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Abstract

Non-strict higher-order functional programming languages are elegant, concise, math
ematically sound and contain few environment-specific features, making them obvious 
candidates for harnessing high-performance architectures. The validity of this approach 
has been established by a number of experimental compilers. However, while there have 
been a number of important theoretical developments in the field of parallel functional 
programming, implementations have been slow to materialise. The myriad design choices 
and demands of specific architectures lead to protracted development times. Furthermore, 
the resulting systems tend to be monolithic entities, and are difficult to extend and test, 
ultimatly discouraging experimentation. The traditional solution to this problem is the 
use of a rapid prototyping framework.

However, as each existing systems tends to prefer one specific platform and a particular 
way of expressing parallelism (including implicit specification) it is difficult to envisage a 
general purpose framework. Fortunately, most of these systems have at least one point of 
commonality: the use of an intermediate form. Typically, these abstract representations 
explicitly identify all parallel components but without the background noise of syntactic 
and (potentially arbitrary) implementation details. To this end, this thesis outlines a 
framework for rapidly prototyping such intermediate languages. Based on the traditional 
three-phase compiler model, the design process is driven by the development of various 
semantic descriptions of the language. Executable versions of the specifications help to 
both debug and informally validate these models. A number of case studies, covering the 
spectrum of modern implementations, demonstrate the utility of the framework.
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Glossary

This glossary is not intended to be exhaustive, and only includes entries for the most
important freqently occurring items. These descriptions are based on a number of sources,
include the references cited in the text as well as more general resources, such as the free
on-line dictionary of computing [Howe, 1993].

abstract interpretation the execution of an abstract version of a program to deduce 
information about the program.

abstract machine a stylised processor design for executing an abstract machine code 
(which is usually the intermediate language of a compilation system) i.e. “a formal 
interpreter for the language which runs on a hypothetical machine” [Hennessy, 1990, 
page 114].

aggressive take a property of an abstract machine, whereby all of a function’s arguments 
(after all pending updates have been performed) have to be present if evaluation is 
to proceed. As noted by Beemster [1994], the STG machine [Peyton Jones, 1992, 
rules 17 and 17a, section 5.6] is an example of this type of system.

algebraic data type a sum-of-product type using constructors to differentiate between 
each possible product [Bird and Wadler, 1988, pages 204-219]. Recursive and mu
tually recursive data types are permitted.

animation the process of making specifications executable for the purpose of experimen
tation and informal validation.

API (application-program interface) describes the formal interface through which 
user code can access a library’s functionality. Typical details will include the argument
passing convention, and each method’s input and output parameters. Additional 
information may include a list of possible side-effects and/or error returns.

boxed value any value which is indirectly referenced via an address pointer [Peyton Jones 
and Launchbury, 1991].

closure an operational structure used to represent a lambda expression, including an 
environment of its free-variable bindings [Peyton Jones, 1987, section 21.5, page 
378].

constant applicative form (CAP) a top-level definition that may require to be updated 
during the lifetime of the evaluation. A typical STG' CAP would be nine =  u —> 
4-4 5 [Peyton Jones, 1987, section 13.2, page 224].

constructor a tag used to uniquely identify a product type of an algebraic data type [Pey
ton Jones, 1987, section 4.1, page 52].

xni



X IV

continuation an instruction sequence, or function, that may be invoked as the final step 
of the current computation, and which represents “what to do next” . In a physical 
implementation, a continuation is usually represented by a return address [Pey
ton Jones, 1987, sections 5.4 and 9.4],

continuation-passing style is a program notation that makes aspect of control flow and 
data flow explicit [Appel, 1992, page 2], All user-defined functions taJce a continu
ation as an argument, and apply it to their result in order to effect a return to the 
main computation.

denotational semantics a set-based syntax-driven valuation function which maps a pro
gram directly to its meaning, or denotation [Stoy, 1977; Schmidt, 1986].

domain a set of values over which an ordering relation is defined, or, more specifically, 
the Scott domain [Burn, 1991, definition 2.2.21].

D M M P  (distributed memory, message passing) -  a traditional message-passing multi
processor [Johnson, 1988].

evaluation transformer an identity function which has the operational side effect of 
forcing the evaluation of an expression beyond head normal form [Burn, 1991, chapter
51-

exception “an error, unusual condition, or external signal, that may set a status bit and 
may or may not cause an interrupt, depending upon whether or not the correspond
ing interrupt is enabled” [May, Silha, Simpson and Warren, 1994, section 1.3.1, page 
368] and, typically, invokes a specialised handler to deal with the error.

free variable a variable referred to in an expression, but not bound by a local defini
tion [Peyton Jones, 1987, section 2.2, page 14].

functional (programming) language any declarative, side-effect free language whose 
programs are sets of recursive function definitions.

garbage collection is “the automatic reclamation of computer storage” [Wilson, 1992, 
page 1]. This is achieved by disposing of any heap-allocated object which can no 
longer be reached by the running program, (see also root set).

Glasgow Haskell compiler one of the three main Haskell compilers, based on the STG 
language and STG-machine technology [Peyton Jones, Hall, Hammond, Partain and 
Wadler, 1993].

graph reduction a technique for evaluating non-strict functional programming languages 
which uses sharing to minimise the duplication of work [Wadsworth, 1971, chapter
4].

G M S V  (global memory, shared variables) -  a traditional shared memory multiproces
sor [Johnson, 1988].

Haskell a non-strict, purely functional language whose features include support for higher- 
order functions, type classes and static, polymorphic typing, user-defined data types, 
functional I/O , and pattern matching [Hudak, Peyton Jones, Wadler and others, 
1992].
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higher-order functions “functions are treated as first-class values in a language -  al
lowing them to be stored in data structures, passed as arguments and returned as 
results” [Hudak, 1989, section 2.1, pages 382-383].

Hindley-Milner type-inference algorithm the classic approach to polymorphic type 
checking in a functional programming system [Milner, 1978].

intermediate language any language that is used as a temporary representation during 
the compilation of a source language to a target language.

interpreter “a piece of software that directly executes a source program” [Watson, 1989].

metalanguage “a language used to define another language” [Watson, 1989, section
1.4.2, page 14].

M IM D (multiple instruction, multiple data) -  most commercial multiprocessors and col
lections of workstations fall into this architectural category [Flynn, 1972].

non-determinism a property of a compntation which may (arbitrarily) return different 
results [Stoy, 1977, page 201].

non-strictness a property of an evaluation strategy such that an expression is only eval- 
nated when its value is actually needed (normal-order reduction [Peyton Jones, 1987, 
section 2.3, page 25]).

powerdomain each element of a powerdomain is a set of elements of the domain from 
which it was formed. Powerdomains can be used in a denotational semantics to 
model non-determinism [Stoy, 1977, page201].

primitive function builtin routines similar to the lambda-calculus J-rules, and the only 
way to perform compntations on unboxed values.

prototyping “is the process of constructing software for the purpose of obtaining infor
mation about the adequacy and appropriateness of the designers’ conception of a 
software product” [Balzer, Gabriel, Belz, Dewar, Fisher and others, 1988, page 8].

referential transparency the ability to replace any sub-expression by others possessing 
the same valne without changing the final value of the mathematical expression [Bird 
and Wadler, 1988, page 2]. This is often summarised as: “equals can be replaced by 
equals” [Hudak, 1989, page 362].

RISC (Reduced Instruction Set Computer) machine the salient features of this 
class of processor include [Kane and Heinrich, 1992, chapter 1, pages 1-22]: one 
instruction completed per cycle; simple addressing modes and instruction formats; 
sufficient on-chip memory (registers and cache) to overcome the processor/memory 
bottleneck; and a reliance on optimising compilers to obtain the best possible per
formance.

root set a list of the heap addresses which are live in the local state [Wilson, 1992, section 
1.2]. Using this as the main input, it must be possible for the garbage collector to 
identify all of the live closures of the entire system.

SIMD (single instruction, multiple data) -  vector/array processors, often referred to as 
data-parallel machines [Flynn, 1972].
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sparking the creation of a new thread to reduce an expression [Clack and Peyton Jones, 
1986, section 2.1],

speculative evaluation an approach to increasing available parallelism by sparking threads 
to reduce non-essential expressions [Mattson Jr., 1993a, chapter 3, page 39].

STG (Shared Term Graph) language is the abstract machine code of the STG ma
chine, and can be viewed as “a very austere purely-functional language” [Pey
ton Jones, 1992, section 4].

STG' language a variant of the STG language which serves as the foundation for the 
prototyping system. The sequential semantics of the language is presented in chap
ter 4.

STG machine (Spineless Tagless G-machine) is an abstract machine designed to 
support non-strict higher-order functional languages [Peyton Jones and Salkild, 1989;
Peyton Jones, 1992].

syntactic sugar any syntactic construct added solely for the purpose of improving pro
grammability. The removal of these expressions is known as de-sugaring.

syntax driven a property of a language processor which takes its structure directly from
the abstract syntax.

thread an independent process which computes the value of one expression and then ter
minates [Peyton Jones, 1989, evaluate-and-die model, page 178] (see also sparking).

thunk a closure which represents an expression not in head-normal form [Peyton Jones, 
1992, section 3.1].

t ick y -t ick y  profiling a feature of GHC, whereby the run-time system records the num
ber of updates, the number of constructors entered etc. The system is so named 
because “that’s the sound a Sun4 makes when it is running up all those counters 
(slowly)” [AQUA Team, 1993, section 9, page 36].

time-out “A period of time after which an error condition is raised if some event has 
not occured. A common example is sending a message. If the receiver does not 
acknowledge the message within some preset time-out period, a transmission error 
is assumed to have occured.” [Howe, 1993]

type inference the process of deducing a program’s type attributes from its syntax, as 
typified by the Hindley-Milner system [Milner, 1978].

unboxed value any value which can be represented using a machine literal, including, 
for example, 32-bit integers and 64-bit floating point numbers [Peyton Jones and 
Launchbury, 1991].



Chapter 1

Introduction

1.1 Motivation

Non-strict higher-order functional programming languages are elegant, concise, mathemat
ically sound and contain few environment-specific features. Furthermore, current imple
mentations of functional programming languages generate sequential code of a comparable 
efficiency to that of their imperative rivals. This combination suggests the possibility of 
architecture-independent parallel programming, and the validity of this approach has been 
established by a number of experimental compilers [Hill, 1994; Chakravaxty, 1994; Ham
mond, Mattson Jr. and Peyton Jones, 1994; Hudak, 1991]. However, a would-be designer 
of a parallel functional system is faced with three major obstacles:

1. due to the large number of dimensions involved and to the lack of a common bench
marking system, it is extremely difficult determine which components are central to 
the performance of the system.

2. having selected and integrated the components, the cost of developing an efficient 
implementation for just one platform is considerable.

3. once the base implementation is complete, experimentation with any but the most 
trivial of subsystems may require significant effort.

What is needed is a system to rapidly develop and test ideas before committing to a 
full-scale implementation. However, as each existing implementation tends to prefer one 
specific platform and a particular way of expressing parallelism (including implicit speci
fication) it is difficult to envisage a general purpose framework.

Fortunately, most of these systems have at least one point of commonality: the use 
of an intermediate form [Peyton Jones, 1987]. Typically, these abstract representations 
explicitly identify all parallel components but without the background noise of syntactic 
and (potentially arbitrary) implementation details. To this end, this thesis outlines a 
framework for rapidly prototyping such intermediate languages, split into three stages:

language specification the language is specified in terms of its syntax, type rules [Mil
ner, 1978] and denotational semantics [Stoy, 1977]. This provides the reference model 
against which to test the output of the subsequent stages.

parser construction a number of parallel languages have been outlined [Hill, 1994; Hu
dak, 1991; Kelly, 1989; Burton, 1984] and so it is important to verify that the 
proposed abstract form can act as a suitable target (for as large a subset of these as 
possible).



compilation rules to provide a degree of architecture independence to the source lan
guages, the code generator must produce efficient output for a variety of diverse 
architectures. This stage is driven by the development of an operational semantics 
for the intermediate language.

The design process is driven by the development of semantic models of the stages, and 
these axe used primarily to validate and motivate the parse and compilation rules. To 
improve confidence in the models themselves, executable version of the specifications, 
written in the functional programming language Haskell, are constructed. While some 
parts of the framework could be automated, it is worth stating that we have made no 
attempt to develop an automatic system of the sort typified by CERES [Tofte, 1990].

1.2 Overview

1.2.1 Background

By critically examining the relevant literature, chapter two motivates the central work of 
this thesis: the design of a prototyping framework for parallel intermediate languages.

1.2.2 Prototyping parallel functional intermediate languages

Chapter three describes an approach to the design of an explicitly parallel intermediate 
language for use during the compilation of non-strict higher-order functional program
ming languages. The framework is based upon the development of both a denotational 
and operational model for the intermediate language, which are then used to produce 
specifications for the parser and code generator. Haskell animations of these components 
aid with both debugging and informal validation. (For a more detailed and example- 
driven description of the prototyping system see [Ben-Dyke and Axford, 1995], which is 
reproduced in appendix A.)

1.2.3 The sequential STG' language

Chapter four describes the STG' language, a variant of the Shared Term Graph (STG) 
language, both in terms of its abstract and concrete syntax, and denotational semantics. 
A Hindley-Milner style type-inference algorithm is also presented, which serves to restrict 
the language and produces information useful to a compilation system.

1.2.4 Expressing parallelism -  static models

In chapter five a number of guidelines are presented for adding support for parallelism into 
the sequential STG' language, as described in chapter 4. Typically, this involves extending 
the abstract syntax, adding language restrictions, and developing a denotational model 
of the parallel components. The examples used to motivate each of the steps are, where 
possible, based on the constructs presented in section 2.4. While the issues of language 
design are not directly addressed, MacLennan’s principles [1987, page 547] serve as a useful 
guide, and are thus reproduced in table 5.1.



1.2.5 Managing parallelism — operational models

Chapter six discusses the development of an operational description to augment the de- 
notational semantics of the parallel STG' language (see chapter 5). The STG machine 
provides the basic recipe, into which the parallel ingredients, including threads, messages, 
and shared memory, are added. To facilitate testing and debugging, the animation of 
the model, which is essentially a state-transition system, is also considered. The final de
scription is then used by chapter 8 to provide the foundation upon which the compilation 
system is built.

1.2.6 Simulating the target architecture

Chapter seven describes the simulator used to test and debug the output of the STG' 
compiler (see chapter 8). A RISC-like instruction set, based on the DEC Alpha processor 
family, serves as the interface between the two systems. The simulator is interpretive 
and is specified using the state-transition notation presented in chapter 6. While overall 
performance is relatively poor, the extensible nature of the state-transition model is more 
important for this particular application.

1.2.7 Compilation rules

Chapter eight describes how the state-transition model can be used to model a compilation 
system. Particular emphasis is placed on encoding important optimisations, inclnding 
register allocation, closure layout, and dead-code elimination. The validity of this approach 
is demonstrated by developing a compilation system for a subset of the sequential STG' 
language.

1.2.8 Prototyping parallel functional intermediate languages

In chapter nine the use of the prototyping framework is illustrated by four case studies. 
Each of the studies are based upon existing well-known systems, and, between them, 
include examples of the main programming abstractions used in modern parallel functional 
programming and cover both message-passing and shared-memory architectures. The first 
study is based upon shared-memory Haskell, and considers the introduction of parallel 
threads into the STG' language. This provides a simple overview of the methodology, and 
serves as a foundation upon which the other case studies build. The second moves on to 
consider GUM Haskell [Trinder et ah, 1996]. While the static semantics are very similar to 
those of the first case study, the operational model is far more complex, and demonstrates 
how message passing can be modelled by a state-transition system. The third investigates 
the data placement primitives of para-functional Haskell this proves interesting both in 
terms of the denotational and operational models. Skeletal parallelism is the subject of 
the final case study, dealing with farms, pipes and divide-and-conquer skeletons.

1.2.9 Summary, evaluation, and further work

Chapter ten concludes the thesis by re-stating the main contributions of the work, and 
attempting to evaluate the prototyping framework. Finally, there is a discussion of the 
limitations of the proposed approach, and possible areas for future research are examined.



Chapter 2

Background

2.1 Introduction

By critically examining the relevant literature, this chapter motivates the central work of 
this thesis: the design of a prototyping framework for parallel intermediate languages.

Section 2.2 introduces the field of parallel processing, while section 2.3 deals with the 
specifics of parallel functional programming. This leads on to a review, in section 2.4, 
of the idioms used by explicitly-parallel functional programming languages. Section 2.5 
reviews the existing approaches to prototyping, and the chapter is then summarised in 
section 2.6.

2.2 Parallel processing

2.2.1 Architectural taxonomies

The term parallel can be used to describe a wide range of architectures, with the only 
common denominator being the use of more than one processing element. For the purpose 
of this thesis, such systems are assumed to comprise many similar processors, connected 
by a reliable communication mechanism, co-operating to solve a single task or problem. 
Many different styles of parallel computers have been developed, and figure 2.1 shows a 
number of common configurations (the blocks represent processors, memory, communica
tion networks, or host processors). Indeed, there is sufficient variety [Duncan, 1990] that 
a number of different taxonomies have been developed. Flynn [1972] categorised machines 
based upon the number of instruction and data streams:

SISD (single instruction, single data) -  the classic von Neumann architecture, encom
passing most modern uniprocessors. Examples include the DEC Alpha AXP archi
tecture [Sites, 1992], the SPARC family [Sun Microsystems, 1988], and the Pow
erPC [May et al., 1994].

SIMD (single instruction, multiple data) -  vector/array processors (often referred to 
as data-parallel machines). Examples include the AMT DAP, Thinking Machines’ 
CM-200, and the MasPar MP-1 (all of which have been surveyed by MacDonald 
[1992]).

MISD (multiple instruction, single data) -  no practical examples of this class exist.



(a) (b) (c) (d)

Figure 2.1: Four examples of parallel architectures: (a) vector processor (SIMD); (b) clas
sic shared memory (GMSV); (c) loosely-coupled message passing (DMMP); (d) constant- 
valence message passing (DMMP, but with the memory components not shown)

M IM D (multiple instruction, multiple data) -  most commercial multiprocessors and 
collections of workstations fall into this category. Examples inclnde both shared- 
memory machines, such as the KSR and Sequent Symmetry, and message-passing 
systems, including Thinking Machines’ CM-5, the NCUBE range, and systems based 
on the Inmos Transputer. (Oren and Ramanathan [1993] include an overview of each 
of these machines in their survey paper.)

Johnson [1988, figure 1, page 45] noted that the last category, MIMD, was too coarse, and 
divided it into the following classes:

shared variables message passing
global

memory
GMSV

shared memory
GMMP

distributed
memory

DMSV
hybrid

DMMP
message passing

One failing common to both of these taxonomies, however, is that they convey no infor
mation with regards to a machine’s “size” . The Erlangen classification system, developed 
by Händler [1982], uses the triple {K  ̂D, W ) as a representation, where K  is the number of 
processors, D  is the number of ALUs (Arithmetic Logic Units), and W  is the word length of 
each ALU. If pipelining is used, the notation is extended to {K  x K', D xD ' ,W  x W ' ) , where 
the multipliers are the pipeline depths (macro-, instruction- and arithmetic-pipelining re
spectively). The system also allows representations to be combined using the following 
operators:

-F indicates the existence of more than one structure that operates independently in par
allel.

* indicates the existence of sequentially ordered structures where all data is processed 
through all structures.

V indicates that a certain system may have multiple configurations.

Skillicorn [1988] extended this idea to include descriptions of the interconnection topol
ogy (including both processor-to-processor and processor-to-memory networks). Indeed,



Bônniger, Esser and Krekel [1993] also traded conciseness for accuracy by increasing the 
number of items to 350 (split across 14 groups). Schlesinger and Kuehn [1993] have taken 
this concept to its natural limit by developing an architecture-description language. An
other approach is adopted by Culler et al. [1993], whose LogP model uses the performance 
characteristics of the communication mechanism as the primary attributes:

L - an upper bound on the latency involved with communicating a word-length message 
from source to destination.

o - the overhead attributed to the transmission or reception of each message (during which 
time a processor can engage in other activities.)

g - the minimum gap allowed between consecutive message transmission or reception. The 
reciprocal gives the per-processor bandwidth.

P - the number of processors.

2.2.2 Amdahl’s law and the corollary of modest potential

While intuition would suggest that n co-operating processors should be n-times faster than 
a single processor, Amdahl [1967] argued the case against parallel processing as a means 
of achieving large scale computations. He showed that the maximum theoretical speedup 
is merely the reciprocal of the percentage of time spent performing serial computation 
(this limiting factor is known as the serial fraction.) Indeed, most problems are unlikely 
to experience even a 100-fold improvement, and this insight resulted in a degree of scepti
cism regarding the viability of massive parallelism. However, Gustafson [1988] addressed 
these concerns by pointing out that there are, in fact, two distinct approaches to parallel 
processing: fixed size, reduced time, used whenever user acceptance is important or there 
are real-time constraints; and, secondly, bounded time, increased size, where the increased 
power is used to improve either the accuracy or problem size of the computation.

Gustafson then showed that Amdahl’s law only applied to the case where the serial 
fraction is independent of the number of processors, i.e. the fixed-size, reduced time 
approach. By considering the alternative method, a new law of scaled speedup was defined 
such that the speedup is approximately equal to the number of processors used (thereby 
confirming the original intuition).

As a final cautionary note, Snyder [1986, page 291], taking the bounded-time approach 
for an 0{n^) algorithm as an example, showed that it would require 100 million processors 
to increase the problem size by two orders of magnitude -  this lead to the corollary of 
modest potential:

“Because its benefit is so modest, the whole force of parallelism must be trans
ferred to the problem, not converted to “heat” in implementational overhead.”

2.3 Architecture independence through functional program
ming

2.3.1 The software crisis and parallel languages

While parallel processing seems to offer high performance at a low cost, the recent failure 
of the Thinking Machines Corporation [Markoff, 1994] would suggest that it is not a 
commercially-viable option. Skillicorn [1990, page 38] states that the major problem is:



“There is currently no way to develop software for parallel computers and 
expect it to have a long lifetime.”

The situation is akin to the original software crisis of the 1960s, and, as then, either 
the hardware or software components (or both) need to be improved.^ A number of 
promising examples of the former approach exist, including the MIT Alewife [Agarwal 
et ah, 1991], the Stanford DASH [Lenoski et ah, 1992], and the Tera Computer Company’s 
Multi-Threaded Architecture [Smith, 1990]. However, this thesis takes the latter path, 
with McColl [1995, page 42] providing the necessary motivation:

“This software-first approach has a great deal of merit given that hardware 
is changing rapidly and that the cost and time required to produce software 
makes architecture-independence in software a major goal.”

This opinion is widely held, as illustrated by the long list of architecture-independent 
programming languages: Dino, High Performance Fortran, Lucid, Orca, Proteus, PCN, 
Sisal, Split C, SR, etc. (Cheng [1993] has surveyed over 30 different parallel languages, 
including those listed here, in addition to a wide selection of communication libraries, and 
performance, debugging, and visualisation tools.) Although each of these languages has 
achieved a degree of success. Cook, Pancake and Walpole [1994, section 6] have recently 
stated that:

“Parallel programming is difficult, under-supported, and unlikely to achieve
impressive speedups on most applications.”

Peyton Jones [1989, section 2.3, page 176] argues that this is a direct result of the underly
ing programming model, and re-applies Backus’s fat and weak criticism (see section 2.3.2) 
to parallel languages, stating that:

“A parallel imperative program specifies in detail many resource-allocation 
decisions which the parallel functional program does not mention at all.”

Note that this thesis does not claim that parallel functional programming is the only 
solution, merely that it is a promising approach to the problem of developing architecture- 
independent software.

2.3.2 Can programming be liberated from the von Neumann style?

In 1977, the ACM Turing award was presented to Backus [1978], the developer of For
tran and BNF. During the lecture, he echoed the work of Landin [1966] by criticising 
conventional programming languages:

“Inherent defects at the most basic level cause them to be both fat and weak: 
their primitive word-at-a-time style of programming inherited from their com
mon ancestor -  the von Neumann computer, their close coupling of semantics 
to state transitions, their division of programming into a world of expressions 
and a world of statements, their inability to effectively use powerful combining 
forms for building new programs from existing ones, and their lack of useful 
properties for reasoning about programs.”

^The BSP (Bulk-Synchronous Parallel) model, first proposed by Valiant [1990], is an attempt to decouple 
these two approaches.



He then proceeded to advocate the use of functional programming to circumvent the im
perative intellectual bottleneck, and, despite the recent advances in imperative program
ming [Stroustrup, 1991], many of these arguments still hold [Hughes, 1989; Hudak and 
Jones, 1994],

The key properties of functional languages are described below (for a more complete 
overview of of functional programming, [Hudak, 1989] and [Bird and Wadler, 1988] are 
highly recommended):

declarative “functional programming is often described as expressing what is being com
puted rather than how'' [Hudak, 1989, page 361]. Essentially, the programmer is free 
to concentrate on the underlying algorithm without having to deal with unimportant 
details, such as sequencing and memory management.

formal semantics the lambda calculus provides the theoretical foundations of functional 
languages [Barendregt, 1981; Hankin, 1994]. Furthermore, specifying the denota- 
tional semantics [Stoy, 1977; Schmidt, 1986] of such languages is straightforward -  
indeed, the meta-language used is syntactically very similar to the lambda calculus.

referential transparency due to the absence of side-effects, any sub-expression can be 
replaced by others possessing the same value without changing the final value of the 
mathematical expression [Bird and Wadler, 1988, page 2]. This is often summarised 
as: “equals can be replaced by equals” [Hudak, 1989, page 362].

In addition, most modern functional programming languages will also provide the following 
features:

algebraic data types a sum-of-product type using constructors to differentiate between 
each possible product [Bird and Wadler, 1988, pages 204-219]. Recursive and mu
tually recursive data types are permitted.

higher-order functions “functions are treated as first-class values in a [functional] lan
guage -  allowing them to be stored in data structures, passed as arguments and 
returned as results” [Hudak, 1989, section 2.1, pages 382-383]. Through the use of 
such functions, it is possible to develop powerful combining forms, such that “it is 
as though the programming language can be extended with new control structures 
whenever desired” [Hughes, 1989, section 3, pages 99-101].

syntactic sugar any syntactic construct added solely for the purpose of improving pro
grammability. Examples include pattern matching, guarded expressions, and list 
comprehensions [Hudak et ah, 1992].

type inference the process of deducing a program’s type attributes from its syntax, as 
typified by the Hindley-Milner system [Milner, 1978].

This combination of features provides an expressiveness and freedom from trivial details 
(such as sequencing and memory management) that is, as yet, unrivalled by modern 
imperative languages, such as C-t—|- [Stroustrup, 1991]. Furthermore, the two traditional 
failings of functional languages, namely their inefficiency and poor input/output facilities, 
have been addressed by recent advances in compiler design [Peyton Jones, 1992; Plasmeijer 
and van Eekelen, 1993a] and category theory [Wadler, 1992; Peyton Jones and Wadler,
1993] respectively.



Non-strict evaluation

Often referred to as call-by-need, normal order reduction [Peyton Jones, 1987, page 25], 
or lazy evaluation, non-strictness is a property of an evaluation strategy such that an ex
pression is only evaluated when its value is actually needed. Hughes [1989, page 98] argues 
that, in combination with higher-order functions, lazy evaluation “can contribute greatly 
to modularity, the key to successful programming.” However, implementing non-strictness 
is complicated [Peyton Jones, 1987] and relies on the existence of analysis techniques for 
removing unnecessary laziness [Beemster, 1994; Peyton Jones and Partain, 1994; Burn, 
1991]. However, recent benchmark results prompted Hartel et al. [1996, section 6.3.2] to 
note the following:

“As the Glasgow Haskell compiler shows, if the compiler can exploit strictness 
at the right points, the presence of lazy evaluation need not be a hindrance 
to high performance. This implementation is actually faster than most of the 
strict implementations.”

Even so, the functional programming community is split over the issue of strict versus 
non-strict languages, with Standard ML [Harper, Milner and Tofte, 1990] and Haskell (see 
the following section) representing the two camps. To help settle the matter, it is worth 
considering what Hill [1994, chapter 1, page 1] has to say about la.ziness in the context of
parallelism:

“We have found that non-strictness opens the door to particular techniques 
and parallel algorithms, in just the same way that it has opened the eyes of 
functional programmers over the last decade.”

Therefore, for the purpose of this thesis, it will be assumed that the increased convenience 
and expressiveness of non-strictness outweigh the (perceived) operational deficiencies.

Haskell

Haskell is a modern functional programming language whose features include “higher- 
order functions, non-strict semantics, static polymorphic typing, user-defined datatypes, 
pattern matching, list comprehensions, a module system, and a rich set of primitive 
datatypes” [Hudak, Peyton Jones, Wadler and others, 1992, page 1]. A number of free com
pilers, interpreters, tools, and libraries exist, and, in a recent benchmark experiment [Har
tel, 1994], the Glasgow Haskell compiler [Peyton Jones et ah, 1993] consistently outper
formed the best compilers for other lazy languages, including Glean [Nöcker et ah, 1991], 
and Fast [The FAST project team, 1993]. Even when compared against strict languages, 
GHC managed to finish second out of twenty five [Hartel et ah, 1996, section 6.2.1].

Appendix B contains a number of example Haskell definitions, including map, fo ld l , 
f ib , primes, and queens.

2.3.3 Graph reduction

Graph reduction [Wadsworth, 1971, chapter 4] is, arguably, the standard approach to 
implementing functional languages [Peyton Jones, 1987, parts II and III]. It provides a 
framework for both controlling the order of reduction, e.g. normal order versus applica
tive order, and managing the sharing of common sub-expressions. Combinators [Turner, 
1979] are typically used as the abstract machine language, with the instruction set being 
optimally generated for each program [Hughes, 1984].
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Clean [Nocker, Smetsers, Plasmeijer and van Eekelen, 1991] is one of the few mod
ern languages not to use graph reduction, instead being based upon term graph rewrit
ing [Sleep, Plasmeijer and van Eekelen, 1993]. The primary advantage of this approach is 
that a formal proof of soundness has been developed [Barendregt, van Eekelen, Kennaway 
and others, 1987]. Despite these theoretical differences, when comparing the ABC ma
chine [Plasmeijer and van Eekelen, 1993a] (the abstract machine used by Clean), with, for 
example, the STG machine (a graph-reduction system), it is clear that the implementation 
strategies are very similar.

For a brief period, specialised hardware for running functional languages was consid
ered, with examples including Cobweb [Hankin, Osmon and Shute, 1985], the AMPS (Ap
plicative Multi-Processors) project [Keller, Lindstrom and Path, 1979], ALICE (Applica
tive Language Idealised Computing Engine [Darlington and Reeve, 1981]), and FLAG
SHIP [Watson and Watson, 1987]. However, all of these offerings could not compete 
against commercially-developed traditional uniprocessors, and have therefore become ob
solete.

2.3.4 Parallel functional programming: an introduction

Burge [1975] was probably the first to recognise the potential advantages of parallel func
tional programming. In addition to the high level of abstraction offered by the paradigm, 
the absence of side effects offers the following benefits in a parallel context [Peyton Jones, 
1989, section 2.2, pages 175-176]:

• functional languages are implicitly parallel  ̂ i.e. it is possible for a compiler to auto
matically detect what sub-expressions can be safely evaluated in parallel (see sec
tion 2.4.1).

• the programmer does not have to specify the low-level synchronisation of variables 
as sharing is automatically handled by the run-time system.

• ideally, the language retains its original denotational semantics (modulo resource 
allocation), therefore the same formal reasoning techniques can be applied. This 
also means that all programs are guaranteed to be deadlock free (unless, of course, 
the sequential program also fails to terminate).

• a program’s result will be independent of implementation details such as scheduling, 
partitioning, and load balancing. This also implies that parallel programs can be 
debugged on a sequential architecture.

• being based on the lambda calculus, there is no architectural bias.

Concerning the first two points, critics would argue that a human programmer must 
specify the low-level behaviour if performance is to be a primary goal (recall the corollary 
of modest potential from section 2.2.2). Peyton Jones [1989, section 2.3, pages 176-177] 
counters by noting that there has always been resistance to abstraction:

“For example, in the beginning all programs were written in assembly language, 
and compilers were distrusted because they were unlikely to do as good a job 
of register allocation as a human programmer.”

However, he does concede that parallel functional programming relies on the existence of 
low- and mid-level parallel imperative technology, and it is probably in these areas that 
most work needs to be done.
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For a more detailed overview of parallel functional programming, both [Hammond,
1994] and [Peyton Jones, 1989] are recommended.

2.4 User-level annotations and expressions

When examining a particular approach to parallel functional programming it is important 
to differentiate between what is being expressed and the notation used. For instance, 
consider the following code fragments, both of which have similar operational behaviours:

/  (gi argil ■ ■ ■ argu^) ■ ■ ■ (gn argni ■ ■ ■ arg„aj 
where /  :: speculation ai —>■••• —)■ 

speculation an ^  a

/  =  •••

Burton’s type annotations 
[Burton, 1987]

sandwich /  johi .. .jobn 
where /  =  . . .

jobi =  gi argil ■ ■ ■ argia^

jobn =  gn argni. . .  argnan

Vree’s sandwich expression 
[Vree, 1989]

For the purpose of this section, the primary focus is on the intended behaviour rather than
any syntactic differences, with the predominant abstractions being:

implicit specification it is left to the compiler to identify and harness those portions of 
the program which will benefit from parallel evaluation.

bulk data types primitive operations for manipulating a group of objects as a whole 
provide the main sources of parallelism.

skeletal parallelism a skeleton is an algorithmic template, with both a denotational and 
operational reading, into which problem-specific routines are slotted.

low-level task control the programmer is given full control over the creation, place
ment, and schednling of threads of computation.

Each of these paradigms is examined in turn in sections 2.4.1 to 2.4.4.

2.4.1 Implicit specification

In the absence of programmer-supplied hints, the compiler has to rely on abstract inter
pretation (or, when this fails, run-time profiling) to both detect potential parallelism, and 
to ascertain if the overhead is justified. The final product of the analysis phase is an ex
plicitly parallel program, using one or more of the abstractions described in the following 
sections. The main tools nsed are strictness and complexity analysis, with the former 
identifying those expressions which are sure to be evaluated [Burn, 1991], and the latter 
generating cost models of the reduction of these expressions [Maheshwari, 1990]. Of the 
two, strictness analysis is probably the most evolved, as it has applications ontside the 
world of parallel functional programming [Howe and Burn, 1994].

The advantages offered by this paradigm are the reduced programmer burden coupled 
with architecture independence. The viability of this approach has been demonstrated 
by a number of systems, including serial combinators [Goldberg, 1988b] and evaluation 
transformers [Burn, 1989]. However, at present, such systems only introduce unstructured 
par combinators, leading to snb-optimal performance.
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merging
{1 ,2 ,9 } U {1 ,3 ,6 } =  11,2,3,6,9} 
(1,2,9) ^ (1 ,3 ,6 )  =  (1,2,9,1,3,6) 

zip-with (-I-) (1,2,9) (1,3,6) =  (2,5,15)
selection 6 {1, 2, 9} X < 5 • =  {1,2}
permutation reverse {c, a, t) =  {t,a,c)
reduction /oWie/i (+) 0 (1,3,6) =  10
scanning scan^e/i (+) 0 (1,3,6) =  (0,1,4,10)
apply to all map (1+) (1,3,6) =  (2,4,7)

Table 2.1: Some examples of collection-oriented operations 

2.4.2 Bulk data types

The fundamental component of a data-parallel language is the monolithic apply-to-all 
function which simultaneously acts on a large collection of data. Sipelstein and Blelloch 
[1991, page 510] note that:

“A collection-oriented language is characterised by two features: the kinds of
collections it supports and the operations permitted on those collections.”

Example collections include arrays, bags, sets, mappings, and trees [Maafien, 1992], with 
the operations including merging, selection, permutation, reduction, scans, and the ubiq
uitous map -  see table 2.1 for a number of Haskell-style examples. Some of the operations 
require an ordering to be imposed on the elements of the collection, and this is typically 
either array-based or uses a (possibly unique) key. The data placement, pattern of com
munication, and synchronisation are usually implicitly specified by whichever operation 
is used, although a number of languages allow the programmer full control over some of 
these areas [Bala, Ferrante and Carter, 1993]. In order to illustrate some of the issues 
touched upon here, the following sections look at two example languages, Paralation Lisp 
and data-parallel Haskell. A number of other equally important examples exist, including 
NESL [Blelloch et ah, 1993] and Sisal [Skedzielewski, 1991; Oldehoeft and Cann, 1988].

Paralation Lisp

A paralation [Sabot, 1988] is a collection of fields, with each held containing an index 
which identihes the site, or location, of the held (the index does not have to be unique.) 
The index-to-site relationship is, by default, arbitrary, but the programmer can enforce 
a particular shape on the paralation, including rings and grids. There are four levels 
of locality dehned by the model: the elements in a single held are guaranteed to be 
near {elementwise locality) -  this applies even if one of the helds is itself a paralation 
{inherited locality); the next closest items are helds from the same paralation with similar 
indices {shape locality); then comes any helds within the same paralation; and hnally, helds 
from different paralations are the most distant. The degree of synchronisation required 
is minimal, as any function which is sensitive to the order of evaluation is dehned to be 
invalid under the model [Sabot, 1988, pages 19-21].

Ignoring the underlying computational model, Paralation Lisp only requires three basic 
operations (excluding creation and testing for equality), elwise, match, and move, as 
detailed in table 2.2. In the following examples, a held is represented as valucindex rather
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elw ise paralations function concurrently applies function  to each set of 
fields with matching indices taken from the 
paralations. In its simplest form, elw ise is 
equivalent to the map operation

match paralationi paralation^ creates a partial, multi-valued index mapping 
based on the comparisons of all the elements 
of the two paralations

move paralation mapping default combine returns a paralation whose contents are gener
ated by applying the mapping to the specified 
paralation. The default and combine opera
tors handle the special cases of zero or many 
elements being mapped to one location

Table 2.2: Paralation Lisp’s data-parallel constructs

than the more usual {index, value) presentation:

elwise [10,81,62] (1+) 
elwise [1o,2i ,92] [10,81,62] (+) 

match [4o, 71,82] [3q, 4i, 62,4a] 
move [5o, 9i, I 22] {0 i-)- 2,1 i->- 0,1 i->- 2} 0

[2o,4 i ,72]
[2o,5 i ,152]
{0 I—̂ 1,0 3,2 I—̂ 0}
[9o,ii,(5©9)2]

Data-parallel Haskell

A POD [Hill, 1994, page 18] is a collection of index/value pairs, where the index element of 
each pair is unique within the POD. The main operation on the data is a restricted form 
of list comprehension [Hudak et al., 1992, page 16], with the map operation being defined 
as follows:

mappod f  pod =  [{index, f  x) \ {index, x) •<— pod\

Multi-POD comprehensions are similar, but, to make it clear where the index set should 
be taken from, all secondary pods are introduced via the operator:

oddpod podi pod2 
fetchpod function pod 
sendpod function pod

[{index, x +  y) \ {index, x) ■<— podi, {index, y) <i= podf) 
[{index, y) \ {index, x) •(— pod, {function index, y) 4= pod] 
[{function index, x) \ {index, x) •<— pod]

The functions fetchpod and sendpod demonstrate how the comprehensions can concisely 
specify arbitrary communication patterns, and as such are similar to a combined match and 
move operation under Paralation Lisp. In line with its pedigree, data-parallel Haskell does 
not provide any mechanism to specify a PODs shape, and synchronisation is automatically 
handled by the run-time system.

2.4.3 Skeletal parallelism

The skeleton paradigm was so named by Cole [1989], who described the use of a set of 
fixed algorithmic templates, into which problem-specific routines can be slotted. Typical
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skeletons include divide-and-conquer (and it’s small scale equivalent, the processor farm), 
pipelines, loops and trees [Burkhart, Korn, Gutzwiller, Ohnacker and Waser, 1993], with 
each skeleton having several associated components [Darlington et ah, 1993]: a declar
ative meaning  ̂ which is the programmer’s primary reference when developing skeletal 
algorithms; one or more implementation templates, for efficiently performing the required 
computation; performance models to predict the run-time costs of a particular instantia
tion of a skeleton; and a set of transformation rules, which, in combination with the cost 
model, allow a program to be optimised for a particular architecture. These components 
are examined in sections 2.4.3 to 2.4.3,

The distinction between data parallelism and skeleton-oriented programming is un
clear, as the former could be considered a sub-paradigm of the latter.

Declarative meaning

A skeleton is typically represented by its functional-language definition, with this model 
serving two main purposes: it acts as the primary reference for the programmer, and it 
allows the programs to be tested on a sequential architecture. Some example definitions 
are given below:

____ Haskell________________________________________________________________________________
pipe : : [a -> a] -> (a -> a)
pipe [f] = f
pipe (f:fs) = f (pipe fs)

divide_and_conquer :: (a -> Bool) -> (a -> b) -> (a -> [a]) -> ([b] -> b) -> a
-> b

divide_and_conquer is_trivial solve split combine values 
I is.trivial values = solve values
I otherwise = combine [divide_and_conquer is_trivial solve split combine

part I part <- split values]

Implementation templates

The actual implementation of the model deals with all the low-level issues such as data 
placement, synchronisation and scheduling. In order to cater for different architectures, 
or even slight variations within a particular configuration, a number of implementation 
templates will be necessary to achieve architecture independence. The specification of 
a template is usually given in terms of the component processes and the interconnec
tion network used. For example, figure 2.2 shows the model for the P^L dedicated-farm 
skeleton [Pelagatti, 1993, pages 92, 97, and 139].

Performance models

In order to make resource-allocation decisions it is essential to have an accurate perfor
mance model of both the parallel and sequential parts of the program. There are a number 
of factors that must be considered when developing the model, including: the available 
resources, such as the number of processors; the overheads associated with the implemen
tation of the skeleton; the performance of the problem-specific code; the volume of data 
to be produced/consumed; and so on. Obviously some of these parameters will have to 
be estimated, either via abstract analysis or run-time profiling. As an example, Bratvold
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Figure 2.2: Operational template of dedicated-farm skeleton

[1994, pages 105-106] uses the following equations to characterise the p ipeline skeleton:

1- L  —  +  ^ i )

2. Tq =  (̂ tncixi î ŝ Tci) ~\~ L

L total latency of the pipeline
s number of stages
Li latency of stage i
Ci communication costs of sending a 

value from stage i to stage i +  1
Tc completion time
Tci completion time for stage i
i'max largest latency

Typical applications of cost models include discriminating between sequential and par
allel implementations [Danelutto, Pelagatti and others, 1992, section 4.1], and deciding 
when to stop unfolding a divide-and-conquer problem [Darlington et al., 1993, section 4].

Transformation rules

Transformation rules declare two expressions or operational templates to be semantically 
equivalent, and, using a cost calculus as a guide, allow a transformation system to optimise 
a program with respect to a particular architecture [Pelagatti, 1993]. In addition, a pre
condition may have to be satisfied before the rule can be applied. The following rules are 
taken from Bratvold [1994, appendix B] and Darlington et al. [1993, section 5]:

map /  (map g 1) 
map (divide_and_conquer t s d c)

map i f  . g) I
pipe (rept q (map' n c)) . map s . 
pipe (rept q (f o ld r l (-H-) . map d))

Notice that the second transform is unidirectional, and uses an architecture-specific con
stant, q, which encodes the optimal depth of the pipeline. Transformations not only apply 
to program constructs, but to the implementation templates as well.

2.4.4 Low-level annotations

Unlike the other approaches to parallelism, low-level languages rely on the programmer 
to identify and control all aspects of the parallel program. This can lead to improved 
performance, but at the price of increased programmer effort and reduced portability.
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Traditionally, annotations have been used to control the following operational properties 
of functional programs:

thread identification threads are the basic unit of work of a system, with each respon
sible for evaluating a single expression.

degree of evaluation by default, a thread will reduce an expression to head-normal 
form, which may not entail sufficient work to justify the overhead of thread creation.

thread and data placement the thread-to-processor mapping and data distribution 
encode load balancing and locality information.

order of evaluation scheduling annotations provide fine control over the sequence of 
computation, and can be used to augment, or override, the default strategy.

Thread identification

Probably the best-known annotation in parallel functional programming is the spark con
struct [Clack and Peyton Jones, 1986] -  most commonly manifesting as either the “ ! ” 
character or the par combinator. This indicates that the decorated expression can be 
evaluated (usually to normal form) in parallel with the current computation:

__Haskell________________________________________________________________________________
dsum low high I (high == low) 

I otherwise
high
(dsum low 
(dsum (middle +

where middle = (high + low) ’div’ 2 
worth_it = (high - low) > 50

middle) + {! 
1) high)

worth.it}

where { !  expcond} [Peyton Jones, 1989, page 181] is syntactic sugar for let x  =  exp in 
i f  expcond then a;{!} else x. Another variation on the theme is Mattson Jr.’s specula
tive spark, { -#  PCT potential # - }  [1993a, page 66], where potential is an estimate of the 
probability that the expression will be needed.

Degree of evaluation

In order to justify the overhead of thread creation, it may be necessary to increase the 
work associated with an expression. Typically, this is done by overriding the default 
reduction strategy and evaluating to, for example, irreducible normal form [Kewley and 
Glynn, 1990, page 330]. In the presence of constructors, there are a wide spectrum of 
possible evaluation orderings [Burn, 1991, page 114], some of which may generate further 
threads of computation: (the following example uses the STG' language from chapter 4 
as standard Haskell does not support the necessary operations)

_  STG' code____________________________________________________________________________
force_tree = □  \r [tree] -> force.tree’ tree tree ; 
force_tree’ = □  \r [tree original_tree]

-> case tree of {Branch treel tree2 -> letpeir treel’ = force.tree treel in
letpar tree2’ = force.tree tree2 in 
original.tree ;

Leaf a -> original.tree ; };

These transformers axe either hand coded or automatically generated -  Mirani and HudaJc 
[1995, section2] support both approaches by using Haskell’s class system to provide default 
definitions for any missing instances.
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NeighbourP n proc^id returns the ID of the nth neighbour of the specified 
processor

ChannelP var returns the ID of the processor on which the argument 
variable is stored

IT O P integer converts an integer into a processor ID, allowing user 
defined mapping functions to be written

CurrentP returns the ID of the current processor
RandomP generates a random processor ID

Table 2.3: Concurrent Clean’s topology functions 

Thread and data placement

The simplest example of process mapping is provided by Concurrent Clean’s Self and Par 
annotations [Nocker, Smetsers, Plasmeijer and van Eekelen, 1991] -  threads spawned as a 
result of the former will be evaluated locally, and cannot be migrated to other processors, 
while those identified by the latter will probably be run on a remote processor. Within 
the same language, finer control is provided by the P AT exp p roc id  directive, where 
the expression is of primitive type PROCID. The primitive operations for manipulating 
such expressions are shown in table 2.3. In order to maJte use of the ITOP function, 
the mapping between integers and processor identifiers must be defined for each target 
architecture. To provide support for the various annotations. Concurrent Clean extends 
the type system so that it includes process types [Plasmeijer and van Eekelen, 1993b].

Para-functional Haskell [Hudak, 1991, section 5.3.3, pages 171-175] provides similar 
facilities, but for placing data rather than tasks. Also, by using an operating system 
monad to structure access to them, the inherent non-determinism is restricted to a purely 
operational level [Mirani and Hudak, 1995, section 4].

Caliban [Kelly, 1989] uses the moreover clause to both identify the threads and specify 
the required topology. This takes as its argument a conjunction of assertions, where an 
assertion is either an arc statement, or a network-forming expression. The statement arc 
a b indicates that process a derives its input from the output of process 6, and that it is 
safe to run both processes concurrently, e.g.

main = (f . g • h) d
where f = map ((+) 2), g = map ((*) 3). h = map sqrt, d = from 1
moreover [arc Qf @g) /\ (arc Qg Qh) /\ (arc @h d)

By using higher-order functions to manipulate arc definitions, a network-forming expres
sion can concisely define a complex process structures. This is illustrated by the following 
definition of the pipeline function:

pipeline :: [a -> a] -> a -> a 
pipeline fs x = (fold (.) id fs) x

moreover (chain arc (map (0) fs)) /\ (arc @(last fs) x)

chain :: (Bool -> Bool -> Bool) -> [(a -> b)] -> Bool 
chain relation [f] = True
chain relation (f : fs) = (relation fl (head fs)) /\ (chain relation fs)
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Order of evaluation

In place of the usual spark and evaluation-override annotations, para-functional Haskell 
provides schedule expressions [Mirani and Hudak, 1995, section 2]:

“Schedules define partial orders on events of which there are two kinds for 
every expression: (1) a demand for the expression’s evaluation, and (2) a wait 
for the completion of the expression’s evaluation. Many demands may be made 
for an expression’s evaluation, but only the first one will have any effect.”

A schedule, therefore, consists of either an event, or the concatenation or concurrence of 
two other schedules, denoted by si . S2 and si || S2 , respectively. The operational effect 
of these operators is similar to the traditional seq and par combinators. For example, 
consider the following function applications:

1) f a b  schedule (demand a || demand b || demand / )
2) f a b  schedule ((demand a . wait a) || (demand b . wait b)) . demand /

The first expression reduces both the function application and the arguments in parallel, 
while the second one concurrently evaluates the two arguments, and proceeds with the 
application only after both threads have completed.

2.5 Prototyping parallel functional languages

A would-be designer of a parallel functional system is faced with three major obstacles:

1. due to the large number of dimensions involved and to the lack of a common bench
marking system, it is extremely difficult determine which components are central to 
the performance of the system.

2. having selected and integrated the components, the cost of developing an efficient 
implementation for just one platform is considerable.

3. once the base implementation is complete, experimentation with any but the most 
trivial of subsystems may require significant effort.

What is needed is a system to rapidly develop and test ideas before committing to a 
full-scale implementation. Indeed, Hiromoto [1994, section 5] argues for a:

“Incremental, cyclic and comparative approach in the evaluation of [parallel 
functional] languages, compilers and machine architectures.”

The traditional software-engineering solution to this problem is the development of a 
prototype [Balzer et ah, 1988, page 8]:

“Prototyping is the process of constructing software for the purpose of ob
taining information about the adequacy and appropriateness of the designers’ 
conception for a software product...
...a prototype is distinguished from a production system by typically being 
more quickly developed, more readily adapted, less efficient and/or complete, 
and more easily instrumented and monitored.”

Chapter 3 outlines a possible prototyping framework, while the remainder of this section 
examines the relevant literature.
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2.5.1 The problem with performance comparisons

Jain [1991] motivates the need for performance evaluations as follows:

“A performance evaluation is required when a computer designer wants to 
compare a number of alternative designs and find the best design... Even if 
there are no alternatives, performance evaluation of the current system helps 
in determining how well it is performing and if any improvements need to be 
made.”

However, when Langendoen [1993, table 3.2, page 57] attempted to compare the perfor
mance of a number of parallel implementations, the following problems were encountered:

“Unfortunately, few results are actually reported for each machine, and, worse, 
different algorithms have been used to solve the same problem. Only the 
notorious n fib  program, a one-liner to compute the number of function calls 
per second, has been coded in similar style and measured on most parallel 
reduction machines.”

Furthermore, Kaser et al. [1992, table 2, page 342] are probably the only others to attempt 
to directly compare different implementations (in this case, EQUALS, the {v, G')-machine, 
and, GAML). They encountered similar problems: only two of the systems ran on the 
same architecture, and one of these did not support garbage collection (potentially 30% 
of the total run time). In the end, they resorted to comparing relative speedups.

Are these experiences surprising? Tables 2.4 and 2.5 summarise a number of existing 
implementations, including the test programs used to generate the performance results. 
Even disregarding the differences in the architecture, evaluation strategy, and source of 
parallelism, it is fairly clear that only a minority of systems have run even similar tests 
(fewer still have also included the source code and provided actual timings, rather than 
relative speedups.) Even in a purely sequential context, Partain [1993, section 1.1] is 
highly critical of the current state of performance evaluation:

“The quantitative measurement of systems for lazy functional programming 
is a near-scandalous subject. Dancing behind a thin veil of disclaimers, re
searchers in the field can still be found quoting nfibs/sec (or something equally 
egregious), as if this refers to anything remotely interesting.”

2.5.2 Is a standard benchmark suite the solution?

Consider, for example, PARKBENCH (PARallel Kernels and BENCHmarks [Hockney 
et al., 1993]), which has the following objectives:

1. to establish a comprehensive set of parallel benchmarks that is generally accepted 
by both users and vendors of parallel systems.

2. to provide a focus for parallel benchmark activities and avoid unnecessary duplication 
of effort and proliferation of benchmarks.

3. to set standards for benchmarking methodology and result-reporting together with 
a control database/repository for both the benchmarks and the results.

4. to make the benchmarks and results freely available in the public domain.
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system source strict reference
Alfalfa implicit yes [Goldberg and HudaJt, 1987]
Graphinators implicit no [Hudak and Mohr, 1988]
BBN ML implicit no [George, 1989]
HDG-machine implicit no [Kingdon et ah, 1991]
EQUALS implicit no [Kaser et ah, 1992]
SISAL data-paxallel yes [Oldehoeft and Gann, 1988]
NESL data-paxallel yes [Blelloch et ah, 1993]
DP Haskell data-parallel no [Hill, 1994]
Gamma skeletal yes [Knchen and Gladitz, 1992]
WYBERT skeletal no [Langendoen, 1993]
Skeletal ML skeletal yes [Bratvold, 1994]
(n, G)-machine low-level no [Augustsson and Johnsson, 1989]
GAML low-level no [Maranget, 1991]
PAM low-level no [Loogen et ah, 1991]
BBN Haskell low-level no [Mattson Jr., 1993a]
STAR:DUST low-level no [Ostheimer, 1993]
pD low-level yes [Schreiner, 1994]
GUM Haskell low-level no [Trinder et ah, 1996]

Table 2.4: Comparing implementations of parallel functional languages -  language issues

Other C/Fortran-centric parallel suites include: SPLASH [Singh, Weber and Gupta, 1992], 
Genesis [Addison et al., 1993], and the NAS benchmarks [Bailey, 94].

With regards to functional programming, the n ofib  [Partain, 1993] suite (see ap
pendix C) is probably the first attempt at providing a standard set of benchmark programs 
(a large subset of the collection had already been used by Haxtel and Langendoen [1993].) 
The “pseudoknot” benchmark, based on a single float-intensive program, is also worthy of 
note, even if only for the unprecedented scale of collaboration achieved. However, ignoring 
the inherent problems of benchmarking [Bailey, 1991; Jain, 1991], there are a number of 
additional problems posed when moving to a parallel environment:

• there is no standard syntax for expressing parallelism. Indeed, even the general 
paradigm is still a matter for debate.

• each implementation embodies a large number of (potentially arbitrary) design de
cisions -  isolating the effect of each would be very difficult, if not impossible. •

• each architecture has different communication properties, and normalising the results 
would, again, be difficult.

• there is no consensus as to what metrics would be useful.

In summary, an implementation, with respect to a benchmark suite, appears to be a 
monolithic black box. This not only limits the useful experiments that can be devised, 
but also requires that a complete and optimised implementation exists. The problem is 
further compounded by the number of variables -  consider, for instance, tables 2.4 and 2.5 
-  not least of which is the parallel architecture itself. It is therefore unlikely that any
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arch. P benchmarks code times
Graphinators SIMD 8K sum, matmult yes no
NESL SIMD 16K l i n e f i t ,  median, matmult yes yes
DP Haskell SIMD IK map yes yes
SISAL GMSV 10 sieve , simple, kernel 

batch er-sort, psphot
some yes

{v, G)-machine GMSV 16 n fib  30, queens 10, euler yes no
BBN ML GMSV 16 n fib  20, queens 8, sieve 

tak 18 12 6
yes yes

GAML GMSV 8 n fib  30, queens 10, euler 
sieve

yes yes

Gamma GMSV 6 mergesort, minimum no yes
EQUALS GMSV 6 n fib  30, queens 10, euler 

s ieve , matmult, qsort
no yes

BBN Haskell GMSV 122 eu ler, s ieve , primes 
n f ib ’ , queens’ , tautology

yes yes

WYBERT GMSV 4 n fib , queens, det, wang 
p uzzle , wave, comp-lab

some yes

pD GMSV 20 lin ea r , resultants yes yes
GUM Haskell GMSV 6 fa c , load test, bulktest yes no
Alfalfa DMMP 36 queens 6 no yes
HDG-machine DMMP 4 n fib  20, queens 6 

tak 18 12 6
yes yes

PAM DMMP 12 n fib  24, matmult, towers 
map, fo ld , one, qsort

yes yes

Skeletal ML DMMP 34 ray, match, area yes yes
STAR:DUST DMMP 24 n fib , qsort some yes
GUM Haskell DMMP 8 fa c , load test, bulktest yes no

Table 2.5: Comparing implementations of parallel functional languages benchmarks. The 
code field indicates whether the source code of the benchmark programs was supplied, 
while the time column differentiates between systems that only supply speedup figures 
and those that provide the total elapsed times.
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meaningful comparison or conclusions can be made, based on ad-hoc performance data 
(consider again table 2.5).

2.5.3 Existing approaches to developing functional implementations 

The Haskell approach

One solution to the problems outlined previously, is to standardise one or more components 
of the language, compiler, and, architecture triple. For example, the Haskell language was 
designed to “reduce unnecessary diversity in functional programming languages” [Hudak 
et ah, 1992, page iv]. Also, with regards to compiler implementation, GHC aims “to pro
vide a modular foundation that other researchers can extend and develop” [Peyton Jones 
et al., 1993, section 2]. Both of these ideas have already been adopted by a section of the 
non-strict parallel functional community -  pH [Nikhil et al., 1995, section 1, page 1], a 
Haskell derivative extended to include explicit parallelism, has as one of its goals:

“To share infrastructure (compilers, systems, application programs), and to 
facilitate interesting research topics, such as comparing lazy evaluation vs. 
lenient evaluation...”

This is certainly a move in the right direction. However, by necessity, these compilers are 
written primarily for speed and efficiency, possibly at the expense of clarity -  based on 
personal experience, this is certainly true of GHC! Moreover, the system will be sufficiently 
complex that familiarisation and development will take a significant amount of time.

Simulating multiprocessor architectures for compiled graph reduction

Before building the GRIP multi-processor [Peyton Jones, Clack, Salkild and Haxdie, 1987], 
Deschner [1990] developed a “highly flexible simulation system” to explore task partition
ing, memory usage, scheduling, topology, and run times. The simulator took as input a 
precedence graph and a description of the hardware configuration. The former is automat
ically generated by tracing the sequential execution of the test program, while the latter 
comprises: the number of processors, the task-pool size, the partitioning and scheduling 
policies, and the costs associated with some basic operations.

Hammond and Peyton Jones [1992, section 5.2], when analysing the performance of 
the final hardware implementation, acknowledge the accuracy of the simulator:

“Somewhat surprisingly, in the absence of throttling, the choice of FIFO or 
LIFO [scheduling] strategy has at most a marginal impact on GRIP. We first 
realised this as a result of Deschner’s simulation experiments, and then verified 
it on GRIP...”

An executable specification of the HDG machine

The HDG machine [Kingdon, Lester and Burn, 1991] was both specified and tested as a 
Miranda script. The authors note that using a functional language enabled them to write 
the simulator more quickly, debugging was easier, and the resulting definitions bore a 
strong resemblance to the traditional state-transition model of abstract machines. Indeed, 
Burn [1989, section 6, page 391] concludes that:

“This has turned out to be such a powerful technique that we would highly 
recommend it to other machine designers.”
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Ginger

Joy and Axford [1992] describe the Ginger language, “which sits somewhere between 
the low-level FLIC [Functional Language Intermediate Code] and high-level Miranda or 
Haskell.” The interpreter is combinator based, supports both strict and non-strict evalua
tion, and provides explicit parallelism via placed sparks and data-parallel lists [Axford and 
Joy, 1991]. A simulator is used to “facilitate research and teaching into parallelism,” and 
this is capable of modelling both shared- and distributed-memory machines. No details of 
the simulation parameters are provided.

Simulating shared-memory graph reduction

Bennett [1993] uses simulation to explore the behaviour of a parallel functional system on 
shared-memory machines -  primarily focusing on the caching mechanism. The simulator 
enables both theoretical and existing configurations to be explored, something that would 
have been impossible if using a design-build approach. The results lead to the design of a 
scalable cache mechanism which takes advantages of the memory reference characteristics 
of parallel functional programs.

A graphical winnowing system for Haskell

Hammond, Loidl and Partridge [1995a] use simulation to explore the impact of language 
and implementation on task granuality. The simulator is based on GHC, and models 
a distributed-memory machine. A visualisation tool helps to analyse the results, which 
have been used to uncover a previously unknown relationship between a program’s run 
time and its heap-granuality profile (a histogram of the memory used by each thread 
of execution) [Hammond, Loidl and Partridge, 1995b]. In addition, and rather unusually, 
they also state that the simulation has confirmed the experimental results of a real system. 
However, they do point out the main problem with simulation:

“There is, of course, a danger that the design of the simulator may obscure 
real artifacts or introduce false one.”

2.6 Summary

Non-strict higher-order functional programming languages are elegant, concise, mathemat
ically sound and contain few environment-specific features. Considering that sequential 
compiler technology has recently begun to compare with that of their imperative coun
terparts, they then become obvious candidates for harnessing high-performance parallel 
architectures. The validity of this approach has been established by a number of exper
imental compilers. However, a would-be designer of a parallel functional system is faced 
with three major obstacles:

1. due to the large number of dimensions involved and to the lack of a common bench
marking system, it is extremely difficult determine which components are central to 
the performance of the system.

2. having selected and integrated the components, the cost of developing an efficient 
impfementation for just one platform is considerable.

3. once the base implementation is complete, experimentation with any but the most 
trivial of subsystems may require significant effort.
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What is needed is a system to rapidly develop and test ideas before committing to a 
full-scale implementation.



Chapter 3

A framework for prototyping 
parallel functional intermediate 
languages

3.1 Introduction

This chapter describes an approach to the design of an explicitly parallel intermediate lan
guage for use during the compilation of non-strict higher-order functional programming 
languages. The framework is based upon the development of both a denotational and 
operational model for the intermediate language, which are then used to produce speci
fications for the parser and code generator. Haskell animations of these components aid 
with both debugging and informal validation. (For a more detailed and example-driven de
scription of the prototyping system see [Ben-Dyke and Axford, 1995], which is reproduced 
in appendix A.)

3.2 A three-phase compilation system

As illustrated by figure 3.1, the prototyping framework is modelled on a traditional three- 
phase  ̂ compilation system [Santos, 1995, figure 2.1, page 6]. The phases are as follows:

the source language typically a Haskell-like non-strict functional programming lan
guage supporting higher-order functions and abstract data types. Parallelism will 
either be explicitly specified, as is the case with para-functional Haskell and Cal
iban, or abstract-analysis techniques will be employed to automatically detect the 
potential parallelism (see section 2.4). The translation rules convert from the source 
language to the intermediate representation.

the intermediate representation the sequential STG language [Peyton Jones, 1992] is 
used for the purpose of this study. As well as converting to and from the intermediate 
language via the translation and code-generation rules, the optimisation rules convert 
between equivalent language terms, with the aim of improving efficiency.

'B oth  W Y B E R T  [Langendoen, 1993, figure 5.1, page 96] and Clean [Plasmeijer and van Eekelen, 1993a, 
figure 8.1, page 253] have four phases, but such systems can be considered as comprising two distinct 
compilation processes.

25
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Compiler Specification Verification/Testing

Front End (Parser) Back End (Compiler)

Figure 3.1: An overview of the prototyping framework
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the target language the Alpha AXP instruction set [DEC, 1992] is the primary in
terface between the compiler and the architecture simulator. Section 8.2 discusses 
the reasons for selecting this over the high-level language C [Kernighan and Ritchie, 
1978]. The code-generation rules convert from the STG representation into the RISC 
format.

3.3 Translation, optimisation, and code generation

The three rule sets shown in figure 3.1 -  translation, optimisation, and code generation
-  in combination with the run-time support, serve as the specification of the compilation
system. These can therefore be considered as the final outputs of the prototyping system:

translation rules will typically serve one of two possible roles: de-sugaring, i.e. the 
removal of any syntactic construct added solely for the purpose of improving pro
grammability; and explicitly identifying the parallelism inherent in the source pro
gram. While the lexing and parsing of high-level languages is well understood [Wat
son, 1989; Peyton Jones, 1987], automatic parallelisation [Jones and Hudak, 1993; 
Burn, 1991] is still a major research topic -  therefore, the front end of the compiler 
will not be discussed in this thesis.

optimisation rules form an important part of most modern compilers, and this is espe
cially true of functional systems [Gill, 1992; Beemster, 1994]. Due to the similarity 
between the Core [Santos, 1995, section 2.2] and STG languages, all of the optimisa
tion rules, heuristics, and algorithms presented by Santos [1995] have STG-language 
equivalents. However, in a parallel context, another major rule group is often re
quired -  these deal with architecture-specific optimisations, as illustrated by the 
skeletal transformations described in section 2.4.3.

compilation rules generate the low-level machine code, and therefore have to deal with 
such issues as register allocation [Fraser and Hanson, 1992; Boquist, 1995], heap 
representations [Shao and Appel, 1994], control flow [Bernstein, 1985], and stack 
frames [Douence and Fradet, 1995]. As noted by Shao and Appel [1995], it is impor
tant to take advantage of the information provided by the intermediate language’s 
static semantics (see section 4.5):

“Our measurement shows that a combination of several type-based optimi
sations rednces heap allocation by 36%; and improves the already-efficient 
code generated by the old non-type-based compiler by about 19%...”

(See chapter 8.)

the run-time system covers such sequential technology as garbage collection, optimised 
library routines, error handling. In addition, certain parallel components are also 
necessary, including termination-detection algorithms, the implementation of any 
skeletal snb-systems, and interfaces to the commnnication network. (See chapter 8.)

3.4 Structuring the design

While not forming part of the final ontput, the varions semantics models of the three 
phases, once developed, are arguably the most important components of the framework. 
Henderson [1986, section 7, page 249] notes that:
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“A formal language can be effective as a tool for communication of designs on 
a larger scale and to suggest the way in which software design should proceed 
using formal methods.”

the sequential semantics two descriptions are used, with the first being a denotational 
semantics [Stoy, 1977], which assigns values to programs. This provides the reference 
model against which the compilation rules can be tested and the translation rules 
validated (assuming that the source language also has a denotational semantics). 
Furthermore, as outlined in section 5.4, the development of the semantics forces the 
designer to concentrate on a number of important issues, including the order and 
degree of evaluation, non-determinism, and run-time errors.
The second description, a Hindley-Milner type-inference algorithm, restricts the 
set of valid language expressions. This simplifies the compilation rules (as well as 
enabling a number of advanced optimisations [Shao and Appel, 1995]), and does 
away with the need for run-time type checking.

the operational model based on a state-transition system, the operational model pro
vides a concise high-level description of the intended behaviour of the compilation 
rules. This approach has been widely used to develop a number of abstract ma
chines, including both Tim and the STG machine. Having constructed the model, 
and tested it against the simpler denotational description, it should be easier to 
develop the actual compilation rules.

the architecture simulator provides the framework for testing both the correctness 
and performance of the compilation rules. Note that any generated results are 
potentially inaccurate, and should therefore only be used to motivate design choices.

the STG-language prelude offers a source of examples and test cases. Appendix B.l 
includes some typical prelude definitions.

In addition to driving the design process, the development of the (semi-formal) models 
mean that it is, in theory, possible to prove the correctness of the rules discussed in 
section 3.3. However, while important, this subject is beyond the scope of this thesis.

3.5 Animating the compiler

As the semantic descriptions are used to validate the compiler’s front and back ends, it 
is important that there is a degree of confidence in the models themselves. One possible 
solution to this problem is suggested by Henderson [1986, section 7, page 249]

“The executable prototype introduces a realistic element of validation of the 
design sufficiently early in the development process that there is some likelihood 
of eventual cost saving due to the early determination of design flaws.”

