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Abstract  

In this PhD thesis, new materials for solid oxide fuel cells have been researched. It focuses 

on both the cathode and electrolyte components. Two general systems, the perovskite-

type ABO3 and apatite-type M10-x(XO4)6O2+y structures, have been investigated. The 

structural characteristics, conductivity and stability have been examined. 

The perovskite work for the cathode uses doping strategies to introduce disorder into the 

system and change the conduction characteristics through a structure change to cubic.  It 

has been shown that only small amounts of dopants are required to cause this structural 

change and effect the conductivity. In addition, thermal and chemical compatibility tests, 

along with ASR tests with known fluorite and apatite electrolytes, have been investigated. 

Their stability in a CO2 containing environment was tested and a full-scale production of a 

fuel cell was attempted (Chapters 3 and 4).  

The electrolyte investigations focussed on doping the Ba2Sc2O5 sample to form a perovskite 

structure that possesses both oxide ion and protonic conductivity. The doping has 

decreased the amount of scandium present with cheaper elements such as rare earth Yb3+, 

or transition metals Fe4+ and Ti4+
,  all in an attempt to form the cubic structure that results 

in high oxide ion/proton conductivity and increased stability in CO2 environments (Chapter 

5). The final chapter focuses on phosphate and rare earth doping of BaPrO3, to form the 

cubic perovskite structure. These samples were seen to have increased water incorporation 

and stability in CO2. However, this was at the expense of the ionic conductivity due to 

vacancy trapping.  
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Chapter 1 

1 Introduction  

There is a serious need to find a more efficient energy source to burning conventional fossil 

fuels, (coal, oil, gas) which we have been dependent on since the industrial revolution.1 We 

have become so reliant on fossil fuels as they are convenient for energy production. Their 

use in power generation is especially a problem, since currently most of our electrical 

energy is produced through the burning of these fuels (in 2014 over 60% was produced in 

this way (Figure 1-1).2 However the depletion of these fossil fuels, coupled with our 

increase in energy demands, due to population growth and higher living standards around 

the world, have caused an 

instability in price and 

supply.3 Furthermore the 

rise in the production of 

greenhouse gases is 

having devastating effects 

on the planet e.g. CO2. 

These gases are known to 

contributes to the global 

warming. 4-6 

Therefore the need to 

develop cleaner low 

carbon energy sources or renewable energy sources, are vital to our energy supply, 

Figure 1-1  the generation of UK electricity in 2014 
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economy and environment.3, 6-9 Current main stream renewable energy sources such as 

solar, hydroelectric or wind power have great interest but require huge areas of land being 

available, and have an intermittent supply chain that cannot be relied upon to generate the 

total amount of energy required indefinitely. Therefore there is the need to make our 

electricity production more efficient and reliable, one example being the use of fuel cells.10  

  History of fuel cells 

A fuel cell is a device that directly converts chemical energy into electrical energy, ideally 

with no heat loss involved.11-13 This technology is not a new technology and has been 

around for over 150 years.14, 15 The earliest work on fuel cells was begun in 1839 by William 

Grove,16 when he observed an electrical output from the combination of H2 and O2. His 

experiments produced electrical energy by submerging two platinum electrodes in a 

sulphuric acid solution, with each end sealed in either oxygen or hydrogen atmospheres.16 

He theorised that there was a contact area between electrode, electrolyte and gas similar 

to what we know as the triple phase boundary.17 Continuing on from this, Thomas Francis 

Bacon produced the first fuel cell that used H2 and air directly to produce energy in 1933. 

Figure 1-2 Birmingham University 
Hydrogen powered car. 
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His research into fuel cells was used in the war effort for the Royal Navy’s submarines in 

1939, 100 years after fuel cells were first discovered.17  The development of fuel cells 

continued and further practical uses were found late into the last century for the Apollo 

space missions.14, 18 Even today research on fuel cells and their application is of great 

interest, and in the last 10-15 years public opinion and knowledge of fuel cells and 

renewables has increased.19, 20 Both portable and stationary applications are commercially 

available, with automobiles fitted with fuel cells, and household natural gas fuel cell 

systems replacing the current gas boilers.9, 21 

 How a fuel cell works 

 In principle all fuel cells 

operate in much the same 

way and consist of a similar 

structure and components; 

two electrodes (cathode and 

an anode) placed either side 

of an electrolyte material.12, 22  

They operate in a similar way 

to our mobile phone batteries 

in that a chemical process takes place to produce electricity. However, a key difference 

compared with a battery, where the reactants are stored in limited amounts in the 

electrodes, is that a fuel cell will provide continuous power for as long as external fuel and 

oxidants are supplied.  

Figure 1-3 Diagram showing the simple operation of a fuel cell Taken 
from Energy & Environmental science with permission from the RSC. 
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The electrolyte usually conducts oxide ions or protons, and the chemical reactions occur at 

each of the respective electrodes to combine molecules of the fuel and oxidant to produce 

external electrical energy.12, 16, 23 The fuel used and the type of cell used will have an effect 

on the half reactions and the overall chemical reactions. For simplicity, the solid oxide fuel 

cell (SOFC) electrode processes for a pure hydrogen fuel cell are shown below12:-  

Cathode:- O2 + 4e− → 2O2-       Equation 1-1 

Anode:- 2H2 + 2O2- → 2H2O + 4e-      Equation 1-2 

Overall:- 2H2 + O2 → 2H2O + EXTERNAL ELECTRICAL ENERGY Equation 1-3  

 

The oxidant, usually air, is supplied to the cathode; this undergoes the oxygen reduction 

reaction forming two oxide ions. The oxide ions move through the electrolyte towards the 

anode.  Once at the anode the oxide ions and hydrogen fuel meet and combine to produce 

water and four electrons. The electrons pass through the external circuit from the anode 

to the cathode producing the power (Figure 1-3).24 The performance of the fuel cell 

depends on the properties of the component materials.25 

 Fuel cell efficiency vs. fossil fuels 

The fuel cell has the potential to have a significantly improved efficiency over the burning 

of fossil fuels to produce electricity.  In a fuel cell the efficiency is generally higher due to 

the direct energy conversion from chemical to electrical energy.26 
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 The fuel cell efficiency is given by the thermodynamic efficiency η, which is the change in 

Gibbs function (electrical work done) in relation to the change in enthalpy (heating value 

of the fuel i.e. hydrogen)    Equation 1-4.12, 27  

𝜼 =
∆𝑮

∆𝑯
     Equation 1-4 

Consequently, the efficiency of a fuel cell decreases with temperature as the Gibbs function 

become less negative due to increased entropy at higher temperatures.28 In addition to the 

higher efficiency at lower temperatures, fuel cells typically produce lower harmful 

emissions than conventional electrical power generation. Moreover if H2 is used as the fuel, 

the only by-product is H2O.16 There are also fewer moving parts than in a conventional 

combustion system reducing noise and vibrations, leading to a quieter system and lower 

maintenance requirements.13 These advantages allow for applications ranging from local 

power generation, to transport and even small portable devices.7 Furthermore the fuel 

Figure 1-4 Schematic trend of the maximum Efficiency of H2 fuel cell 
at standard pressure (steam as a product = Black line), Carnot limit 
with 50°C exhaust temperature (blue line)  
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flexibility of some fuel cells (e.g. solid oxide fuel cells) has meant that they have been 

proposed as a bridging gap between the current fossil fuel hydrocarbon (previous 

experiments reporting CH4 oxidation in to CO2 and H2)29
 and the hydrogen based economy 

proposed for the future.30   

 Types of fuel cell 

Different types of fuel cells are available, normally categorised into high and low 

temperature fuel cells, and named according to the electrolytes used (solid or liquid based). 

There are five common fuel cell types, each with their own positive and negative features, 

summarised in Table 1-1 and Figure 1-5.12, 26, 27, 31,32, 33,34  

   

 

Load 

Fuel  Air/O2 Cathode  Anode  Electrolyte 

AFC  

PAFC  

PEMFC 

MCFC  

SOFC  

Waste  Waste 

H2 + 2OH-  

2H2O + 2e- 

H2   2H+ + 

2e- 

H2   2H+ + 

2e- 

 
H2 + CO3

2-  

2e- + H2O + 

CO2 

H2 + O2-  

H2O + 2e- 

OH- 


 

H+ 


 

H+ 


 

O2- 


 

CO3
2-


 

½O2 + H2O + 

2e- 2OH- 

½O2 + 2H+ + 

2e- H2O 

½O2 + 2H+ + 

2e- H2O 

½O2 + CO2 + 

2e-  CO3
2- 

 ½O2 + 2e-  

O2- 

 

Figure 1-5 Types of Fuel Cells 
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Table 1-1 Operating temperature, electrolyte employed, advantages and disadvantages, and 

applications of the various fuel cell systems. 

 

Fuel Cell 

type 

Operating 

Temp 
o
C 

Electrolyte Advantages Disadvantages Application 

Alkali (AFC) 50-100 

Low 

Concentrated 

Potassium 

Hydroxide 

(liquid) 

-Cheapest fuel cells to produce. 

- Fast kinetics for the oxygen 

reduction reaction 

-Susceptible to CO2 from 

the air. Leading to 

Performance 

degradation 

Speciality 

transport to 

medium CHP 

(combined heat 

and power) 

Phosphoric 

acid (PAFC) 

 

150-

200 

High 

 

Phosphoric 

acid 

(liquid) 

-Higher temperature operation 

allows the use of impure fuels 

as the cell is CO2 and CO 

tolerant even at high levels. 

-Highly corrosive nature 

of hot phosphoric acid. 

-Long start up time. 

Medium to large 

scale CHP 

 

Polymer 

(H+/-OH) 

(PEMFC) 

 

50-100 

Low 

Sulfonated 

fluoro 

polymer 

membrane 

(solid) 

 

-Low temperature allows fast 

start up time 

-Expensive catalyst 

materials. 

-Sensitive to fuel 

impurities due to low 

temperature operation. 

Portable devices 

to medium CHP 

 

Molten 

Carbonate 

Fuel Cell 

(MCFC) 

 

600-

650 

High 

 

Alkali metal 

carbonates 

(liquid) 

-High temperature operation 

allows the use of impure 

hydrogen fuels, and cell is not 

susceptible to poisoning by CO 

and CO2. 

- can use a variety of catalysts. 

-High temperatures and 

the corrosive electrolyte 

corrodes the cell, 

decreasing cell life. 

-Long start up time. 

-feeding of CO2 to 

cathode required 

 

Medium to Large 

CHP 

 

Solid Oxide 

Fuel Cells 

(SOFC) 

 

500-

1000 

High 

Ceramic 

(solid) 

-High Efficiency. 

-Fuel Flexibility 

-All solid state systems 

-Cheaper electrodes 

-CO no longer poisons the 

catalyst, but rather can be a 

fuel. 

High temperature exhaust can 

be used to generate further 

electricity (co-generation) 

-High operating 

temperature. 

-Long start up time. 

-Thermal compatibility 

and expansion issues 

-Cell sealing issues 

Small to large 

CHP 
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  Solid Oxide fuel cells 

The focus of this project is the development of new materials for solid oxide fuel cells 

(SOFCs) for operation at intermediate temperatures (500oC-700oC). SOFCs use a solid 

ceramic electrolyte, which conducts via either oxide ions or protons. The solid electrolyte 

removes the problems of liquid based systems (PAFC, MCFC), such as the leakage issues 

and high corrosion.16 The higher temperature operation of the system allows the use of 

cheaper electrodes, avoiding the need for expensive metal catalysts e.g. platinum.35 Even 

though the high temperature lowers the theoretical maximum thermodynamic efficiency 

of the fuel cell, the higher temperatures increases the reaction kinetics at the triple phase 

boundaries (TPB) and so improves the overall achievable performance. 

 A TPB is the point at which the three different phases meet i.e. electrolyte 

(conducting ions), electrode (conducting electrons) and the gas (either the fuel (anode) or 

oxidant (cathode)). It is at these points that the electrochemical reaction occurs; for 

example, the oxygen from the air is reduced at the boundary to form oxide ions which move 

to the electrolyte (Equation 1-5).  

1

2
𝑂2 + 2𝑒𝐶𝑎𝑡ℎ𝑜𝑑𝑒

− + 𝑉𝑜
•• → 𝑂𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

2−   Equation 1-5 

The amount of TPB points are limited in a conventional set up as shown in Figure 1-6a24 

and the kinetics would only increase when more energy is available (even higher 

temperatures). Therefore, in order to increase the kinetics of the chemical reactions 

involved in a fuel cell at the same temperature, more TPB points must be introduced.  A 

method to do this is to employ electrode/electrolyte composites, which ensures the 

electrode has both ionic and electronic conductivity Figure 1-6b.24 This allows the oxide 
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ions to pass through to the electrolyte meet the component of the composite, in this case 

an anode electrolyte composite. The additional reaction sites cause an increase in the 

electrochemical reactions and therefore improve performance.24, 36 However in Figure 1-6b 

the highlighted regions 1 and 2 illustrate the possible deactivation areas of the TPB 

composite where there is not an oxide ion pathway (1) or an electronic pathway (2).24 

 

 

The total voltage output of the SOFC is equal to the predicted thermodynamic potential, 

minus the voltage associated with the activation losses, the ohmic losses and mass 

transport losses (Equation 1-6). 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐸𝑡ℎ𝑒𝑟𝑚𝑜 − 𝑉𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑉𝑜ℎ𝑚𝑖𝑐 − 𝑉 𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡         Equation 1-6 

Figure 1-6 Illustration of a) pure anode in contact with an electrolyte b) Composite material of 
anode and electrolyte in contact with an electrolyte. (red sites are the triple phase boundary 
points showing the meeting of O2-, e− and H2). Taken from Energy & Environmental science 
with permission from the RSC. 
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Table_ 1-2 Explanation of the thermodynamic potential and the losses occurred to a 
fuel cells output voltage 

Voutput Total voltage output under operation of the 
fuel cell  

Vactivation These are the losses due to the kinetic 
limitation of the reactions of the TPB at the 

electrodes. 

Vohmic These are the losses associated with 
movement of the charge carriers through the 

fuel cell. 

Vmass transport These are the losses associated  with the 
removal of waste materials and the supply of 
fuel /oxidant at the TPB, which becomes most 

significant at high current densities 

Ethermo Thermodynamically predicted potential 

 

Taking Equation 1-6 and its factors into account, the lower theoretical thermodynamic 

efficiency caused by the higher temperature can be overcome. The total performance 

output of the cell can be maximised by operating at elevated temperatures as this 

minimises the losses. In addition, using a high temperature allows a wide range of fuels 

(hydrogen-hydrocarbon) to be used, thus removing the need to purify the fuel and allowing 

internal reforming in the cell.16, 35, 37 Internal reforming can be achieved in a SOFC to allow 

the use of smaller hydrocarbons as fuels. For example if propane was supplied as the fuel 

to the anode it would undergo reactions to produce hydrogen and CO, with CO further 

reacting with H2O to give H2 and CO2 (Equation 1-7 and Equation 1-8).21 Further gains in 

efficiency can be achieved making use of waste heat to deliver a combined heat and power 

system (CHP). 

Reactions with propane as a fuel: 
𝑪𝟑𝑯𝟔 + 𝟑𝑶𝟐 ↔ 𝟑𝑯𝟐𝑶 + 𝟑𝑪𝑶  Equation 1-7 

𝑪𝑶 + 𝑯𝟐𝑶 ↔ 𝑯𝟐 + 𝑪𝑶𝟐    Equation 1-8 
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However, there are critical disadvantages to using hydrocarbons and the high temperature 

operation of fuel cells. Hydrocarbon fuels added to the anodes side usually contain 

impurities such as sulphur which can poison the anode. The high temperature operation, 

(800°C-1000°C for traditional systems) has also limited the commercial applications, due to 

issues with the long term stability of the materials used and the sealing of the cell.38, 39 

Lowering the operational temperatures to around 500°C would help to solve many of these 

disadvantages whilst keeping the advantages. However with the current materials such as 

yttria stabilised zirconia electrolyte, this can severely limit the cells performance and so 

there is a key need to develop new materials with improved properties.40, 41  

The anodes in the SOFCs must have high electrocatalytic activity for the hydrogen 

oxidation reaction (HOR) while the cathode must have high activity for the oxygen 

reduction reaction (ORR).  Both electrodes require high electronic conductivity to transport 

the electrons to/from an external circuit and they must also be stable in the harsh oxidising 

(cathode) and reducing environments (anode).42 Together they must also show compatible 

chemical stability and thermal expansions with the electrolyte that they sandwich. The 

production of an intermediate temperature fuel cell would be beneficial not only in terms 

of stability and sealing of the cell, but also for the overall production and maintenance 

costs.43 Therefore new electrode and electrolyte materials are necessary to operate SOFCs 

successfully at intermediate temperatures (500°C-700°C). 
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 Conventional materials for SOFCs 

 Oxide ion conducting electrolytes 

SOFC electrolytes need high ionic conductivity, negligible electronic conductivity, good 

densification and chemical/thermal stability at both the operating temperature and in 

reducing/oxidising conditions.4,38 Conventional electrolytes conduct through the migration 

of oxide ions and in this respect, the traditional SOFC electrolyte materials are the fluorite-

type oxide ion conductors, which conduct through the migration of oxide ions via a vacancy 

hopping mechanism.38,44,45  In general the ionic conductivity of these vacancy conducting 

electrolytes can be improved by; increasing the fraction of vacancies available, having an 

open framework to allow the movement of ions, and having full and vacant sites of 

comparable energy.46 An alternative conduction mechanism is displayed by the more 

recently developed apatite electrolytes. They have been shown to conduct via an 

interstitial oxide ion conduction mechanism, with the flexibility of the structure allowing 

the accommodation of extra oxide ions in interstitial sites within the structure. 

1.2.1.1 Fluorite electrolytes 

The most common SOFC electrolyte is based on zirconia ZrO2 which has the fluorite 

structure, and below 2300oC is a poor conductor. Above this temperature a phase change 

from monoclinic to cubic occurs and the conductivity increases significantly.46, 47 In this 

structure the Zr4+ cation forms a face centred cubic lattice with O2-
 anions in the tetrahedral 

sites.25 In order to stabilise this cubic structure to lower temperatures various doping 

strategies have been employed. This involves lower valent dopants (Y3+,Yb3+,Gd3+, Ca2+, 

Mg2+) on the Zr4+ site, which have two beneficial effects; namely they stabilise the cubic 

structure (favouring disorder) and at the same time produce oxygen vacancies.35 Doping 
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with Y3+ to give yttria stabilised zirconia (YSZ) has proven to be the most widely used 

electrolyte, due to its low cost and its good mechanical and electrical properties.48 However 

this electrolyte requires high operating temperatures (800-1000°C) to provide the 

acceptable oxide ion conductivity. This is a major disadvantage in the operation of the cell, 

causing problems in terms of stability and sealing of the overall cell.38, 49 Further doping 

studies with scandium have provided stabilised zirconia with higher oxide ion conductivity, 

and machine processes to produce thin films have been attempted but both these 

strategies are at the expense of increasing costs.  

Another fluorite electrolyte material is doped CeO2, which has a better ionic conductivity 

than YSZ at lower temperatures. The dopants (e.g. Sm3+, Gd3+) produce oxide ion vacancies 

which increase the ionic conductivity and allow a lower operating temperature to be used 

(500-700°C).38, 43, 50 The disadvantage of stabilised ceria is that at temperatures above 

600°C in low partial pressure of O2, partial reduction of the ceria takes place converting 

some Ce4+ to Ce3+. This leads to a reduction in the overall voltage of the cell as the electronic 

Figure 1-7 Fluorite structure XO2; cations are blue and oxide anions 
are red X = Zr, Ce. 
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conductivity is no longer negligible (some electrons flow through the electrolyte) leading 

to partial cell short circuiting. 51-53     

1.2.1.2 Apatite electrolytes 

Apatite electrolytes have been widely researched due to reports of high oxide ion 

conductivity and lower activation energies for oxide ion conduction than the conventional 

YSZ electrolytes.38,54 The high conductivity of this system was first reported in 1995, and 

they have the general formula M10-x(XO4)6O2+y, (M = alkaline or rare earth metal and X = Si, 

Ge, P).38,44,55 The apatite structure consists of (M4)(XO4)6 framework with the remaining 

M6O2 occupying the channels (shown in Figure 1-8).44 The silicate and germanate apatite 

systems have been shown to have the highest oxide ion conductivity, and have a great 

flexibility to dope on either the M or X site to introduce oxide ion excess.4, 45, 55 Apatite 

silicate and germanate systems, in particular, are reported to conduct by an interstitial 

oxide ion mechanism, with the structure having the capability to accommodate excess O2- 

Figure 1-8 Apatite structure (tetrahedral (XO4), Large 
sphere = M small sphere = O 
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ions. In contrast, the inability to accommodate these excess oxide ions accounts for the 

poor conductivity seen in apatite phosphate systems.  

The high conductivity of the silicate apatites has attracted major research for SOFCs due to 

the lower activation energy and lower cost of the raw materials compared to the 

germanate systems. The fully (cation and oxygen) stoichiometric systems La8A2Si6O26 (A= 

Ca, Sr, Ba), however, show extremely poor conductivity (e.g. for La8Sr2Si6O26 σ = 5.6x10-4 S 

cm-1 at 800°C).56, 57 Computer modelling studies suggest the stoichiometric systems have 

no interstitial oxide ions and that the poor conductivity seen is due to a vacancy conduction 

mechanism only (with such vacancies present due to low levels of Schottky defects).56 

Further studies of apatite silicate systems have shown a major improvement in the 

conductivity, provided by either the incorporation of oxygen excess or by the presence of 

cation vacancies, the latter are believed to create interstitial oxide ions by enhancing 

Frenkel defect formation.38, 58, 59 However the location of the interstitial sites that mediate 

the conduction mechanism has proven difficult to conclusively identify, and the conduction 

is seen to be anisotropic, with much higher conductivity seen parallel to the c direction than 

perpendicular.58, 60 The introduction of oxygen excess systems in particular leads to higher 

conductivity. The extra oxygen is believed to be located within the channels for the silicate 

apatites, allowing oxide ion migration through the structure, with a maximum of 0.5 excess 

oxygen per formula unit being accommodated in the channels for the silicate apatites.61 

The doping on the Si4+ site with Al3+, Mg2+, or Ga3+ with concomitant charge balancing by 

increasing the lanthanum content has also provided higher conductivity results, especially 

if oxide ion excess is present e.g. La9.8Si5.7Mg0.3O26.4  σ800°C = 0.074 S cm-1.61 The added 

advantage of these apatite materials is that their thermal expansion is compatible with 
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known electrode materials.38  The disadvantage of these apatite systems is the high 

temperature (>1600°C) required to produce dense membranes and large grain sizes, 

required for a SOFC electrolyte.62 In addition other researchers have suggested problems 

with the chemical compatibility of silicon containing materials with conventional 

perovskites.49 So far fuel cell testing containing La9.8Si5.7Mg0.3O26.4 electrolyte, La0.8Sr0.2CoO3 

cathode and Ni-Sm doped ceria anode has achieved a power density of 120 mW cm-2 at 

800°C, which is much lower than current YSZ based systems, showing the need for further 

development work.61 

1.2.1.3 Perovskite materials 

Perovskite (CaTiO3) is a mineral found in nature, however, it is now more used as general 

description for a material with the same type of crystal structure. The ideal formula for a 

perovskite oxide is ABO3. The structure of a cubic perovskite is shown above in Figure 1-9, 

and it consists of an A cation in the centre with 12 anions coordinated around it.25 The B 

cations are on the corners of the cell with octahedral co-ordination to the anions. The 

Figure 1-9 :- Perovskite structure showing corner-
shared BO6 octahedra with A centred on 12-
coordinate sites. 
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perovskite structure has great flexibility in the cations it can contain, although the A cation 

is required to be larger in comparison to the B cation. The crystal class that the structure 

forms i.e. cubic, hexagonal, tetragonal, and so forth, can be predicted by the Goldschmidt 

tolerance factor. This factor is calculated from the ionic radii (Equation 1-9) 

𝒕𝒐𝒍𝒆𝒓𝒂𝒏𝒄𝒆 𝒇𝒂𝒄𝒕𝒐𝒓 =
(𝑹𝒂+𝑹𝒐)

√𝟐(𝑹𝒃+𝑹𝒐)
        Equation 1-9 

For an ideal cubic perovskite, the tolerance factor will be equal to one. However, the many 

combinations of cations on both A and B sites result in a non-ideal structure and a tolerance 

factor that deviates from one.63-65 If the B cation is too large, a tolerance factor lower than 

1 is obtained. This causes strain in the structure, which is compensated by tilting of the 

octahedra to remove the strain, resulting typically in a unit cell of lower symmetry.   If the 

factor is greater than 1 the B cation is too small, so there will either be displacement of the 

B cation off centre, as in BaTiO3, or a change in the structure where there will be some face 

sharing of the BO6 octahedra leading to a hexagonal perovskite system. The cation is not 

the only ion that can affect the tolerance factor, as the change in stoichiometry of the 

structure (usually oxygen) can also allow deviations from the ideal value of 1. Oxygen 

vacancies can cause or relieve the strain on the structure, e.g. by altering the B cation 

oxidation state (hence its size). Perovskite electrolytes are usually formed through doping 

of the A and B sites with aliovalent cations. These cause oxide ion vacancies and give rise 

to the high oxide ion conductivity seen in some perovskite electrolytes e.g. Sr and Mg 

doped LaGaO3 (LSGM). However, producing too many oxide ion vacancies will result in a 

structure change e.g. for the highly deficient SrFeO2.5 the brownmillerite structure is 

formed. The brownmillerite structure is an oxide ion vacancy ordered perovskite structure 
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consisting of alternating octahedral and tetrahedral B cation layers. This ordering of the 

oxide ions significantly decreases the oxide ion conductivity.  

 Proton conducting electrolyte   

Traditionally the electrolyte used in SOFCs consists of an oxide ion conductor, e.g. Gd doped 

CeO2 or YSZ. However it was reported that high temperature proton conductivity was 

possible in some systems containing no structural proton, such as Gd doped BaCeO3 (σ600°C 

= 0.05 S cm-1).66, 67 Further research into proton conductivity was conducted and oxides 

that were originally thought to show only oxide ion conduction, were shown to display 

proton conduction in a wet atmosphere.38, 68, 69 The proton conduction is provided by the 

adsorption of water molecules from the gas phase into oxide ion vacancies. The water 

dissociates to produce hydroxide defects at the cost of an oxide ion vacancy.25, 38, 68-71   

 𝑯𝟐𝑶 + 𝑽𝒐
••+𝑶𝒐

𝒙 → 𝟐𝑶𝑯𝒐
•     Equation 1-10 

The proton conduction mechanism in perovskite electrolytes involves the transfer of 

protons between the OH- ions and the O2- ions in the structure (Grotthus mechanism),69, 71-

73 rather than the vehicle mechanism of hydroxide ion transport.38, 73 The neighbouring 

environments of the oxygen atoms and the hydroxide ion have a major effect on the proton 

conduction, with the rate limiting step being the proton transfer between the OH- and O2-, 

as the reorientation step involved is predicted to be faster, due to a lower activation 

energy.25, 71 

 The advantage of SOFCs utilising a proton conducting electrolyte is that a lower 

operating temperature can be used due to the lower activation energy for proton 

conduction, which is typically 2/3 that of oxide ion conduction. Furthermore the transport 
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of protons removes potential water management issues on the anode side, as the fuel is 

no longer diluted since the water exhaust is now produced on the cathode side of the cell.69 

There are a number of high temperature protonic conductors suitable for proton 

conducting solid oxide fuel cell (PC-SOFC) electrolytes, with the most promising having the 

perovskite structure. 

1.2.2.1 Perovskite-type proton conducting electrolytes 

The most promising ceramic oxide proton conductors, discovered first in the 1980s and 

since then extensively studied, are the perovskite-type cerates and zirconates. Both the 

cerate systems, BaCeO3 and SrCeO3 doped with a trivalent cation (e.g Gd3+/Y3+), are shown 

to have high protonic conductivity, with the BaCeO3 based systems having the highest.74 

However both BaCeO3 and SrCeO3 have poor mechanical and chemical stability, being 

susceptible to CO2 below 800°C which can result in decomposition and the formation of 

non-conducting carbonates e.g. BaCO3.74-76  Zirconate perovskite-type systems such as 

BaZrO3 have been shown to have the higher mechanical and chemical stability required for 

commercial applications, but a much lower protonic conductivity due to a high grain 

boundary resistance.69, 74, 75 Further research has been conducted on these two systems 

whereby Zr4+ doping into the BaCeO3 system can provide both improved stability along with 

comparable proton conductivity of the pure cerates.69, 70, 74 A number of lanthanum 

containing systems have also been shown to display protonic conduction despite no 

structural protons, with lanthanum phosphates, lanthanum niobate and lanthanum barium 

gallate being the most researched systems. 
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1.2.2.2  Lanthanum phosphate  

Lanthanum orthophosphate (LaPO4) came under intense research in the 1990s due to its 

high chemical stability and unexpected protonic conduction (albeit of relatively low 

magnitude).73, 77-80 The proton conductivity is introduced through alkaline earth doping to 

introduce oxide ion vacancies. The oxide ion vacancies are accommodated as P2O7
4- units 

that are capable of adsorbing water from a wet atmosphere, breaking up the P2O7
4- units 

to give hydrogen phosphate ions (HPO4
2-).6,45,49 The larger sized Sr2+ doping provides a 

higher conductivity than the Ca2+ doped system, with negligible electronic conductivity at 

intermediate temperatures.77, 79 However excess doping in the LaPO4 system causes 

impurities to form at the grain boundaries e.g. Sr2P2O7, which decreases the conductivity.78 

Further disruption to the conductivity is seen at high sintering temperature (above 1350°C), 

due to the appearance of impurity phases in both the Sr2+ and Ca2+ doped LaPO4.77 The 

proton conductivity at 900°C in a wet atmosphere is  3x10-4 S cm-1 and 2x10-4 S cm-1 for Sr2+ 

and Ca2+ doped LaPO4 respectively.77 These low levels suggest that it is not viable material 

for commercial SOFCs. 

