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Abstract

This thesis documents a theoretical investigation into quantum multicritical points (QMCPs),

where a system near zero temperature is unstable towards two distinct ordered phases. We

focus on quantum multicritical points in metallic systems, where the two ordered phases are

both magnetic, but with di�erent ordering wavevectors. This situation must be described by

multiple dynamical exponents, which complicate the analysis.

By adapting Hertz-Millis theory, we build a model of a QMCP which we analyse using

a renormalisation group approach. The regions of the phase diagram are identified, and the

specific heat, thermal expansion and Grüneisen parameter are found in each region. The

resistivity at finite temperatures above a QMCP is found by numerically solving the Boltzmann

equation in the presence of disorder, and both ferro- and antiferromagnetic spin fluctuations.

We believe our results explain the peculiar properties of the quantum critical compounds

NbFe
2

and Ta(Fe
1≠xVx)

2

, and we make predictions about properties of these systems which

have not currently been measured.

We then investigate the related model of a metamagnetic quantum critical end-point and

an antiferromagnetic quantum critical point in close proximity on the phase diagram. Using

a self-consistently renormalised approach we identify the regions of the phase diagram, and

the thermodynamic properties in each region. We highlight the experimentally measurable

signatures of multicriticality in this model.
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Chapter 1

INTRODUCTION

1.1 Thesis Overview

It is well known that in the proximity of second order phase transitions the physical properties

of systems are controlled by fluctuations of an order parameter. For finite temperature phase

transitions it is thermal fluctuations that dominate the physical properties in the vicinity of the

transition, but the situation is drastically di�erent for phase transitions without temperature.

This is the basic idea of quantum phase transitions and quantum criticality.

Quantum phase transitions are phase transitions which occur in systems at zero tem-

perature as some non-thermal control parameter is varied. For example, a magnet at zero

temperature may lose its magnetic order as pressure is applied, at a so-called quantum critical

point (QCP). While of course absolute zero is experimentally inaccessible, a quantum critical

point in the phase diagram can actually influence physical properties of systems over some

range of experimentally accessible temperatures. The question of how quantum critical points

can influence physical properties of systems has been heavily researched both experimentally

and theoretically in recent decades [1, 2]. The key feature that distinguishes quantum phase

transitions from finite temperature (classical) phase transitions is that at zero temperature

there can be no thermal fluctuations. The order parameter fluctuations at T = 0 are purely

quantum mechanical in nature, and at finite temperatures above a quantum critical point the

1



interplay between quantum and thermal e�ects results in the unusual properties observed.

One scenario that is less well-understood than the basic idea of a phase transition at zero

temperature is the idea of a zero temperature multicritical point, which is termed a quantum

multicritical point (QMCP). The phrase multicritical point can be generically applied to any

critical point requiring two or more parameters to tune to [3]. At certain types of multicritical

points, for example bicritical and tetracritical points, several distinct ordered phases meet

on the phase diagram. In this thesis we shall argue that the physics of a system at finite

temperatures above such a quantum multicritical point is controlled by fluctuations of two or

more distinct order parameters.

Recent experiments on NbFe
2

[4, 5, 6, 7], Ta(Fe
1≠xVx)

2

[8], YbRh
2

Si
2

[9] and YbAgGe

[10] have suggested that these compounds exhibit some form of quantum multicriticality. All

of these compounds are metallic materials with magnetic instabilities, and appear to exhibit

behaviours associated with both ferromagnetic and antiferromagnetic quantum criticality. For

example the specific heat in NbFe
2

and Ta(Fe
1≠xVx)

2

exhibit a power law usually associated

with ferromagnetic quantum criticality, but the resistivity obeys a power law usually associated

with antiferromagnetic quantum criticality. Moreover, Nb
1≠yFe

2+y has a quantum multicritical

point in the phase diagram. YbRh
2

Si
2

has been argued to have a multicritical nature, as

the specific heat and Grüneisen parameter exhibit power laws associated with ferromagnetic

quantum criticality, but the low temperature ordered phase is antiferromagnetic. YbAgGe

has been argued to have a bicritical point in the phase diagram under the application of a

magnetic field.

In this thesis we construct a model for quantum multicritical points in itinerant magnets,

focusing on scenarios with two distinct magnetic order parameters with di�erent ordering

wavevectors; ferromagnetism and antiferromagnetism. Our model explains why the thermo-

dynamic properties appear to be dominated by ferromagnetic quantities, and the resistivity

dominated by antiferromagnetism. We are able to o�er predictions about currently unmea-

sured quantities. We also develop a model of a metamagnetic quantum critical end-point

2



proximate to an antiferromagnetically ordered phase on the phase diagram.

The rest of the thesis is structured as follows. Motivated by the goal of constructing a

model of a quantum multicritical point, in Chapter 1 we review the basic physical concepts

and the techniques we employ in the remaining chapters. We briefly discuss the basics of

phase transitions and the renormalisation group, and then discuss the physics of metallic

systems and multicritical points. Chapter 2 is a second background chapter on quantum

phase transitions, beginning with a general overview, and includes a detailed analysis of the

Hertz-Millis theory of quantum phase transitions in itinerant magnets. Chapters 3, 4 and 5 are

predominantly composed of original research. In Chapter 3 a model of a quantum multicritical

point is constructed and analysed using the renormalisation group. Predictions are made for

the specific heat, thermal expansion and Grüneisen parameter, and these are compared to

experiments. In Chapter 4 transport properties are investigated near a quantum multicritical

point, and the resistivity is calculated near such points. In Chapter 5 the model is extended

to deal with magnetic fields, and the metamagnetic quantum critical end-point is investigated

in the proximity of an antiferromagnetic quantum critical point. The thesis is summarised in

Chapter 6, where we also discuss possible future avenues of research that stem from the work

presented in this thesis.

1.2 Introduction

With the aim of developing a model for a quantum multicritical point, we now discuss the

techniques we shall need in order to develop and analyse such a model. The model we present

in Chapter 3 is an adaptation of the Hertz-Millis theory of quantum criticality in itinerant

magnets, and Hertz-Millis theory can be analysed using the techniques which we discuss in

this chapter. The main motivation of this chapter is to provide all the necessary background

in order to analyse Hertz-Millis theory in Chapter 2, and our multicritical model in Chapter

3.

3



The rest of the chapter is structured as follows. In Section 1.3.1 we revise the basics of

finite temperature phase transitions, and in Section 1.3.2 we discuss phenomenological theories

of phase transitions. The Hertz-Millis model of Chapter 2 is a phenomenological model that

shares many similarities with the Ginzburg-Landau model we discuss in this section. In Section

1.4 we revise the ideas behind the renormalisation group method, which is the tool we employ

in Chapter 3 to analyse the quantum multicritical point. We then turn our attention to the

literature on finite temperature multicritical points in Section 1.5. We end the chapter in

Section 1.6 with a brief discussion on metallic systems, which are a necessary ingredient in the

Hertz-Millis theory of Chapter 2.

1.3 Classical Phase Transitions

The subject of classical phase transitions and the renormalisation group is of course far too

large to summarise in any amount of depth in this thesis, and there are many excellent text-

books which provide a much more thorough introduction to the subject [3, 11, 12, 13, 14,

15, 16]. In this section we go over the basic ideas which form the backbone of the thesis,

emphasising the aspects which are crucial to the analysis in the later chapters.

Specifically we shall discuss the basics of phase transitions in Section 1.3.1, and phenomeno-

logical models phase transitions in Section 1.3.2. Section 1.4 is dedicated to the renormalisation

group, detailing scaling analysis and momentum-shell renormalisation group.

The aim of this section is to highlight the ideas which are necessary for the analysis of

the Hertz-Millis model of quantum critical points which we discuss in depth in Chapter 2,

and later extend to a multicritical point in Chapter 3. Hertz-Millis theory is similar to the

Ginzburg-Landau theory of phase transitions discussed in Section 1.3.2, but it is a model which

we analyse above its upper critical dimension. The methods of scaling and momentum-shell

renormalisation which we discuss in Section 1.4 enable the analysis of this model.
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1.3.1 Phase Transitions

Phase transitions occur when a material changes its state in a discontinuous manner as some

parameter is smoothly changed. These transitions occur in a wide variety of physical systems,

even outside of the paradigm of condensed matter physics, but in this thesis we restrict our

attention to magnetic phase transitions.

Phase transitions are commonly described in terms of an order parameter �, which is zero

on one side of the transition and non-zero on the other. In the magnetic transitions considered

in this thesis, the order parameter is some type of magnetisation, either uniform or staggered.

This naturally forms a starting point for phenomenological theories of phase transitions, as we

discuss in Section 1.3.2.

There are several types of phase transition. In first order phase transitions the order

parameter � discontinuously jumps from a finite value below the transition to zero above

it. In second order phase transitions, which are the subject of much of this thesis, the order

parameter smoothly evolves from zero at the transition. In the vicinity of a second order phase

transition in the phase diagram, the physical properties are dominated by fluctuations of the

order parameter. It is this critical behaviour in the vicinity of second order phase transitions

which we review in this chapter, as this behaviour is analogous to that near a quantum critical

point at zero temperature.

Upon approaching second order phase transitions the correlation length diverges, and be-

comes infinite at the transition. The physics becomes dominated by fluctuations on the scale

of the correlation length, which quickly becomes much larger than any microscopic scale in the

system. The physical properties of systems near criticality therefore do not depend on the mi-

croscopic details such as the inter-atomic interactions, and only depend on general properties

such as the spatial dimensionality and the symmetries of the system. This leads to the idea of

universality, which is that physical properties of systems near phase transitions in materials

with completely di�erent microscopic properties exhibit the same critical behaviour, if they

fall within the same universality class [12].
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As a phase transition is approached by tuning some parameter t, which may for example

be temperature, a number of physical properties exhibit power-law behaviour. The exponents

are called the critical exponents, and the set of critical exponents in the vicinity of the phase

transition define the universality class.

Because the microscopic properties are completely unimportant near the transition, and

the only important length scale is the correlation length, the renormalisation group approach

that we detail in Section 1.4 has naturally become a crucial tool for theoretically investigat-

ing physical properties near phase transitions. Before discussing this renormalisation group

treatment, we discuss phenomenological theories for behaviour near a phase transition.

1.3.2 Phenomenological Theories

In this section we review phenomenological theories which describe the properties of materials

in the vicinity of phase transitions, by describing them in terms of the order parameter �

which is non-zero above the transition and zero below. We review the Landau theory, which

is based on mean-field theory, and the Ginzburg-Landau theory which takes order parameter

fluctuations into account. Our motivation for doing this is because the Hertz-Millis theory for

quantum phase transitions is very similar to the Ginzburg-Landau theory we discuss here in

many aspects.

The Landau theory of phase transitions is a mean-field model which assumes that the order

parameter is a spatially uniform quantity. It is assumed that the free energy in the vicinity

of the phase transition can be described by an analytic function of the order parameter. The

free energy includes all powers of the order parameter that are allowed by symmetry. In many

systems featuring second order magnetic phase transitions the relevant Landau free energy is

F (�) = r�2 + u�4 + ..., (1.3.1)

where the higher order terms are small close to the transition, and not necessary to include to
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capture the relevant physics. When u > 0 the order parameter is zero for r > 0, and smoothly

evolves from zero for r < 0. In finite temperature phase transitions r is the deviation from

the critical temperature, r = T ≠Tc

Tc
.

The mean-field critical exponents can be extracted from this model by calculating how

physical properties change in the vicinity of the phase transition. The order parameter is

found by minimising the free energy, by solving ˆF
ˆ�

= 0. This tells us that � ≥ (Tc ≠ T )1/2

in the ordered phase, and by di�erentiating the free energy the specific heat can be found

to be C ≥ T below the transition. However, the Landau model can say nothing about the

disordered side of the transition.

It turns out that this mean field approximation is a poor approximation in dimensions

below what is known as the upper critical dimension of the theory d+

c , which for this model

is equal to 4. Whether the mean-field approximation is suitable or not can be tested within

the mean-field approximation. Taking into account the fact that the order parameter can

fluctuate, the requirement for mean-field theory to be valid is that the fluctuations about the

expectation value of � are small. This condition can be written as

e
(”� (x))2

f
< È�Í2 , (1.3.2)

which is known as the Ginzburg criterion. By calculating the average, using that the magnetic

susceptibility in such systems is ‰≠1 = r + q2, it can be shown that this criterion is violated at

temperatures su�ciently close to the transition in dimensions less than 4 [3]. The temperature

it becomes violated at is known as the Ginzburg temperature.

A better model for analysing the phase transitions is the Ginzburg-Landau functional for

the free energy, which takes into account that the order parameter can fluctuate in space. This

is given by

F [�] =
⁄

dq
1
r + q2

2
�2 (q) +

⁄
dx�4 (x) , (1.3.3)
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where � (q) = � (�q), and we have written the first term in reciprocal space and the second

term in real space.

Physical properties of the Ginzburg-Landau model can be calculated from the partition

function

Z =
⁄

D� (q) exp (≠—F [�]) , (1.3.4)

which is a functional integral over the field � (q). This quantity is, unfortunately, a rather

di�cult quantity to probe. If u were zero, the partition function would just be a Gaussian

integral and the thermodynamic properties would follow from straight-forward calculations.

Because this theory has a �4 component, the partition function cannot be calculated exactly.

This is a problem which is ubiquitous in theoretical physics, and plagues disciplines other than

condensed matter physics, such as high-energy particle physics field theories [16].

The renormalisation group approach is one such technique which is useful in the analysis

of models of this type.

1.4 Renormalisation Group

We now turn our attention to the renormalisation group technique, which enables further

analysis of the Ginzburg-Landau functional described in the previous section. It also turns

out to be a useful tool for investigating the physical properties of systems near quantum phase

transitions, and in Chapter 2 we shall describe how it has been used to tackle the Hertz-

Millis theory of quantum criticality. In Chapter 3 we use this method to analyse a quantum

multicritical point. We therefore discuss it in some amount of detail in this section.
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1.4.1 Basic Idea

The idea of the renormalisation group is that near a phase transition only the behaviour of the

system on the scale of the correlation length is important, and the short-range, microscopic

behaviour becomes negligible as the correlation length diverges.

The renormalisation group is a technique to generate an e�ective model which has the same

physical properties as the original system. If a system is described by a set of parameters K,

the renormalisation group procedure involves systematically removing the short-range degrees

of freedom from the system, to generate a new model described by a new set of parameters K̃

[12].

There are many di�erent techniques for eliminating the short-range degrees of freedom, in-

cluding real-space techniques such as block spin renormalisation, or decimation, and techniques

for working in reciprocal space such as momentum-shell renormalisation [3].

Regardless of the specific technique, the renormalisation group method allows us to cal-

culate how the various parameters in the system change as we look at the system on longer

and longer length scales. This enables us to identify irrelevant variables which tend to zero

under the renormalisation group procedure, which can be used to justify using more simple

models which depend on only a few relevant variables. Moreover, the renormalisation group

method can be used to calculate the critical behaviour of systems. The renomalisation group

procedures in general rely upon a rescaling of space by a factor b, which causes the parameters

in the model to vary as some power of b. From these powers, called the renormalisation group

eigenvalues, the critical behaviour of various physical properties can be calculated. This is

illustrated in Section 1.4.2.

1.4.2 Scaling Analysis

We now illustrate how the renormalisation group can be used to determine the power-law

behaviour of physical properties.
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We consider a phase transition in a material at t = 0 = T ≠Tc

Tc
, under the influence of an

applied field h. Under the application of the renormalisation group procedure, we generally

find that these variables scale as t æ b1/‹t and h æ b⁄h when space is rescaled by a factor b.

For the original and the rescaled theories to be equivalent we must have that the free energy

remains unchanged, which means that the free energy density obeys the homogeneity relation

f (t, h) = b≠df
1
b1/‹t, b⁄h

2
, (1.4.1)

from which physical predictions can be made [12].

For example, setting b = t≠‹ and di�erentiating twice with respect to temperature, we

find that the specific heat when h = 0 is proportional to t≠–, where – = d ≠ 2‹. Similar

relations can be found for the order parameter, È„Í = ˆf
ˆh

≥ t‹(d≠⁄), and the susceptibility

‰ = ˆ2f
ˆh2 ≥ t‹(d≠2⁄).

However, these scaling relations come with some caveats. Scaling relations involving the

number of spatial dimensions d are called hyperscaling relations, and these are only expected to

hold at or below the upper critical dimension of the theory. Above the upper critical dimension,

so-called dangerously irrelevant variables may spoil these simple scaling relations. Below the

upper critical dimension, while these hyperscaling relations are expected to hold, the system is

not described by mean-field theory. The physics is controlled by an interacting theory, and the

critical exponents must be found by applying the renormalisation group methods to a specific

model [3].

We now turn our attention to how the scaling exponents can be found from a particular

renormalisation group procedure. Specifically, we discuss the momentum-shell renormalisation

group procedure.
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(a) (b)

Figure 1.1: Diagrams contributing to r. The dashed line represents the interaction u.

(a) (b) (c)

Figure 1.2: Diagrams contributing to u. The dashed line represents the interaction u.
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1.4.3 Momentum-Shell Renormalisation Group

As alluded to in Section 1.4.1, there are various ways of implementing the renormalisation

group. In this thesis the method we shall use is the momentum-shell RG procedure. This

method is the standard method used to investigate the Hertz-Millis model which we discuss

in Chapter 2, and in Chapter 3 we apply this technique to a model of a quantum multicritical

point. Here we illustrate the key points involved by applying it to the Ginzburg-Landau

functional, given by equation (1.3.3). The analysis here follows the analysis given by Chaikin

and Lubensky [3].

The general idea is that we first impose a high-momentum cut-o� � on the modes. This

can be justified naturally as we are actually dealing with a discrete lattice of atoms so a cut-o�

on the order of the inverse lattice spacing is appropriate, or a cut-o� can be justified as we

only wish to deal with the long-wavelength behaviour near the phase transition. The precise

value of the cut-o� is unimportant, but its existence is necessary for the momentum-shell RG

approach.

To begin the RG procedure, we decide that we are only interested in the long wavelength,

low momentum behaviour, and declare modes with momenta near the cut-o� unimportant.

We define ‘near’ by meaning the modes with momenta satisfying �/b < q < � where we take

the scalar q to mean |q|.

As a first approximation, in a procedure commonly called tree-level RG, we simply neglect

the modes above the reduced cut-o� and rescale momentum so that the cut-o� in the rescaled

variables is the original cut-o� �. The other factors in the problem are rescaled such that

the form of the free energy functional remains unchanged. The variables in the problem

then become functions of the scaling variable b. Specifically we find r(b) = b2r and u(b) =

b4≠du, where we immediately see how the upper critical dimension arises in this scheme. The

coe�cient of „4 flows to zero in dimensions above the upper-critical dimension of 4, and the

system is described by an e�ective Gaussian theory.

Corrections to these RG equations can be found by considering the e�ect of the removed
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modes on the low momentum modes via the quartic interaction term u. The e�ect of the low

momentum modes interacting with the modes above the cut-o� can be found systematically

using the diagrammatic method of Feynman. To second order in u, the diagrams contributing

to r are shown in Figure 1.1 and the diagrams contributing to u are shown in Figure 1.2.

External legs represent modes below the cut-o�, and internal lines represent modes above

which are integrated over. The interaction u is represented as a dashed line so that the correct

combinatoric prefactors of the diagrams can be calculated. In general „ is an n-component

field, and the interaction u connects two pairs of fields which may be of di�erent components.

In the limit b æ 1+ the one-loop integrals which renormalise r are simply given by Kd

r+�

2 and

those which renormalise u are Kd

(r+�

2
)

2 , where Kd is the surface area of a d-dimensional sphere.

These diagrams lead to the RG equations [3]

dr

d ln b
= 2r(b) + 4(n + 2)Kdu(b) 1

r(b) + �2

, (1.4.2a)

and

du

d ln b
= (4 ≠ d) u(b) ≠ 4(n + 8)Kdu2(b) 1

(r(b) + �2)2

. (1.4.2b)

Above the upper critical dimension, in the limit b æ Œ the interaction term still flows to

zero under RG, but the solution of equation (1.4.2a) is b2r̃ where r̃ is the renormalised tuning

parameter. The RG equations for the Hertz-Millis theory of quantum critical points we discuss

in Chapter 2 look very similar to these equations.

While the solution of these equations above their upper critical dimension may be simple,

analysis below the upper critical dimension is not so easy to perform. We now turn our

attention to how the ‘ expansion technique can be used to investigate models below their

upper critical dimension, with the foresight that we shall need similar analysis in Chapter 5,

where we discuss metamagnetism and antiferromagnetism in the presence of a magnetic field.
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1.4.4 The ‘ Expansion

While the Hertz-Millis theory for quantum critical points detailed in Chapter 2, and our model

of a quantum multicritical point in Chapter 3, are models which are at or above their upper

critical dimension in physically interesting situations, in Chapter 5 we shall present a model

where this is not the case. For this reason we discuss the ‘ expansion, which can be used to

investigate models below their upper critical dimension.

In dimensions lower than d+

c the Gaussian fixed point of the RG flow is unstable, and the

physical properties of the system are controlled by some fixed point at finite u. It then seems

that we should not be able to write the RG equations as a power series in the interaction terms

u, as this is no longer a small quantity.

The ‘ expansion is a way of performing the loop expansion in terms of a small parameter,

by letting the dimensionality of the system in the RG equations become a continuous variable,

d æ d+

c ≠ ‘ [17]. The idea of the ‘ expansion is that as ‘ grows from zero, the fixed point

structure of model should smoothly evolve from the fixed point structure at the upper critical

dimension, which is the single Gaussian fixed point. The location of these fixed points and

the critical exponents associated with the fixed point can be found as a power series in ‘.

Of course, extending this to the physically interesting cases of ‘ =1 or ‘ = 2 may seem like

a ridiculous thing to do. However, it turns out that at su�ciently high orders the predictions

of the ‘ expansion are not dissimilar from physical observations. In addition, the ‘ expansion

can be used to find which interactions lead to new fixed points, and characterise universality

classes [12].

The one-loop RG equations, in equations (1.4.2), can be used to show that at order ‘ there

is another fixed point given by

uú = ‘

4 (n + 8) Kd

, (1.4.3a)
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and

rú = ≠‘
3

n + 2
n + 8

4
, (1.4.3b)

in units where � = 1. This is known as the Heisenberg fixed point [3].

The RG equations can then be linearised around these fixed points, and it can be shown

that ”u is an eigenvector of the RG equations with eigenvalue ≠‘, and hence the Heisenberg

fixed point is stable. ”r is an eigenvector of the RG equations with eigenvalue 2 ≠ ‘
1

n+2

n+8

2
,

which gives the deviation from the mean-field correlation length exponent to order ‘.

1.4.5 Discussion

In Chapter 2 we discuss Hertz-Millis theory for quantum phase transitions, which we subse-

quently adapt in Chapter 3 to the situation of a multicritical point. Hertz-Millis theory looks

qualitatively like the Ginzburg-Landau theory of equation (1.3.3) but with an extra dimension

associated with imaginary time. We shall find that in all physically relevant cases, the model

we discuss is at or above its upper critical dimension, where mean-field theory is expected to

hold.

However, in Hertz-Millis theory temperature enters the equations in a completely di�erent

manner to how it enters in the theories of finite temperature phase transitions. A consequence

of this is that the one-loop integrals play a large role in shaping the phase diagram. Via the

dangerously irrelevant interactions, the one-loop integrals end up a�ecting the temperature-

dependence of the correlation length. The momentum-shell RG approach also captures loga-

rithmic corrections to the expressions derived from scaling above the upper critical dimension.

This is the reason why a momentum-shell RG procedure is necessary even though we wish

to analyse the model above its upper critical dimension.
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1.5 Multicritical Points

As mentioned in the overview, in this thesis we are interested in quantum multicritical points

where a system at zero temperature is simultaneously unstable towards two types of order.

Before building a model of such points in Chapter 3, here we discuss finite temperature mul-

ticritical points.

A multicritical point is defined as a critical point which requires at least two non-ordering

fields to be tuned in order to reach it [3]. Two types of multicritical point are schematically

shown in the g ≠ T plane in Figure 1.3, where g represents a non-thermal tuning parameter

which is required to tune to the multicritical point. Figure 1.3a shows a bicritical point where

there is a first order transition between the two ordered phases below this point, and Figure

1.3b shows a tetracritical point where there is a region of coexistence of both types of order.

These multicritical points are of specific interest to us in this thesis as they have two

distinct ordered phases. Near the multicritical point we expect the physical properties to be

dominated by fluctuations of the two order parameters. We shall show in Chapter 3 that in a

quantum critical version of these points, the dynamics of both types of order are important.

This is an especially interesting scenario as it requires an analysis involving multiple dynamical

exponents.

According to the definiton above, other types of multicritical points exist. Tricritical points

are one such case, where a line of first order transitions changes into a line of second order

transitions [3]. As this is characterised by a single order parameter, we do not consider such

points in this thesis and restrict our attention to bicriticality and tetracriticality.

We now briefly discuss how the techniques of phase transitions and renormalisation can

be applied to multicritical points. We begin by reviewing the scaling analysis, and then turn

our attention to a phenomenological model. We summarise by reviewing the conclusions of a

one-loop RG analysis. However we keep this section brief, as in Chapter 3 we shall find that

much of the conclusions that are made about finite temperature points cannot be transferred

to the quantum critical version.
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(a) Phase diagram with a bicritical point (b) Phase diagram with a tetracritical point

Figure 1.3: Finite temperature multicritical points

1.5.1 Scaling Analysis

We now discuss how the scaling analysis of Section 1.4.2 can be applied to a multicritical

point, following the analysis of Chaikin and Lubensky [3].

In addition to temperature t, a non-thermal parameter g is required to tune to a multi-

critical point, which has a corresponding RG scaling eigenvalue ⁄g. By adapting the scaling

relation in equation (1.4.1), we find that

f(t, h, g) = b≠df(b1/‹t, b⁄h, b⁄gg). (1.5.1)

This implies that the susceptibility obeys the relation

‰(t, h, g) = b≠(d+2⁄)f ÕÕ(b1/‹t, b⁄h, b⁄gg), (1.5.2)

which can be rescaled to

‰(t, h, g) = |t|≠“X

A
h

|t|� ,
g

|t|„

B

, (1.5.3)

where „ = ⁄g‹ and X is a scaling function. At h = 0 the susceptibility diverges at the
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boundaries of the ordered phases, which this scaling theory predicts obey the relation

tc(g) ≥ g1/„. (1.5.4)

We shall see in Section 3.2 that this analysis does not translate to the quantum multicritical

point, as the boundaries of the ordered phases in that case are found from completely di�erent

methods.

Finding the value of the critical exponent „ requires a theory of the multicritical point,

which we discuss in the next section. We now discuss a phenomenological theory that describes

a multicritical point.

1.5.2 Phenomenological Theory

In order to build a phenomenological model of a quantum multicritical point, it is worth study-

ing a phenomenological model of a classical multicritical point. A Landau theory can be used

to describe finite temperature multicritical points between two ordered phases, characterised

by È„
1

Í ”= 0 and È„
2

Í ”= 0 [3]. The appropriate Landau theory is

f („
1

, „
2

) = (r ≠ g) „2

1

+ (r + g) „2

2

+ u
1

„4

1

+ u
2

„4

2

+ u
12

„2

1

„2

2

(1.5.5)

where in order for this to describe a classical multicritical point, r must be dependent on

temperature as r ≥ T ≠ Tc, and g is a non-thermal tuning parameter. All the u terms are

positive.

This model can be justified in a number of ways. It could simply just be written down

based on general symmetry arguments, or it can be derived from a microscopic model of spins

in an anisotropic environment interacting with an arbitrary interaction [18].

The possible phase diagrams of this model in the r ≠ g plane are shown in Figure 1.4.

This model has a bicritical point at r = g = 0 if 4u
1

u
2

< u2

12

, and a tetracritical point if this

inequality is reversed. There is a second order transition into the phase where È„
1

Í ”= 0 at
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(a) Phase diagram with a bicritical point. Here,
u2

12

> 4u
1

u
2

.
(b) Phase diagram with a tetracritical point.
Here, u2

12

< 4u
1

u
2

.

Figure 1.4: Phase diagrams of equation (1.5.5) in the r ≠ g plane

r = g when g > 0, and a second order transition into the phase where È„
2

Í ”= 0 at r = ≠g

when g < 0. If 4u
1

u
2

< u2

12

there is a first order transition between the two ordered phases

along the line g = 0 when r < 0. If 4u
1

u
2

> u2

12

, when r < 0 there is a coexistence region

where both È„
1

Í ”= 0 and È„
2

Í ”= 0, and all transitions on the phase diagram are second order.

When we come to discussing quantum phase transitions, we adapt Hertz-Millis theory

which is known to only be valid on the disordered side of the phase transition. For this reason

we do not o�er an in-depth analysis of the evolution of the order parameters in the ordered

phases.

A Ginzburg-Landau theory of such a multicritical point can be found by taking into account

the spatial fluctuations of the order parameter, as

f („
1

, „
2

) =
⁄

dq
1
r ≠ g + c

1

q2

2
„2

1

(q) +
⁄

dq
1
r + g + c

2

q2

2
„2

2

(q)

+
⁄

dx
Ë
u

1

„4

1

(x) + u
2

„4

2

(x) + u
12

„2

1

(x) „2

2

(x)
È

,

(1.5.6)

which we refer back to when deriving a model of quantum multicriticality.

We now discuss how this model has been analysed in the literature.
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1.5.3 RG Analysis

In this section we discuss how the model of a multicritical point has been analysed using

the renormalisation group in the literature. This will enable us to compare the results of

the quantum multicritical model of Chapter 3 with the corresponding classical model. The

Ginzburg-Landau theory of a multicritical point discussed in the previous section has been

analysed under the renormalisation group analysis by Kosterlitz et al. [18]. In this section

we summarise the results of their analysis, rather than focusing on the specific details of the

calculation.

Just like in the �4 theory of Section 1.3.2, the upper critical dimension of the model

of a multicritical point is found to be 4. Above 4 dimensions the model flows to a stable,

non-interacting fixed point.

Below the upper critical dimension, the model has a rather rich fixed-point structure. In

4≠‘ dimensions 6 fixed points of the RG flow can be found, 4 with uú
12

= 0 and 2 with uú
12

”= 0.

The 4 fixed point with uú
12

= 0 can be analysed as two decoupled fixed points associated with

„
1

and „
2

independently. They are classified as tetracritical points since (uú
12

)2 < 4uú
1

uú
2

.

They are all unstable with respect to perturbations of u
12

, with the exception of one fixed

point where the stability is dependent on the number of field components, but is unstable in

physically relevant numbers of field components.

Of the two fixed points with uú
12

”= 0, one can be associated with bicritical behaviour, and

the other can be associated with tetracritical behaviour. Whether the bicritical or tetracritical

interacting fixed point is stable depends on the number of field components. The renormalisa-

tion group eigenvalues around these fixed points can be used to find various critical exponents

associated with classical multicriticality. For example the crossover exponent „ of equation

(1.5.4) can be found to be greater than 1, and the susceptibility exponents can be found to

order ‘.

In summary, below the upper critical dimension there is a rich fixed point structure due

to the three di�erent interactions u
1

, u
2

and u
12

. However when we turn our attention to a
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quantum multicritical point in Chapter 3, we analyse a model at or above its upper critical

dimension and only flow to the non-interacting Gaussian fixed point. In contrast to classical

multicriticality it is not the fixed point structure, but the dangerously irrelevant interactions

which determine the physical e�ects of quantum multicriticality.

1.6 Metallic Systems

In this thesis we shall be investigating quantum phase transitions in itinerant magnetic systems,

where we investigate magnetic phase transitions over a metallic background.

To deal with the metallic nature of the problem, we employ the standard Fermi liquid the-

ory. The statement of Fermi liquid theory is roughly that despite all the complex interactions

between electrons in a metal, the fundamental excitations can be treated as weakly interacting

quasiparticles. This was original discussed by Landau [19], and has since become the standard

approach to dealing with electrons in solids [20, 21].

If we consider a collection of electrons which do not interact with each other, the Pauli

exclusion principle means that each will exist with a unique set of quantum numbers, and at

zero temperature occupy all available energy states up to the Fermi energy. The basic idea

behind Fermi liquid theory is that if we imagine ‘adiabatically’ turning on the interactions

between the electrons, the fundamental excitations of the new system are no longer the bare

electrons but instead fermionic quasiparticles which are assumed to smoothly evolve from the

non-interacting states. The quantum numbers of these quasiparticle excitations are preserved,

while the e�ective mass of the quasiparticles and their description in terms of the bare electrons

can change quite dramatically. This means that the idea of a Fermi surface is preserved even

in the presence of strong interactions.

This Fermi liquid approach can be used to find physical properties of systems. For example

the temperature dependence of the specific heat of a Fermi liquid is linear, C ≥ T , which can

be shown for any system of particles obeying the Fermi distribution [21]. The resistivity of
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a Fermi liquid at low temperatures can also be shown to obey fl(T ) ≥ fl
0

+ AT 2 in d = 3 or

fl(T ) ≥ fl
0

+ A ln
1

1

T

2
T 2 in d = 2 [1].

Since Fermi liquid theory has been found to hold for a wide range of metallic systems

with a variety of di�erent interaction strengths, situations where deviations from Fermi liquid

behaviour are observed are of inherent interest [1]. Quantum phase transitions in metallic

systems are one such situation where deviations from Fermi liquid behaviour are observed.

We discuss these deviations in the next chapter.
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Chapter 2

QUANTUM PHASE TRANSITIONS

As discussed in the previous chapter, the aim of this thesis is to investigate quantum multi-

critical points. In the previous chapter we reviewed the basics of phase transitions and the

renormalisation group method, which can be used to analyse critical phenomena. We then

reviewed the basics of bicritical and tetracritical points, and metallic systems. The previous

chapter dealt exclusively with finite temperature behaviour, and we now turn our attention

to zero temperature phase transitions. In addition to the techniques discussed in the previous

chapter, an understanding of quantum phase transitions and the methods of analysing them

is also required in order to build a model of a quantum multicritical point.

This chapter reviews the literature on aspects of quantum criticality which we require in

subsequent chapters. We first discuss quantum phase transitions in general, before focusing

on magnetic quantum phase transitions in metals. We discuss the scaling relations for the

behaviour of systems near such a quantum critical point, and then discuss the Hertz-Millis

model of quantum criticality. We discuss this in a significant amount of detail, as it is this

model we adapt when building the model for a quantum multicritical point in Chapter 3. We

o�er an overview and a derivation of the Hertz-Millis model in Section 2.2, before presenting

a renormalisation group analysis of it in Sections 2.3 and 2.4. We then discuss the problems

with Hertz-Millis theory in Section 2.5. Following this we turn our attention to the literature

on quantum critical points in the presence of multiple dynamical exponents in Section 2.6, as
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Figure 2.1: Schematic phase diagram of a material with a quantum critical point in the phase
diagram, taken from Ref. [1]. The second order phase transition has been suppressed to zero
under the application of a control parameter r.

we find it is necessary for the analysis of the quantum multicritical point in Chapter 3.

2.1 Basics of Quantum Criticality

2.1.1 General Quantum Criticality

As explored in the previous chapter, a lot of interesting physics can be observed in the vicinity

of second order phase transitions in materials at finite temperatures, where the thermody-

namic properties obey universal power-law behaviour dependent only on the symmetries of

the system. Quantum critical systems are systems which are proximate to a second order

phase transitions at zero temperature. They are also characterised by unconventional power-

law properties in the vicinity of the phase transition, but the power laws are di�erent from

those associated with the corresponding finite-temperature transitions [1, 2]. One way of gen-

erating a quantum critical system is as follows. Suppose we have a material with a second

order phase transition in it at a critical temperature Tc, and we choose to do something to
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the system. We may, for example, consider physically squeezing the system and investigating

its properties under pressure. In general we should expect the microscopic properties of the

system, such as equilibrium inter-atomic spacing and magnetic interaction strengths between

neighbouring atoms, to be di�erent to the original properties of the system. This change of

microscopic energy scales within the system in turn changes the critical temperature of the

phase transition, which now becomes a function of pressure Tc æ Tc(P ). In many systems

it is experimentally found that the transition temperature decreases under the application of

pressure, and in some of these systems a pressure P ú can be experimentally reached such that

the critical temperature of the transition is suppressed to absolute zero, Tc (P ú) = 0. This is

shown in Figure 2.1.

While in the vicinity of finite temperature phase transitions the thermodynamic properties

are dominated by thermal fluctuations of an order parameter, at zero temperature no thermal

fluctuations are present. If we consider the system at zero temperature and tune through the

critical pressure P ú, we go from an ordered phase to a disordered phase via a phase transition

at absolute zero temperature. In this second order transition, it is quantum mechanical fluctu-

ations of the order parameter which take the role of thermal fluctuations in finite temperature

transitions and cause novel power laws to be observed in such systems.

One might argue that absolute zero temperature is never experimentally reachable, but

just as the physics in the vicinity of a finite temperature phase transition is dominated by the

order parameter fluctuations, the quantum critical point influences a wide region of the phase

diagram. E�ects of the quantum critical point can frequently be observed over a wide range

of experimentally accessible temperatures. Above zero temperature, there is a whole quantum

critical region where the physical properties are dominated by the interplay between quantum

mechanical and thermal e�ects.

The argument presented above is not only valid for pressure, but any other possible tuning

parameter. Another common parameter which is used is doping of the material with a partic-

ular element. Magnetic fields can also be used in some situations, but are known to lead to a

25



Figure 2.2: The e�ective resistivity exponent in Sr
2

Ru
3

O
7

calculated by fitting fl (T ) = fl
0

+
AT –), taken from Ref. [23]. Sr

2

Ru
3

O
7

has a metamagnetic quantum critical end-point tuned
to by magnetic field, at H = 7.8T . An approximately linear resistivity is seen in the quantum
critical region, and a T 2 resistivity in the Fermi liquid region outside of the ‘V’ shape.

variety of complications [22]. These complications will become important in Chapter 5 when

we deal with metamagnetism, and we discuss these complications there. For the remainder

of Chapter 2 and Chapter 3, unless explicitly stated, we do not consider magnetic fields as a

tuning parameter for quantum criticality.

A typical experimental signature of a quantum critical point on the phase diagram is a

‘V’ shaped quantum critical region where the unusual critical exponents are observed. An

example of a material where this is clearly seen is Sr
2

Ru
3

O
7

, as shown in Figure 2.2. This

can be understood by considering a characteristic energy scale in the system �, associated

with the critical behaviour, which tends to zero at the quantum critical point. For example

in second order phase transitions this may be the ‘mass’ of the order parameter fluctuations.
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The origin of the ‘V’ shape is the crossover between the regimes kBT 7 �. The quantum

critical regime is the region within the ‘V’ shape, where � < kBT [2]. The fluctuations have

been made energetically cheap by the tuning parameter, and then become thermally excited

in the quantum critical regime. These fluctuations lead to the observed unconventional power

laws. The outside of the ‘V’ shape regime is commonly referred to as a ‘quantum disordered’

regime, and for the metallic systems considered in this thesis it is the Fermi liquid region.

A major di�erence between classical and quantum phase transitions is the role of the

dynamical properties of the order parameter. When mathematically describing a quantum

mechanical problem, a natural basis of states to work in is the set of eigenstates of the Hamil-

tonian. In the types of systems that exhibit quantum phase transitions however, the eigenstates

of the Hamiltonian are not usually known. Moreover, often the underlying Hamiltonian of the

system is not known. Instead we must use the only description we can, and discuss the physics

near the transition in terms of an order parameter. In this thesis we shall be considering sys-

tems where the order parameter is a spatially dependent field „, and the key quantity which

allows us to calculate physical properties of systems is the partition function Z, defined by

Z = Tr exp
1
≠—Ĥ

2
. (2.1.1)

To represent the partition function in terms of the field „, we must use Feynman’s path integral

formalism of quantum mechanics to write the partition function as

Z =
⁄

D„ (x, ·) exp (≠—S [„]) , (2.1.2)

where the action S is given by an integral over the Lagrangian

S =
⁄ —

0

d·
⁄

dxL („) . (2.1.3)

The integral over imaginary time · arises due to the fact that the operator exp
1
≠—Ĥ

2
is the
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same as the time-evolution operator in quantum mechanics, exp
1
≠ it

~ Ĥ
2
. The Lagrangian is

dependent on · in a non-trivial manner precisely because we are using a description in terms

of states which are not eigenstates of the Hamiltonian.

We must now consider the order parameter as a function of both space and imaginary time

- it is as if we have gained an extra dimension. The dependence of the action on imaginary

time may not be the same as the spatial dependence of the action. This anisotropy can be

characterised by the dynamical exponent z, which plays a crucial role in determining many

physical properties of quantum critical systems [2, 1].

The importance of dynamical e�ects near a quantum phase transition also leads to another

interpretation of the quantum critical regime observed at finite temperatures above the quan-

tum critical point. The length of the imaginary time dimension L· is inversely proportional

to temperature L· ≥ 1/kBT , and so for any finite temperature it is not infinite. When tuning

to a quantum critical point at r = 0 the correlation length diverges as › ≥ r≠‹ , and corre-

spondingly the correlation ‘time’ (the correlation length along the imaginary time dimension)

diverges as ›· ≥ ›z. At finite temperatures above such a quantum critical point it becomes

meaningful to compare the correlation length along the imaginary time dimension ›· to the

length of this dimension. The quantum critical region is the region where ›· > L· , and the

fluctuations are completely correlated along the imaginary time dimension. The crossover to

the so-called ‘quantum disordered’ regime is when ›· ≥ L· , or equivalently T ≥ r‹z [1].

In most examples of quantum phase transitions, the behaviour is characterised by a single

dynamical exponent. The aim of this thesis is to analyse quantum multicritical points, which

are examples of situations where multiple dynamical exponents are important at the phase

transition. We examine other examples of situations featuring multiple dynamical exponents

in Section 2.6.
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2.1.2 Quantum Critical Points in Metals

In this thesis we shall be dealing exclusively with quantum critical points in metallic systems.

These systems have been the subject of much experimental and theoretical research for several

decades.

The main interest in quantum phase transitions in metals stems from the unusual power-law

behaviour of physical properties observed in their vicinity. Commonly near quantum critical

points, the usual Fermi-liquid power laws such as those mentioned in Section 1.6 are observed

to be broken. As mentioned in that section, since Fermi-liquid behaviour is applicable to a

wide range of metallic systems, cases where deviations from this are observed are inherently

interesting.

The theoretical results of Hertz and Millis [24, 25, 26] motivated significant experimental

study into quantum criticality, which led to the discovery of many interesting phenomena in

the vicinity of quantum critical points. For example, in many systems around the quantum

critical point superconductivity is observed [1]. It has been suggested that the superconduc-

tivity around such quantum critical points may be mediated by the quantum critical magnetic

fluctuations [27]. The physics of some systems in the vicinity of the quantum phase transition

seems to be controlled by other somewhat exotic behaviour, such as heavy fermion physics,

the Kondo e�ect, or more exotic variants such as Kondo breakdown e�ects [1, 28]. Because of

this, driving systems to their quantum critical points is often used as an experimental strategy

for searching for new, interesting physics. In order to understand the systems exhibiting such

behaviour, an understanding of the quantum criticality within them seems necessary.