Therefore, using the functional programming language Haskell [Hudak, Peyton Jones, 
Wadler and others, 1992], executable versions of the specifications are developed. The 
prescriptive approaches to the animation process are described in sections 4.3.5, 4.5.3, 
4.7.4, and 4.8.10 -  dealing with abstract syntax, Hindley-Milner type-inference rules, 
denotational semantics, and state-transition rules respectively.
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3.6 Summary

Most parallel implementations of functional programming languages have at least one 
point of commonality: the use of an intermediate form. Typically, these abstract repre
sentations explicitly identify all parallel components but without the background noise of 
syntactic and (potentially arbitrary) implementation details. We suggest that that this is 
a good point at which to start to draw comparisons, and the problem now becomes one 
of isolating and testing the effect of a particular design feature. To this end, this chapter 
outlined a framework for rapidly prototyping such intermediate languages. Based on the 
traditional three-phase compiler model, the design process is driven by the development of 
semantic descriptions of the source, intermediate, and target language (and architecture). 
Executable versions of the specifications help to both debug and informally validate these 
models.



Chapter 4

The sequential STG^ language

4.1 Introduction

This chapter describes the STG' language, a variant of the Shared Term Graph (STG) 
language, in terms of its abstract and concrete syntax, denotational semantics, and opera
tional semantics. A Hindley-Milner style type-inference algorithm is also presented, which 
serves to restrict the language and produces information useful to a compilation system.

The chapter starts with a discussion of the utility of a sequential language in a parallel 
prototyping system in section 4.2, and the the abstract and concrete syntaxes are covered 
in sections 4.3 and 4.4. In section 4.5 the type-inference algorithm is presented, and the 
problem of how to record the resulting type annotations is addressed in section 4.6. The 
denotational and operational semantics of the language are then dealt with in sections 4.7 
and 4.8, before the chapter is summarised in section 4.9.

4.2 Why use a sequential language?

Gelernter and Carriero [1992, page 97] state that a complete programming model consists 
of two orthogonal components, a computation model and a coordination model:

“The computation model allows programmers to build a single computational 
activity: a single-threaded, step-at-a-time computation. The coordination 
model is the glue that binds separate activities into an ensemble.”

It follows that when developing a coordination model it will be necessary to couple 
it with an existing (sequential) computational model. However, Gelernter and Carriero 
argue for the complete separation of these two components on the grounds of portability 
and heterogeneity. In principle, they are correct, but in practice little is lost by creating 
a mixed-model language, and it is likely that there will be a performance gain due to the 
close coupling of the two.

Having decided that a computation model will be needed, the selection of the STG 
language over the other suitable candidates -  Tim [Fairbairn and Wray, 1981; Chit- 
nis, Satpathy and Oberoi, 1995], a continuation-passing system [Appel, 1992], functional 
quads [Traub, 1991], or the ABC machine [Plasmeijer and van Eekelen, 1993a] has to 
be justified:

1. the STG language is “a very austere purely-functional language” [Peyton Jones, 
1992, section 4] making the conversion from a high-level functional language to the

30
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intermediate form particularly simple. In addition, STG language expressions are
concise, yet easy to read.

2. the STG-machine [Peyton Jones and Salkild, 1989] provides the language with an op
erational reading, the efficiency of which has been demonstrated by the performance 
of the Glasgow Haskell compiler in a recent benchmark test [Hartel, 1994].

3. there exists of a large body of literature relating to the STG language, covering a 
wide range of topics, from semantics [Peyton Jones and Launchbury, 1991] to parallel 
implementation [Hill, 1993].

4. the Glasgow Haskell compiler is capable of dumping the STG language equivalent 
of a Haskell program, via the -ddump-stg command-line switch, providing a ready 
supply of example code.

4.3 Abstract syntax

The abstract syntax^ of the STG' language is given in figure 4.1, with the exception of 
identifiers, which are discussed in section 4.3.1 (appendix B presents a number of example 
STG' programs.) The significant differences between the STG' and STG languages are:

introduction o f  algebraic data-type declarations as the operational semantics made 
no use of the Haskell-style sum-of-products declarations, their definition was omit
ted from the original STG report. But, in order to develop both type-inference and 
compilation rules, such information is vital.

removal of named defaults from case expressions as noted by Peyton Jones [1992, 
section 5, rule 8], the presence of named defaults complicates the operational seman
tics, and similar difficulties arose when developing the type-inference and compilation 
rules

introduction of unboxed and strict let expressions the let# and let strict expres
sions compensate for the removal of the named defaults from the literal and algebraic 
case expressions respectively.

The minor changes include the removal of a number of extraneous symbols, some re
naming, and the provision of the bind production. These have the net effect of simplifying 
the development and presentation of the syntax-driven algorithms described within this 
thesis.

Even though the STG-machine is not considered until chapter 6, the operational read
ing of the language expressions is given in table 4.1. Note that evaluation necessitates 
the creation of one or more continuations to which the resulting constructor, literal or 
primitive expressions will return.

Algebraic data types axe discussed in section 4.3.2, case expressions in section 4.3.3, 
and the new le t  s t r ic t  and le t#  expressions in section 4.3.4. As for the other production 
rules, these are as presented by Peyton Jones [1992], to whom the interested reader is re
ferred. Finally, the problem of animating the abstract syntax is dealt with in section 4.3.5.

^The terminology used within this section is primarily based on that used by W att [1991]
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Program program
Type declarations typededs

typeded
condeds
condecí

Monotype T
Boxed type TT
Unboxed type V
Bindings bindings

bind
simplebind

Lambda form lambda-form
Update flag TT
Expression exp

Alternatives

Default
Variables
Atoms

alts

lalt
aalt

default
vars

atoms
atom

typededs bindings 
typededi . . . typededt 
data X « 1  • • • Or = condeds 
condedi . . .  condedn
cons T\. . .Tf 
IT I n
O I D T2 I X 7Tl . . .  7r„ 
Int# I . . .  I Float#
bindi . . .  bindn 
var =  lambda-form  
var =  exp
v a r s  free VarSargs ^Xp
u I r
le t  bindings exp
le tre c  bindings exp
le t#  simplebind exp
le t s t r i c t  simplebind exp
case exp o f alts [default]
var fun atoms
cons atoms
primitive atoms
literal
la lti. . .  laltji
aalti. . .  aaltn
literal exp
cons vars —> exp
-  —?■ exp
var\...  vavji
atom I . . .  atomn
var I literal

( i> 0 )  
{v >  0) 
( n > l )  
( / > 0 )

(n > 1)

(n >  1)
(n >  1)

(n >  0) 
(n >  0)

Figure 4.1: Abstract syntax of the STG' language

Construct Operational reading
function application tail call
le t (r e c )  expression heap allocation
let#  expression evaluation and register assignment
le t s t r ic t  expression evaluation and heap allocation
case expression evaluation
constructor application return to algebraic continuation
primitive application return to continnation“
literal expression and literal-variable application return to literal continuation

“ Primitive functions will either return a literal or constructor value, depending upon the primitive in 
question.

Table 4.1: The operational reading of STG' language expressions
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4.3.1 Identifiers

While the exact format of the different types of identifiers is left unspecified, the naming 
scheme is in line with Haskell’s policy [Hudak et ak, 1992, pages 6-9]: variables, war, and 
type variables, a, are represented by identifiers beginning with lower-case letters; con
structors, cons, and type constructors, y, are either identifiers which start with a capital 
letter, or are a sequence of non-alphanumeric characters (:, : +, and : = are examples of this 
form); primitives, primitive, are similar to variables, except the identifier will end with 
a hash symbol; finally, literals, literal, are represented by the usual constants (integers, 
floating-point numbers, ASCII characters etc.). The main exception is the representation 
n-ary tuples, which are encoded as TupO, Tup2, Tup3 etc.

4.3.2 Algebraic data-type declarations

A data-type declaration [Hudak et ah, 1992, pages 27-28] defines a new sum-of-products 
type, consisting of one or more constructors. The following example defines booleans, lists 
and trees:

_  STG' code____________________________________________________________________________
data Bool = True I False ;

data List a = Nil I Cons a (List a) ;

data Tree a = Leaf a I Branch (Tree a) (Tree a)

Using these declarations it is possible to define enumerated, recursive and (polymorphic) 
composite types [Bird and Wadler, 1988, pages 204-219].

4.3.3 Named defaults and case expressions

In the original STG language, algebraic case expressions containing named defaults served 
two distinct roles. Firstly, they provided a way of avoiding allocation of the result of the 
scrutinised expression whenever the result matched any of the non-default alternatives. 
For example, in the following example, r and r ’ compute identical values, but r will not 
create a closure for the value of ( f  a) if it matches the pattern S x:

_  STG code_____________________________________________________________________________
r = [] \r [a] -> case f a  of { S x  - > g x ;

t -> h t };

r ’ = [] \r [a] -> let { result = [] \u [] -> f a ; } in

named default

case result of { S x -> g x ;
-> h result }; {- simple default -}

Secondly, they allow a value to be forced to head-normal form, presumably encoding the 
result of a strictness-analysis phase:

_  STG code_____________________________________________________________________________
enumFromTo = [] \r [n m] -> case enumFrom n of { 

n_to_inf -> let { predicate = ... } in

takeWhile predicate n_to_inf };

{- named default -}

One case expression may use the named default for both of these purposes. However, 
analysis of the STG representation of the nofib  benchmark suite (see appendix C) has
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shown that named defaults are only ever used to encode strictness information. Therefore, 
in practice, there are just two distinct uses of the algebraic case expression: alternative 
selection based on the de-construction of the value of the scrutinised expression; and 
forced evaluation combined with heap allocation of the result. The second usage bears 
more resemblance to variable binding than to selection. Moreover, supporting both types 
of behaviour leads to complications in the operational semantics [Peyton Jones, 1992, 
section 5, rule 8], type-inference rules and compilation system. For example, it would be 
difficult to develop a concise type rule which rejected the following function definition:

____ STG code_____________________________________________________________________________
seq = [] \r [x y] -> case x of {x’ -> y x ’ named default

For these reasons, named defaults were removed from algebraic case expressions, with 
the new le t  s t r ic t  expression taking over the role of strictness encoding (see the following 
section).

The use of named defaults in literal case expressions is slightly simpler, as unboxed 
values are never directly heap allocated. Based on analysis of the nof ib  benchmark suite, 
named defaults are always unaccompanied and serve to bind the result of a computation 
to a variable, as illustrated below:

__STG code_____________________________________________________________________________
case minusint# [x’, y ’] of

xy -> case plusint# [xy, 1#] of 
{
xy’ -> ... expression using xy cind xy’ 
}

}

named

named

default -I 

default

To keep the case expression symmetrical, named defanlts were also removed from the 
literal version (let#  binds literal expressions to variables.)

4.3.4 Unboxed and strict let expressions

Having removed named defaults from both literal and algebraic case expressions, it be
came necessary to determine if any important functionality had been lost. The answer, in 
the case of literal defaults, was a definite yes -  there was now no way to bind a temporary 
literal value to a variable (short of defining a new function whose arguments were the valne 
plus the free variables of the remaining computation). To this end the le t#  expression 
was introduced, the use of which is illustrated below:

__STG' code____________________________________________________________________________
.. let# xy = minusint# [x’, y ’] in

let# xy’ = plusint# [xy, 1#] in ... expression using xy and xy’ ...

The right-hand side expression must evaluate to one of the primitive unboxed types.
With respect to algebraic defaults, the situation is less straightforward as it is still pos

sible to achieve the same results through the use of an additional le t  expression (see the 
previous section for an example). Yet the named algebraic default accounted for approx
imately seven percent of the total dynamic bindings (i.e. any variable that is introduced 
by a le t (r e c )  expression or named algebraic default) of the optimised n ofib  benchmark 
suite. The le t  s t r ic t  expression was therefore introduced, as shown here:
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STG' code.
enumFromTo = [] \r [n m] -> letstrict n_to_inf = enumFrom n in 

let { predicate = ... } in
takeWhile predicate n_to_inf ;

The right-hand expression must evaluate to an algebraic data type (see section 4.5.1).

4.3.5 Animating the abstract syntax

Most of the algorithms and transition rules used during prototyping are syntax driven, so 
the animation of the abstract syntax is arguably the most important aspect of the entire 
system. Fortunately, using Haskell’s algebraic data types and type synonyms, the task is 
a simple one.

For each group of production rules a new data type is created, and each production rule 
within the group becomes a constructor of the new type. So, for example, the unboxed- 
type production rules {u — )■ In t#  | • • • | F loat# ) translate to:

__Haskell________________________________________________________________________________
data UnboxedType = Unboxedint I I UnboxedFloat

The choice of type and constructor names should reflect the group and individual 
production rules respectively, but some mangling may be necessary to arrive at a unique 
name (a restriction of the Haskell language).

In general, a constructor will have one argument type for each constituent non-terminal 
symbol, unless there are a variable number of the same symbol, in which case a List type 
is used. This is illustrated by the boxed-type rules (vr — > a | ti ^  T2 | x  tti . . .  7r„):

__Haskell________________________________________________________________________________
data BoxedXype = BoxedVar TypeVariable

I BoxedFun MonoType MonoType
I BoxedCon Constructor [BoxedType]

In addition to the non-terminal symbols, extra arguments may be added to a con
structor to facilitate parts of the prototyping system. A case in point is the exp group 
of rules, to each of which has been added an Expressionid field, providing a unique key 
with which to look up expression-specific information (see section 4.6):

__Haskell-------------------------------------------------------------------------------------------------------------------------
data Expression = Let Expressionid Bindings Expression I

Case Expressionid Expression Alts (Maybe Default) I 
Value Expressionid Literal

The previous example also illustrates the use of the Maybe type to represent optional 
non-terminal symbols, such as the default symbol in a case expression. The data decla
ration for this type is: data Maybe a = Just a | Nothing.

Variables, constructors and all other identifiers are represented using the String syn
onym.

4.4 Concrete syntax

It may seem strange that an intermediate language would ever make use of a concrete 
syntax, but such a representation is nseful in two important situations: when reporting 
an error; and during testing, where parsing a textual description of an STG' program is
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quicker, more convenient, and less prone to error than hand coding the Haskell represen
tation. So saying, the exact details of the concrete syntax nsed are not important, and 
only the input and output routines are considered here. To simplify the parser, keywords, 
such as let and of, are not allowed to be used as variable names a production compiler 
may well lift this restriction.

With regards to the conversion of the abstract syntax to text, the simplest solution 
would be the use of derived instances of the Text type class [Hudak et ah, 1992, 147 148] 
for each of the production-rule data types. Unfortunately, the resulting output is awkward 
and does not match the format nsed by the parser. Hand coding is the only alternative:

__Haskell________________________________________________________________________________
lambdaformShoH (LambdciForin free_vars uflag args exp)

= " [" ++ free_vars^ ++ "1 " ++ uflag’ ++ " [" ++ curgs’ ++ "] ++ exp’
where
free_vars ’ = VciriablesShow free_vars
uflag’ = updateflagShow uflag
args’ = VciriablesShow args
exp’ = expressionShow exp

Developing a robust parser is more taxing, but most of the complexity can be avoided 
by using Happy [Gill and Maxlow, 1993]:

“Happy is a parser generator system for Haskell, similar to the tool ‘yacc’ for
C. Like ‘yacc’ , it takes a file containing an annotated BNF specification of a 
grammar and produces a Haskell module containing a parser for the grammar.”

As an example, here is the Happy specification of the lamhda^f arm production rule (of 
the concrete syntax):

__Happy_________________________________________________________________________________
LambdaForm : : { LambdciForm }
LambdaForm : ’[’ Arguments ’] ’ UpdateFlag ’[’ Arguments ’] ’

right.arrow Expression { LambdaForm $2 $4 $6 $9 }

Notice the symmetry between this rule and the previous display routine.

4.5 Language restrictions, type inference and free variables

In this section, the problem of restricting STG' language programs to ensure the validity 
of the STG machine is addressed. Section 4.5.1 enumerates the required restraints and 
illustrates the need for a type-inference system. The advantages and limitations of static 
typing are then outlined in section 4.5.2, while section 4.5.3 outlines a Hindley-Milner style 
type system for the STG' language. Finally, an algorithm for generating the free-variable 
annotations of a binding {var =  lambda^f orm) is presented in section 4.5.4.

4.5.1 The STG  language and the STG  machine

To simplify the design of the STG machine, and thereby improve its efficiency, Pey
ton Jones [1992, section 4] and Peyton Jones and Launchbury [1991, section 7.1] explicitly 
placed the following (informal) restrictions on STG language programs:

1. global (top-level) bindings, and le t  and le tre c  expressions cannot bind a variable 
of unboxed type.

2. all constructors and primitives are saturated (have the correct number of arguments).
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3. polymorphic functions cannot manipolate unboxed values.

Also, Beemster [1994] has shown that the STG machine cannot force the evalnation of a 
partial application dne to its aggressive take (the method by which a function’s arguments 
are fetched, as embodied by rules 17 and 17a in section 5.6 of the STG report). Essentially, 
the following expression will not terminate under the STG machine:

__STG code_____________________________________________________________________________
. .. let 1 f = □  \r [a b c] -> ... expression using a, b, cind c .. . ; }

in case f x y of 
1
f ’ -> ... expression using f ’ 
1

{- named default -}

This leads to the following additional limitation:

4. case expressions can only scrutinise values whose type is either unboxed or algebraic.

(section 6.3.1 shows how this restriction may be removed.) Finally, three additional re
quirements are needed:

5. the top-level variable main is defined, and is bound to an expression of type Dialogue.

6. the operational decorations (i.e. update flags and free-variable information) are cor
rect.

7. all of the patterns from a case expression’s alternatives axe nniqne i.e. only one 
alternative will ever be applicable for any given result.

Looking at the first five rules, it is clear that detailed type information is required if 
the validity of a program is to be verified. There are two possible sources for this data: 
type-inference, the attributes are automatically derived using a system of type rules; and 
type annotations, the abstract syntax is extended to inclnde type information, thereby 
delegating responsibility for type inference to the previons stage (conversion from the 
source language to the intermediate form). The latter is the approach adopted by the 
Glasgow Haskell compiler, although the type information is recorded in a database similar 
to that described in section 4.6.

Whichever approach is taken, some form of type inference will be required. For the sake 
of generality, it was decided to frame this problem in the context of the STG' language. 
The traditional approach to typing in a functional programming language is to use a 
Hindley-Milner style algorithm [Milner, 1978; Damas and Milner, 1982] -  both ML and 
Haskell employ this technique and this is also the solution adopted for the STG' language.

With regards to the sixth requirement, section 4.5.4 presents an algorithm for checking 
or generating the free-variable information, while section 4.2 of the STG report discusses 
the problem of setting the update fiag.

4.5.2 The advantages of static typing

A language is said to be statically typed [Schmidt, 1994, page 6] if a type inference al
gorithm exists which can calculate the type attributes of a program without evaluating 
the program. As the algorithm presented in section 4.5.3 is pnrely syntax driven, the 
STG' language is statically typed. The principle benefits of static typing are improved 
debugging, and an increase in the number of optimisations that can be performed by a
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compilation system [Shao and Appel, 1995; Hall, 1994; Gill and Peyton Jones, 1994]. It is 
the latter property that is of primary importance in the context of the prototyping system.

The primary drawback of adopting a static system is that it becomes difficult, if not im
possible, to use the intermediate form as a target for dynamically-typed source languages. 
The majority of modern functional programming languages are statically typed [Hudak 
et al., 1992; Harper et al., 1989], so this becomes an acceptable limitation. Indeed, Cardelli 
and Wegner [1985, page 474] suggest that

“In general, we should strive for strong typing and adopt static typing whenever 
possible.”

4.5.3 Hindley-Milner type inference for the STG' language

The type-inference system presented in this section is based on the work of Peyton Jones 
and Wadler [1992], which, in turn, is based on the Hindley Milner algorithm [Milner, 1978; 
Damas and Milner, 1982]. Both ML and Haskell use variants of this algorithm. For both 
an overview of this technique and a discussion of alternative approaches [Reynolds, 1985; 
Schmidt, 1994; Caxdelli and Wegner, 1985] are highly recommended.

Note that no attempt is made to relate the type algorithm to any of the other semantic 
descriptions, neither is it proved that the algorithm assigns the most general type to an 
expression.

Limitations of the inference rules

As a side effect of using the algorithm outlined in this section, the following additional
language restrictions are imposed:

8. a variable bound by a letrec expression must have the same type for all occurrences 
in the right-hand sides of the bindings.

9. lambda-bound and pattern-defined variables must take the same type for all occur
rences in the body of the function or algebraic alternative.

Such limitations axe common, as typified by Haskell’s monomorphism restriction [Hudak 
et al., 1992, pages 40 41]. A number of attempts to remove these restrictions [Kfoury, 
Tiuryn and Urzyczyn, 1993; Henglein, 1993] have met with limited success, as the problem 
is, in general, undecidable.

Terminology

The notation adopted here is based on that used by Peyton Jones and Wadler [1992] and 
is only briefly introduced here, as a full account is given in appendix D.

The abstract syntax of types, part of which was included in figure 4.1, is shown in 
figure 4.2. Following the usual conventions, function types of the form ti ^  {t2  ^
Tn) • • •) will be written as ti — T2 —> • • • — and brackets will only be used if one of the 
argument types is itself a function type.

An environment is a finite mapping, usually from identifiers to types, either explicitly 
constructed, e.g. {var\ ti, . . .  ,varn Tn}, or created by combining two existing envi
ronments. Two forms of merge operations axe used: envi © env2 , which is only defined if—̂
the domains are distinct; and envi © env2 , where an identifier will take its value from the 
second environment if it is defined by both. An identifier’s value is retrieved by treating 
the mapping as a set of tuples and testing for membership i.e. {id, value) G env.
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Polytype a — Vqi . . . Oiji.T type signature
T simple type

Monotype r —->• 7T boxed type
V unboxed type

Boxed type 7T —->■ a type variable
Tl ->■ T2 function type
X 7Tl . . . 7T„ parameterised data type

Unboxed type V — Int# integer
Float# floating-point number
Char# character

Figure 4.2: Abstract syntax of types

Environment Notation Type
constructor environment CE cons I-)- (n, o)
primitive envrionment PE primitive i—)■ (n, a)
general variable environment GVE var I-)- a
local variable environment LVE var H-)- T
type-constructor environment TCE X H- {Ua, neons, {consi,. . .,conSn„))
total environment TE {CE,PE ,G V E,LV E)

Table 4.2: Summary of the environments used during type inference

The environments used by the type rules are summarised in table 4.2, where: n is 
either the arity of a function or a constructor; ria is the number of type variables needed 
to saturate an algebraic type; Ucons the number of constructors; and {cons\,. . .  ,conSna) 
the constructors themselves.

Algorithm overview

As all of the rules are included in appendix D, only a brief overview of the algorithm is 
given here.

initial rule the PROGRAM  rule serves as the starting point of the algorithm, a simplified 
version of which is shown in figure 4.3. Notice how the primitive environment, PE, 
is passed as an argument to the inference algorithm, with figure 4.4 providing some 
example entries. The algorithm proceeds as follows:

1. generate the constructor environment, CE.
2. initialise the total environment, TE.
3. infer the type of the top-level definitions, treating the entire program as one 

large letrec expression.
4. ensure that the fourth restriction presented in section 4.5.1 is met.
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PROGRAM

typedecls
(1) h typededs : {TCE^CE)
(2) TE =  {CE,PE,

recbinds
(3) TE  h bindings : GVE'
(4) {main, Dialogue) G GVE'

program
PE  h typededs bindings : GVE'

Figure 4.3: The simplified PROGRAM  type rule

negateint# > In t#
pluslnt^ In t#  —)■ In t#  ^  In t#

lessthanint# In t^  In t#  —>• Bool

Figure 4.4: Example type signatures of primitive functions

constructor-environment generation apart from checking that the definitions are well 
formed, the main purpose of the type-declaration rules is to produce the constructor 
environment. This is primarily achieved by the CONDECL rule, shown in figure 4.5, 
which:

1. verifies that each of the constructor’s argument types are well formed.
2. using the function type as a convenient representation, generates a polytype 

description of the constructor.
3. generates a environment whose sole entry associates the constructor with the 

description from step 2.

bindings top-level definitions and let(rec) expressions are the only way to introduce 
variables with polymorphic type signatures, as illustrated by the BINDS rule shown 
in figure 4.6. In general, the type of the right-hand side is first inferred (step 1) and 
then generalised (step 2), and the resulting signature added to the general variable 
environment, GVE  (step 3).

expressions this group of rules forms the heart of the algorithm, with each rule deriving 
the monotype associated with one of the expression constructs. As an example, the 
GONS-EXP rule, shown in figure 4.7, proceeds as follows:

GONDEGL

monotype
(1) TCE  h n { 0 < i < f )

gen
(2) h Ti —>••••—> Tj —>• : O’
(3) CE =  {cons ( / ,  cr)}

condecí
TCE-, h cons Ti.. .Tf : {CE, cons)

Figure 4.5: The CONDECL type rule
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B I N D S

bind
(1) TE  h hindi : (vari,Ti)

gen
(2) TE \- n :  (Ti
(3) GVE =  ®i<n{varn^ ai}

binds
TE  h 6m di. . . bindn : GVE

Figure 4.6: The B I N D S  type rule

C O N S -E X P

(1) (cons, (n, cr)) G C E
spec

(2) T E  h CT : n  T„ -)• X 7Ti. . .  7r„
atom

(3) T E  h atomi : Ti {0 < i  <  n)
exp

T ii h cons atomi ■ ■ ■ atomn : x  -

Figure 4.7: The C O N S -E X P  type rule

1. lookup the constructor’s type signature and arity, n, in the constructor envi
ronment, C E .

2. create a fresh instance of the polytype.
3. match the inferred types of the arguments with the monotype from step 2. Also 

the number of arguments has to match the arity, n, from step 1, so satisfying 
the second restriction presented in section 4.5.1.

generalisation and specialisation as the previous examples illustrate, the G E N  and
S P E C  rules are used to convert monotypes to polytypes and vice versa. The g e n e r ic  

in sta n ce  of a monotype t is V a i .. .an-T, where each Oj is a free type variable of 
r, which is also free in the current environment. Similarly, an in sta n ce  of a type 
signature is simply the right-hand side monotype with all occurrences of the type 
variables replaced with fresh ones

unification Robinson’s unification algorithm [Robinson, 1965] is used to determine if two 
monotypes are compatible (see step 3 of the C O N S -E X P  type rule for an example 
of where unification is used.) If unification succeeds, the algorithm returns the most 
general type that matches both of the arguments, as well as a set of substitutions. 
These substitutions represent the restrictions (on free type variables) that have had 
to be made in order to resolve the two types, and they must be applied to the 
current environment to ensure consistency. For this application, unification fails if 
a substitution of the form a i-)- . ..  a . ..  would be required to unify the two types. 
This is commonly referred to as the occu rs check, which prevents the introduction 
of infinite types

Animating the algorithm

As the development of Hindley-Milner style algorithms using functional programming 
languages is well documented in the literature [Hancock, 1987; Peyton Jones and Lester,
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1991; Jones, 1994], only a brief overview is given here.
Making use of the syntax-driven nature of the rules, the first step of the process is to 

construct type signatures for each of the rule groups. There are three general forms that 
the signatures can take, with examples of each being shown below:

__Haskell________________________________________________________________________________
atomInferType 
exprèssionInferType 
bindingsInferType

Atom -> TypeState -> 
Expression -> TypeState -> 
Bindings -> TypeState ->

MonoType
(MonoType, TypeState) 
(GeneralVariableEnv, 
TypeState)

where TypeState is the Haskell representation of the total environment, TE,  with the 
addition of some miscellaneous extras, such as a unique name supply for specialising poly
types. Similarly, GeneralVariableEnv corresponds to the general variable environment, 
GE, and MonoType to the abstract syntax of monotypes (see figure 4.2). The definition of 
these types is not discussed here, but the general technique for doing so is illustrated in 
section 4.8.10.

Each functions is made up of a series of pattern matched definitions, with one branch 
for every constructor associated with the primary data type:

__Haskell________________________________________________________________________________
expressionInferType (Let exp_id binds exp) type_state =

expressionInferType (Value exp_id literal) type_state

The body of the definition will depend upon the rule it implements, and, as an example, 
the Haskell implementation of the CONS-EXP rule (see figure 4.7) is given below:

__Haskell________________________________________________________________________________
expressionInferType (Cons exp_id cons atoms) type_state

I (envIsDefined cons constructor_env) && (cons.eirity == length atoms) 

= (substApply subst result_type, substApplyToEnv type_state2)

typestateGetConsEnv
where
constructor_env 
(arity, polytype) = envGet
(monotype, type_statel) = polytypeSpecialise 
(arg_types, result_type) = monotypeSplitFun 
(atom_types, type_state2) = atomsinferType 
OK subst = monotypesUnify

type.state 
cons constructor_env
polytype type.state 
monotype
atoms type_statel
arg.types atom_types

The order of the definitions closely follows that of the original rule: envGet is a library 
function and its use corresponds to the first step of the rule i.e. (cons, (n, a)) € CE; while 
polytypeSpecialise and atoms Inf erType are themselves type rules, and complete the 
second and third steps respectively. Of the remaining expressions, only monotypeUnif y is 
of significance, ensuring, as it does, that the types of the atoms match those specified by 
the constructor’s declaration.

The guard expression checks that the constructor is defined within the constructor 
environment, CE, and that it is also fully saturated (see restriction 2 in section 4.5.1). 
These are both implicit conditions of the CONS-EXP rule.

4.5.4 Free variables

From an operational perspective, free-vaxiable information is essential whenever either a 
closure or a continuation has to be created it identifies which variables are live and need
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to be saved so that the computation can be re-started (either when the closure’s value 
is demanded, or when the continuation is returned to). The STG' language’s lambda- 
form annotation cover the first usage, but the second is unsupported. Moreover, incorrect 
annotations will lead to problems -  therefore, an algorithm is needed which can both 
generate the missing data and check the decorations.

By nature, free-variable algorithms are simple [Peyton Jones, 1987, page 14], and the 
only complication to developing an algorithm for the STG  ̂ language is the restriction im
posed by Peyton Jones [1992, section 4.1.2]: free variables should not include any variables 
bound at the top level of the program. The solution is to pass the top-level variables as 
an argument to all of the algorithm’s rules, as illustrated by the J^Vprogramit rule:

program

var\ =  lambdai

=  { } (definition)
varn =  lambdun ~  U j < n { u a r x , . . . ,varn} (derived)

To ensure that the language’s lexical scoping rules are followed, the set of global vari
ables, g, has to be trimmed whenever a new variable is defined, as done by the rule handling 
algebraic alternatives:

^Vaaltlcons va ri . . .  uar„ expj g =  TVexp{exp\ g' \ varsbound
where g' =  g\ varstound
and varsbound =  {vari , . ..  ,varn}

The animation process is straightforward, as shown by the Haskell implementation of 
the previous rule:

__Haskell________________________________________________________________________________
aaltFreeVars : : AlgebraicAlt -> Variables -> Variables 

aaltFreeVars (AlgebraicAlt cons veirs.bound exp) globals 

= expressionFreeVars exp globals’ \\ Vcirs.bound 

where globals’ = globals \\ vars.bound

The complete set of rules is presented in appendix E.

4.6 Annotations are not enough?

The previous section presented two algorithms, both of which generate information that 
may be of use to a compiler. In this section, the problem of encoding this data is addressed, 
with there being two obvious solutions:

extend the abstract syntax this is the approach used to record the free variables and 
update flag of a lambda-form. When considering the amount of generated data, it 
becomes clear that this method is not a general solution, as the language constructs 
would quickly be obscured by operational annotations. Furthermore, each algorithm 
would have to return a modified version of the original program, complicating all 
aspects of the system.

use an attribute database a database makes it possible to unobtrusively record the 
required information, such that the addition of new algorithms will not entail the 
modification of existing rontines. The main problem, apart from the introduction of 
hidden state, is that some form of key is required to access the data.
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Throughout this report, the existence of a program-specific database is assumed. Two 
main types of key are used: identifiers, such as variable and constructor names, and 
unique labels (typically integers) attached to language constructs -  the Expressionid 
field presented in section 4.3.5 is an example of the latter type of key.

When accessing the database, the algorithm which generated the required information 
should be clearly identified. So for example, the free variables of an expression would be 
referred to as EV\exp\  ̂ and the type of a variable as h var : r. Notice the omission of 
both the rule name and the formal arguments in each reference. The actual mechanism 
used to store and retrieve the information will not be considered unless it impacts upon 
the topic under discussion.

4.7 Denotational semantics

The denotational semantics presented in this section is essentially the non-strict model 
described by Peyton Jones and Launchbury [1991, section 3.2], with only a few minor 
modifications. The reader interested in further information on the motivation and theo
retical underpinnings of denotational semantics is referred to [Schmidt, 1986], while Stoy’s 
seminal work [Stoy, 1977] and Tennent’s short introduction [Tennent, 1976] are also both 
highly recommended.

4.7.1 Domain equations

The domains used by the valuation functions are defined using the following recursive 
equations:

=  The set of fixed-precision integers 
=  The set of fixed-precision floating-point numbers 

Id =  The set of all identifiers
Cons =  VaT
Fun =  Val -P- Val
Val =  U • • • U F ^  U IdU {Cons -|- Fun)±
Env =  Id ^  Val

4.7.2 The meta-language

The notation used here follows the standard conventions [Schmidt, 1986, pages 52-53] 
and is summarised in table 4.3. Note that even though the meta-language bears a strong 
resemblance to the lambda calculus, it should not be confused with it.

4.7.3 Valuation functions

Figure 4.8 shows the valuation functions for well-formed programs and bindings, figure 4.9 
deals with expressions, default alternatives and atoms, and figure 4.10 handles case al
ternatives. To improve readability, the injection, projection and domain membership 
functions have been omitted.

The conversion of literals to the corresponding domain values by the T [] function, is
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operation
result’s
domain description

Xx.e A ^ B function construction, such that for all a G >1, 
[a/x]e has a unique value in B

(ei 62) B function application such that ei E A ^  B, and
e2 E A

let X =  e\ in Val local definition
case 2 o f

patterni ei 

patterun —t e„

A conditional selection, such that for 1 < i < n,
OiE A

(e i , . . . ,  ê i) VaT short form of {1 e i , . . . ,  n e„}
fix{Xx.e) A the fixed-point operator, such that Xx.e E A ^  

A

Table 4.3: The meta-language of the denotational semantics

Vrogram \program\ : Val
Vrogramitypedecls bindings} =  ¿^[letrec bindings main] 0

Binds [6inds] Env Env
Binds{bindi. . .  bindn} p =  0 K n  ßindlbindi}p

Bindlbind} Env -P’ Env
Bindfvar =  lambda-form} p =  {var —>• CiFllambda-form} p}

CBllambda-f orm} Env Val
CBlvarsfree 7T varargi ■ ■ ■ vaVarĝ  exp} p =  Aei . . .  en.{£{exp} {p © {vavargi i-t ei, • • •

vaVargn ^n}))

Figure 4.8: Denotational semantics of STG' programs and bindings
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S {exp l  : E n v —)■ V al

¿^[let bindings exp } p = ¿l[ea;p] (p © Binds\bindings} p)

¿^[letrec bindings exp } p = le t p' =  f i x  [\p',B inds\bindings} [p ©  p')) 

in  ¿l[ea;p] {p ®  p')
var  =  exp^hs exp } p = case {£\exprhs} p) o f  

±  ^  ±
—y

e £lexpbody} {p  ®  {v a r  e})
[ le t s t r i c t  var  =  exprhs axp^ody} P = ease {£ lexprhs} p) o f

e £\expbody} {p ©  [v a r  e})
¿^[case exp  alts d e fa u lt}  p = A lts [a lts }  p (¿^[exp] p) {V [d e fa u lt }  p)

6\varfun a tom i ■ ■ ■ aiom„] p = le t fu n  =  p var furi
arg-i =  A tom [atom j\  p, (0 <  i <  n) 

in  {■■■ { { f u n  a rg i) arg 2 ) ■ ■ ■ arp„)
£ [co n s  a tom i • • • atom n} p = {con s, ^ iom [aiom i] p, ■ ■ ■, A tom la tom n } p)

£\litera l} p = C\literal}

T>\default} : E n v —)■ V al
P [_  —)■ exp } p —)■ £ [e x p }  p

A to m [a to m } : E n v —)■ V al
A tom \var} p = p var

A tom \ litera l} p = C\literal}

Figure 4.9: Denotational semantics of STG' expressions, defaults and atoms
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—  CGSG G^xp

Altslaltsj : Env -i- Val -)■ Val -> Val

P ^exp ^default

T  co n si v a r i i . . variai -)■ ex p i  T

1 consn vavni ■. . vavnan expn  1

T
(consi,eii,..

->

• , eiai) ^

T
Slexpi} {p © {narii e n ,.. . ,nariaj i—̂ eiaiD

{consfii £nli •••1CnUn) ^ Slexpnj (p © {vavni H- e „ i,. . .,vaVnan ^  <̂ nan})
else edefault

Alts
literali expi

1  literaln expn
P ^exp ^default CdSG Ggxp o f

±  ^  ±  
literali 5|ea;pil P

literal^ —>■ £\oxPri\ P
else —̂ Cdeffiult

Figure 4.10: Denotational semantics of STG' case alternatives 

illustrated by the following example:

Primitive functions are the equivalent of lamb da-calculus ¿-rules [Baxendregt, 1981], 
and, as such, care should be taken with their definition. The following rule serves as an 
example of the £\primitive atomsl set of rules:

£\pluslntjj^ atomi atorn2 } p =  let e\ =  ,4iom|aiomi] p
€ 2  =  .Aiom[aiom2] p in ei + i#  C2

4.7.4 Programming denotational semantics

There have been two main approaches taken to animating denotational semantics: the first 
prescribes hand-coding the rules directly into a general-purpose programming language, 
such as ML [Jouvelot, 1986] or even Pascal [Allison, 1983]; while the second advocates the 
use of a meta-language, as typified by Navel [Michaelson, 1993] or Wand’s prototyping 
system [Wand, 1984]. In keeping with the rest of this thesis, the former approach is 
advocated here, with the work of Jouvelot [1986] serving as a useful template. So, for 
example, an element from the Val domain is defined as:
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Haskell
data ValElement = BottomElement

1 IHashElement Int
1 FHashElement Float
1 ConsElement [ValElement]
1 FunElement (ValElement -> ValElement)
1 IdElement String

and the plusint#  primitive becomes: 
__Haskell---------------------------------
expressionDenotes (Primitive exp_id "plusint#" (Atoms [atomi, atom2])) rho

= let IHashElement el = atomDenotes atom! rho
IHashElement e2 = atomDenotes atom2 rho in IHashElement (el + e2)

Notice that Haskell’s strong typing automatically detects missing injection and projection 
operations.

This approach has also been used to animate a continuation-passing semantics for 
APOSTLE, an object-oriented language for parallel and distributed discrete-event simula
tion [Wonnacott and Bruce, 1996]. This work is described in [Booth, Bruce and Ben-Dyke, 
1996, section 3 and 4.2, and appendices A and Bj.

4.8 Graph reduction and the sequential STG machine

The STG machine [Peyton Jones and Salkild, 1989; Peyton Jones, 1992] is just one of 
a large number of abstract machines for performing graph reduction [Wadsworth, 1971, 
chapter 4] (arguably the most efficient approach to evaluating non-strict functional lan
guages). Its selection over the other candidates, however, can be justified by the models 
comparative efficiency and wide-spread usage.

This section provides an overview of the sequential STG machine, starting with a 
more detailed examination of the merits of this system in section 4.8.1. Section 4.8.2 then 
presents the notation used throughout the remainder of this chapter, while sections 4.8.3 
through 4.8.9 look at the state-transition model of the abstract machine.

4.8.1 W h y use the STG  machine?

Considering the large number of viable alternatives, including the ABC machine [Plas- 
meijer and van Eekelen, 1993a], TIM [Fairbairn and Wray, 1981; Chitnis, Satpathy and 
Oberoi, 1995], or a G-machine derivate, such as the (u, (7)-machine [Johnsson, 1991] or 
the GAML system [Maranget, 1991], what are the reasons for selecting the STG machine?

1. the STG' language is based on the STG language, which serves as the abstract 
machine code for the STG machine (see chapter 4).

2. the efficiency of the STG machine has been demonstrated by GHC, the Glasgow 
Haskell compiler, which ranked number one in a recent benchmark study [Hartel, 
1994]. The relationship between the specification and its implementation is explored 
in section 4.8.10.

3. a number of important optimisations can be realised as simple source-to-source trans
formations [Howe and Burn, 1994; Peyton Jones and Launchbury, 1991, section 5.1], 
thereby avoiding the need to provide special machine support.
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4. the self-updating model of thunks [Peyton Jones, 1992, section 3.1.2] and the uniform 
representation of closures [Peyton Jones, 1992, section 3.1.3] (which gives rise to the 
tagless nature of the model) allows for the seamless integration of threads, remote 
references, and skeletons into the basic model. For example, Mattson Jr. [1993a, 
figures 4.2 and 4.3, pages 78 and 79] uses black and grey holes to provide automatic 
thread-level synchronisation.

5. the STG machine has served as the core technology for a number of parallel imple
mentations. These cover a range of platforms, including message-passing [Hwang 
and Rushall, 1992], shared-memory [Mattson Jr., 1993a], vector [Hill, 1994], and 
hybrid [Chakravarty, 1994] architectures.

6 . Sestoft [1994] has derived a simplified STG machine, offering hope for the develop
ment of a correctness proof for the full version.

Note that some of the arguments presented here echo those from section 4.2. With regards 
to the exact differences between the various models of graph reduction, the taxonomy 
proposed by Douence and Fradet [1995] is highly recommended.

4.8.2 Terminology

Peyton Jones [1992, section 5] specifies the STG machine in terms of a state-transition 
system. While the presentation does bear a resemblance to Plotkin’s structured opera
tional semantics [Hennessy, 1990], the exact relationship is not clear. In fact. Hill [1994, 
chapter 6 , page 94] questions the theoretical foundations of the work, saying:

“The operational semantics given here is a minor abstraction of the assembly 
code tinkering that was required to implement DP Haskell. However it does 
provide a clean definition of the implementation of the language”

Rather than attempting to develop a formal description of the STG machine, the original 
semantics is adopted here, complete with the aforementioned limitations. Furthermore, 
relating the operational model with the denotational semantics presented in section 4.7 is 
outside the scope of this thesis.

A state-transition system comprises: a definition of the state in terms of its compo
nents, an initial state, a set of state-transition rules, and a set of final states. Each of 
these items is discussed in the following sections (the presentation is biased towards the 
modelling of abstract machines for language interpreters.) Section 4.8.10 describes the 
Haskell animation of such systems.

State as a tuple

The state is used to represent all elements of the system to be modelled, so, for ex
ample, a microprocessor’s state would include the register file, main memory, and in
struction pipeline (see section 7.3). As the component make-up is likely to remain con
stant with respect to time, it is sensible to represent the state as a tuple of values, 
{code^componenti,. . .  ,componentn)i although it is often convenient to omit the brack
ets and commas, i.e. code componenti • • • component^. The ordering of the fields is not 
significant, but is invariable. The code component is the primary driving force behind 
the evaluation process and serves a role similar to that of a microprocessor’s instruction 
stream.
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component notation description
n-ary Tuples (a i , . . . ,  a„) general representation
Sets 0 empty set 

as or { a i , . . . ,  a„}  general representation 
a € as or a 0  as membership tests 
as U 6s, as fl 6s, and as \ bs standard set operations

Sequences () empty sequence 
xs or (ici,. . . ,  Xn) general representation 
X : xs item addition 
xs ! i indexing 
xs -H- ys concatenation 
length xs sequence length

Environments {}env empty environment 
p, a, or {a\ i—)■ x i , . . . ,  a„ i—)■ Xn\env general representation 
(a, x) £ p or p a value lookup 
dom{p) domain extraction
pi © p2 extension (p2 has precedence) 
Pi © P2 merging

Stacks Stack
script
exam]

s use the same notation as sequences, although sub-, 
s may be used to differentiate between the two. For 
pie, the empty stack is often represented as {)stack

Heaps h or

h[a 1— 
sizeht

ai I-)- Cl

0>n

c]
iap(h) and

general representation 

heap access or extension
sizCciosure (c) size of heaps and closures

Sum of products
Consi componentii. . .  componentia^

general representation
ConSn componentni ■ ■ ■ componentnan

Table 4.4: Example state components

Components

The state-transition system is based upon the matching and manipulation of components. 
Typically, a component will either be: a standard mathematical entity, such as a set, 
sequence, tuple, or variable; an abstract type, including environments, stacks and heaps; 
or a sum-of-products type, akin to Haskell’s algebraic data types. In fact, the notation used 
is similar to that of Haskell, as illustrated by table 4.4. For an overview of the semantics of 
pattern matching, [Peyton Jones and Wadler, 1987] is recommended. The code component 
is typically an algebraic type, with each constructor representing a different mode of 
operation.
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The initial state

The initial state is used to bootstrap the abstract machine. This is the only point at which 
external values can be referenced as there is no support for input or output; for example, 
the program to be evaluated may be incorporated into the state without specifying its 
exact origin.

State-transition rules

The simplest form a state-transition rule can take is: patternsource pcdterntarget- 
If a state matches a rule’s source pattern, then a transition occurs and a new state is 
constructed as prescribed by the rule’s target pattern. Rules can also include explicit 
guard conditions and auxiliary definitions:

{pattern code, patterni, , patter Un)
such that condition a - • • conditionm

{code'. component'^, . .. , component'^)
where definitioup ■ • definition^

All of the implicit and explicit conditions (patterns and guards respectively) have to hold 
for the rule to match a given state.

Peyton Jones [1992, section 5, page 33] restricts the rule set by require that any given 
state matches, at most, one transition rule. If the definitions, conditions, and component 
specifications are purely functional in nature, then the resulting system is obviously de
terministic. However, by relaxing this restriction, a number of important behaviours can 
be specified (see sections 9.3.2 and 6.2.2).

The final state

Starting with the initial state, the state transitions will continue until one of the following 
situations arise: the current state does not match any of the rules, suggesting either an 
error, or omission, in the rule set or initial state; or the state matches a final-state pattern, 
indicating successful completion of the evaluation. The specification of a valid final state 
is similar to that of a transition rule, but without the target state. It is possible that the 
system never terminates.

4.8.3 The abstract state of the STG-machine

The STG machine uses the following state to model graph reduction:

{code, argument stack, return stack, update stack, heap, global env)
=  {code, as, rs, us, h, a)

Following the presentation of Peyton Jones [1992, section 5], the individual components of 
the state axe specified in table 4.5. The relationship between the code field and the state- 
transition rules is illustrated in figure 4.11. Chapter 8 deals with the implementation of 
both the state components and the transition rules.
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specification description rules
code Eval exp p evaluate exp in envi

ronment p
all but 16-17A

Enter a closure application 1, 2, 15, 17, 
17a

Return-j- result return value of type r 
to continuation

5 14 and 16

argument stack stack of values structure for passing 
parameters

1, 2, 15, 16 
17a

return stack stack of continuations structure for storing 
control information

4-4b, 6-8', 12', 
13

update stack stack of update fram es update mechanism 15 17a

heap heap of closures boxed-value storage 2, 3, 8', 15-17A
global environment a var =  a closure address of the 

top-level bindings
5

value Addr a closure address 1, 3, 8', 15-17A
Int k literal integer 9-14

continuation Cascj- alts p case expression 4, 6, 7, 11, 13
Forcedj- var p letstrict or let#

expression
4a , 4b, 8', 12'

update fram e {as, rs, a) update marker 15-17A
closure {lambda-form, values) boxed representation 

of values
2, 3, 8', 15-17A

Table 4.5: The state components of the STG machine

3, 4, 4a, 4b
rule description

1 variable application
2 non-updatable closure entry
3 le t (r e c )  expression
4 case expression

4 a l e t s t r i c t  expression
4 b le t#  expression
5 constructor application
6 constructor return (explicit alternative)
7 constructor return (default alternative)
8' constructor return ( l e t s t r i c t  exp.)
9 literal value

10 literal variable application
11 integer return (explicit alternative)
12' integer return ( le t#  expression)
13 integer return (default alternative)
14 primitive application (integer addition)
15 updatable-closure entry
16 constructor update
17 partial-application update (I)

17 a partial-application update (II)

Eval
1 6 , 7, 8', 11, 12', 132, 15

1 5, 9, 10, 14

Enter Return

17, 17a 16

Figure 4.11: The relationship between the STG-machine rules and the code component
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(4a )

Eval (letstrict {var =  exprhs) p as rs us h a
Eval exprhs P return : rs us h a

where return =  Forced^ 7ri...7r„ x̂p},ody p' 
exprhs is of type x  tti . ..  7T„
dom{p') =  EVlexpbodyj_____________________________________

Figure 4.12: The STG-machine rule for evaluating letstrict expressions

(8 0

ReturnX TTl-.-TTn c ws as {Forcedy. var expbody p) ■ rs us h
as

where
Eval expbody p'

=  p ® {var i-A a}
=  h[a hA (us r {} —>• c vs, lus)] 

vs is a sequence of arbitrary distinct variables 
length{vs) =  length{ws)

rs us

P'
h'

a
h'

Figure 4.13: The STG-machine rule for returning to a letstrict continuation

4.8.4 The STG' language and the STG machine

In order to adapt the STG machine to work with the STG' language, two new rules were 
introduced (rules 4a  and 4b ) and two existing rules were altered (rules 8 and 12). These 
rules are shown in figures 4.12 through 4.14, with the exception of rule 4b , which is a slight 
variation of rule 4a  (dealing with the let# expression instead of the letstrict expression). 
The global environment has also been extended to allow access to the program’s attribute 
database.

4.8.5 The initial state

The initial state [Peyton Jones, 1992, section 5.1] takes as its only parameters an STG' 
program and its attribute database (see section 4.6). The state is constructed so that the 
code is set to evaluate the variable main, all stacks are empty, the heap contains closure’s 
representing all of the program’s top-level bindings, and the global environment contains 
the addresses of each of these closures. For example, the program shown in figure 4.15 
(see section B.2 for the definition of fib.w rk) would result in the creation of the following 
initial state:

( 12' )

Returnint^ k 
Eval expbody p'

as {Forcedi^x# var expbody p) ■ rs us 
as rs us

h
h

a
G

where p' =  p 0  {var hA k}

Figure 4.14: The STG-machine rule for returning to a let# continuation
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___STG' code___________________
const.Int.* = [] \r [x y] -> case of { Int

case y of { Int y ’ -> 
let# xy = timesint# [x’, y ’] 
in Int [xy] ; ;

main = [] \u [] -> let { z = [] \u [] -> fib.wrk 20# ; } 
in const.Int.* z z :

Figure 4.15: An example STG' program

code argument stack return stack update stack heap globals

Eval main {}en?) { ) stack { ) stack { ) stack hinit ^

where a = const.Int.* 1-^ ai,main a2 }

hinit —
ai {r X y ^  ca se . . . , ( ) )  1 
02 (u -?■ l e t . . . , ( ) )  1

4.8.6 Variable application, closures, and entry methods

A closure typically represents a variable of boxed type, tt, and to access its value it is 
necessary to invoke the closure’s entry method. To illustrate this, the first few transitions 
of the initial state presented in the previous section are as follows (ignoring the fact that 
main’s closure is updatable):

(rule 1 ) 

(rule 2 ) 

(rule 3)

(rule 1 )

(rule 2 )

{}e

where

where

where

Eval main {}env 
Enter
^ , (  2; =  u —)■ fib.wrk 20Eval le t\ const.Int.* 2: 2:
Eval (const.Int.* 2; 2;) { 2; i->- asjenv
hi =  hinit[an 1-^ (u fib.wrk 2 0 , ())]
Enter ai
asi =  {as, as)
Eval (case x altsi) {x  i->- 0 3 ,^ i->- 0 3 } 
altsi =  Int x' I-)- case ...

0 0 0 hinit a
0 0 0 hinit a

0 0 0 hinit a

0 0 0 hi a

asi 0 0 hi a

0 0 0 hi a

Notice how the second application of rule 1 results in con st. In t . * ’s arguments being 
pushed onto the stack, which are then removed and bound upon entry to the function’s 
closure (see the local environment of the last state).

Even thongh the operational description only defines one type of closure and one 
standard entry method, a complete implementation would support a richer mixture (see, 
for example, sections 6.4.3 and 6.2).

4.8.7 Returning values

With the exception of the variable main, the evaluation of an expression is always initiated 
by either a case, let# , or le t  s t r ic t  expression. Before the new evaluation begins, each 
of their associated rules pushes a continuation onto the return stack . This is then removed 
and invoked when the new expression’s head-normal form is reached, thereby returning
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control to the original expression. To illustrate this process, the example from the previous 
section is continned below:

(rnle 4) 

(rnle 1 ) 

(rnle 6 ) 

(rnle 4)

(rule 6 )

(rule 4b)

(rule 14) 
(rule 1 2 ’ ) 
(rule 5)

where

where

V *

where

where
V *

where

where

Eval (case x altsi) {x  (i3 ,y  e-> az}env
altsi =  Int x' i-> case . ..
Eval X {x  ^  a^}env
rsi =  (Caseint altsi {y  a^jenv)
Enter
ReturniTit Int 21 891
Eval (case y alts2 ) {x ' i->- 21891, y i-> 0 3 }̂  
altS2  =  Int y' i-> l e t # ...
Eval y {y<-^ as} env
rS2  =  (Coseint altS2 {x ' 21891}enf))
Returning Int 21 891

Eval ( U t #  * y '^  Int xt
Pi =  {x' ^  21891, y' ^  21 891}e„„
Eval {tim eslnt^ x y) p\ 
rss =  {Forcedjnt# xy  (Int xy) {}env) 
Returni^t# 479 215 881 
Eval (Int xy) {xy  i-> 479 215 881}g„u 
Returnin,t Int 479 215 881

Pi

0 0 0 hi a

0 rsi 0 hi a

0 rsi 0 hi a
0 rsi 0 h2 a
0 {) 0 h2 a

0 rs2 0 h2 a

0 rs2 0 h2 a

0 0 0 h2 a

0 rss 0 /l2 a

0 rss 0 /l2 a
0 0 0 h2 a
0 0 0 h-2 a

Notice how the local and update-frame environments are constantly trimmed to remove 
redundant entries (see section 6.3.3).

4.8.8 The update mechanism

The update mechanism maintains the laziness of the STG machine by ensuring that an 
expression will be reduced to head-normal form at most once. The update flag of the STG' 
language indicates which expressions need to be updated, and upon entry to an npdatable 
closure both the argument and return stacks are reset. An update is then triggered 
whenever there are insufflcient values on either stack to satisfy an access. Gonsider, for 
example, the evaluation of the variable x (the details of which were omitted from the 
previous section’s description):

Eval X {x  (ialenu 0 rsi 0 hi a
(rule 1 ) Enter 03 0 rsi 0 hi a
(rule 15) Eval (fib.wrk 20) {}env 

where usi =  {{as, {),rsi))
0 0 USl hi a

=^* Returriint Int 21 891 0 0 USl hi a
(rule 16) Returni^t Int 21 891 0 rsi 0 /l2 a

where I12 =  hi[as {v Int u, (21 891))]

All future entries of the 03 closure will return the new value without having to repeat 
the costly evaluation. With regards to partial applications, an update is triggered when a 
function needs more arguments than are available on the stack (rule 17 or 17a).

When dealing with closures that are known to reduce to constructor applications (using 
type information) clearing both the argument and return stacks upon entry is unnecessary, 
and a shorter update frame could be used. The compilation rules to support this idea have 
not yet been developed.
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4.8.9 T h e final state

Evaluation is complete whenever the machine is in the Return mode and all three stacks, 
as, rs, and us, are empty. The last state of the example shown in section 4.8.7 would be 
the final state of that evaluation.

4 .8 .10 A n im a tin g  sta te-tran sition  system s

The primary motivation behind the animation process is that of debugging the state- 
transition system. This includes testing both the correctness of the model (see sections 4.7 
and 5.4), and, if feasible, its efficiency (see section 6.2.2). The structure adopted here is 
based on that outlined by Diller [1994a], although Haskell, rather than Miranda [Holyer, 
1991], is used as the target language. The steps are as follows:

1. create a type signature for each state component. If the component is not already 
supported, an abstract type, and associated operations, will have to be developed.

2 . define an algebraic type to represent the abstract state(s). Despite the tuple repre
sentation used throughout this chapter, Haskell’s algebraic types are better suited to 
the role. For states with a large number of components, access and update routines 
need to be developed to support the implementation of the transition rules.

3. specify the initial and final states.

4. develop a partial ordering for the rule set. To improve efficiency, Haskell’s built- 
in pattern matching facilities are used during the implementation of the transition 
rules. The semantics dictate a sequential left-to-right depth-first evaluaton of nested 
patterns [Hudak et ah, 1992, figure 3, page 22]. Hence, the ordering of the rules has 
to be considered carefully.

5. encode each transition rule. The state-transition rule and its Haskell implementation 
are very similar, with the latter only requiring some additional plumbing to correctly 
order accesses and updates to the components.

The first and last pairs of rules are discussed in sections 4.8.10 and 4.8.10 respectively, 
and section 4.8.10 looks at the third step, the animation of the initial and final states. 
The sequential STG machine is used as the primary example throughout this material. 
Also, as it forms a key part of the prototyping system, section 4.8.10 validates the STG 
animation against the Glasgow Haskell compiler.

The state, its components, and abstract data types

By using Haskell’s class and module system [Hudak et ah, 1992, sections 4 and 5, pages 
24-55] to develop abstract data types for the most common components (see table 4.4) 
the required type signatures can often be generated immediately:

__Haskell________________________________________________________________
type ArgumentStack = Stack Value
type ReturnStack = Stack Continuation
type UpdateStack = Stack UpdateFrame
type MainHeap = Heap Address Closure
type GlobalEnv = Env Variable Address

The sum-of-products components are the only exception, and these can be directly con
verted into data declarations:
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Haskell.
data STGCode = Eval Expression LocalEnv

Enter Address
ReturnCon Constructor Values 
ReturnLit Literal

An algebraic type is also used to encode the abstract state: 
__Haskell__________________________________________
data STGState = STGState STGCode ArgumentStack ReturnStack UpdateStack

Mainfleap GlobalEnv Extras

As well as holding miscellaneous plumbing information, including a unique name supply 
and possibly a stream of random numbers, the Extras field is used to instrument the 
transition system.

By using a data type instead of a tuple, it is possible for the state and component 
types to be recursive. For example, the following definitions could be used to bring the 
operational model into line with the physical implementation of closures (see chapter 8 ):

__Haskell________________________________________________________________
data Closure = Closure LambdaForm LocalEnv EntryMethod 
type EntryMethod = Address -> Closure -> STGState -> STGState

One of the major problems with the animation method is that any change to one or 
more of the underlying types, particularly that of the abstract state, can require that all 
associated definitions be updated. Fortunately, Haskell’s static type system will identify all 
of the inconsistencies. Furthermore, by using access and update functions to manipulate 
the state where ever possible, most of the changes can be localised:

__Haskell________________________________________________________________
stgstateGetArgumentStack
stgstateSetMainHeap

STGState -> ArgumentStack 
MainHeap -> STGState -> STGState

Another possible approach would be to pass each state component as an individual 
argument to each state-transition rule. However, this would require a continuation-passing 
system, making step-based tracing and/or debugging difficult. Furthermore, as noted pre
viously, the ADT approach provides better encapsulation, thereby localising the changes 
that have to be made when the state is extended or changed.

The initial and final states

The initial state is realised as a Haskell function, the arguments of which equate to the 
external parameters of the abstract machine. The body is simply a collection of component 
instantiations:

__Haskell________________________________________________________________
stgstatelnitialise :: TypeEnvironment -> PrimitiveEnv -> Program -> STGState

stgstatelnit type_env primitives program = STGState code as rs us heap ge ex 
where
code = Eval (envFindAddress "main" envEmpty globalenv)
(as, rs, us) = (stackCreate "as", stackCreate "rs", stackCreate "us")
(ge, heap) = bindsAllocate (programGetBinds program) ge heapinitialise 
ex = extrasinititialise type_env primitives
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Notice how non-strictness has been used to “tie a knot” during the creation of the global 
environment, ge. Also, as the compiler will automatically resolve the various dependencies, 
the ordering of the declarations is unimportant.

The final-state predicate is constructed in exactly the same way as the transition rules, 
except, rather than returning a new state, the result is either True or False

State-transition rules

The entire rnle set conld be encoded as a single Haskell function, nsing a guarded binding 
for each specific rnle. However, as the semantics dictate a left-to-right depth-first evaln- 
ation of guards and patterns [Hudak et ah, 1992, figure 3, page 22], the ordering of the 
bindings wonld implicitly define the rule hierarchy (which is typically flat as rules tend not 
to overlap -  see section 4.8.2). This can cause complications when modifying the rules, so 
it is suggested that the ordering is clearly defined throngh the nse of dispatch functions: 

__Haskell________________________________________________________________
stgstateTransform stgstateOCSTGState code as rs us heap ge ex)

I stgstateTriggerGC heap = stgstatelnitiateGC stgstate
I otherwise = step code (stgstateIncReductions stgstate)
where
step (Eval expr local_env) = codeEval expr local_env
step (Enter address) = codeEnter address
step (ReturnCon con values) = codeReturnCon con values
step (ReturnLit literal) = codeReturnLit literal
step _ = codeUndef ined

This techniqne has the advantage of allowing support functions to be developed along side 
the appropriate rule. This would not be possible with the one-function approach as GHC 
does not allow diffuse bindings. It is also easier to instrument the system, as illustrated 
by the stgstateIncReductions tic k y -tic k y  function.

Note that non-determinism, whether introduced by overlapping rules or explicitly spec
ified in a single rule, can be simulated by, for example, extending the Extras field to include 
a stream of random numbers. The dispatch function then selects a rule based on the next 
value in the stream.

The coding of the rules is usually straightforward, and the following functions imple
ment rule 9 (evalLiteral) and rule 3 (evalLet):

__Haskell________________________________________________________________
evalLiteral : : Literal -> LocalEnv -> STGState -> STGState 
evalLiteral literal local_env stgstate

= stgstateSetCode (ReturnLit literal) (stateIncEventLit stgstate)

evalLet :: Bool -> Bindings -> Expression -> LocalEnv 
evalLet recursive binds expression original_env state 

= stateSetCode (Evaluate expression local_env) $ 
stateIncEventLet $
stateSetMainHeap heap’ state 

where
= bindsAllocate binds rhs_env old_heap 
= envMerge original_env binds_env 

recursive = local_env 
otherwise = original_env

= stateGetMainHeap state

> STGState -> STGState

(binds_env, heap’) 
local_env 
rhs.env I

I
heap

Both of these definitions give rise to one of the main problems affecting the animation. 
Due to the non-strict semantics of the language, the evaluation of the tic k y -tic k y  connts 
will be deferred as their values are not needed in the calculation of the new state. Each
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subsequent step will again defer evaluation, creating a series of linked closures whose length 
is proportional to the number of transitions made. To prevent this unwanted space leak, 
infrequently-accessed values have to be artificially forced via dummy case expressions.

Benchmarking the STG machine

Following the guidelines laid down by Jain [1991, chapter 25, pages 413-436], this section 
discusses the verification and validation of the animation of the STG machine -  both 
are essential to having confidence in the output of the animation. Obviously, it is first 
necessary to consider what the outputs are likely to be:

final result the terminal value of the code component is usually Returrir valuetau (ig
noring errors), and valuer is taken to be the final resnlt of the computation.

accumulated totals and statistics this data is stored in the Extras field, and primar
ily records event counts in much the same way as GHC’s t ick y -t ick y  profiling 
system. The state components can also act as data sources. For example, the 
MainHeap data type records the number and the size of the stored closnres.

traces snapshots of the abstract state are dumped to a file, with the frequency and level 
of detail controlled by command-line options.

In addition to the usnal model-verification techniques [Jain, 1991, section 25.1, pages 
413-420], the denotational semantics (see section 4.7) serves as a reference against which 
the animation’s final resnlt can be checked. Furthermore, the close correspondence between 
the specification and its implementation further simplifies the debugging process.

In order to validate a model it is necessary to have either expert intuition, real-system 
measurements, or theoretical results [Jain, 1991, section 2.5.2, pages 420-423]. For the 
sequential STG machine, the outputs can be compared against the t ic k -t ick y  profiles 
generated by GHC [AQUA Team, 1993, section 9, page 36] (attempting to predict the run 
time wonld be difficnlt, see section 6 .2 .2 .)

Tables 4.6 through 4.9 present the percentage errors between the estimated and ob
served values for the f ib , primes, queens, and hamming benchmark programs (see sec
tions B.2 to B.5 for the STG'-language versions). The measured values include: closures 
and wordSj a record of the number of heap allocations (rules 3, 8', 16, 17, 17a ) and the 
total memory nsed; entries, a count of the invocations of closure entry routines (rnles 2 

and 15); updates, the number of thunks updated (rules 17 and 17a ); and returns, a tally 
of the non-nnary constructor returns (rules 6- 8 ').

The percentage errors range between —4-29% and 13-33%, although the errors tend to 
zero as the number of transitions increases (with the exception of the returns estimates 
for both the hamming and primes benchmarks). The discrepancies are largely due to the 
animation not modelling GHC’s input-output mechanism.

4.9 Summary

The STG' language provides the computational model upon which a parallel intermediate 
language can be built, and this chapter has defined the language in terms of its:

abstract syntax this is the internal representation used to encode programs, and pro
vides the main structure around which most of the language-processing algorithms 
are developed.
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fib 5 10 15 20

reductions/k 1 9 105 1160
entries 1-31 0-10 0-00 0-00

returns 0-99 0T8 OTO 0-00

fib  -0 5 10 15 20 25
reductions/k 0 2 28 306 3 399
entries 13-33 1-12 0-10 0-00 0-00

Table 4.6: The f ib  benchmark results

primes 50 100 200 300 400
reductions 96374 348 835 1293 335 2 826486 4 930 210
closures -0-03 - 0-01 - 0-00 - 0-00 -0-15
words -0-05 - 0-01 - 0-00 - 0-00 -0-15
entries -0-05 - 0-01 - 0-00 - 0-00 - 0-00

updates - 0-02 - 0-00 - 0-00 - 0-00 - 0-00

returns -0-08 - 0-02 - 0-00 - 0-00 - 0-00

primes -0 50 100 200 300 400
reductions 79032 286485 1063671 2 325 964 4058 756
closures 0-05 0-01 0-00 0-00 - 0-20

words 0-05 0-01 0 0 0 0-00 - 0-20

entries 0-02 0-00 0-00 0-00 0-00

updates 0-10 0-02 0 0 0 0-00 0-00

returns - 0-01 - 0-00 - 0-00 - 0-00 - 0-00

Table 4.7: The primes benchmark results

language restrictions by imposing restrictions upon the set of valid programs it is pos
sible to ensure the language has an efficient operational semantics. To enforce these 
rules, a static Hindley-Milner type-inference algorithm has been presented.

denotational semantics this set-based valuation function maps a program directly onto 
its meaning, and is uncluttered by operational issues.

operational semantics the STG machine, specified as a state-transition system, pro
vides an operational model of the interpretation of the STG' language, and comple
ments the denotational specification.
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queens 4 5 6 7 8
reductions 8 426 38 630 1 8 8 1 7 4 902 002 4 568 372
closures - 0 - 6 5 - 0 - 1 8 - 0 - 0 4 -0 - 0 1 - 0 - 0 1
words - 0 - 0 4 - 0 - 2 1 - 0 - 2 3 - 0 - 1 8 - 0 - 1 3
entries - 1 - 7 5 - 0 - 5 5 - 0 - 1 5 - 0 - 0 4 0-10
updates 0 0 0 0 0
returns - 0 - 8 5 - 0 - 0 8 - 0 - 0 5 0-01 0-01

queens - 0 4 5 6 7 8
reductions 4 322 16 863 7 5 1 0 2 3 4 3 1 8 1 1 6 8 6  356
closures - 1 - 9 8 - 0 - 9 1 -0 - 3 1 - 0 - 0 8 - 0 - 0 2
words - 2 - 7 7 - 1 - 3 2 - 0 - 5 0 - 0 - 1 4 - 0 - 0 3
entries - 4 - 2 9 - 1 - 7 4 - 0 - 5 5 - 0 - 1 6 - 0 - 0 4
updates 1 1 4 0-54 0-23 0-08 0-02
returns - 1 - 7 8 - 0 - 2 4 - 0 - 1 5 0-04 0-03

Table 4.8: The queens benchmark results

hamming
cut off 500 750 1000
primes 20 50 80 20 50 80 20 50 80
reductions/k 195 702 1 3 1 6 255 936 1 7 5 9 306 1 1 4 7 2 1 6 5
closures 0-01 0-00 0-00 0-01 0-00 0-00 0-00 0-00 0-00
words 0-01 0-00 0-00 0-01 0-00 0-00 0-00 0-00 0-00
entries - 0 - 8 6 - 0 - 3 1 - 0 - 1 7 -0 - 9 1 - 0 - 3 3 - 0 - 1 9 - 0 - 9 4 - 0 - 3 4 - 0 - 2 0
updates 0-01 0-00 0-00 0-01 0-00 0-00 0-01 0-00 0-00
returns 1-11 0-39 0-22 1-16 0-41 0-23 1-19 0-42 1-63

hamming -□
cut off 500 750 1000
primes 20 50 80 20 50 80 20 50 80
reductions/k 159 565 1 0 5 6 207 752 1 4 1 0 249 921 1 7 3 4
closures 0-01 0-00 0-00 0-01 0-00 0-00 0-00 0-00 0-00
words 0-01 0-00 0-00 0-01 0-00 0-00 0-00 0-00 0-00
entries - 1 - 1 9 - 0 - 4 3 - 0 - 2 5 - 1 - 2 5 - 0 - 4 6 - 0 - 2 7 - 1 - 2 9 - 0 - 4 8 - 0 - 2 8
updates 0-01 0-00 0-00 0-01 0-00 0-00 0-01 0-00 0-00
returns 1-58 0-56 0-32 1-66 0-59 0-34 1-71 0-61 0-36

Table 4.9: The hamming benchmark results



Chapter 5

Expressing parallelism — static 
models

5.1 Introduction

In this chapter a number of guidelines are presented for adding support for parallelism into 
the sequential STG' language, as described in chapter 4. Typically, this involves extending 
the abstract syntax, adding language restrictions, and developing a denotational model 
of the parallel components. The examples used to motivate each of the steps are, where 
possible, based on the constructs presented in section 2.4. While the issues of language 
design are not directly addressed, MacLennan’s principles [1987, page 547] serve as a useful 
guide, and are thus reproduced in table 5.1 (the small-caps keywords on the left of the 
table will be used to refer to these principles throughout the remainder of this chapter).