1.2.2.3  Lanthanum niobate  

Lanthanum niobate has attracted the most recent interest, for which alkaline earth doping 

leads to significant proton conductivity69, 76 On Sr2+ or Ca2+ doping, oxide ion vacancies are 

accommodated as defect clusters e.g. Nb3O11
7-. The highest conductivity is seen for the Ca2+ 

doped LaNbO4 (0.001 S cm-1 at 800°C).81, 82 However problems are seen with these system 

in terms of the thermal expansion co-efficients and chemical reactions of doped LaNbO4 

with potential cathodes e.g. LaCoO3. On the other hand good chemical compatibility can 

be seen between LaNbO4 and LaMnO3 based cathodes, with high stability towards a CO2 
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environment.25, 76 Therefore to achieve a successful SOFC with doped LaNbO4 further work 

is required to either increase the protonic conduction, which is much too low for 

commercial application at the moment, or to produce thinner electrolyte layers with the 

mechanical strength and stability required.82  

1.2.2.4  Lanthanum barium gallate 

The lanthanum barium gallate system (La1-xBa1+xGaO4-x/2) displays both oxide and proton 

conductivity, in this structure, the Ga3+ is tetrahedrally co-ordinated.83 The addition of extra 

Ba2+ or Sr2+ in place of La3+ increases the conductivity by forming oxide ion vacancies, which 

are available for H2O incorporation. These oxide ion vacancies are accommodated by the 

formation of Ga2O7
8- units. The La0.8Ba1.2GaO3.9 system has the highest conductivity of 

1x10⁻4
 S cm-1 at 800°C 83-85 Further research is required to improve the performance of such 

systems as well as examine the chemical and mechanical compatibility with commercially 

used electrodes.  

Overall proton conducting electrolyte research is dominated by barium based perovskite 

type systems, but the doped lanthanum based systems do provide alternative avenues of 

research for proton conducting electrolytes, which have improved CO2 stability. 

 Electrodes  

 SOFCs requires two electrodes, a cathode and an anode, and these have attracted 

considerable research effort over the last 60 years. The greatest problem for the traditional 

cathode material at intermediate temperature (500-700°C) is the poor kinetics of the ORR. 

This is the limiting factor for most cathode materials and therefore solid oxide fuel cells; 

“The overall reaction cannot move faster than the slowest step”.86 Limitations for the 
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anode is its toxicity with nickel based materials used and its chemical stability due to either 

sulphur poisoning or the hydrogen reducing atmospheres. 

  Cathode materials 

As previously mentioned the cathode in SOFCs is supplied with air and the O2 adsorbs to 

the surface of the cathode and is reduced to form two oxide ions by accepting electrons, 

with this reaction usually occurring on what is known as a TPB. In the case of an oxide ion 

conducting electrolytes, the oxide ions are then transported through the remaining 

cathode to the dense electrolyte and through to the other side of the cell combining with 

hydrogen at the anode forming water. For this all to occur the cathode must possess certain 

properties a 

 High electronic conductivity in an oxidizing environment. 

 High oxide ion conductivity. 

 Good chemical compatibility and thermal stability with the electrolytes and 

interconnector materials.    

 High catalytic activity towards the oxygen reduction reaction (ORR).   

  Sufficient TPB and porosity to allow for O2 diffusion.  

 Low cost.  

1.3.1.1 Platinum 

Platinum was the first cathode material used successfully in SOFCs and is still scientifically 

one of the best today. Generally, platinum now is used in small amounts as a paste or on a 

supported material, so that the cathode contains small Pt particles on a larger substrate. 

This provides a high surface area for the Pt and defined particle sizes, this results in an 
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increased efficiency of the Pt cathode.  Problems do still exist with Pt cathode, mostly 

associated with its cost which has limited its use commercially. In addition Pt cathodes can 

be poisoned at low temperatures by CO, if this enters the cell and absorbs to the surface it 

can block the active sites and reduces the efficiency. Mixed cathode alloys containing Pt 

and Ru have been investigated to solve this problem however this increases costs even 

further and is not commercially viable. In the 1960s it was discovered that low cost 

transition metal oxides with the perovskite structure could be used as an alternative to Pt 

based cathodes. 

1.3.1.2 Perovskite cathodes 

The highly flexible perovskite structure allows for its potential use as not only a electrolyte 

but also a cathode.87 The traditional perovskite oxide ABO3, consists of a metal oxide 

containing a large alkaline or rare earth cation (A) and the smaller transition metal cation 

(B) such as SrCoO3 (SCO), LaCoO3 (LCO) and LaMnO3 (LMO). Perovskites can alter their 

symmetry when heated for example SCO can have three structure types depending on the 

temperature orthorhombic >653°C< hexagonal>920°C< cubic Figure 1-10.88 At each 

structure change there is an increase in the electronic conductivity, however extremely 

high temperatures are required to give conductivity values which are required for a 

successful SOFC cathode.  

Orthorhombic (RT-653°C)  Hexagonal (653-920°C) Cubic +920°C 
Figure 1-10 SrCoO3 perovskite structure showing the change of structure as the 
temperature is increased (strontium = green, cobalt = blue, oxygen = red) 
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 The majority of undoped perovskite materials at intermediate fuel cell temperatures are 

poor conductors in air, and therefore also poor cathode materials. Consequently, doping 

of these materials with lower valent dopants Ca2+ or Sr2+ on to La3+ site is typically 

performed, which introduces mixed valency. The size and charge of each dopant affects 

the perovskite system. La1-xSrxCoO3-δ (LSC) was reported as a cathode for SOFCs in 1966 and 

is an oxygen deficient perovskite, with the oxygen vacancies allowing for increased oxide 

ion conduction.89 La1−xSrxCoO3−δ(LSC) provides better catalytic performance than other 

perovskites but when used in conjunction with commercial electrolytes, for example YSZ 

or CGO, there are problems due to its larger thermal expansion co-efficient in comparison. 

This can lead to the cell undergoing thermal cracking and degradation under operation. A 

composite of LSC and the electrolyte can be used to lower the differences in the thermal 

expansion of the cathode and electrolyte, and is also as a way to produce more reaction 

sites improving the performance of the electrode. However, even in these cases the high 

thermal expansion co-efficient is still an issue. 

Following on from this perovskite La1-xSrxMnO3 (LSM) was proposed in 1975; it was found 

that doping the La3+ site with Sr2+ causes the oxidation of the Mn3+ to Mn4+ to charge 

compensate. This resulted in high electronic conductivity and high catalytic activity for the 

ORR. The LSM perovskite structure is stable and possesses high p-type conductivity in 

oxidising atmospheres ideal for cathodic conditions. However, at intermediate 

temperatures (<800°C) low ionic conductivity is a limiting factor, while at higher 

temperatures there are issues with poor chemical compatibility with YSZ, the most 

commercially available electrolyte. In particular at the YSZ/LSM boundary a nonconductive 
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layer of La2Zr2O7 can form at elevated temperatures, which decreases the overall 

performance of the cell.90   

La1-xSrxCoyFe1-yO3 (LSCF) is a perovskite type material currently under intense investigation 

as it is suitable for use at intermediate temperatures, having high electrocatalytically 

activity and a more than acceptable chemical stability and thermal expansion coefficient 

with commercial electrolytes. The mixing of the LSCF with commercial electrolytes forms a 

composite cathode.36 The LSCF is utilised mainly as the electronic conductive phase and the 

electrolyte materials as the ionic conductive phase. The composite allows both electrons 

and oxide ions to move simultaneously through the cathode. However, the LSCF does have 

a lower electro catalytic activity when compared to LSC and LSM due to the Fe3+ doping, 

and has some potential reaction issues with chromium from the interconnectors forming 

SrCrO4 which poisons the cathode affecting the ORR. 91  

Overall the research on doped perovskite cathode has shown many positives for the ORR 

and ionic conductivity, but has resulted in negatives relating to; the composition of the 

composite cathode, the interconnectors, the particle size and microstructure, and the 

chemical and thermal stability.  

1.3.1.3 Ln2NiO4 

More recently Ln2NiO4+δ materials have been proposed as a new potential cathode 

material. They have a variety of electrical and catalytical properties making them suitable 

as cathodes for SOFCs. These systems have the well-known K2NiF4 type structure (Figure 

1-11) which consists of perovskite type LnNiO3 layers separated by rock salt type LaO+ 

layers.92 Each layer has advantageous properties for a cathode material; the perovskite 

layer can accommodate oxygen vacancies while the rock salt layer can accommodate 



26 
 

oxygen interstitials.  Allowing them to work in conjunction with each other with additional 

oxide ion found in the Ln2O2 layer that can then be transported in the LnNiO3 layer.  

For SOFC cathodes two Ln2NiO4+δ compositions have been principally studied, namely Ln=La 

and Nd. Other known compositions are possible with nickel being partially substituted by 

cobalt or iron. However for fuel cell cathodes La2NiO4+δ and Nd2NiO4+δ are used due to the 

higher conductivity and lower activation energy that they possess.92, 93 It is the oxygen non-

stoichiometry that affects the properties important to the fuel cells performance such as 

electronic conductivity, TEC and chemical stability. La2NiO4+δ exhibits electronic 

conductivity above 100 S cm-1 at 800°C, making it lower than some of the perovskite based 

cathodes, but suitable for SOFCs.94 The main advantage of using La2NiO4+δ and Nd2NiO4+δ 

materials with YSZ and CGO is their comparable thermal expansion co-efficient which are 

considerably lower than Co containing perovskite materials Table 1-3.94-97 On the other 

Figure 1-11 Structure of La2NiO4+δ (La = blue, Ni = Grey, O = Green)  
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hand the chemical compatibility studies of these Ln2NiO4+δ compositions against YSZ and 

CGO showed that Nd2NiO4+δ is unreactive towards YSZ at 1000°C although reactivity is seen 

at 1100°C forming a Nd2Zr2O7 phase.98 In the case of La2NiO4+δ studies showed that even at 

900°C there is a significant reactivity with both YSZ and CGO forming La2Zr2O7 and La3Ni2O7 

respectively when heated for over two hours. This would have a detrimental effect on the 

long term stability of the materials at high fuel cell operating temperatures.99  

Table 1-3 The thermal expansion coefficient in air of electrolyte and electrode 
materials. 

 Thermal expansion co-efficient (x10-6 K-1) 300-1000°C 

YSZ (10%) 10.8 
CGO (10%) 13.5 
Nd2NiO4+δ 12.7 
La2NiO4+δ 13.0 

LSCF 17.5 

 Anode materials 

The anode requires stability in reducing conditions and catalytic activity towards the 

hydrogen oxidation reaction (HOR), high electronic and ideally also ionic conductivity, with 

compatible chemical and thermal stability with the electrolytes and interconnector 

materials similar to the cathode. 

1.3.2.1 Nickel  

 The most commercially used anode consists of a metal dispersed in a matrix of the 

electrolyte; these are known as cermets. Nickel metal is commonly used due to its high 

activity towards the HOR.100 Typically it is used as part of a cermet with the electrolyte to 

reduce the formation of Ni clusters that would normally reduce the number of reaction 

sites present, as well as to enhance the triple phase boundaries. Further the use as a cermet 

with the electrolyte ensures similar thermal expansion co-efficient reducing any thermal 
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cracking problems. The disadvantage of the use of nickel cermets is that a cross reaction 

can occur with La based electrolytes forming a non-conducting layer between the anode 

and electrolyte.53 Further stability problems exist with sulphur, which is a major impurity 

in natural gas leading to the formation of NiS and consequently poisoning of the anode. 

Furthermore coking can also occur when using hydrocarbon fuels, which also reduces the 

activity of the anode by the deposition of carbon onto the Ni particles.101, 102 Therefore 

newer alternative anode materials are under investigation, including perovskite 

chromates/titanates and doped CeO2.40, 103 

1.3.2.2 Alternative anodes 

Perovskites materials have also been studied as prospective anode materials with one 

material, La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM), being used as both an anode and a cathode 

material making a successful symmetrical fuel cell material. This material has reasonable 

electrochemical reactivity towards the HOR as the Ni/YSZ cermets.  However, it has a lower 

electronic conductivity and is also unstable with sulphur forming impurities.  

Another suitable perovskite is doped strontium titanate (SrTiO3), it is usually doped with 

trivalent cations such as Y3+ or La3+, causing mixed valency and oxide ion vacancies. The 

doped titanates exhibit high electronic conductivity in a reducing atmosphere i.e. 

hydrogen, and they also possess high chemical stability with sulphur impurities and the 

coking reactions depending on the fuels used.40, 104 Furthermore even though adequate 

thermal expansion compatibility is seen with commercial electrolytes such as YSZ, the 

titanates do have both poor ionic conductivity and electrochemical activity for the HOR 

required by a fuel cell. 104, 105 
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Finally copper doped CeO2 has shown significant electronic and ionic conductivity, and is 

more sulphur tolerant than Ni/YSZ cermets. Whilst nickel cermets become poisoned at 

below 15ppm H2S in the fuel, the copper doped CeO2 can function up to 450 ppm H2S 

before any poisoning occurs. However, the problems with the doped ceria system is that 

the electronic conductivity tends to be lower than ideal, consequently the search for new 

anode systems is an ongoing process and something that is not examined in this  project.  

 Project overview  

In this project new materials for SOFCs have been researched, focusing on two components 

of the cell; the electrolyte and the cathode.  These components were chosen as both tend 

to be limiting parts in terms of lower temperature operation. The research has focussed on 

involving only the perovskite structure, for both the cathode and the electrolyte given the 

known promise of such materials. 

 Cathode materials 

Over a number of decades, the perovskite structure has been investigated for its use as a 

cathode material. It has previously been used as a mixed ionic and electronic conductor at 

high and low temperatures. Research here has involved the use of doping strategies to 

introduce disorder into the system and improve the conduction characteristics. The doping 

strategies includes a novel oxyanion (silicate) doping into SrMnO3 (chapter_3) and 

pentavalent dopant strategies into BaCoO3 (chapter 4) in an effort to alter the perovskite 

tolerance factor toward 1 (cubic perovskite). Successful materials which showed promising 

properties were studied further against both commercial electrolytes such as CGO and 

alternative electrolytes such as doped silicate apatites and doped barium indates.  
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 Electrolyte materials 

The electrolyte research involved a strategy based upon reducing costs, whilst maintaining 

high ionic conductivity properties. It focused on modifying scandium containing cubic 

perovskite systems which have previously shown high ionic conductivity but are high cost. 

The strategy was to try to decrease the amount of scandium in the perovskite system by 

the addition of cheaper rare earth elements while maintaining the high oxide ion/proton 

conductivity (chapter 5 and 6). 
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Chapter 2 

2 Experimental 
 

 Synthesis techniques 
There are a number of different synthesis techniques used in materials chemistry, these 

include solid state, sol gel, co-precipitation, microwave and hydrothermal. Further 

techniques are available, with each synthesis technique having its own advantages and 

disadvantages. Which technique is used usually depends upon the situation i.e. the product 

required, laboratory constraints, cost and time available. This project uses the solid state 

synthesis route, as described below in section 2.1.1. 

  Solid state synthesis  

Solid state reaction synthesis, also known as the ceramic method, is the most widely used 

and accepted synthesis technique for the formation of inorganic solids. It involves the 

intimate grinding of two or more high purity solids usually carbonates or oxides, in the 

relevant stoichiometric ratios using an agate pestle and mortar. Carbonates and oxides are 

usually used as air sensitive or hygroscopic solids can lead to incorrect ratios of starting 

materials. The samples are usually heated at high temperature (>800°C) for over 12hrs.  

Example – Preparation of lanthanum strontium silicate apatite (Equation 2-1) 

 

 

High temperatures are required as the reactant must break their initial bonds, diffuse 

through the interfaces and form new bonds.106, 107 The sample is usually reground after the 

 

4.5La2O3(s) + 6SiO2(s) + SrCO3(s)    La9SrSi6O26.5(s) + CO2(g)   Equation 2-1  

1) 1100°C 12hrs 

2) 1400°C 12hrs 
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first heat treatment as the product will only form at the contacted interfaces of the 

reactants. This regrinding process produces new interfaces between the reactants, 

reducing the particle sizes and increasing the surface area which means a higher reactivity. 

As the product grows the length of diffusion increases and the reaction rate falls. Not only 

grinding but varying the firing conditions e.g. temperature, time and the reaction 

atmosphere can increase the reaction rate.  

The subsequent pure products are pressed into pellets increasing the contact between the 

grains, using either 10 or 13 mm dies, at a pressure of 2500-5000 kg cm-2and sintered. 

Sintering is when a material is heated to near its liquefaction temperature and causes 

particles separated by grain boundaries to merge together creating one solid grain. 

The advantages of the solid state reaction 

technique are its inherent success and simple 

procedure. The major disadvantages to this method are 

the need for both high temperatures and long reaction 

times. This results in high costs for the technique and, in 

some cases, partial evaporation of volatile starting 

materials (for example barium in this work). To 

overcome the evaporation issues a sealed container can 

be used, and/or additional excess of the starting 

material (barium carbonate) can be added before the first heat treatment, usually between 

3%-10% by weight. In this work all heat treatments took place in an alumina crucible with 

a lid, and pressed pellets were covered with sacrificial powder where appropriate (Figure 

2-1). Full synthesis details are provided in the experimental sections of each chapter. 

Lid  

Crucible 

Figure 2-1 Solid State – alumina 
crucible, lid and sample. 

Pellet    

Powder   
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 Structural Characterisation  

Powder diffraction is a non-destructive technique for the analysis of crystalline materials 

and is used to identify new phases as well as the purity of a material. In order to fully 

appreciate and understand powder diffraction, a basic background to crystallography is 

required. 

 Crystallography 

Crystalline materials comprise a 3-dimensional array of atoms, regularly arranged in an 

“ideal” crystal structure; the simplest repeating arrangement of the atoms is represented 

by the unit cell. This unit cell can be repeated by translations and shows the symmetry of 

the entire crystal lattice. The dimensions of the unit cell are known as its cell parameters, 

these are defined as the length of each axes in each of the three directions a,b,c and the 

internal angles between the axes α, β, γ (Figure 2-2).  

Each unit cell can be classed in to one of the seven possible unit cell shapes also known as 

crystal classes. The crystal class of a unit cell is defined when the different angles and 

lengths of the cell parameters are considered. The seven different unit cell shapes are 

shown in Table 2-1. 

α 

b 

a 

c 

β 
γ 

Figure 2-2 Basic labelling of 
axis, lengths and internal 
angles of a cubic unit cell. 

a 

b 

c 
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In addition to the crystal classes there are different types of unit cells, each relating to the 

placement of lattice points within the cells; i.e. primitive (P), body centred (I), and face 

centered (F) side centred (C). The use of these crystal classes, along with the allowed 

placement of lattice points within the cell, produce 14 lattices; these are known as the 

Bravais lattices, as shown in Figure 2-3.108, 109 

Unit cell shape Lengths Angles 

Cubic a=b=c α=β=γ=90° 

Tetragonal a=b≠c α=β=γ=90° 

Orthorhombic a≠b≠c α=β=γ=90° 

Hexagonal a=b≠c α=β=90°γ=120° 

Trigonal/ 

Rhombohedral 

a=b=c α=β=γ≠90° 

Monoclinic a≠b≠c α=γ=90° β≠90° 

Triclinic a≠b≠c α≠β≠γ≠90° 

Figure 2-3 14 Bravais lattices 

Table 2-1 Seven crystal classes 
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There are also additional symmetry elements to a crystal structure; these symmetry 

operations are known as point groups of which there are 32. They are produced through 

the symmetry operations: - 

 Centre of inversion  

 Mirror plane  

 Rotation axis  

 Translation vector 

 Rotation followed by inversion  

 Screw axis (rotation then translation) 

 Glide plane (mirror plane then translation) 

Combining the 32 point groups and the 14 Bravais lattices gives 230 possible 

crystallographic space groups. These space groups show the structures full symmetry 

operations.  

To fully explain the diffraction elements of a crystal the concept of lattice planes are used. 

The lattice planes are shown in the terms of Miller indices, and they describe the planes 

Type of unit cell Lattice point allowed placement  

Primitive (P) One lattice point at each corner 

Body Centred (l) One lattice point at each corner 

one in the centre 

Face centred (F) One lattice point at each corner 

and one in the centre of each 

face 

Side centred (C) One lattice point at each corner 

and pair of points in the centre of 

opposite faces  

Table 2-2 Unit Cell types 
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within the crystal. The planes intersect with the lattice points and are expressed as 

fractional coordinates in each direction along the unit cell lengths (a, b, c) from a defined 

origin. These fractions are seen as whole numbers known as the (hkl) values. They are 

usually defined within brackets, and a selection of fractional coordinates with their 

respective lattice planes are shown in Figure 2-4. The combination of the space group, the 

atom positions and cell parameters provides the full description of a crystal structure. 
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 X-ray diffraction  

X-ray diffraction can be performed on either single crystals or powders, with X-rays having 

a similar wavelength to the atomic spacing in crystalline structures. This is an extremely 

powerful technique first developed in 1913 by W.H Bragg and W.L Bragg, and it is useful 

a 

b 

c 

Origin  

Figure 2-4 Example of Lattice Planes with fractional intercepts and hkl values for (100), 
(-110) and (211) 



37 
 

for a wide range of studies including phase purity, structure refinement, lattice strain, 

crystallite size and phase transitions.  

2.2.2.1 Scattering 

X-rays are scattered by the electrons in the atoms; thus the x-rays are scattered by the 

electron density distribution in the crystal structure. The scattering occurs as a beam of X-

rays (incident X-rays So) hits an atom causing the electron to oscillate, the electrons gain 

and lose energy and emit radiation (giving another beam of X-rays S). When the 

wavelengths of the X-rays beams match, it is known as elastic scattering.  The interaction 

of X-rays is different in every element due to the number of electrons present, this gives 

rise to the form factor of an atom f (equation 2-2). 

𝒇 ∝ 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏 𝒑𝒐𝒔𝒔𝒆𝒔𝒔𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒂𝒕𝒐𝒎   Equation 2-2 

 

Consequently, the form factor will increase as the atomic number (Z) increases. The form 

factor for each element has a dependence on sin θ/λ (θ = angle of incidence and λ = X-ray 

wavelength). The consequence of this dependency on both sin θ/λ and Z is that at zero θ 

the scattering of the X-rays = the number of electrons within the electron cloud. As θ 

increases to a higher angle the scattering is weaker as there is an increase in destructive 

interference between the X-rays scattered by different parts of the electron cloud so the 

form factor decreases. Studying lighter elements such as oxygen or fluorine in the presence 

of heavier elements such as the lanthanides causes the X-rays to scatter less with lighter 

elements than with heavier ones due to the number of electrons. This results in the position 
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of the lighter elements being harder to determine, Figure 2-5 shows the form factors of 

different numbered electrons in atoms and ions.110 

 

 

The structure factor Fhkl is the collective scattering power of the atoms in the unit cell. It is 

calculated through the atom scattering factor and the crystal structure (the unit cell atomic 

position/coordinates of each atom (equation 2-3)). 

𝑭𝒉𝒌𝒍 = ∑ 𝒇𝒏𝒆
𝟐𝝅𝒊(𝒉𝒙𝒏+𝒌𝒚𝒏+𝑰𝒛𝒏)𝑵

𝟏  Equation 2-3 

 

sin𝜃

𝜆
 

Figure 2-5 Form factors for different number electrons atoms and ion.  

O 

Cl 

Cl- K+ 
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2.2.2.2 Generation of X-rays  

 

X-rays are high energy electromagnetic radiation (200eV – 1 MeV); the typical X-ray source 

used in solid state chemistry produced X-ray wavelengths between 0.5 – 2.5 Å matching 

the interatomic distances of materials. X-rays are generated through accelerating high 

energy electrons from a cathode over a large negative potential to a metal anode. The 

metal anode, usually copper in most university lab based diffractometers, is bombarded by 

electrons leading to the ejection of metal core orbitals resulting in electron holes. The 

electron holes are then filled by electrons in a high energy state decaying to the electron 

holes. The electron transition from higher states to core releases energy; this corresponds 

to the X-rays wavelength. Figure 2-6 shows the decay of the outer states in electron levels 

2 and 3. Each of the outer states have sub levels (2s, 2p, 3s and 3p). It is the sublevels that 

3p 

3s 

2p 

1s 

2s 

Kβ Kα1 Kα2 

Figure 2-6 Energy level diagram of copper 
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result in the different wavelengths of X-ray observed, for example decay from 2p to 1s 

produces Kα1/ α2 and 3p to 1s produces Kβ.  

A copper X-ray spectrum is shown in Figure 2-7; the sharp peak corresponds to electrons 

decaying, producing X-ray radiation.111 The spectrum shows two sets of peaks Kα and Kβ, 

while in a lab based x-ray diffraction experiment a single wavelength of X-ray radiation is 

used, and most diffractometers use Kα1 radiation due to its higher intensity. The use of a 

crystal monochromator or filter is employed to remove the additional unwanted 

wavelengths. The crystal monochromator commonly used is a germanium single crystal 

orientated so that only Kα1 radiation is reflected and focussed on to the sample. The filter 

option passes the X-ray beam through a metal foil filter whose absorption edge lies 

between the Kα and Kβ radiation; for this to occur it must have a lower atomic number than 

the copper source, and so nickel foil filters are usually used. This filter absorbs the energy 

In
te

n
si

ty
  

Kβ 

Kα2 

Kα1 

Wavelength 

Bremsstrahlung 

Kab 

Figure 2-7 X-ray spectrum of copper 
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of the Kβ (λ= 1.392 Å) as it has an absorption edge of (Kab) λ=1.488. However, the filter does 

not remove the Kα2 radiation, and so a combination of the Kα1 and Kα2 is obtained. 

2.2.2.3 Bragg’s Law 

W.H Bragg and W.L Bragg understood that a crystal structure is a 3-dimensional arrray of 

atoms, and proposed that a crystal was composed of aligned lattice planes on which 

individual lattice points sat. In order to observe diffraction peaks, constructive inference 

must occur between the X-rays and each lattice plane. Therefore, observed diffraction is 

heavily dependent on the X-rays scattering angles on each plane and the distance between 

the lattice planes. As the spacing between the planes provides a path difference for the X-

rays, if this path difference (d) is equal to an integer (n) of the X-ray wavelength (λ) 

constructive interference will occur as build-up of intensity maxima (peaks) is observed. If, 

however the path difference does not equal an integer (n) of the X-ray wavelength, then 

destructive inference occurs, by which the X-ray beams scattering angle for the different 

planes will be different to one another, and therefore the intensity will cancel out and no 

peaks will be observed (background).  

Consider Figure 2-8 for constructive interference, as two parallel X-ray beams are diffracted 

from different lattice planes, the lower beam that travels adjacent and parallel to the first 

beam, will also travel a further diffraction distance (AB + BC) to the detectors, leading to a 

phase shift. The distances AB and BC are equivalent and therefore it is equal to 2AB. This 

all states that AB +BC = 2AB = path difference = n λ. 112 Therefore the path difference can 

be given in terms of the plane spacing (dhkl) and the angle of radiation (θ).  

sin 𝜃 =
𝐴𝐵

𝐵𝐷
          BD = dhkl      

𝑑ℎ𝑘𝑙sin 𝜃 = 𝐴𝐵           
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 2AB = 2dhlksinθ 

 𝒏𝝀 = 𝟐𝒅𝒉𝒌𝒍𝒔𝒊𝒏𝜽     Equation 2-4 

 It is possible to relate the d-spacing in crystals to the unit cell parameters. The practical 

application is that either from known unit cell parameters, one can predict the diffraction 

pattern i.e. peak positions, or from experimental observed peaks positions you can 

determine the unit cell parameters. Each of the crystal classes has a different expression 

for dhkl in terms of lattice parameters and Miller indices (some of the crystal systems 

investigated are shown in Table 2-3).  

 Table 2-3 Expression of d-spacing in 4 crystal classes 

 

 

 

Crystal systems  Relation of Lattice parameters / Miller indices  

Cubic 𝟏

𝒅𝟐
=

𝒉𝟐 + 𝒌𝟐 + 𝒍𝟐

𝒂𝟐
 

Tetragonal 𝟏

𝒅𝟐
=

𝒉𝟐 + 𝒌𝟐

𝒂𝟐
+

𝒍𝟐

𝒄𝟐
 

Orthorhombic 𝟏

𝒅𝟐
=

𝒉𝟐

𝒂𝟐
+

𝒌𝟐

𝒃𝟐
+

𝒍𝟐

𝒄𝟐
 

Hexagonal 𝟏

𝒅𝟐
=

𝟒

𝟑
(
𝒉𝟐 + 𝒉𝒌 + 𝒌𝟐

𝒂𝟐
) +

𝒍𝟐

𝒄𝟐
 

Figure 2-8 Depiction of Bragg’s law from two incident beams  
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2.2.2.4 Instrumentation 

The general arrangement of an X-ray diffractometer is fairly standard due the requirements 

needed to satisfy Bragg’s law and the commercial aspects of mass production. In this work 

the Bruker D8 X-ray diffractometers are used and are operated in both transmission and 

reflection geometry using Cu Kα1 radiation (Figure 2-9).112, 113  The transmission D8 is 

equipped with a 9 cassette auto sampler and uses a germanium monochromator. The 

reflection D8 has a nickel foil filter and is single sample only.  

 

 

 

 

 

 

 

Figure 2-9 D8 Transmission and reflection geometries for X-ray diffraction. 
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2.2.2.5 Powder diffraction data  

Each polycrystalline material will have a characteristic diffraction pattern that allows for 

phase identification. Figure 2-10 shows the simple information in a X-ray diffraction powder 

pattern; including the background, peak intensity, peak position and peak shape.  

 The background contains information about short range ordering.  

 Peak intensities provide information about the atoms i.e. their position, occupancy 

and thermal motion. 

 Peak positions are determined by the unit cell size and shape (lattice parameters). 

 Peak shape is determined by the crystallinity and micro strains of the crystallites. 