We restrict our attention to the critical behaviour itself in materials where the quantum

criticality is due to magnetic fluctuations. Despite predicting behaviour that deviates from

Fermi liquid power laws, we shall consider systems where the Fermi surface is well defined and

the assumptions behind Fermi liquid theory hold.

We now turn our attention to the theoretical aspects of quantum criticality in itinerant

magnets. We first review the general scaling analysis that can be performed on quantum
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critical points. Following that we discuss the Hertz-Millis model of quantum criticality, which

is a model to specifically describe the suppression of a second order magnetic phase transition

to zero temperature.

2.2 Theory of Quantum Criticality

We now review the literature on the theoretical understanding of quantum critical points in

metallic systems. We discuss this in a significant amount of detail, as in Chapter 3 we shall

adapt the models and methods described in this chapter to describe and analyse a quantum

multicritical point. We begin by reviewing the literature on how simple scaling arguments can

be applied to quantum critical points, as we shall find we can make some amount of progress

by performing such an analysis on a quantum multicritical point. We then turn our attention

to the Hertz-Millis theory of quantum phase transitions, an analysis of which forms the bulk

of this chapter. This is because the model of a quantum multicritical point we introduce in

Chapter 3 is a direct adaptation of Hertz-Millis theory, and we analyse that model in a similar

manner.

2.2.1 Scaling analysis

In this section we review the literature on applying the RG scaling approach described in

Section 1.4.2 to quantum criticality. We follow the analysis of Zhu et al. [29], and aspects of

the review by Löhneysen et al. [1]. Suppose that upon approaching a quantum critical point,

the free energy density f(r, T ) can be described by two parameters. r is the non-thermal tuning

parameter which tunes to the QCP at r = 0, and T is the temperature. This is di�erent to

classical criticality as we have now separated the temperature T from the parameter which

tunes to criticality, r. In addition, f(r, T ) is now a d + 1 dimensional density, as it depends

on the additional imaginary time dimension. At all lengths except T = 0, this dimension has

finite length (LT ≥ 1/T ).
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At a finite temperature phase transition the correlation length diverges as the phase tran-

sition is approached by changing temperature. The correlation length divergence is because

close to the phase transition, fluctuations of the order parameter get energetically cheaper

and cheaper. Small fluctuations have a large e�ect on the surrounding medium. Thus the

correlation length gets larger, and is infinite at the phase transition. At a quantum phase

transition, the correlation length diverges as › ≥ |r|≠‹ as a definition of ‹. We assume that

in the imaginary time direction there is a single diverging timescale ›T which diverges as the

correlation length diverges, as ›T ≥ ›z which defines z.

We now consider analysing this situation using the renormalisation group, assuming that

the energy is a function of r and T alone, f(r, T ). We rescale our spatial co-ordinates by b, so

that we measure distances using x̃ = x/b. This means the new correlation length is ›̃ = b≠1›

and so we find that r̃ = rb1/‹ . The correlation time has also changed, as ›̃T = b≠z›T . This also

defines how the temperature must scale, because the length of the imaginary time direction is

proportional to 1/T . Since lengths in the imaginary time direction scale as b≠z, T must scale

as T̃ = Tbz. When we rescale the free energy density, dimensional analysis requires that it

must rescale as

f(r, T ) = b≠(d+z)f(rb1/‹ , T bz), (2.2.1)

as we have the three spatial dimensions, plus the imaginary time dimension in which distances

scale as bz instead of just b.

Several things can be obtained from this relation. By choosing b = ›, b = r≠‹ and b = T ≠1/z

we can find three equivalent expressions for the free energy,

f(r, T ) =

Y
________]

________[

›≠(d+z)„
1

1
›T
LT

2
,

|r|‹(d+z)„
2

1
T

r‹z

2
,

T (d+z)/z„
3

1
r

T 1/‹z

2
,

(2.2.2)
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where the „ functions are scaling functions. We immediately notice the crossover T ≥ r‹z in

the argument of these scaling functions, which we have already argued separates the quantum

critical (T > r‹z) and Fermi liquid (T < r‹z) regions of the phase diagram. The free energy

written in these forms can be expanded in each regime to determine the dominant contribution

to physical properties. We now use these forms of the free energy to discuss some physical

properties which are commonly measured near quantum critical points. Specifically, we look

at the specific heat, thermal expansion and Grüneisen parameter.

In the quantum critical regime we see that

f(0, T ) ≥ T (d+z)/z
3

„
3

(0) + r

T 1/‹z
„Õ

3

(0)
4

, (2.2.3)

and in the Fermi liquid regime we see that

f(r, 0) ≥ |r|‹(d+z)

A

„
2

(0) + A
3

T

r‹z

4
2

B

. (2.2.4)

Derivatives of these expressions give the leading order behaviour of the specific heat and

thermal expansion in each regime. The specific heat can be found from

C = T
ˆ2f

ˆT 2

. (2.2.5)

In the quantum critical regime this yields

C ≥ T d/z, (2.2.6)

whereas in the Fermi liquid regime we see that

C ≥ Tr‹(d≠z). (2.2.7)

In order to calculate the thermal expansion, we assume the parameter r depends on the
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applied pressure p. We also assume that r changes linearly with pressure, so that dr
dp

is a

constant. In this case the thermal expansion is

– = ˆ2f

ˆrˆT
. (2.2.8)

In the quantum critical regime this gives

– ≥ T [d≠(1/‹)]/z, (2.2.9)

and in the Fermi-liquid regime we see that

– ≥ r‹(d≠z)≠1T. (2.2.10)

A parameter which is commonly investigated near quantum critical points is the Grüneisen

parameter, which is the ratio of these two quantities, � = –
C

. In the quantum critical regime,

this diverges as

� ≥ ≠T ≠1/‹z, (2.2.11)

where the coe�cient is not universal. In the Fermi liquid regime the divergence is

� = ≠ Gr

Vm

1
r

, (2.2.12)

where Vm is the molar volume, and Gr is a universal coe�cient, given by Gr = ‹(d ≠ z).

Of interest in quantum critical points where the magnetic field tunes through the critical

point is the magnetic analogue of the Grüneisen parameter, defined by �H = ≠ (ˆM/ˆT )H

cH
, where

M is the magnetisation and cH is the specific heat at constant field. In the Fermi liquid regime
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this parameter is given by

�H ≥ ≠1
h

, (2.2.13)

where h is the deviation of the magnetic field from its critical value, h = H ≠ Hc.

The Grüneisen parameter, or its magnetic analogue, diverges at the quantum critical point

and also changes sign at the transition. This means it is a useful parameter to measure, as it

enables the location of the QCP to be found in situations where there are no symmetry broken

phases [30].

Of course, the scaling relation in equation (2.2.1) comes with the same caveats as the scaling

relation in Section 1.4.2. Specifically, it relies upon the absence of dangerously irrelevant

operators and is only valid below the upper critical dimension. In physically interesting cases,

the Hertz-Millis model is a model above its upper critical dimension. In Section 2.4.4 we discuss

a more thorough calculation for the Hertz-Millis model, and find logarithmic corrections to

these results.

2.2.2 Overview of Hertz-Millis Theory

We now turn our attention to the Hertz-Millis theory of quantum phase transitions, which we

shall adapt in Chapter 3 to describe a quantum multicritical point. For this reason, we review

the literature on this model in a fair amount of detail. In this section we describe the model,

and present a derivation of it in Section 2.3.2 which we adapt in Chapter 3. In Sections 2.3

and 2.4 we discuss how physical properties can be obtained from this model.

The theoretical understanding of quantum phase transitions in metallic magnets was pio-

neered by Hertz in Ref. [26] and later revised by Millis in Refs. [24, 25]. This work builds o�

of a long history of theoretical research into spin-fluctuations in itinerant magnets, such as the

paramagnon theory of Moriya [31]. The so-called Hertz-Millis theory formulates the problem

in terms of spin-fluctuations which become soft at the quantum critical point. The theory can
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be written as the action

S = 1
—

ÿ

Ên

⁄ ddq

(2fi)d

A

” + q2 + |Ên|
� (q)

B

„ (q, Ên) „ (�q, ≠Ên) + u
⁄

dxd·„4 (x, ·) , (2.2.14)

where ” is a non-thermal tuning parameter which tunes through the transition at ” = 0,

and temperature enters this action as the length of the imaginary time dimension. This

looks like the Ginzburg-Landau functional for classical phase transitions, but with an extra

imaginary time direction which is written as a sum over bosonic Matsubara frequencies, Ên =

2fin/—. Here „ (q, Ên) is the order-parameter field which can describe either ferromagnetic or

antiferromagnetic order. In the case of antiferromagnetic order, q is the deviation from the

antiferromagnetic ordering wavevector Q. This action is written as a power series in „, and

the coe�cients of each term are written as power series’ in both q and |Ên|. Only even powers

of „ and q appear in the action due to symmetry. The situation is di�erent for frequency

however, where a term |Ên| /� (q) appears in the quadratic part of the action. Higher order

terms in the expansion do exist, but are not written down because Hertz-Millis theory assumes

they are not relevant in a renormalisation group sense. We shall revisit this statement when

discussing the problems with Hertz-Millis theory in Section 2.5.

The term |Ên| /� (q) arises in the action because the spin-fluctuations are damped by the

background of itinerant electrons, which Hertz-Millis theory assumes play no other role in the

critical behaviour. The function � (q) depends on whether we are considering ferromagnetic

or antiferromagnetic quantum criticality. In the case of a ferromagnet, � (q) ≥ q, leading to a

dynamical exponent z = 3. For an antiferromagnet, � (q) is a constant, leading to z = 2. For

both ferromagnetic and antiferromagnetic quantum critical points we see that � (q) ≥ qz≠2.

In equation (2.2.14), space and temperature have been rescaled such that the coe�cient of q2

is unity, and so that �(q) = qz≠2.

The reason the damping takes this form may be qualitatively understood as follows. If

we consider a ferromagnet, „ (q) describes a spin-wave with a wavelength proportional to 1/q
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(a) A spin fluctuation near a ferromagnetic
transition

(b) A spin fluctuation near an antiferromag-
netic transition

Figure 2.3: Spin-fluctuations near ferromagnetic and antiferromagnetic transitions. ⁄ is the
wavelength of the fluctuation and a is the lattice spacing. The damping is explained in the
main text.

as shown in Figure 2.3a. This can be damped by the background of electrons if an electron

carries spin from a region of ‘up’ spins to a region of ‘down’ spins, which are separated by

a distance proportional to the wavelength. If the electron travels ballistically at the Fermi

velocity vF , the time it takes to travel from a region of ‘up’ spins to a region of ‘down’

spins is proportional to 1/vF q. In the action the frequency is divided by the damping rate,

leading to |Ê| /q. In an impure system the electrons would not travel ballistically, but di�use

due to repeated scattering from impurities. This means the time it takes to travel the same

distance is proportional to 1/Dq2, which would lead to a dynamical exponent z = 4. For an

antiferromagnet, „ (q) describes a spin-wave in the system with a wavelength Q + q, where

Q is the antiferromagnetic ordering wave-vector. This is typically on the order of the inverse

lattice spacing, as shown in Figure 2.3b. The distance an electron has to travel ballistically to

get from a region of ‘up’ spins to a region of ‘down’ spins is proportional to 1/ (Q + q), which

is approximately constant for q much smaller than Q. Since the distance is constant, so is the

scattering time and therefore the damping term is independent of q.

The Hertz-Millis model of quantum critical points is only valid above the transition, in the

disordered region of the phase diagram. This is because in an ordered phase the dynamics of

order parameter fluctuations are di�erent than above the transition [1].

The damping terms in the disordered phase are not just included because of the somewhat

hand-wavy justification presented above. The Hertz-Millis action, including the damping
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terms, can be derived from a microscopic model as we now show.

2.2.3 Derivation of the Hertz-Millis action

In this section we present a derivation of the Hertz-Millis action of equation (2.2.14). We

include this derivation in this thesis because when we construct the model of a quantum

multicritical point, we adapt the derivation of the Hertz-Millis action given in this section.

Here we adapt the derivation given in Ref. [32].

The starting point is a system of electronic quasiparticles interacting with some arbitrary

spin-spin interactions. We start with the Hamiltonian

H =
ÿ

k‡

c†
k‡ck‡ +

ÿ

q
J(q)Sq.S≠q, (2.2.15)

where Sq is a spin-wave of momentum q. This is given by

S̨q =
ÿ

k

ÿ

–,—

c†
k+q,–�–—ck,—, (2.2.16)

where �–— is the vector
1
‡x

–—, ‡y
–—, ‡z

–—

2
where the ‡i are the Pauli matrices.

We tackle this Hamiltonian using the functional integral formulation of quantum field

theory. We define fermionic fields by

c†
k‡ æ Â̄k,‡ (·) and ck‡ æ Âk,‡ (·) ,

where · = it is imaginary time. The partition function for this system is

Z =
⁄

DÂ̄DÂ exp [≠S
0

≠ S
int

] . (2.2.17)
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The non-interacting part of the action is given by

S
0

=
⁄ —

0

d·
ÿ

kkÕ

ÿ

–,—

Â̄k–

Ë
G≠1

0

”–—”(k ≠ kÕ)
È

ÂkÕ—, (2.2.18)

where G
0

is the free particle Green’s function G
0

= (ˆ· + ‘k ≠ µ)≠1. The interacting part of

the action is given by

S
int

=
⁄ —

0

d·
ÿ

q
JqSq(·).S≠q(·), (2.2.19)

where now

Sq(·) =
ÿ

k

ÿ

–—

Â̄k+q,–(·)�–—Âk,—(·). (2.2.20)

The action is now quartic in the fermionic Â field. In order to proceed we use the standard

Hubbard-Statonovich transformation [11], and introduce a new bosonic vector field �q(·)

which couples to Sq. This transformation ensures the action is now quadratic in the original Â

field, but includes an additional functional integral over the new � field. The mixed partition

function is now

Z =
⁄

DÂ̄DÂD�e≠S( ¯Â,Â,�), (2.2.21)

with

S
1
Â̄, Â,�

2
=

⁄ —

0

d·
ÿ

q

1
4Jq

�q(·).�≠q(·)

+
⁄ —

0

d·
ÿ

kkÕ

ÿ

–—

Â̄k–(·)
Ë
G≠1

0

(k)”(k ≠ kÕ)”–— ≠ i�–—.� (k ≠ kÕ, ·)
È

ÂkÕ—(·),

(2.2.22)

where G
0

is the free particle Green’s function.
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Since this action is quadratic in Â, we may simply integrate out these fermionic fields to

find the partition function exclusively in terms of the bosonic � fields. Using the properties

of Gaussian integration, we find that

Z =
⁄

D� exp [Tr ln (1 ≠ iG
0

V )] . (2.2.23)

Using the notation ’ © (k, Ên) where Ên is a Matsubara frequency

G
0

(’, ’ Õ; –, —) = G
0

(’)”(’ ≠ ’ Õ)”–—, (2.2.24)

and

V (’, ’ Õ; –, —) © �–—.� (’ ≠ ’ Õ) . (2.2.25)

We proceed by performing an expansion of the logarithm in powers of �. Only terms with

even powers of � contribute, as the average of � is zero. This is because „z represents the

di�erence between positions of the spin up and spin down Fermi surfaces in the z direction,

and likewise for the other components [32]. Calculating the trace we find that second order

term is

≠Tr (G
0

V )2 = 2
⁄

d’d’ ÕG
0

(’ Õ)G
0

(’ Õ + ’)� (’) .� (≠’) , (2.2.26)

= ≠
⁄

d’� (’)� (’) .� (≠’) . (2.2.27)

Here, � is the Lindhard function [11]. The spin labels –, — do not enter in the second order

terms. We do not explicitly calculate the fourth order terms and assume that only the constant

term is important, and that the momentum and frequency dependent corrections are irrelevant.
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This leads to

S (�) =
⁄

d’

C
1

4J(’) + �(’)
D

� (’) .� (≠’) + u
⁄

dx
ÿ

·

�4 (x, ·) + ... (2.2.28)

We expand the function about q = 0 to investigate a ferromagnetic quantum critical point,

or expand around q = Q to investigate the antiferromagnetic quantum critical point. Around

q = 0 we find that

S (�) = 1
—

ÿ

Ên

⁄ ddq

(2fi)d

C

r + q2

q2

0

+ |Ên|
�q/q

0

D

� (q, Ên) .� (≠q, ≠Ên)

+ u
⁄

dxd·�4 (x, ·) + ...

(2.2.29)

where here the q
0

is a constant on the order of kF , and � is also a constant. r is the sum of the

constant term in 1/J and the constant term in the Lindhard function. This is the parameter

which can be tuned by adjusting the control parameter of the system. The quantum critical

point occurs at r = 0.

Around an antiferromagnetic quantum critical point we expand around q = Q, to find

S (�) = 1
—

ÿ

Ên

⁄ ddq

(2fi)d

C

r + (q + Q)2

q2

0

+ |Ên|
�q/q

0

D

� (Q + q, Ên) .� (≠q ≠ Q, ≠Ên)

+ u
⁄

dxd·�4 (x, ·) + ...,

(2.2.30)

and we can shift the origin of q to write this as

S (�) = 1
—

ÿ

Ên

⁄ ddq

(2fi)d

C

r + q2

q2

0

+ |Ên|
�

D

� (q, Ên) .� (≠q, ≠Ên)

+ u
⁄

dxd·�4 (x, ·) + ...

(2.2.31)

where we have used that to leading order 1/ |Q + q| is a constant. This is the Hertz-Millis

action for an antiferromagnetic quantum critical point.
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In both cases we may rescale q/q
0

æ q and Ên/� æ Ên to arrive at

S (�) = 1
—

ÿ

Ên

⁄ ddq

(2fi)d

C

r + q2 + |Ên|
qz≠2

D

� (q, Ên) .� (≠q, ≠Ên)

+ u
⁄

dxd·�4 (x, ·) + ...

(2.2.32)

for z = 2, 3. In this thesis we shall use the notation �(q) = qz≠2.

This derivation of the Hertz-Millis action in equation (2.2.14) is adapted in Chapter 3 when

we consider a quantum multicritical point.

2.3 Renormalisation Group Analysis of the Hertz-Millis

Action

The renormalisation group approach can be applied to the Hertz-Millis action, and from such

an analysis the distinct regions of the phase diagram can be identified. The power laws

associated with the specific heat, thermal expansion and Grüneisen parameter can be found in

each region. In the Chapter 3 we present a model of multicriticality which is based on Hertz-

Millis theory. The calculation we perform there is an adaptation of the standard Hertz-Millis

theory, and so we review the literature in some amount of detail.

In this section we summarise the results that can be obtained by performing a one-loop

renormalisation group analysis on the Hertz-Millis action. For the most part we follow the

analysis presented by Garst in Ref. [33], which has the same general approach as originally

presented by Millis in Ref. [24], but solves the RG equations using better approximations.

In Section 2.3.1 we calculate the free energy using the linked cluster expansion, which will

be the starting point for the RG analysis. The RG equations are derived from this in section

2.3.2. Following that, the RG equation for the interaction u is solved in Section 2.4.1, and

we shall show that the physics is controlled by the non-interacting Gaussian fixed point in

dimensions greater or equal to 2. The RG equations for the renormalised tuning parameters
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are solved in Section 2.4.2, and from these solutions the regions of the phase diagram are

identified in Section 2.4.3. In Section 2.4.4 the RG equation for the free energy is analysed

and the thermodynamic properties are then found.

2.3.1 Linked Cluster Expansion

We now discuss the starting point of the renormalisation group analysis. The RG procedure

outlined in Section 1.4 relies upon the existence of a high momentum cut-o� which is sys-

tematically reduced. We therefore enforce a cut-o� � on the momentum integrals. In the

Hertz-Millis action, as well as a momentum cut-o� a high frequency cut-o� should also be

enforced and systematically reduced.

As pointed out by Millis in Ref. [24], it is unclear how to mathematically smoothly reduce

a cut-o� on a discontinuous Matsubara sum. This complication can be avoided by calculating

the free energy of the system, instead of performing renormalisation on the action directly.

The idea is that in calculating the free energy, the Matsubara sums can be performed and the

quantities can be written in terms of smooth integrals up to a cut-o�.

This is possible as all Matsubara sums we need to do are functions of |Ên| /qz≠2. The mod-

ulus of Ên appears in the Hertz-Millis action, as it is the low-frequency limit of the Lindhard

function. In order to perform the Matsubara sums, we consider the full Lindhard function.

The frequency-dependent part of this function is given by

iÊn

fiqz≠2

ln
C

iÊn + qz≠2

iÊn ≠ qz≠2

D

≥ |Ên|
qz≠2

, (2.3.1)

for |Ên| π qz≠2 [11].

The Matsubara sum can be performed using standard methods and converting it into a

contour integral on the complex plane, but the analytic structure of the function z
Xfi

ln
Ë

z+X
z≠X

È

must be taken into consideration. This function has a branch cut on the real axis from ≠X

to X, so the Matsubara sum can be converted into a integral around this branch cut. This
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naturally introduces the cut-o� of qz≠2 to the frequency integral. For ease of notation and

consistency with the literature [33], we multiply qz≠2 by a constant �. The result is that the

cuto� of the momentum integral is �, whereas the cut-o� on the frequency integral is ��(q),

where �(q) = qz≠2. Of course the precise value of the cut-o�s chosen in the calculation does

not influence physical properties.

It turns out that the results of performing the renormalisation in this way are exactly

the same as if we had not worried about this complication, and performed a diagrammatic

expansion in terms of diagrams with external legs, similar to the analysis of Section 1.4.3.

Such a calculation yields the same results as the method detailed here if the modes above the

cut-o� are integrated out correctly. We shall use this method in Chapter 5 where we consider

a model of a metamagnetic quantum critical end-point interacting with an antiferromagnetic

quantum critical point.

To derive the RG equations for the Hertz-Millis action, following the literature [26, 24,

33] we first calculate the free energy of the system using the linked cluster expansion [34],

representing it as an infinite sum of diagrams in powers of the interaction term, u. Figures

2.4, 2.5 and 2.6 show the diagrams in this expansion to order u2. The interaction u is drawn

as a dotted line, as the field „ has n components, and u couples two pairs of modes. Each pair

must have the same field component, but u can connect pairs with the same component, or

di�erent components.

We find that

F = FG + un(n + 2)I2 ≠ u2

2
Ë
8n(n + 2)2I2J + 8n(n + 2)K

È
, (2.3.2)

where FG is the Gaussian part of the free energy. This can be calculated as

FG =n

2
1
—

ÿ

Ên

⁄
dq ln [‰ (q, Ên)] , (2.3.3)

= ≠ n

2

⁄
�

0

ddq

(2fi)d

⁄
��(q)

0

dÊ

fi
coth

3
Ê

2T

4
tan≠1

A
Ê/� (q)
” + q2

B

, (2.3.4)
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(a) (b)

Figure 2.4: Diagrams proportional to uI2

(a) (b) (c)

Figure 2.5: Diagrams proportional to u2I2J

(a) (b)

Figure 2.6: Diagrams proportional to u2K
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where n is the number of field components [33]. Here

‰≠1 (q, Ên) = ” + q2 + |Ên|
� (q) . (2.3.5)

The integrals I, J and K are the one-loop integrals

I = 1
—

ÿ

n

⁄
dq‰ (Ên, q) , (2.3.6)

J = 1
—

ÿ

n

⁄
dq‰ (Ên, q) ‰

0

(≠Ên, ≠q) , (2.3.7)

and

K = 1
—

ÿ

n1,n2,n3,n4

⁄
dq1dq2dq3dq4‰ (Ên1 , q

1

) ‰ (Ên2 , q
2

)

‰ (Ên3 , q
3

) ‰ (Ên4 , q
4

) ”

A
4ÿ

i=1

Êni

B

”

A
4ÿ

i=1

qi

B

.

(2.3.8)

We have chosen to define J and K di�erently from the literature [24, 33], by a factor of ≠1.

The diagrams contributing to K are shown in Figure 2.6. As explained in Ref. [33], in

the RG procedure that follows these diagrams end up renormalising the quartic interaction,

u. The momentum-dependence of these integrals gives a momentum-dependent correction to

u, which is irrelevant in the RG sense. The same momentum-independent renormalisation to

u may be found by relaxing the constraints of the delta functions in equation (2.3.8) to only

be between the momentum and frequency of two of the four modes. We may thus make the

substitution K = 6I2J in the linked cluster expansion, where the corrections are irrelevant in

the RG sense.

The linked cluster expansion can therefore be written as

F = FG + un(n + 2)I2 ≠ u2

2
Ë
8n(n + 2)(n + 8)I2J

È
. (2.3.9)

Before we begin with renormalisation, we first perform the Matsubara sums to convert
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(a) Ferromagnet (b) Antiferromagnet

Figure 2.7: The reduction in cut-o�s in the RG procedure for ferromagnetic and antiferromag-
netic quantum critical points. The modes in the dark gray area are eliminated in each step of
the RG procedure, leaving an e�ective model in terms of the modes in the light gray area.

these expressions into frequency integrals. We find that

I =
⁄

�

0

ddq

(2fi)d

⁄
��(q)

0

dÊ

fi
coth

3
Ê

2T

4
Ê/�(q)

(” + q2)2 + (Ê/� (q))2

(2.3.10)

and

J =
⁄

�

0

ddq

(2fi)d

⁄
��(q)

0

dÊ

fi
coth

3
Ê

2T

4 2 (” + q2) Ê/� (q)
Ë
(” + q2)2 + (Ê/� (q))2

È
2

. (2.3.11)

We are now in a position to derive the RG equations, which we do from equation (2.3.9).

2.3.2 Derivation of the Renormalisaion Group Equations

In this section we derive the RG equations, using the linked cluster expansion for the free

energy in equation (2.3.9) as our starting point. We follow the same method as the literature

[24, 33].

To derive the renormalisation group equations, we adopt a similar procedure as in Section

1.4.3 , and consider systematically integrating out high momentum modes, those with momen-

tum between �/b and �, and considering the e�ective action for the low-momentum modes.

The di�erence between the analysis of the classical model in Section 1.4.3 and the analysis
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here is that when we rescale momentum we must also rescale frequency. In the integrals in

equations (2.3.10) and (2.3.11), momentum is integrated up to a cut-o� � and frequency is in-

tegrated up to a momentum-dependent cut-o� �� (q). We must integrate out modes satisfying

either �/b Æ |q| Æ � or �� (q) /b2 Æ Ê Æ �� (q). This is shown in Figure 2.7. Subsequently

momentum is rescaled by a factor b and frequency by a factor bz, and all other factors of b are

absorbed into renormalised parameters.

The tree-level equations are derived by simply neglecting the modes above the reduced

cut-o�. We find that

T (b) =bzT, (2.3.12a)

”(b) =b2”, (2.3.12b)

FG(b) =b≠(d+z)FG (2.3.12c)

and

u(b) = b4≠(d+z)u. (2.3.12d)

We use the notation that if a variable is written without explicit scale-dependence, we refer to

its un-renormalised value, at b = 1. While this notation is not as clear as using a subscript, for

example, we choose to do this to significantly simplify notation in Chapters 3, 4 and 5. From

equation (2.3.12d) we see that in dimensions d + z > 4 the interaction term u is irrelevant,

and scales to zero under renormalisation. The system can then be described by an e�ective

Gaussian theory in terms of renormalised parameters. The free energy is then given simply

by its Gaussian part in equation (2.3.4), and the thermodynamic properties of the system can

be calculated as derivatives of this.

To calculate corrections to the tree-level equations, we let FG æ F <
G + n

2

f (0) ln b, I æ

I< + f (2) ln b and J æ J< + f (4) ln b, where I< and J< are the integrals up the reduced cut-
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o�s, and the f (0), f (2) and f (4) functions are the integrals over the missing modes. There are

two contributions, modes above the momentum cut-o� and modes above the frequency cut-o�.

Explicitly

f (0) (”, T ) = ≠n

2 �d≠1Kd

⁄
��(�)

0

dÊ

fi
coth

3
Ê

2T

4
tan≠1

A
Ê/�(�)
” + �2

B

≠n

2

⁄
�

0

ddq

(2fi)d
coth

A
�qz≠2

2T

B

tan≠1

A
�

” + q2

B

,

(2.3.13)

where Kd is the integral
s d�

(2fi)

d over the surface of a d-dimensional sphere. We also find that

f (2) (”, T ) = �d≠1Kd

⁄
��(�)

0

dÊ

fi
coth

3
Ê

2T

4
Ê/�(�)

(” + �2)2 + (Ê/� (�))2

+ 1
fi

⁄
� ddq

(2fi)d coth
A

�qz≠2

2T

B
�

(” + q2)2 + �2

,

(2.3.14)

and

f (4) (”, T ) = �d≠1Kd

⁄
��(�)

0

dÊ

fi
coth

3
Ê

2T

4 2 (” + �2) Ê/� (�)
Ë
(” + �2)2 + (Ê/� (�))2

È
2

+ 2
fi

⁄
� ddq

(2fi)d coth
A

�qz≠2

2T

B
� (” + q2)

Ë
(” + q2)2 + �2

È
2

.

(2.3.15)

We substitute this into the linked cluster expansion, equation (2.3.9), and neglect terms of

order (ln b)2. We are then able to absorb some terms into the renormalisation of ” using the

identity

I = 2
n

ˆFG

ˆ”
, (2.3.16)

and we absorb the other terms into a renormalisation of u. In the limit b æ 1+ we find the

RG equations

dFG

d ln b
= (d + z) FG ≠ n

2 f (0) (”(b), T (b)) , (2.3.17a)
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d”

d ln b
=2”(b) + 4(n + 2)u(b)f (2) (”(b), T (b)) , (2.3.17b)

and

du

d ln b
= [4 ≠ (d + z)] u(b) ≠ 4(n + 8)u2(b)f (4) (”(b), T (b)) , (2.3.17c)

where we have ignored terms of order u2 in the equation for ”. These are the equations derived

in Refs. [24, 33].

2.4 Solution of the Renormalisation Group Equations

We have now derived the RG equations, given in equations (2.3.17a), (2.3.17b) and (2.3.17c).

The solution of these equations will allow us to find the regions of the phase diagram and the

specific heat, thermal expansion and Grüneisen parameter in each region. These equations

were first solved by Millis in Ref. [24], and were subsequently solved by Garst in Ref. [33]

where more accurate approximations were made. We summarise the more accurate approach

here.

We first solve equation (2.3.17c) in Section 2.4.1 to find the renormalised interaction, and

hence the upper critical dimension of the theory. Then in Section 2.4.2 we solve equation

(2.3.17b) for the renormalised tuning parameter, from which we are able to find the regions of

the phase diagram which we present in Section 2.4.3. Finally in Section 2.4.4 we use equation

(2.3.17a) to find the thermal expansion, specific heat, and Grüneisen parameter in each region

of the phase diagram.

2.4.1 Interaction

We can solve equation (2.3.17c) to find the renormalised interaction term u(b). In dimensions

such that d + z > 4, to leading order in u this parameter decays exponentially as u(b) =
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b4≠(d+z)u, where we use that when u is written without explicit scale-dependence we mean the

unrenormalised value u © u(b = 1).

This is the case for both ferromagnetic and antiferromagnetic QCPs in d = 3, and for a

ferromagnetic QCP in d = 2. The upper critical dimension of this theory is therefore d+

c = 4≠z.

The antiferromagnetic QCP in two spatial dimensions is the marginal case, where the model

is at its upper critical dimension. In this case we adopt the assumption that f (4)(”, T ) is a

constant, f (4) © f (4)(0, 0), and solve equation (2.3.17c) to show that

u(b) = 1
4(n + 8)f (4)

1
ln (gb) (2.4.1)

where g = exp
Ë

1

4(n+8)f (4)

È
. This still decays to zero, but much slower than the cases above the

upper critical dimension.

The result of this is that since the interactions flow to zero in all cases of interest, the system

can be described by an e�ective Gaussian model with a renormalised tuning parameter, which

we obtain in Section 2.4.2 from the solution of equation (2.3.17b).

2.4.2 Tuning Parameter

In this section we solve equation (2.3.17b) to find the renormalised tuning parameter. Of

physical interest here is the temperature-dependent correction to ”(b), which arises in the

renormalisation group process from the dangerously irrelevant quartic interaction u. Even

though this interaction term is irrelevant in the RG sense, it still ends up a�ecting some

physical properties, such as the temperature-dependence of the correlation length. From the

solution of this equation we calculate the correlation length, which for a Gaussian model is

determined by the constant term in the inverse susceptibility.

The correlation length can be calculated from the renormalised tuning parameter, and from

the correlation length the regions of the phase diagram can be found, as we demonstrate in
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Section 2.4.3. The correlation length is given by

›≠2 = lim
bæŒ

”(b)
b2

, (2.4.2)

where the division by b2 converts the correlation length to the original unrenormalised units

of length [33]. We find this technique works for d + z > 4, but in the marginal case we will

use an adaptation of this to find the correlation length.

Adopting the notation of Garst [33], we define ”(b) = b2R(b), and integrate equation

(2.3.17b) using an integrating factor to find that

R(b) = ” + 4(n + 2)
⁄

ln b

0

dxe≠2xu(ex)f (2)

1
e2xR(ex), T (ex)

2
, (2.4.3)

which we write as R(b) = �(b) + R(T )(b), where � is the zero-temperature part. Close to the

transition the zero-temperature part is given by

�(b) = ” + 4(n + 2)
⁄

ln b

0

dxe≠2xu(ex)f (2)

1
e2x�(ex), 0

2
. (2.4.4)

The temperature-dependent part of the renormalised tuning parameter, R(T ), is given by

R(T )(b) = 4(n + 2)
⁄

ln b

0

dxe≠2xu(ex)
Ë
f (2)

1
e2xR(ex), T (ex)

2
≠ f (2)

1
e2x�(ex), 0

2È
, (2.4.5)

where we have ignored terms of order u2 by subtracting f (2) (e2x�(ex), 0) instead of f (2) (e2xR(ex), 0)

in equation (2.4.5).

For d + z > 4, the term �(b) converges to the constant r in the limit b æ Œ, where

r = ” exp
C

4(n + 2)f (4)u

4 ≠ d ≠ z

D

(2.4.6)

and the QCP occurs at r = 0. In the marginal case of d = z = 2, � does not converge and
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remains scale-dependent as

�(b) ≥ r

[ln (cb)]
n+2
n+8

(2.4.7)

where c is a constant and r is proportional to ”. This scale-dependence of the zero-temperature

part of the tuning parameter found by Garst [33] is missed in Millis’ calculation [24], where

less accurate approximations are made. Because of this, in d = z = 2 the correlation length is

interpreted to be ›≠2 = R(bú) instead of the definition in equation (2.4.2), where bú is defined

by ”(bú) = 1.

We now turn out attention to the temperature-dependent part, R(T )(b). Above the upper

critical dimension, the integral in equation (2.4.5) has di�erent limits when limbæŒ R(b) 7

T 2/z, which reduces to r 7 T 2/z. The quantum critical regime is when r < T 2/z and the Fermi

liquid regime is when this inequality is reversed.

In the Fermi liquid regime R(T ) has the usual T 2 Fermi liquid temperature dependence,

whereas in the quantum critical regime the temperature dependence is more interesting. This

integral has been analysed in the literature by Garst [33] in the limit b æ Œ, and the result

depends on the dynamical exponent and number of spatial dimensions. The results have the

same temperature dependence as originally discovered by Millis [24].

We summarise these results by looking at the correlation length in each regime. In the

quantum critical regime (r < T 2/z) in d = 3, equation (2.4.5) can be shown to be

›≠2 = r + 4(n + 2)c(QC)

d,z uT (d+z≠2)/z, (2.4.8)

for z = 2 and z = 3. Here c
(QC)

d,z = Kd

z cos( d≠2
2z

fi)�
1
1 + d≠2

z

2
’

1
1 + d≠2

z

2
, where �(x) and ’(x)

are the gamma and zeta functions. The quantum critical regime is then further split into

two regions, depending on whether the tuning parameter r or the temperature-dependent

component dominate the correlation length.
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In d = 3 in the Fermi liquid region (r > T 2/z), the correlation length is given by

›≠2 = r + 4(n + 2)c(F L)

d,z uT 2r(d≠z≠2)/2, (2.4.9)

which also turns out to hold in d = 2 when z = 3. In this equation c
(F L)

d,z = fi2

12

d≠z

sin( d≠z
2 fi)Kd.

For a ferromagnetic z = 3 QCP in d = 2, in the quantum critical regime (r < T 2/z), the

correlation length is given by

›≠2 = r + 2(n + 2)K
2

uT ln
A

1
›≠2T ≠2/3

B

, (2.4.10)

which must be solved iteratively. We find that

›≠2 =

Y
___]

___[

r for r > 2

3

(n + 2)K
2

uT ln
1

1

T

2
,

2

3

(n + 2)K
2

uT ln
1

1

T

2
for r < 2

3

(n + 2)K
2

uT ln
1

1

T

2
.

(2.4.11)

In the marginal case of d = z = 2, as explained above, the zero temperature component

does not converge and the correlation length is evaluated at the scale bú where ”(bú) = 1.

Similarly, the crossover between the Fermi liquid and crossover regimes should be interpreted as

R(bú) ≥ T 2/z, which leads to the definition of the quantum critical regime as r

[ln( c
r )]

n+2
n+8

< T 2/z

when d = z = 2.

In the limit b æ Œ however, R(T ) still converges and in the quantum critical regime is

proportional to

R(T ) ≥ uT
ln

1
T

›≠2

2

ln
1

1

›≠2

2 . (2.4.12)

The correlation length is approximated using � evaluated at the scale bú, but R(T ) calculated
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in the limit b æ Œ. This yields

›≠2 ≥

Y
_____]

_____[

ln(ln( 1
T ))

ln( 1
T ) for ln(ln( 1

T ))
ln( 1

T ) > r

(ln( c
r ))

n+2
n+8

,

r

(ln( c
r ))

n+2
n+8

for ln(ln( 1
T ))

ln( 1
T ) < r

(ln( c
r ))

n+2
n+8

.

(2.4.13)

In the Fermi-liquid regime the correlation length is given by

›≠2 = � + fi2

6
n + 2
n + 8

T 2

� ln
1

c
�

2 , (2.4.14)

where c is a constant, and � = r
Ë
ln c

r

È≠ n+2
n+8 .

The reason for delving into such detail in this section is that when we construct a model

of a quantum multicritical point in Section 3, we must solve equations very similar to these.

We find that the integrals for the multicritical point can be written in terms of the integrals

solved in this section.

We have now reviewed the literature on the solution of the RG equation for tuning pa-

rameter and the interactions. In the next section we demonstrate how these can be used to

determine the phase diagram.

2.4.3 Phase Diagram

By solving the RG equation (2.3.17b) for the renormalised tuning parameter, we identified

several crossovers in the disordered region of the phase diagram. Firstly, there is a quantum

critical to Fermi liquid crossover, defined by r ≥ T 2/z if d + z > 4 and by r

[ln( c
r )]

n+2
n+8

≥ T 2/z

if d + z = 4. In Section 2.4.4 we shall find that the specific heat and thermal expansion have

di�erent values in each regime. The quantum critical region is then further divided into two

regions depending on whether the correlation length is dominated by the tuning parameter r,

or thermal e�ects.

Before turning our attention to thermodynamic quantities, we investigate the boundary
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of the ordered phase on the phase diagram. In d = 3, long-range order is permitted, and at

T = 0 there is an ordered phase for r < 0. At finite temperatures we would naively argue that

the ordered phase is when the correlation length diverges, meaning the critical temperature of

the transition would be

T (d+z≠2)/z
c = ≠r

4(n + 2)c(QC)

d,z u
. (2.4.15)

However, this argument is not quite correct [24]. When attempting to describe the transition

into the ordered phase at finite temperatures, su�ciently close to the transition the system

becomes correlated along the entirety of the imaginary-time axis. Therefore, only the Ên = 0

mode needs to be taken into account. This means that the system should be described by the

corresponding classical model for the Ên = 0 mode. In this case, the e�ective quartic action is

v(b) = u(b)T (b). Since the corresponding classical theory is a model below its upper critical

dimension d+

c = 4, su�ciently close to the transition mean field theory is not valid. Mean field

theory breaks down when the Ginzburg criterion is violated at the Ginzburg temperature, as

explained in Section 1.3.2.

The condition for the applicability of mean-field theory is that at the scale ”(bú) = 1, the

e�ective quartic interaction for the Ên = 0 mode, v(bú), must be much less than 1 [33]. This

translates to the condition R(4≠d)/2 ∫ uT , where R = R(bú). This leads to another crossover

in the r≠T plane where the physics is not described by the Gaussian behaviour of Hertz-Millis

theory. To find the Ginzburg temperature TG we assume that R(bú) may be approximated as

R(Œ), and solve the equation

R(4≠d)/2 = uTG, (2.4.16)

using the expression for R in the quantum critical regime. We note that R itself depends on

55



temperature in this region. In d = 3 the deviation from Tc is found to be

TG ≠ Tc

Tc

= cGuT 1≠1/z
c , (2.4.17)

where the constant of proportionality is cG =
z2

1+z
cos( fi

2z )
4(n+2)K3�(1+

1
z )’(1+

1
z ) [33].

In d = 2, the Mermin-Wagner theorem [35] tells us that no long-range order can exist, so

there is no ordered phase on the phase diagram. Nevertheless, the Ginzburg criterion is still

violated at some point, where the system cannot be described by Hertz-Millis theory and is

characterised by non-Gaussian behaviour.

In d = 2, z = 3, the Ginzburg temperature is given by

r = uTG

C

1 ≠ 2(n + 2)K
2

ln
A

1
uT

1/3

G

BD

, (2.4.18)

and in the marginal case of d = z = 2, it is found to be [33]

r = ≠ fi

n + 8TG

5
ln

3
c

TG

46 n+2
n+8 ≠1

5
(n + 2) ln

3
ln

3
c

TG

44
≠ fi

6
, (2.4.19)

which di�ers from Millis’ original result [24] by a logarithmic factor, which can be traced back

to the scale-dependence of �(b).

We have now described the regions in the phase diagram and the crossovers between them.

Typical phase diagrams in both two and three dimensions are shown in Figure 2.8. We now

find the physical properties in these regions of the phase diagram.

2.4.4 Thermodynamic Quantities

Since we have identified the various regions in the phase diagram in Section 2.4.3 and justified

that the physics is described by an e�ective Gaussian model in Section 2.4.1, we now turn

our attention to the thermodynamic quantities. Themodynamic quantities can be found by

analysing the RG equation for the free energy, equation (2.3.17a). In the limit of large b, the
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h�i 6= 0

(a) d = 3 (b) d = 2

Figure 2.8: Phase diagrams in two and three spatial dimensions. The regions QC
(T )

and QC
(r)

are quantum critical regions where the correlation length is dominated by temperature and
tuning parameter respectively. The region FL is the Fermi liquid region. In three dimensions
the shaded area is the ordered phase, with the darker shaded region indicating where the
Ginzburg criterion is violated. In two dimensions the shaded area is a disordered region not
described by the Gaussian fixed-point of the RG flow. The crossovers between these regions
are described in the main text.

free energy is given by

F = ≠n

2

⁄ Œ

0

dxe≠(d+z)xf (0)

1
R(ex)e2x, T ezx)

2
, (2.4.20)

and the specific heat and thermal expansion can be found as derivatives of this [33].

