night-late intensity, the explanatory variable is the yearly mean anomaly, weighted by 

installed capacity in odd columns and by operational capacity in even columns, constructed using 4 radiu ses changing with country dimension in columns 1, 2, 5, 6, 9, 10 and 

with only two radiuses in columns 3, 4, 7, 8, 11, 12. All capitals’ boundaries were expanded using their specific yearly average night light intensity in columns 1 to 4, half of 

that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant  

at the 10% level. 

 

 

 

 

 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

 Mean Anomaly (Inst, 4 rad) 1.25 1.02 0.19

(1.29) (1.10) (0.93)

Mean Anomaly (Op, 4 rad) 0.07 -0.04 -0.22

(0.85) (0.72) (0.61)

Mean Anomaly (Inst, 2 rad) 1.82 1.56 0.40

(1.54) (1.32) (1.11)

Mean Anomaly (Op, 2 rad) 2.60 2.05 0.76

(1.48) (1.27) (1.07)

Constant 26.18*** 26.18*** 26.18*** 26.17*** 26.10*** 26.11*** 26.10*** 26.10*** 24.31*** 24.32*** 24.31*** 24.31***

(0.63) (0.64) (0.63) (0.63) (0.54) (0.54) (0.54) (0.54) (0.46) (0.46) (0.46) (0.46)

Num of obs. 325 325 325 325 325 325 325 325 325 325 325 325

Night Lights, Mean Night Lights, Mean/2 Night Lights, Mean/4
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Table 4.20 – Level regression, capital sample expanded through the second urbanization procedure, strong/weak positive/negative 

anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependen t variables is the average night-late intensity, the explanatory variables are the weak/strong 

positive/negative anomalies, weighted by installed capacity in odd columns and by operational capacity in even columns, const ructed using 4 radiuses changing with country 

dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All capitals’ boundaries were expanded using their specific yearly average night 

light intensity in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions inc lude time dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

  

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index -0.94 -0.93 0.10 -0.04 -0.91 -0.91 0.17 0.03 -1.04 -1.03 0.40 0.23

(0.59) (0.67) (0.65) (0.76) (0.56) (0.63) (0.65) (0.74) (0.71) (0.74) (0.81) (0.86)

St. Pos. Anomaly Index 0.12 0.23 0.15 0.26 0.16 0.25 0.18 0.27 -0.03 0.07 0.00 0.09

(0.26) (0.27) (0.30) (0.33) (0.26) (0.27) (0.30) (0.34) (0.29) (0.29) (0.34) (0.38)

Wk. Neg. Anomaly Index 0.06 0.73 2.09 2.20 -0.21 0.41 1.88 1.94 -1.09 -0.53 1.87 1.79

(1.66) (1.59) (1.99) (1.90) (1.63) (1.54) (2.04) (1.92) (1.75) (1.62) (2.65) (2.49)

Wk. Pos. Anomaly Index -2.34 -1.43 0.46 0.51 -2.44 -1.55 0.42 0.47 -2.96 -2.09 1.02 0.99

(1.94) (1.82) (2.39) (2.20) (2.00) (1.86) (2.53) (2.32) (2.13) (1.95) (3.21) (2.97)

Constant 26.63*** 25.90*** 26.85*** 26.37*** 26.38*** 25.65*** 26.69*** 26.22*** 24.83*** 24.17*** 25.13*** 24.63***

(1.87) (1.82) (1.80) (1.67) (1.78) (1.72) (1.74) (1.61) (1.81) (1.77) (1.75) (1.63)

Num of obs. 325 325 325 325 325 325 325 325 325 325 325 325

R
2

0.33 0.33 0.33 0.33 0.31 0.32 0.31 0.31 0.18 0.18 0.18 0.17

Night Lights, Mean Night Lights, Mean/2 Night Lights, Mean/4

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.21 – First difference regression, capital sample expanded through the second urbanization procedure, strong/weak 

positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of average night-late intensity, the explanatory variables are the first  

differences of weak/strong positive/negative anomalies, weighted by installed capacity in odd co lumns and by operational capacity in even columns, constructed using 4 radiuses 

changing with country dimension in columns 1, 2, 5, 6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All capitals’ boundaries were expanded using their 

specific yearly average night light intensity in columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to  12. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 Δ St. Neg. Anomaly Index -0.05 -0.07 0.06 0.12 -0.10 -0.15 0.04 0.06 -0.16 -0.20 0.05 0.07

(0.33) (0.35) (0.30) (0.32) (0.29) (0.31) (0.26) (0.27) (0.27) (0.28) (0.27) (0.27)

Δ  St. Pos. Anomaly Index -0.01 -0.01 -0.03 -0.02 -0.01 -0.00 -0.02 -0.01 -0.04 -0.03 -0.04 -0.04

(0.04) (0.04) (0.05) (0.05) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03)

Δ Wk. Neg. Anomaly Index 0.06 0.10 -0.55 -0.43 0.17 0.25 -0.39 -0.24 0.21 0.28 -0.12 -0.00

(0.62) (0.64) (0.54) (0.56) (0.55) (0.56) (0.50) (0.50) (0.52) (0.54) (0.46) (0.47)

Δ Wk. Pos. Anomaly Index -0.58** -0.49* -0.57** -0.49* -0.53* -0.45 -0.54** -0.46* -0.44* -0.37* -0.38* -0.33

(0.28) (0.28) (0.27) (0.27) (0.28) (0.27) (0.26) (0.27) (0.22) (0.21) (0.23) (0.22)

Constant 1.50*** 1.52*** 1.50*** 1.52*** 1.41*** 1.42*** 1.41*** 1.42*** 0.42 0.43 0.44 0.45

(0.24) (0.25) (0.25) (0.26) (0.25) (0.25) (0.25) (0.26) (0.25) (0.25) (0.25) (0.25)

Num of obs. 300 300 300 300 300 300 300 300 300 300 300 300

R
2

0.76 0.76 0.76 0.76 0.78 0.78 0.78 0.78 0.75 0.74 0.74 0.74

Δ Night Lights, Mean Δ Night Lights, Mean/2 Δ Night Lights, Mean/4

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.22 – Fixed effect panel regression, level form in the capital sample expanded through the second urbanization procedure , 

strong/weak positive/negative anomalies. 

 

Panel estimation with city fixed effect. The dependent variables is the average night-late intensity, the explanatory variable are the weak/strong positive/negative anomalies, 

weighted by installed capacity in odd columns and by operational capacity in even columns, constructed using 4 radiuses chang ing with country dimension in columns 1, 2, 5, 

6, 9, 10 and with only two radiuses in columns 3, 4, 7, 8, 11, 12. All cities’ boundaries were expanded using the lowest average night light intensity amongst all capitals in  

columns 1 to 4, half of that value in columns 5 to 8 and a quarter in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index 0.31 0.21 0.75 0.97 0.14 0.02 0.52 0.63 -0.12 -0.17 0.21 0.34

(0.74) (0.72) (0.83) (0.80) (0.63) (0.62) (0.71) (0.69) (0.53) (0.52) (0.60) (0.58)

St. Pos. Anomaly Index 0.07 0.13 0.06 0.10 0.09 0.13 0.06 0.09 0.04 0.07 0.02 0.04

(0.12) (0.11) (0.12) (0.12) (0.10) (0.10) (0.10) (0.10) (0.09) (0.08) (0.09) (0.09)

Wk. Neg. Anomaly Index 1.00 1.06 0.79 1.31 0.95 1.04 0.81 1.30 0.45 0.48 0.29 0.58

(1.35) (1.37) (1.36) (1.34) (1.16) (1.17) (1.16) (1.15) (0.98) (0.99) (0.98) (0.97)

Wk. Pos. Anomaly Index -0.95 -0.55 -0.16 -0.17 -0.91 -0.54 -0.25 -0.25 -0.73 -0.49 -0.23 -0.25

(0.78) (0.75) (0.78) (0.75) (0.67) (0.64) (0.67) (0.64) (0.57) (0.54) (0.56) (0.54)

Constant 28.01*** 27.39*** 27.71*** 28.23*** 27.57*** 27.00*** 27.38*** 27.78*** 25.00*** 24.64*** 24.95*** 25.27***

(0.96) (0.94) (1.02) (0.98) (0.82) (0.80) (0.87) (0.84) (0.70) (0.68) (0.74) (0.71)

Num of obs. 325 325 325 325 325 325 325 325 325 325 325 325

Night Lights, Mean/4

4 Radiuses 2 Radiuses

Night Lights, Mean

4 Radiuses 2 Radiuses

Night Lights, Mean/2

4 Radiuses 2 Radiuses
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Table 4.23 – Level regression, city-level restricted sample, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night -late intensity, the explanatory variable is the yearly mean anomaly, 

weighted by either installed or operational capacity. Only cities of countries in which  hydropower represents at least 30% of installed capacity are included in columns 1 to 4, 

the threshold is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

 

  

Mean Anomaly (Inst, 4 rad) 2.93 3.81 4.79

(2.46) (2.72) (3.19)

Mean Anomaly (Op, 4 rad) 3.31 4.11 5.13

(2.64) (2.88) (3.29)

Mean Anomaly (Inst, 2 rad) 2.26 3.05 3.58

(1.98) (2.29) (2.54)

Mean Anomaly (Op, 2 rad) 2.67 3.37 3.97

(2.48) (2.79) (3.07)

Constant 18.39*** 18.36*** 18.41*** 18.37*** 18.04*** 18.02*** 18.06*** 18.03*** 16.95*** 16.91*** 17.02*** 16.98***

(1.01) (1.01) (1.01) (1.01) (1.20) (1.20) (1.20) (1.20) (1.31) (1.31) (1.31) (1.30)

Num of obs. 975 975 975 975 780 780 780 780 559 559 559 559

R
2

0.14 0.14 0.14 0.14 0.13 0.14 0.13 0.13 0.14 0.14 0.14 0.14

30%HP 40% HP 50% HP

Night Lights Night Lights Night Lights
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Table 4.24 – First difference regression, city-level restricted sample, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of average night-late intensity, the explanatory variable is the first 

difference of the yearly mean anomaly, weighted by either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed  

capacity are included in columns 1 to 4, the threshold is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. A ll regressions include time dummies. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

Δ Mean Anomaly (Inst, 4 rad) -0.21 -0.16 0.01

(0.31) (0.34) (0.36)

Δ Mean Anomaly (Op, 4 rad) -0.23 -0.22 0.02

(0.32) (0.34) (0.36)

Δ Mean Anomaly (Inst, 2 rad) 0.04 0.07 0.05

(0.32) (0.36) (0.37)

Δ Mean Anomaly (Op, 2 rad) 0.16 0.19 0.18

(0.32) (0.35) (0.36)

Constant 1.22*** 1.21*** 1.23*** 1.24*** 1.22*** 1.22*** 1.24*** 1.25*** 1.11** 1.11** 1.12** 1.13**

(0.26) (0.26) (0.26) (0.26) (0.31) (0.31) (0.31) (0.31) (0.36) (0.36) (0.36) (0.36)

Num of obs. 912 912 912 912 732 732 732 732 528 528 528 528

R
2

0.63 0.63 0.63 0.63 0.61 0.61 0.61 0.61 0.58 0.58 0.58 0.58

30%HP 40% HP 50% HP

Δ Night Lights Δ Night Lights Δ Night Lights



363 
 

 

Table 4.25 – Fixed effect panel regression, level form in the city-level restricted sample, yearly mean anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the explanatory variable is the yearly mean anomaly, weighted by 

either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed c apacity are included in columns 1 to 4, the threshold 

is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. 