Powder diffraction is affected by both the instrument and the sample; this can include the 

sample holders, the detector, the beam intensity and the samples; fluorescence, 

crystallinity and crystallite orientation. Overall powder diffraction can give you a wide range 

of information from crystal structure, particle size/strain, phase transitions, thermal 

expansion.  

Peak 

position  
Peak shape  

Background 
Peak 

intensity 

Figure 2-10 Main components of a powder XRD pattern 
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 Rietveld analysis  

Before the Rietveld method the structural determination of a crystalline material was firstly 

performed on single crystals of an appropriate size. However, the production of large single 

crystal is not always possible for some materials. Consequently, structural determination 

of X-ray powder diffraction was developed but it was only initially performed on powder 

diffraction materials that were of high symmetry. This was due to peaks at high symmetry 

being well resolved (not overlapping with each other), so an integrated intensity method 

was possible. However, most structures are not such high symmetry and so, recognising 

this, Hugo Rietveld in the 1960s produced a method now known as the Rietveld refinement 

method.114-116 It allows powder diffraction data to be used for complex structural 

determination. Rather than using the intensity of each peak the data is collected in 

thousands of individual 2θ steps. Every data point (background included) is then used and 

applied to a least square refinement model until the observed experimental data and 

calculated model fit.117 To fit the observed data model, the calculated base model must be 

created and requires information such as the symmetry information (space group and cell 

parameters) and the approximate atomic structure (starting atomic positions) which can 

all be gained from the crystallographic information files (CIF) of related materials. These 

data files are available for a wide range of materials from the International Crystallographic 

Structural Database (ICSD). In addition the Rietveld refinement requires the instrumental 

parameter file of the X-ray diffractometer used, which includes information such as the 

source of radiation wavelength used and whether a monochromator or filter was used to  

select the wavelength. 
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There are a variety of computer programs that can be used for Rietveld refinement. They 

include GSAS (General Structure Analysis Software), TOPAS (Total Pattern Analysis 

Solution) and Fullprof.118, 119 Each system works on the same principles, but each has its 

own advantages and disadvantages to the user. They all allow for single or multiple phase 

refinements and for several atoms to be added on to the same position so that the partial 

replacement of atoms through doping can be studied.  For this work the GSAS suites 

programmes was only used and the quality of the Rietveld refinement is assessed both 

visually and mathematically.117, 120 

2.2.3.1 General structure analysis software    

 The GSAS Rietveld refinement programme uses a least squares model to minimise the 

difference between the calculated and observed patterns on a point by point basis. The 

minimisation during the least square model is equal to the residual Sy (equation 2-5). 

 

𝑺𝒚 = ∑ 𝒘𝒊[𝒚𝒊(𝒐𝒃𝒔) − 𝒚𝒊(𝒄𝒂𝒍𝒄)]𝒊
2 Equation 2-5 

 

 𝑦𝑖(𝑜𝑏𝑠) = observed intensity at the ith step  

𝑦𝑖(𝑐𝑎𝑙𝑐) = calculated intensity at the ith step  

wi = weighting of each point (1/yi) 
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In order to determine the best fit of the calculated data to the observed data, certain 

parameters can be refined; these include the unit cell parameters, zero-point error, 

background, scale factors, profile parameters, atomic co-ordinates, site occupancies and 

thermal parameters.117, 120 The approach is to refine the parameters of the initial calculated 

data incrementally in order to fit the experimental data. The refinements to the parameters 

are applied to the initial data over a continual cycle process, with each cycle producing a 

new fit. A visual sign of the fit between the calculated and the observed is possible with live 

plot view (Figure 2-11). The difference line, shown here in blue, is used to determine the 

refinements success.117, 120 

𝝌𝟐 = [
𝑹𝒘𝒑

𝑹𝒆𝒙𝒑
]
𝟐

 Equation 2-6 

For a “perfect refinement chi squared” χ² should be equal to 1 with Rwp and Rexp being the 

same (equation 2-6). It is known as the goodness of fit parameter and a value lower than 4 

in a refinement is seen as a success. However, it can also be misleading and is only an 

Figure 2-11 GSAS live plot view refinement profile; background (green), Calculated (red), 
observed (X), difference between the observed and calculated (blue) and phase (pink tick 
marks)  
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indication of the refinement, as it is heavily dependent on the Rexp. Also χ² values <1 are 

impossible and is not an indication of a good fit, but more an over analysis of the 

parameters used on poor quality data. Successful refinement uses both numerical methods 

(R factors/chi) and visual plots to evaluate whether the structural model is a good one.117, 

120 

The R factors of each cycle that are used to validate the fit are 

R profile - 𝑹𝒑 =
∑𝒚𝒊(𝒐𝒃𝒔)−𝒚𝒊(𝒄𝒂𝒍𝒄)

∑𝒚𝒊(𝒐𝒃𝒔)
  Equation 2-7 

 

R weighted - 𝑹𝒘𝒑 = [
∑𝒘𝒊((𝒚𝒊𝒐𝒃𝒔)−𝒚𝒊(𝒄𝒂𝒍𝒄))²

∑𝒘𝒊(𝒚𝒊(𝒐𝒃𝒔))²
]1/2 Equation 2-8 

 

R expected 𝑹𝒆𝒙𝒑 = [
(𝑵−𝑷−𝑪)

∑𝒘𝒊(𝒚𝒊(𝒐𝒃𝒔))²
]1/2 Equation 2-9 

 

N = diffraction patterns total number of data points  

P = number of refined parameters  

C = number of constraints 

 

 The R factors can sometimes give misleading results though with  

- Rwp being over and under estimated for example; an unknown impurity present will 

change the calculated and observed scan difference, causing a much larger Rwp 

value. On the other hand if the background is incorrectly refined and accounts for 

some of the intensity of a peak then a lower Rwp is seen.   
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-  Rexp the results can give errors related to the length of scan, a too short scan will 

give poor quality of data and a large Rexp. A too long scan will cause a too small Rexp 

due to the errors.  

 Raman Spectroscopy  

Raman spectroscopy is used to study the bonding in materials through analysis of the 

vibrational and rotational modes in a molecule.121 It was first discovered in 1928 by C.V. 

Raman and K.S. Krishnan, and named after Raman. For the modes to be observed (i.e. be 

Raman active) the molecules must have a change in polarizability; this is the affinity of a 

molecule to have a dipole moment. Raman spectroscopy uses monochromatic light (single 

wavelength) over a possible range of infrared to ultraviolet light. The radiation of specific 

wavelength interacts with the molecules electron cloud and raises its vibrational energy 

level to what is known as an excited or virtual state.121 

This excited state is the distortion of the electron cloud of a covalent bond, and is highly 

unstable and short lived. It will emit radiation of another wavelength to compensate. The 

Figure 2-12 Raman spectroscopy energy transitions with Rayleigh and Stokes and Anti-Stokes lines. 
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difference in energy from the ground vibrational state of the molecule to the excited state 

and the resultant emitted radiation (photon) is what is of interest (Figure 2-12). 

 In Rayleigh scattering or elastic scattering the energy of the incident radiation to promote 

the molecule to the excited state will equal the emitted radiation back down to the ground 

state, and no change in the molecules vibrational energy level is observed. Since the initial 

radiation has only interacted with the electron cloud, and due to the low mass of electrons, 

this results in very little scattering and no measurable difference in the energy of the 

emitted photon. 

However, when inelastic or Raman scattering is observed the incident radiation’s energy 

and the emitted energy will differ greatly. The initial radiation will scatter with the electron 

cloud and a significant transfer of energy may be seen between the radiation and the 

molecule, which will introduce motion within the molecule in the form of molecular 

vibrations. The resulting radiation emitted will therefore be different in energy and the 

molecules will not fall back to the original vibrational energy levels. This can happen in two 

ways, Stokes or Anti-Stokes. Raman scattering to give Stoke lines are a result of emitted 

radiation being reduced in energy by the transfer of energy to the molecule.  In Anti-Stoke 

lines the molecule is in the excited vibration state and so increases the energy to the 

emitted radiation. 

The intensities of the Stokes and Anti-Stokes lines are relative to the occupancy of the 

ground vibrational states. An increase in temperature will increase the intensity of anti-

stoke lines, as there are more molecules in the V=1 ground vibrational state.  
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Raman spectroscopy can provide both quantitative and qualitative data. The intensity of 

the peaks are proportional to the amount of Raman active components in the molecule, 

and the bands seen in the Raman spectra can characterise different groups in a material. 

In this work a 532nm wavelength ion laser was used to irradiate the powder samples, being 

collected on a Renishaw InVia Raman microscope (Figure 2-13).122 This instrumentation 

works via a monochromatic beam of light being produced from the laser which is focused 

via mirror optics and directed on to the sample. The beam can be focused on a specific area 

of the sample, which can be viewed via a video camera. 

To stop the high proportion of Rayleigh scattering photons overwhelming the 

detector they are removed by a holographic notch filter, which leaves the weaker Raman 

scattering lines. The Raman lines are sorted and detected by a diffraction grating and a 

charge-coupled detector (CCD) to give the Raman spectra displayed.  

 

Figure 2-13 Raman microscope Renishaw 532nm optics and web camera active 
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 Thermal analysis  

 Thermal analysis techniques allow the investigation of chemical and physical changes of a 

material over a set temperature range. The techniques used can be quantitative and/or 

qualitative. Table 2-4 shows a list of the thermal analysis techniques used in this work. 

Table 2-4 Thermal analysis techniques 

Thermal techniques  Key result 

Thermogravimetry Analysis (TGA) 

 

Mass change  

Differential Thermal Analysis (DTA) Detection of relative endothermic or 

exothermic reaction.  

Gas analysis (GA-MS)  Gas evolved from a sample coupled with 

mass spectrometry for detection. 

Dilatometry The thermal expansion or contraction. 

 

 TGA coupled with DTA and GA-MS 

The technique of thermogravimetric analysis (TGA) is used to heat a known mass of a 

sample using a specific heating rate for a specific time, and measures the mass gained or 

lost.123 The sample is placed inside a platinum or alumina crucible with an associated lid 

added. This is positioned on a precision thermobalance to record the mass changes next to 

a reference crucible. The pre-set temperature programme allows a specified temperature 

ramp rate, a holding time at the end temperature, and a desired cooling rate. A correction 

file is used for which an empty crucible has undergone the same heating conditions as the 

sample, so that any fluctuation in the crucible mass (due to e.g. buoyancy effects) over the 

temperature programme can be subtracted from the sample data.123  
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Furthermore, the TGA data can be collected in a range of atmospheres, in this work a N2 

protective gas for the machine is always used. Additional testing gases such as H2, N2, O2 

and CO2, depending on the experiment, were used; e.g. N2 was used to give an inert 

atmosphere, in order to prevent oxidation of the sample. 

The TGA instrument is incorporated with a differential thermal analyser (DTA) and coupled 

to a gas analyser mass spectrometer (TGA-MS). The DTA uses the reference crucible and 

sample crucible which are undergoing the same temperature programme to determine 

phase transitions. The temperature of each crucible is recorded and the difference 

between the sample and reference allows an exothermic (sample crucible higher 

temperature) or endothermic (sample crucible lower temperature) reaction to be 

evaluated. The TGA instrument is coupled to a gas analyser mass spectrometer (GA-MS) 

which measures the mass to charge ratio of the gases given off during the measurement, 

this allowing the gases of decomposition or desorption of the sample to be measured.  

Figure 2-14 Example TGA – Mass (black line), DTA (green line), m/z 18 H2O (blue) 
and m/z 44 (CO2)  
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In this project the Netzch STA 449 F1 Jupiter thermal analyser coupled to a Netzsch MS 

403C Aeolos mass spectrometer was used to study the water content and CO2 stability for 

both the electrolyte and electrode materials studied. Sample data collected are shown in 

Figure 2-14 (temperature programme of 10°C a minute to 1000°C, in N2 atmosphere). There 

is a significant mass loss between 100-300°C, which corresponds to the water loss and the 

mass spectrometer peak for 18 m/z clearly confirms this. 

 Dilatometry  

Dilatometry was used to measure the expansion or contraction of a material as 

temperature is increased or decreased. Measurable properties include the thermal 

expansion coefficient (TEC), the sintering temperature and phase transitions.124 

The programmable system allows the use of a specific heating and cooling rate, in addition 

to the use of a range of atmospheres e.g. H2 and O2. The technique can be performed on 

ceramic materials or metals or polymers, and in most cases as a material is heated it 

expands.124 

In SOFCs it is the TEC of an individual material that is measured and compared to the 

adjacent components. In an ideal fuel cell, the TEC of each material (the electrolyte, the 

electrodes and the interconnectors) would be the same over the temperature range RT-

800°C. A difference in the TEC values of each component may initially cause sealing issues, 

thermal cracking and delamination affecting the efficiency of the fuel cell.  Overall major 

differences would cause the complete failure of the cell and the hazardous mixing of fuel 

and oxidant gases.  

The thermal expansion is a change in volume of a material as the temperature increases 

and is caused due to an increase in the atoms average bond lengths. The bond lengths 
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effect on the expansion will depend upon the components, the structure, and their relative 

angles within the crystal lattice i.e. a cubic perovskite has length and angles all equal so 

there is uniformed expansion as temperature increases. See equation 2-10 for the 

calculation of linear thermal expansion coefficient (Li = initial length, Lf = final length, Ti = 

initial room temperature and Tf = final temperature).124 

𝑇𝐸𝐶 =
𝐿𝑓.𝐿𝑖

𝐿𝑖(𝑇𝑓−𝑇𝑖)
 Equation 2-10 

In this work a Netzsch 409C dilatometer was used; it is a pushrod encased within a furnace 

running on a temperature programme from 25°C to 800°C at 10°C min-1. Samples were 

prepared by pressing 10mm diameter and 10 mm in length bar pellets, which were sintered 

at their corresponding temperatures before being polished and the initial length accurately 

measured.  

 DC Conductivity  

The conductivities of SOFC materials have been measured in this project in two ways 

depending on the type of material. For electrolyte materials which ideally will have 

negligible electronic conductivity and will be ionic conductors only, AC impedance 

measurements are used (conductivity of magnitudes between 10-2 and 10-5 S cm-1 (see 

section 2.6)). However, for electrode materials which have higher conductivity via 

electronic conduction pathway, magnitudes of 10-1 and 103 S cm-1 are seen, and so 

alternative dc conductivity techniques are required. There are two DC conductivity 

techniques that are possible, a Van de Pauw technique and a standard 4 probe DC 

technique. 
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 Van de Pauw technique 

This technique requires four Pt wires or contact points to be attached to the pellet at 90° 

angles, Figure 2-15 shows how the resistance is measured using Ohm’s law, between the 

two points for R1 and R2.125  The reversing of the voltage and current contacts is possible, 

and this would provide us with R3 and R4 but this would be equivalent to R1 and R2 due to 

the symmetry of the pellet and contact points. The resistance is determined through 

equation 2-11. 

 

 

𝑅1 =
𝑉𝐶𝐷

𝐼𝐴𝐵
      𝑅2 =

𝑉𝐵𝐶

𝐼𝐴𝐷
 

𝑹𝒕𝒐𝒕𝒂𝒍 =
𝝅𝒍

𝑳𝒏(𝟐)
 
𝑹𝟏+𝑹𝟐

𝟐
 𝒇(𝒓)    Equation 2-11 

[ᶩ = thickness, f(r) ratio of r = R1/R2]  

 Standard 4 probe DC technique  

Similar to the other method four platinum wires or contact points are attached to act as 

electrical contact points for the conductivity measurements. However, the configuration of 

the 4 wires is different, with two placed slightly apart on the top of the pellet (inner wires) 

and two on either side (outer wires). The voltage is measured across the two inner 

electrodes and the current is applied to the outer electrodes (Figure 2-16). 

V I 
A 

B C 

D 

V 

A 

B C 

D 
I 

Figure 2-15 Van de Pauw method two measurement for 4 probe. 

Figure 2-16 Schematic of 4 
probe DC conductivity 

technique 

V 

I 
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The resistance is calculated by equation 2-12 taking into account the dimension of the 

pellet (diameter, depth and distance between the inner electrodes). The inverse of 

resistivity providing the conductivity.  

R=
𝑽

𝑰
     𝝈 =

𝐈

𝑹
×

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒏𝒏𝒆𝒓 𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒅𝒆𝒔

𝑫𝒊𝒂𝒎𝒆𝒕𝒆𝒓 ×𝑫𝒆𝒑𝒕𝒉
     Equation 2-12 

The unattached ends of the contact points were attached to the measurement rig and 

placed in to a vertical furnace allowing the conductivity to be measured at different 

temperatures. The standard four probe DC method was used in this work; as it was simpler 

to set up, easier to test, and previous results within the group on similar series’ have shown 

that each of the techniques provided similar results.113 

 AC Impedance conductivity measurements  

  Alternating current (AC) impedance also known as electrochemical impedance or 

impedance spectroscopy is an electrochemical analysis technique first used in the 1960’s 

by Sluyter.126 Since then it has become a widely used technique to characterise the 

electrochemical behaviour of a system.127, 128 Both the intrinsic and interface properties 

(Table 2-5) of a system can be measured, with these results being used to determine the 

materials mass transport rates, reaction rates and conductivities.129 

Table 2-5 Properties that are possible to be calculated by AC impedance.   

Intrinsic Interface 

Conductivity Capacitance at interface region  

Dielectric constants Adsorption reaction rate constant 

Charge carriers  

Equilibrium constant of charged species  
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 Electrical impedance theory  

The impedance set up in this work consists of sintered pellets coated in platinum paste on 

both sides with platinum foil electrodes attached. The data collected allowed conductivities 

of electrolytes and the activation energies for conduction to be determined. In addition, 

the method was used to determine the area specific resistance of cathodes deposited on 

fuel cell electrolytes. 

Impedance in our case is defined as the combined effect of resistance and capacitive 

reactance. 130, 131 

Resistance (R) – measures the difficulty to push an electric current through a circuit.  

Capacitance (C) – is the amount of energy a capacitor can store (this depends upon its area, 

thickness, type of material and temperature).  

AC impedance measurements take place over a range of frequencies, in our case 1Hz-

13MHz. A voltage of 0.1mV was applied across the sample and a current response is 

measured at each frequency. The voltage was applied sinusoidally and can be expressed as 

𝒗𝒐 = 𝑬𝒗𝒔𝒊𝒏𝝎𝒕    Equation 2-13 

[vo= observed voltage at time (t)  Ev= Amplitude, ω=2πf (f = frequency in Hz)] 
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The observed voltage can be seen in Figure 2-17 as a rotating vector at the point shown.130, 

131 

The resulting current response will be sinusoidal if the voltage is. However, whether they 

are in phase or out of phase with one another will depend on the material. 

𝑰𝒐 = 𝑬𝒊𝒔𝒊𝒏𝝎𝒕 +  𝝓    Equation 2-14 

[Io= observed current at time (t) φ phase angle] 

 

 

0/360° 0° 

90° 

180° 

270° 270° 

90° 

180° 0/360° 
0/360° 

90° 

180° 

270° 

Figure 2-17 Waveform and Phasor diagram for sinusoidal voltage. 

v  
i  

0/360° 
0° 180° 

90° 

270° 

0/360° 

90° 

180° 

270° 

Ī  

𝑉  

φ 

Figure 2-18  Waveform and phasor diagram showing the shift between the voltage and 
the current at a known frequency ω 
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A phase angle for the voltage and current can be measured to give a defined value, but it 

is the phase angle (φ) between them that is important and this remains essentially constant 

throughout a wave. The phase angle is usually measured from the voltage vector as the 

reference, with a + or – sign denoting whether the current is ahead or lagging the voltage. 

This allows for the phase angles to be plotted as vectors as shown in Figure 2-18. 130, 131 

If a sinusoidal voltage is applied to a pure resistor circuit the current can be 

expressed as equation 2-15 (when Ohm’s law is obeyed equation 2-16), and this will result 

in Figure 2-19. The voltage and current waveforms are in phase with each other (φ=0), both 

passing through zero and peaking at the same angles. The resistor is frequency 

independent and therefore the magnitude does not decrease.   

𝒊 =
𝑽

𝑹
𝐬𝐢𝐧 (𝒘𝒕 + 𝟎)  Equation 2-15 

V=IR Equation 2-16 

[I=current, V = voltage, R = resistance] 

v  

i  

0/360° 

0° 180° 

90° 

270° 

0/360° 

90° 

180° 

270° 

Ī  

𝑉  

Figure 2-19 Waveform and phasor diagram showing the voltage and current in phase for a 
pure resistor. 
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However, if instead of a pure resistor circuit, we replace this with a pure capacitor circuit, 

and apply the same sigmoidal voltage, then the current can be expressed as equation 2-17, 

with a pure capacitor relationship being given by equation 2-18. 130, 131 

𝒊 =
𝑽

𝑿𝒄
𝐬𝐢𝐧 (𝒘𝒕 + 

𝝅

𝟐
)   Equation 2-17 

𝒊 = 𝑪(
𝒅𝑽

𝒅𝒕
) Equation 2-18 

[Capacitive reactance = Xc = 
1

𝜔𝐶
 , C = capacitance] 

In a pure capacitor the voltage and the current are out of phase by φ =+90°. The current is 

leading the voltage with the 𝐼  ̅vector being perpendicular to 𝑉  (Figure 2-20). The capacitor 

is frequency dependent and therefore the magnitude decreases as frequency increases. 

The data are expressed in such a way that allows the notation of the voltage to be equation 

2-19 (Ohm’s law must be obeyed). Therefore as V=IR the capacitance reactance must also 

have a resistive component explaining the fall in magnitude (−jXc = 𝑅).   

�̅�.= −𝐣𝐗𝐜Ī  (𝐣 = √−𝟏.)  Equation 2-19 

v  

i  

0/360° 

0° 180° 

90° 

270° 

0/360° 

90° 

180° 

270° 

Ī  
𝑉  φ 

Figure 2-20 Waveform and phasor diagram showing the voltage and current out of 
phase for a pure capacitor. 
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While these are ideal scenarios of a pure resistor and capacitor, systems that are not purely 

either will contain both components. Consequently, when they are in series as a resistance 

capacitor (RC) circuit, and a voltage is applied across, it must be equal to the sum of the 

individual voltages (Equation 2-20/21). 

�̅�=�̅�𝑹𝒆𝒔𝒊𝒔𝒕𝒂𝒏𝒄𝒆 + �̅�𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒂𝒏𝒄𝒆 Equation 2-20 

[ �̅�𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐼R̅,  𝑉 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑎𝑛𝑐𝑒=-j𝑋𝑐𝐼  ̅] 

�̅�=𝑰 (𝑹 − 𝒋𝑿𝒄) Equation 2-21 

This provides what is known as the impedance vector �̅� (equal to R-jXc) for each frequency 

in the range. It can sometimes be referred to as a generalised form of resistance, (equation 

2-22).                                                  �̅� = 𝑰 �̅� Equation 2-22 

[�̅�=𝑅 − 𝑗𝑋𝑐] 

 

The impedance vector for the RC circuit consists of a magnitude and a phase angle for each 

frequency, same as for the pure resistor and capacitor. In an RC circuit the impedance 

changes with frequency when the voltage is applied and therefore so must the magnitude 

and the phase angle. In all cases, the data would be plotted on a complex Nyquist plot and 

presented as real Zre vs imaginary Zim component, or more commonly known as Z’ and Z’’. 

Consequently the impedance vector �̅� contains both the real part and imaginary part at 

each frequency (Equation 2-23)  

�̅�(𝝎) = �̅�𝑹𝒆𝒂𝒍-j�̅�𝒊𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚 Equation 2-23 

[�̅�𝑅𝑒𝑎𝑙=R, �̅�𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 =Xc] 

The magnitude of the vector  is calculated through Pythagoras relationship see equation 2-

24/25 
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�̅�𝟐 =�̅�𝟐
𝐑 + �̅�𝟐

𝑪 Equation 2-24 

[(IZ)2=(IR)2+ (I𝑋𝑐)2      (Z)2=(R)2+(𝑋𝑐)2] 

Magnitude =√𝑹𝟐 + 𝑿𝒄
𝟐 =  √�̅�𝑹𝒆𝒂𝒍 

𝟐 + �̅�𝒊𝒎𝒂𝒈𝒊𝒏𝒂𝒓𝒚 
𝟐 )   Equation 2-25 

The phase angle is given by trigonometry.  

φ=tan-1( 
𝐗𝐜

𝐑
)= tan-1( 

𝒁𝒊𝒎

𝒁𝒓𝒆
) Equation 2-26 

 An annotated sketched Nyquist plot for an imaginary RC circuit is shown in Figure 2-21, 

whilst figure 2-22 shows a pure resistor and pure capacitor of actual Nyquist plots.127, 130, 

131 

 

  

φ 

Z’ 

Z’
’ 

 𝑍  

𝜔  

Figure 2-21 Sketched Nyquist plot for an imaginary RC 
circuit showing the components involved in a complex 

impedance plane plot 
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 Analysis of impedance data  

2.6.2.1 Equivalent circuit elements  

In order to fully understand and analyse the processes involved in an electrical system, a 

single model for the system cannot be used as it would be far too complicated. 

Consequently, a simplified fitting model must be constructed, which is a mathematical 

model based upon the researchers understanding and knowledge of their material. 

Figure 2-22 Nyquist plot of pure resistor and pure 
capacitor 
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The electrochemical behaviour of an ionic conductor in a fuel cell has a similar set up to a 

resistor and a capacitor circuit applied in parallel for each response component. The 

characteristic relaxation time, which is a product of the resistance and capacitance, can be 

defined as the time it takes for the capacitor component to be charged through the resistor 

equation 2-27. 127, 129 

 

𝝉 = 𝑹𝑪=
𝟏

𝝎𝒎𝒂𝒙
 Equation 2-27 

 

From a complex impedance plot both R and C can be calculated for each component of a 

conductor through a fitting model. R values can be obtained from the fitting of the semi-

circle giving the intercept of x axis, but assigning this to the relevant component regions of 

the ionic conductor depends upon the capacitance.127 

Table 2-6 Typical capacitance values from a corresponding response on a 1 cm3 material  

 

 

 

 

 

 

Typically capacitance magnitudes for ionic conductors component regions are as displayed 

in Table 2-6.127 A fitting programme (in our case, the programme Z-view was used) is usually 

used to construct equivalent circuits, that match the properties of your material. The 

Capacitance (F) Response component 

10-12 Bulk 
10-11-10-8 Grain Boundary 
10-10-10-9 Bulk Ferroelectric 
10-9-10-7 Surface layer 
10-7-10-5 Sample-electrode 

interface 
10-4 Electrochemical 

reactions 
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programme fits a calculated semi-circle to the data’s semicircle using the equivalent circuit 

that has been constructed and produces R and C data values from this.  

If the relaxation times (product of resistance and capacitance) are different by 

several orders of magnitudes for each of the component i.e. bulk and grain, separate 

semicircles would be observed throughout the frequency range. Each semi-circle 

corresponding to a different response component in our analysis, in these cases an 

equivalent circuit model is required to fit the data that contained both RC in parallel and in 

series, similar to the equivalent circuit shown in Figure 2-23. 127, 129 

 

If the relevant relaxation time does not differ greatly then the semi-circles will overlap 

producing distortions or, in non-ideal cases, a single semicircle only. These must also be 

fitted using this programme, and a relevant equivalent circuit used where possible. If this 

is not possible then the total conductivity of the material can be simply estimated from the 

high intercept of the x axis and the samples parameters.  

 

 

 

 

Figure 2-23  equivalent fitting circuit for 
impedance plots containing separate definable 
semicircles 
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2.6.2.2 Bulk and grain electrolyte analysis and fitting model 

The ionic conduction of a sintered material can be explained using a brick layer model. 

Pictorially this involves cubes as the bulk or grain interior of the material, and a secondary 

phase between each of them corresponding to the grain boundary phase (Figure 2-24).127, 

129 

 

Conduction can either occur through the bulk and the grain boundary or just the grain 

boundary. The corresponding equivalent circuits from both are shown in Figure 2-24.  The 

conduction pathway must be understood for the fitting, and the capacitance values would 

help in the assignment of each component as either bulk or grain. Grain boundary phases 

can be a result of   

 The polycrystalline materials having random orientation of the bulk. 

 The occurrence of other phases such as sintering aids or impurities in these regions. 

 The density of the pellet – Low density causes small gaps between the bulk grains. 

In order to remove grain boundary effects a dense single crystal would be required with 

growth in a particular direction. However, this is not usually possible and so sintered 

powders pellets are analysed.127, 129 

Bulk  

Grain boundary  

Rb Rgb  

Rgbp  

Figure 2-24 Brick layer schematic of conduction for a polycrystalline sample and equivalent circuit. 
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Ideally the fitting model should have resulted in an equivalent circuit containing both bulk 

and grain RC circuits to determine separate conductivity contributions.127, 129 However, 

when separation was not possible due to complete overlap of the semicircles, a total 

conductivity was determined. Figure 2-25 below shows an equivalent fitting of example 

data of BaSc0.3Yb0.35B0.05Ti0.3O3-δ the bulk component can be assigned to the higher 

frequency semicircle and the grain boundary component to the lower, with an electrode 

response line corresponding to the Pt contact. 127, 129 

 

 

 

 

 

Resistance  (Ω) Capacitance 
(F) 

1011.3 (Bulk) 2.22E-10 
1399.4 (Grain) 1.20E-08 

Figure 2-25 Impedance plot of BaSc0.3Yb0.35B0.05Ti0.3O3-δ in a dry 
N2 at 350◦C data fitted with a RC circuit equivalent fitting of 
the bulk and grain boundary responses 
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2.6.2.3 Area specific resistance (ASR) analysis and fitting model  

 Area Specific Resistance (ASR) is a resistance measurement between the opposite faces of 

a material over a known area. It uses the same equipment and analysis software as the AC 

impedance measurements. 127, 129 An alternative current is passed across the sample over 

a range of frequencies and the resistance is measured. The ASR measurements throughout 

this work were obtained using an electrolyte pellet with a painted layer of cathode ink on 

each side dried at the required temperatures (with pure cathode materials, and cathode 

composites made up of both the cathode and the electrolyte, being used). A current 

collector (platinum contacts) was then placed on each side and heated to 800°C for 1 hr. 