The basic techniques for introducing parallelism are outlined in section 5.2, while 
sections 5.3 and 5.4 consider the issues of language restrictions and denotational semantics 
in the context of parallelism. The chapter is summarised in section 5.5.

5.2 Introducing parallelism into the STG' language

In line with the rest of this thesis, the introduction of parallelism into the sequential 
language is syntax driven, admitting the following possibilities:

new production rule the addition of new rules allows the introduction of task-oriented 
expressions, ranging in power from simple spark expressions to comprehensive algo
rithmic skeletons.

new primitive function superficially, this has similar properties to the addition of a 
new production rule. However, this method tends to hide the parallelism from the 
top-level syntax and semantics, and is not recommended for any but the most routine 
of situations.

new primitive type extensions to the type system can be used to introduce bulk data 
types, or to improve the encapsulation of other parallel constructs. Both applications 
require the definition of new production rules (or primitive functions) with which to 
manipulate values of the new type.

alteration of an existing expression by either modifying the syntax, type rule or de
notational semantics of one of the standard constructs, it is possible to radically

6 2
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A b s t r a c t i o n Avoid requiring something to be stated more than once; 
factor out the recurring pattern

A u t o m a t i o n Automate, mechanical, tedious, or error-prone activities
D e f e n c e  in D e p t h Have a series of defences so that if an error isn’t caught by 

one it will probably be caught by another
In f o r m a t i o n  H i d i n g The language should permit modules designed so that (1) 

the user has all of the information needed to use the mod
ule correctly, and nothing more; and (2 ) the implementor 
has all the information needed to implement the module 
correctly, and nothing more

L a b e l l i n g Avoid arbitrary sequences more than a few items long; do 
not require the user to know the absolute position of an 
item in a list. Instead, associate a meaningful label with 
each item and allow the items to occur in any order

L o g a l i s e d  C o s t Users should pay only for what they use; avoid distributed
costs

M a n i f e s t  In t e r f a c e All interfaces should be apparent (manifest) in the syntax
O r t h o g o n a l i t y Independent functions should be controlled by independent

mechanisms
P o r t a b i l i t y Avoid features that are dependent on a particular machine 

or small class of machines
P r e s e r v a t i o n
OF
In f o r m a t i o n

The language should allow the representation of informa
tion that the user might know and that the compiler might 
need

R e g u l a r i t y Regular rules, without exceptions, are easier to learn, use, 
describe, and implement

S e c u r i t y No program that violates the definition of the language, or 
its own intended structure, should escape detection

S i m p l i c i t y A language should be as small and simple as possible. It 
should contain the minimum number of concepts with sim
ple rules for their combination

S t r u c t u r e The static structure of a program should correspond in a 
simple way to the dynamic structure of the corresponding 
computations

S y n t a c t i c  C o n s i s t e n c y Similar things should look similar; different things different
Z e r o - O n e -In f i n i t y The only reasonable numbers are zero, one, and infinity

Table 5.1: MacLennan’s language design principles
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change the language. As an example, the presented system can be made strict 
simply by adjusting the semantics of function and constructor application.

hybrid definition it is suggested that any hybrid language be developed incrementally, 
in that each of the separate items is prototyped in isolation.

Sections 5.2.1 to 5.2.5 examine each of these approaches in greater depth.

5.2.1 New production rules

Introducing parallelism into the language via a new production rule is an attractive propo
sition for a number of reasons: firstly, all existing algorithms and descriptions will still be 
valid, and require only the addition of special cases to bring them into line with the new 
syntax; similarly, the test programs will still be well formed and have the same behaviour; 
and, finally, the construct is directly visible, making it difficult to overlook or ignore at 
any stage of the design process.

In general, the addition of a new production rule will proceed as follows;

1. ex ten d  the abstract and c o n crete  syn ta x . The primary decision to be made at this 
stage concerns which production-rule group will be extended. As the concrete syntax 
will only be used to encode test programs, aesthetic considerations can be set aside, 
thereby simplifying one of the more difficult aspects of this step.

2. g en era te  exa m p le progra m s. Sample programs not only serve as a useful source of 
test data for the various animations, but also provide an insight into potential pitfalls 
that may be encountered in the later stages. A random-program generator, along 
the lines of the hpg utility (see section C.l), may even be of some value.

3. m o d ify  the ty p e -in fe r e n c e  and free -v a ria b le  a lgorith m s. The main purpose of the 
type system is to imposes restrictions on the language so as to avoid complicating 
the run-time system. These limitations arise from consideration of the kind of values 
manipulated by the new constrncts.

4. update the d en ota tion a l sem a n tic s . Despite the limitations of set-based denotational 
descriptions, the development of such models focuses attention on the issues of non
determinism and the default order of evaluation.

The mechanics of the first point have already been ontlined in sections 4.3.5 and 4.4, while 
sections 5.3 and 5.4 cover the last two points respectively. The remainder of this section 
therefore presents a number of examples, followed by a brief overview of the utility of the 
major groups of production rules.

The p a r  combinator

The traditional production rule, e x p  — > par v a r  e x p , dissociates the thread from the 
expression it will reduce, making local optimisations difficnlt. Moreover, the operational 
reading may well include memory allocation, thereby invoking the SYNTACTIC CONSIS
TENCY principle, snch that the following rule is arguably superior:

e x p letpar s im p le b in d  e x p

Note that this construct is cumbersome for sparking non-local variables, i.e. a formal 
argument or a pattern-matched variable. Surprisingly, this is an advantage as such usage
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Group Overview
p r o g r a m useful for adding static or one-off definitions, such as com

munication channels or initial data mappings
b in d in g s similar to the p r o g r a m  group, except allowing the creation 

of dynamic topologies
b in d in g appropriate in cases where there will be just one definition 

involved, or where there is no relationship between each of 
the bindings

e x p as the examples presented in section 5.2.1 demonstrate, 
this group is capable of encoding most forms of task-based 
parallelism

Table 5.2: Extending production-rule groups

should be considered carefully, reflecting the lack of control over the computational content. 
Plasmeijer and van Eekelen [1993b, section 25.3.5, pages 355-357] force this issue by 
extending the type system so that all possible sources of parallelism have to be clearly 
identified.

The dual of this operation, the seq  combinator, is already represented by the le t  s t r ic t  
expression. Furthermore, mutually-recursive threads can only be sparked after the corre
sponding le tre c  expression.

Skeletal operations

Moving on to consider skeletal operations, two similar options exist: (farm and p ipeline 
are described in section 2.4.3)

e x p

s k e le to n

s k e le to n  e x p

farm v a r f^ n  e x p

farm varfun e x p  

pipeline varjum ■ ■ ■ vavfunn exp (n > 1 )

The leftmost system provides better encapsulation and, unless the number of skeletons is 
small, is the recommended solution. The transformations associated with each skeleton 
can be performed prior to, during, or after the usual STG-language optimisations (see 
section 3.3), and take exactly the same form:

p ipeline varfum vavfun2 exp le t  fun' =  . . .  r . . .  —> compose varf^n^ vo-rfun2 

farm fun' exp

These rules can cause the specihcation of the topology to become diffuse, such that the 
grouping of related dehnitions may be necessary i.e. s k e le to n  — > farm b in d s  v a rfu n  e x p .

Selecting a production-rule group

All of these examples have extended the e x p  production rules, but for each new addition, 
all of the groups outlined in table 5.2 should be considered. The groups not covered by 
this table are either inappropriate (the following section deals with extending the type 
declarations), have no obvious utility, or can be simulated by the represented groups. To 
illustrate this last point, consider the following rules: a to m  — > v a r  \ par v a r  \ l i te r a l,
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where, operationally, any par-annotated variable should be sparked. Any expression us
ing this syntax can be trivially converted into an equivalent one which uses the letpar 
construct and the standard atom rule group, as demonstrated below:

/  va ri■ . (par vari) •. . varn = letpar (narĵ par =  r —)■ vari)
f  vari ■ ■ ■ vavî par ■ ■ ■ vavn

The latter approach not only increases the spark’s prominence, but is more in keeping 
with the operational semantics [Peyton Jones, 1992, section 5, rules 1, 5, and 14]. The 
relationship between the lambda^form and hind groups is similar, but either is acceptable, 
depending on the context.

5.2.2 New primitive functions

The addition of a new primitive function is quick and simple, requiring no modifications 
to be made to the abstract or concrete syntax, and only entailing the following steps:

1. add the type signature to the primitive environment, PE.

2 . add a new valuation function to the denotational semMntics.

This simplicity has a price, in that such functions can only manipulate atoms. Further
more, due to the low profile of the primitives, only uncomplicated computation should be 
introduced via this method -  non-deterministic operations, or operations which affect the 
order of evaluation, are not appropriate!

5.2.3 New primitive types

Extensions to the type system can be used to introduce bulk data types, improve the 
encapsulation of other constructs, or to relax some of the language restrictions detailed in 
section 4.5. Whatever the purpose of the new type, the addition proceeds as follows:

1. is the type boxed or unboxed? Before incorporating the new type into the language, a 
time must be spent considering its machine representation. This helps to determine 
where to make the extensions in step 2 , and to focus the selection of constructs in
step 4.

2. extend the syntax of types. Based on the deliberations of step 1, new rules are added 
to the type system first outlined in figure 4.2. Although concerned with the language 
syntax, most of the points raised in section 5.2.1 also apply here. Furthermore, if 
the new type is to be allowed to appear in data-type declarations, the additions to 
the syntax of types must be mirrored in the language syntax (see step 4).

3. modify the unification algorithm. This controls how the new type interacts with 
type variables, i.e. whether values of this type can be manipulated by polymorphic 
functions. If a type is boxed there is little reason to disallow such interactions.

4. extend the language syntax and primitive functions. Facilities to create and manip
ulate instances of the type are next introduced into the language. Four categories 
of operations should be considered: value creation; conversion from or to existing 
types; transformations within the same type; and conditionals, including comparison 
operations.
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U a pod
U iWi)) M
u  iixteig )̂) podu . . . podu

((Xtags)) pod21 . ..pod2 r.

{pod, { a  I-)- p o d } )

(((i^i)))0),such that [ui =  V2 )

(((Xtagi)) p o d i . . .p o d n ,  S i  ®  ®  S n)

such that (xtagi ---- Xtag2)
where
{p o d i, S i )  =  U  p o d i i  poc?2i

{p o d n ,S „ )  =  U  { S n - l  p o d in ) {S n -1  p o d 2n)

Figure 5.1: An extended unification algorithm for Hill’s PODs

5. update the semantic descriptions. For each new construct added by the previous 
stage, steps 2-4 of the method outlined in section 5.2.1 should be followed (or 
section 5.2.2 for primitive functions). It may be necessary to update the domain 
equations used by the denotational semantics.

The following examples serve as demonstrations of the method, and also highlight some 
of the potential applications.

Data-parallel Haskell

Hill has implemented data-parallel Haskell (see section 2.4.2) on the AMT DAP (Dis
tributed Array Processor [MacDonald, 1992]), a SIMD machine using a flexible 64 by 64 
grid of 1-bit processors. Operationally, as DAP vectors can only contain unboxed primitive 
data types [Hill, 1994, table 5.1], a po d  is prevented from storing functions or unevalu
ated expressions. This restriction also impacts upon the representation of algebraic PODs, 
which are thus stored as tables of simpler PODs -  the relationship between an algebraic 
type, X, and its flattened representation, x^ is shown below:

data X =  consi rn . ..

COTiSji Tyi\ . . . Tji

data x' = f  lat;^ Xtag H i ...

data Xtag — C O n S i  .  .  .  c o n s ^ ^  Xnot_here

The first entry encodes the constructor tag, with the remaining entries representing each 
possible argument of every constructor associated with the data type. These restrictions 
are reflected in the extensions to the syntax; of types of the STG' language:

Boxed type tt — pod POD vector
POD vector pod —^  iW)) primitive vector

((Xtag)) podi ■ . podn flattened algebraic type (n >  0)

The unification algorithm, U, is extended as shown in figure 5.1, with the first rule 
stating that PODs are first-class citizens with respect to polymorphism. Figure 5.2 shows 
the production rules added by Hill [1994, chapter 5] to support the new type -  there are no 
conversion routines defined, only creation (((• ■ •))), transformation (maPjj, in d ices , SEND, 
and f e t c h ), and conditional (c a se ) operations. Notice that named defaults, as described 
in section 4.3.3, can be avoided by using the mapi construct.
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Expression exp

Parallel alternatives palts

Atom

Ipalt
apalt
atom

MAP„ {lambda—f  orm \ var) exp\. . .  expn {n > 1)
INDICES var
SEND var var
FETCH var var
CASE exp OT palts default
{{cons)) atoms
Ipalti. . .  Ipaltn
vars apalti. . .  apaltn
V literal — exp
V cons —)■ exp 
{{... atom ...))

{n >  1 )
(n >  1)

Figure 5.2: Hill s extended syntax for a data-parallel STG language

Abstract syntax jy — 7 PID# processor identification

Unification rule U PID# PID# = (PID#,0)

New production rules exp — randomPID# | currentPID# | ...

New primitives neighhorPIDff : 
itopPIDjf :

Int#  -)■ PID# -> PID# 
Int#  -)• PID#

Figure 5.3: The PID# type for restricting access to non-deterministic topology functions 

Processor identification

The topology operations detailed in table 2.3 are a potential source of non-determinism, 
and it is desirable to restrict the employment of their results to purely operational matters. 
This is achieved naturally through the use of the new unboxed type shown in figure 5.3. 
Operationally, variables of this type will be represented as unboxed integers, i.e. equivalent 
to values of type Int#. However, by restricting the constructs and functions that produce 
and consume values of this new type, the desired encapsulation is achieved.

Pipeline parallelism

Most existing implementations of the pipeline skeleton are limited by the static type system 
to using stages which all have the type a —>■ a [Bratvold, 1994, section 3.4.1]. While it is 
possible to use algebraic data types to circumvent this restriction, this is a cumbersome 
and inefficient solution. The boxed type outlined in 5.4 offers a more flexible solution.

5.2.4 Altering existing expressions

This method is deceptively simple, as all of the necessary definitions and functions already 
exist, and only require modification. However, any change, whether it be to the syntax, 
language restrictions, or denotational semantics, may cause the test programs to either
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Abstract syntax 7T — > 7Ti 7T2 pipeline specification

Unification rule U a  7Ti —̂ 7T2 =  (tti->• 7T2, j a  I-4-7Ti-)■ 7r2|)
U TTii —> 7Ti2 7T21 —>• 7T22 =  (tTi -)• 7T2,5'i © 5 2 )

where
(«1, Si) =  U « 1 1  «21 
(q!2 ,S'2) =  u  (5l 0 1 2 ) {Si « 22)

New primitives addstagePipe : {cti —y 0 :2 ) —̂ 0:2 —̂  ̂ ^
apply Pipe Oi\ —)■ 0̂ 2 —̂ List Oi\ —̂ List 0(2

emptyPipe : «1 —>• 0!2

Figure 5.4: Improving pipeline parallelism using a new boxed type

become invalid, fail to terminate, or yield different results. Re-checking the integrity of 
the collection can be time consuming, and the savings over the addition of a new rule or 
type may often be negligible. Moreover, most modifications will have to be made simul
taneously, before testing can begin in earnest. Hence it is suggested that the alteration of 
existing expressions should be employed only when major changes are deemed necessary, 
and no other method is applicable.

The following three sections look at alterations to the abstract syntax, language re
strictions, and denotational semantics respectively.

Abstract syntax

Alterations to the abstract syntax are limited to the following:

removal of a production rule the deletion of a rule effectively removes a capability
from the language. Examples include the removal of: named defaults -  see sec
tion 4.3.3; le tre c  expressions, such that recursion can only be defined at the top- 
level; and the literal alternative from the atom group, forcing all primitive values 
to be defined using the le t#  expression. This last change would bring the language 
more into line with the continuation-passing style advocated by Appel [1992, figure 
2.1].

addition of a new non-terminal symbol to a production rule the introduction of
an new field can increase the expressiveness of an existing construct. For exam
ple, the lambda-f orm could be extended to include a location directive (see sec
tion 2.4.4). As a special case, simple expression-based extensions can be avoided 
altogether by using the attribute database (see section 4.6). This shortcut can be 
stretched to include bindings and lambda forms, but the access routines become 
complex.

removal of a symbol from a production rule this is the inverse of the previous op
eration, and is used to delete extraneous symbols. As an example. Hill [1994, figure 
5.2] simplified the lambda—form  rule to varsargs exp, claiming that the missing
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operational information could be inferred easily. This is certainly true of the free- 
variable data, but the removal of the update flag does complicate the encoding of, 
for example, strictness and complexity information.

Note that re-ordering and replacing fields can be treated as combinations of deletions 
and additions. With the exception of production-rule deletion, the method outlined in 
section 5.2.1 should be followed, with the existing definitions serving as an additional 
guide.

Language restrictions

Alterations to the type rules will either tighten or relax the constraints placed on STG' 
programs. The method is straightforward, involving only the addition or deletion of as
sertions, but the total effect can be considerable, as illustrated by the following examples.

The APPLY-EXP' rule, shown below, restricts the result of function application to 
algebraic values -  a lifting algebraic type (data XLift «  =  L ift  a) would have to be used 
to return functions or polymorphic variables:

APPLY-EXP'

TE  h varfun : n  -------)• -)• x «1 • • • «u
atom

TE  f- atomi ■ tì {0 < i <  n)
exp

TE  h vavfun atomi ■ ■ ■ atomn : x cti • • • “ ■«

Relaxing any of the restrictions described in section 4.5.1 would require significant 
changes to be made to the operational semantics, and should therefore be avoided. The 
technique used in section 5.2.3 to improve the pipeline skeleton is a less powerful, yet 
workable, alternative. However, as an example, the following type rule removes the second 
restriction, allowing constructors to appear unsaturated:

CONS-EXP'

{cons, (n, a)) G CE
spec

TE  h IT : Ti r„ ->• X 7Ti...  TT̂,
atom

TE  h atomi : Ti {0 < i < m < n)
exp

TE  h cons atomi ■ ■ ■ atomm : Tm+i ->• 7-n ^  X TTi...  7r„

Denotational semantics

As outlined in section 4.7, the denotational semantics consists of three sets of definitions -  
the meta language, the domain equations, and the valuation functions -  and changes can 
be made to each of these. Whichever group is targeted, the primary motivation behind any 
modification is likely to be concerned with the default order of evaluation. As an example, 
function application can be forced to model applicative-order reduction using the valuation 
function shown in figure 5.5. The transformation from a non-strict language into a strict 
language can be completed by redefining constructor application and the variable-binding 
functions. For the same reasons as outlined in section 5.2.2, non-determinism should not 
be introduced by this route.
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Sfuarfun atom i...  atom„] p =  let fun  =  p varf^n
in case AtomlatoniiJ p o f

T ^  T
ei —)■ case Atomlatoni2 l P o f

T ^  T
£2 ^  . . .

£n (•■■{{fun ei) £2) •••£„)

Figure 5.5: A valuation function for strict function application

5.2.5 Hybrid definitions

While it is possible to prototype a simple language using just one of the previous four meth
ods, it is only by combining these strategies that more complex effects can be achieved. For 
example, the ai — « 2  boxed type and associated primitives (section 5.2.2) can increase 
the expressiveness of the pipe skeleton (section 5.2.1). Similarly, the PID# type provides 
support for a data-placement operation. However, apart from suggesting that each of the 
separate items be developed in isolation, hybrid definitions are beyond the scope of this 
thesis.

5.3 Language restrictions revisited

This section is concerned with the restrictions that need to be placed on any new lan
guage features, starting with an overview of the types of restraints that can be applied in 
section 5.3.1. The remaining two sections then look at extending the type-inference and 
free-variable algorithms presented in section 4.5.

5.3.1 Syntactic, algorithmic, and informal restrictions

There are three complementary approaches to limiting the set of valid language terms
( D e f e n c e  in D e p t h ), and these are summarised below:

abstract syntax by controlling the way in which language terms can be constructed, it 
is possible to prevent undesirable phrases from being expressed. A good example of 
this is the abstract syntax of the p o d  type, defined in section 5.2.3, which requires 
no additional constraints to ensure that a given term is valid.

algorithmic restrictions often, complex restrictions cannot be enforced by the abstract 
syntax alone, and additional mechanised checks have to be made. The sequential 
STG' language, for example, already maJres use of free-variable and type-inference 
algorithms. In the context of parallel languages, new algorithmic techniques, such 
as shape analysis [Jay and Cockett, 1994], have great potential.

informal restrictions in situations where mechanisation is difficult, informal restrictions 
may be imposed on a language. Examples include requiring that: an operator is 
associative [Skillicorn, 1990, the reduce and directed-reduce operations, page 45]; 
or that the head function is never applied to an empty list [Hudak et al., 1992,
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PreludeList, page 106]. It is usually left to the programmer to ensure that these 
conditions are met -  failure to do so may result in errors that are difficult for the 
run-time system to detect.

5.3.2 Type-inference rules

The type-inference algorithm presented in section 4.5 enforces the majority of restrictions 
required of well-formed sequential STG' language programs. By extending the underlying 
rule set, most of the mundane restrictions that need to be placed on parallel extensions 
can also be checked. The rules contained in table 5.3 illustrate this last point, and also 
serve as an overview of the basic principles. While most cases should be straightforward, 
care has to be taken when dealing with constructs that force evaluation, as typified by 
the par combinator. Furthermore, extensions to the total environment, TE, may have to 
be made to accommodate new primitive types. Both of these issues are discussed in the 
following sections.

As a final note, by extending the type-inference algorithm it becomes obvious which 
constructs manipulate collections of values. Rather than using the standard L ist or Tree 
data types, these operations may benefit from the support of a specialised primitive type 
(see section 5.2.3). As an example, consider the PIPE-SKELETON rule from table 5.3.

Constrained types and the polymorphic par combinator

As mentioned in section 4.5.1, the STG machine has an aggressive take mechanism, such 
that a function can only be reduced when all of its arguments are present. This has obvious 
implications for any evaluation-forcing operation, which should thus only be used to reduce 
variables or expressions with algebraic or literal types. Even with a non-aggressive take, 
the return mechanism assumes that the exact type of the final result is known prior 
to evaluation -  arbitrarily reducing polymorphic variables and expressions could cause 
problems. It follows that the PIPE-SKELETON rule from table 5.3 is too relaxed, while 
the PAR-EXP and LETPAR-EXP rules are suitably constrained.

Extending the type environment

With the introduction of new types or new binding mechanisms, the total environment, 
TE, may need to be extended. For instance, case alternatives for algebraic p o d s  only 
include the constructor tag, necessitating a POD-tag environment, PTE, of type Xtag 
podi .. -podn- The ALG-PALTS type rule, shown in figure 5.6, illustrates the use of this 
new entry. Note that it would be possible to simply use the constructor environment, CE, 
to store this information, and have the ALG-PALT rule access and return the required 
information.

With regards to animating these two rules, the ALG-PALTS needs to know the tag 
type before creating the local variable environment used by the ALG-PALT rule. As 
this information is inferred by the second rule, there is an obvious cyclic dependency. 
Two possible solutions exist: either Haskell’s non-strict semantics can be used to resolve 
the conflict; or the first rule can peek at the left-hand side of the first alternative, and 
independently determine the type. The former strategy is the more elegant and concise, 
but will be sensitive to the strictness of all the routines which manipulate the environment.
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1 . simple types CURRENT-PID-EXP
exp

TE \- currentPID : P ID ^

2. accessing the TE INDICES-EXP (var^pod) 6 TE
exp

TE  h INDICES var : ((Int#))

3. dependent types PAR-EXP

exp
TE \- exp : r
{var,x 7Ti.. . 7r„) G TE

exp
TE \- pax var exp : t

4. constrained types 

i. unboxed

ii. boxed

POD-ATOM
atom

TE  f- atom : v

PIPE-SKELETON

atom
TE  h atom...)): {{o))

(varpipe.ni -)• 7T2) G TE
exp

TE  h exp : L ist tti
skeleton

TE  h pipe vavpipe exp : L ist 7T2

5. extending the TE

exp
T£; h expdefn : X VTI...  7r„ 

=  {war i->- x  tti • • • ti«;}
exp

LETPAR-EXP TE ® LVE  h exp : t
exp

TE \- letpar var =  exp^efn exp : r

6 . auxiliary functions see the CASE-EXP and PROGRAM  rules in appendix D

Table 5.3: A selection of type rules for parallel constructs
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ALG-PALTS

ALG-PALT

(Xtag,i>oi/i.. .podn) 6  PTE
LVE =  {vari i-> podi, ■ ■ ■ ■, vavn podn}

apalt
TE (B LVE  h apalti : Xtag —>■ pod (1  < i <  m)

palts
TE  h vari . . .  varn apalti. . .  apaltm '■ ((Xtag)) podi ■ ■ ■ podn —̂ pod 

(cons, (0,xtag)) e CE
exp

TE  l- exp : pod
apalt

TE  h V cons —)■ exp : Xtag pod

Figure 5.6: The ALG-PALTS and ALG-PALT type rules for pods

5.3.3 Free variables

In general, developing the .FV[] rules for the parallel-language terms is straightforward -  
it is simply a matter of taking the union of the free variables of each non-terminal symbol 
that compose the construct:

f̂ orpipg exp] g — PVyarlparpipel g U .iFVeip[exp] g

The only complication involves binding operations, where care must be taken to filter 
out the local variables from the final answer:

•FVexpiletpar var =  expdefn exp] g =  TVexp{expdefnì 9 U {TVexploxp\ g \ {var})

5.4 Denotational semantics and parallel languages

In the context of the prototyping framework, once developed, the denotational description 
of the entire language will serve as a guide during the development of the operational 
semantics, and as a reference model during the testing phase. In addition, the construction 
of the denotational semantics focuses the designers attention on the following areas:

order of evaluation for the semantics outlined in section 4.7, the order of evaluation is 
primarily determined by the occurrences of case, letstrict, and let# expressions. 
In the presence of scheduling constructs (see section 2.4.4) more complex orderings 
can be specified.

degree of evaluation in order to increase the amount of work performed by, for example, 
a pipe expression, it may be necessary to reduce its argument further than the usual 
head normal form. This behaviour should be reflected in the valuation function.

speculative evaluation and non-termination an expression which reduces to bot
tom, _L, under the denotational semantics will probably fail to terminate in an actual 
implementation. The effect of non-termination on the run-time system can be grossly 
specified by the denotational model.

non-determinism despite the potential loss of referential transparency, the introduction 
of non-determinism can be useful, particularly when providing access to operational 
parameters, such as the system load or the processor identifier.
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run-time errors and exception handling it is not uncommon for languages to sup
port the use of informal restrictions by providing a primitive similar to Haskell’s 
error operator [Hudak et ah, 1992, pages 68 and 88]. Non-fatal errors can be sup
ported through the use of user-level exception handlers.

Each of these issues, along with a brief summary of the different strategies, are explored 
in the following sections.

5.4.1 Order of evaluation

As the underlying mathematics supports no notion of ‘order of evaluation’ , it seems un
likely that the denotational semantics can be applied to this problem. However, in the 
absence of side effects, the exact interleaving of computations [Hooman, 1991, sections 
2.2 and 4.1] is not important, and only the dependencies need to be expressed [Bloss and 
Hudak, 1988]. Consider the following example:

¿^[seq var exp] p =  case {p var) o /  _L —> _L
e —> ¿^[exp] p

Remembering that bottom, _L, equates to non-termination, this valuation function cap
tures the expected behaviour, i.e. seq x y will only return the value y if x represents a 
finite computation. Similarly, the pax combinator can be modelled as follows (ignoring 
termination properties):

¿^|par var exp] p =  ¿^[exp] p

Unfortunately, using this strategy, no satisfactory definition can be arrived at for a 
passive wait x y expression [Goldberg, 1988a, section 3.2], i.e. one which cannot initiate 
the reduction of x. If a seq-style valuation function is used, the possibility that x is 
never reduced is not expressed. However, in all of of the examples presented by Goldberg, 
the waits are always matched by preceding par operations if this restriction could be 
enforced by the language, the proposed description would be valid.

While obtaining an accurate model is desirable, it is not essential, as the operational 
semantics is a better medium for expressing these concerns. As long as the denotational 
model is under constrained, i.e. the denotational reading is always as well defined as the 
operational result, the model can still be used for test purposes.

As a final note, it is expected that the number of constructs which change the default 
(non-strict) order of evaluation will be small. It was therefore decided not to use the 
continuation-passing style of denotational semantics [Raskovsky and Collier, 1980; Sethi, 
1982; Schmidt, 1986, chapter 9], which would, arguably, make the descriptions harder to 
follow in most cases.

5.4.2 Degree of evaluation

While testing for bottom can be used to indicate that a value will be reduced to at least 
head normal form, constructs that manipulate algebraic data types may need to express 
more complex requirements [Burn, 1991, figure 5.1, page 114]. For example, consider the
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following definition of the pipe skeleton:

<SA;efei on [pipe vavpipe expj a =  let function  =  a vavpipe, arguments =  ¿^[exp] p
in {map function arguments)

^^ist 7T) ..

t(List 7t)Coo fc =  case € o f
(Nil) ^  (Nil)
(Cons,x,xs) ^  (Cons,x,^TO^®* xs)

The application of the function [Burn, 1991, section 1.2, page 7] to the p ipe ’s
input, forces reduction to spine normal form [Kewley and Glynn, 1990, page 330]. For each 
data type there is potentially a large number of reduction strategies [Hammond, 1991, “the 
twenty-four names of Cons” , section 8.3], and it may be worth considering automatically 
deriving the evaluation transformers from the type declarations.

5.4.3 Speculative evaluation and non-termination

When threads are used to only reduce essential expressions, non-termination of an indi
vidual thread is not a problem as the entire computation will, by definition, also fail to 
terminate. However, by permitting speculative evaluation [Mattson Jr., 1993a, chapter 3], 
it is possible that a non-essential thread may consume sufficient resources so as to affect 
the final result. Consider the following valuation functions:

£ [̂par var exp} p = case {p var) o /  T —>■ T
e -)• Slexp} p

¿^[speculate var exp} p = £{exp} p

Based on these definitions, the par combinator can only be used to reduce either essential 
values, or expressions which are known to terminate. The speculate combinator is less 
constrained, in that it can be used to evaluate any expression. The cost of this increased 
expressiveness is that the run-time system must use a fair scheduling algorithm, and be 
capable of garbage collecting unnecessary threads [Mattson Jr., 1993a, section 7.4.1].

5.4.4 Non-determinism

In general, the introduction of non-determinism results in the loss of referential trans
parency, and hence invalidates a wide range of compilation techniques [Santos, 1995]. 
There are only two situations where this loss could be justified: when providing access to 
run-time values, such as the current processor identifier; and allowing threads to interact 
non-trivially through the use of side effects. Both cases are considered in the follow
ing sections, although [Dennis et ah, 1995] is recommended as a succinct review of the 
situation.

Accessing operational parameters

By providing access to certain run-time parameters, including current workloads and the 
local-processor identifier, it is possible for a program to adapt its behaviour in the hope
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of improving efficiency [Hudak, 1991, section 5.4]. However, such values are inherently 
non-deterministic, and therefore complicate the development of a denotational semantics. 
The remainder of this section looks at a number of different ways of incorporating non
determinism, including the use of powerdomains.

The easiest way to handle non-determinism is to ignore it completely, as is done below:

¿:[currentPID#] p =  42#

The only time that this approach is defensible is when the resulting values can only 
affect the operational behaviour of the program. This is often achieved by imposing 
type restrictions on the language (see sections 5.2.3 and 5.3.2). Mirani and Hudak [1995, 
section 3] take this idea one step further by wrapping all such values inside an operating- 
system monad [Peyton Jones and Wadler, 1993]. Both of these techniques can be used in 
conjunction with the other methods described in this section.

A more satisfactory solution is to accurately model the parameter in question. For 
example, Hudak [1986] has used this technique to develop a semantics for a simple lan
guage which includes the expi on exp2 , and sel f  expressions (the latter is similar to the 
currentPID# construct). The formal arguments of all valuation functions axe extended to 
include a processor identifier, which represents the location of the current computation:

£{exp on pidj p current-pid =  case (5|pid] p current-pid) o f  
T -s- T
new—pid —>■ p new-pid

The VrogramlJ rule provides the initial value of the current^pid parameter.
Incorporating randomPID#-style expressions, or attempting to model data migration, 

is more problematic. Consider the implicit specification of the location using a function 
of type PID# —)■ PID# —)■ PID# (at run time, the current processor identifier and a 
random processor identifier will be supplied as arguments.) This removes the need for 
both the currentPID# and randomPID# constructs, as well as simplifying the denotational 
semantics:

£\expi on exp2\ p =  let location—function =  ¿̂ [ea;p2l P
f T, if T € {location-f unction i j  \ y i , j  6 P /U #}

¿l|ea;pi] p, otherwisetn

It would obviously be unrealistic to check that each location function meets the above 
requirement.

If none of the above techniques is applicable, it will be necessary to use a powerdo- 
main [Schmidt, 1986, section 1 2 .1 , page 275], replacing all occurrences of the Val domain 
with P(Val), where P (P)  represents the powerdomain builder. In addition, each rule 
will have to be updated to handle multiple values, using either Haskell’s list compre
hensions [Hudak et al., 1992, section 3.10, page 16] or a monad [Wadler, 1992, “Non- 
deterministic choice” , section 2.7] to handle the multiple values, and the order of evalua
tion re-examined. As a small consolation, the animation of the resulting semantics can be 
straightforward.

Side effects and thread interaction

The development of denotational semantics for sequential side-effecting language is well 
understood, and only requires the correct threading of the environment [Schmidt, 1986,
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chapter 7]. However, the combination of side effects and parallelism [Barth, Nikhil and 
Arvind, 1991; Jones and Hudak, 1993, section 4.3] generally implies complex descriptions, 
based on a large number of assumptions and limitations -  consider, for example, the 
semantics presented by Hooman [1991] for an Occam-style language. Unless something 
can be done to limit the possible interactions, it is recommended that this stage of the 
design process should simply be missed out. Hudak [1987, section 2.1], for example, only 
allows destructive array updating if it can be proved (by the compiler) that this will not 
break the sequential semantics.

5.4.5 Run-time errors and exception handling

Generally, if an informal restriction is violated, the current thread should be terminated 
(and possibly the entire computation). Assuming that the failure can be detected, the 
following construct provides the necessary support:

[error exp j  p =  _L

Unfortunately, using the Val domain definition from section 4.7.1, it is not possible 
to model low-level errors, including division by zero, by returning bottom. Furthermore, 
due to resource limitations, for example, it is possible that a valid computation will fail 
to terminate when run on a computer. This kind of error also cannot be easily modelled 
by the denotational description.

The provision of exception handling mechanisms, as used by Hammond [1991, section 
2.4.1], is a more flexible approach to the same problem, in that it can be used to model 
non-fatal errors without resorting to the use of algebraic data types.

5.4.6 A  selection of bottoms

In the previous sections, the bottom element, T, has been used in a number of different 
roles:

• to model scheduling dependencies.

• to force evaluation beyond the usual head normal form.

• to represent non-termination, and thus limit the applicability of a spark or location 
construct.

• to indicate that a fatal error has occurred.

Obviously, the animation of the denotational semantics will only be able to handle the 
last type of bottom (a fatal error) in a non-trivial manner -  all others will result in the 
non-termination of the implementation.

As a final note, when testing for bottom, extra care must be taken to avoid non
monotonicity [Schmidt, 1986, pages 112-113]. For example, the following valuation func
tion would invalidate the entire semantics:

¿^[is_bottom exp  e x p ±  ex p jJ  p =  case  (¿^[exp] p) o /  _L — ¿^[expx] p
e £ { e x p ^  p
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5.5 Summary

In this chapter a number of different syntax-driven guidelines for introducing parallelism 
into the STG' language have been proposed, covering; the additions of new production 
rules, primitive functions, and primitive types; and the modification of existing rules, 
whether they be taken from the abstract syntax, the type-inference rules, or the denota- 
tional semantics. Furthermore, the application of language restrictions and denotational 
semantics to the development of parallel languages has also been discussed.



Chapter 6

Managing parallelism — 
operational models

6.1 Introduction

This chapter discusses the development of an operational description to augment the 
denotational semantics of the parallel STG' language (see chapter 5). The STG machine 
provides the basic recipe, into which the parallel ingredients, including threads, messages, 
and shared memory, are added. To facilitate testing and debugging, the animation of 
the model (which is essentially a state-transition system) is also considered. The final 
description is then used by chapter 8 to provide the foundation upon which the compilation 
system is built.

Sections 6.2 and 6.3 are concerned with the introduction of parallelism into an opera
tional model -  the former develops a general framework to work within, while the latter 
deals with the issues specific to a parallel STG machine. The implications of the STG' lan
guage manipulations described in the previous chapter are then considered in section 6.4. 
The animation and testing of the resulting state machines are discussed in section 6.5, 
before the chapter is summarised in section 6.6.

6.2 Parallelism and the STG machine

This section explores the nse of state transition systems to model modern multi-processor 
systems. Section 6.2.1 discusses the gross representation of the processing and communi
cation elements. This model is then refined to explicitly inclnde the notions of time and 
inter-processor synchronisation in sections 6.2.2 and 6.2.3 respectively. Shared-memory 
and message-passing abstractions are then examined in greater detail in sections 6.2.4 
and 6.2.5.

6.2.1 One abstract machine or many?

When modelling a parallel or concurrent system, the possible interactions between the 
component processors can either be explicitly or implicitly specified. As an example of 
the first approach, both Peyton Jones, Gordon and Finne [1996, section 6.2] and Ostheimer 
[1993, section 3.4, page 39] use the 7r-calculus [Milner, 1993] as the underlying formalism. 
The following congruence and structural rule controls the “reactions” (the number of

80
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( s t e p )

(in it) init =► (1, initj. P i, , initp Pn) {inits S)

step (i, P i , . . . ,  P j,. . . ,  P„) 5  =► (*', P i , . . . ,  P / , . . . ,  Pn) (steps S') 
where i' =  1 +  (i mod n) and (P/, S') =  stepp (Pî  S)

(f in a l) final (¿, P i , . . . ,  P„) S finalp Pi A • • • A finalp Pn A finals S

Figure 6.1: A simple processor framework for the parallel STG machine

processors is unbounded):

(p a r ) P  I Q
(c o m m ) P  I Q
(a sso c ) Pi I (P2 I P3)

P'\Q , if P  ^  P ' 
<3 I P
(Pi I 2̂) I Pz

On the other hand, the p-STG machine [Hwang and Rushall, 1992] and the abstract 
machine for pH [Aditya et ah, 1995] axe defined in terms of a single processor, with each 
reaction rule specifying only one half of a processor-processor interaction. In fact, the 
data-parallel STG machine [Hill, 1994, rules 18, chapter 6 , page 123] specifies all forms of 
parallelism in terms of auxiliary functions and set comprehensions.

While the former approach is undeniably superior from a theoretical standpoint, the 
latter boasts a greater number of relevant examples and is, arguably, less complex, making 
it the method of choice. However, to both simplify the animation (see section 6.5) and 
to clearly identify the primary communication mechanisms, an explicit framework will be 
assumed throughout this section. The framework shown in figure 6.1 will be used as the 
start point, and will be subsequently refined as the need arises.

This model comprises three distinct state-transition systems, the abstract states of 
which are: S, the communication system; P, a single processor; and ( i ,P i , . . .  ,P „) 5, an 
ensemble. Each has its own set of init, final, and step operators for creating the initial 
state, testing for a final state, and performing one state transition respectively. Note that 
the processor index, i, records the identity of the processor to be stepped on the next 
transition. For most applications this round-robin scheduling is overly simplistic, and 
section 6 .2 .2  refines the model to allow the use of timing information to control the order 
of transitions.

To demonstrate the basic principles of the framework, figure 6.2 shows the INIT, STEP, 
and FINAL reduction rules describing a two processor ping-pong system [Booth et al., 
1997]. The first processor, Pq, pings its neighbour, waits for a reply, and then re-starts 
the cycle. The second processor, Pi, is its dual, and waits to be pinged before ponging Pq. 
The state diagram of this system is shown in figure 6.3, where the diagonal lines denote 
communication between the two processors. As specified by the FiNALp and FlNALg rules.
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initp P q

initp P\ W a i t F o r P in g

(iNITs) inits S N oth in g

stepp {P in g ,S )  {W a i tF o r P o n g ,  H a v eP in g ed )
stepp (P o n g ,S )  {W a itF o rP in g ^  F laveP onged )

(STEPp) stepp {W a itF orP on g ^  H a v eP o n g ed )  
stepp {W a i tF o r P in g ,  F iaveP inged ) -

j, N oth in g )  
I, N o th in g )

stepp (P, S) <S)

(STEPs,

(PINALp)

step^ S

S

Figure 6.2: Transition rules for a simple ping-pong system

P0 s P1

Figure 6.3: The state-transition diagram for the ping-pong system



83

( s t e p )

(init) init = >  {initp P i , , initp P^) {inits S)

step (Pi, . . . ,  Pi, . . . ,  Pn) S
(Pi, . . . ,  PI, . . . ,  Pn) {steps S')

where {P-,S') =  stepp (Pi,S)
such that V j  G { 1 , . . . ,  n} • local-time Pi <  local-time Pj

(final) final {P i,. . .  ,Pn) S finalp Pi A • • • A finalp Pn A finals S

Figure 6.4: Explicitly modelling time in the processor framework

the system never terminates and simply repeats the cycle shown below:

0. (0, INITp Po, INITp Pi) INITs S
1. (0, Ping, WaitForPing) Nothing
2. (1, W  aitForPong, WaitForPing) HavePinged
3. (0, WaitForPong, Pong) Nothing
4. (1, W  aitForPong, Pong) Nothing
5. (0, WaitForPong, WaitForPing) HavePonged
6. (1, Ping, WaitForPing) Nothing
7. (0, Ping, WaitForPing) Nothing

Notice that nothing happens to Pq, Pi , and S between steps 3 and 4 -  Pq is waiting for 
a pong which has not yet been sent. A similar situation occnrs between steps 6 and 7. 
While such wait reductions are acceptable for this small example, they can quickly obscure 
the other reductions as the number of processors increases. Section 6.2.3 addresses this 
problem by introducing the concept of bnsy, waiting, and stopped processors.

6.2.2 Abstractions of time

The operational models developed so far make no reference to time, and hence cannot 
encode either the expected run time of a rule, or the temporal relationships between 
events [Sadri, 1987, section 2, page 122]. Other sitnations which require an explicit model 
of time include time-stamping messages, specifying a time-out period when waiting for 
an Ack message (section 9.3.2), or implementing a heart-beat algorithm [Andrews, 1991, 
section 4, pages 63-68]. To incorporate time into the processor framework presented in 
section 6.2.1, each P  is extended to inclnde a local clock, tiocah and the STEP rule has to 
be changed as shown in figure 6.4.

This suggests that a time-aware state-transition system conld be used to estimate the 
run time of a physical system. Hehner [1994, section 12.4, page 195] summarises this line 
of reasoning, as well as identifying the main problem:

“To obtain the real execution time, just insert time increments as appropri
ate. Of course, this requires intimate knowledge of the implementation, both 
hardware and software; there’s no way to avoid it.”

Furthermore, the physical implementations can themselves be unpredictable. Hammond, 
Burn and Howe [1994, hgures 1 and 2] demonstrate that a small variation in the size of
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(iNITp) initp Pq = ^  P^^gt,ocai=o
initp Pi = WaitForPingt^^^^i=o

(iNITs) inits S Nothing

(STEPp)

stepp {Pingt,S) 
stepp {Pongt,S)

{WaitPorPongt+\Q, New Ping t) 
{WaitForPingt+io, NewPong t)

stepp {WaitPorPongt, HavePonged tj-ecv) such that t> tp  
=► {Pingt+iQ, Nothing)

stepp (WaitForPingt, HavePinged trecv) such that t >  tr, 
=► {Pongt+io, Nothing)

stepp (PuS) (Pt+i,S)

steps {NewPing t) 
(sTEPs) steps {NewPong t) 

steps S

HavePinged {t +  100) 
HavePonged {t +  100) 
5

(piNALp) finalp P  =► false

(finaLs) finals S = >  false

Figure 6.5: Transition rules for a time-aware ping-pong system

the dynamic heap can give rise to a 50% difference in uniprocessor performance (this was 
attributed to a cache conflict between the argument stack and instruction stream). With 
regards to parallel systems, Trinder et al. [1996, section 4.1], commenting on the average 
speedup observed by the GUM system, note that:

“There is a degree of chaos in the results, since a single change in the placement 
of a spark at runtime can affect the overall runtime.”

In summary, to achieve any degree of accuracy, the level of detail required [Jain, 
1991, section 5.2, pages 66-67] would render the rule set worthless as a design tool. It is 
therefore assumed that each rule takes either one, ten, one hundred, or one thousand time 
units to complete. This still allows a certain degree of performance debugging without 
overburdening the design. It also guarantees that any estimate is treated with caution.

To illustrate the use of the extended framework, figure 6.5 shows the new rules for the 
ping-pong system presented in the previous section. The processors’ local clocks appear as 
subscripts to the original processor states, and the times associated with each operation 
are shown in figure 6.6. The state-transition diagram for the new system is similar to 
that of the original (see figure 6.3). The first cycle of reductions is shown in figure 6.2.2 
(disregarding the majority of wait reductions). Notice that the wait reductions account 
for over ninety percent of the total number of reductions. Not only is this distracting 
when examining the reduction steps, but can cause serious performance problems when it 
comes to animating the system. This problem is addressed in the following section.
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operation time
WaitForPing, no ping available 1
WaitForPong, no pong available 1
Ping 10
Pong 10
WaitForPing, ping available 10
WaitForPong, pong available 10
communication delay 100

Figure 6.6: Time costs for the ping-pong system

time system state
INIT

0
0
0
1

100
101

no
111
111

210
211

(iNITp Po, 
{Fingo,

{WaitForPongio, 
{W  aitForPongio, 
{WaitForPongio,

INITp Pi) INITs S 
WaitForPingo) Nothing 
WaitForPingo) NewPing 0 
WaitForPingo) FtavePinged 100 
WaitForPingi) HavePinged 100

{WaitForPongioi, WaitForPingioo) FtavePinged 100 
{WaitForPongioi, Pongno) Nothing

{WaitForPongiii, Pongno) Nothing
{WaitForPongiii, WaitForPing^o) NewPong 
{WaitForPongiii, WaitForPingi2 o) FtavePonged 210

{WaitForPong2 io, WaitForPing2 io) HavePonged 210 
{Ping2 2 o, WaitForPing2 io) Nothing

Figure 6.7: State transitions for the time-aware ping-pong system
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( s t e p )

(in it) init = >  {initp P i , . . .  ,initp Pn) {inits S)

step (P i,  •• - , Pi, - - - , Pn) S

{Pi,  .. -, P'i, - - - ,  Pn) {steps S')
where (PI, S' =  Stepp {Pi,^„,,i=tnext,S)

tnext =  n e x t - t im e  {P i ,S )
such that tnexi <  oo A V j  6 {1, . . ,  n}  • tnext <  n e x t - t im e  {P j, S)

step { P i , - - - , Pn) S ^ { P l , . . . , Pn) {steps S)

local-time P, if is-active P
(n e x t ) next—time (P, S) < comms-time {P,S), 

oo,^ ^ _________________
if is—waiting P  
if is-stopped P

(f in a l) final (P i, . . .  ,Pn) S = >  finalp P\ A ■■■ A finalp Pn A finals S

Figure 6.8: Incorporating processor states into the processor framework

6.2.3 Inter-processor synchronisation

Despite extending the framework to include an explicit model of time, it is still not yet 
suitable for modelling a parallel STG machine -  the number of wait reductions becomes a 
significant problem as a system increases in complexity. The first step to eliminating this 
problem is to note that a a processor can be in one of three states:

state description
active the processor is busy performing useful work.
waiting the processor cannot continue until it either receives 

data via the communication system or it times out.
stopped the processor has completed its task and will play no 

further part in the global computation.

Within the existing framework, the processor’s local clock, î ocaP is used to decide which 
processor to step next. While this is correct for active processors, it is often too early 
for waiting processors, and they then have to undergo a number of wait reductions to 
bring them to a time at which they can interact with the communication system. This 
situation is avoided in the framework shown in figure 6.8. The next—time function returns 
the earliest time at which a processor can become active based on the current state of the 
processor and of the communication system. Before a processor is stepped, its local clock 
is set to this new time tnexti i-6- Pi,tiocai=tnext- Notice also that the communication system 
may now have to be stepped independently of the processors.

Returning again to the ping-pong example, the system can be upgraded to use the 
new processor states by defining the functions is-active, is-waiting, is—stopped, and 
comms-time, shown below:

(is_ a c t iv e )
is-active (W aitForPing,S) false
is—active (W aitForPong,S) false
is-active (P, S) true

(is_ w a it in g ) is-waiting (P,S) ^is-active (P, S)
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(is_ st o p p e d ) is-^topped (P, S) false

(co m m s_ t im e )
commsJtime {WaitForPingti^^^i,HavePinged trecv) 
comms-time [WaitForPongti^^^i^ HavePonged trecv) 
comms-time (P, S)

fnax(tiQeali trecv) 
Taaxî t local 1 trecv) 
oo

The reduction cycle is as before, but with all of the trivial waiting rednctions removed. 
The ping-pong example can now be easily extended to include time-outs, as shown in 
figure 6.9. If either a ping or a pong is lost, then one of the processors will time-out 
and therefore stop. This will then lead to the other processor stopping, as it will also 
time-out waiting for the reply to the lost message. The final state is reached as soon as 
both processors have stopped.

The following two sections look at the modelling of shared-memory and message
passing axchitectnres within the processor framework.

6.2.4 Shared memory

On one level, modelling shared-memory architectures is straightforward, requiring only 
the specification of the hierarchy of components:

p S
heap task pool heap task pool example systems
hlocal Wpiocal none none GUM [Trinder et ah, 1996]
^local Wpiocal ^global "^Pglobal GRIP [Peyton Jones et ah, 1987]
none none h i - - - h n w p i - - - wpn BBN Haskell [Mattson Jr., 1993a]
none none ^global "^Pglobal (n, G')-machine [Augustsson and 

Johnsson, 1989]

Shared-memory components are mainpulated in exactly the same manner as with the 
sequential STG machine. The following example illustrates how local heap allocation is 
preferred in BBN Haskell:

Eval (le t  {var =  vs t: xs exprhs) ^^p) P as rs us h\ - ' hi ' - hn wps a t
= >  Eval exp p[var i-> a] as rs us h\ - ■h'r - hn wps a t +  lO
where i =  processor-id

h',i =  hj[a !->■ {vs 7T ss —)■ exprhs){p vs)]

In this example, the stepp prefix has been dropped and P =  {code,as,rs,us,a,tioeai), 
and S =  { h p i , . . .  , h p n , w p s ) .  Typically, with shared-memory systems, it takes longer to 
access memory on a remote machine than it does to access local memory. Again, this is 
demonstrated using the BBN Haskell system:

wps tEnter a as rs us h i--- hn 

such that 3j • hj[a i-> {vs vr xs —>■ exp) wsf] and length{as) > length(xs)

Eval exp p as' rs us h\ - - - hn wps a t +  

where i =  processor-id,...

1, such that i =  j  
10, otherwise

However, as noted by Bennett [1993], the second-order effects of the processor’s cache are 
almost as equally important in terms of overall performance. While it would be possible



(iNITp) initp Pq ^  P^^9t,,,al=0
initp Pi = >  WaitForPingti^^^i=o 1000

(iNITs) init^ S = >  Nothing

(STEPp)

stepp {Pingt,S) ■■ 
stepp (Pongt,S)

{WaitForPongt+io (i +  1000), t)
{WaitForPingt+io {t +  WOO), New Pong t)

stepp {WaitForPongt tume outiHavePonged trecv) such that t > pecv 
{Pingt+iQ,Nothing)

stepp {WaitForPongt tume out,S) {Stopped, S) 
stepp {WaitForPingt tume out^HavePinged trecv) such that t > Uecv 

{Pongt+w, Nothing)
stepp {WaitForPingt tume out,S) {Stopped, S)

STEPs

steps {NewPing t) 
steps {NewPing t) 
steps {NewPong t) 
steps {NewPong t) 
steps S

HavePinged {t +  100), 95% of the time
Nothing, otherwise
FfavePonged {t +  100), 95% of the time 
Nothing, otherwise
5

(is_ active)
is—active {WaitForPing tfime outi S) = >  false  
is-active {WaitForPong ttime mitiS) false
is^ ctive {P, S) true

(is_ waiting) is-waiting {P,S) 

(is_ stopped)

-<is—active {P, S)

is^stopped {Stopped, S) = true
is-stopped {P,S) = false

(comms_ time)

comms-time {WaitForPingti^^^^ tume ouu HavePinged Uecv)
'' fT^O,x{tlocalin^ll^{ltime ou tilrecv))

comms-time {WaitForPongt,^^^i tu^e HavePonged trecv)
'' fT^O,x{l'locali1^l'l^{ltime ou tilrecv))

comms—time {P, S) oo

(PINALp) f  inalp P  is-stopped P

(f i n a l s ) finals S true

Figure 6.9: Adding time outs to the ping-pong system
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to extend the heap model to include such factors, section 6.2.2 strongly warns that the 
primary aim of the operational model is to concisely specify gross behaviour and not to 
provide accurate estimates of a system’s run-time performance.

Access to global memory often has to be caxefnlly controlled through the use of locks, 
semaphores, and monitors [Hwang and Briggs, 1985, section 8.1, pages 557-577]. For 
example, GAML does not lock the global work pool, thereby reducing run-time overheads 
at the risk of duplicating work [Maranget, 1991, section 4.3]. Unfortunately, as each 
state transition is atomic, this aspect of an implementation is difficult to specify without 
fragmenting each rule into a series of closely-coupled steps -  again, the resulting complexity 
wonld be hard to justify. Roscoe [1997, section 0.1, page 4] summarises the problems with 
shaxed-memory systems as follows:

“The main disadvantage from the point of view of modelling general interacting 
systems is that the communications between components, which are plainly 
vitally important, happen too implicitly.”

6.2.5 Message-passing architectures

Traditional message-passing systems provide snpport for two main operations: sending 
messages, and receiving messages. High level operations, such as barriers and rednction 
trees [Snir et ah, 1994, chapter 5, pp. 90 126], axe often also provided, but these are 
almost always built on top of the point-to-point primitives. Typically, there are two types 
of send operation [Hwang and Briggs, 1985, section 5.1.3, p. 332]:

asynchronous an asynchronous send will complete as soon as the message has either 
been injected into the commnnication network, or has been stored by the operating 
system for later transmission;

synchronous a synchronous send will not complete until the target of the message has 
acknowledged receipt.

However, a process that commits to receiving a message will wait until either the specified 
message arrives or the operation times out. To help avoid any potentially long and wasteful 
delays, a poll function is often used to test if a suitable message has already been received 
(therfore guaranteeing that a receive operation will complete almost immediately).

Asynchronous message passing

The ping-pong system outlined in the previous sections could be re-written as follows:

Po =  repeat {sENDasynch Pi Ping] RECV P q Pong) 
Pi =  repeat (r e c v  Pp Ping] SENBgsynch Pp Pong)

The message-based model for the Ping transition, shown below, is unsuprisingly similar 
to that presented in figure 6.9:

(ping) Send Pi Ping tiocai {sends, recvs)
Recv Pi Pong tiocai +  100 {sends - H -  {{Pi, Ping)), recvs)

Here, the communication network is represented as a pair of queues: sends contains the 
messages generated on this processor that are to be transmitted over the network; and 
recvs contains the messages that have arrived for the processor upto the current time
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period. This is a partial view of S', which includes such pairs for each of the processors, 
and a network model containing all in-transit messages.

Message reception can be defined as follows:

(ping)

Receive Pq Ping tiocal 

such that {PojPing) 6 recvs

{sends, recvs)

Send Pq Pong tiocal +  100 {sends, recvs') 
where recvs' =  remove {Po,Ping) recvs

(is_ACTIVe) is-active {Receive Pi message) = >  false

(comms_ time) comms-time {Receivcî ^̂ ^̂  ̂ Pj message, S)
max{tiocahnext-recv Pi {Pj, message) S

Note that patterns can be used to specify which messages should be received, with the 
earliest arrival being returned in the case of multiple matches.

While the previous receive model is superficially correct, the time penalty for receiving 
a message is paid when the processor commits to receiving it, rather than when the message 
actually arrived. Despite section 6.2.2’s argument against accurate performance modelling, 
this is a serious flaw. Consider, for example, a centralized transaction server which receives 
a request every 100 time steps. Using the previous model, and assuming it takes 150 time 
steps to process and reply to a request, the server will complete a transaction every 250 
time steps. However, on a real multiprocessor, the server would be too busy receiving 
the requests to make any progress towards completing even the first transaction. The 
following model corrects this problem by immediately copying any new messages across 
from the communication system into a local queue:

(lNT_RECV)

code tiocal messages {sends, recvs)

such that length{recvs) >  0

= >  code tiocal +100 messages' {sends, recvs') 
where messages' =  messages -H- {message) 

message =  head recvs 
recvs' =  tail recvs

Note that any rule which does not match against a specific code mode is analogous to a 
microprocessor interrupt [Hwang and Briggs, 1985, section 2.5.2, pages 125-126]. Imple
menting such rules can be problematic, and is discussed in section 8.3.3. Messages are 
now taken from the local queue rather than directly from the communication system:

(recv)

Receive pattern cont tiocal messages S

such that pattern G messages

=► cont message tiocal +  10 messages' S
where {message, messages') =  remove pattern messages

The Receive code component taJces two arguments: pattern determines which messages 
are acceptable; and cont specifies what to do with the matching message once it has
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been received. As an example, for the WaitForPing transition, the pattern would be 
{Pq, Ping), and the continuation would be Xmessage.Send {Pq, Pong).

Synchronous message passing

Synchronous communication can be modelled using pairs of asynchronous sends and block
ing receives, as shown below:

SENDsynch Pi message 
RECVsynch Pj message

SENDasynch Pi message] RECV Pi Ack 
RECV Pj message] SENDasynch Pj Ack

These equivalence relations can be used to re-write the ping-pong systems as follows (with 
the Pong message being replaced by Ack):

Po =  repeat {sendsynch Pi Ping) 
Pi =  repeat (RECV Pq Ping)

When dealing with large messages, synchronous sends often involve an initial exchange to 
allow the receiver to allocate a buffer of sufficient size to hold the message:

SENDgynch Pi message =

RECVgynch Pj message =

SENDasynch Pi Rcq length{message)] 
RECV Pi B u ffe r  a]
SENDasynch Pi Data a message]
RECV Pi Ack
RECV Pj Req message—length] 
a =  ALLOC message-length] 
SENDasynch Pj B ufferà ]
RECV Pj Data a message]
SENDgsynch Pj Ack__________________

6.3 Operational semantics and the STG machine

While a denotational semantics defines a language, an operational semantics can be con
sidered as an abstract implementation of the language. Typically, in the context of parallel 
functional programming, an operational description will need to address the following is
sues:

the evaluation mechanism specifies the order of evaluation, the argument-passing con
vention, the return mechanism, and the closure model. The default sequential 
STG machine is non-strict, has contiguous argument and continuation-based re
turn stacks, and uses the push-enter closure model [Peyton Jones and Salkild, 1989, 
section 3].

communication and synchronisation ensures that the myriad computational elements 
co-operate safely and efficiently. The system can be viewed at three levels: single 
processors, small groups of inter-working processors, and the system as a whole.

resource management includes the definition of the system components (such as the 
heap and stack), the sharing mechanism, and any high-level tasks, such as the 
garbage collector, thread scheduler, or load balancer. The sequential STG machine 
uses a self-updating model for controlling the sharing of thunks [Peyton Jones and 
Salkild, 1989, section 3.1.2].
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partitioning and naming determines the placement of data and functional groups on 
processors, and the visibility and scoping of variables. Depending upon the nature 
of the system, both static and dynamic partitioning may have to be considered. The 
sequential STG machine uses both global and local environments to control scoping 
and visibility.

These issues are explored in greater depth in sections 6.3.1 to 6.3.4. Moreover, it is also 
worth considering what is not dealt with at the operational level, but is deferred to the 
compilation rules (see chapter 8):

register allocation determines which values should be stored in a processors registers 
at each point in a program’s execution [Muchnick, 1997, section 16.1].

closure layout -  while the sequential STG machine uses the push-enter closure model, 
a number of different implementations are possible. For example, GHC uses re
versed information tables to reduce the number of indirections required to enter a 
closure [Peyton Jones et ah, 1993].

low-level implementation of components -  the operational semantics uses a high- 
level model of the components, whereas the implementation may use a more complex 
representation in order to improve efficiency. For example, the three stacks used by 
the sequential STG machine are actually implemented using just two stacks [Pey
ton Jones and Salkild, 1989, section 8.2].

low-level optimisations such as branch optimisations, unreachable-code elimination, 
and instruction scheduling [Muchnick, 1997].

6.3.1 The evaluation mechanism

The evaluation mechanism used by the sequential STG machine has already been intro
duced in section 4.8. The remainder of this section, therefore, will concentrate on the ways 
in which the basic model can be modified. For further details, both the STG report [Pey
ton Jones and Salkild, 1989] and the implementation taxonomy presented by Douence and 
Fradet [1995] are highly recommended.

The code component

Before investigating the evalnation mechanism in any detail, it is worth reflecting npon 
the role the code component plays in the sequential STG machine. As described in sec
tion 4.8.2, the code component is the primary driving force behind the evaluation process 
and serves a role similar to that of a microprocessor’s instruction stream. However, un
like its hardware eqnivalent, the code component also splits the compntation into distinct 
phases:

phase description
Eval co-ordinates the flow of execution within a closure
Enter applies a closure to the arguments on the argnment stack
Return invokes the appropriate retnrn convention for a given type

While these axe snfficient for a sequential system, it will often be necessary to add new 
phases to the evaluation mechanism. For example, the GUM distributed-memory system 
presented in section 9.3 adds the GetWork and WaitWork  phases in order to model the 
load-balancing algorithm.
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var =  exp^hs exp] p =  case {£[exprhs\ p) o f
±  ^  ±

^  ¿^[exp] (p 0  {var i-)- e})

11.

Eval ( le t #  var =  exp^hs exp) p as rs us h a
Eval exprhs P os return : rs us h a

where return =  Forcedj^ax# var exp p' 
oxprhs is of type Int#  
dom{p') =  .FV[exp]

111.
Returnint# k as {Forcedi^t# var exp p) : rs us h a 
Eval exp p' as rs us h a

where p' =  p ® {var k}

Figure 6.10: Specifying the order of evaluation of the le t#  construct: rule i. is the 
denotational semantics of the expression, while rules ii. and hi. are, respectively, the 
required Eval and Return phases of the operational semantics

Order of evaluation

While it is straightforward to specify the order of evaluation using denotational semantics 
(see section 5.4.1), reflecting such changes in the operational model is more complex. 
There are two main reasons for this:

1. The Eval and Return phases are closley coupled, requiring that at least two new 
rules be added to the system. Figure 6.10 illustrates this by presenting both the de
notational and operation descriptions required by the addition of the le t#  construct 
(see sections 4.3, 4.3.4, and 4.8.4 for further details).

2. As described in section 4.5.1, the STG machine’s aggresive take mechanism [Beem- 
ster, 1994] means that the evaluation of a partial application cannot be forced. 
Therefore, at the operational level, all changes to the order of evaluation can only 
apply to expressions which are known to return primitive values or algebraic data 
types. This is an unnacceptable restriction to place upon a parallel language which 
supports both polymorphism and higher-order functions. The modifications required 
to support the forcing of arbitrary STG' expressions are shown in figure 6.11.

The resulting polymorphic le t  s t r ic t  construct can be used to alter the default order of 
evaluation, as demonstrated by the definition of the s tr ic t_ id  function given below:

_  STG' code____________________________________________________________
strict_id = [] \r [x] -> letstrict y = x in y;

The explicit scheduling annotations of Para-functional Haskell discussed in section 9.4 
serve as another example of modifying the order of evaluation of the sequential STG 
machine.

Passing arguments

The sequential STG machine uses a contiguous stack on which to pass arguments, as 
specified by rules 1 (function application), 2 (closure entry), and, to a lesser extent, 17’
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(4a )

(80

(170

(RET_FUNi )

(rET_FUN2)

LETSTRICT-EXP

bind
TE  h bind : {var, tt) 
LVE  =  {var tt}

^  exp
TE  0  LVE  h exp : it exp
exp

TE  h le t  s t r ic t  bind exp : tt,exT)

Eval ( le t s t r ic t  {var =  exp^hs) exp^ody) p as rs us h a
= >  Eval exprhs P as r : rs us h a
where r =  Forced var exp ôdy p'

dom{p') =  FVlexpbodyl____________

where p'

Return^ 7n...7r„ c ws as {Forced var exp ôdy p) : rs us h a
Eval exphody p' as rs us h' a

=  p © {var !->• a] 
h! =  h[a H- (ws r { }  —)■ c ws,tus)]
vs is a sequence of arbitrary distinct variables 
length{vs) =  length{ws)

Enter a as {}stack {asy,̂  rs-̂  ̂â ^̂  : us h g

such that h[a H- {vs r xs ^  exp,ws)], and length{as) < length{xs)

= >  Returnpun «« as -H- as„ rs„ 
where xs' =  take length{as) xs 

/  is an arbitrary variable
_________K  =  h[au ^  ( ( /  : xs') r -^ /  xs', {a : as))]

us E, G

Returnpun a as {Forced var exp ôdy p) : rs us h g

y Eval cxpfjedy P as rs us h g

where p' =  p © {var i->- a]

Return Fun a as {CasCr alts p) : rs us h g

Enter a as {Caser alts p) : rs us h g

Figure 6.11: Modifying the STG machine to allow the forcing of arbitrary boxed expres-
sions
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( 1 ' )

(2')

(17')

Eval ( /  xs) p fp  rs us h 

such that val p erf =  Addr a

E ntera________ fp' rs us h [ fp '^  (fp^xs)]

a

Enter a fp  rs us h fp 1-^ ifp',as). (Ja [vs r  xs —> exp, ws)

such that length[as) =  length' xs)

Eval exp p' fp' rs us h a
where p =  p ® {us 1—)- ivs } © {xs H-> as)

(15')
Enter a fp rs US h[a !->■ [vs u —)• exp ,  ms)] a
Eval e p fp' {)stack [rs, a) : us h [fp '  [ f p ,  {)stack)] rr

where p =  {vs i->- ws}

Enter a

such that h

fp  f) stack {rsu,aii):us h a

and length{as) <  length{xs) 

us hu cr

a !->■ [vs T xs ^  exp, ws), 
fp  ^  ifp',as)

= >  Returnpun «« fp " rsu 
where xs' =  take length[as) xs 

f  is an arbitrary variable
(i-u ^  ( ( /  : xs') r  -?• /  xs', (o : as))
fp "  H-̂  combine—fram es fp  fp'

K  =  h

Figure 6.12: Argument passing using heap-allocated application frames

(updating a partial application). The main alternative to this style, is that of nsing heap- 
allocated application frames, as used by the New Jersey SML compiler [Appel and Jim, 
1990]. For a discussion of the relative advantages and disadvantages of these two systems 
see Peyton Jones and Salkild [1989, section 3.2.3].

