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I. Abstract 

Atrial fibrillation (AF) is the most common arrhythmia and is closely associated with 

chronic kidney disease. The mainstay pharmacological agent to prevent AF-related 

stroke and thromboembolism is the use of oral anticoagulants, but may result in an 

increased risk of haemorrhage. Therefore, this MD research thesis is a 

comprehensive study of the changes in thrombogenesis and fibrin clot structure 

related to AF and CKD, as well as the potential impact of exposure to different 

classes of oral anticoagulant.   
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1.1 Atrial Fibrillation and Chronic Kidney Disease – pathophysiology 

and clinical implications 

Introduction 

Chronic Kidney Disease (CKD) is defined by the Kidney Disease Improving Global 

Outcomes (KDIGO) as a reduction in renal function; with a reduction in glomerular 

filtration rate(GFR) <60ml/min per 1.73m2 for 3 months or longer, or with the 

presence of albuminuria (1, 2). CKD has potential for gradual progression to End-

stage Renal Disease (ESRD) which requires dialysis to correct accompanying fluid and 

electrolyte imbalance. The increasing incidence and prevalence of CKD is also 

associated with a parallel rise in incident atrial fibrillation (AF) occurrence (3-6). The 

main reason for this epidemiological coupling is most likely the improving longevity 

achieved in the western countries, resulting in a rapidly growing older population, 

with a contemporary increase in the collective risk factors, shared by both 

conditions, such as diabetes mellitus and hypertension.   

Unsurprisingly, it has been demonstrated that CKD and AF are not independent, as 

several studies and national registries have highlighted the increased incidence of AF 

among those with worsening renal function (7-14).  For example, recent data show 

the incidence of AF development can be as high as 12.1 per 1000 patient-years in 

ESRD as compared to 5.0 per 1000 patient-years in controls (15). Likewise, a new 

diagnosis of AF not only heralds the progression of CKD, but seems also to hasten the 

development of ESRD (16-18). AF also leads to progression of CKD, even among 

those with relatively “normal renal function” with no detectable proteinuria on 
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dipstick at baseline (19). Thus, a bidirectional relationship exists between these two 

conditions. 

AF per se can result in increased risk of ischaemic stroke and systemic 

thromboembolism by five-fold, and is implicated in 15-20% of all ischaemic strokes 

(20). However, the concurrent presence of both AF and CKD further exacerbates the 

stroke and mortality risk, with upwards of 66% increase in relative risk of death (21-

24).    

Hence, the intersection of both conditions results in an increase in the propensity for 

thromboembolism-related adverse events (including stroke, systemic 

thromboembolism, myocardial infarction and death) but in addition, a paradoxical 

increased risk of haemorrhagic sequelae.  

Stroke and thromboembolic risk can be assessed using the CHA2DS2-VASc Score 

while bleeding risk can be assessed by the HAS-BLED Score, to allow for careful risk 

stratification of the patient requiring thromboprophylaxis (25, 26). Oral 

anticoagulants (whether Vitamin K antagonists (VKA) and Non-VKA oral 

anticoagulants (NOACs)) have been demonstrated to be effective in mild-moderate 

renal dysfunction, in both clinical trials and observational studies (27, 28).   

Patients with severe renal impairment were excluded from the Phase 3 randomised 

trials of NOACs, so limited trial data are available.   

This chapter will initially discuss the pathophysiological and clinical basis behind the 

increased risk of thromboembolism and haemorrhage amongst AF patients with 
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CKD.  Second, we review the data on the use of oral anticoagulants for stroke 

prevention in AF across the spectrum of renal dysfunction. 

Search Strategy 

A comprehensive literature search by using electronic bibliographic databases (i.e., 

Pubmed, Medline, Embase, DARE, Cochrane database), scanning reference lists from 

included articles, and hand searching abstracts from national and international 

cardiovascular meetings. Search terms used include “atrial fibrillation”, “chronic 

kidney disease”, “renal failure”, “anti-thrombotic treatment”. Bibliographies of all 

selected articles and review articles were reviewed for other relevant articles. 

Finally, the supplements of major journals were hand searched to identify relevant 

abstracts that had not been published as peer-reviewed articles.  

 

Pathophysiology and epidemiology of thromboembolism in CKD: A brief overview 

Pathophysiological insights 

AF confers a prothrombotic or hypercoagulable state through numerous 

pathophysiological pathways fulfilling ‘Virchow’s triad for thrombogenesis’, as 

evidenced by abnormalities in vessel wall, abnormalities in flow and abnormalities in 

blood constituents (29). The propensity for thrombus formation is further enhanced 

by CKD [Table 1.1.1] due to additional changes to the flow within the left atrium and 

left atrial appendage, damage to vessel wall and subsequent endothelial 

dysfunction, or upward regulation of platelet and coagulation factors [Figure 1.1.1].   
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Firstly, in relation to changes in blood flow, worsening GFR in AF is associated with 

reduced left atrial appendage emptying velocity and formation of dense 

spontaneous echocardiographic contrast, signifying significantly increased 

thrombogenic risk (30, 31).  

Secondly, CKD-related endothelial dysfunction and damage to the vessel wall may 

manifest directly as reduction in endothelial dilatation or increased pulse-wave 

velocity (32-36), or indirectly by elevated levels of endothelin and vWF (33, 37). 

Endothelial dysfunction can also be reflected by the increased intima media 

thickening (38), which subsequently has been shown to predict upwards of 10-fold 

(Odds-ratio 10.20 (95% CI, 3.67 to 28.3)) increased cardiovascular mortality in ESRD 

(39, 40). 

Thirdly, increased thrombogenesis in CKD is also related to increased platelet and 

coagulation abnormalities in several pathways: increased pro-coagulant and 

inflammatory complexes (41-45), up-regulation of tissue factor pathway and its 

interaction with platelets (46, 47), reduction of antithrombin III and PAI-1 levels (47, 

48), reduced vWF degradation (49) and increased platelet aggregability (50).  

Furthermore, CKD per se is associated with various other factors contributing to an 

increased thromboembolic risk: for example, activation of the renin-angiotensin-

aldosterone-system (RAAS) (51) and chronic inflammation (43), aortic or vascular 

calcification plus dysfunction of calcium-phosphate-mineral metabolism related to 

renal dysfunction (52-54).  Given the aforementioned pathophysiological pathways, 
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it is perhaps unsurprising for CKD to result in an elevated risk of ischaemic stroke and 

systemic thromboembolism.  
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Table 1.1.1: Pathophysiology of Thromboembolism in Chronic Kidney Disease 

 

Study (Year) Study Type N Population Findings 

(a) Blood stasis in left atrium and atrial appendage 

Yagishita et al (2010) 
(30)  

Observational 321 Patients with persistent 
atrial fibrillation 

GFR an independent predictor of reduced left atrial 
appendage emptying velocity and presence of left atrium 
spontaneous echo contrast 

Providência et al 
(2013) (31) 

Observational 372 Patients with nonvalvular 
atrial fibrillation 

eGFR is positively associated with dense spontaneous 
echocardiographic contrast, and low flow velocities in the 
left atrial 

 

(b) Damage to vessel wall and endothelial damage/dysfunction 

Heintz et al (1994) 
(37) 

Comparative 40 CKD and healthy controls CKD patients have higher endogenous levels of ET-1, plasma 
cAMP, and enhanced ET-1 stimulated ADP-induced platelet 
aggregation than healthy control 

Blacher et al (1999) 
(32) 

Observational 241 ESRD patients Increased aortic PWV in ESRD predicts all-cause 
cardiovascular mortality. 

Bolton et al (2000) 
(33) 

Cross-
sectional 

67 23 HD patients, 16 NDD 
patients and 28 healthy 
control 

Reduced flow-mediated EDD in HD and NDD patients 
compared to control. Increased vWF and adhesion 
molecules in renal dysfunction. 
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Yildiz et al (2003) 
(34) 

Comparative 104 104 HD patients vs 49 
healthy controls 

Reduced flow-mediated EDD and EID in haemodialysis 
patients compared to control. 

Hrafnkelsdóttir et al 
(2004) (55) 

Comparative 18 Non-diabetic, non-smoking 
CKD patients and age-
matched control 

Maximal release of active tPA and capacity for active tPA 
release markedly impaired in CKD patients vs controls 

Wang et al (2005) 
(35) 

Observational 102 NDD CKD patients with 
various GFR 

Decreased GFR was independently associated with an 
increased PWV. 

Carrero et al (2012) 
(36) 

Observational 630 NDD CKD vs ESRD Prolactin levels increased along with reduced kidney 
function, related to FMD, PWD and increased risk of 
cardiovascular events and mortality. 

Recio-Mayoral et al 
(2011) (38) 

Comparative 141 76 CKD vs 65 age and 
gender matched control 

CKD patients had increased CRP levels, reduced FMD and 
increased IMT values compared to controls 

 

(c) Platelet and coagulation abnormalities 

Shlipak et al (2003) 
(41) 

Cross-
sectional 

5888 Population-based cohort of 
age >65 years old 

CRP, fibrinogen, IL-6, Factor VII, Factor VIII, plasmin-
antiplasmin complex, and D-Dimer levels significantly higher 
in CKD 

Pecoits-Filho et al 
(2003) (42) 

Observational 176 176 NDD patients Lower GFR associated with increased CRP, IL-6, hyaluronan 
and neopterin levels.  

Keller et al (2008) 
(43) 

Cross-
sectional 

6814 Population-based cohort 
45-84 

CRP, IL-6, TNF, TNF-αR1,  intercellular adhesion molecule-1, 
fibrinogen, and Factor VIII levels are significantly higher in 



17 
  

CKD 

Landray et al (2004) 
(44) 

Comparative 522 334 CKD patients, 92 CAD 
patients, 96 healthy control 
with no prior CV or renal 
disease 

CKD is associated with higher fibrinogen, plasma vWF, 
soluble P-selectin, but not CRP 

Tanaka et al (2009) 
(45) 

Observational 190 Patients not receiving oral 
anticoagulant stratified to 
CCr 

Decreased GFR predicts for elevation of TAT and D-Dimer in 
patients with AF  

Mercier et al (2001) 
(46) 

Cross-
sectional 

150 50 ESRD patients, 50 NDD 
CKD and 50 healthy controls 

Reduced renal function associated with enhance tissue 
factor coagulation to platelet, monocyte and endothelial 
injury. 

Costa et al (2008) 
(48) 

Observational 50 50 ESRD patients vs 25 
healthy controls 

Higher levels of CRP, s-IL2R, IL-6 and D-dimers, and 
significantly lower levels of PAI-1 in ESRD patients. The 
tPA/PAI-1 ratio was also significantly higher in ESRD 
patients. 

Adams et al (2008) 
(47) 

Comparative 102 66 CKD stage 4&5 vs 36 
healthy controls 

Up-regulation of the tissue factor pathway, increased 
prothrombin fragment 1+2 and reduction in antithrombin III 
in CKD compared to healthy controls 

 

Shen et al (2012) 
(49) 

Observational 104 104 NDD vs 32 healthy 
controls 

Increased vWF-antigen level and decreased ADAMTS13 
activity in CKD. 
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Yagmur et al (2015) 
(50) 

Comparative 84 30 HD patients, 34 renal 
transplant recipients, 20 
healthy controls 

Increased platelet hyperaggregability in CKD. 

 

Abbreviations: ADAMTS13, a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13; ADP, adenosine 
diphosphate; AF, atrial fibrillation; CAD, coronary artery disease; cAMP, cyclic adenosine monophosphate; CCr, Creatinine clearance; CKD, 
chronic kidney disease; CV, cardiovascular; CRP, C-reactive protein; EDD, endothelium-dependent dilatation; eGFR, estimated glomerular 
filtration rate; EID, endothelium-independent dilatation; ESRD, End-stage renal disease; ET-1, Endothelin 1; FMD, flow-mediated dilation; GFR, 
glomerular filtration rate; HD, haemodialysis; IL-6, interleukin-6; intima-media thickness, IMT; MDRD, Modification of Diet in Renal Disease; 
NDD, non-dialysis dependent; PWV, pulse wave velocity; s-IL2R, serum interleukin-2 receptor ;TAT, thrombin-antithrombin complex; TNF-αR1, 
tumour necrosis factor-α soluble receptor 1; tPA, tissue plasminogen activator; vWF, von Willebrand factor. 
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Figure 1.1.1: Pathophysiology of Thromboembolism in Chronic Kidney Disease and 

Atrial Fibrillation 

Thrombus Formation 
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Epidemiological insights 

The increase in stroke risk with progressive severe CKD amongst AF patients has 

been reported by several large observational studies, as shown in Table 1.1.2.   

The AnTicoagulation and Risk factors In Atrial fibrillation (ATRIA) study (56) found 

that the presence of proteinuria increased risk of thromboembolism in AF by 54%; 

and progressive worsening of GFR was also associated with increased risk of stroke, 

so much so that those with GFR <45 mL/min/1.73 m2 conferred an increased risk of 

39% as compared to those with GFR >60 mL/min/1.73 m2.  

In separate analyses from the Danish nationwide cohort, Olesen et al (57) and Bonde 

et al (58) reported that patients with concurrent AF and CKD experience significantly 

higher rates of stroke, thromboembolism, haemorrhage and death, as compared 

with those without renal disease. Those with ESRD requiring renal replacement 

therapy fared the worst as they are twice as likely to experience stroke and 

thromboembolism (58) compared to those without renal dysfunction, with an 

incidence rate up to 6.9 per 100 patient-years (59).  

Similar relationships between increased incidences of AF with progressive renal 

failure, with resultant increased in adverse events were exhibited amongst the 

Swedish national cohort study as well as some Asian countries (15, 60-62).  

Furthermore, amongst those with CKD (GFR <60ml/min per 1.73m2), the sequential 

deterioration of renal function over time has been shown to be equally pertinent, as 

an absolute reduction in eGFR ≥25 mL/min/1.73 m2 or a relative reduction of eGFR 

≥25% effectively more than doubles the risk of ischaemic stroke when compared to 
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those with relatively “stable” renal function over 6 months period (18). Even among 

AF patients treated with effective anticoagulation, every 30ml/min per 1.73m2 

reduction in eGFR confers an increased risk of thrombotic or vascular events (HR 

1.42; 95%CI 1.11 – 1.83) (63). 

More recent evidence also reveals that worsening renal clearance not only is an 

independent, reliable predictor of stroke mortality, but is also associated with a 

worse adverse clinical outcome after stroke (64, 65).   
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Table 1.1.2: Epidemiological insight into stroke risk in patients with atrial fibrillation and chronic kidney disease 

 

Stroke Risk in AF with CKD 

Study Study Type N Findings 

Go et al (2009) (56) Retrospective 10908 AF with CKD Comparing with GFR ≥ 60 mL/min/1.73 m2: 

eGFR 45-59mL/min, RR 1.16 (95% CI, 0.95 to 1.40)  

eGFR < 45mL/min, RR 1.39 (95% CI, 1.13 to 1.71  

(P = 0.0082 for trend). 

Friberg et al (2012) 
(66) 

Retrospective 182678 AF patients  

(out of which 8113 had CKD) 

CKD Stage 1 and below: Multivariate HR 1.11(95% CI 0.99-1.25) 

Olesen et al (2012) 
(57) 

Retrospective 132372 AF patients  

(out of which 3587 NDD CKD, 
901 ESRD) 

Comparing with GFR ≥ 90 mL/min/1.73 m2: 

NDD CKD, HR 1.49 (95% CI 1.38-1.59) 

ESRD, HR 1.83 (95% CI, 1.57 to 2.14) 

Guo et al (2013) 
(18) 

Prospective 617 AF patients Risk of stroke or death: HR 2.90 (95% CI 1.88-4.48) 

Risk of stroke in 6 months: 

Absolute decrease eGFR ≥ 25 mL/min/1.73 m2: HR 2.77 (95% CI 1.26-
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6.09) 

Relative decrease eGFR ≥ 25%: HR 2.57 (95% CI 1.14 – 5.80)   

Roldán V et al 
(2013) (63) 

Prospective 978 AF patients on VKA Every decrease eGFR 30 mL/min/1.73 m2 : HR 1.42 (95% CI 1.11 - 1.83) 

Bonde at al (2014) 
(58) 

Retrospective 154254 non-valvular AF 
patients (out of which 148598 
NRD, 4519 NDD, 1142 on RRT) 

Comparing with GFR ≥ 60 mL/min/1.73 m2: 

NDD CKD, HR 1.32 (95% CI 1.23–1.42) 

RRT, HR 2.01 (95% CI 1.74–2.33) 

Chao TF et al 

(2014) (59) 

Retrospective 10999 AF patients with ESRD 
in Taiwan 

11.7% of patients experienced ischaemic stroke. 

Absolute stroke and thromboembolism event rate: 6.9 per 100 
patient year 

Banerjee A et al 

(2014) (67) 

Prospective 8962 AF patients 

(out of which 2982 with CKD) 

Comparing with GFR ≥ 60 mL/min/1.73 m2: 

eGFR 30-59 mL/min HR 1.53 (95% CI 1.10-2.12) 

eGFR < 30 mL/min HR 1.78 (95% CI 0.99-3.19)  

 

 

Abbreviations: CI, confidence interval; CKD, chronic kidney disease; ESRD, end-stage renal disease; HR, hazard ratio; NDD, non-dialysis 
dependent; NRD, no renal disease; pts, patients; RR, relative risk; RRT, renal replacement therapy
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The haemorrhagic tendency in CKD 

Though CKD does increase the risk of thromboembolism and ischaemic stroke in AF, 

paradoxically it is also associated with an important increased risk of haemorrhagic 

sequelae as explained below. 

Evidence from both the Rotterdam Study and the Japanese CIRCS Study show that 

the mere presence of reduced renal function (GFR <60 mL/min/1.73 m2) resulted in 

an increased risk of haemorrhagic stroke with hazard ratios over 4-fold in male and 

7-fold in female patients (68, 69), while patients undergoing chronic dialysis had a 

relative risk of intracerebral haemorrhage that can be over 10-fold higher (70). There 

is also mounting evidence that worsening renal function and associated vascular 

dysfunction may result in increased tendency for formation of MRI-defined cerebral 

micro-bleeds, which have the potential of contributing to subsequent intra-cerebral 

haemorrhage (71). 

In addition, gastrointestinal (GI) bleeding is also increased, either peptic ulcer or non-

peptic ulcer-related and non-variceal bleeds; overall, the recurrence, frequency and 

severity of such episodes are all closely linked to impairment of renal function (72-

74). Similar to intracranial haemorrhage, both forms of renal replacement therapy 

(peritoneal dialysis and haemodialysis) is associated with an increased risk of 

gastrointestinal haemorrhage, conferring a hazard ratio of 3.71 (95 % CI 2.00 - 6.87) 

and 11.96 (95% CI 7.04 - 20.31), respectively (75). 

The pathophysiological causes of the increased risk of haemorrhagic sequelae are 

clearly multifactorial. These can be a direct result of uremia-related platelet 
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dysfunction or impaired platelet adhesion and aggregation, impaired platelet 

glycoprotein IIb-IIIa receptor activation and subsequent binding to glycoprotein, 

altered von Willebrand factor and nitric oxide metabolism (76-78). 

Extrinsically, the propensity to bleed can be a result of concurrent use of anti-

platelets or non-steroidal anti-inflammatory drugs for other associated disaease 

processes. Moreover, patients with ESRD would be subjected to frequent invasive 

diagnostic and treatment strategies, such as central venous access and 

haemodialysis (plus subsequent frequent heparin exposure), that could increase 

their bleeding risk. 

 

Stroke and bleeding risk stratification in AF with CKD  

In the AF population, the risk of stroke is increased by 5-fold overall, according to the 

presence or absence of various stroke risk factors. The common risk factors have 

been used to formulate stroke risk stratification scheme, to help decision making on 

whether OAC should be recommended or not, for stroke prevention. 

However, all clinical risk scores have modest predictive value for identifying ‘high 

risk’ patients who sustain events. AF guidelines have adopted the use of the 

CHA2DS2-VASc score [Table 1.1.3] given that it can reliably identify truly “low risk” 

patients (i.e. CHA2DS2-VASc score 0 in males, 1 in females), who do not need 

antithrombotic therapy (79, 80).  Subsequent to this step, effective stroke 

prevention can be offered to those AF patients with ≥1 stroke risk factor.   Effective 
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stroke prevention means OAC, whether as well-controlled VKA therapy or one of the 

NOACs. 

Despite being a contributor to an increased thromboembolic risk, moderate-severe 

renal impairment is not included in the CHA2DS2-VASc score, attempts to incorporate 

renal impairment into stroke risk stratification scheme did not suggest an 

independent additive predictive value for renal impairment over the CHA2DS2-VASc 

score components, probably due to the fact that CKD is strongly associated with the 

single risk factor components of the CHA2DS2-VASc score (i.e. heart failure, 

hypertension, diabetes, etc).  

One study advocating the addition of renal impairment for stroke risk stratification 

proposed the R2CHADS2 score (with the additional “R” for impaired renal function, 

and given 2 points).  In its initial derivation study, the R2CHADS2 score also modestly 

improved c-index (prediction value) of the CHADS2 and CHA2DS2-VASc scores (81-83). 

Nonetheless the aforementioned studies were either derived from an anticoagulated 

clinical trial population with exclusion of those with severe CKD (ROCKET-AF trial) 

(81), inclusion of a small sample size of ESRD cohort (82) or from a highly selected 

cohort undergoing invasive catheter ablation of AF (83).  However, the positive 

results of R2CHADS2 score were not replicated in other similar studies (84, 85).  Also, 

in other “real-world” non-anticoagulated AF cohorts, renal dysfunction did not 

independently improve predictive value of CHADS2 and CHA2DS2-VASc score (86, 87).   

Regarding haemorrhagic risk stratification in AF, guidelines currently recommend the 

use of the HAS-BLED score for assessing bleeding risk [Table 1.1.4]. Nevertheless, a 

high HAS-BLED score should not lead to withholding of effective oral anticoagulation 
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therapy. Instead, a high HAS-BLED score amongst those with CKD should ‘flag up’ the 

patients potentially at risk of bleeding for careful review or follow-up and for 

correction of modifiable risk factors such as uncontrolled hypertension (the H of the 

HAS-BLED), labile INRs, alcohol excess or concomitant use of NSAIDs and aspirin.   

For those patients who did experience previous gastrointestinal haemorrhagic 

sequelae, the resumption of anticoagulant treatment was actually associated with a 

significant reduction of mortality and thromboembolic events (88, 89). Similar 

findings have also been seen in ESRD cohort upon restarting warfarin amongst 

patients with an increased risk of recurrence of gastrointestinal bleed (90). 
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Table 1.1.3: The CHA2DS2-VASc score 

Congestive Heart Failure 1 

Hypertension 1 

Age ≥ 75 years 2 

Diabetes Mellitus 1 

History of Stroke/TIA/thromboembolism 2 

Vascular disease (previous myocardial infarction, peripheral 
vascular disease or aortic plaque) 

1 

Age (64-74 years) 1 

Sex category (female) 1 

Maximum score 9 

 

Table 1.1.4: The HAS-BLED Score 

Hypertension 1 

Abnormal renal and liver function (one point each) 1 

Stroke 2 

Bleeding history or propensity 1 

Labile INR 2 

Elderly (age > 65 or frail condition) 1 

Drugs or alcohol concomitant use 

(one point each) 

1 

Maximum score 9 
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Oral Anticoagulation in CKD:  using Vitamin K antagonists (VKA) 

Though oral anticoagulant is the mainstay of treatment in the prevention of 

ischaemic stroke and thromboembolic-related adverse outcomes in patients with AF 

population, less evidence exists for those with significant renal impairment, given 

that such patients were excluded from randomised trials. Hence, the prescription of 

classical oral anticoagulants (essentially VKAs e.g. warfarin) amongst those with 

significant renal impairment varies from as low as 2% in Germany to as high as 37% 

in Canada58. This heterogeneity in clinical practice reflects the uncertainty about the 

risks and benefits of anticoagulation use within this patient group. 