The ASR of a cathode material is measured, as it is a major contributor to the resistance of 

the overall cell. 127, 129 Ideally, the measurement will involve four responses, two from the 

electrolyte, bulk (1) and the grain boundary (2) semicircles and two from the cathode. For 

the cathode, one semicircle is associated with the microstructure of the composite cathode 

(electrode-electrolyte interface) and is independent of the partial pressure of oxygen (3). 

The other semicircle at lower frequency is associated with the adsorption of O2 at the TPB 

surface, which is dependent on the partial pressure of oxygen (4).129 

Resistance  
(Ω) 

Capacitance 
(F) 

57.34 
(Bulk) 

2.06E-10 
 

803.64 
 (Grain) 

4.51E-08 
 

303.01 
(Electrode 
response)  

2.15E-03 
 

Fitting 

○    CGO + BaFe0.8Co0.1Bi0.1O3-δ 900°C data 

Figure 2-26 Impedance plot of  CGO + BaFe0.8Co0.1Bi0.1O3-δ electrode on a CGO pellet at 900°C fitted 
with an equivalent circuit fitting of the bulk grain boundary responses and electrode response.  
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However, these response semicircles can be distorted and overlapping. Therefore, a total 

of two to three elements were constructed in an equivalent circuit-fitting model. The three 

fitting model is displayed above in Figure 2-26. 

 

For the ASR data analysis, the electrode response is only measured and therefore the 

resistance of the Nquist plot does not start at zero. It is usually measured from the 

electrode semi-circle high and low intercepts on the x-axis (equation 2-28 H = high intercept, 

IL = low intercept, 2 = number of sides to pellet, A = Area of the pellet). 

𝑨𝑺𝑹 =
𝑰𝒉−𝑰𝒍

𝟐
×  𝑨 Equation 2-28 

 

2.6.2.4 Reporting of conductivity  

In the analysis of impedance spectroscopy, it is the resistance (R) that was obtained, 

however it is the convention for the conductivity to be presented. The conductivity of the 

sample was acquired through the inverse of the resistance multiplied by the geometric 

factor of the pellet (equation 2-29). 

𝑮𝒇 =
𝑨𝒓𝒆𝒂 (𝑨)

𝑻𝒉𝒊𝒄𝒌𝒏𝒆𝒔𝒔 (𝒍)
   𝝈 =

𝟏

𝑹
 x Gf     Equation 2-29 

The impedance data was collected over a series of temperatures usually 350°C-800°C. The 

activation energy is calculated from equation 2-30; this is a Arrhenuis style function and 

the activation energy is calculated from the gradient of a plot of log10(σT) vs 1000/T. 

A 

ᶩ 

Current collector (Platinum contacts) 
Composite electrode  
 
Electrolyte  

Figure 2-27 Physical representation of an ASR measurement 
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𝝈𝑻 = 𝑨
−𝑬𝒂

𝑹𝑻
 Equation 2-30 

[R = gas constant, Ea = activation energy, A constant] 

 

 Instrumentation  

The conductivity instrumentation consisted of a vertical tube furnace, a removable rig port 

and an impedance analyser combination. The pellet was attached to the rig by the Pt foil 

electrodes, which are wrapped around the Pt wire on the rig to act as a contact points. The 

rig was then lowered into the furnace, and connected to either a PSM 148 analyser or a 

Hewlett Packard 4182A analyser by plug connector points with shielded wires to remove 

background noise on the analyser. In addition if controlled atmospheres were needed i.e. 

N2 to remove any contribution of p-type conduction, then the gas needed was bubbled 

through concentrated sulphuric acid or water for dry and wet environments respectively.  

 Fuel Cell Test   

 

 

 

 

Figure 2-28 fuel cell setup a) individual pellets top layer Pt current collector, 
b) pellet bonded to rig with cermabond cermet, c) full rig setup. 
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Fuel cell tests were carried out during a 1-month placement at the School of Science at the 

University of Malaga. Simple button cells were constructed consisting of an electrolyte 

supported pellet which were sintered at 1500°C for 12hrs at a heating and cooling rate of 

5°C a minute. A NiO-CGO composite anode was painted on one side and the specific 

research cathode composite material on to the other. These pellets were first fired at 

1200°C for 1hr for the anode and then at 900°C for 1hr for the cathode materials. The cells 

were then coated with Pt paste over the surface of the electrodes and fired at 800°C for 30 

minutes, (Figure 2-28a) and then a short length of Pt wire was attached to either side. Cell 

construction was duplicated for concordant results and the electrode surface area was 

0.25cm2. The pellet in Figure 2-28b was cemented to the custom built test rig using 

cermabond 668 (Aremco) and cermabond thinner, and fired at 500°C overnight, with the 

NiO-CGO layer facing down the tube. Once set up, the custom-built rig allows H2 gas to be 

flowed on the inner tube to supply to the anode. The cathode/current collector is exposed 

to the air, and the rig is inserted in to a vertical tube furnace with the temperature varied 

up to 700°C (a schematic of the rig is shown in Figure 2-29). 

The initial reduction of the anode material (to reduce NiO to Ni metal) took place for 1 h in 

hydrogen at 500°C. The open circuit voltage (OCV) was then measured, with ≈1V predicted 

by the Nernst equation, if lower values are seen this indicates that there may be either 

H2 in  Air 

Pt current collectors 

Figure 2-29 Schematic diagram of custom rig fuel cell set up 
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broken seals on the cell and a mixing of oxidant and fuel, or electronic conduction through 

the electrolyte. This is partially expected with CGO for temperatures >600°C as it is known 

to display electronic conduction. Maximum power densities can be calculated and 

compared with the commercial target value above 500 mWcm-2 in mind.132 The 

instrumentation recorded the power curves for a temperature range of 500-700°C in 50°C 

steps with a waiting time of 30 min between each measurement. The tests were carried 

out with humidified hydrogen as the fuel, and air as the oxidant. Fuel gases were passed 

through a bubbler of water at a temperature of 20°C to ensure a constant water content 

of about 3%. The  power curves were collected by a VSP-biologic cyclic-voltammeter at a 

scan rate of 5 mVs-1.132 

 Scanning electron microscope  

Scanning electron microscopes (SEM) was used to provide much higher resolution images 

than would be possible by optical microscopes, on a scale of 100µm – 1 nm. SEMs are used 

to study the samples surface, providing information on the particles composition, 

morphology and topography.133 

It works through focusing an electron beam on to the surface of the sample, which excites 

atoms at or near the surface. They release electrons which are measured and used to 

produce an image created from their position from the detector. These are known as the 

secondary electrons and it is these electrons that are most commonly used in SEM.133 There 

are also back scattered electrons which are electrons from the beam which have reflected 

off the samples surface. In addition to the characteristic X-ray ejected from elements in the 

sample when electrons are bombarding the surface.  Back scattered electrons and ejected 
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X-rays can be used to provide elemental composition of the sample, which is used in a 

technique known as energy dispersive X-ray spectroscopy (EDAX).  

In this research the SEM was used to study the surface and cross sectional morphologies of 

sintered pellets and constructed SOFCs. The samples were spluttered in gold before 

measurement to reduce the electrostatic charge build up at the surface and were attached 

to conducting pads. The SEM measurements were carried out using a JEOL SM-6490LV 

operating under high vacuum and fitted with an INCA energy EDAX system at the University 

of Malaga (Figure 2-30).      

  

Figure 2-30  Scanning electron 
microscopy used for the 
measurements - JEOL SM-6490LV. 
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Chapter 3  

3 Evaluation of Sr0.8Ca0.2Mn0.9Si0.1O3-δ 

composite cathode material with 

apatite and fluorite electrolytes 

 Introduction  

Early SOFC electrolyte research has primarily focused on fluorite and perovskite based 

structures, which conduct via an oxygen vacancy mechanism. However at the end of the 

last century apatite silicates were proposed as alternative electrolyte systems, involving a 

interstitial oxide ion conduction mechanism.134 Studies involving the development of 

silicate apatite electrolytes for SOFC applications increased at the turn of the century. 

Research included the lowering of the synthesis and sintering temperatures to reduce 

production costs, as well as thin film fabrication to reduce ohmic losses incurred. 53,135 

There is a need however, to identify the more pressing issue of the electrolyte-cathode 

interfaces. Prior studies have examined cathode materials consisting of a transition metal 

containing perovskite materials, for example doped LaMnO3 and LaCoO3. Doping these 

materials with strontium increases the p-type electronic conductivity, due to the 

introduction of mixed valency; e.g. La1-xSrxMnO3 (LSM) has high electronic conductivity and 

high catalytic activity for ORR but low ionic conductivity, so a balanced trade-off for all the 

features must be examined.136-138 

Previous work in the group has shown that doping materials such as SrMnO3 with silicon 

leads to an increase in electronic conductivity. This is due to a change from a hexagonal 
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(containing face sharing of octahedra) to a cubic (corner linked octahedral) perovskite 

structure. However, for SrMnO3−δ, high levels (15%) of silicon were required to stabilise the 

cubic perovskite, and while the Si doping is beneficial in this respect, it might also be 

expected to show some detrimental effects in terms of partially disrupting the electronic 

conducting pathways.139, 140 

Using this as a starting point, and building on previous work within our group, has allowed 

the development of a SryCa1-yMnO3 -δ cathode material with a view to lowering the amount 

of silicon doping required.139, 140 The end member SrMnO3 (y=1) has a hexagonal cell, while 

CaMnO3 (y=0) is orthorhombic. Work performed within our group showed that the 

SryCa1−yMnO3−δ samples were either hexagonal perovskites at high strontium levels, y = 0.8, 

or a mixture of hexagonal and cubic perovskites for y = 0.7, and a mixture of tetragonal and 

orthorhombic for y = 0.5/0.6. 

 In this work Sr0.8Ca0.2Mn1-xSixO3-δ (x = 0, 0.05, 0.075, 0.1, 0.125) would be investigated in 

an effort to reduce the amount of silicon required to lead to a symmetry phase change 

from hexagonal to cubic. The most conductive material would undergo compatibility 

testing with La9SrSi6O26.5 (LSSO) and La10GaSi5O26.5 (LGSO) electrolytes, which have been 

reported to show high oxide ion conductivity.107, 141, 142 The use of strontium and silicon in 

both the electrolytes and the cathode in theory reduces the cross component reactions at 

the interface. CGO electrolyte would also be examined for a commercial equivalent. Area 

specific resistance (ASR) measurements would then be recorded to measure the resistance 

of the cathode/electrolyte, and if possible will be initially analysed through the construction 

of an equivalent circuit-fitting model. This involves three resistors in series and capacitors 

for each in parallel. In theory, the individual bulk and grain boundaries from the electrolyte 
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are fitted to the first two resistors and capacitors, and the capacitance values would 

correspond to 10−11 F cm-1 and 10−8 F cm-1 respectively. The third would be fit to the 

electrode response with a capacitance of 10-4 F cm-1 expected; each response component 

has a different capacitance magnitude due to the difference in the relaxation times. The 

electrode response components capacitance and resistance values would correspond to 

the ASR value. 

  Experimental  

Sr0.8Ca0.2Mn1-xSixO3-δ (x=0, 0.05, 0.075, 0.1, 0.125) electrode material were prepared from 

stoichiometric amounts of CaCO3 (99.9%), SrCO3 (99.9%), MnO2 (99%), and SiO2 (99.9%) (a 

pre-drying step was included if required). The powders were intimately ground together 

and heated to between 1200-1300°C for 12 hours. They were then ball-milled (350 rpm for 

1 hour, Fritsch Pulverisette 7 Planetary Mill) and subjected to a second heat treatment of 

between 1200-1300°C for a further 12 hours (higher silicon content usually required the 

slightly higher temperature). Powder X-ray diffraction at room temperature was used to 

confirm the phase purity of the samples as well as for cell parameter determination using 

GSAS (Bruker D8 diffractometer with Cu Kα1 radiation = 1.5406 Å). 

To gain further information into the silicon environment, 29Si Solid state MAS NMR 

spectroscopic studies were collected, with samples prepared in the same way but using 

29Si-enriched SiO2 (Cortecnet, 97.1%). These measurements were collected and analysed in 

the solid state NMR department at the University of Warwick. The samples were acquired 

through a single pulse experiment and a MAS frequency of νr= 15 kHz. 

Conductivity measurement were performed using 4 probe dc measurements, on the 

samples which were pressed pellets at a pressure of 5000 kg cm-2 in a 1.3 cm die set and 
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sintered for 12hrs at 1350°C. The four Pt electrodes were attached with Pt paste and the 

pellet fired at 800°C for 1 hour to produce contact points.  

The apatite electrolytes La9SrSi6O26.5 and La10GaSi5O26.5, were prepared with the required 

amounts of La2O3 (99.9%), Ga2O3 (99.9%), SrCO3 (99.9%) and SiO2 (99.9%) (a pre-drying step 

was included if required) which were ground together and then heat treated at a 

temperature of 1200°C for 12 hours. The sample was then reground, ball milled (350rpm 

for 1 hour, Fritsh Pulverisette 7 Planetary Mill) and reheated for 12 hours at 1400°C. For a 

commercial comparison the fluorite electrolyte Ce0.9Gd0.1O1.95 (CGO) was also examined, 

which was obtained from Sigma-Aldrich. Powder X-ray diffraction at room temperature was 

used to confirm the phase purity of the samples as well as for cell parameter determination 

using GSAS refinement software (Bruker D8 diffractometer with Cu Kα1 radiation = 

1.5406Å).  

The chemical compatibility studies of the electrodes with the electrolytes were performed 

on a 1:1 wt% mixture, ground together and fired separately at 800°C, 900°C and 1000°C for 

24hr with the phase purity and cell parameters determined.  

 For the area specific resistance (ASR) measurements, the most promising material 

Sr0.8Ca0.2Mn0.9Si0.1O3-δ was mixed with each of the electrolytes La9SrSi6O26.5 and CGO  

separately along with the binder decoflux (WB41, Zschimmer and Schwarz) using a ball mill  

(350rpm for 1 hour, Fritsh Pulverisette 7 Planetary Mill) . The resulting electrode inks were 

painted on to La9SrSi6O26.5 and CGO electrolyte pellets on both sides and dried at 70°C; this 

was repeated a further 2 times to guarantee full covering of the pellets surfaces. The 

symmetric pellets were then heat treated for 1 hr at the required electrolyte temperatures 

(900°C and 1000°C). The pellets were then coated with Pt paste, with Pt foil attached to act 
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as a current collector layer before heating to 800°C for 45 minutes, to bind the paste and 

foil to the pellet. The ASR values were determined in air and recorded between 500°C-

800°C in 50°C steps, using AC impedance measurements in a frequency range of 5Hz-

13MHz (Hewlett Packard 4182A impedance analyser). The ASR data were investigated 

using the Z-view software programme, an equivalent circuit fitting model was produced 

however, it was not always possible to accurately extract individual contributions across 

the entire range.143  Therefore, this ideal equivalent circuit fitting model could not be 

undertaken as even though at lower temperatures, there was partial separation of the 

individual response components (bulk, grain, electrode), overlapping was still witnessed. 

Furthermore at the required intermediate fuel cell temperatures (>500°C), a broad 

semicircle was observed, this corresponded to the electrode resistance only which was 

calculated from the low and high intercept values and had capacitance values ranging from 

10-3 F cm-1 to 10-5 F cm-1.  

Single fuel cells were prepared using 500 µm thick electrolytes with a 50:50wt% composite 

cathode and a 60:40wt% composite anode. A composite anode was heated at 1200°C for 1 

hr on one side of the electrolyte pellet and then the composite cathode was heated at 

900°C for 1 hr on the other. For a current collector of Pt paste and a Pt coil wire were 

attached on both sides and then heated to 800°C for 1 hr. The electrode surface area each 

side was 0.25 cm2. The cell was sealed to the electrochemical setup using a ceramic-based 

material (Ceramabond 668/668A, Aremco). Fuel cell tests were carried out at the University 

of Malaga with Jose M Porras-Vazquez during my month long placement. Using a VSP –

biologic Pro-s machine, with humidified pure hydrogen as the fuel and atmospheric air as 

the oxidant, operating between temperatures of 500-700°C. Fuel gases were humidified 



80 
 

using a bubbler of water at 20°C to ensure constant water content of 3%. Current-voltage 

(I-V) curves were obtained by cyclic-voltammetry at a scan rate of 5mVs-1. The 

electrochemical tests were performed after reducing the anode material for 1 hr at 500°C. 

 

 Structural studies - Sr0.8Ca0.2Mn1-xSixO3-δ  

The undoped Sr0.8Ca0.2MnO3-δ perovskite has a hexagonal unit cell.  Doping of 7.5% silicon 

on to the manganese site resulted in a mixture of cubic and hexagonal phases at room 

temperature.  In order to completely stabilise the cubic perovskite structure at room 

temperature 10% Si doping was required (Figure 3-1). The difference in the structures 

between undoped and silicon doped samples can be related to the tolerance factor, which 

ideally should be 1.0 for a cubic perovskite.144  

Figure 3-1 XRD patterns for Sr0.8Ca0.2Mn1-xSixO3-δ x = 0, 0.05, 0.075 and 0.1 
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The undoped Sr0.8Ca0.2MnO3-δ system has a tolerance factor >1 and so adopts a hexagonal 

perovskite structure. The addition of Si4+ should at first glance cause a decrease in the 

average rB cation size and we might therefore have expected an increase in the tolerance 

factor, further favouring the formation of the hexagonal perovskite. However, this is not 

the case, and can be related to the fact that the above argument does not consider the 

resulting oxide ion vacancies introduced. In particular the silicon is incorporated as SiO4
4-

replacing the octahedrally co-ordinated Mn4+, thus leading to the production of oxide ion 

vacancies. This loss of oxygen, in turn causes the partial reduction of Mn4+ (0.53 Å) to Mn3+ 

(0.60 Å) increasing the average rB, and decreasing the tolerance factor in favour of the cubic 

phase.140, 145 This is shown by the defect equation below (Equation 3-1). 

𝑺𝒊𝑶𝟐 + 𝟑𝑴𝒏𝑴𝒏
𝒙 + 𝑶𝒐

𝒙 → 𝑺𝒊𝑴𝒏
𝒙 + 𝟐𝑴𝒏𝑴𝒏

′ + 𝑽𝒐
•• +

𝟏

𝟐
𝑶𝟐 + 𝑴𝒏𝑶𝟐   Equation 3-1 

Furthermore equation 3-1 also accounts for the increase in the cell volume on Si doping, 

with the reduction on the Mn4+ to form the larger Mn3+ out weighing the effect of the 

smaller sized Si4+, and so an increase in the cell parameter is observed (Table 3-1) 

Table 3-1 Sr0.8Ca0.2Mn1-xSixO3 cubic cell parameter and cell volumes 

 

 

 

In order to provide evidence that the silicon was incorporated into the structure, and to 

rule out that the silicon was simply collecting at the grain boundaries, 29Si MAS NMR was 

performed and analysed by the University of Warwick solid state NMR department. The 

NMR data were collected on both a physical mixture of 29Si enriched SiO2 with the undoped 

Compositions a parameter Å Cell Volume Å3 

Sr0.8Ca0.2Mn0.9Si0.1O3-δ 3.8127(2) 55.42(1) 

Sr0.8Ca0.2Mn0.875Si0.125O3-δ 3.8157(1) 55.55(1) 
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Sr0.8Ca0.2MnO3-δ and our heat treated Sr0.8Ca0.2Mn0.9Si0.1O3-δ sample (Figure 3-2). The 

physical mixture results in a single 29Si resonance peak only, seen at δ -133 ppm (Figure 3-

2 a). The Sr0.8Ca0.2Mn0.9Si0.1O3-δ sample produces two peaks, a sharp narrow peak of low 

intensity at δ -70 ppm and a very broad resonance peak with a large downfield shift centred 

around 3000-3500 ppm (Figure 3.3 b and c). The physical mixture peak at -113 ppm is 

characteristic of 29SiO2 only whilst the weak -70 ppm peak with narrow line width and long 

T1 (>180 s) represents a small diamagnetic impurity phase formed under Si integration, and 

from the chemical shift obtained it is probably a strontium/calcium silicate impurity i.e. 

(Sr/Ca)2SiO4 phase. The main broad peak centred around 3000-3500 ppm can be attributed 

as a Si environment that has a large shift and broad line width (over 4000 ppm) due to 

interaction with paramagnetic centres, i.e. the Mn3+ in the Sr0.8Ca0.2Mn0.9Si0.1O3-δ structure. 

The paramagnetic influence of the Mn centres provides clear evidence of silicon 

incorporation into the perovskite structure, not just gathering at grain boundaries, as in the 

physical mixture. 

 

Figure 3-2 Solid state NMR data for (a) Physical mixtures of 29SiO2 and Sr0.8Ca0.2MnO3 δ         
−113 ppm and (b and c) the 29Si doped S Sr0.8Ca0.2Mn0.9Si0.1O3-δ 
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Figure 3-3 Conductivity data for Sr0.8Ca0.2Mn1-xSixO3-δ x = 0 (black circle), 
0.075 (white circle), 0.1 (white triangle) and 0.125 (white inverse triangle) 

 Conductivity measurements  

The conductivity of the undoped hexagonal Sr0.8Ca0.2MnO3 phase, as well as the Si doped 

cubic phases were examined. The conductivity measurements showed an improvement 

(Figure 3-3) on initial Si doping. Further doping to produce the pure cubic structure (x=0.1) 

produced the highest electronic conductivity (≈ 26 S cm-1 at 800°C).  

Addition of silicon above this level to x = 0.125, where the pure cubic phase is still formed, 

resulted in a decrease in the conductivity. The increase in conductivity can be related to 

two factors, namely the change from face sharing of octahedra to corner sharing leading 

to increased orbital overlap allowing easier electron movement, along with the presence 

of mixed valency Mn3+/4+. The decrease observed on increasing Si content above 10% is 

most likely a result of silicon in the structure starting to block the electronic conductivity 

pathways. 
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Table 3-2 Conductivity values for Sr0.8Ca0.2Mn1-xSixO3-δ (x=0, 0.075, 0.1 and 0.125) at 
800°C 

Composition σ S cm-1 (800°C) 

Sr0.8Ca0.2MnO3-δ 0.6 

Sr0.8Ca0.2Mn0.925Si0.075O3-δ 10.34 

Sr0.8Ca0.2Mn0.9Si0.1O3-δ 26.08 

Sr0.8Ca0.2Mn0.875Si0.125O3-δ 19.53 

 

 Chemical compatibility results 

 Chemical compatibility tests were performed to simulate the effects of temperature on 

the electrolyte-cathode interfaces. Commercially used electrodes, for example LSM, have 

been found to form with some electrolytes at elevated temperatures non-conducting 

layers between electrode and electrolyte composites. The Sr0.8Ca0.2Mn0.9Si0.1O3 (SCMS) 

cathode material was tested against two alternative apatite electrolytes of La9SrSi6O26.5 

(LSSO), La10GaSi5O26.5 (LGSO), in a 50:50 weight percent mixture. These were fired at 1000°C 

for 24hrs, and showed limited reactivity between the SCMS and LSSO, with the observation 

of an impurity peak corresponding to the formation of an additional strontium/lanthanum 

manganite phase perovskite (Figure 3-4).  

Figure 3-4 X-ray diffraction patterns for composite electrode, LSSO-SCMS at 
room temperature and fired at 1000°C for 24hrs (impurity highlighted *, red 

lines SCMS peak positions) 

* 

RT - 24hrs 

1000°C - 24hrs 

In
te

n
si

ty
 (

A
U

) 

2θ (°) 



85 
 

Further chemical compatibility tests at lower temperatures were therefore performed, and 

at 900°C for 24hrs there was no emergence of the additional perovskite impurity in the X-

ray diffraction pattern (Figure 3-5).  

 

Further chemical compatibility tests involving the LGSO electrolyte and the same SCMS 

electrode were performed under the same conditions; fired at 900°C and 1000°C for 24hr, 

to compare the electrolytes and their cross reactions (Figure 3-6). The emergence of 

impurities at 900°C and at a 1000°C provides compelling evidence that the LGSO and SCMS 

undergo a more extensive chemical reaction. The reaction produces an additional 

strontium/lanthanum manganite perovskite impurity phase even at 900°C. However, it 

should be noted that, while the 900°C data suggested negligible reaction between LSSO 

and SCMS, it is possible that while no impurities were observed there may have been some 

intersubstitution between the two phases.  
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Figure 3-5 X-ray diffraction patterns for composite electrode, LSSO-SCMS fired at 
900°C for 24hrs (red lines SCMS peak positions) 
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Figure 3-6 X-ray Diffraction patterns for composite electrode, LGSO–SCMS at 
room temperature and fired at RT, 900°C and 1000°C for 24hrs (impurities 

highlighted *, red lines SCMS peak positions) 

2θ (°) 
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 Therefore, all of the XRD data were further analysed through the GSAS suite of programs 

for cell parameter determination. This analysis showed small cell parameter and volume 

changes for all the heat treated composites. Small cell parameter changes were even 

recorded for the SCMS:LSSO heated at 900°C suggesting that even though there were no 

apparent impurities seen in the diffraction pattern (Table 3-3 and  Table 3-4), there was 

some reaction leading to cation intermixing. 

Table 3-3 Cell parameters for composite electrode LSSO and SCMS 50:50 mix  

 

Similar effects were also seen in previous apatite chemical compatibility research with 

conventional La based electrode materials.53 This suggests that there is some cation 

migration between the electrolyte and the electrode in these systems (depending on 

reaction conditions). 

 Composite Unit Cell parameters (Å) Unit Cell volume (Å3) 

 constituents (a) (b) (c)  

RT 

 

SCMS 

LSSO 

3.81857(6) 

9.6997(1) 

- 

- 

- 

7.2168(1) 

55.687(3) 

588.02(2) 

900°C 24hrs SCMS 

LSSO 

3.81873(5) 

9.7024(1) 

- 

- 

- 

7.2109(1) 

55.681(3) 

587.87(2) 

1000°C 24hrs SCMS 

LSSO 

3.81800(9) 

9.6999(2) 

- 

- 

- 

7.2115(2) 

55.656(4) 

587.62(3) 

 Composite Unit Cell parameters (Å) Unit Cell volume (Å3) 

 constituents (a) (b) (c)  

RT 

 

SCMS 

LSGO 

3.8185(1) 

9.7502(3) 

- 

- 

- 

7.2458(3) 

55.679 

596.55(5) 

900°C 24hrs 
SCMS 

LSGO 

3.8206(1) 

9.7489(2) 

- 

- 

- 

7.2366(3) 

55.770(5) 

595.63(4) 

1000°C 24hrs 
SCMS 

LSGO 

3.82.02(2) 

9.7447(7) 

- 

- 

- 

7.2311(7) 

55.75(1) 

594.6(1) 

 Table 3-4 Cell parameters for composite electrode LSGO and SCMS 50:50 mix. 
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Following these chemical compatibility tests with apatite electrolytes, further experiments 

were performed between SCMS and a commercial electrolyte, gadolinium doped ceria 

(Ce0.9Gd0.1O1.95/CGO). In prior work it has also been used as a buffer material with apatite 

electrolytes to reduce the interaction between the apatite electrolyte and the electrode.53, 

146 Chemical compatibility tests were therefore also performed between LSSO and CGO 

electrolytes. As the LSSO showed less apparent reactivity with the electrode, only this 

electrolyte was studied further. A SCMS and CGO 50:50 wt% composite cathode was 

prepared for use with this LSSO electrolyte pellet. The XRD data for the 50:50 wt% 

composites of CGO-LSSO and CGO-SCMS are shown in Figure 3-7 and Figure 3-8 

respectively.  
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Figure 3-7 X-ray diffraction patterns for 50:50 wt% electrolyte mixture, CGO-
LSSO fired at 900°C (blue lines CGO peak positions) 
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For LSSO and CGO there are no extra peaks visible but the cell parameters/volume (Table 

3-5) show a small reduction for LSSO and an increase for the CGO. For the SCMS:CGO 

composite there is a no evidence of additional peaks due to impurities and there is limited 

expansion in the unit cells up to 900°C. However, above 900°C minor additional peaks were 

observed which were due to a Sr3Mn2O7 impurity.  

Table 3-5 Cell parameters for composite electrode CGO and SCMS 50:50 mix. 

 

Conditions Composite Unit Cell parameters (Å) Unit Cell volume (Å3) 

 constituents (a) (b) (c)  

RT CGO 

SCMS 

5.4181(1) 

3.81855(4) 

- 

- 

- 

- 

159.0(1) 

55.680(1) 

900°C 24hrs CGO 

SCMS 

5.4178(1) 

3.8200(1) 

- 

- 

- 

- 

159.10(6) 

55.747(6) 

RT 

 

CGO 

LSSO 

5.4179(1) 

9.7098(2) 

- 

- 

- 

7.2165(1) 

159.04(1) 

589.23(3) 

900oC 24hrs CGO 

LSSO 

5.4195(1) 

9.7038(2) 

- 

- 

- 

7.2196(1) 

159.18(1) 

588.74(3) 
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Figure 3-8 X-ray diffraction for 50:50wt% composite electrode, CGO-SCMS 
fired at 900°C, (red lines SCMS peak positions and blue lines CGO peak 

positions) 

2θ (°) 
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These results are concordant with previous composite experiments, which suggest cation 

migration between two phases of the composite is occurring. While such interdiffusion is 

worrying it may not necessarily have a negative effect on the electrode performance, 

providing the resultant phases are not insulators.  

