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Abstract 

Platelets play critical roles in thrombosis, inflammation, and wound healing, which are 

essential in response to trauma. These processes are primarily driven through the 

immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, 

glycoprotein VI (GPVI) and C-type lectin-like receptor 2 (CLEC-2). This study aimed 

to investigate; (i) the effects of Alarmins released following trauma on platelet reactivity 

and the mechanisms involved; (ii) establish whether soluble GPVI (sGPVI), a platelet 

activation marker is elevated in trauma and other inflammatory conditions; (iii) 

determine whether the CLEC-2 ligand, podoplanin, is elevated in inflammatory 

conditions and (iv) establishing the role of GPVI and platelets in cutaneous wound 

healing. 

 

The nuclear-related Alarmin, histones, induced robust platelet activation both in vitro 

and in vivo. Histone-induced platelet activation was mediated through GPVI in vitro 

However, this pathway was found not to underlie histone-induced lowering of platelet 

count in vivo and is most likely to result from mediators released following vascular 

damage. GPVI shedding was shown to be induced following activation by thrombin, 

through a pathway dependent on fibrin generation. sGPVI was found to be a marker for 

platelet activation during a variety of inflammatory disorders, notably in association 

with sepsis.  Furthermore, GPVI shedding reflects platelet activation by collagen and 

potentially thrombin-induced fibrin generation.  
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CHAPTER 1 

 

GENERAL INTRODUCTION 
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1.1 Platelet physiology  

1.1.1 The physiological role of platelets 

Platelets are small anucleate cells with a primary role in haemostasis. Under 

physiological conditions, platelets circulate in the vascular system in a resting state 

unable to interact with the endothelium. Their small size (1-3µm) and margination by 

red blood cells (RBCs), allows platelets to make continual contact with vascular 

endothelial cells and thereby detect any injury that occurs. Following endothelial injury, 

platelets respond quickly to form a haemostatic plug.  Platelets contain numerous 

surface receptors, signalling proteins and granule contents which mediate robust 

activation through contact and interactions with sub-endothelial matrix proteins exposed 

after vascular damage (Li et al., 2010).  

 

Platelet aggregation leads to vascular plug formation at injury sites in blood vessels. 

However, pathological platelet activation, such as at sites of diseased endothelium, can 

result in a range of thrombotic disorders, including atherosclerosis, sepsis, myocardial 

infarction and stroke (Lindemann et al., 2007, Claushuis et al., 2016, Nieswandt et al., 

2005). In recent years, platelets have also been shown to have important roles in 

inflammation (Engelmann and Massberg, 2013) and maintenance of vascular integrity 

(Lee et al., 2007, Gros et al., 2014, Gros et al., 2015b). An overview of platelet 

function, activation and roles in thrombosis and inflammation will be discussed in the 

following sections. 
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1.1.2 Platelet production  

The life-span of human platelets is approximately 8-10 days, unless they undergo 

activation when they are removed by the reticuloendothelial system (Fritz et al., 1986). 

There is a constant requirement for platelets to maintain a circulating level of 150-

450x10
9
 platelets per litre.   

 

Platelets, along with all other circulating blood cells, arise from haematopoietic stem 

cells (HSC) located in the bone marrow. Figure 1.1 shows the origin of the various of 

blood cells. Platelets result from megakaryocyte maturation, differentiated from 

common myeloid progenitor cells (Patel et al., 2005). The cytokine, thrombopoietin 

(TPO) and its receptor c-Mpl play a critical role in megakaryocyte differentiation, with 

a variety of other transcription factors also having regulatory roles (Johnson et al., 2016, 

Kaushansky, 2005). Megakaryocytes form pro-platelets processes that extend into the 

vasculature and release platelets into the circulation (Kaushansky, 2005) .  
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Figure 1.1. Haematopoietic stem cell lineages. Lineages of different derived blood 

cells arising from the haematopoietic stem cells (HSC) in the bone marrow. Figure 

based on (Kondo et al., 2003, Johnson et al., 2016).  
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1.1.3 Platelet anatomy  

Because platelets are anucleate, they have a very limited ability to undergo de novo 

protein synthesis and consequently nearly all organelles, proteins and protein granule 

contents are synthesised in the precursor megakaryocyte. Platelets do however have the 

ability to uptake plasma proteins, such as fibrinogen. Platelets have actin cytoskeleton 

and microtubule systems supporting the plasma membrane and undergo marked 

structural changes during platelet activation and spreading (Calaminus et al., 2008, 

Hartwig, 1992). The platelet membrane contains the open canalicular system (OCS), 

which is a network of invaginations, important for increasing platelet surface area 

available for granule content release. The dense tubular system is also contained in the 

OCS, which is involved in Ca
2+

 storage and is the location of cyclooxygenase-1 (Cox-

1), an important enzyme involved in thromboxane A2 (TxA2) production. Another 

important component of the plasma membrane is phosphatidylserine (PS). This is held 

on the cytosolic side of the membrane by flippases until periods of activation and 

apoptosis, where it is exposed on the extracellular side. Once exposed, PS provides a 

procoagulant surface for thrombin generation to occur, facilitating fibrin generation 

through the coagulation cascade.    

 

Platelets contain secretory vesicles in the cytoplasm including α-granules, lysosomes 

and dense granules. Once platelets are activated, the granular contents are rapidly 

released. These granular contents include a variety of proteins, which have various 

functional roles, from promoting platelet activation feedback; recruiting new platelets 

and helping with thrombus generation, attracting leukocytes and facilitating repair at 

areas of damage. Table 1.1 shows the various contents of α-granules and dense granules 
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and their functional roles. Deficiencies in granule number, contents or ability to release 

their contents result in mild to severe abnormalities leading to bleeding disorders, such 

as grey-platelet syndrome (Raccuglia, 1971, Deppermann et al., 2013), Hermansky-

Pudlak syndrome (Hermansky and Pudlak, 1959) and platelet storage pool deficiencies 

(Bolton-Maggs et al., 2006). A wide variety of receptors and other proteins are located 

at the platelet membrane, which will be discussed in Section 1.3-1.4.  
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Table 1.1. Example contents of platelet α- and dense granules and their functional 

roles. Main contents of α- and dense granules, including their function and roles.  

 

  

α-granules dense granules 

Function Contents Role Function Contents Role 

Adhesion 

proteins 

 

Fibrinogen 

von 

Willebrand 

Factor (vWF) 

Platelet 

aggregation 

and thrombus 

formation 

Feedback 

mediators 

ADP 

ATP 

Ca
2+ 

5-HT 

(serotonin)
 Feedback 

mediators 

involved in 

platelet 

aggregation 

and 

thrombus 

growth 

Chemokines 

Platelet 

factor-4 

(PF4) 

SDF-1 

Leukocyte 

recruitment 

Polyphosphates Poly-P 

Growth 

factors 

PDGF 

EGF 

VEGF 

Wound repair and 

angiogenesis 

Membrane 

protein 
P-selectin 

Leukocyte 

binding 
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1.2 Thrombus formation 

1.2.1 Platelet activation and thrombus formation  

Thrombus formation involves multiple processes and signalling events after platelet 

adhesion and activation at damaged areas. Upon endothelium damage collagen fibres in 

the sub-endothelial matrix become exposed. Platelets then adhere to the exposed sub-

endothelial matrix and undergo activation.  This leads to further platelet recruitment, 

thrombus formation and wound occlusion (Li et al., 2010).  Several stages leading to 

thrombus formation are detailed below and in Figure 2.1  

1) Collagen exposure and tethering  

Under conditions of low shear stress, the platelet integrin α2β1 binds to exposed 

collagen fibres with a low rate of association. It remains unclear as to what extent this 

requires platelet activation and inside-out activation of the integrin. At high stress this 

association is not adequate to tether the platelets to the endothelial surface. However, 

upon vascular damage exposed collagen fibres become coated with von Willebrand 

factor (vWF), which allows interactions to occur with the GPIb-IX-V receptor on the 

platelet surface, leading to initial platelet capture, known as tethering. The fast on-off 

rate of association and dissociation of GPIb-IX-V receptor to vWF is however, not 

sufficient for stable adhesion, therefore platelets roll along the endothelium in the 

direction of blood flow (Offermanns, 2006). 

2) Stable adhesion  

Stable platelet adhesion is required for the initiation of thrombus formation. Platelet 

tethering to vWF allows the collagen fibres to become in close proximity to the major 
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collagen receptor glycoprotein VI (GPVI), resulting in platelet activation. The integrins 

αIIbβ3 and α2β1 are then converted into their active form, leading to greater 

interactions with vWF and collagen, respectively, establishing stable adhesion.  

3) Spreading and secretion  

Once platelets become activated their morphology changes from discoid to fully spread. 

Actin polymerisation following activation results in formation of filopodia and 

lamellipodia, which in turn leads to stronger platelet attachment to exposed collagen and 

vWF, as the platelet surface area is increased. Consequently, actin stress fibres are 

formed providing support for aggregate formation (Calaminus et al., 2008). GPVI and 

integrin activation leads to secretion of α- and dense granule contents, including the 

feedback messengers, adenosine diphosphate (ADP) and thromboxane (TxA2), which 

mediate further activation and aggregation (Watson and Harrison, 2007). Release of α-

granule contents, including the adhesion proteins, fibrinogen and vWF, further supports 

platelet capture supporting aggregation.  

4) Thrombus growth  

For thrombus growth, circulating platelets are recruited after pronounced platelet 

activation and secretion, promoting the growth of the thrombus. Platelet activation is 

further reinforced through thrombin generation through activation of the coagulation 

cascade. Platelets provide a pro-coagulant surface for thrombin generation, in turn 

leading to more platelet activation. Moreover, the thrombin generated converts 

fibrinogen into fibrin, which provides a network for thrombus stabilisation leading to 

effective wound occlusion at the site of injury (Renne et al., 2005).  
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Figure 1.2. Processes of thrombus formation. 1) Platelets are marginated to blood vessel walls by red blood cells (RBCs) in the direction 

of blood flow. Platelets tether to vessel wall through weak interactions of GPIb-IX-V and von Willebrand factor (vWF). 2) Tethering of 

platelets allows GPVI and exposed collagen to become close and lead to stable adhesion through integrin activation. 3) Platelets are active 

and spread, releasing granule contents. 4) Released mediators promote thrombus growth, by recruiting more platelets. Thrombin converts 

fibrinogen to fibrin which stabilises the thrombus. 
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1.3 Platelet activation and signalling  

Platelet receptors signal through various mechanisms leading to Ca
2+

 mobilisation and 

functional effects, such as secretion of granule contents. Platelet receptor activation can 

also result in the initiation of positive feedback mechanisms and inhibitory mechanisms 

to regulate platelet function. The next sections will describe the different platelet 

receptors and signalling mechanisms that are essential for platelet function and 

activation, including feedback mechanisms.  

1.3.1 G protein-coupled receptors (GPCRs)  

G protein-coupled receptors (GPCRs) are a family of seven transmembrane domain 

receptors that couple with heterotrimeric G proteins (α, β and γ) and have major roles in 

enhancing platelet activation through positive feedback mechanisms. GPCRs can bind a 

number of agonists released from platelet granules and endothelial cells in response to 

endothelial damage to enhance platelet activation. ADP is released both from damaged 

endothelial cells and platelet granules after activation and binds to P2Y1 and P2Y12, 

which are Gq- and Gi/z-coupled receptors. P2Y1 and P2Y12 receptors, give synergy with 

other receptors leading to enhancement of secretion and results in powerful aggregation 

(Dawood et al., 2007). P2Y1 receptor interactions are implicated in Ca
2+

 mobilisation 

leading to shape change. Furthermore, ADP activation of P2Y12 inhibits cyclic 

adenosine monophosphate (cAMP) formation. This blocks the cAMP inhibitory action 

and allows platelet activation to proceed (see section 1.3.4). ADP also can bind to P2X1, 

an ATP-gated Ca
2+

 ion channel. Although activation is sufficient to cause only weak 

aggregation, it can enhance platelet response to other agonists (Murugappa and 

Kunapuli, 2006). TxA2 is released from stimulated platelets (it is made de novo by the 
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action of Cox-1) and induces platelet activation through Gq-and G12/13 coupled 

thromboxane receptors, TPα and TPβ (Li et al., 2010).  

1.3.2 Protease-activated receptors (PARs)   

Protease-activated receptors (PARs) are GPCRs. Unlike other GPCR receptors, in 

which activation is mediated through direct ligand binding, PAR activation occurs by 

proteinases that cleave the amino terminus of the receptor to unmask the N-terminal 

‘tethered ligand’. This remains attached and leads to activation and signalling (Adams et 

al., 2011, Gieseler et al., 2013). PAR-1 and PAR-4 are the PAR receptors in human 

platelets, whereas PAR-3 and PAR-4 are the important ones in mice platelets. Thrombin 

cleaves PAR1 and 4 at specific extracellular N-terminus recognition sites inducing 

activation (Gieseler et al., 2013). 

1.3.3 Integrins 

Integrins are important for allowing stable platelet adhesion and aggregation for 

thrombus formation. Integrin αIIbβ3 is highly expressed with a copy number of 

approximately 80,000 per human platelet. αIIbβ3 is a heterodimer formed of α and β 

subunits. The extracellular domain of the β3 subunit contains an RGD sequence and a 

second binding site for fibrinogen (Bennett, 2005). Src family kinases (SFKs) associate 

constitutively with the β3 cytosolic tail (Arias-Salgado et al., 2005). Following platelet 

activation by ligand binding to other receptors, ‘inside-out’ signalling occurs. This, 

results in conformational changes of αIIbβ3, increasing its affinity for ligands such as 

fibrinogen and vWF.  Binding of its ligands then mediates ‘outside-in’ signalling. This 

signalling mechanism involves proteins that are also involved in platelet activation by 

immunoreceptor tyrosine-based activation motif (ITAM) receptors (Zhi et al., 2013). 
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1.3.4 Inhibition of platelet activation 

Inhibitory mechanisms are in place to prevent platelet activation on the intact 

endothelium. An important inhibitory mechanism is through generation of the 

membrane permeable gas, nitric oxide (NO); which has a short half-life and is 

continuously synthesised by endothelial cells through nitric oxide synthase (NOS) 

(Pacher et al., 2007, Naseem and Riba, 2008). Guanylyl cyclase is activated by NO 

resulting in formation of cyclic guanosine monophosphate (cGMP) which inhibits 

platelet activation (Feil et al., 2003). Platelets are also inhibited when endothelial cells 

release prostaglandin I2 (PGI2). PGI2 interacts with the platelet G protein-coupled PGI2 

receptor coupled to Gαs, causing activation, and accumulation of cAMP (Raslan and 

Naseem, 2015). cAMP and cGMP activates protein kinase A (PKA) and protein kinase 

G (PKG) respectively, leading to further phosphorylation of targeted platelet proteins, 

such as Rap1b and vasodilator stimulated phosphoprotein (VASP) (Francis et al., 2010, 

Wentworth et al., 2006). PKG also phosphorylates the IP3 receptor-associated cGMP 

kinase substrate (IRAG), which is in complex with PGK-1 and the IP3 receptor 

(Schlossmann et al., 2000). IP3- induced Ca
2+

 release is inhibited by the phosphorylation 

of IRAG and PKG-1. Another inhibitory mechanism by action of endothelial cells is 

through CD39. This is an enzyme which hydrolyses adenosine triphosphate (ATP) and 

ADP, which in turn prevents them from activating platelets through the feedback 

mechanisms (Glenn et al., 2008). 

 

Platelets also express inhibitory receptors that contain an immunoreceptor tyrosine-

based inhibitory motif (ITIM). These include platelet endothelial adhesion molecule-1 

(PECAM-1) (Dhanjal et al., 2007), G6b-B (Mori et al., 2008, Mazharian et al., 2012), 
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TREM-like transcript 1 (TLT-1) (Washington et al., 2002) and carcinoembryonic 

antigen-related cell adhesion molecule (CEACAM-1) (Wong et al., 2009).  Proteins 

containing ITIMs provide docking sites for Src homology 2 (SH2) domain–containing 

inositol-5-phosphatase-1 (SHIP-1), SH2 domain–containing protein-tyrosine 

phosphatases 1 and 2 (SHP1 and SHP2) and c-Src kinase (Csk). The two inhibitory 

phosphatases SHP1 and SHP2 dephosphorylate key proteins in platelet activation 

pathways (Senis, 2013). G6b-B is constitutively phosphorylated and inhibits 

constitutive tyrosine kinase signalling by the ITAM-containing receptors, GPVI and 

CLEC-2 (Mori et al., 2008). 