The specific heat can be calculated as C = T ˆ2F
ˆT 2 , leading to

C = T
n

2

⁄ Œ

0

dxe≠(d+z)x ˆ2

ˆT 2

f (0)

1
R(ex)e2x, T ezx)

2
. (2.4.21)

The thermal expansion – is the derivative of the free energy with respect to pressure

and temperature, where we assume that only the parameter r depends on pressure, and the

derivative dr
dp

is a constant. The functions f (2) and f (0) of equations (2.3.13) and (2.3.14) obey

the relation ˆ
ˆ”

f (0) (”, T ) = f (2) (”, T ), which can be used to write the thermal expansion as
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[33]

– = n

2

⁄ Œ

0

dxe(2≠d≠z)x ˆR(ex)
ˆr

ˆ

ˆT
f (2)

1
R(ex), e2x, T ezx

2
. (2.4.22)

The results of these two calculations are again di�erent in the quantum critical and Fermi

liquid regimes, and depend on the number of spatial dimensions and the dynamical exponent.

These integrals have been analysed in the literature, and the results are summarised in Table

2.1 which has been adapted from the literature [29]. Up to logarithmic corrections, these power

laws agree with the results of scaling presented in Section 2.2.1. The coe�cients of the power

laws described in Table 2.1 have been calculated by Garst in Ref. [33], and we note that the

thermal expansion is always proportional to

– ≥ ˆ›≠2

ˆp
(2.4.23)

where p is the physical pressure. In the analysis presented here, this reduces to ˆr
ˆp

which we

have assumed is an uninteresting constant. However, in Chapter 5 we examine a model where

this coe�cient is important and should not be neglected.

Another assumption made in Table 2.1 is that the correlation length ›≠2 = r in the Fermi

liquid regions. This is a fair assumption for the single quantum critical point considered here,

as the temperature dependent correction is subleading, but in Sections 3.5 and 5.4.4 we shall

need to replace r by ›≠2 to correctly describe the physical properties.

2.5 Problems with Hertz-Millis Theory

Despite the physical predictions of Hertz-Millis being observed in a large number of systems

[1], there are problems with the Hertz-Millis theory which we briefly discuss here.

The assumption that we made in deriving the Hertz-Millis theory in Section 2.3.2 was that
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d = 3 d = 3 d = 2 d = 2
z = 3 z = 2 z = 3 z = 2

C
QC

T ln
1

1

T

2
≠T 3/2 T 2/3 T ln

1
1

T

2

C
FL

T ln
1

1

r

2
≠Tr1/2 Tr≠1/2 T ln

1
1

r

2

–
QC

T 1/3 T 1/2 ln
1

1

T

2
ln

1
ln

1
1

T

22

–
FL

Tr≠1 Tr≠1/2 Tr≠3/2 Tr≠1

�
QC

1

T 2/3
ln( 1

T ) ≠T ≠1 T ≠2/3 ln
1

1

T

2
ln(ln( 1

T ))
T ln( 1

T )
�

FL

1

r ln( 1
r ) ≠r≠1 r≠1

1

r ln( 1
r )

Table 2.1: Leading order contributions to the specific heat C, thermal expansion – and
Grüneisen parameter � in the quantum critical (QC) and Fermi liquid (FL) regimes, from
a quantum critical point in d dimensions with dynamical exponent z. This table is adapted
from Ref. [29]. Note that the temperature-dependent component of the specific heat in d = 3,
z = 2 is negative, but it is dominated by a temperature-independent positive constant.

we could completely integrate out the electronic degrees of freedom and describe the theory

in terms of critical spin-fluctuations alone. However due to the Fermi surface, even at the

quantum critical point there are zero-energy excitations (particle-hole pairs) which couple to

the order parameter [2].

Mathematically, the problem resides in the step in the derivation where the electrons are

integrated out and approximations are made about the Lindhard function. In a more careful

analysis, it is found that higher order terms lead to non-analytic corrections to the Hertz-Millis

action presented in equation (2.2.14). For example, in a clean three dimensional ferromagnet a

term proportional to q2 ln 1

q
should enter the Gaussian part of the action [36], and in disordered

systems a term proportional to |q| arises [37]. In addition, the momentum dependence of the

quartic interaction turns out to be ln
1

1

q

2
in clean systems and 1/q3 in disordered systems

[1]. It is thought that these non-analytic corrections generically lead to the ferromagnetic

transition in clean three dimensional systems becoming first order su�ciently close to where

the QCP is expected to be [38].

A physical reason why these electronic modes complicate the situation is that they induce

other timescales into the problem [1, 39]. For a ferromagnetic QCP, upon approaching the

QCP the typical domain size is proportional to the correlation length of the order, ›. As
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explained in Section 2.2.1, the correlation length in the imaginary time direction is ›z with

z = 3, which means that at T = 0 a typical timescale for order parameter fluctuations is ›3.

However, an electron can travel ballistically through this region in a time proportional to ›1 in

a clean system and ›2 in a disordered system. This additional timescale leads to a dangerously

irrelevant variable missed by the usual Hertz-Millis approach [39].

In the case of a two dimensional antiferromagnet the assumption that the e�ective interac-

tion terms are local, and that they may be expanded as a Taylor series in q, turns out to not be

correct. When integrating out the fermionic degrees of freedom, the e�ective interactions gain

strong non-local terms, which lead to an infinite number of marginal interactions [40]. It is

then not su�cient just to consider the one marginal term considered in the analysis performed

in this thesis.

Despite the shortcomings of the Hertz-Millis theory, it is believe that in three dimensions

the physical predictions are broadly correct, with possible logarithmic corrections [1, 2]. How-

ever in two dimensions the problems are more severe [2].

For the rest of this thesis we shall work within the Hertz-Millis framework. In Chapter 3

we derive and solve a model of a quantum multicritical point using Hertz-Millis theory and

sweep these complications under the carpet, until we discuss their relevance again in Section

3.6.2. In Chapter 5 we analyse another model for which these complications do not arise.

2.6 Multiple Dynamical Exponents

As explained in the introduction, the aim of this thesis is to investigate aspects of quantum

multicritical points, where a material is susceptible towards both ferromagnetic and antiferro-

magnetic order. This is a situation where multiple dynamical exponents a�ect the RG flow.

For this reason, in this section we review the literature on situations where a quantum critical

point is described by multiple dynamical exponents. In Section 2.6.1 we review scaling anal-

ysis, and discuss its application to the physical case of a Pomeranchuk instability in Section
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2.6.2.

2.6.1 Scaling Analysis

In this section, we review the literature on scaling analysis when a quantum phase transition

is characterised by two dynamical exponents and a single tuning parameter. This scaling

analysis builds from the analysis of Section 2.6.1, and in Chapter 3 we shall adapt this analysis

to describe a quantum multicritical point.

We now consider a quantum critical point characterised by the dynamical exponents z>

and z<, and the tuning parameter, r. Here the two dynamical exponents are di�erent, and

z< < z>, and r is a non-thermal tuning parameter that tunes through the phase transition at

r = 0 when T = 0. We follow the analysis presented in Ref. [41].

The free energy is assumed to split into the sum of two components, with di�erent e�ective

scaling dimensions d + z< and d + z>, so that

F (r, T ) = b
≠(d+z<)

< f<

1
rb

1/‹
< , T<bz<

< , T>bz>
<

2
+ b

≠(d+z>)

> f>

1
rb

1/‹
> , T<bz<

> , T>bz>
>

2
. (2.6.1)

We have introduced two scaling parameters b> and b<, which we may consider changing

independently. Since the temperature scales according to the dynamical exponent, in the

case of multiple dynamics there are two temperature scaling fields T< and T> which scale as

indicated in the above equation. These are related to the actual temperature by T< = ÷<T

and T> = ÷>T , where ÷< and ÷> are known as kinetic coe�cients. These appear in the model

of a quantum multicritical point that we analyse in Chapter 3.

By choosing b< = b> = |r|≠‹ this scaling relation can be used to show that

F (r, T ) = |r|‹(d+z<) f<

1
sign r, T< |r|≠‹z< , T> |r|≠‹z>

2

+ |r|‹(d+z>) f>

1
sign r, T< |r|≠‹z< , T> |r|≠‹z>

2
.

(2.6.2)
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At T = 0 we find that

F (r, T ) = |r|‹(d+z<) f< (sign r, 0, 0) , (2.6.3)

which shows that at T = 0 upon approaching the QCP the term associated with the lower

dynamical exponent dominates the free energy.

At finite temperatures, choosing b> = T ≠1/z>
> and b< = T ≠1/z<

< , we find that

F (r, T ) =T (d+z<)/z<
< f<

1
rT ≠1/(‹z<)

< , 1, T>T ≠z>/z<
<

2

+ T (d+z>)/z>
< f>

1
rT ≠1/(‹z>)

> , T<T ≠z</z>
> , 1

2
,

(2.6.4)

which is unfortunately of limited use. Since the two scaling functions f< and f> in general

depend on both temperature scaling fields, we cannot use these relations to investigate the

physical properties as r æ 0 at finite temperature without knowing further information about

the two scaling functions. A conclusion of Ref. [41] is that there are two possibilities for mul-

tiple dynamic scaling, coupled and decoupled. In the coupled case, the functions in equation

(2.6.2) and (2.6.4) depend on all variables and these scaling functions cannot be simplified.

Decoupled multiple dynamic scaling is when the situation where the two scaling functions

f< and f> do not depend on the other temperature field (T> and T< respectively). In this

case, equations (2.6.2) and (2.6.4) become

F (r, T ) = |r|‹(d+z<) f<

1
sign r, T< |r|≠‹z<

2

+ |r|‹(d+z>) f>

1
sign r, T> |r|≠‹z>

2
,

(2.6.5)

and

F (r, T ) =T (d+z<)/z<
< f<

1
rT ≠1/(‹z<)

< ,
2

+ T (d+z>)/z>
< f>

1
rT ≠1/(‹z>)

>

2
.

(2.6.6)

From the arguments of these functions we see there are two crossovers, T< ≥ r‹z< and T> ≥
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r‹z> . We interpret these as the crossovers between the Fermi liquid and quantum critical

regimes associated with each dynamical exponent.

We may use these scaling relations to find the specific heat and thermal expansion in each

regime. In the quantum critical regime where T< ∫ r‹z< and T> ∫ r‹z> , the specific heat and

thermal expansion can be calculated from these equations as

C ≥ c>T d/z> + c<T d/z< , (2.6.7)

and

– ≥ a>T [d≠(1/‹)]/z> + a<T [d≠(1/‹)]/z< . (2.6.8)

In these equations c>, c<, a> and a< are constants which the kinetic coe�cients have been

absorbed into. This shows that at low temperatures the mode with the greater dynamical

exponent should dominate the specific heat, and the thermal expansion in dimensions d > 1/‹.

In the Fermi liquid regime T< π r‹z< and T> π r‹z> , the specific heat and thermal

expansion are

C ≥ cÕ
> |r|‹(d≠z>) T + cÕ

< |r|‹(d≠z<) T, (2.6.9)

and

– ≥ aÕ
> |r|‹(d≠z>)≠1 T + aÕ

< |r|‹(d≠z<)≠1 T. (2.6.10)

As r æ 0 the mode with the greater dynamical exponent dominates both the specific heat

and the thermal expansion.
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In the intermediate regime T< < r‹z< and T> > r‹z> the free energy is

F (r, T ) =T (d+z<)/z<
< f<

1
rT ≠1/(‹z<)

< ,
2

+ |r|‹(d+z>) f>

1
sign r, T> |r|≠‹z>

2
.

(2.6.11)

This leads to

C ≥ c>T d/z> + cÕ
< |r|‹(d≠z<) T, (2.6.12)

and

– ≥ a>T [d≠(1/‹)]/z> + aÕ
< |r|‹(d≠z<)≠1 T. (2.6.13)

This analysis is adapted for a quantum multicritical point in Chapter 3, where we find it

is described by a decoupled fixed point.

2.6.2 The Pomeranchuk Instability

This analysis has been applied to the Pomeranchuk instability in two dimensions, which is

a situation where multiple dynamical exponents play a role in the quantum critical theory.

The Pomeranchuk instability is an instability of the Fermi liquid to a symmetry-breaking

deformation of the Fermi surface [42]. Two di�erent polarisations of the order parameter have

di�erent dynamical exponents, characterised by z = 3 and z = 2 respectively. This scenario

has been identified as exhibiting coupled multiple dynamic scaling [41, 43].

In two spatial dimensions, this has been investigated by Zacharias et al. [43] using the

renormalisation group. In analysing this model using the renormalisation group, the authors

developed a method of performing the renormalisation in the presence of multiple dynamical

exponents. They show how it is possible to perform renormalisation by rescaling frequency by

an arbitrary dynamical exponent z, which never needs to be specified in the RG analysis to
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describe physical properties. The coe�cients of the dynamic terms in the action, called the

kinetic coe�cients, are rescaled in the RG process. It is this technique which we shall adapt

in Chapter 3 to enable a renormalisation group analysis of a quantum multicritical point. We

explain it in more detail in Chapter 3 when we introduce the model of a quantum multicritical

point.

In the case of a Pomeranchuk instability, it is found that the marginal z = 2 modes

give logarithmic corrections to the correlation length. There are also two crossovers in the

disordered region at T ≥ r3/2 and T ≥ r, where r is the tuning parameter of the transition.

The specific heat only changes at the crossover T ≥ r, but the thermal expansion changes at

both crossovers. The model was subsequently studied below its upper critical dimension by

Meng et al. [41] who showed the model can be described by an interacting fixed point, and

demonstrated the emergence of an e�ective dynamical exponent related to both z = 2 and

z = 3.

In Chapter 3 we shall use similar techniques to those used to analyse the Pomeranchuk

instability to investigate the quantum multicritical point, however there are some key di�er-

ences. The main di�erence is that the Pomeranchuk instability is characterised by a single

tuning parameter and a single correlation length, but two dynamical exponents. The model

we present in Chapter 3 has two distinct order parameters, which means there are separate

correlation lengths associated with each type of order. This means that in addition to two

lengths in the imaginary time dimension, there are two physical lengths as well. Also of note is

that the Pomeranchuk model is characterised by a single quartic interaction term, whereas the

model of a quantum multicritical point in Chapter 3 requires 3 distinct quartic interactions.

These di�erences mean that while the method used to analyse the Pomeranchuk instability

can be adapted to analyse a quantum multicritical point, the physics of the two systems turns

out to be rather di�erent.
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2.7 Chapter Summary

In this chapter we have only scraped the surface of the vast literature on quantum criticality.

The topic is so large and varied that we have only focussed on the aspects most relevant

to the rest of this thesis, namely Hertz-Millis theory and situations with multiple dynamical

exponents.

There are two specific aspects we have not mentioned in much detail at all here, as they are

not necessary to follow the analysis of the quantum multicritical point in Chapter 3. Specifi-

cally, we have not touched upon transport properties near a quantum critical point. In Section

4.2, we review the literature which shows that transport properties can be found by consider-

ing electrons travelling through a quantum critical material scattering from spin-fluctuations

and impurities. The resistivity depends upon the dynamical exponent of the transition, and

is found to be proportional to T 5/3 in ferromagnetic systems, T 2 in clean antiferromagnets

and T 3/2 in impure antiferromagnets. Another subject we have not touched upon is the pos-

sibility of other situations where quantum criticality can occur besides suppressing a second

order phase transition to zero temperature. Quantum criticality can also be observed when

the end-point of a line of first order transitions is suppressed to absolute zero. We review

the literature on this topic in Chapter 5, where we analyse a metamagnetic quantum critical

end-point interacting with an antiferromagnetic quantum critical point.

We have now reviewed the relevant literature on Hertz-Millis theory, and quantum criti-

cality with multiple dynamical exponents. In Chapter 3 we use the techniques discussed here

to derive and solve a model of a quantum multicritical point.
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Chapter 3

QUANTUM MULTICRITICAL POINTS

3.1 Introduction

In the previous chapter we discussed quantum phase transitions in metallic systems. We

showed that the phase diagram and physical properties are controlled by the dynamical prop-

erties of the order parameter, characterised by the dynamical exponent z. In this chapter,

which is the first chapter primarily composed of original work, we build and solve a model of

a quantum multicritical point. Specifically, we consider suppressing a bicritical or tetracriti-

cal point to zero temperature. Since bicritical and tetracritical points are points where two

ordered phases and a disordered phase meet on the phase diagram, a quantum critical version

of these points would be influenced by the dynamical properties of both order parameters.

An example of a quantum multicritical point that requires a description involving two

di�erent dynamical exponents is a multicritical point between a ferromagnetically ordered and

an antiferromagnetically ordered phase, as these orders are described in Hertz-Millis theory

by z = 3 and z = 2 respectively. We believe such multicritical points exist in nature, and we

shall discuss the experimental evidence of multicriticality in Section 3.1.1.

Once we have highlighted the experimental relevance of quantum multicritical points, we

begin building a quantum critical model for such a scenario. We first discuss generating the

model in section 3.1.2. When then discuss general scaling arguments in Section 3.2, and derive
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Figure 3.1: Phase diagram of Nb
1≠yFe

2+y, taken from Ref. [4]. At zero temperature this
features two ferromagnetically ordered phases with an intermediate spin density wave state in
between. The ferromagnetic and spin density state meet at a quantum multicritical point at
y ≥ ≠0.015.

and study a specific model of quantum multicriticality in Section 3.3. We adapt the methods

of Chapter 2 to study the model using the renormalisation group, and find the phase diagram

in Section 3.4 and the thermodynamic properties in Section 3.5. We then conclude this chapter

by comparing our results to the experiments that are mentioned in Section 3.1.1.

3.1.1 Experimental Evidence of Quantum Multicriticality

Before developing a model of a quantum multicritical point, we summarise properties of several

materials which have been argued to display aspects of quantum multicriticality.

Nb
1≠yFe

2+y is a material that arguably features a quantum multicritical point in the phase

diagram, which is shown in Figure 3.1. At zero temperature, near y ≥ ≠0.015 a ferromagnetic

state and a spin density wave state meet on the phase diagram [4, 5]. The specific heat in

NbFe
2

varies as C ≥ T ln
1

1

T

2
which is characteristic of a three dimensional ferromagnetic

(z = 3) QCP, whereas the resistivity varies as fl ≥ T 3/2 which is characteristic of a three
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dimensional antiferromagnetic (z = 2) QCP [6, 7]. This would suggest that fluctuations of

both ferromagnetic and antiferromagnetic order contribute to the thermodynamic properties.

Another material with remarkably similar properties is Ta(Fe
1≠xVx)

2

, which also features

a competition between ferromagnetism and spin density wave order. The specific heat and

resistivity of this material when x = 0.016 obey the same power-law behaviours as in NbFe
2

[8].

Both NbFe
2

and Ta(Fe
1≠xVx)

2

have been argued to have high susceptibilities at both zero

momentum and a finite momentum Q associated with the spin density wave order [8, 7]. In

Section 3.3 we develop a model of this situation, and we believe the results of this chapter

can explain the specific heat measurements. In Chapter 4 we also explain how the observed

resistivity power-laws are expected near such multicritical points.

There are other materials which have been argued to exhibit some form of multicriticality,

that we do not believe are described by the model we present in this chapter.

Quantum multicriticality has also been related to the material YbRh
2

Si
2

, as the specific

heat and Grüneisen parameter obey power laws usually associated with two dimensional ferro-

magnetism, yet at low temperatures the order is antiferromagnetic [9]. However, it is thought

that this material is not explainable within the Hertz-Millis picture. Hall e�ect measurements

suggest some kind of unconventional quantum criticality, related to Fermi surface reconstruc-

tion at the transition [28]. We do not consider such e�ects in this thesis, and therefore do not

attempt to explain the properties of this material.

Quantum bicriticality has been argued to play a role in YbAgGe, which has a bicritical point

at a temperature T ¥ 0.3K and a magnetic field field µ
0

H ¥ 4.5T [10]. The low-field phase is

antiferromagnetic, but the order in the high-field phase is to our knowledge currently identified.

The suspicion is that this bicritical point is a spin-flop transition, which is a transition between

two antiferromagnetically ordered states, where the axis of antiferromagnetism flips and the

spins tilt towards the field. In this material it is the magnetic field which tunes through the

bicritical point. In this chapter we construct a model which is only valid in the absence of

69



magnetic fields, to avoid complications that arise in that situation. In Chapter 5 we consider

finite magnetic fields, and defer a discussion of this material until then.

The rest of this chapter details a study into quantum multicriticality between ferromag-

netism and antiferromagnetism.

3.1.2 Generating Quantum Multicritical Points

Before modelling a quantum multicritical point, we begin by describing how we expect such

points to be generated.

We consider a material with a finite temperature multicritical point in the r ≠ T plane, be-

tween two ordered phases associated with ferromagnetism (È„
3

Í ”= 0) and antiferromagnetism

(È„
2

Í ”= 0). The subscripts 3 and 2 refer to the dynamical exponents that Hertz-Millis theory

associates with each type of order. This scenario is shown in Figure 3.2. If we consider chang-

ing another non-thermal parameter, which we denote by g, the temperature this multicritical

point occurs at could change. We may imagine that in some situations this multicritical point

can be suppressed to absolute zero at a critical value g = gú, which is the definition of a

quantum multicritical point as shown in Figure 3.3a. We may imagine that increasing this

parameter beyond gú creates a phase diagram qualitatively similar to that shown in Figure

3.3b. This phase diagram looks like we have two quantum critical points in the phase diagram,

which we expect will influence each other.

We now discuss discrepancies in notation between this chapter and Chapter 1. In Figure

1.3 we showed bicritical and tetracritical points in the g ≠ T plane. In Chapter 1, we used

r to indicate the deviation from the critical temperature and g to describe the non-thermal

tuning parameter. In Figure 3.2 we have the same phase diagram but in the r ≠ T plane. In

this chapter, r describes the non-thermal control parameter which tunes through the multi-

critical point, and g is the parameter which tunes the multicritical point to zero temperature.

Temperature enters our model of quantum multicriticality as the length of the imaginary time

dimension. This discrepancy in notation is so that Chapter 1 is consistent with the literature
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(a) Phase diagram with a bicritical point (b) Phase diagram with a tetracritical point

Figure 3.2: Finite temperature multicritical points

(a) Phase diagram with a quantum multicritical
point

(b) Phase diagram with two separated quantum
critical points

Figure 3.3: Phase diagrams that can be obtained by adjusting another non-thermal tuning
parameter to the phase diagrams in Figure 3.2
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on classical multicritical points, and this chapter is consistent with the literature on quantum

phase transitions.

In the rest of the chapter we shall be investigating phase diagrams of the type in Figure

3.3 where the two types of order are ferromagnetism and antiferromagnetism. We shall find

the distinct regions in the disordered phase and the thermodynamic properties. In doing so,

we find out exactly how the two QCPs in Figure 3.3b a�ect each other, and find that the

results of our calculation are independent of whether we consider suppressing a bicritical or a

tetracritical point to zero temperature.

3.2 Scaling Analysis for a Quantum Multicritical Point

We now begin the analysis of a quantum multicritical point. Before we write down a specific

model, we first perform general scaling analysis for a quantum multicritical point. We adapt

the arguments of Sections 2.6.1 and 1.5.1.

We begin by generalising equation (2.6.1) for a quantum multicritical point between two

di�erent types of order, each associated with a di�erent dynamical exponent, z< and z>. To

tune to a quantum multicritical point we require two non-thermal tuning parameters r< and

r>, which tune to the quantum multicritical point at r> = r< = 0. There are now two

correlation lengths in real space, corresponding to the fluctuations of each order parameter.

These lead to two correlation lengths in the imaginary time dimension. In addition, there are

two temperature scaling fields T< and T> as in Section 2.6.1. The free energy splits into the

sum of the parts associated with each dynamical exponent, as

F (r<, r>, T ) = b
≠(d+z>)

> f>

1
r<b

1/‹<
> , r>b

1/‹>
> , T<bz<

> , T>bz>
>

2

+ b
≠(d+z<)

< f<

1
r<b

1/‹<
< , r>b

1/‹>
< , T<bz<

< , T>bz>
<

2
.

(3.2.1)

For generality we have allowed the correlation length exponents ‹< and ‹> to be di�erent for

the two types of order. We use the notation that z> > z<, and the exponent ‹> is associated
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with the order with the dynamical exponent z>.

Because this energy depends on so many variables, it becomes di�cult to analyse without

knowing the scaling functions themselves. This model is even more complicated than the free

energy in Section 2.6.1, and we are unable to make physical predictions about coupled multiple

dynamic scaling.

We can make physical predictions in the special case of decoupled multiple dynamic scaling,

where f> becomes independent of T< and r<, and vice-versa. We find that up to logarithmic

corrections, this method correctly predicts the leading order physical properties and regions of

the phase diagram. However, it does not capture the e�ects of multicriticality which we find

in the full Hertz-Millis model of a quantum multicritical point. Specifically, it does not predict

the boundaries of the ordered phases or the temperature-dependence of the correlation length.

The free energy in the case of decoupled multiple dynamic scaling is

F (r<, r>, T ) = b
≠(d+z>)

> f>

1
r>b

1/‹>
> , T>bz>

>

2
+ b

≠(d+z<)

< f<

1
r<b

1/‹<
< , T<bz<

<

2
, (3.2.2)

which is the sum of the free energies in two completely independent quantum critical points,

of the type analysed in Section 2.2.1. In this case, the specific heat and thermal expansion are

just the sum of the specific heat and thermal expansions for two independent quantum critical

points.

The free energy above implies that there are now four possible regions of the phase diagram

in the disordered phases, separated by the two crossovers T< ≥ r‹<z<
< and T> ≥ r‹>z>

> . This is

in contrast to the model in Section 2.2.1 where there were only three regions in the disordered

phase.

The crossovers Ti ≥ r‹izi
i are interpreted as the crossovers when the modes associated with

zi change from the quantum critical region to becoming Fermi liquid-like. We label the regions

of the phase diagram (a) through (d), and discuss the physical properties in each region.

In region (a), defined by T> ∫ r‹>z>
> and T< ∫ r‹<z<

< , both types of mode are quantum
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critical. The specific heat and thermal expansion are given by

C ≥ c>T d/z> + c<T d/z< , (3.2.3)

and

– ≥ a>T [d≠(1/‹>)]/z> + a<T [d≠(1/‹<)]/z< (3.2.4)

where the a> and a< constants are not necessarily of the same sign, as the derivatives dr<

dp

and dr>

dp
may independently be positive or negative. These constants also contain the kinetic

coe�cients, in the same way as in Section 2.6.1. The specific heat is dominated by the higher

dynamical exponent, whereas the thermal expansion depends on both ‹> and ‹< as well as

the dynamical exponents. In situations where ‹> = ‹<, the higher dynamical exponent also

dominates the thermal expansion.

In the remaining three regions of the phase diagram, there are two components contributing

towards both the thermal expansion and specific heat, and neither contribution can be argued

to vanish.

In region (b), defined by T> ∫ r‹>z>
> and T< π r‹<z<

< , the modes associated with z> are

quantum critical and the modes associated with z< are Fermi liquid-like. The specific heat

and thermal expansion are given by

C ≥ c>T d/z> + cÕ
< |r<|‹<(d≠z<) T, (3.2.5)

and

– ≥ a>T [d≠(1/‹>)]/z> + aÕ
< |r<|‹<(d≠z<) T. (3.2.6)

In region (c), defined by T> π r‹>z>
> and T< ∫ r‹<z<

< , the modes associated with z> are
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Fermi liquid-like and the modes associated with z< are quantum critical. The specific heat

and thermal expansion are given by

C ≥ cÕ
> |r>|‹>(d≠z>) T + c<T d/z< , (3.2.7)

and

– ≥ aÕ
> |r>|‹>(d≠z>) T + a<T [d≠(1/‹<)]/z< . (3.2.8)

In region (d), defined by T> π r‹>z>
> and T< π r‹<z<

< , both types of mode are Fermi-liquid

like. The specific heat and thermal expansion are given by

C ≥ cÕ
> |r>|‹>(d≠z>) T + cÕ

< |r<|‹<(d≠z<) T, (3.2.9)

and

– ≥ aÕ
> |r>|‹>(d≠z>) T + aÕ

< |r<|‹<(d≠z<) T. (3.2.10)

We again note that these equations only hold if the modes decouple. When we reviewed the

scaling analysis of classical multicriticality in Section 1.5.1, we were able to identify a crossover

exponent which characterised the boundaries of the ordered phases. This is not possible to find

for a quantum multicritical point via scaling, as in Hertz-Millis theory it is the temperature-

dependence of the renormalised tuning parameter which governs the ordered phase boundary.

As explored in Chapter 2, this is given by the dangerously irrelevant interactions.

The aim of the rest of this chapter is to use a specific model and perform a more thorough

renormalisation group treatment in order to find the phase diagrams, and to determine whether

these equations hold. As in the case of a single quantum critical point, we shall find that they

do give the leading order contributions to specific heat and thermal expansion in each regime,
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up to logarithmic corrections. However, the dangerously irrelevant interactions shape the

phase diagram and give the renormalised tuning parameters their temperature-dependence.

3.3 Hertz-Millis Model of Multicriticality

To proceed further than the scaling arguments presented in Section 3.2, we now build a Hertz-

Millis description of the quantum multicritical point discussed in Section 3.1.2. In Section 3.3.1

we derive the model by adapting the derivation of Hertz-Millis presented in Section 2.2.3 for a

material unstable towards both ferro- and antiferromagnetic ordering. In order to analyse the

regions of the phase diagrams and calculate thermodynamic properties we analyse the model

using a renormalisation group procedure that is closely linked to the procedure used to analyse

the Hertz-Millis model in Chapter 2.

3.3.1 Deriving the Model

In this section we derive the model that will be used for the rest of the chapter. By adapting

the derivation of Section 2.2.3, we generate a model which describes a quantum multicritical

point between a ferromagnetically ordered phase and an antiferromagnetically ordered phase.

We first assume that an action describing the physics in the vicinity of this multicritical

point can be written in terms of spin-fluctuations alone, and that the electronic degrees of

freedom can be safely integrated out. The starting point of the derivation is then the same

Hamiltonian given by equation (2.2.15), but where the interaction term J(q) is di�erent. We

follow the same steps as in Section 2.2.3, until we arrive at equation (2.2.28). We have

S (�) =
⁄

d’‰≠1 (’)� (’) .� (≠’) + u
⁄

dxd·�4 (x, ·) , (3.3.1)

with ‰(’) = 1

4J(’)

+ �(’), where J(’) is the spin-wave interaction and �(’) is the Lindhard

function. As before, J(’) is a complicated function that depends upon many microscopic
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parameters. For a system unstable towards ordering at wave-vector Q (which may be zero)

when a parameter ” is tuned to zero, the assumption made in the previous chapter is that the

susceptibility can be expanded around this point as ” + 1

q2
0

(q ≠ Q)2, plus some damping terms

which depend on whether Q is zero or non-zero. Such an expansion is only valid below certain

frequency and momentum scales, and in Section 2.2 we enforced cut-o�s on momentum and

frequency integrals.

To derive an e�ective model for a material unstable to both ferro-and antiferromagnetic

order, we assume that the susceptibility ‰ diverges in two distinct places, around q = 0 when

”
3

= 0, and around q = Q when ”
2

= 0. The subscripts 2 and 3 refer to the dynamical

exponents that the spin-fluctuations around these points are damped by, according to Hertz-

Millis theory.

We expand the inverse susceptibility ‰≠1 around these two points, letting

‰≠1 (q, iÊn) =

Y
___]

___[

‰≠1

3

(q, iÊn) near q = 0,

‰≠1

2

(q, iÊn) near q = Q.

(3.3.2)

The inverse susceptibilities are given by

‰≠1

3

(q, iÊn) = ”
3

+ c2

3

q2 + ÷
3

1
c

3

q

|Ên|
�

3

for |c
3

q| < �
3

, (3.3.3)

and

‰≠1

2

(q, iÊn) = ”
2

+ c2

2

q2 + ÷
2

|Ên|
�

2

for |c
2

q| < �
2

(3.3.4)

where, as an argument of ‰≠1

2

, q is the deviation from the ordering wave-vector Q. We have

explicitly written the coe�cients of the dynamical terms as ÷
3

and ÷
2

, which are known as the

kinetic coe�cients. By comparison with the literature described in Section 2.6.2, we expect

that these must be allowed to rescale in order to perform renormalisation in the presence of
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multiple dynamical exponents. �
2

and �
3

are the momentum cut-o�s which we impose in

our renormalisation group scheme. As in Chapter 2 our strategy will be to calculate the free

energy using the linked cluster expansion and performing the Matsubara sums. There we shall

find cut-o�s in the continuous integrals. The cut-o�s are

÷
3

|Ê|
c

3

q
< �

3

, (3.3.5)

and

÷
2

|Ê|
�

2

< �
2

. (3.3.6)

The momentum cut-o�s give a concrete definition of momenta ‘near’ each ordering wave-

vector. This approximation for the inverse susceptibility is only possible if Q is su�ciently

large, so that there is a clear separation between the two types of modes. The requirement is

that

|Q| ≠ �
3

c
3

>
�

2

c
2

. (3.3.7)

This condition means that we do not consider long-wavelength spin density wave order.

Being careful about keeping track of coe�cients, we find that if we rescale space and

temperature such that c
3

q æ q and Ê
�3

æ Ê, the Gaussian part of the action can be written as

SG [„
3

, „
2

] = 1
—V

A
�

3

cd
3

B
ÿ

Ên,q

1
‰≠1

3

„2

3

+ ‰≠1

2

„2

2

2
, (3.3.8)

where

‰≠1

3

(q, iÊn) = ”
3

+ q2 + ÷
3

|Ên|
q

for |q| < �
3

, (3.3.9)
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and

‰≠1

2

(q, iÊn) = ”
2

+ q2 + ÷
2

|Ên| for |q| < �
2

. (3.3.10)

The „
2

field has been rescaled by „
2

æ c3
c2

„
2

. We have also rescaled ”
2

, and let ÷
2

=
1

c3
c2

2
2

,

while ÷
3

= 1. We have let c3
c2

�
2

æ �
2

, but let �
3

stay unchanged. The cut-o�s on the frequency

integral that are derived when performing the Matsubara sum in these rescaled variables are

|Ê| < �
3

|q|
÷

3

, (3.3.11)

and

|Ê| < �
2

1
÷

2

, (3.3.12)

where we have rescaled �
2

�2
�3

æ �
2

.

We may now continue the expansion of the action in powers of the two fields, and write

down the full action as

S [„
2

, „
3

] = 1
—

ÿ

Ên

⁄
dq‰≠1

3

(q, Ên) „2

3

(q, Ên) + 1
—

ÿ

Ên

⁄
dq‰≠1

2

(q, Ên) „2

2

(q, Ên)

+
⁄

dxd·
Ë
u

3

„4

3

(x, ·) + u
2

„4

2

(x, ·) + u
32

„2

3

(x, ·) „2

2

(x, ·)
È

,

(3.3.13)

where the quartic terms u
3

, u
2

and and u
32

are all di�erent, and all positive.

We first note that this action looks like the action for two quantum critical points associated

with „
3

and „
2

modes, but with an additional mode-mode coupling term proportional to u
32

.

Interpreting this model as describing two interacting quantum critical points turns out to be a

useful way to think about the results of the renormalisation group analysis that is performed

in the remainder of this chapter. It is also useful to realise that this model has a multicritical

point in the zero-temperature plane, which may be either bicritical or tetracritical depending

on the relations between the coe�cients of the quartic parts in the action.
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We also note that this model ‘looks like’ a quantum critical version of the free energy for

a multicritical point described in Section 1.5.2. This is exactly what we would have written

down if we had just tried to make a quantum critical version of the free energy in equation

(1.5.6) by allowing the fields to vary in imaginary-time, and including the damping rates as

prescribed by Hertz and Millis.

If we take into account the vectorial nature of the two order parameters, the quartic

coupling written in equation (3.3.13) is (�3.�3) (�2.�2). Another possible way these two

vectors could interact is by a term proportional to (�3.�2)2. This term makes physical sense at

it represents a suppression of antiferromagnetism in the same plane as any ferromagnetic order.

However, neglecting such a term does not change, to leading order, any of the thermodynamic

quantities we calculate. It does change some prefactors in the equations for the correlation

lengths, but does not change the important temperature-dependence.

We now analyse this action using a similar RG procedure to the one applied in Section

2.3. This analysis enables us to find the regions of the phase diagram and the thermodynamic

properties in each region. We first calculate the free energy using a linked cluster expansion in

Section 3.3.2 which serves as the starting point of our RG scheme. In Section 3.3.3 we describe

how we then reduce the cut-o�s and derive the RG equations. The equations we derive are

then solved in Section 3.4.

3.3.2 Free Energy Expansion

As in Chapter 2, a convenient starting point for the derivation of the RG equations is the free

energy. To find the free energy we adapt the methods of Section 2.3.1 and perform a linked

cluster expansion.

The first step is again to perform a linked cluster expansion for the free energy, which we

calculate to quadratic order in the interaction terms. All the diagrams which contribute to
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this expansion are shown in Appendix A. The diagrammatic sum leads to

F =F̃
(G)

3

+ F̃
(G)

2

+ n
3

(n
3

+ 2)u
3

Ĩ
3

2 + n
2

(n
2

+ 2)u
2

Ĩ
2

2 + 2n
3

n
2

u
32

Ĩ
3

Ĩ
2

≠ 4n
3

(n
3

+ 2)(n
3

+ 8)u2

3

Ĩ
3

2

J̃
3

≠ 4n
2

(n
2

+ 2)(n
2

+ 8)u2

2

Ĩ
2

2

J̃
2

≠ 4n
3

n
2

(n
3

+ 2)u2

32

Ĩ
3

2

J̃
2

≠ 4n
3

n
2

(n
2

+ 2)u2

32

Ĩ
2

2

J̃
3

≠ 8n
3

n
2

(n
3

+ 2)u
3

u
32

Ĩ
3

Ĩ
2

J̃
3

≠ 8n
3

n
2

(n
2

+ 2)u
2

u
32

Ĩ
3

Ĩ
2

J̃
2

≠ 8n
3

n
2

u2

32

Ĩ
3

Ĩ
2

J̃
32

.

(3.3.14)

Here, F̃
(G)

i is the Gaussian part of the free energy associated with the „i modes, and is given

by

F̃
(G)

i = ni

2
1
—

ÿ

Ên

⁄
dq ln [‰i (q, Ên)] . (3.3.15)

We have written this expansion in terms of the Matsubara sums

Ĩi = 1
—

ÿ

n

⁄
dq‰i (Ên, q) , (3.3.16)

and

J̃i = 1
—

ÿ

n

⁄
dq‰i (Ên, q) ‰i (≠Ên, ≠q) , (3.3.17)

where i = 2, 3.

In deriving equation (3.3.14), we have adapted the analysis of Section 2.3.1 to deal with

the term K̃ij given by

K̃ij = 1
—4

ÿ

n1,n2,n3,n4

⁄
dq1dq2dq3dq4‰i (Ên1 , q

1

) ‰i (Ên2 , q
2

)

‰j (Ên3 , q
3

) ‰j (Ên4 , q
4

) ”

A
4ÿ

i=l

Ênl

B

”

A
4ÿ

l=1

ql

B

,

(3.3.18)

where i, j = 2, 3. This arises from the diagrams in Figure A.3. Following the same arguments

81



as in Section 2.3.1, K̃
33

and K̃
22

can be reduced to 6Ĩi
2

J̃i by relaxing the ” function constraint

to only enforce momentum and frequency conservation between two of the four possibilities.

The corrections to this are irrelevant in the RG sense. The term K̃
32

needs more careful

consideration, however.

Defining ’ © (q, Ên), the ” functions in equation (3.3.18) can be written together as

” (’
1

+ ’
2

+ ’
3

+ ’
4

). When we instead relax this constant to be ” (’
1

+ ’
2

), we have K̃
32

æ

Ĩ
3

2

J̃
2

, and when this constant is ” (’
3

+ ’
4

) we find K̃
32

æ Ĩ
2

2

J̃
3

. For the other four options

of choosing two of the four ’s as the argument for the ” function, one ’ will be an argument

of ‰
3

and the other will be an argument of ‰
2

. This leads to a term K̃
32

æ 4Ĩ
3

Ĩ
2

J̃
32

, where

J̃
32

= 1
—

ÿ

n

⁄
dq‰

3

(Ên, q) ‰
2

(≠Ên, ≠q) , (3.3.19)

and we recall that ‰
2

(q, Ên) describes a spin-fluctuation at momentum Q+ q. We shall find

that the only way this term enters in the one-loop RG scheme is by a renormalisation to u
32

,

proportional to u2

32

.

We now perform the Matsubara sums in order to rewrite the linked cluster expansion in

a form which is a convenient starting point for renormalisation. The Matsubara sums can be

performed as in Section 2.3.1 to arrive at

Ĩi =
⁄

�i

0

ddq

(2fi)d

⁄
��(q)/÷i

0

dÊ

fi
coth

3
Ê

2T

4
÷iÊ/�(q)

(”i + q2)2 + (÷iÊ/�i (q))2

, (3.3.20)

and

J̃i =
⁄

�i

0

ddq

(2fi)d

⁄
��(q)/÷i

0

dÊ

fi
coth

3
Ê

2T

4 2 (”i + q2) ÷iÊ/�i (q)
Ë
(”i + q2)2 + (÷iÊ/�i (q))2

È
2

, (3.3.21)

for i = 3, 2. By rescaling Ê we see that we can write these in terms of the same function that
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arise in the standard Hertz-Millis model in Section 2.3.1, as

Ĩi (”i, T ) = 1
÷i

Ii (”i, Ti) , (3.3.22)

and

J̃i (”i, T ) = 1
÷i

Ji (”i, Ti) (3.3.23)

where Ii and Ji are the functions in equations (2.3.10) and (2.3.11) for the dynamical exponent

zi, and Ti is shorthand for ÷iT . These are integrated up to the cut-o�s �i and �i�i(q).

The Gaussian part of the free energy may also be calculated in the same way as in Section

2.3.1. Performing the Matsubara sums and rescaling the frequency integrals we find that

F̃
(G)

i (”i, T ) = 1
÷i

FG (”i, Ti) , (3.3.24)

where FG (”i, Ti) is the function given in equation (2.3.4) for dynamical exponent zi, with the

appropriate cut-o�s as discussed above.

The J̃
32

term is a little di�erent, however. Performing the Matsubara sum, we find that

J̃
32

=
⁄

�<

0

ddq

(2fi)d

⁄
�<(q)

0

dÊ

fi

Q

a coth
3

Ê

2T

4

(”
3

+ q2) ÷
2

Ê + (”
2

+ q2) ÷
3

Ê/q
Ë
(”

3

+ q2)2 + (÷
3

Ê/q)2

È Ë
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+ q2)2 + (÷
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Ê)2

È

R

b,

(3.3.25)

where �< = min [�
2

, �
3

] and �< (q) = min [�
2

/÷
2

, �
3

q/÷
3

]. We have assumed that for Ê > �<,

the integrand may be considered su�ciently small such that its contribution to J̃
32

is negligible.

For the purpose of deriving the RG equations, we rescale the frequency integral to write
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J̃
32

= J
32

/÷
3

, where

J
32

=
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ddq
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Ë
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È
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b.