On first inspection of the sequential STG machine, the argument stack appears to 
be indespensible -  however, figure 6.12 shows the main modifications required to use 
application frames. Essentially, the argument stack has been replaced with a frame pointer, 
fp, which is the last entry in a singly-linked list of application frames. Instead of pushing a 
function’s arguments onto a stack, the values are stored in a new heap-allocated application 
frame. The new frame contains a back pointer to the old frame, thereby allowing access 
to all of the other unused arguments.

As a further example, Mattson’s speculative evaluation system [Mattson Jr., 1993a] 
studied in section 9.2 uses a separate stack for every independent thread of computation 
(see rules SCHED2 and BH2).
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Returning values

The sequential STG machine uses the return stack to control the order of evaluation 
once a sub-computation has finished, the top continuation from the return stack is 

invoked and passed the result as one of its arguments (see section 4.8.7). The New Jersey 
SML compiler [Appel, 1992] makes this behaviour explicit by transforming all user-defined 
functions so that they take the return continuation as an extra argument.

The STG machine allows each different data type to have a custom return mechanism. 
For example, returning literal values is very different from the multi-way switch used when 
dealing with algebraic constructors. Indeed, the ReturnLit rule serves as a template for a 
number of more specific rules, including Returnint, ReturnChar, and ReturnDouble. In 
this respect, the STG return mechanism subsumes that of traditional imperative languages 
such as C and Pascal. As an example, section 6.4.2 presents a return mechanism suitable 
for handling pipeline representations.

Typically, the Return mechanism will initiate another Eval phase. However, it may be 
necessary to abnormally return, either due to a runtime error or, for example, the current 
thread having finished. As a simple example, consider the rule for handling the error 
primitive in the sequential STG' language:

Eval (error message) p as rs us h a 

(e r r o r ) such that {message^ o) ^ P

=► Return Err or O' as rs us h a

(error_ r e t ) RetumError# O as rs us h a
= >  Stop {)stack {)stack {)stack h a

Notice that these two rules could be combined, such that the code component switches 
immediately from the Eval phase to the Stop phase. While this would certainly be more 
concise, the presented rules offer the possibility of providing a comprehensive exception
handling mechanism [Pitman, 1990] to the STG machine. Furthermore, MacLennan’s 
R e g u l a r it y  rule of language design could be invoked i.e. Eval phases should always end 
with a transition to a Return phase. However, a more substantial example of alternative 
return mechanisms can be found in section 9.2.2, where the issue of thread termination is 
discussed (see rules SCHEDi and end_ t h r e a d ).

6.3.2 Communication and synchronisation

Unlike the other mechanisms described so far in this section, communication and syn
chronisation is not an end in itself -  it simply enables the myriad processing elements to 
cooperate safely and effectively to achieve a shared goal.

Black holes

The closure serves as the primary point of synchronisation for single-processor operations. 
As an example, on uni-processor systems, a thunk is overwritten with a black hole pending 
completion of its evaluation. This enables self-referencing code, such as a: =  {x }  u —>• 1+x, 
to be detected and stopped before the heap is exhausted. The rules for this behaviour are
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shown below:

(15’)
Enter a as rs us h[a M- [vs u —)• e, ws)]

= >  Eval e p {) 0 (a, as,rs) : us h[a BlackHole] 
where p =  {vi h->- w i,. . . ,  ?n„} and [vi, Wi) =  [vs \i^ws\ i)

(bh )
Enter a as rs us h[a i-> BlackHole] a
Eval error as rs us h a

Closures are also used as synchronisation points in threaded systems, and, again, black 
holes are used. However, entering a black hole now indicates that the current thread 
cannot proceeed until another thread has finished evaluating the original thunk. The 
current thread, therefore, blocks and another thread is scheduled (a fuller treatment of 
this style of synchronisation can be found in section 9.2.2):

(b h ’ )

as rs us tid wp h[a t-P- BlackHole is]
a ep- BlackHole ts',

Enter a

GetThread as rs us t-id wp h

where ts' =  enqueue tid ts
statei =  [Enter a, as, rs, us)

tid TSO statei

a

a

In shared-memory systems, using this style of synchronisation may require that locks 
are used to control access to shared closures. Without locks, for example, it would be 
possible for two processors to simultaneously start evaluating the same thunk, thereby 
duplicating work and possibly reducing efficiency.

Processor-processor interactions

The primary mechanism for inter-processor communication and synchronisation will de
pend upon the the target architecture, i.e. messages or shared data structures. Due to 
the implicit nature of shared-memory systems (see section 6.2.4), messages will be used 
throughout this section. However, the principles remain the same for both paradigms.

The GUM’s mechnism for handling references to remote closures will be used to il
lustrate the basic techniques (see section 9.3.2 for a more comprehensive presentation). 
Again, the closure is used as the main synchronisation point, with a FetchMe closure 
being used to represent a remote reference. When the closure is entered, a message is sent 
to the owner requesting its value. The current thread suspends, pending a reply from the 
owner:

(f m )

Enter a as rs us tid wp h[a FetchMe j  a'] a bi

GetThread as rs us tid wp h a ^  Wait j  a' (tid) 
tid state a b'i

where b[ =  
state =

enqueucsend 
[Enter a, as

[j. Fetch
rs, us)

a' a) b

The Wait closure is used to prevent multiple Fetch messages being sent, and bi represents 
the message buffers for processor i. Note the similarity between the entry routines for the 
FetchMe and threaded BlackHole closures.

Upon reception of a Fetch message, the remote processor will reply with a Resume 
message, which contains the closure’s actual value (it may well be a thunk with references
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to other closures on the remote machine). The rule for handling a Resume message is as 
follows:

(r m )

code as rs us tid wp h[a Wait j  a'ts\ a {bin, bout)i

such that [j, Resume a packed-closures) G bin

code as rs us tid wp' h' a (5'„, b'gnt)i
where 6L =  dequeue (j, Resume a paeked-elosures) bin 

enqueue {j, Ack a a ') bout 
unpack packed-closures h 
addictive wp

ôut
h' =  
wp' =

The arrival of the Resume message updates the remote closure and releases the blocked 
threads back into the work pool. An acknowledgement is then sent to the original owner, 
indicating successful reception of the Resume message. This is another example of an 
interrnpt-driven rnle, as first described in section 6.2.5.

Notice that all inter-processor communications needs to contain sufficient context that 
the receiver can react in an appropriate manner. For example, the FetchMe closure 
contains both the processor id of the owner and the address at which the closure is stored 
on the remote processor. This allows the Fecth message to be sent to the correct processor, 
and that, when received, the owner can identify which closure it needs to pack. Similarly, 
the Wait closure needs to retain a copy of this information to allow it to construct the 
Ack response.

As can be seen from the previous examples, the techniques used to model communica
tion and synchronisation are similar to those already used in the STG machine. However, 
managing the interactions between remote processors is sufficiently complex that the rule 
design can quickly become challenging. To help manage this complexity, UML sequence 
diagrams [Fowler and Scott, 1997] prove useful. Figure 6.13 shows the annotated sequence 
diagram for the series of Fetchme interactions. Each processor appears in its own column 
(often referred to as a swim lane), and the ordering of events is denoted by horizontal 
positioning. Messages are represented by dashed lines.

As a final example of inter-processor communication and synchronisation, consider the 
GUM work-request mechanism shown below:

(sc h e d i)

GetT bread as rs us tid wp h a {bin, ôut)i

such that is-empty{wp)

= >  WaitWork as rs us tid wp h a {bin. request : bout)i
where request =  {j, Fish) and j  = 1 -b (i mod n)

This demonstrates how structures other than closures can be used to trigger interactions. 
The rule is invoked when the local processor has exhausted its work pool, and therefore 
needs to ask its neighbours for additional tasks. Section 6.3.3 looks at load-balancing 
strategies in more detail.

Global communications

While the majority of communication and synchronisation will occur at the inter-processor 
level [Gypher et al., 1993], at times it will be necessary for some form of global commu
nication. Arguably, the two most common forms of global operations are broadcasts and
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1. update closure with Wait
2. suspend current thread
3. send a Fetch message
4. schedule a new thread

1. unpack closures
2. re-enable blocked threads
3. send an Ack message
4. continue with current thread

Pi

Enter a

FM

R esum e

RM

Pj

F etch

FETCH

A ck

1. pack closures
2. send a Resume message
3. continue with current thread

ACK 1. de-schedule re-send
2. continue with current thread

Figure 6.13: A UML sequence diagram for the FetchMe entry routine

barriers. To demonstrate the use of these communication primitives, the initialisation and 
termination phases of a parallel STG machine will be examined.

Surprisingly, the sequential STG machine does not specify a rule for ending the com
putation. One simple definition would be that the evaluation is complete when all three
stacks are empty:

( s t o p )
Return^ c ws {)stack stack stack h a
Stop stack {)stack {)stack h a

In a parallel system, however, when the main thread terminates, all processors need to 
be notified that the evalnation has completed. On a DMMP architecture, a message 
broadcast would be used:

(STOPi)

Return^ c ws {)stack {)stack {Finished) tu wp h a bi
 ̂ Stop {) stack {) stack {) stack tid h <T bĵ

where b[ =  broadcast Stop bi
broadcast m {bin, bout) =  {hn, bout 4F (V j  G {1 , . . . ,  n} • (j, m)))

(STOP2)

code as rs us tid wp h a {bin, Kut)i

such that {j. Stop) G bin

Stop as rs us Ud wp h a {b'in, bout)i
where b[̂  =  dequeue {j, Stop) bin

During the initialisation phase, each processor loads the code and data required to 
perform the parallel graph reduction. It is important that the evaluation does not start 
until all processors are ready. Otherwise, there is the risk of races, whereby an early starter
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attempts to interact with a laggard, resulting in unpredictable and potentially fatal results. 
The common solution to this problem is the use of a global barrier. Essentially, a barrier 
maps each processor onto a logical tree, as shown below.

Leaves Nodes Root

As soon as a leaf is ready, it sends an O K  message to its parent, and then awaits 
the arrival of a Start message. A node, however, must wait for its left and right children 
to become ready (signalled by the reception of their O K  messages) before it can signal 
its readiness to its parent. Finally, once the root has received messages from its two 
children, the Start message will then be broadcast, thereby enabling all of the processors 
to continue. Note also that by inverting the tree, a similar mechanism can be used to 
implement a more efficient broadcast operation than the version described in the previous 
section.

Figure 6.14 shows the initialisation rule for a DMMP system using a barrier operation 
to ensure all processors are ready. The communication roles {is—root, left, parent, etc.) 
for a 7 processor system are specified as follows (a more robust definition can be found 
in [Ben-Dyke, 1997]):

i is-leaf{i) is-node{i) is-root{i) left{i) right{i) parent{i)
1 true false false 5
2 true false false 5
3 true false false 6
4 true false false 6
5 false true false 1 2
6 false true false 3 4
7 false false true 5 6

Similarly, the low-precedence infix operator (;) denotes the sequence function, which pro
vides a convenient shorthand for creating values of the code component:

(;) =  \operation.\continuation.operation continuation
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(mix’)

G O' &OTÏÎ
where
Pi =  {barrier{i)] GetThread, (), (), (), h, tnone.wpi)
binit =  ( W 6 { 1 , - - - n }»b i  =  ((),()))

WPi 1 (()? {(̂ main ), if is-root{i)
~  X ( 0 ,0 ) , otherwise

h =  [ V i 6 { l , - - - , n} • !->• {vsi TTi vsi expi, a us )̂]
a , 9n On}

(b a r r ie r )

leaf-Code{i), iîisJ ,eaf{i)
barrier{i) =  < node_code{i), if is_node{i) 

root-code{i)^ if is-root{i)
leaf-code{i) = send{parent(i), OK); 

recv{root, Start)
node—Code{i) = recv{left{i), OK); 

recv{right{i), OK); 
send{parent(i), OK); 
recv{root, Start)

root-Code{i) = recv{left{i), OK); 
recv{right{i), OK); 
broadcast(Start)

Figure 6.14: Initialisation of a DMMP system using a global barrier operation

Global barriers may also be required during other phases of the evaluation, including, 
for example, prior to global garbage collection, and termination. Furthermore, the barrier 
and broadcast templates provide a sound foundation on which to build more complex 
global operations, such as parallel scans [Lander and Fisher, 1980; Partain, 1991; Spring- 
steel and Stojmenovic, 1989], and gather and scatter [Gropp and Smith, 1993] operations.

6.3.3 Resource management

With regards to the STG machine, resources fall into one of the following three categories:

data is often not considered as a system resource, but its maintenance and distribution 
is central to the efficient progress of the entire computation. On a uni-processor 
system, the heap serves as the main data repository, but multi-processor systems 
offer a spectrum of sharing mechanism. Furthermore, data can also include system 
information, such as the location of idle processors, or the availability of specialised 
hardware.

space primarily relates to the processors’ memory pool, but can also include on-line 
storage, such as hard disks. Garbage collection is the main technology used to control 
a system’s usage of space. Typically, most multi-processor implementations will use 
a two-tiered approach to garbage collection: firstly, each processor will manage its 
own local memory pool; secondly, when the local collectors fail to reclaim sufficient 
space, a global collector will be used.
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tim e includes both processor and communication time. Techniques for efficiently manag
ing processor time include scheduling and load balancing. The former is concerned 
with allocating time on a single processors, while the latter deals with sharing clock 
cycles over a group of processors. However, neither technology will compensate for 
inefficient algorithms or poor implementations.

Often it is difficult to completely separate the different concerns of resource management. 
For example, the following rule demonstrates an optimisation used in the GHC compiler 
whereby small integer values are pre-allocated in the global heap:

(16’)

Return Int {n) {)stack Ç) stack TS'il̂ Gil) • ^ ^

such that 0 < n < 100

= k  Return Int {n) asu rsu us h' a
where h' =  h[ou Ind ŝmall--Const—.n\

This can save a large amount of memory as only one closure needs to be allocated for 
each integer between zero and one hundred. However, this does increase the number of 
instructions executed during the update phase of integer values. For the GHC compiler, 
this trade off between the space saved and the increase in time is deemed to be worthwhile. 
However, in general, such decisions are difficult to mahe, although the animation can be 
used to gather supporting empirical data.

The following sections discuss the management of space and time, while the discussion 
of data management is deferred to section 6.3.4.

Garbage collection

While the original abstract machine does not explicitly provide support for garbage col
lection [Wilson, 1992], it is essential that the following rules are adhered to^

1. when invoking the garbage collector, the root set of live closures must be known. 
The root set serves as the starting point for the collector, from which all other live 
closures must be traceable. The root set of the STG machine comprises all of the 
components, with the exception of the heap.

2. the garbage collector must have access to all of the addresses stored within a closure. 
If a closnre is known to be five, then all of the closures to which it refers must also 
be five. To this end, GHC uses specialised garbage-collection entry methods for each 
type of closure (see section 6.4.3).

3. during garbage collection it must be possible to differentiate between addresses and 
literals. Due to the differences in handling of these two types, a mistake either 
way could lead to system failure. To avoid tagging, GHC partitions the state’s 
components so that different types rarely appear together, and, when they do, a 
mask identifies the addresses.

4. environments must only contain live variables. This ensures that the garbage col
lector can remove dead closures as soon as possible. Figure 4.12 illustrates how the 
free-variable information can be used to safely trim an environment.

^Note that most of these restrictions do not apply if a reference-counting system is used. However, due 
to their inability to reclaim cyclic data structures [Wilson, 1992, section 2.1], it is unlikely that such a 
system would serve as the main reclamation technology.
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(CAFi)

Enter a as rs us h cafs a

such that is-global a and h[a hA (u i-A e, ())]

'' Eval e {}eni) {) stack {) stack b, U : Cuf S (7
where h' =  h[a FromSpace a',a' BlackHole] 

us' =  {as,rs^a') : us, and o' 0  dom{h)

(CAFs) Enter a as rs us h[a t-t- FromSpace o'] cafs a
Enter a' as rs us h cafs a

Figure 6.15: Maintaining a list of CAFs for the garbage collector

A number of different collectors have been used with sequential implementations, in
cluding a generational scheme [Sansom and Peyton Jones, 1993] and a hybrid compacting 
collector [Sansom, 1992]. Despite their differences, a collector can be viewed as a trans
formation between STG-machine states, and so the basic principles remain the same. 
Therefore, to illustrate the impact of garbage collection on the STG machine, the follow
ing section will focus upon the development of a two-space collector [Wilson, 1992].

Despite dealing with the basics of uni-processor garbage collection, the issue of dis
tributed garbage collection is beyond the scope of this thesis. However, there is no obvious 
reason why the techniques explored in this chapter could not be used to investigate such 
algorithms.

A two-space copying collector

As the name suggests, a two-space collector divides the heap into two equal spaces, called 
from-space and to-space. During normal operation, closures are allocated in from-space, 
until the available memory is exhausted. The collector is then invoked, copying all live clo
sures from from-space into to-space. The spaces are then reversed, i.e. from-space becomes 
to-space and vice versa, and normal operation resumes.

Before framing the collector in terms of the STG machine, the root set needs to be 
identified. The simplest solution would be to include the entire state, with the exclusion 
of the heap. However, the global environment would then need to be mutable, as the 
mapping between top-level variables and their heap addresses could change. This would 
significantly degrade performance as references to globals would then have to be resolved 
dynamically. One solution to this problem is to allocate the global closures in a separate 
block of memory from the heap, and outside the remit of the garbage collector. The various 
addresses will then remain constant, allowing the compiler to hard-code any references to 
the variables. However, one problem still remains: constant applicative forms (CAFs, 
see [Peyton Jones, 1987, section 13.2, page 224]). If evaluated, CAFs will be updated with 
references into from space. According to the first rule presented in the previous section, 
all such references need to be part of the root set. To this end, figure 6.3.3 shows the 
rules necessary to automatically maintain a list of active CAFs. Essentially, every time 
a CAF is entered, it allocates a proxy closure inside from-space and updates itself with a 
FromSpace indirection. The proxy then becomes the target for the update frame. The 
heap is now represented by the triple {static^ from , to), where static contains the top-level 
closures, and from  and to are from-space and to-space respectively.
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The collector should be invoked whenever heap space becomes scarce, with le t  ex
pressions being the logical triggers:

(g c .in i t)

Eval e p as rs us h cafs o

such that is-let e and limit^reached h

Eval e p' as' rs' us' h' cafs a
where (p',as',rs',us',^h') =  tw ospace (p ,as,rs,us,cafs,h )

The top-level collector simply scavenges the root set, and then scavenges the closnres which 
have been copied over into to-space:

two-space state =  ScavengCp state $
Scavengcas $
Scavengers $
Scavengeus $
Scavengccafs $
Scavengeh

The low-precedence infix operator ($) denotes a function for reversing the normal order 
of application, and provides a convenient notation for threading state:

($) =  Xstate.Xoperation.operation state

The scavenge routines for the elements of the root set simply locates all heap references 
and copies them into to-space by calling the closure’s evacuate method (the location of 
which will be stored in their info table). This method returns the new to-space address, 
and this replaces the original references. As an example, consider the scavenge routine for 
the local environment, p:

(SCAVp)

Scavengcp ({ui ^  W i,. .. ,V n ^  Wn}, as, rs, us. cafs, ho)
— ({ui H- m'i,. .. ,u„ !-)• aSj rs  ̂ uŝ cafs. h-a)

where (m(. /i ) =  /
1 EvacuatCa {wi, hi-

if \- Vi : V 
_i), otherwise

Notice that type information is used to differentiate between literal values and addresses 
(see rule 3 from the previous section) -  a real compiler would probably generate static 
masks from the type information rather than using a dynamic lookup.

The evacuate method is necessarily closure dependent, but some of the more common 
variants are shown below, starting with a standard from-space closure:

(EVAC î^d)
Evacuatca {a, {static, from [a> -^ {vsT rxs^ e,w s)], to)) 

=  (o', {static, from[a ToSpace a'], to'))
where o' 0 dom{to) and to' =  to[a' i->- (us vr xs —>■ e, ms)]

Notice that no attempt is made to scavenge the closure’s free variables, as this will take 
place during Scavenge^. Updating the original closure with a ToSpace closure ensures 
only one copy is every created in to-space:

{FiVACtospace)
Evacuatca {a. {static. from[a i->- ToSpace a']. to))

=  («', {static. from . to))



105

Similarly, indirection pointers (see section 6.4.3) do not copy themselves into to-space, but 
simply forward the evacuation:

(EYACind)
Evacuatea {a. {static. from[a i-A Ind a']. to))

=  Evacuatca {a', {static. from . to))

FromSpace closures, created when evaluating CAFs, forward the evacuation to the from- 
space closure, but then update themselves with the new to-space address:

(EVAC/-romspacej

EvacuatSa {a, {static[a i-A FromSpace a'], from , to))
=  {a", {static', from', to'))

where {a", {static', from ', to')) =  EvacuatCa {a', {static, from ,to))

Finally, all static non-CAF closures can ignore the evacuation: 

(e VAC static)
Evacuatca {a. {static[a !->■ lambda-form]. from . to))

=  {a. {static. from . to))

The final stage of the two-space collector requires that the to-space closures are scav
enged to allow them to update their free variables:

(SCAV/i)

Scavenge^ {p, as, rs, us, cafs, {static, from , to))
=  {p, as, rs, us, {static', to', empty-heap))

where {static', from ', to') =  Scavengctospace {o-start, static, from , to)
Ostart =  get-first-adress to

The scavenge process starts at the first closure in to-space and then iterates through each 
closure until the end of the heap is reached:

(sCAVt,ospaceX)
Scavengctospace (o? static, from , to) =  {a, static, from , to) 
such that a 0 dom{to)

( SCAVt,ospace2)

ScCLVGTlQGfQspdQQ {a. static, from , to)
ScuVGTigGiQspace ~ {o>nexti static', from', to')
where {static', from ', to') =  Scavengca {a, static, from , to)

0>next =  next-address a to'

As with the evacuation methods, the scavenge routines are closure dependent, however, 
only a few types of closure will ever appear in to-space. For the sequential STG machine, 
only standard closures require a scavenge method:

Scavengca {a, statico, frorrio, too[a H- (ui • • • tt ics —)■ e, tci • • • tc„)])
=  {staticn, fromn, tOn[a {vi ■ ■ ■ Vn'n'xs ^  e,w'i ■ ■ ■ w'̂ )̂])

where (rc(, {statici, fromi, toi))
^  i {wi, {statici-i, from i-i,tO i-i)), if \- Vi \ u

[ Evacuatca {wi,{statici-i, from ,i-i ,to i-i)), otherwise

The pattern is almost exactly the same as for the Scavengcp function, whereby the free 
variables are evacuated and updated with the new to-space addresses.
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Scheduling

Typically, there are three levels of scheduling that can be simultaneously active within a 
parallel functional implementation:

process scheduling tries to ensure that a processor is kept busy by de-scheduling inac
tive processes and re-scheduling active processes. More sophisticated systems may 
attempt to ensure fairness (see section 5.4.3) by allowing a process to only run for a 
fixed time slice before re-scheduling.

algorithmic scheduling ensures that the computation proceeds correctly by managing 
the interactions of the run-time system. Section 6.3.2 deals with the main synchro
nisation techniques used by this style of scheduling, with the bh ’ rule demonstrating 
how the scheduler can be invoked whenever necessary.

user-defined or explicit scheduling attempts to improve the performance of the com
putation through the use of a priori information. As noted by Burton and Rayward- 
Smith [1994], without such data it is impossible to develop a fully automatic schedul
ing strategy that can ensure good performance. Unfortunately, non-strictness inter
feres with the traditional algorithms for automatically generating explicit sched
ules [Norman and Thanisch, 1993], and this area has received little attention in 
the literature (with the exception of algorithmic skeletons). Para-functional Haskell 
is one of the few functional languages that provides the programmer with explicit 
scheduling operators, allowing highly complex dependencies to he defined.

As an example of process scheduling, consider the thread-management system pre
sented in section 9.2. As it stands, once a thread is scheduled to run, it will not relinqnish 
control until it either terminates or blocks (on a BlackHole). As mentioned above, this 
is not fair, but the context-switch rule, CS, shown below, provides a solution;

code as rs us h[atso ^  T s o  state] t̂so lOP O' tlocal

such that {tiocai mod {tgtep * steps-perslice)) =  0

GetThread 
where state' =

f! —local

as rs us 
{code, as, rs, 
tlocal T tstep

h[atso TSO state'] 
us)

atso wp a t'l̂ î
(cs)

This is another example of an interrupt-driven rule, as first described in section 6.2.5. 
Notice that the guard condition will only capture the intended behaviour if tgtep is identical 
for each rnle (a down connter would be required to ensure a fixed period if tgtep varies 
between rules).

Load balancing

Just as scheduling attempts to maximise the efficiency of a single processor’s operation, 
load balancing aims to maximise the efficiency of a collection of processors. Tradition
ally, there have been two different approaches to load balancing in parallel functional 
implement at ions:

active load balancing is typified by the Alfalfa’s diffusion scheduler [Goldberg and Hu- 
dak, 1987, section 4.5], which distributes work to neighbouring processors as it is



107

generated. As the processors interact, they swap load information, and this is com
bined with locality maps to determine which processor should receive the new work. 
The net result is that work ’’ diffuses” through the system. Perhaps surprisingly, 
no equivalent to the scheduling directives of parafunctional Haskell exists for task 
placement. Skeletal operators, however, can optimise the load distribution based on 
knowledge of the precise mechanics of the underlying algorithm.

passive load balancing waits until a processor becomes unemployed before attempt
ing to re-distribute the available work. GUM’s fishing mechanism (see section 9.3) 
involves the out-of-work processor sending a work-request message to one of its 
neighbours. If the neighbour has sufficient extra work, it returns a suitable portion, 
otherwise the message is forwarded to another candidate.

While both systems have their merits, a combination of the two is probably necessary for 
optimal performance.

Whatever approach is finally decided upon, it will undoubtedly build upon the tech
niques described in section 6.3.2. Once more, UML sequence diagrams can significantly 
reduce the complexity of designing algorithms involving multiple interactions with remote 
processors. As an example, consider the two sequence diagrams representing GUM’s fish
ing mechanism shown in figures 6.16 and 6.17. The first figure shows the interactions that 
need to take place before an unemployed processor receives and starts evaluation of a new 
task. The second figure shows how fish messages are forwarded if the recipient has no 
spare work. Furthermore, it also shows how the fish message will be re-spawned after a 
back-off period once the original message completes a cycle and returns to the unemployed 
processor.

While the details of the the GUM’s passive load-balancing system are contained in 
section 9.3.2 contains, the following section explores the Alfalfa’s diffusion scheduling.
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Figure 6.17: A UML sequence diagram for an unsuccessful work-request cycle 

Diffusion scheduling

Before moving on to consider the work distribution mechanism, it is worth discussing 
how each processor is informed of the status of the others. Goldberg and Hudak [1987] 
use specialised messages to communicate this information, and they develop a number 
of heuristics to determine the frequency of these transmissions. However, there is no 
reason why this information could not be piggy-backed onto the regular message traf
fic. As a simple example, the following rule demonstrates how a GVT-style token-ring 
algorithm [Ben-Dyke, 1997, section 3.1] could be used to disseminate this information:

(r in g )

code as
such that probe bi 

code as 
where b[̂  =

ôut
k

new^tatus' ! I =

rs us tid wp status h a {bin, Kut)i
I {j, StatusToken new status) 
rs us tid wp new-status h a {b{ĵ , b'gnt)i
dequeue {j, StatusToken new—status) bin 
enqueue {k, StatusToken newstatus') bout 
neighbour i

size wp, if I =  i
new—status ! I, otherwise

Upon reception of the token, the processor updates its own copy of the system’s status, 
modifies the token to reflect its current level of activity, and then passes it on to the next 
processor in the ring.

The status information enables the local processor to determine the best candidate to 
receive any new work that is generated. The letpar construct is a classic example of a
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task generator:

(l e t p a r )

Eval (letpar v =  e\ 62) p as rs us tid wp
such that sufficient-Work wp

Eval 62 (p © {u H- a}) as rs us tid wp
where {task, h') =  pack e\ p h[a H- Exported e\ p]

b'i =  enqueue {j, Schedule task) b{
j  =  select-target i status ei p
status' =  inc—work j  status

status h a bi

status' h' a b'i

The pack routine bundles together sufficient context in the hope that the expression e\ can 
be evaluated remotely without requiring too much further interaction (see section 6.3.4). 
The task is then sent to the identified target, but the local processor keeps sufficient data 
such that the task can be recreated if the message is lost. Upon reception, the remote 
processor unpacks the task and then sends an acknowledgement to allow the originator to 
commit the changes to the closures involved. The acknowledgement will also include the 
remote address of the task’s main closure, allowing the Exported closure to be replaced 
with a FetchMe closure (see section 6.3.2). Notice also that the status information for 
the remote processor is increased to avoid it receiving an avalanche of new tasks.

Looking at figure 6.16, it should be clear that there is, in fact, a great deal of similarity 
between diffusion scheduling and GUM’s fishing mechanism. For example, compare the 
LETPAR rule presented here with GUM’s s e n d _ w r k  rule from section 9.3.2. The main 
difference between the two systems is simply the trigger that initiates the transfer of work.

6.3.4 Partitioning and naming

As mentioned in section 6.3.3, the maintenance and distribution of data is central to the 
efficient progress of the STG machine. This section covers the following areas of data 
management:

data partitioning is concerned with striking a balance between the time required to 
access a particular value, and the amount of time and/or memory dedicated to 
distributing the data. As with traditional memory management systems [Hwang and 
Briggs, 1985, section 2.3.1, pages 80-86], the partitioning can either be static (fixed) 
or dynamic (variable). However, non-strictness again causes problems with abstract 
analysis, and most modern implementations have to rely on dynamic partitioning.

scoping controls the visibility of variables, and the STG' language is lexically scoped: 
identifiers are only accessible within the expression that defines them. The local and 
global environments, p and o, are used by the STG machine to implement scoping.

locating and accessing remote closures can involve a number of different techniques, 
depending upon the target architecture. GMSV implementations, for example, have 
direct access to all closures in the shared heap. However, a number of studies suggest 
that performance can be improved by moving towards a DMMP design [Hammond 
and Peyton Jones, 1992; Mattson Jr., 1993b; Islam and Campbell, 1992] where re
mote values have to be explicitly requested, as with the FetchMe closures described 
previously.

The remainder of this section looks at the first two of these areas.
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static partitioning

The initial partitioning of globally-visible closures is determined by the STG machine’s init 
rule. The simplest approach is to allocate all of the lambda-form  closures to one processor, 
and use Ind or FetchMe closures on the others (for GMSV and DMMP architectures 
respectively). To improve locality at the expense of space efficiency, all functions and 
constants can be safely allocated on all processors. However, the GUM system goes one 
step further and even copies top-level thunks [Trinder et ah, 1996, section 6.2], risking the 
duplication of work:

(i n i t)

G =  (A , . . . ,Pn) [Su. ..,Sn)
where

Pi =  {GetThread, (),(), {),tnone,wpi,hi,a)
Si — {{)ini Qout)i
WPi =  {{),sparksi)

sparksi if   ̂ ---- 1
0 ,  otherw ise

hi
h. 1Î i = = 1=  <
{̂p'main ’  ̂FctchAdc 1 o,rnain\-i Otherwise

ai !->■ (usi 7Ti usi —> expi,a  usi)
h — 5

!->■ {vSn 7Tn VSn expn,a VSn) _
gi I-)- ai,

a =  •!
9n

5
I-)- an

►

Ideally, some form of automated mapping strategy [Norman and Thanisch, 1993] should 
be used. As a first step towards this goal, Dennis [1995, section 5.3, pages 155-156] 
manually generated mapping plans for a Sisal optical-surveillance algorithm. However, in 
general, traditional static mapping algorithms cannot be readily adapted to work with non- 
strict systems. Even the large body of work dedicated to strictness analysis has not helped 
to tame such systems [Bloss and Hudak, 1988; Burn, 1991; Seward, 1992; Beemster, 1994; 
Peyton Jones and Partain, 1994]. Hence, most modern implementations rely on dynamic 
partitioning, and only form the crudest of static partitions (as seen previously).

The above discussion ignores the partitioning of the closure-access methods, which 
typically have to be reproduced on every processor.

Dynam ic partitioning

Following on from the previous section, it is unlikely that a static partitioning will prove 
adequate for the duration of an entire computation. Dynamic partitioning attempts to 
maintain efficiency by moving data to where it is most needed.

As previously seen, load-balancing systems have a side effect on data placement in that 
they move clusters of closures between processors as part of their work re-distribution (see, 
for example, the diffusion scheduler’s LETPAR rule from the previous section). Typically, 
a pack function is used to select which closures to include, and collects them together into 
a structure suitable for transmission. Hammond and Loidl [1996] examined a number of 
packing schemes, ranging between incremental fetching and bulk fetching. Incremental 
fetching packs just one closure per message, and invokes the closure’s pack method to
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generate the data:

pack a j  h[a [vs 7T xs —)■ exp, ms)] =  [data, h[a Fetchme j  a])
where data =  [a, vs IT xs ^  exp, mask, ws)

mask =  maski • • • maskn

maski i 0, if h [vs \i) : V
1 1, otherwise

n =  length vs

Note that the mask field allows the receiver to differentiate between literal values and 
addresses (see figure 9.21 for the corresponding unpack method). Bulk fetching packs 
the root closure and as much of its sub-graph as possible using a breadth-first algorithm 
(see [Trinder, Hammond, Partridge, Peyton Jones and others, 1996] for further details). 
While these are simple partitioning strategies, they can exhibit good locality of reference, 
as related values will tend to collect together. However, it is possible for two or more 
processors to compete for control of a shared thunk, wasting both processor time and 
communication bandwidth. PAM (the Parallel Abstract Machine [Loogen, Kuchen, In- 
dermark and Damm, 1991]) circumvents this problem by allowing a thread to be migrated 
once only.

Explicit placement expressions such as par afunctional Haskell’s on construct and al
gorithmic skeletons are the other main drivers of dynamic partitioning. However, as can 
be seen from the rules in sections 9.4 and 9.5 these simply build upon the techniques 
presented in this chapter.

Scoping

Free-variable information can be used to determine the exact extent or lifetime of a variable 
within an expression [Muchnick, 1997, section 3.1, pages 43-44]. Note that this is a 
different concept to the lifetime of a closure, as references to a closure may be shared 
and passed outside the confines of a particular expression. However, reference counting 
does use extent information to garbage collect non-cyclic data [Wilson, 1992, section 2.1]. 
Consider, for example, the rule for function application, which increases by one the number 
of references that exist to the function’s arguments:

(r e f i )

Eval { f  xi - ■ ■ Xn) p as rs us ho a
such that h /  : 7T

Enter a as' rs us hn cr
where a =  val p a f

as' =  argi ■. ■ ■ ■ ■. arg^ : as 
o-rgi =  val p cr Xi

^ i /li-l, if X i ' . U

[ increase^refs argi hi-\ otherwisehi

increasc-refs a h[a i-i-{closure, r e f  s)] =  h[a {closure,refs +  1)]

decrease—r e f  s a h[a i— [closure, r e f  s)] =  h'
where h' =  [  [closure, r e fs  -  1)], if r e fs  >  1

1 add-free-cell a h[a [Reclaimed, 0)], otherwise
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The references counts are decremented at then end of a boxed variable’s extent, as 
illustrated by the rule handling algebraic retnrns:

(REFe)

Return^ con ws as (• • • con vs 
'' Eval 6 pfinal

where pfinal =  p' \ dead-vars

, p) : rs us ho a 
rs us hn cr

p' =  P © {ui !->■ Wl, . . . , U;
live-vars =  ^V[e]
dead-vars =  dom(p') \ livc—vars
dead-vavi =  dead-vars ! i

h. — f i,
* [ decreasB-refs {p' dead^vavi

if h dead-vavi : v

Some expressions will have to both increment and decrement the connts. For example, 
the le t  expression will increase references during the heap allocation of the closures, and 
then decreases references to eliminate the dead variables of the body expression. Note, it 
is important that the reference counts are always incremented before being decremented 
to avoid incorrect reclamation of a closnre. Furthermore, this technique relies on variable 
renaming to remove all possible ambiguities with respect to shared variable names.

While reference counting is now rarely used as the main garbage collection technology, 
it can be combined with a copying collector to achieve safe incremental reclamation [Lester, 
1989]. Furthermore, GHC uses very similar rules to implement stack stubbing to remove 
potential space leaks. Instead of decrementing reference counts, the stack slots occupied 
by any dead variables are overwritten or re-used for storing live variables [Peyton Jones, 
1992, section 9.4.1, pages 62-63].

Module systems can introduce further complications with regards to scoping, but this 
is beyond the range of this thesis.

6.4 Modifying the STG machine

In this section a nnmber of guidelines axe presented for integrating the changes made 
to the STG' language (see section 5.2) into the STG machine. The process involves 
two interdependent steps: firstly, using the syntax-extension method as an indicator, the 
rules that need to be added to the state-transition system are identified; secondly, the 
components needed to support these new rules are developed. To avoid complication, the 
examples used are all sequential in nature (section 6.2 deals with parallel and architecture- 
dependent features).

Sections 6.4.1 and 6.4.2 consider the effect of adding a new production rule and a new 
primitive type (see sections 5.2.1 and 5.2.3 respectively) to the original abstract syntax. 
Section 6.4.3 then looks at a number of different approaches to implementing the new 
rules.

6.4.1 New production rules

There are two possible consequences of adding a new production rule to the abstract 
syntax:

addition of a new state-transition rule when a syntax group is the primary focus of 
an existing set of transition rules, any extension to the group will be mirrored in the 
STG machine by the addition of a new rule. Note that the existing rules can serve
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syntax group
new rules

existing rulesmode templates
program initial state
typedecls et al. see section 6.4.2 initial state, 3, 5, 8', 16-17A
bindings Eval let(rec) 3 initial state
binding initial state, 3
simplebind Eval letstrict 4a 8'

Eval le t# 4b 12'
lambda-f orm initial state, 2, 3, 15-17A
7T Enter 2, 15 16-17A
exp Eval exp 3-5, 9, 14
alts Eval case 4

Return 6, 7, 11, 13
lalt 4, 11-13
aalt 4, 6, 7
default 4, 6, 7, 11-13
vars see the lambda^f orm and aalt entries
atoms Eval vavfun 1

Eval cons 5
Eval primitive 14

atom 1, 5, 14

Table 6.1: The relationship between the abstract syntax and the STG-machine rules

as example templates -  rules 4A, 4b, 8', and 12' (see figures 4.12 through 4.14) were 
developed in this manner.

m odification o f  an existing rule if the syntax group is only of minor significance with 
regards to a rule set, all elements will have to be reviewed. This will result in a list of 
modifications that must be made in order to incorporate the syntactic extension. If 
the modifications give rise to complex rules, it is recommended that the whole design 
be reconsidered (see section 5.2.1 with regards to selecting a suitable alternative).

Either one or both may be applicable, depending upon the syntax group in question -  the 
relationship between the groups and the STG-machine rules is shown in table 6.1. The 
addition of a new primitive can be treated as if it were an extension of the exp syntax 
group, i.e. a new transition rule must be developed, using rule 14 as a template.

Section 6.4.3 describes the methods that may be employed to support the required 
additions or modifications. If further extensions are to be made, table 6.1 will have to be 
updated to take the new and modified rules into account.

6.4.2 New primitive types

Incorporating a new type into the STG machine requires the construction of a specialised 
Returrirnew rule. Obviously, if the resulting rule bears little relation to the other of its 
class (6-8', 11-13, and 16) then the code component should be extended. For example, 
Hill [1994, figure 6.2, page 107] uses the Merge^^^^ and Merge^i modes to control the 
return of literal and algebraic pods (see section 5.2.3). With regards to the Eval rules
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that will initiate the returns, these will be a product of the integration of the primitive 
functions and production rules that support the type (see section 6.4.1).

If the type is boxed, or if the corresponding values have to be heap allocated [Pey
ton Jones et ah, 1994, primitive arrays, section 1.4], then a new closure must also be 
designed (the technical details are explained in the following section).

As an example, consider the pipeline type from section 5.2.3. A sequence of addresses 
could be used to represent a pipeline, with each address pointing to the closure of the 
function to be performed for that stage. The emptyPipe primitive, therefore, simply 
returns an empty sequence:

(e m p t y _ pipe)
Eval emptyPipe p as rs us h a
ReturnOil—>-Oi2 0 as rs us h a

While these issues would have already been addressed by the denotational semantics, it is 
now necessary to consider how the pipes will be manipulated. For example, should it be 
possible to deconstruct a particular pipe through the use of a case or equivalent expres
sion? Or is it enough to allow pipes to be specified via chains of le t#  expressions? For 
the purpose of this example, the latter approach will be used, and the Return mechanism 
can now be specified:

(r e t_ pipe)

Return-Cki—)-0:2 ps as r : rs us h a

such that r =  Forced-011—XX2 var exphody P

= >  Eval exphody p' as rs us h a 
where p' =  p ® {var i-> ps}

Usually the details of the low-level implementation of the sequence should be left to the 
compilation stage described in chapter 8. However, it is almost certain that the sequence 
will have to be stored in the heap. This will entail the use of new types of closure, as 
reflected by the amended rule for emptyPipe, and that for addstagePipe:

(e m p t y _ p ip e ’ )
Eval emptyPipe p as rs us h a
ReturnQl—S-Q2 ps as rs us h' a

where h' =  /i[ps i->- EmptyPipe]

(e x t e n d _ pipe)

Eval (addstagePipe /  ps) p as rs us h a 

such that ( /,  a) S p

Return-Oil —>̂Q;2ps as rs us h a
where h' =  h\ps' H- Pipe a ps]

6.4.3 Supporting the new state-transition rules

Having identified the modifications that have to be made to the rule set, the task becomes 
one of implementing the changes. Hence this section outlines a number of example-driven 
recipes for providing mechanisms that, in isolation or in combination with others, may 
prove useful. The recipe book is by no means complete.
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(i n d i )
Enter a as rs 
Enter a' as rs

us h[a Ind a'] a
US h a

(1ND2)

Return^ con WS {)stack {)stack {as,rs,a) : us h[a Coid] cr 

such that sizef.iQsuj’gî CQid) <C î^ ĉlosurei^new)

Return^ con ws as rs us h' a
where h' =  h[a Ind o', o' 1-^ Cmw]

Cnew =  (ws r —> con us, ws)
vs is a sequence of arbitrary distinct variables

Figure 6.18: Indirection pointers and the STG machine

Extending the state

Arguably, the most obvious approach to extending the STG machine is through the addi
tion of a new state component. The high profile afforded the new field is balanced by the 
potential cost of dedicating machine resources (see chapter 8) to the new part.

The first step is the specification of the component, followed by its integration into the 
abstract state. Then, all of the existing rules, including the initial and final states, have 
to be updated. Fortunately, in most cases, this should be trivial. Finally, if the new field 
contains heap addresses, the component should be added to the garbage collector’s root 
set (specific collectors may have additional obligations).

As an example, the tt rule shown below is a specialised instance of rule 2 (closure 
entry), which, in addition to the usual entry operations, simply increments the new counter 
field.

Enter a as rs us h\a i->- (us r  —>• c us, rus)] count a
(T Ti) Eval (c vs) p as rs us h count -f 1 a

where P =  Wi, . . . ,  u„ !->■ Wn }  and (u,, Wi) =  (us ! i, ws

This is exactly how the AQUA Team [1993, section 9, page 36] implemented GHC’s 
t ick y -t ick y  profiling.

N ew closures

Due to the uniform representation of closures [Peyton Jones, 1992, section 3.1.3], the 
extension of the closure specification will not interfere with other components of the 
system. The main work lies in the development of new rules to handle all of the applicable 
entry methods.

For example, the INDi rule shown in figure 6.18 defines the standard entry method 
used to access an indirection node, Ind a [Peyton Jones, 1987, section 12.4, pages 213- 
218]. The combination of the new closure and rules provides support for vaxiable-sized 
closures, a prerequisite of a space-efficient system. The ToSpace 0 2  closure used by the 
rules shown in figure 6.20 serves a similar role to an indirection, but is only used during 
garbage collection [Sansom, 1992, “two-space copying” , section 2.1, page 314].
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This method is a special case of a more general approach, that of extending an existing 
component. Relevant examples include the Forced continuation used by the le t s t r ic t  
and le t#  expressions, and the addition of the new Merge mode described in section 6.4.2.

Adding a new com putational phase

As with adding a new type of closure, this method is a special case of extending an existing 
component. A new phase is required whenever a new behaviour cannot be categorised 
under any of the existing phases. For example, the GUM operational model presented in 
section 9.3.2 introduces the following phases:

phase description
GetWork when a processor runs out of local work, it requests additional 

work from its neighbouring processors.
W  aitW ork having asked for work from a remote processor, the processor 

simply waits for the arrival of new work

It may also be worth considering the introduction of an artificial phase to highlight a 
particular behaviour. For example, the update mechanism is spread across the Return 
and Enter phases. The following rules show how an Update phase can be used to collect 
together relevant rules:

(16’) Return c ws { } stack { ) stack US h a
Update^ ?ri...?r„ c ws { ) stack { ) stack us h a

(UPDi

U pdate^  7ri...7Tn  ̂ { ) stack { ) stack h O
Return c ws asu rsu us /i„ a

where ws is a sequence of arbitrary distinct variables
length{vs) =  length{ws)
hu =  h[au {vs n —>■ c vs, ms)]

(17’a)

Enter a as rs us h a

such that h a =  {vs n xs —>■ e,msj),and length{as) < length{xs) 

UpdateTi^T2 a vs xs e wsf as rs us h a

(UPD2)

UpdatCr^^Ti O'vs xs e wsf as {)stack { o S u , r s u , a u ) '■ us h
= >  Enter a as rSu
where xs\ + f  XS2 =  xs

length{xsi) =  length{as) 
as' =  as -H- as„
hu =  /i[a„ 1-^ ((ws -H- xsi) n xs 2 e, {wsf -H- as))]

cr
us hu cr

As an added advantage, it is now possible for other phases to make use of the update rules 
without having to duplicate the behaviour. Notice, however, that rules 17’a and UPD2 

are closely coupled, in that a large amount of context has to be explicitly passed as an 
argument to the Update phase.
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Figure 6.19: The state-transition diagram for the Update phase

As the Update example demonstrated, the main considerations when adding a new 
phase are the entry and exit points. The state diagrams introduced in section 4.8.3, 
clearly show the possible phase interactions and are therefore highly recommended for 
this stage of the design. Figure 6.19 shows the state-transition diagram for the Update 
example.

Adding a new entry method

When access to a closure’s internal representation is required, the only clean solution is 
to provide a new entry method. However, at one procedure and one word of storage per 
binding, the associated overhead is high (a number of implementation tricks can reduce 
both of these costs, see chapter 8). Assuming that the addition cannot be avoided, new 
rules have to be developed for each type of closure that may be accessed using the new 
entry method. As an example, figure 6.20 shows the EntryEvac rules for three types of 
closures: indirections, to-space pointers, and the more usual lambda—form  variant.

Extending or modifying an existing rule or component

The arguments for and against the modification of a complex system have already been 
presented in section 5.2.4, and, as before, caution is recommended. To illustrate the 
power of this approach, the following example does away with the tagless aspect of the 
STG machine.

By evaluating the instruction traces of case expressions for a number of modern ar
chitectures, Hammond [1992, section 4] notes that a semi-tagging approach to closure rep
resentation can achieve a 13% improvement in speed. The rules to effect this change are
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(EVACi ) EnterEvac «  <i,s rs us h\[a Ind a'] /i2 cafs o
EnterEvac a' as rs us hi /i2 cafs a

(EVAC2)
E T i t C T ^ y d C  Q,\ as rs us hi[a 1—)■ ToSpace 0 2 ] h2 cafs a
Returnaddr « 2 as rs us hi h2 cafs a

(EVAC3) EnterEvac oi as rs us h\[ai c] h2 cafs (7
as rs us h\[ai ToSpace a2 ] h2 [a2 eA c] cafs a

Figure 6.20: Evacuation routines for a two-space compacting collector

(STi)

Eval (case var { .. .  coni xs ^  expi...) )  p as rs us h a 

such that (var,a) 6 (a 0  p), and h[a i-A {vs r  ^  coni us,r(;s)]

Eval expi p'
where p' =  p 0  {x i i-A rci, . . . ,  a;„ Wn]

dom{p') =  TV\expi\
_________(xj,Wj) =  {xs\ j,w s  ! j)

as rs us h a

(ST2)

Eval ( le t s t r ic t  var^ =  vary expt,ody) p as rs us h a

such that {vary, a) G (a © p), and h[a hA {v s  t  w s  ^  exp,xs)]

Eval exphody p' as rs us h a
where p' =  p © {var^ i-A- a}
_________dom{p') =  J^Vlexpbodyi________________________________

Figure 6.21: Semi-tagging case and le t s t r ic t  expressions

shown in figure 6.21. With regards to implementation, each closure contains an evaluation- 
status field which is used to differentiate between thunks (unevaluated expressions), spe
cific constructors, and functions. If the closure is unevaluated, then the original rule (either 
4 or 4a ) will still apply.

The indirection rule IND2 presented in figure 6.18 could also be considered as a modi
fication of the basic system. However, as it is in keeping with the underlying principles of 
the STG machine, it is more properly classified as a refinement.

6.5 Animation and testing

While the development of an operational model of a parallel STG machine can be con
sidered an end in itself, the animation of the description provides useful insight into the 
system dynamics and generally improves confidence in its correctness. The animations
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Haskell.
module SystemSpecification where 
import Time
data (Eq p. Show p. Show s)
{

Int -> p,

(p, s) -> (p, s), 
s -> s,

p -> Time,
(p, s) -> Time,

=> SystemSpecification p s = SystemSpecification

initP 
initS 
stepP 
stepS 
local_time 
comms_time 
set_time 
is_active 
is_waiting 
is_stopped 
finalP : : p 
finals : : s

p -> Time -> 
p -> Bool, 
p -> Bool, 
p -> Bool,

-> Bool,
-> Bool

}

Figure 6.22: The SystemSpecif ica tion  module

described here are primarily built using the techniques described in section 4.8.10, and, as 
such, the resulting Haskell code is closely related to the operational description.

Section 6.5.1 looks at the animation of the processor framework, while section 6.5.2 
provides a concrete example based upon the ping-pong model from section 6.2. Sec
tion 6.5.3 then examines how an animation can be used to test and verify a system, before 
sections 6.5.4 and 6.5.5 look at interactive and batch-mode animations.

6.5.1 The processor framework

The central data structure used during animation is System S pecification , which is 
reproduced in figure 6.22. This contains all of the support definitions required to model a 
system, such as the Haskell implementations of STEPp, IS_ACTIVE, etc. As the specification 
is polymorphic with respect to p and s, it can be used for any system, irrespective of the 
concrete representations used for the processor and communication states.

The Framework module provides the main tools for manipulating the system specifica
tions, including the interactive and batch-mode simulations used during the testing phase. 
These tools typically represent a system’s state using the Ensemble type:

__Haskell-------------------------------------------------------------------------------------------------
type Ensemble p s = ([p], s)

All of the tools, however, build upon the instantiate function, which derive the three 
framework operations, INIT, STEP, and FINAL, for a particular system specification. There 
is a strong correspondence between the implementation and the semi-formal description 
shown in figure 6.8, as shown by the following fragment:

__Haskell-------------------------------------------------------------------------------------------------
init nvunProcs = ([initP n I n <- [1. .numProcs]] , initS) 
final (ps, s) = cind ([finalP p I p <“ ps] ++ [finalS s]) 
next.time (p, s) I

I
is_active p = local_time p
is_waiting p = comms_time (p, s)
is.stopped p = infinity

The initP , is_stopped, etc. functions are extracted from the system specification. The 
reduce function defined below shows how the instantiated operations can be used to obtain
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all of the states generated during a reduction:
__Haskell_____________________________
reduce numProcs specification

= let (init, step, final) = instantiate specification 
history = iterate step (init numProcs) 

in takeWhile (not . final) history

Note that this style of coding relies on Haskell’s non-strict semantics as h istory  could 
well be an infinite list. While it may appear inefficient to generate all reduction states, 
when combined with a suitable consumer process, the resulting code can be linear in terms 
of space and time, e.g.:

__Haskell________________________________________________________________
putStr $ concat [show e I e <- reduce 2 specification]

However, as reported in section 4.8.10, excessive laziness in the system-specification rou
tines can lead to unexpected space leaks, thereby severely damaging performance. To avoid 
this problem, most of the tools periodically force the evaluation of the entire ensemble.

6.5.2 An example animation: the ping-pong system

Having briefly described the animation of the processor framework, this section provides 
a concrete example of a SystemSpecif ication for the ping-pong system presented in 
section 6.2.

The first step is to decide on representations for the processors and communication 
system. The communication model is a good starting point as it is very simple and can 
be immediately converted into Haskell code:

__Haskell________________________________________________________________
module Communications where 
import Time 
data Communications = NOTHING 

I NewPing Time 
I HavePinged Time 
I NewPong Time 
I HavePonged Time deriving Show

Note that it is suggested that each component be defined in a separate module -  this 
simplifies testing and also improves the chances of re-use between different models.

The processor model is more complex, and needs to record the processor’s number, 
the current time, and a representation of its state. This leads to the following definition:

___ Haskell.
module Processor where 
import Time
data Processor = Processor {

pid :: Int, 
time :: Time, 
state :: ProcessorState 

} deriving Show

The processor’s state is no more complex than that for the communication model:
__Haskell________________________________________________________________
data ProcessorState = Ping I WaitForPing I

Pong I WaitForPong deriving (Show, Eq)
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In addition to the type definition, a number of support routines are also required. For 
example, a System Specification requires that the processor model provides an equality 
operation, ==. For the ping-pong system, two processors can be considered equivalent if 
they have the same identifier:

__Haskell________________________________________________________________
instance Eq Processor where pi == p2 = (pid pi) == (pid p2)

Other support definitions inclnde get and set methods for the processor’s time, and the 
IS_ACTIVE predicate:

__Haskell________________________________________________________________
is_active Processor { state } = state /= WaitForPing && state /= WaitForPong

Having developed the commnnication and processor models, it is now possible to cre
ate the System Specification shown in figure 6.23. While some of the definitions may 
look complicated, each operation has been almost directly converted from its operational 
specification.

6.5.3 Verification and testing

There are three phases associated with the verification and testing of an operational model:

1. Animation of the model. The process of converting the operational description into 
a Haskell program may well reveal problems or faults with the model. The primary 
aide to the animator is likely to be Haskell’s type system. This will ensure that 
each component is treated in a consistent manner, and that the coupling between 
different phases is plausible. For example, the type of messages sent and received 
must match, something that is not necessarily checked in a real implementation. 
Furthermore, the increased level of detail required by the computer program may 
well uncover omissions in the system.

2. Micro-level testing. Once the generated code compiles correctly, testing can begin 
in earnest. The main aim of this phase is to check that the animation is faithful to 
the operational description. This entails testing individual rule transitions, and then 
moving on to examine sequences of reductions. Fortunately, as the parallel system 
is built on top of the sequential STG machine, only the new or modified rules need 
to be considered.

3. Macro-level testing. Having established that the various pieces of the animation are 
correct to a first approximation, the system as a whole must be verified. While the 
final result of the animation can be validated against the denotational semantics, the 
gross behaviour of the system is of equal importance. Typical areas of interest may 
include the total run time, the communication/computation ratio, and patterns of 
commnnication. However, it is impossible to anticipate the exact analysis needs for 
all scenarios.

The last two phases of testing are supported by the animation running in two different 
modes: interactive, and batch-mode. These are examined in the following sections.
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. Haskell.
module SimplePingPong (systemSimplePingPong) where
import SystemSpecification
import Processor
import Communications
import Time

systemSimplePingPong : : SystemSpecification Processor Communications 
systemSimplePingPong = SystemSpecification {

initP = let initP 1 
initP 2 

in initP, 
initS = NOTHING,

stepP = let stepP

stepP

StepP

StepP

StepP 
in StepP,

Steps = let Steps 
stepS 
Steps 

in Steps,

Processor {pid 
Processor {pid

0, time
1, time

0 ,
0 ,

state
state

Ping}
WaitForPing}

(Processor id 
(Processor id 
(Processor id 
(Processor id 
(Processor id 
(Processor id 
(Processor id 
(Processor id 
(p, s) = error

time Ping,
(time + 10) WaitForPong, 

time Pong,
(time + 10) WaitForPing, 

time WaitForPong, 
(time + 10) Ping,

time WaitForPing, 
(time + 10) Pong,

s)
NewPing time) 
s)
NewPong time) 
HavePonged t_recv) 
NOTHING)
HavePinged t_recv) 
NOTHING)

"pingpongStepP: no rules matched"

(NewPing t) = HavePinged (t + 100) 
(NewPong t) = HavePonged (t + 100)

local_time = processorGetTime,
comms_time = let ctime (Processor id time WaitForPing, HavePinged t_recv) 

= max time t_recv
ctime (Processor id time WaitForPong, HavePonged t_recv) 

= max time t_recv 
ctime _ = infinity 

in ctime.
set_time processorSetTime,

is_active = processorlsActive, 
is_waiting = processorlsWaiting, 
is_stopped = processorlsStopped,

f i n a l P  

f i n a l s
\p -> False, 
\s -> False

Figure 6.23: The System Specification for the ping-pong example
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command description
load prog n loads the STG' language program, prog  ̂ and initialises the system 

with n processors.
step n d perform n state transitions, displaying a summary every d steps. 

Entering an empty line is equivalent to step 1 1.
unstep n roll-back n state transitions (the system only records the last three 

states). This command allows a complex or erroneous transition to 
be re-examined. Furthermore, when used in combination with set, 
it may be possible to repair the system state and continue with the 
reduction.

goto t continue reductions until time t is reached. This is primarily used 
during debugging to jump straight to a known trouble spot.

show c display the named component, c. Specialised instances of this com
mand can take additional arguments, enabling them, for example, to 
display specific heap locations.

set c V set the value of the named component, c, to v. This is primarily used 
to create a scenario for exercising a particular reduction sequence.

focus n modifies the behaviour of the step command, so that only transi
tions involving processor are counted. When first started, the 
interactive animation will have no focus.

nofocus undoes the effect of any previous focus commands.

Figure 6.24: The command set supported by the interactive animation framework

6.5.4 Interactive animation

The interactive mode of the animation provides facilities for the animator to examine and 
adjust the system state, and to apply or undo reduction steps. As an example, consider 
the use of the interactive environment with the ping-pong example. The animation starts 
by creating and displaying the in it  state, and then prompts the user to enter a command:

I n itia l state: 
numProcs=2
Processorpid=0, time=0, state=Ping 
Processorpid=l, time=0, state=WaitForPing 
NOTHING 

interactive>

The basic set of commands supported by the interactive animation is shown in figure 6.24. 
Continuing with the example, the user would force a single reduction step as follows:

interactive> step 1 1
Processorpid=0, time=10, state=WaitForPong 
HavePinged 100 

interactive> show PI
Processorpid=l, time=0, state=WaitForPing

Single stepping is useful when closely examining short reduction sequences, or when learn
ing about the system. However, often it is useful to skip ahead a number of reductions.
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as shown below:

interactive> step 3 1
Processorpid=l, time=110, state=Pong 
NOTHING
Processorpid=l, time=120, state=WaitForPing 
HavePonged 210
Processorpid=0, time=220, state=Ping 
NOTHING

Notice that only the states that change as a result of a reduction rule are displayed. The 
following sequence shows how the state can be manipulated to create a new scenario:

interactive> \mstep 1 
State :
Processorpid=0, time=10, state=WaitForPong 
Processorpid=l, time=120, state=WaitForPing 
HavePonged 210

interactive> set s (HavePonged 10000) 
HavePonged 10000

Now the system cannot proceed until the Pong message has been received:

interactive> step 1 1
Processorpid=0, time=10010, state=Ping 
NOTHING

6.5.5 Batch-mode animation

Unlike the interactive animation, the batch-mode performs reductions until the final state 
is reached, incrementally generating a log file. The log hie contains an entry for the initial 
state, the hnal state (assuming the reduction very terminates), and every intermediate 
state change. The exact format of the state entries is dependent upon the Show instance 
dehned or derived for P  and S. For example, the hrst few entries of the ping-pong system’s 
log hie are:

Processorpid=0, time=0, state=Ping 
Processorpid=l, time=0, state=WaitForPing 
NOTHING
Processorpid=0, time=10, state=WaitForPong 
HavePinged 100
Processorpid=l, time=110, state=Pong 
NOTHING
Processorpid=l, time=120, state=WaitForPing 
HavePonged 210
Processorpid=0, time=220, state=Ping 
NOTHING
Processorpid=0, time=230, state=WaitForPong 
HavePinged 320

Typical log hies can contain millions of entries, and are therefore of little use in them
selves. However, when combined with a general-purpose data-analysis tool, the log hies
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Figure 6.25: The inferred state-transition diagram for the ping-pong system

can potentially be used to extract any behavioural information. To demonstrate this ap
proach, the remainder of this section will describe how the state-transition graph shown 
in figure 6.25 was derived from the ping-pong system’s log file. As well as serving as a 
useful example, the inferred graph provides an excellent summary of the test coverage of 
the reduction rules with respect to a particular scenario.

Plumber

Plumber [Haines, Longshaw and Morison, 1997] is a visual programming environment 
for exploratory data analysis. As can be seen from fignre 6.26, the tool comprises two 
different parts, the canvas and the display table. Computations are constructed by drawing 
diagrams on the canvas. The diagrams are made up of connected processing elements, 
where the connecting wires represent the flow of data between them. The display table 
interactively displays the results either of the whole diagram or of selected processing 
elements, providing valuable feedback and guidance to the developer. While there are a 
number of similar tools available both publicly and commercially, Plumber offers a number 
of advantages:

1. Plumber’s open architecture allows it to inter-operate with existing tools, such as 
databases, spreadsheets, and command-line applications;

2. Plumber has a rich set of built-in components which can easily be extended and 
customised to meet the needs of a new application domain;

3. Plumber provides support for structured types, including lists, dictionaries, records, 
and sets;

4. Plumber is written in Java [Sun Microsystems, 1998], and can therefore run unmod
ified on all of the popular machine platforms.

GML: a portable graph file format

The Graph Modelling Langnage, GML [Himsolt, 1996a], is a textual language for describ
ing and annotating graphs. The main body of a GML description contains the node and 
edge definitions -  the example given below defines a simple two-node, one edge graph:
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Plumber - Library: E:\Adb\STG\framework\PingPDng.plb PO ... H I mT ^
File Ofitions Open

PO transition graph

•

WWW
"p id *0  k

=
ping.out

r uarisitions Final
pOGraph.gml

Simple two-
Processori
Processori
NOTHING
Processori
HavePingei
Processori
NOTHING
Processori
HavePonge

iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-
iWaitForPong-

>Ping:
>Ping=
>Ping:
>Ping=
>Ping:
>Ping=
>Ping:
>Ping=
>Ping:
>Ping=

44,Ping->\A graph [directed 1 
44,Ping->\A node [id  1 labeP'Ping"] 
44,Ping->\A node [id  2 labeP'WaitForPonc 
44,Ping->\A edge [source 2 target 1 lab e l" 
44,Ping->\A edge [source 1 target 2 lab e l" 
44,Ping->\A ]
44,Ping->\A i  
44,Ping->\A ->
44,Ping->\A i  
44,Ping->\A ->

J 100 1000 10000 100000

Figure 6.26: The Plumber diagram for generating state-transition diagrams from logfiles
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___GML______________________________
graph [
node [ id 1 label "A" ] 
node [ id 2 label "B" ] 
edge [ source 1 target 2 label "A->B" ]
]

Further tags can be added to both node and edge definitions, including layout information, 
and node and line styles. A number of graphing tools can import GML files, including the 
Graphlet editor [Himsolt, 1996b], which provides an automatic layout feature. The graph 
shown in figure 6.25 was generated by using Graphlet’s random layout scheme and then 
fine tuning the positioning nsing the manual controls.

Inferring the state-transition diagram

The mechanics of converting the ping-pong log file into a GML description are described 
below:

1. The log file is split into three streams, each containing the traces for one of the 
components, Pq, Pi -, and S.

2. The current state of the stream’s component is then determined. For the processor 
traces, the state is the label following the state= string. The communication state 
is the first text field. Where appropriate, references to specific times axe removed.

3. For each stream, the current state and new state are paired to create a state- 
transition key. The head of each state stream represents the component’s initial 
state.

4. Each key is then recorded in a counting dictionary, effectively generating a histogram 
of state transitions.

5. The final dictionary is then converted into a GML description using a Plumber 
graphing library.

6. The graph definition is written to a file and the Graphlet application invoked on 
that file. Some mannal adjustments may be reqnired to achieve a satisfactory layout 
of the nodes.

Fignre 6.26 shows the Plumber diagram for generating the GML graph for Pq. Note that 
minor adjustments may be required when processing other types of log files.

6.6 Summary

This chapter has concentrated on the extension of the sequential STG machine into the 
realm of parallel processing. The first step was to develop a flexible operational sys
tem capable of expressing parallel interactions, particnlarly those common in GMSV and 
DMMP systems. This then provided the framework within which to carry out a systematic 
investigation of the impact of parallelism on the STG’s evaluation mechanism, commu
nication and synchronisation, resource management, and partitioning and naming. The 
STG' language manipulations described in the previous chapter were then considered, and 
a recipe book developed for integrating them into the STG machine. Finally, a nnmber of 
techniques for animating and testing the operational models were outlined.



Chapter 7

Simulating the target architecture

7.1 Introduction

This chapter describes the simulator used to test and debug the output of the STG' 
compiler (see chapter 8). A RISC-like instruction set, based on the DEC Alpha processor 
family, serves as the interface between the two systems. The simulator is interpretive 
and is specified using the state-transition notation presented in chapter 6. While overall 
performance is relatively poor, the extensible nature of the state-transition model is more 
important for this particular application.

After an overview of the merits of simulation in section 7.2, the basic uniprocessor 
model is presented in section 7.3. Using this as a building block, section 7.4 discuses the 
simulation of multiprocessor architectures. The chapter is then summarised in section 7.5.

7.2 Why simulation?

Traditionally, simulation is used when either analytical modelling or physical measure
ment is inappropriate. For the purposes of testing and debugging the STG' compiler, the 
former can obviously be ruled out, and Bedichek [1995, section 2.1, pages 14-15] attributes 
the following advantages to simulation over direct measurements: a simulator can easily 
be augmented with new measurements and debugging features; it can model “ideal” or 
unavailable components; it is non-intrusive; and simulation runs are often deterministic 
and therefore repeatable. Taking physical measurements, on the other hand, is typically 
faster and yields more accurate results. As the correctness of the compiler is the pri
mary concern, these two issues becomes less important, and simulation is the preferred 
approach.

Multiprocessor simulation is an active area of research, and there are a large num
ber of well-established tools, including PROTEUS [Brewer, Dellaxocas and Weihl, 1991], 
FAST [Boothe, 1994], Shade [Cmelik and Keppel, 1994], and Talisman [Bedichek, 1995]. 
However, rather than using an existing package, or even a simulation language [Dahl and 
Nygaard, 1966], it was decided to build a new system using the state-transition approach 
outlined in chapter 6. The resulting system offers the following advantages: (at the cost 
of reduced accuracy and performance)

1. the compiler and the simulator use the same internal representation of the target 
language, thereby simplifying integration and testing. This also allows the represen
tation to be customised (most modern simulators take as their input an executable 
or a program written either in assembly code or a high-level language, such as C.)
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2. modelling a new target architecture is simply a case of modifying a state-transition 
system, a topic already covered in section 6.4.1. Proteus, for example, allows 
customisation of its four main modules [Brewer et al., 1991, section 3, pages 4 8] but 
the interface is static and the code serves as both implementation and specification.

3. by adopting the same general approach to animation as used in chapters 6 and 8, 
the consistency and coherence of the framework is maintained.