 

1.4 ITAM signalling 

An ITAM is a conserved sequence of amino acids, Yxx(L/I)x6-12Yxx(L/I), important 

for signal transduction in a range of immune and platelet receptors. ITAMs are found in 

T- cells and B-cell antigen receptors, and various Fc receptors, including FcγRI and 

FcγRIIA (Daeron, 1997). ITAMs play a critical role in the activation of Syk family 

kinases, Syk and Zap-70 (Mócsai et al., 2010).   

1.4.1 The GPVI -Fc receptor γ-chain complex  

GPVI is a type 1 transmembrane receptor of the immunoglobulin (Ig) superfamily 

(Clemetson et al., 1999). GPVI is expressed on megakaryocytes and platelets and is 

recognised as the major signalling receptor for collagen on platelets. There are between 

3700-9300 GPVI copies on the platelet surface (Burkhart et al., 2012, Best et al., 2003). 

On resting platelets, GPVI is predominately in the monomeric form, with the dimeric 

form increasing after activation (Jung et al., 2012, Loyau et al., 2012). GPVI is found in 
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association with the Fc receptor common γ-chain (FcRγ-chain), which contains one 

copy of an ITAM. The GPVI and FcRγ-chain complex was first identified by Gibbins et 

al. (1997) with further studies confirming its role as a collagen receptor in transfected 

cell lines using a NFAT-reporter assay (Tomlinson et al., 2007, Gibbins et al., 1997). 

 

GPVI activation and clustering leads to tyrosine phosphorylation of the FcRγ-chain by 

SFKs, including Fyn, Lyn and Src (Severin et al., 2012). Fyn and Lyn associate through 

their SH3 domains to a poly-proline region of the GPVI cytoplasmic tail (Suzuki-Inoue 

et al., 2002). SFK phosphorylation of FcRγ chain provides a docking site for the SH2 

domains of spleen tyrosine kinase (Syk). Syk binds to the phosphorylated ITAM and 

leads to a signalling cascade through proteins including adaptor proteins, such as the 

linker for activation of T-cells (LAT) as shown in Figure 1.3. LAT phosphorylation 

leads to the formation of a signalosome, which binds adaptor proteins Grb2 (growth 

factor receptor bound protein 2) and Gads (Grb2 related adaptor protein downstream of 

Shc), along with phospholipase C (PLC)γ2. The binding of these proteins allows the 

recruitment of SLP-76 (SH2 domain containing leukocyte protein of 76 kD), leading to 

PLCγ2 activation and Ca
2+

 mobilisation  (Nieswandt and Watson, 2003). Once activated 

PLCγ2 hydrolyses phosphatidylinositol-4,5 bisphosphate (PIP2). Two second 

messengers, inositol-1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) mediate 

Ca
2+

 release from intracellular stores and activation of protein kinase C (PKC), 

respectively. 
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Figure 1.3. Schematic of GPVI signalling mechanism. GPVI signalling cascade after 

stimulation with collagen, involving ITAM FcRγ-chain and the formation of the LAT 

signalosome leading to integrin activation, Ca
2+

 mobilisation and platelet activation. 

SFK: Src family kinases, ITAM: immunoreceptor tyrosine-based activation motif.   
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1.4.1.1 GPVI agonists 

GPVI is the major platelet receptor for collagen. Collagen contains glycine-proline-

hydroxyproline (GPO) helical peptide chains that activate GPVI (Knight et al., 1999). 

Synthetic peptides, including collagen-related peptide (CRP) have been developed 

which mimic collagen activity by containing GPO repeats (Smethurst et al., 2007). 

GPVI is activated by a number of different endogenous ligands, including laminin and 

extracellular matrix metalloproteinase inducer (EMMPRIN) and other 

synthetic/exogenous ligands (Inoue et al., 2006, Seizer et al., 2009, Alshehri et al., 

2015b).  GPVI can also be activated by antibodies, including JAQ1 (Nieswandt et al., 

2001) and snake venom toxins such as alborhagin, convulxin and crotarhagin (Jandrot-

Perrus et al., 1997, Polgar et al., 1997).  

 

Activation of GPVI by collagen or other GPVI agonists mentioned above is an 

important process in platelet adhesion and aggregation and can also lead to 

metalloproteolytic shedding. Deficiencies in GPVI, such as mice lacking GPVI and the 

FcRγ chain leads to defects in both adhesion and aggregation (Poole et al., 1997). 

Furthermore, mice treated with an anti-GPVI antibody to deplete GPVI display reduced 

thrombus formation in vivo using the ferric chloride injury model and with low laser 

injury (Nieswandt et al., 2001, Dubois et al., 2007). Patients with either partial or full 

GPVI deficiency are extremely rare, usually presenting with mild mucous membrane 

and skin bleeding.  In addition, their platelets show no aggregation response to collagen 

or CRP (Matus et al., 2013, Arthur et al., 2007). GPVI is also critical for maintenance of 

vessel wall integrity at sites of inflammation by sealing areas of neutrophil-mediated 

vascular damage, to reduce blood leakage (Boulaftali et al., 2013, Gros et al., 2015a). 
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1.4.2 FcγRIIa 

Another important platelet ITAM receptor, lacking in the rodent genome, is FcRIIA 

(also known as CD32A). FcRIIA a low affinity IgG receptor, belonging to the Fc 

family of receptors, which interact with IgGs. Human platelets express between 1000-

4000 copies per platelet. It contains an ITAM, similar to the FcRγ-chain with 12 amino 

acids separating the tandem YxxL sequences.  FcRIIA phosphorylation results from 

receptor clustering after binding of immune complexes, leading to platelet aggregation 

(Chacko et al., 1996, Arman et al., 2014). The association and binding of Syk leads to 

autophosphorylation and activation (Chacko et al., 1994). The main role of FcRIIA is 

in the immune response, through bacterial-induced platelet activation and binding of 

antibody coated pathogens (Cox et al., 2011, Arman et al., 2014). FcRIIA is also 

implicated in the pathogenesis of heparin-induced thrombocytopenia, through platelet 

activation mediated by antibodies clustering (Carlsson et al., 1998). 

1.4.3 CLEC-2 

C-type lectin-like receptor 2 (CLEC-2) is type II membrane receptor with a hemi 

immunoreceptor tyrosine-based activation motif (HemITAM). CLEC-2 is highly 

expressed on platelets with around 2000 copies per platelet (Gitz et al., 2014). CLEC-2 

was initially thought to be expressed on dendritic cells (DCs) and subsets of murine 

myeloid cells in resting conditions and increasingly expressed seen in various leukocyte 

subsets in response to inflammatory stimuli (Kerrigan et al., 2009, Acton et al., 2012b). 

However recent work has described a more restricted expression profile to just platelets 

and a subset of circulating inflammatory myeloid cells (Lowe et al., 2015b). 
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CLEC-2 contains a N-terminal cytoplasmic tail, a stalk region, single transmembrane 

domain and a C-terminal carbohydrate-like recognition domain (CRD), also known as a 

C-type lectin-like domain (CTLD) (Weis et al., 1998, Drickamer, 1999).  The CTLD 

does not contain key residues needed for carbohydrate binding, suggesting its ligands 

are required to bind through protein-protein interactions. CLEC-2 signals through a 

hemITAM rather than a full ITAM as it only signals by tyrosine phosphorylation of a 

single YXXL motif in the cytoplasmic tail (Suzuki-Inoue et al., 2006). Some aspects of 

CLEC-2 and GPVI signalling are similar, with signalling occurring through Src and Syk 

dependent tyrosine kinases (Hughes et al., 2010).  However, activation of Syk requires 

cross linking of two CLEC-2 receptors due to the hemITAM.  A difference between 

CLEC-2 signalling and other ITAM signalling is the hemITAM is reliant more on Syk 

rather than SFKs for the initial phosphorylation (Spalton et al., 2009, Severin et al., 

2011).  Upon CLEC-2 activation with its ligand, the hemITAM is phosphorylated, 

allowing the SH2 domain-containing Syk to be recruited. Syk then undergoes a 

conformational change, from an auto-inhibited form to an activate confirmation, before 

undergoing auto-and trans-phosphorylation by itself and SFKs. This leads to full 

activation of Syk and phosphorylation of downstream signalling proteins, resulting in 

the formation of the LAT signalosome, PLCγ2 activation and Ca
2+

 mobilisation, 

culminating in granule release and integrin activation (Figure 1.4).  
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Figure 1.4. Schematic of CLEC-2 signalling pathway. Upon receptor activation by 

the snake toxin rhodocytin or podoplanin, the hemITAM becomes phosphorylated by 

Syk and Src family kinases (SFK).  Syk recruitment and phosphorylation leads to 

downstream signalling events at the formation of the LAT signalosome, resulting in 

activation of PLCγ2, integrin activation and Ca
2+

 mobilisation.  
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Multiple studies over the years have shown that mice deficient in any of the signalling 

proteins downstream of CLEC-2, including Syk, SLP-76 and PLCγ2 exhibit 

haemorrhaging, oedema and blood-filled lymphatics during mid-gestation (Turner et al., 

1995, Bertozzi et al., 2010, Clements et al., 1999, Finney et al., 2012). There have 

however been no descriptions of CLEC-2-deficient human patients to date, potentially 

due to lethality of CLEC-2 defects in development.   

 

1.4.2.1 CLEC-2 agonists   

CLEC-2 was first identified as a platelet receptor through activation by the snake venom 

toxin, rhodocytin (Suzuki-Inoue et al., 2006). Initially it was proposed that rhodocytin-

mediated platelet activation was through integrin α2β1; however, later studies showed 

rhodocytin activation was independent of α2β1 as activation was still seen in the 

presence of a blocking antibody (Suzuki-Inoue et al., 2006). The sulphated sugar 

fucoidan and dextran sulphate can also lead to platelet activation through CLEC-2 in 

humans and mice (Manne et al., 2013, Alshehri et al., 2015b).  

 

CLEC-2 was first proposed to have an endogenous ligand through studies of platelet 

binding to HIV-1 viral particles (Chaipan et al., 2006). Chaipan et al.’s study described 

how platelets bound and internalised viral particles through a CLEC-2 and Dendritic 

Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN)-

dependent pathway (Chaipan et al., 2006).  DC-SIGN, is another C-type lectin receptor 

and was shown to bind to the viral envelope protein Env by binding to mannose sugars 

(Geijtenbeek et al., 2000). However, CLEC-2 binding was independent of Env, 

suggesting involvement of another host cell protein. Platelet aggregation occurred when 
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platelets were added to human embryonic kidney cells (HEK-293T) cells incorporated 

with HIV, suggesting the cells expressed an endogenous ligand for CLEC-2 to mediate 

aggregation (Christou et al., 2008). 

 

Podoplanin was identified as the endogenous ligand for CLEC-2 in 2007 by Suzuki-

Inoue (Suzuki-Inoue et al., 2007). Podoplanin had been shown to be expressed on 

tumour cells and was able to induce platelet aggregation when added with platelets 

(Kato et al., 2003). Suzuki-Inoue et al.’s studies went on to show podoplanin was the 

ligand for CLEC-2 following the observation that the podoplanin-expressing tumour 

cell mediated platelet aggregation with similar kinetics to rhodocytin (Suzuki-Inoue et 

al., 2007). The CLEC-2 and podoplanin interaction was confirmed using podoplanin-

expressing Chinese hamster ovary (CHO) cells and lymphatic endothelial cells (LECs) 

which also induce platelet aggregation in a CLEC-2 dependent manner (Suzuki-Inoue et 

al., 2007). The interaction between recombinant-CLEC-2 and podoplanin was shown to 

have a binding affinity (KD) of 25 µM after surface plasmon resonance was performed 

(Christou et al., 2008).  

 

Podoplanin, also known as gp38, aggrus, T1α and E11 antigen, is a 36-43 kDa type-1 

transmembrane sialoglycoprotein containing a large, heavily glycosylated extracellular 

domain, a single transmembrane domain and a short cytoplasmic tail (RKMSGRYSP 

sequence). Podoplanin consists of a transmembrane domain and an O-glycosylated 

platelet-aggregation stimulating domain (PLAG domain), which interacts with the 

CLEC-2 receptor. It has also been proposed to interact with the family of ERM (ezrin, 

radixin, moesin) proteins, through three basic amino acids in its cytoplasmic tail 
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(Martin-Villar et al., 2006). These interactions forming associations with the ERM 

proteins which increase RhoA activity demonstrating that podoplanin is also a 

signalling receptor (Martin-Villar et al., 2006).  Podoplanin was identified as the E11 

antigen on LECS in 1996 (Wetterwald et al., 1996), with the podoplanin structure being 

described on kidney podocytes in 1997 (Breiteneder-Geleff et al., 1997). Podoplanin is 

widely expressed on cells outside the vasculature including, alveolar type-1 epithelial 

cells, LECs (Schacht et al., 2003), kidney podocytes and fibroblastic reticular cells 

(FRCs) (Astarita et al., 2015). It is also upregulated under pathological conditions on T-

helper 17 (TH17 cells) (Peters et al., 2015), tumour cells (Kato et al., 2003) and 

inflammatory macrophages (Kerrigan et al., 2012). The consequences of podoplanin 

upregulation will be discussed further in Section 1.8.   

 

1.5  Platelet receptor shedding  

As previously discussed, there are multiple ways of regulating platelet receptor 

activation. Proteolytic cleavage of receptors can also regulate receptor expression and 

consequent activation. Extracellular proteolysis of receptors results in irreversible 

inactivation of receptors and can also release soluble receptor fragments into the 

plasma. Approximately 10% of all platelet receptors can be regulated by proteolytic 

cleavage, including GP1b, GPV and GPVI (Bender et al., 2016).  

1.5.1 GPVI shedding  

GPVI is one of the most intensively studied receptor that undergoes proteolytic 

cleavage. A principle mechanism for GPVI shedding in humans is through ligand-

mediated shedding. GPVI signalling has been shown to lead to proteolytic inactivation 
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of GPVI through ectodomain shedding (Qiao et al., 2010, Gardiner et al., 2004, 

Bergmeier et al., 2004, Stephens et al., 2005). GPVI shedding can occur between 

minutes and hours, depending on the conditions involved, with more powerful agonists, 

such as convulxin, inducing quicker shedding (Andrews et al., 2007). Ligand-mediated 

shedding reduces platelet reactivity in areas where there is extensive collagen exposure 

and may serve to prevent occlusive thrombus formation (Bender et al., 2016). 

Downregulation or reduced expression of GPVI has been shown to reduce the platelet 

activation response to GPVI ligands, including collagen (Snell et al., 2002, Stephens et 

al., 2005). 

 

Several non-physiological agents, including calcium ionophore, N-ethylmaleimide 

(NEM) and calmodulin inhibitors also induce GPVI shedding. NEM directly activates 

sheddases and calmodulin inhibitors, such as W7, allowing calmodulin dissociation 

from the cytoplasmic tail, thereby leading to GPVI shedding. Carbonyl cyanide m-

chlorophenylhydrazone (CCCP) can also induce GPVI shedding in mice though 

activation of sheddases (Bergmeier et al., 2004).  

 

Pathological shear stress can also induce GPVI shedding independent of platelet 

activation, also suggesting a regulatory role of shedding in preventing excessive 

thrombus formation (Al-Tamimi et al., 2012). Coagulation mediated shedding of GPVI 

through FXa activity has also been described, resulting in GPVI downregulation in 

procoagulant conditions. Furthermore, antibody-induced GPVI shedding by FcRIIA 

leads to shedding of GPVI (Rabie et al., 2007, Takayama et al., 2008), with GPVI 
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downregulation reported through shedding after treatment with anti-GPVI antibodies in 

mice (Nieswandt et al., 2001).  

 

GPVI shedding is mainly metalloproteinase-dependent.  The sheddase ADAM10 plays 

a major role in GPVI shedding, with ADAM 17 also contributing (Facey et al., 2016, 

Bender et al., 2016). ADAM10 and ADAM17 are endogenous sheddases, which are 

part of the family of a disintegrin and metalloproteinases (ADAM family) and are 

closely related to the family of matrix metalloproteinases (MMPS) (Facey et al., 2016). 