 

 

 

 

 

 Mean Anomaly (Inst, 4 rad) 0.94 1.53 1.96*

(0.88) (1.00) (1.17)

Mean Anomaly (Op, 4 rad) 1.05 1.54 2.00*

(0.88) (0.99) (1.15)

Mean Anomaly (Inst, 2 rad) 0.68 1.18 1.46

(0.96) (1.10) (1.24)

Mean Anomaly (Op, 2 rad) 0.58 0.97 1.24

(0.96) (1.08) (1.22)

Constant 18.46*** 18.45*** 18.46*** 18.46*** 18.13*** 18.13*** 18.14*** 18.15*** 17.10*** 17.09*** 17.13*** 17.14***

(0.45) (0.45) (0.45) (0.45) (0.52) (0.53) (0.53) (0.53) (0.66) (0.67) (0.67) (0.67)

Num of obs. 975 975 975 975 780 780 780 780 559 559 559 559

30%HP 40% HP 50% HP

Night Lights Night Lights Night Lights
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Table 4.26 – Level regression, city-level restricted sample, strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night -late, the explanatory variables are the weak/strong positive/negative 

anomalies, weighted by either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed capacity are included in  

columns 1 to 4, the threshold is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

  

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index -0.39 -0.46 -0.20 -0.48 -0.25 -0.19 -0.07 -0.27 -0.12 -0.01 0.68 0.50

(0.83) (0.82) (0.82) (0.86) (0.88) (0.87) (0.88) (0.92) (0.95) (0.95) (0.92) (0.97)

St. Pos. Anomaly Index -0.14 -0.11 0.01 -0.01 -0.09 -0.08 0.14 0.12 -0.08 -0.10 -0.02 -0.06

(0.21) (0.21) (0.24) (0.25) (0.22) (0.23) (0.26) (0.26) (0.25) (0.24) (0.25) (0.25)

Wk. Neg. Anomaly Index 0.54 0.43 1.94 1.60 1.00 1.14 2.75 2.54 1.38 1.34 3.58 3.26

(1.87) (1.94) (2.32) (2.35) (1.95) (2.03) (2.42) (2.44) (2.30) (2.30) (2.67) (2.71)

Wk. Pos. Anomaly Index -2.66 -2.43 -0.55 -0.43 -2.73 -2.34 -0.22 0.08 -2.63 -2.26 0.21 0.68

(1.63) (1.68) (2.08) (2.21) (1.74) (1.78) (2.18) (2.28) (1.96) (2.02) (2.40) (2.54)

Constant 21.59*** 20.97*** 20.13*** 19.48*** 22.23*** 21.89*** 20.06*** 19.39*** 22.37*** 22.02*** 21.72*** 20.59***

(1.46) (1.36) (1.43) (1.30) (1.82) (1.73) (1.81) (1.69) (2.30) (2.20) (2.24) (2.13)

Num of obs. 975 975 975 975 780 780 780 780 559 559 559 559

R
2

0.20 0.18 0.16 0.15 0.21 0.20 0.16 0.15 0.22 0.21 0.22 0.19

Night Lights, 30% HP Night Lights, 40% HP Night Lights, 50% HP

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.27 – First difference regression, city-level restricted sample, strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of average night-late, the explanatory variables are the first differences 

of weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only cities of countries in which hydropower represents at least 30%  of 

installed capacity are included in columns 1 to 4, the threshold is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 Δ St. Neg. Anomaly Index (Inst) 0.16 0.15 0.23* 0.22* 0.12 0.10 0.18 0.17 0.16 0.13 0.21 0.21

(0.13) (0.13) (0.13) (0.13) (0.14) (0.14) (0.15) (0.14) (0.15) (0.15) (0.15) (0.16)

Δ  St. Pos. Anomaly Index (Inst) -0.03 -0.03 -0.01 -0.01 -0.02 -0.03 -0.01 -0.01 -0.02 -0.02 -0.01 -0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.02) (0.02) (0.03) (0.02)

Δ Wk. Neg. Anomaly Index (Inst) -0.16 -0.12 -0.17 -0.06 -0.01 0.02 -0.04 0.05 -0.04 0.02 -0.07 0.02

(0.29) (0.30) (0.28) (0.29) (0.30) (0.31) (0.29) (0.31) (0.33) (0.35) (0.31) (0.33)

Δ Wk. Pos. Anomaly Index (Inst) -0.14 -0.19 0.06 0.01 -0.14 -0.21 0.04 -0.01 -0.09 -0.16 0.03 -0.02

(0.14) (0.14) (0.14) (0.14) (0.14) (0.14) (0.15) (0.15) (0.16) (0.16) (0.16) (0.16)

Constant 1.25*** 1.26*** 1.24*** 1.25*** 1.25*** 1.26*** 1.24*** 1.25*** 1.11** 1.12** 1.11** 1.13**

(0.26) (0.26) (0.27) (0.27) (0.31) (0.32) (0.32) (0.32) (0.37) (0.37) (0.37) (0.37)

Num of obs. 912 912 912 912 732 732 732 732 528 528 528 528

R
2

0.63 0.64 0.63 0.63 0.61 0.61 0.61 0.61 0.58 0.58 0.58 0.58

Δ Night Lights, 30% HP Δ Night Lights, 40% HP Δ Night Lights, 50% HP

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.28 – Fixed effect panel regression, city-level restricted sample, strong/weak positive/negative anomalies. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late, the explanatory variables are the weak/strong positive/negative anomalies, 

weighted by either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed capacity are included in columns 1 to 4, 

the threshold is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All regressions include time dummies. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

 

 

 

 

 

Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative Installed Operative

 St. Neg. Anomaly Index (Inst) 0.26 0.42 0.06 0.12 0.24 0.42 -0.01 0.06 0.26 0.44 0.12 0.20

(0.43) (0.43) (0.45) (0.46) (0.47) (0.47) (0.50) (0.50) (0.54) (0.54) (0.55) (0.55)

St. Pos. Anomaly Index (Inst) 0.02 0.02 -0.00 -0.01 0.07 0.07 0.04 0.02 0.06 0.06 0.04 0.02

(0.07) (0.07) (0.07) (0.07) (0.08) (0.08) (0.08) (0.08) (0.09) (0.09) (0.09) (0.09)

Wk. Neg. Anomaly Index (Inst) 0.66 0.57 0.90 1.17 0.87 0.71 1.10 1.30 1.17 0.99 1.29 1.51

(0.82) (0.83) (0.86) (0.89) (0.90) (0.91) (0.94) (0.97) (1.05) (1.07) (1.04) (1.09)

Wk. Pos. Anomaly Index (Inst) -0.53 -0.32 -0.50 -0.23 -0.40 -0.18 -0.42 -0.14 -0.53 -0.30 -0.37 -0.08

(0.44) (0.45) (0.45) (0.47) (0.48) (0.49) (0.50) (0.52) (0.58) (0.59) (0.56) (0.59)

Constant 19.86*** 19.70*** 19.68*** 19.65*** 19.51*** 19.35*** 19.36*** 19.36*** 19.31*** 19.10*** 19.01*** 18.98***

(0.69) (0.68) (0.67) (0.65) (0.86) (0.86) (0.84) (0.83) (1.14) (1.14) (1.13) (1.11)

Num of obs. 975 975 975 975 780 780 780 780 559 559 559 559

Night Lights, 30% HP  Night Lights, 40% HP  Night Lights, 50% HP

4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses 4 Radiuses 2 Radiuses
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Table 4.29 – Fixed effect panel regression, level form in the capital sample expanded through the second urbanization procedure, capital 

specific mean, yearly mean anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the explanatory variable is the yearly mean anomaly, weighted by 

either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed capacity are included in columns 1 to 4, the threshold 

is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All capitals’ boundaries were expanded using their specific yearly average night light intensity. All 

regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 Mean Anomaly (Inst, 4 rad) 2.40* 2.90* 3.67**

(1.43) (1.52) (1.79)

Mean Anomaly (Op, 4 rad) 2.82** 3.20** 4.04**

(1.39) (1.46) (1.72)

Mean Anomaly (Inst, 2 rad) 1.96 2.61 3.54*

(1.60) (1.73) (2.05)

Mean Anomaly (Op, 2 rad) 2.75* 3.23** 4.26**

(1.53) (1.61) (1.91)

Constant 26.36*** 26.36*** 26.36*** 26.35*** 26.92*** 26.93*** 26.91*** 26.92*** 25.93*** 25.95*** 25.96*** 25.99***

(0.71) (0.71) (0.71) (0.71) (0.76) (0.76) (0.76) (0.76) (1.00) (0.99) (1.00) (0.99)

Number of obs. 273 273 273 273 234 234 234 234 156 156 156 156

30%HP, Mean 40% HP, Mean 50% HP, Mean

Night Lights Night Lights Night Lights
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Table 4.30 – Fixed effect panel regression, level form in the capital sample expanded through the second urbanization procedure, capital 

specific mean, yearly mean anomaly. 

  

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the explanatory variable is the yearly mean anomaly, weighted by 

either installed or operational capacity. Only cities of countries in which hydropower represents at least 30% of installed capacity are inclu ded in columns 1 to 4, the threshold 

is increased to 40% in columns 5 to 8 and to 50% in columns 9 to 12. All capitals’ boundaries were expanded using half of their specific yearly average night light intensity. 

All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 Mean Anomaly (Inst, 4 rad) 2.03* 2.37* 2.89*

(1.23) (1.30) (1.52)

Mean Anomaly (Op, 4 rad) 2.27* 2.60** 3.17**

(1.20) (1.24) (1.46)

Mean Anomaly (Inst, 2 rad) 1.67 2.13 2.83

(1.37) (1.47) (1.74)

Mean Anomaly (Op, 2 rad) 2.17 2.61* 3.39**

(1.32) (1.37) (1.62)

Constant 26.30*** 26.30*** 26.30*** 26.29*** 26.85*** 26.85*** 26.84*** 26.85*** 25.87*** 25.88*** 25.89*** 25.91***

(0.61) (0.61) (0.61) (0.61) (0.65) (0.65) (0.65) (0.65) (0.85) (0.84) (0.85) (0.85)

Number of obs. 273 273 273 273 234 234 234 234 156 156 156 156

30%HP, Mean/2 40% HP, Mean/2 50% HP, Mean/2

Night Lights Night Lights Night Lights
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Table 4.31 –Level regression, city-level sample, city specific linear time-trend, yearly 

mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night-late intensity, 

the explanatory variable is the yearly mean anomaly, weighted by either installed or operational capacity. All regressions 

include city specific linear time-trend. ***=significant at the 1% level; **=significant at the 5% level; *=significant at 

the 10% level. 