7.3 Modelling a RISC uniprocessor

7.3.1 RISC architectures and the D EC  Alpha A X P

The recent trend in computer architecture has been towards RISC (Reduced^ Instruction 
Set Computer) systems. The salient features of this class of processor include [Kane 
and Heinrich, 1992, chapter 1, pages 1 22]: one instruction completed per cycle; simple 
addressing modes and instruction formats; sufficient on-chip memory (registers and cache) 
to overcome the processor/memory bottleneck; and a reliance on optimising compilers to 
obtain the best possible performance.

A large number of commercial RISC systems have been developed, including the 
MIPS [Kane and Heinrich, 1992] and PowerPC [May, Silha, Simpson and Warren, 1994] 
architectures. Furthermore, modern parallel computers typically use these uniprocessors 
as basic computational building blocks. For example, Cray’s T3D [Koeninger, Furtney and 
Walker, 1992] uses up to 1,024 DEC Alpha AXP microprocessors, while the CM-5 [Hillis 
and Tucker, 1993] uses a similar number of SPARC processors [Sun Microsystems, 1988].

For the purposes of this study, the Alpha AXP architecture [Sites, 1992] was selected 
as the basic model for the uniprocessor simulation. The Alpha is well suited to this role 
because:

• it is, arguably, the fastest commercial processor currently available.

• by avoiding all non-replicated hidden state, including condition codes [RISC Ma
chines Ltd (ARM), 1994, section 4.2, page 20], suppressed-instruction bits [Hewlett 
Packard, 1994, section 4, page 4-7], and precise arithmetic exceptions [Kane and 
Heinrich, 1992, section 9, page 9-2], future designs can take advantage of multiple 
instruction issue (this also simplifies the design of the state transition model.)

• all operating-system support is handled by privileged software subroutines, called 
PALcode (see sections 7.3.2 and 7.4).

• shared-memory multiprocessing support is an integral part of the architecture. The 
loadiinked and storeunked instructions (see section F.3) provide a safe mechanism for 
updating shared addresses.

7.3.2 The state-transition system

The resulting model is straightforward, if not concise, and uses the abstract state given 
below:

{code, program counter, registers, memory, semaphore, exceptions)

^Clements [1991] argues that the ‘R ’ of RISC should stand for “Regular” to better reflect the underlying 
philosophy
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2 Decode pc registers memory semaphore exceptions
= >  Execute instruction pc' registers memory semaphore exceptions
where instruction =  decode rnernory{pc)

pc’ =  pc  +32 4 ______________

where

Execute load of fset(base) target pc 
PostExec pc
registers' = registers[target !->■  value] 
value = memory {address) 
address =  offset  +32 registers{base)

registers
registers'

memory
memory

semaphore
semaphore

exceptions
exceptions

PostExec pc registers memory semaphore {pending , mask, counter, trigger)
Decode pc registers memory semaphore {pending',mask,counter', trigger)
counter' = counter +32 1 
pending' = pending U clock-interrupt
clock-interrupt = i f  {trigger =  counter) then {Clock} else 0

where

Figure 7.1: A selection of RISC state-transition rules

The state components are defined in table 7.1, and a number of example instructions and 
transition rules are shown in table 7.2 and figure 7.1 respectively (appendices F and G 
contain the full details of the 49 instructions and 30 transition rules). Note that the 
exceptions field contains a counter, which is automatically incremented by the Decode 
mode (rule 3), and this serves as the main performance metric (see section 8.2).

The instruction pipeline

The code component loosely models a processor’s instruction pipeline [Hwang and Briggs, 
1985, chapter 3, page 153], and the transitions will typically proceed as follows: Decode 
Execute = >  PostExec Decode ■ ■ ■ (rules 2, 5-30, and 3) -  see figure 7.1. If an 
unmasked exception is raised then the sequence will become Decode =► Exception (rule 
1). The appropriate PALcode will be invoked to handle the interrupt, and this is re
sponsible for clearing the exception and returning to the Decode mode of operation (rule
4 ).

Accessing operating-system services

The syscall instruction provides the interface between a program and the operating sys
tem [DEC, 1992, chapter 9]. Rather than modelling these calls down to the instruction 
level, a separate transition rule specifies the entire operation, as illustrated by the following 
example:

SET_TRIGGER Exception pc registers memory semaphore {pending, mask, counter, trigger)

such that SysCall € {pending \ mask) and memory{pc — 32 1) syscall s e t _ t r i g g e r

where
Decode pc registers memory semaphore {pending', mask, counter', trigger')
counter — counter +32 tQg_call T32 tget_trigger
trigger' =  registers{\) 
pending' = pending \ {SysCall}

To test this approach, a Unix-style process model [Goodheaxt and Cox, 1994, chapter 4] 
has been developed. By adjusting the instruction-count overhead associated with context
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specification description
code Decode fetch the instruction referenced by the pro

gram counter (which is then incremented), 
decode it, and then pass it on to be 
executed

Execute instruction evaluate the current instruction
PostExec increment the timer counter and generate 

a timer exception if necessary
Exception invoke the exception handler

program counter address the address of the next instruction to be 
executed

registers register s{ireg) =  value records the contents of the register file, 
where 0 < f < 32, and registers[0) =  0

memory memory [address) =  value a model of the processor’s main memory
semaphore [address^ boolean ¡tale?) the address field records the memory lo

cation read by the last linked load, and 
stale? indicates if this location has been 
updated since the load (see the loadunk and 
storeiink instructions)

exceptions (set of exceptions^ 
set of exceptions^
i counter j Hrigger)

the first two fields record which exceptions 
have been raised and those that should be 
ignored for the present. The counter is 
incremented after every instruction, and 
when it matches the trigger a Clock ex
ception is raised

instruction see appendix F any one of 49 possible instructions, includ
ing memory references, branches, operate 
instructions, and system instructions

value address \ literal either a memory address or a machine lit
eral (only 32-bit integers are supported)

exception Clock raised when the cycle counter equals the 
trigger value

Overflow raised when an addtrap or subtrap in
struction causes under- or overflow, but 
only acted upon when the appropraie 
barriertrap instruction is executed

SysCall raised by a syscall instruction
U naligned raised whenever a memory reference is not 

word aligned (i.e. the two least-significant 
bits are non-zero)

Table 7.1: State components of the RISC uniprocessor
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mnemonic instruction description
LD load o f  f  setig(basereg) 

targetreg
load a word from the address (word- 
aligned) formed by adding the 16-bit 
signed offset and the contents of the base 
register. The value is then stored in the 
target register

JSR jumpiink offsetiev~2{basereg)
I'lTlkj'QQ

the 16-bit signed offset is first shifted two 
places to the left, then added to the base 
register to form the target address (which 
must be word aligned). Before the PC is 
set to this new address, the link register is 
loaded with the PC’s current value, allow
ing a subroutine to return control back to 
the caller

ADD add ValuCreg 
reg-imms 
ta rgetreg

signed addition of the first two arguments, 
the result of which is stored in the target 
register

CALL_PAL syscall immediate2 e cause a system-call exception

Table 7.2: A selection of RISC instructions

switches and task creation, the system can also (crudely) simulate user-level threads [Bir- 
rell, 1989] and hardware contexts [Weber and Gupta, 1989; Agarwal et ah, 1993]. Note 
that no support for any form of I/O  [Goodheart and Cox, 1994, chapter 5] is provided, 
although adding the necessary interfaces should be straightforward.

7.4 Modelling multiprocessor systems

7.4.1 Basic building blocks

The processor model presented in figure 6.1 is still valid, and provides the underlying 
structure for the multiprocessor simulator -  the RISC uniprocessor model fills the role of 
P, while the communication system, S, is styled after the intended target architecture.

There are two ways of providing a program with access to the communication system: 
firstly, the syscall interface can be used for large-grained operations, such as message 
passing (see the SET_TRIGGER example from section 7.3.2); secondly, fine-grained activ
ities, including accessing shared-memory, should be directly incorporated into the state- 
transition rules -  for example, the following rule forms part of a crude model of a local 
cache:

6’ Execute load of f  set{base) target pc regs cache memory smp exs

such th a t (address, value) € cache 

PostExec
w here regs' =  regs[target !->■  value]

address = of f  set+32 regs(base)

pc regs' cache memory smp exs
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Figure 7.2: The hybrid architecture model, consisting of n interconnected RISC processors 
(P), each with local memory (M), connected to a pool of m global-memory modules (GM)

7.4.2 Cost models

As each RISC transition rule is equivalent to one instruction step on a real processor, 
many of the objections raised in section 6.2.2 do not apply, and the instruction count 
can be used to estimate a program’s run time. As for estimating the instruction count 
of any communication primitives, the LogP model proposed by Culler et al. [1993] is 
recommended, whereby algorithms are modelled using the parameters L, o, g and P, 
which are defined as follows:

L - An upper bound on the latency involved with communicating a word length message 
from source to destination.

o - the overhead attributed to the transmission or reception of each message. During this 
time a processor can engage in other activity.

g - the minimum gap allowed between consecutive message transmission or reception. The 
reciprocal gives the per-processor bandwidth.

P - the number of processors. (Each local operation is assumed to take unit time.)

Results on a variety of different architectures (including dataflow, shared memory and 
message passing systems) have shown that the model closely reflects the actual perfor
mance of algorithms developed this way. If a more detailed timing model is required, then 
Talisman’s iterative technique [Bedichek, 1995, section 6.1, page 20] should be applied.

7.4.3 A  hybrid architecture

To show the viability of the RISC-based framework, the hybrid architecture shown in 
figure 7.2 has been developed and tested. Shared memory is accessed via the usual load 
and store operations, with loadunked providing a basic semaphore facility (see sections F.3 
and G.5 for a full description of these instructions). The message-passing network is
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accessed via the system calls shown in table 7.3, which are modelled after the PRO
TEUS [Brewer, Dellaxocas and Weihl, 1991, section 4.4, pages 35-36] application program 
interface (the send primitive is non-blocking).

system call inputs outputs description
send iil9  return address 

R20 destination 
R21 message buffer 
R22 length of data

RI 8 corrupted 
R19 —1 on failure 
R20 destination 
R21 message buffer 
R22 length of data

send a message

recv ii20 return address 
R21 buffer length 
R22 message buffer

RI 9 corrupted 
R20 destination 
R21 length of data 

(—1 on failure) 
R22 message buffer

receive a message

p o ll R21 return address R21 corrupted 
R22 length of data 

(—1 if no mes
sage)

test for arrival

Table 7.3: The hybrid architecture’s message-passing interface

The traces generated by the message-passing components of the simulator follow the 
PICL standard [Geist, Heath, Peyton and Worley, 1990; Worley, 1992], and, with some 
manual editing, are suitable for use with the ParaGraph visualisation tool [Glendinning, 
Hockney, Pritchard and others, 1993]. As an example, figure 7.3 shows spacetime dia
grams [Heath and Finger, 1993, section 5.2.2, pages 22-23] for three distributed-memory 
GVT algorithms [Ben-Dyke, 1997].

7.5 Summary

This chapter has presented a state-transition model of a multiprocessor architecture using 
the Alpha RISC processor as the basic computational engine. This is used to test and 
debug the output of the STG' compiler (see chapter 8).

How does this model compare with existing simulation tools? Unfortunately, using 
performance and accuracy as the main criteria, the system is a failure. The latter could 
be corrected as “the level of detail is limited only by the time available for simulation 
development” [Jain, 1991, section 24.1, page 394]. However, as a tool for rapidly testing 
the output of the STG' compiler, the flexibility and convenience compensates for these 
limitations.
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FEVHMflH DIAGRAM

Figure 7.3: Comparing the performance of three GVT algorithms using the ParaGraph 
visualisation tool



Chapter 8

Compilation rules

8.1 Introduction

This chapter describes how the state-transition model can be used to model a compilation 
system. Particular emphasis is placed on encoding important optimisations, including 
register allocation, closure layout, and dead-code elimination. The validity of this approach 
is demonstrated by developing and prototyping a compilation system for a subset of the 
sequential STG' language.

Section 8.2 motivates the selection of a RISC assembly language as the target for the 
compilation system, while the proposed state-transition system is described in section 8.3 
(all of the rules are collected in appendix H.) Section 8.4 then considers the development of 
the run-time support for the generated code, before the chapter is concluded in section 8.6.

8.2 Targeting a RISC assembly language

The two most common target languages for compilers of functional programming languages 
are C [Kernighan and Ritchie, 1978] and assembly language. Bartlett [1989] cites the 
following advantages to using C:

portable most modern computers provide a C compiler.

high level many of the technical aspects of efficient code generation will be handled by 
the C compiler (and others’ improvements to this technology will be passed on to 
the new system)

easy to interface with C typically, if a system provides an inter-language interface it 
will be modelled on C’s calling convention. For example, Glasgow Haskell provides 
the c c a l l  and casm primitives [AQUA Team, 1993, section 3.2.3, pages 33-34]), and 
the Unix operating system uses a C-style interface [Leffler, McKusick, Karels and 
Quarterman, 1989, chapter 1, page 3]

Peyton Jones et al. [1993, section 6.2] also point out the following, unexpected, benefit:

debugging source-level debuggers, such as gdb, simplify the testing process.

The only drawback to the high-level approach is the potential loss of performance, but, 
where the two language models are similar, this cost is small. For example, depending 
upon the C compiler used, Bartlett [1989, section 4, pages 20-22] observed either a 5% 
slowdown or 8% speedup over a traditional Scheme compiler. On the other hand, GHG
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requires a jump statement to efiiciently implement the Entry mechanism of the STG 
machine, and going via C would impose a “considerable” overhead [Peyton Jones et ah, 
1993, section 6.1]. To overcome this problem, GHC uses non-standard features of the GNU 
C compiler to explicitly manage the register mapping, thereby circumventing the standard 
calling convention. The complexity of the resulting implementation [AQUA Team, 1994] 
is such that the decision to target the C language can be questioned.

Therefore, the reasons for the adoption of a RISC-like assembly language as the com
piler’s target can be stated as follows:

expressiveness assembler traditional provides finer control over the layout of the data 
and code components of a program. This allows a number of optimisations to be 
expressed, including register allocation, and reversed info tables.

simplicity a RISC instruction set is regular, thereby simplifying register-allocation and 
instruction-scheduling algorithms.

portability as a direct result of simplicity, converting to a CISC-like language should be 
straightforward.

accuracy both Appel [1992, section 15.1, page 182] and Santos [1995, section 2.3, page 
13] use the total number of assembler instructions executed as a primary metric for 
performance evaluation.^

Note that, amongst others. Standard ML of New Jersey [Appel, 1992, section 14.3, pages 
169-174], rationalised Tim [Chitnis et ah, 1995, section 3.2, page 96] and WYBERT [Lan- 
gendoen, 1993, figure 5.5, page 100] all use a RISC-like target language.

Prom a modelling perspective, however, there is one potential problem with the assembly- 
language approach: developing the run-time support systems can be tedious, error prone, 
and time consuming. This issue is addressed in section 8.4.

8.3 Prototyping a modern optimising compiler using a state- 
transition system

The work described in this section is based on the third part of the original STG re
port [Peyton Jones and Salkild, 1989, sections 6 11, and appendix A], and also draws on 
the techniques described in chapter nine of the dragon book [Aho, Sethi and Ullman, 1986, 
pages 513-584].

The prototype system uses the following state to structure the compilation:

1 expression continuation pending code global \
1 code, stack, stack. bindings. blocks. environment j

The individual components are specified in table 8.1, while section 8.3.1 describes the 
code component in greater depth. The associated rules, collected in appendix H, are only 
a subset of what would be required for a complete compilation system, with the most 
notable omissions being the rules dealing with constructors and higher-order functions. 
The development of the missing rules should not be difficult.

'T h e  simulator described in chapter 7 originally used a C-like language (see section A .4 .3  for further 
details), but it proved difficult to cost the different statements and expressions.
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specification description
code control flow and expression compilation -  see section 8.3.1
expression stack stack of instructions results of sub-compilations are returned 

on this stack
continuation stack stack of code the return stack whereby control reverts 

to the initiator of a sub-compilation
pending bindings set of bind global and local definitions awaiting 

compilation
code blocks {label 1—t instructions}env accumulates the output of the compila

tion system
global environment a var =  label records the static addresses of all top- 

level closures
instructions sequence of instruction a basic block [Aho, Sethi and Ullman, 

1986, section 9.4]
instruction a RISC instruction see appendix F
label an operand see section 8.3.2

Table 8.1: The state components of the compiler framework 

8.3.1 The code component

The system has two modes of operation, compiler control and expression compilation, and 
both are detailed in table 8.2. The former codes manipulate bindings and provide flow 
control, while the rules associated with the latter codes are closely related to those of their 
STG-machine counterparts,^ as demonstrated by the following rule for compiling literal
expressions:

9 CEval (k) p code returns exps conts pending blocks a

CReturnint k p code returns exps conts pending blocks a

In some cases, however, it has been necessary to introduce an extra stage, as illustrated 
by the splitting of the STG-machine Enter code into the CEnter and CJoinEnter codes 
of the compilation system.

^Indeed, the compilation rules have been numbered in accordance with their STG-machine equivalents 
-  see appendix H.
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Com piler control
Continue sets the next command to be either:

1. the top item on the continuation stack.

2. if the continuation stack is empty, then select a binding from 
the set of those pending compilation, and set the next com
mand to CompileBind.

3. if the set of pending bindings is empty (and the continuation 
stack is finished) then the next command is set to Finish.

CompileBind initiates the compilation of a STG binding
ReturnExpression returns the instructions needed to evaluate an expression sequence 

and allows fine-tuning at this level (including common peephole 
optimisations).

Seal Entry complements CompileBind in that it allows any pre- or post-amble 
to be added to the main body of a function. This could include, 
for example, stack, heap and argument checks or (simple) interface 
manipulations.

ReturnBind similar to ReturnExpression, except the instructions encode a 
whole binding, either top-level or bound by a let(rec) expression. 
This command is a good point at which to generate info tables, 
static heap entries, and specialised garbage-collection routines.

Finish indicates that the compilation process has completed successfully.

Expression com pilation
CEval generates the RISC instructions needed to evaluate a given expres

sion sequence.
C Enter determines the calling mechanism for a non-literal variable
CJoinEnter glues together code either side of a non-local application.
CReturnCon determines what return mechanism to use for the given type and 

is the dual of the C JoinReturns instruction. Together they realise 
the behaviour of the ReturnCon code of the operational semantics.

C ReturnLit has the same effect as ReturnCon except it deals with literal values.
CJoinReturns combines all of the specified alternatives of a case expression into 

one return method. The spectrum of possible methods is delimited 
by vector and in-line returns.

Table 8.2: The code component of the compilation state-transition system
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8.3.2 Operands and register allocation

The compilation system uses the following operands:

operand
STG-machine 
C-code equivalent description

register^ var contents of the nth general-purpose register
stack SpA[n], SpB[n] the value stored in the nth slot of the A 

(boxed) or B (unboxed) stack
heapgj ̂  set Hp [offset] the address created by adding o f  f  set to the 

heap pointer
memory operand[offset] contents of the memory location specified by 

adding offset to operand
labelfiame fename a named label pointing to a static address, 

which may reference an entry routine, an in
formation table, a jump table etc.

literal 1, . . . ,  UINT_MAX a constant integer value

A modern RISC processor will typically provide either 32 or 64 general-purpose reg
isters, although a number of these are reserved by the compilation system for holding 
important values, as shown below:

register 1-23 24 25 26 27 28 29 30 31
use general

purpose
Ret Np StkA StkABase StkB StkBBase HLimit Hp

The general purpose registers, in combination with the node pointer, Np, and stack point
ers, simulate the local environment of the STG machine.

Furthermore, depending upon the entry and return conventions other registers may 
have special meanings (see rules l-2 c  and llA-13'). For example, upon entry to a closure 
(see the following section), register 24 will hold the return address (rule 2c), and the node 
pointer, Np, will point to the base of the closure (rule 1).

While calling conventions rigidly define the location of certain values upon entry and 
exit of a basic block, the strategy for making the best use of the general-purpose registers 
within the block itself is known as register allocation [Aho, Sethi and Ullman, 1986, section 
9.7]. As demonstrated by Fraser and Hanson [1992], even simple allocation schemes can 
be effective. Despite the maturity of such algorithms for imperative languages, their 
functional counterparts have received little attention, with notable exceptions including 
the work of Boquist [1995] and Appel [1992, chapter 11].

8.3.3 Counters, timers and interrupts

As discussed in section 9.3.2, it is often useful to interrupt the current thread of control, 
perform some task, and then continue as before. Unfortunately, this can significantly 
complicate the run-time code [Axford, 1989, section 1.2], and, therefore, the compilation 
system itself. The Gambit compiler [Feeley and Miller, 1990] neatly avoids these problems 
by inserting tests after every basic block -  the tests, and any handlers they may invoke, can 
then assume that the system is in a stable state. To ensure that the tests axe performed 
in a timely manner, it may be necessary for the compilation system to split large blocks 
into a number of smaller ones.
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8.3.4 The fac function

Figure 8.1 shows the output of the compilation system for the specialised fac function 
shown below:

_  STG’ code____________________________________________________________
fac = [] \r [n] -> case n of 

{
0# -> 1#;

-> let# n_less_one = minusint# [n, 1#] in 
let# fac_n_less_one = fac n_less_one 
in timesint# [n, fac_n_less_one]

};

comparex=y registerstkB, registerstkBLim.it, registertmpi '■ 
branchf)ito_$et registertmpi, lo,belp̂ p_ŷ ptig;te 
lo ad  + 4{reg iste rstkB ),reg istertm p2 ',

subtract registertmp2 , 4~l, registertmp2 j 
branchx=Q registertmp2 , ô-belfac^V, 
branch labelfac—2 ',

label '•
add 0 , +1 ; registerj'dturn—inttt', 
add registerstkB, +4,registerstkB\ 
jump registerreturn,

labe l fac—2 •
su b tra c t re g is te rs tkB , 4%, reg iste rstkB ', 

comparex<^y re g is te r  stkB , re g is te r  stk A, registert^rips, 

branchixitO—set reg iste rtm pz, l(^belstack_overfiow, 
lo ad  +  12{reg isterstkB ), re g is te r tm p i; 
s to re  reg iste rre tu rn , +12{reg isterstkBy, 

s to re  reg is te rtm p i, -^{reg isterStkB)',
su b tra c t re g is te r tm p i,+1, reg iste rtm p i i
store registertmpi, 44{registerStkB)',
load labelj d c _2__i,registerreturn,
b ran ch  labelentry—fac

label f ac—2 ^ 1  ■
lo ad  + 4{reg iste rstkB ),reg iste rtm p_a ',

mult registertmp—a, registerretum—int#, registertmp—a',
move registertmp—a, registerreturn—int#', 
load +8{registerStkB), registerreturn', 
add register StkB, register stk-B',
jump registerreturn',

/ /  standard entry point
/ /  check the number of arguments
/ /  insufficient arguments
/ /  load the argument n
/ /  test if n is one
/ / i f  so, select the first alternative
/ /  otherwise, select the default

/ /  code to handle first alternative 
/ /  set the result to one 
/  /  trim the stack 
/ /  invoke the return continuation

/ /  allocate stack space 
/ /  check for stack overflow 
/  /  overflow error handler 
/ /  load the argument n 
/ /  save the original continuation 
/  /  save the original argument 
/ /  calculate (n-1)
/  /  push the new argument 
/ /  set the new continuation 
/ /  call fa c on (n-1)

/ /  continuation code 
/ /  restore the value of n 
/ /  multiply n by fac (n-1)
/ /  set the result
/ /  restore the originial continuation 
/ /  trim the stack 
/ /  invoke the return continuation

Figure 8.1: Unoptimised RISC code produced by the compiler for the fac function
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Appendix I contains a number of other examples, including the n ofib  programs, f ib , 
and primes, as well as common prelude functions such as map and quotRem. In addition, 
it also include the code required to update partial applications and algebraic constructors.

8.4 Run-time support

Run-time support covers both the traditional operating-system libraries (including mes
sage passing and thread management) as well as the more specialised capabilities, such as 
distributed garbage collection [Lester, 1989; Trinder, Hammond, Partridge, Peyton Jones 
and others, 1996, section 2.3.3] and load balancing (see section 9.3.2). The compilation 
rules access both types of libraries using application-program interfaces (API) similar to 
those described in section 7.4.3, but extended to include the static label of the appropriate 
code block.

While generating a specific API will be straightforward, the implementation in RISC 
assembler is likely to be tedious, time consuming, and error prone. While it may be tempt
ing to provide the functionality via the simulator’s syscall interface thereby enabling 
the use of Haskell -  this should only be used for the operations described in section 7.3.2. 
Apart from “feeling” wrong, abusing the syscall mechanism could affect the accuracy and 
correctness of the simulation as each such operation is atomic.

The simple solution to the above-mentioned problem is to use an existing compiler 
to generate the assembly code from, for example, a C implementation of the function. 
The Icc  re-targetable C compiler [Fraser and Hanson, 1991] is an obvious candidate as 
it supports cross compilation to MIPS assembler [Kane and Heinrich, 1992]. Moreover, 
Icc  only performs simple peephole optimisations, thereby maintaining the correspondence 
between the source and output codes. Some editing of the resulting code will be required, 
but there is a considerable net saving in both time and effort, and increased confidence in 
the correctness of the generated assembler code.

8.5 Benchmarking the nofib routines

Tables 8.5 and 8.5 contain the RISC instruction counts when running unoptimised and 
optimised versions of the f ib , primes, and queens benchmarks. The total instruction 
count is broken down into the following categories for each benchmark:

com putation includes the numerical and logical operators, add, multiply, exclusive or, 
shift left, etc. These instructions are primarily used when performing argument 
checks, trimming the stack, and allocating memory. The computation performed as 
a result of primitive STG' operations is typically less than 10%.

m em ory includes both loads and stores. Loads are used to retrieve stack parameters, 
and access data from the heap (typically info tables and free variables). Stores 
are used to push data onto the stack and to initialise or update closures. Within 
the benchmarks the ratio between loads and stores is approximately 50% (with the 
exception of the optimised queens, where loads account for 60% of the total).

calls include both branches {BR  and JM P) and subroutine calls {BSR  and JSR). 
Branches are used to call known entry points and to return to the correct vector 
entry. Calls are used to enter closures for single constructor data-types, such as 
Integer and Boolean. The ratio between branches and calls is typically between 
70% and 80%, although for the optimised f ib  the ratio drops to 60%.
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benchmark total computation memory calls immédiates conditionals
fib  5 2 676 31-6% 41-3% 13-6% 6 -8 % 6-7%
fib  10 32 565 31-7% 41-4% 13-6% 6-5% 6 -8 %
fib 15 363 927 31-7% 41-5% 13-6% 6-5% 6 -8 %
queens 5 176 314 28-5% 46-4% 12-4% 6 -2 % 6-5%
queens 6 849 691 28-4% 46-6% 12-5% 6 -0 % 6-5%
primes 50 299 406 27-7% 47-0% 11-9% 7-0% 6-4%
primes 100 1077037 27-6% 47-1% 1 2 -0 % 6-9% 6-4%

Table 8.3: RISC-instruction counts for the unoptimised benchmarks

benchmark total computation memory calls immédiates conditionals
fib  5 230 40-4% 27-8% 19-6% 5-2% 7-0%
fib  10 2174 45-3% 25-3% 20-7% 0 -6 % 8 -2 %
fib  15 23 726 45-8% 25-0% 2 0 -8 % 0 -1% 8-3%
queens 5 42 239 25-1% 47-8% 13-4% 8 -2 % 5-5%
queens 6 167 527 24-9% 48-1% 14-0% 7-6% 5-4%
primes 50 190 890 27-9% 45-6% 11-4% 6-9% 8 -2 %
primes 100 673 132 27-7% 45-9% 11-4% 6-7% 8-3%

Table 8.4: RISC-instruction counts for the optimised benchmarks

immédiates represents the loading of numeric constants via the load-address instructions 
{LA and LAH). These instructions are typically used to load the address of the info 
tables when initialising heap-allocated closures. As they tend to appear in pairs, 
halving the number of immediate instructions provides a good estimate of the total 
number of heap allocations.

conditionals includes both the conditional move (CM OVE) and the conditional jump 
(CBR). These are used when testing for stack and heap overflows, and for imple
menting simple case expressions.

Table 8.5 compares the total number of RISC instructions for each benchmark to the 
total number of reduction steps performed by the STG machine. The bracketed numbers 
denote the ratio between these two counts, and, with the exception of the optimised f ib  
results, the instruction-level simulation performs two to four times the number of steps of 
the STG machine. Furthermore, the amount of memory required to simulate the RISC 
machine is upto twenty times greater than that for the STG machine. The net effect is 
that the RISC simulator runs considerably slower than the STG machine, and can therfore 
only be used to evaluate smaller problems.

8.6 Summary

This chapter has described a state-transition model of a modern optimising compiler, which 
is closely related to the STG-machine (see chapter 6). To demonstrate the viability of the 
resulting rules, a prototype compiler has been developed. The results from benchmarking
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STG RISC
benchmark unoptimised optimised unoptimised optimised
f ib  5 771 211 2 676 (3.5) 230 (1.1)
f ib  10 9 357 2 479 32 565 (3.5) 2174 (0.9)
f ib  15 104 545 306 475 363 927 (3.5) 23 726 (0.1)
queens 5 38 630 16 863 176 314 (4.6) 42 239 (2.5)
queens 6 188 174 75102 849 691 (4.5) 167 527 (2.2)
primes 50 96 374 79 032 299 406 (3.1) 190 890 (2.4)
primes 100 348 835 286 485 1077 037 (3.1) 673132 (2.4)

Table 8.5: Comparing STG machine reductions and RISC instructions

the compiled versions of the nofib  programs (fib , queens, and primes) show that the 
instruction-level simnlation reqnires between two and four times as many cycles as the 
STG machine. This reduces the problem size that can be examined at this level of detail.



Chapter 9

Prototyping parallel functional 
intermediate languages

9.1 Introduction

In this chapter the use of the prototyping framework is illustrated by four case studies. 
Each of the studies are based upon existing well-known systems, and, between them, 
include examples of the main programming abstractions used in modern parallel func
tional programming (see section 2.4) and cover both GMSV and DMMP architectures 
(see section 2.2.1). The first (section 9.2) is based upon shared-memory Haskell [Matt
son Jr., 1993a], and considers the introduction of parallel threads into the STG' language. 
This provides a simple overview of the methodology, and serves as a foundation upon 
which the other case studies build. The second (section 9.3) moves on to consider GUM 
Haskell [Trinder et al., 1996], essentially a DMMP implementation of the previous study. 
While the static semantics are very similar to those of the first case study, the operational 
model is far more complex, and demonstrates how message passing can be modelled by 
a state-transition system. The third (section 9.4) investigates the data placement primi
tives of para-functional Haskell [Hudak, 1991]. These prove interesting both in terms of 
the denotational and operational models. Skeletal parallelism [Cole, 1989] is the subject 
of the final case study (section 9.5), dealing with farms, pipes and divide-and-conquer 
skeletons [Darlington et al., 1993].

9.2 Mattson’s speculative evaluation technique

Under the evaluate-and-die model [Peyton Jones, 1989, page 178], a thread is an inde
pendent process which computes the value of one expression and then terminates. This 
approach to thread management has been adopted by most modern systems, including 
GUM [Trinder et al., 1996, section 2.2], the J u m p * machine [Chakravarty, 1994, section 
2.3.2], and the p-STG machine [Hwang and Rushall, 1992, sections 6-8].

Traditionally, only expressions essential to the main computation are candidates for 
threads. By sparking non-essential expressions, speculative systems increases the number 
of available threads, thereby decreasing the chance that any processor is idle. However, 
there is a chance that the time and space expended on the computation will be wasted, and 
complications arise when a speculative task is detected to be either necessary or irrelevant. 

The system presented in this section is primarily based on Mattson’s speculative graph
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STG' code.
spec_map = [] \r [f xss] -> case xss of 
{ Nil -> Nil [] ;

Cons X xs -> letspec 90"/, { xs’ 
in let { x ’
in Cons [x’, xs’]

};

[f xs] \u [] -> spec.map f xs 
[f x] \u [] -> f X ; }

Figure 9.1: A speculative STG' version of the map function

reducer [Mattson Jr., 1993a, section 4.3, pages 69 80] and the GRIP multiprocessor [Pey
ton Jones et al., 1987; Mattson Jr., 1993b, sections 2-3].

9.2.1 The static semantics

Speculative parallelism is introduced into the STG'language by extending the exp produc
tion rule (see section 5.2.1) as follows:

exp letspec literal simple-hind exp speculative evaluation

The literal value should be between 0-100, and estimates the percentage probability that 
the bound expression will be required as part of the main computation. Note, that this 
relates to the traditional letpar as follows:

letpar simple-bind exp =  letspec 100 simple—bind exp

As an example, figure 9.1 shows a speculative variant of the map function, which estimates 
that the first element of the tail will be required 90% of the time. When a speculative 
thread evaluates a letspec expression, the effective probability of the new thread is the 
product of the probabilities of the current thread and the specified probability -  any thread 
with a probability less than 10% is ignored. Therefore, the speculative map will evaluate a 
list up to a maximum depth of 21 elements (if the probability were changed to 50%, then 
a maximum of 3 elements would be evaluated). The free variables of the new expression 
are determined by the following equation:

.FVeajp[letspec literal var =  exprhs expbodyl 9
— ea:p[c2̂ Pr/isl 9 G {.FVexphody\.̂ Ĵ̂  9 \ {ucsr})

The denotational semantics of the new expression is shown below:

¿■[letspec literal var =  exprhs ^̂ Pbodyi P = let e =  S\exprhs\ P 
in i f  {literal > 100) /\ (e =  T) 

then J.

else Slexpbodyj {p ® {var e})

Notice that a test for bottom is only made if the thread is guaranteed to be required. 
Otherwise, a non-terminating speculative expression can only affect the result of the entire 
program if it turns out to be required, or if evaluation of the expression causes the system 
to run out of resources. The denotational semantics captures the first of these conditions, 
but cannot express the second.
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LETSPEC-EXP

literal
h literal : In t^  

simplebind
TE  h simplebind : (war, x  tti . . .  tt̂ ) 
EVE  =  {war i-> x  tti • • • tT'w}

^  exp
TE  © LVE  h exp : Tea,p

exp
TE \- le t  spec literal simplebind exp : r.exp

Figure 9.2: The Hindley Milner type rule for the letspec expression

SPEC SCHED-3

Eval GetThread
BH-l BH-2

Enter

END THREAD \ /  FINISH

Return

BH-3

Figure 9.3: The relationship between the GMSV rules and the code component

The type rule, shown in figure 9.2, asserts that the probability is an unboxed integer, 
and that the bound expression must be a data constructor. The reasoning behind the 
latter restriction is described in section 4.5.1. Section 5.3.1 discusses ways in which the 
range restriction on the percentage probability could be enforced.

9.2.2 The operational model

The abstract state is defined in table 9.1, and the relationship between the code field and 
the new rules is illustrated in figure 9.3 (see also figure 4.11). An overview of the rules 
can be found in table 9.2. With the exception of rules BHi and BH2 , all of the rules are 
additions to the original STG machine -  the two black-hole rules replace rule 15 and 16 
respectively (which handle the entry and updating of thunks). The following sections look 
at these rules in greater detail.
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specification description
G (Pi, . . . ,P n )w p h a a collection of processors, Pi, all sharing a 

global work pool, wp, memory, h, and envi
ronment, a.

P {code, .. .,tid,prob) the standard STG abstract state extended 
to include the id of the the currently active 
thread and its probability. Extensions have 
also been made to the code, closure, and 
continuation components.

tid a a thread’s identifier is the address of its heap- 
allocated state object, TSO.

wp {threads, sparks) the tasks currently available to the system.
threads queue of {tid,prob) a collection of threads ordered by the threads’ 

probabilités.
sparks sequence of {a, prob) pointers to closures whose values may be re

quired as part of the main computation, or
dered by probability.

code GetThread schedule the next thread to be run.
closure TSO prob {code, as, rs, us) represents the state of a thread, which com

prises its probability, an instruction sequence, 
and the three standard stacks.

BlackHole tid threads records the id of thread which created the 
black hole, and any threads which are await
ing the final value of the closure.

Active 1 Stopped these values will only ever be stored at address 
astatus, and are used to indicate the current 
state of the computation.

continuation EndThread terminate the current thread.
Finished terminate the entire computation.

prob 0 100 likelihood that a thread will be required as 
part of the main computation. The opera
tional model uses the probability as an indi
cation of a threads importance or priority.

Table 9.1: State components of a thread-management system
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category rule description
evaluation SPEC evaluates the letspec expression, creating new sparks 

for use by the scheduler.

synchronisation
BHi black holes thunks npon entry
BH2 suspends the current thread upon entry to a black hole
BH3 npdates a black hole, releasing all suspended threads.

resource
management

SCHEDi converts a spark to a thread.
SCHED2 schedules an existing thread.
SCHED3 busy-wait for new work.

initialisation/
termination

INIT static partitioning of the STG machine state.
FINISHi signal the end of the computation.
FINISH2 detect the end of the computation.

Table 9.2: Overview of the STG rules for Mattson’s speculative evaluation engine

Thread creation

Thread creation, often referred to as sparking, is a two-stage process as shown in figure 9.4. 
The first step is to identify the necessary and speculative expressions, as demonstrated by 
the SPEC rule:

(spec)

Eval (letspec prob v =  ei e )̂ p as rs us tid p 
such that {prob' >10)

Eval 62 (p © {u 1-^ a}) 
where prob' =  p* prob/WO

h! =  h [a ^  creatc-closure e\ p] 
spk' =  insertspark (a, prob') spk

a

as rs us tid P

(tp, spk) h 

{tp, spk') h' a

This operation is very cheap as it only involves a heap allocation and the addition of 
the closure’s address and probability to the spark pool, spk. The insertgpark function 
maintains the correct ordering of the pool, thereby ensuring the spark with the highest 
probability appears at the head of the queue. On a single processor system, this rule is 
equivalent to a normal le t  expression, as the spark and thread pool will never be used. 
The associated closure may be evaluated as part of the normal computation, but this will 
happen within the main thread.

The second part of the sparking process involves the closures stored in the spark pool 
being converted into threads. This occurs when the current thread either blocks or termi
nates (see the b h 2 and END_THREAD rules):

(s c h e d i)

GetThread {) () () tid
such that {empty tp) V {max-prob wp < p')

Enter a {) {EndThread) () t^ewid
where {a,p') : spk' =  spk

h! =  h[tnewid TSO p' init-tso^state]

P

P

{wp, spk) h a 

{wp, spk') h! a

Observe that a new thread is only created when either the work pool is empty, i.e. all 
existing threads have either blocked or finished, or if a higher-priority spark is available. 
The TSO closure is used to preserve the thread’s local state when suspending the thread.
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Figure 9.4: Sparking a new thread 

Black holes and thread synchronisation

To prevent duplication of work, whenever a thread enters a potentially shared thunk it 
updates the closure with a BlackHole:

(B H i)

Enter a as rs us tid p wp h[a ep- (vs u —>■ e, res)] a
Eval e p {) {) (a, as, rs) : us t̂ d p wp h[a BlackHole tid ()] ^

where p =  {ui i-)- w\ . . . ,Vn ^  Wn} and (vi,Wi) =  (vs ! ! i)

Whenever another thread enters the black hole, its local state is saved, the thread is added 
to the closure’s list of blocked threads, the importance of the thread evaluating the closure 
is increased, and a new thread is scheduled:

Notice that the importance of any threads that tid̂  may have sparked, or any threads upon 
which tid2 may be waiting, axe not increased -  Mattson [1993a, section 3.2.4] calls this 
the low-impact model of speculative evaluation. Furthermore, there is no mechanism for 
reverting tide's priority once the closure has been evaluated (the required changes would 
be significant and add little to the presentation.)

Enter a as rs us tid̂  p\ wp h
a !->■ BlackHole tid-2 ts, 
Udi TSO pi statei a

(BH2) GetThread as rs us tid̂  pi wp h

tid.2 TSO p2 state2 
a BlackHole tid2 ts', 
ti<h TSO Pi state'i a

where ts' =  enqueue (tidi,pi) ts 
state'i =  (Enter a, as, rs, us) 
P2 =  max(pi,p2)

tid2 e^TSO p '2 statc2
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When the black hole is updated all of the blocked threads are added to the work pool:

(BH3)

 ̂ \
Return^ c ws {) () asu, : us tid P {tp, spk) h a

[rsu 1
such that /i[a„ BlackHole tid i'S]

Return^ c ws as^ rsy, us tid P {tp', spk) h' 0

where tp' =  q^ppend ts tp
h' =  h[au !->• {vs T ^  c vs, ms)]
length vs =  length ws
vs is a sequence of arbitrary distinct variables

Terminating a thread

Once a thread has evaluated and updated its target closure, the EndThread continuation, 
pushed by the SCHEDi rule, will be invoked:

(e n d _ t h r e a d )
Return^ c ws {) {EndThread) 0 tid P wp h a
GetThread {) 0 0 tid p wp h a

The memory occupied by the thread’s TSO closure will eventually be reclaimed by the 
garbage collector, so explicit de-allocation is not necessary.

Scheduling

Whenever a thread terminates, blocks on a black hole, or a timer interrupt occurs (see 
section 6.2.2), a new thread is selected from the current work pool (see also SCHEDi):

(SCHED2)

GetTbread {) () () tid p (tp, spk) h a
such that {^empty tp) /\ {max-prob spk < p')

code as rs us tnewid p' {tp',spk) h' a
where {tnewid^p'-,tp') =  dequeue tp

h' =  h[tnewid TSO p' {code, as, rs, us)]

The dequeue function determines the style of scheduling amongst equal-priority threads, 
whether it be FIFO/LIFO (first/last in, first out) [Hammond and Peyton Jones, 1992, 
section 5.2], or round robin [Trinder et al., 1996, section 2.2]. Parrott [1993] outlines a 
system which combines risk aversion and stochastic learning which significantly outper
forms a random schedule for most workloads. If no work is available, the processor busy 
waits:

GetThread {) 0 0 tid p wp h a
(SCHED3) such that empty tp 

GetThread {) 0 0 tid p wp h a
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Initialisation and termination

The initial state of an an n-processor system is defined as follows:

(in it)

G = (P i,.. . , Pn) wp h a
where

= {GetThread, (),(),(),  tnone, 0)
wp = {tp, {)) where tp =  {{tmain, 100))

m̂air1 1—y TSO 100 iyEfiteV
ŝtatus '  ̂ A c t iv e

h = ai 1-̂  (usi 7Ti v s i  ->• expi,a  usi)

!-)■ {vSn vr„ VSn expn- , 0  VSji
9i ^  ai, 1

a = < ' ' ' 1

9 n 1—>• flu J

Note that all of the processors will be in competition to steal the main thread of compu
tation. This is acceptable in a GMSV system as all messaging is implicit and guaranteed, 
so there is no risk of losing important data due to one processor starting before another 
has finished its initialisation.

The computation is finished whenever the main thread terminates:

(FINISHi )
Return^ c ws {) {Finish) 0 tmain 100 wp h a
Stop {) {) 0 tmain 100 wp h' a

where h' =  h[astatus Stopped]

By signalling that the computation has ended (via the flag stored at agtatus)-, the other 
processors can finish what they’re doing and exit cleanly (using, for example, the broadcast 
tree outlined in section 6.3.2). As heap allocations are a frequent occurrence, and are also 
comparatively expensive operations, they provide a convenient place to place to check the 
current status:

(FINISH2)

Eval ( let  bindings exp) p as rs us ti  ̂ p wp h a

such that h[astatus Stopped]

Stop as rs us tid p wp h a

9.2.3 Compilation rules

The following sections outline the changes that need to be made to the compilation rules 
presented in chapter 8 to support the new operational rules.

The register map

The register map is shown in figure 9.3 and is superficially similar to that used in a purely 
sequential context (see section 8.3.2). The status register, Sts, caches the address Ustatus 
as it is used in every le t  expression. The work pool is accessed infrequently, and so there 
is no need to waste a register caching its static address. Note that replacing both Hp and 
HpLimit with just HpVar is an optimisation that is only possible at the assembly-language 
level.
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register 1 22 23 24 25 26 27 28 29 30 31

use general
purpose Ret Sts Np StkA StkA

Base StkB StkB
Base Tp HpVar

Ret stores the address of the return handler for the current evaluation 
(which may be a generic update-handler, when evaluating a polymor
phic thunk).

Sts stores the address agtatuŝ  which is used during heap allocation to 
determine if the computation has finished.

Np points to the closure which is currently being evaluated, and is used
to access an expression’s free variables.

StkA points to the next available slot on the A stack. This is used in 
conjunction with StkB to detect stack overflow.

StkABase points to the lower limit of the A stack, and is used to detect stack 
underflow.

StkB points to the next available slot on the B stack.
StkBBase points to the upper limit of the B stack, and is used to detect stack 

underflow.
Tp points to the current thread’s TSO closure, and, can be used, indi

rectly, to access the thread’s priority.
HpVar replaces both Hp and HpLimit by pointing to the address where the 

actual heap pointer is stored. This extra indirection is necessary as 
any processor can extend the heap at any time, so caching the last 
value seen by the local processor is not safe. The heap limit is stored 
in the address directly after that heap pointer, and can therefore also 
be accessed via the HpVar register.

Table 9.3: The register map for compiling speculative expressions
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Stack Info Size Prev.
C losure Table Stack

Black
Hole

Stack B

TSO
Closure

Info Priority Stack Registers 1 to 25 StkA StkA StkB StkB Program
Table Limit Limit Counter

Info
Table

Thread Blocked
Threads

Figure 9.5: Closure layouts for a speculative GMSV system 

Closure layout

Figure 9.5 shows the layout of the TSO and BlackHole closures, plus a heap-allocated 
stack object required to support dynamic thread creation. Note that there is no need to 
store the Tp or HpVar registers in the TSO closure, as the information they contain are 
trivial to compute. Furthermore, the standard garbage collection mechanisms can be used 
to reclaim both TSO closures and the associated stack space.

Communication and synchronisation

The main consideration with regards to synchronisation is access to the shared resources, 
namely the work pool and the global heap. All access to the former will have to be 
mutually exclusive[Axford, 1989, chapter 3], while only updates to the latter will need to 
be controlled. To illustrate the basic mechanisms, figure 9.6 shows the instruction sequence 
used to implement the heap allocation. As mentioned in section 6.2.4, specifying this level 
of detail in the operational rules would severely limit their usefulness.

New compilation rules

One new rule needs to be introduced to handle the le t  spec expression, and this is a 
modification of the le t  rule (see rule 3 in appendix H). The main difference between the 
two is that after creating the closure, the le t  spec rule generates code to add the closure’s 
address to the spark pool:

L E T S P E C CEval (letspec prob V =  e i  62) p  code r s  es c o n ts  p e n d in g  b a

CEval e-2 p ' cod e' r s  es c o n ts  p e n d in g ' b a

w h e r e p' pmoves \
code = code  -H- m o v e s  -H- a d d s p a r k
p e n d in g ' = { ( r ,  e i ) }  U p e n d in g

{̂TflOV&Ŝ pmoves') — a llo c a te -c lo s u r e  v e\ p a

VOTSdead — ^ V [ e i ]  \  ^ V [ e 2 ]

Note that code for checking the status flag has already been added to the heap-allocation 
routine, so there is no need to update the le t  compilation routines to implement the
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system call inputs outpnts
a llo c K21 bytes required 

R22 return address
R21 address of the allocated 

memory
R20 corrupted 
R19 corrupted

labdaiioc ■ / /  standard entry point
load {regsts),regiQ / /  load the current status
branchx<Q r eg label exit / /  terminate the computation if necessary
load +  4(reg(iipyg^), regiig / /  load the heap limit
loadiinked {’’'egHpVar),reg2Q / /  (link) load the cnrrent heap pointer
subtract regig,reg2 o,regig / /  has there been a heap overflow
branchx<o '̂ (¡gi9 ,labelQQ / / i f  so, invoke the garbage collector
add reg2 i,reg 2 o,regig / /  otherwise, increase the heap pointer
storeiinked {f'G.gjjpVar) / /  attempt to update the heap pointer
branchx=o regi^, labelaiioc / /  retry if the allocation failed
move regiQ,reg2 i / /  otherwise, set the result parameter
jump reg22 / /  return to the caller

Figure 9.6: Heap allocation in a GMSV system

FINISH2 STG-mactiine rule. Figure 9.7 shows a typical code fragment generated by the 
LETSPEC compilation rnle for the f ib  benchmark (see figure 9.8).

Garbage collection

There axe two issues related to garbage collection that need to be considered in a GMSV 
system. Firstly, the root set of the collector (see section 6.3.3) should be extended to 
include the thread pools, and scavenge and evacuation routines must be specified for the 
new TSO  and BlackHole closures. Secondly, and more difficultly, a strategy for co
ordinating the collection phase needs to be adopted. A simple, yet inefficient, approach 
is for each processor to enter a barrier (see section 6.3.2 or [Almasi and Gottlieb, 1993]) 
once it detects that the heap has been exhausted. As heap allocation is inevitable, all 
processor must eventually enter the barrier. When all of the processors have entered the 
barrier, one processor garbage collects the entire memory as for a uniprocessor machine, 
and afterwards computation continues as before (see section 6.3.3 for further details). 
More complex schemes [North and Reppy, 1987; Lester, 1989] are beyond the scope of this 
thesis.

9.2.4 Performance

The STG'-equivalents of the parallel (conservative) benchmark programs, f ib  and queens, 
are shown in figures 9.8 and 9.10 respectively. Both are derived from the optimised se
quential version presented in appendix B (see sections B.2 and B.4 for further details).

The fib  benchmark

The fib  program is often described as embarrassingly parallel as it produces a large num
ber of tasks related via a simple tree structure. As such, it is often used to assess the
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Linfo_table_fib.wrk:

load.address +8(R0), R21; 
branch_link Lalloc, R22; 
load_high Linfo_table_fib_n_less. 
load_address +0(R20), R20; 
store R20, -8(R21); 
store RI, -4(R21); 
branch_link Lspark, R22;

// header for fib.wrk 
// set the heap-space required 
// allocate the space 

2(R0), R20;
// load the spark’s info table 
// store the info table 
// store the FV n ’_less_2 
// add the spark to the pool 
// footer of fib.wrk

Linfo_table_fib_n_less_2:

dw Lupdate.Int;
dw Linfo_table_fib_n_less_2;
dw Linfo_table_fib_n_less_2;

load_linked +0(RNp), RI; 
load +4(RNp), R2; 
load_high Linfo_table_BH(RO), RI; 
load.address +0(R1), RI; 
store.linked RI, +0(RNp); 
branch.xOO RI, Lfib_n_less_2; 
branch.link Lspin, R22; 
load (RNp), RI; 
jump RI;

// update routine 
// fast entry 
// stnd entry

// black hole the closure 
// recover n ’_less_2 
// load the black hole’s info- 
// table (high+low bits)
// lock the closure 
// continue if successful 
// random delay 
// get the info table 
// re-enter the closure

Lfib_n_less_2:

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack_overflow; 
store RStkABase, +16(RSt]iB); 
store RStkBBase, +12(RStkB) 
store RNp, +8(RStkB)
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStScBBase; 
load_high LUpdateInt(RO), RRet; 
load_address +0(RRet), RRet; 
move R2, RI; 
brcinch Lfib.wrk +12;

// decrease the B stack frame 
// check for stack overflow 
// overflow error heindler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector 
// clear the A stack 
// clear the B stack 
// select the integer update- 
// routine
// load RI with n ’_less_2 
// fast-call fib.wrk

Figure 9.7: Example code generated by the LETSPEC compilation rule
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___STG' code______________________________________________________
value = [] \r □  -> Int [15#] ; 
main = [] \u □  -> fib value ;

fib = [] \r [n] -> case n of { Int n ’ -> fib.wrk n ’; }; 
fib.wrk = □  \r [n’] -> case leint# [n’, 1#] of 
{ True -> Int [1#];

False -> let# n ’_less_l = minusint# [n’, 1#] in
letpcir fib_n_lessl = fib.wrk n ’_less_l in
let# n ’_less_2 = minusint# [n’, 2#] in
letpcir fib_n_less2 = fib.wrk n ’_less_2 in
case fib_n_lessl of -[ Int fib_n’_Iess_l ->
case fib_n_Iess2 of -[ Int fib_n’_Iess_2 ->
let# sum_2_fibs’ = plusint# [fib_n’_less_l, fib_n’_less_2]
let# result = plusint# [sum_2_fibs’, 1#]
in Int [result]; 1; 1;

};

Figure 9.8: The parallel STG' f ib  -O benchmark

performance of an implementation under near optimal conditions. The tasks are very fine 
grained, typically involving just two additions. If necessary, the grain size of the compu
tation can be controlled by restricting the depth of the tree. The relative speedups for the 
f ib  program running under the GMSV STG machine are shown in figure 9.9. The curves 
show that the system achieves near linear speedups for the larger problem sizes. For the 
smaller problem sizes, the amount of available work is sufficiently small that the speedup 
reaches a plateau after a fixed number of processors [Gustafson, 1988].

These results are consistent with those observed by Mattson Jr. [1993a, section 5.2, 
pages 93-94] for larger problems sizes. The problem sizes examined here had to be re
stricted to fifteen and nnder in order for the simulations to complete on a standard desktop 
machine (a 266Mhz PII PC with 65M of memory, running Windows NT 4.0, and using 
GHC 4.03). Each run completed in less than a minute. There is no reason why larger 
problem sizes could not be attempted on a more powerful machine.

The relative speedups for the unoptimised version of the f ib  program were very sim
ilar to those for the optimised version, and even tended to be slightly better due to the 
increased grain size of the computations. However, there can be no justification for using 
snb-optimal algorithms when evaluating parallel performance.

The queens benchmark

The queens benchmark is more demanding than the f ib  program described in the pre
vious section. Firstly, far fewer tasks are generated: f ib  15 creates approximately 2000 
tasks, while queens 6 generates jnst over 150. Secondly, the dependencies between threads 
is more complex, with the output of one task typically depending upon the outputs of a 
number of other tasks. Finally, the grain size is variable and difficult to control. Un
surprisingly, this program is often nsed to demonstrate an implementation’s performance 
under more challenging conditions. The relative speedups for the queens program running 
under the GMSV STG machine are shown in figure 9.11. The curves start almost linearly, 
but then quickly reach a plateau due to the limited number of tasks available.

Looking at the results taken by Mattson Jr. [1993a, section 5.2.2, pages 90-93], the 
initial parts of the curve are similar. However, with Mattson’s implementation the speedup 
drops off with increasing processors after the maximnm speednp has been achieved. The
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Fib -0

Figure 9.9: Relative speedups for the conservative f ib  -O benchmark

STG' code .
main = [] \u [] -> nsoln.wrk int 5#;

gen.wrk = [] \r [nq n] -> 
case n of {
0# -> nil_nil ;

-> let# dec_n’ = minusint# [n, 1#] in
letstrict bs = gen.wrk nq dec_n’ in
let { qs = [nq] \u [] -> const. Int. enumFromlo one nq; } in 
gen_comprehension nq qs bs };

gen_comprehension = [] \r [nq one_to_nq dss] -> case dss of 
{ Nil -> Nil [] ;

Cons d ds -> letpar a = gen_comprehension nq one_to_nq ds 
in g a d nq one_to_nq;

};

Figure 9.10: The core of the parallel STG' queens -O benchmark
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Queens -0

number of processors

Figure 9.11: Relative speedups for the conservative queens -O benchmark

STG results, however, remain perfectly flat. The reason for this discrepancy is due to 
the STG simulation not modelling resource contention (caused by the locking mechanisms 
described in section 6.2.4). The RISC simulation, on the other hand, does model the 
first-order effects of locking, and figure 9.12 compares the STG and RISC speedups for 
queens 3.

9.2.5 Extensions

Unlike the sequential STG machine, the speculative rule set does not detect erroneously 
cyclic definitions of the form:

_  STG' code____________________________________________________________
X = [] \u [] -> const.Int.+ x one;

One solution would be for the bhi to record the id of the thread responsible for evaluating 
a black-holed closure. The BH2 rule could then check if the newly blocked thread is directly 
or indirectly responsible for the evaluation upon which it is waiting. However, the simplest 
solution would be to debug the algorithm on a sequential implementation which can easily
detect the presence of such cycles.

The rule set also uses a very crude priority-upgrade mechanism (as did Mattson’s 
implementation), whereby a blocked thread can boost the priority of a speculative thread 
currently evaluating the associated thunk (see rule BH2). Currently, this increase in status 
is permanent. Mattson Jr. [1993a, section 3.2.4, pages 54 56] proposes a number of 
alternatives, including tracking the stack depth at which the speculative task entered the 
thunk. While the STG animation would provide an excellent environment for testing these 
strategies, none of Mattson’s benchmark programs suffered due to the false upgrading of 
speculative threads.
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Figure 9.12: Comparing the STG' and RISC animations for the queens -O benchmark

9.2.6 Assessment

Overall, despite being the first case study, the development of the static semantics, STG- 
machine rules and corresponding animation were straightforward extensions of their se
quential counterparts. The compilation and RISC animations were more problematic, but 
this was mainly due to the large number of support routines that needed to be devel
oped and tested (subsequent studies simply made use of this groundwork). While each 
new phase of the development process introduced additional details and complexity, the 
tools and descriptions developed during the previous phase provided a strong foundation 
upon which to build. The animations helped to test the correctness of the semi-formal 
specifications, and also provided valuable insight into the system dynamics. Indeed, the 
operational specihcation and STG animation were developed iteratively (as was the case 
with the sequential compilation rules and the RISC compiler described in chapter 8).

As previously mentioned, the development of the RISC animation was probably the 
most time consuming phase of the development. Fortunately, the STG animation was 
sufficiently accurate to allow different strategies to be compared and tested, such that 
only the successful candidates needed to proceed to the final (expensive) phase. However, 
the RISC animation does not model cache effects, and so can only be used as a rough 
guide.

The performance results obtained from both the STG and RISC simulations broadly 
agree with those observed by Mattson Jr. [1993a], although both simulators are only 
capable of handling significantly smaller problem sizes. The primary limitation of the 
STG simulations is that they ignore resource contention, and therefore do not exhibit the 
classic degradation of performance with increasing numbers of surplus processors.
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abstract
syntax exp — > letpar simpleJbind exp \ ■■■ parallel evaluation

free
variables

PVea:p[letpar var =  exprhs expbodyi 9
=  J^exvlexprhsi 9 U i^exp„„A ^xpl g \ {vav})

denotational
semantics

[letpar var =  exprhs expbody] P 
=  let e =  Slexprhsj p in i f  (e =  -L)

then J_
else £\expbody\ {p ® {var ^  e})

type
inference

simplebind
TE  h simplebind : {var, x  tti . . .  tt̂ ) 
LVE =  {var i-> x  ’’’i • • •

exp
TE  © LVE  h exp : Tg™

LETPAR-EXP ---------- --------------------------------------------------
TE  h letpar simplebind exp :

Figure 9.13: The static semantics for the GUM case study

9.3 GUM: Graph reduction for a Unified Machine

GUM [Trinder et ah, 1996] (Graph reduction for a Unified Machine) is a DMMP imple
mentation of Haskell, using the classic par operator to identify parallel threads. GUM is 
built on top of the PVM communication system [Beguelin et ah, 1993]) and is therefore 
portable to a range of architectures, including both GMSV and DMMP machines. No
tably, absolute speedups over the best sequential compilers have been observed for both 
high-performance shared-memory machines and clusters of workstations operating over 
Ethernet.

9.3.1 The static semantics

The static semantics are very similar to those presented in the previous case study, and 
the necessary details can be found in figure 9.13.

9.3.2 The operational model

This section presents a state-transition model of the asynchronous message-passing fea
tures of GUM. The abstract states for the processor, P, and communication system, S, 
are shown in table 9.4, and the relationship between the code field and the new rules is 
illustrated in figure 9.14. An overview of the rules can be found in table 9.5.

Sending and receiving messages

Unlike the previous study, all communication has to be explicit declared in a DMMP 
system. The model used here is based closely on that presented in section 6.2.5: all 
sends are asynchronous, and all receives are blocking. This section presents three of the 
STG rules -  SEND, RECV , and BCAST. These provide convenient abstractions for use 
by the other rules, hiding the details of the actual network interface. Furthermore, by 
centralising access to the network, it is possible to modify or enhance the communication 
system without changing the other rules. For example, it would be straightforward to 
re-implement the GUM rule set using a shared-memory implementation of the messaging
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specification description
G (P l , . . . ,Pn)  5 a collection of processors, Pi, which 

have to communicate via the message
passing system, S.

P {code, . . .  ,/i, tid,wp,a) the standard STG abstract state ex
tended to include support for a local 
work pool, wp (see table 9.7 for the 
rcp-related definitions).

S {buf fe r  s\ ■ ■ ■ buf fe r  Sn, network) the message-passing system, which 
comprises the processor-network in
terfaces and a model of the commu
nication hardware.

buf fers {bufferin, bufferout) the input and output message buffers 
for a single processor

buf fer queue of (i, message) i is either the source or destination of 
the message

probe bufferin message search for an entry that matches the 
message pattern

code Send message code sends the specified message and then 
invokes the continuation code. Ta
ble 9.6 details the messages used by 
the GUM system.

Receive message code indicates the arrival of a message, 
which interrupted the execution of the 
specified code.

Table 9.4: State components of a message-passing system
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category rule description
evaluation PAR evaluates the le tp a x  expression, creating new 

sparks for use by the scheduler.

communicat ions
SEND send a message to a remote processor.

BOAST broadcast a message to all other remote processors.
RECV receive a message from a remote processor.

synchronisation
BHj black holes thunks upon entry
BH2 suspends the current thread upon entry to a black 

hole
BH3 update a black hole.

UNBLOCK re-activate suspended threads and blocked Fetch 
messages.

scheduling
SCHEDi converts a spark to a thread.
SCHED2 schedules an existing thread.
SCHED3 busy-wait for new work.

load
balancing

FISHi request work from a neighbouring procesor.
FISH2 forward a work-request message to another 

processor.
FISH3 receive a work-request message which originated 

from the local processor.

SEND_WORK send surplus work to a remote processor.

RECV-WORK receive work from a remote processor.
R E C V ^C K receive acknowledgment of the safe arrival of a 

work packet.

partitioning
FETCHi request the value of a remote closure.
FETCH2 return the value of a local closure to a remote 

processor.
FETCH3 receive the value of a closure from a remote 

processor.
FETCH4 suspends a Fetch message when requesting the 

value of either a BlackFiole or FetchMe closure.
initialisation/
termination

INIT static partitioning of the STG machine state.
FINISHi signal the end of the computation.
FINISH2 detect the end of the computation.

Table 9.5: Overview of the GUM STG rules
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LETPAR

Enter

Unblock

Figure 9.14: The relationship between the GUM rules and the code component

rules. Another possibility would be to piggy-back status information onto all outgoing 
messages, as discussed in section 6.3.3.

As shown in table 9.4, the network-interface comprises two buffers per processor, 
{binibout)i- The first contains all messages that have been delivered to processor i but 
have not yet been received (messages are added by the network and removed by the pro
cessor). The second contains all outgoing messages from processor i that have not yet 
been injected into the network (messages are added by the processor and removed by the 
network). The SEND rule, therefore, manipulates bout, and the code continuation indicates 
what actions should be taken after the message has been sent:

(sen d)
Send message code as rs us h lid wp a {bin. bout)i

= >  code as rs us h lid wp a {bin. l̂ out)i
where =  enqueue message bout

The BCAST rule is similar, but sends a copy of the specified message to all of the other 
processors:

(b o a s t )

Broadcast body code as rs us h wp a {bin,
= >  code as rs us h tid wp a {bin,
where b'„„-f =  enqueue messages bout

=  (V j £ { ! , . . . ,  n} A j {i,j,body))

Ooutii
^ o u t ) i

-’out
messages

As stated previously, all receives are blocking. Rather than committing to a poten
tially infinite delay, the GUM architecture continually polls the network to determine if a



165

specification description
message {^source, j destination i body) in addition to its content, a mes

sage also records both its sender and 
receiver.

Fish age originator request work from another processor. 
The age field denotes the number of 
times the message can be forwarded 
before aborting the request and re
turning it to the originator.

Schedule aiocal {closure, mask) send work to another processor. The 
mask differentiates between addresses 
and literals contained within the free 
variables of the closure.

body Ack aj-emote Oiocal acknowledge receipt of work.
F etch dremote /̂oca/ request the value of a closure stored 

on a remote processor.
Resume aj-emote {closure, mask) return a value requested by a Fetch 

message.
Exit shutdown the system when either eval

uation is complete or an error has 
occured.

Table 9.6: Messages used by GUM

message has arrived. If this is the case, then it is safe to invoke the receive operation:

(recv)

code as rs us h Ud wp a {bin, Kut)i
such that probe bin wild—card

Receive message code as rs us h tid wp a {b[n, bout)i
where {message, b{ )̂ =  dequeue bin

In effect, this rule will be triggered as soon as a message arrives, thereby overriding the 
normal sequence of transitions (this is analogous to a microprocessor interrupt handler -  
see section 6.2.3). GUM then invokes a specialised message handler, based on the type of 
the message received (table 9.6 lists the various message types). The handler is passed the 
code continuation to allow it to resume the interrupted task (if appropriate). The GUM 
message handlers (and generators) are as follows:

category message send/ bcast rules RECV rules
load
balancing

Fish FISHi, FISH2 SEND_WORKi, FISH2 , FISH3

Schedule SEND_WORKi RECV-WORK
Ack RECV_WORK RECV_ACK

remote
references

Fetch FETCHi FETCH2

Resume FETCH2 , UNBLOCK FETCH3 , FETCH4

termination Exit FINISHi FINISH2

The three communication rules are widely used by the rest of the GUM rule set, as
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(letpar)

Eval (letpax v =  e\ 6 2 ) p as rs us h wp a bi
Eval 62 {p ® {v  a}) as rs us h! tid wp' a bi

where h' =  /i[a i-> create-dosure ei p]
=  insertgpark a wpwp

(schedi)

GctThread () () () h tid sp a rk s / )  <7 b{
Enter a () rs () h t̂ iĝ _id {̂ {)threads■> ^parks ,/) <7 b{

where rs =  {EndThread)
(a, sparks') =  dequeue sparks
h' =  h[tnew-id TSO initd^so-state]

(SCHED2)

GetThread {) {) {) h tid {threads, sparks, f )  a bi
such that -¡is—empty threads

code as rs us h tnext {threads', sparks, f )  a bi
where {tnext, =  dequeue threads

{TSO {code, as,rs, us)) =  h t'̂ d

(SCHED3)
GetThread as rs us h lid wp G bi

such that is-empty wp and is.-fishing wp
GetThread as rs us h lid wp a bi

Figure 9.15: GUM thread-management rules: scheduling

shown by the following table:

action associated rules
SEND FISHi, FETCHi, UNBLOCK
RECV FETCH4, FINISH2
SEND & RECV FISH3, SEND_WORKi, RECV-WORK, RECV-ACK, FETCH2
BCAST FINISHi

The rules that both send and receive messages are akin to Culler’s active messages [Culler, 
Goldstein, Schauser and von Eicken, 1992].

Scheduling

As with the previous study, GUM uses the evaluate-and-die thread model, and therefore 
the work-pool definitions are very similar (see table 9.7). Note, however, that each proces
sor has a local pool, as opposed to the centralised structure used by the speculative system. 
Due to their similarity with the rules described previously, the GUM scheduling rules are 
presented together in figure 9 .1 5 . Note that the SCHED3 busy-wait can only be broken by 
the the RECV_WORK rule. One alternative to this busy-wait would be to perform a local 
garbage collection.

Synchronisât ion

Again, as with scheduling, the synchronisation rules are very similar to those used in 
the previous case study (see figure 9.16). The main difference occurs with the BH3 rule, 
which is responsible for updating a shared closure. In addition to releasing any blocked
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specification description
code GetThread schedule the next thread to be run 

from the work pool.
wp {threads, sparks, fishing) the tasks currently available to the 

system.
threads queue of tid an unordered collection of threads.
sparks sequence of a pointers to closures whose values will 

be required as part the main compu
tation, and which may be evaluated in 
parallel with the main thread.

fishing true false indicates whether the system has is
sued a work request to a neighbour 
and is awaiting a reply.

tid a a thread’s identifier is the address of 
its heap-allocated state object, TSO.

closure BlackHole blocked used to replace thunks once evalua
tion begins, ensure there is no dupli
cation of work. Records the ids of any 
threads and fetches which are awaiting 
the final value of the closure.

