Investigating the potential of Hibiscus seed species as alternative water treatment material to the traditional chemicals

Jones, Alfred Ndahi (2017). Investigating the potential of Hibiscus seed species as alternative water treatment material to the traditional chemicals. University of Birmingham. Ph.D.

[img]
Preview
Jones17PhD.pdf
PDF - Accepted Version

Download (2MB)

Abstract

Developing countries pay a high price for water treatment due to importation of water treatment chemicals. Today, more than 663 million people lack access to a clean water supply which results in many deaths. Hibiscus plant seeds, namely Okra, Sabdariffa and Kenaf were investigated to identify their suitability as alternative water treatment materials to provide clean water supply to people in developing countries. Coagulation and disinfection ability of the extracts were assessed using a jar tester and Collilert-18 Quanti-Tray methods whereas dissolved organic carbon (DOC) test was performed using Shimadzu TOC analyser. The results of this work revealed that all the seed samples possess an anionic coagulant protein with a low molecular weight of 39 kDa. The potential of the seeds in crude form was clearly demonstrated, albeit with some issues regarding organic nutrient addition to the clarified water. However, this challenge was overcome by purifying the seed proteins in an ion exchange column where the impact of DOC addition was significantly reduced in the treated water, as demonstrated via fluorescence excitation-emission matrices. Additionally, the coagulant proteins identified in the region of tryptophan-like fluorescence were found to be stable after heat treatment. Furthermore, sludge production using seed extracts was found to be 5 times lower than that of aluminium sulphate (AS) and the pH of the treated water remained largely unaffected after treatment. Floc strength tests, undertaken using a laser diffraction instrument Mastersizer 2000, showed that the use of seeds as coagulant aids in combination with AS improved floc properties, leading to faster floc growth and shorter coagulation time.

Type of Work: Thesis (Doctorates > Ph.D.)
Award Type: Doctorates > Ph.D.
Supervisor(s):
Supervisor(s)EmailORCID
Carliell-Marquet, CynthiaUNSPECIFIEDUNSPECIFIED
Licence:
College/Faculty: Colleges (2008 onwards) > College of Engineering & Physical Sciences
School or Department: School of Engineering, Department of Civil Engineering
Funders: Other
Other Funders: Government of Nigeria
Subjects: T Technology > TA Engineering (General). Civil engineering (General)
T Technology > TD Environmental technology. Sanitary engineering
URI: http://etheses.bham.ac.uk/id/eprint/7181

Actions

Request a Correction Request a Correction
View Item View Item

Downloads

Downloads per month over past year