Table 4.32 – First difference regression, city-level sample, city specific linear time-trend, 

yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of 

average night-late intensity, the explanatory variable is the first difference of the yearly mean anomaly, weighted 

by either installed or operational capacity. All regressions include city specific linear time-trend. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

(1) (2) (3) (4)

Mean Anomaly (Inst, 4 rad) -0.60

(1.56)

Mean Anomaly (Op, 4 rad) -0.19

(1.19)

Mean Anomaly (Inst, 2 rad) -1.26

(1.50)

Mean Anomaly (Op, 2 rad) -0.90

(1.74)

Constant 36.49*** 36.49*** 36.49*** 36.49***

(0.52) (0.52) (0.52) (0.53)

Num of obs. 1079 1079 1092 1092

R
2

0.77 0.77 0.77 0.77

Night Lights

(1) (2) (3) (4)

Δ Mean Anomaly (Inst, 4 rad) 1.63

(0.98)

Δ Mean Anomaly (Op, 4 rad) 0.69

(0.69)

Δ Mean Anomaly (Inst, 2 rad) 2.08

(1.47)

Δ Mean Anomaly (Op, 2 rad) 1.82

(1.37)

Constant 4.49*** 4.49*** 4.49*** 4.49***

(0.00) (0.00) (0.00) (0.00)

Num of obs. 996 996 1008 1008

R
2

0.06 0.06 0.07 0.06

Δ Night Lights
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Table 4.33 – Fixed effect panel regression, level form in the city-level sample, city 

specific linear time-trend, yearly mean anomaly. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the 

explanatory variable is the average growth in the yearly mean anomaly, weighted by either installed or operational 

capacity. All regressions include city specific linear time-trend. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

Table 4.34 – Level regression, city-level sample, city specific linear time-trend, 

strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the average night -late 

intensity, the explanatory variables are the weak/strong positive/negative anomalies, weighted by either installed 

or operational capacity. All regressions include city specific linear time-trend. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 Mean Anomaly (Inst, 4 rad) 0.49

(0.87)

Mean Anomaly (Op, 4 rad) 0.23

(0.74)

Mean Anomaly (Inst, 2 rad) 0.47

(0.96)

Mean Anomaly (Op, 2 rad) 0.23

(0.97)

Constant 36.99*** 36.99*** 36.99*** 36.99***

(1.08) (1.08) (1.07) (1.07)

Num of obs. 1079 1079 1092 1092

Night Lights

Installed Operative Installed Operative

 St. Neg. Anomaly Index -0.21 -0.09 -0.44 -0.45

(0.62) (0.60) (0.72) (0.72)

St. Pos. Anomaly Index -0.17** -0.12 -0.19** -0.15**

(0.08) (0.08) (0.07) (0.07)

Wk. Neg. Anomaly Index 2.57** 2.50 2.80** 3.44**

(1.24) (1.28) (1.29) (1.49)

Wk. Pos. Anomaly Index -1.64*** -1.51*** -1.58*** -1.44***

(0.50) (0.45) (0.58) (0.51)

Constant 39.12*** 38.04*** 39.10*** 37.65***

(0.98) (0.65) (1.10) (0.63)

Num of obs. 1079 1079 1092 1092

R
2

0.77 0.77 0.78 0.78

Night Lights

4 Radiuses 2 Radiuses
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Table 4.35 – First difference regression, city-level sample, city specific linear time-trend, 

strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the city level. The dependent variables is the first difference of 

average night-late intensity, the explanatory variables are the first differences  of weak/strong positive/negative 

anomalies, weighted by either installed or operational capacity. All regressions include city specific linear time -

trend. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level.  

Table 4.36 – Fixed effect panel regression, level form in the city-level sample, city 

specific linear time-trend, strong/weak positive/negative anomalies. 

 

Panel estimation with city fixed effect. The dependent variables is the yearly average night -late intensity, the 

explanatory variables are the weak/strong positive/negative anomalies, weighted by either installed or operational 

capacity. All regressions include city specific linear time-trend. ***=significant at the 1% level; **=significant at 

the 5% level; *=significant at the 10% level. 

Installed Operative Installed Operative

 Δ St. Neg. Anomaly Index -0.13 -0.03 -0.13 -0.03

(0.29) (0.30) (0.28) (0.32)

Δ  St. Pos. Anomaly Index 0.13*** 0.12*** 0.12*** 0.12***

(0.04) (0.04) (0.04) (0.04)

Δ Wk. Neg. Anomaly Index 0.11 -0.21 0.10 -0.22

(0.64) (0.66) (0.70) (0.78)

Δ Wk. Pos. Anomaly Index -0.24 -0.18 -0.24 -0.24

(0.26) (0.28) (0.19) (0.21)

Constant 4.46*** 4.48*** 4.46*** 4.47***

(0.01) (0.01) (0.01) (0.01)

Num of obs. 996 996 1008 1008

R
2

0.07 0.06 0.06 0.06

Δ Night Lights

4 Radiuses 2 Radiuses

Installed Operative Installed Operative

 St. Neg. Anomaly Index 0.09 0.22 0.20 0.27

(0.45) (0.45) (0.47) (0.48)

St. Pos. Anomaly Index 0.01 0.01 -0.02 -0.02

(0.07) (0.07) (0.07) (0.07)

Wk. Neg. Anomaly Index 1.07 0.74 1.15 0.82

(0.85) (0.86) (0.87) (0.91)

Wk. Pos. Anomaly Index -0.62 -0.45 -0.53 -0.35

(0.46) (0.47) (0.46) (0.49)

Constant 38.09*** 37.54*** 38.39*** 37.52***

(1.16) (1.10) (1.20) (1.10)

Num of obs. 1079 1079 1092 1092

Night Lights

4 Radiuses 2 Radiuses
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Table 4.37 – Quantile regression, growth form in the city-level sample, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly growth of average night -late intensity, the explanatory variable is the average growth in the yearly mean  

anomaly, weighted by installed capacity or by operational capacity. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% 

level; *=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

Δ Mean Anomaly (Inst, 4 rad) 0.0001054*** 0.0000728*** 0.0000499** 4.62e-06***

(0.00) (0.00) (0.00) (0.00)

Δ Mean Anomaly (Op, 4 rad) 0.0003098*** 0.0003205*** 0.0000476 0.0000967***

(0.00) (0.00) (0.00) (0.00)

Δ Mean Anomaly (Inst, 2 rad) 0.000088*** 0.0000747*** 0.0000748*** 0.0000185***

(0.00) (0.00) (0.00) (0.00)

Δ Mean Anomaly (Op, 2 rad) 0.000088*** 0.0000747*** 0.0000748*** 0.0000185***

(0.00) (0.00) (0.00) (0.00)

Constant 0.04*** 0.06*** 0.23*** 0.49*** 0.01*** 0.04*** 0.21*** 0.48*** 0.01*** 0.04*** 0.21*** 0.47*** 0.01*** 0.04*** 0.21*** 0.48***

(0.00) (0.01) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.00)

Num of obs. 996 996 996 996 996 996 996 996 1008 1008 1008 1008 1008 1008 1008 1008

Δ Night Lights Δ Night Lights Δ Night Lights Δ Night Lights
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Table 4.38 – Quantile regression, level form in the city-level sample, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly growth of average night-late intensity, the explanatory variable is the average growth in the yearly mean  

anomaly, weighted by installed capacity or by operational capacity. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% 

level; *=significant at the 10% level. 
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Table 4.39 – Quantile regression, growth form in the city-level sample, strong/weak positive/negative anomalies. 

 

Quantile regression. The dependent variables is the yearly growth of average night-late intensity, the explanatory variables are the growth rate of weak/strong 

positive/negative anomalies, weighted by either installed or operational capacity. All regressions include time dummies. ***=significant at the 1% level; **=significant 

at the 5% level; *=significant at the 10% level. 
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Table 4.40 – Quantile regression, level form in the city-level sample, strong/weak positive/negative anomalies. 

 

Quantile regression. The dependent variables is the yearly average night-late intensity, the explanatory variables are the weak/strong positive/negative anomalies, 

weighted by either installed or operational capacity. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant  

at the 10% level. 

 

  

(1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

 St. Neg. Anomaly Index 0.29*** 0.23*** 0.28*** 0.14*** 0.16*** 0.26*** 0.51*** 0.33*** 0.16*** 0.25*** 0.13*** 0.40*** 0.05*** 0.17*** 0.60*** 0.43***

(0.00) (0.04) (0.03) (0.00) (0.00) (0.01) (0.02) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.02) (0.04) (0.00)

St. Pos. Anomaly Index 0.02*** 0.02** 0.03***-0.0017467***0.02*** 0.02*** 0.01* -0.01*** 0.01*** -0.01*** -0.00 -0.01*** 0.01*** -0.01*** -0.01 -0.02***

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)

Wk. Neg. Anomaly Index 0.51*** 0.60*** 0.14*** -0.23*** 0.75*** 0.68*** -0.16*** -0.34*** 0.90*** 0.43*** 0.44*** -0.10*** 1.32*** 0.91*** 0.73*** 0.04***

(0.00) (0.08) (0.05) (0.00) (0.00) (0.03) (0.03) (0.00) (0.00) (0.03) (0.03) (0.00) (0.00) (0.04) (0.07) (0.00)

Wk. Pos. Anomaly Index 0.11*** -0.25*** -0.18*** -0.28*** 0.21*** -0.03* -0.16*** -0.09*** 0.04*** -0.32*** -0.15*** -0.02*** 0.08*** -0.03 -0.18*** 0.08***

(0.00) (0.05) (0.03) (0.00) (0.00) (0.02) (0.02) (0.00) (0.00) (0.02) (0.01) (0.00) (0.00) (0.02) (0.04) (0.00)

Constant 11.88*** 36.41*** 51.88*** 53.47*** 11.54*** 36.20*** 51.78*** 53.22*** 12.03*** 36.46*** 52.13*** 53.68*** 11.50*** 36.05*** 52.30*** 53.43***

(0.00) (0.12) (0.07) (0.00) (0.00) (0.04) (0.05) (0.00) (0.00) (0.04) (0.04) (0.00) (0.00) (0.05) (0.09) (0.00)

Num of obs. 1079 1079 1079 1079 1079 1079 1079 1079 1092 1092 1092 1092 1092 1092 1092 1092

4 Radiuses, Installed,   Night Lights 4 Radiuses, Operative,   Night Lights 2 Radiuses, Installed,   Night Lights 2 Radiuses, Operative,   Night Lights
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Table 4.41 – Level regression, country-level baseline specification, yearly mean 

anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night -late 

intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variable 

is the yearly mean anomaly, weighted by either installed or operational capacity. All regressions include time 

dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

Table 4.42 – First difference regression, country-level baseline specification, yearly 

mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of 

average night-late intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the 

explanatory variable is the first difference of the yearly mean anomaly, weighted by either installed or operational 

capacity. All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. 