TSO {code, as, rs, us) represents the state of a thread, which 
comprises its instruction sequence, 
and the three standard stacks.

continuation EndT bread terminate the current thread.
Finished, terminate the entire computation.

Table 9.7: State components of GUM’s work pool
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(BHi)

Enter a as rs us h[a 1-^ (us u —>■ e, ms)] tid wp a bi
Eval e p 0 {) us' h[a BlackHole bk^mpty] Ud wp a bi

where p = {ui !-)■ mi, . . .  ,u„ 1-^ Wn)
us' (a, as, rs) : us
(Vi,Wi) = {vs \i,ws\ i)
b^empty = { { )  threads 1 {) fetches) blocked

(BH2)

Enter a as rs us h[a BlackHole bk] tid wp a bi
GetThread as rs us h'[a i->- BlackHole bk'] tid wp a bi

where h' =  h'[tid TSO (Entera,as,rs,us)]
bk' =  enqueuethread tid bk

(BH3)

Return^ c ws () ()
O'Ul

as-ii^
\rsu

such that h[au BlackHole blocked]
unblock CtSqi V Si,

tid wp a bi

tid wp a bi
ws)

h' =  h[a„ !-)• {vs T ^  c vs, rus)]
length vs =  length ws 
vs is a sequence of arbitrary distinct variables

Figure 9.16: GUM thread-management rules: synchronisation

threads, it must also reply to any blocked Fetch request. This is handled by the Unblock 
mechanism, which is described in greater detail in the the remote-referencing section.

Load balancing -  an overview

As discussed in section 6.3.3, GUM uses a passive load-balancing strategy: when a proces
sor runs out of work, it sends a Fish message to one of its neighbours requesting additional 
work. If the receiver has any spare work then it packages it up and returns it. Figure 9.17 
shows the necessary interactions for an unemployed processor to receive work. If the re
ceiver had no spare work, then the Fish would be forwarded on, until either a suitable 
processor is found or the message becomes stale. Stale messages are returned to their 
originator, as shown in figure 9.18. In summary, upon arrival of a Fish message, there are 
four possible outcomes:

1 . there is sufficient local work, with at least one spare spark available, which is therefore 
packed and returned to the source of the fish message, (rule SEND_WORk)

2. there is no work, but the fish message is not stale, in which case it is forwarded to 
another processor, (rule FISH2)

3. the out-of-work processor receives its own fish message, (and assuming no local work 
has become unblocked) then the fish is regenerated after a suitable timeout period, 
(rule FISH3)

4. there is no work and the fish has become stale, i.e. has visited too many processors, 
in which case a stale-fish message is returned to the source of the fish message, (rule
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Pi

code

1. send a work-request message
2. wait until an answer is received

1. unpack closures
2. send an A ck  message
3. invoke the scheduler

1. create a new thread
2. schedule the new thread

Fishl

Sched3

Schedule 

RecvW ork

Schedl

Enter a

I

Pj
code

Fish

SendWork
1. pack closures
2. send a Schedule message
3. continue with current thread

code

Ack

R ecvA ck

code

1. de-schedule re-send
2. mark packed closures as received
3. continue with current thread

I

Figure 9.17: GUM load balancing: a successful work-request cycle 

FISH2)

The FlSHi, SEND_wORK, RECV—WORK, and RECV—ACK rules form the backbone of the 
load-balancing mechanism and are discussed in the subsequent sections. The remaining 
rules, FISH2 and FISH3, are shown in fignre 9.23.

Load balancing -  asking for work

The load-balancing mechanism is activated whenever a processor becomes idle. This 
situation typically arises because all local threads have either been fully evaluated or are 
currently blocked awaiting the arrival of a remote reference. Also, at the start of the 
computation, only the main processor will have any work (see the INIT rule). The initial 
phases of the evalnation will therefore entail a large number of Fish messages. The rule for 
generating Fish messages is shown in figure 9.19. In the real GUM implementation, the 
Fish message is sent to a random processor, rather than to its right-hand side neighbour 
(the HDG machine employs a neighbour-first strategy [Kingdon, Lester and Burn, 1991, 
section 3.2, page 293].)

Load balancing -  receiving work

Having sent the Fish message, the processor will remain idle until either a Schedule^ 
Resume^ or Exit message is received. The RECV_WORK rule is the handler for Schedule 
messages, and is shown in figure 9.20. Upon arrival of a Schedule message, the sequence 
of events is as follows: the message is nnpacked (see figure 9.21) and the closnre contained 
therein is stored at heap address aiocaf, next, an acknowledgement is sent to the donor 
processor; and, finally, the closnre’s standard-entry method is invoked. When the eval
uation returns, the EndThread continuation will place the system into the GetThread 
mode, thereby re-starting the work-reqnest cycle.
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9.18: GUM load balancing: an unsuccessful work-request

(FISHi)

G etT h rea d  as rs  us h t-id wp a  bi

such that is -c m p ty  wp  and ^ is—fis h in g  wp

S end  req u est G etT h rea d  as rs  us h tid wp' a  bi
where req u est  =  {i, neighbour, F ish )

neighbour  =  1 -|- (i mod n)
wp' =  s e t - f i s h in g  tru e  wp

9.19: Initiating a GUM work-request

/-WORK)

R eee iv e  m essa g e  eode as rs  us h tid wp a  bi

such that m essa g e  =  { j , i ,  S chedule aremote {closu re, m a sk ))

S end  ack code as rs  us h' tid wp' a  bi
where ack  — { i , j ,A c k  aiQ/̂ î aj-pu,gte)

wp =  {threads, sparks, f is h in g )
wp' =  {threads, sparks', fa ls e )
sparks' =  insertgpark o,local sparks
{cHocahh') =  unpack j  c losu re  m ask  h

Figure 9.20: Receiving work from a remote processor
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pack a j  h[a H- {vs 7T xs — exp, res)] =  {data, h')

where h' j h[a H-)- Exported j  closure bkempty], if (̂ r ^  u) 
I h, otherwise

data =  {a, vs 7T xs — exp, mask, ws)
mask =  maski • • • maskn

maski i 0, if h {vs \ i) : u
1 1, otherwise

n =  length vs
bkgrapty ~  iOthreadsi {)fetches)blocked

unpack j  closure mask ho =  {aiocahh'n)
where
h!'̂ n =  K[aiocal {lambda-form, w[- - -  w'J]

_ f (wi,hi-i),
1 {ai,hi-i[ai !->• FetchMe j  Wi hkempty]),

if maski =  0
{hi,w^) otherwise
closure =  {lambda-form, wi - • • Wn)
mask =  maski ■ ■ ■ maskn
bkempty — iOthreadsj {)fetches)blocked

Figure 9.21: Incremental fetching: packing and unpacking Schedule messages

The unpacking process replaces all heap references contained within the new closure 
with local pointers to FetchMe closures. In addition to the main closure, GUM also packs 
some of the “nearby” reachable graph into each Schedule message [Trinder et ah, 1996, 
section 2.4]. This improves the locality of reference, and reduces the impact of the fixed 
overhead of sending the message.

Load balancing -  answering a request for work

When a processor receives a Fish request, and has surplus work, it returns a Schedule 
message containing a thunk for evaluation on the unemployed processor:

(SEND_WORKi)

Receive message code as rs us h tid wp a bi

such that message =  (ji,i,F ish age origin).
and Ms-emptysparks wp

= >  code' as rs us h' tid wp' a bi

where code' = J send—work, 
1 retry.

if (tt ^  u) 
otherwise

send-work = Send work code
work = {i, j. Schedule a data)
{data, h') = pack spark j  h
{vs TT xs —t e, ws ) = h spark
{spark, wp') = dequeucspark wp
retry = Receive message code
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(rECV-ACk )

Receive message code as rs us h tiii wp a bi

such that message =  {j,i,A ck  aremote o-iocai)
and h[aiocal Exported j  thunk blocked]

where code' =

code' as rs us h' tiii wp a bi 
Send fetch code, if ->is-empty blocked 
code, otherwise

h — [̂ /̂oca/ ’  ̂EetchAde j  r̂emote blocked] 
fetch =  {i, j. Fetch Uremoie Oilocal)

Figure 9.22: Receiving acknowledgments for the safe-axrival of Schedule messages

The pack routine converts the local thunk into a form suitable for transmission (see fig
ure 9.21 for details). Furthermore, to avoid duplicating work, pack will convert thunks 
into Exported closures. This is a temporary measure until the destination processor ac
knowledges receipt of the Schedule message. If the message is lost, or the recipient cannot 
unpack the message for any reason, the original closure can be recovered.^ Assuming that 
nothing does go wrong, the acknowledgement is handled by rule RECV_ACK, as shown in 
figure 9.22.

Representing and requesting rem ote references

Values stored on remote processors are represented by FetchMe closures [Trinder et al., 
1996, figure 2, section 2.3]. The related STG definitions are show in table 9.8. Upon entry 
to a remote-reference, the processor will send the owner a Fetch request, and suspend the 
current thread pending arrival of the value. Figure 9.25 shows these interactions, which 
are initiated by the FETCHi rule, shown in figure 9.24.

How are these remote references created in the first place? There are three main 
sources: the partitioning of the top-level bindings as specified by the INIT rule; closure 
migration as a result of a Schedule message; and the directed allocation of dynamic values 
by, for example, para-functional Haskell’s on expression [Mirani and Hudak, 1995, section
4].

Replying to a Fetch request

The reply to a request for a local value is very similar to that used to send work to an 
unemployed processor (see the send_ w o r k  rule). Essentially, both messages contain a 
packaged closure, although Schedule messages will contain thunks, while Resume mes
sages will typically contain closures in head-normal form (i.e. they will be re-entrant, and

^Mattson’s grey hole [Mattson Jr., 1993a, figure 4.3, page 79] is another example of a reversible update.
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(FISH2)

Receive message code as rs us h tid wp a bi

such that message =  (j, Fish age origin) 
and is_emptysparks wp

= >  Send fish' code as rs us h tid wp a hi
where fish' =  [  {i, 3 , Fish {age +  1) origin), ii age <  agegtaie 

1 {i, origin, Fish age origin), otherwise 
j  =  1 +  [i mod n)

Receive message code as rs us h tid wp a bi

such that message =  {j,i,F ish  age origin)
(FISH3) and {i =  origin)

= >  code as rs us h tid wp' a bi
where wp' =  set—fishing false wp

Figure 9.23: GUM load balancing: the other FISH rules

specification description
code Unblock blocked code used to re-activate blocked threads 

and Fetch messages upon arrival of a 
remote-closure’s value (also used when 
updating black holes).

closure FetchMe i aremote blocked a reference to a value stored on a re
mote processor

Exported i closure blocked work that has been exported to pro
cessor j  in response to a Fish mes
sage, but receipt of which has not yet 
been acknowledged

blocked {threads, fetches) used to store details of any threads 
and FetchMe messages which have 
become blocked on a closure. When 
the closure is updated, the threads will 
be re-awakened, and replies made to 
the FetchMe messages.

threads queue of tid an unordered collection of threads.
fetches queue of {i, aremote) an unordered collection of FetchMe 

requests

Table 9.8: Representing remote references with GUM
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(FETCHi )

Enter aiQĉ al us h ti¿ wp a bi

such that h[aiQ(̂ al '“ t FetchMe j  ademóte blocked]

= >  code as rs us h' ti¿ wp' a bi
where

h' =  h (̂ locai '  ̂ FetchMe j  blocked
tid TSO {Enter aiocal,as,rs,us)

blocked' =  enqueuet ĵ-gad tid blocked
, _  J Send fetch GetThread, iiis-em pty blocked

 ̂ I  GetThread, otherwise
/etch____ ~  {^1 3̂  Petch Uremoie ®iocai) ___________

Figure 9.24: Handling remote references in a distributed-memory architecture

Figure 9.25: Accessing remote references with GUM
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so their update flags will be r). The following rule handles the packing and reply:

(FETCH2)

Receive message code as rs us h ti¿ wp a bi

such that message =  {j,i, Fetch aiocai ^remote) and (tt ^  r)

= >  Send resume code as rs us h' tid wp a bi 
where resume =  [i, j, Resume ademóte data)

(data, h') =  pack aiocal j  h
_____  {vs TT xs ^  e, ws) =  h aiocal

Remote references — receiving remote values

Upon arrival of the Resume message, the remote-value is unpacked, and the FetchMe 
closure updated with an indirection to the new closure:

(FETC H 3 )

Receive message code as rs us h tj  ̂ wp a bi
such that message =  {j,i, Resume aiocal {closure, mask)) 

and h[aiocal FetchMe j  aremote blocked]
Unblock blocked code as rs us h" tid wp a bi

where h” =  h'[aiocal Ind a']
{a',h') =  unpack j  closure mask h

The Unblock phase is responsible for awakening any threads that were waiting for the 
remote value (there will be at least one, otherwise the Fetch would never have been sent). 
In addition, it also replies to any blocked fetches (the following section detail how this can 
happen):

(u n b l o c k )

Unblock blocked codeo as rs us ho Ud wp a bi
= >  codcn as rs us hn Ud wp' a bi
where wp' = insertthreads threads wp

codck = Send resumck codck \
resume^ = {i, sourcek, Resume ak datak)

pack sourcck hk-i
{sourcek,ak) = fetches ! k
n = length fetches
{threads, fetches) = blocked

The rule for updating shared thunks, BH3 , uses the unblock rule to re-awaken the threads 
and fetches which have been waiting for the local evaluation to complete.

Remote references — requesting black-holed values

Having described the basic mechanism for dealing with remote references, one complication 
remains. It is possible that a processor is asked for a value which is still being evaluated,
i.e. it has been black holed. In this case, the Fetch message is simply added to the black
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holes blocking pool:

Receive message code as rs us h tm wp a bi

(FETCH 4 )

such that message =  {j, i, Fetch ai„cai aremote) 
and h[aiocal BlackHole blocked]

a

where

code as rs us h' wp
h' =  h[aiocal BlackHole blocked'
blocked =  (j) (̂ remote] blocked

When the closure is finally npdated, via the BH3  rnle, the UNBLOCK rule will ensure the 
suspended Fetch messages axe replied to. Figure 9.26 provides an example of this sort of 
interaction.

Initialisation

As discussed in section 6.3.4, GUM replicates all top-level closures on all processors. While 
this is expensive in terms of memory, it does improve locality, thereby avoiding proces
sors becoming inundated with requests for ’’popular” global values. By copying constant 
applicative forms (CAFs [Peyton Jones, 1987, section 13.2, page 224])), there is a risk 
of duplicating work. However, if this should become a problem, it is straightforward to 
re-write an STG' program such that the GAF becomes a local shared value. GUM’s INIT  

rule is shown in figure 9.27.
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Figure 9.27: GUM initialisation

Termination

As with the previous case study, the computation is finished whenever the main thread 
terminates:

(f INISHi )

Returriy  ̂ c ws {) {Finish) 0 h tmain wp a bi
Broadcast Exit Stop {) {) () h' tmain 'wp cr bi

where h' — h[astatus Stopped] _______________________________

However, rather than relying on a global variable to indicate the end of the evaluation, an 
Exit message is broadcast to all other processors:

(FINISH2 )
Receive Exit code as rs us h lid wp a bi
Stop as rs us h lid wp a bi

Distributed garbage collection

The remote-reference mechanisms described in the previous sections completely ignored 
the implications of global garbage collection. While it would be possible to develop a 
distributed collector that could handle this situation, it is likely that it would be horribly 
inefficient. The real GUM implementation provides better support for its global collector 
by maintaining three tables [Trinder, Hammond, Partridge, Peyton Jones and others, 
1996, sections 2.3.1 and 2.3.2]:

GIT the global indirection table identifies all local closures that are globally visible. 

GAi->-LA this maps a remote reference to a local closure.

LAi->-GA this maps local address to their global addresses.

This information allows the collector to identify all global addresses and to efficiently 
determine whether any of them can be reclaimed. While it would be possible to extend 
the GUM model to record this information, it is beyond the scope of this thesis.
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register 1-22 23 24 25 26 27 28 29 30 31

use general
purpose Ret Np StkA StkA

Base StkB StkB
Base Tp HLimit Hp

Ret stores the address of the return handler for the cnrrent evaluation 
(which may be a generic update-handler, when evaluating a polymor
phic thunk).

Np points to the closure which is currently being evalnated, and is used 
to access an expression’s free variables.

StkA points to the next available slot on the A stack. This is used in 
conjunction with StkB to detect stack overflow.

StkABase points to the lower limit of the A stack, and is nsed to detect stack 
underflow.

StkB points to the next available slot on the B stack.
StkBBase points to the npper limit of the B stack, and is used to detect stack 

underflow.
Tp points to the current thread’s TSO closure.
HLimit identifies the maximum extent of the local heap, and is used in con

junction with Hp to determine if the garbage collector shonld be 
invoked.

Hp points to the next word of available memory in the local heap. Al
location simply involves incrementing the pointer and the using the 
space reserved (plus the necessary heap-overflow check).

Table 9.9: The register map for compiling GUM expressions 

9.3.3 C om p ila tion  rules

Developing the GUM compilation rules was straightforward as it primarily involved minor 
modifications to the compilation rules and run-time support developed as part of the 
previous case study. The only significant changes included the addition of a number of 
extra entry points in the info tables (to support packing and fetching), and the integration 
of the message-passing routines. These are discussed in the following sections, and nse the 
register map shown in table 9.9.

Sending and receiving messages

The API for the send, receive, and poll primitives used by the architecture simulator 
are shown in table 7.3. These deal with blocks of words, onto which GUM imposes the 
following structure:

word 0 1 2 3+
content sonrce destination message tag message-specific content

This format is slightly inefficient in that the sender/receiver pair occupies two words, when 
it could be packed into one or two bytes (depending upon the total number of processors). 
However, this change would increase the complexity of the message-handling routines for 
only a small return in space saved. Note that each message is tagged with its type, allowing 
the receiver to efficiently dispatch the message to the correct handler. Figure 9.28 shows
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RISC code .
Lmessage.handlers:

dw Lrecv_Fish; 
dw Lrecv_Schedule; 
dw Lrecv_Ack; 
dw Lrecv_Fetch; 
dw Lrecv_Resume; 
dw Lrecv_Exit;

Lrecv_buffer:

dw 5000; 
data 5000;

LGUM_recv:

branch_link Lpoll, R21; 
branch_x>=0 R22, LGUM_recv_message; 
jump R17;

LGUM_recv_message:

load_high Lrecv_buffer(R0), R22; 
load_address +4(R22), R22; 
load -4(R22), R21; 
branch_link Lrecv, R20; 
load_high Lmessage.handlers(RO), 
load_address +0(R18), R18; 
load +8(R22), R19; 
add R8 , R19, R19; 
load +0(R19), R19; 
jump R19;

// the Fish handler 
// the Schedule handler 
// the Ack handler 
// the Fetch handler 
// the Resume handler 
// the Exit handler

// length of buffer
// temporary storage for messages

// poll the network
// branch if there is a message
// return to the caller

// load the address of the fixed 
// buffer
// load the buffer length 
// call the system recv primitive 

R18; // load the message-hanlder

// extract the message tag 
// calculate the table index 
// extract the handler’s address 
// ...and tail-call it

Figure 9.28: The RISC implementation of the STG RECV rule

the RISC code which implements the operational RECV rule, and the corresponding tags 
are shown below:

message Fish Schedule Ack Fetch Resume Exit
tag 0 4 8 12 16 20

Packing and fetching

The behaviour of the fetching and packing mechanisms is closure-specific. For example, 
the STG FETCH2 and F E T C H 4 rules specify how to fetch standard closures and black holes 
respectively. Rather than tagging each closure, the standard approach to handling closure- 
specific code is to add a new entry method (see section 6.4.3). To this end, figure 9.29 
shows the info table for a standard closure. Note that the pack and fetch methods are 
bundled together with the garbage collection operations (see section 6.3.3). While each 
STG' binding will generate a unique info table (and associated entry code), they can 
share a small collection of GC and communication methods^. Figure 9.30 shows the pack 
operation for handling re-entrant closures.

^The literal- and boxed-counts stored in the main info table make this sharing possible. Given these 
two pieces of information, it is possible to infer the exact layout of the closure.
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Figure 9.29: Layout of the GUM info tables for a standard closure

_  RISC code _ 
/ /
// pack API;
/ /
/ /
/ /

In
R19 return continuation
R2 1 buffer
R22 buffer length

Lpack_reentrant_closure:

load (RNp), RI; 
store RI, +4(R21); 
load +12(RI), R2; 
load +16(R1), RI; 
add RI, R2, RI; 
store RI, (R21); 
add R21, +8 , R21; 
subtract R22, +8 , R22; 
add RNp, +4, R2;

Lpack_re_loop:

branch_x>0 RI, Lfinish_re_pack; 
load (R2), R3; 
store R2, (R21); 
add R2, +4, R2; 
add R21, +4, R21; 
subtract RI, +1, RI; 
subtract R22, +4, R22; 
branch Lpack_re_loop;

Lf inish_re_pack:

jump R19;

Out
RI, R2, R3, k R19 corrupted 
R21 pointer to end of data 
R22 space remaining

// load the info table 
// and store it in the buffer 
// load the number of literals 
// and the number of boxed values 
// find the total size 
// store it in the buffer 
// move the index forward 
// decrement the space remaining 
// point to the free vars

// exit if no more values 
// obtain the next value 
// pack it
// move the index forward 
// and the buffer index 
// decrement the counter 
// and the space remaining 
// cind repeat.

Figure 9.30: The RISC implementation of the pack method for re-entrant closures
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9.3.4 Other message-passing systems

Although a quarter of the 92 r'-STG machine rules involve some form of message passing, 
the abstract state [Hwang and Rushall, 1992, section 3] does not include a communica
tions component. Instead, sending is specified via a (side-effecting) auxiliary function, 
sendMessage, and a dedicated mode handles the implicit reception of each kind of mes
sage. The capabilities of the resulting system are, however, similar to those outlined in 
this section.

The Alfalfa system [Goldberg and Hudak, 1987, section 4.6, pages 106 107] uses three 
types of messages: system messages, containing load information and other administrative 
details used by the scheduling system; reducer messages, similar to GUM’s Schedule, 
except they are sent pro-actively; and storage messages, which are the main component 
of the reference-counting garbage collector, and are generated whenever a reference to a 
closure is either replicated or deleted (GUM uses a Free message to implement a similar 
system.)

Concurrent Clean [Nocker, Smetsers, Plasmeijer and van Eekelen, 1991, section 5.0, 
pages 215-216] uses channel nodes to handle remote references. These are almost identical 
to GUM’s FetchMe closures.

9.3.5 Performance

As with the previous case study, the f ib  and queens benchmarks are used to evaluate 
the performance of the GUM model. Both the STG and RISC animations allows the 
costs of sending and receiving messages to be modified (using the LogP communication 
model [Culler et al., 1993] -  see section 2.2.1). As such, the performance evaluations 
consider the effect of transmission time on the models performance. To simplify the 
presentation of the results, the following categories are used to describe the various costs:

cost description
0-50 very low

50-150 low
150-500 medium

500-k high

As the STG and RISC animations produce very similar results, only those for the STG 
simulation are presented here.

The fib  benchmark

The relative speedup curve for the optimised f ib  15 STG benchmark is shown in fig
ure 9.32 (with medium communication costs). The system achieves a maximum speedup 
of just over two, which compares poorly with the speculative GMSV model (this runs 
approximately eighteen times faster on twenty processors). However, the STG animation 
does exhibit the performance trail off associated with adding surplus processors. With 
the speculative system, only the RISG animation was accurate enough to reproduce this 
phenomena.

Upon further analysis of the animation traces, it quickly became obvious that the work- 
distribution mechanism was stripping processors of their fib _ n _ le ss l and f  ib_n_less2 
sparks, leaving them with just the addition operation. This couldn’t proceed until the two 
sparks were evaluated, so many processors spent significant portions of their time idling. 
The solution was to re-write the f ib  benchmark, resulting in the fib 2  program shown in
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STG' code.
value = [] \r [] -> Int [15#] ; 
main = [] \u [] -> fib value ;

fib = [] \r [n] -> case n of { Int n ’ -> fib.wrk n ’ 
fib.wrk = [] \r [n’l -> case leint# [n’, 1#] of

};

{ True -> 
False ->

Int [1#] ;
let { fib_n_lessl [] \u [] -> let# n ’_less_l = minusint# [n’, 1#] 

in fib.wrk n ’_less_l; 1 in 
let# n ’_less_2 = minusint# [n’, 2#] in 
letpar fib_n_less2 = fib.wrk n ’_less_2 in 
case fib_n_lessl of { Int fib_n’_less_l -> 
case fib_n_Iess2 of { Int fib_n’_less_2 ->
let# sum_2_fibs’ = plusint# [fib_n’_less_l, fib_n’_less_2] in 
let# result = plusint# [sum_2_fibs’, 1#] 
in Int [result]; I; I;

Figure 9.31: The parallel STG' fib 2  -O benchmark

figure 9.31. This simple change ensnres that a processor retains a significant portion of 
the work for itself, irrespective of the distribution mechanism. This produced the speedup 
curves shown in figure 9.32, which exhibit far better scalability than the f ib  benchmark. 
By re-writing the S E N D _ W O R K  rule to retain sufficient local work, it is possible to achieve 
similar results for the f ib  benchmark. However, it is easy to envisage programs where 
this policy would be equally damaging.

The sensitivity of the system to changes in the grain size and ordering is not surprising. 
The communication overheads are sufficiently high such that a spaxk has to represent a 
significant amount of work before it is worth distributing it. It is therefore not surprising 
that there is a significant body of work dealing with estimating the grain size of general 
expressions -  Sands [1990] provides an excellent introduction to this field.

Figure 9.34 shows the speedup curves for fib 2  15 for a range of commnnication 
costs (the key details the message-latency parameter, L). All curves achieve significant 
speedups, with similar results being observed for low numbers of processors. The best 
overall result is obtained when the costs are very low, and performance is only slightly 
inferior to that for the GMSV system. However, the results for the low-cost situation 
are poor when compared to both the medium- and high-cost sitnations. Farther inves
tigation revealed the source of this unexpected result: the load-distribution mechanism. 
The passive load-balancing works well when there is sufficient work available for all of the 
processors. This is the situation in the early and mid phases of the computation, or when 
the number of processors is low. However, as soon as work becomes scarce, a large num
ber of Fish messages are injected into the system. This hinders the processors that are 
performing useful computations. For the low communication costs, more Fish messages 
can be generated and re-spawned within a fixed period than for the mid- and high-cost 
scenario. Table 9.35 lists the total number of messages sent during two particular runs, 
and figure 9.36 histograms the number of Fish messages for a range of costs (each run 
used 15 processors). The figures shows that, on average, a processor will receive over 
ten times the number of Fish messages with low-cost communications. As the overhead 
parameter, o, is comparable for all of the runs (except for the very low cost model), this 
causes the observed poor performance.
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Fib - 0

relative
speedup

Figure 9.32: Relative speedups for the conservative f ib  -O benchmark

Fib2 - 0

relative
speedup

Figure 9.33: Relative speedups for the conservative fib2  -O benchmark
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Fib2 -O (message latency)
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Figure 9.34: The impact of message latency on the fib 2  -O benchmark

message
type

number of messages
L =  50 L =  200

Fish 7020 688
Schedule 217 93
Aek 217 93
Fetch 264 98
Resume 264 98
Exit 14 14

Figure 9.35: Total messages sent during the fib 2  15



185

GUM load-balancing messages -  low transmission costs

Figure 9.36: Communication costs and GUM load-balaning messages
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N Queens

Figure 9.37: Speedups for the queens and queens2 -O benchmarks

The queens benchmark

Figure 9.37 shows the speedup curve for the queens 6 benchmark. The results are worse 
than even those for the unmodified fib  benchmark. As with fib2, queens2 is a modified 
version of the benchmark, which attempts to increase the grain size of the computation 
by strictly evaluating the list comprehensions for the subproblems:

_  STG' code____________________________________________________________
gen_ c omprehens ion’ 

case ds of { 
Nil

= [] \r [nq ds] ->

> Nil [] ;
> letpar tl = gen_comprehension’ nq xs in

let { qs = [nq] \u [] -> const. Int. enumFromTo one nq; } 
let { n = [tl X nq qs] \u [] -> sc.TBSn tl x nq qs; } 
case length v of { Int x -> n; };

in
in

The length method is used to force the computation of the entire list, and therefore plays 
the role of an evaluation transformer, as described by Burn [1991] (see section 2.4.4). The 
speedup curve for queens2 is also shown in figure 9.37, and is almost twice as efficient, 
despite performing some unnecessary work. However, these results are still poor. The 
combination of the low number of available threads and the high degree of interaction 
between them is such that GUM’s unstructured placement and scheduling of tasks is sub- 
optimal. It is likely, however, that increasing the problem size would significantly improve 
the speedup curves -  queens 10 is typically used to for benchmarking real GMSV and 
DMMP implementations. The HDG-machine [Kingdon, Lester and Burn, 1991] is one of 
the few DMMP exceptions, achieving a speedup of just under three for queens 6 on four 
processors. However, as the HDG-machine uses a primitive model of graph-reduction, 
combined with the fast Transputer communication network, any comparison would be 
unfair.
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9.3.6 Assessment

GUM’s operational model is considerably more complex than that of the speculative 
GMSV case study. Fortunately, the scheduling and synchronisation rules from the previous 
study could be re-used after only minor modifications. However, designing and testing the 
load-balancing and remote-reference mechanisms was sufficiently involved that it would 
have been almost impossible without the use of the UML interaction diagrams and the 
STG animation. Using these tools, most of the complexity disappeared, and the tech
niques described in chapter 6 proved satisfactory. Indeed, the animation quickly revealed 
unthought of run-time interactions, and led directly to the development of the FETCH4 
and UNBLOCK rules. Throughout the development, the denotational semantics provided 
reference points against which the operational model could be tested for correctness.

The main limitation with the testing was the problem size that could be handled by the 
STG animation (the RISC animation was used only to confirm that the STG animation was 
producing credible results). While this is a common problem with simulations, the STG 
animation could cope with larger problems sizes if used on a more powerful workstation 
(see table 4.8, which includes sequential results for queens 8). Furthermore, larger problem 
sizes tend to hide the effect of inefficient use of the communication network, and it could 
be argued that small problems are therefore better for debugging performance.

9.4 Para-functional Haskell: data placement

Para-functional Haskell [Hudak, 1991] is the composition of two meta-languages, one for 
defining what is to be computed (Haskell), and the other for specifying how it is to be 
evaluated, i.e. a co-ordination language [Gelernter and Carriero, 1992]. The co-ordination 
operators fall into two categories: data placement, for controlling where the evaluation 
should take place; and scheduling, for specifying the order of evaluation. This case study 
is concerned with data placement, and, more specifically, the on operator.

While para-functional Haskell has only been implemented on a GMSV architecture 
(the Encore Multimax), ParAfl (a pre-cursor to para-functional Haskell, [Hudak, 1988]) 
was ported to the Intel iPSC (DMMP). Both implementations exhibited significant rel
ative speedups [Hudak, 1988, figure 2, page 57] for a matrix-multiplication benchmark. 
The GMSV system achieved almost linear speedup with upto twelve processors, while 
The DMMP implementation managed a maximum speedup of just under three on fifteen 
processors. More recently, Mirani and Hudak [1995] have used monads [Peyton Jones and 
Wadler, 1993] to structure and enhance the communication language. The GMSV imple
mentation (running on a sixteen processor Silicon Graphics Ghallenge) has demonstrated 
relative speedups on a range of benchmarks: matrix multiplication, f ib , queens, and a 
sorting algorithm.

9.4.1 Static semantics

This section looks at the static semantics of a para-functional STG' language. The fol
lowing informal description of para-functional Haskell will serve as the motivator for the 
remainder of the section.

The informal semantics of para-functional Haskell

Para-functional Haskell uses mapped expressions to control the placement (and evaluation) 
of expressions: exp on proc. This declares that exp should be evaluated on the processor
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identified by proc. Consider the following example: 
__para-functional Haskell______________________
let X = f 

= f
2

y = f 3 
f a = a * a
(+ (x on 1) (y on 2)) on 3

The (simplified) allocation of tasks to processors is as follows:

processor task
1 2*2
2 3*3
3 4 +  6

However, the evalnation will still proceed sequentially. Para-functional Haskell used sched 
expressions to spark parallel tasks. As a simple example, /  x  sched Dx, denotes that x can 
be evaluated in parallel with the application /  x. To allow the construction of topologies, 
the self operator returns the id of the local processor:

__para-functional Haskell____________________________________________________
divconq split combine endtest endval = f 
where
f X I endtest x = endval x

I otherwise = combine left right sched DleftIDright 
where (1, r) = split x

left = f 1 on self - 1
right = f r on self + 1

Note that these are virtual topologies, as para-functional Haskell does not provide access 
to the current number of real processors. The run-time system is responsible for the 
mapping between real and virtual processors.

The para-functional STG' language

Having had an informal look at the on, sched, and s e lf  expressions, there are two possible 
approaches to developing an STG' variant. The first would be to preserve the distinction 
between mapping and scheduling expressions, while the second would combine them. Both 
would result in new variants of the le t  expression. However, looking at the limited 
collection of para-functional programs, the on operator never appears apart from the 
sched construct. The second approach was therefore selected, and figure 9.38 shows the 
abstract syntax, and free-variable, and type-inference rules of the letón  expression.

With regards to the s e lf  construct, either an expression or primitive function could 
be used. However, section 5.2 clearly recommends the use an expression, and figure 9.39 
shows the necessary definitions. Note that processor ids are represented by unboxed 
integers, allowing the full complement of arithmetic operators to be used to manipulate 
them. While the type system could have been extended to include a Pid# type, this would 
complicate the specification of virtual topologies for no real benefit.

The new expressions are related to the traditional letpar as follows:

letpar simple-bind exp = l e t ^  pid =  s e lf  in 
letón  pid simple-bind exp
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abstract
syntax

exp = >  letón  atom simpleJjind exp \ ■ ■ ■ task-mapping
expression

free
variables

Vexp[letón  var =  exprhs expbody] 9
— - F V a t o m 9 U •?̂ Vexp[6:̂ Pr/isl 9 ^ 9 \ {uar})

type
inference

atom
TE  h pid : In t^

simplebind
TE  h simplebind : {var, x vri. ..  tt̂ ,) 
LVE =  {var i-)- x  tti . ..

->■ exp
TE  © LVE  h exp : Tgxp

LET ON-EXP
TE  h letón  pid simplebind exp : r̂ xp

Figure 9.38: The letón  expression: abstract syntax, free variables, and type inference

abstract
syntax exp =► s e lf  1 • • • processor id

free
variables .FFexp[self] 5 =  { }

type
inference

exp
SELF-EXP TE  h s e l f  : In t#

Figure 9.39: The s e l f  expression: abstract syntax, free variables, and type inference
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Based on the informal description given at the start of the section, it would appear that 
the s e l f  expression has introduced non-determinism into the language. To avoid this un
wanted sitnation, Hudak [1986] extended the denotational semantics of a simple functional 
language to include the notion of location. Most of the semantic functions are extended 
to take the current processor id as an additional argument:

Denotational semantics

£ le x p \  : Env —> Pid ^  Val

At the start of evaluation, the cnrrent processor is set to zero:

V r o g r a m  Ip rog ra m J : Val
V r  o g r  a m i t y  p e d e d  s  binds\ =  ¿^[letrec b in d s  main] {}en v  %id

The majority of the semantic equations either ignore the processor id, or simply thread it 
through their sub-expressions. Only the letón  and s e lf  expressions actually manipulate 
the new parameter:

¿^[self] p  cp id  

¿^[leton p id  v a r  =  exp rh s ^xp^gdyl p  cp id

cpid
case {£\exprhs\ P cpid') o f  

-L ^  -L
e ^  £{expbodyi p' cpid 

where p' =  p  ® {var i—> e} 
cpid' =  Atom\pid\ p

The following para-functional STG' program, for example, denotes the value Int 0:
_  STG' code_____________________________________________________________
main = [] \u [] -> let# X = self# in

let# right = plusint# [x, int 1#] in
let# left = minusint# [x, int 1#] in
letón right a = let# here = self# in Int [here] in
letón left b = let# here = self# in Int [here] in
const.Int.+ a b;

Execution-tree semantics

In addition to the standard denotational semantics, Hudak [1986, section 5, pages 113-119] 
also provided an execution-tree semantics for a simple para-functional language. Loosely 
based on his work on pomsets [Hudak and Anderson, 1987], the semantics generates an 
evaluation history for the program. However, it does not model sharing within the pro
grams, so the execution path will always be a tree. This history can be visualised and 
used to ensure the operational model and compilation rules are behaving correctly. For 
example, figures 9.40 and 9.41 show the execution trees for f ib  5 and queens 2. Notice 
that the queens benchmark has a significantly more complex and irregular tree than that 
for the f ib  benchmark. It is highly likely that the execution-tree semantics could be re
fined to provide programmers with a tool for identifying and controlling potential parallel 
tasks.

The execution-tree semantics, T[exp], builds upon the denotational semantics, using 
it to determine which case alternatives will be selected during evaluation. Figure 9.42 
shows the additional domain equations used by the semantics. A behaviour comprises
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Figure 9.40: The execution tree for f i b  5
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Figure 9.41: The execution tree for queens 2

Beh = Etree x AbsBeh Behaviours
Etree = Pid Simple evaluation

U (Pid X Etree) Sequential evaluation
U (Pid X Etree x Etree) Sub-expression evaluation

Pid = I# Processor ids
AbsBeh = Beh — Val — Pid — Beh Function behaviours

u Id ^  Beh Constructor behaviours
BEnv = Id — Beh Behaviour env.

Figure 9.42: Recursive execution-tree domain equations
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T^lprogram\ : Beh
T'pltypedecls bindsj = T[letrec binds main] {}env {}env Opid

T̂ inds J : BEnv Env Pid BEnv
Tbindslbindi.. .  bindnj be p cp = 0 ¿<n Tbindlbindil be p cp

Tbind : BEnv Env Pid BEnv
=  lambda—form l be p cp = {var —> Tifllambda—formJ be p cp}

7lf\lambda—form\ : BEnv Env Pid Beh
Tif\fvs 7T ni • • • > exp\ be p cp = (cp, A61 ei P i . . .  e„ Pn-Tlexpl be' p' Pn) 

where be' =  be ® {ni 1—>• 6 1 , . . . ,  1—>
p' =  p © {wi !-)• e i , . . .  i-A e„}

Figure 9.43: Execution-tree semantics of para-fnnctional STG' programs and bindings

two parts, the first is the execntion tree, and the second is an abstract behaviour. The 
abstract behaviour is used by let and case expressions to model the non-strict evaluation 
ordering. Using Hudak’s notation, for a behaviour b, bt denotes its execution tree, and bf 
denotes its abstract behavionr.

Each semantic equation typically returns a behaviour, and, in addition to the value 
environment, p, and cnrrent processor id, cp, maintains a behaviour environment, be:

T{exp¡ BEnv Env Pid Beh

Figures 9.43, 9.44, and 9.45 show the various equations used by the execution-tree seman
tics. In most instances, there is a close correspondence between Hudak’s definitions and 
those used here (for a comprehensive description of the ideas and techniques, the inter
ested reader is referred to [Hudak, 1986]). The main extension corresponds to the STG' 
language’s use of algebraic constructors. While let(rec) expressions are the only source 
of delayed evaluation within the STG' language, constructors and case expressions need 
to maintain the associated non-strict behaviours across function calls. To this end, the 
domain of abstract behaviours has been extended to include a constructor map (see the 
constructor and algebraic-alternative equations in figures 9.44 and 9.45). Further mod
ifications were required to model the strict evaluation of let#, let strict, and letón  
expressions.

9.4.2 The operational semantics

The operational semantics presented here builds upon those used in the previous section. 
The most obvious strategy is to modify the LETPAR rule so that it sends a Schedule 
message to the targeted processor, as shown in figure 9.46. The LETONi rule ensures that 
work targeted for the local processor is directly added to the work pool. The LETON2 

rules packs up the work and sends it to the specified processor. The self rule returns 
the processor’s id when evaluating a s e lf  expression. Note, however, that this simple 
approach is only correct with regards to the denotational semantics when there are more 
physical processors than virtual processors. Consider, for instance, the following code:
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T[ea;j3] : B E n v  —>• E n v —> Pid —?■ B eh  
T [le t  binds exp} be p cp =  T[ea;i>] be' p' cp 

where be' =  be ® Tbindslbinds} be p cp 
p' =  p ® Bindslbinds} p

T [le tre c  binds exp} p =  T|ea;p] (be 0  be') (p © p') cp
where (be'^p') =  f ix  (X(be', p').(Tbindslbinds} (be © be') (p © p') cp,

Bindslbinds} (p © p')))
T [le t#  var =  exprhs exp} be p cp =  (cp : (blt,b2t),b2f) 

where 61 =  Tlexprhs} be p cp
62 = case (Slexprhs} P ep) o f  

_L -s- _L
e -)• T{expbodyi (be © {var (cp, err)}) (p © {var e}) cp 

T [le ts tr ic t var =  exprhs expbodyi be p cp =  (cp : (61*, 62(), 62/) 
where 61 =  T\exprhs} be p cp

62 = case (Elexp^hs} P ep) o f  
_L _L
e -)• T{expbodyi (be © {var (cp, err)}) (p © {var e}) cp 

T[leton pid var = exp̂ -hs expbody} be p cp =  (cp : (61*, 62*), 62/) 
where 61 =  Tlexprhs} be p (Atom\pid} p)

62 = case (S{exprhs} P ep) o f  
_L _L
e -)• Tlexpbody} (be © {var (cp, err)}) (p © {var e}) cp 

T[case exp alts default} be p cp =  (cp : (bexpt,baltt),baltf) 
where bait =  Taitslolts} be p cp bexp bdefault êxp 

bexp =  T|eic/)J be p cp 
bdefault — Tdefaultldefault} be p cp
êxp =  p cp

T[varfun atomi ■ ■ ■ aiom„] p cp =  (cp : (bfunt, bresultf), bresultf) 
where e¿ =  Atomlatomi} p, (1 < i < n)

bi =  Tatomlotorni} be pep, (I < i < n )
bfuno =  be var fun 
bfuni =  bfuni-i bi cp, (1 < i  < n )  
bresult =  bfuun

T[cons atomi ■ ■ ■ be p cp =  (cp, {1 i-> 6i,..., n bn})

where 6¿ =  Tatomlatorni} be p cp 
T{literal} be p cp =  (cp, err)
T[self] be p cp =  (cp, err)

Tdefauitldefault} : BEnv -?• Env Pid -)• Beh 
Tdefaulii- exp} be p c p ^  Tlexp} be p cp

T a tom lotom } : BEnv -> Env —)■ Pid ^  Beh 
Tatomlvar} be pep  =  be va r

Tqtomlliteral} be p cp =  (cp, err)________________

Figure 9.44: Execution-tree semantics of para-functional S T G ' expressions
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Taitsl(i>lts\ : B E nv-> E n v P i d B e h B e h V a l B e h

consi va rii. ..  variai —>• expi

Talts be p cp bexp bdefault êxp
1 COnSn varnl .■ ■ vaVnan expn X 

=  case Cgxp o /
_L -L
{consi, e n , , eiai) T lexpij bei pi cp

(cO?7.5jt,, 6jt,i , • • • , n̂an ) -)• Tlexpnj ben pn cp
else  ̂ bfigjauit

where bei =  be ® {vara b n , . , variai ì̂(h }
bij =  bexpf j

—y
Pi =  p 0  {v a rii i-P' e n , , varia^ e¿Q,̂ |

To,Us

T literah —)■ expi T

1 literaln ^  expn 1
be p cp bexp b¿efault êxp

— case ê xp c f

0
literali -)■ T[ea;pi] be p cp

literaln - T{expn\ be p cp
else bdefault

Figure 9.45: Execution-tree semantics of paxa-functional STG' case alternatives

(LETONi)

(LETON2)

Eval (letón  pid v =  ei e^) p as rs us h tid wp a bi
such that pid' =  i

Eval 62 (p 0 {w !-->■ a}) as rs us h' tid wp' a bi
where h' =  h\a 1— create—closure e\ p\ 

wp' =  insertspark 0, wp 
pid' =  {val p a pid)%n

Eval (letón  pid v =  ei ef) p as rs us h tid vop a bi
Send schedule afterwards as rs us h' tid wp a bi

where afterwards = Eval 62 (p 0  !-->• a})
schedule = {i,pid', Schedule a {pack closure))
closure = create—closure 61 p
h' h[a !->■ Exported pid' closure bkempty]
pid' = {val p a pid)Von

(self) Eval s e l f  p as rs us h I'id wp a bi
Returuint# i as rs us h lid wp a bi

Figure 9.46: Initial operational rules for the para-functional S T G ' language
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specification description
p {code,... ,h,tid,wp,a,vpid) the standard GUM abstract state ex

tended to include a virtual processor 
id, vpid-

VPid In t# the virtual processor id associated 
with the current evaluation.

update fram e {a,as,rs,vpid) A standard update marker extended 
to include the virtual id active before 
entry to the updatable closure.

closure VThunk vpid exp p a virtual thunk.

Table 9.10: State components for supporting virtual topologies

STG' code.
□  \u [] -> leton int 10 0 0# a = let# y = self# in Int [y] in a;

The denotational semantics specify that the correct result is Int 1000, while a one- 
processor operational model will produce the result Int 0. The load-balancing mechanism 
also causes problems by transporting thunks to other processors. There are three possible 
solutions to this problem:

1. extend the denotational semantics to take an extra argument: the maximum number 
of available processors. An attempt to create a virtual topology with more processor 
would result in an error. The STG' language would also have to be extended to 
provide a way for the programmer to determine the number of available processors.^

2. modify the operational behaviour so that it correctly implements the denotational 
semantics.

3. accept the fact that the operational model is a weak model of the denotational 
semantics and is also non-deterministic (due to the load balancer).

Prom a language-design perspective, the second option is the only acceptable alternative 
as both of the other solutions fall short of the goals set out in table 5.1.

In order to provide support for virtual topologies a number of minor modification need 
to be made to the GUM operational model. Essentially, each mapped thunk is annotated 
with its virtual processor id. Whenever such a thunk is entered, the processor updates 
its virtual id, and it is this value that the s e lf  expression will equate to. This strategy 
copes with a mismatch between the number of virtual and real processors, and is also not 
affected by dynamic load balancing. However, one problem remains: after evaluation of a 
mapped thunk, the processor needs to revert its virtual id to the value it was using before 
the thunk was entered. The solution is to store the original virtual id inside the thunk’s 
update frame, where it can be recovered after evaluation is complete. The modifications 
to the GUM’s state components are shown in table 9.10, and a selection of the associated 
rules are shown in figure 9.47.

®Such an extension could also be useful in an implementation supporting truly virtual topologies. It 
would allow programmers to generate topologies optimised for the available number of processor. It would 
be almost identical in form to the s e l f  expression, and figures 9.39 and 9.46 could serve as a template.
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(LETON’2)

Eval {letón  pid v =  e\ 6 2 ) p as rs us h wp a vpid bi
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Figure 9.47: Operational rules for supporting virtual topologies
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STG' code.
[] \u [] -> letón int 1# fibl3_l = fib.wrk int 13# in 

letón int 2# fibl3_2 = fib.wrk int 13# in 
case fib.wrk int 12# of { Int fib_12’ -> 
let# X = plusint# [fib_1 2 ’, int 2#] in 
case fibl3_l of { Int fib_13_l’ -> 
let# y = plusint# [x, fib_13_l’] in 
case fibl3_2 of •[ Int fib_13_2’ -> 
let# z = plusint# [y, fib_13_2’] in 
Int [z] ; }; }; };

fib.wrk = □  \r [n’] -> case leint# [n’, 1 #] of
{ True -> 

False ->
Int [1#] ;
let# n ’_less_2 = minusint# [n’, int 2#] in 
let# here = self# in
letón self# fib_n_less2 = fib.wrk n ’_less_2 in 
let# n ’_less_l = minusint# [n’, 1#] in 
case fib.wrk n ’_less_l of { Int fib_n’_less_l -> 
case fib_n_less2 of { Int fib_n’_less_2 ->
let# sum_2_fibs’ = plusint# [fib_n’_less_l, fib_n’_Iess_2] in 
let# result = plusint# [sum_2_fibs’, 1#] 
in Int [result]; 1; 1;

Figure 9.48: The para-functional STG' sfibS  -O benchmark

9.4.3 Compilation rules

The compilation rules should follow almost directly from those used with the GUM system. 
However, a more detail exposition is beyond the scope of this thesis.

9.4.4 Performance

If the letón  expression is used only to schedule tasks on the local processor, then the per
formance is exactly the same as for the GUM system. However, by using the execution-tree 
semantics to structure the computation, improvements over the GUM system are possible. 
For example, figure 9.48 shows a specialised version of the f ib  benchmark, explicitly using 
three virtual processors and relying on load balancing to provide work for any remaining 
physical processors. The results for this benchmark and a four-processor variant, sfib4 , 
are shown in figure 9.49. Both variants achieve modest improvements over their unstruc
tured counterpart, and do not suffer from a performance degradation when the number 
of surplus processors is increased. This benefit is solely down to a reduced initialisation 
phase, where the available work spreads to the idle processors more quickly under the 
para-functional scheme. In effect, the first round of Fish messages is avoided, and the 
targeted processors axe able to make their sparks available sooner. It is worth noting that 
to benefit from this speedup, the burden of supplying the mapping directives is placed 
upon the programmer (or, possibly, generated via an automatic mapping algorithm). Fur
thermore, with more complex benchmarks, running for greater periods of time, it is likely 
that the reduction in initialisation would only account for a minor fraction of the total 
runtime. However, as the complexity of the program increases, so does the scope to use 
the mapping directives unfortunately a comprehensive study of the benefit of mapped 
expressions is beyond the scope of this thesis.
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Figure 9.49: Speedup curves for the para-functional f ib  benchmarks 

9.4.5 R e la ted  w ork

Burton [1987] was probably one of the first in the functional-programming community 
to look at imposing greater structure onto the traditional par combinator. However, his 
work was purely theoretical, and did not directly result in any real implementations. More 
practically, Hammond, Loidl and Partridge [1995a] GranSim simulator implemented the 
par At operator, which has very similar semantics to Hudak’s on expressions. However, this 
was not the primary focus of their work, and no results were reported. For the benchmark 
programs they were using, and the respective problem sizes, the dynamic load-balancing 
was sufficiently effective it is likely that further annotations were deemed unnecessary.

As previously mentioned, Mirani and Hudak [1995] had extended the work on para
functional Haskell to incorporate the recent advances in monads. This has allowed them 
to promote their scheduling annotations into first-class citizens, and provides access to 
run-time values (such as the current processor load) without compromising determinacy. 
It would be straightforward to modify the models presented here to reflect their advances.

Finally, Parrott [1993] avoided the problems associated with hand annotation by using 
profiling information to drive a henristic scheduling algorithm. While his work concen
trated upon when to run particular tasks, there is no obvious reason why it could not also 
take task locality into account. This could provide a pragmatic approach to generating 
initial mappings, which could then be refined by a programmer, significantly reducing the 
bnrden associated with such schemes.

9.4.6 A ssessm ent

Following on from the GUM case study, incorporating mapped expressions into the STG' 
langnage was straightforward: the denotational semantics are very similar, and the ma
jority of the operational rules were used unmodified. Furthermore, the development of 
the execution-tree semantics provided an insight into the strnctnre of the benchmark pro
grams, and could be used to provide a useful tool for the parallel functional programmer.
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Finally, the STG animation demonstrated the benefits in reduced initialisation offered by 
the simple letón  mapped expression. However, a question does remain as to the scalability 
and general applicability of mapped expressions.

9.5 Kelly’s Skeletons

This section concentrates on three particular skeletons used by Darlington, Field, Harri
son, Kelly and others [1993]: pipe, farm, and de (see section 2.4.3 for a general overview 
of algorithmic skeletons). These provide a representative sample of the current skeletal 
population, and Kelly’s work is one of the few to attempt to integrate skeletons into a 
non-strict language. The following Haskell definitions are used to provide an informal 
sequential semantics of the three skeletons:

__Haskell________________________________________________________________
pipe : : [a -> a] -> 
pipe = foldrl (.)

(a -> a)

farm : : (a -> b -> c) -> a 
farm f env = map . (f env)

-> ([b] -> [c])

de :: (a -> Bool) -> (a -> b) -> (a -> (a, a)]) -> ((b, b) -> b) -> a -> b 
de endtest endval split eombine x 

I endtest x = endval x 
I otherwise = let (1 , r) = split x

in eombine (de endtest endval split combine 1 )
(de endtest endval split combine r)

9.5.1 Static semantics

Following the guidelines laid down in section 5.2.1, the first attempt at incorporating 
skeletons into the STG' language is shown below:

exp —— skeleton • • • skeletal expression
skeleton —-)■ ±a.-rm v a r fu n processor farm

de v a r^ n d l single divide combine e x p divide and conquer
pipe va vsta g ei  ‘ ‘ ‘ VaVstagen ^ X p process parallelism

Notice that the farm skeleton, unlike Kelly’s version, does not need to take the env 
parameter as the STG' language’s sharing mechanism can be used to define an appropriate 
replacement function:

_  STG' code____________________________________________________________
let { f ’ = [env] \r [x] -> f env x; } in farm f ’

Also, the de skeleton looks suspiciously complex, and can, in fact, be implemented as 
successfully using the mapping expressions from the previous case study -  see figure 9.50. 
The benefit of maintaining this skeletal expression cannot be justified at the intermediate 
level -  it is merely an artifact to be used during the initial phases of the compilation 
process. Having decided that it it may not be necessary to represent all skeletons within 
the intermediate langnage, the farm expression warrants further investigation. The de- 
notational semantics is presented in figure 9.51, and is, in effect, a highly strict version 
of the map function. Again, it is easy to generate para-functional code to duplicate this 
behaviour:
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STG' code.
divacon = [] \r [endtest endval split combine] -> 

letrec {
f = [split combine endtest endval] \r [x] -> case endtest x of

{
True -> endval "x;
False -> case split x of {

Tup2 1 r -> let# here = self# in
let# left_neighbour = minusint# [here, 1 #] in 
let# right_neighbour = plusint# [here, 1 #] in 
letón left_neighbour left = f 1 in 
letón right_neighbour right = f r in 
combine left right;

};
};

} in f ;

Figure 9.50: A para-functional STG' replacement for the de skeleton

Skeleton\fajrai varj^n exp\ p =  let function =  p varf^n
function' =  compose unction
arguments =  p

in {map function arguments)

JX TT1...TT„) Qoo Val Val

Coo e =  case e o /  [] _L _L
e

^{List 7t ) SCXD Val ^  Val

^Tist e o/ U _L

D (Nil)
U (Cons ̂ OC ̂ oc ̂  ̂

_L
(Nil)
(Cons,x,C^''^* xs)

Figure 9.51: Denotational semantics of the farm skeleton
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STG' code.
farm = [] \r [f xs] -> case xs of 

{
Nil -> Nil [] ;
Cons y ys -> let# here = self# in

let# neighbour = plusint# [here, 1#] in 
letón neighbour ys’ = farm f ys in 
letstrict y ’ = f y in 
Cons [y’, ys’] ;

Finally, the following transformation shows how pipe expressions can also be removed 
from the intermediate language:

pipe var.stagei ■ ■ ■ varstagey Gxp farm fun  exp
where f u n  =  [] r [varargi] —> f u n '  vavargi 

__________f u n '  =  [] r [var^] ^  c o m p o se n  uarstagei ■ ■ ■ uarstages vaux

9.5.2 Assessment

Perhaps surprisingly, it turns out that skeletal expressions should not form part of a 
parallel functional intermediate language. They are simply high-level constructs which 
provide the programmer with continent abstractions for developing parallel algorithms. 
Any skeleton-based compiler will certainly manipulate skeletal expressions, but they will 
have been reduce to more basic operations before the operational semantics will have to 
be considered.

9.6 Summary

This chapter has presented four case studies of the prototyping framework:

Mattson’s speculative evaluation The first case study dealt with development of low-
level synchronisation and scheduling constructs for a GMSV architecture. The per
formance results showed the expected near-ideal speedups associated with shared- 
memory architectures. However, only the RISC animation exhibited the second- 
order effects introduced by the necessary locking operations.

GUM Haskell This study built upon the work of the previous investigation, and ex
tended it to DMMP architectures. The primary focus was the use of explicit com
munication to implement load-balancing and resource-sharing mechanisms. UML 
interaction diagrams, therefore, became an essential part of the development process. 
The performance results again closely agreed with those observed in real implemen
tations. However, the STG animation was only capable of simulating relatively small 
benchmark problems. It was suggested that this should not be a cause for concern: 
larger problem sizes tend to exhibit better performance on parallel architectures, 
therefore hiding any inefficiencies of the operational model. The RISC animation 
was only used to verify that the STG animation was producing credible performance 
estimates.

Para-functional Haskell This extended the GUM model to include explicit mapped ex
pressions. It was shown that such annotations can reduce the initialisation phase of 
the evaluation, and therefore lead to moderate improvements in performance. How
ever, the added burden placed upon the programmer, combined with the inability
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to animate larger problems, raised some doubt as to the general applicability of 
mapped expressions. Finally, HudaJt’s execution-tree semantics was identified as a 
potentially useful tool to aid the parallel functional programmer.

Kelly’s skeletons The final case study considered the representation of skeletal operators 
in the context of a parallel functional intermediate language. It was decided that 
the role of such expressions should be limited to the initial phases of the compilation 
process and should not interfere with the operational model of the intermediate 
language.



Chapter 10

Summary, evaluation and further 
work

10.1 Introduction

This chapter will begin with a brief summary of the work which has been presented in 
this thesis (section 10.2), followed by an evaluation of this work in section 10.3. Finally, 
in section 10.4, the limitations of this work are briefly discussed, and further potential 
avenues of exploration are suggested.

10.2 Summary

The contributions of this thesis are as follows:

• the presentation of a framework for rapidly prototyping parallel functional interme
diate languages, driven by the development of semantic models for the three phases 
of a traditional compiler the source, intermediate, and target languages.

• a number of prescriptive methods for animating denotational semantics, Hindley- 
Milner type-inference algorithms, and state-transition systems in the functional pro
gramming language Haskell.

• the development and informal validation of a static semantics for the sequential STG' 
language. In addition, the development of an execution-tree semantics [Hudak, 1986] 
for a para-functional variant of the STG' language.

• the use of a state-transition system to model multiprocessor systems, using shared- 
memory and/or message passing as the primary communication mechanisms.

• a state-transition model of an optimising compilation system for the STG' language, 
closely based on the operational model.

10.3 Evaluation of the prototyping framework

This evaluation starts by comparing and contrasting the prototyping framework with the 
related techniques reviewed in section 2.5.3. It then goes on to attempt to evaluate the 
success of the framework both as a prototyping tool for parallel functional intermediate 
languages and as an animation system for static and operational semantics.

204
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10.3.1 Comparison with other relevant work 

The Haskell approach

pH [Nikhil et al., 1995, section 1, page 1], a Haskell derivative extended to inclnde explicit 
parallelism, has as one of its goals:

“To share infrastructure (compilers, systems, application programs), and to
facilitate interesting research topics, snch as comparing lazy evaluation vs.
lenient evaluation...”

However, by necessity, the resulting compilers are written primarily for speed and effi
ciency, possibly at the expense of clarity based on personal experience, this is certainly 
trne of GHC! Moreover, the system will be sufficiently complex that familiarisation and 
development will take a significant amount of time.

Direct implementations

A number of compilation systems, based upon explicitly parallel versions of the STG lan- 
gnage, have been developed, and each of the extension techniques described in section 2.4 
is represented: Hill’s data-parallel Haskell [Hill, 1994] introduces the POD (parallel object 
with arbitrary dimensions) data type and associated primitive functions; Chakravarty’s 
Jump* machine [Ghakravaxty, 1994] extends the exp rnle with the letpar constrnct; Hwang 
and Rushall [1992] alter the semantics of the case expression in their u-STG machine (this 
corresponds to the if constrnct in the langnage we have presented); and Hammond, Matt
son Jr. and Peyton Jones [1994] add par and seq as primitive functions. The primary aim 
of these systems has been to demonstrate the usefulness of the implementors favourite 
language extension or run-time algorithm. In each case, little justification is provided as 
to why a particular approach was taken, and no real effort has gone into comparing and 
contrasting the features offered by each of these systems.

The approach outlined in this thesis enables the rapid prototyping a wide range of 
languages, which, in turn, allows one to examine these very issues. The case studies 
from chapter 9 demonstrated how a system could be developed incrementally, allowing 
competing approaches to be evaluated fairly. Furthermore, the generation of the semantic 
descriptions will serve as excellent documentation of the various design decisions and 
experiments.

Prototyping versus simulation

To date, simulation has been widely used by the community as a substitute for proto
typing [Joy and Axford, 1992; Bennett, 1993; Hammond, Loidl and Partridge, 1995a]. 
However, as acknowledged by Deschner [1990, section 1, page 227], such systems tend to 
allow only a limited design to be explored:

“Although initially the system is only capable of simulating conservative par
allelism, with major adjustment it could also be used to analyse speculative 
evaluation strategies.”

The work of Hammond, Loidl and Partridge [1995b] bears the closest resemblance 
to this work. They use an accurate multi-architecture simulation system, based on the 
Glasgow Haskell compiler, to study the effects of language annotations [Burton, 1984] on 
task granularity. Their overall aim is to develop heuristics for use with an automatically
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parallelising compiler. This work, on the other hand, encompasses the derivation of paral
lelism using both implicit and explicit techniques. In addition, their intermediate language 
identifies parallelism only through the use of primitive functions, and ignores the many 
alternatives.

10.3.2 Evaluation of the success of the prototyping framework

The four case studies from chapter 9 demonstrated the utility and sophistication of the 
framework. Based upon the experience gained during these case studies, it is not unreason
able to claim that the prototyping framework could be effectively applied to re-engineering 
any of the current crop of parallel implementations. Furthermore, the work of chapters 5 
and 6 showed how the semantics models could cope with advances both in terms of lan
guage idioms and implementation techniques.

10.3.3 Animating static and operational semantics

As outlined by Goodman [1995, section 7.3.3], there are two distinct approaches to evalu
ating the success of an animation system: firstly, rating the framework against a number of 
theoretical concerns, including coverage, efficiency, and sophistication; and, secondly, eval
uating its practical success as a method of software development. However, Goodman’s 
assessment of the difficulties in implementing tfie latter approach is sufficiently complete 
(and relevant) for the purpose of this evaluation that only the former approach is pursued 
here.

Goodman uses the following eight concerns to rate an animation system: coverage, ef
ficiency, sophistication, interactivity, transparency, operational equivalence, usability and 
utility. The animations used by the prototyping framework are scored as follows:

• Coverage. Good, as Haskell’s semantics are very close to those used to model the 
static and operational semantics.

• Efficiency. The primary aim of the animation techniques is to maintain a close 
correspondence between the semantic descriptions and the Haskell code. While the 
efficiency of the resulting programs could be improved, this would interfere with the 
method’s operational equivalence.

• Sophistication. Good. Examples include the case studies from chapter 9, and the 
work of Booth, Bruce and Ben-Dyke [1996] on the animation of an imperative parallel 
object-oriented language.

• Interactivity. The animation of the static semantics results in a non-interactive 
program, and must therefore score poorly. However, the state-transition animations 
are highly interactive, and the overall score can therefore deemed to be fair. •

• Transparency. Reasonable. Haskell’s pattern-matching semantics, combined with 
the libraries developed during the case studies, simplify the conversion process.

• Operational equivalence. As for transparency.

• Usability. Good. Few problems were encountered during the animation of the various 
case studies.
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Utility. Good. The framework used for the state-transition animations has been 
used successfully on a range of applications including the STG machine, a hybrid 
RISG architecture, and a compilation system.

10.4 Limitations and further work

The following important issues have been largely ignored throughout this thesis, but are 
deserving of further attention:

• the development of accurate yet concise models of the behaviour of shared-memory 
systems with respect to locking and concurrency control (see section 6.2.4).

• the development of one or more domain-specific languages for simplifying the con
struction of the various semantic models (with the possibility of automatically an
imating the results). Relevant research includes Navel [Michaelson, 1993] and Ac
tress [Brown, Moura and Watt, 1992].

• the verification of the presented semantics, and the development of a prescriptive 
approach to proving the correctness of the various rule sets. •

• the expansion of the framework to include imperative languages, or using a different 
approach to type inference. (An initial feasibility study has already been carried 
out [Booth, Bruce and Ben-Dyke, 1996].)



Appendix A

On the design of parallel 
functional intermediate languages

This paper [Ben-Dyke and Axford, 1995] was originally presented at HiPC ’95, the In
ternational Conference on High Performance Computing [Sahni, Prasanna and Bhatkar,
1995]. The contribution of the two authors was as follows: Andy Ben-Dyke, 80%; Tom 
Axford, 20%.
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A .4.3 Architecture simulator
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A .6 Concluding remarks
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Appendix B

Example STG' programs

This section presents a number of example STG' programs, as generated by the Glasgow 
Haskell compiler (see section C.2 for further qualification). The Haskell source code is 
primarily taken from either the Haskell standard prelude [HudaJt et ah, 1992, appendix 
A], or the imaginary subset of the n ofib  benchmark suite (see appendix G).

Section B.l looks at some of the prelude operations used to support integers, booleans, 
and lists. Three n ofib  programs, f ib , primes, and queens, are then presented in sec
tions B.2 through B.4. Finally, a solution to Hamming’s problem, as developed by Hudak 
and Anderson [1988, section 3], is converted into STG' code.

B .l Prelude operations

This section looks at the STG' definitions needed to support the three main data types of 
the Haskell language, namely integers, booleans, and lists. Where applicable, the equiva
lent Haskell code is also included. All of the STG' bindings have been taken directly from 
the library of test routines used by the prototyping system (see section 3.4).

B.1.1 Integers 

Primitive wrappers

The following data decleration and selected associated operations make up the interface 
for the primitive integer type, Int̂ ^̂ :

___ STG' code______________________________________________________________
data Int = Int Int#;

zero = [] \r [] -> Int [0#] ; 
one = [] \r [] -> Int [1#] ;

const.Int. + = [] \r [x y] -> case x of
{ Int x ’ -> case y of { Int y’ -> let# xy = plusint# [x’, y ’] in Int [xy] ; 1:
} ;

const.Int.> = [] \r [x y] ->
case X of { Int x ’ -> case y of { Int y’ -> gtint# [x’, y ’] ; } ; } ;

Obviously, no Haskell equivalent exist for any of these definitions.
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Quotients and signs

The STG' definitions given below are based on Int#-specialised versions of the following 
prelude functions;

___ Haskell.
quotRem :: Int -> Int -> (Int, Int) 
quotRem n d = (n ‘quot‘ d, n ‘rem‘ d)

signum :: Int -> Int 
signum X I X == 0 = 0

I X > 0 = 1
I otherwise = -1

const. In t. quotRem is a straightforward conversion of quotRem, but const. In t. signum
makes use of the wrapper/worker optimisation [Peyton Jones and Launchbury, 1991, sec
tion 5.1]:

___ STG' code______________________________________________________________
const. Int .quotRem = [] \r [n d] -> 
let { q = [n d] \u [] -> const. Int .quot n d;

r = [n d] \u [] -> const.Int .rem n d; } in Tup2 [q, r] ;

const.Int.signum = [] \r [x] -> case x of {Int x’ -> const.Int.signum.wrk x ’;};

const. Int. signum.wrk = [] \r [x] -> case x of 
{0# -> Int [0#] ;

-> case gtint# [x, 0#] of { True -> Int [ 1#]; False -> Int [ -1#]; 1
};

B.1.2 Booleans

Haskell.
data Bool = False I True

otherwise
otherwise

Bool
True

( M )

not
not
not

: Bool -> Bool -> Bool 
False X = False 
True X = x

Bool -> Bool 
True = False 
False = True

Again, after the pattern-matching syntactic sugar is removed, the STG' code is similar to 
the Haskell versions:

_  STG' code____________________________________________________________
data Bool = True I False; 

otherwise = □  \r [] -> True [] ;

&& = [] \r [x y] -> case x of { False -> False □  ; True y : 1 I 

not = [] \r [x] -> case x of { True -> False [] ; False -> True [] ;
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B .1.3 Lists

Rather than introducing special syntactic support, the following STG' declaration is used 
to define the L ist algebraic data type:

_  STG' code____________________________________________________________
data List a = Cons a (List a) I Nil;

The following sections look at some of Haskell’s PreludeList [HudaJt et ah, 1992, section 
A.5, pages 106-114] functions.