For AF patients with concomitant ESRD, requiring renal replacement therapy, 

conflicting findings exist from observational studies relating to the safety associated 

with use of VKA [Table 1.1.5].  

Of the 17 studies reviewed, only Abbott et al (91) showed a clear mortality benefit, 

while Olesen et al (92),  Bonde et al (58), Genovesi et al (93), Chan et al (94) and 

Findlay et al (95) demonstrated a reduction in event rate for stroke or 

thromboembolism. Other studies involving ESRD and VKA thromboprophylaxis have 

demonstrated either equivocal results (96-98) or even suggested that VKA can 

potentially cause harm in CKD patients with ESRD (96, 99-106).  

One large observational study (100) and several multinational cohort studies (101, 

104) have demonstrated that AF patients who are on haemodialysis and taking 

warfarin experienced more than two-fold increase in the risk of ischaemic stroke as 

compared to non-VKA users. Elderly patients (aged >75 years) appeared to be 
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particularly at risk as compared to those below 65 years (101). At the same time, 

those exposed to VKA whilst on haemodialysis may also face a higher risk of 

haemorrhagic stroke rather than thromboembolic event (103).  

Possible explanations for the lack of efficacy of VKA in protection against stroke and 

thromboembolism, and potentially contributing to the increase in stroke risk may be 

due to the low time in therapeutic range for patients receiving renal replacement 

therapy. Indeed, the Swedish AF cohort study suggests that the improved quality of 

anticoagulation control, as reflected by high time in therapeutic range (TTR), is 

associated with lower risk of thromboembolism and haemorrhage (107). 

Another possible explanation related to the lack of efficacy in reducing ischaemic 

stroke and haemorrhagic risk may potentially be dependent on the modality of renal 

replacement therapy used. A recent Hong Kong cohort suggested that patients 

receiving peritoneal dialysis have similar thrombotic risk as non-CKD counterparts 

while warfarin use in this particular patient group not only provided protection 

against ischaemic stroke, but does not appear to increase the risk of intracranial 

haemorrhage (94). 

Indeed, amongst non-dialysis dependent CKD patient with AF, there appears to be 

more robust data favouring the use of dose-adjusted VKA in AF [Table 1.1.6].  In all 5 

studies and 1 meta-analysis reviewed, dose-adjusted warfarin provided better 

protection against ischaemic stroke and systemic embolism, than no VKA- (57, 58, 

105, 108-110). The efficacy of warfarin in reducing thromboembolism has to be 

balanced against a small but significant increase in haemorrhage tendency (19% – 

36%), with even higher event rate if there is concurrent antiplatelet use (57, 105).     
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Therefore, though VKA can be beneficial in non-dialysis dependent patients with AF, 

the propensity for harm due to VKA in ESRD is yet to be fully defined, especially in a 

patient on haemodialysis. Thus the use of VKA for thromboprophylaxis against stroke 

and systemic thromboembolism in CKD patients requiring renal replacement therapy 

requires a careful evaluation of stroke and bleeding risks and the correction of 

reversible bleeding risk factors.   

What are the pathophysiological mechanisms?   

Murine and human studies have demonstrated that VKA contributes to vascular 

calcification through inactivation of matrix Gla protein (MGP) (111, 112). As MGP is a 

potent inhibitor of vascular calcification, the use of VKA will inhibit the final vitamin K 

dependent pathway, thus preventing phosphorylation and carboxylation of MGP into 

its active form (113, 114).  

The increased vascular calcification, either as a direct result of development of ESRD 

or due to concurrent VKA usage may potentially increase the likelihood of 

development of non-cardioembolic stroke, which will not be remedied by VKA use. 

Moreover, VKA administration has been implicated in development of calciphylaxis, 

a painful and lethal complication among patients with ESRD as cutaneous arteries 

and arterioles undergo calcification and occlusion (115, 116). The pathophysiology 

resulting in calciphylaxis remains poorly understood. 
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Table 1.1.5: Vitamin K antagonist use and stroke rates in end-stage renal disease 

VKA use in AF with ESRD 

Study Study Type Number  

(% with AF) 

Findings 

Wiesholzer et al 
(2001) (99) 

Retrospective 
observational 

430 (14.3%) Stroke rate per 100 patient year:  

AF with VKA: 4.46, 

AF without VKA: 1.0 

Abbott et al (2003) 
(91) 

Retrospective 
observational 

3374 (1.25%) 3-year survival rate:  

AF with VKA: 70% 

AF without VKA: 55% 

Chan et al (2009) 
(100) 

Retrospective 
observational 

48825 (3.42%) 90-day HR  – 

AF with VKA a:  1.93 (95% CI 1.29 – 2.90) 

Wizemann et al 
(2010) (101) 

Observational 

(DOPPS) 

17513 (12.5%) Stroke rate in >75 years old: 

Warfarin user: 2.17 (95% CI 1.04 – 4.53) 

Phelan et al (2011) 
(102) 

Retrospective 845 requiring dialysis (141 on 
warfarin) 

Stroke rate per 100 patient year: 

VKA user: 1.7 versus  Non-VKA user: 0.7  (p = 0.636) 
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Major haemorrhage rate per 100 patient year:  

VKA user: 10.8 versus Non-VKA user: 8.0 (p = 0.593) 

Winkelmayer et al 
(2011) (103) 

Retrospective 
observational 

2313 ESRD patients with new AF HR for ischaemic stroke: VKA user 0.92 (95% CI 0.61 – 1.37) 

 

HR for haemorrhagic stroke: VKA user 2.38 (95% CI 1.15 – 4.96)  

Olesen et al (2012) 
(57) 

Subgroup analysis 901 patients with AF requiring 
dialysis 

HR comparing with no antithrombotic, dialysis dependent pts: 

VKA: 0.44 (95% CI 0.69 – 1.01) 

Knoll et al (2012) 
(96) 

Prospective 235 patients on dialysis (19.6% on 
VKA) 

No stroke or bleed experienced. 

 

HR for mortality in VKA user: 0.80 (95% CI 0.28 - 2.29) 

 

Sood et al (2013) 
(104) 

Observational 

(DOPPS) 

41844 (9.71%) Stroke rate per 100 patient year:  

VKA b: 3.3 

No VKA or antiplatelet: 2.1 

Bonde at al (2014) 
(58) 

Retrospective 154254 non-valvular AF patients 

(out of which 1142 on RRT and 260 

Stroke and thromboembolic risk in non-VKA users: 
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receiving VKA) HR c: 1.82 (95% CI 1.58 - 2.12) 

Shah et al  

(2014) (105) 

Retrospective 1626 patients with AF on RRT (out 
of which 756 VKA users) 

HR for ischemic stroke comparing VKA vs non-VKA users: 1.14 
(95% CI 0.78 – 1.67)  

 

HR for bleeding: 1.44 (95% CI 1.13 - 1.85) 

Chen et al 

(2014) (98) 

Retrospective 500 with AF and ESRD (out of 
which 250 receiving VKA) 

Comparing with group of control (no VKA or antiplatelet): 

HR for ischemic stroke: 1.017 (95% CI 0.673–1.537)  

 

Wakasugi et al 

(2014) (106) 

Prospective 60 Japanese patients with AF 
requiring dialysis (out of which 28 
VKA users) 

Comparing VKA vs non-VKA users 

HR for ischemic stroke: 3.36 (95% CI 0.67–16.66) 

Chan et al (2015) 
(94) 

Retrospective 271 patients with AF on peritoneal 
dialysis (70 on VKA) 

Comparing VKA vs aspirin user: 

HR for ischaemic stroke: 0.16 (95% CI 0.04 – 0.66) 

 

Comparing VKS vs non-user of antithrombotic agents: 

HR for ischaemic stroke: 0.19 (95% CI 0.06 – 0.65) 

Findlay et al (2015) 
(95) 

Retrospective 1382 patients with ESRD out of 
which 293 with AF (118 on VKA, 

Stroke rate:  
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while 175 without VKA)  AF with VKA: 11.4% 

AF without VKA: 14.4% 

Genovesi et al 

(2015) (93) 

Prospective 290 patients with AF requiring 
dialysis (out of which 134 on VKA 
at recruitment) 

Comparing VKA vs non-VKA users: 

HR for stroke/thromboembolic events: 0.12 (95% CI 0.00-3.59) 

 

Shen et al (2015) 
(97) 

Retrospective 12284 pts on RRT (1383 started on 
VKA) 

Comparing VKA vs non-VKA users: 

 

HR for ischemic stroke: 0.68 (95% CI 0.47 - 0.99) 

HR for mortality: 0.84 (95% CI 0.73 - 0.97) 

Abbreviations: AF, atrial fibrillation; CI, confidence interval; DOPPS, Dialysis Outcomes and Practice Pattern Study; ESRD, end-stage renal 
disease; HR, hazard ratio; RRT, renal replacement therapy; VKA, Vitamin K antagonist 

 

 

a AF with VKA covariate adjusted model: adjusted for CHADS2 score, gender, race, Charlson comorbidity index, entry date, body mass index, 
facility standardised mortality ratio, cardiovascular drugs, dialysis adequacy, baseline laboratory values, heparin dosage and heparin regimes.  

b VKA user includes patients with atrial fibrillation, thromboembolic disease or central vascular catheter.  

c Adjusted for Aspirin treatment and all risk factors included in CHA2DS2VASc score. 
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Table 1.1.6: Vitamin K antagonist use and stroke/thromboembolic event rate in non-dialysis dependent chronic kidney disease 

VKA and event rate in non-dialysis dependent CKD 

Study Study Type Number  Findings 

Lai et al (2009) 
(108) 

Observational 307 Stroke event rate (% per year): 

Dose-adjusted warfarin (INR target 2-3): 3.48 

No VKA: 13.57 

Hart et al (2011) 
(109) 

Post-hoc analysis 516 Stroke/embolic event rate (% per year): 

Dose-adjusted warfarin: 1.45 

Dose-adjusted warfarin plus aspirin: 7.05 

Olesen et al (2012) 
(92) 

Subgroup 
analysis 

3587 HR of stroke comparing with no antithrombotic NDD CKD: 

Warfarin only: 0.84 (95% CI 0.69 – 1.01) 

Warfarin plus aspirin: 0.76 (0.56 – 1.03) 

Aspirin only: 1.25 (1.07 – 1.47)   

Bonde et al (2014) 
(58) 

Retrospective 154254 non-valvular AF 
pts 

(out of which 4519 on 
NES CKD, 1130 on VKA) 

 Stroke and thromboembolic risk in non-VKA user: 

HR a: 1.31 (95% CI 1.22 – 1.41) 
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Shah et al (2014) 
(105) 

Retrospective 204 210 NES pts with 
AF (103 652 on VKA) 

Stroke risk with warfarin use in non-dialysis patient: 

HR: 0.87 (95% CI 0.85 – 0.90) 

Bleeding risk in non-dialysis patient: 

HR: 1.19 (95% CI 1.13 – 1.85) 

Providencia et al 
(2014) (110) 

Meta-analysis 19 studies – 379506 
patients with CKD and 
AF 

Stroke and thromboembolic risk in non-NES VKA user: 

HR 0.39 (95% CI 0.18 – 0.86) 

Abbreviations: CKD, chronic kidney disease; INR, international normalised ratio; NDD, non-dialysis dependent; NES, non end stage; VKA, 
vitamin K antagonist 

a Adjusted for Aspirin treatment and all risk factors included in CHA2DS2VASc score. 
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Non-VKA Oral Anticoagulants 

With the introduction of the non-VKA oral anticoagulants (NOACs), namely the direct 

thrombin inhibitor (dabigatran) and Factor Xa inhibitors (rivaroxaban, apixaban and 

edoxaban), these were considered as viable alternatives for patients with mild to 

moderate CKD requiring oral anticoagulant for thromboprophylaxis.    

All four agents [Table 1.1.7] demonstrated non-inferiority or even superiority in 

stroke prevention, and non-inferiority (or in some cases, superiority) in bleeding 

profile as compared to warfarin (117-121). Even amongst those with moderately 

reduced renal function (as low as GFR 30mL/min), apixaban and edoxaban subgroups 

of ARISTOTLE and ENGAGE AF-TIMI 38 trials had demonstrated a reduced bleeding 

risk compared to warfarin. Additional benefits include medication delivery in fixed 

doses, not requiring monitoring and a lower propensity for interaction with food or 

other medications (122, 123). 

Nonetheless, as all NOACs have a degree of renal excretion (varying from 25% in 

apixaban to 80% in dabigatran), in their respective trials, those with severe renal 

dysfunction or ESRD were excluded. Therefore, the European guidelines recommend 

that the NOACs are best not be used where severe renal impairment (GFR <25–30 

mL/min) is present (79, 124). Among those with moderately impaired renal function, 

(GFR 30 – 49mL/min), dose alteration as per manufacturer’s recommendation is 

advised. 

For patients in the USA, the FDA has approved dabigatran 75mg bid, rivaroxaban 

15mg od and apixaban 2.5mg bid for patients with a creatinine clearance of 15-
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29mL/min. That is based on no clinical trial outcome data but on pharmacological 

modelling data in patients alone. Recently, based on the latest pharmacokinetic 

findings in patients receiving  haemodialysis, the FDA has also approved the use of 

apixaban 5mg bid (no dose adjustment) in AF patients receiving chronic, stable 

dialysis treatment (125). 

A recent meta-analysis has demonstrated the relative safety and efficacy of all the 

four NOAC agents over warfarin across various degrees of renal impairment (27). 

Although there is currently no head to head clinical trial comparing one NOAC with 

another, the same analysis also revealed that in “moderate renal dysfunction” 

(creatinine clearance 25 – 49ml/min), apixaban possessed better safety profile while 

retaining similar power of efficacy in protection against thromboembolic event. 

Nonetheless, in those with “mild renal dysfunction” (creatinine clearance 50 – 79 

ml/min), dabigatran 110mg, apixaban, rivaroxaban and edoxaban 30mg are 

comparable. 
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Table 1.1.7: Randomised Controlled Trials for NOAC in atrial fibrillation 

 

Study Connolly et al (2009) 
(118) 

RE-LY 

Connolly et al 
(2011) (117) 

AVERROES 

Granger et al (2011) 
(119) 

ARISTOTLE 

Patel et al (2011) (120) 
ROCKET AF 

Giugliano et al (2013) 
(121) ENGAGE AF-TIMI 
38 

Number 18113 5999 18201 14264 21108 

Dosage Dabigatran 150 mg twice 
daily 

 

Dabigatran 110mg twice 
daily 

 

Dose-adjusted Warfarin 

Apixaban 5mg 
twice daily 

 

Aspirin 81-324mg 
daily 

Apixaban 5mg twice 
daily 

 

Apixaban 2.5mg twice 
daily (eGFR 
<50mL/min) 

 

Dose-adjusted Warfarin 

Rivaroxaban 20mg once 
daily 

 

Rivaroxaban 15mg once 
daily(eGFR 30-
49mL/min) 

 

Dose-adjusted Warfarin 

Edoxaban 60mg once 
daily 

 

Edoxaban 30mg once 
daily 

 

Dose-adjusted Warfarin 

F/U 
(months) 

24 13.2 21.6 23.5 Median F/U 2.8 years 

CKD stages 
studied 

eGFR 30-50mL/min 

eGFR 50-79mL/min 

eGFR 30-60mL/min eGFR 25-30mL/min 

eGFR 31-51mL/min 

eGFR 30-49mL/min 

eGFR ≥50-mL/min 

eGFR 30 - ≤50mL/min 
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eGFR 51-80mL/min 

Pharmacoki
netics 

80% renally excreted 25% renally 
excreted 

25% renally excreted 33% renally excreted 35% renally excreted 

Key Results 

 

(Event 
rate %/year) 

Superior to warfarin in 
reducing ischaemic 
stroke and 
thromboembolism  

(1.11 vs 1.53 vs 1.69) 

 

Non-inferior in bleeding 
events  

(3.11 vs 2.71 vs 3.36) 

Superior to 
warfarin in 
reducing ischaemic 
stroke and 
thromboembolism  

(1.6 vs 3.7) 

 

Non-inferior in 
bleeding events 

(1.4 vs 1.2) 

Superior to warfarin in 
reducing ischaemic 
stroke and 
thromboembolism 

(1.27 vs 1.6) 

 

Lower incidence of 
bleeding events 

(2.13 vs 3.09) 

Non-inferior to warfarin 
in reducing ischaemic 
stroke and 
thromboembolism 

(2.2 vs 2.4) 

 

Non-inferior in bleeding 
events 

(14.9 vs 14.5) 

Non-inferior to warfarin 
in both doses in reducing 
ischaemic stroke and 
thromboembolism 

(1.49 vs 1.91 vs 1.69) 

 

Lower incidence of 
bleeding events 

(2.75 vs 1.61 vs 3.43) 

Outcomes 
in subset 
with CKD 

No difference in primary 
outcome 

Lower stroke risk 
with no increase in 
bleeding risk 

Non-inferior in stroke 
risk, but reduced 
bleeding risk for 
eGFR >30mL/min  

No difference in primary 
outcome 

Lower bleeding risk at 
reduced dose 

 



42 
  

Conclusion 

Renal dysfunction and AF commonly coexist and the concurrent existence of both 

conditions result in a paradoxical increase in both thromboembolic and 

haemorrhagic risks. Several pathophysiological factors have been demonstrated to 

induce a prothrombotic state while increasing bleeding sequelae. The 

thromboembolic and haemorrhagic risks are particularly high amongst dialysis-

dependent patients with ESRD. However, at this juncture, data supporting the long-

term use of VKA for thromboprophylaxis in AF in ESRD remains limited. Any potential 

benefit conferred by VKA appears to be outweighed by a disproportional increase in 

bleeding risk (and thrombotic events). Nonetheless, potential use of specific NOAC 

(apixaban) has recently been licensed though its use in haemodialysis individuals is 

based on limited pharmacokinetic studies only. 

Conversely, the use of various oral anticoagulant (be it VKA or NOACs) among mild 

CKD patients with AF have shown a reduction in morbidity and mortality from stroke 

and systemic thromboembolism. Even in moderately impaired CKD, apixaban and 

edoxaban appear to have a good safety profile [Figure 1.1.2].  

The key would be for careful patient selection through the use of risk stratification 

scores (CHA2DS2-VASc and HAS-BLED scores). Upon initiation of oral anticoagulation 

treatment, ensure substantial steps are taken to reduce bleeding risk (such as aiming 

for a high Time in Therapeutic Range, >70%(126)) plus regular monitoring of renal 

function if NOAC is chosen so as to allow for dose alteration if needed. Patients with 

CKD and AF are prone to experience fluctuation in renal function due to acute illness 

(127), thus making timely dose alteration vital to prevent adverse events (128). 
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As a result of an increasingly older global population, the complexity of managing AF 

with concurrent CKD will appear to further increase in the future. Hence a search for 

the best pharmacological approach to prevent stroke, systemic thromboembolism 

and bleeding events is clearly needed. 
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Figure 1.1.2: Anticoagulant choice in atrial fibrillation and chronic kidney disease 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Limited data based on observational studies or pharmacodynamics modelling only. 
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Aim for TTR >70% for VKA user 
 

Closely monitor renal function in NOAC user 
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1.2 Fibrin Clot – formation, degradation and changes in disease 

Introduction 

In the healthy human body, there is a delicate balance between fibrin formation and 

degradation. Abnormal thrombotic or haemorrhagic phenomena will occur if one of the two 

processes takes precedence over the other. 

The concept of coagulation and fibrinolysis is through the activation of pro-enzymes in a 

step-wise cascade which results in the aggregation of fibrin into fibrin clot (coagulation), or 

through the degradation of fibrin clot (fibrinolysis). In the classical coagulation cascade, it is 

subdivided into two initial pathways: the intrinsic pathway and extrinsic pathway. 

The intrinsic pathway involves kallikrein and a negatively-charged surface activating the 

surface-bound Factor XII. Factor XII in turns activate Factor XI, which subsequently activates 

Factor IX. Activated Factor IX, in the presence of activated Factor VIII, will activate Factor X. 

The extrinsic pathway involves release of tissue factor which will in combination with Factor 

VII, activate Factor X. In this common pathway of coagulation, Factor X will activate 

thrombin from inactive prothrombin, by cleaving off prothrombin fragment 1 and 2 from 

the pro-enzyme (prothrombin, Factor II). This process will end with the initiation of 

fibrinogen conversion to fibrin monomer by thrombin (Factor IIa) and subsequent lateral 

aggregation into fibrin fibre. 

Fibrinogen and Fibrin Clot formation 

Fibrinogen is a dimeric molecule consisting of identical pairs of three separate chains (Aα, 

Bβ and γ-chains), all of which are linked by disulfide bonds (129). This molecule exists as an 
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elongated 45-nm structure, circulates within the plasma at 200-450mg/dL and is generated 

by a functioning liver. It is also subdivided into three domains, one E-domain and two D-

domains, which contain binding sites that participate in fibrinogen conversion to fibrin, 

fibrin assembly, crosslinking, and platelet interactions (130) (Figure 1.2.1). 

The E –domain contains the N-termini of all the fibrinogen chain and is located at the centre 

of the dimeric molecule, whereas the D-domain located at the bilateral portion of the 

molecule, contains the C-termini of the Bβ and γ-chains. On the other hand, the C-termini of 

the Aα-chain loops back towards the E-domain. The N-termini of the Aα-chains and Bβ-

chains are named Fibrinopeptide A and fibrinopeptide B (FPA and FPB respectively), which 

will be cleaved during activation of fibrinogen to fibrin monomers. 

Figure 1.2.1: Fibrinogen and Fibrin monomer (131) 

 

Source: Putnam FW. The Plasma Proteins. 4 ed. New York: Elsevier, 2012: 127-137 

During the final stage of the coagulation cascade, the presence of thrombin will cleave off 

FPA and FPB from fibrinogen, resulting in formation of fibrin monomer. This allowsexposure 

of polymerisation sites in the E-domain (EA and EB) which will bind non-covalently with 

corresponding DA and DB sites located at the D-domain of neighbouring fibrin 
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monomer(132). These fibrin oligomers subsequently grow into a two-stranded fibrin 

protofibrils and after a certain length undergo lateral polymerisation and aggregation into 

three-dimensional fibrin fibre and fibrin bundles (133, 134). 

Thrombin, besides initiating the formation of fibrin from fibrinogen, can also activate Factor 

XIII. Factor XIII in combination with calcium will predominantly allow for formation of cross-

bridges between C-termini of γ-chains of neighbouring fibrin monomers through covalent 

bonds between a glutamine residue and a lysine residue of these neighbouring monomers; 

to a lesser extent, Factor XIII also stimulates cross-bridges between α-chains of 

neighbouring monomers (135, 136). This progressive cross-linkage involving both α-chains 

and γ-chains causes the fibrin fibres to become less susceptible to plasmin-induced 

fibrinolysis, forming insoluble fibrin, which further reinforced by the binding of several 

fibrinolysis inhibitors (all of which are induced by Factor XIII)(135). 