(3.3.26)

We then rewrite the linked cluster expansion as

F = 1
÷
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÷
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÷
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(3.3.27)

from which we derive the RG equations.

3.3.3 The RG Equations

Now that we have found the free energy using the linked cluster expansion, we are able to

adapt the methods of Section 2.3.2 to derive the RG equations. However the extension is not

straight forward as we now have two dynamical exponents. This means it is not obvious how

imaginary time should be rescaled as space is rescaled.

While the scaling analysis of Section 3.2 was performed using two independent scaling

variables b< and b>, we find that the only way to derive the one-loop RG equations is to use

a single scaling variable b.

To derive the RG equations in the presence of multiple dynamical exponents, when rescaling

space by a factor b, we take inspiration from the literature [41, 43] and rescale imaginary time

by bz, where z is an arbitrary, artificial dynamical exponent. The value of z we choose to

rescale by does not end up a�ecting our calculations of any physical properties of the system.
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We never need to specify a value for it in our calculations, and so shall leave it undefined. The

kinetic coe�cients ÷
2

and ÷
3

depend on z, and at tree-level RG we find that they obey

÷i(b) = bzi≠z÷i, (3.3.28)

where z
2

= 2 and z
3

= 3. This does not change when we look at the one-loop RG equations.

From scaling arguments alone, we also find that temperature scales as T (b) = bzT , however

only the combinations Ti = ÷iT enter the other RG equations. These combinations scale as

Ti = bziTi. We find that the RG equations can be written in terms of the variables

ũi = ui

÷i

, (3.3.29)

and

w̃i = u
32

÷i

, (3.3.30)

for i = 3, 2. The quantities w̃
3

and w̃
2

are of course related, as w̃
3

= w̃
2

(÷
3

/÷
2

), but we find it

convenient to write them separately.

To derive the one-loop RG equations, we adapt the analysis of Section 2.3.2. We simul-

taneously reduce the momentum cut-o�s on the Ii and Ji integrals by a factor b and the

frequency cut-o�s by a factor of b2, and use that Ii æ I<
i + f

(2)

i ln b, Ji æ J<
i + f

(4)

i ln b and

J
32

æ J<
32

+ f
(4)

32

ln b. Here the superscript < means only evaluated below the new cut-o�.

The f
(2)

i (”i, Ti) and f
(4)

i (”i, Ti) functions are the same as the functions that appear in the

Hertz-Millis action, and are defined in equations (2.3.14) and (2.3.15). The only new term is

f
(4)

32

(”
3

(b), ”
2

(b), T
3

(b)) which warrants further discussion. This term arises from reducing the

cut-o�s in the J
32

term of equation (3.3.26). As noted before, the cut-o�s are just the lower of

the two cut-o�s associated with each mode. For low values of q, the lower of the two cut-o�s

on frequency will be �
3

q/÷
3

, but if ÷3
÷2

�2
�3

< �<, then at some q the lower of the two frequency
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cut-o�s will be �
2

/÷
2

. However, because ÷
3

(b)/÷
2

(b) is proportional to bz3≠z2 = b, then at

some point in renormalisation, �
3

�</÷
3

will be less than �
2

/÷
2

. Then, the frequency cut-o�

is �
3

q/÷
3

for all values of q. This is shown in Figure 3.4. To simplify analysis we then neglect

all terms in J
32

proportional to ÷
2

(b)/÷
3

(b) as they scale quickly to zero under renormalisation,

and find that

J
32

¥
⁄
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ddq
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1
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This means that
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fi
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(3.3.32)

After making these substitutions in the linked cluster expansion and only keeping terms

linear in ln b, we follow the same steps as in Section 2.3.2 to derive the RG equations. Using

that

Ii = 2
ni

ˆF
(G)

i

ˆ”i

, (3.3.33)

we find that some terms can be absorbed into a rescaling of ”
3

and ”
2

. We only consider

corrections to the tuning parameter which are linear in the interactions. We absorb other terms

into a rescaling of quartic interactions ũi and w̃i. We find that the one-loop RG equations are

d”i

d ln b
= 2”i(b) + 4(ni + 2)ũi(b)f (2)

i (”i(b), Ti(b)) + 4njw̃j(b)f (2)

j (”j(b), Tj(b)) , (3.3.34a)
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(a) �
3

< �
2

and �3�3
÷3

< �2
÷2

(b) �
3

> �
2

and �3�2
÷3

< �2
÷2

(c) �
3

> �
2

and �3�3
÷3

> �2
÷2

(d) �
3

< �
2

and �3�3
÷3

> �2
÷2

Figure 3.4: The cut-o�s being simultaneously reduced. This a�ects the term J̃
32

in the RG
equations. The two momentum cut-o�s are �

3

and �
2

, and the frequency cut-o�s are �
3

q/÷
3

and �
2

/÷
2

. At the beginning of the RG procedure any four of these options may be realised
with the cut-o�s chosen. As explained in the main text, after some amount of RG flow this
figured in rescaled variables will look like either (a) or (b). This means that the appropriate
frequency cut-o� is �

3

�</÷
3

.
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dũi

d ln b
= [4 ≠ (d + zi)] ũi(b) ≠ 4(ni + 8)ũi

2(b)f (4)

i (”i(b), Ti(b))

≠ 4njw̃i(b)w̃j(b)f (4)

j (”j(b), Tj(b)),
(3.3.34b)

and

dw̃i

d ln b
= [4 ≠ (d + zi)] w̃i(b) ≠

ÿ

p=3,2

4 (np + 2) ũp(b)w̃i(b)f (4)

p (”p(b), Tp(b))

≠ 4w̃
3

(b)w̃j(b)f (4)

32

(”
3

(b), ”
2

(b), T
3

(b)) ,

(3.3.34c)

where i = 3, 2 and j = 2 if i = 3, and j = 3 if i = 2.

The Gaussian part of the free energy, FG = F
(G)
3
÷3

+ F
(G)
2
÷2

, can be found from the equation

dFG

d ln b
= (d + z) FG ≠

ÿ

i=3,2

1
÷i(b)

f
(0)

i (”i(b), Ti(b)) , (3.3.35)

where f
(0)

i (”i, Ti) is the same as the f (0) (”, T ) function in the Hertz-Millis case for dynamical

exponent zi in equation (2.3.13).

We have now written the RG equations in terms of the same functions present in the

Hertz-Millis RG equations, which allows us to solve them by referring back to the solution

presented in Chapter 2.

3.4 Solving the RG Equations

We have derived the RG equations which we now solve in order to identify the regions of the

phase diagram and calculate the specific heat, thermal expansion and Grüneisen parameter

in each regime. As in Chapter 2, we use the notation that if a parameter is written without

explicit scale-dependence then we are referring to its bare, unrenormalised value.

We first solve the equations for the renormalised interactions in Section 3.4.1 to show that

in the case of d Ø 2 the system is described by an e�ective Gaussian model.

We then analyse the three dimensional case, by finding the renomalised tuning parameters

88



and phase diagram in Sections 3.4.2, 3.4.3 and 3.4.4. We then repeat the process for the more

complicated two dimensional case in Sections 3.4.5, 3.4.6 and 3.4.7. In Section 3.5 we analyse

the free energy and find the thermal expansion, specific heat, and Grüneisen parameter in each

region of the phase diagram.

3.4.1 Interactions

We now solve the equations for the interaction terms w̃i and ũi, in both d = 2 and d = 3. In

d = 3 the equations are simple to solve. We may neglect the one-loop corrections and find

that ũ
3

(b) = b≠2ũ
3

and w̃
3

(b) = b≠2w̃
3

, and that ũ
2

(b) = b≠1ũ
2

and w̃
2

(b) = b≠1w̃
2

.

In d = 2 the analysis is a bit more involved. Since at tree level the terms ũ
3

and w̃
3

flow

to zero, we assume that we do not need to consider the one-loop corrections and find that

ũ
3

(b) = b≠1ũ
3

and w̃
3

(b) = b≠1w̃
3

. The equations for ũ
2

and w̃
2

are a bit more complicated.

The RG equations are

dũ
2

d ln b
= ≠4(n

2

+ 8)ũ
2

2(b)f (4)

2
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2

(b), T
2

(b)) ≠ 4n
3
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3

(b)w̃
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(b)f (4)

3

(”
3

(b), T
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(b)), (3.4.1)

and

dw̃
2

d ln b
= ≠

ÿ

p=3,2

4 (np + 2) ũp(b)w̃
2

(b)f (4)

p (”p(b), Tp(b))

≠ 4w̃
3

2(b)f (4)

32

(”
3

(b), ”
2

(b), T
3

(b)) .

(3.4.2)

We choose to write these as

dũ
2

dx
= ≠–

1

ũ
2

2(ex) ≠ –
2

e≠xw̃
2

2(ex), (3.4.3)

and

dw̃
2

dx
= ≠a

1

ũ
2

(ex)w̃
2

(ex) ≠ a
2

e≠xũ
3

w̃
2

(ex) ≠ a
3

e≠2xw̃
2

2(ex), (3.4.4)
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where we have used that w̃
3

(b) = b≠1w̃
2

(b) and ũ
3

(b) = b≠1ũ
3

. We have also assumed that

throughout the RG process the f
(4)

i (”i(b), Ti(b)) functions may be approximated as the con-

stants f
(4)

i (0, 0), which is the same approximation as made in Section 2.4.1. Similarly, we

assume that the function f
(4)

32

(”
3

, ”
2

, T
3

) can be approximated as f
(4)

32

(0, 0, 0).

Since all the interactions are positive, both w̃
2

(ex) and ũ
2

(ex) are decreasing functions

of x. To make progress in these equations, we assume that after some amount of scaling

–
2

e≠xw̃
2

2(ex) π –
1

ũ
2

2(ex) for x > xu. Then equation (3.3.34b) for ũ
2

becomes

dũ
2

dx
= ≠–

1

ũ
2

2(ex), (3.4.5)

which leads to

ũ
2

(ex) = 1
1

ũ2(exu
)

+ –
1

(x ≠ xu) , (3.4.6)

for x > xu. This can be written as

ũ
2

(b) = 1
–

1

1
ln (gb) , (3.4.7)

for b > exu , where g = exp
Ë

1

–1ũ2(exu
)

≠ xu

È
.

If for x > xw we assume that (a
2

e≠xũ
3

w̃
2

(ex) + a
3

e≠2xw̃
2

2(ex)) π a
1

ũ
2

(ex)w̃
2

(ex), then

equation (3.3.34c) for w̃
2

becomes

d ln w̃
2

dx
= ≠a

1

ũ
2

(ex). (3.4.8)

This is solved by

w̃
2

(ex) = w̃
2

(exw) exp
5
≠a

1

⁄ x

xw

dxũ
2

(ex)
6

, (3.4.9)

90



which for x > max [xw, xu] is proportional to

w̃
2

(b) = w̃
2

ú [ln (gb)]≠(n2+2)/(n2+8) . (3.4.10)

The exponent (n
2

+ 2)/(n
2

+ 8) is the ratio a
1

/–
1

, and w̃
2

ú is some constant which depends

on xu and xw.

We do not know the values of g or w̃
2

ú analytically, however we have found the behaviour

of w̃
2

(b) and ũ
2

(b) at large b. The behaviour of ũ
2

is the same as the behaviour of u in the

case of an antiferromagnetic quantum critical point in two dimensions, but this slow decay of

w̃
2

is new, and unique to the multicritical case.

Note that since w̃
3

(b) = b≠1w̃
2

(b), at large value of b we find that

w̃
3

(b) = w̃
2

úb≠1 [ln (gb)]≠(n2+2)/(n2+8) . (3.4.11)

We then note that since the interactions w̃
3

(b) and w̃
2

(b) have a logarithmic decay, the one-loop

corrections may actually be important in the solution of ũ
3

(b). Taking the one-loop corrections

arising from u
32

into account, we find that at large values of b the interaction ũ
3

(b) scales as

ũ
3

(b) = b≠1

3
uú

3

≠ c

4 ≠ n
2

[ln (gb)](4≠n2)/(n2+8)

4
(3.4.12)

if n
2

”= 4, where uú
3

and c are constants. In the case of n
2

= 4, ũ
3

(b) scales as

ũ
3

(b) = b≠1 [uú
3

≠ c̃ ln (ln (gb))] (3.4.13)

where c̃ is a constant. Note that equations (3.4.5) and (3.4.8) are still valid for su�ciently

large b, even when we include these logarithmic terms. This means that due to the marginal

nature of the antiferromagnetic modes, all interactions have some logarithmic decay in two

dimensions.
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Nevertheless, the e�ective interaction terms decay to zero in both two and three dimensions,

so the quantum multicritical point can be described by an e�ective Gaussian model. We

now turn our attention to equation (3.3.34a) to find the renormalised tuning parameters and

identify regions of the phase diagram.

3.4.2 Tuning Parameters in d = 3

In this section we solve equation (3.3.34a) to find the renormalised tuning parameters in three

dimensions. This enables us to calculate the correlation lengths and identify the regions of

the phase diagram. In the model of quantum multicriticality we consider here, there is a

correlation length associated with ferromagnetic order ›
3

, and a correlation length associated

with the antiferromagnetic order ›
2

. We calculate these lengths in this section.

We first analyse the situation in three dimensions, where the model is above its upper

critical dimension. The calculation in two dimensions is presented in Section 3.4.5, where

complications arise due to the marginal nature of the antiferromagnetic modes.

In three dimensions we may adapt the methods presented in Section 2.4.2. Solving equation

(3.3.34a) using an integrating factor we find

R
2

(b) = ”
2

+ 4(n
2

+ 2)
⁄

ln b

0

dxe≠2xũ
2

(ex)f (2)

2

1
”

2

(ex), T
2

e2x
2

+ 4n
3

⁄
ln b

0

dxe≠2xw̃
3

(ex)f (2)

3

1
”

3

(ex), T
3

e3x
2

,

(3.4.14)

and

R
3

(b) = ”
3

+ 4(n
3

+ 2)
⁄

ln b

0

dxe≠2xũ
3

(ex)f (2)

3

1
”

3

(ex), T
3

e3x
2

+ 4n
2

⁄
ln b

0

dxe≠2xw̃
2

(ex)f (2)

2

1
”

2

(ex), T
2

e2x
2

,

(3.4.15)

where Ri(b) © b≠2”i(b). We follow the arguments of Section 2.4.2 and split Ri(b) into a zero-

temperature component and temperature-dependent contributions arising from each mode.

92



We use the notation that

Ri(b) = �i(b) + R
(T )

i,3 (b) + R
(T )

i,2 (b), (3.4.16)

where R
(T )

i,j (b) is the temperature-dependent contribution to Ri(b) arising from interactions

with „j modes.

Here the zero temperature components are given by

�i(b) = ”i + 4(ni + 2)
⁄

ln b

0

dxe≠2xũi(ex)f (2)

i

1
�i(ex)e2x, 0

2

+ 4nj

⁄
ln b

0

dxe≠2xw̃j(ex)f (2)

j

1
�j(ex)e2x, 0

2
.

(3.4.17)

The temperature dependent components are given by

R
(T )

i,i (b) = 4(ni + 2)
⁄

ln b

0

dxe≠2xũi(ex)
Ë
f

(2)

i

1
Ri(ex)e2x, Tie

zix
2

≠ f
(2)

i

1
Ri(ex)e2x, 0

2È
,(3.4.18)

and

R
(T )

i,j (b) = 4nj

⁄
ln b

0

dxe≠2xw̃j(ex)
Ë
f

(2)

j

1
Rj(ex)e2x, Tje

zjx
2

≠ f
(2)

j

1
Rj(ex)e2x, 0

2È
. (3.4.19)

Just as in Section 2.4.2, by subtracting f
(2)

i (Ri, 0) instead of f
(2)

i (�i, 0) in these equations we

are neglecting corrections of quadratic order in the interactions.

The zero-temperature component can be calculated by adapting the methods that lead to

equation (2.4.4). The right hand side of equation (3.4.17) is expanded for small values of �,

using that f (2) (y, 0) ¥ f (2) (0, 0) ≠ yf (4) (0, 0). In the limit b æ Œ we find that

�i(b æ Œ) © ri = ”i

S

U1 ≠ ũi
4(ni + 2)f (4)

i (0, 0)
d + zi ≠ 4

T

V ≠ ”jw̃j

4njf
(4)

j (0, 0)
d + zj ≠ 4 . (3.4.20)

When calculating the temperature-dependent contributions we note that the integrals
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R
(T )

3,k (b) and R
(T )

2,k are the same but with di�erent coe�cients, where k = 2, 3. We define

R
(T )

3,3 (b) = 4(n
3

+ 2)ũ
3

L
3

(b), (3.4.21)

R
(T )

3,2 (b) = 4n
2

w̃
2

L
2

(b), (3.4.22)

R
(T )

2,2 (b) = 4(n
2

+ 2)ũ
2

L
2

(b), (3.4.23)

and

R
(T )

2,3 (b) = 4n
3

w̃
3

L
3

(b). (3.4.24)

The integrals are

Li(b) =
⁄

ln b

0

dxe≠(1+zi)
Ë
f

(2)

i

1
Ri(ex)e2x, Tie

zix
2

≠ f
(2)

i

1
Ri(ex)e2x, 0

2È
, (3.4.25)

for i = 3, 2, which have been investigated in Section 2.4.2. They have been shown to be

lim
bæŒ

Li(b) =

Y
___]

___[

c
(QC)

d,zi
T (d+zi≠2)/zi

i if ri π T 2/zi

i .

c
(F L)

d,zi
T 2

i r(d≠zi≠2)/2 if ri ∫ T 2/zi

i .

(3.4.26)

As in Chapter 2, the correlation lengths are calculated as ›≠2

i = limbæŒ Ri(b). These have

di�erent expansions in four regions of the phase diagram, separated by the two crossovers

r
3

≥ T 2/3

3

and r
2

≥ T
2

. These are the same crossovers predicted by the scaling analysis in

Section 3.2. We use the same notation as in that section, and denote the four regions (a)

through (d). We now list the correlation lengths in these regions.

Region (a): r
3

< T 2/3

3

and r
2

< T
2

94



In this region, both types of order are quantum critical. The correlation lengths are given by

›≠2

3

= r
3

+ ũ
3

n
3

+ 2
31/2fi2

�
34

3

4
’

34
3

4
T 4/3

3

, and (3.4.27)

›≠2

2

= r
2

+ w̃
3

n
3

31/2fi2

�
34

3

4
’

34
3

4
T 4/3

3

. (3.4.28)

The T 3/2

2

terms from the „
2

modes are sub-leading, and not written here. This region should

be split into four regions depending on whether each correlation length is dominated by the

temperature-independent or temperature-dependent parts. The antiferromagnetic correlation

length acquires the temperature-dependence usually associated with ferromagnetism in this

regime, due to interactions with quantum critical „
3

modes.

Region (b): r
3

< T 2/3

3

and r
2

> T
2

In this region, only the ferromagnetic modes are quantum critical, but the antiferromagnetic

correlation length is a�ected by interactions with these modes. The correlation lengths are

given by

›≠2

3

= r
3

+ ũ
3

n
3

+ 2
31/2fi2

�
34

3

4
’

34
3

4
T 4/3

3

, and (3.4.29)

›≠2

2

= r
2

+ w̃
3

n
3

31/2fi2

�
34

3

4
’

34
3

4
T 4/3

3

. (3.4.30)

The T 2

2

terms from the „
2

modes are sub-leading, and not written here. This region should

be split into two regions depending on whether the ferromagnetic correlation length is dom-

inated by r
3

or T 4/3

3

. The antiferromagnetic correlation length is always dominated by r
2

in

this region, but the temperature-dependent term has the exponent usually associated with

ferromagnetism.

Region (c): r
3

> T 2/3

3

and r
2

< T
2

In this region, only the antiferromagnetic modes are quantum critical, but the ferromagnetic
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correlation length is a�ected by interactions with these modes. The correlation lengths are

given by

›≠2

3

= r
3

+ w̃
2

n
2

(2fi)1/2 fi
’

33
2

4
T 3/2

2

, and (3.4.31)

›≠2

2

= r
2

+ ũ
2

n
2

+ 2
(2fi)1/2 fi

’
33

2

4
T 3/2

2

. (3.4.32)

The T 2

3

terms from the „
3

modes are sub-leading, and not written here. This region should

be split into two regions depending on whether the antiferromagnetic correlation length is

dominated by r
2

or T 3/2

2

. The ferromagnetic correlation length is always dominated by r
3

in

this region, but the temperature-dependent term has the exponent usually associated with

antiferromagnetism.

Region (d): r
3

> T 2/3

3

and r
2

> T
2

This is a Fermi liquid region, where the correlation lengths are given by

›≠2

3

= r
3

+ 2(n
3

+ 2)
3fi

ũ
3

T 2

3

r≠1

3

+ n
2

6 w̃
2

T 2

2

r
≠1/2

2

, and (3.4.33)

›≠2

2

= r
2

+ (n
2

+ 2)
6 ũ

2

T 2

2

r
≠1/2

2

+ 2n
3

3fi
w̃

3

T 2

3

r≠1

3

. (3.4.34)

(3.4.35)

3.4.3 Ginzburg Criterion in d = 3

There are two phase transitions in the phase diagram of a material described by our model,

into the ferromagnetic and antiferromagnetic phases. We may estimate the boundaries of the

ordered phases as the temperature where the correlation lengths diverge. For the ferromagnetic

phase, this is the line where

T
(c)

3

= 1
÷

3

S

U ≠r
3

ũ
3

n3+2

3

1/2fi2 �
1

4

3

2
’

1
4

3

2

T

V
3/4

, (3.4.36)
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which does not depend on whether the antiferromagnetic modes are quantum critical or Fermi

liquid-like.

Adapting the arguments of Section 2.4.2, the Hertz-Millis action is only applicable when

the classical interaction term v can be treated perturbatively, which is not the case close to

the transition into the ferromagnetic ordered phase. The Ginzburg criterion gives the region

around this estimated ordered-phase boundary where the Gaussian fixed point of the RG flow

no longer describes the physics of the system. In this model the e�ective classical coupling for

the Ên = 0 mode for „
3

is v
3

= u
3

T . This can be written as v
3

= u3
÷3

÷
3

T which is v
3

= ũ
3

T
3

.

The Ginzburg temperature T
(G)

3

can then be found from

T
(G)

3

≠ T
(c)

3

T
(c)

3

¥
ũ

3

31/2fi2

1
T (c)

3

2
2/3

(n
3

+ 2)�
1

4

3

2
’

1
4

3

2 . (3.4.37)

The boundary of the antiferromagnetically ordered phase can be estimated as the line at

which the correlation length diverges, which has di�erent forms depending on whether the

ferromagnetic modes are quantum critical or Fermi-liquid like. The critical temperature is

given by

T
(c)

2

=

Y
____]

____[

1

÷3

5
≠r23

1/2fi2

w̃3n3�( 4
3)’( 4

3)

6
3/4

in region (a),

1

÷2

5
≠ r2fi(2fi)

1/2

ũ2(n2+2)’( 3
2)

6
2/3

in region (c).
(3.4.38)

The Ginzburg temperature upon approaching the antiferromagnetic phase can be also be

found, by considering the e�ective classical coupling for the Ên = 0 mode for „
2

. This is

v
2

= u
2

T , which is v
2

= ũ
2

T
2

. This Ginzburg temperature is

T
(G)

2

≠ T
(c)

2

T
(c)

2

=

Y
_____]

_____[

1
÷2
÷3

2
2

ũ22
3

1/2fi2
1

T (c)
3

22/3

w̃3n3�( 4
3)’( 4

3) in region (a),

ũ2(2fi)

1/2fi

1
T (c)

2

21/2

(n2+2)’( 3
2) in region (c).

(3.4.39)
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h�3i 6= 0 h�2i 6= 0

(a) Regions where thermodynamic properties are
di�erent

h�3i 6= 0 h�2i 6= 0

(b) Regions where the dominant contributions to
the correlation lengths are di�erent

Figure 3.5: Phase diagram of a quantum multicritical point in d = 3, with r
3

= g + r and
r

2

= g≠r. Figure 3.5a shows the main regions of the phase diagram where the thermodynamic
properties are di�erent. Figure 3.5b further subdivides regions (a), (b) and (c) into sub-regions
where the dominant contributions to the correlation lengths are di�erent. The regions and
their crossovers are explained in the main text.

This again depends on whether the ferromagnetic modes are quantum critical or Fermi-liquid

like.

3.4.4 Phase Diagram in d = 3

Now that we have found the correlation lengths and the boundaries where the Ginzburg

criterion is violated, we can find the possible phase diagrams. These are shown in Figure

3.5. These are derived by setting r
3

= g + r and r
2

= g ≠ r. At fixed g Ø 0, at zero

temperature there is quantum phase transition from a ferromagnetically ordered region to a

disordered region at r = ≠g, and a quantum phase transition from the disordered region into

an antiferromagnetically ordered region at r = g. These two phase transitions coalesce to a

quantum multicritical point at g = 0.

While the phase diagram may just look qualitatively like two quantum critical points

separated by a distance 2g, interactions with quantum critical ferromagnetic modes cause the
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antiferromagnetic correlation length to acquire the temperature-dependence usually associated

with ferromagnetic correlations. This in turn changes the temperature-dependence of the

boundary of the ordered phase, which is protional to T
(c)

2

≥ (r≠g)2/3 in region (c) of the phase

diagram, and T
(c)

2

≥ (r ≠ g)3/4 in region (a). The power law in region (a) is usually associated

with the ferromagnetic phase boundary. The Ginzburg temperature upon approaching the

antiferromagnetic phase is also di�erent in regions (a) and (c). This change of power law is a

consequence of multicriticality.

In Section 3.5 we shall investigate the thermodynamic quantities in each region of the phase

diagram. First, we repeat this analysis in two dimensions to find the possible phase diagrams

in two dimensions.

3.4.5 Tuning Parameters in d = 2

We now turn our attention to the two dimensional model. Due to the presence of antiferro-

magnetic z = 2 modes, this model is marginal and the problems that arise for the d = z = 2

Hertz-Millis theory arise in this case as well.

Due to the marginal nature of the theory, adapting the calculation of Section 2.4.2 is

more di�cult in two dimensions than in three dimensions. In order to proceed we choose

to instead adapt Millis’ original solution [24] for the two dimensional case. This involves

making less accurate approximations for the correlation lengths. As mentioned in Chapter

2, Millis’ original calculation misses the scale-dependence of the zero temperature part of the

tuning parameter in the marginal case. This leads to di�erence in the Ginzburg criterion, of

a logarithmic prefactor.

Millis’ original solution also finds less accurate prefactors for the temperature-dependent

contribution to the renormalised tuning parameter. However, in two dimensions we have

already made approximations involving unknown coe�cients for the interactions ũ
2

and w̃
2

in

equations (3.4.7) and (3.4.10). For this reason we do not worry about the precise coe�cients

of the temperature-dependent part of the correlation lengths in two dimensions.
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In two dimensions, integrating the di�erential equations for the tuning parameters yields

R
2

(b) = ”
2

+ 4(n
2

+ 2)
⁄

ln b

0

dxe≠2xũ
2

(ex)f (2)

2

1
e2xR

2

(ex), T
2

ez2x
2

+ 4n
3

⁄
ln b

0

dxe≠2xw̃
3

(ex)f (2)

3

1
e2xR

3

(ex), T
3

e23x
2

,

(3.4.40)

and

R
3

(b) = ”
3

+ 4(n
3

+ 2)
⁄

ln b

0

dxe≠2xũ
3

(ex)f (2)

3

1
e2xR

3

(ex), T
3

ez3x
2

+ 4n
2

⁄
ln b

0

dxe≠2xw̃
2

(ex)f (2)

2

1
e2xR

2

(ex), T
2

ez2x
2

,

(3.4.41)

where Ri(b) = ”i(b)/b2. We let

R
2

(b) = ”
2

+ 4(n
2

+ 2)ũ
2

L
(d=2)

2

+ 4n
3

w̃
3

L
(d=2)

3

, and (3.4.42)

R
3

(b) = ”
3

+ 4(n
3

+ 2)ũ
3

L̃
(d=2)

3

+ 4n
2

w̃
2

L̃
(d=2)

2

, (3.4.43)

as definitions of L
(d=2)

3

, L
(d=2)

2

, L̃
(d=2)

3

and L̃
(d=2)

2

.

We investigate these functions in the limit that b æ Œ. To do this, we adapt Millis’

method [24] and define special values of b. We define bú
i by ”i(bú

i ) = 1, and bT
i by Ti(bT

i ) = 1.

The Fermi liquid region is defined by bú
i < bT

i which means that at the scale where ”i = 1 the

e�ective temperature is small. The quantum critical region is when this inequality is reversed.

At tree level this is equal to the ri ≥ T 2/zi

i crossover, usually seen at QCP.

Millis’ approximation for dealing with these integrals is to assume that the function f (2) (”(b), T (b))

is independent of ”(b), for ”(b) Æ 1. Scaling stops when ”(b) = 1, and the physical prop-

erties are investigated at this scale. For the region of scaling where T (b) < 1, the function

f (2) (0, T (b)) is approximated by a Taylor series. In the region of scaling where T (b) > 1, which

only occurs in the quantum critical regime, the approximation is that f (2) (0, T (b)) ≥ cT (b),

where c is a constant. We now adapt this to our multicritical model.

We first note that when taking the limit b æ Œ, we may replace upper limit of the integrals
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by ln bú
i . This is because for ”i(b) ∫ 1, the integrands in the L integrals are

f
(2)

i (”i(b), Ti(b)) ≠ f
(2)

i (”i(b), 0) ≥ 1
”2

i (b) . (3.4.44)

These quickly decays to zero, so the dominant contribution to the L integrals come from b < bú
i .

We investigate these equations using equations (3.4.7) and (3.4.10) for ũ
2

(b) and w̃
2

(b), but

assume that the critical behaviour can be captured from the assumption that w̃
3

(b) = b≠1w̃
3

and ũ
3

(b) = b≠1ũ
3

. In Section 3.4.1 we discussed logarithmic corrections to these interactions.

This assumption may lead to logarithmic corrections to the correlation lengths we calculate.

Under this assumption, the integrals L̃
3

(d=2) and L
(d=2)

3

are equal. The integral L
(d=2)

3

has

been tackled by Millis [24], using the approximation that f (2)(”
3

, T
3

) ≥ f (2)(0, 0) from b = 0

to b = bT
3

, and f (2)(”
3

, T
3

) ≥ T
3

from bT
3

to bú
3

. The result is that

L
(d=2)

3

=

Y
___]

___[

c
3F in the Fermi liquid region,

c
3QT

3

+ cÕ
3QT

3

ln
1
bú

3

T 1/3

3

2
in the quantum critical region,

(3.4.45)

where c
3F , c

3Q and cÕ
3Q are constants.

The integral L
(d=2)

2

reduces to an integral tackled by Millis for b > bu defined in Section

3.4.1. As long as bu π bT
2

, we may use Millis’ approximation for this integral. This condition

is that the approximation u
2

(ex) ≥ 1/ ln b becomes valid while the renormalised temperature

Tbz is still less than 1. Using Millis’ approximation

L
(d=2)

2

=

Y
____]

____[

c
2F in the Fermi liquid region,

T2

ln

1
cuT ≠1/2

2

2
Ë
c

2Q + cÕ
2Q ln

1
bú

2

T 1/2

2

2È
in the quantum critical region,

(3.4.46)

where c
2F , cu, c

2Q and cÕ
2Q are constants.

The integral L̃
(d=2)

2

again can only be tackled for b > bw, where above bw, w̃
2

≥ [ln b]≠(n2+2)/(n2+8).

In order to analyse this integral we must assume that bw π bT
2

. In this case, it is straight
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forward to adapt the method of Millis [24] and find that

L̃
(d=2)

2

=

Y
_____]

_____[

c̃
2F in the Fermi liquid region,

T2
Ë

ln

1
cwT ≠1/2

2

2È (n2+2)
(n2+8)

Ë
c̃

2Q + c̃Õ
2Q ln

1
bú

2

T 1/2

2

2È
in the quantum critical region,

(3.4.47)

where c̃
2F , cw, c̃

2Q and c̃Õ
2Q are constants.

The correlation lengths are defined as ›≠2

i = limbæŒ Ri(b), which we now investigate in

each of the regions of the phase diagram.

As in three dimensions, the ferromagnetic modes may be quantum critical or Fermi-liquid

like, independently of the „
2

modes. The requirement for the quantum critical region is

r
3

π T 2/3

3

. When the „
3

modes are in the quantum critical region, the correlation length to

leading order turns out to be independent of the antiferromagnetic modes. It is given by

›≠2

3

≥

Y
___]

___[

2

3

(n
3

+ 2)ũ
3

cÕ
3QT

3
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1

1
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2
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3

π 2

3
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+ 2)ũ
3
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3QT

3

ln
1

1

T3

2
,

r
3

if r
3

∫ 2

3

(n
3

+ 2)ũ
3

cÕ
3QT

3

ln
1

1

T3

2
.

(3.4.48)

If the „
3

modes are in this quantum critical region, then the antiferromagnetic correlation

length acquires some temperature-dependent correction from interactions with ferromagnetic

modes. This is the leading order temperature-dependent correction to the antiferromagnetic

correlation length, so

›≠2

2

≥

Y
___]

___[

r
2

+ 2

3

n
2

w̃
3

cÕ
3QT

3

ln
1

1

T3

2
if r

3

π 2

3

(n
3

+ 2)ũ
3

cÕ
3QT

3

ln
1

1

T3

2
,

r
2

+ 2

3

n
2

w̃
3

cÕ
3QT

3

ln
1

1

r3

2
if r

3

∫ 2

3

(n
3

+ 2)ũ
3

cÕ
3QT

3

ln
1

1

T3

2
.

(3.4.49)

The condition for thermodynamic properties to display behaviour associated with the quantum

critical regime for a single antiferromagnetic quantum critical point is that R(b)T ≠1 π 1, as ex-

plained in Section 2.4. The analogous condition in the multicritical case is that R
2

(b)T ≠1

2

π 1.
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Due to the strong temperature-dependent renormalisation from interactions with the ferromag-

netic modes, we see that in the limit b æ Œ this is not obeyed in the limit T æ 0.

At finite temperatures the antiferromagnetic modes can be quantum critical, as long as
2

3

n
2

w̃
3

cÕ
3Q ln

1
1

T3

2
π 1. Since this is not obeyed in the limit T æ 0, we conclude that there is

no region in the d = 2 phase diagram where both order parameters are quantum critical. To

enable comparison with the d = 3 case, we label the whole region r
3

< T 2/3

3

as region (b).

When the ferromagnetic modes are Fermi liquid-like, the antiferromagnetic correlation

length is not dominated by interactions with ferromagnetic modes. In region (c) of the phase

diagram defined by r
2

< T
2

and r
3

> T 2/3, the ferromagnetic modes are Fermi liquid-like and

the antiferromagnetic modes are quantum critical. In this region,

›≠2

2

=cÕ
2Qũ

2

T
2

ln
Ë
ln

1
1

T2

2È

ln
1

1

T2

2 , and (3.4.50)
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1
1
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2È (n2+2),

(n2+8)
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if r
2

< cÕ
2Qũ

2

T2 ln

Ë
ln

1
1

T2

2È

ln

1
1

T2

2 . If this inequality is reversed,

›≠2

2

=r
2

, and (3.4.52)

›≠2

3

=r
3

+
c̃Õ

2Q

2
T

2

ln
1

T2
r2

2

Ë
ln

1
1

T2

2È (n2+2)
(n2+8)

. (3.4.53)

In this region of the phase diagram the ferromagnetic correlation length is always dominated by

r
3

, but acquires a new temperature-dependence from interactions with the antiferromagnetic

modes.

In region (d) of the phase diagram, defined by r
2

> T
2

and r
3

> T 2/3

3

, the usual Fermi-

liquid behaviour is observed. Here ›≠2

3

= r
3

and ›≠2

2

= r
2

, both with corrections proportional

to T 2.
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3.4.6 Ginzburg Criterion in d = 2

We now use these results to investigate the boundaries of the regions where mean-field theory

fails and the Ginzburg criterion is violated. For the ferromagnetic quantum critical point, we

may use the same calculation as d = 3 and investigate Ri(b) in the limit b æ Œ. We find the

Ginzburg criterion for the ferromagnetic modes is violated when

ũ
3

T (G)

3

= r + 2
3(n

3

+ 2)ũ
3

cÕ
3QT (G)

3

ln
A

1
T (G)

3

B

. (3.4.54)

To calculate the Ginzburg criterion upon approaching the antiferromagnetic phase, we

need to choose a scale b to evaluate the expression ũ
2

(b)T
2

(b) = R
2

(b) at, because ũ
2

(b) decays

logarithmically. We choose to evaluate it at bú
2

, so that ”
2

(bú
2

) = 1. The condition for the

Ginzburg criterion becomes ũ
2

T
2

= (ln bú
2

) R
2

(bú
2

). If the ferromagnetic modes are quantum

critical, this is

ũ
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2

= ln
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1
T (G)

2

B C
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+ 2
32cÕ

3Qw̃
3
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1
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2
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. (3.4.55)

If the ferromagnetic modes are Fermi liquid-like, this is instead

ũ
2

T (G)

2

= ln
A

1
T (G)

2

B
S

WWUr
2

+ cÕ
2Qũ

2
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ln
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ln
3

1

T (G)
2
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3

1

T (G)
2

4

T

XXV . (3.4.56)

3.4.7 Phase Diagram in d = 2

We are now in a position to construct the phase diagram in d = 2, using the solutions of

the renormalised tuning parameter equation and the Ginzburg criterion in Sections 3.4.5 and

3.4.6. The phase diagram is plotted in Figure 3.6 in the r ≠ T plane, where r
3

= g + r and

r
2

= g ≠ r and g > 0. This has a ferromagnetic QCP at r = ≠g and an antiferromagnetic

QCP at r = g. The two QCPs coalesce to a quantum multicritical point at r = 0 when g = 0.

As in the three dimensional case, the phase diagram looks like two quantum critical points
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(a) Crossovers between the Fermi liquid-like and
quantum critical regimes associated with each or-
der parameter

(b) Crossovers between regions where the contri-
butions to the correlation lengths are di�erent

Figure 3.6: Phase diagram of a quantum multicritical point in d = 2, with r
3

= g + r and
r

2

= g ≠ r. The regions and their crossovers are explained in the main text.

separated by a distance 2g. This picture is complicated by the result that when the ferro-

magnetic modes are in the quantum critical regime, the antiferromagnetic modes acquire a

strong temperature-dependent renormalisation. This pushes them out of the quantum critical

regime, meaning we do not simultaneously have quantum critical ferromagnetic and antiferro-

magnetic modes. We split region (b) in the phase diagram into (b
+

), where the antiferromag-

netic correlation length is dominated by temperature, and (b≠), where it is dominated by the

antiferromagnetic tuning parameter r
2

.

In region (b≠) the antiferromagnetic correlation length acquires the temperature-dependence

usually associated with the ferromagnetic correlation length. This in turn changes the power

law of the line on the phase diagram where the Ginzburg criterion is violated upon approaching

the antiferromagnetic QCP.
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3.5 Thermodynamic Quantities

Now that the regions of the phase diagram have been identified in Sections 3.4.4 and 3.4.7, we

calculate the thermodynamic properties near a quantum multicritical point. The specific heat,

thermal expansion, and Grüneisen parameter can be found by analysing equation (3.3.35) for

the free energy. Solving this equation yields

F = ≠
ÿ

i=3,2

ni

2

⁄ Œ

0

dxe≠(d+zi)xf
(0)

i

1
Ri(ex)e2x, Tie

zix)
2

, (3.5.1)

which is simply the sum of the free energies associated with the two types of fluctuation,

weighted by the kinetic coe�cients,

F = 1
÷

3

F
3

+ 1
÷

2

F
2

. (3.5.2)

Here, Fi is the free energy associated with the corresponding z = zi Hertz-Millis quantum

critical point, given by equation (2.4.20). The kinetic coe�cients are taken at their bare

values, ÷
3

= 1 and ÷
2

=
1

c3
c2

2
2

, where c
3

and c
2

are defined in equation (3.3.4).

The only di�erence between the free energy here and the sum of the two free energies in

Chapter 2 is that the temperature-dependence of the correlation lengths has changed. We find

that this does not a�ect the leading order temperature-dependence of the thermal expansion

or the specific heat in any region of the phase diagram.

We may then di�erentiate the free energy for the specific heat and find that C = ÷
3

C
3

+÷
2

C
2

where C
2

and C
3

are the specific heats for a Hertz-Millis QCP defined in equation (2.4.21). In

calculating the thermal expansion, we must know how the two tuning parameters r
2

and r
3

depend on pressure. We assume that both of these parameters depend linearly on the applied

pressure p, so that dr2
dp

= a
2

and dr3
dp

= a
3

are both constants, which are not necessarily of the

same sign. Again, using the results of Section 2.4.4, we may write the thermal expansion as

the sum of the thermal expansion associated with each type of mode, as – = –
3

+ –
2

where
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–
2

and –
3

are the thermal expansions for a Hertz-Millis QCP defined in equation (2.4.4). The

thermal expansion in this equation includes the term ˆ›≠2
i

ˆp
, and so each contribution to the

thermal expansion in the multicritical case should be multiplied by a
2

or a
3

.

Using the results of Section 2.4.4 we find the specific heat and thermal expansion in each

region the phase diagram, and list them in three dimensions in Table 3.1 and in two dimensions

in Table 3.2.

In three dimensions, in region (a) the specific heat is dominated by the T ln
1

1

T

2
term

from the ferromagnetic modes, and the T 3/2 contribution from the antiferromagnetic modes

is subleading. The ferromagnetic contribution to the thermal expansion is also dominated by

the ferromagnetic T 1/3 term over the antiferromagnetic T 1/2 term. In the remaining 3 regions

of the phase diagram, neither the ferromagnetic nor the antiferromagnetic contributions to

the thermal expansion and specific heat can be argued to vanish throughout the whole of the

region. The Grüneisen parameter is the ratio � = –/C. In region (a) of the phase diagram this

is equal to � = a
3

1
T 2/3 ln

1
1

T

22≠1

which is the same as for a ferromagnetic quantum critical

point. In the other three regions, this ratio cannot be reduced to a simple power law.

In two dimensions, in region (b
+

) the specific heat is dominated by the T 2/3 term from

the ferromagnetic modes. The subleading contribution from the antiferromagnetic modes is

T ln
3

1

›≠2
2

4
, which is T ln

1
1

T

2
. The thermal expansion is also dominated by the ferromagnetic

contribution a
3

ln
1

1

T

2
. The subleading antiferromagnetic contribution is T

›2
2

which is 1

ln( 1
T ) .

In the other regions of the phase diagram neither the ferromagnetic contribution nor the

antiferromagnetic contribution to either the thermal expansion or specific heat can be argued

to vanish for the whole of the region. In region (b
+

) the Grüneisen parameter is proportional

to T ≠2/3 ln
1

1

T

2
which is the same for a ferromagnetic QCP in d = 2 in the quantum critical

region. In the other regions of the phase diagram the Grüneisen parameter cannot be written

as a simple power law.
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C –

(a) T ln
1

1

T

2
a

3

T 1/3

(b) T ln
1

1

T

2
≠ Tr

1/2

2

a
3

T 1/3 + a
2

Tr
≠1/2

2

(c) T ln
1

1

r3

2
≠ T 3/2 a

3

Tr≠1

3

+ a
2

T 1/2

(d) T ln
1

1

r3

2
≠ Tr

1/2

2

a
3

Tr≠1

3

+ a
2

Tr
≠1/2

2

Table 3.1: Specific heat and thermal expansion in the regions of the phase diagram in d = 3.
The regions of the phase diagram are explained in the main text.