  Area specific resistance results 

Following on from the chemical compatibility studies, area specific resistance (ASR) tests 

were performed. The ASR experiments involved separately a 100% SCMS cathode and a 

50:50 wt% SCMS and LSSO composite painted on to LSSO pellets at a binding temperature 

of 900°C. However it was found that the cathode didn’t attach and so ASR measurement 

were unable to be completed. So the previous limiting temperature of 900°C for 1hr 

suggested by the chemical compatibility results was removed, and the binding temperature 

was increased to 1000°C for 1hr. This higher temperature was in theory to allow better 

binding of the composites to the LSSO pellets, and even though weak impurities were 

previously seen through the XRD patterns at this temperature, these may not necessarily 

be detrimental to the conductivity or even present due to the shorter reaction time (1hr 

comparison to 24hr). This increased temperature still proved ineffective at binding the 

cathode to the pellets with ASR measurements still impossible. 

Drawing on previous ASR research a CGO composite electrode on an apatite electrolyte 

was attempted.53, 138 A mixed composite layer involving CGO:SCMS of 50:50 wt% and 75:25 

wt% with LSSO pellets were produced and fired at 900°C for 1 hr. The composite ratio were 

selected due to previous theoretical and experimental results suggesting that only a low 

amount of cathode material was required in the composite to provide the resulting high 

electronic conductivity.147 The composite successfully attached and impedance 
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measurements were performed using this data. An equivalent circuit fitting programme 

was attempted to separate each circuits contributing resistance (see experimental section 

2.6.2). However this was unsuccessful due to the severity of the overlapping semicircles in 

nyquist plot, so each circuit could not be resolved and total electrode-electrolyte resistance 

was reported from the low and high intercepts. 

 

 

 

 

Composition (ratio) ASR (Ω cm2) at 800°C ASR (Ω cm2) at 700°C 

CGO-SCMS (50:50) ● 4.02 42.31 

CGO-SCMS (75:25) ○ 1.31 8.75 
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Figure 3-9 ASR data plotted logR (ASR) vs 1000/T in air for composite electrodes 
SCMS-CGO mixed in 50:50 ● and 25:75 ○ on a LSSO electrolyte. 

Table 3-6 Area specific resistance values for composite electrodes deposited on 
a La9SrSi6O26.5 electrolyte pellet at 900°C 1hr. 
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Figure 3-9 and Table 3-6 show the ASR data for SCMS-CGO (50:50wt%) and SCMS-CGO 

(25:75wt%) composite cathodes on LSSO electrolyte. Overall the resistance is too high in 

these composites for applications suggesting problems with using these composites with 

apatite electrolytes. 

 Therefore, further ASR measurements were performed and instead of using CGO as simply 

part of the electrode composite, a CGO electrolyte pellet was used instead of the apatite 

electrolyte. A SCMS-CGO (50:50wt%) composite cathode as well as composite parent 

cathode (undoped Sr0.8Ca0.2MnO3−δ CGO(50:50wt%) were prepared and analysed. These 

tests were performed by Dr Jose M. Porras-Vazquez. The resulting ASR dependency with 

temperature is shown in Figure 3-10 with ASR values at 700°C and 800°C given in Table 3-7.  
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Figure 3-10 ASR data plotted logR (ASR) vs 1000/T in air for composite 
electrodes SCM-CGO (50:50wt%) ● and SCMS-CGO (50:50wt%) ○ on a CGO 
electrolyte pellet. 
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Furthermore, the Nyquist plot at 700°C from the impedance measurements are shown in 

Figure 3−11. The ASR data showed an improvement, when comparisons are made between 

the Si doped cathode and undoped cathode on a CGO pellet. The CGO/SCMS composite 

possesses significantly lower ASR values on a CGO pellet than the CGO/SCM composite. In 

addition the CGO/SCM and CGO/SCMS composites have better ASR results than any of the 

composites on a LSSO apatite pellet. This suggests that the previously mentioned cation 

intermixing of the perovskite and the apatite electrolyte is severely hindering the cathodes 

performance.  This may be due to the lowering of the interstitial oxide ion content of the 

apatite phase at the interface; through for example Sr incorporation in to the apatite in 

place of La which would lower the interstitial oxide content, and hence reduce its 

Composition (ratio) ASR (Ω cm2) at 

800°C 

ASR (Ω cm2) at 700°C 

CGO-SCM (50:50) ● 0.36 1.60 

CGO-SCMS (50:50) ○ 0.07 0.49 

Table 3-7 Area specific resistance values for composite electrodes deposited on a 
CGO electrolyte pellet at 900oC 1hr. 

 

Figure 3-11 Impedance spectra of the symmetrical cells for Sr0.8Ca0.2 MnO3 

(■) and Sr0.8Ca0.2Mn0.9Si0.1O3-δ (□)/CGO10 composites at 700 °C. The serial 

resistance was subtracted for better comparison of the spectra. 
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performance.  Therefore, further fuel cell work will concentrate on the CGO pellet and 

composite. 

 Fuel cell test  

Building on all of this work a full SOFC was assembled with a CGO/SCMS cathode which had 

showed the lowest ASR values in the symmetrical cells. For this SOFC, a CGO electrolyte 

(500µm thick), a CGO/SCMS 50:50 composite cathode and commercial NiO-CGO composite 

anode were used. Power density curves and current-voltage data for SCMS-CGO/CGO/NiO-

CGO at a temperature range of 500°C - 700°C, using air as oxidant and H2 as fuel, are shown 

in Figure 3-12. The open circuit voltage (OCV) obtained at 500°C =0.892 V which is lower 

than would be expected and predicted by the Nernst equation of 1 V. This suggests a poor 

seal of the cell. The OCV drops further as temperature increases, due to the fact that the 

CGO electrolytes electronic conduction is no longer negligible, with the Ce4+ being reduced 

to Ce3+. This is as expected with CGO being known to electronically conduct at 

temperatures above 600°C. The OCV voltage drops to 0.850 V at 600°C and 0.832 V at 
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Figure 3-12 Power density and cell voltage as a function of current density between 

500-700°C using air and H2.  
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700°C. Maximum power densities of 84 and 27 mW cm-2 were obtained at 700 and 600°C 

respectively. These are extremely low values of power density which are not-commercially 

viable. This can be attributed to both the poor cell sealing and the large electrolyte 

response seen in the AC-impedance plot, which was above what would be expected for the 

CGO fuel cell electrolyte and requires further analysis. Further studies are therefore 

planned to perform replicate tests to optimise the production of the cells and consequently 

their performance. 

 Conclusion 

Sr0.8Ca0.2Mn1-xSixO3-δ cathode materials x= 0, 0.005, 0.075, 0.1 and 0.125 were prepared by 

solid state synthesis. X-ray diffraction analysis confirms the change from a hexagonal to 

cubic perovskite on silicon doping. Clear evidence of silicon incorporation into the structure 

is shown through 29Si NMR results. On silicon doping there is a noticeable increase in 

conductivity which is attributed to the tetrahedral silicon replacing the octahedral Mn4+. 

This results in oxide ion vacancies and partial reduction of Mn leading to mixed valence. 

Chemical compatibility tests involving the highest conducting cathode 

(Sr0.8Ca0.2Mn0.9Si0.1O3−δ) and apatite electrolytes La9SrSi6O26.5 and La10GaSi5O26.5, along with 

fluorite electrolyte Ce0.9Gd0.1O1.95 were examined. Limited reactivity at 900°C was observed 

during the compatibility tests for La9SrSi6O26.5 and CGO, and so area specific resistance 

(ASR) tests were undertaken. Issues were however, identified with the poor bonding of the 

electrode to the apatite electrolyte. So a composite electrodes of Sr0.8Ca0.2Mn0.9Si0.1O3-δ and 

CGO were examined, and successfully deposited onto La9SrSi6O26.5 pellet. The ASR values 

were however very high and it is suggested that cation intermixing of the perovskite and 

the apatite is affecting the cathodes performance. Further ASR tests for the composites 
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were conducted on CGO electrolyte pellets and gave improved ASR values for the silicon 

doped cathode when compared to both the apatite tests and the undoped cathode 

(Sr0.8Ca0.2MnO3-δ). Fuel cell tests were performed for a SCMS-CGO/CGO/NiO-CGO cell and 

achieved maximum power densities of 84 mW cm-2 at 700°C respectively. This is a low value 

although the power density could be substantially improved if the cell sealing and hence 

the OCV could be improved. 
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Chapter 4  

4 Evaluation of Ba(Co/Fe)0.9Bi0.1O3-δ 

perovskite as a fuel cell cathode 

 Introduction 

 The success of SOFCs is dependant on the performance and the properties of the individual 

components, as well as the interfaces between them. Previous studies have shown that 

there are key performance problems with the cathode in both proton and oxide conducting 

fuel cell systems, with the former having major limitations.35  In this area, research has been 

dominated by either cobalt or manganese containing perovskites due to the high electronic 

conductivity that they possess.95, 148 However, Mn based perovskites are limited by poor 

ionic conductivity, while Co based systems suffer from large thermal expansion coefficients 

and poor chemical stability with commercial electrolytes.149  

The work in this chapter has involved doping iron and bismuth, on to the cobalt cation site 

of a BaCoO3 perovskite material. The introduction of other transition metal dopants into 

these materials has previously produced promising cathode candidates, which have shown 

mixed ionic-electronic conduction (La0.6Sr0.4Co0.2Fe0.8O3−δ ) 149.150 151, 152 Iron has been used 

as one of the most successful dopants in mixed ionic-electronic conductors (MIECs), due to 

its similar radius size to cobalt, its variable oxidation state and its lower cost.153-156 In 

addition iron containing perovskite compounds have a lower thermal expansion co-

efficient than Co based systems (e.g.LaFeO3 has a similar co-efficient to conventional 

electrolytes)157 158. In this respect, Table 4-1 shows thermal expansion co-efficients for a 

range of conventional electrolytes and perovskite cathodes.   
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Table 4-1 Thermal expansion co-efficient RT-800oC for a range of electrolytes and 
cathodes36, 95, 157, 159,158, 160 

Conventional Electrolytes  Thermal expansion co-efficient (x10-6 K-1) RT-800°C 

YSZ (10%) 10.8 
CGO (10%) 13.5 

LSGM 11.1 

Electrodes  Thermal expansion co-efficient (x10-6 K-1) RT-800°C 

LaCoO
3-δ

 28.1 

LaFeO
3-δ

 11.6 

La2NiO4 13.0 

La1-xSrxCoyFe1-yO3-δ 17.1 

 

The main problem of iron based materials is that they have a much lower electronic 

conductivity than ideal for SOFCs. Therefore mixed cobalt/iron on the B site allows for a 

balance between high conductivity and added stability.23, 161-163 The involvement of 

bismuth in this MIEC is due to previous work which showed that bismuth doping in 

BaCoO3−δ led to a material with a good reactivity for the ORR at intermediate 

temperatures.151, 164 The higher (0.1-0.3) the bismuth content the higher the reactivity.165, 

166 However Shao et al. suggested that a lower amount of bismuth was more favourable for 

fuel cells applications due to high Bi contents leading to increased TEC values, caused by a 

valence change that can occur on heating Bi5+ to Bi3+.164 The targeting of a barium based 

perovskite rather than strontium or calcium is due to favourable chemical compatibility 

with barium containing proton conducting electrolytes. In theory this should reduce cross 

component reactions at the cathode and electrolyte interfaces. In this work barium cobalt 

bismuth ferrites are synthesized and investigated with respects to their composition, 

conductivity, compatibility with conventional electrolytes and their electrode 

performance.  
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 Experimental  

BaCO3 (99.9%), Co3O4 (99%), Fe2O3, (99.9%) and Bi2O3 (99.9%) were used to prepare a range 

of BaCo0.9-xFexBi0.1O3-δ samples (x ranging from 0.0-0.8). These starting materials were 

intimately ground together in stoichiometric amounts and heated at 1000°C for 12 hours 

(a pre-drying step was included if required). They were then ball-milled (350 rpm for 1 hour, 

Fritsch Pulverisette 7 Planetary Mill) and reheated to 1000°C for a further 12 hours. The 

pure phases were pressed as pellets at a pressure of 5000 kg cm-2 in a 1.3 cm die set and 

sintered at 1100°C for 12hrs. For the electrode testing, both the performance on oxide ion 

conducting electrolyte and a proton conducting electrolyte were examined. The proton 

conducting electrolyte Ba2In1.6Zr0.2Si0.2O5.2 was chosen. This was synthesised from 

stoichiometric amounts of BaCO3 (+3 wt% excess due to high temperature evaporation 

(99.9%)), In2O3 (99.9%), ZrO2 (99.9%) and SiO2 (99.9%) which were ground together and 

then heat treated at a temperature of 1000°C for 12 hours.  The sample was then reground, 

ball milled (350 rpm for 1 hour, Fritsh Pulverisette 7 Planetary Mill) and reheated for 50 

hours at 1000°C. The resulting powder was pressed as pellets at a pressure of 2500 kg cm-

2 in a 1.0 cm die set and sintered at 1400°C for 8hrs. For a comparison against this proton 

conducting electrolyte, oxide ion conducting electrolyte Ce0.9Gd0.1O1.95 (CGO Sigma 

Aldrich), was pressed as pellets at a pressure of 2500 kg cm-2 in a 1.0 cm die set and sintered 

at 1500°C for 12hrs. 

Powder X-ray diffraction at room temperature was used to confirm the phase purity of the 

samples and characterise the cell parameters using a Bruker D8 diffractometer with Cu Kα1 

radiation (1.5406Å) over a 2θ range of 20-80° and a step size of 0.02°. Variable temperature 

XRD data were collected by Dr Oliver Clemens at the University of Darmstadt on a Bruker 
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D8 diffractometer with an Anton Paar HTK 1200N heating stage. The sample was heated 

from RT to 1000°C at 10°C a minute with XRD measurements taken every 50°C, multiphase 

refinements were performed to give cell parameters and weight percent fractions of each 

phase within the sample.  

Oxygen contents were determined using thermogravimetric analysis, (Netzsch STA 449 F1 

Jupiter Thermal Analyser) samples were heated to 1000 °C at 10 °C min-1 under N2 

atmosphere. The nitrogen’s atmosphere will reduce the iron and manganese to an 

oxidation states of 3+ and allow the original oxygen content to be calculated from the 

oxygen mass loss. 

Dilatometry measurements were performed using a Netzsch 409C dilatometer. Samples 

were prepared by ball milling the cathode powders in a Fritsch Pulverisette 7 Planetary Mill 

at 350 rpm for 1 hour. The samples were pressed into rods of 10mm in diameter and 10mm 

in length and sintered at 1100°C for 12hrs at a heating rate of 5°C min. Samples were then 

placed in the push rod case of the dilatometer and heated in air from 35°C to 1000°C at 

10°C min-1 to measure the thermal expansion. 

The water contents of hydrated perovskite samples were determined using 

thermogravimetric analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser). The 

measurements were carried out by heating the samples to 800°C at 10°C minute, water 

contents were determined from the observed mass loss, with mass spectrometry 

confirming that the weight loss was due to water.   

The CO2 stability was also studied using TGA; the samples were heated at 10°C min-1 to 

800°C in a CO2 atmosphere, with any mass gains used to determine the temperature at 

which CO2 is picked up and hence the maximum thermal stability. Furthermore XRD 
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analysis was used to show the phase purity comparison before and after heating the 

samples to 800°C in CO2. 

The conductivities of the pellets were measured on cooling from 800°C to 500°C in air at 

50°C intervals, following the four probe dc method. Four Pt electrodes were attached with 

Pt paste, and then the sample was fired to 800°C in air for 30 minutes to ensure bonding to 

the sample.  

The chemical compatibility between the perovskite cathodes and electrolyte materials 

were also studied. The materials were mixed in a 1:1 wt% ratio, then ground and fired at 

800°C and 900°C for 24hr, with X-ray diffraction being used to examine whether any 

reactions had occurred. For the electrode area specific resistance (ASR) measurements, the 

cathodes of 100%, and 50:50 by wt% ratio of cathode and electrolyte were prepared using 

the ball mill (350rpm for 1 hr, Fritsh Pulverisette 7 Planetary Mill), with added decoflux as 

the binder (WB41, Zschimmer and Schwarz). The resulting solutions were painted on to the 

corresponding electrolyte pellets on both sides and dried at 70°C for 10 minutes. Repeated 

painting was conducted a further 2 times to guarantee full covering of the pellets surfaces. 

The pellets were then heated for 1 hr at the required temperature, then Pt foil electrodes 

were attached and heated to 800°C for 1 hr. The ASR was determined using AC impedance 

measurements in a frequency range of 0.005-13000 kHz (Hewlett Packard 4182A 

impedance analyser) with the data analysed in Z-view.143 

The impedance spectra were recorded between 500°C-800°C; ideally three responses were 

expected, the two separate semi circles that corresponded to the bulk and grain of the 

electrolyte, and thirdly the electrode response. It was not possible to accurately extract 

individual contributions across the entire range, at lower temperatures there was partial 
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separation of the individual components, with capacitance and resistance values 

determined through an extended equivalent circuit fitting model. However at higher 

temperatures there was more distortion on the individual components and broad 

electrolyte semicircles were observed. The ASR data analysis though only requires the 

electrode response measurement data from the entire range, which has a capacitance 

value of 10−5 to 10-3 F cm-1. Therefore the resistance of the Nyquist plot does not start at 

zero and was calculated through the single semi-circle fitting programme within Z-view .143 

Single fuel cells were prepared using approximately 500 µm thick electrolytes, with a 

60:40wt% composite anode and a 50:50wt% composite cathode. Initially the composite 

anode was painted on one side of the electrolyte pellet, and heated to 1200°C for 1 hr, then 

the composite cathode was painted on to the other side and heated at 900°C for a further 

hr. At this point, Pt paste and coiled Pt wire were used as current collectors, being attached 

on both sides and heated to 800°C for 1 hr. The electrode surface area each side was 0.25 

cm2. The cell was sealed to the electrochemical setup using a ceramic-based material 

(Ceramabond 668/668A, Aremco). Fuel cell tests were carried out at the University of 

Malaga by Dr Jose M Porras-Vazquez and analysed using a VSP–biologic Pro-s machine.  

They were carried out between 500-700°C in pure humidified hydrogen (bubbled through 

water at 20°C) and atmospheric air. Current-voltage (I-V) curves were obtained by cyclic-

voltammetry at a scan rate of 5 mVs-1. The sealed anode material side was reduced at 500°C 

for 1hr before electrochemical tests were performed. The morphology of the electrodes 

and the electrode/electrolyte interfaces were studied using SEM images collected at the 

University of Malaga by Dr Jose M Porras-Vazquez on a JEOL SM-6490LV (20Kv). The 

samples were gold coated to avoid charge build up on the surface. 
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 Synthesis and X-ray Diffraction analysis of BaCo0.9-xFexBi0.1O3-δ 

The cathode series BaCo0.9-xFexBi0.1O3-δ (x = 0.0-0.8), was successfully prepared with varying 

Fe contents. XRD showed the introduction of Fe caused a conversion from the hexagonal 

perovskite to cubic perovskite to be observed. An Fe content equal to x= 0.6 was required 

in order to fully stabilise the pure cubic perovskite. It was noticed however that mixed 

hexagonal and cubic phases were formed for 0.4 ≤ x < 0.6, (as seen in Figure 4-1 a,b). 

 

BaCo0.1Fe0.8Bi0.1O3-δ 

BaCo0.2Fe0.7Bi0.1O3-δ 

BaCo0.3Fe0.6Bi0.1O3-δ 

BaCo0.4Fe0.5Bi0.1O3-δ 

BaCo0.5Fe0.4Bi0.1O3-δ 

BaCo0.6Fe0.3Bi0.1O3-δ 

BaCo0.9Bi0.1O3-δ 

BaCo0.8Fe0.1Bi0.1O3-δ 

BaCo0.7Fe0.2Bi0.1O3-δ 
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Figure 4-1a XRD patterns for BaCo0.9-xFexBi0.1O3-δ x = 0.0-0.8, showing a 
hexagonal perovskite for 0 ≤ x < 0.4, a mixture of hexagonal and cubic 

perovskite for 0.4 ≤ x < 0.6, and a cubic perovskite for x ≥ 0.6 
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The hexagonal cubic conversion can be related to changes in the tolerance factor on Fe 

doping. Co is smaller than Fe and so for high Co contents the perovskites tolerance factor 

is > 1. Which favours a hexagonal perovskite structure at room temperature. The doping of 

larger cations i.e. iron and bismuth, on to the B site affects the Rb component, pushing the 

tolerance factor towards 1 and so for higher Fe contents a cubic perovskite is observed. In 

terms of applications, cubic systems are preferable as these consists of corner shared 

octahedra. Which increases the orbital overlap allowing easier electron movement, 

resulting in increased conductivity. In addition all sites are equivalent and therefore less 

likely to trap oxide ion vacancy defects and hence may help to optimise the ionic 

conductivity.  Figure 1b shows an expanded region of the main perovskite peaks in each 

phase. The BaCo0.5Fe0.4Bi0.1O3-δ and BaCo0.4Fe0.5Bi0.1O3-δ samples show the crossover of the 

structure from hexagonal to cubic.  

BaCo0.1Fe0.8Bi0.1O3-δ 

BaCo0.2Fe0.7Bi0.1O3-δ 

BaCo0.3Fe0.6Bi0.1O3-δ 

BaCo0.4Fe0.5Bi0.1O3-δ 

BaCo0.5Fe0.4Bi0.1O3-δ 

BaCo0.6Fe0.3Bi0.1O3-δ 

BaCo0.7Fe0.2Bi0.1O3-δ 

BaCo0.8Fe0.1Bi0.1O3-δ 
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Figure 4-1b Expanded XRD patterns for BaCo0.9-xFexBi0.1O3-δ (x = 0.0-0.8) in the region 
between 27.5-35.5° 
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Table 4-2 Cell parameters for BaCo0.9-xFexBi0.1O3-δ (x=0-0.8) 

Sample 

Composition 

Unit cell parameter (Å) Unit cell 

volume (Å3) a b C 

BaCo0.9Bi0.1O3-δ 5.6731(4) - 11.8378(8) 329.95(4) 

BaCo0.8Fe0.1Bi0.1O3-δ 5.6966(3) - 11.8696(7) 333.58(5) 

BaCo0.7Fe0.2Bi0.1O3-δ 5.7053(3) - 11.8719(7) 334.66(5) 

BaCo0.6Fe0.3Bi0.1O3-δ 5.7161(4) - 11.8797(8) 336.16(6) 

BaCo0.3Fe0.6Bi0.1O3-δ 4.07190(8) - - 67.514(4) 

BaCo0.2Fe0.7Bi0.1O3-δ 4.06949(5) - - 67.394(3) 

BaCo0.1Fe0.8Bi0.1O3-δ 4.0605(1) - - 66.952(8) 

 

The refined unit cell parameters and volumes of the BaCo0.9-xFexBi0.1O3-δ series are listed in 

table 4-2. These data show an expansion of the unit cell on Fe doping for the hexagonal 

samples, as expected due to the larger size of Fe (0.585 Å) compared with Co (0.53 Å). At 

the cross over region from hexagonal to cubic (x = 0.4, 0.5), two phase refinements were 

performed allowing the individual weight percent fraction (WPF) of each phase to be 

determined. On increasing iron doping the hexagonal phase fraction decreases as the cubic 

phase increases. The WPF of each phases was calculated and is shown in table 4-3, along 

with the unit cell parameters and volumes for each phase. 

Table 4-3 Refined cell parameters, volumes and weight percent fractions of 
BaCo0.5Fe0.4Bi0.1O3-δ and BaCo0.4Fe0.5Bi0.1O3-δ  

Sample 

Composition 

Unit cell parameter (Å) Unit cell 

volume (Å3) 

WPF 

a b C % 

Hexagonal 

BaCo0.5Fe0.4Bi0.1O3-δ 

5.7169(2) - 11.8653(5) 335.85(3) 74.7 

Cubic 

BaCo0.5Fe0.4Bi0.1O3-δ 

4.0794(1) - - 67.890(8) 

 

25.3 

Hexagonal 

BaCo0.4Fe0.5Bi0.1O3-δ 

5.7107(6) - 11.777(8) 332.64(8) 72. 7 

Cubic 

BaCo0.4Fe0.5Bi0.1O3-δ 

4.0816(3) - - 67.999(2) 27.3 
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After the formation of the pure cubic perovskite, unexpectedly the unit cell parameters 

decrease with further additions of Fe. An early suggestion for this decrease was a change 

in the oxygen content over the series, therefore oxygen contents were estimated from TGA 

measurements (mass loss) assuming that the iron and manganese would be reduced in N2 

to 3+.  The oxygen contents however showed a rise on increasing iron, so could not account 

for the decrease in unit cell volumes (Table 4-4). Another possible origin of this decrease 

could be that for the cubic system there is a change in the spin state (high to low) in one or 

both of the transition metals; however further analysis (e.g. magnetic measurements) is 

required.160 Figure 4-2 shows a comparison of the normalised unit cell volumes of the pure 

hexagonal and cubic systems with the largest volume seen for cubic BaCo0.3Fe0.6Bi0.1O3-δ.  

Table 4-4 Oxygen content for the cubic perovskites BaCo0.9-xFexBi0.1O3-δ (x=0.6-0.8) 

Sample Composition Estimated oxygen content (3-δ) % Mass Change 

BaCo0.3Fe0.6Bi0.1O3-δ 2.841 1.54 

BaCo0.2Fe0.7Bi0.1O3-δ 2.843 1.55 

BaCo0.1Fe0.8 Bi0.1O3-δ 2.850 1.6 

Figure 4-2 Normalised (one formula unit) unit cell volume of 
BaCo0.9−xFexBi0.1O3-δ hexagonal perovskites x=0-0.3 and cubic x= 0.6-0.8. 
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One of the mixed hexagonal/cubic systems (x=0.5) was analysed further by variable 

temperature X-ray diffraction. This was used to observe the effect of temperature on the 

phase transition within a mixed perovskite sample. Only BaCo0.4Fe0.5Bi0.1O3-δ was studied, 

as it was the closest to the pure cubic perovskite. Phase transitions in perovskites are well 

known and increases in properties such as conductivity have been explained due to an 

observed transition. X-ray diffraction patterns were carried out in 50°C steps from RT-

1000°C, Figure 4-3 shows the XRD patterns of BaCo0.4Fe0.5Bi0.1O3-δ at 850-1000°C as well as 

one at RT. Rietveld refinements have shown an increase in cell parameters and cell 

volumes, as well as a drop in the hexagonal weight percent fraction (WPF) on heating (Table 

4-5). The peaks intensity corresponding to the hexagonal perovskite decreases until the 

structure appears to be pure cubic at 950°C. 

 

RT - BaCo0.4Fe0.5Bi0.1O3-δ 

850°C - BaCo0.4Fe0.5Bi0.1O3-δ 

900°C - BaCo0.4Fe0.5Bi0.1O3-δ 

950°C - BaCo0.4Fe0.5Bi0.1O3-δ 

1000°C - BaCo0.4Fe0.5Bi0.1O3-δ 

Figure 4-3 High Temperature X-ray Diffraction of BaCo0.4Fe0.5Bi0.1O3-δ shown at RT and 
between 850-1000°C.  
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 Table 4-5 BaCo0.4Fe0.5Bi0.1O3-δ cell parameters, volumes and weight percent fraction at 
RT and between 850-1000°C.  

 

The high temperature causes the combination of the hexagonal and cubic phases into a 

single cubic phase, which can be collated to the oxygen loss on heating.  This leads to partial 

reduction of the B site cations, which therefore leads to an increase in the average B cation 

site size. As a result, the tolerance factor decreases towards 1.0 leading to the observed 

change to a single phase cubic perovskite. On cooling, phase separation occurs due to 

oxygen pick up, which destabilises the cubic phase as the tolerance factor changes are 

reversed.    

 

 

 

 

Sample Composition 

BaCo0.4Fe0.5Bi0.1O3-δ 

Unit cell parameter (Å) Unit cell 

volume 

(Å3) 

WPF 

a b c % 

Hexagonal RT 5.7107(6) - 11.777(8) 332.64(8) 72. 7 

Cubic RT 4.0816(3) - - 67.999(2) 27.3 

Hexagonal 850°C 5.8330(3) - 12.073(6) 355.82(6) 87.0 

Cubic 850°C 4.1608(2)  - - 72.033(4) 13.0 

Hexagonal 900°C 5.8416(6) - 12.0929(7) 357.37(6) 50.3 

Cubic 900°C 4.1665(4) - - 72.329(3) 49.7 

Cubic 950°C 4.1725(5) - - 72.645(7) 100 

Cubic 1000°C 4.1786(8) - - 72.961(3) 100 
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 Thermal analysis  

 Dilatometry  

Preliminary dilatometry studies were performed on BaCo0.9−xFe−xBi0.1O3−δ, with x ranging 

from 0.0-0.3 (hexagonal) and 0.6-0.8 (cubic).The thermal expansion is measured from RT 

to 800°C, this range is being used as it’s the maximum ideal fuel cell operating temperature. 

Generally the thermal expansion co-efficient (TEC) is affected by the components of the 

structures and their positions and bond angles in relation to each other. The dilatometry 

data for BaCo0.9-xFexBi0.1O3−δ (x = 0-0.3, 0.6-0.8) is shown below in Figure 4-4 with the TEC 

and temperature profile. 

  
As expected the materials expand on heating. Figure 4-4 and Table 4-6 show the TEC as the 

doping of iron increases. The TEC have been calculated at RT-800°C, RT-400°C and 400-

800°C. The overall RT-800°C TEC values are higher than the electrolytes TEC, but a decrease 

Figure 4-4 Dilatometry data for BaCo0.3Fe0.6Bi0.1O3-δ  from 35°C-800°C at 10°C 
min-1 in air (dashed red line – temperature profile, Solid black line is TEC profile) 
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is observed in comparison to other high cobalt containing barium cathodes for example; 

BaBi0.05Co0.9Nb0.1O3−3  22.0 x10-6 K-1.151 

Table 4-6 Thermal Expansion co-efficient at RT-800°C, RT-400°C and 400-800°C for 
BaCo0.9-xFexBi0.1O3-δ (x=0-0.3, 0.6-0.8). 