The formation and folding of fibrin fibres will finally allow them to acquire a three-

dimensional configuration, giving it the unique structural and biochemical properties. Fibrin 

network which are more “coarse” will result in greater opacity in light, as compared to those 

“fine” network which are more translucent. These “coarse” networks have been 

demonstrated to consist of fibres of thicker diameter and arranging in a “looser” 

configuration, as compared to the “fine” network which comprises of more fibres per 

volume of fibrin clot (137). 
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Fibrin Clot Degradation 

Similar to the coagulation cascade, the fibrinolytic process is also governed by several 

proenzymes: namely tissue plasminogen activator (tPA), urokinase plasminogen activator 

(uPA) and also Factor XII-related activations. All of which have the potential to cleave 

plasminogen to plasmin which is the key to fibrinolysis, but with tPA-related pathway being 

the most dominant(138). 

During the fibrinolysis process, fibrin-bound plasminogen will rapidly be activated by tPA. 

This induces partial degradation of fibrin cross-bridges, which further expose more sites to 

additional plasminogen, tPA, uPA and fibrinolytic enzymes, which further accelerates the 

fibrinolysis process (139). The breakdown of fibrin fibre bundles into progressively smaller 

fragments and complexes, and thus finally to D-domains (or D-Dimers/DD fragments) and E 

fragments. 

The rate of fibrinolysis can be influenced by several fibrin clot structure properties, such as 

“fine” network being more resistant to fibrinolysis than “coarse” network. Due to the laying 

down of layers of dense, thin fibre-matrix which possesses complex architecture that 

reduces permeability and thus reduces exposure of potential binding sites to tPA and 

plasminogen (139). 

Nevertheless, the processes of formation of fibrin clot and subsequent fibrinolysis are 

complex. They can be altered by subtle changes in the in vitro environment (such as 

thrombin concentration, salinity of solution, pH and ionic strength), as well as through 

pathological conditions during human disease. Hence more research is required to provide a 

better understanding of fibrin clot structure and fibrinolysis. 
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Atrial Fibrillation and Fibrin Clot Structure in Cardiovascular Diseases 

Atrial fibrillation (AF) is an atrial tachyarrhythmia characterized by rapid, chaotic and 

uncoordinated atrial activation with subsequent deterioration of atrial mechanical function. 

It is the most common cardiac arrhythmia and increasingly prevalent amongst the elderly. 

Up to 20% of ischaemic stroke is consequent to AF, and ischaemic stroke in association with 

AF is generally more severe and results in higher mortality, greater disability and longer in-

patient stay than stroke occurring in the absence of this arrhythmia (20). 

Though the main clinical issue in AF and its resultant sequelae is invariably thrombosis, the 

understanding of the effect of the three classical thrombotic factors (namely blood flow, the 

blood vessel wall, and the constituents of the blood) as described the Victorian pathologist 

Virchow are incomplete. Indeed Virchow’s triad is currently being re-interpreted as having 

roles for the endothelium (endothelial function), platelets, and the molecules of the 

coagulation cascade that generate fibrin clot (140), plus their impact on thrombosis in AF 

have yet to be fully elucidated. 

At the same time, changes in the fibrin clot structure characteristics have been 

demonstrated in patients with increased risk of established cardiovascular and thrombotic 

disease (141-145).  Fibrin clots made from these “high-risk” patients are usually thicker, 

have earlier polymerisation and are less permeable when compared with clots made from 

healthy controls (141-145). However, as AF patients are at even higher thrombotic risk than 

patients with cardiovascular diseases, the relationship between clot structure characteristics 

amongst AF patients need to be investigated. 
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Atrial Fibrillation, Renal Dysfunction and Fibrin Clot 

AF and renal dysfunction are closely interlinked. The prevalence of AF rises rapidly from 

0.7%(146) in the general population age <60, to 27% (147) amongst those with end-stage 

renal disease. This is illustrated by the Atherosclerosis Risk in Community (ARIC) Study, 

showing that patients with GFR of 60 - 89, 30 - 59, and 15 - 29 mL/min/1.73 m2 have hazard 

ratios of developing AF (within the 10 year follow-up period) of 1.3, 1.6, and 3.2, 

respectively, as compared to those with normal GFR (9). 

In addition, amongst those with renal dysfunction, the existence of several 

pathophysiological pathways also results in a prothrombotic-hypercoagulable state. Thus, in 

clinical medicine, the combination of AF and renal dysfunction creates a therapeutic 

dilemma, as thrombotic risk amongst CKD-AF patients is not completely reduced with oral 

anticoagulant but the use of oral anticoagulant among them is associated with increased 

risk of bleeding (57). Amongst patients with ESRD, previous works by Sjoland have 

demonstrated altered fibrin clot structure in haemodialysis while Undas suggested fibrin 

clot structure in ESRD may be associated with increased mortality (148, 149). However no 

relationship between progressive CKD and AF has ever been explored. 

Fibrin Clot Structure and Effects of Vitamin K Antagonist and Non-Vitamin K Antagonist 

Oral Anticoagulants 

The VKA is the classic oral anticoagulant used to reduce the risk of thromboembolic 

complications of AF. VKA reduces thrombin generation through the inhibition of coagulation 

Factors II, VII, IX and X. Nonetheless, the effect of VKA on fibrin clot structure and network 

generation, as well as subsequent fibrinolysis, have yet to be investigated. 
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However, the advent of NOACs in the past five years has completely changed the landscape 

of antithrombotic treatment. By directly and competitively inhibiting specific pathways 

along the coagulation cascade, such as Factor Xa (by rivaroxaban, rpixaban and edoxaban), 

or inhibiting thrombin (such as dabigatran), they have been shown to be as efficacious as 

VKA, and result in a lower risk of haemorrhage. The effects of NOACs on fibrin clot structure, 

function and haemostasis will be of interest. 

Conclusion 

Fibrin clot formation and degradation is a result of complex proenzyme-related pathways.  

Changes in fibrin clot structure have been demonstrated at several patient populations who 

are at-risk of thrombotic events. The impact of AF on clot structure, the associated relation 

with progressive renal dysfunction and concurrent choice anticoagulant treatment on clot 

structure can be studied to assess their potential clinical significance. 
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Section 2: Study proposal and Hypotheses to be tested 
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Aim 

To study the different aspects of fibrin clot structure and fibrinolysis in AF and its 

relationship with renal dysfunction, primarily through the assessment of the fibroelastic 

strength of clot, fibrin clot thickness and density, rate of fibrin clot built-up and fibrinolysis. 

So as to enable us to appreciate the changes in fibrin clot structure to the paradoxical 

increase in thrombotic and haemorrhagic phenomena associated with oral anticoagulation 

use in AF and CKD. 

Background 

Atrial Fibrillation (AF) results in an increased risk of ischaemic stroke and systemic 

thromboembolism. Ischaemic stroke as a result of AF is usually more debilitating and results 

in worse functional outcome than non-AF related ischaemic stroke (20). The improving 

longevity and expansion of elderly population globally is resulting in increasing incidence of 

AF and paralleled by the rise in CKD (150-152), as both conditions share similar risk factors 

(such as hypertension and diabetes (153)) which are associated with increasing age. 

Moreover, a bidirectional relationship exists between deterioration of renal function and AF 

(17), further reinforcing the close relationship of these two conditions.  

AF per se confers a prothrombotic or hypercoagulable state through numerous 

pathophysiological pathways fulfilling ‘Virchow’s triad for thrombogenesis’, as evidenced by 

abnormalities in vessel wall, abnormalities in flow and abnormalities in blood constituents 

(29). The propensity for thrombus formation is further enhanced by CKD due to additional  

changes to the flow within left atrium and left atrium appendage, damage to vessel wall and 
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subsequent endothelial dysfunction, or upwards regulation of platelet and coagulation 

factors (30, 31, 36, 43, 47, 48). 

The corner stone for management of AF is through the use of chronic oral anticoagulation, 

classically with Vitamin K antagonist such as warfarin (79). As discussed previously in Section 

1, the use of oral anticoagulant in patients with concurrent renal dysfunction is complicated 

by the lack of efficacy and also having to contend with a corresponding rise in haemorrhagic 

risk (105). Thus, this creates a therapeutic dilemma. 

Hence to better understand the reason behind these paradoxical changes to thrombosis and 

bleeding, there is a need to investigate the potential impact of renal dysfunction (in 

concurrent AF) on fibrin clot formation and fibrin clot strength.  

Traditionally, assessment of fibrin clot formation has been simply through determining the 

time taken for a clot to form from plasma such as prothrombin time and the activated 

partial thrombplastin time. Although of undoubted value, this approach has little regard for 

the roles of other endothelial/inflammatory components involved in the coagulation 

cascade, nor the physical strength of the fibrin clot formed. 

On the other hand, with respect to fibrin clot structure, there have been a number of 

publications demonstrating alterations in fibrin clot structure and clot strength in relation to 

cardiovascular disease and severe renal failure (143-145, 148, 149, 154-159).  

In accordance with previous works by Mills et al. and Collet et al., they have independently 

demonstrated that in healthy relatives of patients presenting with premature coronary 

artery disease, there is significant alteration in fibrin clot properties. The fibres formed are 

usually thicker in diameter and forming fibrin clots of lower permeability (though less 



55 
  

dense) with relative to controls (143). The fibres are also stiffer as assessed by torsion 

pendulum, and underwent slower rate of fibrinolysis ex vivo (159). These findings are also 

supplemented reports by Fatah et al. and Undas et al., confirming similar findings in patients 

with established coronary artery disease (144, 145). Thus, confirming the association 

between changes in fibrin clot structures and the increased thrombotic risk in relation to 

coronary disease. 

Subsequently, with regards to renal disease, Sjoland et al has also reported that in patients 

with ESRD, the fibrin clot made from plasma has higher clot density which is less susceptible 

to ex-vivo fibrinolysis compared to healthy control(148). These fibrin clots from patients 

with ESRD also exhibited increased fibre thickness and underwent fibrin protofibril 

formation much quicker (149). The altered fibrin clot also associated with increased 

mortality during the 3 years follow-up. Thus, these findings suggested the relationship 

regarding ERSD with changes to fibrin clot properties and worse clinical outcome. 

Therefore, from our current knowledge, we can appreciate that changes in fibrin clot 

structure can relate to increased CAD risk as well as ESRD. However, no previous work has 

been done with regards to fibrin structure and strength with regards to AF and progressive 

renal dysfunction. No previous has work has been done investigating changes to fibrin clot 

structure in relation to choice of anticoagulant or antiplatelet therapy. 

Beside investigation of changes to fibrin clot, assessment of markers of platelets activation 

and endothelial dysfunction plus microparticles will also be done. In an adult, the 

endothelium is an organ composed of 1-6 x 1013 endothelial cells, weighing approximately 

1kg and covering a surface area of approximately 4000 to 7000 m2 (160).  Its functions can 

be broadly classified into those pertaining to blood pressure control, and those relating to 
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haemostasis, and accordingly endothelial damage/dysfunction leads to hypertension and 

coagulopathy (161, 162). Hence, von Willebrand Factor (vWF) and endothelial-selectin (E-

selectin) levels, surrogates for endothelial injury/dysfunction will be assessed to investigate 

its role in CKD-AF patients. 

On the other hand, platelet activation is implicated in myocardial infarction and elevated 

levels signify increased thrombotic potential (163-166). Thus soluble platelet-selectin (p-

selectin) levels will be assessed to investigate if changes to fibrin clot structure are in any 

way related to increase in platelet activation in relation to CKD and AF. 

Subsequently, microparticles are heterogeneous vesicles, derived from cellular membrane 

where the parent cells had undergone apoptosis or activation (167, 168). Owing to the 

nature of their parent cells, different microparticles subsets possess unique composition 

and content, which vary in their hemostatic and thrombotic potentials (169-171). Thus, 

different microparticles subsets can modulate coagulation by directly facilitating formation 

of coagulation complexes or via modulation of tissue factor dependent pathways (172, 173).  

 

While microparticles levels are increased in ESRD and correspond with increased 

cardiovascular mortality (174), a contradictory relationship exists between non-valvular AF 

and levels of circulating microparticles (175, 176). A potential relationship between 

worsening degrees of non-dialysis dependent renal dysfunction and microparticles amongst 

non-valvular AF patients, as well as the subsequent effect of levels of various microparticles 

subsets has yet to be investigated.  
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Summary   

Haemostasis demands the correct balance between thrombogenesis and fibrinolysis as 

failure leads to thrombosis and haemorrhage respectively.  This failure of haemostasis may 

relate to external factors such as type and intensity of anticoagulation treatment, renal 

function and vascular/endothelial function. The present study extends previous work by 

focussing on understanding clot structure/function and the relation to pathogenesis of 

thrombogenesis in AF. 

Hence this research project will utilise thromboelastography (TEG), turbidimetric and 

fibrinolysis assay to investigate several aspects of coagulation, fibrinolysis and fibrin clot 

structure, assessment of vascular function through ELISA, flow cytometry for assessment of 

microparticles levels and finally Scanning Electron Microscopy to visualise the fibrin clot in 

detail.   

Hypothesis to be tested 

First hypothesis: Patients with AF (anticoagulation-naive) have different thrombogenesis, 

fibrinolysis and fibrin clot structure characteristics compared to patients with established 

cardiovascular disease.     

Second hypothesis: Variability in certain aspects of haemostasis in AF patients treated with 

warfarin, with abnormal indices of thrombogenesis, fibrinolysis and fibrin clot structure, can 

be explained by altered renal and/or endothelial function.  

Third hypothesis: Clot structure, function and haemostasis in AF patients before and after 

becoming therapeutically anticoagulated depends on the class of oral anticoagulant used 

(VKA versus NOACs). 
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Section 3: Methodology 
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3.1 Materials and study design 

For my First Hypothesis, I recruited subjects as followed: (i) 50 AF patients were non-OAC 

user (aspirin) with normal-mildly impaired renal function (eGFR≥60 ml/min/1.73m2), 

comparing them with (ii) 50 patients with established, stable coronary artery disease 

(defined as those who suffer from angina with over 50% stenosis of at least 1 coronary 

artery disease on coronary angiogram) who were on aspirin. 

My Second Hypothesis was tested in a case-control cross sectional study of 200 patients 

with AF on classic VKA, warfarin. There were 50 patients in four distinct quartiles depending 

on renal function as defined by their creatinine clearance as described by Cockcroft-Gault 

formula. 

The Third Hypothesis was tested in 50 patients naïve to anticoagulation, of whom 25 were 

started on warfarin, 25 on NOAC based on clinical criteria or physician’s choice. The effects 

of these drugs on clot structure and function was assessed after 4 weeks treatment. 

Compliance among NOAC users was assessed through interviews and verbal confirmation of 

adherence to treatment.  Warfarin user would have achieved stable INR through regular 

monitoring in anticoagulation clinics.  

All subjects were recruited predominantly from (and not isolated to) patients attending AF 

and cardiology clinics at City Hospital. Data collected included full clinical and demographic 

details (age, gender, ethnicity, body weight, BMI, systolic and diastolic blood pressure, 

tobacco use, family history of CVD), concurrent disease and medication history. In all cases 

full routine bloods were taken for FBC, ESR, PT (INR), APTT, U&E’s, total and HDL-cholesterol 
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and LFTs. Renal function will be defined by creatinine clearance, calculated using the 

Cockcroft-Gault equation. 

Diagnosis of heart failure was defined as a clinical syndrome consisting of typical symptoms 

(dyspnea, oedema and fatigue) and signs (pulmonary oedema and pulmonary crackles), due 

to established structural or functional cardiac abnormality (as confirmed by 

Echocardiogram) resulting in reduced cardiac output.  

Inclusion criteria: 

  Aged 18 or over, and able to provide informed, written consent 

 For AF cohort: previous or current AF established on 12-lead ECG (inclusive of 

paroxysmal or persistent AF) 

 For coronary artery disease cohort: established coronary artery disease (previous-

Myocardial infarction over 12 months ago or angina with >50% stenosis defined by 

coronary angiogram) 

 

Exclusion criteria: 

 Patients receiving renal replacement therapy/ undergoing dialysis (peritoneal or 

haemodialysis) 

 Presence of potential cofounders – significant co-existing medical conditions: 

systemic connective tissue disease, ongoing neoplasia, recent (<3 months) 

surgery or acute cardiovascular event (established myocardial infarction by 

troponin elevation or dynamic ECG-changes to ST segments), presence of a 

prothrombotic/haemorrhagic phenomenon (such as lupus anticoagulant, anti-
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phospholipid syndrome, coagulation Factor deficiencies), overt liver disease 

(deranged LFTs with/without deranged INR), deranged FBC (anaemia, 

polycythaemia, thrombocythaemia or thrombocytopaenia), acute sepsis, NSAIDs 

or oral steroids, subtherapeutic INR upon reviewAdministration of parenteral 

anticoagulant (such as low molecular weight heparin, bivalirudin), platelet 

aggregation inhibitor (abxicimab) of ADP receptor antagonists (clopidogrel, 

prasugrel or ticagrelor). 

 

3.2 Laboratory Methods 

First and foremost, adequate written consent was obtained by mysef prior to twenty mL of 

blood taken from an antecubital vein into 0.9% citrate bottle at room temperature for assay 

of coagulation, fibrinolysis, vascular function, and fibrin clot structure. Platelet-poor plasma 

was obtained after centrifugation at 3000g for 20 minutes, and aliquots of 0.5 mL were 

frozen at -70°C until assay. The plasma was the source material for a comprehensive panel 

of markers that  provided information on the following processes. Out of which five mL of 

fresh blood was kept aside for thromboelastography (TEG). 

 

3.2.1 Thromboelastography (TEG) 

Thromboelastography (TEG) is a whole-blood viscosity assay which has been widely used in 

the assessment of coagulation and fibrinolysis (177). TEG has been used previously to 

investigate patients with end-stage renal disease (178), and in patients with ischaemic 

stroke (179), but never before being used in AF subjects. 
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In this assay, 340 µL of citrated whole blood was added to a reaction cuvette, to which 20 µL 

of 0.1 M calcium chloride solution was added to reverse anticoagulation by citrate 

(Haemonetics, Lanarkshire, UK). The reaction proceeded immediately and monitored in real 

time by the analyser with results fed directly to a microcomputer. A typical TEG graphical 

printout is presented (Figure 3.2.1.1), and shows the formation of clot, the increasing 

physical strength of the developing clot on the vertical axis over time, and finally clot 

autolysis. Together with the graphical printout, 21 TEG indices are generated, of which 5 are 

selected due to their direct assessment of coagulation and fibrinolysis (namely R-time, K-

time, Angle, MA, and LY60 indices). Further explanation of these indices provided in Section 

4. 

Figure 3.2.1.1: TEG Graphical Tracing: Amplitude against Time 

 

Key: 
A, Amplitude; CI, Coagulation Index; EPL, Estimated  Potential Lysis; G, G-parameter; K, K-
time;  
LY30, Percentage of lysis 30 minutes post maximum amplitude is attained;  
MA, Maximum Amplitude; PMA, Projected maximum amplitude; R, R-time 
3.2.2 Turbidimetric Analysis and Fibrinolysis Assay 

30 minutes 
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When plasma is supplemented with thrombin, polymerisation of fibrin will occur, and this 

process can be quantitatively measured by measuring the amount of light passing through 

this intervening, clotting substance.  

In this turbidimetric assay, 25 µL of platelet-poor plasma was added to the well of a 

standard ELISA-quality 96-well microtitre plate (R&D Systems Europe Ltd, Abingdon. UK), 

followed by 75 µL of a TRIS-NaCl buffer (1.51 g Tris-HCl, 1.75 g NaCl, 200 mL distilled water). 

Coagulation was initiated by the addition of 50µL of a thrombin/calcium solution.  

The plate was immediately loaded into a Tecan Sunrise (Tecan Group Ltd, Männedorf, 

Switzerland) plate reader at 37oC programmed to measure the optical density (OD) at 

340nm every six seconds (with an intermediate two-second shaking period) for 30 minutes. 

As fibrinogen is converted to insoluble fibrin matrix, the absorbance of light will occur and 

this is demonstrated by an initial lag phase, followed by a rapid exponential increase phase 

which result from the lateral polymerisation and aggregation of protofibrils into fibrin fibre, 

finally is followed by a plateau-phase (Figure 3.2.2.1).  

The final value of the optical density at the plateau phase is directly related to the average 

size of the fibres (180), with high level of absorbance demonstrated to be directly 

proportional to larger cross-sectional area of fibrin fibres (181).  
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Figure 3.2.2.1: Turbidimetric Analysis (Triplicates of one sample) 

 

Subsequently, fibrinolysis assay calls for 75 µL of plasma to be added to the well of a 

microtitre plate. To this is added 75 µL of a Tris/NaCl/calcium buffer supplemented with 

thrombin and tPA. The plate is also immediately loaded into a Tecan Sunrise plate reader as 

for the turbidimetric assay, and data collected for 30 minutes.  

A typical graphical print-out is presented in Figure 3.2.2.2, which demonstrates change in 

OD over time as the fibrin clot is initially formed and then lysed. The data is post-processed 

to plot into line charts, and from these the rate of clot dissolution (RCD), being the slope of 

the right hand portion of the graph, and the time for 50% clot lysis (T50) can be determined. 

Structural features of fibrin clot which may contribute to fibrinolysis or suggests increase 

thrombogenic potential will be visualised by Scanning Electron Microscopy (see below).  

Nevertheless, potential limitation of turbidimetric and fibrinolysis assay is the lack of 

assessment of humoral factors contributing to thrombosis and fibrinolysis, such as levels of 

fibrinogen, PAI, TNF-α, cytokines and interleukin. 
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Figure 3.2.2.2: Fibrinolysis Assay (Triplicates of one sample) 

 

The plot shows changes in optical density as the fibrin clot forms. Triplicate plots are 
shown.  
T100% is the time to maximum absorbance, T0% is the return of the optical denity to 
near-baseline.  

T50% is (T100% - T0%)/2.  

The slope is the sharpest fall in optical density over time under the effect of exogenous 
tPA. 

 

3.2.3 Vascular/Endothelial dysfunction   

For enzyme-linked immunosorbent assay (ELISA) blood samples were centrifuged within 30 

min of collection at 1,500 g for 20 min at 4°C. The resultant plasma was then collected and 

stored at –70°C until later batch processing by ELISA to measure soluble E-selectin and 

soluble P-selectin (R&D Systems, Minneapolis, MN, USA) as per department’s protocol  

(182). 

Vascular function was be assessed by levels of endothelial products von Willebrand factor 

(vWf) and tissue plasminogen activator (tPA) (both ELISA assays) as dictated by established 

standard operating procedures (SOPs) developed in the department. 
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3.2.4 Microparticles 

For microparticle detection, platelet-poor plasma (PPP) was obtained after 20 min 

centrifugation of citrated blood at 3,000 g and further centrifugation of PPP at 13,000 g for 2 

minutes to remove residual cellular fragments to obtain platelet-free plasma (PFP). Aliquots 

of the plasmas were frozen at –70°C for subsequent batch analysis and underwent a single-

freeze thaw cycle. 

PFP was initially incubated separately for 30 min with 0.5 μg of biotinylated anti-human 

CD42b antibody (Abcam, Cambridge, UK) for platelet-derived microparticles (PMP), or 0.5 

μg of biotinylated anti-human CD31 antibody (Abcam, Cambridge, UK) for endothelial-

derived microparticles (EMP). This was followed by a second incubation with 0.25 μg of 

Streptavidin-Alexa Fluor-647nm-R-Phycoerythrin conjugate (Life Technology, Paisley, UK) for 

30 min and then diluted with 990 μl filtered PBS (final dilution 1:100).  