 

 

 

 

(1) (2) (3) (4)

 Mean Anomaly (Inst) -0.05 0.88

(0.03) (0.61)

Mean Anomaly (Op) -0.04 0.82

(0.03) (0.53)

Constant 0.24** 0.24** 10.05*** 10.05***

(0.07) (0.07) (0.36) (0.36)

Num. of obs. 377 377 377 377

R
2

0.03 0.03 0.41 0.41

Night Lights Night Lights (0 censored)

(1) (2) (3) (4)

Δ Mean Anomaly (Inst) -0.02 -0.35

(0.02) (0.31)

Δ Mean Anomaly (Op) -0.01 -0.22

(0.01) (0.27)

Constant 0.01 0.01* -0.08 -0.07

(0.00) (0.00) (0.17) (0.17)

Num. of obs. 348 348 348 348

R
2

0.38 0.38 0.68 0.68

Δ Night Lights Δ Night Lights (0 censored)
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Table 4.43 – Fixed effect panel regression, level form of country-level baseline 

specification, yearly mean anomaly. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity, 

including unlit cells in columns 1 and 2  and excluding them in columns 3 and 4, the explanatory variable is the 

yearly mean anomaly, weighted by either installed or operational capacity. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

Mean Anomaly (Inst) -0.04 0.63

(0.03) (0.42)

Mean Anomaly (Op) -0.03 0.58

(0.03) (0.37)

Constant 0.24*** 0.24*** 10.05*** 10.05***

(0.01) (0.01) (0.17) (0.17)

Num. of obs. 377 377 377 377

Night Lights Night Lights (0 censored)
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Table 4.44 – Level regression, country-level baseline specification, strong/weak 

positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night -late 

intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variables 

are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. All 

regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant 

at the 10% level. 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

 St. Neg. Anomaly Index (Inst) 0.04 -0.29

(0.04) (0.28)

 St. Pos. Anomaly Index (Inst) -0.00 -0.09

(0.01) (0.06)

Wk. Neg. Anomaly Index (Inst) 0.07 -1.02**

(0.08) (0.49)

Wk. Pos. Anomaly Index (Inst) -0.07 -0.09

(0.06) (0.46)

St. Neg. Anomaly Index (Op) 0.04 -0.19

(0.03) (0.28)

 St. Pos. Anomaly Index (Op) 0.00 -0.08

(0.01) (0.06)

Wk. Neg. Anomaly Index (Op) 0.07 -0.88*

(0.07) (0.48)

Wk. Pos. Anomaly Index (Op) -0.06 -0.12

(0.04) (0.37)

Constant 0.42* 0.41* 9.33*** 9.53***

(0.16) (0.16) (0.57) (0.62)

Num. of obs. 377 377 377 377

R
2

0.14 0.14 0.45 0.44

Night Lights  Night Lights (0 censored)
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Table 4.45 – First difference regression, country-level baseline specification, 

strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of 

average night-late intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the 

explanatory variables are the first differences of weak/strong positive/negative anomalies, weighted by either 

installed or operational capacity. All regressions include time dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

 Δ St. Neg. Anomaly Index (Inst) 0.00 -0.25

(0.01) (0.21)

Δ  St. Pos. Anomaly Index (Inst) -0.00 -0.04

(0.00) (0.02)

Δ Wk. Neg. Anomaly Index (Inst) -0.00 0.05

(0.01) (0.28)

Δ Wk. Pos. Anomaly Index (Inst) -0.01 -0.10

(0.01) (0.16)

Δ  St. Neg. Anomaly Index (Op) 0.01 -0.19

(0.01) (0.21)

Δ  St. Pos. Anomaly Index (Op) -0.00 -0.04

(0.00) (0.02)

Δ Wk. Neg. Anomaly Index (Op) -0.02 0.06

(0.01) (0.27)

Δ Wk. Pos. Anomaly Index (Op) -0.01 -0.11

(0.01) (0.14)

Constant 0.01* 0.01 -0.10 -0.09

(0.00) (0.00) (0.17) (0.17)

Num. of obs. 348 348 348 348

R
2

0.38 0.38 0.69 0.69

Δ Night Lights Δ Night Lights (0 censored)
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Table 4.46 – Fixed effect panel regression, level form of baseline specification, 

strong/weak positive/negative anomalies. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity, 

including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variables are the 

weak/strong positive/negative anomalies, weighted by either installed or operational capacity. All regressions 

include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% 

level. 

 

 

  

(1) (2) (3) (4)

 St. Neg. Anomaly Index (Inst) -0.03 0.45*

(0.02) (0.25)

 St. Pos. Anomaly Index (Inst) -0.00 0.03

(0.00) (0.03)

Wk. Neg. Anomaly Index (Inst) 0.01 -0.08

(0.03) (0.41)

Wk. Pos. Anomaly Index (Inst) -0.01 0.17

(0.02) (0.22)

St. Neg. Anomaly Index (Op) -0.02 0.50**

(0.02) (0.23)

 St. Pos. Anomaly Index (Op) -0.00 0.03

(0.00) (0.03)

Wk. Neg. Anomaly Index (Op) 0.01 -0.06

(0.03) (0.39)

Wk. Pos. Anomaly Index (Op) -0.02 0.13

(0.02) (0.20)

Constant 0.23*** 0.23*** 10.34*** 10.47***

(0.02) (0.02) (0.29) (0.29)

Num. of obs. 377 377 377 377

Δ Night Lights Δ Night Lights (0 censored)
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Table A4.1 – Level regression, country-level restricted sample, unlit cells included, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night-late intensity including unlit cells, the explanatory variable is the 

yearly mean anomaly, weighted by either installed or operational capacity. Only countries in which hydropower represents at least 30% of installed capacity are included in 

columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

 Mean Anomaly (Inst) -0.06 -0.03 -0.01

(0.03) (0.02) (0.02)

Mean Anomaly (Op) -0.04 -0.03 -0.00

(0.02) (0.02) (0.02)

Constant 0.21** 0.21** 0.14** 0.14** 0.10*** 0.10***

(0.06) (0.06) (0.04) (0.04) (0.02) (0.02)

Num. of obs. 312 312 260 260 169 169

R
2

0.04 0.04 0.08 0.08 0.18 0.18

Night Lights

30% HP 40% HP 50% HP
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Table A4.2 – First difference regression, country-level restricted sample, unlit cells included, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of average night-late intensity including unlit cells , the explanatory 

variable is the first difference in the yearly mean anomaly, weighted by either installed or operational capacity . Only countries in which hydropower represents at least 30% of 

installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

Δ Mean Anomaly (Inst) -0.01 -0.00 -0.01

(0.01) (0.01) (0.01)

Δ Mean Anomaly (Op) 0.00 -0.00 -0.01

(0.01) (0.01) (0.01)

Constant 0.01 0.01 0.01* 0.01* 0.01** 0.01**

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. of obs. 288 288 240 240 156 156

R
2

0.39 0.39 0.42 0.42 0.57 0.57

Δ Night Lights

30% HP 40% HP 50% HP
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Table A4.3 – Fixed effect panel regression, level form in the country-level restricted sample,unlit cells included, yearly mean anomaly. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night late intensity including unlit cells, the explanatory variable is the yearly mean  

anomaly, weighted by either installed or operational capacity. Only countries in which hydropower represents at least 30% of installed capacity are included in columns 1 and 

2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies. ***=significant at the 1% level; **=significant  

at the 5% level; *=significant at the 10% level. 

 

 

 

  

(1) (2) (3) (4) (5) (6)

Mean Anomaly (Inst) -0.03 -0.01 0.00

(0.03) (0.03) (0.01)

Mean Anomaly (Op) -0.02 -0.01 0.01

(0.03) (0.02) (0.01)

Constant 0.21*** 0.21*** 0.14*** 0.14*** 0.10*** 0.10***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Num. of obs. 312 312 260 260 169 169

30% HP 40% HP 50% HP

Night Lights
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Table A4.4 – Level regression, country-level restricted sample, unlit cells excluded, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night -late intensity excluding unlit cells, the explanatory variable is the 

yearly mean anomaly, weighted by either installed or operational capacity. Only countries in which hydropower represents at least 30% of installed capacity are included in 

columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (5) (6)

 Mean Anomaly (Inst) 0.96 0.84 0.88

(0.64) (0.65) (0.90)

Mean Anomaly (Op) 0.89 0.82 0.95

(0.58) (0.55) (0.81)

Constant 10.05*** 10.05*** 10.10*** 10.09*** 9.80*** 9.80***

(0.42) (0.42) (0.35) (0.35) (0.44) (0.43)

Num. of obs. 312 312 260 260 169 169

R
2

0.38 0.38 0.45 0.45 0.48 0.48

Night Lights (0 censored)

30% HP 40% HP 50% HP
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Table A4.5 – First difference regression, country-level restricted sample, unlit cells excluded, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of the average night-late intensity excluding unlit cells, the 

explanatory variable is the first difference in the yearly mean anomaly, weighted by either installed or operational capacity. Only countries in which hydropower represents at 

least 30% of installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

  

 

  

(1) (2) (3) (4) (5) (6)

Δ Mean Anomaly (Inst) -0.23 -0.18 0.05

(0.31) (0.32) (0.34)

Δ Mean Anomaly (Op) -0.16 -0.05 0.17

(0.27) (0.27) (0.29)

Constant -0.04 -0.03 0.16 0.17 -0.01 0.00

(0.20) (0.20) (0.16) (0.16) (0.19) (0.19)

Num. of obs. 288 288 240 240 156 156

R
2

0.70 0.70 0.72 0.72 0.73 0.73

Δ Night Lights (0 censored)

30% HP 40% HP 50% HP
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Table A4.6 – Fixed effect panel regression, level form in the country-level restricted sample, unlit cells excluded, yearly mean anomaly. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night late intensity including unlit cells, the explanatory variable is the yearly mean  

anomaly, weighted by either installed or operational capacity. Only countries in which hydropower represents at least 30% of installed capacity are included in columns 1 and 

2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies. ***=significant at the 1% level; **=significant  

at the 5% level; *=significant at the 10% level. 

 

  

(1) (2) (3) (4) (5) (6)

Mean Anomaly (Inst) 0.72 0.65 0.54

(0.44) (0.46) (0.51)

Mean Anomaly (Op) 0.66* 0.63 0.60

(0.39) (0.40) (0.46)

Constant 10.06*** 10.06*** 10.10*** 10.10*** 9.81*** 9.81***

(0.19) (0.19) (0.20) (0.20) (0.24) (0.24)

Num. of obs. 312 312 260 260 169 169

Night Lights (0 censored)

50% HP30% HP 40% HP
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Table A4.7 – Level regression, country-level restricted sample, unlit cells included, strong/weak positive/negative anomalies. 

 

  

(1) (2) (3) (4) (5) (6)

 St. Neg. Anomaly Index (Inst) 0.02 0.02 0.03

(0.02) (0.02) (0.02)

 St. Pos. Anomaly Index (Inst) 0.00 0.00 0.00

(0.01) (0.01) (0.00)

Wk. Neg. Anomaly Index (Inst) 0.02 -0.01 -0.02

(0.05) (0.03) (0.03)

Wk. Pos. Anomaly Index (Inst) -0.08 -0.03 0.03

(0.06) (0.04) (0.02)

St. Neg. Anomaly Index (Op) 0.02 0.01 0.02

(0.03) (0.02) (0.02)

 St. Pos. Anomaly Index (Op) 0.00 0.01 0.00

(0.01) (0.01) (0.00)

Wk. Neg. Anomaly Index (Op) 0.03 -0.01 -0.02

(0.06) (0.03) (0.03)

Wk. Pos. Anomaly Index (Op) -0.07 -0.03 0.03

(0.04) (0.03) (0.02)

Constant 0.34* 0.33* 0.19* 0.17* 0.08* 0.08*

(0.14) (0.16) (0.07) (0.06) (0.04) (0.03)

Num. of obs. 312 312 260 260 169 169

R
2

0.10 0.10 0.11 0.10 0.39 0.38

Night Lights

30% HP 40% HP 50% HP
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Notes for Table A4.7 Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night -late intensity including unlit cells, the 

explanatory variables are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only countries in which hydropower represents at 

least 30% of installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.8 – First difference regression, country-level restricted sample, unlit cells included, strong/weak positive/negative anomalies. 