They contain a metalloproteinase domain that cleaves the receptor. In basal conditions, 

ADAMs contain an unpaired cysteine in their pro-domain, which inhibits the 

metalloproteinase domain. When ADAMs become activated, the pro-domain is 

proteolytically removed. NEM and other thiol-modifying agents can also directly 

activate the sheddases (Andrews et al., 2007). Multiple studies have shown ADAM10 to 

be the key sheddases involved in GPVI shedding. Gardiner et al. mapped the site of 

GPVI cleavage by ADAM10 and introduced mutations that prevent GPVI shedding 

(Gardiner et al., 2007). Other studies confirmed this, showing platelet ADAM10-

deficient mice do not undergo GPVI shedding after stimulation. However, these studies 

also suggested that shedding is reduced when ADAM17 is absent (Bender et al., 2010). 

ADAM17 is the main sheddase involved in GP1b shedding and plays a minor role in 

GPVI shedding in mice.  

 

Proteolytic cleavage of GPVI by the sheddases ADAM10 and ADAM17 and other 

mechanisms described, results in the release of a soluble GPVI fragment (55 kDa) into 

the plasma, leaving a remnant 10 kDa membrane bound fragment. As GPVI is only 
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found on megakaryocytes and platelets the soluble GPVI (sGPVI) fragment detected in 

the plasma can be used as a biomarker of platelet activation.  To this end, sGPVI is a 

specific platelet activation marker, which has been detected in a range of thrombotic 

disorders and is also elevated in other conditions such as Alzheimer’s disease, 

thrombotic microangiopathy and ischaemic stroke (Laske et al., 2008, Yamashita et al., 

2014b, Wurster et al., 2013). 

1.5.2 Other ITAM receptor shedding  

FcγRIIA is another ITAM receptor that can undergo cleavage. Binding of ligands such 

as antibody complexes to FcγRIIA activates calpain resulting in intracellular proteolytic 

cleavage (Gardiner et al., 2008b). Activation of FcγRIIA or GPVI can lead to shedding 

of both receptors (Gardiner et al., 2008b).  This has also been described in vivo, as 

patients with heparin induced thrombocytopenia (HIT) associated with activation of 

FcγRIIA results in elevated sGPVI levels (Qiao et al 2015). The hemITAM, CLEC-2, 

can also mediate GPVI shedding (Gitz et al., 2014), however GPVI activation cannot 

induce CLEC-2 shedding.  In mice, it is proposed that CLEC-2 is internalised (May et 

al., 2009). 

 

1.6 Platelet roles 

The major role of platelets is considered to be in haemostasis and thrombosis, and more 

recently, in maintaining vascular integrity. Over the last few years, other functional 

roles in numerous processes have been proposed including in embryonic development, 

angiogenesis and in wound healing (Bertozzi et al., 2010, Kisucka et al., 2006, Nurden 

et al., 2008). In addition, platelets play a critical role in infection and in inflammation 

(Morrell et al., 2014, Engelmann and Massberg, 2013). This section will examine the 
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different role of platelets, in particular looking at the roles associated with the 

podoplanin/CLEC-2 axis and GPVI pathways. 

1.6.1 Role of platelets in cancer 

Platelets have also been shown to contribute to cancer metastasis and facilitating tumour 

growth. Interactions between platelet receptors and ligands on tumour cells, 

predominately podoplanin and CLEC-2. Podoplanin is upregulated in a wide range of 

cancers, including colorectal adenocarcinomas (Kato et al., 2003), lung carcinomas and 

central nervous system related tumours (Kato et al., 2005, Shibahara et al., 2006a). The 

implications of podoplanin upregulation on cancer cells have yet to be fully established; 

however, roles in cell migration and presence at the tumour invasive edge have been 

proposed (Wicki and Christofori, 2006). Platelet coating of tumour cells allows 

formation of platelet/tumour aggregates, protecting tumour cells from shear stress and 

help in evasion from the immune system (Gay and Felding-Habermann, 2011, Jain et 

al., 2009). Studies using an anti-podoplanin antibody (MS-1 mAb) has given rise to 

reductions in platelet aggregation in vitro and reductions in pulmonary metastasis in 

vivo, making podoplanin a potential anti-metastatic drug target (Takagi et al., 2013). 

1.6.2 Role of platelets in infection 

Many studies have described the interactions between platelets and bacteria. Both 

Gram-negative and Gram-positive species of bacteria induce activation through a shared 

pathway that is critically dependent on FcγRIIA (Watson et al., 2016, Arman et al., 

2014). Several additional platelet receptors have been implicated in platelet-pathogen 

interactions, including Toll-like receptors (TLRs).  Platelets can also limit bacterial 

dissemination by capturing pathogens after thrombus formation (Engelmann and 
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Massberg, 2013, Morrell et al., 2014). In addition, platelets interact with viruses, 

facilitating viral capture through interactions with different receptors including TLR-9 

and CLEC-2 (Zhang et al., 2010, McCarthy et al., 2015) and mediating viral 

transmission, such as HIV  (Chaipan et al., 2006). Furthermore, CLEC-2 has recently 

been shown to be involved in bacterial-driven thrombus formation. Hitchcock et al. 

reported that the upregulation of podoplanin in livers of mice infected with Salmonella 

resulted in an inflammation-driven occlusive thrombosis, with the absence of platelet 

CLEC-2 negated thrombus formation (Hitchcock et al., 2015). 

1.6.3 Role of platelets in inflammation 

The role of platelets in the inflammatory response has been extensively studied, and in 

particular in regard to platelet adhesion to activated endothelium and to circulating 

leukocytes (Gros et al., 2015a). Platelets interact with a variety of immune cells to 

release pro-inflammatory cytokines. Platelets also have pathological roles in various 

inflammatory conditions, such as atherosclerosis and deep vein thrombosis, where they 

contribute to the initial damage to the vessel. Moreover, platelet activation is linked to 

chronic inflammatory disorders, such as rheumatoid arthritis (RA), inflammatory bowel 

disease (IBD) and in response to thermal injury and sepsis. The next section will assess 

whether platelet activation is associated with these inflammatory conditions. 

1.6.3.1 Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic systemic inflammation affecting joints which 

leads to progressive destruction of articular cartilage (Del Rey et al., 2014). Platelets 

have been implicated in this underlying damaged. Specifically, it is proposed that there 

are abundant levels of platelet microvesicles in synovial fluid which mediate pro-
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inflammatory effects (Del Rey et al., 2014, Boilard et al., 2010). GPVI signalling has 

been implicated in increasing platelet microvesicle production in RA, leading to a pro-

inflammatory response as a result of microvesicle interactions with synovial fibroblasts 

(Boilard et al., 2010). Increased CLEC-2 expression has also been observed in synovial 

arthroscopic tissue biopsies taken from RA patients (Del Rey et al., 2014). Platelet-

CLEC-2 interacts with synovial fibroblasts resulting in increased production of the pro-

inflammatory cytokines IL-6 and IL-8 (Del Rey et al., 2014). Podoplanin expression is 

also markedly increased in inflamed areas, notably on synovial fibroblast, and therefore 

may play a role in driving the inflammation (Miyamoto et al., 2013, Ekwall et al., 2011, 

Del Rey et al., 2014). 

1.6.3.2 Inflammatory Bowel Disease  

Inflammatory bowel disease (IBD) is another chronic inflammatory condition 

associated with platelet activation. IBD is a collective term for inflammatory conditions 

primarily affecting the gastrointestinal tract. The two main predominant forms of IBD 

are Crohn’s disease and ulcerative colitis (UC). Crohn’s disease is a chronic 

inflammation of the gut, mostly commonly associated with inflammation of distal end 

of the ileum in the small intestine and the colon (Pedersen et al., 2014). UC is an 

inflammatory condition mainly affecting the rectum, colon and large bowel. Both 

conditions exhibit chronic inflammation with active and non-active phases, where the 

patient experiences flare ups and times of remission. It is not established fully the direct 

cause of IBD cases or reasons for flare ups, but both genetic and environmental causes 

have been proposed (Ponder and Long, 2013).  Platelets have been shown to have roles 

in IBD as many patients present with several abnormalities in platelet dysfunction, 
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including smaller mean corpuscular volume and increased chronic activation (Giannotta 

et al., 2015, Jaremo and Sandberg-Gertzen, 1996)   

Iron deficiency anaemia is common clinical complication arising in IBD, with around 

15-20% of IBD patients developing iron deficiency anaemia with increasing prevalence 

(up to 60%) when taking into account hospitalised patients (Guagnozzi and Lucendo, 

2014, Bergamaschi et al., 2010). Iron deficiency can also affect disease severity in IBD 

patients. Chronic intestinal bleeding often occurs at inflamed sites and is a potential 

explanation for the iron-deficiency that develops, with platelet activation and 

thrombocytosis described during periods of intestinal inflammation (Voudoukis et al., 

2014). Platelet activation may occur to maintain haemostasis and vascular integrity in 

inflamed areas.  

1.6.3.3 Thermal injury 

A major inflammatory response is observed in patients with thermal burn injuries. 

Platelet activation is commonly seen due to the excessive tissue damage. In a study of 

244 patients with thermal injuries, Marck et al. reported a substantial drop in platelet 

count at day 3 post injury with rebound thrombocytosis at day 15.  Interestingly, lower 

platelet counts observed at day 3 and 15 were associated with poor patient outcomes 

(Marck et al., 2013). It is currently unknown if this drop in platelet count results from 

platelet consumption or reduced platelet formation. Measurement of a platelet activation 

marker at these early time points could indicate the degree of platelet activation and 

potentially disease prognosis.  
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1.6.3.4 Sepsis  

Sepsis is described as a majorly exaggerated systemic immune response in the response 

to pathogens, mainly bacterial infections such as Klebsiella pneumoniae. Sepsis is a 

devastating condition which can often result in mortality, even with aggressive 

antibiotic treatment (Angus and van der Poll, 2013). Sepsis has an estimated incidence 

of 19 million cases worldwide per year (Adhikari et al., 2010, Proudfoot and Summers, 

2014). Sepsis development can result from many conditions including acute lung injury 

and is a critical complication of thermal injury due to the vast amounts of tissue damage 

causing increased susceptibility to bacterial infection. Although advancements in the 

treatment of initial thermal injury have been greatly improved, sepsis development and 

associated mortality remains a major challenge for recovery (Mann et al., 2012).  

Clinical diagnosis of sepsis is very difficult and prolonged with many criteria needing to 

be met. The diagnosis of the causative pathogen can also become difficult with positive 

blood cultures being required. Sepsis diagnosis criteria can also be masked by the 

systemic inflammatory response syndrome (SIRS) that can also develop in these 

patients (Levy et al., 2003). An effective biomarker with a strong predictive value 

would enable rapid treatment and thus lead to a reduction in mortality.  

 

Sepsis is also strongly associated with thrombocytopenia (Sharma et al., 2007). 

Thrombocytopenia is a common clinical presentation in critically ill patients who go 

onto develop sepsis and can impair the patient’s response to infection and lead to 

increased mortality (Claushuis et al., 2016). This has also been shown in mice, for 

example where thrombocytopenia impaired the host response to Klebsiella pneumoniae 

infection, leading to enhanced bacterial growth in the blood and lungs (de Stoppelaar et 
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al., 2014). These studies illustrate that platelets have a potential role in host defence 

against pathogens and sepsis development.  

1.6.4.5 Other inflammatory conditions  

Platelets are also implicated in multiple sclerosis (MS); an auto-immune inflammatory 

disorder affecting the brain and central nervous system as a result of demyelination. 

Studies have shown the interaction of CLEC-2 and podoplanin can have a positive 

effect on the resolution of inflammation (Peters et al., 2015). Platelets have also 

described to contribute to the initial damage to the vascular wall that leads to the onset 

of atherosclerosis and in deep vein thrombosis (Huo et al., 2003, Lindemann et al., 

2007, Nieswandt et al., 2005, Brill et al., 2012). The CLEC-2 ligand is expressed in 

atherosclerotic plaques with the level of expression correlating with plaque severity 

(Hatakeyama et al., 2012).  

 

1.7 Role of platelets in trauma  

Trauma is the leading cause of death in people under 40 in the UK (NCEPOD, 2007). 

The leading cause of mortality in trauma is through excessive bleeding, although a large 

number of other factors are also associated, including coagulation defects and severe 

inflammation. Together these lead to multi-organ failure (MOF). Trauma research over 

recent years has produced several acute treatment therapies to prevent excessive blood 

loss and thereby save lives. However, there is now a focus on therapeutic developments 

targeting a wide range of secondary complications resulting from different severity and 

types of trauma, including amplified inflammation and MOF. Platelets have been 

described to have a role in activating the innate immune response through antigen 
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recognition and presentation to immune cells. Platelets may also play a role in the 

increased immune response, resulting in the initiation of SIRS and increased mortality. 

1.7.1 Systemic inflammatory response syndrome (SIRs) 

SIRS is a substantially amplified inflammatory response that can lead to tissue damage, 

MOF and mortality.  A dynamic inflammatory response after trauma is usually required 

for tissue repair and regeneration (Hirsiger et al., 2012). However, after severe trauma, 

the release of inflammatory mediators and cytokine production is exaggerated causing 

an excessive, tissue-damaging inflammatory response and SIRS  (Hirsiger et al., 2012). 

The causes of the amplified inflammatory are now being studied extensively, with 

danger associated molecular pattern molecules (DAMPs) and Alarmins proposed to be 

key players.  

1.7.2 Alarmins and DAMPs  

Danger Associated Molecular Pattern molecules (DAMPs) are danger signals released 

from stressed or damaged cells. Mazinger (1994) was the first to describe the danger 

theory where host cells recognise and respond to danger signals released from the 

body’s own cells, and it is now believed that this may give rise to its own cells and has 

become the basis of how SIRS may develop (Matzinger, 1994). DAMPs are proposed as 

the host’s version of Pathogen Associated Molecular Pattern molecules (PAMPs). 

PAMPs are microbial-derived molecules that are recognised by pattern recognition 

receptors (PRRs), such as TLRs, which upon binding their ligands, cause activation of 

the innate immune response in order to destroy the pathogen. DAMPs are believed to 

initiate the immune response in a similar way but without the presence of a 

pathogenic/microbial agent. SIRS therefore develops after release of DAMPs resulting 
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in enhancement of cytokine production and immune system activation under sterile 

conditions. Alarmins are a subset of endogenous DAMPs that are elevated in response 

to trauma.  They can remain at high levels for days after initial trauma. Alarmins bind to 

corresponding Alarmin receptors inducing intracellular signalling pathways eliciting the 

pro-inflammatory response described above (Manson et al., 2012).  

1.7.3 Nuclear-related Alarmins  

Nuclear-related Alarmins are nuclear protein and material released after damage to the 

nucleus. These include DNA, high-mobility-group-box-1 protein (HMGB-1), 

nucleosomes and histones. 

1.7.3.1 Histones  

Histones are highly positively charged nuclear proteins with an important role in DNA 

organisation and chromatin formation (Doenecke and Albig, 2001).They are a main 

component of Neutrophil Extracellular Traps (NETs; discussed in Section 1.7.3.3), and 

can be released into the circulation having been released after nucleosomes breakdown.  

Histones can be elevated 200 fold in trauma patients, reaching levels in the order of 250 

μg/ml. There are four main histone proteins, H2A, H2B, H3 and H4, with H3 and H4 

having the greatest effect on cells.  Histones have multiple effects on many cell types, 

including vascular endothelial cells, resulting in cytokine activation and thrombin 

generation (Semeraro et al., 2011). Histones are extremely cytotoxic and elevated 

histones levels have been reported to induce acute lung injury (Abrams et al., 2013). 

1.7.3.2 High-mobility-group-box-1 (HMGB-1)  

Another nuclear related Alarmin, HMGB-1 interacts with other nuclear proteins to 

regulate DNA organisation and gene transcription. HMGB-1 levels have been measured 

in a range of inflammatory conditions, including sepsis (Klune et al., 2008) and has 
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been shown to be elevated 30 fold after trauma (Park et al., 2004). HMGB-1 has been 

described to signal through a variety of receptors from TLRs to Receptor for Advanced 

Glycation Endproducts (RAGE) to activate immune cells. Interactions between HMGB-

1 and TLR-4 have also been shown to promote NET formation (Tadie et al., 2013). 

HMGB-1 has been described to promote inflammatory cell recruitment to damaged 

areas via forming complexes with CXCL12, which change the conformation of CXCR4 

leading to signalling and recruitment (Schiraldi et al., 2012).  HMGB-1 has been 

described to have many inflammatory roles through a variety of mechanisms, however 

the role of HMGB-1 in platelet activation has yet to be established. 