C –

(b
+

) T 2/3 a
3

ln
1

1

T

2

(b≠) T 2/3 a
3

ln
1

1

T

2
+ a

2

T
r2

(c) Tr
≠1/2

3

+ T ln
1

1

T

2
a

3

Tr
≠3/2

3

+ a
2

ln
1
ln

1
1

T

22

(d) Tr
≠1/2

3

+ T ln
1

1

r2

2
a

3

Tr
≠3/2

3

+ a
2

Tr≠1

2

Table 3.2: Specific heat and thermal expansion in the regions of the phase diagram in d = 2.
The regions of the phase diagram are explained in the main text.

3.6 Conclusions

3.6.1 Summary of Results

By adapting Hertz-Millis theory, in Section 3.3 we constructed a Hertz-Millis model of a

quantum multicritical point in terms of spin-fluctuations alone. We have restricted our analysis

to metallic systems so that the spin-fluctuations are damped according to Hertz-Millis theory,

and only consider materials which have competing ferromagnetism and antiferromagnetism.

We have only analysed the model in two and three spatial dimensions. We used a one-loop

RG procedure, which enabled us to find the regions of the phase diagram and the correlation

lengths in Section 3.4, and the specific heat, thermal expansion and Grüneisen parameter in

Section 3.5.

We find it helpful to think about results in terms of two quantum critical points interacting

with each other, which can be brought together to form the multicritical point. Since the

quartic interaction terms are irrelevant in the RG sense, we find that there is no di�erence

between a quantum bicritical point and a tetracritical point, defined by 4u
2

u
3

> u2

32

and
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4u
2

u
3

< u2

32

respectively. Our main conclusion is that ferromagnetism dominates.

In the region of the phase diagram where both types of order would be expect to be

quantum critical (region (a) in Figure 3.5 in three dimensions and region (b
+

) in Figure 3.6

in two dimensions), ferromagnetism dominates. The specific heat, thermal expansion and

Grüneisen parameter are all dominated by the contribution from the ferromagnetic modes,

and the observed power laws are those associated with a ferromagnetic quantum critical point.

Interactions with quantum critical ferromagnetic modes also cause the antiferromagnetic cor-

relation length to acquire the temperature-dependence usually associated with ferromagnetic

correlations. In three dimensions this changes the boundary of the antiferromagnetically or-

dered phase in a way that suppresses antiferromagnetic order. In two dimensions it changes

the boundary where the Ginzburg criterion is violated upon approaching the antiferromagnetic

QCP. The strong temperature-dependent renormalisation to the antiferromagnetic tuning pa-

rameter pushes the antiferromagnetic modes out of the quantum critical regime in region (b
+

)

of the phase diagram, which a�ects subleading contributions to thermodynamic properties.

3.6.2 Link to Experiments and Outlook

We now look back to the experiments discussed in Section 3.6.2 and compare our results to

them. In Section 3.5 we found that in the presence of quantum critical fluctuations of both

ferromagnetism and antiferromagnetism, ferromagnetism dominates thermodynamic proper-

ties. These results are consistent with the experimental data on NbFe
2

and Ta(Fe
1≠xVx)

2

where the specific heat obeys C ≥ T ln
1

1

T

2
usually associated with three dimensional ferro-

magnetism. To our knowledge no thermal expansion measurements have been performed on

these materials, but we would expect to see the thermal expansion vary as – ≥ T 1/3 and a

Grüneisen parameter obeying � ≥ 1/
1
T 2/3 ln

1
1

T

22
, as would be expected of a ferromagnet in

three dimensions.

Another prediction of this theory is the shape of the boundaries on the phase diagram,

which are predicted in Sections 3.4.4 and 3.4.7. While the phase diagrams of both NbFe
2

and
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Ta(Fe
1≠xVx)

2

are known [4, 8], for both materials there are not enough data points on the

boundary of the antiferromagnetic phase to determine the power law and test the prediction

of the theory.

The theory we have developed appears to be consistent with experimental data on NbFe
2

and Ta(Fe
1≠xVx)

2

, but questions still remain. In the analysis presented here ferromagnetism

seems to dominate everything, so the experimental evidence that resistivity in NbFe
2

and

Ta(Fe
1≠xVx)

2

is dominated by antiferromagnetism is somewhat of a surprise. In Chapter 4 we

solve the Boltzmann transport equation to find the resistivity of the model described in this

chapter and show that the power-law usually associated with the antiferromagnetic QCP does

dominate. We are able to explain why this is the case, and why this power law is actually

stabilised in the presence of ferromagnetic fluctuations.

The results we have derived rely upon the antiferromagnetic ordering wavevector Q being

su�ciently large. There has been some discussion in the literature as to whether the anti-

ferromagnetic wavevector in Nb
1≠yFe

2+y is always finite or whether it smoothly evolves from

zero with doping [7]. In Chapter 4 we show that the observed T 3/2 power law relies upon the

presence of strong scattering at a finite Q.

Another issue that we wish to address is the problems with the model itself. As explained

in Section 2.5, Hertz-Millis theory is hindered by the fact that integrating out the electronic

modes to construct an e�ective theory in terms of spin-fluctuations alone is not a safe thing

to do, as non-analytic terms arise in the e�ective action when a more careful analysis is done.

Despite this, Hertz-Millis theory correctly predicts power laws in many systems [1]. Since the

model we derive in equation (3.3.13) also ignores these non-analytic terms, it is also plagued

by the same illnesses. We must then question to what extent we trust the predictions of this

model.

For the same reason that no true ferromagnetic QCPs exist, we would expect that a true

quantum multicritical point between ferro- and antiferromagnetism could never exist. At some

low temperature the ferromagnetic QCP would be driven first order by the non-analytic terms
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which should exist in the model if the electrons are integrated out more carefully, as in Section

2.5. However, above a typical energy scale induced by these non-analyticities we would expect

the thermodynamic properties of the material to be dominated by quantum critical fluctuations

of both ferromagnetic and antiferromagnetic order. Above this energy scale, we expect our

predictions to hold.

Even though the experimental links suggest our model is to be trusted, in Chapter 5 we

analyse a quantum multicritical model where the non-analytic terms do not arise. Specifically,

we analyse a metamagnetic quantum critical end-point described by the dynamical exponent

z = 3 interacting with a z = 2 antiferromagnetic QCP. Metamagnetic transitions occur at

finite magnetic fields, and these fields wipe out the non-analyticities associated with the fer-

romagnetic QCP. However, the magnetic field adds its own complications so we devote all of

Chapter 5 to an analysis of this model.
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Chapter 4

TRANSPORT NEAR A QUANTUM

MULTICRITICAL POINT

In the previous chapter we demonstrated that at a quantum multicritical point, ferromagnetism

seems to dominate the thermodynamic quantities. Our prediction that the ferromagnetic

contribution dominates the specific heat agrees with experiments on NbFe
2

, Ta(Fe
1≠xVx)

2

and

YbRh
2

Si
2

. In YbRh
2

Si
2

our prediction that the Grüneisen parameter is dominated by the

ferromagnetic term is also seen.

One quantity which cannot be obtained directly from the renormalisation group approach

of the previous chapter is the resistivity, as it is not a simple derivative of the free energy. In

both NbFe
2

and Ta(Fe
1≠xVx)

2

this is seen to obey a fl = fl
0

+ cT 3/2 power law, which would

usually be associated with antiferromagnetic quantum criticality in a disordered system.

The resistivity near quantum critical points is well-understood. In a material near a fer-

romagnetic quantum critical point the resistivity obeys a T 5/3 power law [44]. Near an anti-

ferromagnetic quantum critical point, in perfectly clean systems a T 2 resistivity is expected

whereas in disordered systems a T 3/2 power law is expected at low temperatures. However,

in these disordered systems there is a large crossover region with an almost-linear power law

[45].

If one were to naively suppose that the ferromagnetic scattering process provides a T 5/3

contribution to the resistivity and the antiferromagnetic scattering process provides a T 3/2
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power law, then we could conclude that the antiferromagnetism would dominate, as is experi-

mentally observed. We shall show in this chapter that this justification is flawed. We perform

numerical calculations to investigate the resistivity near a quantum multicritical point in three

dimensions. We shall show that the ferromagnetic fluctuations actually stabilise the T 3/2 power

law, and even in clean systems we expect this power law to hold.

We first discuss the methods involved in calculating the resistivity, and how they have

been applied to quantum criticality. Section 4.1 is a background section where we review the

Boltzmann equation, and how it can be used to find the resistivity. In Section 4.2 we review

the literature documenting the application of the Boltzmann equation to the ferromagnetic

and antiferromagnetic quantum critical points. We also write the equations in a form which we

find convenient to numerically study in subsequent sections. In Section 4.3 we discuss original

research on how the Boltzmann equation can be used to find the resistivity near a quantum

multicritical point. We discuss the results in Section 4.3.2 and conclude by referring back to

the experimental data in Section 4.5.

4.1 The Boltzmann Equation

4.1.1 Origin of the Boltzmann Equation

In this section we discuss the Boltzmann equation, which we use in this chapter to find trans-

port properties near a quantum multicritical point. We begin by discussing the origin of the

transport equation, before discussing how it can be used to find the resistivity. The Boltz-

mann equation gives the change in quasiparticle distribution under applied electric fields. In

this section we follow the arguments of Ziman [46], but restrict our arguments to spatially

homogeneous systems in the absence of temperature gradients or spatially varying chemical

potentials.

Under application of an electric field to a material, the electronic quasiparticles accelerate

along the direction of the field. They continue accelerating until they are scattered into a

113



di�erent state, where the scattering mechanism can be disorder, phonons, or in this case spin-

fluctuations. Once scattered to a new state, they begin their acceleration process again. The

current can be described in terms of an average drift velocity of the electrons, which does not

change over time.

Instead of considering the individual electronic quasiparticles, it is more convenient to con-

sider the quasiparticle distribution function fk which is the number of electronic quasiparticles

with momentum k. The goal is to find a steady-state solution in the presence of external fields

and scattering processes.

In the presence of external fields, the rate of change of the quasiparticles’ wavevectors is

given by

dk

dt
= e

~

3
E + 1

c
vk · H

4
, (4.1.1)

and so in a small time interval t, the wavevector k of a particle changes to k+ k̇t. This means

that fk (t) = fk≠ ˙kt (0), leading to

ˆfk
ˆt

-----fields
= ≠k̇.

ˆfk
ˆk

= ≠ e

~

3
E + 1

c
vk · H

4
rkfk, (4.1.2)

where Òk © ˆ
ˆk .

The scattering processes are characterised by the quantity Pk0kdk0 which is the probability

of scattering from the state k to a state in the vicinity of k0. We can write this in terms of the

intrinsic probability Lk0k which is the probability of the transition if k is full and k0 is empty,

as

Pk0kdk0 = fk (1 ≠ fk0) Lk0k, (4.1.3)
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which enables us to write the scattering rate as

dfk
dt

-----scatt
=

⁄
dk0

Ë
fk0 (1 ≠ fk) Lk

k0 ≠ fk (1 ≠ fk0) Lk0
k

È
. (4.1.4)

The Boltzmann transport equation is the statement that in the steady state, the quasipar-

ticle distribution does not change in time,

dfk
dt

-----fields
+ dfk

dt

-----scatt
= 0, (4.1.5)

for all k. For small external fields we may linearise the Boltzmann equation around the equi-

librium particle distribution f 0

k. Defining gk = fk ≠ f 0

k, we find that the linearised Boltzmann

equation can be written as

e
ˆf 0

k

ˆ‘k
vk.E = dfk

dt

-----scatt
≠ e

~c
(vk · H) .

ˆgk
ˆk

, (4.1.6)

where we have used that vk = 1

~
ˆ‘k

ˆk .

It is more convenient to make the transformation gk = ≠�k
ˆf0

k
ˆ‘k

so that

fk = f 0

k + �k
f 0

k (1 ≠ f 0

k)
kBT

. (4.1.7)

�k can be interpreted as the average extra energy the quasiparticles in state k have, but our

main reason for using this variable is that the resistivity can be calculated from the shape of

�k alone, and does not depend on the overall magnitude.

In terms of �k the linearised Boltzmann equation is

e
ˆf 0

k

ˆ‘k
vk.E = 1

kBT

⁄
dk0P0

k0k [�k0 ≠ �k] + e

~c
(vk · H) .

ˆ

ˆk

C

�k
ˆf 0

k

ˆ‘k

D

. (4.1.8)
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In writing this we have used the principle of microscopic reversibility, which is that

Lk
k0f 0

k0

1
1 ≠ f0

k

2
= Lk0

k f 0

k

1
1 ≠ f0

k0

2
= P0

k0k, (4.1.9)

where the 0 superscript on P means in equilibrium in the absence of external fields, as it

includes the relevant occupation factors.

In this chapter we are only interested in the resistivity of materials under zero external

magnetic field. In this case the Boltzmann equation becomes

ef0

k

1
1 ≠ f0

k

2
vk.E =

⁄
dk0P0

k0k [�k ≠ �k0 ] . (4.1.10)

In this equation all quantities are known except the function �k, which is found by solving

this equation. It is this equation which we shall study where the scattering probabilities P0

k0k

come from the scattering from quantum critical spin-fluctuations.

4.1.2 Resistivity from the Boltzmann Equation

We now describe two methods of calculating the resistivity from the function �k given in the

Boltzmann equation, by again following the arguments of Ziman [46].

Once the Boltzmann equation has been solved for �k, the resistivity can be directly calcu-

lated from the quasiparticle distribution as the net current is given by

J = ‡E = e
⁄

dkvkfk = e

kBT

⁄
dkvkf 0

k

1
1 ≠ f 0

k

2
�k. (4.1.11)

In the case where J is parallel to E and ‡ is a scalar, using fl = 1/‡ we find

fl = E
e

kBT

s
dkvk.n̂f 0

k (1 ≠ f0

k) �k
, (4.1.12)

where n̂ is a unit vector in the direction of the electric field and E = |E|. In general, the
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resultant current may depend heavily on the orientation of the electric field, and may not

necessarily be parallel to the applied electric field. This leads to the conductivity and resistiv-

ity being tensors. However, in this thesis we shall only consider Fermi surfaces such that the

resultant current is parallel to the applied field, which means the o�-diagonal elements of the

conductivity and resistivity tensors will be zero.

From this equation it may look like the magnitude of �k at all points is needed to find

the resistivity. However, it turns out only the shape of �k is needed to find the resistivity.

This can be shown by multiplying equation (4.1.10) by �k and performing an integral over k.

Using that P0

kk0 = P0

k0k we see that the right hand side becomes

⁄
dkdk0P0

kk0 (�k ≠ �k0) �k = 1
2

⁄
dkdk0P0

kk0 (�k ≠ �k0)2 , (4.1.13)

and then the resultant equation can be rearranged for |E| and substituted into the equation

for the resistivity to yield

fl =
kBT

2

s
dkdk0P0

kk0 (�k ≠ �k0)2

(e
s

dkvk.n̂f 0

k (1 ≠ f0

k) �k)2

. (4.1.14)

This is clearly independent of the overall magnitude of the �k, which makes physical sense as

a larger overall � will produce a larger current, whereas the resistivity should not depend on

the size of the current, providing it is still small enough such that the linearised Boltzmann

equation still holds.

In fact, �k can be found directly by considering the resistivity as a functional of �k. The

actual form the quasiparticle distribution takes is the one which minimises the resistivity.

We shall now show this to be the case, again following the arguments of Ziman [46]. The

Boltzmann equation is an equation of the form X = P̂�, where X is a known function, P̂ is

a known scattering operator, and � is the unknown function we wish to find. If we define an
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inner product

È�, �Í ©
⁄

dk�k�k, (4.1.15)

then we see that since P0

kk0 = P0

k0k, the operator P̂ is self-adjoint with respect to this inner

product, meaning
e
�, P̂�

f
=

e
�, P̂�

f
. We also note that since P represents the probability

of scattering, no elements can be negative. This means that
e
�, P̂�

f
Ø 0 for any function �.

If we take the inner product of the Boltzmann equation with �, we find
e
�, P̂�

f
= È�, XÍ.

We consider another function � that satisfies this relation
e
�, P̂�

f
= È�, XÍ, but does not

satisfy the Boltzmann equation, P̂� ”= X. We must have that

0 Æ
e
(� ≠ �) , P̂ (� ≠ �)

f
, (4.1.16)

which after expanding out can be shown to be equal to

0 Æ
e
�, P̂�

f
≠

e
�, P̂�

f
, (4.1.17)

where we have used that
e
�, P̂�

f
= È�, XÍ =

e
�, P̂�

f
.

This is the statement that the function which satisfies the Boltzmann equation is the

function which maximises
e
�, P̂�

f
subject to the constraint that

e
�, P̂�

f
= È�, XÍ. If we

rescale � æ c� and choose c so that this constraint is obeyed, we find c = È�,XÍ
È�, ˆP �Í and so the

function which maximises c2

e
�, P̂�

f
is the function which maximises |È�,XÍ|2

È�, ˆP �Í . This is, the

function which satisfies the Boltzmann equation is the function that minimises

e
�, P̂�

f

|È�, XÍ|2
(4.1.18)

which by comparing with equation (4.1.14) we see is proportional to the resistivity.

In this chapter, we shall be finding the function �k using analytic and numeric techniques.
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We shall use both the Boltzmann equation in the form of equation (4.1.10), and the resistivity

functional of equation (4.1.14) to find the quasiparticle distribution and calculate the resistiv-

ity. Since we have now found the starting point, we move on to finding the resistivity due to

various scattering mechanisms.

4.2 The Three Individual Scattering Mechanisms

In this section we shall review the literature on the three individual scattering mechanisms that

are present near the quantum multicritical point we wish to consider - impurities, ferromagnetic

spin-fluctuations, and antiferromagnetic spin-fluctuations. All three scattering mechanisms

are important at a quantum multicritical point, and we expect to recover the power laws

associated with each type of scattering mechanism independently in certain limits. We first

review impurity scattering in Section 4.2.1, then ferromagnetic scattering in Section 4.2.2, and

antiferromagnetic scattering in Section 4.2.3. We do this such that in Section 4.3 we are able

to analyse the resistivity near a quantum multicritical point.

4.2.1 Impurity Scattering

Scattering from impurities alone is the most simple scattering mechanism we shall review the

literature on. It is also the only situation we shall discuss where the Boltzmann equation can

be solved exactly [46, 47]. In this section we review the standard techniques in some amount

of detail.

In this case, the scattering matrix is

P0

k0k = f 0

k0

1
1 ≠ f 0

k

2
g2

imp” (‘k ≠ ‘k0) , (4.2.1)

where the delta function ensures no energy is lost to the impurities during the scattering
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process - the scattering is elastic. The Boltzmann equation in this situation becomes

ef0

kvk.E = g2

imp
⁄

dk0f 0

k0” (‘k ≠ ‘k0) [�k ≠ �k0 ] . (4.2.2)

To proceed we convert the integral on the right hand side into an integral over an equal-

energy surface. The integral is of the form

⁄
dk” (‘k ≠ ‘) , (4.2.3)

where ‘ is just a constant. Since ˆ‘k
ˆk = ~vk, the velocity vk must be perpendicular to the

equal energy surface. We then integrate over the component perpendicular to the equal energy

surface and find that

⁄
dk” (‘k ≠ ‘) =

j dk

~vk
, (4.2.4)

where the integral is now over all points on the surface, and vk is the magnitude of the velocity

at point k.

Applied to equation (4.2.2), we find that

evk.E = g2

imp
j dk0

~vk0
[�k ≠ �k0 ] , (4.2.5)

where the k0 integral is a over a surface in reciprocal space where ‘k0 = ‘k.

To proceed, we consider a spherical Fermi surface which has the free electron dispersion

‘k = ~2k2

2m
, then E.vk = Evk cos ◊, where ◊ is the angle from the axis of the electric field.

We use the notation vk to mean |vk| as the magnitude of the velocity only depends on the

modulus of k with this dispersion relation. Switching to polar co-ordinates and using that
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k2 = v2

km2/~2 we find

e~3E

m2g2

imp
cos ◊ =

⁄ d◊Õd„Õ

(2fi)3

sin ◊Õ [� (◊, „) ≠ � (◊Õ, „Õ)] . (4.2.6)

Since the left hand side of the equation does not depend on „, we conclude that � is a function

of ◊ only. It turns out that this equation is solved by � (◊) = – cos ◊, with

– = 2fi2e~3E

m2g2

imp
. (4.2.7)

The resistivity can now be calculated from equation (4.1.12). If we substitute in �k =

– cos ◊, and switch to polar co-ordinates, we find that

fl = kBTE

e–

3⁄
dkvkf 0

k

1
1 ≠ f0

k

2
cos2 ◊

4≠1

. (4.2.8)

The function f 0

k (1 ≠ f0

k) is sharply peaked at the Fermi surface, with an area of kBT under-

neath. Using this, we can perform the integral with respect to ‘ and simply evaluate k at the

Fermi surface, where k = kF . Then, we find that

fl = E

e–

A⁄ d◊

(2fi)2

k2

F

~ sin ◊ cos2 ◊

B≠1

, (4.2.9)

and so

fl =
3g2

imp
e2v2

F

. (4.2.10)

This shows that impurity scattering from impurities is independent of temperature. As men-

tioned in Section 1.6, the resistivity of a Fermi liquid is proportional to T 2, which comes from

electron-electron scattering and is not captured in this equation.

We have shown that in the case of impurity scattering, the quasiparticle distribution takes
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the form � (◊) ≥ cos ◊. Using that

fk (‘) = f 0

k (‘) ≠ ˆf 0

k

ˆ‘
�k, (4.2.11)

and that � (◊) ≥ vk.E, we find that

fk (‘) ≥ f0

k (‘ ≠ �) . (4.2.12)

In the case of � = cvk.Ee,

fk (‘) ≥ f0

k (‘ ≠ cvk.Ee) , (4.2.13)

which is physically interpreted as a shifting of the Fermi surface in reciprocal space along the

direction of the electric field.

It is interesting to note that it can be analytically shown that �k takes the same form

when the scattering mechanism is elastic and depends only upon the relative angle between

the final and initial states. In that case, the analysis proceeds as above but with g2

imp replaced

by M (‰), where ‰ is the angle between k and k0. This leads to � (◊) = – cos ◊ with

– = (2fi)2 eE~3

m2

3⁄ fi

0

d‰ [1 ≠ cos ‰] sin ‰M (‰)
4≠1

. (4.2.14)

We have demonstrated that the form of the quasiparticle distribution when only disorder is

present is � (◊) ≥ cos ◊, which is interpreted as a shifting of the Fermi surface. The resistivity

is a temperature-independent constant, but as we know from Section 1.6 that the electron-

electron scattering processes lead to a resistivity proportional to T 2.
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4.2.2 Ferromagnetic Spin-Fluctuations

We now review the literature on scattering from ferromagnetic spin fluctuations. This situation

is slightly di�erent from the impurity scattering case as the collisions are inelastic. This system

can still be analysed using standard techniques, using the same methods that can be used to

analyse scattering from phonons [46]. We follow that analysis here, adapted to ferromagnetic

spin fluctuations.

To begin we need to consider the function analogous to �k but for spin-fluctuations, which

we denote �q. Then we need to consider the two processes of absorbing and emitting spin-

fluctuations separately, and may write down that

ḟk
---scatt = 1

kBT

⁄
dk0 (�k + �q ≠ �k0) Pk0

k,q + 1
kBT

⁄
dk0 (�k ≠ �q ≠ �k0) Pk0,q

k , (4.2.15)

where the first term is absorption of a spin-fluctuation, and the second is emission. If we then

assume that the spin-fluctuations stay in equilibrium under the application of an electric field,

then �q = 0 and the spin-fluctuation distribution is given by the Bose distribution n0

q (Ê). In

this case the scattering is

ḟk
---scatt = 1

kBT

⁄
dk0 (�k ≠ �k0) Pkk0 , (4.2.16)

with

Pk,k0 = 2g2

F

�
3

⁄ Œ

0

dÊ
⁄

dq” (k + q ≠ k0) ” (‘k + Ê ≠ ‘k0) n0 (Ê) f 0

k

1
1 ≠ f0

k0

2
⁄‰

3

(q, Ê) .(4.2.17)

Here, ‰
3

(q, Ê) is the ferromagnetic spin susceptibility given by

‰≠1

3

(q, Ê) = r
3

(T ) + c2

3

q2 ≠ iÊ

�
3

c
3

q
, (4.2.18)

for Ê < �
3

c
3

q, and zero otherwise [44]. Note that we do not include the ÷
3

coe�cient of
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Chapter 3, which is only necessary when performing a renormalisation group analysis. We

have assumed that we may treat the spin-fluctuations using an e�ective Gaussian theory, so

the tuning parameter r
3

(T ) is the renormalised tuning parameter of Chapter 3, and it has

acquired some temperature-dependence due to interactions. It is given by r
3

+ a
3

T 3/2.

The resistivity can then be calculated from equation (4.1.14), which Mathon [44] has shown

analytically to lead to a T 5/3 resistivity, under the approximation that �k ≥ cos ◊.

We now deviate from following the literature. We evaluate the integrals in a di�erent order

to the analysis in Mathon [44]. Our aim is not to calculate the resistivity, but to instead write

the resistivity in a form which is convenient to numerically investigate in Section 4.3.

The integral over q (within P0

kk0) can be performed by replacing q by k0≠k everywhere due

to the delta function. It is more convenient to write the remaining two momentum integrals

as integrals over energy, and integrals of momenta over equal energy surfaces. Then we can

simply perform the ‘Õ integral using the delta function to arrive at

2g2

F

�
3

j
dk

j
dk0

⁄ d‘dÊ

vkvk0
(�k ≠ �k0)2 n0 (Ê) f 0 (‘k)

1
1 ≠ f0 (‘k0 + Ê)

2
⁄‰k0≠k (Ê) . (4.2.19)

The next step is to perform the integral over ‘. Since the energy scales associated with magnetic

fluctuations are much less than the Fermi energy, we may use the approximation Ê π ‘F to

find that f (‘) (1 ≠ f (‘ + Ê)) ≥ f (‘) (1 ≠ f (‘)). This function is sharply peaked at the Fermi

surface. We subsequently take k and k0 to be points on the Fermi surface, and perform the ‘

integral using that

⁄
d‘kf 0

‘

1
1 ≠ f0

‘+Ê

2
= Ê

1
n0(Ê) + 1

2
, (4.2.20)

to arrive at

⁄
dkdk0P0

kk0 (�k ≠ �k0)2 =

2g2

F

�
3

j dk

~vk

j dk0

~vk0

⁄
dÊ (�k ≠ �k0)2 Ên0 (Ê)

1
n0 (Ê) + 1

2
⁄‰k0≠k (Ê) .

(4.2.21)
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We next perform the integral over the modulus of the k on the denominator of equation

(4.1.14) in the same way as in the impurity scattering case, as

e
⁄

dkvk.n̂f 0

k

1
1 ≠ f0

k

2
�k = ekBT

j dk

~vk
vk.n̂�k. (4.2.22)

We may now write the resistivity as

fl = 1
2e2

i dk
vk

i dk0

vk0
F

3

(k,k0) (�k ≠ �k0)2

1i dk
vk
vk.n̂�k

2
2

, (4.2.23)

where

F
3

(k,k0) = 2g2

F

kBT�
3

⁄ c3q�3

0

dÊ
Ê2n0 (Ê) (n0(Ê) + 1) /c

3

q�
3

(r
3

(T ) + c2

3

q2)2 + (|Ê| /�
3

c
3

q)2

, (4.2.24)

with q = k0 ≠ k.

Since k0 and k are both points on the Fermi surface, and the scattering only depends on

the distance |q| between them (or equivalently the angle between the two points), the trial

function �k ≥ cos ◊ used by Mathon must be correct.

We shall find that the antiferromagnetic spin-fluctuations can be written in a similar form,

which allows us to combine the two in Section 4.3.

4.2.3 Antiferromagnetic Spin-Fluctuations

We now discuss the literature relating to scattering near an antiferromagnetic quantum critical

point. We review the results of the numerical studies performed in the literature, before

following the literature and writing the resistivity in a form which we find easiest to adapt in

the next section.

In contrast to the other two scattering mechanisms discussed, scattering from antiferromag-

netic spin-fluctuations does not exclusively depend on the angle between the two vectors on

the Fermi surface. This is because the antiferromagnetic fluctuations are strongest around the
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Figure 4.1: Hot lines on the Fermi surface near an antiferromagnetic quantum critical point,
and the deviation from the equilibrium quasiparticle distribution. Here t is temperature, and
x is the ratio g2

imp/2g2

A. The quasiparticle distribution � (◊) is shown as a function of the
azimuthal angle. The top graphs show this for a dirty system, and the bottom curves show
this for a clean system. Taken from Ref. [45].

ordering wavevector Q, and there is large scattering between lines on the surface connected by

this wavevector. Consequently, near antiferromagnetic quantum criticality the quasiparticle

distribution does not necessarily take the �k ≥ cos ◊ form of the previous sections.

The conclusion of the literature (see Ref. [45]) is that there are hot lines on the Fermi

surface which are connected by the ordering wavevector Q where scattering is strongest, as

illustrated in Figure 4.1. In clean systems, in order to minimise the resistivity, the quasiparticle

distribution equilibrates between the two hot lines, and �k becomes zero around them, which

leads to a T 2 resistivity. The situation in dirty metals with antiferromagnetic spin-fluctuations

is rather di�erent, however. At low enough temperatures the scattering from disorder is much

larger than the spin-fluctuations, and the resistivity is minimised by �k ≥ cos ◊. When the

quasiparticle distribution takes this form in the presence of antiferromagnetic spin-fluctuations,

a novel fl ≥ T 3/2 power law is observed. At higher temperatures, however, the spin-fluctuations

become the dominant scattering mechanism and the hot lines are avoided. Rosch [45] has

shown that this crossover leads to an almost linear power law. The results of numerical

calculations by Rosch [45] of the e�ective resistivity exponent are shown in Figure 4.2.

In this thesis, we shall use the most simple model of antiferromagnetic spin-fluctuations,
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Figure 4.2: Numerical results of the e�ective resistivity exponent near an antiferromagnetic
quantum critical point, where x is the ratio g2

imp/2g2

A. An e�ective exponent of 2 is found in
the cleanest systems, while 3/2 is observed at low temperatures in dirty systems. There is a
large crossover region where the exponent is approximately 1 in dirty systems. Taken from
Ref. [45].

where we have a spherical Fermi surface, and the antiferromagnetic ordering wavevector is

parallel to the electric field. The magnetotransport of various di�erent models has been in-

vestigated in the literature and the results were found to be qualitatively independent of the

specific model [48].

We now follow the literature [49, 45, 48] and follow steps enabling us to write the scattering

from antiferromagnetic spin-fluctuations in a similar form to equation (4.2.23). We begin the

derivation in generic terms and note when we are using a specific model.

The derivation of the resistivity functional follows the same steps as the ferromagnetic

spin-fluctuation case. We use that

‰≠2

2

(q, Ê) = r
2

(T ) + c
2

q2 ≠ iÊ

�
2

, (4.2.25)

where r
2

(T ) is the renormalised tuning parameter, given by r
2

(T ) = r
2

+ a
2

T 3/2 as shown in
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the previous chapter. We find that

fl = 1
2e2

i dk
vk

i dk0

vk0
F

2

(k,k0) (�k ≠ �k0)2

1i dk
vk
vk.n̂�k

2
2

, (4.2.26)

where

F
2

(k,k0) = 2g2

A

�
2

kBT

⁄
�2

0

dÊ
Ê2n0 (Ê) (n0(Ê) + 1) /�

2

1
r

2

(T ) + c2

2

(q ± Q)2

2
2

+ (|Ê| /�
2

)2

, (4.2.27)

where q = k0 ≠ k. We see that the scattering is largest when two points on the Fermi surface

are separated by Q.

In order to proceed we follow the analysis of Hlubina and Rice [49] and approximate the

Ê integral analytically. If we change variables to w = Ê/�
2

kBT , we find

F
2

= 2g2

A

⁄
1/T2

0

dw
ew

(ew ≠ 1)2

w

y2

2

+ w2

, (4.2.28)

where T
2

= kBT/�
2

and y
2

=
1
r

2

(T ) + c2

2

(q ± Q)2

2
/T

2

. Since we wish to analyse this at low

temperatures, and since the integral is not very sensitive to the upper cut-o�, we change the

upper limit of this integral to Œ.

Hlubina and Rice [49] investigated this integral in the two limits y
2

æ ±Œ and stitched

together the answers to give an analytic function which has the same behaviour in these

limits. First, we consider the case y
2

æ Œ. At low w, y
2

dominates the denominator of

the integrand, and at large w (w > y
2

), the integrand is suppressed by a factor ≥ e≠w and

contributes a negligible amount to the integral. In this limit we approximate

F
2

≥ 2g2

A

1
y2

2

⁄ Œ

0

dw
w2ew

(ew ≠ 1)2

= g2

A

fi2

3y2

2

. (4.2.29)

In the limit y
2

æ 0, the integral is dominated by low w, so we can expand ew

(ew≠1)

2 ≥ 1

w2 , and
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find that

F
2

≥ 2g2

A

⁄ Œ

0

dw
1

w2 + y2

2

= g2

A

fi

2y
2

. (4.2.30)

We can approximate the actual integral by a function which has the same leading order

expansions in both limits. This is

F
2

(y
2

) ≥ 2g2

A

fi2

y
2

(3y
2

+ 2fi) , (4.2.31)

and so

F
2

(R
2

, T ) ≥ 2g2

A

fi2T 2

2

R
2

(3R
2

+ 2fiT
2

) , (4.2.32)

where R
2

= r
2

(T ) + c2

2

(q ± Q)2.

At this point we deviate from the literature, and progress further analytically for our specific

model of a spherical Fermi surface with an electric field parallel to Q. In this situation, by

symmetry the quasiparticle distribution is a function of the angle from the electric field ◊

alone, and we are able to perform the polar integrals in the numerator of equation (4.2.26)

exactly. Letting �k = � (◊), the numerator can be written as

j dk

vk

dk0

vk0
F

2

(k,k0) (� (◊) ≠ � (◊Õ))2

=
⁄ d◊d„d◊Õd„Õ

(2fi)6

k4

F sin ◊ sin ◊Õ

v2

F

F
2

(◊, „; ◊Õ, „Õ) (� (◊) ≠ � (◊Õ))2

,

(4.2.33)

where kF is the radius of the Fermi surface. Since F
2

only depends on „ ≠ „Õ we may shift the

„ integral and perform the „Õ integral by multiplying by 2fi. We must then investigate

m4v2

F

~4 (2fi)5

⁄
d◊d◊Õd„ sin ◊ sin ◊ÕF

2

(◊, ◊Õ, „) (� (◊) ≠ � (◊Õ))2

, (4.2.34)

where the only dependence on the angles in F
2

is through (k0 ≠ k ± Q)2. As Rosch [45] does,
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we choose to parametrise Q = 2kF cos ◊H ẑ so that the hot lines are located at angles ◊H and

fi ≠ ◊H around the Fermi surface. Using this we may write that

(q ± Q)2 = 2k2

F

3
1 ≠ cos ◊ cos ◊Õ ≠ sin ◊ sin ◊Õ cos „

+ 2 cos ◊H (cos ◊H ± (cos ◊ ≠ cos ◊Õ))
4

,

(4.2.35)

which means that we can write R
2

= r
2

(T ) + c2

2

(q ± Q)2 © a ≠ b cos „ where a and b depend

on ◊ and ◊Õ. We are now able to evaluate the polar integral exactly. We analyse

⁄ d„

2fi
F

2

(◊, ◊Õ, „) = 2g2

Afi2T 2

2

3

⁄ fi

≠fi

d„

2fi

1
(a ≠ b cos „)

1
a ≠ b cos „ + 2fi

3

T
2

2 , (4.2.36)

by changing variables to z = ei„ so that cos „ = (z + z≠1) /2, and performing the integral

around the unit circle. This integral can be written as

F
2

(◊, ◊Õ) = 2g2

A

4fi2T 2

2

3

j dz

2fii

z
1
z2 ≠ 2a

b
z + 1

2 1
z2 ≠ 2a+”

b
z + 1

2 , (4.2.37)

where ” © 2fi
3

T
2

. The integrand has four poles on the real axis at a
b

±
Ú1

a
b

2
2

≠ 1 and a+”
b

±
Ú1

a+”
b

2
≠ 1. Since a > b, the two poles with the negative roots are within the unit circle.

Using the residue theorem we can evaluate this integral and after a significant amount of

algebra we find it is equal to

F
2

(◊, ◊Õ) = g2

AfiT
2

S

WWU
1Ô

a2 ≠ b2

≠ 1
Ú1

a + 2fi
3

T
2

2
2

≠ b2

T

XXV , (4.2.38)

where a = r
2

(T )+2c2

2

k2

F [1 ≠ cos ◊ cos ◊Õ + 2 cos ◊H (cos ◊H ± (cos ◊ ≠ cos ◊Õ))] and b = 2c2

2

k2

F sin ◊ sin ◊Õ.

We also evaluate the denominator in equation (4.2.26) as

j dk

vk
vk.n̂�k =

⁄ d◊

(2fi)2

m2v2

F

~2

sin ◊ cos ◊� (◊) , (4.2.39)
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so that ultimately

fl = 1
2e2v2

F

s
d◊d◊Õ sin ◊ sin ◊ÕF

2

(◊, ◊Õ) (� (◊) ≠ � (◊Õ))2

[
s

d◊ sin ◊ cos ◊� (◊)]2
. (4.2.40)

Impurities can be taken into account by adding scattering from impurities using the meth-

ods of Section 4.2.1. The resulting scattering matrix is taken to be the sum of the two individual

scattering matrices. This leads to

fl = 1
2e2v2

F

s
d◊d◊Õ sin ◊ sin ◊Õ

Ë
g2

imp

+ F
2

(◊, ◊Õ)
È

(� (◊) ≠ � (◊Õ))2

[
s

d◊ sin ◊ cos ◊� (◊)]2
. (4.2.41)

Rosch [45] numerically solved this equation by evaluating the full polar integral in equation

(4.2.32) to find the quasiparticle distributions shown in Figure 4.1 and the e�ective resistivity

exponent in Figure 4.2.

4.3 Multicritical Scattering

Now that we have reviewed the literature on the three individual scattering mechanisms, and

written the resistivity associated with each mechanism in a form which we find simple to

program numerically, we begin our original analysis of a quantum multicritical point. In this

section we consider transport near a quantum multicritical point by considering the Boltzmann

equation where electronic quasiparticles scatter from both ferromagnetic and antiferromagnetic

spin fluctuations, and also scatter from impurities. We shall find the e�ective power law of

the resistivity in a material with a quantum multicritical point.

With the results of the previous sections in mind, we may be able to predict the answers

without performing any calculations. In the presence of multiple scattering mechanisms, the

quasiparticle distribution rearranges itself to minimise the resistivity. Scattering from both

ferromagnetic fluctuations and disorder favours the � (◊) ≥ cos ◊ distribution function, whereas

scattering from antiferromagnetic fluctuations favours a distribution where the hot lines are
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avoided. In the limit of strong disorder and low temperature, we expect � (◊) ≥ cos ◊ to

minimise the resistivity associated with impurity scattering. In this limit, we expect the

ferromagnetic scattering to give a contribution to the resistivity proportional to T 5/3, and

the antiferromagnetic scattering to give a stronger contribution proportional to T 3/2. So, at

the lowest temperatures we expect the antiferromagnetic scattering to dominate the e�ective

power law of the resistivity. However, with just impurities and antiferromagnetism alone, there

is a large region of crossover behaviour when the strength of the antiferromagnetic scattering

becomes comparable to the disorder. In the presence of ferromagnetic scattering we expect

this crossover behaviour to be even more rich.

To test these predictions and investigate the crossover behaviour, we now analyse the

Boltzmann equation with these three scattering mechanisms.

4.3.1 The Model

In the presence of the three scattering terms, the Boltzmann equation becomes

e
ˆf 0

k

ˆ‘k
vk.E = 1

kBT

⁄
dk0

5
P imp

k,k0 + PF
k,k0 + PA

k,k0

6
(�k ≠ �k0) , (4.3.1)

with

P imp
k,k0 = f 0

k0

1
1 ≠ f0

k

2
g2

imp” (‘k ≠ ‘k0) , (4.3.2)

PF
k,k0 = g2

F

�
3

⁄ Œ

0

dÊ” (‘k + Ê ≠ ‘k0) n0 (Ê) f 0

k

1
1 ≠ f0

k0

2
⁄‰

3

(k0 ≠ k, Ê) , (4.3.3)

PA
k,k0 = g2

A

�
2

⁄ Œ

0

dÊ” (‘k + Ê ≠ ‘k0) n0 (Ê) f 0

k

1
1 ≠ f0

k0

2
⁄‰

2

(k0 ≠ k, Ê) . (4.3.4)

Since the function ˆf0
k

ˆ‘k
is sharply peaked at the Fermi surface, we may integrate the Boltzmann

equation over ‘k, and following the analysis of the previous section we find that

evk.E =
j dk0

~vk0
(�k ≠ �k0)

Ë
g2

imp + F
3

(k,k0) + F
2

(k,k0)
È

, (4.3.5)
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where F
2

and F
3

are defined in Sections 4.2.3 and 4.2.2, and k and k0 are vectors on the Fermi

surface. The di�erence between the F
2

and F
3

functions used in this model and the models

in the previous section, is that the temperature dependences of r
2

and r
3

may be di�erent.

The ferromagnetic tuning parameter is unchanged, but when the ferromagnetic modes are

quantum critical the temperature dependence of the antiferromagnetic tuning parameter must

be r
2

(T ) = r
2

+ aÕ
2

T 4/3.

The resistivity can be calculated either directly from �k as in equation (4.1.12), or from

the functional

fl = 1
2e2

i dk
vk

i dk0

vk0

5
g2

imp + F
2

(k,k0) + F
3

(k,k0)
6

(�k ≠ �k0)2

1i dk
vk
vk.n̂�k

2
2

, (4.3.6)

which �k minimises. We now analyse this model numerically.

4.3.2 Numerical Analysis

In order to calculate the temperature dependence of the resistivity, we numerically solve

the Boltzmann equation to find �k. We restrict ourselves to a spherical Fermi surface with

quadratic dispersion ‘k = ~2k2

2m
, where m is the e�ective mass of the electronic quasiparticles at

the Fermi surface. We also consider a uniform electric field parallel to the antiferromagnetic

ordering wavevector Q. In this case, �k only depends on the angle from the electric field (◊)

and is independent of the polar angle („).