 

 

 

 

 

 

 

Sample Thermal expansion co-efficient (x10-6 K-1)  
Composition RT-800 RT-400 400-800 

BaCo0.9 Bi0.1O3-δ 19.8 15.7 38.0 
BaCo0.8Fe0.1Bi0.1O3-δ 19.8 14.5 38.3 
BaCo0.7Fe0.2Bi0.1O3-δ 19.2 14.0 37.3 
BaCo0.6Fe0.3Bi0.1O3-δ 19.0 13.0 36.9 
BaCo0.3Fe0.6Bi0.1O3-δ 19.9 10.0 41.8 
BaCo0.2Fe0.7Bi0.1O3-δ 19.7 7.4 38.2 
BaCo0.1Fe0.8 Bi0.1O3-δ 21.8 5.5 42.3 

Figure 4-5 Thermal expansion co-efficient for BaCo0.9-xFexBi0.1O3-δ hexagonal 
perovskites x=0-0.3 and cubic 0.6-0.8 between RT-400°C in air. 
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The dilatometry data is analysed and split before and after 400°C. Figure 4-5 shows the 

reduction in the RT-400°C TEC on increasing iron content, with a steeper decrease around 

x =0.6  due to the resulting structure change from hexagonal to cubic. Above 400°C the TEC 

increases due to the loss of oxygen, which can cause the reduction of Co4+/Fe4+ to the 

Co3+/Fe3+ increasing the TEC. A preliminary TGA was performed which showed the expected 

oxygen mass loss at around 375-400°C depending on the sample (Figure 4-6). The earlier 

mass loss in the samples (≈100°C) is due to the surface water.  

To explain the larger TEC of each sample between 400-800°C further work is required, 

including slower heating rates, the exact temperature and region corresponding to the 

oxygen loss (400-800°C)and the rate of loss. This loss will vary from sample to sample, and 

have a profound effect on the B site metal oxidation states and therefore their ionic radii.  

Figure 4-6 TG profiles (10°C min−1 to 1000°C in N2 protection gas) for 
BaCo0.1Fe0.8Bi0.1O3−δ.BaCo0.2Fe0.7Bi0.1O3-δ and BaCo0.3Fe0.6Bi0.1O3-δ. 
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 Water contents  

The cubic (x = 0.6-0.8) and hexagonal (x = 0.0-0.3) powders of BaCo0.9−xFe−xBi0.1O3−δ were 

heated (under wet N2) up to 800°C, and then slowly cooled down to room temperature at 

the rate of 0.4 °C min−1. XRD patterns of the cubic phases showed that on hydration the 

cubic cell remains, but there is a peak shift to lower angles, suggesting that H2O is 

incorporated giving rise to a larger cell; the data for BaCo0.3Fe0.6Bi0.1O3−δ are shown below 

in Figure 4-7. For the hexagonal systems, additional changes were observed, in these cases, 

although the main phase remains small unknown impurities are present Figure 4-8.  

 

Figure 4-7 XRD pattern for BaCo0.3Fe0.6Bi0.1O3-δ before and after hydration. 

Slow cool wet N2 

BaCo0.3Fe0.6Bi0.1O3−δ 

BaCo0.3Fe0.6Bi0.1O3−δ 
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The resulting water contents of the cubic samples were determined by TGA measurement. 

Figure 4-9 shows the mass loss and differential thermal analysis trace for 

BaCo0.1Fe0.8Bi0.1O3−δ, with the corresponding mass spectrometry spectra for m/z 18 (H2O). 

The water contents are all shown in Table 4-7, and range between 0.1 and 0.4 molecules 

per formula unit, with BaCo0.3Fe0.6Bi0.1O3−δ showing the most significant water 

incorporation. This phase corresponds to the lowest Fe content required to give a pure 

cubic perovskite phase, and the higher water content may in some way be related to this 

closeness to the hexagonal-cubic phase boundary. In this respect further studies of other 

compositions close to this boundary are warranted.  

 

Figure 4-8 XRD pattern for BaCo0.6Fe0.3Bi0.1O3-δ before and after hydration.  
(* denotes the impurities) 

Slow cool wet N2 

BaCo0.6Fe0.3Bi0.1O3−δ 

BaCo0.6Fe0.3Bi0.1O3−δ 

* * 
* 
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Table 4-7 Water contents for hydrated BaCo0.9-xFexBi0.1O3-δ (x = 0.6-0.8). 

 CO2 Stability results  

As previous studies have shown that, barium containing perovskites can have poor stability 

on heating in CO2 (e.g. BaCeO3), the stabilities of BaCo0.9-xFexBi0.1O3-δ (x=0-0.3, 0.6-0.8) in a 

CO2 environment were examined. X-ray diffraction data are shown in Figure 4-10 for x = 0.3 

and 0.6 samples (heated to 800°C in 100% dry CO2). These conditions are extreme but are 

used to show how the perovskite phase could degrade overtime within the presence of CO2. 

The data showed that the cathodes partially decomposed, with small BaCO3 impurities 

produced. The decomposition of the cathode occurred in varying amounts, with the high 

cobalt containing samples seemingly more unstable. However for all systems the 

decomposition level was much lower than seen for many other Ba containing perovskites 

under similar condition e.g. BaCeO3. 

Composition Moles of water per formula unit 

BaCo0.1Fe0.8Bi0.1O3-δ 0.105 
BaCo0.2Fe0.7Bi0.1O3-δ 0.145 
BaCo0.3Fe0.6Bi0.1O3-δ 0.398 

Figure 4-9 TGA-MS plot of BaCo0.1Fe0.8Bi0.1O3-δ (m/z 18 water) 
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Figure 4-11 TG profiles (10°C min−1 to 1000°C in 1:1 CO2 and N2 mixture) 
for BaCo0.9Bi0.1O3-δ, BaCo0.6Fe0.3Bi0.1O3-δ and BaCo0.3Fe0.6Bi0.1O3-δ  
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Figure 4-10 X-ray diffraction data for BaCo0.6Fe0.3Bi0.1O3-δ and BaCo0.3Fe0.6Bi0.1O3-δ before 
and after a heat treatment at 800°C in 100% dry CO2 for 24hrs. (*highlights main BaCO3 

peak impurity) 
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Additional TGA work was performed on the x = 0.0, 0.3 and 0.6 samples to identify the 

temperature at which CO2 pick up begins. The TGA profiles on heating from RT-850°C in 

CO2 environment are shown in Figure 4-11. The BaCo0.9Bi0.1O3-δ sample shows a clear mass 

increase at around 550°C. On introducing iron doping this mass increase is shifted to slightly 

higher temperatures with BaFe0.6Co0.3Bi0.1O3-δ increasing the onset temperature to around 

730°C. Thus these results indicate that the iron doping enhances the stability towards CO2 

although some instability is still seen at the higher temperatures. 

 Conductivity 

Conductivities of both the pure hexagonal and cubic samples were also analysed. These 

measurements showed a reduction in conductivity on iron doping (Figure 4-12). The non-

linearity of the conductivity at higher temperatures is due to the loss of oxygen, which 

reduces the oxidation state of iron and cobalt and hence alters the charge carrier 

concentration. Even though higher conductivities were expected for the cubic perovskites, 

this was found not to be the case, with the results indicating that the Co content was the 

most crucial aspect for high electronic conductivity.  

Figure 4-12 Conductivity data for BaCo0.9-xFexBi0.1O3-δ x = 0.0-0.8 
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 Chemical Compatibility  

 
In order to determine the potential of these materials as PC-SOFC or SOFC cathode, 

chemical compatiblity tests were performed against known electrolytes. In an effort to 

simulate the effects of temperature on the electrolyte-cathode interfaces, the cathode 

materials were tested against two different types of electrolytes. A proton conducting 

electrolyte synthesized within our group Ba2In1.6Zr0.2Si0.2O5.2 (BIZS), and commercially 

available oxide ion conducting electrolyte Ce0.9Gd0.1O1.95 (CGO). 

 Ba2In1.6Zr0.2Si0.2O5.2 + BaCo0.9-xFexBi0.1O3-δ 
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Figure 4-13 X-ray Diffraction patterns for composite electrode, BIZS–BaCo0.9Bi0.1O3-δ 

50:50 wt% each at room temperature and then ground/fired at 800°C and 900°C for 
24hrs  
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Chemical compatibility tests involving the BIZS electrolyte and the iron undoped 

BaCo0.9Bi0.1O3-δ cathode were performed, with the composites being fired at 800°C, 900°C 

and 1000°C for 24hr, to compare the cross reactions. These tests were not promising with 

the emergence of impurities at 800°C/900°C (Figure 4-13) and further reactions at a 1000°C 

indicating its low chemical compatibility with BIZS. The reaction broadens and shifts the 

main BIZS perovskite peaks indicating the formation of a cobalt doped BIZS derivative and 

further additional impurities. The iron doped hexagonal systems also reacted forming 

shoulders peaks and additional impurity peaks, Figure 4-14 shows BaCo0.6Fe0.3Bi0.1O3-δ at 

800°C and 900°C after 24hrs. This provides further evidence towards the instability of high 

cobalt containing cathodes in line with other research.151, 155 

Ba
2
In

1.6
Zr

0.2
Si

0.2
O

5.2
 

 

BaCo
0.6

Fe0.3Bi
0.1

O
3-δ

 

 

Ba
2
In

1.6
Zr

0.2
Si

0.2
O

5.2

 
+ BaCo

0.6
Fe

0.3
Bi

0.1
O

3-δ

 
at 800°C 24hrs 

 

 

Ba
2
In

1.6
Zr

0.2
Si

0.2
O

5.2

 
+ BaCo

0.6
Fe

0.3
Bi

0.1
O

3-δ

 
at 900°C 24hrs 

 

 

Figure 4-14 X-ray Diffraction patterns for composite electrode, BIZS– BaCo0.6Fe0.3Bi0.1O3-δ

 

50:50 wt% each at room temperature and then ground/fired at 800°C and 900°C for 
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The BIZS compatibility with the cubic systems were more promising, with 

BaFe0.6Co0.3Bi0.1O3-δ showing visible stability up to 900°C (Figure 4-15). However the XRD 

data did show small changes to the unit cell parameter and volumes when heated. These 

small cell parameter changes suggest that, even though there were no apparent impurities 

seen in the diffraction patterns, there were still some reactions occurring through cation 

interdiffusion. This interdiffusion is occurring on a small scale and it may not have a 

negative effect on any of the cathodes performances, providing the resultant phases are 

not insulators. Indeed it may lead to the effective formation of a compositional gradient 

interface, which may be beneficial to performance. 
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Figure 4-15 X-ray Diffraction patterns for composite electrode, BIZS– BaCo0.3Fe0.6Bi0.1O3−δ

 

50:50 wt% each at room temperature and then ground/fired at 900°C for 24hrs 
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 Chemical Compatibility CGO + BaCo0.9-xFexBi0.1O3-δ 

 

 

Following these chemical compatibility tests with the proton conducting electrolyte 

Ba2In1.6Zr0.2Si0.2O5.2, further experiments were performed on a commercial electrolyte, 

gadolinium doped ceria (Ce0.9Gd0.1O1.95/CGO). In Figure 4-16, Figure 4-17 and Figure 4-18  

the XRD data illustrating the reactivity of the CGO and respective cathode compositions at 

800°C and 900°C are shown. 

 

 

 

 

Figure 4-16 X-ray Diffraction patterns for composite electrode, CGO–BaCo0.9Bi0.1O3-δ 

50:50 wt% each at room temperature and then ground/fired at 800°C and 900°C for 
24hrs 
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These results were not encouraging as the entire series reacted with CGO to form 

impurities, although as before the cubic phases reacted the least. The cross reactivity 

therefore seems to correlate with the amount of cobalt present in the sample. Area specific 

resistance (ASR) work is required to investigate whether these minor impurities will affect 

the cathodes performance in SOFC systems, or whether the conductivity of both the 

electrolyte and cathode material is maintained.    
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Figure 4-17 X-ray Diffraction patterns for composite electrode, CGO−BaCo0.6Fe0.3Bi0.1O3-

δ

 
50:50 wt% each at room temperature and then ground/fired at 800°C and 900°C for 
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Figure 4-18 X-ray Diffraction patterns for composite electrode, CGO−BaCo0.3Fe0.6Bi0.1O3-δ

 

50:50 wt% each at room temperature and then ground/fired at 800°C and 900°C for 
24hr 
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 Area specific resistance on Ba2In1.6Zr0.2Si0.2O and Ce0.9Gd0.1O1.95  

pellet in wet N2 and O2.  

Following on from the chemical compatibility studies symmetrical electrode tests were 

performed on both electrolytes BIZS and CGO in order to determine electrode area specific 

resistance (ASR). The electrolyte were pressed in to 10mm pellets and sintered at their 

respective temperatures to ensure a high density >90% theoretical. They were then painted 

on each of the surfaces with the respective cathodes, fired to a binding temperature 

ranging between 800°C and 1000°C for 1hr.  

 

 

Figure 4-19 ASR data plotted logR (ASR) vs 1000/T in wet N2 for electrodes 
BaFe0.6Co0.3Bi0.1O3-δ (100%) and BaCo0.9Bi0.1O3−δ (100%) on a BIZS electrolyte pellet 
at binding temperature range of 800-1000°C. 
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The ASR was investigated in both wet nitrogen and wet oxygen atmospheres to gather 

information on the range of p (O2)’s that a cathode may experience i.e. at the electrode 

surface a high p (O2) would be expected, whereas at the interface region the p (O2) is likely 

to be significantly lower. Iron doped BaFe0.6Co0.3Bi0.1O3-δ is displayed in detail due to it 

having the first stabilised cubic structure of the series, an inherent chemical stability with 

BIZS and an increased CO2 stability temperature compared to other compositions. In 

addition BaCo0.9Bi0.1O3-δ with a binding temperature of 900°C is also shown as this sample 

was the highest conducting via 4 probe method. The ASR data is shown for a 100% cathode 

in Figure 4-19 and Figure 4-20 in both wet N2 and O2 for BaFe0.6Co0.3Bi0.1O3-δ (800-1000°C).  

Figure 4-20 ASR data plotted logR (ASR) vs 1000/T in wet O2 for electrodes BaFe0.6Co0.3Bi0.1O3-

δ (100%)  and BaCo0.9Bi0.1O3−δ (100%) on a BIZS electrolyte pellet at binding temperature 
range of 800-1000°C 
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The binding temperature of 900°C appeared to be optimum in both atmospheres, giving 

successful binding to the BIZS surface and the lowest ASR result. The lower temperature 

results in poor binding and the higher temperature causes chemical compatibility issues 

with weak impurities forming that must be detrimental to the conductivity. In the wet N2 

atmosphere with the binding temperature at 900°C both the BaCo0.3Fe0.6Bi0.1O3−δ and 

BaCo0.9Bi0.1O3−δ showed comparable results at higher temperatures (700-800°C), although 

the BaCo0.9Bi0.1O3−δ sample was better at lower temperatures (<700°C). In the wet O2 

atmosphere the ASR were significantly lower than in the wet N2 for all temperatures. 

Furthermore the ASR of BaCo0.3Fe0.6 Bi0.1O3−δ cathode was lower than BaCo0.9Bi0.1O3−δ was 

at 900°C. Table 4-8 shows the ASR resistivity results at 500°C and 800°C for the respective 

cathode composition and binding temperature.  

The changes in the ASR in the different atmospheres is most likely due to the partial 

reduction of Co4+/Fe4+ to Co3+/Fe3+ in wet N2, which significantly reduces the electronic 

conductivity. As noted earlier it is only at the electrode-electrolyte interfaces that such low 

P (O2)’s may be observed.  All further ASR tests with BIZS were performed with a cathode 

binding temperature of 900°C and in an O2 atmosphere.  

Table 4-8 BaCo0.3Fe0.6 Bi0.1O3-δ and BaCo0.9Bi0.1O3−δ cathodes (100%) in wet N2/O2 on a 
Ba2In1.6Zr0.2Si0.2O5.pellet at binding temperature range of 800-1000°C. 

Composition (100) ASR (Ω cm2) 
at 800 C 

ASR (Ω cm2) at 
500°C 

BaCo0.9Bi0.1O3-δ 900°C Wet N2 0.75 14.71 
BaCo0.3Fe0.6 Bi0.1O3-δ 800°C  Wet N2 5.9 34.38 
BaCo0.3Fe0.6 Bi0.1O3-δ 900°C  Wet N2 0.61 24.48 
BaCo0.3Fe0.6 Bi0.1O3-δ 1000°C Wet N2 8.33 50.16 

BaCo0.9Bi0.1O3-δ 900°C Wet O2 0.17 12.15 
BaCo0.3Fe0.6 Bi0.1O3-δ 800°C  Wet O2 0.11 20.61 
BaCo0.3Fe0.6 Bi0.1O3-δ 900°C  Wet O2 0.073 7.69 

BaCo0.3Fe0.6 Bi0.1O3-δ 1000°C  Wet O2 0.17 8.32 
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As previously shown the ASR can be improved by using a composite cathode in a 50:50 wt% 

ratio with the BIZS electrolyte. This ratio is in line with previous electrode research and the 

chemical compatibility tests performed.  The composite cathode increases the amount of 

TPB present and therefore the number of active sites for the ORR, whilst keeping the 

required high electronic conductivity. The resulting ASR data for the composite electrodes 

are presented in Figure 4-21. The data shows an improvement in the values, especially at 

lower temperatures when comparing the 50:50wt% composite cathodes and 100% 

cathode on a BIZS pellet for both BaCo0.3Fe0.6 Bi0.1O3-δ and BaCo0.9Bi0.1O3−δ. 

 

Figure 4-21 ASR data plotted logR (ASR) vs 1000/T in wet O2 for 
composite BIZS electrodes BaFe0.6Co0.3Bi0.1O3-δ (100%/50:50wt%) and 
BaCo0.9Bi0.1O3−δ (100%/50:50wt%) on a BIZS electrolyte pellet. 
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Following these successful results, the electrode performance of other compositions were 

studied. Figure 4-22 and Table 4-9 show the ASR data for these BIZS/BaCo0.9-xFexBi0.1O3-δ 

(x=0-0.3 and 06-0.8) (50:50wt%) electrodes between 800-500°C on a BIZS electrolyte pellet. 

The ASR data showed an improvement when doping with iron, producing significant values 

comparable with industry and academic fuel cell standards.167, 168 Increasing the iron 

concentration to form the pure cubic structure (x=0.6) resulted in the lowest ASR value as 

predicted. However further increases in Fe content to x=0.7 and 0.8 somewhat surprisingly 

caused a significant rise in the ASR values. For these samples the ASR values are too high 

suggesting problems with using such high iron doped composites, this could be related to 

the observed reduction in electronic conductivity on Fe doping. 

Figure 4-22 ASR data plotted logR (ASR) vs 1000/T in O2 for 
composite electrodes BIZS/BaCo0.9-xFexBi0.1O3-δ x=0-0.3 0.6-0.8 
(50:50wt%) on a BIZS electrolyte pellet. 



128 
 

Table 4-9 ASR values at 800°C and 500°C for BIZS/BaCo0.9-xFexBi0.1O3-δ x=0-0.3 and 0.6-0.8 
(50:50wt%) on a BIZS electrolyte pellet in wet O2. 

 

Following on from the Ba2In1.6Zr0.2Si0.2O5.2 electrolyte work, further ASR measurements 

were performed using an oxide ion conductor CGO. Composite electrodes of the perovskite 

and CGO were deposited on a CGO electrolyte pellet. The composite used was a 50:50wt% 

CGO and respective BaCo0.9-xFexBi0.1O3-δ (x=0-0.3 0.6-0.8) cathode material. The binding 

temperature was 900°C for 1hr even though reactions were seen at this temperature in the 

chemical compatibility tests. This was so a direct comparison could be made against the 

BIZS ASR data. Figure 4-23 and Table 4-10 show the ASR data obtained. 

 

Table 4-10 Resistivity at 800°C and 500°C for CGO/BaCo0.9-xFexBi0.1O3-δ x=0-0.3 and 0.6-0.8 
(50:50wt%) on a CGO electrolyte pellet  

Composition 
900°C Wet O2 50% 50% 

BIZS 

ASR (Ω cm2) at 800°C ASR (Ω cm2) at 500°C 

BaCo0.9Bi0.1O3-δ 0.076 3.35 

BaCo0.8Fe0.1Bi0.1O3-δ 0.048 3.82 

BaCo0.7Fe0.2Bi0.1O3-δ 0.054 4.21 

BaCo0.6Fe0.3Bi0.1O3-δ 0.061 5.91 

BaCo0.3Fe0.6 Bi0.1O3-δ 0.025 3.84 

BaCo0.2Fe0.7 Bi0.1O3-δ 0.21 11.2 

BaCo0.1Fe0.8 Bi0.1O3-δ 0.17 12.1 

Composition 
900°C Wet O2 50% 50% 

CGO 

ASR (Ω cm2) at 800°C ASR (Ω cm2) at 500°C 

BaCo0.9Bi0.1O3-δ 0.0997 6.79 

BaCo0.8Fe0.1Bi0.1O3-δ 0.033 18.78 

BaCo0.7Fe0.2Bi0.1O3-δ 0.048 30.48 

BaCo0.6Fe0.3Bi0.1O3-δ 0.11 42.91 

BaCo0.3Fe0.6 Bi0.1O3-δ 0.056 21.78 

BaCo0.2Fe0.7 Bi0.1O3-δ 0.044 25.72 

BaCo0.1Fe0.8 Bi0.1O3-δ 0.12 29.14 
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The ASR values for the CGO/BaCo0.9-xFexBi0.1O3-δ (x=0-0.3 and 0.6-0.8) composites on CGO 

show higher values at lower temperatures than those on the BIZS pellets. However at 

higher temperatures the ASR values become similar. Overall the ASR at high temperatures 

are adequate for fuel cell tests but at low temperatures the ASR may be cause for concern. 

 Fuel Cell Test 

Two fuel tests were assembled at the University of Malaga with a NiO-BIZS/BIZS/BIZS- 

BaFe0.6Co0.3Bi0.1O3-δ cell for a PC-SOFC and a NiO-CGO/CGO/CGO-BaFe0.6Co0.3Bi0.1O3-δ cell 

for a SOFC. The BaFe0.6Co0.3Bi0.1O3 cathode material was used as it showed low ASR values 

and higher stability than other cathode materials. The BIZS electrolyte fuel cell test was 

unsuccessful, as the pellets density was insufficient (≈90% theoretical). This density was 

Figure 4-23 ASR data plotted logR (ASR) vs 1000/T in O2 for composite 
electrodes CGO/BaCo0.9-xFexBi0.1O3-δ x=0-0.8 (50:50wt%) on a CGO 
electrolyte pellet 
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acceptable for conductivity and ASR measurements but too porous when used in the fuel 

cell test. For the SOFC test, a sufficiently dense CGO pellet (≈500µm thick, 98% theoretical) 

was used, along with the CGO/BaFe0.6Co0.3Bi0.1O3-δ 50wt%:50wt% composite cathode and 

a NiO-CGO 50wt%:50wt% composite anode. Power density curves and current-voltage data 

for CGO/BaFe0.6Co0.3Bi0.1O3-δ /CGO/NiO-CGO  in the temperature range of 500°C - 

700°C,using air as oxidant and H2 as fuel, are shown in Figure 4-24.  

The open circuit voltage (OCV) fluctuated between 0.892 and 0.832 V over the temperature 

range of 500°C - 700°C which is lower than would be expected and predicted by the Nernst 

equation (1), and so suggests that the cell wasn’t fully sealed. The OCV drops further as 

temperature increases, due to the electronic conductivity in CGO at high temperatures. As 

a result of incomplete sealing a maximum power density of only 50 mW cm-2 at 700°C was 

obtained which is low. Further fuel cell tests are planned once the pellet density of the BIZS 

has been increased, via either the addition of sintering aids or plasm sintering. 

 

Figure 4-24 Cell voltage and power density as a function of current density between 700-500°C 
using air as the oxidant and H2 as the fuel. 
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 Cross sectional structure of the fuel cell 

The fuel cell interfaces were analysed by scanning electron microscopy (SEM) at the 

University of Malaga by Dr Jose M. Porras-Vazquez, to gain insight into the 

electrode/electrolyte interfaces. The anode/electrolyte interfaces have been widely 

studied, with a NiO anode being used commercially. It has been shown to adhere to the 

sintered electrolyte pellets without excessive reactivity. The CGO pellet with NiO is shown 

below in Figure 4-25 after a 1hr attachment heat treatment at 1200°C.  There were two 

very distinct layers seen and neither showed any significant inter-diffusion between them, 

this is concurrent with other research.169, 170 This boundary is ideal for a fuel cell with the 

porous anode, no visible cross sectional reactions and an extremely dense electrolyte. The 

electrolyte/cathode interface needs to have similar characteristics to this boundary layer.  

 

The perovskite cathode BaFe0.6Co0.3Bi0.1O3-δ was used with both the BIZS and CGO 

electrolyte, and successful attachment to each pellet occurred by heating at 900°C for 1hr. 

Even though the chemical compatibility tests did predict some minor reactions, this was 

the lowest temperature possible that resulted in adequate adherence to the pellet. 

Figure 4-25 NiO-CGO 5050 composite / CGO 

pellet 

Composite   CGO 
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At the electrolyte/cathode interface of BIZS/ BaFe0.6Co0.3Bi0.1O3-δ shown in Figure 4-26a the 

reactivity and inter-diffusion between the two layers was not significant, agreeing with the 

chemical compatibility results. However the lower than ideal density of BIZS electrolyte 

seen in the fuel cell test (≈ 90%) is shown to be a limiting factor of this electrolyte. The SEM 

image shows a high electrolyte porosity, with some pores measuring 20µm in length. This 

would easily allow hydrogen gas to pass through electrolyte removing the seal of the cell 

and therefore no power output would be produced. 

 

  

The cathode composite of CGO-BaFe0.6Co0.3Bi0.1O3-δ on a CGO pellet is shown in Figure 

4-26b. There is no definite boundary between the electrode and electrolyte as in the anode 

case.   As previously commented the CGO electrolyte pellet density is more than adequate 

Figure 4-26  a)BIZS-BaCo0.3Fe0.6Bi0.1O3-δ 50:50wt% composite/ BIZS pellet 
b)CGO pellet/CGO-BaCo0.3Fe0.6Bi0.1O3-δ 50:50wt% composite  

a) BIZS pellet    Composite   

b) CGO   Composite 



133 
 

and the SEM portrays this. Also some reactions can be seen between the CGO and the 

composite cathode as expected from their chemical compatibility reaction. In addition to 

the cell sealing issues, minor phases may have caused the negative effects on the fuel cells 

performance.  

 Conclusion  

Perovskite type BaCo0.9-xFexBi0.1O3-δ phases, with x ranging from 0.0-0.8 were prepared via 

a solid state route. X-ray diffraction confirmed that on Fe doping there is a change from a 

hexagonal to a cubic perovskite. High temperature X-ray diffraction of BaCo0.4Fe0.5Bi0.1O3-δ 

(mixed hexagonal cubic structure) showed a phase transition to pure cubic at ≈950°C. The 

iron doping into the system also resulted in a lower thermal expansion co-efficient than 

BaCo0.9Bi0.1O3-δ, at lower temperatures (RT-400°C), although over the higher temperature 

range (RT-800°C) the TEC values were comparable. A noticeable result was the observation 

of increased stability in both steam and CO2 rich atmospheres for heavily iron doped 

systems. However the conductivity values are less than ideal with increased iron doping 

decreasing the conductivity. The chemical compatibility data was performed between the 

cathodes and a proton conducting SOFC electrolyte Ba2In1.6Zr0.2Si0.2O5.2 (BIZS) and an oxide 

ion conductor Ce0.9Gd0.1O1.95 (CGO). They revealed that with BIZS the increasing iron doping 

reduced the cross reactions, with no visible reactions seen for x ≥ 0.6 at either 800°C or 

900°C.  For the electrolyte CGO all cathodes showed reactivity at 800°C and 900°C with the 

high cobalt containing compounds reacting the most.  

ASR tests were performed on both BIZS and CGO electrolytes using 50:50 wt% cathode 

composite materials BaCo0.9-xFexBi0.1O3−δ (x = 0.0-0.3 and 0.6-0.8). The lowest ASR 0.025 Ω 

cm2 was observed at 800°C for a BaCo0.3Fe0.6Bi0.1O3-δ/BIZS composite on a BIZS pellet, which 
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is comparable with the reported literature systems. However for the CGO pellet of the 

same composite, the ASR was higher (0.11 Ω cm2) which may be related to the minor 

impurity phases seen in the chemical compatibility tests.  

Fuel cell tests were attempted for both electrolytes (BIZS and CGO) using the 

BaFe0.6Co0.3Bi0.1O3-δ cathode in 50:50wt% composites. The BaFe0.6Co0.3Bi0.1O3-δ-

BIZS/BIZS/NiOBIZS cell was unsuccessful due to the poor density of the electrolyte pellet. 

For the BaFe0.6Co0.3Bi0.1O3-δ-CGO/CGO/NiO-CGO cell a test was successfully performed. 