MP analysis was promptly performed using the Apogee A50 flow cytometer (Apogee Flow 

Systems). Polystyrene beads of 110, 200, 500 nm and 1 μm diameter (Apogee Flow Systems) 

were used to set up the MP-size gate and small-size MP defined as events with size between 

110 and 500 nm. Triplicate of measurements (Events/uL) were recorded from region of 

interest (Figure 3.2.4.1). 

Detailed instruction regarding gating selection has previously been described by 

department’s publication (183). 
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Figure 3.2.4.1 Flow Cytometry – Microparticles detection 

 
Arrowhead: Lack of excitation of MP in Region of Interest 
Arrow: Excitation of PMP-fluorochrome conjugate 

  

3.2.5 Scanning Electron Microscope (SEM) 

To assess the fibrin clot structure using SEM in University of Leeds LIGHT Institute, fibrin clot 

can be prepared using the following method. First, 25 µL of plasma is inserted into the cap 

from aliquot tubes. Small holes were drilled through the bottom of the cap and covered in 

parafilm. After initial 2 hours of incubation in a moist environment, the clot will be washed 
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several times, before being fixed with 2% gluteraldehyde and subsequently dehydrated. 

Critical point drying with CO2 in Critical Point Drying Apparatus is done prior to mounting for 

SEM.  

The scanning electron microscope (SEM) was first developed in 1935 by focusing a narrow 

beam of electrons across a sample surface by magnetic deflection. A typical SEM (Figure 

3.2.5.1) allows for a small stream of electrons to be emitted via the electron gun while 

focused on a small spot (about 5 – 10nm). The  SEM  is  maintained  under vacuum  to  

ensure  the  beam  electrons  have  minimal  interaction with any intervening gas molecules 

on their way to the sample. Several detectors are set up to pick up secondary electrons 

generated though electron-sample interactions. The varied number of secondary electrons 

released through the interaction will determine different gray-white intensity as per 

assigned at the particular scan position. This will then be post-processed by adjacent 

computer into a SEM image. 

Figure 3.2.5.1: Schematic of an Scanning Electron Microscope (184)
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Diameter of fibres within the fibrin clot can then be determined by direct measurement 

using open-source software (ImageJ programme, Rasband, National Institute of Health, 

USA). Each clot type studied was photographed in at least 5 different areas at 5,000 and 

20,000x magnifications using an FEI Quanta 200 FEG SEM (FEI, Hillsboro, OR).  

Average fibre diameters were measured from at least 20 random fibresin each sample using 

ImageJ software. A region of a micrograph is selected at random and the diameter of every 

fibre in that area is measured. This will ensure no bias towards, for example, thicker or well-

focused fibres, thus minimising any sampling effects. The operator and analyst of SEM were 

blinded to source of plasma and associated background demographics to reduce operator-

related selection bias. Unblinding procedure took place only during final data analysis.  

 

 

3.3 Statistical Analysis 

Results are expressed as mean (SD, standard deviation) or median (IQR, interquartile range). 

Data of all subjects were analysed by t-testing, one-way ANOVA or Mann-Whitney U tests 

and Kruskal-Wallis tests, with post-hoc Tukey’s analysis as appropriate:  

Gaussian distribution was assessed by plotting of histogram, assessment of skewness and 

kurtosis, subsequently checked for normality by Anderson-Darling test. Continuous data 

between two groups assessed by t-test when normally distributed or by Mann-Whitney U 

test when non-normally distributed. Continuous, normally distributed data between more 

than two groups are assessed by ANOVA (with post-hoc Tukey’s method for multiple 
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comparisons), while non-normally distributed data were assessed by Kruskal-Wallis test. 

Categorical data assessed by Chi-Square test. Correlations were performed by Spearman’s 

correlation method and all statistical calculations were performed on a microcomputer 

using commercially available statistical package (Minitab, Minitab Inc, PA, USA). A value of P 

< 0.05 was considered significant in all statistical analyses unless specified.  

Statistical methods utilised are cross-checked by statistician.  

3.4 Ethical Considerations 

The study was conducted in accordance with the declaration of Helsinki. Ethical approval 

was obtained from the National Research Ethics Service (NRES Committee Midlands), as well 

as from the Sandwell and West Birmingham Local Research Ethic Committee.  

Written consent was obtained from all patients involved in this study. Appendices (in 

Section X) contains the REC ethics approval letter, patient information leaflet and consent 

form. 

REC Reference: 13/WM/0379; IRAS ID: 134460 

 

 

 

 

 

 



71 
  

 

 

 

 

 

Section 4: Validation Results 

 

 

 

 

 

 

 

 

 

 



72 
  

4. Validation of laboratory methods 

 

Coefficient of Variation (CVs) of TEG, turbidimetric and fibrinolysis analysis 

As thromboelastography (TEG), turbidimetric and fibrinolysis analysis assays were all new 

techniques, extensive validation exercises had been done during assay and SOP 

development.  

My results as demonstrated in Tables 4.1 and Table 4.2. Coefficient of variations (CV) was 

calculated by the ratio of the standard deviation to the mean. A greater CV equates to 

greater variability/spread in the results thus reduces the reliability of assay used.  

For turbidimetric and fibrinolysis analysis, frozen plasma demonstrated better median intra 

and inter-assay CV at 2.8 and 5.3%, while fresh plasma intra and inter-assay CV ranges at 3.6 

and 9.9%. Whereas for TEG, the median intra and inter-assay CV for fresh whole blood at 

16.4 and 18.4%, for fresh plasma at 19.3 and 23.7%, while frozen plasma at 20.9 and 21.7%. 

In TEG,  21 indices (Table 4.3) were evaluated but only 5 clinically significant and relevant, 

independent indices were selected for analysis, namely R-time, K-time, Angle, Maximum 

Amplitude (MA) and percentage lysed at 60 minutes (LY60).  

Other validation aspects including studies of diurnal variation, exercise-related changes in 

coagulation, fresh vs frozen plasma, transiently frozen to short-term frozen plasma and time 

delay to indices of coagulation are described further below.  
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Coefficient of Variations of flow cytometry for microparticles detection 

As microparticle detection by Apogee 50 flow cytometry was well-developed in the 

department, extensive validation was not required. However, mean intra and inter-assay 

CVs for Platelet Microparticles and Endothelial Microparticles are at 18.2 and 24.6% for 

PMP, while EMP at 9.3 and 12.9%, respectively.  

 

Diurnal variation and TEG indices 

To assess if diurnal variation in coagulation indices exist, fresh blood samples were collected 

from 10 healthy volunteers within the research department every 6 hours over a 24-hour 

period, and those samples were processed by TEG. All TEG indices demonstrated to show no 

statistical difference or diurnal variation (Table 4.4). Consent Form in Appendices. 

 

Exercise and coagulation indices (assessed by TEG) 

To assess if exercise will have any impact on coagulation indices, fresh blood samples were 

obtained from 10 healthy volunteers at baseline, at peak exercise on treadmill (defined as 

85% of maximum target heart rate achieved after corrected to age and gender), 2 hours 

post-exercise, 4 hours post-exercise, 12 hours post-exercise and 24 hours post-exercise. All 

of which were processed by TEG and resultant indices obtained.  

As demonstrated by Table 4.5, peak exercise resulted only in reduction of LY60. At 2 hours 

post-exercise, it resulted in the reduction of R-time, K-time and LY60, but increased Angle 

and MA. At 4 hours post-exercise, R-time and K-time remain reduced while MA and reduced 
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LY60 remain elevated. By 12 hours post exercise, all coagulation indices as assessed by TEG 

have returned to normal, except for reduced LY60.  

 

Fresh vs frozen plasma samples for turbidimetric and fibrinolysis analyses 

As turbidimetric and fibrinolysis assay were carried out on 96-well plate and read on an 

ELISA reader, steps were taken to optimise laboratory processes to allow for batch analysis. 

Thus 15 fresh plasma samples and respective thawed frozen samples were assessed by 

turbidimetric and fibrinolysis assay, which demonstrated no statistical differences between 

all indices measured. 

 

Transiently frozen vs short-term frozen plasma samples 

To assess if duration of freezing has any impact on coagulation and fibrinolysis indices as 

assessed by turbidimetric and fibrinolysis assay, 15 plasma samples were transiently flash-

frozen in -70 degrees freezer for 1 hour before being thawed for analysis, and compared to 

respective thawed samples which were frozen for 1 week in similar freezing condition. All 

indices analysed by turbidimetric and fibrinolysis assay demonstrated no statistical 

differences between both groups. 

 

Effect of time on indices as assessed by turbidimetric and fibrinolysis analyses or TEG 

Finally, to assess if the delay between venipuncture and analysis of samples by TEG and 

turbidimetric and fibrinolysis assay, fresh blood and corresponding plasma samples were 
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collected and periodically assessed by TEG and plate assays over a 24 hour period. Results 

are illustrated on Table 4.6 and Table 4.7 

As demonstrated by Table 4.6, the turbidimetric and fibrinolysis analyses demonstrated that 

processing samples collected over time results in a progressive shortening of the lag time 

(LT), a slower rate of clot formation (RCF) but increased maximum clot density (MCD). 

Resultant clot formed over time was also demonstrated to be more resistant to lysis by tPA, 

shown by increased T50% and reduced rate of clot dissolution (RCD). 

As compared to Table 4.7, parallel TEG data were broadly speaking stable to 24 hours after 

preparation. The only index that did show a statistical change was the Angle, which 

demonstrated that fibrin samples aggregate more rapidly at 3 and 24 hours after 

preparation (both p=0.019). 

 

Discussion 

From the result of the validation exercise, several important aspects of TEG and 

turbidimetric/fibrinolysis assay have been investigated.  

Firstly, addressing the CV for TEG, the local TEG exhibited CV of similar characteristics as 

previous publication, with Anderson et al. demonstrated that depending on choice of 

indices studied, the inter-assay CVs for TEG can range from 4 – 22% (185). Moreover, it is 

known that CVs have been altered with the use of kaolin as an haemostasis accelerant in the 

accordance to TEG protocol (186). On the other hand, as for local developed turbidimetric 

and fibrinolysis assay, the demonstrated inter-assay CV is good while comparable to 

previous publications which can range from 4.9% (187) to 28.6% (188).  
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Thus based on the most reliable CV, fresh whole blood was selected for analysis via TEG, 

over the use of fresh plasma or frozen plasma. Whereas for turbidimetric and fibrinolysis 

assay, frozen plasma was selected as choice for analysis due to its excellent CV 

demonstrated and the ability to allow for batch analysis.    

Secondly, although our study showed no diurnal differences in coagulation indices when 

blood samples are assessed by TEG among 10 healthy samples, this result is incongruent to 

findings from contemporary published works involving healthy subjects: such as variation of 

over 22% in level of von Willebrand factor (vWF) over 24 hours period(189), or platelet 

activity and aggregability, levels of coagulation system markers such as Prothrombin 

fragment 1+2, Factor VIIa, and Fibrinogen which are also shown to be elevated in especially 

in the late-morning (190). This is further supported by increased incidence of cardiovascular 

events (such as myocardial infarction and sudden cardiac death) and ischaemic stroke 

among at-risk population group in the morning (191). Otherwise, the lack of diurnal 

variation may reflect the combination of small sample size studied and fairly high median CV 

(up to 24%) for thromboelastography.   

Thirdly, the reduction in R-time and K-time, together with increased in Angle and Maximum 

Amplitude as assessed by TEG post-exercise, suggested that post-exercise is associated with 

transient but significant increase in coagulation potential. This pro-coagulant state persists 

for up to 12 hours in our healthy subjects before returning to baseline. This result is in line 

with contemporary understanding regarding the relationship between acute, strenuous 

exercise and haemostatic response. Previous Norwegian studies involving 800 healthy 

young individual demonstrated that acute exercise is associated with reduced Activated 

Partial Thromboplasmin Time (aPTT) as well as increased in D-dimer levels, suggesting an 
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increased in coagulation and fibrinolytic activities post-exertion (192). That reinforced 

previous small scale study among 10 healthy adolescents, demonstrating that following 

exercise, platelet counts, aPTT, FVIII, vWF and tPA were significantly elevated in contrast to 

plasminogen activator inhibitor, which decreased significantly until 1h after exercise (193). 

Fourthly, as fresh plasma and freshly-thawed frozen plasma demonstrate no significant 

difference in indices assessed by turbidimetric and fibrinolysis assay. It is possible to use 

frozen plasma instead of fresh plasma for batch analysis. This is further supported by 

subsequent validation exercise demonstrating no difference amongst those indices between 

transiently frozen plasma and short-term frozen plasma. At the writing of the work for this 

thesis, there is yet to be any published work in this specific field. 

Finally, the validation results also demonstrated adverse effect of time on indices as 

assessed by TEG plus turbidimetric and fibrinolysis assays. This is also in line with previous 

reports by Zambroni et al(194) and Wasowicz et al(195), suggesting the stability of fresh and 

citrated blood for up to 2 hours before processing.  

A summary of the chosen 10 indices for TEG, turbidimetric and fibrinolysis assay is 

summarized and described in Table 4.8 . 
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Table 4.1: Intra- and inter- assay CV’s of turbidimetric and fibrinolysis assay indices using 

fresh plasma or frozen plasma 

 

 

 
Index  
(unit) 

 

 
Fresh plasma  

Intra-assay 

 
Fresh plasma 
Inter-assay 

 
Frozen plasma 

Intra-assay 

 
Frozen plasma 

Inter-assay 
 

 
Turbidimetric 

 

 
 

   

 
Lag time (sec) 

 

 
2.7 

 
10.3 

 
2.4 

 
6.1 

 
Rate of clot 
formation  

(OD unit/sec)  

 
9.0 

 
7.7 

 

 
5.1 

 
6.5 

 
Maximum clot 

density  
(OD unit) 

 
2.6 

 
4.9 

 
1.3 

 
2.2 

 
Fibrinolysis 

 

    

 
Rate of clot 
dissolution 

(OD unit/sec) 

 
12.0 

 
10.8 

 
3.5 

 
5.3 

 
T50% (sec) 

 

 
3.6 

 
9.9 

 
2.8 

 
5.1 

 
Median 

(IQR) 
 

 
3.6 

(2.6-10.5) 

 
9.9 

(6.2-10.5) 

 
2.8 

(1.8-4.3) 
 

 
5.3 

(3.6-6.3) 

 
Data are %. CV = coefficient of variation, OD = optical density 

IQR = inter-quartile range 
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Table 4.2: TEG intra- and inter-assay CVs 

 
Index 
(unit) 

 

 
Whole blood 

 

 
Fresh plasma 

 

 
Frozen plasma 

 

Intra  -  Inter  Intra   -  Inter Intra  -  Inter 

       

 
R (min) 
 

 
21.8 

 
16.4 

 
19.3 

 
24.5 

 
24.6 

 
29.5 

 
K (min) 
 

 
18.4 

 
24.0 

 
23.0 

 
23.7 

 
31.0 

 
26.5 

 
Angle (degrees) 
 

 
10.4 

 
14.3 

 
9.4 

 
10.0 

 
12.4 

 
11.4 

 
MA (mm) 
 

 
5.5 

 
7.8 

 
12.2 

 
8.6 

 
17.2 

 
17.0 

 
LY60 (%) 
 

 
102.5 

 
637.9 

 
73.8 

 
94.3 

 
* 

 
* 

 
Median  
(IQR) 
 

18.4 
(8.0-
62.2) 

16.4 
(11.1-
330.1) 

19.3 
(10.8-
48.4) 

23.7 
(9.3-
59.4) 

 
20.9 

(13.6-
29.4) 

 

 
21.7 

(12.8-
28.7) 

 
Data are %. *No reliable data obtained 

MA = maximum amplitude, IQR = interquartile range 
CV = coefficient of variation 
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Table 4.3: Thromboelastography (TEG) indices 

Index Function in haemostasis 

SP-time Split point time. The time from insertion of sample into TEG 
until initial clot formation. 

R-time The time from when the sample is put on the TEG until the 
first sign of clot formation (amplitude of 2 mm) is reached. 

K- time The time from the R or beginning of clot formation to a fixed 
level of clot firmness (amplitude of 20 mm) is reached. 

Angle (α) The rate of clot growth. 

MA (Maximum  
Amplitude) 

Maximum strength or stiffness (maximum shear modulus) of 
the developed clot. MA measures the strength or elasticity of 
the clot is measured in mm. 

Time to MA Time to MA, a global measurement of the dynamics of clot 
kinetics or can be described as the time needed to form a 
stable clot. 

G parameter Actual measure of clot strength, in terms of shear elastic 
modulus strength, and a derivation of A. It is measured in 
Kdyn/cm2. 

E parameter A normalized G parameter: referred to as elasticity constant. 

Thrombodynamic  
Potential Index (TPI) 

Describes the patient’s global coagulation whether the patient 
has normal haemostasis (TPI between 6 - 15), is 
hypocoagulable (TPI < 6), or is hypercoagulable (TPI >15). 

Estimated Percent Lysis The estimated percent lysis at 30 minutes after MA. 

A30 Amplitude of the TEG tracing at 30 minutes. 

CL30 Presents the values of A30 relative to MA.  
CL30 = 100 x (A30 / MA) 

LY30 Measures percent lysis at 30 minutes after MA is reached. 

A60 Amplitudes of the TEG tracing at 60 minutes. 

CL60 Presents the values of A60 relative to MA.  
CL60 = 100 x (A60 / MA) 

LY60 Measures percent lysis at 60 minutes after MA is reached. 

Clot Lysis Time (CLT) The elapsed time between MA and 2 mm amplitude or less 
post MA. 

A parameter Measures the width of the tracing at the latest time point. 
Amplitude (A) is a function of clot strength or elasticity and is 
measured in mm. 

Coagulation Index (CI) Describes the patient’s overall coagulation is the coagulation 
index derived from the R, K, MA and Angle (α) of native or 
kaolin-activated blood samples. 

Projected MA(PMA) Estimator of MA, that is, whether the MA value will achieve at 
least the lower limit of the normal value for samples treated 
with kaolin. 

Lysis Time Estimate 
(LTE) 

An estimate of CLT. LTE is derived by calculating the slope of 
the tracing and extrapolating to an amplitude of 2 mm. 
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Table 4.4 Diurnal Variation by TEG 

 Baseline 
(0600hr) 

1200hr 1800hr 2400hr 

R-time (min) 9.03 9.01 8.81 9.79 

K-time (min) 3.09 2.87 3.04 2.78 

Angle (degree) 52.3 50.7 52.3 52.7 

MA (mm) 54.7 54.6 53.6 57.4 

LY60 (%) 8.57 8.11 7.64 6.57 

 

* no statistical difference in the 5 TEG indices described 
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Table 4.5: Exercise and coagulation indices by TEG 

 Baseline Peak 
Exercise 

2 hours 
Post 

Exercise 

4 hours 
Post 

Exercise 

12 hours Post 
Exercise 

24 hours Post 
Exercise 

R-time 
(min) 

8.28 8.42 6.26* 7.41* 8.56 8.31 

K-time 
(min) 

2.51 2.70 1.54*† 1.83* 2.54 2.75 

Angle 
(degree) 

55.0 53.7 67.1* 57.4 56.4 55.6 

MA (mm) 54.3 56.2 67.8* 64.7* 52.6 54.1 

LY60 (%) 7.62 5.55* 3.64*† 5.44* 5.22* 6.94 

 

* p<0.05 compared to baseline, † p<0.01 compared to baseline 
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Table 4.6: Effect of time on indices assessed by turbidimetric and fibrinolysis assay  

 
 

Turbidimetric assay Fibrinolysis assay 

 
Time point 
(hours) 
 

 
LT 

(secs) 
 

 
RCF 

(OD/sec) 

 
MCD 
(OD) 

 
RCD 

(OD/sec) 

 
T50 

(secs) 

T = 0 540 (92) 11.4 (3.1) 0.59 (0.1) 2.7 (0.9) 132 (19) 

T + 3 535 (93) 10.3 (2.4)  0.59 (0.1) 2.6 (0.8) 143 (24) 

T + 6 535 (104) 9.5 (2.0) 0.61 (0.1) 2.6 (0.9) 143 (21) 

T + 12 449 (83) 7.5 (1.0) 0.62 (0.12) 2.4 (0.8) 173 (17) 

T +24 378 (26)* 6.3 (1.2)* 0.67 (0.12) 1.5 (0.6) 207 (22)* 

P for linear 
trend 

0.0021 0.0002 0.703 0.0332 0.0048 

 

Data are mean (standard deviation). LT = lag time, MCD = maximum clot density, RCD = rate 
of clot dissolution, RCF = rate of clot formation, T50 = time for 50% of the clot to be lysed, 
OD = optical density.  

*p<0.001 compared to baseline. 
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Table 4.7: Effect of time on indices assessed by TEG 

 
 

 
Thromboelastography (TEG) 

 

 
Time point 
(hours) 
 

 
R  

(minutes) 
 

 
K 

(minutes) 

 
Angle (degree) 

 
MA 

(mm) 

 
LY 30 
(%) 

T = 0 12.9 (4.6) 3.4 (1.5) 45.3 (9.9) 59.7 (7.3) 2.32 (1.9) 

T + 3 12.0 (3.3) 2.7 (0.8) 55.8 (9.0)* 59.7 (7.2) 2.32 (2.5) 

T + 6 10.4 (2.4) 3.2 (1.0) 51.3 (8.8) 54.2 (11.5) 3.00 (1.1) 

T + 12 10.0 (2.00) 3.2 (1.2) 48.6 (17.7) 56.8 (10.2) 2.98 (1.7) 

T +24 9.5 (2.2)* 2.7 (1.1) 55.4 (10.9)* 59.1 (6.1) 1.52 (0.5) 

P for linear 
trend 

0.0525 0.624 0.442 0.742 0.816 

 

Data are mean (standard deviation). R = Reaction time, K = K time, LY 60 = percent lysis at 60 
minutes after MA is reached, MA = Maximum amplitude.  

*p < 0.05 compared to baseline.  
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Table 4.8: Summary of chosen indices 

  
Process assessing 

TEG indices  

R - time 
(minutes) 

The time from when the sample is put on the TEG until the 
first sign of clot formation (amplitude of 2 mm) is reached. 

K - time 
(minutes) 

The time from the R time or beginning of clot formation to a 
fixed level of clot firmness (amplitude of 20 mm) is reached. 

Angle 
(degrees) 

Angle formed by the slope of a tangent line traced from the R 
time to the K time: reflects the rate at which the clot forms. 

MA 
(mm) 

Maximum amplitude of the clot dynamics, reflecting 
fibroelastic clot strength 

LY60 (%) Percentage of the clot that has lysed 60 minutes after the 
maximum amplitude achieved. 

  

Turbidimetric and Fibrinolysis 
indices 

L time 
(minutes) 

Lag time from the initiation of the test to the start of clot 
formation 

RCF 
(OD/second) 

Rate of clot formation: change in optical density over time 
from the beginning of clot formation to maximum optical 
density 

MOD 
(units) 

Maximum optical density, reflecting clot thickness 

RCD 
(OD/second) 

Rate of clot dissolution: reduction in optical density from 
maximum to the plateau phase. 