 

 

 

(1) (2) (3) (4) (5) (6)

 Δ St. Neg. Anomaly Index (Inst) 0.00 0.01 0.01

(0.01) (0.01) (0.01)

Δ  St. Pos. Anomaly Index (Inst) -0.00 -0.00 -0.00

(0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Inst) -0.01 -0.01 -0.01

(0.01) (0.01) (0.01)

Δ Wk. Pos. Anomaly Index (Inst) -0.01 -0.01 -0.00

(0.01) (0.01) (0.01)

Δ  St. Neg. Anomaly Index (Op) 0.01 0.01 0.01*

(0.01) (0.01) (0.01)

Δ  St. Pos. Anomaly Index (Op) -0.00 0.00 -0.00

(0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Op) -0.01 -0.01 -0.01

(0.01) (0.01) (0.01)

Δ Wk. Pos. Anomaly Index (Op) -0.01 -0.00 -0.00

(0.01) (0.01) (0.01)

Constant 0.01 0.01 0.01 0.01 0.01* 0.01*

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Num. of obs. 288 288 240 240 156 156

R
2

0.39 0.39 0.42 0.42 0.57 0.58

Δ Night Lights

30% HP 40% HP 50% HP
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Notes for Table A4.8 Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of average night-late intensity including unlit  

cells, the explanatory variables are the first differences of weak/strong positive/negative anomalies , weighted by either installed or operational capacity. Only countries in which 

hydropower represents at least 30% of installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. 

All regressions include time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.9 – Fixed effect panel regression, level form in the country-level restricted sample, unlit cells included, strong/weak 

positive/negative anomalies. 

 

 

 

(1) (2) (3) (4) (5) (6)

 St. Neg. Anomaly Index (Inst) -0.03 -0.01 -0.00

(0.02) (0.02) (0.01)

 St. Pos. Anomaly Index (Inst) -0.00 0.00 -0.00

(0.00) (0.00) (0.00)

Wk. Neg. Anomaly Index (Inst) 0.02 0.01 0.01

(0.03) (0.03) (0.01)

Wk. Pos. Anomaly Index (Inst) -0.01 -0.01 -0.01

(0.02) (0.01) (0.01)

St. Neg. Anomaly Index (Op) -0.02 -0.01 0.00

(0.02) (0.01) (0.01)

 St. Pos. Anomaly Index (Op) -0.00 0.00 0.00

(0.00) (0.00) (0.00)

Wk. Neg. Anomaly Index (Op) 0.01 0.01 0.01

(0.03) (0.03) (0.01)

Wk. Pos. Anomaly Index (Op) -0.01 -0.01 -0.01

(0.01) (0.01) (0.01)

Constant 0.20*** 0.21*** 0.13*** 0.14*** 0.13*** 0.13***

(0.02) (0.02) (0.02) (0.02) (0.01) (0.01)

Num. of obs. 312 312 260 260 169 169

Night Lights

50% HP30% HP 40% HP
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Notes for Table A4.9 Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity including unlit cells, the explanatory variables  

are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only countries in whic h hydropower represents at least 30% of installed  

capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.10 – Level regression, country-level restricted sample, unlit cells excluded, strong/weak positive/negative anomalies . 

 

  

(1) (2) (3) (4) (5) (6)

 St. Neg. Anomaly Index (Inst) -0.37 -0.36 -0.35

(0.27) (0.31) (0.28)

 St. Pos. Anomaly Index (Inst) -0.10 -0.11 -0.03

(0.07) (0.07) (0.04)

Wk. Neg. Anomaly Index (Inst) -1.27** -1.32** -1.62***

(0.50) (0.49) (0.47)

Wk. Pos. Anomaly Index (Inst) -0.10 -0.33 0.02

(0.49) (0.44) (0.41)

St. Neg. Anomaly Index (Op) -0.25 -0.20 -0.28

(0.29) (0.32) (0.32)

 St. Pos. Anomaly Index (Op) -0.09 -0.09 -0.04

(0.07) (0.06) (0.04)

Wk. Neg. Anomaly Index (Op) -1.10** -1.00* -1.36**

(0.53) (0.51) (0.54)

Wk. Pos. Anomaly Index (Op) -0.20 -0.31 -0.09

(0.40) (0.39) (0.44)

Constant 8.89*** 9.28*** 9.09*** 9.55*** 7.42*** 8.02***

(0.84) (0.89) (0.79) (0.79) (0.84) (0.80)

Num. of obs. 312 312 260 260 169 169

R
2

0.44 0.42 0.51 0.48 0.64 0.59

Night Lights (0 censored)

30% HP 40% HP 50% HP
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Notes for Table A4.10 Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night-late intensity excluding unlit cells, the 

explanatory variables are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only countries in which hydropower represents at 

least 30% of installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=s ignificant at the 10% level. 
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Table A4.11 – First difference regression, country-level restricted sample, unlit cells excluded, strong/weak positive/negative anomalies . 

 

 

 

(1) (2) (3) (4) (5) (6)

 Δ St. Neg. Anomaly Index (Inst) -0.08 -0.06 0.09

(0.21) (0.21) (0.20)

Δ  St. Pos. Anomaly Index (Inst) -0.04 -0.04 -0.02

(0.02) (0.02) (0.03)

Δ Wk. Neg. Anomaly Index (Inst) -0.11 -0.17 -0.16

(0.27) (0.27) (0.30)

Δ Wk. Pos. Anomaly Index (Inst) -0.01 -0.01 0.08

(0.15) (0.15) (0.17)

Δ  St. Neg. Anomaly Index (Op) -0.03 -0.00 0.17

(0.21) (0.21) (0.21)

Δ  St. Pos. Anomaly Index (Op) -0.04 -0.03 -0.01

(0.02) (0.02) (0.02)

Δ Wk. Neg. Anomaly Index (Op) -0.12 -0.18 -0.19

(0.26) (0.26) (0.31)

Δ Wk. Pos. Anomaly Index (Op) -0.02 -0.01 0.10

(0.14) (0.14) (0.16)

Constant -0.06 -0.05 0.14 0.14 -0.02 -0.01

(0.20) (0.20) (0.16) (0.16) (0.20) (0.20)

Num. of obs. 288 288 240 240 156 156

R
2

0.70 0.70 0.73 0.73 0.73 0.73

Δ Night Lights (0 censored)

30% HP 40% HP 50% HP
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Notes for Table A4.11 Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of average night-late intensity excluding 

unlit cells, the explanatory variables are the first difference of weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only countries in  

which hydropower represents at least 30% of installed capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns  

5 and 6. All regressions include time dummies. ***=s ignificant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.12 – Fixed effect panel regression, growth form in the country-level restricted sample, unlit cells excluded, strong/weak 

positive/negative anomalies. 

 

 

 

(1) (2) (3) (4) (5) (6)

 St. Neg. Anomaly Index (Inst) 0.61** 0.64** 0.63**

(0.25) (0.26) (0.27)

 St. Pos. Anomaly Index (Inst) 0.04 0.02 0.01

(0.04) (0.04) (0.04)

Wk. Neg. Anomaly Index (Inst) -0.21 -0.42 -0.37

(0.43) (0.44) (0.46)

Wk. Pos. Anomaly Index (Inst) 0.21 0.21 0.15

(0.23) (0.23) (0.25)

St. Neg. Anomaly Index (Op) 0.64*** 0.68*** 0.68**

(0.24) (0.24) (0.26)

 St. Pos. Anomaly Index (Op) 0.03 0.03 0.02

(0.03) (0.03) (0.04)

Wk. Neg. Anomaly Index (Op) -0.18 -0.34 -0.28

(0.41) (0.41) (0.47)

Wk. Pos. Anomaly Index (Op) 0.16 0.19 0.12

(0.21) (0.21) (0.24)

Constant 10.47*** 10.63*** 10.50*** 10.67*** 10.31*** 10.48***

(0.35) (0.34) (0.39) (0.38) (0.49) (0.47)

Num. of obs. 312 312 260 260 169 169

Night Lights (0 censored)

50% HP30% HP 40% HP
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Notes for Table A4.12 Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity excluding unlit cells, the explanatory variables  

are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. Only countries in which hydropower represents at least 30% o f installed  

capacity are included in columns 1 and 2, the threshold is increased to 40% in columns 3 and 4 and to 50% in columns 5 and 6. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.13 – Level regression, country-level sample, country specific linear time-trend, 

yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the average night -late 

intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variable 

is the yearly mean anomaly, weighted by either installed or operational capacity. All regressions include country 

specific linear time-trend. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 

10% level. 

 

Table A4.14 – First difference regression, country-level sample, country specific linear 

time-trend, yearly mean anomaly. 

 

Pooled OLS regression with s.e. clustered at the country level. The dependent variables is the first difference of 

average night-late intensity, including unlit cells  in columns 1 and 2 and excluding them in columns 3 and 4, the 

explanatory variable is the first difference in the yearly mean anomaly, weighted by either installed or operational 

capacity. All regressions include country specific linear time-trend. ***=significant at the 1% level;  

**=significant at the 5% level; *=significant at the 10% level. 

 

 

 

(1) (2) (3) (4)

 Mean Anomaly (Inst) -0.00 1.46

(0.03) (0.86)

Mean Anomaly (Op) 0.00 1.23

(0.02) (0.80)

Constant 0.09*** 0.09*** 11.32*** 11.31***

(0.00) (0.00) (0.08) (0.08)

Num. of obs. 377 377 377 377

R
2

0.93 0.93 0.48 0.48

Night Lights  Night Lights (0 censored)

(1) (2) (3) (4)

Δ Mean Anomaly (Inst) 0.04** 0.66

(0.02) (0.50)

Δ Mean Anomaly (Op) 0.03* 0.43

(0.02) (0.46)

Constant 0.01 0.01 0.58 0.58

(0.01) (0.01) (0.41) (0.41)

Num. of obs. 348 348 348 348

R
2

0.02 0.02 0.01 0.01

Δ Night Lights Δ Night Lights (0 censored)
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Table A4.15 – Fixed effect panel regression, level form in the country-level sample, 

country specific linear time-trend, yearly mean anomaly. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity, 

including unlit cells in columns 1 and 2 and excluding them in columns 3 and  4, the explanatory variable is the 

yearly mean anomaly, weighted by either installed or operational capacity. All regressions include country specific 

linear time-trend. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

Mean Anomaly (Inst) 0.02 1.66**

(0.03) (0.66)

Mean Anomaly (Op) 0.02 1.49**

(0.03) (0.59)

Constant -22.04*** -22.04*** -572.91*** -572.85***

(1.90) (1.90) (38.90) (38.89)

Num. of obs. 377 377 377 377

Night Lights Night Lights (0 censored)
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Table A4.16 – Level regression, country-level sample, country specific linear time-trend, 

strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the country level The dependent variables is the average night -late 

intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variables 

are the weak/strong positive/negative anomalies, weighted by either installed or operational capacity. All 

regressions include country specific linear time-trend. ***=significant at the 1% level; **=significant at the 5% 

level; *=significant at the 10% level. 

 

  

(1) (2) (3) (4)

 St. Neg. Anomaly Index (Inst) 0.00 0.62

(0.01) (0.62)

 St. Pos. Anomaly Index (Inst) -0.00 0.09

(0.00) (0.06)

Wk. Neg. Anomaly Index (Inst) 0.01 0.88

(0.02) (0.72)

Wk. Pos. Anomaly Index (Inst) -0.02* -0.45

(0.01) (0.45)

St. Neg. Anomaly Index (Op) 0.00 0.56

(0.01) (0.59)

 St. Pos. Anomaly Index (Op) -0.00 0.08

(0.00) (0.06)

Wk. Neg. Anomaly Index (Op) 0.02 1.06

(0.01) (0.64)

Wk. Pos. Anomaly Index (Op) -0.02** -0.43

(0.01) (0.42)

Constant 0.14*** 0.15*** 13.63*** 13.99***

(0.02) (0.02) (0.81) (0.73)

Num. of obs. 377 377 377 377

R
2

0.93 0.93 0.50 0.50

Night Lights  Night Lights (0 censored)
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Table A4.17 – First difference regression, country-level sample, country specific linear 

time-trend, strong/weak positive/negative anomalies. 