The general strategy is to calculate � (◊) from the solution of the Boltzmann equation

given by equation (4.3.1) and then calculate the resistivity from equation (4.3.6), noting that

this depends only on the shape of � (◊) and not the overall magnitude, and is thus more stable

to numerical errors than if we use equation (4.1.12), where the result depends on the ampli-

tude. We then calculate the resistivity at a series of points to find the e�ective temperature

exponents.
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We are able to write the Boltzmann equation for the model in Section 4.3.1 as

– cos ◊ =
⁄ fi

0

d◊ÕF (◊, ◊Õ) (� (◊) ≠ � (◊Õ)) , (4.3.7)

where – = (2fi)2 eE~3, and F (◊, ◊Õ) = g2

imp + F
2

(◊, ◊Õ) + F
3

(◊, ◊Õ). This can be rearranged

into the form

� (x) = f (x) +
⁄ fi

0

dtK (x, t) � (t) , (4.3.8)

where f(x) = – cos x/G(x), and K(x, t) = F (x, t)/G(x) with G(x) =
s fi

0

dtF (x, t). This is

a Fredholm equation of the second kind [50]. By substituting this equation into itself in an

iterative manner, we find that
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0

dt
1

dt
2

K (x, t
1

) K (t
1

, t
2

) f (t
2

)

+
⁄ fi

0

⁄ fi

0

⁄ fi

0

dt
1

dt
2

dt
3

K (x, t
1

) K (t
1

, t
2

) K (t
2

, t
3

) f (t
3

) + ...,

(4.3.9)

which can be written as

� (x) =
ÿ

n

fn (x) , (4.3.10)

with f
0

(x) = f (x) and fn+1

(x) =
s fi

0

dtK (x, t) fn (t).

This is the formula we use to find � (x) numerically. Calculating K (x, t) is computationally

very time-consuming, whereas calculating these integrals is relatively inexpensive. Numerically

we find that the series converges relatively quickly and typically we only need to calculate

approximately 10 terms before we conclude that the series has converged.

Our strategy once the quasiparticle distribution has been calculated is to evaluate the re-

sistivity using equation (4.3.6), which is independent of the coe�cient of � (◊). Calculating

the resistivity from equation (4.1.12) would be slightly more simple numerically, however we

find that the coe�cient of � (◊) is very sensitive to the number of points we numerically calcu-
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late the function at, but the overall shape is much less sensitive. This means that the results

from calculating the resistivity from equation (4.3.6) are much more stable under changing

the accuracy of the program.

We then calculate the resistivity at a variety of di�erent temperatures, and attempt to

find an e�ective exponent by fitting the results to fl(T ) ≠ fl
0

≥ aT –(T ), where fl
0

is the zero-

temperature resistivity, and the ultimate aim of the program is to find –(T ) at various points

on the phase diagram. The zero-temperature resistivity is given by the impurity scattering

alone, and is

fl
0

=
g2

imp
2e2v2

F

s fi
0

d◊
s fi

0

d◊Õ sin ◊ sin ◊Õ (cos ◊ ≠ cos ◊Õ)2

(
s fi

0

d◊ sin ◊ cos2 ◊)2

=
3g2

imp
e2v2

F

. (4.3.11)

We give further details of the numerical methods in Appendix B.

4.4 Numerical Results

We now present the results of the numerical calculations. We begin with a discussion on the

accuracy of our program and demonstrate that we can reproduce the known results associated

with ferromagnetic and antiferromagnetic scattering in the relevant limits. Then we analyse

the equations directly above the quantum multicritical point in Section 4.4.2.

4.4.1 Precautions and Accuracy

There are several parameters in the code which we set to one.

We set �
3

= c
3

kF = 1. For a single quantum critical point this amounts to a rescaling of the

units of momentum and temperature. We then set c
2

kF = 1. This amounts to a rescaling of

the tuning parameter r
2

(T ), the constant �
2

, and the antiferromagntic scattering strength gA.

We now set �
2

= 1, as we find it does not qualitatively a�ect the numeric results. Following

Rosch [48] we set a
2

= a
3

= 1, with the understanding that for a single antiferromagnetic
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quantum critical point this does not a�ect the low-temperature properties in zero magnetic

field. We calculate the resistivity in units of (2e2v2

F )≠1.

There are a large number of parameters we can vary to increase the accuracy of the com-

puter program, but the computational time also increases. The accuracy of the final result is

most sensitive to the size of the matrix F (◊, ◊Õ). Increasing the size increases the accuracy of

the program, but also drastically increases the computational time taken. A balance between

time and accuracy must be struck.

We have decided to calculate the results with the following parameters: The matrix F (◊, ◊Õ)

is of size 6000 by 6000. Before calculating the matrix, we calculate the Ê integral for 50000

di�erent values of q, and calculate the integral in 5000 steps for each of these. Then we split

each polar integral into 2000 steps. These integrals are explained in more detail in Appendix

B.

We find that in the ferromagnetic case there are some incorrect aspects of our numerical

results, specifically that the quasiparticle distribution looks like cos ◊ with a couple of ‘flicks’

near ◊ = 0 and ◊ = fi, as shown in Figure 4.3. We believe that these inaccuracies occur

because of the low value of sin ◊ at these angles. However, we find that while increasing the

size of the matrix shrinks the size of these incorrect tails, it does not a�ect the resistivity very

much at all. This is most likely because of the small value of sin ◊ near these points, which

suppresses their contribution in the calculation of the resistivity.

We now demonstrate that our program can reproduce the results of the literature discussed

earlier. We are able to reproduce Rosch’s results for the resistivity exponent of a dirty anti-

ferromagnetic as shown in Figure 4.4a, and reproduce the quasiparticle distribution functions

in Figure 4.5. In Figure 4.4c we calculate the resistivity exponent with only ferromagnetic

scattering, and at low temperatures we find the fl ≥ T 5/3 power law as found analytically in

Section 4.2.2. Numerically we find that the exponent at T = 10≠4 is 1.66 to three significant

figures.
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(a) � (◊) (b) � (◊) / cos ◊

Figure 4.3: The quasiparticle distribution � (◊) calculated using di�erent sizes of the matrix
F (◊, ◊Õ) as denoted by the key. The distribution is normalised to � (0) = 1. The measurements
are taken at g2

A = 1, g2

F = 10, gimp = 0, and T = 10≠4.

4.4.2 Directly Above the QMCP

We now describe our original results and their interpretation. We investigate directly above

the QMCP, where r
2

= r
3

= 0.

We calculate the e�ective resistivity exponent, the resistivity, and the quasiparticle distri-

butions at various strengths of ferromagnetic scattering (gF ) and impurity scattering (gimp)

while keeping the antiferromagnetic scattering strength constant (gA = 1). The resistivity

exponents are shown in Figure 4.6, the resistivity in Figure 4.7, and the quasiparticle distri-

butions in Figures 4.8, 4.9 and 4.10.

In clean systems, in the absence of ferromagnetic scattering the hot lines are avoided in

the quasiparticle distribution at low temperatures. Figure 4.8 shows that in the presence

of su�ciently strong ferromagnetic scattering the hot lines are no longer avoided and the

quasiparticle distribution becomes proportional to cos ◊. At low temperatures for g2

F ≥ 1 this

leads to a resistivity exponent of 3/2 as shown in Figure 4.6a. In this sense, ferromagnetic

scattering plays the role of disorder and stabilises the fl ≥ T 3/2 power law usually associated

with antiferromagnetic quantum criticality. At higher values of gF , when gF ∫ gA, the
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(a) g2

A = 1, g2

F = 0 (b) g2

A = 1, g2

F = 0

(c) g2

A = 0, g2

F = 1, g2

imp = 0 (d) g2

A = 0, g2

F = 1, g2

imp = 0

Figure 4.4: The temperature-dependent part of resistivity, and resistivity of systems previously
investigated. (a) and (b) show a system with scattering from antiferromagnetic spin fluctua-
tions and disorder, in the absence of ferromagnetic spin fluctuations. (c) and (d) show a system
with scattering from ferromagnetic spin fluctuations, in the absence of antiferromagnetic spin
fluctuations. The graphs (c) and (d) are independent of gimp.

power law associated with ferromagnetic quantum criticality fl ≥ T 5/3 is observed at low

temperatures. This is as expected when the e�ect of antiferromagnetic scattering is negligible

in comparison to the ferromagnetic scattering. When the ferromagnetic scattering is very

weak, the quasiparticle distribution is very similar to the quasiparticle distribution in slightly

impure systems. The e�ective resistivity exponent, however, does not show the almost-linear

138



Figure 4.5: The quasiparticle distributions as functions of angle around the Fermi surface in the
absence of ferromagnetic spin fluctuations at di�erent temperatures and di�erent impurities.
Here, g2

A = 1.

crossover behaviour observed in impure antiferromagnetic systems.

In dirty systems, the story is very similar. Greater ferromagnetic scattering acts similarly

to increased disorder in the sense that it favours the cos ◊ form of the quasiparticle distribution.

This can be seen from Figures 4.9 and 4.10, where increased ferromagnetic scattering causes

the ‘dips’ in the quasiparticle distribution around the hot lines to become smaller. From Figure

4.6b we see that if both impurities and ferromagnetic scattering are weak, an almost-linear

crossover can be observed. From Figures 4.6c and 4.6d however, we can see that if the disorder

and ferromagnetic scattering are strong enough the linear crossover regime is not present.
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(a) Clean system g2

imp = 0 (b) Dirty system g2

imp = 10≠4

(c) Dirty system g2

imp = 10≠2 (d) Dirty system g2

imp = 1

Figure 4.6: Resistivity exponent at di�erent levels impurities and ferromagnetic scattering
strengths
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(a) Clean system g2

imp = 0 (b) Dirty system g2

imp = 10≠4

(c) Dirty system g2

imp = 10≠2 (d) Dirty system g2

imp = 1

Figure 4.7: Temperature-dependent part of the resistivity at di�erent levels impurities and
ferromagnetic scattering strengths
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Figure 4.8: The quasiparticle distributions as functions of angle around the Fermi surface in
clean systems (gimp = 0) at di�erent temperatures and di�erent strengths of the ferromagnetic
scattering. Here g2

A = 1.
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Figure 4.9: The quasiparticle distributions as functions of angle around the Fermi surface
in dirty systems with g2

imp = 10≠4 at di�erent temperatures and di�erent strengths of the
ferromagnetic scattering. Here g2

A = 1.
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Figure 4.10: The quasiparticle distributions as functions of angle around the Fermi surface
in dirty systems with g2

imp = 10≠2 at di�erent temperatures and di�erent strengths of the
ferromagnetic scattering. Here g2

A = 1.
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4.5 Conclusions

We have numerically solved the Boltzmann transport equation to find the quasiparticle distri-

bution and resistivity exponent over a range of temperatures, at varying strengths of antifer-

romagnetic and ferromagnetic scattering, and scattering from disorder.

Our key conclusion is that in the presence of scattering from both ferromagnetic and

antiferromagnetic spin-fluctuations of similar strengths, the resistivity is expected to obey

a T 3/2 power law, usually associated with antiferromagnetism in disordered systems. This

remains the case even in clean systems, and so the ferromagnetic fluctuations stabilise the

antiferromagnetic T 3/2 power law.

The physical reason for this is that the quasiparticle distribution rearranges itself to min-

imise the resistivity. Since the scattering from ferromagnetic spin fluctuations and disorder

only depends upon the angle between the two states, the resistivity is minimised by the famil-

iar quasiparticle distribution � ≥ cos ◊. When the quasiparticle distribution takes this form in

the presence of antiferromagnetic spin-fluctuations, scattering is strong between the two hot

lines on the Fermi surface and a fl ≥ T 3/2 power law is observed.

The resistivity from antiferromagnetic scattering alone is minimised by a quasiparticle

distribution that looks like cos ◊ but with ‘dips’ at the hot lines. This can be interpreted as the

whole Fermi surface shifting, except around the hot-lines where the quasiparticle distribution

is unchanged by the electric field. When the quasiparticle distribution takes this form, there

is no scattering between the hot lines and so the resistivity has the exponent associated with

the other scattering mechanisms in the problem. In the presence of ferromagnetic scattering

we observe a T 5/3 power law, or in scenarios without ferromagnetic scattering we see a T 2

resistivity which is characteristic of a Fermi liquid.

The conclusion is that ferromagnetic spin fluctuations stabilise the � ≥ cos ◊ form of the

quasiparticle distribution, which in turn stabilises the T 3/2 behaviour of the resistivity.

This T 3/2 power law in the presence of both ferromagnetic and antiferromagnetic spin-

fluctuations is precisely what is observed for NbFe
2

and Ta(Fe
1≠xVx)

2

, as discussed in Chapter
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3. We now believe we have a coherent theory for the mechanisms behind ferromagnetism dom-

inating the specific heat in these systems, but antiferromagnetism dominating the resistivity.

We now turn our attention to another model of quantum criticality where z = 3 modes

interact with z = 2 modes. In the next chapter we consider a metamagnetic quantum critical

end-point interacting with an antiferromagnetic quantum critical point in the presence of a

magnetic field. This is an example of a multicritical situation where the issues with Hertz-Millis

theory discussed in Section 2.5 are not expected to arise.
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Chapter 5

METAMAGNETISM AND

ANTIFERROMAGNETISM

5.1 Introduction

In Chapters 3 and 4, we derived and analysed a model of a ferromagnetic (z = 3) QCP

interacting with an antiferromagnetic (z = 2) QCP. The results of this model seemed to agree

with certain experimental discoveries, and have made predictions about currently unmeasured

quantities. Despite this, in Section 3.6.2 we questioned the applicability of the model which

has the same failings as Hertz-Millis theory, described in Section 2.5. In this chapter we build

a model of a di�erent physical scenario, where these complications do not arise.

Up until now, in this thesis we have been considering quantum criticality occurring around a

second order phase transition that has been suppressed to zero temperature. First order phase

H

T

H

T

H

T

Figure 5.1: The critical end-point of a first order transition being suppressed to zero by tuning
some non-thermal control parameter in successive graphs. This is adapted from Ref. [32]

.

147



transitions do not exhibit quantum criticality as there are no critical modes which become

massless at the phase transition. However, massless excitations exist at the end-point of a

line of first order transitions, and if this is suppressed to zero temperature quantum criticality

is observed. The resulting point is termed a quantum critical endpoint (QCEP), and this is

shown schematically in Figure 5.1.

An example of such a scenario is a metamagnetic transition, where as a magnetic field is

increased through a critical value the magnetism of the sample has a discontinuous jump. If

the end-point of the line of metamagnetic transitions is suppressed to zero temperature, it can

be described by a quantum critical theory with dynamical exponent z = 3 [51, 52]. This has

been proposed as an explanation for experimental data on Sr
2

Ru
2

O
7

[23] and CeRu
2

Si
2

[53].

The reason we consider such a scenario is that while the non-analytic terms neglected by

Hertz-Millis theory generically cause ferromagnetic transitions to become first order, under

application of a magnetic field the end-point of this transition can be suppressed to absolute

zero, leading to first order ‘wings’ on the phase diagram [54]. This is shown schematically in

Figure 5.2.

At such a point, the finite magnetic field creates an energy gap in the fermionic modes,

due to the energy di�erence between the spin-up and spin-down Fermi surfaces. There are no

zero-energy fermionic modes at the transition, meaning that the non-analytic terms due to

integrating them out do not arise [55].

If we take these non-analytic terms into account when considering a quantum multicritical

point, we would expect the ferromagnetic transition to go first order, as in Figure 5.3a. We

now consider applying a magnetic field to this phase diagram. As shown in Figure 5.3b, under

a magnetic field there is no longer a symmetry-breaking phase transition, as È„
3

Í is finite

everywhere. The end-point of the line of first order transitions can be suppressed to T = 0, as

shown in Figure 5.3c. As long as the antiferromagnetic state survives under the application

of such a field, then we have a metamagnetic quantum critical end-point interacting with an

antiferromagnetic quantum critical point. This is the scenario we analyse in this chapter. To
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Figure 5.2: Phase diagram of a quantum critical ferromagnet in three dimensions, taken from
Ref. [54]. Upon approaching the QCP the transition becomes first order, but the end-point of
the first order transition can be suppressed to zero with a magnetic field. The point at which
the first order line meets the second order line is called a tricritical point (TCP).
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(a) Zero field (b) Finite field (c) Critical field

Figure 5.3: The phase diagram of a material featuring a first order ferromagnetic transition
and an antiferromagnetic quantum critical point, at various amounts of magnetic field. The
phase diagram in Figure 5.3a could be realised near a quantum multicritical point, by the
electronic modes causing the ferromagnetic quantum critical point to go first order.

avoid complications arising from the marginal nature of the antiferromagnetic modes in d = 2,

we only consider this in three dimensions.

We aim to find out to what extent the conclusions of Chapter 3 hold in this new scenario.

We investigate whether the z = 3 QCEP still dominates over the z = 2 QCP when a magnetic

field is applied, and whether the thermodynamic properties listed in Table 3.1 are changed by

the presence of the field.

The metamagnetic quantum critical end-point is not the sole example of a z = 3 quantum

critical end-point. The valence transition is a first order transition where the occupation

number of f -electrons on certain atoms discontinuously changes. It is thought that in certain

situations, the critical end-point of this situation also appears near zero temperature [56].

Moreover, in many systems argued to have a valence transition in them there is also an

antiferromagnetic quantum critical point in the phase diagram. This is the case for CeCu
2

Si
2

[57] and CeRhIn
5

[58]. While a phenomenological model for the valence QCEP does exist [56],

in this chapter we restrict our attention to the more well-established theory of metamagnetic

QCEPs.

The rest of the chapter is structured as follows. In Section 5.2 we review the literature on

metamagnetic quantum critical end-points. In Section 5.3 we develop a model of an interacting

antiferromagnetic QCP and a metamagnetic QCEP, by first reviewing the literature on anti-
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ferromagnetic QCPs in magnetic fields, and then building a Landau theory for the transition.

This model is analysed using the self-consistently renormalised (SCR) technique, which we

describe and use in Section 5.4. By combining the SCR results with the results of Chapters

2 and 3, we derive the correlation lengths, phase diagram, and thermodynamic properties of

this model. In Section 5.5 we analyse the model using the renormalisation group technique.

In Section 5.6 we summarise our results and discuss their experimental relevance.

5.2 Metamagnetic Quantum Critical End-Points

Before building a model of an interacting metamagnetic QCEP and an antiferromagnetic QCP,

we first review the literature on metamagnetic QCEPs. In Section 5.2.1 we analyse a Landau

theory for the metamagnetic end-point at zero temperature, and in Section 5.2.2 we review

the literature on the quantum critical theory.

5.2.1 Landau Theory

In this section we describe the zero-temperature Landau free energy which contains a quantum

critical end-point at some value of magnetic field. Following the analysis of Ref. [32], we

consider the Landau theory

F = R�2 ≠ U�4 + V �6 ≠ H�, (5.2.1)

where none of the parameters are temperature-dependent. H is the magnetic field and R is

another non-thermal tuning parameter, for example pressure or chemical doping. We assume

that U and V are constants, and are both positive so that the coe�cient of the quartic term

in the Landau theory is negative.

Our strategy to develop a quantum critical model of this transition is not to fully solve this

model and find the value of � everywhere in the R≠H plane, but just to look at this theory in
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Figure 5.4: Phase diagram in the vicinity of the end-point of the metamagnetic transition in
the H ≠ R plane

the vicinity of the quantum critical end-point. Unlike in the Landau theories investigated in

Sections 1.3.2 and 1.5.2, we are not interested the behaviour of this model when the coe�cient

of the quadratic term is negative and only consider this model for R > 0.

This model has a critical end-point in the phase diagram at the point (Hú, Rú). In the

vicinity of this point, for R < Rú there is a first order transition as H is varied, where �

discontinuously jumps. For R > Rú the evolution of � is smooth, and there is no transition.

This is shown schematically in Figure 5.4.

In order to find Hú and Uú in terms of U and V , we find the point where the first three

derivatives of the free energy are equal to zero. We find that the value of � at (Hú, Rú) is

(�ú)2 = U
5V

. We then find that Rú = 3

5

U2

V
and Hú/�ú = U2

V

Ë
16

25

È
.

We may look at the theory in the vicinity of this point by letting R = Rú+”R, H = Hú+”H

and � = �ú + „. The theory becomes

F („) = F (�ú) + ”R (�ú)2 ≠ ”H�ú + (2�ú”R ≠ ”H) „ + ”R„2 + 2U„4, (5.2.2)

and so if we consider the free energy in powers of „ alone, we find that

F („) = ≠h„ + r„2 + u„4. (5.2.3)
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Here, r = ”R, h = ”H ≠ 2�ú”R, and u = 2U . Since the coe�cient of the quartic term is

positive, we do not need to include the quintic and sextic terms as the quartic term controls

the expansion. This is a typical „4 theory with a field h. At h = 0 there is a second order

phase transition at r = 0, however we are not interested in this transition in this chapter and

only consider r Ø 0.

In the next section we include temperature into this problem by allowing the order param-

eter to fluctuate in space and imaginary time. We are interested in the physical properties of

the quantum critical system in the h ≠ T plane, at fixed r Ø 0.

5.2.2 Quantum Critical Theory

In this section we review the literature on metamagnetic quantum criticality. Metamagnetic

transitions at zero temperature have been studied theoretically under the same assumptions

behind the Hertz-Millis action [51, 32, 52]. The assumption is that the electronic degrees

of freedom can be integrated out and the critical behaviour can be described in terms of

overdamped spin-fluctuations alone. The resulting theory is similar to Hertz-Millis theory

for a z = 3 order parameter, but with a magnetic field which couples linearly to the order

parameter

S = 1
—V

ÿ

Ên,q

‰≠1 (q, Ên) „ (q, Ên) „ (≠q, ≠Ên)

≠h
⁄

dxd·„
3

(x, ·) + u
⁄

dxd·„4 (x, ·) ,

(5.2.4)

where

‰≠1 (q, Ên) = r + q2 + |Ên|
q

. (5.2.5)

As explained in Section 5.1, it is believed that we do not need to worry about the presence of

non-analytic terms due to the finite magnetic field.

The most comprehensive study of this model has been performed by Zacharias and Garst
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Figure 5.5: Regions in the phase diagram of a metamagnetic quantum critical end-point in
the h-T plane at fixed r, taken from Ref. [52]. The regions are described in the main text.

[52] using a renormalisation group approach, from which the phase diagram and thermody-

namic properties can be found. They find that just as for the ferromagnetic quantum critical

point, the quartic and higher order terms are irrelevant in the renormalisation group sense.

When the quintic and higher order terms are neglected, the action is symmetric under h æ ≠h

and so the free energy is an even function of h. In the rest of this section we summarise the

key aspects of their results.

The critical part of the free energy has two components. One component comes from the

optimal field configuration „̄ which is non-zero at any non-zero h, and the other component

comes from the Gaussian fluctuations of the field about this value.

There are two main crossovers in the h-T plane as shown in Figure 5.5. One crossover is

R3 ≥ uh2, which is the di�erence between low-field and high-field behaviour, which depends

on the form of „̄. Here, R is the renormalised tuning parameter r which has acquired some

temperature-dependence. In the high-field region, „̄ ¥
---6h

u

---
1/3

sign(h), and in the low-field

region, „̄ ¥ h
R

. The other crossover is between the Fermi liquid-like and the quantum critical
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regimes, which is determined by the properties of the Gaussian fluctuations. This is controlled

by the curvature of the e�ective potential at „̄. In the low-field region this leads to a crossover

at R3/2 ≥ T , which is the crossover between the Fermi-liquid and quantum critical regions for

a single z = 3 quantum critical point. In the regime at temperatures above this, region III

in Figure 5.5, there is an additional crossover associated with whether the correlation length

is dominated by thermal contributions or not. This is the di�erence between the two distinct

regions in the quantum critical regime for a single Hertz-Millis quantum critical point. In the

high field regime this crossover is at T ≥ u1/2h. This leads to four distinct regions of the phase

diagram in Figure 5.5. Regions I and II are in the non-linear regime, and regions III and IV

are in the linear regime. Regions I and IV are in the Fermi liquid regime, and regions II and

III are in the quantum critical regime. Region III is further subdivided depending on whether

the correlation length is dominated by temperature or the parameter r.

In calculating the thermodynamic properties, h and r depend upon both the external

magnetic field H and pressure p. Because of this, derivatives with respect to external field

and pressure are related, as

ˆ

ˆH
= ˆr

ˆH

ˆ

ˆr
+ ˆh

ˆH

ˆ

ˆh
, (5.2.6)

and

ˆ

ˆp
= ˆr

ˆp

ˆ

ˆr
+ ˆh

ˆp

ˆ

ˆh
. (5.2.7)

The strategy of Zacharias and Garst [52] is to first examine the thermodynamic properties

assuming that h(H, p) = H ≠ Hú(p) and treat r as a constant, and subsequently look at

corrections to this. Under this approximation, derivatives with respect to H and p are directly

proportional to each other. The relation Fcr (H ≠ Hú(p), T ) = Fcr (Hú(p) ≠ H, T ) implies

that the thermal expansion goes to zero at the critical field.

Under this assumption, the thermodynamic properties are shown in Figure 5.6. Note that
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the temperature derivatives originate from R(T ) = r + uT 4/3 in regions II and III. The h = 0

component of the specific heat coe�cient in region III is T (d≠3)/3 which is the contribution

from Gaussian fluctuations, and is the same as for a ferromagnetic quantum critical point.

While the thermal expansion is zero when h = 0 at zero temperature, corrections to the

finite temperature thermal expansion arise for two reasons; the pressure-dependence of r, and

the temperature dependence of the field h. Due to the pressure-dependence of r, the thermal

expansion has an additive component proportional to ”– ≥ T (d+z≠2)/z in region III, which is the

same for the quantum critical ferromagnetic transition. This e�ect is negligible compared to

the contribution from the temperature-dependence of the field h. Since h does not acquire any

temperature-dependent renormalisation from the spin-fluctuations, it has the standard Fermi

liquid form of h(T ) = h + hT T 2. In region III of the phase diagram, when the correlation

length is dominated by temperature, this correction becomes

”– ≥ hT

u
T ≠(d≠2)/3 (5.2.8)

for temperatures T ∫ (r/u)3/(d+1). A physical consequence of this is that at finite tempera-

tures, the field at which the thermal expansion is zero is shifted by a temperature-dependent

amount

h|–=0

≥ hT T 2. (5.2.9)

The contribution to the physical properties from r(p, H) is subleading in all regions.

There are two Grüneisen parameters which can be measured in this system. The usual

Grüneisen parameter �, and the magnetic analogue �H , discussed in Section 2.2.1. When r

is approximated as a constant, these two quantities are directly proportional to each other.

When the e�ect of r changing is taken into account, these parameters are no longer directly

proportional to each other due to the relations between the derivatives in equations (5.2.6) and

(5.2.7). Both � and �H are proportional to the sum of the same two terms, but the coe�cients
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Figure 5.6: The compressibility, thermal expansion, and specific heat coe�cient in the various
regions of the phase diagram, taken from Ref. [52]. The regions of the phase diagram are
described in the main text.
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of each term are di�erent in both cases.

The Grüneisen parameter and its magnetic analogue change sign at the critical field, when

h(T ) = 0. The leading order behaviour of the Grüneisen parameter in region I of the phase

diagram is found to be �h ≥ 1

h ln( 1
h) , and in region III it is found to be �H ≥ h/

1
T 10/3

2
in

three dimensions.

We now discuss a model of a metamagnetic quantum critical end-point and an antiferro-

magnetic quantum critical point in close proximity in the phase diagram.

5.3 Quantum Critical Metamagnetism and Antiferro-

magnetism

5.3.1 Generating the Situation

Now that we have reviewed the literature on metamagnetic quantum critical end-points, we

discuss the possibility of a metamagnetic quantum critical end-point in proximity on the

phase diagram to an antiferromagnetic quantum critical point. In Section 5.1 we discussed

the possibility of realising this scenario by applying a magnetic field to the phase diagram of

Figure 5.3a, to generate the phase diagram in Figure 5.3c.

In this section we generate an original model for this. Firstly, we review the literature

on antiferromagnetism in magnetic fields. We then discuss a Landau theory for the interact-

ing AFM QCP and metamagnetic QCEP, and make the model quantum critical by drawing

inspiration from Chapters 2 and 3.

5.3.2 Antiferromagnetism in a Magnetic Field

Under the influence of a magnetic field, the antiferromagnetism precesses. This is another

dynamical e�ect which must be accounted for when considering a quantum critical transition

in a magnetic field. This scenario has been analysed by Fischer and Rosch [22], where they find

158



the precession term can also be characterised by the dynamical exponent z = 2. The key result

is that the critical exponents associated with the transition are unchanged by this precession

term, however the scaling functions are a�ected. If the precession terms are su�ciently strong,

this can change the sign of the leading correction to the specific heat.

In the rest of this chapter, we assume that the precession terms are su�ciently weak

compared to the damping terms so that we may e�ectively ignore their e�ects. We expect the

critical exponents will not depend on this approximation.

5.3.3 Landau Theory

In this section we build a Landau theory for a metamagnetic quantum critical end-point and an

antiferromagnetic QCP in close proximity on the phase diagram. By adapting the derivation

of Section 5.2.1 we show that around this multicritical point the free energy does not look

like that for a bicritical or tetracritical point with a field, but has an additional coupling term

which is linear in the metamagnetic modes and quadratic in the antiferromagnetic modes.

To generate an action based around a quantum critical end-point, we first consider the

Landau theory for a model with a quantum critical end-point in it, and a second order phase

transition into antiferromagnetism. The Landau energy we start with is

F = R
3

�2

3

≠ U
3

�4

3

+ V
3

�6

3

≠ H�
3

+ R
2

„2

2

+ U
2

„4

2

+ U
32

„2

2

�2

3

, (5.3.1)

where U
3

, V
3

, U
2

and U
32

are all positive. �
3

represents metamagnetic modes, and „
2

repre-

sents antiferromagnetic modes. When „
2

= 0, the model reduces to the model of a classical

metamagnet, analysed in Section 5.2.1. With the understanding that eventually our quantum

critical model in terms of spin-fluctuations will not be applicable in the antiferromagnetic

ordered phase as explained in Chapter 2, we only analyse this model when È„
2

Í = 0.

As for the model in Section 5.2.1, when the optimal value of „
2

= 0 ,the model has a

quantum critical end-point at R
3

= 3

5

U2
3

V3
, Hú

�

ú
3

= 16

25

U2
3

V3
, where (�ú

3

)2 = U3
5V3

. To find the e�ective
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model in the vicinity of this point, we let R
3

= Rú
3

+ ”R
3

, H = Hú + ”H, and �
3

= �ú
3

+ „
3

.

To quartic order in „
3

we find that

F („
3

, „
2

) = F (�ú
3

, 0) + ”R
3

(�ú
3

)2 ≠ ”H�ú
3

+ (2�ú
3

”R
3

≠ ”H) „
3

+ ”R
3

„2

3

+
1
R

2

+ U
32

(�ú
3

)2

2
„2

2

+ 2U
32

�ú
3

„2

2

„
3

+ 2U
3

„4

3

+ U
2

„4

2

+ U
32

„2

2

„2

3

,

(5.3.2)

and so if we consider the free energy in powers of „
3

and „
2

alone, we find that

F („
3

, „
2

) = ≠h„
3

+ r
3

„2

3

+ r
2

„2

2

+ “„2

2

„
3

+ u
3

„4

3

+ u
2

„4

2

+ u
32

„2

2

„2

3

. (5.3.3)

Here, h = ”H ≠ 2�ú
3

”R
3

, r
3

= ”R
3

, r
2

= R
2

+ U
32

(�ú
3

)2, “ = 2U
32

�ú
3

, u
32

= U
32

, u
3

= 2U
3

, and

u
2

= U
2

. We note that all of the interaction terms, “, u
2

, u
3

and u
32

are independent.

We only consider this model for r
2

Ø 0 so that È„
2

Í = 0, and only consider the model for

r
3

Ø 0 as we are not interested in the second order phase transition at r
3

= 0 when h = 0. We

are interested in the behaviour of this model as h changes.

If r
3

Ø 0 at the transition into the antiferromagnetic state (at r
2

= 0), then the antiferro-

magnetic transition is second order. This derivation has shown that a new term, quadratic in

„
2

and linear in „
3

must appear in the Landau theory for this multicritical point. This simple

argument based on the Landau free energy demonstrates that it is theoretically possible to

have the end-point of a metamagnetic transition and a second order antiferromagnetic tran-

sition in the phase diagram, and has generated the e�ective model in the vicinity of such a

point.

5.3.4 Making the Model Quantum Critical

We now attempt to build a quantum critical version of the Landau free energy of equation

(5.3.3). Our technique in suggesting a model does not follow the analysis of Chapter 2 and

Chapter 3, where the models were derived by integrating out the electrons, but instead to

turn the Landau free energy in equation (5.3.3) into a quantum critical theory. We allow the
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order parameter to fluctuate in both space and imaginary time, and use the damping terms

that Hertz-Millis theory associates with each type of order.

Allowing the order parameters to fluctuate in space and imaginary time, the quantum

critical model is

S = ≠ h
⁄

dxd·„
3

(x, ·) + 1
—V

ÿ

Ên,q

‰≠1

3

(q, Ên) „
3

(q, Ên)„
3

(≠q, ≠Ên)

+ 1
—V

ÿ

Ên,q

‰≠1

2

(q, Ên) „
2

(q, Ên)„
2

(≠q, ≠Ên) + “
⁄

dxd·„2

2

(x, ·)„
3

(x, ·)

+
⁄

dxd·
Ë
u

3

„4

3

(x, ·) + u
2

„4

2

(x, ·) + u
32

„2

2

(x, ·)„2

3

(x, ·)
È

(5.3.4)

where the two inverse susceptibilities are the same as for the model of a quantum multicritical

point,

‰≠1

2

(q, Ên) = r
2

+ q2 + ÷
2

|Ên| , (5.3.5)

‰≠1

3

(q, Ên) = r
3

+ q2 + ÷
3

|Ên|
q

. (5.3.6)

This action is the same as the action for a quantum multicritical point discussed in Chapter 3,

but with two additional terms. The question we wish to address is how do the additional terms

a�ect the model studied in Chapter 3? The magnetic field term has already been discussed in

Section 5.2, however the term proportional to “ is new.

Qualitatively, the “ term acts like an e�ective field for the „
3

modes, which depends on the

fluctuating antiferromagnetism. When the expectation value of „
3

is non-zero, it also acts as a

shift in the antiferromagnetic tuning parameter. The “ term also a�ects the quartic interaction

u
2

. This can be seen as if both h and u
3

were zero, the „
3

modes could be integrated out

and the action could be written in terms of „
2

alone. The new quartic coupling for „
2

would

be u
2

≠ “2

4r3
, which may become negative. This would mean that the sixth order term would

need to be taken into account. Even in the presence of a finite u
3

there is the possibility that

antiferromagnetism could be stabilised in the vicinity of the QCP.
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This new term is di�cult to deal with using the renormalisation group, as we shall see in

Section 5.5, however we believe that the physics of this term can be captured by dealing with

it in a self-consistently renormalised (SCR) approach.

5.4 Self-Consistently Renormalised Approach

In this section we analyse the model of a metamagnetic quantum critical end-point interact-

ing with an antiferromagnetic quantum critical point, using a self-consistently renormalised

(SCR) approach, which we believe captures the physics in the vicinity of the transition. To

avoid complications arising from the marginal nature of the antiferromagnetic interactions, we

restrict our attention to three dimensional systems. We defer a more detailed RG treatment

to Section 5.5. We first define the SCR method and its historic use, before applying it to the

model of Section 5.3. We use the SCR method to find the regions of the phase diagram, and

in each region we find the thermal expansion, specific heat and Grüneisen parameter.

5.4.1 For General Quantum Critical Systems

Here we briefly summarise the SCR method, and its application to the Hertz-Millis action.

The SCR method is an approximate method, pre-dating Hertz-Millis theory, which can be

used to investigate physics near a quantum critical point [31]. The basic idea is to deal with

fourth order terms in the action by the substitution

u
⁄

dxd·„4 (x, ·) æ u
⁄

dxd·
e
„2 (x, ·)

f
„2 (x, ·) , (5.4.1)

to arrive at an e�ective Gaussian action in terms of averages of the field, which must be cal-

culated self-consistently. In this case the e�ective inverse susceptibility X≠1 (q, Ên) is written
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in terms of the bare susceptibility ‰≠1 (q, Ên) as

X≠1 (q, Ên) = ‰≠1 (q, Ên) + u
⁄

dxd·
e
„2 (x, ·)

f
, (5.4.2)

= ‰≠1 (q, Ên) + u
1
—

ÿ

�n

⁄
dpX (p, �n) . (5.4.3)

Here the averages have been performed with respect to the e�ective inverse susceptibility.

Using the bare susceptibilities in the Hertz-Millis action, in three dimensions the sum can

be performed directly above the critical point, and the temperature-dependence can be found.

The e�ective inverse susceptibility is found to be

X≠1 (q, Ên) = r + q2 + |Ên|
qz≠2

+ cuT
z+1

z , (5.4.4)

where r is the renormalised tuning parameter which is zero at the transition, and c is a constant

[31]. This formula is valid for ferromagnetic (z = 3) and antiferromagnetic (z = 2) systems in

three dimensions. The temperature-dependence of the susceptibility agrees with Hertz-Millis

theory for d = 3, discussed in Section 2.4.2. The sum over the e�ective inverse susceptibility

used to derive equation (5.4.4) was derived by performing the sum exactly at r = 0, however we

know from the analysis on the Hertz-Millis model in Chapter 2 that the inverse susceptibility

takes this form as long as r < T 2/z.

Prior to the Hertz-Millis formalism of quantum criticality, the SCR method was the stan-

dard approach to analyse spin fluctuations in itinerant magnets. Within this theory physical

properties such as the specific heat can be calculated. The results of the SCR calculation can

reproduce the C ≥ T ln
1

1

T

2
specific heat, for example [31]. However, in the SCR method

there is no systematic way, beyond comparing results with other methods, to determine the

suitability of the substitution in equation (5.4.1). This is not an approximation based on the

existence of a small parameter, which would be a reasonable assumption in a certain limit,

but it is just an assumption made purely to simplify the algebra.
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5.4.2 For the Quantum Critical Metamagnet and Antiferromagnet

We now extend the SCR method to the model of a quantum critical metamagnetic transi-

tion and an antiferromagnetic transition, defined by the model in equation (5.3.4). Here we

restrict our attention to three dimensions to avoid complications arising from the marginal

antiferromagnetic interactions. In this section we do not need the kinetic coe�cients, so we

let ÷
2

= ÷
3

= 1.

To proceed, we make the same substitution for the quartic terms in „
2

and „
3

as in

equation (5.4.1), but the u
32

and “ terms require more careful consideration. We approximate

the u
32

„2

2

„2

3

term as

u
32

⁄
dxd·„2

2

(x, ·) „2

3

(x, ·) æ u
32

2

⁄
dxd·

e
„2

2

(x, ·)
f

„2

3

(x, ·)

+ u
32

2

⁄
dxd·„2

2

(x, ·)
e
„2

3

(x, ·)
f

.

(5.4.5)

We approximate the “„
3

„2

2

term in a similar manner, letting

“
⁄

dxd·„
3

(x, ·) „2

2

(x, ·) æ “

2

⁄
dxd· È„

3

(x, ·)Í „2

2

(x, ·)

+ “

2

⁄
dxd·

e
„2

2

(x, ·)
f

„
3

(x, ·) .

(5.4.6)

These approximations capture the influences “ has as an e�ective field and a shift in the

antiferromagnetic tuning parameter. However, they do not capture the possible e�ect on the

quartic interaction u
2

mentioned in Section 5.3.4. Such approximations seem to be valid as

long as the e�ective u
2

remains positive, which would require a su�ciently large u
3

.

Under these approximations, we find that we can write down three SCR equations for the

renormalised magnetic field H, and the renormalised inverse susceptibilities X≠1

3

and X≠1

2

.

We find that

H = h ≠ “

2

⁄
d’X

2

(’) , (5.4.7)

X≠1

3

(’) = ‰≠1

3

(’) + u
3

È„
3

Í2 + u
3

⁄
d’ ÕX

3

(’ Õ) + u
32

2

⁄
d’ ÕX

2

(’ Õ) , (5.4.8)

164



and

X≠1

2

(’) = ‰≠1

2

(’) + “

2 È„
3

Í + u
32

2 È„
3

Í2 + u
2

⁄
d’ ÕX

2

(’ Õ) + u
32

2

⁄
d’ ÕX

3

(’ Õ) (5.4.9)

where ’ © (q, Ê) and È„
3

Í is the expectation value of „
3

, which is spatially uniform.

The result of these sums depends on whether the modes are in the quantum critical

or Fermi liquid regimes, which depends on the uniform part of the inverse susceptibility,

X≠1

i (q = 0, Ê = 0). We use the notation that X≠1

i (q = 0, Ê = 0) © X≠1

i . If X≠1

i ∫ T 2/zi then

the sum yields no interesting temperature dependence, and the renormalised tuning parame-

ters are shifted by a constant, and an amount proportional to T 2. In the opposite case, the

sum has a temperature-dependent contribution proportional to T (1+z)/z.

We use the notation that R
3

(T ) = ‰≠1

3

(0) + u
3

s
d’ ÕX

3

(’ Õ) + u32
2

s
d’ ÕX

2

(’ Õ) and R
2

(T ) =

‰≠1

2

(0) + u
2

s
d’ ÕX

2

(’ Õ) + u32
2

s
d’ ÕX

3

(’ Õ), which are the magnetic field-independent parts of

X≠1

3

and X≠1

2

respectively.

Just as for a single metamagnetic quantum critical point, there are two regimes for the

expectation value of the field „
3

, which is calculated as È„
3

Í = H(T )X
3

. In the linear regime,

R3

3

(T ) ∫ uH2(T ), the inverse susceptibility X≠1

3

is dominated by the renormalised tuning

parameter X≠1

3

¥ R
3

(T ) leading to È„
3

Í = H(T )

R3(T )

. In the non-linear regime, R3

3

(T ) π H2 (T ),

the susceptibility is dominated by the magnetic field-dependent contribution, leading to X≠1

3

¥
1

u3H2
(T )

and so È„
3

Í =
1

H(T )

u3

2
1/3

.

Therefore in the linear regime

X≠1

3

(q, Ê) =R
3

(T ) + q2 + Ê

q
(5.4.10)

X≠1

2

(q, Ê) =R
2

(T ) + “

2
H(T )
R

3

(T ) + q2 + |Ê| . (5.4.11)

In the non-linear regime

X≠1

3

(q, Ê) =u
1/3

3

H2/3(T ) + q2 + Ê

q
, (5.4.12)
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[R
3

(T )]3 π u
3

[H (T )]2 X≠1

3

π T 2/3 X≠1

2

π T
(a) X X X
(b) X X
(c) X X
(d) X
(A) X X
(B) X
(C) X
(D)

Table 5.1: Definitions of the regions of the phase diagram. If the column is ticked the inequality
is obeyed, and if blank the inverse is true. Regions (a) and (b) should be further subdivided
into a region where the correlation length is dominated by temperature (X

3

< T 4/3), and
a region where the temperature-independent part dominates. Similarly, regions (a) and (c)
should be further subdivided based upon whether the antiferromagnetic correlation length is
dominated by temperature (X

2

< T 3/2) or a temperature-independent part.

and

X≠1

2

(q, Ê) =R
2

(T ) + “

2

A
H(T )

u
3

B
1/3

+ q2 + |Ê| . (5.4.13)

This leads to eight distinct regions of the phase diagram where the inverse susceptibilities

have di�erent forms, separated by the linear to non-linear crossover, and the two quantum

critical to Fermi liquid crossovers. The notation for these eight regions of the phase diagram

is given in Table 5.1.