T50 (minutes) Time for 50% of the clot to lyse. 
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5.1 Clot structure: Atrial fibrillation versus coronary artery disease - aspirin 

user (anticoagulation naïve) 

Abstract 

Atrial fibrillation and coronary artery disease are prothrombotic states, but they possess 

different fibrin clot profiles and lead to different clinical risks. 50 patients with atrial 

fibrillation and 50 patients with coronary artery disease were recruited, all of whom were 

taking aspirin. To assess the different fibrin clot profile and clot strength, whole blood and 

plasma samples were obtained and analysed by thromboelastography, turbidimetric and 

fibrinolysis analysis. Using thromboelastography no statistical significant difference were 

detected. However, using turbidimetric and fibrinolysis assay, atrial fibrillation confers 

greater rate of fibrin clot formation, fibrin clot formed of greater optical density, more 

resistant to fibrinolysis and requires longer time for 50% clot lysis (all p <0.005). Despite 

exposure to aspirin, atrial fibrillation confers formation of fibrin clot of greater thrombotic 

potential which are also more resistant to fibrinolysis, compared to those from coronary 

artery disease.   
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Introduction 

Patients with atrial fibrillation (AF) and coronary artery disease (CAD) are known to have 

increased thrombotic risk. Both conditions share similar risk factors, such as hypertension, 

increasing age and diabetes; both conditions also exhibited alterations in clot profile which 

increased the associated risk of thrombotic phenomena (be it stroke or myocardial 

dysfunction) (144, 145, 196-198).   

In CAD, positive changes to fibrin clot structure (increased fibrin clot permeability and clot 

lysis) have been associated with the use of prognostically beneficial medications (such as 

ACE-inhibitor, fibrates and statins)(199, 200), while adverse fibrin clot structure with 

increased fibrin network density and reduced fibrinolysis have been observed among those 

patients with failure of antiplatelet treatment(201).  While for AF, regardless of the types of 

atrial fibrillation (permanent, persistent or paroxysmal AF), fibrin clots are denser and more 

resistant to fibrinolysis as compared to control (202, 203), with subsequent modulation of 

fibrin clot structure  shown as early as day 3 after exposure to anticoagulation treatment 

(202). However, despite both conditions sharing similar comorbidities and being closely 

related to each other (204-207), they exhibit different thrombotic and thromboembolic 

profiles. Hence, to better understand thrombotic potential of AF and CAD, there is a need to 

investigate the fibrin clot structure, in the absence of oral anticoagulant. 

I hypothesized that the differences in fibrin clot structure in AF and CAD can explain the 

variation in thrombotic risk, with patients with AF exhibiting fibrin clot which has higher clot 

density and lower tendency to undergo fibrinolysis. These changes can be detected by TEG, 

turbidimetric and fibrinolysis assay. 
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Subjects and Methods 

Over the course of 18 months (January 2014 – July 2015), 50 AF patients taking only aspirin 

as antithrombotic treatment (oral anticoagulant naïve), and 50 CAD patients (taking aspirin 

only) were recruited from the cardiology clinics at the City Hospital, Birmingham.  

Definition of AF and CAD has been described previously in chapter 3. 

Exclusion criteria were age <18 years, diagnosis of valvular AF (severe rheumatic stenosis, 

metallic prosthetic valve, mitral/tricuspid ring repair), active or recent (<12 months) 

malignancy, active immunological disease, chronic liver disease, recent or chronic infections, 

chronic inflammatory disease, connective tissue disease, recent stroke/acute coronary 

syndrome (within two months), active bleeding, recent arterial/venous thrombosis or recent 

surgery, known haemophilia or thrombophilia (such as Factor V Leiden, Protein C/S/anti-

thrombin deficiency, anti-phospholipid syndrome), use of anticoagulant (including vitamin K 

antagonist, non-vitamin K antagonist oral anticoagulant, low molecular weight heparin or 

heparin) 

 

Laboratory Methods 

Citrated venous blood was collected by venepuncture and analysed for indices of 

thrombogenesis and fibrinolysis within 2 hours of collection. The TEG was used according to 

the manufacturer’s instructions. Thrombus formation and autolysis were monitored for up 

to 60 minutes after the addition of calcium to whole blood supplemented with kaolin. The 

TEG delivers numerous indices of haemostasis. Five that pertain to the initiation of 
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thrombosis were selected, the rate of thrombus formation, the physical strength of the clot 

once formed, and the rate of autolysis (Table 4.8).  

For the fibrinolysis and turbidity assay, citrated plasma was obtained from venous blood by 

centrifugation at 2500 rpm for 15 minutes. The turbidimetric and fibrinolysis assay, which 

was conducted at 37°C throughout, consists of two parts (208). Firstly, in the turbidimetric 

assay, 25μl plasma, 75μl TRIS-NaCl buffer, and 50μl thrombin were added to the wells of 96-

well micro-titre plate in triplicate. Fibrin clot formation was followed for 30 minutes in a 

micro-titre plate reader by changes in optical density. Secondly, the fibrinolysis assay 

required 75µL of plasma and 75µL of a Tris/NaCl/calcium buffer supplemented with 

thrombin and tissue plasminogen activator (tPA). The plates were immediately loaded into a 

plate reader and data collected for 30 minutes. The data from turbidimetric and fibrinolysis 

assays were post-processed by plotting into line charts, and from these, five indices were 

obtained, three pertaining to the clot formation and density, whilst two refer to fibrinolysis 

(Table 4.8). Further details of the relationship between the TEG, turbidimetric and 

fibrinolysis assays, have previously been published(208). 

Power calculations and statistical analyses 

For a power of 80% (1 – β) and a 5% level of significance (α), based on the current data 

available, n = 50 provides a power for difference of 0.5 of a standard deviation between the 

two groups. 

Following a test for statistical normality, data were expressed as a mean (± standard 

deviation, SD) or median (inter quartile range, IQR), as appropriate. Student t test was used 

for continuous data when normally distributed or Mann-Whitney U test in the case of non-
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normal distribution (such as Creatinine, K-time and LY60). Chi-square test was used to assess 

intergroup differences in categorical variables. A P- value <0.05 was considered statistically 

significant.   

 

Results 

Baseline characteristics 

AF patients did not differ from CAD patients with regards to age, gender or other basic 

demographics. When comparing concurrent comorbidity, it is unsurprising to note that CAD 

group has a higher proportion of formal diagnosis of ischaemic heart disease (100% vs 34%, 

p <0.001) and Type 2 diabetes mellitus (42% vs 16%, p < 0.001) as compared to the AF 

group. Other comorbidities including hypertension, heart failure, chronic obstructive 

pulmonary disease and cigarette use were no different between the two groups (Table 

5.1.1). There was no difference between statin, ACE-i/ARB or beta-clocker use between two 

groups.  

Laboratory indices 

However, as shown in Table 5.1.2, when assessing the haemostasis and fibrin clot 

characteristics with TEG, turbidimetric and fibrinolysis analysis, several differences between 

AF and CAD subjects can be seen. Although no difference in TEG indices(R-time through to 

LY 60%) and no difference in lag-time have been demonstrated between both groups, AF 

patients have faster rate of clot formation (39.7 OD/sec vs 30.5 OD/sec, p = 0.004), 

formation of fibrin clot with greater maximum OD (0.49 OD vs 0.38 OD, p <0.001), indicating 

faster protofibril formation and thicker fibrin fibre formation, respectively. Slower rate of 
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clot dissolution (37.8 OD/sec vs 44.5 OD/sec, p = 0.002) and longer time for 50% lysis of 

fibrin clot (266.4 sec vs 215.6 sec, p <0.001) was also observed in AF group as compared to 

CAD group, suggestive increased resistance to fibrinolysis.  

Discussion 

The current study demonstrated that in patients with AF naïve to oral anticoagulant, fibrin 

clot structures are markedly different compared to those patients with CAD. Relating to AF 

and fibrin clot structure, it is demonstrated that AF patients who are anticoagulant-naïve 

(treated with aspirin only), possesses similar R-time and Lag Time as those CAD control. That 

is due to the lack of oral anticoagulation treatment to impede coagulation pathways. More 

importantly, greater RCF and increased Maximum OD, are also accompanied with the 

reduced RCD and prolongation of T50%, all these indices suggest that AF patient without 

oral anticoagulant are at greater prothrombotic potential, and result in greater rate of 

protofibril polymerization and subsequent formation of a “coarser” fibrin clot, which is also 

more resistant to subsequent fibrinolysis by exogenous tPA.  

Though there was no prior published work  investigating fibrin clot structure in AF as 

compared to CAD group, there are several published studies involving patients with 

thrombotic (such as those with antiphospholipid syndrome, residual vein thrombosis and 

premature peripheral vascular diseases (141, 209, 210)) or prothrombotic phenomena (such 

as Type 2 Diabetes and arterial hypertension (211, 212)) demonstrating increasing 

prothrombotic fibrin clot phenotype and delay in clot lysis. Thus it can be deduced that from 

the results obtained, a prothrombotic and hypofibrinolytic state exist among anticoagulant-

naïve AF patients, as compared to CAD control. This greater propensity for thrombosis in AF 
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persists despite having fewer concurrent diagnosed diabetes (16% vs 42%) as compared to 

those with CAD.   

The inability for whole blood TEG to detect any significant differences in thrombotic 

properties may be because the resultant whole blood clots formed from both ailments are 

invariably different, with clot formed from AF patients are more fibrin rich (“red clot”) and 

CAD being more platelet rich (“white clot”) (29). Thus any increased in thrombotic 

propensity in plasma from AF may have been counterbalanced with an increased in platelet 

aggregation and activation related to CAD. Moreover, it has been demonstrated that even 

though there is increased in platelet activation in AF, the increase may not be significantly 

more that than seen with the associated vascular disease or risk factors (213). Moreover, 

the relatively high median CV associated with TEG may make it unable to detect any small 

changes in prothrombotic state. 

This study presents several limitations. Firstly, the size of the study groups is small, however, 

the number of subjects was sufficient to detect differences between AF and CAD groups 

given the results of power calculation.  

Secondly, all laboratory assessment of fibrin clot structure is done at a single time point, and 

thus there is a likelihood that fibrin clot features may change with time.  

Thirdly, this study did not differentiate types of AF (paroxysmal, persistent or permanent) as 

the duration of sustained atrial fibrillation or potential likelihood of transient sinus rhythm 

might have an impact of the fibrin clot structure. However, even though there are increased 

haemostatic factors conferring prothrombotic state in AF as compared to control , there is 

no convincing data to suggest increased prothrombotic/pro-inflammatory factor level (such 
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as von Willebrand Factor, vWF) in persistent or permanent AF compared to paroxysmal AF 

(182, 214-216). Crucially, Drabit L et al. have recently demonstrated despite paroxysmal or 

persistent AF subjects remaining in sinus rhythm, their fibrin clot still revealed increased 

fibrin clot density and reduced clot lysis time (203). Hence these data suggests that despite 

not differentiating the types of AF, the findings from current study comparing AF and CAD 

remains novel and credible. 

Fourthly, there is no measurement of associated endothelial function (such as vWF) or 

thrombin levels, as vWF is known to key component for haemostasis in vivo by affecting 

Factor VIII plasma level (217, 218) while increased thrombin level has been associated with 

increased clot lysis time in venous thrombosis(219). Moreover, elevation of vWF has been 

detected in peripheral blood and within left atrial cavity of persistent AF and paroxysmal AF 

individuals (220, 221). Thus further studies, longitudinal in design, involving assessment of 

plasma vWF and thrombin levels will be helpful in firmly establishing the causal relationship 

between AF and altered fibrin clot structure. 

In conclusion, the current study demonstrates that individuals with AF have greater 

tendency to form fibrin clots which are thicker and more resistant to lysis as compared to 

those with CAD, thus potentially explain the increased ischaemic stroke and 

thromboembolic risk associated with AF. 
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Table 5.1.1: Demographic data for patients with AF (aspirin) and CAD patients   

 AF (aspirin) CAD p - value 

N 50 50  

Age, years 74 (13.2) 70 (10.5) 0.126 

Gender 74% male 58% male 0.121 

Weight, kg 74.5 (17.4) 80.3 (18.6) 0.115 

Creatinine, umol/L 88 (75.5 – 111) 87 (72 – 99) 0.300 

Creatinine Clearance 
(Cockroft-Gault), 

mL/min 

68.1 (37.4) 79.1 (29.9) 0.106 

Coronary artery 
disease 

34% 100% <0.001 

Type 2 Diabetes 16% 42% <0.001 

Hypertension 83.7% 90.6% 0.318 

Heart Failure 20.4% 14.0% 0.415 

Chronic obstructive 
pulmonary disease 

10.2% 14.0% 0.580 

Current Smoker 6.12% 13.9% 0.207 

Medication    

ACE-i/ARB 64% 72% 0.391 

Statin 82% 90% 0.246 

Beta-blocker 64% 60% 0.680 

 

Key:  
Normal distribution – mean (SD), t-test 
Non-normal distribution – median (IQR), Mann-Whitney 
Categorical data – Chi Square test 

Angiotensin converting enzyme inhibitor, ACE-I; Angiotensin receptor blocker, ARB 

 

 

 

 



96 
  

Table 5.1.2: AF (aspirin) vs CAD – indices by TEG, turbidity and fibrinolysis 

 

 
Key:  
Normal distribution – mean (SD), t-test 
Non-normal distribution – median (IQR), Mann-Whitney 
LY60, percentage of clot lyse 60 minutes after maximum amplitude attained; MA, maximum 
amplitude; RCD, rate of clot dissolution; RCF, rate of clot formation. 

 

 

 

 

 AF (aspirin) CAD p - value 

R-time (min) 4.96 (1.51) 5.26 (1.30) 0.32 

K-time (min) 1.35 (1.0 – 1.8) 1.5 (1.2-1.8) 0.25 

Angle (degrees) 69.1 (7.2) 67.1 (6.3) 0.18 

MA (mm) 67.9 (6.3) 67.9 (5.2) 1.00 

LY 60 (%) 3.6 (2.3 – 5.2) 3.5 (1.4 – 4.6) 0.25 

Lag Time (sec) 332 (55.8) 313 (65.5) 0.17 

RCF (OD/s) 39.7 (12.1) 30.5 (15.0) 0.004 

Max OD 0.49 (0.11) 0.38 (0.08) <0.001 

RCD (OD/s) 37.8 (10.9) 44.5 (14.6) 0.0023 

Time 50% Lysis 
(sec) 

266.4 (44.5) 215.6 (36.7) <0.001 
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5.2 Clot structure in Patients with Atrial fibrillation and renal dysfunction 

Abstract 

Atrial fibrillation confers increased thromboembolic risk, which is further increased with 

concurrent diagnosis of chronic kidney disease. However, the use of warfarin against 

thromboembolism in this patient group does not provide complete protection against 

ischaemic stroke and thromboembolism while resulting in increased risk of haemorrhagic 

sequelae. Thus potential changes to fibrin clot structure and clot strength may be related to 

worsening renal function.  

200 patients with concurrent atrial fibrillation (anticoagulated with warfarin) and renal 

dysfunction were recruited. Fibrin clot structure and strength were assessed by 

thromboelastography, turbidimetric and fibrinolysis assay, while samples of fibrin clots were 

analysed by scanning electron microscopy.   

Increased fibrin clot thrombotic potential and clot strength, with paradoxical increased 

fibrinolysis, relating to worsening renal function were demonstrated.  Creatinine clearance 

(by Cockcroft-Gault equation) was strongly correlated with laboratory indices obtained, with 

subsequent regression analysis confirming creatinine clearance as a modest but 

independent predictor of changes in these laboratory indices. Representative fibrin clot 

visualized by scanning electron microscopy confirmed increased density and increased fibre 

thickness among those with worst renal function as compared to those with mildest renal 

dysfunction.  

Clinically, 2-years follow-up demonstrated increased mortality among those with worst 

renal dysfunction, with creatinine clearance and changes to fibrin clot structure (K-time) as 

independent predictors of mortality. 
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Introduction 

With the improving longevity and a subsequent increasingly elderly population, the 

frequency of atrial fibrillation (AF) and chronic kidney disease (CKD) are increasing, and are 

becoming recognized as important causes of mortality and morbidity. Furthermore, AF and 

CKD are inter-related, in that deteriorating renal function is associated with a greater than 

three-fold increased risk of developing AF, and the diagnosis of new AF in patients with CKD 

heralds the rapid deterioration of renal function (8, 18). AF per se confers a prothrombotic 

state and results in ischaemic stroke and thromboembolic events, and this increased 

thromboembolic risk is further exacerbated by worsening renal function and also amongst 

those who are dialysis dependent, and can also result in adverse clinical outcome(55-58). 

In health, a delicate balance (homeostasis) exists involving optimal activation of coagulation 

factors, subsequent formation of fibrin, and timely fibrinolysis. Several pathophysiological 

mechanisms that influence haemostasis (such as endothelial dysfunction and elevated 

coagulation factors) are altered in those with CKD, resulting in a pro-thrombotic state (43, 

44, 55). However, the relationship between CKD and the final end-product of coagulation, 

involving the formation and degradation of fibrin, and intrinsic fibrin clot properties remain 

poorly understood. In end-stage renal disease (ESRD), fibrin clots are of higher density, are 

less permeable, and are less susceptible to fibrinolysis as compared to healthy controls 

(148). Similarly, unfavorable altered fibrin clot properties have been linked to increased 

cardiovascular mortality in patients with ESRD (149). Whole blood clotting, as defined by 

thromboelastography (TEG) in patients with CKD also demonstrated increased clot stiffness 

and accelerated rate of clot formation (222). These data focus on ESRD or patients requiring 

renal replacement therapy, while the relationship between a broad spectrum of renal 
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function (ranging from normal to severely dysfunctional) and fibrin and whole blood clot 

formation, integrity and thrombolysis has not been studied.    

The risk of ischemic stroke and systemic thromboembolism in AF can be reduced by the use 

of dose-adjusted vitamin K antagonists (VKA) such as warfarin (223, 224). However, any 

benefit derived from VKA use amongst AF patients with CKD must be balanced by an 

increased rate of bleeding, especially haemorrhagic stroke amongst those with ESRD (103, 

225). Moreover, the ability to identity those whose haemostasis is out of balance will be a 

valuable clinical tool. Indeed, a paradox is evident by the increased propensity to 

thrombosis, yet bleeding risk is increased in CKD (28).  

Thus, I hypothesized that deteriorating renal function has an adverse effect on clot 

structure, fibrin clot formation and fibrinolysis in AF patients anticoagulated with warfarin.  

 

Patients and Methods 

Subjects 

Two hundred subjects with AF were recruited from routine out-patient clinics, and all had 

been taking the VKA warfarin for at least 12 weeks. Dose-adjustment for warfarin was 

managed with the aim of achieving a stable international normalised ratio (INR) between 2 

and 3. INR was determined on the day of recruitment.  

Exclusion criteria were age <18 years, diagnosis of valvular AF (severe rheumatic stenosis, 

metallic prosthetic valve, mitral/tricuspid ring repair), active or recent (<12 months) 

malignancy, active immunological disease, chronic liver disease, recent or chronic infections, 

chronic inflammatory disease, connective tissue disease, recent stroke/acute coronary 

syndrome (within two months), active bleeding, recent arterial/venous thrombosis or recent 

surgery, known haemophilia or thrombophilia (such as Factor V Leiden, Protein C/S/anti-
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thrombin deficiency, anti-phospholipid syndrome), significant abnormal haemoglobin or 

platelet count, use of non-vitamin K antagonist oral anticoagulant. Standard clinical and 

demographic data were obtained.  

A routine blood sample was taken for assess renal function, with subsequent calculation of 

creatinine clearance by Cockcroft-Gault equation (226, 227) and of estimated glomerular 

filtration rate (eGFR) according to the modification of diet in renal disease equation (1).  

The renal function and relation to clot structure was analysed as a continuous variable and 

subsequently, assessed as 4 separate quartiles (CKD Group 1 to Group 4) depending on the 

calculated Creatinine Clearance, CKD Group 1 with the best renal clearance with CKD Group 

4 with the worst. 

The project was approved by the Local Research Ethics Committee and informed written 

consent was obtained from each subject. 

Laboratory method 

Citrated venous blood was collected by venepuncture and analysed for indices of 

thrombogenesis and fibrinolysis within 2 hours of collection. The TEG was used according to 

the manufacturer’s instructions. Thrombus formation and autolysis were monitored for up 

to 60 minutes after the addition of calcium to whole blood supplemented with kaolin. The 

TEG delivers numerous indices of haemostasis. Five of which pertaining to the initiation of 

thrombosis were selected (Table 4.8).  

For the fibrinolysis and turbidity assay, citrated plasma was obtained from venous blood by 

centrifugation at 2500 rpm for 15 minutes. The turbidimetric and fibrinolysis assay, which 

was conducted at 37°C throughout, consists of two parts (208). Firstly, in the turbidimetric 

assay, 25μl plasma, 75μl TRIS-NaCl buffer, and 50μl thrombin are added to the wells of 96-
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well micro-titre plate in triplicate. Fibrin clot formation is followed for 30 minutes in a micro-

titre plate reader by changes in optical density. Secondly, the fibrinolysis assay calls for 75µL 

of plasma and 75µL of a Tris/NaCl/calcium buffer supplemented with thrombin and tissue 

plasminogen activator (tPA). The plates are immediately loaded into a plate reader and data 

collected for 30 minutes. The data from turbidimetric and fibrinolysis assays are post-

processed by plotting into line charts, and from these, five indices were obtained, three 

pertaining to the clot formation and density, whilst two refer to fibrinolysis (Table 4.8).  

To assess the fibrin clot structure in SEM, fibrin clot can be prepared using the following 

method. First, 25 µL of plasma is inserted into the cap from aliquot tubes. Small holes would 

have been drilled through the bottom of the cap and covered in parafilm. Samples were 

washed for 1 hour with 0.9% saline (w/v) and then fixed with 2% (v/v) glutaraldehyde in 

sodium cacodylate (10.7 g L-1, pH 7.40) for 2 hours. Before dehydration, samples were then 

washed further with sodium cacodylate for 1 hour. Dehydration was performed by 

immersing samples in successive dilutions of acetone for 15 minutes (30%, 50%, 70%, 80%, 

90%, 95% and 100%). Samples were critical-point dried with CO2, and sputter coated with 

platinum using a Cressington 208HR high resolution sputter coater (Cressington Scientific 

Instruments, Watford, UK). Samples were then imaged at 5000 and 20000x magnifications 

using a FEI Quanta 200 FEG Scanning electron microscope (FEI, Hillsboro, USA). Note that 

though this technique was acquired, fibrin clot formation from plasma and SEM was 

completed by experienced collaborators in University of Leeds so as to reduce operator-

dependent factors (such as level of technical expertise) and to ensure reliable results.  
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Diameter of fibres within the fibrin clot can then be determined by direct measurement 

using open-source software (ImageJ programme, Rasband, National Institute of Health, 

USA).  

Average fibre diameters were measured from at least 20 random fibres in each sample using 

ImageJ software. A region of a micrograph is selected at random and the diameter of every 

fibre in that area was measured. That will ensure no bias towards, for example, thicker or 

well-focused fibres thus minimising any sampling effects. 

The operator and analyst of SEM were blinded to source of plasma and associated 

background demographics to reduce operator-related selection bias. Unblinding procedure 

took place only during final data analysis. 

Statistical Analysis 

For a 1 – β power of 85% and a 5% level of significance (α), based on the known data, n = 96 

provides adequate power to detect a statistically significant correlation coefficient of > 0.3 

between any of three renal indices and any of the 10 haemostasis indices. In view of 

multiple analyses and the likelihood of multiple interactions between the laboratory 

methods (208), and so to ensure extra confidence, the sample size has been doubled to 200.  