Nill, null, head, and tail

__Haskell________________________________________________________________
nil :: [a]
nil = []

null :: [a] -> Bool
null [] = True
null = False

head :: [a] -> a
head (x :_ ) = X

tail :: [a] -> [a]
tail (_:xs) = xs

STG' code.
nil = [] \r [] -> Nil [] ;

null = [] \r [xss] -> case xss of { Nil -> True [] ; Cons x xs -> False [] ; };

head = [] \r [xss] -> case xss of { Cons x xs -> x ; Nil -> error# [] ; };

tail = [] \r [xss] -> case xss of { Cons x xs -> xs ; Nil -> error# [] ; };

Append

. Haskell.
(++) :: [a] -> [a] -> [a] 
[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

STG' code.
++ = [] \r [xss yss] -> case xss of 
{ Nil -> yss ;
Cons X xs -> let { xs’ = [yss xs] \u [] -> ++ xs yss; } in Cons [x, xs’];

};

Length

Rather than use the foldl-based Haskell version, the more traditional version is used:
___ Haskell________________________________________________________________
length :: [a] -> Int 
length [] = 0
length (_:xs) = 1 + length xs
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STG' code .
length = [] \r [xss] -> case xss of 
{ Nil -> Int [0#] ;

Cons X xs -> case length xs of { Int 1 -> let# 1’ = pluslnt# [1#, 1]
in Int [1’] ; };

};

Map

Haskell.
map
map f [] 
map f (x:xs)

: : (a -> b) -> [a] -> [b] 
= □
= f  X : map f  xs

STG' code .
map = [] \r [f xss] -> case xss of 
{ Nil -> Nil [] ;

Cons X xs ->  let { x ’ = [f x] \u [] ->  f x ;
xs’ = [f xs] \u [] -> map f xs ; } in Cons [x’, xs’]

};

Foldl

Haskell.
foldl
foldl f z [] 
foldl f z (x:xs)

(a -> b -> a) -> a -> [b] -> a 
z
foldl f (f z x) xs

STG' eode.
foldl = [] \r [f z xss] -> case xss of 
{ Nil -> z ;

Cons X xs ->  let {  x ’ = [] \u [] -> f z x; }  in foldl f x ’ xs ;
};

Filter

Again, the f  oldr-based version is ignored in favour of the traditional definition:
__Haskell______________________________________________________________
filter : : (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) I p x = x : (filter xs)

I otherwise = filter xs

STG' code.
filter = [] \r [p xss] -> case xss of 
{ Nil -> Nil [] ;

Cons X xs -> case p x of { True -> let {xs’ = [p xs] \u [] -> filter p xs;}
in Cons [x, xs’] ;

False -> filter p xs;
};

} ;
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B.2 Generating Fibonacci numbers

___Haskell___________________________________________
fib :: Int -> Int
fib n = if n <= 1 then 1 else fib (n-1 ) + fib (n-2 ) + 1

Unoptimised version

_  STG' code_____
fib = [] \r [n] 
•[ True -> one 

False -> let

-> case const.Int.<= n one of

sum_2_fibs = [n] \u [] -> 
let { fib_n_less_2 = [n] \u [] ->

let ■[ n_less_2 = [n] \u □  -> const.Int.- n two; } 
in fib n_less_2 ; 

fib_n_less_l = [n] \u [] ->
let ■[ n_less_l = [n] \u □  -> const.Int.- n one; } 
in fib n_less_l; }

in const.Int.+ fib_n_less_l fib_n_less_2 ; } 
in const.Int.+ sum_2_fibs one;

};

Optimised version

_  STG' code__
fib = [] \r [n] -> case n of ■[ Int n ’ -> fib.wrk n ’; }; 
fib.wrk = [] \r [n’] -> case leint# [n’, 1 #] of
{ True 

False
-> Int [1#] ;
-> let# n ’_less_l = minusint# [n’, 1#] in

case fib.wrk n ’_less_l of { Int fib_n’_less_l 
let# n ’_less_2 = minusint# [n’, 2#] in 
case fib.wrk n ’_less_2 of { Int fib_n’_less_2 
let# sum_2_fibs’ = plusint# [fib_n’_less_l, fib_n’_less_2] in 
let# result = plusint# [sum_2_fibs’, 1#] 
in Int [result]; I; I;

->

->

};

B.3 Generating prime numbers — the sieve of Eratoshenes

Haskell.
test :: Int -> Int
test a = let primes = map head (iterate the.filter (iterate succ 2 )) 

in primes !! a

the_filter :: [Int] -> [Int] 
the_filter (n:ns) = filter (isdivs n) ns

isdivs :: Int -> Int -> Bool 
isdivs n X = mod x n /= 0

succ :: Int -> Int 
succ X = X + 1
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__STG' code_____

Unoptimised version

test = [] \r [a] -> let { primes = [] \u [] ->
let { xs = [] \u [] ->

let { from_2 = [] \u [] -> iterate succ two;} 
in iterate the_filter from_2 ; } 

in map head xs; } 
in !! primes a;

the_filter = [] \r [nss] -> case nss of { Cons n ns -> 
let { isdivs_n = [n] \r [x] -> isdivs n x; } in filter isdivs_n ns; };

isdivs = □  \r [n x] -> let { mod_x_n = [n x] \u [] -> const.Int.mod x n; }
in const.Int./= mod_x_n zero; 

succ = □  \r [x] -> const.Int.+ x one;

Optimised version

_  STG' code__
test = □  \r [a] -> case a of { Int a’ -> test.wrk a’; };
test.wrk = [] \r [a’] -> let { from_2 = [] \u [] -> iterate succ two; } in

letstrict forced.xs = iterate the.filter from_2 in 
letstrict forced.primes = map head forced.xs 
in !!.wrk forced.primes a ’;

the_filter = [] \r [nss] -> case nss of { Cons n ns -> 
let -[ isdivs_n = [n] \r [x] -> case n of { Int n ’ -> case x of { Int x ’ ->

isdivs.urk n ’ x ’; }; }; }
in filter isdivs_n ns; }; 

isdivs = □  \r [n x] ->
case n of •[ Int n ’ -> case x of { Int x’ -> isdivs.wrk n ’ x ’; }; }; 

succ = [] \r [x] ->
case X of { Int x ’ -> let# succ.x = plusint# [x’, 1#] in Int [succ.x]; };

isdivs.wrk = [] \r [n’ x ’] -> case const.Int.mod.wrk x ’ n ’ of { Int mod’ ->
case mod’ of { 0# -> False [] ;

_ -> True [] };
};

B.4 The queens problem

Haskell.
nsoln :: Int -> Int
nsoln nq = length (gen nq nq)

safe :: Int -> Int -> [Int] -> Bool
safe X d [] = True
safe X d (q:l) = x /= q && x /= q+d X /= q-d && safe x (d+1) 1

gen :: Int -> Int -> [[Int]] 
gen nq 0 = [[]]
gen nq n = [ (q:b) I b <- gen nq (n-1 ) , q <- [l..nq], safe q 1 b]

Unoptimised version

STG' code.
nsoln = [] \r [nq] -> let { solutions = [nq] \u [] -> gen nq nq;

} in length solutions;
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STG' code .
safe = [] \r [x d ds] -> case ds of 
{ Nil -> True [] ;

Cons q 1 -> let 
{ cl = [x d q 1 ] \u [] -> let

{ c2 = [x d q 1 ] \u [] -> let
{ c3 = [x d 1] \u [] -> let

{ d_plus_l = [d] \u [] -> const. Int.+ d one;
} in safe x d_plus_l 1 ;

} in let { c4 = [x d q] \u [] -> let
{ q_less_d = [d q] \u [] -> const. Int.- q d; 
} in const.Int./= x q_less_d;

} in && c4 c3;
} in let { c5 = [x d q] \u [] -> let

{ q_plus_d = [d q] \u [] -> const. Int. + q d;
} in const.Int./= x q_plus_d;

} in && c5 c2;
} in let { c6 = [x q] \u [] -> const. Int./= x q;

} in && c6 cl;
};

STG' code.
zero_soln = [] \r [] -> Cons [nil, nil];

gen = [] \r [nq ds] -> case ds of { Int ds’ -> case ds’ of 
{ 0# -> zero_soln ;

-> letrec { f = [f nq] \u [] -> let { one_to_nq = [nq] \u [] ->
const. Int. enuniFromTo one nq; } in 

let { g = ** see below } in g ;} in 
let { d = [ds nq] \u [] -> let { ds_less_l = [ds] \u [] ->

const.Int.- ds one; } 
in gen nq ds_less_l; }

in f d };
};

To improve readability, the definition of g, given below, was removed from the body of
gen.

STG' code.
g = [f one_to_nq nq] \r [xss] -> case xss of 
{ Nil -> Nil [] ;

Cons X xs ->
letrec { h = [f x h nq xs] \u [] ->

let { a = [f xs] \u [] -> f xs; } in 
let { i = [x h nq a] \r [yss] -> case yss of 

{ Nil -> a ;
Cons y ys -> case safe y one x of

{ True -> let { b = [] \r [] -> Cons [y, x] ;
c = [ys h] \u [] -> h ys; } 

in Cons [b, c] ;
False -> h ys;

};
}; }

}

} ;
in h one_to_nq;



Optimised version

STG' code .
nsoln = [] \r [nq] -> case nq of { Int nq’ -> nsoln.wrk nq’; };

nsoln.wrk = [] \r [nq’] -> let { nq = [] \r [] -> Int [nq’] ; } in
letstrict solutions = gen.yrk nq nq’ 
in length solutions;

2 2 2

STG' code.
safe = [] \r [x d ds] -> case ds of 
{ Nil -> True [] ;

Cons q 1 -> case x of { Int x ’ -> case q of { Int q ’ -> 
case neint# [x’, q ’] of 
{ False -> False [] ;

True -> case d of { Int d ’ ->
let# q_plus_d = plusint# [q’, d ’] in 
case neint# [x’, q_plus_d] of 
{
False -> False [] ;
True -> let# q_less_d = minusint# [q’, d ’] in 

case neint# [x’, q_less_d] of 
{
False -> False [] ;
True -> let# d_plus_l’= plusint# [d’,1#] in 

let{ d_plus_l = [] \r [] ->
Int [d_plus_l’];

} in safe x d_plus_l 1 ;
};

}; }; };

STG' code.
gen [] \r [nq ds] -> case ds of { Int ds’ -> gen.yrk nq ds’; };

gen.yrk = [] \r [nq upk] -> case upk of 
{ 0# -> zero_soln ;

-> let# upk_Iess_l = minusint# [upk, 1#] in 
letstrict bs = gen.yrk nq upk_less_l in
let { one_to_nq = [nq] \u [] -> const.Int.enumFromTo one nq; } 
in gen_comprehension nq one_to_nq bs

};
gen_comprehension = [] \r [nq one_to_nq dss] -> case dss of 
{ Nil -> Nil [] ;

Cons d ds -> let { a = [nq one_to_nq ds] \u [] ->
gen_comprehension nq one_to_nq ds; } 

in g a d nq one_to_nq;
};

g = [] \r [a d nq one_to_nq] -> case one_to_nq of 
{ Nil -> a ;

Cons X xs ->  case safe x one d of 
{ False -> g a d nq xs;

True -> let { b = [] \r [] -> Cons [x, d] ;
c = [a d xs nq] \u [] -> g a d nq xs; } in Cons [b, c] ;

};
} ;
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B.5 Hamming’s problem

The following program is directly based on that presented by Hudak and Anderson [1988, 
section 3].

__Haskell________________________________________________________________
hamming :: [Int] -> [Int]
hamming primes = 1 : (foldl f [] primes)

where f xs p = let h = merge (scale p (1 : h)) xs in h

(merge as bss) 
(merge ass bs)

merge : : [Int] -> [Int] -> [Int]
merge [] bss = bss
merge ass [] = ass
merge ass@(a:as) bss@(b:bs) I a < b = a

I otherwise = b

scale :: Int -> [Int] -> [Int] 
scale p xs = map (* p) xs

isdivs :: Int -> Int -> Bool 
isdivs n X = mod x n /= 0

the_filter :: [Int] -> [Int] 
the_filter (n:ns) = filter (isdivs n) ns

test :: Int -> Int -> Int
test cut_off no_primes = length sequence

where sequence = takeWhile (< cut_off) (hamming few_primes)
primes = map head (iterate the_filter (iterate succ 2))
few_primes = take no_primes primes
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_  STG' code_____

Unoptimised version

hainming = [] \r [primes] -> let { as = [primes] \u [] -> foldl f Nil primes; }
in Cons [one, as];

f = □  \r [xs p] -> 
letrec { h = [h xs p] \u [] ->

let { a = [h p] \u [] -> let { xs = [] \r [] -> Cons [one, h];}
in scale p xs;}

in merge a xs; }
in h ;

merge = [] \r [ass bss] -> case ass of 
{ Nil -> bss ;

Cons a as -> case bss of 
{ Nil -> Cons [a, as];

Cons b bs -> case const.Int.< a b of
{ True -> let { xs = [bss as] \u [] -> merge as bss;} in Cons [a, xs]; 

False -> case otherwise of
■( True -> let { ys = [ass bs] \u [] -> merge ass bs; } 

in Cons [b, ys];
False -> error ;

};
};

};
};

scale = [] \r [p xs] -> let {g = [p] \r [a] -> const.Int.* a p;} in map g xs;

isdivs = [] \r [n x] -> let { a = [n x] \u [] -> const. Int .mod x n; }
in const.Int./= a zero;

the.filter = [] \r [ds] -> case ds of 
{ Nil -> error ;

Cons n ns -> let { a = [n] \r [x] -> isdivs n x; } in filter a ns;
};

STG' code.
test = [] \r [cut_off no_primes] -> 
let { primes = [] \u [] ->

let { as = [] \u [] -> let { from.two = [] \u [] -> iterate succ two;}
in iterate the_filter from_two; }

in map head as; } in
let { few_primes = [primes no_primes] \u [] -> take no_primes primes; } in 
let { sequence = [few_primes cut_off] \u [] ->

let { bs = [f ew.primes] \u [] -> hamming f ew.primes;
p = [cut.off] \r [x] -> const.Int.< x cut.off; } 

in takeWhile p bs; }
in length sequence;
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Optimised version

STG' code .
hamming = □  \r [primes] -> let { as = [primes] \u [] -> foldl f Nil primes; }

in Cons [one, as];
f = [] \r [xs p] -> letrec { h = [p h xs] \u [] ->

let { as = [] \r [] -> Cons [one, h] ; } in 
letstrict ys = scale p as 
in merge ys xs; }

in h ;
merge = [] \r [ass bss] -> case ass of 
{ Nil -> bss ;

Cons a as -> case bss of 
{ Nil -> Cons [a, as] ;

Cons b bs -> case a of { Int a’ -> case b of { Int b ’ -> 
case Itlnt# [a’, b ’] of
{ True -> let { cs = [bss as] \u [] -> merge as bss; } 

in Cons [a, cs];
False -> let { cs = [ass bs] \u [] -> merge ass bs; } 

in Cons [b, cs] ;
}; }; };

};
};

scale = [] \r [p xs] ->
let { g = [p] \r [a] -> case a of { Int a’ -> case p of { Int p ’ ->

let# a_times_p = timesint# [a’, p ’]
in Int [a_times_p]; }; }; }

in map g xs;
isdivs = [] \r [n x] -> case n of { Int n ’ -> case x of { Int x ’ ->

isdivs.wrk n ’ x ’; }; };
isdivs.wrk = [] \r [n’ x ’] -> case const.Int.mod.wrk x ’ n ’ of { Int mod_x_n ->

case mod_x_n of { 0# -> False [] ;
_ -> True []

}; };
the_filter = [] \r [nss] -> case nss of 
{ Nil -> error ;

Cons n ns -> let { is_divs_n = [n] \r [x] -> case n of { Int n ’ ->
case X of {  Int x ’ ->  
isdivs.wrk n ’ x’; }; ]■; }

in filter is_divs_n ns;
};

STG' code .
test = [] \r [cut_off no_primes] -> 
let { few_primes = [no_primes] \s [] ->

case no_primes of •[ Int no_primes ’ ->
let { primes = [] \u [] -> let {from_two = [] \u [] ->

iterate succ two; } in 
letstrict as = iterate the.filter from_two 
in map head as; }

in take.Int.!.wrk no.primes’ primes; } in 
letstrict bs = hamming few.primes in
let •[ i = [cut.off] \r [x] -> case x of -[ Int x ’ ->

case cut.off of { Int cut.off’ ->
Itlnt# [x’, cut.off’]; }; }; } in 

letstrict sequence = takeWhile i bs 
in length sequence;
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The STG^ language and the nofib 
benchmark suite

When developing a compiler for a particular language it is often helpful to have a feel 
for the types of usage of the constructs. To provide this empirical information for the 
STG' language, elements of the nofib benchmark suite were compiled to STG' code and 
statically analysed (the dynamic aspects of the benchmark suite have been explored by 
Santos [1995].) The collected data includes the distribution: arguments and free variables, 
algebraic data types, case and le tre c  expressions etc.

Sections C.l and C.2 look at the nofib  benchmark suite and the gathering of the data, 
sections C.3 to C.6 present the results, and section C.7 points out the limitations of the 
method.

C .l The nofib benchmark suite

The nofib benchmark suite [Partain, 1993] is a publically available collection of small 
to large Haskell programs, split into three categories: the imaginary subset, containing 
toy programs useful for testing the correctness of a compilation system but of no real 
benchmarking worth; the real subset, made up of programs written to perform a useful 
task; and the spectral subset, which contains everything else, and includes the benchmark 
programs used by Hartel [1994]. For the purpose of this study, only the real subset of the 
suite has been used, a brief overview of which is given in table C.l.

C.2 Gathering the data

In order to generate the required statistics, version 0.23 of the Glasgow Haskell compiler 
was modified to bring its concrete syntax (of the STG language) into line with that used 
within this report, and the - f  let-no-escape option removed from the optimisation pack
age. Each of the benchmarks were then compiled to STG' code (ghc -0 -ddump-stg) 
and the resulting programs analysed using a combination of Unix shell scripts and Emacs 
Lisp macros.

226
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program description STG' lines
anna strictness analyser 53 220
bspt BSP-tree modeller 17 288
compress text compression 2 224
compress2 text compression 2 026
ebnf2ps BNF grammar to postscript utility 23311
flu id fluid-dynamics program 20 616
fulsom solid modelling 13 223
gg graphs from GRIP statistics 12 449
grep simple version of the Unix command 861
hidden hidden-line removal 7415
hpg Haskell program generator 7485
in fer Hindley-Milner type inference 3 090
l i f t fully-lazy lambda lifter 4 707
m a illis t mailing-list generator 596
mkhprog Haskell program skeletons 1759
parser partial Haskell parser 14 537
pic particle in cell 5 285
prolog “mini-Prolog” interpreter 2 606
re p tile Escher tiling program 12 527
rsa RSA encryption/decryption 1016
symalg variable-precision calculator 11114
veritas theorem-prover 32 551

Table C.l: The real subset of the nofib  benchmark suite



228

C.3 Algebraic data types

The number of constructors per data type for the 155 non-prelude definitions is distributed 
as follows:

constructors 1 2 3 4 5 6-10 11-20 21+ max.
absolute 54 26 17 19 11 18 8 2 36
percentage 34-8 16-8 11-9 12-3 7-1 11-6 5-2 1-3

For the 21 prelude types used by the benchmark programs {Array, Assoc, Bool, 
lOError, List, Ratio, Request, Response, TupO, Tup2-Tupl0, Tupl2, and Tupl9) and 
the Glasgow specific RJMPATAG, the distribution is as follows:

constructors 1 2 3 4 5 6-10 11-20 21+ max.
absolute 15 2 1 0 2 0 1 0 18
percentage 71-4 9-5 4-8 0 9-5 0 4-8 0

The lifted versions of the primitive types, such as Int and Char, are not included in this 
data.

The distribution of the number of arguments of the 600 non-prelude constructor is as 
follows:

arguments 0 1 2 3 4 5 6-10 11 20 mclx.
absolute 233 203 85 42 15 10 9 3 20
percentage 38-8 33-8 14-2 7-0 1-9 1-3 1-1 0-4

The distribution for the 50 prelude constructors is:
arguments 0 1 2 3 4 5 6-10 11 20 mclx.
absolute 10 18 12 1 1 1 5 2 19
percentage 20-0 260 24-0 2-0 2-0 2-0 10-0 4-0

C.4 Bindings and let(rec) expressions

There are a total of 15 878 global definitions, 17 354 le t  bindings, and 127 letrec bindings, 
in addition to the 2 245 le t s tr ic t  expressions and 2 125 let# expressions. The relative 
mixture of functions, constructors and thunks is shown below:

closure constructor function thunk other total
absolute
percentage

13 235 
39-7

6 571 
19-7

12 861 
38-6

692
2-1

33 359

The other category is primarily niladic functions.
Of the 127 letrec expressions, the distribution of the number of bindings is as follows:

bindings 1 2 3 4 5 6 10 11-20 max.
absolute 82 21 10 4 1 4 5 20
percentage 61-2 15-7 7-5 30 0-7 30 3-7

The distribution of the length of allocation chains (any uninterrupted series of le t  and 
letrec expressions) is shown below:

bindings 1 2 3 4 5 6 10 11-20 21+ max.
absolute 5 006 1395 599 313 120 276 69 30 114
percentage 64-1 17-9 7-7 4-0 1-5 3-5 0-9 0-4

tors.
In addition to explicit allocation, it may be necessary to heap allocate large construe-
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C.4.1 Free variables

By definition, global definitions do not have free variables (see section 4.5.4), so the infor
mation presented here relates to only the non-global bindings.

The distribution for the 1208 function bindings is as follows:

free variables 1 2 3 4 5 6-10 11 20 21+ max.
absolute 651 314 110 37 25 47 19 5 36
percentage 53-9 260 91 3-1 2-1 3-9 1-6 0-4

For the 8401 thunks, the free-variable distribntion is:

free variables 1 2 3 4 5 6-10 11-20 21+ max.
absolute 4078 2 336 1063 414 226 253 29 2 21
percentage 48-5 27-8 12-7 4-9 2-7 30 0-3 0-0

The Glasgow Haskell compiler treats constrnctor bindings (anything of the form var =  r 
cons atoms) as a special case, so free-variable information was not recorded for these cases.

C .4.2 Function arguments

The distribution of the number of arguments for the 6 571 functions is given below:

arguments 1 2 3 4 5 6 10 11-20 21+ max.
absolute 3 213 1856 732 320 152 264 32 2 22
percentage 48-9 28-2 IM 4-9 2-3 4-0 •5 0-0

C.5 case expressions

Note that for the purpose of this section, the original definition of the case expression 
is used (i.e. le t#  and le t s t r i c t  are considered to be case expressions using named 
defaults).

Of the 12 709 case expressions which scrutinise prelude constructors, the number of 
constructors associated with the data type of the scrutinee is distributed as follows:

constructors 1 2 3 4 5 6-10 11-20 21+ max.
absolute 6 991 5 626 78 0 14 0 0 0 5
percentage 55-0 44-3 0-6 0 0-1 0 0 0

With regards to the unary constructors, 3 687 of the case expressions are used to de
construct the lifted primitive types Int, Char, etc, and 492 de-construct the tuples used 
to support type classes.

The 3 279 case expressions which scrutinise the user-defined algebraic data types have 
the following distribution:

constructors 1 2 3 4 5 6-10 11-20 21+ max.
absolute 1473 497 263 364 108 325 231 18 36
percentage 44-9 15-2 8-0 IM 3-3 9-9 7-0 0-5

The distribution for both prelude-defined and user-defined data types (15988 case 
expressions in total) is given, below:

constructors 1 2 3 4 5 6-10 11-20 21+ max.
absolute 8 464 6123 341 364 122 325 231 18 36
percentage 52-9 38-3 2-1 2-3 0-8 2-0 1-4 0-1
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Of these, 2 245 (14-0 percent) are le t s t r ic t  expressions.
The 2 245 literal case expressions take the following types:

type Char# Int# Float# Double# Word#
absolute 209 1407 266 360 3
percentage 9-3 62-7 11-8 16-0 0-1

Of these, 2125 (94-7 percent) are le t#  expressions.

C.6 Constructor application

The distribution of the number of arguments of the 3161 user-defined constructor appli
cations is given below:

arguments 0 1 2 3 4 5 6-10 11-20 max.
absolute 197 1348 928 355 122 131 74 6 20
percentage 6-2 42-6 29-4 11-2 3-9 4-1 2-3 0-2

As for the prelude constructors, of which there are 7 998, the distribution is:

arguments 0 1 2 3 4 5 6-10 11-20 max.
absolute 1725 12 1683 4 257 193 24 101 3 19
percentage 21-6 0-2 21-0 53-2 2-4 0-3 1-3 0-0

The following distribution illustrates the total number of constructors that belong to 
the same user-defined type as the constructor being applied:

constructors 1 2 3 4 5 6-10 11 20 21+ max.
absolute 716 661 334 218 289 542 375 26 36
percentage 22-7 20-9 10-6 6-9 9-1 171 11-9 0-8

The same distribution for the prelude constructors is:

constructors 1 2 3 4 5 6 10 11-20 21+ max.
absolute 2 283 5 612 81 1 21 0 21 0 18
percentage 28-5 70-2 1-0 0-0 0-3 0 0-3 0

C.7 Limitations of the analysis

A number of criticisms can be levelled at the data presented in the previous sections:

• static analysis is a poor indicator of what would actually happen during execution

• the style of STG' code generated is an artifact of the Glasgow Haskell compiler, and 
should not be used to infer general patterns •

• most of the nofib benchmarks were coded with a sequential architecture in mind, 
so the data has no meaning in a parallel context

• larger programs, such as aima and veritas, will dominate the results

To a certain extent, all of these points are valid. But as the data is only intended to serve 
as a rough guide, the problems of the collection method can be overlooked.
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Polymorphic type rules for the 
STG^ language

This chapter presents the type rules discussed in section 4.5.3, with the order of presen
tation closely following that of the abstract syntax (see figure 4.1).

D .l Terminology

The notation adopted here is based on that used by Peyton Jones and Wadler [1992].

Type rules

All of the rules take the following form:

type signature

premisci

NAME
prermsen
conclusion

Usually, both the premises and conclusion will be judgement forms:

rule group
environment h construct: type

More generally, for rules which make use of or generate more complex data, the judgement 
form will look like:

rule group
inherited \~ construct: synthesised

231
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Environments

An environment is a finite mapping, usnally from identifiers to types, either explicitly 
constructed, e.g. {x  i-> r i,y  T2}, or created by merging two existing environments:

{envi © env2) var = env\ n o r , i f  var € dom{env\) a n d  var 0  dom{env2) 
env2 w ar, i f  var G dom{env2) a n d  var 0  dom{env\)

{envi © env2) var = env\ n o r , i f  var G dom{env\) a n d  var 0  dom{env2) 
env2 w ar, i f  var G dom{env2)

where dom{env) retnrns the domain of the environment. As shown previously, an iden
tifier’s value can be retrieved by applying it to the environment {env var), but the pre
ferred method is to treat the mapping as a set of tuples, and test for membership i.e.
{id, value) G env.

The environments used by the algorithm, as summarised in table 4.2, are as follows:

constructor environment for the pnrpose of typing, a constructor cons ti . . .  r „ ,  be
longing to the algebraic data type x  is treated as a function of type:
Tl ^  X TTl . . . Vr̂ .

primitive environment rather than providing an explicit rnle for every primitive func
tion, this environment maps primitives to polymorphic types,

general type environment is nsed to store the polytype of all bound polymorphic vari
ables currently in scope, including top-level definitions and all variable defined by 
let(rec) expressions.

local type environment stores the monotype of the formal arguments of the current 
binding, and any additional variables introduced by case alternatives, and let strict 
or le t#  expressions.

type-constructor environment records the arity (the number of type arguments re
quired) of each type constructor, along with the number and sequence of its con
stituent constructors.

Free variables

The free type variables of either a language construct or a whole environment may be 
determined using a named rule of the J^V[] algorithm.

Implicit conditions

To reduce the size of the presented rules, a number of conditions have been left implicit:

• where a type attribute has been inferred by two or more different rules, each of the 
resulting values must unify. The unified type is then used as the final result •

• occurrences of envi © env2 require that: dom{env\) fl dom{env2) =  0
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D.2 Programs
program

PE h program: GVE

typedecls
h typedecls : {TCE, CE)

TE =  {CE,PE,^,ib,^)
GVEq =  0
{bindingsi, . . . ,  bindings^) =  partition bindings

recbinds
T E ® G V E i h bindingsi^i \ GVE[j^i

PROGRAM

GVEi+i =  GVEi © GVE¡^^
{main, Dialogue) 6 GVEm

program
P E  h typedecls bindings : GVE„

The partition function first constructs a dependency graph of the mutually recursive 
definitions and uses this to breaks the bindings up into strongly-connected components. 
The resulting groups are then sorted into topological order. The total effect of this order
ing is to convert the top-level bindings into a series of nested letrec expressions. This 
minimises the impact of the monomorphism restriction as described in section 4.5.3.

D.3 Algebraic data types

Type declarations

TYPEDECLS

typedecls
h typedecls : (TCE, CE)

typedecl
TCE  h typedeck: {TCEi,CEi) 
TCE =  ®Q<i<tTCEi 
CE =  ®Q<i<tCEi

typedecls
h typedecli. . .  typedeclt : {TCE,CE)

Individual type declarations

TYPEDECL

typedecl
TCE h typedecl: (TCE, CE)

EVcondecls\condeds\ =  { o i , . . . ,  
condecís

TCE\x Oil ■ ■-Oiv ^ condecís : {C E ,n ,{con si,. . .  ,conSn)) 
TCE' =  {x  1-̂  {v, n, {const,. . . ,  cons„))} 

typedecl
TCE  h da-tdi X 0^1 ■■-Oiv =  condecís : {T C E ',C E )
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Constructor declarations

CONDECIS

concÍ©cls
TCE; h condecís ; (CE, n, (cons))

condecí
TCE\t̂  V- condedi : {CEi,conSi)
CE =  ®l<i<nCEi

condecís
TCE; h condedi. . .  condedn '■ (CE, n, {consi, . . . ,  consn))

Individual constructor declarations

condecí
TCE; h condecí : (CE, cons)

CONDECE

monotype
TCE  h Ti ( 0 < ¿ < / )

gen0 h Ti ^ ^ T/ — > : (T
CE  =  {cons ( / ,  a)}

condecí
TCE; h cons n  . . .  r /  : (CE, cons)

Monotypes

monotype
TCE h T

BOXED-MONO
boxedtype

TCE  h 7T
monotype 

T C £ ; h 7T

UNBOXED-MONO monotype
TCE h
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Boxed types

boxedtype

BOXED-VAR

T C E  h 7T

boxedtype
TCE  h a

monotype

BOXED-FUN
TCE  h Ti ¿ € { 1 , 2 }

boxedtype
TCE  h Tl —>• T2

(x, (u,n, (consi, .. .,conSn))) €
boxedtype

BOXED-CON
TCE  h 7Ti (0 <  i < i;)

monotype
TCE  h X^Tl-.-TT^

D.4 Bindings and lambda forms

Recursive bindings

recbinds
TE h binds : G VE

—> binds
© LFE h Unds : GFE

spec

REC-BINDS
LVE  =  (uarj i-> Tj | (war,, ct,) G GFE, h ctj : }

recbinds
TE  h binds : GVE

Bindings

binds
TE h binds : G VE

BINDS

bind
TE  h bindi : {vari,Ti)

gen
h r, : CTi

GVE =  ®i<n{vari <7i}
binds

TE  h bindi . . .  bindn'■ GVE

Individual bindings

BIND

bind
TE h bind : (var, r)

lambda
TE  h lambda—form  : r 
T < a 

bind
TE  h var =  lambda—form  : (var^r)



Simple bindings

simplebind
TE h simplebind : (var, t )
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SIMPLE-BIND

exp
TE \- exp : r

simplebind
TE  h v a r  =  exp : {var, t )

Lambda forms
lambda

TE h la m b d a : r

LAMBDA

LVE =  ®i<n{argi n }
exp

TE 0  LVE  h exp : r̂ xp
lambda

TE  h varsfree ^ O’l'dl ■ ■ ■ O’l'dn exp : Ti — • *  ̂ '̂ n  ̂ '̂ exp

D.5 Expressions
exp

TE h exp : r

The le t expression

LET-EXP

binds
TE  h bindings : GVE

^  exp
TE  0  GVE  h exp :

exp
TE  h le t  bindings exp : r.exp

The letrec expression

recbinds
TE  h bindings : GVE

exp

LETREC-EXP
TE  0  GVE  h exp : T,,xp
exp

TE  h le tre c  bindings exp : Tgxp

The let#  expression

simplebind
TE  h simplebind: {var, n)
LVE =  {var u}

exp

LET#-EXP
TE  © LVE  h exp : r̂ xp

exp
TE  h let#  simplebind exp : Texp
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The letstrict expression

L E T S T R IC T -E X P

simplebind
TE  h simplebind : (var, x  tti . ..  tt̂ ) 
LVE  =  {var X tti . ..  vr̂ }

^  exp
TE  © LVE  h exp : r̂ xp

exp
TE  h l e t s t r i c t  simplebind exp : r,exp

The case expression

C A S E -E X P

exp
TE  h exp : Texp

alts
TE  h aZis : Tgxp r̂esult A no—overlap alts

default
TE  1“  def ault : Tgxp  ̂Pesult

exp
TE  h case etcp of aZis default : Tresult

The no-overlap function examines the left-hand side of each alternative making sure that 
there is no repetition.

Variable application

var
TE v a r Ufi : t i  y ■ ■ ■  ̂  ̂ '^result

atom

APPLY-EXP
TE  h atomi ■ P (0 <  Z <  n)

exp
TE  h var fun atomi ■ ■ ■ atomn : Pesult

Constructor application

{cons, (n, cr)) € CE
Spec

TE  h (T : Tl —>■ • • • T„ -)■ X 7Ti . . . 7T̂

C O N S -E X P

atom
TE  h atomi : Tj (0 < Z < n)

exp
TE  h cons atomi ■ ■. atomn • X -

Primitive functions

P R IM -E X P

{primitive, {n, a)) G PE
Spec

T E  \~ (7 , T l   ̂ T jj Tj-ggxill
atom

(0 < i < n)TE  h atomi '■ ©
exp

TE \- primitive atomi ■ ■ ■ atom^ : T̂ esult

Literal values

L IT -E X P

literal
h literal : u

exp
TE \- literal : v
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General alternatives
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alts
TE h alts : T ^  T

lalt

LIT-ALTS
TE \- lalti : u ^  T (1 < * <

alts
T E  \- l a l t i . . .  laltn '■ u  ^  t

aalt

ALG-ALTS
TE  h aalti : x vri. ..  vr̂  —)■ r (1 < * <

alts
TE \- aalti • • • aaltn : X '^i • • •

Literal alternatives
lalt

TE h lalt : T T

LIT-ALT

literal
h literal : v

exp
TE h exp : T̂ xp

lalt
TE \- literal —)■ exp : u ^  T(exp

Algebraic alternatives

aalt
TE h aalt : t  ^  t

ALG-ALT

pattern
TE  h pattern : {x T!'i ■■■ T!'v, LVE)

-r  exp
TE  © LVE  h exp :

aalt
TE  h pattern —)■ exp •. x  - • exp

Constructor patterns

pattern
TE h cons vars : (x vri. ..  tTv —l- r, LVE)

PATTERN

{cons, (n, a)) 6 CE
Spec

TE  h (T ■. Ti ^  ^  Tn ^  X ■■ - T̂v
LVE =  ®i<n{vari n )

pattern
TE  h cons var\ ...  var^ ■ (x r̂i . ..  tTj,, LVE)
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default
TE h default : r
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DEFA ULT

exp
TE \- exp: Texp

default
TE  h _ exp : T ^  T,exp

D.7 Atoms, variables and literals

Atom s
atom

TE h atom  : t

VAR-ATOM

LIT-ATOM

var
TE  h var : r

atom
TE  h var : r

literal
h literal : v
atom

TE  h literal : v

Variables
var

TE h var : t

LOCAL-VAR
{var, r )  G LVE

var
TE  h var : r

{var, a) 6  GVE
Spec

GENERAL-VAR
TE h  a  : t

TE  h var : r

Literal values
literal

TE h literal : n

literal literal
INT-LIT h int : In i# STRING-LIT h string : String#

literal literal
FLOAT-LIT h float : Float# MACH-LIT h mach : Maeh#

literal literal
CHAR-LIT h c/iar : Char# ADDR-LIT h addr : Addr#
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D.8 Generalisation and specialisation
spec

h a  : T
gen

TE h T : a

SPEC

GEN

T <  a
spec

h a  : T

V Q j • Qj 6 {EVmonotypelr} ''EV type^envjT Ej) {1 < i < u)
gen

TE \- T : V a i .. .Un-T



Appendix E

Free variables of the STG language

This chapter presents the free-variable algorithm discussed in section 4.5.4, with the order 
of presentation closely following that of the abstract syntax (see figure 4.1).

E .l Programs

TVprogram H :: program —)• {var}

TVprogram

vari =  lambdai 

vavn =  lambda^
=  { }
= \Ji<n̂ îarabdallamhdai\ [vavi,. .

(defir ition) 
,uar„} (derived)

E.2 Algebraic data types

Constructor declarations

^condecisli ■■ condecls {a }

TVcondeci\r^^dBcii. . .  condscl^i  ̂ Icondec/^l

Individual constructor declarations

^condedU ■■ condecí ->  { a }  

condecllcons Ti . . . T/] =  U j<y TVmonotype\,Ti\

Monotypes

TV monotype U :: r —>■ { « }

•monotype\T\ ['̂ 1
•̂ l̂ monoij/pe { }  _______
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Boxed types

oiediÿpe [ 1 ^

Z 4 Z

boxedtype [^1
•^^boxedtypeÏTi  ̂'̂2! 
boxedtype [X TTi . . . TTj} J

=  { « }
=  J~Vmonotype\Tl\ U J''^m onotypelj2l 

“  U î < ï i  •^~^boxedtypel_'^il

E.3 Lambda forms

freei •
TV lambda 7T exp

VdTfirgi • •■ VaVargn

^Viambdali ■■ lambda^form ^  {var} ^  {var]

g  =  { u a r / r e e i , - - - , W a r / r e e ^ }

=  TVexplexpl g' \ varargs 
where
g’ — g \  varSargs

(defi
(de:

vars,arg =  {varargi, • • • , VaParĝ  }

nition)
rived)

E.4 Expressions

TVexpll ■■■■ exp ^  {var} -P- {var}

The let expression

var\ =  lambdai

TV exp le t : exp 9 =
vavn =  lambdan

{fveCexp \ VaVSbound) U  f  TeSlambdas
where
fveCexp =  TVexplexpj g'
f'eeeiambdas —  [ J i < n  ^̂ lo.mbdaV'̂ 'bbtbdail g
9' — 5  \ Abound
varshQ̂ jid =  {va ri,. . .  ,varn}

The letrec expression

vari =  lambdai
TVexp letrec : exp 9 =

vaPn =  lambdan
{fveCexp U  fveeiambdas) \ '̂ eiTSbound
where
freSexp —TVexplexpl g'
f'eeeiambdas ~ y}i<n XVlambda\j’(̂ fetbdaj\ g
9' g \ varsbound
VarSbound — {va ri,.. .,varn}
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The let# expression

(var =  exprhs) ^̂ Phodyl 9 
^^explexprhsj g U iTVexplexpbodyi p' \ {^^r}) 
where g' =  g\ {var} __________

The le ts tr ic t  expression

[letstrict {var =  exp^hs) exphodyi 9
=  ^explexprhsl ffU {TVexpl^^^Pbodyj 9 \ {var}) 

where g' =  g \ {var}

The case expression

•^^eap[case exp o f alts default} g — 
l^Vexplexpj gUTVaitslalts} g U TVoefaulddefaultj g

Variable application

d^Vexplvarfy^n atoms] g =  atomslatornsj g U iFVvarlvarfunj g

Constructor application

IFVexplcons atoms] g =  atomslatoms] g

Primitive functions

IFVexplprimitive atoms] g =  atomsiatoms] g

Literal values

TVexpllitaral] 3 =  { }

E.5 case alternatives

General alternatives

J ^V altsl] a lts  { v a r }  {var}

d^ValtsV-alti . . . la ltn ] g  =  \ J i< n T V ia it{la lti]  g

J^Vaits { a a l t i . .. a alt„\  g =  [ f i< n T V a a u {a a lt i ]  g

Literal alternatives

T V la ltU .. Icilt y ^
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Algebraic alternatives

^FVaaltlcoris va ri...

Default expressions

J^VaaitU ■■■ aalt ^  {var} ^  {var}

varji —̂ expj g =  g \ varsf/Q̂ nd
where g' =  g\ varsbound 
and varsbound =  {v a n , • • •, vavn }

J^defauitU ■■ default ^  {var} ^  {var} 

^Vdefaulti- expj g =  n^explexpj g

E.6 Atoms and variables

Atom s

d^atomsli ■■■ atoms {var} ^  {var} 

atomslo-torni...  aiom„] globals =  [ji<n atom{atomi\ globals

Individual atoms

d^atomW ■■ atom {var} -> {var}

^'^atomlvarj globals =  tFVvar\var\ globals 
^'^atomlliteralj globals =  { }

Variables

• t̂’ ûarO •• ‘aar —)• {var} {var}

^'l^varlvar} globals =  {var} \ globals



Appendix F

The RISC target language

F .l Introduction

This chapter presents the instruction set used by the RISC-processor model outlined in 
chapter 7. Based on the Alpha instruction formats [DEC, 1992, figures 3-1 through 3- 
6, pages 3-8 to 3-12], the instructions are split into four categories: memory references, 
branches, operate instructions, and system instructions. The Haskell representation of the 
instruction set is as follows:

__Haskell_______________________________________________________________
data Instruction = Memoryinst MemoryOpCode Register Register MemoryOffset I

Branchinst BranchOpCode Register Register MemoryOffset I
Opllnst OperateOpCode Register Register Register I
0p2Inst OperateOpCode Register Word Register I
Sysinst SysOpCode Word

F.2 Operand notation

The notation for the instruction-set operands is described in the following table:

notation description
namCj-eg one of the thirty-two general-purpose registers, which will be associated 

with the given name
immediatex a signed integer, made up of x bits
o ffse tx a signed integer, made up of x bits, used as an address offset
o f  f  setx<^y a signed integer, made up of x bits, which will be shifted y bits to the 

left and used as an address offset
reg-imnix either the contents of a general-purpose register or an a:-bit signed 

integer

F.3 Memory references

Haskell.
data MemoryOpCode = LD | LL I LA | LAH I ST I SC
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instruction description
LD load of fsetiQ(basereg) 

tav Qctj’Qg
load a word from the address (word-aligned) formed 
by adding the 16-bit signed offset and the contents 
of the base register. The value is then stored in the 
target register

LL loadiijip̂ ed of f  sctiQ [basCfQg'j 
tav Qctrpgg

in addition to performing a regular load {LD), the 
instruction indicates the start of a semaphore action. 
If the address is accessed between the execution of 
this instruction and the matching conditional store 
{SC), the conditional store will fail.

LA loadaddress of f  SCtiQ (basC'peg) 
tav gst̂ ßg

this instruction does not access memory, it simply 
loads the target register with sum of the offset and 
the base register

LAH loadfiigji of f  sct'iQ-f—'iQ(hasCj-ßĝ  
tav QStreg

similar to the load address instruction, except the off
set is first (arithmetically) shifted sixteen bits to the 
left

ST store ValuCreg
of f  set IQ (baSCreĝ

stores the word conatined in the value register into 
the address formed by adding the 16-bit signed offset 
and the contents of the base register

SC stor valuCj-ßg
of f  set \Q (basCj-Qg'j

this is the second instruction of a semaphore pair -  
if the memory location has not been accessed since 
the linked load, the word stored in the value register 
will be loaded into the memory address, and the value 
register will be set to one. If, however, the address 
has been accessed, no store will take place, and the 
value register will be set to zero

F.4 Branch instructions

Haskell.
data BranchOpCode = JMP I JSR I BR | BSR I CBR RISCCondition

The condition x functions (RISCCondition) are described in section F.7. 
Unconditional branches

instruction description
JMP jump o ffsetu ^ 2 {basereg) the 16-bit signed offset is first shifted two places to the 

left, then added to the base register to form the target 
address (which must be word aligned). The PC is set 
to this new address

JSR juTTipiifi}̂  of f  setiQ^2 {pasC'pQĝ
lliTlikf ß g

in addition to performing a regular jump {JMP), the 
link register is loaded with the value of the current 
PC, allowing a subroutine to return control back to 
the caller

BR branch offset2 u~ 2 similar to a jump, but the (larger) offset is added to 
the current PC to form the target address

BSR branchiink offset‘2 1 ^ 2

l%Thkf‘ß q
loads the link register with the value of the current PC, 
before branching
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Conditional branches
instruction description

BEQ branchx=o X'peg offsehi^2 branch if x is zero
BNE branchx^o Xfeg offset2i^2 branch if x is not zero
BLT branchxco Xreg 0ffset2U-2 branch if x is less than zero
BLE branchxKo Xfeg 0ffset2H-2 branch if x is less than or equal to zero
BGT branchxyo Xreg offset2i^2 branch if x is greater than zero
BGE branchx>o Xreg offset21^2 branch if x is greater than or equal to zero
BLBC bTQj7lcĥ ilQ_Qlß(i>p Xreg offset21^2 branch if the low bit of x is zero
BLBS bTQ,Tlchl,iiQ_sßi Xreg offset21^2 branch if the low bit of x is one

F.5 Operate instructions

Haskell.
data OperateOpCode = ADD I S2ADD I ADDT

CMOVE RISCCondition |
AND Bool I BIS Bool | XOR Bool I
SLL I SRL I SRA |
CMPEQ I CMPLT I CMPLE deriving Eq

I SUB I S2SUB I SUBT I MULl DIV I

T h e  condition x fu n c tio n s  ( R I S C C o n d it io n )  a re  d e s c r ib e d  in  s e c tio n  F . 7 . 

Arithmetic operations

instruction description
ADD add ValuBreg

reg-imms
targetreg

signed addition of the first two arguments, the result of 
which is stored in the target register

ADDT Clddfrap ValuCreg
reg îmm^
tavgctreg

as for ADD but an over or underflow will generate 
an exception (that must be explicitly trapped with a
barriertrap instruction -  TRAPS)

S2ADD dddshift—2 ValuCreg
reg-imms
targetreg

before performing the addition, the second argument is 
shifted left by two bits

SUB subtract valuereg
reg-imrns
targetreg

signed subtraction of the second argument from the 
first, the result of which is stored in the target register

SUBT subtracttrap ValUBreg
regHmms
targetreg

as for SUB but can generate an exception (see ADDT 
for further details)

S2SUB subtractshift-2 UQiluGreg
reg-imms 
t(lT gĜ reg

before performing the subtraction, the second argu
ment is shifted left by two bits

MUL multiply VQiluGreg
reg-imms
tdvgetreg

signed multiplication of the two arguments (no excep
tion generation)

DIV multiply ValuGreg 
reg-imms 
tar getreg

signed division of the two arguments (exception gener
ated when dividing by zero)
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Move instructions
instruction description

CMOVEQ movex=o Xreg reg-imms targetreg if X is zero then set the target to the value 
of the second argument

CMOVNE movCx^o Xreg veg-imms targetreg perform the move if x is not zero
CMOVLT movex<o Xreg reg-imms targetrea perform the move if x is less than zero
CMOVLE movexKo Xreg reg-imiTis targetreg perform the move if x is less than or equal 

to zero
CMOVGT movCxyo Xreg reg-imuis targetrea perform the move if x is greater than zero
CMOVGE movex>o Xreg reg-imms targetreg perform the move if x is greater than or 

eqnal to zero
CMOVLBC moveuto-clear Xreg reg-imms targetreg perform the move if the low bit of x is zero
CMOVLBS moveuto-set Xreg regAmms targetrea perform the move if the low bit of x is one

An unconditional move from x̂ -eg to yj-eg is effected by the move -̂— q zeroreg Xreg Ureg- 
The condition x (RISCCondition) functions are described in section F.7.

Logical instruction

instruction description
AND and valuBreg reg^imnig targetreg perform a bit-wise logical and of the two 

arguments and store the result in the
target

BIS or valucreg reg-imnif, targetreg as for and, but use the bit-wise logical or 
operation

XOR xor valuereg reg^imnis targetreg as for and, but use the bit-wise logical xor 
operation

BIG andnot valuCreg reg-imm^ targetreg complement the second argument before 
performing the and operation

ORNOT or-not valuBreg reg îmrtis targetreg complement the second argument before 
performing the or operation

EQV xornot valuCreg reg_imm^ targetreg complement the second argument before 
performing the xor operation

Comparisons

instruction description
CMPEQ compare^—y valuCreg reg—imms targetreg if the two values are equal then set the tar

get register to one, otherwise set it to zero
CMPLT comparex<y valuCreg reg—imms targetreg if the first argument is less than the second 

then set the target register to one, otherwise 
set it to zero

CMPLE comparex<y valuCreg reg—imms targetreg if the first argument is less than or equal 
to the second then set the target register to 
one, otherwise set it to zero

Negation of register Xreg is effected by the ovnot zerOreg Xreg instruction.
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Shift instructions
instruction description

SLL shiftieft Xreg reg^imm^ targetreg the first argument is shifted left by the 
number of bits specified by the second ar
gument (up to a maximum of 32 places) 
and the result stored in the target

SRL Shift'pigJit Xreg reg^imm^ targetreg as for shiftieft, but shift to the right
SRA shift arithmetic Xreg reg^imm  ̂ targetreg as for shiftright, but the sign bit is 

invariable

F.6 System instructions

Haskell.
data SysOpCode = CALL_PAL I TRAPS I MB | MBW

instruction description
CALL_PAL syscall immediate26 cause a system-call exception
TRAPB barriertrap if an arithmetic exception is pending, then skip 

the next instruction
MB harrierread wait until all outstanding reads have completed 

(only applicable in a shared memory environment)
MBW harrierwrite wait until all outstanding writes have completed 

(only applicable in a shared-memory environment)

F.7 Condition codes

data RlSCCondition = EQ I NE | LT I LE I GT I GE I LBC I LBS

condition branch instruction move instruction condition x
EQ BEQ CMOVEQ {x =  0)
NE BNE CMOVNE (x 7  ̂0)
LT BLT CMOVLT {x < 0)
LE BLE CMOVLE (x < 0)
GT BGT CMOVGT {x > 0)
GE BGE CMOVGE (x > 0)

LBC BLBC CMOVLBC (x mod 2) ^  0
LBS BLBS CMOVLBS {x mod 2) /  0



Appendix G

State-transition rules for 
modelling a RISC processor

G .l Introduction

This chapter presents the state-transition rules needed to complete the RISC-uniprocessor 
model outlined in chapter 7. The terminology follows that presented in section 4.8.2.

G.2 Decoding instructions

Pending exceptions

Decode pc regs memory semaphore {pending, mask, counter, trigger)

such that pending \ {mask U {Overflow}) 7  ̂0

Exception pc registers memory semaphore {pending, mask, counter, trigger)

Instruction fetch and decode
2 Decode pc registers memory semaphore exceptions

Execute instruction pc' registers memory semaphore exceptions 
where instruction = decode rnemory{pc) 

pc' = pc -1-32 4

G.3 The post-execution phase
PostExec pc registers memory semaphore {pending , mask, counter, trigger)
Decode pc registers memory semaphore {pending', mask, counter', trigger)

where counter' = counter -I-32 1
pending' = pending U clock-interrupt
clock-interrupt = i f  {trigger =  counter) then {Clock} else 0

250



251

G.4 Exceptions
4 Exception pc registers memory semaphore exceptions

Exception pc registers memory semaphore exceptions

G.5 Memory references

Unaligned access

Execute load/store o f fset{base) pc registers memory semaphore (pending , mask, ctr,tr)

such th a t (load/store € {load, loadunked, store, storeu„ked}) and (address mod 4  0)

PostExec pc registers memory semaphore (pending', mask, ctr,tr)
w here pending' = pending U {Unaligneddato} 

address =  offset  +32 registers(hase)

Load instruction
6 Execute load of fset(base) target pc registers memory semaphore exceptions 

PostExec pc registers' memory semaphore exceptions
w here registers' = registers[target !->■  value] 

value =  memory (address) 
address = offset  +32 registers(base)

Linked loads
Execute loadunked of fset(base) target pc registers memory semaphore exceptions
PostExec pc registers' memory (address, false) exceptions

w here registers' = registers[target 1-̂  value] 
value = memory (address) 
address = offset  +32 registers(base)

Store instructions
8 Execute store source o f fset(base) pc registers memory (addressserm stale?) exceptions 

PostExec pc registers memory' (addresssem-, stale?') exceptions
w here memory' =  memory[address i-> registers(source)]

stale?' =  i f  (address =  address sem.) then true else stale? 
address =  offset  +32 registers(base)

Conditional store instruction 

Clean address
Execute storeiink source o f fset(base) pc registers memory (addressgem, stale?) except.

such th a t (address =  addresssem) and (stale? =  false)

PostExec pc registers' memory' (addresssem, true) except.
w here memory' = memory[address registers(source)] 

registers' = registers[source 1]
address = offset  +32 registers(base)
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Dirty or a non-equal address

10 Execute storennk source o f fset(base) pc registers memory (addresssenii stale?) except.

w here
PostExec
registers' = registers[source 0] 
address = offset  +32 registers(base)

pc registers' memory (addresssem-: true) except.

Load address
11 Execute loadaddress o f f  set(base) target pc registers memory semaphore exceptions

where
PostExec
registers' = registers[target !->■  address] 
address = offset  + 3 2  registers(base)

pc registers' memory semaphore exceptions

Load address high

12 Execute loadaddresŝ high offset(base) target pc registers memory semaphore exceptions

where
PostExec
registers' = registers[target 1-̂  address] 
address = offset' +32 registers(base) 
offset' = shiftieft o ffset  16

pc registers' memory semaphore exceptions

G.6 Branch instructions

Unaligned computed jumps

13 Execute jump of fset{base) pc registers memory semaphore {pending , mask, ctr,tr)

such th a t (jump £ {jump, jumpunk)) and (address mod 4 7̂  0 )

PostExec pc registers memory semaphore (pending', mask, ctr,tr)
w here pending' =  pending U {UnalignedinstrucUon} 

address = offset  +32 register(base)

Computed jumps

14 Execute jump offset(base) pc registers memory semaphore exceptions
PostExec pc' registers memory semaphore exceptions

w here pc' =  offset  +32 registers(base)

Linked computed jumps

15 Execute jumpunk of f  set(base) link pc registers memory semaphore exceptions 
PostExec pc' registers' memory semaphore exceptions

w here pc' = offset  +32 registers(base) 
registers' = registers[link pc\
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Unconditional branches
16 Execute branch offset pc registers memory semaphore exceptions

PostExec pc' registers memory semaphore exceptions
w here pc' =  offset’ +32 pc

_______ offset' = shiftieft offset  2____________________________________________

Linked branches
17 Execute branchunk offset link pc registers memory semaphore exceptions

where
PostExec pc' 
pc' =  offset' +32 pc 
registers' = registers[link pc] 
offset' = shiftieft o ffset  2

registers' memory semaphore exceptions

Conditional branches 

Condition satisfied
18 Execute branch condition x offset pc registers memory semaphore exceptions

such th a t {condition registers{x) =  true) and {address m od 4 0 )

where
PostExec
pc' = offset' +32 pc 
offset' = shiftieft o ffset  2

pc' registers memory semaphore exceptions

Condition not met
19 Execute branchcondition x offset pc registers memory semaphore exceptions

PostExec pc registers memory semaphore exceptions

G.7 Operate instructions

Trapped addition 

No overflow

20
„  , , ,  • j i immediate \ 
h/xecute (iddtrap reytsteri \ vcgister | target pc registers memory semaphore ex

such th a t {sign argumenti ^  sign argument^) or {sign argumenti =  sign result)

w here
PostExec
registers' =  registers[target i-> result] 
result = argumenti + 3 2  argument  ̂
argumenti =  register s{registeri)

, f immediatearqumento =  s •  ̂ / ■ . x [registers{register2)

pc registers' memory semaphore ex
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Overflow occurs
21 Execute addtrap Pc registers memory semaphore {pending , mask, counter, trigger) 

PostExec pc registers' memory semaphore {pending', mask, counter, trigger)
where pending' = pending U {Overflow}

Trapped subtraction 

No overflow

22 Execute subtracttrap 'cegi target pc registers memory semaphore exceptions

such that {sign argumenti =  sign argurnent2 ) or {sign argumenti =  sign result)

PostExec pc registers' memory semaphore exceptions
where registers' = registers[target !->■ result] 

result = argumenti ~32 argument-2 

argumenti = registers{regi)
, f immarqumento = { . . , .[register s[reg2 )

Overflow occurs
23 Execute subtracttrap pc registers memory semaphore {pending, mask, counter, trigger)

PostExec pc registers' memory semaphore {pending', mask, counter, trigger)
where pending' = pending U [Overflow]

Move instructions 

Condition satisfied

24 I ììTiTTied \Execute rn.ovec0fi(Hiì0fi regi \ r taget\reg2 1 pc registers memory semaphore except.

such that {condition argumenti =  true)

where
PostExec
registers' = registers[target argument2 ] 
argumenti = register s{reg\)

, f immedarqumenta = s . , / x [registers{reg2 )

pc registers' memory semaphore except.

Condition not met

25 Execute f̂ -gx j  immed} 
\reg2 j taget pc registers memory semaphore exceptions

PostExec pc registers memory semaphore exceptions
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Arithmetic and logical operations, shifts and comparisons

The remaining operations are regular, so we only need to define one reduction rule:

26 Execute operator register\ | pc registers memory semaphore ex

such that {operator € {add, addshift^, subtract, subtractshift 2̂ ^multiply, divide, 
and, andnot, or, or not, xor, xor„ot,
shiftleft  ̂shiftĵ igfit, shift arithmetiĉ  OOmparCcondition} )

PostExec
where registers' = registers[target result]

result = operator argumenti argument2 

argumenti = register s{registeri)
, f immediatearqumento = s . , , ■  ̂ \_________ 2__________[ register s{register2 )_____

pc registers' memory semaphore ex

G.8 System instructions

System calls

27

where

Execute syscall arg pc registers 
PostExec pc registers 
pending' = pending U {SysGall]

memory
memory

semaphore
semaphore

{pending , mask, counter, trigger) 
{pending', mask, counter, trigger)

Arithmetic trap

28 Execute barriertrap pc registers memory semaphore {pending , mask, counter, trigger)

where
PostExec pc' registers memory semaphore 
pc' = i f  {Overflow € pending) then {pc +32 4) else pc 
pending' = pending \ {Overflow}

{pending', mask, counter, trigger)

Read barrier
29 Execute barrierread pc registers memory semaphore exceptions

PostExec pc registers memory semaphore exceptions

W rite barrier
30 Execute barrier^rite pc registers memory semaphore exceptions

PostExec pc registers memory semaphore exceptions
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condition branch instruction move instruction condition x
EQ BEQ CMOVEQ {x = 0)
NE BNE CMOVNE (x ^ 0)
LT BLT CMOVLT (x < 0)
LE BLE CMOVLE (x < 0)
GT BGT GMOVGT {x > 0)
GE BGE GMOVGE {x > 0)

LEG BLBG GMOVLBG {x mod 2) = 0
LBS BLBS CMOVLBS (x mod 2) ^ 0



Appendix H

Compilation rules of the 
STG^-machine language

This chapter presents the state-transition rules used to prototype a modern optimising 
compiler for functional languages. The notation used is described in section 4.8.2, while 
the rules themselves are introduced and described in chapter 8.

H .l The initial state
IN IT Expression-code Continuation Pending Code

Code stack stack bindings blocks Globals

C o n tin u e 0 . tack Ostack p e n d in g b lo ck s a

w h e r e p e n d in g — { b i n d i , . . . ,b in d n }
blo cks = {lOiÒGlfiode-  ̂ j 0 ) ,  • • • ; lOrbslnode_gn  *  ̂ _g^  ? 0 ) }

a {Q1 '  ̂ lOiÒGlfiode—g-i ■ >•••■ > Qn '  ̂ ^OÒcljiode—gn }
hindi {gi =  lam bda—f o r n i i )

H.2 The compiler framework
Flo 1 Continue exps next : eonts pending blocks a

next exps conts pending blocks a

Fife Continue O siacA? {^ s ta ck pending blocks a

such that bind G pending

CompileBind bind O sia c fc  O s ia c fc pending' blocks a

where pending' = pending \ bind

F l c Continue s ta ck s ta ck {,'} s ta c k blocks a

Finish s ta ck s ta ck {,'} s ta c k blocks a

257
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f 2 C o m p i le B in d  bin d  e x p s  c o n ts  p e n d in g  b lock s a

var
such that h v a rfu n  : n  —>■ I n t # ,  {n  >  1)

= >  C E v a l  ex p fu n  P i n i t  {) {r e tu r n in it} stack  e x p s  c o n ts ' p e n d in g  b lock s' a

where P i n i t

p a r g s

operandargi

P  f r e e s

o p er a n d  free

re tu rn in it
c o n ts '

bind

p a r g s  ©  P f r e e s  ®  \ u a T r e t u r n  ' t  T e g Ì s t e r 2 i ) U ^ ^ r i o d e  ' t  T C g i s t c r g b }

{va ra rgi I© op cron d a rg i, • • •, vararg„ >->■ operandarg„ }

stack{:.\
[  stacky. h varargi ■ I n t #  

{var/reei OpCrandfreei , ■ ■ ■ , va r fre o p er a n d  free„^}

memory“ ’'”"'*®
memory {̂^y°‘‘ ‘

h v a r  fresi • ®
var
l~ vciTfpQg  ̂ : I f i t ^

(̂ VClTpeturn) ext
{ S e a l E n t r y  hind) : {R e t u r n B i n d  bin d ) : c o n ts

{varf u n  — v a rfr e e l  ' ' ' ^ e i r f r e c m  ^  Varargi ' ' ' v a rargn t  e x p f u n i

f3 R e t u r n E x p r e s s i o n  cod e e x p s  c o n ts  p e n d in g b lock s a

C o n t in u e cod e  : e x p s  c o n ts  p e n d in g b lock s a

f 4 I S e a l E n t r y  bin d  cod e : e x p s  c o n ts  p e n d in g  b lock s

C o n t i n u e  cod e  : e x p s  c o n ts  p e n d in g  b lo ck s' a

where cod e ' =  c h e c k -a r g s  +1- c h e c k -s ta c k s  +1- ch eck —h ea p  4-1- code

f5 R e t u r n B i n d  (v a r =  l a m b d a -f o r m ) cod e : e x p s c o n ts  p e n d in g b lock s a

C o n t in u e e x p s c o n ts  p e n d in g b lo ck s' a

where block s' =  
i n f  O—table =

block s  0  {la b elen ter- 
{Icbbclenter_vart Icibcl

.var  ̂  ̂Code^ 
update—.var i • •

. . ,  labelin fo—var i n f 0—ta b le}

. , labclgc_var)

H.3 Applications
1 I C E v a l  { f  ( a t o m i , . . .  ,a t o m n ) )  p cod e r e t u r n s  e x p s  c o n ts  p e n d in g  b lock s

such that h /  : Q

C E n t e r  r e g is te r g s p' cod e ' r e t u r n s  e x p s  c o n ts  p e n d in g  b lock s a

where (m o v e s ' ,  p' 
cod e'

combine—moves moves p a 
code -H- moves'

moves = load-node -H- push-args -H- save-volatile-vars -H- stvhudead—Aslots
load-node = {move (val p a f),register2 5 \) 
push-args =  push-argi ■.■■■: push^rg„ : ()

= move (a to m J to -o p e r a n d  a t o m i ) ,operandargi',
/  atom

h a to m i : a

p u s h -a r g i

operandargi s ta ck r -

stacky.
atom

h a to m i  : In t^k
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The auxiliary function, atom-to-operand, is defined below:

a to m J to —o p e r a n d  p  a  lite r a l =  lite ra l

a to m —to—o p e r a n d  p  a  v a r =  va i p  a  v a r

2a E n t e r  o p er a n d p  cod e r e t u r n s  e x p s  c o n ts p e n d in g block s a

such that r e tu r n s = {(v a rretu rn ,-)ex t)sta ck

R e t u r n E x p r e s s i o n cod e ' e x p s  c o n ts p e n d in g block s a

where cod e ' =  
l o a d -r e t u r n  =  

j u m p  =

cod e -H- l o a d -r e t u r n  -H- j u m p  

move (va l p a  va rretu m ),reg ister24 :',
operand ■ ,move m e m o r y ^ , r e g isie r tm p  

jump {re g iste r tm p )

2b E n t e r  o p e r a n d  p cod e r e tu r n s e x p s c o n ts p e n d in g block s a

such that h ea d  r e tu r n s = (fci —> e x p i . .  .kn ->■ e x p n , - —>■ expd, varsfree^ case

R e t u r n i n t  r e g i s t e r i  p {) r e tu r n s e x p s c o n ts ' p e n d in g block s a

where c o n ts ' = { C J o i n E n t e r  {va l p (T VCIVnode, c o d e ] : c o n ts

2c CJoinEnter operandnode codepre-entry codcpost-entry : exps conts pending blocks a

ReturnExpression code' exps conts pending blocks a

where code = Codepre—entry jUTiip Codepost_entry
jump = move r̂egister tmp\

jump;,;„ j, {registerimp),

H.4 let(rec) expressions
3___ C E v a l (let b in d in g s in e x p )

C E v a l  e x p

P cod e r e tu r n s e x p s c o n ts p e n d in g block s

f
P cod e r e tu r n s e x p s c o n ts p e n d in g ' b lock s

where p'

cod e' 
p e n d in g '

{ in O V e S j  p m o v e s

VaVSdead

—  p m o v e s  \ n a V S d ea d

=  cod e +1- m o v e s
=  {b in d in g!,..., b in d in g „ } U p e n d in g  

) =  a llo c a te u c lo su r e s  b in d in g s  p  a

=  E V lb in d in g s J  \ E V [e x p \

The rule for le tre c  expressions is almost identical, requiring only a minor modification 
of the allocate-closures rule (see the description of this function for further details).
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H .4.1 Variable bindings

f vari =  lambdai ^
allocate-jclosures

y vavn = lambdun j
p a = combine-moves [movesi,..., movesn} pbinds cr

where punds =  
movesi =

—f
p ©  {van 1-0  ̂heap{offset\),vavn i-t heap{of fsetn), heapmax i-t offset„+i} 
create-dosure var, lambdai of f seti Prhs cr

Prhs — 
of f seti =  
offset, =

P
vai p a heapmax
off seti +^^^^max{dosure-size lambda j,closurê sizemin)

The rule for recursive bindings is almost identical, except that is defined to be 
Pbinds instead of p.

H .4.2 Closure layout

create-closure var base (vars/ree tt varSargs —> exp) = move labeUnfo-tablêa,--, memoryo“'’̂̂;
move operandi, memory\‘̂̂ ‘̂

/  *n(
move operandn, 

free variable of type tt

memoryn̂ “̂  ̂;

where operandi = vai p a \ _  .yn ^  ^  varsfree)

H.5 Case expressions
4 CEval (case exp of alts default) p code returns exps conts pending blocks a

CEval exp p code returns' exps conts pending blocks a

where returns' = [alts, default, v a r s f r e e ) c a s e  ’■ returns 
_________ varsfree =  EVlexp} U EVlalts] LI EVldef aultj

4b I CEval (let# {var = exprha) expbody) P code returns exps conts pending blocks a

CEval exprha P code returns' exps conts pending blocks a

where returns' = {var,expbody,varsdead)assign’■ returns
varsdead =  TVlexprhsi \ EV[expbody\________________________________________________________

The rule for le t s t r ic t  (rule 4a , see figure 4.12) is almost identical, with just the intial 
expressioon requiring modification.