 

Pooled OLS regression with s.e. clustered at the country level The dependent variables is the first difference of 

average night-late intensity, including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the 

explanatory variables are the first differences  of weak/strong positive/negative anomalies, weighted by either 

installed or operational capacity. All regressions include country specific linear time-trend. ***=significant at the 

1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

(1) (2) (3) (4)

 Δ St. Neg. Anomaly Index (Inst) 0.02 -0.14

(0.01) (0.36)

Δ  St. Pos. Anomaly Index (Inst) 0.00 0.06

(0.00) (0.04)

Δ Wk. Neg. Anomaly Index (Inst) -0.03** -0.06

(0.01) (0.50)

Δ Wk. Pos. Anomaly Index (Inst) -0.00 -0.30

(0.01) (0.31)

Δ  St. Neg. Anomaly Index (Op) 0.02 -0.14

(0.01) (0.40)

Δ  St. Pos. Anomaly Index (Op) 0.00 0.04

(0.00) (0.04)

Δ Wk. Neg. Anomaly Index (Op) -0.03** -0.01

(0.01) (0.49)

Δ Wk. Pos. Anomaly Index (Op) -0.00 -0.30

(0.01) (0.28)

Constant 0.01 0.01 0.58 0.57

(0.01) (0.01) (0.40) (0.41)

Num. of obs. 348 348 348 348

R
2

0.03 0.03 0.02 0.02

Δ Night Lights Δ Night Lights (0 censored)



403 
 

 Table A4.18 – Fixed effect panel regression, level form in the country-level sample, 

country specific linear time-trend, strong/weak positive/negative anomalies. 

 

Panel estimation with country fixed effect. The dependent variables is the yearly average night-late intensity, 

including unlit cells in columns 1 and 2 and excluding them in columns 3 and 4, the explanatory variables are the 

weak/strong positive/negative anomalies, weighted by either installed or operational capacity.  All regressions 

include country specific linear time-trend. ***=significant at the 1% level; **=significant at the 5% level;  

*=significant at the 10% level. 

(1) (2) (3) (4)

 St. Neg. Anomaly Index (Inst) 0.03 0.67

(0.02) (0.40)

 St. Pos. Anomaly Index (Inst) 0.00 0.09

(0.00) (0.05)

Wk. Neg. Anomaly Index (Inst) -0.00 0.86

(0.03) (0.64)

Wk. Pos. Anomaly Index (Inst) -0.00 -0.37

(0.02) (0.34)

St. Neg. Anomaly Index (Op) 0.03 0.72**

(0.02) (0.37)

 St. Pos. Anomaly Index (Op) 0.00 0.08

(0.00) (0.05)

Wk. Neg. Anomaly Index (Op) 0.00 0.90

(0.03) (0.61)

Wk. Pos. Anomaly Index (Op) -0.00 -0.29

(0.02) (0.32)

Constant -21.72*** -21.76*** -559.75*** -560.01***

(1.90) (1.89) (38.17) (37.94)

Num. of obs. 377 377 377 377

Night Lights Night Lights (0 censored)
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 Table A4.19 – Quantile regression, growth form in the country-level sample, unlit cells included, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly growth of average night-late intensity including unlit cells, the explanatory variable is the average growth in the 

yearly mean anomaly, weighted by installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

Δ Mean Anomaly (Inst) 0.0000121 -0.000113 -0.0003226 0.0003012***

(0.00) (0.00) (0.00) (0.00)

Δ Mean Anomaly (Op) -0.0000586 -0.0001338 -0.000282 0.000195***

(0.00) (0.00) (0.00) (0.00)

Constant 0.08*** 0.09** 0.12** 0.16*** 0.15*** 0.18*** 0.25*** 0.27***

(0.02) (0.03) (0.04) (0.02) (0.01) (0.03) (0.03) (0.00)

Num. of obs. 345 345 345 345 345 345 345 345

Δ Night Lights Δ Night Lights
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Table A4.20 – Quantile regression, level form in the country-level sample, unlit cells included, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly average night-late intensity including unlit cells, the explanatory variable is the yearly mean anomaly, weighted by 

installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies. *** =significant at the 1% level; **=significant at the 

5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

Mean Anomaly (Inst) -0.0087185*** -0.0026843 -0.0045535 0.0007554

(0.00) (0.01) (0.03) (0.01)

Mean Anomaly (Op) -0.0045447 -0.0009267 -0.0015482 0.0029379

(0.00) (0.01) (0.02) (0.02)

Constant 0.05*** 0.07*** 0.08*** 0.09*** 0.05*** 0.07*** 0.08*** 0.09***

(0.00) (0.01) (0.02) (0.00) (0.00) (0.01) (0.02) (0.01)

Num. of obs. 377 377 377 377 377 377 377 377

 Night Lights  Night Lights
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Table A4.21 – Quantile regression, growth form in the country-level sample, unlit cells excluded, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly growth of average night-late intensity including unlit cells, the explanatory variable is the average growth in the 

yearly mean anomaly, weighted by installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies. ***=significant 

at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

Δ Mean Anomaly (Inst) -0.00000451*** 0.0004862 0.0003879*** 0.0002457

(0.00) (0.00) (0.00) (0.00)

Δ Mean Anomaly (Op) 0.000077** 0.0001668 0.0003203* 0.0002789***

(0.00) (0.00) (0.00) (0.00)

Constant -0.04*** 0.00 0.04*** 0.09*** 0.11*** 0.20 0.21*** 0.26***

(0.00) (0.09) (0.01) (0.02) (0.01) (0.13) (0.02) (0.01)

Num. of obs. 345 345 345 345 345 345 345 345

Δ Night Lights (0 cens) Δ Night Lights (0 cens)
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Table A4.22 – Quantile regression, level form in the country-level sample, unlit cells excluded, yearly mean anomaly. 

 

Quantile regression. The dependent variables is the yearly average night-late intensity including unlit cells, the explanatory variable is the yearly mean anomaly, weighted by 

installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies. *** =significant at the 1% level; **=significant at the 

5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

Mean Anomaly (Inst) 0.76*** 0.60** 0.90 0.40

(0.00) (0.25) (1.57) (0.55)

Mean Anomaly (Op) 0.58*** 0.36 0.83 0.56***

(0.00) (0.46) (1.19) (0.07)

Constant 9.73*** 11.13*** 11.40*** 12.49*** 9.77*** 11.16*** 11.38*** 12.15***

(0.00) (0.19) (1.10) (0.46) (0.00) (0.40) (0.92) (0.06)

Num. of obs. 377 377 377 377 377 377 377 377

 Night Lights (0 cens)  Night Lights (0 cens)
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Table A4.23 – Quantile regression, growth form in the country-level sample, unlit cells included, strong/weak positive/negative 

anomalies. 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

 Δ St. Neg. Anomaly Index (Inst) -0.01*** -0.04** -0.07*** -0.13***

(0.00) (0.01) (0.00) (0.00)

Δ  St. Pos. Anomaly Index (Inst) -0.01*** -0.00*** -0.00*** -0.00***

(0.00) (0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Inst) 0.00*** 0.02** 0.04*** 0.10***

(0.00) (0.01) (0.00) (0.00)

Δ Wk. Pos. Anomaly Index (Inst) 0.01*** 0.01 -0.01*** 0.00***

(0.00) (0.00) (0.00) (0.00)

 Δ St. Neg. Anomaly Index (Op) -0.05*** -0.05* -0.07** -0.14***

(0.00) (0.03) (0.03) (0.00)

Δ  St. Pos. Anomaly Index (Op) 0.00*** 0.00** -0.00*** -0.00***

(0.00) (0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Op) 0.02*** 0.02 0.02 0.10***

(0.00) (0.02) (0.02) (0.00)

Δ Wk. Pos. Anomaly Index (Op) 0.01*** 0.01 0.01 -0.00***

(0.00) (0.01) (0.01) (0.00)

Constant 0.00*** 0.01 0.01*** 0.04*** 0.00 0.01 0.02 0.04***

(0.00) (0.01) (0.00) (0.00) (0.00) (0.02) (0.02) (0.00)

N 332 332 332 332 332 332 332 332

Δ Night Lights Δ Night Lights
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Note for Table A4.23 - Quantile regression. The dependent variables is the yearly growth of average night-late intensity including unlit cells, the explanatory variables are the 

growth rate of weak/strong positive/negative anomalies , weighted by installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



410 
 

Table A4.24 – Quantile regression, growth form in the country-level sample, unlit cells included, strong/weak positive/negative anomalies . 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

St. Neg. Anomaly Index (Inst) -0.01*** 0.0038247* -0.00 -0.0011281***

(0.00) (0.00) (0.00) (0.00)

St. Pos. Anomaly Index (Inst) -0.0012109*** -0.00 -0.00 -0.0002992***

(0.00) (0.00) (0.00) (0.00)

Wk. Neg. Anomaly Index (Inst) 0.01*** 0.00 0.01 0.01***

(0.00) (0.00) (0.01) (0.00)

Wk. Pos. Anomaly Index (Inst) -0.01*** -0.00 -0.01 -0.0019742***

(0.00) (0.00) (0.00) (0.00)

St. Neg. Anomaly Index (Op) -0.01*** 0.00447*** 0.00 0.0002432***

(0.00) (0.00) (0.00) (0.00)

St. Pos. Anomaly Index (Op) -0.0011549*** 0.00 -0.00 -0.000266***

(0.00) (0.00) (0.00) (0.00)

Wk. Neg. Anomaly Index (Op) 0.01*** 0.01*** 0.01** 0.01***

(0.00) (0.00) (0.00) (0.00)

Wk. Pos. Anomaly Index (Op) -0.01*** -0.00 -0.01** -0.0039612***

(0.00) (0.00) (0.00) (0.00)

Constant 0.05*** 0.08*** 0.08*** 0.09*** 0.06*** 0.09*** 0.10*** 0.10***

(0.00) (0.00) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00)

N 377 377 377 377 377 377 377 377

Night Lights Night Lights
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Note for Table A4.24 - Quantile regression. The dependent variables is the yearly average night-late intensity including unlit cells, the explanatory variables are the weak/strong 

positive/negative anomalies, weighted by installed capacity  in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.25 – Quantile regression, growth form in the country-level sample, unlit cells excluded, strong/weak positive/negative 

anomalies. 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

 Δ St. Neg. Anomaly Index (Inst) 0.05*** 0.06*** 0.03** 0.06***

(0.00) (0.01) (0.01) (0.01)

Δ  St. Pos. Anomaly Index (Inst) -0.0026259*** 0.0040657*** 0.0037741*** 0.0029589***

(0.00) (0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Inst) -0.03*** -0.01** -0.004075 -0.02***

(0.00) (0.01) (0.01) (0.01)

Δ Wk. Pos. Anomaly Index (Inst) -0.02*** -0.04*** -0.02*** -0.04***

(0.00) (0.00) (0.00) (0.00)

 Δ St. Neg. Anomaly Index (Op) 0.08*** 0.09*** 0.04*** 0.06***

(0.00) (0.01) (0.01) (0.02)

Δ  St. Pos. Anomaly Index (Op) 0.0003848*** 0.0003404*** 0.0002314*** 0.0001975***

(0.00) (0.00) (0.00) (0.00)

Δ Wk. Neg. Anomaly Index (Op) -0.04*** -0.04*** -0.02** -0.02**

(0.00) (0.01) (0.01) (0.01)

Δ Wk. Pos. Anomaly Index (Op) -0.03*** -0.04*** -0.03*** -0.04***

(0.00) (0.00) (0.00) (0.00)

Constant -0.02*** 0.05*** 0.06*** 0.10*** -0.00 0.04*** 0.05*** 0.10***

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01)

N 332 332 332 332 332 332 332 332

Δ Night Lights (0 cens) Δ Night Lights (0 cens)
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Note for Table 4.25 - Quantile regression. The dependent variables is the yearly growth of average night -late intensity excluding unlit cells, the explanatory variables are the 

growth rate of weak/strong positive/negative anomalies, weighted by installed capacity in columns 1 to 4 and by operational c apacity in columns 4 to 8. All regressions include 

time dummies. ***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table A4.26 – Quantile regression, level form in the country-level sample, unlit cells excluded, strong/weak positive/negative anomalies . 