1.7.3.3 DNA 

Released after cell damage, cell free-DNA is present in the plasma of patients and is a 

marker of disease, including sepsis (Hampson et al., 2016). Although DNA can be 

released from different immune cells, neutrophils have been the predominate source of  

DNA studied due to the release of NETS through a process known as NETosis (Yipp et 

al., 2012) NETs are made up of extracellular DNA, serine proteases and anti-microbial 

molecules which play a critical role in trapping and elimination of bacteria (Brinkmann 

et al., 2004). Long extracellular extrusions are the main structure of NETs giving the 

possibility for platelets to adhere to the NETs and undergo activation (Fuchs et al., 

2010). Platelets have been shown to be activated by NETs (Fuchs et al. 2010), but the 

underlying mechanism remains unclear. 

1.7.3.4 Mitochondrial DNA (MtDNA)  

DNA released from mitochondria following damage has been shown to be elevated in 

the plasma of trauma patients and to remain elevated for up to 24 hours (Zhang et al., 

2010). MtDNA has been shown to increase endothelial permeability during systemic 
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inflammation (Sun et al., 2013) and to be associated with acute lung injury (Hauser et 

al., 2010). The effect of MtDNA is believed to be due to its close evolutionary 

relationship with bacterial DNA, with similar CpG DNA repeats (Zhang et al., 2010). 

MtDNA activates many of the same receptors as bacterial DNA, including TLR-9, 

which is expressed in platelets. 

1.7.4 Oxidised low density lipoprotein (OxLDL) and Advanced Glycation 

End Products (AGE) 

AGE are glycated proteins that have undergone protein modifications and are 

implicated in conditions such as diabetes and atherosclerosis (Goldin et al., 2006). 

Studies by Zhu et al. suggested AGE gives a prothrombotic phenotype, enhancing 

platelet reactivity through CD36 signalling (Zhu et al., 2012). OxLDL, a lipid-based 

DAMP, has been associated with hyperlipidaemia and site of atherosclerotic lesions 

(Matsuura et al., 2008). OxLDL forms after lipids and apolipoprotein B (apoB) 

components undergo lipid per oxidation (Stewart et al., 2005). It has been proposed that 

Alarmins, such as AGE and OxLDL, may not induce platelet aggregation directly but 

may modulate platelet responses to other agonists. 

1.7.5 Alarmin receptors  

A large number of Alarmin receptors have been characterised, including TLRs, formyl 

peptide receptor (FPR1), heat shock protein receptors (HSPR) and the ATP receptor, 

P2RX7. Platelets express a number of Alarmin/DAMP receptors which support a pro-

inflammatory response. The direct signalling mechanisms behind Alarmin-induced 

platelet activation however have yet to be fully established.  The main Alarmin receptor 

type recognised as potential platelet Alarmin receptors are TLRs.  
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1.7.5.1 TLRs  

TLRs are a family of receptors involved in host defence against pathogens, which 

recognise PAMPs, activating the immune response (Cognasse et al., 2005) . Eleven 

TLRs have characterised with functional roles, with TLR2, TLR4 and TLR9 having 

been described on the platelet surface (Cognasse et al., 2005). TLR2 and TLR4 have been 

shown to have roles in recognition of bacterial-derived molecules. Platelet TLR4 is also 

associated with platelet-neutrophil interactions (Clark et al., 2007) and with NET 

formation. As discussed above, TLR9 has been shown to recognise bacteria DNA and 

MtDNA. TLR signalling in platelets has been proposed to involve NF-kB/TRIF/Myd88 

signalling cascades but a full understanding of the mechanisms between TLR activity 

and platelet activation has yet to be fully established, in part because of their low levels 

and that of their signalling proteins  (Garraud and Cognasse, 2010). 

1.7.5.2 CD36 (GPIIIb) 

The class B scavenger receptor CD36 has been proposed as a potential DAMP receptor. 

CD36 is expressed on the platelet surface with a copy number of 20,000 per platelet 

(Saboor et al., 2013). It is the major receptor involved in OxLDL signalling and has also 

been shown to bind microparticles (Ghosh et al., 2008).  CD36 also supports long-chain 

fatty acid transport (Su and Abumrad, 2009)  CD36 has been implicated in 

atherosclerosis, hyperlipidaemia, and insulin insensitivity in diabetes mellitus  (Podrez 

et al., 2007). CD36 may also play a role in sterile inflammation through formation of a 

CD36-TLR4-TLR6 heterotrimer (Stewart et al., 2005). However, the CD36 signalling 

mechanism has yet to be fully established. 
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1.7.5.3 Receptor for Advanced Glycation Endproducts (RAGE) 

The 35kDa scavenger receptor, RAGE, is expressed at low levels on endothelial cells 

and leucocytes cells but upregulated at sites of inflammation sites RAGE has been 

shown to interact with AGE and to contribute to persistent NF-κB activation potentially 

leading to hyperglycaemia in patients with diabetes (Bierhaus and Nawroth, 2009). 

RAGE is located on platelets and is proposed to be a receptor for HMGB-1 in 

inflammation and cancer (Sims et al., 2010).  

 

1.8 The role of platelets in vascular integrity 

1.8.1 Other cell interactions in inflammation and vascular integrity  

Platelets play a critical role in the maintenance of vascular integrity during development 

and at sites of inflammation. Vascular integrity is maintained through the interactions 

with endothelial cells. As previously mentioned (section 1.4.2), CLEC-2 has been 

shown to maintain integrity of the cerebrovasculature in mid-gestation through 

association with podoplanin (Lowe et al., 2015a). The GPVI/ FcRγ-chain complex has 

been shown to maintain vascular integrity in inflamed blood vessels by opposing the 

action of neutrophils (Gros et al., 2015a). This extends an earlier study that reported 

critical roles for CLEC-2 and GPVI-FcR γ-chain in prevention of bleeding at sites of 

inflammatory challenge (Boulaftali et al., 2013). 

 

Podoplanin undergoes marked up-regulation at sites of inflammation (Ekwall et al., 

2011, Astarita et al., 2012b) . The consequences of podoplanin upregulation however, 

seems to vary depending on the type of inflammation and cell types that are involved, 
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with the podoplanin/CLEC-2 interaction sometimes being beneficial and on other 

occasions promoting inflammation. Podoplanin upregulation has been observed on 

fibroblastic reticular cells (FRCs), with the interaction between CLEC-2 on platelets 

and podoplanin on FRCs being shown to underlie lymph node expansion (Astarita et al., 

2015). In addition, maintenance of lymph node high-endothelial venule (HEV) integrity 

requires platelet-expressed CLEC-2 and podoplanin-expressed FRCs; absence of either 

leads to the appearance of blood-filled lymph nodes (Herzog et al., 2013). In a mouse 

model of autoimmune encephalomyelitis, upregulation of podoplanin on TH17 cells is 

associated with their inhibition, leading to improved recovery (Miyamoto et al., 2013). 

Likewise, podoplanin expressed on fibroblastic macrophages, a F4/80
+
 subtype 

macrophage found in the red pulp of the spleen, is upregulated in response to zymosan 

induced peritonitis and this upregulation leads to increased phagocytosis (Hou et al., 

2010). On the other hand, upregulation of podoplanin on inflammatory macrophages or 

upregulation on tumour cells can lead to platelet aggregation and thrombosis (Kerrigan 

et al., 2012, Jain et al., 2009). Upregulation of podoplanin on liver macrophages (F4/80
+ 

cells) of Salmonella-infected mice triggers CLEC-2-mediated thrombosis (Hitchcock et 

al., 2015). The consequence of podoplanin upregulation on human cells however is not 

known.   

1.8.2 Role of platelets in wound healing 

Platelets have been shown to play critical roles in wound healing, most notably during 

the immediate response to injury through formation of a vascular plug and prevention of 

excessive blood loss. The formation of the thrombus also provides a matrix scaffold for 

recruited cells to infiltrate the damaged area (Li et al., 2007). Platelets release a number 

of chemo-attractants and growth factors, including both pro-angiogenic and anti-
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angiogenic proteins, various growth factors including, platelet-derived growth factor 

(PDGF), transforming-growth factor-β (TGF-β), and chemo-attractants such as platelet 

factor 4 (PF4) which act to recruit immune cells (Li et al., 2007). The platelet releasate 

has been shown to increase the rate of granulation and to promote tissue granulation; 

involving fibroblast proliferation, deposition of extracellular matrix (ECM) proteins and 

new blood vessel formation (Li et al., 2007).  The range of cytokines and growth factors 

released help to increase the rate of granulation and promote tissue granulation (Ksander 

et al., 1990a, Li et al., 2007). 

 

Relatively few studies however have investigated the effect of platelet depletion 

immediately following wound injury because of their critical role in the haemostatic 

process. This question can be addressed through the targeted deletion of platelet 

proteins implicated in wound repair but not the haemostatic process such as CLEC-2.  

For example, the critical role of CLEC-2 in maintenance of vascular integrity as shown 

in the reverse passive Arthus (rpA) reaction model (Boulaftali et al., 2013) may also 

translate to a role in wound repair. Additionally, platelet CLEC-2 has also been shown 

to regulate migration of keratinocytes in vitro and this may be important at all stages of 

wound healing (Asai et al., 2016). The role of platelets in wound healing may play a 

critical role in the context of trauma which leads to a reduction in platelet count as 

described above. 
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1.9 Aims of the thesis  

Platelet activation is associated with many aspects of trauma and inflammation, from 

initial damage and associated bleeding and the resulting release of Alarmins and 

platelet-activating mediators, to platelet activation occurring post injury during a 

recovery phase and development of secondary complications. Furthermore, platelets 

also play a role in the maintenance of vascular integrity that may also be important in 

the wound healing process. While, many of these roles have been described, we still 

have a rudimentary understanding of the role of platelets in trauma and other 

inflammatory conditions, and also in wound repair, as well as the underlying 

mechanisms of platelet activation and interactions with other cells in these processes.  

In this thesis, the overall aim is to further our understanding of the regulation and role of 

platelets in trauma and in inflammation and to identify a soluble marker of platelet 

activation that correlates with disease progression.  The specific aims are:  

1) To investigate the effect and underlying mechanisms of DAMPs and nuclear-

related Alarmins on platelet function and activation in vitro and in vivo. 

2) To investigate whether the product of the proteolytic cleaving of GPVI in the 

plasma, known as soluble GPVI, as a marker of platelet activation and disease 

pathogenesis in trauma and other inflammatory disorders. 

3) To study the functional consequence of upregulation of podoplanin on 

inflammatory macrophages and to measure the levels of podoplanin and in 

trauma and in inflammatory diseases. 

4) To investigate the role of GPVI and CLEC-2 on platelets and podoplanin on 

wound repair. 
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CHAPTER 2 

MATERIALS AND METHODS 
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2.1. Materials  

2.1.1. Antibodies and reagents  

Details of the agonists, antagonists and inhibitors and cytokines used in the course of 

this thesis ae listed in Tables 2.1, 2.2 and 2.3, respectively. Table 2.4 lists the antibodies 

used. If unstated, materials used were from Sigma (Poole, UK).  

Table 2.1 Agonists 

Reagents used  Source  

Advanced Glycation End Product (AGE)-

BSA 

Biovision (San Franciso, USA) 

Calf thymus histones (CTH) Worthington Biochemical Corporation 

(Reading, UK) 

Collagen (Kollagen Reagens HORM 

suspension) 

Takeda (Linz, Austria)  

Collagen related peptide (CRP) Dr R.W. Farndale (Cambridge University, UK) 

Glycoaldehyde-AGE-BSA Cell Biolabs, INC (San Diego, USA) 

Oxidised Low Density Lipoprotein 

(OxLDL) 

Source Bioscience LifeSciences (Nottingham, 

UK) 

PAR-1 Peptide (SFLLRN) AltaBioscience (Birmingham UK) 

PAR-4 Peptide (AYPGKF) AltaBioscience (Birmingham UK) 

Rhodocytin Dr. J.A. Eble (University of Münster 

 

Table 2.2 Antagonists and inhibitors 

Reagents used  Use Source  

DAPT γ-secretase inhibitor Sigma (Poole, UK) 

Dasatinib Src and Bcr/Abl 

inhibitor 

LC Laboratories (Woburn, MA). 
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GI254023 ADAM10 inhibitor Sigma (Poole, UK) 

GM6001 Broad MMP inhibitor Calbiochem (San Diego, USA) 

Hirudin Thrombin inhibitor Sigma (Poole, UK) 

Prostacyclin (PGI2) Platelet inhibitor Cayman Chemicals (Cambridge, 

UK) 

PRT060318 Syk inhibitor Portola Pharmaceuticals Inc (San 

Francisco, CA). 

 

Table 2.3. Recombinant Cytokines (human) 

Reagents used  Use Concentration  Source  

GM-CSF Pro-inflammatory  50 ng/ml PeproTech (New Jersey, 

USA) M-CSF Anti-inflammatory 100 ng/ml 

 

Table 2.4. Antibodies  

Antibody  Host 

species  

Use* Source  

PRIMARY     

204-11 Fab (GPVI dimer 

monoclonal antibody)  

Mouse  FC: 1/20  

25 µg/ml 

Dr S. Jung (Cambridge, UK) 

β-Tubulin (human) Mouse  WB: 1/2000  Sigma (Poole, UK) 

CLEC-2 (human) Goat IP: 2 µg/ml R+D Systems (Abingdon, 

UK) 

CLEC-2 (human) AYP1   Mouse  IP: 2 µg/ml Dr A. Pollitt (Reading, UK) 

CD62-P (P-selectin: 

human) 

Mouse FC: 1/100 BD Biosciences (Oxford, 

UK) 

CD45- APC (human) Mouse  FC: 1/100 Beckman Coulter 

(California, USA) 

CD38- FITC Mouse  FC: 1/100 EBioscience (Hatfield, UK) 
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CD66b-PerCP Mouse  FC: 1/100 EBioscience (Hatfield, UK) 

CD41-PE Mouse  FC: 1/100 EBioscience (Hatfield, UK) 

GPVI (human) polyclonal 

Ab -  

Rabbit ELISA: 1 μg/ml Dr E. Gardiner (Canberra, 

Australia) 

1A12 (human: GPVI 

monoclonal Ab) 

Mouse  ELISA: 1 μg/ml Dr E. Gardiner (Canberra, 

Australia 

PLCγ2 sc-407 Rabbit IP: 1/500 

WB: 1/1000 

Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Phosphotyrosine (4G10)  

 

Mouse  WB: 1/1000 Millipore (Bucks, UK) 

Podoplanin NZ-1.3 

(human) – PE and 

Unconjugated  

Rat  FC: 1/100 

ELISA: 1& 5 

µg/ml 

WB: 5 µg/ml 

EBioscience (Hatfield, UK) 

IgG2a κ Isotype control) – 

PE and Unconjugated 

Rat FC: 1/100 

ELISA: 1& 5 

µg/ml 

WB: 5 µg/ml 

EBioscience (Hatfield, UK) 

Podoplanin 18H5 Mouse  FC: 1/100 

ELISA: 1& 5 

µg/ml 

WB: 5 µg/ml 

Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Novus Biologicals 

(Colorado, USA) 

Podoplanin/gp36 

(ab109059) 

Rabbit FC: 1/400 

 

Abcam (Cambridge, UK) 

Podoplanin 8.1.1 - mouse Syrian 

hamster 

IH: 1/500 M.Goodall (Birmingham, 

UK) 

Podoplanin (mouse – 

monoclonal) 

Syrian 

hamster 

IH: 1/500 EBioscience (Hatfield, UK) 

Rabbit IgG – polyclonal - 

isotype control 

 FC: 1/400 Abcam (Cambridge, UK) 

Syk Rabbit IP: 1/500 Dr M.G. Tomlinson 
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 (Birmingham, UK) 

Syk-sc1077 Rabbit  WB: 1/200 Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Syk-sc-573 Rabbit IP: 1/500 Santa Cruz Biotechnology 

(Heidelberg, Germany) 

SECONDARY    

Hamster IgG HRP 

conjugated - sc-2905 

Goat IHC: 1/500 Santa Cruz Biotechnology 

(Heidelberg, Germany) 

Mouse IgG, F(ab')2 

Fragment Specific -AF647 

Goat  FC: 75 µg/ml Stratech Scientific Ltd 

(Newmarket, UK) 

Mouse IgG HRP conjugate  

 

Sheep WB:1/1000 Amersham Bioscience 

(Bucks, UK) 

Mouse IgG HRP conjugate Rabbit ELISA: 2.6 μg/ml Dako (Denmark) 

Rabbit IgG HRP conjugate  

 

Donkey  WB:  1/10000 Amersham Bioscience 

(Bucks, UK) 

Rat IgG HRP conjugate  

 

Goat ELISA: 2.6 µg/ml  

WB:  1/10000 

Dako (Denmark) 

 

*IP:  Immunoprecipitation, WB:  Western Blot, FC:  Flow cytometry, ELISA: Enzyme-

linked immunosorbent assay, AF: Alexa Fluor®, IHC: Immunohistochemistry 

2.1.2. Constructs and plasmids  

The following constructs and plasmids were used for CLEC-2 and GPVI transfections 

into cells for NFAT-luciferase assays as previously described (Tomlinson et al., 2007). 