H.6 Built-in operations
9 1 CEval (k) p code returns exps conts pending blocks a

= >  CReturnint k p code returns exps conts pending blocks a
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10 CEval (/ 0) p code returns exps conta pending blocks a

var
such that h / : Intjĵ

= >  CReturnInt {val p a f) p code returns exps conts pending blocks a

llA CReturnInt operand p code returns exps conts pending blocks a

S U cll TCtVy'TTlS —  ^ ( ^ V C t T r e t u r n ^  J n t ^ ' ) e x t ) s t a c k

ReturnExpression code exps conts pending blocks a

where code'

{moves, p') =  eombine-moves

jump

code +1- moves +1- trimstacks -H- jump
move operand, registerretum-int#', 
move {val p a varreturn),registerreturn, ' ̂  ̂  

= jump (registerreturn)

llB CReturnInt operand p code return: returns exps eonts pending blocks a

such that return = (fei expi ...k„ expn,-^ expd, V a r S f r e e ) c a s e

conti exps conts' pending blocks a

where conti
conts'
pi
join-returns

= CEval expi pi () returns
= conts-2 : • • • : conts„ : contsd ■ join-returns : conts 
=  p \ {varsfree \ EV{expi\)
=  CJoinReturns operand code return

1 2 CReturnInt operand p code return : returns exps conts pending blocks a

s u c h  t h a t  return =  {var,expbody,varSdead)assign

CEval expbody P code returns exps conts pending blocks a

w h e r e
—^

p' = {p \ varSdead) ffi {var i-A operand}

13' CJoinReturns operand code return exps conts pending blocks a

ReturnExpression code exps' conts pending blocks' a

w h e r e code' = code -H- select-ult
select—alt = move ki, registertmp',

subtract registertmp, operand, registertmp', 
branchi,=o registertmp, labeluniquei;

move kn, registertmp',
subtract registertmp, operand, registertmp', 
branchj;=o registertmp, labelunique„', 
jump labeluniqueg',

blocks' = blocks ©  {labeluniquei codei,...,
Iciheluniquen ̂  eodCn-, 
Iciheluniqued coded}

return =  (fel ->■ expi . . . < kn ̂  expn,-^ expd, varsfree')case
exps =  coded '■ codcn '■■■■'. codei : exps'
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Note, the above rule uses a linear search, which will be inefficient when dealing with 
large numbers of alternatives -  Bernstein [1985] describes an algorithm for generating the 
optimal combintion of linear and binary searches, and jump tables.

p code returns exps conts pending blocks

p code' returns exps conts pending blocks

14

where

CEval primlntPlus^ atonii atoni2 

CReturnint registertmpi

code' =  code 4-1- add-atoms
add-otoms = move {atomJ;o—operand p a atomi),registertmpi', 

move {atom-to—operand p a atom-̂ ), registertmp̂', 
________________ add registertmpi i registertmp2, registertmpi i



Appendix I

Example RISC programs

This section presents a number of RISC implementations of the STG' routines from chap
ter B, as generated by the compilation routines from chapter 8 (including some hand 
editing).

Section LI looks at some of the prelude operations used to support integers, booleans, 
and lists. Two n ofib  programs, f ib , and primes, are then presented in sections 1.2 and 
through 1.3. The remaining sections, 1.4 and 1.5, look at updating polymorphic algebraic 
constructors and partial applications respectively.

I.l Prelude operations

This section looks at the RISC definitions needed to support the three main data types of 
the Haskell language, namely integers, booleans, and lists. Where applicable, the equiva
lent STG' code is also included. All of the RISC bindings have been taJten directly from 
the library of test routines used by the prototyping system (see section 3.4).

1.1.1 Integers 

Constants

The following STG' declerations define the constants zero and one: 
_  S T G ' c o d e _________________________________________________________________
zero = [] \r [] -> 
one = [] \r [] ->

Int [0#] ; 
Int [1#] ;

The equivalent RISC code consists of two closure definitions, the reversed info table for 
integers, and the corresponding update code:

_____R I S C  c o d e .

closure zero 
closure one

Linfo_table_Int, 0;
Linfo_table_Int, 1;

Linfo_table_Int:

dw Lupdate_int; 
dw Linfo_table_Int; 
dw Linfo_table_Int;

load +4(RNp), RI; 
jump +4 RRet;

// update routine 
// fast entry 
// stnd entry

// load the integer value into RI 
// and return

263
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____ R I S C  code .

Lupdate_Int:

load.high Linfo_table_Int(RO), R2; // load the integer info table 
store R2, (RNp) ; // cind overwrite the closure’s
store RI, +4(RNp); // save the integer value
jump +4 RRet; // invoke the actual return address

Addition

The STG' definition for the addition operator is as follows:
_  S T G ' c o d e _______________________________________________________
const.Int.+ = □  \r [x y] -> case x of 
{ Int x ’ -> case y of { Int y ’ -> let# xy = plusint# [x’, y ’] in Int [xy] 
} ;

};

The RISC equivalent includes the obligatory static closure, the reversed info table, and the 
associated code. The code itself is split into three main parts. The first part ensures there 
are sufficient arguments available to complete the operation, prepares the return vector 
(including saving the location of the second argument), and then initiates the evaluation 
of the first argument:

__ R I S C  c o d e ________________________________________________________________________________________
closure const.Int.+

Linfo_table_Int_+:

Linfo_table_Int_+;

dw Lupdate_Int_+; 
dw Linfo_table_Int_+ +12; 
dw Linfo_table_Int_+;

subtract RStkA, RStkABase, RI; 
subtract RI, +8 , RI; 
branch_x<0 RI, Lupdate_PAP; 
load -8 (RStkA), RNp; 
load -4(RStkA), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RI, -4(RStkA); 
store RRet, +4(RStkB); 
load (RNp), RI; 
jump.link RI, RRet; 
branch Lupdate.Int;

// update routine 
// fast entry 
// stnd entry

// calculate the number of cirgs 
// are there at least two?
// if not, perform an update 
// load the node pointer of argl 
// load the node pointer of arg2 

// trim the A stack 
// trim the B stack 
// ... and save arg2 

// save the return pointer 
// get the info table of argl 
// enter the closure 
// hcindle cin update request

The second part is called when the first argument has been evaluated, and it recovers 
the address of the second argument, prepares another return vector (including saving the 
integer value of the first argument), and initiates the evaluation of the second argument: 

__ R I S C  c o d e ________________________________________________________________________________________
load -4(RStkA), RNp; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RI, +4(RStkB); 
load (RNp), RI; 
jump_link RI, RRet; 
branch Lupdate_Int;

// load the node pointer of arg2 

// re-allocate stack space (from 
// A to B)
// save the value of RI on stack B 
// get the info table of arg2 

// enter the closure 
// handle an update request

Finally, the two integers are added together and the return continuation invoked:
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R I S C  code

load +4(RStkB), R2; 
add RI, R2, RI; 
load +8 (RStkB), RRet; 
add RStkB, +8 , RStkB; 
jump +4 RRet;

// recover the value of argl
// add the two values
// recover the return register
// trim the B stack 
// cind return normally

The less-than operator

_  S T G ' c o d e __________
const.Int.< = □  \r [x y] ->
case X of { Int x ’ -> case y of { Int y ’ -> Itint# [x’, y ’]

The structure of the RISC code is almost identical to that of the addition operation from 
the previous section. The only major difference is the final operation performed on the 
two arguments:

_  R I S C  c o d e _______________________________________________________________________________________
closure const.Int.< Linfo_tabIe_Int_<;

Linfo_tabIe_Int_<:

dw Lupdate_Int_<; 
dw Linfo_tabIe_Int_< +1 2; 
dw Linfo_tabIe_Int_<;

load +4(RStkB), R2; 
compare_x<y R2, RI, RI; 
load + 8(RStkB), RRet; 
add RStkB, +8 , RStkB; 
jump +4 RRet;

// update routine 
// fast entry 
// stnd entry 
// as for Int_+
// recover the value of cirgl 
// compare the two values 
// recover the return register 
// trim the B stack 
// and return normally

Quotients

The quotient function, quotRem, demonstrates the basic techniques of stack allocation and 
tail calling. The RISC definition given below is based on Int#-specialised versions of the 
following prelude function:

_  S T G ' c o d e ______________________________________________________________________________________
const. Int. quotRem = [] 
let { q = [n d] \u [] 

r = [n d] \u []

\r [n d] ->
-> const. Int .quot n d; 
-> const. Int .rem n d; } in Tup2 [q, r];

The RISC code simply allocates two thunks, containing the addresses of the two arguments, 
and simply returns a pair containing the thunks’ locations:

closure const.Int.quotRem Linfo_table_ Int_quotRem;

Linfo_table_Int_quotRem:

dw Lupdate_Int_quotRem; // update routine
dw Linfo_tabIe_Int_quotRem +12; // fast entry
dw Linfo_table_Int_quotRem; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +8 , RI ; // are there at least two?
branch_x<0 RI, Lupdate.PAP; // if not, perform an update
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After checking that there are sufficient arguments available, heap space for the two thunks 
is allocated (3 words of space for each):

__ R I S C  c o d e ________________________________________________________________________________________
add RHp, +24, RHp; // allocate space for 2 closures
compare_x<y RHLimit, RHp, RI; // ensure there’s space
branch_bitO_set RI, Lgarbage.collect; // otherwise invoke the GC

The thunk for q is then filled in:
__ R I S C  c o d e ____________________

load_high Linfo_table_Int_quotRem_l(RO), RI; 
load_address +0(R1), RI;
store RI, -24(RHp) 
load -8 (RStkA), RI 
store RI, -20(RHp) 
load -4(RStkA), R2 
store R2, -16(RHp)

// set q ’s info table 
// recover the location of n 
// store n as a free variable 
// recover the location of d 
// store d as a free variable

Next, the thunk for r is filled in:
_  R I S C  c o d e ___________________

load.high Linfo_table_Int_quotRem_2(RO), R3; 
load.address +0(R3), R3; 
store R3, -12(RHp) 
store RI, -8 (RHp) 
store R2, -4(RHp)

// set r ’s info table 
// store n as a free variable 
// store d as a free variable

Finally, the tuples is constructed and the appropriate return entry called: 
__ R I S C  c o d e ____________________________________________________________________________

subtract RHp, +24, RI; 
subtract RHp, +12, R2; 
subtract RStkA, +8 , RStkA; 
jump +4 RRet;

// set q as the fst pointer 
// set d as the snd pointer 
// trim the A stack 
// cind return

The info tables and corresponding code for the two thunks, quotRem_l and quotRem_2 
are very similar, so only that for determining the quotient is reproduced here:

__ R I S C  c o d e ________________________________________________________________________________________
Linfo_table_Int_quotRem_l:

dw Lupdate_lnt_quotRem_l; 
dw Linfo_table_Int_quotRem_l +12; 
dw Linfo_table_lnt_quotRem_l;

// update routine 
// fast entry 
// stnd entry

Upon entry to the thnnk, an update frame is created: 
__ R I S C  c o d e _________________________________________________

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack.overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB) 
store RNp, +8 (RStkB)
store RRet, +4(RStkB)
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to cin update

Then, sufficient space is allocated to allow the two free variables, n and d, to be pushed 
onto the A stack:
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R I S C  code .

add RStkA, +8 , RStkA; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack.overflow;

// check for stack overflow 
// overflow error handler

The two free variables are then recovered, and pushed onto the stack, before the division 
function is tail called:

__ R I S C  c o d e ________________________________________________________________________________________
load +4(RNp), RI; 
store RI, -8 (RStkA); 
load +8 (RNp), RI; 
store RI, -4(RStkA);

branch Linfo_table_Int_/;

// retrieve n
// push it on the A stack
// retrieve d
// push it on the A stack

// and call divide

Signs

The sign fnnction, signum, demonstrates how the RISC code handles conditionals, and the 
use of worker functions. The RISC definitions given below are based on Int#-specialised 
versions of the following prelude functions:

__ S T G ' e o d e _______________________________________________________________________________________
const.Int.signum = [] \r [x] -> case x of {Int x’ -> const.Int.signum.wrk x ’;};

const. Int. signum. wrk = [] \r [x] -> case x of 
{0# -> Int [0#] ;

-> case gtint# [x, 0#] of { True -> Int [ 1#]; False -> Int [ -1#]; I
};

The first part of the code forces evaluation of the argument, and then tail calls the worker 
function, LInt_signuni_wrk:

_  R I S C  c o d e _______________________________________________________________________________________
closure const.Int.signum 

Linfo_table.Int.signum:

Linfo.table.Int.signum;

dw Lupdate.Int.signum; 
dw Linfo.table.Int.signum +12; 
dw Linfo.table.Int.signum;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
branch.x<0 RI, Lupdate.PAP;

load -4(RStkA), RNp; 
load (RNp), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RRet, +4(RStkB); 
jump.link RI, RRet; 
branch Lupdate.Int;

load +4(RStkB), RRet; 
add RStkB, +4, RStkB;

branch Lint.signum.wrk;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// is there at least one?
// if not, perform an update

// pop the arg

// re-allocate stack space

// save the return register

// evaluate the cirg

// recover the return register 
// trim the stack

// call the worker function
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The worker function then determines whether the value is zero, negative or positive, and 
returns the corresponding integer value:

__ R I S C  c o d e --------------------------------------------------------------------------------------------------------------------------------------
LInt _ s ignum_wrk:

branch_x=0 RI, LInt_signuin_wrk_l; 
branch_x<0 RI, LInt_signum_wrk_2; 
add RO, +1, RI; 
jump +4 RRet;

LInt_signum_yrk_l:

move RO, RI ; 
jump +4 RRet;

LInt_signum_wrk_2:

subtract RO, +1, RI; 
jump +4 RRet;

// return 0 if it’s zero 
// return -1 if it’s negative 
// otherwise return 1

// return 0

// return -1

1.1.2 Booleans

S T G ' code .

data Bool = True I False;

true
false
otherwise

□  \r [] -> True □
□  \r [] -> False □  
[] \r [] -> True □

R I S C  code .

closure true 
closure false 
closure otherwise

Linfo_table_Bool_True; 
Linfo_table_Bool_False; 
Linfo_table_Bool_True;

There are two info tables for dealing with boolean values: one for true, and the other for 
false. Note, that the code uses the convention that true is represented by the integer one 
and false by zero:

_  R I S C  c o d e _______________________________________________________________________________________
Linfo_table_Bool_True:

dw Lupdate_Bool; // update routine
dw Linfo_table_Bool_True; // fast entry
dw Linfo_table_Bool_True; // stnd entry

add RO, +1, RI; // set RI (true)
jump +4 RRet; // and return

,table_Bool_False :

dw Lupdate_Bool; // update routine
dw Linfo_table_Bool_False; // fast entry
dw Linfo_table_Bool_False; // stnd entry

move RO, RI ; // clear RI (false)
jump +4 RRet; // and return

The update code for boolean values is straightforward, simply overwriting the thunks info 
table with either that for true or false:
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____ R I S C  code .

Lupdate_Bool:

brcinch_x=0 RI, Lupdate_Bool_False; // determine if it’s True or False 
load_high Linfo_table_Bool_True(RO), R2; // load True’s info table 
store R2, (RNp); // and overwrite the closure’s
jump +4 RRet; // invoke the actual return address

Lupdate_Bool_False:

load_high Linfo_table_Bool_False(RO), R2; // load False’s info table 
store R2, (RNp); // and overwrite the closure’s
jump +4 RRet; // invoke the actual return address

Logical negation

S T G '  c o d e .

not = [] \r [x] -> case x of { True -> False [] ; False -> True [] ; };

_____R I S C  code .

closure not

Linfo_table_not:

Linfo_table_not;

dw Lupdate.not; 
dw Linfo_table_not +12; 
dw Linfo_table_not;

// update routine 
// fast entry 
// stnd entry

First, there’s the usual argument check: 
__ R I S C  c o d e ______________________________

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
branch_x<0 RI, Lupdate_PAP;

// calculate the number of args 
// are there at least two?
//if not, perform cin update

Then the argument is evaluated:
__ R I S C  code______________________

load -4(RStkA), RNp; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RRet, +4(RStkB);

load (RNp), RI; 
jump_link RI, RRet; 
branch Lupdate_Bool;

After the evaluation returns, the original return vector is retrieved and the logical negation 
is performed:

_  R I S C  code___________________________________________________________________.
load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
branch_x=0 RI, Lnot.l;

move RO, RI; 
jump +4 RRet;

Lnot_l:
add RO, +1, RI; 
jump +4 RRet;

// retrieve the return vector
// trim the stack
// if false, return true

// return false

// return true
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1.1.3 Lists

Rather than introducing special syntactic support, the following STG' declaration is used 
to define the L ist algebraic data type:

_  S T G ' c o d e ______________________________________________________________________________________
data List a = Cons a (List a) I Nil;

The following sections look at some of Haskell’s PreludeList [Hudak et al., 1992, 
section A.5, pages 106-114] functions.

Nil and null

The n i l  value represents an empty list: 
_  S T G ’ c o d e _____________________________
nil = [] \r [] -> Nil [] ;

The RISC code simply calls the nil entry from the return vector:
__ R I S C  c o d e ________________________________________________________________
closure nil 

Linfo_table_Nil:

Linfo_table_Nil;

dw Lupdate_Nil; 
dw Linfo_table_Nil; 
dw Linfo_table_Nil;

load_high Lnil_head(RO), RI; 
load_high Lnil_tail(RO), R2; 
load -4(RRet), R3; 
j ump R3;

// update routine 
// fast entry 
// stnd entry

// load dummy values into the 
// head cind tail to help debugging 
// select the nil return entry 
// cind return

To illustrate how the return vector is constructed and used, consider the null operator: 
_  S T G ' c o d e ______________________________________________________________________________________
null = [] \r [xss] -> case xss of { Nil -> True [] ; Cons x xs -> False [] ; };

The RISC code performs the usual argument checks and then forces the evaluation of its 
argument:

—  R I S G  c o d e _______________________________________________________________________________________
closure null 

Linfo_table_null:

Linfo_table_null;

dw Lupdate.null; // update routine
dw Linfo_table_null +12; // fast entry
dw Linfo_table_null; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +4, RI; // is there at least one?
branch_x<0 RI, Lupdate_PAP; // if not, perform cin update

load -4(RStkA), RNp; 
load (RNp), RI;

// fetch the arg

subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB;

// re-organise the stacks
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However, the return is set to a custom return vector which correctly handles the nil and 
non-nil lists:

_  R I S C  c o d e _______________________________________________________________________________________
store RRet, +4(RStkB); 
load_high Lnull_return_l(RO), RRet; 
load.address +0(RRet), RRet; 
jump RI;

// save the return register 
// set the return register

The return vector is specified as follows: 
__ R I S C  c o d e ______________________________
Lnull_return_l:

dw Lupdate.List; 
dw Lnull_return_List; 
dw Lupdate.Nil; 
dw Lnull_return_Nil;

The odd entries point to the associated update routines, while the even entries point to 
the code to handle the various cases (nil and non-nil lists). Nil-returns are handled as 
follows (the following two sections will look at the update entries):

__ R I S C  c o d e ________________________________________________________________________________________
Lnull_return_Nil:

load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
add RO, +1, RI; 
jump +4 RRet;

// recover the return reg 
// trim the stack 
// set the return to true 
// perform a normal return

Non-nil returns simpley return false:
_  R I S C  c o d e ________________________
Lnull_return_List:

load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
move RO, RI; 
jump +4 RRet;

// recover the return reg 
// trim the stack 
// set the return to false 
// perform a normal return

Updating empty lists

As for boolean values, updating a thunk with a nil list is simply a matter of resetting its 
info table, and then invoking the nil return from the original return vector:

__ R I S C  c o d e ________________________________________________________________________________________
Lupdate.Nil:

load.high Linfo_table_Nil(RO), RI; 
store RI, (RNp);

load -4(RRet), RI; 
jump RI;

Updating lists

Updating lists on the other hand is more troublesome. First a cons cell is allocated, and 
the head and tail stored into it. Then the thunk is overwritten with an indirection to the 
new cons, before the non-nil return is invoked from the original return vector:
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-------R I S C  code .

Lupdate_List:

add RHp, +12, RHp; // allocate space for a cons cell
compare_x<y RHLimit, RHp, R3; // ensure there’s space
brcinch_bitO_set R3, Lgcirbage_collect; // otherwise invoke the GC

load_high Linfo_table_List(RO), R3; 
store R3, -12(RHp); 
store RI, -8 (RHp)
store R2, -4(RHp)

load_high Linfo_table_Ind(RO), R3; 
load_address +0(R3), R3; 
store R3, (RNp); 
subtract RHp, +12, R3; 
store R3, +4(RNp);

load -12(RRet), R3; 
jump R3;

// create an indirection 
//to then new closure

// invoke the regular return

The info table and code for the cons cell is shown below:
__ R I S C  c o d e _____________________________________________________
Linfo_table_List:

dw Lupdate.List; // update routine
dw Linfo_table_List; // fast entry
dw Linfo_table_List; // stnd entry

load +4(RNp), RI; // load head into RI
load +8 (RNp), R2; // load tail into R2
load -12(RRet), R3; // select the correct vector entry
jump R3; // cind return

Selecting the head of a list

_  S T G ' c o d e ________________
head = [] \r [xss] -> case xss of { Cons x xs -> x ; Nil -> error# [] ; };

Again, as for null, the code first forces the evaluation of the list, using a custom return 
vector:

__ R I S C  c o d e ________________________________________________________________________________________
closure head Linfo_table_head;

Linfo_table_head:

dw Lupdate.head; 
dw Linfo_table_head +12; 
dw Linfo_table_head;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
brcinch_x<0 RI, Lupdate.PAP;

load -4(RStkA), RNp; 
load (RNp), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// is there at least one?
//if not, perform cin update

// fetch the cirg

// re-orgcinise the stacks
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RISC code .
store RRet, +4(RStkB); // save the return register
load.high Lhead_return_l(RO), RRet; // set the return register 
load.address +0(RRet), RRet; 
jump RI;

The return vector is specified as follows: 
_  R I S C  c o d e _____________________________
Lhead_return_l :

dw Lupdate.List; 
dw Lhead_return_List; 
dw Lupdate.Nil; 
dw Lhead_return_Nil ; // will cause an error!

The nil return simply throws an error, ending the current evaluation. However, the list 
return simply forces the evaluation of the head of the list:

_  R I S C  c o d e _______________________________________________________________________________________
Lhead_return_List:

load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
move RI, RNp ; 
load (RNp), RI; 
jump RI;

// recover the return reg 
// trim the stack 
// set the node pointer 
// fetch the entry code 
// evaluate the head of the list

Length

Rather than use the foldl-based version, the more traditional version is used:
__ S T G ' c o d e ___________________________________________________________________________________
length = [] \r [xss] -> case xss of 
{ Nil -> Int [0#] ;

Cons X xs -> case length xs of { Int 1 -> let# 1’ = plusint# [1#, 1]
in Int [1’] ; };

};

The RISC implementation demonstrates the use of recursion and the fast-entry method 
(effectively skipping the argument check). The method starts as before, by evaluatin its 
argument:

_  R I S C  c o d e _______________________________________________________________________________________
closure length 
Linf o_table_length:

Linfo_table_length;

dw Lupdate.length; 
dw Linfo_table_length +12; 
dw Linfo_table_length;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
breinch_x<0 RI, Lupdate_PAP;

load -4(RStkA), RNp; 
load (RNp), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
//is there at least one?
// if not, perform an update

// fetch the arg

// re-organise the stacks
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RISC code .
store RRet, +4(RStkB); // save the return register
load_high Llength_return_l(RO), RRet; // set the return register 
load_address +0(RRet), RRet; 
jump RI;

This time, however, both nil and non-nil entries of the return vector are used: 
_  R I S C  c o d e ________________________________________________________________________________
Llength_return_l:

dw Lupdate_List; 
dw Llength_return_List; 
dw Lupdate_Nil; 
dw Llength_return_Nil;

A nil-return simply returns a zero length: 
__ R I S C  c o d e ________________________________
Llength_return_Nil:

load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
move RO, RI; 
jump +4 RRet;

// recover the return address 
// trim the stack 
// set length = 0 

// cind return

A list return, however, retrieves the tail of the list and fast-calls the length method 
(bypassing the argument check and pre-loading the necessary arguments into the correct 
register):

__ R I S C  c o d e ________________________________________________________________________________________
Llength_return_List:

add RStkA, +4, RStkA;
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack_overflow; // overflow error hcindler 
store R2, -4(RStkA); // push the tail
branch_link Linfo_table_length +12, RRet; // and calculate its length 
branch Lupdate_Int; // handle the update

Upon return, one is added to the tails length: 
_  R I S C  c o d e _____________________________________

add RI, +1, RI; 
load +4(RStkB), RRet; 
add RStkB, +4, RStkB; 
jump +4 RRet;

// increment the result 
// recover the return address 
// trim the stack 
// and return

Map

S T G ' c o d e .

map = [] \r [f xss] -> case xss of 
{ Nil -> Nil [] ;

Cons X xs -> let { x ’ = [f x] \u [] -> f x ;
xs’ = [ f  xs] \u [] -> map f xs ; } in Cons [x’, x s ’ ]

};
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____ R I S C  c o d e _____
closure map

Linf o_table_map:

Linfo_table_map;

dw Lupdate_map; 
dw Linfo_table_map +12; 
dw Linfo_table_map;

subtract RStkA, RStkABase, RI; 
subtract RI, +8 , RI; 
branch_x<0 RI, Lupdate_PAP;

load -4(RStkA), RNp; 
load (RNp), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RRet, +4(RStkB); 
load_high Lmap_return_l(RO), RRet; 
load_address +0(RRet), RRet; 
jump RI;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// are there at least two?
// if not, perform cin update

// fetch the second cirg

// re-orgcinise the stacks

// save the return register 
// set the return register

The return vector is specified below: 
__ R I S C  c o d e _________________________
Lmap_return_l:

dw Lupdate_List; 
dw Lmap_return_List; 
dw Lupdate.Nil; 
dw Lmap_return_Nil;

A nil return results in another nil retnrn:
__ R I S C  c o d e ________________________________
Lmap_return_Nil:

load +4(RStkB), RRet; 
subtract RStkA, +4, RStkA; 
add RStkB, +4, RStkB; 
load -4(RRet), RI; 
jump RI;

// recover the return address 
// trim the stack 
// trim the stack 
// fetch the nil return 
// and return

A non-nill return, however, results in the creation of the x ’ and xs ’ closures (represented 
by the map_l and map_2 thunks respectively), which are then returned as a cons pair:

_  R I S C  c o d e _______________________________________________________________________________________
Lmap_return_List:

add RHp, +24, RHp; // allocate two closures
compare_x<y RHLimit, RHp, R3; // ensure there’s space
branch_bitO_set R3, Lgarbage_collect; // otherwise invoke the GC

load_high Linfo_table_map_l(RO), R3; // set the info table
load.address +0(R3), R3;
store R3, -24(RHp);
load -4(RStkA), R3; // recover f
store R3, -20(RHp); // store f
store RI, -16(RHp); // store X
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RISC code .
load_high Linfo_table_map_2(R0), R4; 
load_address +0(R4), R4;

// set the info table

store R4, -12(RHp); 
store R3, -8 (RHp); // store f
store R2, -4(RHp); // store xs

load +4(RStkB), RRet; // recover the return vector
subtract RStkA, +4, RStkA; // trim the stack
add RStkB, +4, RStkB; // trim the stack

subtract RHp, +24, RI; // calculate x’
subtract RHp, +12, R2; // calculate xs ’
load -12(RRet), R3; // select the list return
jump R3;

The x ’ thunk, when evaluated, pushes an update frame, retrieves its free variables and 
invokes the function on the list element:

__ R I S C  c o d e ________________________________________________________________________________________
Linfo_table_map_l:

dw Lupdate_map_l; 
dw Linfo_table_map_l +12; 
dw Linfo_table_map_l;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack.overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB); 
store RNp, +8 (RStkB);
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RStkA, +4, RStkA; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack.overflow;

load +8 (RNp), RI; 
store RI, -4(RStkA); 
load +4(RNp), RNp; 
load (RNp), RI; 
jump RI;

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// check for stack overflow 
// overflow error handler

// fetch X 
// push X 
// fetch f

// enter f

The xs ’ thunk, when evaluated, pushes an update frame, retrieves its free variables and 
tail-calls map via its fast entry point:

_  R I S C  code .
Linfo_table_map_2:

dw Lupdate_map_2 ; 
dw Linfo_table_map_2 +12; 
dw Linfo_table_map_2;

// update routine 
// fast entry 
// stnd entry
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RISC code .
subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack_overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB); 
store RNp, +8 (RStkB);
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RStkA, +8 , RStkA; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack_overflow;

load +4(RNp), RI; 
store RI, -8 (RStkA); 
load +8 (RNp), RI; 
store RI, -4(RStkA);

branch Linfo_table_map +12;

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// check for stack overflow 
// overflow error hcindler

// fetch f 
// push f 
// fetch xs 
// push xs

// tail call map

1.2 Generating Fibonacci numbers

Unoptimised version

The main entry point implements the following code:
_  S T G ' c o d e _______________________________________________
fib = [] \r [n] -> case const.Int.<= n one of 
{ True -> one ;

False -> let { sum_2_fibs = ...}•
in const.Int.+ sum_2_fibs one;

} ;

As seen before, the standard entry point checks that there are sufficient arguments and 
evaluates the argument:

_  R I S C  c o d e _______________________________________________________________________________________
Linfo_table_Fib:

dw Lupdate_Fib; 
dw Linfo_table_Fib +12; 
dw Linfo_table_Fib;

subtract RStkA, RStkABase, RI;
subtract RI, +4, RI;
branch_x<0 RI, Lupdate_Fib_PAP;
subtract RStkB, +4, RStkB;
add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI;
branch_bitO_set RI, Lstack_overflow;
store RRet, +4(RStkB);
load -12(RStkA), RI;
store RI, -8 (RStkA);
load_high Lone(RO), RI;
load_address +0(R1), RI;
store RI, -4(RStkA);
branch_link Linfo_table_Int_<=, RRet;
branch Lupdate_Bool;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
//is there at least one?
//if not, perform an update 
// save the return pointer 
// push the args 
// check for stack overflow 
// overflow error handler 
// save the return pointer 
// load the argument n 
// push the arg n 
// load the closure one 
// (low bits)
// push the arg one
// call <= n one
// handle an update request
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The simple case is handled by the code stored at L fib_l, otherwise, the sum_2_fibs 
closure is allocated (represented by the Fib_l thunk) and the addition operator called:

R I S C  code .

branch_xO0 RI, Lfib_l; // return one if it’s zero

add RHp, +8 , RHp; // heap allocate sum_fibs
compare_x<y RHLimit, RHp, RI; // ensure there’s space
branch_bitO_set RI, Lgarbage_collect; // otherwise invoke the GC
load_high Linfo_table_Fib_l(RO), RI; // load the info-table ptr
add RI, +0, RI; // (low bits)
store RI, -8 (RHp); // store it in the closure
load -4(RStkA), RI; // recover the ptr to n
store RI, -4(RHp); // store it in the closure
load +4(RStkB), RRet; // recover the return ptr
add RStkB, +4, RStkB; // re-allocate stack space
add RStkA, +4, RStkA; // (from B to A)
load_high Lone(RO), RI; // load the address of one
load_address +0(R1), RI; // (low bits)
store RI, -8 (RStkA); // push one
subtract RHp, +8 , RI; // calculate the closure’s heap
store RI, -4(RStkA); // address, and push it as an arg
branch Linfo_table_Int_+; // add them

following code handles the simple case whereby the argument is less than or equ
and simply returns the value one:

RISC code
Lfib.l:

load +4(RStkB), RRet; // recover the return register
add RStkB, +4, RStkB; // trim the B stack
subtract RStkA, +4, RStkA; // trim the A stack
add RO, +1, RI; // set value to one
jump +4 RRet; // return

code for the sum_2_f ibs closure implements the following STG' code:
STC rode

sum_2_fibs [n] \u [] -> let { fib_n_less_2 = [n] \u []
fib_n_less_1 = [n] \u [] ...; }

in const.Int.+ f ib_n_less_l fib_n_less_2 ;

code pushes an update frame, and then heap allocates the two closures before
ag the addition operator:

RISC cndp.
Linfo_table_Fib_l:

dw Lupdate_Fib_l; // update routine
dw Linfo_table_Fib_l; // fast entry
dw Linfo_table_Fib_l; // stnd entry

subtract RStkB, +16, RStkB; // decrease the B stack frame
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack_overflow; // overflow error heindler
store RStkABase, +16(RStkB); // the A stack pointer
store RStkBBase, +12(RStkB); // the B stack pointer
store RNp, +8 (RStkB); // the node pointer
store RRet, +4(RStkB); // the current return vector
move RStkA, RStkABase; // clear the A stack frame
move RStkB, RStkBBase; // clear the B stack frame
move RUpdate, RRet; // set the return to cin update
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The fib_n_less_2 and fib_n_less_l closures are represented by the Fib_2 and Fib_3 
thunks:

_  R I S C  code_____________________________________________________________
add RHp, +16, RHp;
compare_x<y RHLimit, RHp, RI;
branch_bitO_set RI, Lgarbage.collect;
load_high Linfo_table_Fib_2(RO), RI;
load_address +0(R1), RI;
store RI, -16(RHp);
load +4(RNp), RI;
store RI, -12(RHp);
store RI, -4(RHp);
load_high Linfo_table_Fib_3(R0), RI;
load_address +0(R1), RI;
store RI, -8 (RHp);
add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI;
branch_bitO_set RI, Lstack_overflow;
subtract RHp, +16, RI;
store RI, -8 (RStkA);
subtract RHp, +8 , RI;
store RI, -4(RStkA);
branch Linfo_table_Int_+;

// increase the heap pointer 
// check if there’s room 
// otherwise, invoke the GC 
// load the info-table ptr 
// (low bits)
// store it in the closure
// load the FV n
// ...and store it in 1 

// ... and 2
// load the info-table ptr 
// (low bits)
// set the closures info table 
// allocate 2 arg slots 
// check for stack overflow 
// overflow error handler 
// calc the first heap addr 
// push fib n- 1

// calc the second heap addr
// push fib n- 2

// and add them

The fib_n_less_2 closure implements the following STG' code: 
_  S T G ' c o d e ______________________________________________________________
fib_n_less_2 = [n] \u [] -> let { n_less_2 = [n] \u [] -> const. Int.- n two; }

in fib n_less_2 ;

The corresponding RISC code pushes an update frame, heap allocates n_less_2 (repre
sented by the Fib_4 thunk) and then tail calls fib:

__ R I S C  c o d e ________________________________________________________________________________________
Linfo_table_Fib_2:

dw Lupdate_Fib_2; 
dw Linfo_table_Fib_2; 
dw Linfo_table_Fib_2;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack.overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB) 
store RNp, +8 (RStkB)
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RHp, +8 , RHp; 
compare_x<y RHLimit, RHp, RI; 
branch_bitO_set RI, Lgarbage.collect; 
load.high Linfo_table_Fib_4(R0), RI; 
load.address +0(R1), RI; 
store RI, -8 (RHp); 
load +4(RNp), RI; 
store RI, -4(RHp);

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// increase the heap pointer 
// check if there’s room 
// otherwise, invoke the GC 
// load the info-table ptr 
// (low bits)
// store it in the closure 
// load the FV n 
// ... and 2



280

RISC code .
add RStkA, +4, RStkA; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack_overflow; 
subtract RHp, +8 , RI; 
store RI, -4(RStkA); 
branch Linfo_table_Fib;

// check for stack overflow 
// overflow error handler

// push n- 2  

// call Fib

The n_less_2 closure implements the following STG' code: 
_  S T G ' c o d e ______________________________________________________
n_less_2 = [n] \u [] -> const.Int.- n two;

It is implemented as follows:
__ R I S C  c o d e _______________
Linfo_table_Fib_4:

dw Lupdate_Fib_4; 
dw Linfo_table_Fib_4; 
dw Linfo_table_Fib_4;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack_overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB) 
store RNp, +8 (RStkB)
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI;
branch_bitO_set RI, Lstack.overflow;
load +4(RNp). RI;
store RI, -8 (RStkA);
load_high Ltwo(RO), RI;
load_address +0(R1), RI;
store RI, -4(RStkA);
brcinch Linfo_table_Int_-;

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error hcindler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// increase the A stack frame 
// check for stack overflow 
// overflow error handler 
// load the ptr to n 
// push n
// load the address of two 
// (low bits)
// push two
// calculate the difference

The tt fib_n_less_l closure is sufficiently similar to tt fib n less 1 to not warrant inclusion 
here.

Optimised version

_  S T G ' c o d e _____
fib [] \r [n] -> case n of { Int n ’ -> fib.wrk n ’; };

R I S C  code .

Linfo_table_Fib:

dw Lupdate_Fib; 
dw Linfo_table_Fib +12; 
dw Linfo_table_Fib;

// update routine 
// fast entry 
// stnd entry
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RISC code .
subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI;
branch_x<0 RI, Lupdate_PAP;

load -4(RStkA), RNp; 
load (RNp), RI;

subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RRet, +4(RStkB);

jump_link RI, RRet;

branch Lupdate_Int;

load +4(RStkB), RRet; 
add RStkB, +4, RStkB;

branch Linfo_table_Fib’;

// calculate the number of args 
// is there at least one?
// if not, perform an update

// load the argument n 
// get the entry code

// free up the arg. slot,
// but claim the space back for 
// saving the return pointer

// evaluate n

// handle an update request

// recover the return vector 
// and trim the stack

// tail-call fib.wrk

STG' code.
fib.wrk = [] \r [n’] -> case leint# [n’, 1 #] of 
{ True -> Int [1#];

False -> let# n ’_less_l = minusint# [n’, 1#] in
case fib.wrk n ’_less_l of { Int fib_n’_less_l ->
let# n ’_less_2 = minusint# [n’, 2#] in
case fib.wrk n ’_less_2 of { Int fib_n’_less_2 ->
let# sum_2_fibs’ = plusint# [fib_n’_less_l, fib_n’_less_2] in
let# result = plusint# [sum_2_fibs’, 1#]
in Int [result]; 1; 1;

} ;

R I S C  code .

Linfo_table_Fib’

dw Lupdate.Fib’; 
dw Linfo_table_Fib’ 
dw Linfo_table_Fib’

// update routine 
// fast entry 
// stnd entry

compare_x<=y RI, +1, R2; 
branch_bitO_set R2, LFib’.l;

subtract RI, +1, R2;
subtract RStkB, +8 , RStkB;
compare_x<y RStkB, RStkA, R3;
branch_bitO_set R3, Lstack.overflow;
store RI, +4(RStkB);
store RRet, +8 (RStkB);
move R2, RI;

branch_link Linfo_table_Fib’, RRet; 
branch Lupdate_lnt;

load +4(RStkB), R2; 
add RI, R2, RI; 
add RI, +1, RI; 
load +8 (RStkB), RRet; 
add RStkB, +8 , RStkB; 
jump +4 RRet;

// test if n ’ <= 1 

// return one if it is

// calculate n_less_one’
// allocate space for n ’
// check for stack overflow 
// overflow error hcindler 
// save n ’
// save the return vector

// recursive call to Fib’
// handle an update request

// recover fib’ (n’ - 1 )
// sum the two values 
// and increment 
// recover the return register 
// trim the stack
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_____R I S C  code .
LFib’.l:

add RO, +1, RI; 
jump +4 RRet;

1.3 Generating prime numbers — the sieve of Eratoshenes

Unoptimised version

_  S T G ' c o d e ______________________________________________________________________________________
primes = [] \r [a] -> let -[ primes’ = [] \u [] -> } in !! primes’ a;

R I S C  code .
Linfo.table Primes:

dw Lupdate_Primes; 
dw Linfo_table_Primes +12; 
dw Linfo_table_Primes;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
branch_x<0 RI, Lupdate_PAP;

add RHp, +8 , RHp; 
compare_x<y RHLimit, RHp, RI; 
branch_bitO_set RI, Lgarbage_collect; // otherwise invoke the GC 
load_high Linfo_table_Primes_l(RO), RI; 
load_address +0(R1), RI;
store RI, -8 (RHp); // set the info table;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
//is there at least one?
// if not, perform an update

// ensure there’s space

load -4(RStkA), RI;
add RStkA, +4, RStkA;
compare_x<y RStkB, RStkA, R2;
branch_bitO_set R2, Lstack_overflow;
subtract RHp, +8 , R2;
store R2, -8 (RStkA);
store RI, -4(RStkA);
branch Linfo_table_!! +12;

// pop a

// check for stack overflow 
// overflow error handler 
// calculate primes 
// push primes 
// push a 
// tail call !!

____ S T G ' c o d e ______________________________________
primes ’ = [] \u [] -> let { xs = [] \u [] } in map head xs;

R I S C  code .
Linfo_table_Primes_l:

dw Lupdate_Primes_l; 
dw Linfo_table_Primes_l +12; 
dw Linfo_table_Primes_l;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
branch_bitO_set RI, Lstack_overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB); 
store RNp, +8 (RStkB);
store RRet, +4(RStkB);

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector
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RISC code
move RStkA, RStkABase;
move RStkB, RStkBBase;
move RUpdate, RRet; // set the return to an update

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, RI; // ensure there’s space
branch_bitO_set RI, Lgcirbage_collect; // otherwise invoke the GC
load.high Linfo_table_Primes_2(R0), RI;
load.address +0(R1), RI;
store RI, -8 (RHp); // set the info table;

add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch.bitO.set RI, Lstack.overflow; // overflow error heindler
load.high Lhead(RO), RI;
load.address +0(R1), RI;
store RI, -8 (RStkA); // push take
subtract RHp, +8 , RI; // calculate xs
store RI, -4(RStkA); // push xs
branch Linfo.table.map +12; // tail call map

STC code
xs = [] \u [] -> let { from_2 = [] \u □  -> iterate ine two;}

in iterate the.filter from_2 ; }

RISC andp.
Linfo_table_Primes_2:

dw Lupdate_Primes_2; // update routine
dw Linfo_table_Primes_2 +12; // fast entry
dw Linfo_table_Primes_2; // stnd entry

subtract RStkB, +16, RStkB; // decrease the B stack frame
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch.bitO.set RI, Lstack.overflow; // overflow error handler
store RStkABase, +16(RStkB); // the A stack pointer
store RStkBBase, +12(RStkB); // the B stack pointer
store RNp, +8 (RStkB); // the node pointer
store RRet, +4(RStkB); // the current return vector
move RStkA, RStkABase;
move RStkB, RStkBBase;
move RUpdate, RRet; // set the return to cin update

add RHp, +8 , RHp;
compare.x<y RHLimit, RHp, RI; // ensure there’s space
branch.bitO.set RI, Lgarbage.collect; // otherwise invoke the GC
load.high Linfo_table_Primes_3(R0), RI;
load.address +0(R1), RI;
store RI, -8 (RHp); // set the info table;

add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch.bitO.set RI, Lstack.overflow; // overflow error handler
load.high Lthe.filter(RO), RI;
load.address +0(R1), RI;
store RI, -8 (RStkA); // push the filter
subtract RHp, +8 , RI; // calculate from_2

store RI, -4(RStkA); // push from_2

branch Linfo.table.iterate +12; // tail call iterate
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from_2 = □  \u □  -> iterate inc two
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R I S C  code .

Linfo_table_Primes_3:

dw Lupdate_Primes_3; 
dw Linfo_table_Primes_3 +12; 
dw Linfo_table_Primes_3;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack_overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB) 
store RNp, +8 (RStkB)
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI;
brcinch_bitO_set RI, Lstack_overflow;
load_high Line(RO), RI;
load_address +0(R1), RI;
store RI, -8 (RStkA);
load_high Ltwo(RO), RI;
load_address +0(R1), RI;
store RI, -4(RStkA);
branch Linfo_table_iterate +12;

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error handler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// check for stack overflow 
// overflow error hcindler

// push inc

// push two
// tail call iterate

S T G ' c o d e .

the_filter = [] \r [nss] -> case nss of { Cons n ns -> 
let { isdivs.n = [n] \r [x] -> isdivs n x; } in filter isdivs_n ns; };

R I S C  code .

Linfo_table_The_Filter:

dw Lupdate_The_Filter; 
dw Linfo_table_The_Filter +12; 
dw Linfo_table_The_Filter;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
branch_x<0 RI, Lupdate_PAP;

load -4(RStkA), RNp; 
load (RNp), RI; 
subtract RStkA, +4, RStkA; 
subtract RStkB, +4, RStkB; 
store RRet, +4(RStkB); 
load.high LThe_Filter_return_l(RO), RRet;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// is there at least one?
// if not, perform an update

// fetch the arg

// re-organise the stacks

// save the return register

load.address +0(RRet), RRet; 
jump RI;

// set the return register
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RISC code .
LThe_Filter_return_l:

dw Lupdate.List; 
dw LThe_Filter_return_List; 
dw Lupdate.Nil;
dw LThe Filter return_Nil error;

RISC code
LThe_Filter_return_List:

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, R3; // ensure there’s space
branch_bitO_set R3, Lgarbage.collect; // otherwise invoke the GC
load_high Linfo_table_The_Filter_l(RO) R3;
load_address +0(R3), R3;
store R3, -8 (RHp); // set the info table;
store RI, -4(RHp); // store n

load +4(RStkB), RRet; // recover the return vector
add RStkA, +8 , RStkA; // allocate stack space
add RStkB, +4, RStkB;
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack_overflow; // overflow error handler

subtract RHp, +8 , RI; // calculate isdivs_n
store RI, -8 (RStkA); // push isdivs_n
store R2, -4(RStkA); // push ns
branch Linfo_table_filter +12; // tail call filter

RTCi' r.ndp.
isdivs_n = [n] \r [x] -> isdivs n x

RISC code
Linfo_table_The_Filter_l:

dw Lupdate_The_Filter_l; // update routine
dw Linfo_table_The_Filter_l +12; // fast entry
dw Linfo_table_The_Filter_l; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +4, RI; // is there at least one?
breinch_x<0 RI, Lupdate.PAP; // if not, perform cin update
load -4(RStkA), RI; // pop X
add RStkA, +4, RStkA;
compare_x<y RStkB, RStkA, R2; // check for stack overflow
breinch_bitO_set R2, Lstack.overflow; // overflow error heindler
load +4(RNp), R2; // fetch n
store R2, -8 (RStkA); // push n
store RI, -4(RStkA); // push X
branch Linfo_table_isdivs +12; // tail call is.divs

STC code.
isdivs = [] \r [n x] -> let { mod_x_n = [n x] \u !] -> const. Int .mod x n; }

in const.Int./= mod_x__n zero;
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RISC code .
Linfo_table_isdivs:

dw Lupdate_isdivs; 
dw Linfo_table_isdivs +12; 
dw Linfo_table_isdivs;

subtract RStkA, RStkABase, RI; 
subtract RI, +8 , RI; 
branch_x<0 RI, Lupdate.PAP;

add RHp, +12, RHp;
compare_x<y RHLimit, RHp, RI;
branch_bitO_set RI, Lgarbage.collect;
load.high Linfo_table_isdivs_l(RO), RI;
load.address +0(R1), RI;
store RI, -12(RHp);
load -8 (RStkA), RI;
store RI, -8 (RHp);
load -4(RStkA), RI;
store RI, -4(RHp);
subtract RHp, +12, RI;
store RI, -8 (RStkA);
load_high Lzero(RO), RI;
load_address +0(R1), RI;
store RI, -4(RStkA);
branch Linfo_table_Int_/= +12;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// are there at least two?
// if not, perform an update

// ensure there’s space 
// otherwise invoke the GC

// set the info table; 
// pop n 
// store n 
// pop X 
// store X
// calculate mod_x_n 
// push mod_x_n 
// load zero

// tail call /=

srn' code.

mod_x_n = [n x] \u [] -> const. Int .mod x n;

R I S C  code

Linfo_table_isdivs_l :

dw Lupdate_isdivs_l ; // update routine
dw Linfo_table_isdivs_l +12; // fast entry
dw Linfo_table_isdivs_l ; // stnd entry

subtract RStkB, +16, RStkB; // decrease the B stack frame
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack.overflow; // overflow error handler
store RStkABase, +16(RStkB); // the A stack pointer
store RStkBBase, +12(RStkB); // the B stack pointer
store RNp, +8 (RStkB); // the node pointer
store RRet, +4(RStkB); // the current return vector
move RStkA, RStkABase;
move RStkB, RStkBBase;
move RUpdate, RRet; // set the return to an update

add RStkA, +8 , RStkA; // allocate stack space
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack_overflow; // overflow error handler

load +8 (RNp), RI; // fetch X
store RI, -8 (RStkA); // push X
load +4(RNp), RI; // fetch n
store RI, -4(RStkA); // push n
branch Linfo_table_Int_mod +12; // tail call mod
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STG' code
succ = □  \r [x] ->
case X of •[ Int x ’ -> let# succ_x = plusint# [x’, 1#] in Int [succ_x] ; }■;

RISC code
Linfo_table_inc:

dw Lupdate_Int_inc; // update routine
dw Linfo_table_inc +12; // fast entry
dw Linfo_table_inc; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of cirgs
subtract RI, +4, RI; // is there at least one?
brcinch_x<0 RI, Lupdate.PAP; // if not, perform an update
load -4(RStkA), RNp; // load the node pointer of arg
subtract RStkA, +4, RStkA; // trim the A stack
subtract RStkB, +4, RStkB; // trim the B stack
store RRet, +4(RStkB); // save the return pointer
load (RNp), RI; // get the info table of cirg
jump_link RI, RRet; // enter the closure
branch Lupdate.Int; // hcindle ein update request

add RI, +1, RI; // increase the value
load +4(RStkB), RRet; // recover the return register
add RStkB, +4, RStkB; // trim the B stack
jump +4 RRet; // and return normally

imised version

STC rode
primes = [] \r [a] -> case a of { Int a’ -> primes.wrk a’; };

RISC code
Linfo_table_Primes:

dw Lupdate_Primes; // update routine
dw Linfo_table_Primes +12; // fast entry
dw Linfo_table_Primes; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +4, RI; // is there at least one?
brcinch_x<0 RI, Lupdate_PAP; // if not, perform an update

load -4(RStkA), RNp; // fetch n
load (RNp), RI;
subtract RStkA, +4, RStkA; // re-organise the stacks
subtract RStkB, +4, RStkB;
store RRet, +4(RStkB); // save the return register
jump_link RI, RRet; // evaluate n
branch Lupdate_Int; // handle the update

load +4(RStkB), RRet; // recover the return reg
store RI, +4(RStkB); // push n ’
branch Lprimes.wrk + 12; // tail call the wrapper

STG' code
primes.wrk = [] \r [a’] -> let { from_2 □  \u [] “> iterate inc two; } in 

letstrict forced.xs = iterate the_filter from_2 in 
letstrict forced.primes = map head forced.xs 
in !!.wrk forced.primes a’;
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_____R I S C  code .

Lprimes.wrk:

subtract RStkBBase, RStkB, RI; 
subtract RI, +4, RI; 
branch_x<0 RI, Lupdate_PAP;

// calculate the number of args 
// is there at least one?
// if not, perform an update

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, RI; // ensure there’s space
branch_bitO_set RI, Lgarbage_collect; // otherwise invoke the GC 
load_high Linfo_table_Primes_l(RO), RI; 
load_address +0(R1), RI;
store RI, -8 (RHp); // set the info table;

add RStkA, +8 , RStkA;
subtract RStkB, +4, RStkB;
compare_x<y RStkB, RStkA, RI;
branch_bitO_set RI, Lstack_overflow;
load_high Lthe_filter(RO), RI;
load_address +0(R1), RI;
store RI, -8 (RStkA);
subtract RHp, +8 , RI;
store RI, -4(RStkA);
store RRet, +4(RStkB);
load_high Lprimes_return_l(RO), RRet;
load_address +0(RRet), RRet;
branch Linfo_table_iterate +12;

// check for stack overflow 
// overflow error handler

// push the filter 
// calculate from_2 

// push from_2 

// save the return vector 
// set the return register

// tail call iterate

R I S C  code .
Lprimes_return_l:

dw Lupdate.List; 
dw Lprimes_return_List_l; 
dw Lupdate_Nil; 
dw Lprimes_return_Nil_l;

R I S C  code .

Lprimes_return_Nil_l:

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, RI; // ensure there’s space
brcinch_bitO_set RI, Lgarbage_collect; // otherwise invoke the GC 
load_high Linfo_table_Nil(RO), RI; // nil info table 
store RI, -8 (RHp);
subtract RHp, +8 , RI; // calculate forced.xs
brcinch Lprimes. join_l;

R I S C  code .

Lprimes_return_List_l:

add RHp, +12, RHp; 
compare_x<y RHLimit, RHp, R3; 
branch_bitO_set R3, Lgcirbage.collect; 
load.high Linfo_table_List(RO), R3; 
store R3, -12(RHp) 
store RI, -8 (RHp) 
store R2, -4(RHp);
subtract RHp, +12, RI; 
branch Lprimes.join.l;

// ensure there’s space 
// otherwise invoke the GC 
// list info table

// store X 
// store xs
// calculate forced.xs
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RISC code .
Lprimes_join_l :

add RStkA, +8 , RStkA; 
load_high Lhead(RO), R2; 
load_address +0(R2), R2; 
store R2, -8 (RStkA); 
store RI, -4(RStkA);
load_high Lprimes_return_2(RO), RRet; 
load_address +0(RRet), RRet; 
branch Linfo_table_map +12;

// know there are min. 2 slots

// push head
// push forced_xs
// set the return register

// tail call map

R I S C  code .

Lprimes_return_2:

dw Lupdate_List; 
dw Lprimes_return_List_2; 
dw Lupdate.Nil; 
dw Lprimes_return_Nil_2;

R I S C  code .

Lprimes_return_Nil_2:

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, RI; // ensure there’s space
branch_bitO_set RI, Lgcirbage_collect; // otherwise invoke the GC 
load_high Linfo_table_Nil(RO), RI; // nil info table 
store RI, -8 (RHp);
subtract RHp, +8 , RI; // calculate forced.primes
branch Lprimes_join_2;

R I S C  code .

Lprimes_return_List_2:

add RHp, +12, RHp; 
compare_x<y RHLimit, RHp, R3; 
branch_bitO_set R3, Lgarbage_collect; 
load_high Linfo_table_List(RO), R3; 
store R3, -12(RHp) 
store RI, -8 (RHp) 
store R2, -4(RHp);
subtract RHp, +12, RI; 
branch Lprimes.join_2;

// ensure there’s space 
// otherwise invoke the GC
// list info table

// store X
// store xs
// calculate forced_primes

R I S C  code .
Lprimes.j oin_2:

load +4(RStkB), RRet;

add RStkB, +4, RStkB; 
add RStkA, +4, RStkA; 
store RI, -4(RStkA); 
branch L!!.wrk +24;

// recover the return register

// re-allocate stack space

// push forced.primes 
// tail call ! !

_____S T G ' e o d e ____________
from_2 = [] \u [] -> iterate ine two;
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Linfo_table_Primes_l:
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dw Lupdate_Primes_l; 
du Linfo_table_Primes_l +12; 
dw Linfo_table_Primes_l;

subtract RStkB, +16, RStkB; 
compare_x<y RStkB, RStkA, RI; 
brcinch_bitO_set RI, Lstack.overflow; 
store RStkABase, +16(RStkB); 
store RStkBBase, +12(RStkB) 
store RNp, +8 (RStkB)
store RRet, +4(RStkB);
move RStkA, RStkABase; 
move RStkB, RStkBBase; 
move RUpdate, RRet;

add RStkA, +8 , RStkA;
compare_x<y RStkB, RStkA, RI;
brcinch_bitO_set RI, Lstack.overflow;
load_high Line(RO), RI;
load_address +0(R1), RI;
store RI, -8 (RStkA);
load_high Ltwo(RO), RI;
load_address +0(R1), RI;
store RI, -4(RStkA);
branch Linfo_table_iterate +12;

// update routine 
// fast entry 
// stnd entry

// decrease the B stack frame 
// check for stack overflow 
// overflow error hcindler 
// the A stack pointer 
// the B stack pointer 
// the node pointer 
// the current return vector

// set the return to an update

// check for stack overflow 
// overflow error hcindler

// push inc

// push two
// tail call iterate

S T G ' code .
the_filter = [] \r [nss] -> case nss of { Cons n ns -> 
let { isdivs_n = [n] \r [x] -> ...; } in filter isdivs_n ns; };

R I S C  code .

Linfo_table_The_Filter:

dw Lupdate_The_Filter; 
dw Linfo_table_The_Filter +12; 
dw Linfo_table_The_Filter;

subtract RStkA, RStkABase, RI; 
subtract RI, +4, RI; 
branch_x<0 RI, Lupdate_PAP;

load -4(RStkA), RNp;
load (RNp), RI;
subtract RStkA, +4, RStkA;
subtract RStkB, +4, RStkB;
store RRet, +4(RStkB);
load_high LThe_Filter_return_l(RO),
load_address +0(RRet), RRet;
jump RI;

RRet;

// update routine 
// fast entry 
// stnd entry

// calculate the number of args 
// is there at least one?
//if not, perform cin update

// fetch the cirg

// re-orgcinise the stacks

// save the return register

// set the return register

R I S C  code .

LThe_Filter_return_l:

dw Lupdate_List; 
dw LThe_Filter_return_List; 
dw Lupdat e _Ni1;
dw LThe_Filter_return_Nil_error;
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RISC code .
LThe_Filter_return_List:

add RHp, +8 , RHp;
compare_x<y RHLimit, RHp, R3;
branch_bitO_set R3, Lgarbage_collect;
load.high Linfo_table_The_Filter_l(RO),
load_address +0(R3), R3;
store R3, -8 (RHp);
store RI, -4(RHp);

load +4(RStkB), RRet;
add RStkA, +8 , RStkA;
add RStkB, +4, RStkB;
compare_x<y RStkB, RStkA, RI;
branch_bitO_set RI, Lstack_overflow;

subtract RHp, +8 , RI;
store RI, -8 (RStkA);
store R2, -4(RStkA);
branch Linfo_table_fliter +12;

// ensure there’s space 
// otherwise invoke the GC 
R3;

// set the info table;
// store n

// recover the return vector 
// allocate stack space

// check for stack overflow 
// overflow error hcindler

// calculate isdivs_n 
// push isdivs_n 
// push ns 
// tail call filter

_____S T G ' c o d e ____________________________________________________________________________
isdivs.n = [n] \r [x] -> case n of { Int n ’ ->

case X of { Int x ’ -> isdivs.wrk n ’ x ’; }; }

R I S C  code .

Linfo_table_The_Filter 1:

dw Lupdate_The_Filter_l; // update routine
dw Linfo_table_The_Filter_l +12; // fast entry
dw Linfo_table_The_Filter_l; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +4, RI; // is there at least one?
branch_x<0 RI, Lupdate.PAP; // if not, perform cin update

load +4(RNp), RNp; // recover n
subtract RStkB, +4, RStkB;
compare_x<y RStkB, RStkA, RI; // check for stack overflow
branch_bitO_set RI, Lstack_overflow; // overflow error handler
store RRet, +4(RStkB); // save the return
load (RNp), RI;
jump_link RI, RRet; // evaluate n
branch Lupdate_lnt;

load -4(RStkA), RNp; // recover x
subtract RStkA, +4, RStkA; // re-allocate stack space
subtract RStkB, +4, RStkB;
store RI, +4(RStkB); // save n ’
load (RNp), RI;
jump_link RI, RRet; // evaluate x
branch Lupdate_Int;

load +8 (RStkB), RRet; // recover return vector
load +4(RStkB), R2;
store R2, +8 (RStkB); // push n ’
store RI, +4(RStkB); // push x ’
branch Lisdivs.wrk +12; // tail call isdivs.wrk
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____ S T G ' c o d e __________________________________
isdivs = [] \r [n x] -> 
case n of { Int n ’ -> case x of { Int -> isdivs.wrk n ’

R I S C  c o d e .
Linfo table isdivs:

dw Lupdate_isdivs; // update routine
dw Linfo_table_isdivs +12; // fast entry
dw Linfo_table_isdivs; // stnd entry

subtract RStkA, RStkABase, RI; // calculate the number of args
subtract RI, +8 , RI; // are there at least two?
branch_x<0 RI, Lupdate_PAP; // if not, perform an update

load -8 (RStkA), RNp; // pop n
load -4(RStkA), RI; // pop X
subtract RStkA, +4, RStkA; // re-allocate stack space
subtract RStkB, +4, RStkB;
store RRet, +4(RStkB); // save the return vector
store RI, -4(RStkA); // save X
load (RNp), RI;
jump_link RI, RRet; // evaluate n
branch Lupdate_Int;

load -4(RStkA), RNp; // recover x
subtract RStkA, +4, RStkA; // re-allocate stack space
subtract RStkB, +4, RStkB;
store RI, +4(RStkB); // save n ’
load (RNp), RI;
jump_link RI, RRet; // evaluate x
branch Lupdate_Int;

load +8 (RStkB), RRet; // recover return vector
load +4(RStkB), R2;
store R2, +8 (RStkB); // push n ’
store RI, +4(RStkB); // push x ’
branch Lisdivs.wrk +12; // tail call isdivs.wrk

____ S T G ' c o d e ____________
isdivs.wrk = [] \r [n’ x ’] -> case const.Int.mod.wrk x ’ n ’ of { Int mod’ -> 

case mod’ of { 0# -> False [] ;
-> True [] };

};

_____R I S C  code .

Lisdivs.wrk:

subtract RStkBBase, RStkB, RI; 
subtract RI, +8 , RI; 
branch_x<0 RI, Lupdate_PAP;

load +4(RStkB), RI; 
load +8 (RStkB), R2; 
add RStkB, +8 , RStkB; 
remainder RI, R2, RI; 
branch_x=0 RI, Lisdivs.wrk_l; 
add RO, +1, RI; 
jump +4 RRet;

// calculate the number of args 
// are there at least two?
// if not, perform an update

// pop x ’
// pop n ’

// calculate mod x ’ n ’
// if mod == 0 return false 
// return true
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RISC code
Lisdivs.wrk_l:

move RO, RI; 
jump +4 RRet; // return false

Updating algebraic constructors

following return vector is suitable for updating polymorphic expressions, and
1 and correctly handle all forms of algebraic constructors:

TUSC rode
Lupdate.constr:

dw Lupdate_vector_8_chained;
dw Lupdate_vector_8 :
dw Lupdate_vector_7_chained;
dw Lupdate_vector_7;
dw Lupdate_vector_6_chained;
dw Lupdate_vector_6 :
dw Lupdate_vector_5_chained;
dw Lupdate_vector_5;
dw Lupdate_vector_4_chained;
dw Lupdate_vector_4;
dw Lupdate_vector_3_chained;
dw Lupdate_vector_3;
dw Lupdate_vector_2_chained;
dw Lupdate_vector_2;
dw Lupdate_vector_l_chained;
dw Lupdate_vector_l;

branch Lupdate_vector_0_chained ;
load +4(RStkB), RRet; // recover the return ptr
load +8 (RStkB), RNp; // recover the node pointer
load +12(RStkB), RStkBBase; // recover the B stack frame
load +16(RStkB), RStkABase; // recover the A stack frame
add RStkB, +16, RStkB; // pop the update fram
jump RRet; // invoke the ‘update’ return

RISC code
Lupdate_vector_0_chained:

load +8 (RStkB), RMisc; // recover the node pointer
load.high Linfo_table_Ind(RO), RRet; // overwrite the existing closure
load.address (RRet), RRet; // with an indirection
store RRet, (RMisc); // store the address of the node
store RNp, +4(RMisc); // pointer which will be updated

load +4(RStkB), RRet; // recover the return ptr
load +12(RStkB), RStkBBase; // recover the B stack frame
load +16(RStkB), RStkABase; // recover the A stack frame
add RStkB, +16, RStkB; // pop the update frame

jump RRet; // invoke the ‘update’ return

1.4
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RISC code .
Lupdate_vector_l:

load +4(RStkB), RRet; 
load +8 (RStkB), RNp; 
load +12(RStkB), RStkBBase; 
load +16(RStkB), RStkABase; 
add RStkB, +16, RStkB; 
load -8 (RRet), RMisc; 
jump RMisc;

// recover the return ptr 
// recover the node pointer 
// recover the B stack frame 
// recover the A stack frame 
// pop the update fram 
// select the correct vector 
// invoke the ‘update’ return

R I S C  code .

Lupdate_vector_l_chained:

load +8 (RStkB), RMisc;
load_high Linfo_table_Ind(RO), RRet;
load_address (RRet), RRet;
store RRet, (RMisc);
store RNp, +4(RMisc);

load +4(RStkB), RRet; 
load +12(RStkB), RStkBBase; 
load +16(RStkB), RStkABase; 
add RStkB, +16, RStkB;

load -8 (RRet), RMisc; 
jump RMisc;

// recover the node pointer 
// overwrite the existing closure 
// with an indirection 
// store the address of the node 
// pointer which will be updated

// recover the return ptr 
// recover the B stack frame 
// recover the A stack frame 
// pop the update frame

// invoke the ‘update’ return

1.5 Updating partial applications

____ R I S C  code .
Lupdate_PAP:

load +4(RStkBBase), RRet;
load +8 (RStkBBase), RI;
load.high Linfo_table_Ind(RO), R2;
load.address +0(R2), R2;
store R2, (RI);
store RHp, +4(R1);

subtract RStkA, RStkABase, RI; 
subtract RStkBBase, RStkB, R2;

add RI, R2, R3;
add R3, +16, R3;
add RHp, R3, RHp;
compare_x<y RHLimit, RHp, R5;
brcinch_bitO_set R5, Lgarbage_collect;

subtract RHp, R3, R4; 
load_high Linfo_table_PAP(RO), R5; 
load.address +0(R5), R5; 
store R5, +0(R4);
store RNp, +4(R4) 
store RI, +8 (R4)
store R2, +12(R4)

// recover the return reg 
// recover the node pointer 
// and overwrite it with an 
// indirection to the PAP

// number of A args on stack 
// number of B args on stack

// total no of args 
// factor in 4 extra words 
// allocate R3 words 
// ensure there’s space 
// otherwise invoke the GC

// calculate address of the PAP 
// create the PAP

// set the info table 
// save the node pointer 
// save the no A args 
// save the no B args
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RISC code
add R4, +16, R4; // set R4 = heap ptr
move RStkABase, R5; // set R5 = stack ptr
load +16(RStkBBase), RStkABase; // recover the A stack limit

branch_x=0 RI, +6 ; // skip forward
load (R5), R6 ; // get the first A entry
store R6 , (R4); // store it in the closure
add R5, +4, R5; // increase stk ptr
add R4, +4, R4; // increase the stk ptr
subtract RI, +4, RI; // decrement the count
branch_x>0 RI, -6 ; // re-enter the loop

move RStkBBase, R5; // set R5 = stack ptr
load +12(RStkBBase), RStkBBase; // recover RStackBase
add RStkB, +16, RStkB; // pop the update frame

branch_x=0 R2, +7; // possibly skip forward

load (R5), R7; // get the first B entry
store R7, (R4); // store it in the closure
store R7, +16(R5); // slide it down the stack
add R4, +4, R4; // increase the stk ptr
subtract R5, +4, R5; // increase stk ptr
subtract R2, +4, R2; // decrement the count
branch_x>0 R2, -7; // re-enter the loop

load (RNp), RI; // re-enter the function
jump RI;

info table for a partial application is shown below:
RISC r.ndp.

Linfo_table_PAP:

dw Lupdate_PAP_closure; // update routine
dw Linfo_table_PAP; // fast entry
dw Linfo_table_PAP; // stnd entry

load +8 (RNp), RI; // fetch the no of A args
load +12(RNp), R2; // fetch the no of B args
move RStkA, R3; // save RStkA
move RStkB, R4; // and RStkB
add RStkA, RI, RStkA; // increase the stacks
subtract RStkB, R2, RStkB; //
compare_x<y RStkB, RStkA, R5; / / check for stack overflow
branch_bitO_set R5, Lstack_overflow; / / overflow error handler

add RNp, +16, R5; / / set the closure ptr
branch_x=0 RI, +6 ;

load (R5), R6 ; / / recover the argument
store R6 , (R3); / / push the argument
add R3, +4, R3; / / advance the stk ptr
add R5, +4, R5; / / advance the closure ptr
subtract RI, +4, RI; / / reduce the no words
branch_x>0 RI, -6 ; / / and repeat
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RISC code .
branch_x=0 R2, +6;

load (R5), R6; // fetch the arg
store R6, (R4); // push the arg
subtract R4, +4, R4; // decrease the stack ptr
add R5, +4, R5; // advance the closure ptr
subtract R2, +4, R2;
branch_x>0 R2, -6; // and repeat

load +4(RNp), RNp; // recover the function pointer
load (RNp), RI; // fetch its info table
jump RI; // and call it
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