 

 

 

 

 

(1) (2) (3) (4) (1) (2) (3) (4)

St. Neg. Anomaly Index (Inst) 0.21*** 0.12*** 0.04 0.42***

(0.00) (0.02) (0.31) (0.00)

St. Pos. Anomaly Index (Inst) 0.06*** 0.04*** 0.07* 0.02***

(0.00) (0.00) (0.04) (0.00)

Wk. Neg. Anomaly Index (Inst) 0.03*** 0.34*** -0.12 -0.37***

(0.00) (0.04) (0.52) (0.00)

Wk. Pos. Anomaly Index (Inst) 0.25*** 0.29*** -0.02 -0.33***

(0.00) (0.02) (0.29) (0.00)

St. Neg. Anomaly Index (Op) 0.11*** 0.06*** 0.48 0.49***

(0.00) (0.02) (0.30) (0.00)

St. Pos. Anomaly Index (Op) 0.04*** 0.03*** 0.06 0.01***

(0.00) (0.00) (0.04) (0.00)

Wk. Neg. Anomaly Index (Op) 0.03*** 0.39*** -0.12 -0.53***

(0.00) (0.03) (0.50) (0.00)

Wk. Pos. Anomaly Index (Op) 0.16*** 0.14*** -0.07 -0.26***

(0.00) (0.02) (0.27) (0.00)

Constant 9.76*** 11.22*** 11.20*** 12.90*** 9.69*** 11.36*** 12.61*** 12.84***

(0.00) (0.04) (0.60) (0.00) (0.00) (0.03) (0.60) (0.00)

N 377 377 377 377 377 377 377 377

Night Lights (0 cens) Night Lights (0 cens)
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Note for Table A4.26 - Quantile regression. The dependent variables is the yearly average night-late intensity excluding unlit cells, the explanatory variables  are the 

weak/strong positive/negative anomalies, weighted by installed capacity in columns 1 to 4 and by operational capacity in columns 4 to 8. All regressions include time dummies . 

***=significant at the 1% level; **=significant at the 5% level; *=significant at the 10% level. 
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Table B4.1 – Summary of key results, capital samples expanded through the second 

urbanisation procedure, mean value. 

 

Summary of key results. The first two lines report the coefficients for the yearly mean anomaly constructed with 

4 radiuses as of Table. 4.29, that is when the capital sample has been expanded through the second urbanisation 

procedure and the mean value, the third and fourth the average values of the yearly mean anomaly in the different  

sample, the fifth the average night-light intensity in the capitals of the sample. 

 

Table B4.2 – Summary of key results, capital samples expanded through the second 

urbanisation procedure, half of the mean value. 

 

Summary of key results. The first two lines report the coefficients for the yearly mean anomaly constructed with 

4 radiuses as of Table. 4.29, that is when the capital sample has been expanded through the second urbanisation 

procedure and half of the mean value, the third and fourth the average values of the yearly mean anomaly in the 

different sample, the fifth the average night-light intensity in the capitals of the sample. 

 

 

 

 

 

 

 

HP > 30% HP > 40% HP > 50%

Yearly Mean Anomaly, Installed capacity and 4 radiuses 2.4* 2.9* 3.67**

Yealy Mean Anomaly, Operational capacity and 4 radiuses 2.82** 3.2** 4.04**

Average Anomaly , Installed capacity 0.005 0.006 0.009

Average Anomaly , Operational capacity 0.006 0.007 0.011

Average Light Intensity 29.87 30.56 29.81

HP > 30% HP > 40% HP > 50%

Yearly Mean Anomaly, Installed capacity and 4 radiuses 2.03* 2.37* 2.89*

Yealy Mean Anomaly, Operational capacity and 4 radiuses 2.27* 2.6** 3.17**

Average Anomaly , Installed capacity 0.005 0.006 0.009

Average Anomaly , Operational capacity 0.006 0.007 0.011

Average Light Intensity 29.24 29.9 29.17
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Conclusions, Limitations and Future Research. 

 
Many SSA economies have recently been going through a period of sustained growth, with the 

region experiencing an average growth rate of 5% over the period 2008-2015. Together with 

improved economic performances relative to the last decades of the 20th century, SSA has also 

experienced improvements in many social indicators, ranging from primary school enrolment 

to a reduction in the incidence of HIV/AIDS. However, for these positive developments to 

really lead to a more prosperous future for the inhabitants of the region, all SSA economies 

need, to differing extents, to continue and intensify the process of industrial diversification. The 

recent growth performance has been mainly due to a prolonged peak in the demand and price 

of the natural resources of which the continent is rich. Although their production and export 

offers a chance to increase government revenues, providing the necessary new funds to finance 

various projects, primary commodity sectors have not contributed much to the availability of 

non-vulnerable employment in the region, which increased by only 2.3% since 2001. The 

agricultural sector, accounting for around 20% of the region’s GDP and 65% of its employment, 

remains largely unmodernised and the share of economic output deriving from manufactur ing 

industries, historically the main contributors to stable employment, has decreased by 1.5% since 

1980. 

 

Although the reasons for the lack of industrial diversification are varied, one of the main 

obstacles to a firm’s expansion often quoted in surveys is the quality of the electricity supply. 

Indeed, the status of the energy infrastructure in SSA has long left much to be desired. 

Generation capacity in the region has grown from 68 GW to 90 GW since 2000 but is still much 
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below what would be required to cover demand; transmission and distribution losses are more 

than double the world average; the tariffs in many countries are amongst the highest in the 

world and, although electricity access has increased from 23% to 32% since 2000, population 

growth outstripped the electrification rate, so that the absolute number of people lacking access 

to electricity has grown of 100 million. However, it has to be recognized that the trend of under -

investment in energy infrastructure has started to reverse over the last 10 years, with a 

significant increase in funding by national governments, private investors and overseas 

development funding agencies, with an ever growing role of China in both of the latter. 

Importantly, much of the recent additions to capacity generation have taken the form of 

renewable energy plants: in developing the energy resources of SSA, the growing threat of 

anthropogenic climate change, of which the energy sector is a main contributor, must be taken 

into account. The continent, despite its low contribution to green-house gases emissions, is 

already experiencing significant stresses due to increased extreme weather events, many of 

which will continue in the future.  

 

Notwithstanding the positive developments in recent years, unreliable power supply remains a 

major drag on firms’ ability to expand their production and successfully compete in nationa l 

and international markets. Frequent power outages are a common feature of all economies in 

the SSA region, and their overall cost has been estimated at 2.1% of its GDP and 4.9% of its 

total sales, with the acquisition of expensive backup generation having become the normal 

coping strategy for firms which can afford it. Economic studies analysing the cost of power 

outages in SSA, and in developing countries more in general, are still limited, especially those 

focusing on its impact on firms, although this literature has been growing over the last few 

years. This thesis represents a further contribution to this strand of the literature, as its main aim 
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is to provide an endogeneity-free estimate of the elasticity of firm’s sales to power outages 

across SSA.  

 

In the first chapter, we started with the analysis of the most recent rounds of World Bank  

Enterprise Surveys, covering 13,310 firms located in 38 SSA countries and having been 

collected between 2006 and 2014, which confirmed the relevance of both the incidence of 

outages (in average 150.95 per year or 881.05 hours) and of backup generation ownership (46% 

of firms own one). As it appears from a series of OLS regressions, the frequency and duration 

of outages have a significant and negative impact on firms’ sales across the continent. 

Moreover, these negative overall effects appeared to be driven mostly by firms without access 

to backup generation, as point estimates for this group were always of a greater magnitude and 

more robust to different specifications than those for firms which had access to it. We therefore 

moved to the analysis of the main determinants of generator ownership, applying two different 

methodologies, one developed by Foster and Steinbucks (2010) and already applied to the 

previous rounds of WBES and one from Alby, Dethier and Straub (2011). The results from the 

first model closely resembled the originals, with frequency of power outages being the second 

most relevant determinant of generator ownership after firm size, showing how little has 

changed over the previous 6 years despite the increased investment in electricity infrastructure. 

From the second model it also emerged the significant role that having access to credit plays in 

being able to afford backup generation and how the effect of frequent outages on the choice of 

acquiring backup seems to be the same for both firm in electricity intensive sectors and those 

outside of them. The model also allowed for the investigation of the effect of frequent outages 

on the evolution of the industrial structure of SSA economies, confirming its relevance as a 
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constraint on a firm’s ability to grow in size, this time slightly more so for firms in electric ity 

intensive sectors. 

 

However, concerns exist about the endogeneity of the firm level relationship between 

performance and quality of the power supply, particularly due to possible influences of both the 

quality of energy infrastructure on initial plant location and of the interaction between policies 

directed to enhance firms’ performance and a country outage level. If these concerns are 

founded, it follows that the previous estimates will be biased. In the second chapter, we then 

set forth to obtain the basis for a valid instrument affecting the frequency of outages but not 

directly related to firms’ performance, namely the quantity of water available for hydropower 

production. This choice is driven both by the relevance of hydropower in the generation 

portfolio of many SSA countries, making it an optimal candidate to influence energy supply, 

and by the low number of countries without any hydropower installed in our sample, only 7 out 

of 38. The first step in the construction of the instrument is the modelling of the streamflow of 

8 of the 9 African continental basins, which we performed through the Geospatial Streamflow 

Model, developed by the US Geological Survey for the Famine Early Warning System and 

particularly suited for data scarce regions such as SSA. After an extensive presentation of the 

model results, we assessed its performance by comparing them with the historical records for 

440 gauge stations from the Global Runoff Data Centre, the biggest public provider of 

hydrological data. Our analyses showed how the final judgment on the model-fit partially 

dependeds on how the comparison was performed: by looking at correlation only, hence 

assuming that the joint distribution of simulated results and historical data is elliptical, or by 

using instead Copula function analysis, allowing the joint distribution to be non-symmetr ica l 

and hence the relationship to be stronger in the lower (drought) or upper (flood) tail. We also 
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performed a series of fixed effect and quantile regressions to add further weight to our previous 

analyses, and probit regressions to better assess in which cases the model seems to 

underperform. Taken together, our results suggest that the GeoSFM model does produce better 

estimates of extreme rather than average values of streamflow, as the Copula which better fitted 

the data is the one allowing for stronger dependence in the upper tail, while quantile regressions 

of the simulated  anomalies, defined as the difference between daily streamflow values and their 

long-term average scaled by their standard deviation, often yielded higher and more significant 

estimates for higher or lower quantiles. Moreover, this last measure, suggested by Asante et al. 