Human CLEC-2 sub-cloned into pEF6 vector with a C-terminal Myc tag, human GPVI 

in pcDNA3 with a C-terminal Myc tag and human FcRγ (untagged) in pEF6 were made 

in the lab (Fuller et al., 2007, Berlanga et al., 2007). The nuclear factor of activated T-

cells (NFAT)-luciferase reporter containing three copies of the distal NFAT site from 
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the IL-2 promoter as described in (Shapiro et al., 1997) was donated from Prof A. Weiss 

(UCSF School of Medicine, USA).   

 

2.1.3. Recombinant proteins  

Recombinant human GPVI was obtained from Dr Andrew Herr (Cincinnati Children's 

Hospital Medical Center, USA). The dimeric form of GPVI was fused with human Fc 

immunoglobulin (GPVI-Fc2), as described (Miura et al., 2002). 

Recombinant human Pdpn (rPdpn) was obtained with a non-cleavable C-terminal His-

tag from M. Hoellerer (Oxford, UK).   

 

2.1.4. Transgenic mice  

All animal experimentation was performed in accordance to licenses PPL30/2721, PPL 

70/8359 and PPL 70/8286. Gp6
-/-

 mice and Clec1b
fl/fl;PF4-Cre 

used in Chapter 3 have been 

previously been described (Kato et al., 2003, Finney et al., 2012). GPVI and CLEC-2 

double deficient mice (Gp6
-/-

;Clec1b
fl/fl;PF4-Cre

) were produced by crossbreeding the two 

strained. Clec1b
fl/fl

 or C57BI/6 were used as wild type (WT) controls. For wound 

healing studies in chapter 5, Gp6
-/-,

 Clec1b
fl/fl;PF4-Cre 

, Gp6
-/-

;Clec1b
fl/fl;PF4-Cre 

, 

Pdpn
fl/fl

VAV-1
-Cre 

were used and compared to C57BI/6, WT1F- ER
T2Cre-  

and ROSA
-EYFP

, 

as WT controls.  

 

2.2. Blood Collection  

2.2.1. Human blood collection 

Healthy control (HC) donors: Ethical approval for blood donation from healthy 

volunteers was granted by Birmingham University Internal Ethical Review (ERN_11-
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0175). Venous blood was collected from consenting, healthy drug free volunteers. 

Blood was drawn in to sodium citrate (4% citrate 1:9 ratio) or in 3.2% trisodium citrate 

BD vacutainers (Becton Dickinson, Oxford, UK) depending on corresponding patient 

group tested. For some experiments blood was drawn into EDTA, Hirudin or Lithium 

Heparin BD Vacutainers or S-Monovettte hirudin vacutainers (SARSTEDT, Germany). 

On occasions blood was drawn into hirudin (50 µg/ml, REVASC) or sodium heparin 

(10 U/ml, Heparin (mucous) injection BP).  

Rheumatoid arthritis (RA) patients:  Blood was collected into 3.2% trisodium citrate BD 

vacutainers (Becton Dickinson, Oxford, UK), obtained from patients with rheumatoid 

arthritis under informed consent approved by the local ethics committee (071Q270612) 

(Gitz et al., 2014). All patients with rheumatoid arthritis satisfied the 1987 American 

College of Rheumatology criteria for rheumatoid arthritis and clinical details are stated 

in Gitz et al. (2014) and Arnett FC (1988)(Arnett et al., 1988, Gitz et al., 2014). 

Inflammatory Bowel Disease (IBD) patients: Blood was collected into 3.2% trisodium 

citrate BD Vacutainers from 42 patients with inactive or active Crohn’s disease and/or 

ulcerative colitis. IBD disease activity state was based on specialist diagnosis, 

determined by clinical records, endoscopy results and C-reactive protein levels. Clinical 

parameters and full blood counts were collected from routine hospital measurements 

and with the Sysmex XN-1000-Hematology Analyzer (Sysmex UK, Milton Keynes, 

UK). 

Thermal injury patients: Patients with thermal injury were admitted to the Queen 

Elizabeth Hospital Birmingham Burns Centre and recruited to the Scientific 

Investigation of the Biological Pathways Following Thermal Injury Study (SIFTI - 

REC:12/EM/0432). For patient recruitment details and parameters see Table 4.2 and 
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(Hampson et al., 2016). Blood samples were collected into 3.2% trisodium citrate BD 

Vacutainers at intervals following injury (day 1 [< 24 h post-injury], day 3 [+/- 1 day], 

day 7 [+/- 1 day], day 14 [+/- 3 days], day 21 [+/- 3 days], day 28 [+/- 3 days], month 2 

[+/- 3 days], month 3 [+/- 7 days], month 6 [+/- 7 days] and month 12 [+/- 7 days]. 

Patients were categorised into septic or non-septic groups based on fulfilling at least 

three American Burn Association sepsis criteria (Greenhalgh et al., 2007) with a 

positive culture or response to antibiotics as stated in Hampson et al. (2016). Platelet 

counts were initially measured using the Beckman Coulter UniCel DxH 800 Cellular 

Analysis System followed by the Sysmex XN-1000-Hematology Analyzer (introduced 

mid-way through the study). Both analyzers measured platelet impedance.  

Sepsis patients: Blood was collected into 3.2% trisodium citrate or Lithium Heparin BD 

Vacutainers from patients from the intensive care unit (ITU) and respiratory wards at 

the Queen Elizabeth Hospital Birmingham. Samples were donated by Dr D. Thickett 

(University of Birmingham, UK) under the ethics of different septic studies including 

BALTI (β-Agonist Lung Injury Trial: see (Perkins et al., 2006)) and SNOOPI 

(Simvastatin to modify neutrophil function in older patients with septic pneumonia: see 

(Greenwood et al., 2014)). 62 septic patients with different sepsis forms, including 

severe sepsis, patients with acute respiratory syndrome (ARDS) and 22 aged matched 

HCs were obtained. 

 

2.2.2. Mouse blood collection  

For basal blood counts, samples were taken from the tail vein 100 μl EDTA (20 mM). 

Platelet counts were measured by the ABX Pentra60 haematology counter (HORIBA 

Scientific, UK). For platelet studies, blood was obtained by terminal cardiac puncture. 
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Blood was taken from the vena cava of CO2-asphyxiated mice anaesthetised with 

isoflurane and collected into 1:9 (v:v) acid citrate dextrose (ACD – 120 mM sodium 

citrate, 110 mM glucose, 80 mM citric acid), 4% citrate (1 in 9)  in Modified Tyrode’s 

buffer (134 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM 

HEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 5 mM glucose, and 1 mM 

MgCl2; pH 7.3) or where stated, hirudin (50 µg/ml). 200 µl of Modified Tyrode’s buffer 

was added to samples post collection before further processing.  

 

2.3. Human Platelet preparation  

2.3.1. Platelet Rich Plasma  

Anti-coagulated blood was centrifuged for 20 min at 200 g at room temperature (RT) 

using a Sanyo Harrier 18/80 centrifuge. Blood was separated and the top layer of 

platelet-rich-plasma (PRP) was extracted, avoiding the buffy coat layer.  Platelet-Poor-

Plasma (PPP) was obtained following a 10 min centrifugation spin of remaining blood 

at 1000 g to use as a blank for light transmission aggregometry (LTA). Collected 

platelet concentrations were determined by the Coulter Zcs counter (Beckman Coulter 

Ltd, High Wycombe, UK). 

 

2.3.2. Washed platelet preparation   

Washed platelets were prepared by adding 10% acid citrate dextrose (ACD) to citrated 

blood before centrifugation at 200 g for 20 min. The top layer of PRP was removed, 

avoiding the buffy coat layer. Prostacyclin (PGI2; 1 µg/ml) was added to PRP before 

centrifugation at 1000 g for 10 min. The supernatant was discarded and the platelet 

pellet was resuspended in Modified Tyrode’s buffer (with 5 mM glucose, and 1 mM 
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MgCl2; pH 7.3). The pellet was then washed in Modified Tyrode’s buffer containing 

ACD and PGI2 (1 µg/ml) and again centrifuged at 1000 g for 10 min. The washed 

platelets were then resuspended to the required platelet concentration; 2x10
7
/ml for flow 

cytometry and platelet spreading, 2x10
8
- 5x10

8
 platelets/ml for aggregation and 5x10

8
- 

1x10
9 

platelet/ml for lysate preparation (unless otherwise stated).  Washed platelets 

were rested for 30 min before experiments. 

 

2.3.3. Plasma preparation  

Platelet-free-plasma was obtained from anti-coagulated blood of patients and HCs after 

two centrifugation steps. For the thermal injury patients, blood was centrifuged at 2000 

g for 20 min. The supernatant isolated was centrifuged again at 13 000 g for 20 min 

(Hampson et al. 2016). For all other patient cohorts and HCs, blood was centrifuged 

twice at 2500 g for 15 min at RT with no brake. The supernatant from the first 

centrifugation step was isolated and placed into a new tube before the second 

centrifugation step. Supernatants were used for experiments or frozen in aliquots for 

storage at -80
o
C. Plasma from septic patients and HC cohort were obtained after 

centrifugation at 560 g for 10 min at RT. To compare the different centrifugation 

protocols, HC plasma was also obtained in this manner.  

 

2.3.4. Microvesicle preparation  

Microvesicles were isolated from double centrifuged plasma (double spun plasma) after 

whole blood (taken in either citrate or EDTA) was centrifuged twice at 2500 g for 15 

min at RT (no brake). Supernatants from the first centrifugation were extracted into a 

new tube before the second centrifugation step. 
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2.4. Cell isolation from blood  

2.4.1. Peripheral blood mononuclear cells (PBMC) isolation  

Isolation of PBMCs and other blood cells were performed in a laminar flow hood under 

sterile conditions and cells were incubated in Sanyo MCO-17AIC CO2 incubators. 

Citrated blood was centrifuged at 200 g for 20 min to deplete platelets. The remaining 

blood was diluted 1/5 in complete media (RPMI; Gibco life technologies, supplemented 

with 10% foetal bovine serum (FBS; 100 U/mL penicillin, 100 μg/mL streptomycin and 

2 mM L-glutamine) and placed on a ficoll-paque PLUS (GE Healthcare, Bucks, UK) 

gradient and centrifuged for 400 g for 30 min RT. The top plasma layer was removed to 

access the PBMC ring. PBMCs were extracted and washed twice in complete RPMI by 

centrifugation for 10 min at 300 g. RPMI was removed to leave cell pellet. Cells were 

resuspended in 1 ml of complete RPMI, counted and diluted to required concentrations.  

 

2.4.2. Monocyte isolation and monocyte-derived macrophage differentiation 

Where stated, isolated PBMCs were cultured in flasks or in 6-well plates for 1-3 h. 

Monocytes readily adhere to surfaces and remained on the surface once media was 

removed. Ice cold PBS was added to detach non-adherent monocytes. Cells were 

collected, washed in PBS for 5 min at 300 g and resuspended in media before counting 

and diluting to required concentrations. Where stated, monocytes were isolated by 

negative selection to avoid activation with the PAN monocyte isolation kit and 

separation columns (MACS miltenyi biotec, Woking, UK) following manufacturer’s 

instructions. Monocytes contained in the blocking buffer (BSA 1% in PBS) used for 

isolation, were collected into 10% FBS, washed and counted. Cells were diluted in 

complete media to the required concentrations. CD14/CD38 staining of cells was 
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measured by flow cytometry using the BD Accuri C6 flow cytometer (BD Biosciences, 

Oxford, UK) to confirm monocyte isolation.  

THP-1 cells (a human monocytic leukaemia cell line; (Auwerx, 1991)) were also used. 

THP-1 cells were cultured in complete RPMI, supplemented with 50 µM 2-

mercaptoethanol. 

Monocyte derived macrophage differentiation: isolated monocytes were treated with 

GM-CSF (50 ng/ml) or M-CSF (100 ng/ml) for 5/6 days for differentiation to M1 and 

M2 cells before LPS (100ng/ml) stimulation for 16 h for macrophage differentiation. 

CD68 staining confirmed the percentage of macrophage differentiation.  

 

2.5. Mouse platelet preparation  

2.5.1. Platelet-rich-plasma (PRP) 

Anti-coagulated blood was centrifuged at 2000 rpm for 5 min in a microcentrifuge 

(ThermoScientific, Paisley, UK). PRP with the top third of erythrocytes were extracted 

before centrifugation at 200 g for 6 min (Sanyo Harrier) and PRP retained. To increase 

platelet yield, 200 µl of Modified Tyrode’s buffer was added to the remaining sample, 

mixed and centrifuged at 200 g for 6 min and top layer extracted again. Samples were 

before pooled and platelet counts measured using the Coulter Zcs counter (Beckman 

Coulter Ltd, High Wycombe, UK). 

 

2.5.2. Washed platelet preparation   

Modified Tyrode’s buffer was added to PRP to give a total volume of 1 ml.  PGI2 (1 

µg/ml) was added to the sample before centrifugation at 1000 g for 6 min. The 

supernatant was removed, and the platelet pellet was resuspended with Modified 
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Tyrode’s buffer. Platelets were counted, resuspended in Modified Tyrode’s buffer to 

required concentration and rested for 30 min before experimentation.   

 

2.6. Platelet function testing  

2.6.1. Light transmission aggregometry (LTA)  

Platelet aggregation and granule secretion was monitored using a Lumi-Dual channel 

aggregometer (Chrono-log Model 460VS; Chronolog, Labmedics, Manchester, UK).  

Aggregometer tubes (with stirrer bars) containing PRP or washed platelets were pre-

warmed at 37
o
C for 2 min, and stirred at 1200 rpm for 1 min before agonist stimulation. 

Where stated, CaCl2 (1 mM) or inhibitors were added at least 5 min before stimulation. 

For AGE experiments, PRP was incubated with AGE-BSA 30 min before LTA was 

performed. Modified Tyrode’s buffer or PPP were used as blanks to measure platelet 

optical density against. Aggregation traces were usually recorded for 5 min.  For 

measuring dense granule secretion, Chronolume, a luciferin/luciferase reagent, 

(Chronolog, Manchester, UK) was added during sample warming. ATP secreted in 

response to agonist stimulation catalyesd the luciferase reaction.  An ATP standard (1.6 

nmol) was added at the end of each aggregation, to allow ATP secretion to be 

calculated. 

 

2.6.2. Lysate preparation.   

Washed platelets were prepared to the required concentrations. Where stated, integrilin 

(9 µM; an αIIbβ3 inhibitor), apyrase (2 U/ml) and indomethacin (10 µM) were added 

before stimulation. Stimulations were performed in aggregometer tubes as described 

above. After agonist stimulation, 2X ice cold lysis buffer containing protease inhibitors 
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(300 mM NaCl, 20 mM Tris, 2 mM EGTA, 2 mM EDTA, and 2% IGEPAL CA-630 

[NP-40 equivalent], pH 7.4, plus 2 mM Na3VO4, 100 μg/mL AEBSF (4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride), 5 μg/mL leupeptin, 5 μg/mL aprotinin, and 0.5 

μg/mL pepstatin) was added for 30 s to terminate reactions. Lysates were placed on ice 

or stored at -20
o
C for Western blotting or immunoprecipitations. Whole cell lysates 

(WCLs) were prepared by adding equal volume of lysate to 2X Laemmli sample buffer 

(20% glycerol, 10% β-mercaptoethanol, 4% SDS, 50 mM Tris, trace of Brilliant Blue).  

 

2.6.3. GPVI shedding experiments  

400 µl of washed platelets were pre-incubated with CaCl2 (1 mM) for 5 min in 

aggregometer tubes. Where stated, inhibitors (GI254023 2 µM, GM6001 10 µg/ml, 

DAPT 10 µM, PRT060318 10 µM or dasatinib 10 µM) were added. Tubes were 

warmed at 37
o
C for 1 min before addition of integrilin (9 µM). Platelet suspensions 

were stirred at 1200 rpm for 1 min before agonist addition. Aggregation traces were 

monitored for 5 min and samples left to stir for 1 h. For fibrin treatment conditions, 

fibrinogen (100 µg/ml) was added prior to the pre-incubation step. After 3 min of 

fibrinogen treatment, thrombin (1 U/ml) was added and aggregation recorded for a 

further 5-8 min. To produce monomeric fibrin, GPRP (10 mM) was added with the 

fibrinogen, before thrombin stimulation. After 1 h under stirring conditions, 400 µl of 

2X ice cold lysis buffer containing protease inhibitors was added for 30 s. Lysates were 

extracted and placed in tubes on ice or stored in the freezer (-20
o
C).  
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2.6.4. Immunoprecipitations (IPs).  