However a maximum power density of only 50mW cm-2 at 700°C was achieved. This low 

value, was most likely related mainly to poor cell sealing as evidenced by the low open 

circuit voltage.  
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Chapter 5 

5 Doping in Ba2Sc2O5 to reduce costs 

and increase stability 

 Introduction  

Materials with the perovskite structure have attracted significant interest in the fuel cell 

area for application as both electrolyte and electrode materials. For electrolyte materials, 

a range of perovskite systems have been investigated displaying high oxide ion conductivity 

and/or proton conductivity.38, 73, 171 In terms of proton conducting perovskites, systems 

with a large A site cation (Ba/Sr) which has low electronegativity and a tetravalent B site 

cation (Zr4+/Ce4+) have attracted the most interest.172, 173 Such systems allow the 

introduction of accepter dopants, in the most successful systems to date a small amount 

(10% or 20%) of trivalent rare earths (Y3+ Yb3+) have been doped into BaZrO3 and BaCeO3-

y.174-176 These have been shown to display high protonic conductivities in humid 

atmospheres, by the incorporation of water into oxide ion vacancies created as a result of 

the doping.177, 178 

The cerate and the zirconate systems have been the most researched in the perovskite 

proton conducting area.179 Less work has focused on examining systems with inherent high 

oxide ion vacancy contents such as Ba2In2O5 and Ba2Sc2O5.
180

 Indeed, the lack of research 

on the latter is highlighted by the fact that it has only recently been shown that Ba2Sc2O5 

actually is an oxide carbonate Ba2Sc2-xCxO5+x/2+, which accounts for its thermally instability 

above 1000°C.181, 182 Though suitable oxoanion (phosphate,sulphate) or  high valent cation 

doping (Ti4+) by Shin et al. and Knee et al. show that it can be stabilised. 181,183 The doping 
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of barium scandate with titanium results in an oxygen deficient perovskite system 

BaTi1−xScxO3-δ (0.1-0.8) that shows a much higher proton conduction than the undoped 

analogue. The author’s work on this system has shown that varying the Ti dopant level 

results in differences in the perovskite cell symmetry; 0.1-0.2 hexagonal, 0.3-0.4 two phase 

mixture, 0.5-0.7 cubic and ≥0.8 impure/unidentifiable perovskites.184 The highest proton 

conductivity was observed for BaSc0.7Ti0.3O3-δ (σ600= 0.0025 S cm-1) which is comparable to 

yttrium doped BaZrO3 or BaCeO3-y.184 However, very high sintering temperatures (1550°C, 

48 hrs) were required, which still did not lead to fully dense membranes (the resulting 

density was below 90% and contained grain of 1-5 µm on average size, limiting its uses as 

a fuel cell electrolyte). Furthermore, such high temperature sintering results in barium 

evaporation and secondary phase formations are possible which reduces 

conductivity.183,185 In addition to this, the most successful systems contain high amounts of 

scandium which limits its commercial applications due to scandium’s high cost (starting 

material is Sc2O3 = £52.50 per gram).(Sigma Aldrich 30/05/2016) 

Consequently in this chapter work has involved doping BaTi0.3Sc0.7O3-δ with other rare 

earths in order to examine the effects on the conductivity and in order to reduce or 

completely remove the high cost scandium with other elements. The doping strategy has 

been two fold; firstly, it has involved doping ytterbium on to scandium with the same 

charge and similar size. Secondly a small amount of boron as a dopant and sintering aid has 

been added in an effort to lower the melting point and promote grain growth, therefore 

enhancing the sinterability (BaYb0.7−x−yScxByTi0.3O3−δ) and thus allowing the sintering 

temperature to be lowered. The initial work showed that some Sc was still required to form 

the perovskite phase. However, following on from this initial work, the complete 
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replacement of scandium has also been attempted in such systems, by adding low levels of 

iron to form BaYb0.65-zFezB0.05Ti0.3O3−δ phases. 

 

 Experimental  

High purity BaCO3, Sc2O3, Yb2O3, H3BO3 Fe2O3 and TiO2 were used to prepare a range of 

BaYb0.7−x-yScxByTi0.3O3-δ (x= 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 and y= 0, 0.05) and BaYb0.65-

zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2) electrolyte samples. A small (5%) excess of BaCO3 was 

employed, in order to overcome barium loss at elevated temperatures and so eliminate 

barium deficient impurity phases as shown to be successful in previous studies of related 

systems.186, 187 In each case, the powders were ground and heated initially to 1000°C for 12 

hours (a pre-drying step was included if required). They were then reheated to 1100°C for 

12 hours with an intermediate regrind. The resulting powders were then reground again, 

pressed as pellets (1.3 cm diameter) and sintered between 1350°C and 1400°C for 6 hours. 

The pellets were covered in sacrificial sample powder and the crucible was covered with a 

lid in an effort to limit the amount of barium loss during the synthesis/sintering process.  

Powder X-ray diffraction data were collected over a 20-80 2θ range with a step size of 0.02 

(Bruker D8 diffractometer with Cu Kα1 radiation). In order to demonstrate phase purity, as 

well as for cell parameter determination. The latter utilised the GSAS suite of 

programmes.118 

The respective powder samples were heated under wet N2 to 800°C and held for 2 hours, 

before slowly cooling them down to room temperature at 0.4°C min-1 to hydrate the 

phases. The water contents of hydrated samples were determined from thermogravimetric 

analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser). Samples were heated at 10°C min−1 
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to 800°C in N2, and the water contents were determined from the observed mass loss, with 

a mass spectrometer attachment confirming that the mass loss was due to water. The 

stability of the hydrated systems after hydration were confirmed through X-ray diffraction 

analysis. The CO2 stabilities of the samples were determined using X-ray diffraction and 

thermogravimetric analysis as well. The X-ray diffraction data were used to elucidate any 

differences before and after heating the samples to 800°C in dry CO2, and so allow the 

identification of any decomposition. In the TGA experiments, samples were heated at 10°C 

min-1 to 800°C in CO2 to determine if CO2 would be picked up and at what temperature this 

occurred. 

Scanning electron microscopy images were collected on a JEOL SM-6490LV electron 

microscope, to study the effect of the addition of the sintering aid boron on the samples 

microstructure and porosity. The samples were gold coated to avoid charge build up on the 

surface. 

Conductivity measurements were performed on BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 

0.3) and BaYb0.65-zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2) electrolyte samples. The sintered pellets 

ranged in densities between 76%-99%; each pellet was coated with Pt paste and Pt 

electrodes were attached and heated to 800°C in air for 1 hour to ensure bonding to the 

pellets surface. Conductivities were then measured by AC impedance measurements (PSM 

1735 N4L interface impedance analyser) in the frequency range of 1Hz to 13 MHz. 

Conductivity measurements were performed in dry N2 and wet N2 (in which the gas was 

bubbled at room temperature through concentrated sulphuric acid and water respectively) 

to identify any protonic contribution to the conductivity. The impedance spectra were 

recorded between 350°C-800°C; it was not possible to accurately extract individual bulk 
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and grain boundary contributions across the entire range. Therefore the resistance was 

calculated from the high intercept of the semicircle based on the Z-view fitting programme 

and corresponds to the total (bulk + grain boundary) resistance.143 

 

 Synthesis results 

The initial X-ray powder diffraction data of undoped barium scandate correlates with 

previous work on this material. These data showed that it is unstable above 1000°C forming 

Ba3Sc4O9, leaving it unable to be sintered for fuel cell applications.  Below 1000°C a 

perovskite related structure was observed, and previous work within the group has 

indicated that this structure was not actually “Ba2Sc2O5” but rather a carbonate doped 

barium scandate Ba2Sc2-xCxO5₊x/2. The presence of carbonate stabilises the high number of 

oxide ion vacancies, but is lost above 1000°C, hence the thermal instability (Figure 5-1).180, 

181  

In order to stabilise the perovskite structure to higher temperatures and reduce the 

scandium content, the dopants ytterbium (Yb3+) titanium (Ti4+) and boron (B3+) were used. 

 

 

Figure 5-1 X-ray diffraction of Ba2Sc2O5 at temperatures of 1000°C and 1300°C (the later 
showing the formation of Ba3Sc4O9 ) 

Ba3Sc4O9 1300°C 

Ba2Sc2O5 1000°C 
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X−ray diffraction patterns of the highly doped samples showed the emergence of 

perovskite peaks at synthesis temperatures above 1300°C. A constant titanium and boron 

content of 0.3 and 0.05 respectively was employed, and the scandium, ytterbium content 

was then varied.   

Compositions of BaYb0.65−xScxB0.05Ti0.3O2.65 were prepared, with the focus on the lower Sc 

(x= 0.05, 0.1, 0.2 and 0.3) levels because of its higher cost. All compositions in this range 

were successfully prepared, with cell parameters shown in Table 5-1 and X-ray diffraction 

patterns in Figure 5-2. The data show a gradual decrease in the cell parameters on 

increasing scandium contents, due to the smaller size of Sc3+ (0.745 Å) to Yb3+ (0.868 Å). 

 

Figure 5-2 X-ray diffraction pattern for BaYb0.65−xScxB0.05Ti0.3O2.65 (x = 0.05, 0.1, 0.2, 0.3) 

2θ (°) 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 

BaYb0.55−xSc0.1B0.05Ti0.3O2.65 

BaYb0.45Sc0.2B0.05Ti0.3O2.65 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 
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Table 5-1 Cell parameter data for BaYb0.7−xScxB0.05Ti0.3O3-δ (x= 0.05, 0.1, 0.2, 0.3) 
Sample composition Unit cell parameter a (Å) Unit cell volume (Å3) 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 4.24336(5) 76.406(3) 

BaYb0.55Sc0.1B0.05Ti0.3O2.65 4.24106(7) 76.283(4) 

BaYb0.45Sc0.2B0.05Ti0.3O2.65 4.22780(2) 75.56(1) 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 4.21475(6) 74.872(3) 

The complete removal of scandium was also attempted, and whilst a perovskite phase 

formed, the resultant sample did include significant impurity phases (in particular Ba3Yb4O9) 

(Figure 5-3), suggesting enhanced problems with Ba loss without some Sc being present. In 

addition corresponding samples without boron were also examined BaYb0.55Sc0.15Ti0.3O2.65, 

BaYb0.45Sc0.25Ti0.3O2.65 and BaYb0.35Sc0.35Ti0.3O2.65. These phases, however, showed the 

presence of impurities which indicates that the successful replacement of the scandium 

with a larger ytterbium dopant requires boron to be present to achieve pure samples. All 

samples showed the presence of impurities until the BaYb0.35Sc0.35Ti0.3O2.65 sample, which 

appeared to be a mixture of a cubic and tetragonal perovskite.   

Figure 5-3 XRD patterns for BaYb0.6Sc0.05B0.05Ti0.3O3, BaYb0.65B0.05Ti0.3O3 BaYb0.55Sc0.15Ti0.3O3−δ 

BaYb0.45Sc0.25Ti0.3O3−δ and BaYb0.35Sc0.35Ti0.3O3−δ in a zoomed region of 20-50° with * denoting the 

impurities. 

BaYb0.45Sc0.25Ti0.3O2.65 

BaYb0.55Sc0.15Ti0.3O2.65 

BaYb0.35Sc0.35Ti0.3O2.65 

BaYb0.65B0.05Ti0.3O2.65 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 
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 Scanning electron microscopy studies   

Scanning electron microscopy was used to investigate whether the pellets of 

BaYb0.65−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) had sintered successfully, and if the 

sintering aid (boron) was having an effect on the grain growth. These SEM tests were 

performed at the University of Malaga by Dr Jose M. Porras-Vazquez. 

 

Table 5-2 % theoretical density of BaYb0.65−xScxB0.05Ti0.3O2.65 (x = 0.05, 0.1, 0.2, 0.3) and 

BaYb0.45Sc0.25Ti0.3O2.65 samples (*denotes impure) 

Composition Density % 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 87 
BaYb0.6Sc0.1B0.05Ti0.3O2.65 94 
BaYb0.6Sc0.2B0.05Ti0.3O2.65 99 
BaYb0.6Sc0.3B0.05Ti0.3O2.65 95 
BaYb0.6Sc0.25Ti0.3O2.65* 74 

 

Figure 5-4 Scanning electron microscopy images of a) BaYb0.6Sc0.05B0.05Ti0.3O2.65 

b)BaYb0.35Sc0.3B0.05Ti0.3O2.65 and c) BaYb0.45Sc0.25Ti0.3O2.65 

a) BaYb0.6Sc0.05B0.05Ti0.3O2.65 b) BaYb0.35Sc0.3B0.05Ti0.3O2.65 

c) BaYb0.45Sc0.25Ti0.3O2.65 
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Figure 5-4 shows the SEM images of BaYb0.6Sc0.05B0.05Ti0.3O2.65, BaYb0.35Sc0.3B0.05Ti0.3O2.65 

and the impure BaYb0.45Sc0.25Ti0.3O2.65. The B doped samples BaYb0.6Sc0.05B0.05Ti0.3O2.65 and 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 show similar results illustrating a dense material and continuously 

defined grain boundaries. In contrast the sample without B, BaYb0.45Sc0.25Ti0.3O2.65 shows 

less distinct features, and it contains a much more porous structure with varying grain sizes. 

Table 5-2 lists the densities of the pellets, with the boron doped samples showing high 

densities, with values ranging from 87-99 % theoretical, whilst the non-boron doped 

system BaYb0.45Sc0.25Ti0.3O2.65 had a much lower density of 74%. Thus, the presence of 

boron appears to be having the desired effect of increasing the densification, whilst also 

producing a pure phase most likely as a result of enhancing reaction through lowering the 

overall sample melting point. Furthermore, due to the small impurities, and the lower than 

ideal density of the BaYb0.7−yScyTi0.3O2.65 electrolytes (y= 0.15, 0.25 and 0.35), they are 

unusable in a fuel cell and therefore further measurements were performed only on the B 

doped samples BaYb0.65−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3). 

 Thermogravimetric analysis (TGA) 

 Hydration  

In order to hydrate the samples, powders of BaYb0.65−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 

0.3) were heated under wet N2 to 800°C, before slowly cooling them down to room 

temperature (0.4°C min−1). X-ray diffraction was carried out after the heat treatment in 

order to confirm that there was no decomposition on hydration (Figure 5-5).  

Table 5-3 Water contents for hydrated BaYb0.65−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) 

from TGA studies. 

Sample composition Water content (per formula unit) 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 0.186(4) 

BaYb0.55Sc0.1B0.05Ti0.3O2.65 0.133(4) 

BaYb0.45Sc0.2B0.05Ti0.3O2.65 0.108(2) 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 0.076(9) 
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The water contents were determined through TGA measurement in a dry nitrogen 

atmosphere, heating the hydrated samples at 10°C min-1 to 800°C.  The calculated water 

contents ranged from 0.08-0.19 H2O per formula unit (table 6-3), with the water content 

decreasing with increasing Sc content. The origin of this decrease requires further study 

but may indicate changes in oxide ion vacancy defect trapping, such that hydration 

becomes less favourable. Overall, however the data indicates incomplete filling of the oxide 

ion vacancies by H2O for all samples.  

 

 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 slow cool wet N2 800◦C 

BaYb0.55Sc0.1B0.05Ti0.3O2.65 slow cool wet N2 800◦C 

BaYb0.45Sc0.2B0.05Ti0.3O2.65 slow cool wet N2 800◦C 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 slow cool wet N2 800◦C 

Figure 5-5 XRD patterns for hydrated BaYb0.65−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) 
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 CO2 stability 

The CO2 stability of the BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) samples has also 

been investigated, as many proton conductors, such as BaCeO3, undergo significant 

decomposition reactions when heating in a CO2 containing atmosphere (forming barium 

carbonate).188 Figure 5-6 shows the X-ray diffraction patterns of BaYb0.35Sc0.3B0.05Ti0.3O2.65 

and BaYb0.55Sc0.05B0.05Ti0.3O2.65  before and after heating to 800°C in dry CO2 for 24 hrs. The 

conditions used are extreme conditions for a fuel cell electrolyte, but despite these 

extreme conditions the data shows that this perovskite is stable in such CO2 environments 

up to 800°C. 

TGA measurements were also performed on these perovskites, as well as undoped 

“Ba2Sc2O5” and BaCe0.9Y0.1O3−δ for comparison. The TGA profiles in Figure 5-7 are from 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 CO2 800°C 

Figure 5-6 X-ray diffraction data for BaYb0.35Sc0.3B0.05Ti0.3O2.65 and 
BaYb0.6Sc0.05B0.05Ti0.3O2.65 before and after a heat treatment to 800°C in 100% dry CO2 
for 24hrs. 

2θ (°) 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 CO2 800°C 
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heating in a CO2 atmosphere up to 800°C at 10°C min-1; the data show that “Ba2Sc2O5” and 

BaCe0.9Y0.1O3−δ are susceptible to partial decomposition in a CO2 atmosphere as expected, 

gaining significant mass at temperatures above 475°C and 550°C respectively. However, 

the data for BaYb0.65Sc0.05B0.05Ti0.3O2.65 and BaYb0.35Sc0.3B0.05Ti0.3O2.65 showed no mass 

increases up to 800°C, indicating that these perovskite phases are very stable in a high CO2 

atmosphere. 

 

 Conductivity measurements 

The conductivities of BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) pellets were 

investigated in both dry and wet N2 atmospheres, in order to determine if proton 

conductivity was observed over the 350-800°C range. As noted earlier, all sample pellets 

showed high theoretical densities (values given in Table 5-4). 

Figure 5-7 TG profiles (10°C min−1 to 800°C in CO2) for 
a)BaYb0.65Sc0.05B0.05Ti0.3O3-δ, b)BaYb0.35Sc0.3B0.05Ti0.3O3-δ , c)Ba2Sc2O5 and 
d)BaCe0.9Y0.1O3−δ  

a) 

b) 

d) 

c) 
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Table 5-4 % Theoretical Densities of BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) 
 

 

 

The impedance data revealed a partial separation of the individual boundary components 

at low temperatures (350-450°C), with a separate grain boundary contribution being 

observed, which became less significant at higher temperature. Figure 5-8 shows the 

impedance and fitting data for BaYb0.6Sc0.05B0.05Ti0.3O2.65 at 350°C, 450°C and 550°C in a dry 

N2 atmosphere.  

The semicircles at high frequencies relate to the bulk conductivities and have 

corresponding capacitance values equal to 10−11 F cm-1. The second semicircles at lower 

frequencies are consistent with grain boundary conductivities having a calculated 

Sample composition % Theoretical Density 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 87 

BaYb0.55Sc0.1B0.05Ti0.3O2.65 94 

BaYb0.45Sc0.2B0.05Ti0.3O2.65 99 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 95 

Figure 5-8 Impedance and fitting data for BaYb0.6Sc0.05B0.05Ti0.3O2.65 at 
350°C, 450°C and 550°C in  a dry N2 atmosphere, showing the reduction 
and splitting components in the resistance over temperature. 
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capacitance of 10−8 F cm-1 (equivalent circuit fitting model). The low temperature data 

showed a significant grain boundary contribution, which disappeared at higher 

temperatures.  However at the required intermediate fuel cell temperatures >500°C, a 

single broad semicircle was observed for the total conductivity. These single semicircles 

essentially appeared to mainly correspond to the bulk conductivity (capacitance = 10−11 F 

cm−1) with the resolved grain boundary being no longer observed.  

Table 5-5 Fitted bulk (B) and grain boundary (GB) conductivities and capacitances for 
BaYb0.6Sc0.05B0.05Ti0.3O2.65 at 350°C, 450°C and 550°C. 

 

 

 

Composition 

BaYb0.6Sc0.05B0.05Ti0.3O2.65 

Conductivity  

(S cm-1) 

Capacitance 

(F cm-1) 

at 350°C B = 1.32 x10-4 

GB = 1.86 x10-3 

6.81 x10-11 

7.30 x10-8 

at 450°C B =3.68 x10-4 

GB = 1.01 x10-3 

4.81 x10-11 

4.80 x10-8 

at 550°C B =7.00 x10-4 3.15 x10-11 

Figure 5-9 Impedance data for BaYb0.6Sc0.05B0.05Ti0.3O2.65 at 600°C in dry and 

wet N2 atmosphere, showing the reduction in the resistance for the latter, 

indicative of a protonic contribution to the conductivity  
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As an example, Figure 5-9 shows the impedance data for BaYb0.6Sc0.05B0.05Ti0.3O2.65 in both 

dry and wet N2 600°C illustrating a reduction in the total resistance for the latter, which is 

indicative of a protonic contribution to the conductivity.  

Figure 5-10 show the total conductivity data versus 1000K/T for BaYb0.6Sc0.05B0.05Ti0.3O2.65 

and BaYb0.55Sc0.1B0.05Ti0.3O2.65 in dry and wet N2, with Figure 5-11 showing the same 

conductivity data for BaYb0.45Sc0.2B0.05Ti0.3O2.65 and BaYb0.35Sc0.3B0.05Ti0.3O2.65. Both figures 

show that there is an improvement in the conductivity in wet N2 for the samples containing 

lower amounts of scandium across the range. This shows that there is a significant protonic 

contribution to the conductivity for these samples, consistent with the higher water 

incorporations. However for the highest scandium content sample 

BaYb0.35Sc0.3B0.05Ti0.3O2.65 similar conductivities were observed in both dry and wet N2 

Figure 5-10 Conductivity data for BaYb0.6Sc0.05B0.05Ti0.3O3-δ in dry N2 
(black Circle), wet N2 (white circle), and BaYb0.55Sc0.1B0.05Ti0.3O3-δ dry N2 
(black square) and wet N2 (white square). 
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atmospheres, suggesting a reduction in the relative contribution of the proton conductivity 

on increasing Sc content.  

For each sample, the total conductivities at 500°C and 800°C are given below in Table 5-6. 

The conductivity values in a dry atmosphere are similar to the values reported for other 

doped Ba2Sc2O5 perovskites. However, they are close to an order of magnitude lower than 

these literature systems in wet atmosphere i.e. BaSc0.8P0.2O2.7 (σ500°C= 2.3x10-3 S cm-1) and 

BaSc0.7Ti0.3O2.7 (σ600°C= 2.5x10-3 S cm-1).181,184. This may be due to an increased level of 

proton trapping in BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3). In this respect 

preliminary studies within the group on B doping in BaSc1-xPxO2.5+x samples have also shown 

a reduction in the total conductivities, which coupled with the results here, may indicate 

Figure 5-11 Conductivity data for BaYb0.45Sc0.2B0.05Ti0.3O3-δ in dry N2 (black 
triangle), wet N2 (white triangle), and BaYb0.35Sc0.3B0.05Ti0.3O3-δ dry N2 
(black diamond) and wet N2 (white diamond). 
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that defect trapping around the borate group is an issue, but this needs further 

investigation.189  

Table 5-6 Total conductivity data for BaYb0.7−xScxB0.05Ti0.3O3-δ (x= 0.05, 0.1, 0.2, 0.3) in dry 
and wet N2 atmospheres at 500°C and 800°C 

Sample 

(nominal composition) 

 Conductivity (S cm-1) 

500 °C 800 °C 

  Dry N2 Wet N2 Dry N2 Wet N2 

BaYb0.6Sc0.05B0.05Ti0.3O3−δ  4.61x10-4 5.85x10-4 1.93x10-3 2.57 x10-3 

BaYb0.55Sc0.1B0.05Ti0.3O3−δ  2.20x10-4 5.37x10-4 1.35 x10-3 4.59x10-3 

BaYb0.45Sc0.2B0.05Ti0.3O3−δ  2.99 x10-4 4.24x10-4 3.20x10-3 3.16 x10-3 

BaYb0.35Sc0.3B0.05Ti0.3O3−δ  7.16 x10-4 7.30x10-4 2.30x10-3 2.41x10-3 

 

Thus these samples show promising results in terms of CO2 stability, although the total 

conductivities were lower than ideal, although it should be noted that they are comparable 

to a number of other highly researched CO2 stable proton conductors such as Sr2+/Ca2+ 

doped lanthanum niobates.69, 81, 190  

 Synthesis and characterisation of BaYb0.6-zFezB0.05Ti0.3O3-δ (z= 

0.05, 0.1, 0.2) 

The above results show that it was possible to replace most of the scandium with 

ytterbium, boron and titanium, however small amounts of scandium (0.05) were still 

required to produce the pure cubic perovskite phase. Moreover while these phases showed 

enhanced CO2 stability and good densification on sintering, the conductivity values were 

lower than ideal for electrolyte applications. Consequently an attempt was made to replace 

the scandium with iron.  
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 XRD analysis of BaYb0.6-zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2) 

Table 5-7 Cell parameter data for BaYb0.6-zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2) 

Sample composition Unit cell parameter a (Å) Unit cell volume (Å3) 

BaYb0.6Fe0.05B0.05Ti0.3O3-δ 4.24819(5) 76.668 (3) 

BaYb0.55Fe0.1B0.05Ti0.3O3-δ 4.22526(5) 75.43(3) 

BaYb0.45 Fe0.2B0.05Ti0.3O3-δ 4.20127(6) 74.155(3) 

 

The use of small levels of Fe to replace Sc was investigated due to its previous successful 

use in other ionic conducting electrolytes, as both a dopant and a sintering aid to encourage 

grain growth. A lower sintering temperature (1350°C) was required in these systems and a 

pure cubic perovskite was observed up to 20% (z = 0.2) iron doping; for Fe contents >0.2 

barium ferrite impurities resulted. Figure 5-12 and Table 5-7 shows the X-ray diffraction 

patterns and cell parameters for these BaYb0.6-zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, and 0.2) 

samples. The data show a decrease in cell parameters on increasing iron content consistent 

with the smaller size of Fe3+/4+ (0.645/ 0.585 Å) versus Yb3+ (0.868 Å).  

Figure 5-12 XRD patterns for BaYb0.6Fe0.05B0.05Ti0.3O3-δ, BaYb0.55Fe0.1B0.05Ti0.3O3-δ and 

BaYb0.6Fe0.2B0.05Ti0.3O3-δ 

BaYb0.6Fe0.05B0.05Ti0.3O3-δ 

BaYb0.55Fe0.1B0.05Ti0.3O3-δ 

BaYb0.6Fe0.2B0.05Ti0.3O3-δ 
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 Conductivity measurements 

The sintered pellets of BaYb0.6Fe0.05B0.05Ti0.3O3-δ and BaYb0.55Fe0.1B0.05Ti0.3O3-δ were analysed 

using SEM before the conductivity measurements were made. The SEM data were recorded 

at the University of Malaga by Dr Jose M. Porras-Vazquez. The results (Table 5-8 and Figure 

5-13) showed that the effect of Fe doping on the density is complex; in particular, the 

lowest Fe content sample BaYb0.6Fe0.05B0.05Ti0.3O3-δ shows a very dense pellet with the 

density decreasing for the higher Fe contents. The origin of this requires further study but 

overall it appears as if the lowest Fe content sample is the most promising. 

 

Table 5-8 % Theoretical density of BaYb0.6-zFezB0.05Ti0.3O3-δ z= 0.05, 0.1, and 0.2 
pellets. 

 

 

 

 

 

Sample composition %  Theoretical density 

BaYb0.6Fe0.05B0.05Ti0.3O3-δ 97 

BaYb0.55Fe0.1B0.05Ti0.3O3-δ 76 

BaYb0.45 Fe0.2B0.05Ti0.3O3-δ 85 

a) BaYb0.6Fe0.05B0.05Ti0.3O3-δ                                          b)BaYb0.55Fe0.1B0.05Ti0.3O3-δ 

Figure 5-13 Scanning electron microscopy images of a) BaYb0.6Fe0.05B0.05Ti0.3O3-δ and 
b)BaYb0.55Fe0.1B0.05Ti0.3O3-δ 
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Figure 5-14 shows a Nyquist plot of BaYb0.6Fe0.05B0.05Ti0.3O3-δ in dry and wet conditions at 

400°C; similar conductivities were observed in both atmospheres suggesting that the 

protonic contribution did not exceed other contributions to the conductivity. The 

conductivity reduces further on increasing iron content, in both the dry and wet conditions, 

(shown in Table 5-9) and this may be related to the drop in density and the increase in 

porosity observed.  

The complete conductivity measurements are shown in Figure 5-15 for BaYb0.6-

zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2), in both dry and wet N2 atmospheres, and the 

conductivities are of similar magnitudes to BaYb0.7−xScxB0.05Ti0.3O3-δ (x = 0.05, 0.1, 0.2, 0.3) 

under the same conditions. An interesting observation is that, especially for the higher Fe 

content samples, there is a decrease in conductivity in wet N2 compared to dry N2. This is 

Figure 5-14 Impedance data for BaYb0.6Fe0.05B0.05Ti0.3O2.65 at 400°C in dry and wet 

N2 atmosphere, showing similar resistance for both bulk and grain components.  
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indicative of the presence of a significant p- type contribution to the conductivity. This is 

consistent with water incorporating partially full vacant site and thus suppressing the 

oxygen incorporation reaction (equation 5-1) and hence the hole concentration.  

 
𝟏

𝟐
𝑶𝟐 + 𝑽𝒐

•• → 𝟐𝒉• + 𝑶𝒐
𝒙  Equation 5-1  

 
Table 5-9 Total conductivity data for BaYb0.6-zFezB0.05Ti0.3O3-δ (z= 0.05, 0.1, 0.2) in dry and 
wet N2 atmospheres at 500°C and 800°C 

 

  

 
  

Sample 
(nominal 
composition) 

 Conductivity (S cm-1) 

500 °C 800 °C 

  Dry N2 Wet N2 Dry N2 Wet N2 

BaYb0.6Fe0.05B0.05Ti0.3O3-δ  4.21x10-4 4.68x10-4 1.90x10-3 1.61x10-3 
BaYb0.55Fe0.1B0.05Ti0.3O3-δ  4.73x10-4 4.61x10-4 1.49x10-3 9.93x10-4 
BaYb0.45 Fe0.2B0.05Ti0.3O3−δ  2.67x10-4 2.42x10-4 2.68x10-3 1.53x10-3 

Figure 5-15 Conductivity data for BaYb0.6Fe0.05B0.05Ti0.3O3-δ in dry N2 (black circle), wet 
N2 (white circle), BaYb0.55Fe0.1B0.05Ti0.3O3-δ dry N2 (black square) and wet N2 (white 
square) and BaYb0.45Fe0.2B0.05Ti0.3O3-δ dry N2 (black triangle) and wet N2 (white triangle). 
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 Conclusion  

While prior studies have examined Ti doped Ba2Sc2O5, the results here shows that it is 

possible to replace most of the scandium with ytterbium whilst co-doping with boron.183,184 

The boron is required to prepare pure samples of these heavily ytterbium doped phases, 

and leads to improved sintering. These BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) 

samples show good thermal stability above 1000°C and stability in CO2 atmospheres. 