(2008a), the authors of the GeoSFM model, as the best form in which to look at its result, does 

indeed normally exhibit a stronger relation with the historical data than the level of streamflow. 

Finally, the analyses also showed how the model tends to overestimate interdependence 

between rivers in the same basin, probably due to the nature of the weather inputs it uses, and 

how performances change from basin to basin, with predominant land cover and soil type in an 

area being the main determinants of the model deviations from historical record. Overall, the 

results indicate that the GeoSFM estimates are a solid base on which to build our instrument, 

as the concept of anomaly is well suited to be related with hydropower production, and we have 

shown at the end of the chapter that yearly average anomalies are indeed a significant predictor  

of hydroelectricity generation in the continent.   

 

In the third chapter we are then able to combine the economic analysis developed in the first 

with the hydrological analysis of the second to obtain an endogeneity free estimate of a firm’s 

sales elasticity to power outages. The first step involved the connection of each hydropower 

plant with its associated basin,  while the second the connection of each city for which we have 

firms data with the nearest surrounding power plants, both of which were performed in ArcGIS, 
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the successor of the software of which GeoSFM is an utility. The procedure allowed us to take 

into account each hydropower plant’s contribution to the generation capacity, and we selected 

two particular forms of the instrument, a simple yearly average anomaly and a series of more 

disaggregated indexes taking into account the incidence of negative and positive anomalies of 

different strengths, which were both used in 2SLS and LIML regressions. We found proof of 

an endogenous relationship between sales and outages for firms without generator, but not for 

the overall sample or for firms with access to back-up capacity. By correcting the endogeneity 

bias, we have shown how the negative effect for firms without access to backup generation is 

of a higher order of magnitude than the original OLS regressions suggested. We presented tests 

verifying the robustness of the results, and also performed a series of robustness checks using 

different specifications of both the first and second stage, which confirmed the validity of the 

results. In the final part of the chapter we have also investigate the presence of selection bias in 

the analysis for firms which own a generator, confirmed by the application of Heckman 

selection models. However, we were not able to determine the direction of the bias, as this was 

connected to the variable chosen to satisfy the exclusion restriction of the selection equation.  

 

Taken together, our results indicate that the unreliable power supply does indeed represent a 

significant constraint on the performance of firms, and much more so for those without access 

to backup generation. By accounting for the endogenous nature of this relationship, we were 

able to show how substantial the gains from even a partial reduction in incidence of outages 

would be for the latter: if the average firm without access to backup generation could face the 

average hours of outage per year which an average South African firm faces, that is 118 hours 

instead of 562, its sales would increase by 77% or approximately 16 million dollars. As the 

increased funding of electricity infrastructure from government and private investors will 
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necessarily require some time to achieve even the partial reduction in the incidence of outages 

to which we just referred, the analysis has relevant policy consequences. By adding further 

weight to the body of evidence on the damaging economic effects of unstable electric ity 

supplies, it must serve as a reminder of the necessity to maintain, if not step up, the recent effort 

in improving the energy infrastructure, while also furnishing a mean to quantify part of the 

advantages from such investments. Any reduction in blackout incidence leads to an almost 

proportional increase in sales for firms who cannot switch to own generation, almost half or our 

sample, with various positive consequences, amongst which an increase in tax revenue for SSA 

governments, vital in a moment in which many are struggling to expand their tax base.  

 

Finally, in the fourth and last chapter we investigated the connection between variations in 

hydropower generation and the general economic activity in SSA as proxied by night light 

intensity. Recently, night light data has been receiving growing attention from social scientis ts, 

and it has been found to be highly correlated with many other series, such as population 

distribution, urbanization rate, green-house gas emission and GDP. We modelled this 

relationship both at the city level and at the national level for all countries included in the third 

chapter, and we further attempted to account for the urbanization process which is occurring in 

the majority of SSA cities through two different procedures. The results of the analysis did not 

validate the existence of a direct link between hydroelectric production and overall economic 

activity, although we found evidence of a significant impact of variation in hydroelectric ity 

generation on night- light intensity for the capital cities of countries in which hydropower 

represents a significant share of the installed capacity when we allowed the city boundaries of 

each to evolve independently from the other.  
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Limitations. The results of the main research question tackled in the thesis are in line with the 

limited literature available on the topic, although we find only a partial confirmation for the 

endogenous relationship between electricity and outages. Some differences also exist with 

regard to the work of Oseni and Pollitt (2013), who found that, although access to backup 

capacity substantially reduced the damages occurring from outages, firms owning a generator 

still incurred some impact from the unreliable power supply as few had achieved complete 

backup. We could not find confirmation in our data, as coefficients on outages for both OLS 

and 2SLS regressions were always insignificant, although this might depend on the direction of 

the sample selection bias which was indicated by the Heckman selection models. This 

difference might also be explained by the different models (revealed preferences or subjective 

evaluation) and estimation method (two limit tobit) used by the authors, by the different 

countries included in their study (12, 4 of which we do not include as they are situated in 

Northern Africa) and by the different round of WBES used, that of 2007. Up to that year, more 

specific questions about the dimension of the generator acquired and the quantity of electric ity 

self-generated were included in the WBES, which permitted to calculate the cost of acquiring 

the generator and of producing a KWh of electricity, hence allowing a more explicit modelling 

of firms’ backup decision. Unfortunately, from the following year these questions were dropped 

from the surveys, so that the only countries included in the study for which we have these data 

available are Mozambique and Senegal, not enough to explicitly verify to what extent the 

application of the same models to the new round of surveys would yield different results. 

 

The results presented are robust to a series of different specifications of both the second and 

first stage, and we have already discussed the validity of the exclusion restriction in the second 

and third chapter. However a couple of points about the instrument construction must be raised. 
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First, As we do not have access to the most recent version of the World Electric Power Plant 

data, the share of each power plant installed capacity used to weight its overall contribution 

might not exactly coincide with the real one, and this is even truer for the operational capacity, 

has each year new damages can take place or restoration projects can be completed. However, 

given that the period under consideration in the study is that in which infrastructure investment 

was starting to take off, it is unlikely that each plant share in installed generation capacity used 

in the study will differ substantially, and the operational capacity has only been used as a 

robustness check. Second, despite our best effort some hydropower plants could not be geo-

located and hence have been excluded from the analysis, and amongst those geo-located, some 

seemed not to be placed on a river, so that again they were not taken into account. This might 

have led to further discrepancies between the weights used to evaluate each power plant 

contribution, but, as discussed in the third chapter, given the average dimension of the un-

located plant these discrepancies are unlikely to play a big role in driving the results, and we 

have shown in the second chapter that our instrument was still a significant predictor of 

hydroelectric generation. 

 

A series of the study limitations are due to the general lack of data of good quality for the SSA 

region. It would have been ideal to complement the general analysis presented in the thesis with 

a key study for a single macro-region or country, as many differences exist amongst African 

economies and the inclusion of country dummies can account for only so much. This would 

have also allowed for a more specific evaluation of the performances of the chosen hydrologica l 

model, as we could have focused on a single continental basin instead of 8. Equally interest ing 

would have been to look at a longer time frame, moving into panel data instead of limit ing 

ourselves to cross country regressions, hence gaining further information of the interaction 
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between energy infrastructure quality and firms’ performance over time and allowing us to 

control for unobservable firm characteristics . However, none of these points could be tackled 

with the data available at this moment as there are only a handful of countries for which two, 

let alone three, rounds of WBES have been carried out. We attempted to work with this data, 

but the combination of small sample numbers, low percentages of firms which could be 

matched in the two round of surveys across different countries (5.1% in Ghana, 21% in Kenya 

or 18% in Tanzania) and low response rates did not allow for any meaningful panel analys is. 

The high non-response rates were also a relevant issue in the surveys used for the study, 

especially those to cost-related questions such as fuel or raw material cost, imposing further 

constraints on the measure which could be used as dependent variable. Two last points must 

also be raised about the structure of the WBES questionnaires. First, it would be desirable to 

reintroduce the question about generator capacity in the survey, as this will allow for a more 

detailed modelling of back-up decisions by firms. Second, there is a need of harmonis ing 

questions about capital expenditure and depreciation between the service and manufactur ing 

questionnaires, as they are completely absent in the former and of varying quality depending 

on the survey’s round in the latter. With regard to the possibility of using government run 

surveys, which might occur more frequently than the one organized by the World Bank, they 

either did not contain the required information (Ethiopia) or, when they did, could not be 

accessed despite repeated attempts (Rwanda).  

 

Finally, as the results from the regressions of the fourth chapter in which the urbanisation rate 

of each capital city was modelled independently from the other showed a more stable 

relationship between hydropower generation and economic activity then others, we could have 

expanded this method to the other cities included in the sample. However, time-limitat ions 
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forced us to focus on that particular sub-sample, and for similar reasons we could not 

experiment more with the different available versions of night light data. 

 

Future Research. With more data availability many of the limitations of this thesis could be 

addressed. As more governments fully realise the extent to which electricity supply constrains 

their economic development and more round of WBES are carried out we expect that firm and 

energy related data from SSA will become easier to come by. Apart from permitting us to use 

more refined productivity measures and to move into a panel data framework, these might allow 

for a more explicit modelling of how energy related issues affect a firm’s capital intensity or its 

level of technology, which is a relevant determinant of its chances to successfully compete in 

national and international markets. Were more information about backup generation to make it 

back into the questionnaire, it would also be possible to dedicate more attention to which firms 

stand to gain the most from accessing it, which could also be useful to give more specific policy 

suggestions on how to tackle short and medium term deficiencies of the power sector. Simila r ly, 

more work can be directed to identify other possible variables to be used for the exclusion 

restriction of the Heckman selection models presented in the last part of Chapter 3.  

 

Moreover, with more time available further experimentation with the night light data would be 

possible. First, we could expand our hydrological modelling back to 1992, the first year for 

which night light data is available, substantially increasing the coverage of the study. Secondly, 

we could continue with our modelling effort of the urbanization process, expanding the 

methodology used for the capital cities to all other cities located in countries where hydropower 

generation is present. Thirdly, we could explore the use of different versions of the night light 
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dataset to obtain some other measures of the incidence of outages as at least one other author 

has tried to do recently. If a more stable relationship could be found, this would allow for a 

more general assessment of the contribution of hydropower generation to economic activity in 

SSA. 

 

Finally, it would be of extreme interest to the author to assess the contribution which off-grid 

mini, micro and pico hydropower can give to the electrification of rural areas. A necessary 

condition for achieving higher standards of living for the majority of people in the continent is 

the fruitful development of the agricultural sector. At present the sector’s lack of access to 

modern inputs, including irrigation which critically depends on electricity, represents a major 

obstacle on that path. Furthermore, the electrification of rural areas plays a vital role in fostering 

the growth of agriculture-related industries which have normally given an important 

contribution to the first stages of industrial development. There is still a lack of studies on the 

economic effect of rural electrification in SSA, probably due to the absence of readily availab le 

data from rural electrification agencies across the continent (a fact confirmed by an interview 

with the Tanzanian Rural Energy Agency in 2013), without which it is hard to strongly argue 

for its relevance. With more time and resources at hand, this would be a research agenda surely 

worth pursuing. 
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