Lysates were pre-cleared by adding 10 µl of Protein A Sepharose (PAS) or Protein G 

Sepharose (PGS) beads (Pierce, Rockfield, IL) and placed on a rotator at 4
o
C for 30 

min. Samples were centrifuged at 8600 g for 15 min in a microcentrifuge at 4
 o

C 

(Eppendorf 5477 centrifuge, Germany). Supernatants were transferred to tubes 

containing primary antibodies against the proteins of interest and PAS or PGS beads 

and left to incubate for 1 h or overnight at 4
o
C depending on antibody used. Samples 

were centrifuged at 8600 g for 1 min at 4
 o

C. The supernatant was aspirated and 

discarded before the pellet was washed three times with 1X lysis buffer. Samples were 

centrifuged once more at 8600 g for 1 min at 4
 o

C. Supernatant was extracted for future 

IP preparations or eluted in 2X Laemmli sample buffer for Western blotting.  

 

2.6.5. Platelet spreading 

Coverslips (13 mm) were coated with 200 μl of agonists (CTH (10-50 μg/ml), HMGB-1 

(10-50 μg/ml), OxLDL (10-50 μg/ml), Collagen (10 μg/ml) or PBS-BSA as a control) 

overnight at 4
o
C. Protein coated coverslips were washed 3 times with PBS and blocked 

with heat inactivated BSA (5 mg/ml) blocking buffer for 1h at room temperature. After 

blocking, coverslips were washed with PBS before addition of 200 μl washed platelets 

(2x10
7
/ml).  Where stated platelets were pre-incubated with inhibitors such as dasatinib 

(10 µM), PRT (10 µM) or PP2 (10 µM). Platelets were allowed to spread for 45 min at 

37
o
C. Non-adherent platelets were removed by gently washing coverslips with Modified 

Tyrode’s buffer before extraction. 300 μl of formalin was then added to each well for 10 

min at RT. PBS washes were performed before mounting onto glass slides with 

Hydromount (National Diagnostics, Atlanta, USA). Platelets were imaged using a 
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differential interference contrast (DIC) microscope (Zeiss Axiovert 200, 63x oil 

immersion). Adherent platelets were counted and platelet surface area was measured 

using Image J software (NIH, Bethesda, USA). At least 7 fields of view were taken per 

condition.   

 

2.6.6. Monolayer phosphorylation samples  

Plates (10 cm diameter) were coated with agonists overnight at 4
o
C, washed and 

blocked with heat-inactivated BSA (5%) blocking buffer. Washed platelets (5x10
8
/ml) 

were pre-treated with apyrase (2 U) and indomethacin (10 μM) before being added to 

immobilised protein-coated plates for 45 min at 37
o
C.  Non-adherent platelets (basal 

samples) were removed and lysed in ice cold 2X lysis buffer. Adherent cells were lysed 

for 15 min on ice with 1X lysis buffer (1 ml). Protein concentration of the lysates was 

measured to adjust for equal protein levels for Western blotting. 

 

2.6.7. SDS-PAGE and Western blotting 

WCLs and IPs containing sample buffer were heated to 100
o
C for 5 min, and 

centrifuged at 8600 g for 5 min, before being run on either; pre-cast sodium dodecyl 

sulphate polyacrylamide gels (4-12%), NuPage gel (Novex, Life Technologies) or a 4-

12% gradient BOLT gel (Invitrogen, UK). Pre-stained molecular weight markers (Bio-

Rad, Hemel Hempstead, UK) were run alongside samples to determine molecular 

weights of proteins of interest. Samples were separated by SDS-polyacrylamide gel 

electrophoresis and transferred onto a polyvinylidene difluoride (PVDF) membrane. 

Membranes were blocked in 3% BSA in TBS-T (Tris-buffered saline (200 mM Tris, 

1.37 M NaCl; pH 7.6) with 0.2% Tween20 and 0.1% w/v sodium azide) for 1 h at RT or 
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overnight at 4
o
C depending on antibody used. Membranes were then incubating with 

primary antibody diluted in 3% BSA-TBS-T (primary antibody concentration dependent 

on experiment) for 1 h at RT or overnight at 4
o
C. Membranes were washed 4 times for 

10 min in TBS-T incubation with HRP-conjugated secondary antibody (GE Healthcare, 

UK) in TBS-T for 1 h at RT. Enhanced chemiluminescence reagent (ThermoScientific 

Paisley, UK) was added to the blots before imaging on autoradiographic film or imaged 

with the Licor Odyssey-FC imager (Chemiluminescence channel; Cambridge, UK) for 

band quantitation.  

 

In experiments where membranes required reprobing, membranes were incubated with 

stripping buffer (TBST-T containing 2% SDS) containing 1% β-mercaptoethanol for 20 

min at 80˚C. The stripping buffer was removed and stripping buffer without β-

mercaptoethanol was added for a further 20 min at 80˚C.  After 4 washes of 10 min in 

TBS-T, membranes were processed again for Western blotting.  Li-cor Image Studio 

software was used for protein band quantitation. A blank area of the membrane was 

defined as background and densitometry measurements were made after the area was 

placed over the bands. The imaging software subtracted the background from the signal 

to give integrated intensity of each measured band. 

 

2.6.8. NFAT luciferase reporter assays.  

Jurkat T-cells were grown in complete RPMI media. 2×10
7
cells were transfected in 0.4 

ml of either 1% serum or serum-free RPMI by electroporation using a GenePulser II 

(Bio-Rad).  GenePulserII was set at 350 V and 500 μF for DT40 cells and 250 V and 

950 μF for Jurkat cells.  DT40 cells were transfected with 15 μg of the NFAT-luciferase 
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reporter and 2 μg of both human GPVI and human FcRγ-chain. Where described 10 μg 

of human CLEC-2 was added (constructs detailed above). For Jurkat cell transfection, 

cells were transfected with 3.75 μg of the NFAT-luciferase reporter, 0.5 μg each of 

human GPVI and human FcRγ-chain and where stated 2.5 μg of human CLEC-2. 

Complete RPMI media was added to the transfect cells and cells were incubated at 37
o
C 

overnight. After 20 h, cells were counted and diluted to 2×10
6
cells/ml in complete 

RPMI media or serum-and antibiotic-free media as stated. Agonist were added to wells 

of a 96 well plate at 2X required concentration in a 50 µl volume. Phorbol 12-myristate-

13-acetate (PMA: 50 ng/ml) and ionomycin (1 µM) were used as positive controls. 50 

µl of cells were added to the agonist well. RPMI was used for basal samples. Cells were 

incubated with agonists for 6 h at 37
o
C, before luciferase assays were performed in 

triplicate.  Luciferin (1 mM) in ddH20 was add to wells and used also to prime the 

luminometer. 11 µl of luciferase harvest buffer (1M KPO4, 12.5% Triton X-100 and 1 M 

dithiothreitol (DTT)) was added to each well and plate was left to incubate for 5 min at 

RT. 90 µl of luciferase assay buffer (1 M KPO4, 1 M MgCl2, 0.1 M ATP and ddH20) 

was transferred to an opaque 96-well plate before measurements with the microplate 

luminometer (Berthold Technologies, Wildbad, Germany). The instrument was primed 

with luciferin (1 mM) followed by sequential injection into the wells (50 µl, counting 

time 10 s per well). Measured luminescence was averaged across triplicates and 

normalised relative to basal. 

 

2.7. Animal Experimentation and In vivo models  

Collagen and histone infusion work performed in collaboration with  

2.7.1. Collagen infusion thrombosis model  
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WT and GP6
-/- 

mice were injected into the tail veins with collagen (25 μg) and 

adrenaline (1 μg) to induce thrombocytopenia as described (Abrams et al., 2013). 

Decrease in platelet count was calculated by comparing the platelet count from a basal 

sample, collected from a tail bleed taken before injection and the platelet count taken by 

a terminal cardiac puncture taken 3 min after agonist injection.  

 

2.7.2. Histone infusion thrombosis model  

A histone infusion in vivo model was used to assess whether histones activate platelets 

through GPVI by injecting CTH (2.5-75 mg/kg) into tail veins of WT and Gp6
 -/- 

mice. 

A basal platelet count (tail vein bleed) was measured before CTH infusion and 3 min 

post CTH injection (terminal cardiac puncture). The drop in platelet count from the 

basal level indicated the level of platelet aggregation through histone-induced 

thrombocytopenia. Where stated, hirudin (10 mg/kg) was injected by intraperitoneal 

injection 5 min before CTH injection (25 mg/kg).  

 

2.7.3. Wound punch biopsies  

 helped with anaesthesia monitoring during surgery, restraining of 

mice for wound healing measurements and with staining of collected wounds.  

Punch biopsies were taken from GP6
-/-

, Pdpn
fl/fl 

Vav-1-Cre, Clec1b
fl/fl

 PF4-Cre mice and 

WT mice. Mice were given buprenorphine 30 min before surgery. Mice were 

anaesthetised using isoflurane and area undergoing biopsy was shaved before a small (4 

mm) full-thickness punch biopsy was taken from the flank skin under sterile surgical 

conditions. Analgesia was given daily for two days post biopsy. Wound diameters were 

imaged and measured daily for 10 days to establish the rate of wound closure. Mice 
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were culled by Schedule-1 methods to collect skin biopsies for Hematoxylin and 

Eosin (H&E) staining to define structure (section 2.7.4) and collect blood for platelet 

count measurements (see section 2.2.2).  

 

2.7.4. Immunohistochemistry  

Paraffin embedding and sectioning  

Skin wound biopsies collected were washed in PBS three times before being fixed in 

4% paraformaldehyde (PFA) overnight. Samples were then dehydrated in increasing 

concentrations of ethanol (ETOH), 70% ETOH or 1 h, 2 x 95% ETOH for 30 min and 2 

x 100% ETOH for 30 min, followed by Histoclear (National diagnostics, Hessle, UK) 

for 2 h. Samples were embedded in paraffin at 58
o
C for 2 h.  Paraffin embedded 

samples were oriented, mounted into blocks and stored at RT.  Tissue sections of 4-8 

µm thickness were collected onto polylysine adhesion slides (ThermoScientific Paisley, 

UK) for staining.   

Staining  

For H&E staining, paraffin was removed by dehydrating in Histoclear twice for 5 min 

and 3 min, followed by rehydration in concentrations of ETOH; 100% ETOH for 3 min, 

90% ETOH for 1 min, 75% ETOH for 1 min, 55% ETOH for 1 min, 30% ETOH for 1 

min. Samples were placed in H20 for 3-5 min.  Slides were stained for 2 min in Harris’ 

Haematoxylin and washed three times with tap water before being dipped twice in 0.3% 

acid alcohol. Slides were rinsed in tap water, added briefly to Scott’s tap water and then 

dipped 10 times in Eosin. Slides were rinsed further in water and dehydrated once more 

in 70% ETOH>90% ETOH >100% ETOH for 3 min each step. Slides were then placed 

in Xylene substrate overnight. The following day slides were mounted onto coverslips 



62 
 

using Hydromount (National Diagnostics, Hessle, UK) mounting media. Slides were 

imaged and analysed using the Zeiss Axio Scan.Z1 microscope.  

 

For antibody staining, after rehydration, sections were boiled in citric acid buffer (pH 

6.0) for 15 min. Sections were cooled to RT and washed in PBS-T (0.1% Tween20). 

Endogenous peroxidase was blocked with 3% H2O2 for 10 min, followed by blocking 

with 5% goat serum plus 1% BSA-PBS-T for 1 hour at RT. Sections were then 

incubated with the primary antibody (anti-podoplanin monoclonal antibody 1/500 in 3% 

BSA-PBS-T) overnight at 4°C. Slides were then washed in PBS-T before incubation 

with the secondary antibody (goat anti-hamster IgG HRP-conjugated 0.8 µg/ml) in 

PBS-T for 1 h at RT. After further washes in PBS-T, ImmPACT DAB
® 

peroxidase 

substrate (SK-4105, Vectorlab) was added for 2.5 min. Tissue sections were counter 

stained for haematoxylin, dehydrated, mounted and analysed as above. 

 

2.8. Flow cytometry 

2.8.1. Microvesicle experiments  

Podoplanin expression on microvesicles: 30 µl of double spun plasma (section 2.3.4) 

from patients and HCs were incubated in the dark at RT for 20 min with 20 µl of 

antibody mix of rat anti-human podoplanin–PE antibody (1/100) or the IgG2a κ control 

(1/100) and the anti- CD45- APC antibody (1/200). After incubation the sample was 

further diluted in Tyrode’s buffer + 0.2% formaldehyde before analysis by flow 

cytometry (BD Accuri). 

 

 



63 
 

2.8.2. GPVI dimerisation studies  

Washed platelets (5x10
7
 cells/ml) were stimulated with agonists at concentrations used 

for platelet aggregation. 10 μl of stimulated platelets were incubated for 10 min with 10 

μl of the 204-11 primary antibody (F.C. 25 µg/ml), that detects GPVI dimers, followed 

by incubation with the secondary antibody conjugated to AF-647 (F.C. 75 µg/ml), for 

10 min. GPVI dimers on the platelet surface were measured by flow cytometry (BD 

Accuri) before and after stimulation. Resting controls containing both antibodies, no 

primary antibody and only were also analysed. 

 

2.9. ELISAs 

2.9.1. Soluble GPVI (sGPVI) ELISA  

sGPVI levels in patient plasma and HCs were measured using a recognised sGPVI 

sandwich ELISA (Al-Tamimi et al., 2009). Nunc MaxiSorp® micro-titer 96 well plates 

(ThermoScientific, Paisley, UK) were coated overnight at 4
o
C with a rabbit polyclonal 

anti-human GPVI antibody (1 μg/ml) that recognises the N-terminal extracellular 

portion of cleaved GPVI. Plates were washed 6 times in 0.2% v/v Tween20 in PBS 

before blocking in BSA (1%) in PBS for 1 h. After 6 washes in PBS-T, test samples or 

sGPVI standards generated by the serial dilution of GPVI ectodomain (prepared from 

N-ethylmaleimide [NEM]-treated platelet-rich plasma) into GPVI-depleted plasma (5% 

in PBS) were added to the plate and left to incubate for 1 h at RT. After 6 further PBS-T 

washes, samples were incubated with a mouse anti-human GPVI monoclonal antibody 

(IA12: 1 μg/ml) for 1 h. Samples were washed 6 times in PBS-T before incubation with 

a polyclonal rabbit anti-mouse immunoglobulins/HRP antibody (DAKO, Denmark; 2.6 

μg/ml) for 1 h at RT. Plates were washed 6 times in PBS-T before. 100 μl of 
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SuperSignal ELISA Pico chemiluminescent substrate (Pierce, Rockford, IL, USA), was 

added for 1 min before detection of the chemiluminescence signal using the Wallac-

Victor3 luminescence plate reader (PerkinElmer, Massachusetts, USA) for 10s/well. 

sGPVI concentrations for the patient samples were extrapolated from the standard curve 

generated. 

 

2.9.2. GPVI binding to immobilised agonists 

Binding of GPVI to immobilised agonists including fibrin/fibrinogen was measured 

using an adapted version of a sGPVI ELISA (section 2.9.1). Wells of Nunc MaxiSorp® 

micro-titer plates were coated with agonists overnight at 4
o
C. Wells were washed six 

times with 100 μl of 0.2% v/v Tween20 in PBS before being blocked with 1% (w/v) 

BSA for 1 h at RT. After 6 washes in TBS-T, the GPVI ectodomain (again prepared 

from NEM treated plasma) was added to the wells and incubated for 1 h at RT. A 

standard curve was generated by a series dilution of GPVI ectodomain added into GPVI 

depleted plasma (5%) as in section 2.9.1. Primary and secondary antibody incubation 

steps and washes were performed as stated in section 2.9.1. Levels of GPVI bound were 

extrapolated from the standard curve generated. 