Statistical analysis techniques have previously been described in Section 3. Continuously, 

normally distributed, variable data are expressed as mean and standard deviation (SD), or as 

median and interquartile range (IQR) for non-normal distribution.  Categorical data assessed 

by Chi-Square test. As the four quartiles of CKD derived from the same population as 

defined by creatinine clearance, assessment of changes in the variables across all four CKD 

quartiles was done by manual calculation of linear trend (L-statistics and t-value initially), 
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with subsequent tabulation of corresponding p-value for assessment of significance of linear 

trend.  As the focus is assessing the changes in variable against the worsening CKD quartiles, 

not between each individual CKD quartiles, thus ANOVA and post-hoc Tukey’s test were not 

utilised. 

Correlations were sought using Spearman’s method. Stepwise multivariate regression 

analysis to determine which of three renal function indices (serum creatinine, creatinine 

clearance, eGFR) were associated most strongly and independently with the haemostasis 

indices. Analyses were performed on Minitab version 17. 

 

Results 

Clinical and demographic details of the 200 AF patients are shown in Table 5.2.1, indices of 

haemostasis (as assessed on the TEG and the turbidimetric and fibrinolysis assay) in Table 

5.2.2. 

Most data from demographics and indices of haemostasis are normally distributed, besides 

age, INR and LY30. 

Regarding TEG indices, due to the similar degree of oral anticoagulation as reflected by 

similar median INR, there is no difference between all 4 CKD groups for R-time. Nonetheless, 

with worsening renal function across the 4 quartiles, TEG revealed shortening of K-time (p = 

0.025), steeper α Angle (p = 0.009), and steeper Maximum amplitude (p = 0.024). No 

statistical difference in LY30 was noted. 

Regarding the indices obtained the turbidimetric analysis, it demonstrated similar degree of 

anticoagulation also brought about similar degree of Lag Time across all 4 CKD groups. 
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However, worsening renal dysfunction across 4 quartiles was also associated with increased 

Rate of Clot Formation (p = 0.014) and greater Maximum Optical Density (p = 0.015). 

Fibrinolysis assay however revealed increasing Rate of Clot Dissolution (p = 0.016) and 

reduction in Time to 50% clot lysed (p = 0.030) with worsening renal dysfunction. 

Correlation analysis  

Relationships between the three indices of renal function (serum creatinine, eGFR and 

creatinine clearance) the haemostasis indices are shown in Table 5.2.3. Three indices 

obtained via TEG (namely K-time, angle, maximum amplitude (MA)) and four indices 

obtained via turbidimetric and fibrinolysis assay (namely rate of clot formation (RCF), 

maximum optical density (MOD), rate of clot dissolution (RCD) and time for 50% clot lysis 

T50)) were moderately (mean r>0.25, p<0.001) correlated to one or more of the renal 

function indices.  

Unsurprisingly, the eGFR correlated strongly with serum creatinine (r= -0.821) and 

creatinine clearance (r= 0.839), whilst creatinine clearance correlated strongly (r= -0.685) 

with serum creatinine (all p<0.001). INR was not related to any renal function indices. 

Multiple regression analysis 

Subsequently, stepwise multiple regression analysis was carried out to assess for other 

independent predictors for haemostasis indices (Table 5.2.4). Systolic blood pressure 

measurement, presence of diabetes mellitus, hypertension, cigarette smoking were 

included in the model due to previous publications relating to their potential of resulting in 

more adverse clot structure (201, 212, 228). Creatinine Clearance (Cockcroft Gault) was 

selected over eGFR and Creatinine based on above correlation analysis (Table 5.2.3). Age 
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and body weight were excluded from the model to prevent multiple collinearity (with 

creatinine clearance). Various haemostatic indices (namely R-time, LY30 and Lag time) which 

do not correlate to dependent variables were removed from multiple regression analysis. 

Creatinine clearance was subsequently demonstrated to independently predict subsequent 

alteration of fibrin clot structure, albeit the effect is fairly modest (R2 = 4.91% - 14.47%, p 

<0.001). Other selected demographic factors and comorbidities did not possess any 

significant impact on indices of fibrin clot structure (Table 5.2.4).  

Scanning Electron Microscopy 

SEM was utilized to assess fibrin clot structure in detail. Figure 5.2.5 shows representative 

SEM images from patient plasma with variable CKD group (Top left for CKD Group 1, Bottom 

Right for CKD Group 4) at 5,000x magnification. Qualitatively, the fibrin clot from those with 

the worst renal function appears to possess higher fibrin clot density, made of thicker fibres. 

Subsequent magnification to 20,000x magnification (Figure 5.2.6) confirms that the fibrin 

clot density is 6.8 (4.2 – 7.9) fibres per μm2 in CKD group 1 compared to 11.8 (10.4 – 14.3) 

fibres per μm2 in CKD group 4 (p <0.001). The fibre diameter in the images were also thicker 

for those with the worst renal function at 135.4 (±21.5) nm versus 99.3 (±10.5) nm in those 

with preserved renal function (p <0.001). 

Follow-up and Clinical Outcomes 

Subjects recruited were followed-up for up to 24 months, survival from recruitment was 

recorded (Figure 5.2.7). The Kaplan-Meier survival curve demonstrated early separation of 

CKD Group 4 (as early as 1st month of follow-up period) from the rest, indicating increased 

all-cause mortality risk amongst Group 4. This trend persisted throughout the follow-up 
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period. On the other hand, Table 5.2.8 shows the stepwise binary regression analysis for all-

cause mortality. Significant independent predictors of all-cause mortality were creatinine 

clearance by Cockroft-Gault equation (OR = 0.9) and K-time (OR = 1.6). Increasing age was 

not an independent predictor of all-cause mortality. 

 

Discussion 

The current study shows that in AF patients on warfarin, whole blood and fibrin clot 

properties and structure are markedly altered with progressive renal dysfunction. Fresh 

whole blood samples from patients with worsening renal function, displayed significantly 

accelerated rate of clot formation (greater K-time and angle) and increased clot stiffness 

(greater maximum amplitude) as assessed by TEG. Similarly, in plasma, turbidimetric and 

fibrinolysis indices of the rate of clot formation, the maximum density the rate of clot 

dissolution and the time for 50% of the clot to lyse are all influenced by renal function. The 

reduction of renal function and adverse clot structure is associated with increased all-cause 

mortality over time.  

The current data corroborate well with previous findings involving thromboelastography 

(222, 229) and other techniques (148, 149), demonstrating the increased final clot strength 

in those with worst renal function. However, comparing and contrasting with Holloway 

(222) and Chapman (229), we are able to demonstrate the progressive alteration in 

properties of whole blood thrombogenesis, such that more rapid rate of whole blood clot 

formation (k-time and α Angle, p = 0.025 and 0.009, respectively) associating with 

worsening renal function (from CKD stage 1 to 4).  
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Regarding fibrin clot properties, the current data is novel and will extends findings of 

previous work in ESRD by Sjoland and Undas (148, 149), by demonstrating progressive 

deterioration of fibrin clot properties by stepwise regression of renal function. 

Representative SEMs of fibrin clot structure provide further documentary evidence relating 

to the structural changes as initially described by turbidimetric analysis in the presence of 

progressive renal failure.    

However, some discrepancies exist and require consideration. Firstly, fibrinogen level has 

been demonstrated to be significantly higher in CKD (41, 43), which has been shown to lead 

to significantly faster fibrin monomer assembly rate and thus reduction in lag time (149). 

The current study, nonetheless, demonstrate no significant variation in lag time, potentially 

highlighting the overwhelming anticoagulation effect of VKA use in subjects with AF.  

Secondly, ESRD has been demonstrated to result in formation of fibrin clot comprising of 

thicker fibres which are more resilient to fibrinolysis (148, 149). Our novel data confirms the 

greater rate of fibrin monomer lateral polymerisation (Rate of Clot Formation, p = 0.014) 

progressively thicker fibre (Maximum Optical Density, p = 0.015) with worsening renal 

function, but these are more susceptible to fibrinolysis. Notably, this analysis failed to find 

any effect of renal function on the INR, although this effect may be method-specific as other 

reported, using a different method, an association between the INR and fibrin clot 

permeability and fibrinolysis (202). 

In relation to clinical outcomes, it is unsurprising that the group with the worst renal 

clearance have the highest rate of all-cause mortality over time. This has previously been 

demonstrated in several cohort studies (18, 58, 230, 231) . However, the results are the first 

to suggest the increased in rate of protofibril build-up (K-time as assessed by TEG) as an 

independent predictor of mortality in AF patients with CKD.  
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Limitation 

Several limitations were noted to this study, the principal one being that the fibrin clot, by 

definition, is not physiological, a criticism levelled at all fibrin clot data. Although fibrin clots 

formed in vitro for permeation analysis are done in static conditions, the resultant clot 

structure will be profoundly different from those in vivo due to the presence of shear force 

by blood flow (232). Although the TEG assay is formed in rotating whole blood, and the 

micro-titre plate of the turbidimetric and fibrinolysis assay is shaken/vibrated at intervals to 

simulate a form of dynamics, neither can be said to reflect flowing blood.  

With each quartile of worsening renal function, the median age of the subjects is 

progressively older, which may be associated with increased markers of inflammation (such 

as interleukin 6 and CRP) and co-morbidities, and these may influence the clot structure and 

properties (41). However, our findings reflect the real clinical world, with progressive loss of 

renal function in elderly patient groups.  

Although the fibrinolysis assay uses exogenous tPA to promote fibrinolysis, its 

concentration, although standard throughout the project, does not necessarily reflect tPA 

levels in vivo and so may not be directly physiological. 

Despite these limitations, the current study demonstrated deterioration in clot properties 

and structures over a wide range of renal function amongst anticoagulated AF patients. 

However, despite the broad result that worsening renal function has a deleterious effect on 

haemostasis, although statistically significant, these renal function indices at best account 

for at best 14.5% of the variability of the particular index of clot structure and function 

(table 5.2.4).  

Nevertheless, our data provides insights into the phenomena of persistently increased risk 

of ischaemic stroke and thromboembolism amongst CKD or ESRD patients despite successful 
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anticoagulation, and may also help to explain the increases spontaneous haemorrhagic 

episodes experienced by these patients as a result of anticoagulation. It also reinforces the 

view that renal function is an important factor in cardiovascular disease (18, 58, 233-235). 

The inability of INR to relate to renal function or clot indices indicates that there may be a 

place for the TEG and/or the turbidimetric and fibrinolysis assay to provide an individualised 

risk of thrombosis and/or haemorrhage. 

  

In conclusion, in AF patients while on warfarin, worsening renal function results in altered 

fibrin clot structure and clot properties. Accelerated clot formation and faster fibrin clot 

polymerisation despite adequate anticoagulation may explain the increased ischaemic 

stroke and thromboembolic risk in AF patients with CKD. The thicker fibrin clot formed is 

actually more sensitive to fibrinolysis in these patients also illustrate the increased risk of 

haemorrhage experienced amongst anticoagulated patients with renal dysfunction. Thus 

changes in clot structure may explain the increased mortality observed.  
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Table 5.2.1 Demographics and clinical details 

 Overall CKD  
Group 1 

CKD 
Group 2 

CKD 
Group 3 

CKD  
Group 4 

p – value 
for trend 

N 200 50 50 50 50  

Features       

Age, years 73 (11.4) 65 
(52 - 71) 

72 
(66 – 79) 

78 
(74 – 80) 

82 
(78 - 86) 

<0.001 

Gender 55% male 60% male 64% male 54% male 44% male 0.0652 

Weight, kg 83.6 (22.1) 100 (27.8) 84 (11.7) 78.7 (15.8) 69.9 (17.8) <0.001 

INR 2.5 (0.7) 2.4 
(2.1 – 3.2) 

2.5 
(2.1 – 2.8) 

2.3 
(2.0 – 2.9) 

2.4 
(1.9 – 2.9) 

0.550 

Creatinine, 
umol/L 

107 (47) 76.5 (16.5) 87.4 (14.9) 106.9 
(29.4) 

159.2 (59.8) <0.001 

Cr Cl (CG) 71 (38) 121.3 (35.2) 76.8 (5.1) 54.7 (6.9) 30.6 (8.5) <0.001 

Comorbidities   

Ischaemic 
Heart Disease 

43% 30% 42% 48% 48% 0.0546 

Type 2 
Diabetes 
Mellitus 

39% 38% 32% 38% 48% 0.5822 

Hypertension 83% 70% 86% 84% 86% 0.0614 

Heart Failure 38% 30% 32% 42% 48% 0.0371 

Chronic 
Obstructive 
Pulmonary 

Disease 

16% 18% 8% 18% 18% 0.6622 

Current 
Smoker 

3.5% 4% 0% 2% 8% 0.2284 

Medication       

Concurrent 
Antiplatelet 

6% 8% 4% 6% 6% 0.79 

Beta-blocker 76.5% 74% 80% 78% 74% 0.9406 

ACE-i/ARB 72.5% 70% 74% 72% 74% 0.7234 
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Statin 64% 64% 64% 62% 64% 0.9476 

CCB 13% 10% 14% 14% 14% 0.8508 

Diuretics 34.5% 30% 34% 32% 42% 0.2581 

Digoxin 22.5% 24% 22% 24% 20% 0.7050 

 

ACE-i, Angiotensin converting enzyme inhibitor; ARB, Angiotensin receptor blocker; CCB, 
Calcium channel blocker; CKD, Chronic kidney disease; INR, International normalised ratio. 
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Table 5.2.2: AF and renal dysfunction – Indices by TEG, turbidimetric and fibrinolysis assay 

 

 Overall 
Mean 

CKD  
Group 1 

CKD  
Group 2 

CKD  
Group 3  

CKD  
Group 4 

p – value for 
trend 

TEG Indices       

R-time (min) 
 

7.244 
(3.8) 

7.38 
(3.56)  

7.78 
(4.57) 

6.55 
(2.35) 

7.27 
(4.29) 

0.562  

K-time (min) 
 

1.90 
(0.95) 

2.19 
(0.54) 

2.15 
(1.49) 

1.77 
(0.74) 

1.50 
(0.55) 

0.025  

α Angle (angle) 
 

63.2 
(8.7) 

59.0  
(4.7) 

60.9 
(11.0) 

64.7 
(8.7) 

68.0 
(6.4)  

0.009  

Maximum 
Amplitude  

64.5 
(10.6) 

60.0  
(4.5) 

63.4 
(12.8)  

66.4 
(10.3) 

68.3 
(11.4)  

0.024  

LY 30 (%) 
 

0.20 
(0 – 0.6) 

0.2  
(0 – 0.7) 

0.1  
(0 – 0.6) 

0.1 
(0 – 0.5)  

0.2  
(0- 0.7) 

1.0  

Turbidimetric & 
Fibrinolysis Indices 

      

Lag Time (sec) 
 

523 
(195) 

521  
(220) 

496 
(136) 

518 
(180) 

557 
(230) 

0.371  

Rate of Clot 
Formation (OD/sec) 

17.3 
(9.6) 

13.0 
(5.6) 

16.2 
(10.1) 

18.0 
(10.0) 

22.0 
(9.9) 

0.014  

Max Optical Density 0.413 
(0.113) 

0.372 
(0.093) 

0.393 
(0.091) 

0.404 
(0.121) 

0.482 
(0.116) 

0.015 

Rate of Clot 
Dissolution (OD/sec) 

46.4 
(18.0) 

39.2  
(12.7) 

43.4 
(18.3)  

47.2 
(12.9) 

55.7 
(12.1)  

0.016 

Time for 50%  
Clot Lysis (sec) 

201.0 
(41.5) 

218.4 
(46.4) 

201.8 
(26.5) 

196.9 
(47.8) 

186.9 
(36.4) 

0.030  



113 
  

Table 5.2.3: Correlations between haemostasis indices and renal indices 

Feature Creatinine eGFR Creatinine clearance 

TEG indices    

R-time 
 

-0.033, 0.640 0.039, 0.582 0.095, 0.180 

K-time 
 

-0.271, <0.001 0.38, <0.001 0.452, <0.001 

α Angle 
 

0.251, <0.001 -0.414, <0.001 -0.487, <0.001 

Maximum 
Amplitude 

0.273, <0.001 -0.425, <0.001 -0.495, <0.001 

LY 30 
 

0.001, 0.99 -0.039, 0.58 -0.002, 0.975 

Turbidimetric & 
Fibrinolysis 

Indices 

   

Lag Time 
 

0.062, 0.385 -0.063, 0.372 -0.031, 0.662 

Rate of Clot 
Formation 

0.229, <0.001 -0.332, p<0.001 -0.338, p<0.001 

Max Optical 
Density 

0.304, <0.001 -0.332, <0.001 -0.320, <0.001 

Rate of Clot 
Dissolution 

0.361, <0.001 -0.365, <0.001 -0.342, <0.001 

Time for 50%  
Clot Lysis 

-0.258, <0.001 0.233, 0.001 0.264 <0.001 
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Table 5.2.4: Stepwise Multiple Regression Model 

 
Index 

 

 
 

 
Step 1 
p value 

 

 
Step 2 
p value 

 
Step 3 
p value 

 
R2  

(adjusted) 
 

TEG indices      

K time Cr Cl <0.001 <0.001 <0.001 9.59% 

 Systolic BP 0.52 0.58   

 T2DM 0.82    

      

Angle Cr Cl <0.001 <0.001  14.47% 

 Systolic BP 0.141    

      

Maximum 
Amplitude 

Cr Cl <0.001   7.49% 

      

Turbidimetric 
& Fibrinolysis 

Indices 

     

Rate of Clot 
Formation 

Cr Cl <0.001 <0.001  8.14% 

 Smoking 0.091    

      

Max Optical 
Density 

Cr Cl <0.001 <0.001  9.01% 

 Smoking 0.051    

      

Rate of Clot 
Dissolution 

Cr Cl <0.001 <0.001 0.001 7.75% 

 Smoking 0.055 0.5   

 T2DM 0.08    

      

Time for 50% 
Clot Lysis 

Cr Cl 0.001   4.91% 

Blood pressure, BP; Creatinine Clearance, Cr Cl; Type 2 Diabetes Mellitus, T2DM,  
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Figure 5.2.5: Representative SEM of Fibrin Clots (5,000x magnification) 

  

  

Figure 5.2.6: Representative SEM of Fibrin Clot (20,000x magnification) 

 

 

 

CKD 1 CKD 2 

CKD 3 CKD 4 

CKD 1 CKD 4 
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Figure 5.2.7: Kaplan-Meier Survival Curve for CKD Groups over time 

 

Table 5.2.8: Stepwise binary regression analysis for all-cause mortality 

 
Parameter 

 
Coefficient 

 
Standard Error 

 
p - value 

 
Odds ratio 

 
95% Confidence interval 

 

Creatinine 
Clearance 

-0.0692 0.0138 <0.001 0.9332 0.9083, 0.9587 

K - time 0.4510 0.2030 0.034 1.5659 1.0533, 2.3385 
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5.3 AF and CKD: Microparticles, soluble P-selectin, E-selectin and von 

Willebrand Factor 

Abstract 

Atrial fibrillation and chronic kidney disease are closely related, and any associated risk of 

stroke and thromboembolism due to atrial fibrillation is enhanced by concurrent renal 

dysfunction. The relationship between levels of circulating endothelial and platelet 

microparticles, and soluble P selectin (reflecting platelet activation) and E-selectin 

(reflecting endothelial activation) with progressive renal dysfunction has yet to be 

investigated.   

160 AF subjects with variable degrees of renal function were recruited. Blood samples were 

obtained, platelet and endothelial-derived microparticles were detected by flow cytometry, 

soluble P-selectin, E-selectin levels and von Willibrand factor were obtained by enzyme-

linked immunosorbent assay.   

Endothelial microparticle levels were significantly higher and demonstrated a linear trend of 

increase among those with progressively worse renal function (creatinine clearance) (p = 

0.03). Endothelial microparticles were only modestly correlated with renal function 

(creatinine clearance) (rs -0.28, p <0.001). Platelet microparticles, P-selectin and E-selectin 

levels were not significantly different across various groups of renal dysfunction, and no 

significant correlations with renal function were evident (p = 0.186, p = 0.561, p = 0.746 

respectively).  Despite modest correlation, stepwise multivariable regression analysis 

demonstrated that worsening creatinine clearance was an independent predictor of 

endothelial microparticles levels (R2 8.26%, p <0.001).  
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In well-anticoagulated atrial fibrillation patients, there is relationship between endothelial 

function (as judged by endothelial microparticle levels) and renal function.  Other markers 

of prothombotic state or cellular activation, such as platelet micriparticles, P-selectin, E-

selectin and von Willebrand factor levels were not significantly different across the various 

degree of renal dysfunction. 

 

Introduction 

 

Non-valvular atrial fibrillation (AF) is associated with an elevated risk of ischaemic stroke 

and systemic thromboembolism (236, 237). This risk is further increased by concurrent 

diagnosis of chronic kidney disease (CKD) or end-stage renal failure (ESRD) (56, 57) and 

results in a worse clinical outcome (58).  

The mechanism(s) underlying the worse outcomes in AF patients with ESRD requires further 

investigation.  Dialysis-dependent ESRD can result in increased levels of circulating 

microparticles (238). These microparticles are heterogeneous vesicles, derived from cellular 

membrane where the parent cells had undergone apoptosis or activation (167, 168). Owing 

to the nature of their parent cells, different microparticles subsets possess unique 

composition and content, which vary in their hemostatic and thrombotic potentials (169-

171). Thus, different microparticles subsets can modulate coagulation by directly facilitating 

formation of coagulation complexes or via modulation of tissue factor dependent pathways 

(172, 173).  

Even though microparticles levels are increased in ESRD and correspond with increased 

cardiovascular mortality (174), different publications have reported inconsistent results  

involving non-valvular AF and levels of circulating microparticles (175, 176). A potential 
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relationship between worsening degrees of non-dialysis dependent renal dysfunction and 

microparticles amongst non-valvular AF patients, as well as the subsequent effect on levels 

of various microparticles subsets has yet to be investigated.  

The selectins (P, E and L-selectins) mediate adhesion of haematopoietic cells to vascular 

surfaces and to each other (239, 240). P-selectin derives from α granules of platelets, as well 

as endothelial cells (241, 242) while E-selectin derives from endothelial cells activated by 

cytokines, heathy micro-vessels or as an essential component of angiogenesis (243-245). 

Hence, variations in P and E-selectin level may be present in relation to worsening renal 

function, complicated by non-valvular AF. 

In this study, the hypotheses are as followed: (i) among non-valvular AF worsening class of 

renal dysfunction is associated with a step-wise increase in microparticles, (ii) differences in 

levels of platelet-derived microparticles and endothelial-derived microparticles observed 

can be related to worsening renal function, independent of other comorbidities; and (iii) 

indices of platelet and endothelial activation plus endothelial dysfunction, as measured 

soluble P-selectin, E-selectin levels and von Willebrand Factor may be related to worsening 

renal function.  

 

Patients and Methods 

 

Subjects 

All 160 subjects with non-valvular AF were recruited from routine out-patient clinics, and all 

had been taking VKA (warfarin) for at least 12 weeks. Dose-adjustment for warfarin was 

done in specialised nurse-led anticoagulation clinic, achieving a stable international 
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normalised ratio (INR) between 2 and 3. INR was again determined on the day of testing to 

assess effective anticoagulation. 

Exclusion criteria were age <18 years, diagnosis of valvular AF (severe rheumatic stenosis, 

metallic prosthetic valve, mitral/tricuspid ring repair), active or recent (<12 months) 

malignancy, active immunological disease, pregnancy, chronic liver disease, recent or 

chronic infections, chronic inflammatory disease, connective tissue disease, recent 

stroke/acute coronary syndrome (within two months), active bleeding, recent 

arterial/venous thrombosis or recent surgery, known haemophilia or thrombophilia (such as 

Factor V Leiden, Protein C/S/anti-thrombin deficiency, anti-phospholipid syndrome), use of 

an anti-platelet agent other than aspirin, use of NOAC, and dual anti-thrombotic therapy.  