The temperature dependence of the magnetic field depends on the antiferromagnetic modes,

and is given by

H(T ) =

Y
__]

__[

h ≠ c
2h“T 3/2 in regions (a), (c), (A), (C),

h + hT T 2 in regions (b), (d), (B), (D),
(5.4.14)

where the T 3/2 power law is due to the antiferromagnetic modes.

The expectation value of È„
3

Í is di�erent in the linear and non-linear regimes, and is given
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by

È„
3

Í =

Y
__]

__[

H(T )

R3(T )

in regions (a), (b), (c), (d),
1

H(T )

u3

2
1/3

in regions (A), (B), (C), (D).
(5.4.15)

The renormalised metamagnetic tuning parameter is given by

R
3

(T ) =

Y
______]

______[

r
3

+ c
33

u
3

T 4/3 in regions (a), (b), (A), (B),

r
3

+ c
32

u
32

T 3/2 in regions (c), (C),

r
3

+ c
3F T 2 in regions (d), (D).

(5.4.16)

In regions (c) and (C) the temperature-dependent part is much smaller than r
3

, and in regions

(d) and (D) the leading temperature dependent correction is of order T 2. In regions (a), (b),

(A) and (B), there is also a subleading additive correction of c
32

u
32

T 3/2.

The renormalised antiferromagnetic tuning parameter is given by

R
2

(T ) =

Y
______]

______[

r
2

+ c
23

u
32

T 4/3 in regions (a), (b), (A), (B),

r
2

+ c
22

u
2

T 3/2 in regions (c), (C),

r
2

+ c
2F T 2 in regions (d), (D).

(5.4.17)

In regions (d) and (D) the leading temperature dependent correction is of order T 2. In regions

(a), (b), (A) and (B), there is also a subleading additive correction of c
22

u
2

T 3/2.

5.4.3 Phase Diagram

Using the renormalised tuning parameters, we now find the various crossovers between the

various regions of the phase diagram. We consider the phase diagram in the h ≠ T plane, at

fixed r
2

and r
3

. We first note that the crossovers associated with the metamagnetic modes

only, shown in Figure 5.5, are unchanged by the presence of the antiferromagnetic modes. We

consider how the crossovers and phase transitions associated with antiferromagnetism overlay
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this figure and divide up the phase diagram.

Figure 5.7 shows examples of possible phase diagrams in the h ≠ T plane. In the following

we shall describe the various crossovers in this phase diagram. In the h ≠ T plane there is a

phase transition into the antiferromagnetic phase. At T = 0 this occurs at hú = ≠r
2

≠ “
2

È„
3

Í

which is in the linear regime if r
2

< “
2

Ô
r

3

u
3

and in the non-linear regime if this inequality is

reversed. This is the di�erence between Figures 5.7i and 5.7ii where the transition is in the

linear regime, and Figures 5.7iii and 5.7iv where the transition is in the non-linear regime.

The crossovers between Fermi-liquid and quantum critical behaviour of the antiferromag-

netic modes depends on whether the metamagnetic modes are Fermi-liquid like. In the linear

regime, this is the line r
3

≥ T 2/3. The crossover between regions (d) and (c) is �h/r
3

= 2T/“,

where �h is h≠hú. Depending on the gradients of the lines in the phase diagram, this line may

or may not cross the line r
3

≥ T 2/3 in the linear regime. This is the di�erence between Figures

5.7i and 5.7iii where the lines intersect in the linear regime, and Figures 5.7ii and 5.7iv where

they do not. If they do intersect in the linear regime then there is a crossover between regions

(a) and (b), which is T ≥
Ë

“
2u3

�h
È

3/7

. The exponent comes from the temperature-dependence

of R
3

(T ) dominating È„
3

Í in these regimes.

In the non-linear regime, the crossover between Fermi-liquid and quantum critical be-

haviour of the antiferromagnetic modes is u
3

1
2

“

2
3

(T ≠ r
2

)3 = húhT T 2 + �h. This describes

either the crossover between (A) and (B), or (C) and (D). This crossover can be written as

T ≥ 1

u3

1
“
2

2
3

�h
r2

2
if T < r

2

, and as �h = ≠hT T 2 otherwise, with a T 3 correction. So for T > r
2

this is dominated by the temperature-dependence of the scaling field H(T ). If hT > 0 then

this will mean that for T > r
2

, the inequality X≠1

2

> T is always true, and regimes (A) and

(C) do not exist above these temperatures. However, if hT is negative, then it is possible that

the inequality X≠1

2

> T can be violated, even at temperatures T > r
2

. In this case, regions

(A) and (C) may exist at such temperatures, with a quadratic crossover.

When X≠1

2

< 0, an antiferromagnetically ordered phase is entered. The critical temper-

ature can be found by solving X≠1

2

= 0, and we find that in each region (a), (c), (A) and
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h�2i 6= 0

(i)

h�2i 6= 0

(ii)

h�2i 6= 0

(iii)

h�2i 6= 0

(iv)

Figure 5.7: Examples of possible phase diagrams of a metamagnetic quantum critical end-
point and an antiferromagnetic quantum critical point, in the h-T plane at fixed r

2

and r
3

.
The regions of the phase diagram are described in the main text.
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(C), the boundary of the ordered phase is dominated by the temperature dependence of the

magnetic field H(T ) = h ≠ ch2

“
2

T 3/2. This leads to Tc =
1

“
2

�h
2

2/3

in all regimes. There are

two exceptions. If T < r6

2

in region (a), then the boundary is instead �h = ≠T 4/3

c c
33

u
3

r3. If

T < r3

2

in region (A), then the ordered phase boundary is instead �h = ≠3c
22

u
2

u
3

1
2

“

2
3

r2

2

T 4/3

c .

Since these are only relevant for very small temperatures, these regions are not shown in Figure

5.7.

5.4.4 Physical Properties

Using the SCR method, we have arrived at an e�ective Gaussian model for the situation of an

antiferromagnetic quantum critical point interacting with a metamagnetic quantum critical

end-point. We now use this to investigate the physical properties of the system.

There are three contributions to the critical part of the free energy, the component from the

optimal value of È„
3

Í, and the Gaussian fluctuations of both antiferromagnetic and metamag-

netic modes. The contribution to the free energy from È„
3

Í © „̄
3

is given by F
¯„3 = ≠H(T )„̄

3

.

In the linear regime „̄
3

= H(T )

R3(T )

and in the non-linear regime „̄
3

= 1

u
1/3
3

H4/3(T ). These have

di�erent expansions in each regime.

Since we are left with a Gaussian model, we can evaluate the free energy and its derivatives

using techniques already described. The free energy associated with the fluctuations could be

calculated directly from Gaussian integration, as in equation (2.3.4). It is more simple to use

equation (2.4.20), which was derived by successively integrating out the highest momentum

modes. Since they have already been analysed in Sections 2.4.4 and 3.5, we may directly use

the results of these calculations in this section.

We now consider the thermal expansion, specific heat and Grüneisen parameter in each

regime.
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–
¯„3 –fl3 –fl2

(a
+

) h
u3

T ≠7/3 + “
u3

T ≠5/6 T 1/3 T 1/2 + “
u3

T ≠4/3 ≠ “h
u2

3
T ≠8/3

(a≠) hu3T 1/3

r2
3

+ “ T 1/2

r3
T 1/3 T 1/2

1
1 + “

2

1

r3
≠ “

2

h
r2

3

2

(b
+

) h
u3

T ≠7/3 ≠ hT

u3
T ≠1/3 T 1/3

1
T +

“
2u3

T ≠1/3≠ “h

2u2
3

T ≠5/3
2

1
r2+

“
2

h
u3

T ≠4/3
21/2

(b≠) hu3T 1/3

r2
3

≠ hT
T
r3

T 1/3

T1
r2+

“
2

h
r3

21/2

1
1 + “

2r3
≠ “h

2r2
3

2

(c) u
32

hT 1/2

r2
3

+ “ T 1/2

r3
T
r3

T 1/2

1
1 + “

2

1

r3
≠ “

2

h
r2

3

2

(d) hT
r2

3
≠ hT

T
r3

T
r3

T1
r2+

“
2

h
r3

21/2

1
1 + “

2

1

r3
≠ “

2

h
r2

3

2

(A) u
≠1/3
3 T 1/2

(h≠ “
2 T 3/2)2/3 u

1/3

3

3
T

h≠ “
2 T 3/2

4
1/3

T 1/2

3
1 + “

6u
1/3
3

1
h ≠ “

2

T 3/2

2≠2/3

4

(B) u
≠1/3
3 hT T

(h+hT T 2
)

2/3 u
1/3

3

1
T

h+hT T 2

2
1/3

T

3
1+

“

6u
1/3
3

(h+hT T 2)≠2/3
4

3
r2+

“

2u
1/3
3

(h+hT T 2
)

1/3
41/2

(C) u
≠1/3
3 T 1/2

(h≠ “
2 T 3/2)2/3

T
h≠ “

2 T 3/2 T 1/2

3
1 + “

6u
1/3
3

1
h ≠ “

2

T 3/2

2≠2/3

4

(D) u
≠1/3
3 hT T

(h+hT T 2
)

2/3
T

h+hT T 2

T

3
1+

“

6u
1/3
3

(h+hT T 2)≠2/3
4

3
r2+

“

2u
1/3
3

(h+hT T 2
)

1/3
41/2

Table 5.2: Leading order contributions to the thermal expansion in each region of the phase
diagram. –

¯„3 is the contribution from „̄
3

, –fl3 is the contribution from metamagnetic fluctua-
tions, and –fl2 is the contribution from antiferromagnetic fluctuations. We have split regions
(a) and (b) into (a

+

) and (b
+

) where u
3

T 4/3 > r
3

, and (a≠) and (b≠) where this inequality is
reversed.
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Thermal Expansion

The thermal expansion is calculated as

– = ˆ2Fcr

ˆTˆp
, (5.4.18)

where Fcr is the critical part of the free energy, and p is the physical pressure. When changing

the physical pressure, we expect the parameters r
2

, r
3

and h to all change. We assume that

the derivatives of these parameters with respect to pressure are constants. The contributions

to the thermal expansion in each regime from each part of the free energy are listed in Table

5.2. We now discuss how these have been calculated.

The contribution to the thermal expansion from „̄
3

, which we denote as –
¯„3 , is dominated

by ˆ2F„̄3
ˆT ˆh

which is proportional to –
¯„3 ≥ ≠ ˆ

ˆT
H(T )

R3(T )

in the linear regimes and –
¯„3 ≥ ≠4

3

ˆ
ˆT

H1/3
(T )

u
1/3
3

in the non-linear regimes.

There are also additive contributions arising from fluctuations of the „
3

modes. There are

two contributions to –fl3 = ˆFfl3
ˆp

, from ˆFfl3
ˆr3

and ˆFfl3
ˆh

. From Section 2.4.4 we find that

–fl3 = ˆX≠1

3

(T )
ˆp

T 1/3, (5.4.19)

in regions (a), (b), (A) and (B). In regions (c), (d), (C) and (D) it is

–fl3 = T

X≠1

3

(T )
ˆX≠1

3

(T )
ˆp

. (5.4.20)

We calculate this using the approximation that X≠1

3

(T ) = R
3

(T ) in the linear regions, and

X≠1

3

= u
1/3

3

H2/3(T ) in the non-linear regions.

The component from the antiferromagnetic fluctuations, –fl2 is given by

–fl2 = ˆX≠1

2

(T )
ˆp

T 1/2, (5.4.21)
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in regimes (a), (c), (A) and (C), and

–fl2 = ˆX≠1

2

(T )
ˆp

T

X
≠1/2

2

(T )
, (5.4.22)

in regimes (b), (d), (B) and (D). X≠1

2

is equal to R
2

(T ) + h
R3(T )

in the linear regimes and

R
2

(T ) + “

2u
1/3
3

h1/3 in the non-linear regimes.

We now analyse the thermal expansion in Table 5.2. The contribution from „̄
3

dominates

in all linear regions as temperature is changed at fixed h, r
3

and r
2

, but the form of the thermal

expansion and the subleading corrections depend on the region. The thermal expansion takes

di�erent forms in two di�erent limits of regions (a) and (b), which we call (a
+

) and (b
+

)

(where r
3

π u
3

T 4/3) and (a≠) and (b≠) (where r
3

∫ u
3

T 4/3). In region (c) the thermal

expansion is dominated by –
¯„3 = u

32

hT 1/2

r3
where the temperature-dependence originates from

the T 3/2 renormalisation to R
3

(T ) from the antiferromagnetic fluctuations, and is a result of

multicriticality.

The e�ective Gaussian model is symmetric about h æ ≠h at T = 0, which means that if the

changes in r
3

and r
2

as pressure is changed are ignored, the thermal expansion becomes zero at

H = 0. Table 5.2 includes all corrections to this, and as in the case of an isolated metamagnetic

QCEP, the dominant correction is from the temperature-dependent part of H(T ), which shifts

the zero of thermal expansion away from h = 0. This shift is proportional to hT T 2 when the

antiferromagnetic modes are Fermi-liquid like, in region (b) of the phase diagram, which is the

same as for an isolated metamagnetic QCEP. However, when the antiferromagnetic modes are

quantum critical, in region (a) of the phase diagram the shift is proportional to “T 3/2 due to

the field being renormalised by the antiferromagnetic fluctuations.

While in all linear regions the thermal expansion is dominated by –
¯„3 at fixed r

2

, r
3

and h,

the other contributions are sometimes important. Specifically in all linear regions except (a
+

)

and (b
+

), some terms in –fl2 are of the same order as the components in –
¯„3 . These terms

arise from the pressure-derivative of X≠1

2

(T ), and sometimes have the opposite sign from the
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components of –
¯„3 . In region (d), –fl3 is on the same order as –

¯„3 .

In the non-linear regions (A) and (B) at fixed T , the strongest varying terms as h changes

are –
¯„3 and –fl2. These are both proportional to T 1/2 (�h)≠2/3 in region (A) and T (�h)≠2/3

in region (B), where �h is the deviation from the line H(T ) = 0. In regions (C) and (D)

however, the strongest term is –fl3, proportional to T (�h)≠1.

Specific Heat

The specific heat is calculated from

C

T
= ≠ˆ2Fcr

ˆT 2

. (5.4.23)

The contributions to the specific heat in each regime from each part of the free energy are

listed in Table 5.3. We now discuss how these have been calculated.

The component from „̄
3

in the linear regime is dominated by the temperature dependence

of R
3

(T ), as opposed to the temperature dependence of H(T ). This is true even in region (d),

where the T 2 correction to R
3

(T ) is important.

The contribution from metamagnetic fluctuations is given by Cfl3/T ≥ ln (1/T ) in regions

(a), (b), (A) and (B), and is given by Cfl3/T ≥ ln
1
1/X≠1

3

(T )
2

in regions (c), (d), (C) and

(D). The contributions from the antiferromagnetic fluctuations is given by Cfl2/T ≥ ≠T 1/2 in

regions (a), (c), (A) and (C), and is given by Cfl2/T ≥ ≠X
1/2

2

(T ) in regions (b), (d), (B) and

(D). Here, X≠1

2

is equal to R
2

(T ) + h
R3(T )

in the linear regimes and R
2

(T ) + “

2u
1/3
3

h1/3 in the

non-linear regimes.

We now analyse the specific heat in each region, using Table 5.3. In all regimes the contri-

bution from „̄
3

dominates, with the other two contributions giving the H(T ) = 0 contribution.

The form of C
¯„3 in region (c) of the phase diagram is due to the temperature-dependence of

R
3

(T ), which is in the region is controlled by fluctuations of the antiferromagnetic mode. The

h2T ≠1/2/r2

3

behaviour of the specific heat in this region is a consequence of multicriticality.
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C
¯„3/T Cfl3/T Cfl2/T

(a
+

) h2

u3
T ≠10/3 ln (1/T ) ≠T 1/2

(a≠) u
3

h2

T ≠2/3

r2
3

ln (1/T ) ≠T 1/2

(b
+

) h2

u3
T ≠10/3 ln (1/T ) ≠

1
r

2

+ “
2

h
u3T 3/4

2≠1/2

(b≠) u
3

h2

T ≠2/3

r2
3

ln (1/T ) ≠
1
r

2

+ “
2

h
r3

2≠1/2

(c) ≠u
32

h2

T ≠1/2

r2
3

ln (1/r
3

) ≠T 1/2

(d) ≠h2

r2
3

ln (1/r
3

) ≠
1
r

2

+ “
2

h
r3

2≠1/2

(A) ≠“
(h≠ “

2 T 3/2)1/3

T 1/2 + “2T

(h≠ “
2 T 3/2)2/3 ln (1/T ) ≠T 1/2

(B) hT (h + hT T 2)1/3 + h2
T T 2

(h+hT T 2
)

2/3 ln (1/T ) ≠
3

r
2

+ “

2u
1/3
3

(h + hT T 2)1/3

4≠1/2

(C) ≠“
(h≠ “

2 T 3/2)1/3

T 1/2 + “2T

(h≠ “
2 T 3/2)2/3 ln

3
1/

1
h ≠ “

2

T 3/2

2
1/3

4
≠T 1/2

(D) hT (h + hT T 2)1/3 + h2
T T 2

(h+hT T 2
)

2/3 ln
1
1/ (h + hT T 2)1/3

2
≠

3
r

2

+ “

2u
1/3
3

(h + hT T 2)1/3

4≠1/2

Table 5.3: Contributions to the specific in each region of the phase diagram. C
¯„3 is the

contribution from „̄
3

, Cfl3 is the contribution from metamagnetic fluctuations, and Cfl2 is the
contribution from antiferromagnetic fluctuations. We have split regions (a) and (b) into (a

+

)
and (b

+

) where u
3

T 4/3 > r
3

, and (a≠) and (b≠) where this inequality is reversed.

C
¯„3 has two components in the non-linear region, both originating from the temperature-

dependence of H(T ). The dominant contribution depends on whether considering T æ 0 at

fixed h or vice-versa. As for the thermal expansion, in regions (b), (d), (B) and (D), the

contribution from antiferromagnetic fluctuations diverges as X≠1

2

(T ) æ 0.

Grüneisen Parameter

As explained in Section 5.2.2, there are two Grüneisen parameters; the usual Grüneisen pa-

rameter �, and its magnetic analogue �H . Since r
2

, r
3

and h all depend on both the physical

pressure and the physical magnetic field, these parameters are related. As in Section 5.2.2

there are several contributions to each Grüneisen parameter, which should are multiplied by

the derivatives ˆr2
ˆp

or ˆh
ˆH

, for example.

We calculate the Grüneisen parameter as �H = –
C

. In all regions, the result is similar to

the Grüneisen parameter for an isolated metamagnetic QCEP. In regions (a
+

) and (b
+

) the
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Grüneisen parameter is proportional to h/
1
u

3

T 10/3

2
, and in regions (C) and (D) we find it is

proportional to
Ë
�h ln

1
1

�h

2È≠1

, where �h is the deviation from the line H(T ) = 0. Within the

regions (b), (d), (B) and (D), when R
2

(T ) æ 0 the antiferromagnetic fluctuations dominate

both – and C. In this case they also dominate � and we find � ≥ ≠ˆX≠1
2

ˆp
, which is proportional

to ≠
Ë
1 + “

2

1

R3(T )

≠ “
2

h
R2

3(T )

È
in regions (b) and (d), and proportional to ≠

5
1 + “

6u
1/3
3

H≠2/3(T )
6

in regions (B) and (D).

5.4.5 Summary of Results

Our key results are the phase diagrams in Figure 5.7, and the specific heat and thermal

expansion which are listed in Table 5.3 and Table 5.2. In the plane H(T ) = 0, the specific

heat and thermal expansion are the same as in the model of a multicritical point in Chapter 3.

Any slight deviation from the critical magnetic field induces a non-zero expectation value of

the metamagnetic mode „̄
3

, which strongly influences the specific heat and thermal expansion.

These terms tend to dominate the thermodynamic properties, but the contributions from

fluctuations can sometimes be of the same order.

In general the magnetic field and temperature-dependence of the physical properties is com-

plex, but there are some indicators of multicriticality in the phase diagram. The temperature-

dependence of the renormalised magnetic field is significantly di�erent from the temperature-

dependence for the metamagnetic transition. While for a quantum critical metamagnetic

transition, the temperature-dependence is the usual Fermi liquid hT T 2, in the presence of

quantum critical antiferromagnetic fluctuations the temperature-dependence is ≠“T 3/2. This

a�ects the location of the zero of the thermal expansion and the sign-change of the Grüneisen

parameter at finite temperatures above the quantum critical point.

Another indicator of multicriticality can be seen in region (c) of the phase diagram,

where the dominant contribution to the specific heat at finite field is ≠u
32

h2

T ≠1/2

r2
3

. This

temperature-dependence is due to the quantum critical antiferromagnetic fluctuations a�ect-

ing the temperature-dependence of the metamagnetic tuning parameter R
3

(T ).
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We now discuss how the model can be analysed using the renormalisation group.

5.5 Renormalisation Group Analysis

In the previous section, using the SCR method we found the phase diagram, correlation

lengths and thermodynamic properties of the model of an antiferromagnetic QCP interacting

with a metamagnetic quantum critical end-point. As mentioned when introducing the model,

the SCR method is a rather ad-hoc procedure and there is no systematic way of testing its

validity. It is therefore desirable to have a more formal analysis of this model, based on the

renormalisation group scheme implemented in Chapter 3, to test the validity of the conclusions

of the SCR method. The goal of this section is to derive such a model.

Our strategy is to perform a renormalisation group analysis on the action of equation

(5.3.4), in order to identify which terms are irrelevant in the RG sense. The goal is to find

out in which numbers of dimensions enough interactions scale to zero such that the action

becomes manageable, and physical properties could be calculated by treating the irrelevant

interactions perturbatively.

As a first step towards this, we analyse the corresponding classical model of equation

(5.3.4), where the fields do not depend on imaginary time and only fluctuate spatially. We

find that the upper critical dimension of this model is 6, and discuss the fixed point structure

of the model in the vicinity of the upper critical dimension. In Section 5.5.2 we derive the RG

equations for the quantum mechanical model and discuss the fixed point structure, and the

di�erences between the quantum critical model and the corresponding classical model.
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5.5.1 Corresponding Classical Model

Before analysing the full model in equation (5.3.4), we find it helpful to analyse the corre-

sponding classical model, given by

F =
⁄

dq
1
r

3

+ q2

2
„2

3

(q) +
⁄

dq
1
r

2

+ q2

2
„2

2

(q) ≠ h
⁄

dx„
3

(x)

+ “
⁄

dx„
3

(x)„2

2

(x) +
⁄

dx
Ë
u

3

„4

3

(x) + u
2

„4

2

(x) + u
32

„2

3

(x)„2

2

(x)
È

.

(5.5.1)

In this equation, as an argument of „
2

, q measures the deviation from the antiferromagnetic

ordering wavevector Q. The momentum integrals are up to high momentum cut-o�s �
2

and

�
3

for the „
2

and „
3

modes respectively.

Cubic Terms in the Literature

Before embarking on a study of this model, we first discuss similar models which have been

discussed in the literature. The di�erence between the model in equation (5.5.1) and the other

models we have studied in this thesis is the presence of the cubic term, “. Models with cubic

terms have been studied in the literature, in a variety of contexts.

The most basic model one could write down with cubic terms is „3 theory, where the action

has only quadratic and cubic terms. This model has attracted attention from field theorists

due to the presence of cubic terms in the standard model [59]. The upper critical dimension

of such a theory is found to be equal to 6. The scalar „3 model has been analysed using the

‘ expansion, which we discussed in Section 1.4.4, however there are no real fixed points below

the upper critical dimension. Instead, interacting fixed points have been found to order ‘ above

the upper critical dimension [60].

In n-component vector models, interacting fixed points are sometimes found below the

upper critical dimension. However in such models, the coe�cient of the cubic interaction is no

longer a constant, but a tensor. The presence of stable fixed points below the upper critical

dimension depends upon the number of field components, and crucially, on the symmetries of
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the cubic tensor [61]. This stability of the fixed points with respect to quartic interactions has

also been analysed in this model, and they are found to be irrelevant for d ≠ ‘ > 4 [62].

In the next section we analyse the model in equation (5.5.1) using the momentum-shell

renormalisation group, and the ‘ expansion. This model does not have such luxurious sym-

metries, and we find that real, interacting fixed points only exist above the upper critical

dimension.

Analysis of the Model

We now perform renormalisation on the free energy given in equation (5.5.1). To analyse

this energy we employ the momentum-shell renormalisation group procedure described in

Section 1.4.3, by successively integrating out high momenta modes. We simultaneously reduce

both cut-o�s by a factor b, and integrate out the modes above the cut-o�. We calculate

the renormalisation group equations to one-loop order, by analysing the diagrams shown in

Appendix C. We find that

dh

d ln b
=

A

1 + d

2

B

h + n
2

“

1 + r
2

, (5.5.2a)

dr
2

d ln b
=2r

2

+ 2 (n
2

+ 2) u
2

1 + r
2

+ n
3

u
32

1 + r
3

≠ 2c
32

“2

(1 + r
2

) (1 + r
3

) , (5.5.2b)

dr
3

d ln b
=2r

3

+ 2 (n
3

+ 2) u
3

1 + r
3

+ n
2

u
32

1 + r
2

≠ n
2

“2

(1 + r
2

)2

, (5.5.2c)

d“

d ln b
=

A

3 ≠ d

2

B

“ ≠ 4 (n
2

+ 2) “u
2

(1 + r
2

)2

+ 4c
322

“3

(1 + r
3

) (1 + r
2

)2

, (5.5.2d)

du
2

d ln b
= (4 ≠ d) u

2

≠ 4 (n
2

+ 8) u2

2

(1 + r
2

)2

≠ n
3

u2

32

(1 + r
3

)2

≠ 4c
3322

“4

(1 + r
2

)2 (1 + r
3

)2

, (5.5.2e)

du
3

d ln b
= (4 ≠ d) u

3

≠ 4 (n
3

+ 8) u2

3

(1 + r
3

)2

≠ n
2

u2

32

(1 + r
2

)2

≠ 4n
2

“4

(1 + r
2

)4

, (5.5.2f)

du
32

d ln b
= (4 ≠ d) u

32

≠ 8cÕ
32

u2

32

(1 + r
2

) (1 + r
3

) ≠ 4 (n
2

+ 2) u
32

u
2

(1 + r
2

)2

≠ 4 (n
3

+ 2) u
32

u
3

(1 + r
3

)2

≠ 2c
3222

“4

(1 + r
3

) (1 + r
2

)3

,

(5.5.2g)
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(a) dr2
” ln b ≥ c

32

“2 (b) d“
” ln b ≥ c

322

“3 (c) du2
” ln b ≥ c

3322

“4 (d) du32
” ln b ≥ cÕ

32

u2

32

(e) du32
” ln b ≥ c

3222

“4

Figure 5.8: One-loop diagrams with both „
2

(red) modes and „
3

(blue) modes above the cut-
o�. The dotted line represents the interactions u

32

, and the black dot represents the interaction
“.

where c
322

, c
3322

, c
32

and c
3222

are constants. These constants come from diagrams where both

„
2

and „
3

modes are above the cut-o�, which are shown in Figure 5.8.

These constants arise if �
2

and �
3

are not the same. In the normal momentum-shell RG

approach, we neglect the momentum-dependence of the one-loop diagrams by only evaluating

them when no momentum in transferred across the loop. In the diagrams of Figure 5.8, we

have both „
2

and „
3

modes above the momentum cut-o�s within the loop, so if �
2

and �
3

are di�erent a momentum of at least |�
2

≠ �
3

| must travel through the loop. We assume that

we may simply calculate these diagrams as if the „
3

modes carry momentum �
3

and the „
2

modes carry momentum �
2

, and multiply by a constant to take account of this approximation.

Another justification for this is that �
3

and �
2

are just high momentum cut-o�s imposed on

our calculations, and the physical properties should not depend on their choice. If we set

�
3

= �
2

, these constants would reduce to unity. We believe we are entitled to do this, as if

we neglected these diagrams we would be ignoring possible physical processes in the RG flow.

Before we analyse these equations, we note that the one-loop corrections are actually

1/(ri + �2

i ) for i = 3, 2, but in the RG equations we have set �
2

= �
3

= 1. We have also

neglected coe�cients of Kd. We suppose that if these factors were included, they would slightly

change the location of the fixed points, and change the coe�cients of the order ‘ corrections

to the RG eigenvalues we find. However, they would not change the fixed point structure of

the theory and not change the conclusions we draw from this analysis.
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We now analyse these equations. We can immediate see that there is a Gaussian fixed

point where u
2

, u
3

, u
32

and “ are zero, however in dimensions less than 4 this fixed point is

unstable with respect to the quartic couplings, and is unstable with respect to the cubic term

“ in dimensions less than 6.

Since the “ term contains no powers of either mode greater than the quadratic, if we had

no quartic interactions we would be able to integrate out either of the modes using Gaussian

integration to find the free energy. However the resultant model for the other mode is not

a Gaussian model, and so we conclude that the upper critical dimension of this model is 6.

When we form a quantum critical version of this action in Section 5.5.2, we expect the two

e�ective dimensions d + z
3

and d + z
2

to play a role in renormalisation, and in three spatial

dimensions these are the e�ective dimensions 5 and 6. We therefore need to analyse this model

below its upper critical dimension.

One method of investigating models below their upper critical dimension is the ‘-expansion

described in Section 1.4.4. If applied in the standard way to this model, we find there are no

interacting fixed points below the upper critical dimension with real values of the parameters.

However in dimensions d = 6 + ‘ we find there are two interacting fixed points at

“ú = ± 1
2

Û
‘

2c
322

, (5.5.3a)

rú
2

= ‘

8
c

32

c
322

, (5.5.3b)

rú
3

=n
2

‘

16
1

c
322

, (5.5.3c)

hú = ≠ sign(“ú)n
2

8

Û
‘

2c
322

, (5.5.3d)

uú
3

= uú
2

= uú
32

=0, (5.5.3e)

which we now look at the physical properties in the vicinity of. The critical properties around

each fixed point are the same, as the two fixed points are just related by „
3

æ ≠„
3

. We now

investigate theory in the vicinity of the positive root.
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We linearise the RG equations around this fixed point, keeping terms to order ‘. We write

the RG equations in matrix form, as

Q

cccccccccccccccccccccca

d”h
d ln b

d”r2
d ln b

d”r3
d ln b

d”“
d ln b

d”u2
d ln b

d”u3
d ln b

d”u32
d ln b

R

ddddddddddddddddddddddb

= RG

Q

cccccccccccccccccccccca

”h

”r
2

”r
3

”“

”u
2

”u
3

”u
32

R

ddddddddddddddddddddddb

, (5.5.4)

where the matrix RG is given by
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‘1

/
2

0
n

2

1 1
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c 3

22
‘2

0
0

0

0
2

+
c 3

2
4
c 3

22
‘

c 3
2

4
c 3

22
‘

≠
Ô

2c
3
2
2

‘1
/
2

2(
n

2

+
2)

1 1
≠

‘
8

2
0

n
3

1 1
≠

n
2

1
6
c 3

22
‘2

0
n

2
4

32
‘

2
+

n
2

4
c 3

22
‘

≠
n

2
Ô

2
c 3

22
‘1

/
2

0
2(

n
3

+
2)

1 1
≠

n
2

1
6
c 3

22
‘2

n
2

1 1
≠

c 3
2

8
c 3

22
‘2

0
0

0
‘
2

≠
2
(
n

2+
2
)

Ô
2
c 3

22
‘1

/
2

0
0

0
0

0
0

≠
2

≠
‘

0
0

0
0

0
0

0
≠

2
≠

‘
0

0
0

0
0

0
0

≠
2

≠
‘

R d d d d d d d d d d d d d d d d d d d d d d b
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.5
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)
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The eigenvalues of this matrix associated with the quartic interactions and the magnetic

field are unchanged from the values about the Gaussian fixed point, however this point is unsta-

ble with respect to the cubic interaction. The two eigenvalues related to the renormalised tun-

ing parameters (and therefore the correlation lengths) are ⁄a = 2 and ⁄b = 2 + ‘
4

1
c32
c322

+ n2
c322

2
.

⁄b becomes 2 in the limit ‘ æ 0, as one would expect. The RG eigenvectors are complicated

combinations of all variables.

The analysis presented in this section shows that the term proportional to “ is relevant in

less than 6 dimensions, so in the full quantum critical theory careful analysis of this term is

required.

5.5.2 The Quantum Critical Model

We now turn our attention to the full quantum critical model described by equation (5.3.4). We

derive the one-loop RG equations for all parameters and investigate the fixed point structure

in the vicinity of the upper critical dimension of the system.

We derive the RG equations for this model in a slightly di�erent way to that of the Hertz-

Millis case, and the model of a multicritical point of Chapter 3. As noted in Section 2.3.1, the

reason for deriving the RG equations from the linked cluster expansion was because of concerns

as to how to continually reduce a cut-o� of a discontinuous Matsubara sum. We noted that

the derived RG equations could be derived by analogy with the usual momentum-shell RG by

calculating diagrams with external vertices, as long as we used the correct expressions for the

one-loop integrals.

Since we have already derived the integrals of modes above the cut-o� in a situation

with multiple dynamical exponents, we write down the RG equations by analogy with the

diagrammatic expansion of Section 5.5.1 and the analysis of a quantum multicritical point

in Chapter 3. Again, we find that we can write the RG equations in terms of previously

analysed functions if we absorb factors of ÷
2

and ÷
3

into the definition of certain variables.

The magnetic field enters the RG equations only in terms of h̃
2

= ÷
1/2

2

h, and the cubic term
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enters as “̃i = “i/÷
1/2

i for i = 2, 3. The RG equations are

dh̃
2

d ln b
=

5
1 + D

2

2

6
h̃

2

+ n
2

“̃
2

f
(2)

2

, (5.5.6a)

dr
2

d ln b
=2r

2

+ 2 (n
2

+ 2) ũ
2

f
(2)

2

+ n
3

w̃
3

f
(2)

3

≠ 2“̃2

3

f
(4)

32

, (5.5.6b)
dr

3

d ln b
=2r

3

+ 2 (n
3

+ 2) ũ
3

f
(2)

3

+ n
2

w̃
2

f
(2)

2

≠ n
2

“̃2

2

f
(4)

2

, (5.5.6c)
d“̃

2

d ln b
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5
3 ≠ D

2

2

6
“̃

2

≠ 4 (n
2

+ 2) “̃
2

ũ
2

f
(4)

2

+ 4“̃
2

“̃2

3

f
(4)

32

, (5.5.6d)

d“̃
3

d ln b
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5
3 ≠ D

3

2

6
“̃

3

≠ 4 (n
2

+ 2) “̃
3

ũ
2

f
(4)

2

+ 4“̃3

3

f
(4)

32

, (5.5.6e)

dũ
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d ln b
= [4 ≠ D

2

] ũ
2
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+ 8) ũ2
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f
(4)
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2
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2
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3
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, (5.5.6f)
ũ

3

d ln b
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3

] ũ
3

≠ 4 (n
3

+ 8) ũ2

3
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(4)

3
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2
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2
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3
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(8)

2
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d ln b
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] w̃
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≠ 8w̃
2

w̃
3

f
(4)

32
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2
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2
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(4)
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3
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(4)
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3
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3222
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(5.5.6h)

dw̃
3

d ln b
= [4 ≠ D

3

] w̃
3

≠ 8w̃2

3

K
32

f
(2)

3

r
2

+ �2

2

≠ 4 (n
2

+ 2) ũ
2

w̃
3

f
(4)

2

≠ 4 (n
3

+ 2) ũ
3

w̃
3

f
(4)

3

≠ 2“̃4

3

f
3222

,

(5.5.6i)

where Di = d + zi. The function f
(8)

2

, comes from diagrams with four „
2

modes above the

cut-o�, and is

f
(8)

2

= �d≠1

2

Kd

⁄
�2
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dÊ

fi
coth
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Ê

2T
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4 4Ê (”
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)
Ë
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2

)2 ≠ Ê2

È
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)2 + Ê2

È
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+ 1
fi
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�2
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ddq
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2T
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B 4� (”
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Ë
(”
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+ q2)2 ≠ Ê2

È

Ë
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2

+ q2)2 + Ê2

È
4

.

(5.5.7)

The function f
3222

comes from diagrams with three „
2

modes and one „
3

mode above the
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cut-o� as in Figure 5.8e, and is given by

f
3222

= 1
(”
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<)3
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�
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(5.5.8)

The function f
3322

comes from diagrams with two „
2

modes and two „
3

modes above the

cut-o� as in Figure 5.8c, and is given by
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,

(5.5.9)

and all other functions are previously defined. The functions defined in equations (5.5.8) and

(5.5.9) are derived by adapting the methods of deriving f
(4)

32

in Section 3.3.3. In writing these

down, we have made the same approximation as in equation (3.3.31), and neglected terms in

the integrands proportional to ÷
2

(b)/÷
3

(b).

We now analyse the RG equations. The quartic couplings are irrelevant in spatial dimen-

sions greater than 2, and in the case of d = 2 the terms ũ
2

and w̃
2

are marginal. In two spatial

dimensions, the cubic interactions “̃
2

and “̃
3

are both relevant, and in three spatial dimensions

“̃
2

is relevant while “̃
3

is marginal.

To one-loop order, the only fixed point of the RG flow is the fixed point where all the terms

in the RG equations are zero, which is unstable with respect to perturbations of “, r and h.

If we approximate the coe�cient of “̃
3

3 in equation (5.5.6e) as a constant K, then there is

another fixed point of the RG flow in dimensions d = 3 + ‘ at

1
“̃ú

3

2
2

= ‘

2K
. (5.5.10)

However, since “̃
2

(b) = b1/2“̃
3

(b), under RG “̃
2

still grows, and this fixed point is of limited use
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in calculating physical properties.

We have demonstrated that the presence of the cubic “ term complicates the RG calcu-

lation, and means that quantum critical RG equations do not have simple solutions below

4 spatial dimensions. How the renormalisation group analysis of this model should proceed

remains an open question.

5.6 Conclusion

In this section we derived and analysed a model of a quantum critical end-point in proximity

to an antiferromagnetic QCP in the phase diagram. Like the model examined in Chapter 3,

this is another example of a quantum critical theory featuring the two dynamical exponents

z = 2 and z = 3. However the model of this chapter di�ers because the symmetry-breaking

field causes other terms to be present in the action.

The new terms turn out to be relevant in a renormalisation group sense, and any physical

systems in a realistic number of spatial dimensions are below the upper critical dimension of

the new theory, meaning that the interactions are important. How a full renormalisation group

analysis of this model should be performed remains an open question. Despite this we have

analysed the model using the self-consistently renormalised approach, and found the phase

diagram and thermodynamic properties in each region.

The original goal was to see if the conclusions about the thermodynamic properties of a

multicritical point survived under the application of a magnetic field to generate the phase

diagram shown in Figure 5.3c, and we are able to answer this question within the SCR ap-

proximation. The key results are that the physical properties to leading order tend to be the

same as in the metamagnetic transition, with corrections as discussed in Section 5.4.5. The

largest e�ect of multicriticality is the temperature-dependence of the magnetic field, which

acquires a renormalisation proportional to T 3/2 due to interactions with the antiferromag-

netic modes. This is in contrast to the T 2 correction for a metamagnetic QCEP. This strong
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temperature-dependence shifts the location of the sign change of the Grüneisen parameter at

finite temperatures.

Our results may have some application to the compound YbAgGe, which was mentioned

in Section 3.1.1. This material has a bicritical point at T ¥ 0.3K at µ
0

H ¥ 4.5T between two

distinct magnetically ordered phases, and exhibits quantum critical scaling at temperatures

above this point [10]. One notable feature of the material is that the temperature dependence

of the critical field is much stronger than in other quantum critical metamagnets, such as

CeRu
2

Si
2

[53] and Sr
3

Ru
2

O
7

[63]. We believe this stronger temperature dependence can be

attributed to the strong renomalisation e�ects of antiferromagnetic fluctuations, which we

have found from the SCR method. However, we note that this material is not expected to be

explained by a d = 3 theory. Hints of a low e�ective dimensionality are seen in the quantum

critical scaling relations [10], and the magnetic fluctuations in zero field seem to have a quasi-

one-dimensional nature [64]. Nevertheless, even in a lower e�ective dimensionality we would

expect the antiferromagnetic fluctuations to provide the field with a stronger temperature

dependence than the Fermi liquid.
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Chapter 6

CONCLUSIONS

In this thesis we have developed a model of a quantum multicritical point in a material

unstable towards both ferromagnetic and antiferromagnetic order. Our model is based upon

the Hertz-Millis theory detailed in Chapter 2, and in Chapter 3 we performed an analysis of the

model using the techniques of the renormalisation group. We identified the distinct regions of

the phase diagram, and the thermal expansion, specific heat and Grüneisen parameter in each

region. We found these results to be consistent with the experimental data which motivated our

investigation, and make predictions about currently unmeasured quantities. In Chapter 4 we

investigated another aspect of the model that could not be captured from the renormalisation

group analysis, which is the resistivity near a quantum multicritical point. Again, we found

our results to be consistent with experimental data. In Chapter 5 we extended our model

to consider a metamagnetic quantum critical end-point and an antiferromagnetic quantum

critical point, under the influence of a magnetic field. Using the self-consistently renormalised

approach we were able to find the regions of the phase diagram and the specific heat, thermal

expansion and Grüneisen parameter in each region. We found that the presence of a magnetic

field changes many of the properties of the multicritical model developed in Chapter 3, but

we have predicted some indicators of multicriticality in the presence of a magnetic field.

We now summarise our key results. The phase diagram for a quantum multicritical point

between a ferromagnetic phase and an antiferromagnetic phase is shown in Figure 3.5 in three
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dimensions, and Figure 3.6 in two dimensions. We find it helpful to interpret the results as

two interacting quantum critical points. The ferromagnetic QCP is una�ected by the anti-

ferromagnetism, but the antiferromagnetic correlation length (and hence the boundary of the

antiferromagnetically ordered phase) acquires the temperature-dependence usually associated

with ferromagnetic correlations. Thermodynamic properties in three dimensions are detailed

in Table 3.1, and properties in two dimensons are detailed in Table 3.2. The contribution from

quantum critical ferromagnetism tends to dominate these properties. In Section 3.5 we found

that in the presence of both ferromagnetic fluctuations and antiferromagnetic fluctuations,

the resistivity obeys the power law usually associated with antiferromagnetism in disordered

systems. Moreover, we found that the ferromagnetic fluctuations actually stabilise this power

law, and we would expect to find it even in clean systems.

These results appear to match up with experimentally available data on both NbFe
2

and

Ta(Fe
1≠xVx)

2

, which both display specific heat obeying the ferromagnet C ≥ T ln
1

1

T

2
power

law and resistivities obeying the antiferromagnetic fl ≥ fl
0

+ AT 3/2 power law. Our prediction

that the thermal expansion and Grüneisen parameter should also obey the power laws usually

associated with ferromagnetism has not yet been tested. The boundaries of the ordered phases

have not yet been measured in su�cient detail to allow comparison with the phase diagrams

that we have derived.