 

2.9.3. Podoplanin (Pdpn) ELISAs  

Sandwich ELISA: A Pdpn sandwich ELISA was developed to measure human 

recombinant podoplanin (rPdpn) and plasma Pdpn in septic patients and HCs. Nunc 

MaxiSorp® micro-titer 96 well plates (Thermo Scientific, Paisley, UK) were coated 

overnight at 4
o
C with mouse anti-human Pdpn antibody (18H5: 0.5 µg/ml) that 

recognises the PLAG1/2 domain in the Pdpn extracellular tail. Plates were washed 6 
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times in 0.2% v/v Tween20 in PBS before blocking in BSA (1%) PBS for 1 h at RT. 

After 6 washes in PBS-T, a serial dilution of human rPdpn (0.3 µg/ml to 10 µg/ml) in 

ddH20 was added to the plate and left to incubate at RT for 1 h. Samples were washed 6 

times in PBS-T washes before incubation of a rat anti-human Pdpn antibody (NZ-1.3: 1 

μg/ml) for 1 h at RT. Six more PBS-T washes occurred before incubation with a 

polyclonal goat anti-rat HRP antibody (DAKO, Denmark; 2.6 μg/ml) for 1 h at RT. 

Plates were washed 6 times in PBS-T before incubation in SuperSignal ELISA PICO 

chemiluminescence substrate added for bound antibody detection. Chemiluminescence 

signal (wavelength 425nm) was detected by the Wallac-Victor3 luminescence plate 

reader (PerkinElmer, Waltham, MA). Pdpn standard curve was generated using 

GraphPad Prism software (version 5).  

Competitive ELISA:  Nunc MaxiSorp® micro-titer 96 well plates (Thermo Scientific, 

Paisley, UK) were coated for 1 h at RT with human rPdpn (3 µg/ml). Plates were 

washed 6 times in PBS-T before blocking for 1 h in BSA-PBS (1%). Samples were 

washed again 6 times in PBS-T. Human rPdpn at various concentrations (0.3 µg/ml – 10 

µg/ml) and rat anti-human Pdpn antibody (NZ-1.3: 1 μg/ml) were added to separate 

tubes for 1 h incubation. Samples from this tube were transferred to the ELISA plate 

coated in human rPdpn (3 µg/ml) and left to incubate for 1 h at RT. Wash steps, 

incubation step with the polyclonal goat anti-rat HRP antibody (DAKO, Denmark; 2.6 

μg/ml) and chemiluminescence signal detection was performed as with the sandwich 

Pdpn ELISA above. Pdpn standard curve was also generated using GraphPad Prism 

software (version 5). 
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Commercial ELISA – A commercial Pdpn ELISA (Biomatik, Ontario, Canada) was 

used to detect rPdpn and Pdpn in plasma samples from septic patients and HCs, 

following manufacturer’s instructions. A standard curve was generated using the 

manufacture’s reagents. A series dilution of recombinant Pdpn was added to the plate to 

compare standard curves. Three HC plasma samples and four septic patient samples 

were tested for detection of plasma podoplanin.  

 

2.10. Podoplanin (Pdpn) upregulation  

2.10.1. Podoplanin upregulation after LPS stimulation  

Whole blood (in 4% citrate) was stimulated by adding LPS 0111 (0.1, 1 µg/ml) in the 

presence of GPRP (10 µM) and integrilin (9 µM). Blood was diluted 1/5 in RPMI and 

left on a shaker at 37
o
C for 4 h and 24 h. Unstimulated blood was used for 

compensation at corresponding time points. 100 µl of blood from each time point was 

incubated with antibody mix of CD45-APC or CD14-APC and CD41-FITC and Pdpn-

PE or isotype or CD41-PE for 20 min at RT. RBCs were then lysed and samples fixed 

using the BD Cytofix kit (BD biosciences, Oxford, UK). Pdpn upregulation and 

neutrophil/monocyte platelet complexes were measured by flow cytometry. 

 

2.10.2. Podoplanin upregulation on stimulated cells.  

PBMCs: PBMCs isolated (in section 2.4.1) were on a 6-well plate at 1x10
6
/ml and 

treated with staurosporine (1 µM) and cycloheximide (25 µg/ml) or LPS 0111 (100 

ng/ml) for 16 h. Untreated cells were used as controls. Cells were blocked using 10% 

FBS-TBS buffer, washed and stained for CD38, Pdpn (Anti-Pdpn NZ-1.3 Antibody) 

and Annexin V (BD Biosciences; Oxford, UK) in 1% FBS-TBS buffer + CaCl2 (1 mM) 
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for 20 min, before washing again in 1% FBS-TBS + CaCl2 (1 mM) buffer. Pdpn 

upregulation was measured on Annexin V+ cells (activated/ dying cells) and Annexin 

V- cells.  

  

Monocytes:  Isolated monocytes isolated (see section 2.4.2) were incubated on 6-well 

plates at 1x10
6
/ml. THP-1 were also used for stimulations. Monocytes were treated with 

staurosporine (1 µM) and cycloheximide (25 µg/ml) or LPS (0111: 100 ng/ml) for 16 h. 

Untreated cells were used as controls. Cells were washed, blocked and stained for 

CD14, Pdpn (Anti-Pdpn NZ1.3 Antibody) and Annexin V as above.  Pdpn upregulation 

was compared on Annexin V+ and Annexin V- cells.  

 

Macrophages: Monocyte-derived macrophages were differentiated from GM-CSF (50 

ng/ml) and M-CSF (100 ng/ml) treated monocytes (see section 2.4.2) and were then 

treated with staurosporine (1 µM) and cycloheximide (25 µg/ml) or LPS 0111 (100 

ng/ml) for 16 h.  Cells were washed, blocked and stained for CD68, Pdpn (Anti-Pdpn 

NZ1.3 Antibody) and Annexin V. Pdpn upregulation was compared on Annexin V+ and 

Annexin V- cells.  

 

2.10.3. Platelet activation by cells with upregulated podoplanin  

Isolated human monocytes were differentiated into macrophages using GM-CSF and 

M-CSF and stimulated with LPS (100 ng/ml) for 16 h. Macrophages (0.3 million 

cells/ml) were incubated with platelets (2x10
7
/ml) from the same donor in the presence 

of integrilin (9 µM) and stirred at 1200 rpm for 10 min at 37
o
C. PGI2 (10 µg/ml) and 

FBS (10%) was added to prevent further interactions for 10 min before antibody 
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staining for 20 min. Cells were fixed in PFA (4%) and platelet activation was 

determined by flow cytometry. A P-selectin antibody (CD62P) was added used to 

determine if adhered platelets were activated. Stimulated washed platelets (2x10
7
/ml) 

were stained for CD41 and P-selectin as positive controls.  NZ-1.3 anti-Pdpn Ab 

(unconjugated; 10 µg/ml) was added to washed platelets and macrophages before 

stirring to block Pdpn and determine if platelet/macrophage interactions mediated 

platelet activation.  

 

2.10.4. Trypsin cleavage of 293T cells  

Human 293T cells (embryonic kidney cells) were grown in complete RPMI. When 

confluent cells were isolated from flasks and centrifuged at 300 g for 5 min and 

resuspended in RMPI to required concentrations. Trypsin (10%) was added to the cells 

for 15 min and 30 min and 1 h. Cells were centrifuged at 300 g for 5 min. Supernatant 

was removed and cell pellet resuspended in 1 ml of 10% FBS in TBS (FBS-TBS). 100 

µl of supernatant was extracted for staining, whilst the rest was centrifuged at 2500 g 

for 15 min. Resuspended cells and supernatants were stained with Pdpn antibodies (NZ-

1.3 and 18H5) and isotype controls for 20 min in 1% FBS-TBS buffer. Cells were 

washed and podoplanin expression measured by flow cytometry.  

 

2.11. Statistical analysis  

2.11.1. General statistical analysis  

Results are shown as mean ± SD, unless stated otherwise. D’Agostino-Pearson 

normality tests were performed to determine normality. Student’s T-tests were 

performed when there were two groups and data showed normal distribution. Mann-
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Whitney tests were performed when the data was not normally distributed. One-way 

ANOVA with a Bonferroni post-test or Kruskal-Wallis tests with Dunn’s post tests 

were performed when there were more than two groups for comparisons when the data 

was shown to be normally distributed or not normally distributed respectively. 

Statistical tests were performed using GraphPad Prism (version 5) software.  

 

2.11.2. Logistic regression and longitudinal analyses of sGPVI in thermal injury 

patients  

Analysis performed by Jonathan Bishop as part of the SIFTI study.  

Categorical variables were compared using a Chi-squared test. Logistic regression 

analyses examined the relationships between sGPVI at pre-specified sample days (e.g. 

day 7) and sepsis presence. Discriminatory power was assessed through the area under 

the receiver operator characteristic curve (AUROC). Longitudinal analyses were 

performed using linear mixed-effects models.  Sample day was included as a restricted 

cubic spline to allow for a flexible non-linear relationship between time and response 

variable. Analysis was performed using SPSS (IBM) and R version 3.0.1 (http://www.r-

project.org) statistical software packages alongside Ime4, effects, rms and pROC 

packages. 
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CHAPTER 3 

 

ALARMIN-MEDIATED PLATELET 

ACTIVATION 
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3.1 Introduction  

A major new focus of trauma research, alongside preventing extensive blood loss, is 

targeting a wide range of secondary complications that can occur post injury due to the 

complexity of different traumas, including amplified inflammation resulting in multiple 

organ failure (MOF). Alarmins is a term given to endogenous danger associated 

molecular pattern molecules (DAMPs) released from damaged cells (Harris and Raucci, 

2006). Binding of Alarmins to corresponding Alarmin receptors on the surface of 

immune cells induces intracellular signalling pathways mediating a pro-inflammatory 

response (Manson et al., 2012). Several of the described Alarmin receptors are located 

on the platelet surface, providing a potential avenue for Alarmin-mediated platelet 

activation and further cytokine release (Clark et al., 2007, Zhang et al., 2010, Zhu et al., 

2012).  

 

The ‘danger theory’ behind the action of DAMPS was first described by Mazinger 

(1994). This was the theory that DAMPs are the host version of Pathogen Associated 

Molecular Pattern molecules (PAMPs), with PAMPs being microbial derived molecules 

which bind to pattern recognition receptors (PPRs), which include a number of toll-like 

receptors (TLRs) (Matzinger, 1994). PAMPs bind to PPRs, leading to activation of 

signalling mechanisms, antigen presentation or production of pro-inflammatory 

cytokine production (Kono and Rock, 2008, Manson et al., 2012). DAMPs are thought 

to work through a similar mechanism, which when released after damage will signal 

through PPRs and TLRs after binding, mediating a pro-inflammatory response resulting 

in increased cytokine production (Manson et al., 2012, Kono and Rock, 2008). In 

unchallenged conditions, DAMPs will remain hidden in the cell and not released. Figure 
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3.1 shows a schematic of the control of DAMPs. If the cell is programmed to die, the 

living cell will undergo apoptosis in a controlled manner, where the DAMPs will 

remain hidden as the cell is phagocytosed and removed, meaning that no inflammatory 

response will occur. When the cell undergoes severe damage, as observed with trauma, 

cells will become necrotic, releasing their contents and DAMPs. These DAMPs are then 

able to circulate and find their corresponding DAMP receptors eliciting the pro-

inflammatory response, with increased production of cytokines, such as IL-1 (Srikrishna 

and Freeze, 2009, Chan et al., 2012).  Cytokine levels remain elevated for several days 

after injury and can lead to development of systemic inflammatory response syndrome 

(SIRS) and increased MOF incidence and higher mortality rates  (Jastrow et al., 2009, 

Hranjec et al., 2010).  

3.1.1 Trauma Alarmins  

Alarmins is the term give for DAMPs released in response to trauma. There are a wide 

range of Alarmins released from multiple cell types which have various effects leading 

to a pro-inflammatory phenotype. Table 3.1. lists a number of the most extensively 

studied Alarmins which are elevated after trauma, with the predominate group being 

nuclear-related Alarmins. These are nuclear material/proteins released after damage to 

the nucleus and include DNA, high-mobility-group-box-1 protein (HMGB-1) and 

histones.  

 

HMGB-1 interacts with other nuclear proteins to regulate DNA organisation along with 

helping to support gene transcription.  HMGB-1 levels have been measured in patients 

with sepsis and other inflammatory conditions (Klune et al., 2008) and can be elevated 

30 fold after trauma (Park et al., 2004). HMGB-1 has been proposed to signal through  
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Figure 3.1 - Schematic of the control of DAMP release in controlled and 

inflammatory settings (based on (Kono and Rock, 2008)). In healthy cells DAMPs are 

kept inside the cell or located in the nucleus. With normal controlled cell death, cells 

undergo apoptosis, where the DAMPs remain hidden, as cells are phagocytosed by 

immune cells and DAMPs are never released. Under inflammatory challenge or 

damage, cells undergo necrosis, releasing DAMPS. These exposed DAMPs are then 

able to bind to innate immune cells and induce a pro-inflammatory response, increasing 

pro-inflammatory cytokine production. 
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TLRs and Receptor for Advanced Glycation Endproducts (RAGE) to activate immune 

cells. HMGB-1 has been implicated in promoting neutrophil extracellular trap (NET) 

formation through interactions with TLR4 (Tadie et al., 2013). HMGB-1 has been 

described to have several inflammatory roles, including promoting pro-inflammatory 

cell recruitment to damaged areas through forming a complex with CXCL12 (Schiraldi 

et al., 2012).  The role of HMGB-1 in platelet activation has yet to be established.  

 

DNA is another nuclear-related Alarmin which can be measured in the plasma of 

patients. Cell-free DNA, is DNA released from cells and is a marker of disease severity 

and a strong predictive marker for sepsis in patients with thermal injury (Margraf et al., 

2008, Hampson et al., 2016). DNA released from neutrophils in the form of NETs has 

been extensively studied. NETs are made up of extracellular DNA, serine proteases and 

anti-microbial molecules, involved in trapping and elimination of bacteria (Clark et al., 

2007). Long extracellular extrusions of NETs have been show to provide surfaces for 

platelets to adhere and undergo activation (Fuchs et al., 2010).  

 

Mitochondrial DNA (mtDNA), is DNA released from mitochondria after damage. 

MtDNA can also be measured in the plasma of trauma patients, remaining elevated for 

24 hours (Zhang et al., 2010). MtDNA been shown to increase endothelial permeability 

during systemic inflammation (Sun et al., 2013) and is associated with acute lung injury 

and neutrophil activation (Hauser et al., 2010). MtDNA has been shown to bind to 

TLR9 and may potentially bind other pathogen recognition receptors, as mtDNA 

contains similar unmethylated CpG DNA repeats to those seen in the bacterial genome, 
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resulting from endosymbiosis, which suggests mtDNA can signal in a similar fashion to 

bacterial DNA (Fang et al., 2016, Zhang et al., 2010). 

 

Histones are a major component of NETs and another type of nuclear-related Alarmins. 

Histones are highly positively charged with important roles in DNA organisation and 

chromatin formation. Histones have multiple effects on different cell types and can 

mediate cytokine activation and thrombin generation (Semeraro et al., 2011). Histones 

are also elevated in the circulation in response to lung injury and trauma (Abrams et al., 

2013). Circulating histones can be cytotoxic to endothelial cells, causing substantial cell 

damage. Histones are proposed to activate platelets through TLR4 interaction (Fuchs et 

al., 2011b, Semeraro et al., 2011). However, the charge of histones could disrupt 

membranes allowing potential binding to other receptors. Several studies have shown 

that therapeutics prevent histones induced thrombocytopenia and increase survival after 

histone treatment, ranging from heparin treatment to active protein C (APC) (Fuchs et 

al., 2011b, Xu et al., 2009). Therefore, mechanisms of histone-induced platelet 

activation are yet to be fully established. 

3.1.2 DAMPs implicated in inflammation 

Oxidised low density lipoprotein (OxLDL) is a lipid-based DAMP, associated with 

hyperlipidaemia and has been shown to accumulate in atherosclerotic lesions (Matsuura 

et al., 2008). OxLDL is formed after lipid peroxidation of lipids and apolipoprotein B 

(apoB) components (Stewart et al., 2005). OxLDL has been shown to bind to the 

scavenger receptor CD36, which is abundantly expressed on platelet surfaces, with a 

copy number of 20, 000 per platelet (Saboor et al., 2013). OxLDL therefore has the 

potential to bind to platelets and affect platelet function. Advanced Glycation End 
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Products (AGE) are another type of DAMPs which have been implication in conditions 

such as diabetes and atherosclerosis (Goldin et al., 2006). AGE are glycated proteins 

that have undergone further protein modifications. Studies have shown AGE can elicit a 

prothrombotic phenotype by enhancing platelet reactivity through CD36 signalling. 