Standard clinical and demographic data were obtained.  

A routine blood test was taken to assess renal function, with subsequent calculation of 

Creatinine Clearance by Cockcroft-Gault equation (226, 227). Subsequently, all 160 subjects 

were separated into 4 quartiles (CKD Group 1 to Group 4) depending on the calculated 

Creatinine Clearance, CKD Group 1 with the best renal clearance with CKD Group 4 with the 

worst.  The project was approved by the Local Research Ethics Committee and informed 

consent was obtained from each subject. 

 

Laboratory methods 

Blood samples were collected from a large antecubital vein using a 21-gauge needle directly 

into Vacutainer® tubes (Becton Dickinson, UK) containing 0.5ml 3.2% sodium citrate.  For 

microparticle detection, platelet-poor plasma (PPP) was obtained after 15 min 

centrifugation of citrated blood at 2,800 g and further centrifugation of PPP at 13,000 g for 2 

minutes to remove residual cellular fragments to obtain platelet-free plasma (PFP). Aliquots 
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of the plasmas were frozen at –70°C for subsequent batch analysis and undergone a single-

freeze thaw cycle. 

PFP was initially incubated separately for 30 min with 0.5 μg of biotinylated anti-human 

CD42b antibody (Abcam, Cambridge, UK) for platelet-derived microparticles (PMP), or 0.5 

μg of biotinylated anti-human CD31 antibody (Abcam, Cambridge, UK) for endothelial-

derived microparticles (EMP). This was followed by a second incubation with 0.25 μg of 

Streptavidin-Alexa Fluor-647nm-R-Phycoerythrin conjugate (Life Technology, Paisley, UK) for 

30 min and then diluted with 990 μl filtered PBS (final dilution 1:100). MP analysis was 

promptly performed using the Apogee A50 flow cytometer (Apogee Flow Systems). 

Polystyrene beads of 110, 200, 500 nm and 1 μm diameter (Apogee Flow Systems) were 

used to set up the MP-size gate and small-size MP defined as events with size between 110 

and 500 nm. Detailed instruction regarding gating selection has previously been described 

(183). 

For enzyme-linked immunosorbent assay (ELISA) blood samples were centrifuged within 30 

min from collection at 1,500 g for 20 min at 4°C. The resultant plasma was then collected 

and stored at –70°C until later batch processing by ELISA to measure soluble E-selectin, 

soluble P-selectin and von Willebrand Factor(vWF) (R&D Systems, Minneapolis, MN, USA).  

(182). 

 

Statistical Analysis 

Continuously variable data are expressed as mean and standard deviation (SD) or median 

and interquartile range (IQR) dependent on normal or non-normal distribution.. Similar to 

previous chapter 5.2, assessment of  across all four CKD quartiles was done by manual 

calculation of linear trend (L-statistics and t-value initially), with subsequent tabulation of 
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corresponding p-value for assessment of significance of linear trend.   Categorical indices 

were analysed by the Chi-squared test. Correlations were sought using Spearman’s method. 

Stepwise regression analyses were performed on Minitab 17, and, in view of the multiple 

analyses, p ≤0.01 was considered as significant. 
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Results 

 

Clinical and demographic details of the 160 AF patients with concurrent CKD treated with 

VKA are shown in Table 5.3.1.  There were no significant differences in INR, gender, 

comorbidities, nicotine use or concurrent antiplatelet between all 4 quartiles of renal 

dysfunction. As expected, there was worsening renal function with lower creatinine 

clearance and higher creatinine level across the 4 CKD groups, and those with worse renal 

function are also associated with lower body weight and increased age. Of all the clinical 

demographics data, only INR is non-normally distributed, while laboratory indices are all 

non-normally distributed. 

Overall, increasing EMP levels were evident across the 4 groups of worsening renal 

clearance (p = 0.03 for linear trend) (Figure 5.3.1 and 5.3.2).   PMP levels, vWF, soluble P-

selectin and E-selectin levels demonstrated no significant difference across the 4 groups (all 

p = not significant for linear trend) (Table 5.3.2). 

There was a significant, though modest, negative correlation between creatinine clearance 

and EMP levels (Spearman, rs = 0.278, p <0.001) (Table 5.3.3). No significant correlations 

between changes in renal clearance with PMP, soluble P-selectin or E-selectin levels were 

evident (all p = not significant). However, there appears to be a trend towards negative 

correlation between creatinine clearance and vWF (Spearman, rs = 0.151, p = 0.058). 

Using stepwise regression analysis, independent predictors for EMP levels was the presence 

of worsening creatinine clearance (R2 = 8.26%, p <0.001). Other demographic factors and 

comorbidities did not any significant impact on EMP levels. 
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Discussion 

  

Among AF patients receiving oral anticoagulation, progressive worsening of renal function 

(as defined by renal clearance using the Cockcroft-Gault equation) was demonstrated to be 

associated with a linear trend for increasing levels of EMP. On stepwise regression analyses, 

renal clearance emerged as the only independent determinant of EMP levels. PMP, soluble 

P-selectin and E-selectin levels were not significantly associated with worsening renal 

function. 

AF and CKD are closely linked, and progressive renal failure is implicated in an increased 

bleeding diathesis and thromboembolic risk despite anticoagulation.  Thus, there is a strong 

need to identify potential markers that enables us to assess the decline of renal function 

and alteration(s) of thrombotic potential. 

This current finding confirms some previous studies demonstrating elevated microparticle 

levels in those with renal dysfunction/renal failure (238, 246) and contrasts with the lack of 

positive findings in other studies (247, 248) which may be due to heterogeneity among 

study subjects or resulting from smaller population size.  As EMPs are produced by 

endothelial cells in response to damage, the presence of greater vascular and endothelial 

injury associated with (or as a result of) progressive renal dysfunction will cause alteration in 

EMP levels. Hence, this study also extends previous work by demonstrating a progressive, 

step-wise, increase in EMP levels among those with worsening degrees of renal failure.  

Nevertheless, elevated EMP levels may be a surrogate of cellular injury due to 

cardiovascular diseases (249), but this can be accounted for in the study by the similar 

comorbidities between the 4 studied groups. 
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Regarding PMP, the current study demonstrates the lack of significant change in PMP levels 

in relation with worsening renal function among AF patients. Previous studies (175, 250) 

have shown that PMP levels are affected less by arrhythmia and more due to underlying 

cardiovascular diseases. Subsequently, PMP levels between AF-CKD subjects were compared 

with demographic-matched (inclusive of age and renal function), ischaemic heart disease-

CKD (IHD-CKD) control who were recruited as part of the study ), and this reveals 

significantly lower PMP levels in the AF-CKD cohort as compared to IHD-CKD control [281 

(134 – 1348) events/uL vs 7177 (1292 – 15684) events/uL, p = 0.006], further reinforcing the 

association between ischaemic heart disease and associated risk factors and PMP levels. 

The lack of alterations in soluble P-selectin and E-selectin levels across subjects with 

worsening renal function suggests that these biomarkers of platelet and endothelial cells 

activation may be less affected by other renal (dys)function. At the same juncture, the lack 

of significant increase in vWF (marker for endothelial dysfunction) with worsening renal 

function appears to run contrary to published reports (251, 252). Nonetheless, it may be 

due to cofounding factors such as chronic low level inflammation across all stages of 

CKD(49), or an over-riding elevation of vWF associated with chronic AF (215, 253, 254) may 

have outweigh the effect of progressive renal failure.   

 

Limitations 

The main limitation of this study is the lack of information regarding the potential roles of 

other microparticles besides PMP and EMP, such as those related to lymphocytes, 

leukocytes or monocyte/macrophage-derived subsets. Nonetheless, these subsets have not 

been previously related to a prothrombotic state in AF, which is the focus of this chapter.  
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Further studies should be performed to investigate their potential involvement in the 

relationship of progressive renal dysfunction and AF.   

Secondly, as this study is a single time-point sampling, changes in levels of microparticles, 

selectin levels and vWF secondary to intervention cannot be ruled out.  

In conclusion, among well-anticoagulated AF patients, there is relationship between 

endothelial function (as judged by EMPs) and renal function.  Other markers of 

prothombotic state or cellular activation, such as PMP, P-selectin, E-selectin levels and von 

Willebrand factor were not significantly different across the various degree of renal 

dysfunction. 
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Table 5.3.1 Clinical and demographic details 

 CKD Group 

1st Quartile 

CKD Group 

2nd Quartile 

CKD Group 

3rd Quartile 

CKD Group 

4th Quartile 

p – value for 

linear trend 

N 40 40 40 40  

Age, years 65 ± 11 73 ± 8 77 ± 5 81 ± 6 <0.001 

Gender 55% male 60% male 55% male 50% male 0.0652 

Weight, kg 101 (25.2) 86.3 (10.4) 81.0 (15.6) 70.4 (17.2) <0.001 

INR 2.4 

(2.2 – 3.2) 

2.5 

(2.1 – 2.8) 

2.4 

(2.0 – 3.0) 

2.4 

(2.0 – 2.9) 

0.550 

Creatinine 73.5 (16.5) 85.3 (13.8) 110.0 (30.6) 161.9 (62.8) <0.001 

CrCl (CG) 121.3 (34.7) 76.5 (4.9) 55.1 (6.7) 30.8 (8.3) <0.001 

Comorbidities      

Ischaemic Heart 

Disease 

37.5% 35% 47.5% 47.5% 0.243 

Type 2 Diabetes 

Mellitus 

40% 27.5% 42.5% 55% 0.389 

Hypertension 82.5% 90% 80% 85% 0.961 

Heart Failure 35% 30% 40% 45% 0.770 

Chronic 

Obstructive 

Pulmonary 

Disease 

20% 5% 22.5% 20% 0.741 

Concurrent 

Antiplatelet 

10% 7.5% 5% 10% 0.948 

Current Smoker 7.5% 2.5% 0% 5% 0.710 

Key: CKD, chronic kidney disease; CrCl, Creatinine Clearence; INR, International Normalised 

Ratio  
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Table 5.3.2 Microparticles, P-selectin and E-selectin levels in patients with various 

degree of renal dysfunction 

 CKD Group 1 CKD Group 2 CKD Group 3 CKD Group 4 p – value for 

linear trend 

Platelet 

Microparticles 

(Event/uL) 

281  

(134 – 1348) 

2123 

(324 – 4079) 

1476 

(82 – 5041) 

209  

(29 – 2043) 

0.897 

Endothelial 

Microparticles 

(Event/uL) 

5181 

(737 – 12352) 

6520 

(4222 – 11667) 

6095 

(415 – 24446) 

21048 

(6429 – 

29712) 

0.034 

Soluble P-selectin 

(ng/mL) 

9.09  

(7.31 – 11) 

8.97  

(7.58 – 10.4) 

9.12 

(7.19 – 11.4) 

8.28 

(6.18 – 10.8) 

0.368 

Soluble E-selectin 

(ng/mL) 

39  

(29 – 105) 

39  

(27 – 74) 

43  

(29 – 63) 

39  

(26 – 45) 

0.930 

Von Willebrand 
Factor 

(IU/dL) 

117.3 

(84.4 – 145.4) 

126.9 

(86.1 – 146.5) 

121.6 

(81.7 – 151.4) 

135.4 

(102.3– 171.7) 

0.288 

 

CKD, chronic kidney disease  
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Table 5.3.3 Spearman correlations between Creatinine Clearance and microparticles, P-

selectin, E-selectin levels and von Willebrand Factor 

 rs p 

Platelet Microparticles 0.105 0.186 

Endothelial Microparticles -0.278 
<0.001 

Soluble P-selectin 0.046 0.561 

Soluble E-selectin 0.026 0.746 

Von Willebrand Factor -0.151 0.057 
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Figure  5.3.1 Endothelial Microparticles vs CKD Group 

 

Figure 5.3.2 Excerpts of EMP Flow Cytometry Printout  

  

 

 

 

 

5.4 Clot structure: Vitamin K antagonist and NOAC 
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5.4 Clot Structure in AF: Effects of Warfarin and NOACs 

Abstract 

Non-Vitamin K antagonist oral anticoagulants (NOACs) have several advantages over 

warfarin as an oral anticoagulant for thromboprophylaxis in atrial fibrillation. However, little 

is known about their potential effects on fibrin clot structure and clot strength. 

Furthermore, effect of clot structure pre- and post-exposure to oral anticoagulant in “real 

patient cohort” have not been assessed. 

82 patients on NOACs, 50 on warfarin and 41 on aspirin only were recruited. Their whole 

blood and plasma samples were analysed by thromboelastography, turbidimetric and 

fibrinolysis assay. 

Of the 41 patients who were naïve to oral anticoagulant, 10 of whom were started on 

warfarin and 10 others on apixaban. The blood and plasmas samples were analysed at 4th 

and 12th week post-exposure to oral anticoagulant. 

Anticoagulation with NOACs confers slower formation of fibrin clot which are more sensitive 

fibrinolysis, and formation of whole blood clot which underwent greater autolysis. Whereas 

aspirin are generally result in greater thrombotic and lower fibrinolytic potential as 

compared to warfarin or NOACs. Of those receiving NOACs, differences in several laboratory 

indices exist between each agent used (i.e. apixaban, rivaroxaban and dabigatran). 

Post-exposure to oral anticoagulant also result in formation of blood clot and fibrin clot 

which are more “favorable”, by demonstrating features of less thrombotic potential and 

more sensitive to fibrinolysis. 
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Introduction 

The introduction of non-vitamin K antagonist oral anticoagulants (NOACs) has 

fundamentally changed clinical practice in the use of oral anticoagulation therapy in the 

prevention of ischaemic stroke and thromboembolism in atrial fibrillation (AF). Unlike 

vitamin K antagonists (VKAs, such as warfarin), which non-specifically suppress hepatic 

production of functional coagulation Factors II, VII, IX and X by inhibiting vitamin K 

metabolism (255), NOACs target specific molecules of the coagulation cascade: dabigatran is 

a direct thrombin inhibitor whilst apixaban, rivaroxaban and edoxaban target Factor Xa 

(118-121).   

NOACs have several advantages over VKAs: they possess a predictable pharmacological 

profile thus can be given at a fixed dose, have lower propensity for interactions with food or 

medication and their predictable pharmacokinetics allows for elimination of routine 

anticoagulation monitoring (124, 256, 257). More importantly, clinically trials of NOACs 

compared to warfarin, have demonstrated lower risk of intracranial haemorrhage and may 

result in lowering overall mortality.  

Nonetheless, little is known about the potential effect of NOACs on the fibrin clot structure 

or fibroelastic strength of whole blood clot. There are no previous study investigating 

potential changes to the clot structure in AF patients before and after exposure to NOAC, or 

comparing it between NOACs.  

Moreover, in the event of bleeding diathesis secondary to NOACs or suspected overdose, 

classical laboratory tests (such as the prothrombin time and the activated partial 

thromboplastin time) lack sensitivity and specificity to detect any effect of anticoagulation 

(258, 259). Other more specific assays (such as ecarin clotting time and anti-Factor Xa 

activity) are not routinely available, can be costly and lack standardization between 
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laboratories (260-263). Thus, TEG and turbidimetric-fibrinolysis assays may potentially 

provide a novel perspective on the actions of these agents. 

Therefore, we hypothesized that the TEG, turbidimetric and fibrinolysis assays will 

demonstrate difference in indices of clot formation, integrity and lysis between blood and 

plasma from AF patients taking aspirin, warfarin and the three commonly used NOACs 

(namely Dabigatran, Apixaban and Rivaroxaban).  

Secondly, among those who are naïve to oral anticoagulant, there will be difference in 

haemostasis indices post exposure to oral anticoagulant. 

 

Patients and Methods 

Subjects 

Patients with AF taking oral anticoagulants were recruited from routine out-patient 

cardiology clinics, and all had been taking their anti-thrombotic for at least 4 weeks. Doses 

were according to UK guidelines, e.g. apixaban 5 mg BD, dabigatran 150 mg BD, rivaroxaban 

20 mg OD while warfarin titrated to achieve an international normalised ratio (INR) between 

2 and 3.  For those on warfarin, INR was determined on the day of testing to assess effective 

anticoagulation. For those receiving NOACs, venepuncture took place 4 – 6 hours after the 

daily dose of the drug.  

For patients with AF who are naïve to oral anticoagulants, those taking aspirin (as only 

antiplatelet agent) were recruited. They were prescribed oral anticoagulant based on their 

personal preference or clinical requirement. Venepuncture will be done on day of 

recruitment, and subsequently be followed up in 4 and 12 weeks post exposure to oral 

anticoagulant.  

Exclusion criteria had previously been shown in Chapter 3. 
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Standard clinical and demographic data were obtained, and a routine blood test was taken 

for renal function. The project has been approved by the Local Research Ethics Committee 

and informed consent was obtained from each participant. 

 

Laboratory methods 

Laboratory methods involving TEG, turbidimetric and fibrinolysis assays have previously 

been described in Chapter 3. 

 

Statistical analysis 

Continuously variable data are expressed as mean and standard deviation (SD) or median 

and interquartile range (IQR) dependent on distribution. Differences between various NOAC 

agents and three main antithrombotic treatments were analysed by analysis of variance. 

Differences between warfarin and NOAC group were analysed by Student t test for 

continuous data when normally distributed or Mann-Whitney U test in the case of non-

normal distribution. Chi-square test was used to assess intergroup differences in categorical 

variables. A P - value <0.05 was considered statistically significant.  Analysis was performed 

on Minitab 17. 

Results 

VKA vs NOAC 

Basic clinical demographics of warfarin and NOAC users are illustrated in Table 5.4.1. 

Overall, there was no significant demographic difference between warfarin and various 

NOAC users regarding age through renal function. Relating to comorbidities, only ischaemic 
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heart diseases demonstrate a significant difference between groups, with apixaban user 

having the lowest established history of coronary disease. 

Nonetheless, when comparing warfarin and NOACs in accordance to investigative methods, 

NOACs in general bring about greater percentage of autolysis of whole-blood clot as 

assessed by TEG, and longer Lag-time plus shorter time for 50% lysis of fibrin clot when 

assessed by turbidimetric and fibrinolysis assay (Table 5.4.2).  

When comparing whole blood and fibrin clots made from three antithrombotic treatments, 

aspirin treatment resulted in changes in thrombosis as assessed by TEG: shorter R-time, K-

time, and steeper α-angle; and several changes to fibrin clot structure as assessed by 

turbidity and fibrinolysis asses: shorter Lag-time, faster rate of clot formation, greater 

Maximum Optical Density, and longer time for 50% lysis of fibrin clot. 

Contrasting between individual NOACs (Table 5.4.3), only 1 of the TEG indices differed 

between the NOACs, with shorter R-time in those on apixaban than in those of dabigatran. 

However, when using turbidimetric and fibrinolysis assays, Lag-time was shorter with 

greater Maximum Optical Density in those on apixaban or rivaroxaban, than in those 

subjects partaking dabigatran. The Rate of Clot Formation was slower in those on 

rivaroxaban than in the two other NOACs. The Rate of Clot Dissolution was slower in those 

on rivaroxaban than in those on apixaban. 

Post oral anticoagulant exposure 

For patients who were naïve to oral anticoagulation, their risk of stroke was stratified 

according to theCHA2DS2VASc score and they werestarted on appropriate oral anticoagulant 

according to physician or patient choice and clinical needs.  
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Out of which, 20 patients completed 2 subsequent follow-ups at 4th and 12th weeks. 

Differences in fibrin clot structure as assessed by TEG, turbidimetric and fibrinolysis analysis 

pre-exposure, 4 weeks and 12 weeks post exposure to oral anticoagulants are shown in 

Table 5.4.4. With regards to TEG, post-exposure to oral anticoagulation led to a 

prolongation of R-time, K-time and less steep α-angle. Whereas turbidimetric and 

fibrinolysis assay revealed a longer lag-time, lower rate of clot formation, greater rate of clot 

dissolution and shorter time for 50% lysis of fibrin clot. 

Of the 20 patients who have completed 12th weeks follow-up, 10 were taking warfarin and 

the rest apixaban. There is no statistical difference between these 2 groups regarding basic 

demographics and comorbidities. However, differences in the fibrin clot structure post-

exposure to warfarin (classic VKA) and apixaban (NOAC) are shown in Table 5.4.5, with 

warfarin user demonstrating lower rate of clot formation and higher tendency to form clots 

of greater maximum optical density. 
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Discussion 

In this study, the whole blood clot and fibrin clot structure formed from VKA and NOAC 

users possessed several structural differences. Using TEG, turbidity and fibrinolysis assays, 

some structural differences (and similarities) can be demonstrated from whole blood and 

fibrin clots formed from NOAC users as compared to VKA users.  

Firstly, NOAC resulted in similar degree of delay in the initiation of coagulation as well-

controlled VKA user, as shown by similar R-time. However, the effect on the fibrin clot per 

se (devoid of activated platelets in platelet poor plasma) is potentially more profound, and 

thus led to a prolongation of Lag-time. Moreover, the resultant whole blood and fibrin clot 

structure (as influenced by NOAC) is also less resistant to autolysis and ex vivo fibrinolysis by 

tPA, as demonstrated by changes in LY60(%) and T50. This increased susceptibility to 

fibrinolysis is consistent with previous findings involving dabigatran and rivaroxaban (264, 

265).   

Unsurprisingly, for AF patients who are not anticoagulated, and only receiving aspirin as 

antithrombotic agent, they exhibited increased tendency for thrombogenesis as 

demonstrated by shorter R-time and Lag-time (time to initiation of coagulation and fibrin 

clot formation), steeper angle, K-time and greater RCF (relating to fibrin clot 

polymerisation), thicker fibre (as reflected by greater optical density) and more resistant to 

fibrinolysis (longer time for 50% clot lysis).  

Within NOAC groups, numerous structural changes have been detected: dabigatran confers 

the greatest delay to initiation of fibrin clot formation (Lag-time) and thinnest fibre (lowest 

maximum optical density), rivaroxaban confers greatest impact in reducing the rate of 
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thrombogenesis (lowest rate of clot formation), while apixaban allows for formation of 

fibrin clot most susceptible to fibrinolysis (highest rate of clot dissolution). These may 

provide some explanation for the perceived superiority of dabigatran at reducing 

thromboembolic events. Nonetheless, these results do not explain the reduced 

haemorrhagic risk associated with NOAC uses, as increased susceptibility to fibrinolysis may 

not only allow for revascularisation (and establishment of circulation) but also increased 

haemorrhagic risk. 

When comparing pre and post-exposure blood and plasma results, the effect of oral 

anticoagulation on the whole blood and fibrin clot structure is unequivocal, as the 

transformation of “adverse clot structures” to one that possess less thrombotic potential, 

demonstrated by changes in rate of fibrin/clot built-up and increased sensitivity to 

fibrinolysis. These would explain the modulation of ischaemic stroke and thromboembolic 

risk shortly after successful anticoagulation therapy. Nonetheless, due to the small number 

of follow-up in both warfarin and apixaban cohorts, the lack of differences in clot structure 

between both groups may be a false negative error. 

Limitation 

Although the strength of this study on the fairly large number of patients recruited (n >130) 

with suitable oral anticoagulant, the lack of demonstrable differences between each NOAC 

agent as detected by TEG could be due to smaller cohort in apixaban and dabigatran groups. 