In Chapter 5 we explained how we expect this model to develop under the influence of a

magnetic field, and looked at a model of a metamagnetic quantum critical end-point interacting

with an antiferromagnetic quantum critical point in three dimensions. The phase diagram in

the h ≠ T plane is shown in Figure 5.7, and in Tables 5.2 and 5.3 we list the thermodynamic

properties expected in each region of this phase diagram. While the thermodynamic properties

are in general very complicated, we find that they tend to be dominated by the contribution

from the metamagnetic modes, which is associated with the z = 3 theory. The main result

of multicriticality is the temperature-dependent renormalisation of the magnetic field, which

acquires a much stronger renormalisation in the presence of antiferromagnetic fluctuations
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than the typical Fermi liquid corrections. In Section 5.6 we were able to identify the case

of YbAgGe in the literature, which is a material which has a bicritical point in the phase

diagram, where the magnetic field acquires a stronger temperature-dependent renormalisation

than in other quantum critical metamagnets.

Within the context of the types of multiple dynamic scaling described in Section 2.6, the

model of multicriticality we have analysed in Chapters 3 and 4 falls under the classification of

decoupled multiple dynamic scaling. This is because the critical part of the free energy is the

sum of two distinct contributions, associated with the fluctuations of each mode. Because we

have analysed the model in Chapter 3 at or above its upper critical dimension the only option is

to flow to the non-interacting fixed point. Nevertheless, the dangerously irrelevant interaction

terms are what give the renormalised tuning parameters their temperature-dependence and

hence shape the phase diagram. These are the e�ects of multicriticality not captured by the

scaling analysis in Section 3.2. The simple scaling analysis also fails to capture the behaviour

of the resistivity in such systems, which is dominated by multicritical behaviour.

This thesis raises some theoretical and experimental questions, and several avenues of re-

search are now opened. One main question is how should the renormalisation group procedure

be employed in the model of a metamagnetic QCEP interacting with an antiferromagnetic

QCP? As the interaction term “ in equation (5.3.4) appears to be relevant in 3 spatial dimen-

sions, there is the possibility that this model could exhibit stronger signatures of multicriticality

that those predicted by the SCR theory we presented. Another possible avenue of research

is how the resistivity behaves under a magnetic field. Rosch [48] predicted that the magne-

toresistivity near an antiferromagnetic QCP depends on the temperature-dependence of the

antiferromagnetic correlation length. In our analysis this has been shown to be changed by

quantum critical ferromagnetic fluctuations, and thus magnetotransport near a QMCP could

be significantly a�ected by multicriticality. Another avenue of possible further research is to

see how the model of an interacting QCEP and an antiferromagnetic QCP could be extended

or adapted to the situation of a quantum critical valence transition and an antiferromagnetic
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QCP in close proximity on the phase diagram.

In summary, in this thesis we have developed and analysed a model of quantum multicrit-

icality which we believe successfully explains the specific heat and resistivity measurements of

the quantum critical compounds NbFe
2

and Ta(Fe
1≠xVx)

2

. We have predicted the power-law

behaviour of the thermal expansion and Grüneisen parameter, which to our knowledge are cur-

rently unmeasured. We have extended the model for finite magnetic fields and made physical

predictions about scenarios where a metamagnetic QCEP interacts with an antiferromagnetic

QCP. We hope that the experimental and theoretical questions raised by this thesis stimulate

further research into quantum multicritical points.

192



Quantum Multicriticality

arXiv:1506.03021

193



Quantum Multicriticality

G.T. Oliver and A.J. Schofield
School of Physics and Astronomy, University of Birmingham,

Edgbaston, Birmingham, B15 2TT, United Kingdom.

(Dated: June 10, 2015)

Several quantum critical compounds have been argued to have multiple instabilities towards or-
ders with distinct dynamical exponents. We present an analysis of a quantum multicritical point in
an itinerant magnet with competition between ferro- and antiferromagnetic order, modelled using
Hertz-Millis theory. We perform a one-loop renormalization group treatment of this action in the
presence of two dynamical exponents. In two and in three dimensions, when both incipient orders
are quantum critical, we find that the specific heat, thermal expansion and Grüneisen parameter
obey the same power laws as those expected for a single ferromagnetic quantum critical point. The
antiferromagnetic correlation length and boundary of the antiferromagnetic ordered phase are sup-
pressed by the dangerously irrelevant interactions with quantum critical ferromagnetic fluctuations.
We find no di↵erence between a quantum bicritical point and a quantum tetracritical point. Our
results are compared with experiments on NbFe2.
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Quantum criticality is characterised by universal diver-
gences of thermodynamic quantities at a continuous zero-
temperature phase-transition as some non-thermal con-
trol parameter (e.g. pressure, doping or magnetic field) is
changed. The much-studied power laws associated with
the quantum phase transition depend on the universal-
ity class, which in contrast to the classical case depends
on the dynamics of the order parameter fluctuations in
imaginary time. The dynamic e↵ects are characterized by
a dynamical exponent, z, which, in addition to control-
ling the power-law divergences, defines the boundaries of
distinct regions in the phase diagram [1–4].

In recent years quantum critical behaviour has been
observed in systems that do not seem to conform to the
standard theoretical picture of fluctuations of an order
parameter with a unique dynamical exponent. For exam-
ple the specific heat in NbFe2 displays a C ⇠ �T lnT re-
lation as would be expected for three dimensional itiner-
ant ferromagnetic quantum criticality which is described
with z = 3. In contrast the resistivity displays ⇢ ⇠ T 3/2

as expected for a dirty three dimensional antiferromag-
net, usually described with z = 2 [5, 6].

In this Letter we report results of a study into quan-
tum criticality where an itinerant material is unstable to
both ferro- and antiferromagnetic order. Materials with
a multicritical point in the phase diagram [as shown in
Figs. 1(a) and 1(b)] show a competition between two
distinct types of order. Here we assume that if we had
control over another tuning parameter we could suppress
this multicritical point to zero temperature, to form a
quantum multicritical point [as shown in Fig. 1(c)].
This type of phase diagram has been considered before
[7], but in the presence of a symmetry-breaking field,
which we do not treat here. To model quantum mul-
ticriticality we construct an e↵ective action in terms of
spin-fluctuations by adapting Hertz-Millis theory [3, 4, 8].
This neglects important non-analytic terms which some-
times arise from integrating out the fermionic degrees

of freedom [2]. Ignoring such terms seems valid slightly
away from the critical point [9]. Nevertheless their inclu-
sion could stabilize a finite-momentum spin-density wave
near the ferromagnetic quantum critical point [10] to gen-
erate the scenario considered here. We extend Millis’
calculation [4] to treat the quantum multicritical point
by following the renormalization group (RG) procedure.
This enables us to map out the rich phase diagram and
calculate the leading order critical parts of the specific
heat, thermal expansion and Grüneisen parameter.

Our main result is that, since we are at or above the
upper critical dimension of our model (d+c = 2), we can
essentially treat the fluctuations of each type of order in-
dependently, and the critical part of the free energy and
therefore its derivatives simply become the sum of the
contributions associated with each individual order pa-
rameter. The caveat is that whenever the dangerously

irrelevant interactions a↵ect the RG flow, due to the
multiple dynamics they can produce novel temperature
dependences. This allows the dangerously irrelevant in-
teractions to shape the phase diagram. We also discuss
the resistivity in relation to experiments, though do not
o↵er an explicit calculation here.

Our analysis is formulated in terms of an order param-
eter field �(q,!n) which describes the magnetization of
the system. In a system unstable towards both ferro-
and antiferromagnetic order, the susceptibility will be
large near zero momentum and near the antiferromag-
netic wavevector Q. We split the magnetization field
into two parts to represent these di↵erent regimes. We
denote the small momentum part of the field as �3(q,!n)
for |q| < ⇤3 where the subscript 3 refers to the fact that
this field is usually described by a dynamical exponent
z = 3. To denote the field near momentum Q we use the
notation �2(q,!n) where here q (which we restrict such
that |q| < ⇤2) measures the deviation from Q. Here the
subscript 2 refers to the dynamical exponent z = 2 usu-
ally associated with antiferromagnetic order. We allow
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FIG. 1: Suppressing a multicritical point to zero temperature.
(a) and (b) show bicritical and tetracritical points respec-
tively. By invoking another non-thermal control parameter g,
these multicritical points can be tuned to zero temperature,
as shown in (c). (d) shows the expected phase diagram when
two quantum critical points arise for increasing g.

for �3 and �2 to have n3 and n2 components respectively.
The action we use to describe a quantum multicritical

point is the sum of the actions of a ferromagnetic and an
antiferromagnetic quantum critical point (QCP),

S [�3,�2] =
X

i=3,2

X

!n

X

q

��1
i (q,!n)�

2
i (q,!n)

+

Z
dxd⌧

⇥
u3�

4
3(x, ⌧) + u2�

4
2(x, ⌧)

+ u32�
2
3(x, ⌧)�

2
2(x, ⌧)

⇤
, (1)

where the two QCPs are coupled together by a mode-
mode coupling term u32. The bare inverse spin suscepti-
bilities are given by

��1
i (q,!n) = �i + q2 + ⌘i

|!n|
qzi�2

, (2)

where z3 is the dynamical exponent associated with ferro-
magnetic order, z = 3, and z2 is the dynamical exponent
associated with antiferromagnetic order, z = 2. We have
added ‘kinetic coe�cients’ ⌘3 and ⌘2 which allow us to
renormalize in the imaginary time direction [11, 12]. The
classical analogue of the action describes a multicritical
point in the �3-�2 plane. The model shows bicriticality
if u2

32 > 4u3u2 and tetracriticality if this is inequality is
reversed [13, 14].
In order to map out the phase diagram and predict

thermodynamic quantities, we perform an RG analysis by
simultaneously integrating out the �3 modes in a small
shell with momenta between ⇤3/b and ⇤3, and the �2

modes with momenta between ⇤2/b and ⇤2. We then
rescale such that the original cut-o↵s are restored and
calculate how the other parameters in the model must
rescale. The presence of multiple dynamical exponents
means there is no unique way to rescale frequency. We
choose to rescale it as bz where z is a fictitious dynamical
exponent which we leave unspecific (see Ref. [11] and
[12]). This enables renormalization but will drop out of
our calculations so that no physical properties depend on
it. The RG equations can either be derived directly from
the action or by calculating a physical property (such as
the free energy) and ensuring it does not change under
renormalization. We have done both, and find that the
one-loop RG equations for the tuning parameters and
interactions are

d�i
d ln b

= 2�i(b) + ũi(b)4(ni + 2)f (2)
i (�i(b), Ti(b))

+ w̃ı̄(b)4nı̄f
(2)
ı̄ (�ı̄(b), Tı̄(b)) , (3a)

dũi

d ln b
= [4� (d+ zi)] ũi(b)�4(ni+8)f (4)

i (�i(b), Ti(b))ũ2
i

� 4nı̄f
(4)
ı̄ (�ı̄(b), Tı̄(b))w̃i(b)w̃ı̄(b), (3b)

dw̃i

d ln b
= [4� (d+ zi)] w̃i(b)

�
X

j=3,2

4 (nj + 2) f (4)
j (�j(b), Tj(b))ũj(b)w̃i(b), (3c)

where i is either 3 or 2 and ı̄ is correspondingly either 2
or 3. We have defined ũi ⌘ ui/⌘i and w̃i ⌘ u32/⌘i, as we
find that the only way the interactions enter the RG equa-
tions is in these combinations. For the rest of this Let-
ter, when a parameter is written without explicit scale-
dependence we are referring to the bare, unrenormalized
value. We find that the temperature scales as T (b) = bzT
and the kinetic coe�cients are ⌘i(b) = bzi�z⌘i. The RG
equations can be written in terms of two temperature
fields Ti(b) = ⌘i(b)T (b) = Tibzi which represent the ef-

fective temperature felt by the �i modes. The f (2)
i and

f (4)
i functions are the one-loop integrals shown in Fig.
2, which arise in the RG procedure due to interactions
with modes above the cut-o↵. They are exactly the same
functions which appear in Hertz-Millis theory, defined in
Ref. [4]. The scaling of the interaction terms can be cal-
culated from Eqs. (3b) and (3c), which can be analysed
under the usual approximation that the f (4) functions
are constant [4]. In d = 3 we find all interaction terms
decay as some power of b, whereas in d = 2, ũ2 and
w̃2 decay logarithmically. We find that at large values
of b, ũ2(b) ⇠ (ln b)�1 just as in the d = z = 2 Hertz-

Millis case, and w̃2(b) ⇠ (ln b)�(n2+2)/(n2+8), which is a
very slow decay unique to the multicritical case. Because
the free energy can be written as a power series in these
interaction terms, we conclude that the upper critical di-
mension is d+c = 2, just as for an antiferromagnetic QCP.
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FIG. 2: One-loop diagrams that contribute to the RG flow
and Eqs. (3a), (3b) and (3b). Lines with free (connected)
ends represent modes below (above) the cut-o↵. The symbols
i, j, k = 3, 2 label which modes the lines represent. (a) shows a
contribution to the renormalization of �i from interaction with
�j modes above the cut-o↵, and is proportional to f (2)

j (�j , Tj).
(b) shows a contribution to the renormalization of ui if j = i
and u32 if j 6= i, due to interactions with k modes above the
cut-o↵, and is proportional to f (4)

k (�k, Tk).

In the cases of two and three dimensions considered here,
we are at or above the upper critical dimension and so
are controlled by the Gaussian fixed point where all in-
teractions flow to zero.

The distinct regions of the phase diagrams and the
correlation lengths in each regime can be calculated from
Eq. 3(a). In our calculation we use Millis’ approxima-
tion for the integral of the f (2)(�, T ) function, which is
di↵erent in the quantum critical and quantum disordered
regimes [4], defined by R ⌧ T 2/z and R � T 2/z for a
single QCP. Here R is the renormalized tuning parameter
or quasiparticle mass, which may acquire some temper-
ature dependence. In the multicritical case, we conclude
that both the ferro- and antiferromagnetic modes can in-
dependently be quantum critical or quantum disordered,
splitting the phase diagram into four regions separated

by the two lines Ri ⇠ T 2/zi
i . The solution of Eq. 3(a)

at large values of b yields a tuning parameter becomes
�i(b) = b2Ri where Ri is renormalized by interactions
with both modes independently. This can be related to
the correlation length of the corresponding order param-
eter by Ri = ⇠�2

i . We denote the zero temperature part
of Ri by ri, and it is this which tunes to the QCP at
ri = 0.

It is the dangerously irrelevant interaction terms which
give the renormalized tuning parameters their tempera-
ture dependence, which in turn control the correlation
lengths and the boundaries of the ordered phases. In
three dimensions the boundaries of the ordered phases
can be calculated from the lines T (ri) where the corre-
sponding correlation length diverges. While no true or-
der can exist in 2D, we adopt the usual convention and
use the point that the Ginzburg criterion of the classical
theory breaks down to identify the ‘phase boundary’.

The generic phase diagram for a quantum multicriti-

cal point is shown in Fig. 3, which is qualitatively the
same in both two and three dimensions. We find it most
revealing to interpret the results as the sum of two quan-
tum critical points. In both two and three dimensions,
we find that to leading order the ferromagnetic z = 3
QCP is qualitatively una↵ected by the antiferromag-
netic z = 2 QCP. However the antiferromagnetic QCP
is strongly a↵ected by the proximity to a ferromagnetic
QCP. When the ferromagnetic modes are quantum criti-
cal, the antiferromagnetic correlation length acquires the
temperature dependence of the ferromagnetic correlation
⇠�2
2 ⇠ r2+AT 4/3 instead of the usual ⇠�2

2 ⇠ r2+BT 3/2 in
three dimensions, and ⇠�2

2 ⇠ r2 +CT ln (1/T ) instead of
the usual ⇠�2

2 = r2 +D ln (ln (1/T )) / ln (1/T ) in two di-
mensions. This temperature dependence dominates the
antiferromagnetic correlation length in region I of the
phase diagram in Fig. 3. Interactions with quantum
critical ferromagnetic fluctuations therefore reduce the
antiferromagnetic correlation length, which in turn sup-
presses the boundary of the antiferromagnetic phase. If
the ferromagnetic fluctuations are Fermi liquid-like then
the antiferromagnetic QCP is qualitatively una↵ected.
Since the interactions are irrelevant, thermodynamic

properties in the disordered region of the phase dia-
gram can be obtained from the Gaussian part of the
free energy, which can be calculated directly from the
action. This is just the sum of the contributions from
both individual QCPs weighted by ⌘�1

i , FG(T, �3, �2) =
1
⌘3
F (3)
G (�3, T3) + 1

⌘2
F (2)
G (�2, T2), where F (i)

G (�i, Ti) is the
Hertz-Millis free energy for order with dynamical expo-
nent zi defined explicitly in Ref [4]. While the free en-
ergy is described by the Gaussian part, the e↵ect of the
interactions is seen in the rescaling of the Gaussian pa-
rameters.
For a single QCP, the specific heat and thermal ex-

pansion behave di↵erently in the quantum critical and
Fermi liquid regimes, as tabulated in Ref. [15]. In the
multicritical case, in each of the four distinct regions of
the paramagnetic phase in Fig. 3 the specific heat and
thermal expansion are just the sum of the contributions
from each individual QCP, which we find to leading or-
der are unchanged by the interactions. In both two and
three dimensions, in region I of the phase diagram in Fig.
3, where both ferro- and antiferromagnetic modes would
expected be to quantum critical, then the strong tem-
perature dependence of the ferromagnetic contribution
dominates, and the presence of antiferromagnetic quan-
tum criticality is subleading. In the other regions of the
disordered phase, the observed quantities are the sum
of the two terms. When the QCPs are separated, su�-
ciently close to each QCP the e↵ects of the other QCP
are not measurable and the thermodynamics is as would
be expected from a single QCP.
The exception to this is in two dimensions in region I

of the phase diagram in Fig. 3. In this case the tempera-
ture dependent renormalization of the antiferromagnetic
tuning parameter is strong enough to push the antiferro-
magnetic mode out of the quantum critical regime, as the
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FIG. 3: Generic phase diagram of a quantum multicritical
point, derived by setting r3 = g + r and r2 = g � r. The re-
gions in the paramagnetic regime have been identified. I and
II are quantum critical regions where the ferromagnetic con-
tributions dominate specific heat and thermal expansion. In
I the ferromagnetic fluctuations control the antiferromagnetic
correlation length and the boundary of the antiferromagnetic
ordered phase. In II the antiferromagnetic correlation length
is dominated by the tuning parameter. III is an antiferro-
magnetic quantum critical region, where the antiferromag-
netic correlation length and boundary of the ordered phase
are dominated by the antiferromagnetic fluctuations, and the
ferromagnetic correlation length is dominated by the tuning
parameter. IV is a Fermi liquid. The black dot indicates
approximately where the antiferromagnetic phase boundary
undergoes a crossover from a power law associated with an-
tiferromagnetism to one normally associated with ferromag-
netism. The subleading contributions depend on the dimen-
sionality of space, as explained in the main text.

condition R2 < T will never be satisfied. This means we
must use the Fermi liquid approximation (R2 > T ) in cal-
culations of the antiferromagnetic contribution to phys-
ical quantities, but the correlation length is still domi-
nated by temperature. However in this regime the ferro-
magnetic contributions dominate specific heat and ther-
mal expansion and this e↵ect is subleading.
We now compare our theory with the existing experi-

mental results in Nb1�yFe2+y. Near y = 0 this material
shows both ferro- and antiferromagnetic quantum critical
points [16, 17]. There the measured specific heat shows
a �T lnT dependence consistent with the dominance of
ferromagnetic fluctuations as we have shown above. The
thermal exapansion has not been measured but we pre-
dict it to show a T 1/3 dependence at low temperatures.
In this work we have not calculated the resistivity be-
cause of the complex interplay we anticipate between hot-
spot/line scattering of the antiferomagnet [18] and the

small angle scattering for the ferromagnetic fluctuations.
The measured resistivity is�⇢ ⇠ T 3/2 which is consistent
with a naive extension of our theory with the antiferro-
magnetic fluctuations dominating [2] because of their in-
creased e↵ectiveness in momentum relaxation when com-
pared to small q scattering. A detailed analysis is left for
future work. Similarly a more detailed doping-dependent
study of the Neél phase boundary TN (y) is necessary to
compare with our predictions of a cross-over in power
law.
NbFe2 is not unique in showing quantum multicritical-

ity. YbRh2Si2 orders antiferromagnetically at low tem-
peratures but the specific heat and Grüneisen parameter
at low temperatures obey power laws as would be ex-
pected of a ferromagnet [2]. This could be the result of
the presence of both ferro- and antiferromagnetic fluctu-
ations [19, 20]. However, this material is usually thought
to lie outside the Hertz-Millis scenario for quantum crit-
icality because of Kondo breakdown e↵ects [21].
In summary we have analysed the interplay of two

quantum critical points in an itinerant magnet in both
two and three dimensions. Our main prediction is that
if quantum critical fluctuations of both ferro- and anti-
ferromagnetic order are present then the specific heat,
thermal expansion and Grüneisen parameter will have
the temperature dependence associated with just the fer-
romagnetic modes. In addition, the correlation length
of antiferromagnetic order will acquire the temperature
dependence of the ferromagnetic correlation length, and
this suppresses the boundary of the ordered phase (or
region of applicability in two dimensions). We find that
the boundary of the antiferromagnetic phase can undergo
a crossover from its usual Hertz-Millis power law at low
temperatures to the power law usually associated with
a ferromagnetic instability at higher temperatures. We
find no di↵erence between a quantum bicritical and a
quantum tetracritical point, as under renormalization the
system always flows to the Gaussian fixed point where the
interactions are zero.
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Mod. Phys. 79, 1015 (2007).

[3] J. A. Hertz, Phys. Rev. B 14, 1165 (1976).

[4] A. J. Millis, Phys. Rev. B 48, 7183 (1993).
[5] D. Moroni-Klementowicz, M. Brando, C. Albrecht, W. J.

Duncan, F. M. Grosche, D. Grüner, and G. Kreiner,
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Appendix A

DIAGRAMS FOR A QUANTUM MULTICRITICAL

POINT

In this appendix we list the diagrams contributing to the linked cluster expansion for a quantum

multicritical point. We represent „
3

modes by blue lines, and „
2

modes by red lines. We

represent the interactions u
3

, u
2

and u
32

by black dashed lines. The captions of each diagram

indicate which interactions and integrals contribute to the diagram. We group the diagrams by

comparing them to the diagrams which contribute to the linked cluster expansion for a single

quantum critical point, described in Section 2.3.1. Diagrams which look like those contributing

to I2 for a single QCP (in Figure 2.4) are shown in Figure A.1. Those which look similar to

those proportional to I2J for a single QCP (in Figure 2.5) are shown in Figure A.2. Those

which look similar to those proportional to K for a single QCP (in Figure 2.6) are shown in

Figure A.3.
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Figure A.1: Diagrams of type I2
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Figure A.2: Diagrams of type I2J
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Appendix B

DETAILS OF THE NUMERICAL RESISTIVITY

CALCULATION

In this appendix we discuss the program we use to generate the results of Chapter 5 in more

detail. The flow of the program is, for each temperature point:

• Calculate the temperature-dependent tuning parameters.

• Calculate a look-up table for F
3

(k,k0) for di�erent values of |k0 ≠ k|, where the Ê has

been integrated over.

• Calculate the total F (◊, ◊Õ) matrix, where the polar integral for the ferromagnetic matrix

elements is done using the look-up table.

• Calculate the quasiparticle distribution � (◊) from equation (4.3.1) by repeated applica-

tion of the matrix.

• Calculate the resistivity from equation (4.3.6).

These steps are then repeated for all temperature values required. We now describe each step

in more detail.

Step 1: The first step is calculating r
2

(T ) and r
3

(T ), which are interpreted as the square of

v



the inverse correlation lengths of each type of order. If r
2

and r
3

are the bare zero tempera-

ture tuning parameters (which are inputs of the program), then we calculate the temperature

dependent component using the results of Chapter 3.

In the presence of multicritical scaling, both r
2

(T ) and r
3

(T ) are proportional to T 4/3. The

constant of proportionality is chosen to be equal to one.

Step 2: In order to calculate the matrix F
3

(◊, ◊Õ) from F
3

(k,k0) given in equation (4.2.24),

integrals over both the polar angle „Õ and Ê must be calculated. Since F
3

(k,k0) only depends

on |k0 ≠ k|, when we calculate the polar integral over „Õ at di�erent values of ◊ and ◊Õ, we shall

need to access the function multiple times for each value of |k0 ≠ k|. By creating a look-up

table for this function at di�erent values of |k0 ≠ k|, we are able to perform the Ê integral only

once for each value of |k0 ≠ k|. The integral is (after a rescaling of variables)

F
3

(q) = 2g2

F

kB (T/�
3

)

⁄
1

0

dw
c2

3

q2w2n0 (c
3

q�
3

w) (n0 (c
3

q�
3

w) + 1)
(r

3

(T ) + c2

3

q2)2 + w2

, (B.0.1)

which decays rapidly with w. In our program we make a further change of variables in the

integral to u = w7 so that the integrand is much smoother. We make this polynomial sub-

stitution so that the limits of the integral are still 0 and 1, and choose w7 as this su�ciently

increases the accuracy of numerical integration. The integral is evaluated using Simpson’s rule.

Step 3: Calculating the matrix elements F (◊, ◊Õ) is the most computationally expensive

part of the code, however increasing the size of the matrix (the number of points we split

the interval 0 to fi into) increases the accuracy of the results, and allows us to access lower

temperatures. In order to speed up computation, we use the symmetries of the matrix. Be-

cause the only way F (◊, ◊Õ) depends on ◊ and ◊Õ is through |q| and |q ± Q|2, we are able to

show that F (◊, ◊Õ) = F (◊Õ, ◊) and F (◊, ◊Õ) = F (fi ≠ ◊, fi ≠ ◊Õ). This means we only need to

calculate a quarter of the elements of the matrix, and the rest follow from symmetry. The

vi



ferromagnetic scattering matrix element is calculated by evaluating the polar integral numer-

ically, by calculating an equivalent q for each point in the polar integral, and looking up the

closest equivalent F (q) from the look-up table created earlier. The antiferromagnetic matrix

element is calculated directly from equation (4.2.38).

Step 4: The next step is to calculate the quasiparticle distribution. By integrating over

◊Õ in the F (◊, ◊Õ) matrix found in the previous step, we can find the matrix F (◊, ◊Õ) /G (◊)

where G (◊) =
s fi

0

d◊ÕÕ sin ◊ÕÕF (◊, ◊ÕÕ), which generates the quasiparticle distribution if repeat-

edly applied to cos ◊/G (◊). At low temperatures, the function F (◊, ◊Õ) is very sharply peaked

as a function of ◊Õ, making the numerical integration in finding G (◊) di�cult. In order to

get accurate results at lower temperatures, we must have a larger matrix in order to sample

the peak at more points. However, this drastically a�ects the time the program takes to run.

When attempting to numerically calculate these integrals using Simpson’s rule, we encounter

di�culties when the matrix is not big enough to sample the peak su�ciently many times. We

find we obtain a more realistic � (◊) when performing this integral using the trapezium rule

as opposed to Simpson’s rule. This is because in Simpson’s rule the integrand at some points

is multiplied by 4/3, and 2/3 at others. If the integrand is sharply peaked such that one

point is significantly larger than the others, then the answer depends on whether this value

is multiplied by 4/3 and 2/3. In our analysis this error carries through to the shape of � (◊).

We thus use the trapezium rule to calculate G (◊).

We calculate � (◊) as in equation (4.3.10). To test if the series has converged when adding

fn+1

(◊), we calculate the largest value of |fn+1

(◊) /
qn

i=1

fi (◊)|, and if this is less than 10≠8,

we conclude that � (◊) has converged.

Step 5: We then calculate the resistivity from (4.3.6) using Simpson’s rule to evaluate

the integrals. Once we have calculated the resistivity at di�erent points we calculate the ef-

fective power law by modelling the function as fl(T ) ≠ fl
0

= aT –(T ), to find –(T ) at di�erent

vii



points on the phase diagram. We do this by calculating

–(T + ”

2) = ln [f (T + ”)] ≠ ln [f (T )]
ln [T + ”] ≠ ln [T ] (B.0.2)

where f(T ) = fl(T ) ≠ fl
0

. The results we expect are f(T ) = aT n + bT m, which will give

–(T ) ¥ m

C
1 + n

m
a
b
T n/m

1 + a
b
T n/m

D

(B.0.3)

as ” æ 0. If n > m, we expect m to dominate at low temperatures, but see a crossover to n

as temperature is increased. The details of the crossover depend both on the exponents and

their coe�cients, which we do not expect to be universal.
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Appendix C

DIAGRAMS FOR A METAMAGNETIC QUANTUM

CRITICAL END-POINT AND AN

ANTIFERROMAGNETIC QUANTUM CRITICAL

POINT

In this appendix we list the one-loop diagrams contributing to the RG equations for a meta-

magnetic quantum critical end-point interacting with an antiferromagneitc quantum critical

point. The same diagrams contribute to both the RG equations of the corresponding classical

model in equations (5.5.2) and the quantum critical model in equations (5.5.6). The blue lines

represent „
3

modes and the red lines represent „
2

modes. The internal lines represent modes

above the cut-o� and are integrated over, and the external legs represent modes below the

cut-o�. The interactions u
3

, u
2

and u
32

are all denoted by black dashed lines. The interac-

tion “ is denoted by a black dot. The captions of each diagram indicate which interactions

contribute to the diagram.

The diagram contributing to the renormalisation of h is shown in Figure C.1. The diagrams

contributing to the renormalisation of r
3

are shown in Figure C.2. The diagrams contributing

to the renormalisation of r
2

are shown in Figure C.3. The diagrams contributing to the renor-

malisation of “ are shown in Figure C.4. The diagrams contributing to the renormalisation of

u
3

are shown in Figure C.5. The diagrams contributing to the renormalisation of u
2

are shown
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(a) “

Figure C.1: Diagram contributing to h

(a) u
3

(b) u
32

(c) u
3

(d) “2

Figure C.2: Diagrams contributing to r
3

in Figure C.6. The diagrams contributing to the renormalisation of u
32

are shown in Figure

C.7.
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(a) u
2

(b) u
32

(c) u
2

(d) “2

Figure C.3: Diagrams contributing to r
2

(a) u
3

“ (b) u
3

“ (c) “3

Figure C.4: Diagrams contributing to “

(a) u2

3

(b) u2

32

(c) u2

3

(d) u2

3

(e) “4

Figure C.5: Diagrams contributing to u
3
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(a) u2

2

(b) u2

32

(c) u2

2

(d) u2

2

(e) “4

Figure C.6: Diagrams contributing to u
2

(a) u
3

u
32

(b) u
2

u
32

(c) u
3

u
32

(d) u
2

u
32

(e) u2

32 (f) “4

Figure C.7: Diagrams contributing to u
32

xii



List of references

[1] Hilbert v. Löhneysen, Achim Rosch, Matthias Vojta, and Peter Wölfle. Fermi-liquid
instabilities at magnetic quantum phase transitions. Rev. Mod. Phys., 79:1015–1075, Aug
2007.

[2] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011.

[3] P Chaikin and T Lubensky. Principles of Condensed Matter. Cambridge University Press,
1995.

[4] D. A. Tompsett, R. J. Needs, F. M. Grosche, and G. G. Lonzarich. Doping-driven magnetic
instabilities and quantum criticality of NbFe

2

. Phys. Rev. B, 82:155137, Oct 2010.

[5] T. D. Haynes, I. Maskery, M. W. Butchers, J. A. Du�y, J. W. Taylor, S. R. Giblin,
C. Utfeld, J. Laverock, S. B. Dugdale, Y. Sakurai, M. Itou, C. Pfleiderer, M. Hirschberger,
A. Neubauer, W. Duncan, and F. M. Grosche. Ferrimagnetism in Fe-rich NbFe

2

. Phys.
Rev. B, 85:115137, Mar 2012.

[6] M. Brando, W. J. Duncan, D. Moroni-Klementowicz, C. Albrecht, D. Grüner, R. Ballou,
and F. M. Grosche. Logarithmic fermi-liquid breakdown in NbFe

2

. Phys. Rev. Lett.,
101:026401, Jul 2008.

[7] D. Moroni-Klementowicz, M. Brando, C. Albrecht, W. J. Duncan, F. M. Grosche,
D. Grüner, and G. Kreiner. Magnetism in Nb

1≠yFe
2+y: Composition and magnetic field

dependence. Phys. Rev. B, 79:224410, Jun 2009.

[8] M. Brando, A. Kerkau, A. Todorova, Y. Yamada, P. Khuntia, T. Förster, U. Burkhard,
M. Baenitz, and G. Kreiner. Quantum Phase Transitions and Multicriticality in
Ta(Fe

1≠xVx)
2

. Journal of the Physical Society of Japan, 85(8):084707, August 2016.

[9] Eric C. Andrade, Manuel Brando, Christoph Geibel, and Matthias Vojta. Competing
orders, competing anisotropies, and multicriticality: The case of co-doped YbRh

2

Si
2

.
Phys. Rev. B, 90:075138, Aug 2014.

[10] Y. Tokiwa, M. Garst, P. Gegenwart, S. L. Bud’ko, and P. C. Canfield. Quantum bi-
criticality in the heavy-fermion metamagnet YbAgGe. Phys. Rev. Lett., 111:116401, Sep
2013.

[11] Alexander Altland and Ben Simons. Condensed Matter Field Theory. Cambridge Uni-
versity Press, 2006.

xiii



[12] John Cardy. Scaling and Renormalization in Statistical Physics. Cambridge University
Press, 1996.

[13] Roger Bowley and Mariana Sánchez. Introductory Statistical Mechanics. Oxford Science
Publications, 2 edition, 1999.

[14] Naoto Nagaosa. Quantum Field Theory in Condensed Matter Physics. Springer, 1999.

[15] Lifshitz E.M. Landau L.D. Course of Theoretical Physics Volume 5: Statistical Physics
Vol 1. Pergamon Press, 3 edition, 1980.

[16] J. Zinn-Justin. Quantum Field Theory and Critical Phenomena. Oxford Science Publi-
cations, 2 edition, 1993.

[17] Kenneth G. Wilson and Michael E. Fisher. Critical exponents in 3.99 dimensions. Phys.
Rev. Lett., 28:240–243, Jan 1972.

[18] J. M. Kosterlitz, David R. Nelson, and Michael E. Fisher. Bicritical and tetracritical
points in anisotropic antiferromagnetic systems. Phys. Rev. B, 13:412–432, Jan 1976.

[19] L.D. Landau. The theory of a fermi liquid. Sov. Phys. JETP, 3:920, 1957.

[20] Lifshitz E.M. Landau L.D. Course of Theoretical Physics Volume 5: Statistical Physics
Vol 2. Pergamon Press, 3 edition, 1980.

[21] Neil W. Ashcroft and N. David Mermin. Solid State Physcs. Holt, Rinehart and Winston,
3 edition, 1976.

[22] I. Fischer and A. Rosch. Field-tuned quantum critical point of antiferromagnetic metals.
Phys. Rev. B, 71:184429, May 2005.

[23] S. A. Grigera, R. S. Perry, A. J. Schofield, M. Chiao, S. R. Julian, G. G. Lonzarich,
S. I. Ikeda, Y. Maeno, A. J. Millis, and A. P. Mackenzie. Magnetic field-tuned quantum
criticality in the metallic ruthenate Sr

3

Ru
2

O
7

. Science, 294(5541):329–332, 2001.

[24] A. J. Millis. E�ect of a nonzero temperature on quantum critical points in itinerant
fermion systems. Phys. Rev. B, 48:7183–7196, Sep 1993.

[25] U. Zülicke and A. J. Millis. Specific heat of a three-dimensional metal near a zero-
temperature magnetic phase transition with dynamic exponent z =2, 3, or 4. Phys. Rev.
B, 51:8996–9004, Apr 1995.

[26] John A. Hertz. Quantum critical phenomena. Phys. Rev. B, 14:1165–1184, Aug 1976.

[27] N. D. Mathur, F. M. Grosche, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W. Hasel-
wimmer, and G. G. Lonzarich. Magnetically mediated superconductivity in heavy fermion
compounds. Nature, 394(6688):39–43, 1998.

[28] Sunil Nair, S. Wirth, S. Friedemann, F. Steglich, Q. Si, and A. J. Schofield. Hall e�ect
in heavy fermion metals. Adv. Phys., 61(5):583–664, 2012.

xiv



[29] Lijun Zhu, Markus Garst, Achim Rosch, and Qimiao Si. Universally diverging grüneisen
parameter and the magnetocaloric e�ect close to quantum critical points. Phys. Rev.
Lett., 91:066404, Aug 2003.

[30] Markus Garst and Achim Rosch. Sign change of the grüneisen parameter and magne-
tocaloric e�ect near quantum critical points. Phys. Rev. B, 72:205129, Nov 2005.

[31] Tôru Moriya. Spin Fluctuations in Itinerant Electron Magnetism. Springer-Verlag, 1985.

[32] A. J. Schofield, A. J. Millis, S. A. Grigera, and G. G. Lonzarich. Metamagnetic Quantum
Criticality in Sr

3

Ru
2

O
7

, pages 271–289. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

[33] Markus Garst. Quantum Phase Transitions: Grüneisen Parameter, Dimensional
Crossover and Coupled Impurities. PhD thesis, University of Karlsruhe, 2003.

[34] Gerald D. Mahan. Many-Particle Physics. Kluwer Academic / Plenum Publishers, 3
edition, 2000.

[35] N. D. Mermin and H. Wagner. Absence of ferromagnetism or antiferromagnetism in one-
or two-dimensional isotropic heisenberg models. Phys. Rev. Lett., 17:1133–1136, Nov
1966.

[36] D. Belitz, T. R. Kirkpatrick, and Thomas Vojta. Nonanalytic behavior of the spin sus-
ceptibility in clean fermi systems. Phys. Rev. B, 55:9452–9462, Apr 1997.

[37] T. R. Kirkpatrick and D. Belitz. Quantum critical behavior of disordered itinerant ferro-
magnets. Phys. Rev. B, 53:14364–14376, Jun 1996.

[38] D. Belitz, T. R. Kirkpatrick, and Thomas Vojta. First order transitions and multicritical
points in weak itinerant ferromagnets. Phys. Rev. Lett., 82:4707–4710, Jun 1999.

[39] D. Belitz, T. R. Kirkpatrick, and Jörg Rollbühler. Breakdown of the perturbative renor-
malization group at certain quantum critical points. Phys. Rev. Lett., 93:155701, Oct
2004.

[40] Ar. Abanov and A. Chubukov. Anomalous scaling at the quantum critical point in itin-
erant antiferromagnets. Phys. Rev. Lett., 93:255702, Dec 2004.

[41] Tobias Meng, Achim Rosch, and Markus Garst. Quantum criticality with multiple dy-
namics. Phys. Rev. B, 86:125107, Sep 2012.

[42] I. Ia. Pomeranchuk. On the stability of a fermi liquid. Sov. Phys. JETP, 8:361, 1959.

[43] Mario Zacharias, Peter Wölfle, and Markus Garst. Multiscale quantum criticality: Pomer-
anchuk instability in isotropic metals. Phys. Rev. B, 80:165116, Oct 2009.

[44] J. Mathon. Magnetic and electrical properties of ferromagnetic alloys near the critical
concentration. Proc. Roy. Soc. A, 306:355–368, 1968.

xv



[45] A. Rosch. Interplay of disorder and spin fluctuations in the resistivity near a quantum
critical point. Phys. Rev. Lett., 82:4280–4283, May 1999.

[46] J.M. Ziman. Electrons and Phonons. Oxford University Press, 1960.

[47] J.M. Ziman. Theory of Solids. Cambridge University Press, 2 edition, 1972.

[48] A. Rosch. Magnetotransport in nearly antiferromagnetic metals. Phys. Rev. B, 62:4945–
4962, Aug 2000.

[49] R. Hlubina and T. M. Rice. Resistivity as a function of temperature for models with hot
spots on the fermi surface. Phys. Rev. B, 51:9253–9260, Apr 1995.

[50] Eric W. Weisstein. Fredholm integral equation of the second kind. Available from
URL: http://mathworld.wolfram.com/FredholmIntegralEquationoftheSecondKind.html,
Visited on 19.09.16.

[51] A. J. Millis, A. J. Schofield, G. G. Lonzarich, and S. A. Grigera. Metamagnetic quantum
criticality in metals. Phys. Rev. Lett., 88:217204, May 2002.

[52] Mario Zacharias and Markus Garst. Quantum criticality in itinerant metamagnets. Phys.
Rev. B, 87:075119, Feb 2013.

[53] Franziska Weickert, Manuel Brando, Frank Steglich, Philipp Gegenwart, and Markus
Garst. Universal signatures of the metamagnetic quantum critical endpoint: Application
to CeRu

2

Si
2

. Phys. Rev. B, 81:134438, Apr 2010.

[54] D. Belitz, T. R. Kirkpatrick, and Jörg Rollbühler. Tricritical behavior in itinerant quan-
tum ferromagnets. Phys. Rev. Lett., 94:247205, Jun 2005.

[55] D. Belitz, T. R. Kirkpatrick, and Thomas Vojta. Local versus nonlocal order-parameter
field theories for quantum phase transitions. Phys. Rev. B, 65:165112, Apr 2002.

[56] Kazumasa Miyake and Shinji Watanabe. Unconventional quantum criticality due to crit-
ical valence transition. Journal of the Physical Society of Japan, 83(6):061006, 2014.

[57] H. Q. Yuan, F. M. Grosche, M. Deppe, C. Geibel, G. Sparn, and F. Steglich. Observation
of two distinct superconducting phases in CeCu

2

Si
2

. Science, 302(5653):2104–2107, 2003.

[58] Georg Knebel, Dai Aoki, Jean-Pascal Brison, and Jacques Flouquet. The quantum crit-
ical point in cerhin

5

: A resistivity study. Journal of the Physical Society of Japan,
77(11):114704, 2008.

[59] George Sterman. An Introduction to Quantum Field Theory. Cambridge University Press,
1993.

[60] Gregory Dee and Siddhartha Sen. Calculating anomalous dimensions in a „3 field theory
in 6 + ‘ dimensions using the methods of statistical mechanics. Annals of Physics,
107(1):188 – 200, 1977.

xvi



[61] D J Amit. Renormalization of the potts model. Journal of Physics A: Mathematical and
General, 9(9):1441, 1976.

[62] D. J. Amit, D. J. Wallace, and R. K. P. Zia. Universality in the percolation prob-
lem—anomalous dimensions of Ï4 operators. Phys. Rev. B, 15:4657–4666, May 1977.

[63] P. Gegenwart, F. Weickert, M. Garst, R. S. Perry, and Y. Maeno. Metamagnetic quantum
criticality in Sr

3

Ru
2

O
7

studied by thermal expansion. Phys. Rev. Lett., 96:136402, Apr
2006.

[64] B Fak, D F McMorrow, P G Niklowitz, S Raymond, E Ressouche, J Flouquet, P C
Canfield, S L Bud’ko, Y Janssen, and M J Gutmann. An inelastic neutron scattering
study of single-crystal heavy-fermion YbAgGe. Journal of Physics: Condensed Matter,
17(2):301–311, 1 2005.

xvii