However the conductivities are significantly lower when compared to other scandium 

based perovskites, e.g. BaSc0.8P0.2O2.7 σ500= 5.9x10-3 S cm-1 and BaSc0.7Ti0.3O2.7 σ600°C= 2.5x10-

3 S cm-1 in wet N2 atmospheres.183, 184 This may be due to partial defect trapping, perhaps 

related to the borate group. The conductivity is however better than many other proposed 

CO2 stable proton conductors such as Ca2+ doped LaNbO4 (0.001 S cm-1 at 800°C)81, 82 or Sr2+ 

doped LaPO4 (3x10-4 S cm-1  at 900°C) in a wet atmosphere.77, 191 

Furthermore, the complete replacement of scandium was also possible through further 

doping with iron. Phase pure BaYb0.6-zFezB0.05Ti0.3O3-δ samples were prepared for z= 0.05, 

0.1, 0.2. While the lowest iron content sample (z= 0.05) showed excellent sinterability, 

increasing the iron content further appeared to have a detrimental effect on the sintering, 

although the origin of this is at present unclear. 

Overall, the data shows that by the introduction of suitable dopants the replacement of 

scandium in “Ba2ScO5” can be achieved to form cubic perovskites, improving the sintering 

and stability. However, with respect to the conductivity for fuel cell applications the lower 

total conductivities observed suggest that further work is needed to optimise them and 

understand the origin of the observed conductivity decrease relative to high scandium 

content systems.  
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Chapter 6 

6 Synthesis and characterization of 

phosphate doped Ba(Y/Yb/Tm)yO3-δ 

 Introduction  

In the previous chapter, the effect of doping with the boron and other lower cost metals 

ytterbium and titanium was shown to stabilise the cubic phase of the scandium system 

Ba2Sc2O5. The phase had increased densification, stability in CO2 and was stable above a 

1000°C allowing it to be sintered for fuel cell electrolyte applications. However, 

unsatisfactory conductivity was observed and the pure cubic structure was still only stable 

if some scandium was present.  

Previous doping within the group of oxyanions (MO4
n-; M = Si, P, S,) has been shown to 

enhance the oxide ion conductivity in perovskite systems containing high levels of oxide 

ion vacancies, i.e. Ba2(In/Sc)2O5 (Si, P S of the MO4
-n group resides on the B cation site in 

the perovskite). The surrounding oxide ions would fill only 4 of the available 6 oxide ion 

positions around the B site (displaced so as to achieve tetrahedral co-ordination). In 

addition to this, oxyanion doping has been shown to enhance the CO2 stability of the doped 

Ba2(In/Sc)2O5 systems, which is attributed to the introduction of these acidic dopants 

reducing the basicity of the system.186,187,192,193 These oxyanion dopants have also been 

shown to be able to be accommodated into a range of other perovskites, both electrolyte 

and electrode systems, showing that the perovskite structure is amenable to their 

incorporation. 140,194-197 
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Another perovskite system that has attracted considerable interest from the research 

community is rare earth doped BaPrO3.198,199,200,201 This material was initially proposed as 

a  proton conducting electrolyte by Fukui et al.202 Subsequent work, however, indicated 

that the conductivity in this system was p-type rather than proton conductivity.198 

Furthermore, issues have been raised regarding the instability of BaPrO3 in CO2 containing 

environments.203,204 A range of further studies have been performed on this system, 

examining the effect of different rare earth dopants on the conductivity and cell symmetry.  

However prior studies have focused on low levels of rare earth (Ln) dopants, i.e. BaPr1-

xLnxO3-y (x≤0.2). 

In this chapter, these two areas have been combined, while previous studies within 

our group focused on doping with oxyanion on to the scandates and the indates (Felix et 

al.).192,195 This work removes the scandium and the indium all together, instead focusing on 

praseodymium. The aim was to investigate the BaPrO3 system, with a view to co-dope with 

phosphate and different rare earths (Y3+, Yb3+, Tm3+), so as to allow us to reduce the 

praseodymium content and therefore reduce the high electronic conductivity. In addition 

this strategy was expected to improve the CO2 stability and so reintroduce the possibility 

of using this system as a proton conducting electrolyte. Later this work was extended to 

include the complete replacement of praseodymium with the phosphate and the rare 

earths i.e. yttrium, ytterbium and thulium. 

 Experimental 

High purity BaCO3, Pr6O11, Y2O3, Yb2O3, Tm2O3 and NH4H2PO4 were used to prepare the 

praseodymium containing samples BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y and BaPr0.75P0.25O3-y as well 

as the non-containing samples Ba(Y/Yb/Tm)0.75P0.25O3-y. A small (5%) excess of BaCO3 was 
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employed to produce the BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples, this was done so as to try 

to counteract barium loss at elevated temperatures, and so eliminate barium deficient 

impurity phases such as Ba3(Y/Yb/Tm)4O9. Which have been seen in other studies 

synthesising similar barium containing phases.186,187 For the samples without 

praseodymium (Ba(Y/Yb/Tm)0.75P0.25O3-y), and without additional rare earths 

(BaPr0.75P0.25O3-y);  higher BaCO3 excess (10%) was required to overcome Ba loss and hence 

limit the formation of Ba deficient impurities. In these particular cases, even with this 

higher level of Ba excess, such impurities could not be completely eliminated. In each case, 

a pre-drying stage was performed on the starting materials if required, and the powders 

were intimately ground and heated initially to 1000°C for 12 hours. They were then ball-

milled (350 rpm for 1 hour, Fritsch Pulverisette 7 Planetary Mill) and reheated to 1300°C-

1400°C for 12-24 hours (with intermediate regrind). The resulting powders were then ball-

milled (350 rpm for 1 hour, Fritsch Pulverisette 7 Planetary Mill) a second time and pressed 

as pellets (1.3 cm diameter) and sintered at 1500°C for 4 hours. The pellets were covered 

in sample powder and the crucible was covered with a lid to limit the amount of Ba loss 

during the synthesis/sintering processes. The Ba(Y/Yb/Tm)0.75P0.25O3-y densities ranged  

from 77%/78%/81% respectively. 

Powder X-ray diffraction (Bruker D8 diffractometer with Cu Kα1 radiation) was used to 

demonstrate phase purity as well as for cell parameter determination performed through 

GSAS.118  

Raman spectroscopy measurements were made in order to provide evidence for the 

successful incorporation of phosphate. These measurements utilised a Renishaw in Via 

Raman microscope with excitation using a Cobolt Samba CW 532 nm DPSS Laser. 
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Conductivity measurements were performed on the BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples 

and Ba(Yb/Tm)0.75P0.25O2.75 samples. The sintered pellets (77-81% density) were coated on 

each side with Pt paste, and Pt electrodes were attached, and then heated to 800°C in air 

for 1 hour to ensure bonding to the pellet. Conductivities were then determined by AC 

impedance measurements (PSM 1735 N4L interface impedance analyser) over the 

frequency range of 1Hz to 13 MHz. Measurements, when possible, were performed in dry 

N2/O2 and wet N2/O2 (in which the gas was bubbled at room temperature through water) 

to identify any protonic contribution to the conductivity, and to determine if there was a 

p-type electronic contribution to the conductivity. The impedance spectra typically showed 

a single broad semicircle, corresponding to overlapping of bulk and grain boundary 

components, and so it was not possible to accurately extract individual bulk and grain 

boundary contributions. The total resistance was determined by the high intercept of this 

semicircle based on the nonlinear least square fitting software Z-view.143  

The water contents of hydrated samples were determined from thermogravimetric 

analysis (Netzsch STA 449 F1 Jupiter Thermal Analyser). Samples were heated at 10°C        

min-1 to 1000°C in N2, and the water content was determined from the observed mass loss. 

The CO2 stability of samples was determined using thermogravimetric analysis (Netzsch 

wSTA 449 F1 Jupiter Thermal Analyser). Samples were heated at 10°C min-1 to 1000°C in 

CO2 to determine at what temperature CO2 pick up occurred and decomposition. 
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 Structural studies 

 

It was not possible to synthesise pure BaPr1-x(Y/Yb/Tm)xO3-y samples with the high levels 

(≥50%) of Y/Yb/Tm dopants, and co-doping with phosphate (25%) was required. Without 

such phosphate co-doping, large levels of impurities were seen for example 

Ba3(Y/Yb/Tm)4O9, this showing the importance of phosphate doping in stabilising the high 

Y/Yb/Tm levels (Figure 6-1). Using the phosphate co-doping it was possible to successfully 

synthesise single phase samples of BaPr0.25Y0.5P0.25O3-y, BaPr0.25Yb0.5P0.25O3-y and 

BaPr0.25Tm0.5P0.25O3-y (Figure 6-2).   

 

 

 

Figure 6-1 XRD patterns for BaPr0.25Y0.75O3-δ BaPr0.25Yb0.75O3-δ and 
BaPr0.25Tm0.75O3-δ 

BaTm0.75Pr0.25 O3-δ 

BaYb0.75Pr0.25 O3-δ 

BaY0.75Pr0.25 O3-δ 
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Table 6-1   Cell parameter data for BaPr0.25(Y/Yb/Tm)0.5P0.25O3-δ (cubic cell) 

Sample 

(nominal composition) 

 

Parameter 

a0  (Å) 

Unit cell 

volume (Å3) 

BaPr0.25Y0.5P0.25O3-δ 4.307(1) 79.89(5) 

BaPr0.25Yb0.5P0.25O3-δ 4.283(1) 78.61(4) 

BaPr0.25Tm0.5P0.25O3-δ 4.2891(3) 78.90(1) 

 

Once these phases were pure an attempt to prepare phases with the total replacement of 

Pr was tried i.e. Ba(Y/Yb/Tm)0.75P0.25O2.75. While the formation of a perovskite phase was 

observed, it has so far not been possible to prepare these particular samples without the 

Figure 6-2 XRD patterns for BaPr0.25Y0.5P0.25O3-δ BaPr0.25Yb0.5P0.25O3-δ and 
BaPr0.25Tm0.5P0.25O3-δ 
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presence of small impurities (Figure 6-3). Whilst the addition of further excess barium 

reduced the minor impurity levels, it was not possible to completely eliminate them, even 

by increasing the initial phosphate content. 

 

Table 6-2 Cell parameter data for impure Ba(Y/Yb/Tm)0.75P0.25O3-δ (cubic cell) 

Sample 

(nominal composition) 

 

Parameter 

a0 (Å) 

Unit cell 

volume (Å3) 

BaY0.75P0.25O2.75 4.2819(8) 78.50(4) 

BaYb0.75P0.25O2.75 4.2547(7) 77.02(4) 

BaTm0.75P0.25O2.75 4.2571(5) 77.15(3) 

Figure 6-3 XRD patterns for BaY0.75P0.25O2.75 BaYb0.75P0.25O2.75and BaTm0.75P0.25O2.75  

* 

* * 

* 

* 
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From the X-ray diffraction data shown in Figure 6-2 and Figure 6-3, the cell parameters for 

the BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y and Ba(Y/Yb/Tm)0.75P0.25O2.75 phases were determined 

(Table 6-1 and Table 6-2). While the parent BaPrO3 phase and systems doped with lower 

levels of rare earths (<20%) have been previously shown to be orthorhombic, the higher 

dopants level samples reported here appear cubic. The cell parameter data shows a gradual 

increase in cell volume on changing the dopant from Yb3+ (0.868 Å) to Tm3+ (0.88 Å) to 

Y3+(0.9 Å), which can be related to the increase in the ionic radius of the dopant. Somewhat, 

surprisingly the cell volumes of the Ba(Y/Yb/Tm)0.75P0.25O2.75 samples were smaller than the 

corresponding BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples. Knee et al. reported a similar 

reduction in cell volume on doping 10% Y3+ into BaPrO3.198 Such reductions in cell 

parameters contradicts what might be expected from the complete replacement of Pr4+ 

(0.85_Å) by Y3+/Yb3+/Yb3+. This therefore might suggest that either there is a significant 

proportion of the praseodymium in the Pr3+ (0.99 Å) rather than Pr4+ oxidation state, or 

that there is a degree of substitution of Y/Yb/Tm on the Ba site; the latter might account 

for some of the difficulties in preparing single phase Ba(Y/Yb/Tm)0.75P0.25O2.75  samples. In 

this respect, further investigations are required to clarify these results.  
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Raman data were collected for all the synthesised compositions as well as undoped BaPrO3. 

For BaPrO3 and BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y,  bands at ~ 650 and 940 cm-1 were observed 

(Figure 6-4). The broad peak at 650cm-1 can be attributed to the praseodymium oxygen 

bonds while the peak at 940cm-1 (absent from undoped BaPrO3) correlates with the 

phosphate group, confirming the presence of phosphate in the samples. Since, 

theoretically there should be no Raman active modes for a perfectly cubic perovskite, with 

the exception of possible second-order effects, the appearance of these bands suggests 

that although the XRD data indicate that the average structure is cubic for 

BaPr0.25(Y/Yb/Tm)0.5P0.25O3-δ, there must be significant local distortions away from cubic 

symmetry in the doped systems.  For the Ba(Y/Yb/Tm)0.75P0.25O2.75  samples, the Raman 

data only showed the presence of the phosphate peak  (data for BaTm0.75P0.25O3-δ are also 

shown in Figure 6-4). 

Figure 6-4 Raman spectra of BaPrO3, BaPr0.25Y0.5P0.25O3-y, 
BaPr0.25Yb0.5P0.25O3-y, BaPr0.25Tm0.5P0.25O3-y and BaTm0.75P0.25O3-y with 
peak showing the presence of phosphate indicated. 
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 Conductivity measurements  

The doped systems led to lower than expected densities, considering the sintering 

temperature of 1500°C for four hours (Table 6-3). The conductivities of the 

BaPr0.25(Y/Yb/Tm)0.5P0.25O3-δ samples were then investigated under both dry and wet 

conditions in both nitrogen and oxygen atmospheres. The conductivity data are shown in 

Figure 6-5, Figure 6-6 and Figure 6-7, comparing dry and wet N2 conditions, for all of the 

BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples. 

Table 6-3 Density of individual compositions pellets 

 Composition  Density % 

BaPr0.25Y0.5P0.25O3-δ  77 
BaPr0.25Yb0.5P0.25O3-δ  78 
BaPr0.25Tm0.5P0.25O3-δ  81 

 

[[[ 

 Figure 6-5 Conductivity data for BaPr0.25Y0.5P0.25O3-y in dry N2 (black 
Circle), wet N2 (white circle), dry O2 (black triangle) and wet O2 (white 
triangle). 
 

1000K/T 
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Figure 6-6 Conductivity data for BaPr0.25Yb0.5P0.25O3-y in dry N2 (black 
Circle), wet N2 (white circle), dry O2 (black triangle) and wet O2 (white 
triangle). 

1000K/T 

Figure 6-7  Conductivity data for BaPr0.25Tm0.5P0.25O3-y.in dry N2 (black 
Circle), wet N2 (white circle), dry O2 (black triangle) and wet O2 (white 
triangle). 

 

1000K/T 
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The data shows that there is a small improvement in the conductivity in the wet N2 

atmospheres at lower temperatures, which suggests the presence of a protonic 

contribution, consistent with the observation of significant water incorporation. Figure 6-8 

shows this difference in the dry and wet N2 data for BaPr0.25Yb0.5P0.25O3-y at 500°C. The total 

conductivities for BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y are displayed in Table 6-4 for 500°C and 

800°C, however, they are substantially lower than reported for undoped BaPrO3 and 10-

20% rare earth doped BaPrO3.198, 200 

Table 6-4 Total conductivity data for BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y in dry and wet N2 atmospheres 

Sample 

(nominal 

composition) 

 Conductivity (S cm-1) 

500 °C 800 °C 

  Dry N2 Wet N2 Dry N2 Wet N2 

BaPr0.25Y0.5P0.25O3-y  2.5 x 10-5 5.9 x 10-5 6.6 x 10-4 8.1 x 10-4 

BaPr0.25Yb0.5P0.25O3-y  2.1 x 10-5 2.7 x 10-5 4.6 x 10-4 3.3. x 10-4 

BaPr0.25Tm0.5P0.25O3-y  9.8x 10-6 1.6 x 10-5 3.8 x 10-4 3.6x 10-4 

Figure 6-8 Impedance data for BaPr0.25Y0.5P0.25O3-δ at 500oC in dry and wet N2 

atmosphere, showing the reduction in the resistance for the latter, indicative 
of a protonic contribution to the conductivity. 
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 Table 6-5 Total conductivity data for BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y in dry and wet O2 
atmospheres 

In terms of the measurements in O2, very similar conductivities under dry and wet 

conditions were observed for BaPr0.25Yb0.5P0.25O3-y and BaPr0.25Tm0.5P0.25O3-y, while 

BaPr0.25Y0.5P0.25O3-y showed a small increase under wet O2 conditions, which again may be 

indicative of a contribution from proton conductivity (Table 6-5). Comparing the 

conductivities under dry N2 and dry O2, the data for BaPr0.25Yb0.5P0.25O3-y and 

BaPr0.25Tm0.5P0.25O3-y, show a slightly higher conductivity in dry O2 over the entire 

temperature range. This is indicative of a p-type electronic contribution to the conductivity 

also observed for undoped BaPrO3 and 10-20% rare earth doped BaPrO3. 

Overall the results, indicate that these heavily doped BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples 

show poor conductivities. Thus, while the electronic conductivity appears to have been 

suppressed compared to prior studies, and there is some evidence in support of a protonic 

contribution to the conductivity, the values obtained are not sufficiently high for industrial 

applications. In this respect, the high phosphate levels required to achieve single phase 

samples may lead to a large degree of vacancy trapping and so be responsible for 

supressing the ionic conductivity. Such defect trapping at high oxyanion levels was 

proposed in prior studies of Ba2In2O5.205 In fact, it is probably this ability of phosphate to 

accommodate and hence stabilise the oxide ion vacancies around it (due to the preference 

Sample 
(nominal 
composition) 

 Conductivity (S cm-1) 

500 °C 800 °C 

  Dry O2 Wet O2 Dry O2 Wet O2 

BaPr0.25Y0.5P0.25O3-y  2.9x 10-5 3.6x 10-5 7.6x10-4 8.7x10-4 

BaPr0.25Yb0.5P0.25O3-y  2.9 x10-5 2.6x10-5 6.4x10-4 6.2x10-4 

BaPr0.25Tm0.5P0.25O3-y  3.3x10-5 3.2x10-5 6.6x10-4 6.5x10-4 
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for tetrahedral rather than octahedral coordination) that allows for the accommodation of 

higher levels of acceptor dopants (Y/Yb/Tm) than are achievable normally. 

Similar observation were obtained for the Ba(Yb/Tm)0.75P0.25O2.75 samples, (the yttrium 

based sample was not analyzed due to the significant level of impurities); the conductivity 

data for dry and wet N2 are shown in Table 6-6 at 500°C and 800°C. These values are similar 

if not lower than the Pr containing samples and are not suitable for applications. 

Table 6-6 Total conductivity data for Ba(Yb/Tm)0.5P0.25O3-y in dry and wet N2 
atmospheres 

Sample 

(nominal 

composition) 

 Conductivity (S cm-1) 

500 °C 800 °C 

  Dry N2 Wet N2 Dry N2 Wet N2 

BaYb0.75P0.25O3-y  2.26 x 10-5 3.3 x 10-5 1.7 x 10-4 2.8 x 10-4 

BaTm0.75P0.25O3-y  1.21x 10-5 1.5 x 10-5 9.98 x 10-5 1.6 x 10-4 

Figure 6-9 Conductivity data for BaYb0.75P0.25O3-y in dry N2 (black 
Circle), wet N2 (white circle) and dry O2 (black triangle). 

 



171 
 

The conductivity in a dry O2 atmosphere was shown to be better than the N2 atmosphere 

as would be expected in line with the other results (Figure 6-9). Wet O2 measurements 

were unable to be carried out due to disintegration of the electrode attachment on the 

pellet, further tests weren’t rerun due to the time constraints and the limited conductivity 

previously observed. 

 Thermogravimetric analysis  

Hydration and CO2 stability measurements were restricted to the praseodymium 

containing single phase BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y samples. While the conductivity data 

showed a significant reduction on Y/Yb/Tm and phosphate co-doping, the impact on the 

CO2 stability and the level of possible water incorporation was also investigated. The 

respective BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y, powder samples were heated under wet N2 to 

800°C, before slow cooling (0.4°C min-1) to room temperature. X-ray diffraction confirmed 

that there was no decomposition of the samples on hydration under these conditions. The 

water contents were then determined by a TGA measurement, with the results shown in 

Table 6-7. Overall water contents between 0.09 and 0.17 moles per formula unit were 

observed, indicating significant water incorporation. Assuming the oxidation state of 

praseodymium is Pr3+ the maximum theoretical water content is 0.25 per formula unit. The 

amount of water moles per formula unit are however lower than this, which can be 

explained by a reluctance of the phosphate group to expand its coordination sphere. 
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Table 6-7 Water contents for hydrated BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y 

Sample 

(nominal composition) 

Moles of water per 

formula unit 

BaPr0.25Y0.5P0.25O3-y 0.17(1) 

BaPr0.25Yb0.5P0.25O3-y 0.09(1) 

BaPr0.25Tm0.5P0.25O3-y 0.15(1) 

The CO2 stability of perovskite systems has been investigated for a wide range of doped 

proton conductors such as BaCeO3, which has shown poor stability on heating in a CO2 

containing atmosphere. A typical fuel cell operating temperatures of 500 – 700°C would 

result in the observation of significant mass increases, starting at 550°C, due to the 

formation of BaCO3.188 Therefore the stabilities of BaPr0.25(Y/Yb/Tm)0.5P0.25O3-y in a CO2 

environment were examined. The TGA profiles on heating in CO2 showed that these 

compositions are also susceptible to partial decomposition in a CO2 atmosphere. Although 

Figure 6-10 TG profiles (10°C min−1 to 1000°C in CO2) for (a) BaPr0.25Y0.5P0.25O3-δ (b) 
BaPr0.25Yb0.5P0.25O3-δ and (c) BaPr0.25Tm0.5P0.25O3-δ 
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the mass increase was seen at slightly higher temperatures compared to doped BaCeO3, 

with a gradual increase at 600°C and a more rapid increase seen around 750°C (Figure 6-10). 

 Conclusions 

The data shows that it is possible to introduce large levels of Y/Yb/Tm into BaPrO3 through 

co-doping with phosphate, forming pure cubic perovskites. It is most likely that this is due 

to the stabilization of the resulting high levels of oxide ion vacancies by the phosphate 

group (due to its preference for tetrahedral rather than octahedral coordination). The 

conductivity measurements showed, however, significantly lower values than for BaPrO3 

or 10-20% rare earth doped BaPrO3, although in the present systems, there was evidence 

for a protonic contribution in humid atmospheres. The complete replacement of 

praseodymium was attempted, however, it was not possible to prepare completely phase 

pure Ba(Y/Yb/Tm)1-xPxO3-y samples, most likely due to Ba loss and partial incorporation of 

Y/Yb/Tm on the Ba site. Overall, the results further highlight the ability of perovskites to 

accommodate oxyanion groups on the B site, but suggest that in terms of conducting 

properties, the level of such dopants should be kept low to prevent a high degree of oxygen 

vacancy trapping.  
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7 Conclusions 
In summary, this research has concentrated on producing new materials for SOFCs focusing 

on the cathode and electrolyte components. Existing research shows that the perovskite 

material has a huge potential for SOFCs due to the flexibility of the structure and properties 

that it can possess. Therefore in this work a variety of perovskites have been successfully 

prepared via the solid state route and examined using a range of structural, thermal and 

electrochemical techniques including X-ray diffraction, thermogravimetric analysis and 

impedance spectroscopy. 

 Silicon doped Sr0.8Ca0.2MnO3-δ perovskite as a fuel cell cathode 

with apatite and fluorite electrolytes. 

The cathode Sr0.8Ca0.2MnO3-δ was investigated and silicon was shown to be successfully 

incorporated into the structure. For 10% and above doping the cathode adopted a cubic 

perovskite structure with enhanced electronic conductivity. Sr0.8Ca0.2Mn0.9Si0.1O3−δ was the 

most successfully doped perovskite in the series and further work concentrated on this 

system. Chemical compatibility and area specific resistance (ASR) tests were performed 

against a range of apatite electrolytes with Sr0.8Ca0.2Mn0.9Si0.1O3−δ composite electrodes. 

Reactivity between the composites and poor binding to the surface of the pellets was 

observed and required the addition of CGO. Furthermore, CGO pellets were used with the 

composites to produce the lowest ASR values. The successes of the 

CGO/Sr0.8Ca0.2Mn0.9Si0.1O3−δ composite resulted in a fuel cell test involving a SCMS-

CGO/CGO/NiO-CGO cell that achieved a maximum power density of 84 mW cm-2 at 700°C. 

This is lower than expected and the power density could be improved if the cell sealing, 

and hence, the open circuit voltage (OCV) could be improved. 
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 Ba(Co/Fe)0.9Bi0.1O3-δ perovskite as a fuel cell cathode for proton 

and oxide ion conductors. 

BaCo0.9-xFexBi0.1O3-δ phases were prepared for x ranging from 0.0-0.8.  The iron doping in to 

the structure resulted in a phase change from a hexagonal to a cubic perovskite. This in 

turn resulted in a lower thermal expansion co-efficient than the undoped BaCoO3-δ 

perovskite. Furthermore, the heavily iron doped samples were found to have increased 

stability in both steam and CO2 rich atmospheres, however, the conductivity data did 

decrease. Additionally chemical compatibility, ASR and fuel cell tests were undertaken for 

both proton and oxide ion conducting electrolytes. It was shown that for the proton 

conducting electrolyte Ba2In1.6Zr0.2Si0.2O5.2 (BIZS) the cross reactions against the cathodes 

reduced on increasing the iron content across the series, with no visible reactions seen for 

x ≥ 0.6. The lowest ASR 0.025 Ω cm2 was observed at 800°C for a BaCo0.3Fe0.6Bi0.1O3−δ/BIZS 

composite on a BIZS pellet. However, fuel cell tests were unsuccessfully performed due to 

the lower than required density of the BIZS pellet.  

The doped cathode series with the oxide ion electrolyte CGO resulted in high chemical 

reactivity across the entire series, with the high iron doped samples reacting the least. The 

minor impurity phases formed affected the electrolyte and cathode boundaries, and 

therefore the ASR tests were magnitudes higher on the oxide ion electrolyte than the 

proton.  The fuel cell test confirmed this further with a maximum power density of only 

50mW cm-2 at 700°C. 

 Doping Ba2Sc2O5 to reduce costs and increase stability. 

Ba2Sc2O5 has been successfully co-doped with titanium, ytterbium and boron in place of 

scandium to produce BaYb0.7−xScxB0.05Ti0.3O2.65 (x= 0.05, 0.1, 0.2, 0.3) electrolyte samples. 

Small amounts of scandium were still required to produce pure cubic samples and the 
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successful doping of the sample caused increased thermal stability above 1000°C, increased 

chemical stability in CO2 atmospheres and increased densification. The conductivity 

showed an improvement when compared to other non-perovskite based CO2 stable proton 

conductors such as Ca2+ doped LaNbO4. However, against high scandium containing 

perovskite systems such as BaSc0.7Ti0.3O2.7 it was magnitudes lower. 

The doping strategy to the perovskite system was extended and the complete replacement 

of scandium was achieved through further doping with iron (BaYb0.6-zFezB0.05Ti0.3O3-δ z= 0.05, 

0.1, 0.2). However high iron contents were detrimental to the conductivity and 

densification. Thus the results emphasize the potential doping available to the Ba2Sc2O5 to 

produce new cubic perovskite phases. 

 Synthesis and characterization of phosphate doped 

BaPr1−y(Y/Yb/Tm)yO3-δ. 

The doping strategy with rare earths and oxyanions on to the B site of the perovskite 

structure was extended to the BaPrO3 perovskite. This involved co-doping with large levels 

of Y/Yb/Tm and phosphate to form a pure cubic perovskite. Further attempts were made 

to produce perovskites with high levels of rare earths, without the phosphate dopant, these 

showed impurities, as did the related praseodymium free samples (Ba(Y/Yb/Tm)1-xPxO3-y). 

Therefore, the higher levels of rare earth dopants that are possible depend on the 

phosphate dopant being present, as it occupies a tetrahedral coordination rather than an 

octahedral, producing oxygen vacancies. The conductivity measurements for the co-doped 

BaPr0.25(Y/Yb/Tm)0.5P0.25O3-δ samples showed evidence of proton conduction, however, the 

measurements were significantly lower than for the BaPrO3 or 10-20% rare earth doped 

BaPrO3.. Therefore, the level of rare earth dopants used should be kept at a minimum to 

avoid any oxygen vacancy trapping and any effect on the conductivity.   
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8 Further work  
The research in this project has indicated that the perovskite structure can exhibit some 

interesting properties for both the cathode and electrolyte components. The cathode 

research showed that doping the structure with a range of transition metals or oxyanions 

can reduce the tolerance factor. This causes a phase change from low to high symmetry 

and results in a cubic perovskite formation. The change in the tolerance factor is due to the 

incorporation of oxide ion vacancies on doping, which reduces the oxidation state of the 

transition metals increasing their size.  However, further research could be performed to 

determine the positions of the oxide ions in the perovskite system via neutron diffraction 

or 17O NMR experiments to determine if there is any oxygen vacancy ordering effects that 

might be limiting the conductivity and water contents.  Furthermore, the perovskites could 

undergo Mossbaὒer experiments to understand the oxidation states of the Mn and Fe. 

However, this could be problematic for the BaCo0.9-xFexBi0.1O3-δ (0-0.8) series due to the 

effect of bismuth on gamma rays absorption. In addition, for the BaCo0.9-xFexBi0.1O3-δ, series 

magnetic measurements should be attempted to try to understand the unit cell volume 

changes over the series and whether any spin states of the Fe or Co are having an effect.  

Finally, for both cathodes the fuel cell tests should be repeated with fully tight seals and 

therefore an increased power density should be observed. 

For the perovskite electrolyte samples a study on the effect of the boron doping and 

phosphate doping on the conductivity respectively should be under taken. This in an effort 

to prove the proton trapping around the boron site and the oxygen vacancy trapping 

around the phosphate site is lowering the expected ionic conductivity in the electrolyte.  
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