The aforementioned study (266) also utilised blood samples from healthy volunteers spiked 

with anticoagulant, as compared to “real-life” patients who may not be fully compliant to 

treatment regime, thus resulting in the lack of difference detected using TEG in the 

population studied.  
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Therefore, head-to-head comparison between NOAC agents will not be possible, and further 

work is warranted. 

In conclusion, this study is able to demonstrate structural and mechanistic differences in 

whole blood and fibrin clot structure involving NOAC and OAC, as well as between each 

commonly prescribed NOAC agents. Changes in fibrin clot and whole blood clot structure 

pre and post exposure to oral anticoagulant have also been shown. 
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Table 5.4.1 Clinical demographics – Warfarin and NOACs 

  
Warfarin 

(n=50) 

 
Apixaban 

(n=17) 

 
Dabigatran 

(n=19) 

 
Rivaroxaban 

(n=46) 

 
p - 

value 

Age  
(years) 

73.9 
(9.0) 

76.9 
(10.6) 

73.9  
(9.3) 

71.6  
(8.6) 

0.226 

Sex 
(male/female) 

32/18 8/9 15/4 26/20 0.208 

SBP  
(mm Hg) 

130 (19) 135 (18) 126 (22) 132 (18) 0.513 

DBP 
 (mm Hg) 

73 (12) 76 (15) 73 (15) 73 (11) 0.839 

BMI  
(kg/m2) 

29.6 (4.3) 27.5 (5.4) 26.7 (4.4) 30.1 (7.3) 0.097 

Creatinine 
(µmol/L) 

87 (15) 86 (30) 90 (22) 89 (22) 0.944 

Creatinine 
Clearance -
Cockcroft Gault 
(ml/min/1.73) 

77 (10) 74 (19) 72 (14) 82 (15) 0.580 

IHD  
(yes/no) 

21/29 3/14 6/13 8/38 0.041 

Smoking 
(yes/no) 

1/49 0/17 1/18 3/43 * 

Diabetes 
(yes/no) 

16/34 6/11 3/16 12/34 0.506 

Hypertension 
(yes/no) 

43/7 15/2 14/5 33/13 0.241 

Heart failure 
(yes/no) 

15/35 1/16 1/18 10/36 0.051 

Valve disease 
(yes/no) 

3/47 0/17 0/19 3/43 * 

Pulmonary 
disease (yes/no) 

4/46 3/14 1/18 5/41 0.602 

Data presented as mean (standard deviation) or number of patients. P values by analysis of variance or 
the chi-squared test.  

* = analysis unreliable. 

Body Mass Index, BMI; Diastolic blood pressure, DBP; Ischaemic Heart Disease, IHD; Systolic Blood 
Pressure, systolic blood pressure. 
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Table 5.4.2 : Analysis according to anticoagulant classes (VKA vs NOAC) and antithrombotic agents 

(VKA vs NOAC vs Aspirin) 

 
 

Data presented as mean (standard deviation) or median (interquartile range). P values analysed by the t-
test, the Kruskall-Wallis test or analysis of variance. 

Between group analysis by Tukey’s post-hoc test: 

*p<0.05 between Aspirin and two other groups 

†p<0.05 between Warfarin and two other groups 

 

 

 NOAC  
(n=82) 

Warfarin  
(n=50) 

p – value 
(NOAC vs VKA) 

Aspirin 
(n = 41) 

P – value 
(NOAC vs VKA vs 

Aspirin) 

Clinical and 
demographic 

     

Age (years) 73.5 (10.3) 71.6 (8.6) 0.234 73.2 (13.2) 0.571 

Sex (male/female) 49/33 32/18 0.627 30/11 0.343 

Creatinine Clearance 
(Cockcroft-Gault) 

78 (36) 77 (5) 0.801 73 (37) 0.753 

Creatinine  88 (24) 87 (15) 0.815 94 (45) 0.491 

      

TEG Indices      

R (min) 8.6 (4.0) 7.8 (4.6) 0.291 4.9 (1.5) <0.001* 

K (min) 1.8 (1.47-2.2) 1.8 (1.5-2.3) 0.465 1.3 (1.15 – 1.7) 0.003* 

Angle (degrees) 63.1 (8.2) 60.9 (11.0) 0.228 69.2 (6.0) <0.001* 

MA (mm) 65.3 (7.3) 63.4 (12.8) 0.339 67.2 (5.2) 0.122 

LY60 (%) 3.3 (1.8-5.2) 2.0 (0.9-3.5) 0.005 3.7 (2.55 – 5.4) 0.004† 

      

Turbidimetric & 
Fibrinolysis Indices 

     

Lag time (min) 9.6 (7.8-13.0) 8.3 (6.8-9.5) <0.001 5.3 (4.7-5.8) <0.001* 

RCF (units/sec) 15.5  
(9.6 - 26.2) 

14.3  
(9.5 - 21.6) 

0.241 39.7  
(36.3 - 44.4) 

<0.001* 

MOD (units) 0.39 (0.13) 0.39 (0.09) 0.726 0.49 (0.10) <0.001* 

RCD (units/sec) 41.4 (16.5) 43.4 (18.3) 0.194 37.7 (10.2) 0.269 

T50 (min) 3.0 (0.7) 3.4 (0.4) <0.001 4.4 (0.8) <0.001* 
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Table 5.4.3 : Analysis according to NOAC classes 

 Apixaban  
(n=17) 

Dabigatran 
(n=19) 

Rivaroxaban 
(n=46) 

p - value 

Clinical and 
demographic 

    

Age (years) 76.9 (10.6) 73.9 (9.2) 72.1 (10.6) 0.262 

Sex (male/female) 8/9 15/4 26/20 0.119 

Creatinine Clearance 
(Cockcroft-Gault) 

49.0 (41.0 – 99.5) 72.0 (53.3 – 83.4) 75.7 (54.0 – 97.1) 0.550 

Creatinine (µmol/L) 86 (30) 90 (22) 88 (21) 0.879 

     

TEG Indices     

R (min) 6.7 (1.6) 10.7 (5.9) 8.5 (3.2) 0.009a 

K (min) 1.7 (0.6) 2.2 (0,9) 2.0 (0.8) 0.175 

Angle (degrees) 64.4 (8.4) 60.9 (7.9) 63.5 (8.2) 0.371 

MA (mm) 66.2 (6.5) 64.7 (5.8) 65.1 (8.1) 0.828 

LY60 (%) 3.0 (1.4-4.2) 3.7 (2.0-6.1) 3.25 (1.8-4.9) 0.772 

     

Turbidimetric & 
Fibrinolysis Indices 

    

Lag time (min) 8.0 (7.6-9.2) 23.0 (9.8-30.3) 9.8 (7.8-12.1) <0.001b 

RCF (units/sec) 22.0 (20.0-29.0) 28.5 (16.2-30.7) 12.4 (7.0-15.3) <0.001c 

MOD (units) 0.37 (0.09) 0.27 (0.09) 0.44 (0.13) <0.001b 

RCD (units/sec) 51.8 (13.9) 42.6 (12.1) 36.8 (17.3) 0.005d 

T50 (min) 2.9 (0.45) 3.3 (0.37) 2.9 (0.75) 0.161 

 

Data presented as mean (standard deviation) or median (interquartile range). P values by analysis of 
variance or the Kruskall-Wallis test.  

Between group analysis by Tukey’s post-hoc test: 

 a p<0.05 between apixaban and dabigatran. 

 b p<0.05 between dabigatran and the two other groups. 

c p<0.05 between rivaroxaban and the two other groups.  

d p<0.05 between apixaban and rivaroxaban. 
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Table 5.4.4: Pre and Post exposure to oral anticoagulation 

 

 

 

 

 

 

 

 

 

 

 

Data presented as mean (standard deviation) or median (interquartile range). P values as assessed for 
trend. 

 

 

 

 

 

 

 

 

 Baseline Week 4 Week 12 p – value 
for trend  

TEG Indices     

R (min) 5.01 (1.38) 8.96 (1.45) 7.95 (1.79) 0.008 

K (min) 1.41 (0.36) 1.96 (0.86) 2.56 (1.03) 0.023 

Angle (degrees) 67.9 (6.9) 64.9 (10.7) 59.0 (11.8) 0.024 

MA (mm) 67.0 (5.5) 66.3 (8.7) 60.9 (13.8) 0.128 

LY60 (%) 4.0 (3.2 – 6.5) 2.7 (1.3 – 4.0) 1.2 (0.3 – 4.2) 0.649 

     

Turbidimetric & 
Fibrinolysis Indices 

    

Lag time (min) 6.3 (1.6) 8.5 (1.2) 8.2 (0.9) <0.001 

RCF (units/sec) 29.7 (8.5) 17.4 (7.5) 17.1 (6.4) <0.001 

MOD (units) 0.34 (0.08) 0.39 (0.10) 0.35 (0.06) 0.173 

RCD (units/sec) 36.2 (9.4) 50.3 (12.2) 50.2 (16.0) 0.001 

T50 (min) 4.1 (0.8) 3.0 (0.5) 3.0 (0.5) <0.001 
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Table 5.4.5: Fibrin clot at week 12 (Warfarin vs Apixaban) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data presented as mean (standard deviation) or median (interquartile range). P values analysed by t-test 
or the Kruskall-Wallis test. 

*No statistical difference between both groups regarding comorbidities. 

 

 

 Warfarin (n = 10) Apixaban (n = 10) p - value 

Age  
(years) 

68.6 (17.1) 76.6 (11.5) 0.238 

Sex (male/female) 7/3 6/4 0.639 

SBP  
(mm Hg) 

123.3 (16.4) 129.6 (17.8) 0.422 

BMI  
(kg/m2) 

27.2 (8.0) 24.8 (4.0) 0.418 

Creatinine (µmol/L) 86.7 (15.7) 86.1 (29.3) 0.955 

Creatinine 
Clearance -
Cockcroft Gault 
(ml/min/1.73) 

70.3 (51.3 – 85.7) 65.2 (41.6 – 90.7) 0.403 

    

TEG Indices    

R (min) 8.66 (2.22) 7.16 (1.40) 0.094 

K (min) 2.05  
(1.48 – 3.18) 

1.80  
(1.60 – 2.70) 

0.652 

Angle (degrees) 56.0 (14.4) 62.3 (7.5) 0.250 

MA (mm) 57.9 (17.7) 60.6 (5.2) 0.659 

LY60 (%) 0.90 (0.23 – 3.5) 1.9 (0.55 – 5.1) 0.413 

    

Turbidimetric & 
Fibrinolysis Indices 

   

Lag time (min) 8.5 (1.0) 8.0 (0.7) 0.215 

RCF (units/sec) 14.2 (7.0) 20.2 (4.0) 0.036 

MOD (units) 0.376 (0.068) 0.326 (0.045) 0.072 

RCD (units/sec) 50.4 (10.8) 50.2 (14.3) 0.969 

T50 (min) 3.1 (0.4) 2.9 (0.5) 0.494 
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Section 6: Summary of findings and suggestions for future study 
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6.1 Summary of Findings 

The results of the fibrin clot structure in atrial fibrillation – effects of renal dysfunction can be 

summarised as follows: 

 An oral anticoagulant naïve individuals, AF is associated with formation of whole blood clot and 

fibrin clot which are of greater thrombotic potential and more resistant to lysis as compared to 

coronary artery disease (Section 5.1) 

 The adverse clot structure in AF can be shown to be modulated by exposure to warfarin or NOAC, 

with formation of fibrin clot and whole blood clot which are slower to form and more sensitive to 

fibrinolysis (Section 5.4). 

 Different oral anticoagulation agents result in formation of whole blood and fibrin clot with 

various structure changes. NOACs generally form clots which are more sensitive to fibrinolysis as 

compared to warfarin, however significant differences exist between individual NOAC used 

(Section 5.4). 

 In concurrent chronic kidney disease and AF, despite adequate oral anticoagulation with warfarin, 

changes to fibrin clot structure are present. Clot structure associated with renal dysfunction, in 

the presence of warfarin, possess greater thrombotic potential whilst more sensitive to 

fibrinolysis (Section 5.2).  

 Clot structure as demonstrated by SEM was of greater fibrin density and thicker fibres in those 

with worst renal dysfunction as compared to those with mildest CKD (Section 5.2). 

 Besides worsening creatinine clearance, structural changes to fibrin clots are shown to be 

independently associated with increased all-cause mortality over 2-year follow-up period (Section 

5.2). 
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 Relating to microparticles, worsening renal function was also shown to be associated with 

increased endothelial dysfunction as demonstrated by increased endothelial microparticle levels. 

However, other markers of prothrombotic state and cellular activations were demonstrated not 

to be significantly different across various degree of renal dysfunction (Section 5.3). 

 The current study is novel for two main reasons: 

o One: This study is first to demonstrate changes in fibrin clot structure as an independent 

predictor of all-cause mortality in patients with concurrent AF and CKD. Thus, with longer 

follow-up, adverse features in fibrin clot structure can potentially be a new prognostic 

marker. 

o Second: This study is also the first study to demonstrate favourable changes in fibrin clot 

for patients using NOACs as compared to VKA – thus future interventional study, fibrin 

clot structure has the potential to guide choice of anticoagulant use. 
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6.2 Suggestions for future study  

Based on the above findings, several future studies can be suggested: 

Firstly, to establish differences in whole blood clot structure and strength (assessed by TEG) as a result of 

each NOAC agent used, larger number of patients studied receiving dabigatran and apixaban can be 

recruited. The difference in fibrin clot structure as revealed by turbidimetric and fibrinolysis assay can 

also be visually confirmed by SEM of representative fibrin clots formed from NOAC users. 

Secondly, the difference between NOAC and VKA pre- and post-exposure is at most modest. Hence, to 

clarify and establish the changes to fibrin clot structure and strength relating to NOAC or VKA, larger 

longitudinal study involving more patients in both groups will be needed. 

Thirdly, due to the shorter half-life of NOAC (as short as 12 hours) as compared to VKA, alteration to 

changes to fibrin clot structure may be apparent within 36 – 72 hours of exposure. Thus to test this 

hypothesis, a short-term study, with frequent blood and plasma sampling every 12-24 hours will be able 

to demonstrate changes to haemostatic indices over time. 

Fourthly, with the increasing number of patients receiving NOAC, potential changes to clot structure in 

worsening degree of CKD amongst NOAC users will need to be assessed. 

Fifth, if NOAC proves to provide more favourable in fibrin clot structure as compared to VKA amongst 

patients with worsened CKD class, an interventional study can be done, randomising oral anticoagulant 

naïve individuals to NOAC or VKA. This allow for hard end-point such as ischaemic stroke and 

thromboembolism, mortality, haemorrhagic complications to be documented.  

Sixth in relation to CKD patients with AF undergoing haemodialysis, the use of apixaban has been 

approved in the United States by the FDA. Thus a comparison of fibrin clot structure in haemodialysis 
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patients receiving VKA or NOAC will be useful to better understand potential the effect of choice of renal 

replacement therapy and oral anticoagulant on haemostatic indices.     

Finally, for the 200 patients(anticoagulated with warfarin) who have been recruited with concurrent AF 

and CKD, long-term follow-up can be done to further investigate the impact of fibrin clot structure to risk 

of long-term mortality, strokes and major adverse cardiac events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



150 
  

6.3 Conclusion   

Patients with AF and CKD experience an excessive risk of ischaemic stroke and thromboembolism. This 

thrombotic risk is not mitigated by the use of oral anticoagulation, but conferred in increased 

haemorrhagic sequelae. Meanwhile, patients with coronary disease and end-stage renal disease have 

been shown to possess changes to fibrin clot structure and characteristics.  

Therefore in the present MD thesis, fibrin clot structure and characteristics were studied in a variety of 

AF patients, by means of thromboelastography, turbidimetric and fibrinolysis assay, together with 

Scanning Electron Microscopy. In conjunction detection of markers for endothelial and platelet 

turnovers, and microparticles were also made. 

Therefore, based on the results above, it can be concluded that AF resulted in adverse clot structure 

which can increased thrombotic risk. And the clinical use of oral anticoagulant may aid risk mitigation 

due to favourable changes in resultant clot structure. However, for patients with the worst renal 

function and AF, the coexistence of both conditions and use of oral anticoagulation resulted in clot 

structures which are pro-thrombotic, but also more sensitive to fibrinolysis. Thus, this might potentially 

explain the paradox of increased thromboembolic and haemorrhagic risk in this cohort. 

To improve our understanding on the impact of structural changes to fibrin and whole blood clot and 

resultant morbidity and mortality benefit relating to renal failure and NOACs, further studies will be 

warranted.  
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X Appendices – (B) Patient Information Sheet 

 

 

 

 

 

 

 

PARTICIPANT INFORMATION SHEET 

 

1. Study title:     CLOT STRUCTURE IN ATRIAL FIBRILLATION 

 

2. Invitation paragraph 

You are being invited to take part in a research study.  Before you decide it is important for you to 
understand why the research is being done and what it will involve.  Please take time to read the 
following information carefully and discuss it with others if you wish.  Ask us if there is anything that 
is not clear or if you would like more information.  Take time to decide whether or not you wish to 
take part. 

Thank you for reading this.  

 

3. What is the purpose of the study? 

To find out the extent to which there is variation in clot formation in people with atrial fibrillation 
(AF) compared to people with cardiovascular disease (such as having had a heart attack or stroke, or 
have problems with the arteries of their legs)  

 

4. Why have I been chosen? 

You have been chosen because you have AF and/or cardiovascular disease 

 

5. Do I have to take part? 

It is up to you to decide whether or not to take part.  If you do decide to take part you will be given 
this information sheet to keep and be asked to sign a consent form. If you decide to take part you 
are still free to withdraw at any time and without giving a reason.  A decision to withdraw at any 
time, or a decision not to take part, will not affect your professional relationship with the researcher 
or the Trust. 

 

  

Sandwell & West Birmingham Hospitals 
NHS Trust 
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6. What will happen to me if I take part? 

After having signed the consent form, all we ask in a sample of your blood. In some people (and this 
might be you) we will ask for a second sample in about a month’s time, and a third in about three 
month’s time.  This is summarised in a diagram on the last page. 

You will also be given a copy of this information sheet and the signed informed consent form. 
Carefully retain these documents.  

 

7. What do I have to do? 

There is no restriction to your work pattern or any suggestion to change this. Continue to take all 
your medications and attend hospital and your GP exactly as you have been doing.  

 

8. What is the procedure that is being assessed? 

We want to find out if the ability of your blood to form a good firm clot depends on factors such as 
how well your kidneys work, and according to what drugs you are taking.  

 

9. What are the effects of participating in the study?  

None really: all we ask is a blood sample, but in some we will ask for three samples.  

 

10. What are the possible disadvantages and risks of taking part? 

Only that of a bruise in your arm as a result of the blood sample being taken. 

 

11. What are the possible benefits of taking part? 

None.  However, it is possible we may find out you have some problems you are unaware of (such as 
diabetes), and if so we will inform you and your GP. 

 

12. What if new information becomes available? 

Sometimes during the course of a research project, new information may become available about 
blood clotting. If this happens, the researcher will tell you about it and discuss with you whether you 
want to continue in the study.   

 

13. What happens when the research study stops? 

You will continue life just like before the study began, taking the same tablets and having the same 
hospital and GP appointments. You will continue to be cared for by your Doctors as if nothing had 
happened. 
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14. What if something goes wrong? 

If you are harmed due to someone’s negligent comment, then you may have grounds for a legal 
action but you may have to pay for it.  Regardless of this, if you wish to complain, or have any 
concerns about any aspect of the way you have been approached or treated during the course of 
this study, the normal National Health Service complaints mechanisms should be available to you. 
However there are no special compensation arrangements if you are harmed by simply participating 
in this research project.  

 

15. Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be kept strictly 
confidential.  Any information about you which leaves the hospital/surgery will have your name and 
address removed so that you cannot be recognised from it. 

 

16. What will happen to the results of the research study? 

The result of the study will be presented to our hospital colleagues and may be presented at 
scientific conferences, and published in peer reviewed scientific journals. However, no individual 
participant will be identified in any of the reports. 

 

17. Who is organising and funding the research? 

The project has been organised by a group of Doctors at Sandwell and West Birmingham NHS Trust. 
It is being funded by Departmental funds. There is no drug company involvement.  

 

18. Who has reviewed the study? 

This study has been reviewed by a committee of people independent from your doctor (the Local 
Research Ethic Committee), whose primary concerns are the safety, rights and welfare of patients in 
this study.  This committee has reviewed and approved all written material about this study 
including this information sheet and consent form. 
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19. Contact for Further Information 

If you would like more information about the research you could contact:  

 

 Dr Jocelyn Bell (The Head of our Department of Research and Development) on  
 

 

 Dr Andrew Blann (The principle investigator) on . His E-mail address is 
 

 

 Professor GYH Lip (Our Head of Department) on  
 

 The Hospital Patient Advice and Liaison Service on 0121 507 5836. Their E-mail address is 
pals@swbh.nhs.uk.  You also have the right to complain – and if you wish to then this is the 
unit your should contact 

 

 

Thank you for taking part in our study….. 

 

 

 

 

 

 

mailto:pals@swbh.nhs.uk
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Participant Flow Chart 

This chart shows what will happen to you if you decide to take part 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. We approach 

you to see if you 

want to participate 

3. If you are able to take part, you will both sign three copies of the consent 

form: one for you, one for your hospital notes, and one for us. 

2. We give you a copy of the Patient Information 

Sheet and the Consent form to read 

4. The researcher will collect some details from 

you and takes a sample of blood 

5. For some people, we arrange for 

a second blood sample in about a 

month’s time 

5. For most people, your participation 

is complete 

6. We will arrange for a third and 

final blood sample in about three 

month’s time, after which your 

participation is complete. 
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X Appendices – (C ) Patient Consent Form    

  
 
 

Gregory YH Lip MD FRCP FACC Professor of Cardiovascular Medicine University of Birmingham Centre 

Paulus Kirchhof MD FRCP Professor of Cardiovascular Medicine for Cardiovascular Sciences 
Andrew D Blann PhD FRCPath Senior Lecturer in Medicine City Hospital, Birmingham 

Russell C Davis MD MRCP Senior Clinical Lecturer in Medicine B18 7QH, United Kingdom 
Deirdre Lane MSc PhD Lecturer in Medicine Departmental Secretary Ms S Cartwright 
Ronnie Haynes RGN MICR CMS Departmental Manager/Trials Co-ordinator Tel  Fax +  

   Direct Line to Dr Blann 

   Tel/fax   

Patient ID for this study: 

 
CONSENT FORM 

 

 

Title of Project: Clot Structure in Atrial Fibrillation  

Name of Researcher: Dr Yee Cheng Lau & Dr Andrew Blann 

Please initial all boxes 

 

1. I confirm that I have read and understand the information sheet dated 29
th 

August 2013 (version 1 for the above study. I have had the opportunity to 
consider the information, ask questions and have had these answered 
satisfactorily. 

 

 
2. I understand that my participation is voluntary and that I am free to withdraw 

at any time without giving any reason, without my medical care or legal rights 
being affected. 

 
 

3. I agree to my GP being informed of my participation in the study. 
 
 
 

4. I agree to take part in the above study. 
 
 

5. I understand that to enable the study to be properly monitored and 
regulated, sections of my medical notes relevant to my taking part in this 
research and data collected during the study may be looked at by 
members of the research team, the NHS Trust where I will take part in the 
study, and regulatory agencies. 

I give permission for these individuals to have access to my records. 

 
 
 

Name of Participant Date Signature 

 

Name of Person Date Signature taking consent. 
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X Appendices – Consent Form (Healthy Control) 

 