3.1.3 Alarmin receptors 

A number of Alarmin receptors identified on other cell types have been described 

(Figure 3.2). Some of these Alarmins shown such as TLRs are located on the platelet 

surface, therefore giving a potential mechanism for platelets to contribute to the pro-

inflammatory response.  

3.1.3.1 Toll-like receptors (TLRs) 

TLRs are recognised Alarmin receptors on a range of immune cells.  Signalling results 

in a pro-inflammatory response. TLRs are a family of receptors involved in host defence 

against pathogens, which recognise PAMPs and DAMPs, activating the immune 

response (Cognasse et al., 2005). Eleven TLRs have been characterised with functional 

roles, with TLR2, TLR4 and TLR9 having been described on the platelet surface 

(Cognasse et al., 2005). TLR signalling involves the NF-kB/TRIF/Myd88 signalling 

cascades (Garraud and Cognasse, 2010). TLR2 and TLR4 have been shown to have 

roles in recognition of bacterial-derived molecules. Platelet TLR4 is also associated 

with platelet-neutrophil interactions and implicated in NET formation (Clark et al., 

2007). TLR9 recognises bacteria DNA and MtDNA. TLR9 recognises MtDNA as it 

contains bacterial-derived CpG DNA repeats, which entered the mitochondrial genome 

after the endosymbiosis event (Zhang et al., 2010) .  
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3.1.3.2 Scavenger receptors  

RAGE is a 35kDa scavenger receptor, expressed at low levels in normal tissue, but is 

upregulated at inflammatory sites (Chavakis et al., 2004). RAGE has been shown to 

interact with ligands such as AGE to contribute to persistent NF-κB activation, which 

may result in hyperglycaemia (Bierhaus et al., 2001). RAGE has also been described as 

a receptor for HMGB-1 in different inflammatory settings and cancer (Sims et al., 

2010).   

 

CD36, also referred to as (GPIIIb) is a class B scavenger receptor.  It is described as the 

major receptor implicated in OxLDL signalling, facilitating microparticle binding 

(Ghosh et al., 2008) and long-chain fatty acid transport (Su and Abumrad, 2009). CD36 

has been implicated in atherosclerosis, hyperlipidaemia, and insulin insensitivity in 

diabetes mellitus   (Podrez et al., 2007). CD36 has also been implicated in sterile 

inflammation, due to increased CD36-TLR4-TLR6 heterodimer complex assembly 

being observed (Stewart et al., 2010). The CD36 signalling mechanism has yet to be 

fully established.   
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Table 3.1. A range of Alarmins implicated with trauma – based on Alarmins 

reviewed in Manson et al. (2012). List of Alarmins, source they are released from after 

damage, proposed receptor to induce and elevated levels in response to trauma. HC = 

healthy controls.  

 

 

 

 

 

 

Alarmin Source 

Propose

d 

Recepto

r 

Raised levels in 

trauma  

Fold 

increase 

compared 

to HCs 

References 

ATP Mitochondria P2X7 - - 
(Schneider et al., 

2006) 

DNA Nucleus - 

181 000 

kilogenome-

equivalents/l 

(Median) 

57-fold 

increase 

 

(Lo, 2000) 

HMGB-1 Nucleus 

TLR2/ 

TLR4 

/RAGE 

 526 ng/ml   

(Median) 

30-fold 

increase 

(Bianchi and 

Manfredi, 2007) 

(Park et al., 2004) 

(Cohen et al., 2010) 

(Peltz et al., 2009) 

Histones Nucleus - 
10 – 230 μg/ml 

 

200-fold 

increase 

 

(Abrams et al., 2013) 

(Xu et al., 2009) 

DNA Nucleus - 

181 000 

kilogenome-

equivalents/l 

(Median) 

57-fold 

increase 

 

(Lo, 2000) 

MtDNA Mitochondria TLR9 
2.7 ± 0.94 µg/ml 

(Median) 

1000-fold 

increase 
(Zhang et al., 2010) 

Nucleoso

mes 
Nucleus - 

53 units/ml 

(Median) 

 

- 
(Zeerleder et al., 

2003) 

sRAGE Extracellular - 
1500 pg/ml 

(Median) 
- (Cohen et al., 2010) 

Uric acid Cytoplasm 

TLR2, 

TLR4, 

CD14, 

- - 
(Rock et al., 2005) 

(Shi et al., 2006) 
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Figure 3.2. Alarmins and their corresponding receptors (Based on (Manson et al., 

2012)). Trauma Alarmins released after damage bind to the corresponding Alarmin 

receptors on innate immune cells and potentially platelets (red), leading to intracellular 

signalling pathways and the production of inflammatory cytokines, resulting in the pro-

inflammatory response. FPR: Formyl peptide receptor, HMGB: High-mobility-group 

box-protein-1, TLR: Toll-like receptor, MtDNA: Mitochondrial DNA, RAGE: Receptor 

for Advanced Glycation Endproducts, HSPR: Heat-shock protein receptor, P2RX7: 

Purinergic receptor 
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Alarmins released in response to cell damage have the potential to affect platelet 

function. TLR, RAGE and CD36 are potential Alarmin receptors proposed to be 

involved in platelet activation as well as enhancing the inflammatory response (Stewart 

et al., 2010, Fuchs et al., 2011b, Clark et al., 2007). The signalling mechanisms of these 

receptors after Alarmin activation are inconclusive, with multiple receptors being 

suggested to have an involvement. The potential of these receptors to also be involved 

clustering of other receptors, including ITAM receptors, leading to platelet activation 

has not been fully explored. The main aim of this chapter is to firstly determine which 

Alarmins induce platelet activation and which ones do not. Different categories of 

Alarmins, including nuclear-related Alarmins, lipid-based DAMPs and other DAMPs 

such as AGE will all be tested. The Alarmins which mediate platelet activation will then 

be studied further to uncover the mechanism behind the Alarmin response in vitro and 

in vivo.  

  

Routine platelet function assays, such as flow cytometry and light transmission 

aggregometry (LTA), will be performed to test Alarmin effects on platelet function, and 

determine if they activate, inhibit or modulate platelet function. The ability of the 

Alarmins to affect platelet activation when they are immobilised on a surface will also 

be studied.  The signalling mechanisms behind the Alarmin response on platelets will be 

assessed both when the Alarmin is in suspension and immobilised on a surface, using 

western blotting for analysis of key signalling proteins. Inhibitors and platelets deficient 

in certain receptors will be used to determine mechanism behind Alarmin mediated 

responses.  The Alarmins which have the greatest effect on platelet function will be 

further analysed in vivo using infusion models to determine if the Alarmins mediate 
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platelet activation in vivo. Various inhibitors will be tested to see if activation can be 

prevented, in the hope of finding potential therapeutic targets.  
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3.2 Results  

3.2.1 AGE does not induce platelet activation or increase response to ADP  

AGE are formed after modifications of proteins produced from reactions between 

sugars and the amino groups (Hogan et al., 1992). AGE has been implicated as a 

mediator of inflammation in diabetes and atherosclerosis (Giacco and Brownlee, 2010, 

Ono et al., 1998). Previous studies have also suggested that AGE can amplify the 

response of platelets to other agonists, such as ADP, both in mice and humans (Zhu et 

al., 2012). AGE has been described to signal through the scavenger receptors RAGE 

and recently through CD36. Both are potential Alarmin receptors located on platelet 

surfaces; therefore, AGE is a potential Alarmin candidate inducing pro-inflammatory 

response through platelets. The effect of AGE on platelet function was examined by 

light transmission aggregometry (LTA). Stimulation of platelet-rich-plasma (PRP) with 

AGE complexed with bovine serum albumin (BSA, a carrier protein for AGE; 300 

μg/ml) alone did not induce platelet aggregation, giving similar results to a PBS control. 

To determine if AGE-BSA could enhance platelet aggregation to other agonists, PRP 

was pre-treated with AGE-BSA (300 µg/ml) for 30 min before ADP (1, 3 and 10 µM) 

stimulation. AGE-BSA pre-treatment did not enhance the response of platelets to ADP 

at any of the classical ADP concentrations usually used to induce platelet aggregation 

(Figure 3.3A).  A wide range of AGE-BSA concentrations were also tested, from 10 

μg/ml to 300 μg/ml, however there was no enhancement of ADP induced platelet 

aggregation (results not shown), which is contradictory to results previously shown 

(Zhu et al., 2012).  
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Figure 3.3 - No significant increase in ADP induced aggregation with AGE-BSA 

pre-treated human and mice platelets. A) Human platelet-rich-plasma (PRP) was pre-

treated with AGE-BSA (300 µg/ml: Biovision (BV)) or BSA control (300 µg/ml) for 30 

min before stimulation with ADP (vehicle) at different concentrations (1, 3 and 10 µM). 

Percentage aggregation measured by light transmission aggregometry (LTA). N=3 (per 

condition), mean ±SEM shown. Two-way ANOVA performed with Bonferroni post-

test. No significance shown. B) Human PRP pre-treated with AGE-BSA (60 µg/ml) 

from Biovision (BV) and Cell Biolabs (CB) or BSA (60 µg/ml) for 30 min before 

stimulation of ADP (3 µM). (i) Representative trace of 3 separate experiments. (ii) 
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Average aggregation response for each condition from 3 separate experiments, mean 

±SEM shown. One-way ANOVA performed with Bonferroni post-test; no significance 

shown C) Mouse PRP pre-treated with AGE-BSA (75 µg/ml) from BV and CB or BSA 

(75 µg/ml) for 30 min before stimulation of ADP (3 µM). (i) Representative trace of 3 

separate experiments. (ii) Maximum aggregation response per condition from 3 

experiments, mean ±SEM shown. One-way ANOVA performed with Bonferroni post-

test; no significance shown.    
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To investigate whether this was due to the source of the AGE, two different commercial 

sources of AGE-BSA (Biovision and Cellbiolabs) were compared at similar 

concentrations used in the Zhu et al. (2012) study. However, neither source of AGE-

BSA had an effect on platelet aggregation on its own or in response to ADP. 

Specifically, neither preparations of AGE-BSA at intermediate concentrations altered 

the time course or magnitude of response to intermediate concentrations of ADP (3 µM) 

in human PRP (Figure 3.3B; n=3).  Similar findings were observed with AGE-BSA 

treated mouse PRP of mice, with no substantial enhancement of ADP-medicated 

aggregation (Figure 3.3C).  
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3.2.2 Oxidised Low Density Lipoprotein (OxLDL) induces minor aggregation of 

washed platelets  

Platelets were stimulated with the lipid-based DAMP, OxLDL to determine effects on 

platelet aggregation. There was minor increase in platelet aggregation in response to 

OxLDL in washed platelets (compared to a PBS vehicle), which varied between donors 

and was all or nothing response (rather than dose-dependent). A wide range of OxLDL 

concentrations were initially tested based on established concentrations in the literature 

and previous work performed in our laboratory. The OxLDL concentration of 10 µg/ml 

gave the greatest response of 16.1 ± 14.7% aggregation (mean ±SD, n=4; Figure 

3.4Ai&ii).  There was no increase in aggregation response above the PBS vehicle 

control, with all concentrations of OxLDL tested (Figure 3.4Aiii). The degree of 

aggregation induced by OxLDL in washed platelets was substantially less than collagen 

(10 µg/ml), which caused 74.0 ± 13.8% aggregation (Figure 3.2Aii) A small shape 

change was induced in response to OxLDL. OxLDL has been shown to signal through a 

Src and Syk dependent pathway downstream of CD36 (Wraith et al., 2013). I used 

inhibitors of Src and Syk tyrosines to investigate the involvement of GPVI and other 

ITAM receptors in the OxLDL response. There was no significant reduction in the 

platelet response to OxLDL (10 µg/ml) observed in the presence of Src inhibitors, 

dasatinib (10 µM) and PP2 (10 µM) or with the Syk inhibitor PRT060318 (10 µM), 

when used at concentrations well characterised in our laboratory and in the literature, 

compared to PBS and DMSO vehicle controls, whereas all inhibitors at substantially 

reduced the collagen response (***p<0.005, n=4; Figure 3.4B), suggesting no major 

involvement of Src and Syk in the shape change and OxLDL aggregation response.  
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Interestingly, when the OxLDL-mediated tyrosine phosphorylation was examined 

through western blotting of whole cell lysates, it was observed that OxLDL induced a 

similar phosphorylation pattern to collagen-stimulated platelets (Figure 3.4C). The level 

of increase in whole cell phosphorylation over basal and phosphorylation of specific 

bands were both similar. There was reduced phosphorylation of signalling proteins 

mediated by OxLDL stimulated platelets in the presence of the Src and Syk inhibitors, 

which again was similar to the response to collagen in the presence of inhibitors (Figure 

3.4Ci). Immunoprecipitates for the key signalling proteins Syk, FcRγ-chain and PLCγ2 

were performed and showed increased phosphorylation above basal conditions, with 

Syk and PLCγ2 Figure 3.4Cii). There was however a reduced response compared to 

GPVI ligands, collagen and CRP, but similar levels observed with the CLEC-2 ligand, 

rhodocytin (Figure 3.4Cii).  Increases in phosphorylation of the FcRγ-chain were not 

observed with OxLDL and rhodocytin stimulation (Figure 3.4Cii). There was also no 

phosphorylation of CLEC-2 seen after OxLDL stimulation (Figure 3.4Ciii), showing 

there is no involvement of CLEC-2 in the OxLDL response. Overall this suggests there 

is a Src and Syk dependent signalling mechanisms alternative to GPVI and CLEC-2 

behind the OxLDL response. 
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Figure 3.4 - OxLDL induces weak aggregation response in human washed 

platelets. A(i) Dose response curve after stimulation of human washed platelets 

(2x10
8
/ml) with different concentrations of OxLDL (Source Biosciences; 1-50 µg/ml). 

Representative of trace of 4 experiments. A(ii) Mean aggregation ±SEM; n=4. One-way 

ANOVA with Bonferroni’s post-hoc test performed to compare OxLDL concentrations 

with the collagen (10 µg/ml) control, ***p<0.005. A(iii) Dose response curve after 

stimulation of PRP with different concentrations of OxLDL (1-50 µg/ml). Mean 

aggregation shown as ±SEM; n=3. One-way ANOVA with Bonferroni’s post-hoc test 

performed to compare OxLDL concentrations with the collagen (10 µg/ml) control, 

***p<0.005. B) Washed platelets pre-incubated with dasatinib (10 µM), PRT (10 µM) 

and PP2 (10 µM) 1 min before OxLDL (10 µg/ml) or collagen (10 µg/ml) stimulation. 

Mean aggregation shown ±SEM; n=4. Unpaired T-test performed to compare 
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aggregation responses in the presence of inhibitors., ***p<0.005. C(i) Phosphorylation 

response to different concentrations of OxLDL (10, 30 and 50 µg/ml) and the OxLDL 

(10 µg/ml) response in the presence of inhibitors (dasatinib (10 µM), PRT (10 µM) and 

PP2 (10 µM) compared to collagen (10 µg/ml) controls after Western blotting with the 

monoclonal 4G10 antibody. C(ii) Syk and PLCγ2 were immunoprecipitated (IP) after 

washed platelets were stimulated with collagen (10 µg/ml), rhodocytin (300 nM), CRP 

(10 µg/ml) and OxLDL (10 µg/ml).  IPs samples were Western blotted for 

phosphotyrosine. Proteins were re-probed using corresponding antibodies (anti-Syk-

sc1077 and anti-PLCγ2 – sc407) for determining loading control. Image representative 

of 4 experiments. C(iii) CLEC-2 IP after washed platelets (1x10
9
/ml) were stimulated 

with rhodocytin (300 nM) and OxLDL (10 µg/ml).  IPs samples were Western blotted 

for phosphotyrosine. Proteins were re-probed with anti-CLEC-2 antibody to 

determining loading control. Image representative of 2 experiments. 
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3.2.3 Mitochondrial DNA (mtDNA) does not induce platelet activation 

Nuclear-related Alarmins were also assessed to determine their effects on platelet 

function. To test mtDNA effects on platelet function, mtDNA was isolated from 

PBMCs of a healthy control (HC) and used to stimulate washed platelets in suspension 

at concentrations previously shown to affect other cells. MtDNA did not induce 

significant platelet aggregation above the PBS vehicle control at any of the MtDNA 

concentrations tested (12-60 µg/ml; Figure 3.5A), which were based on concentrations 

used in other studies and high levels observed in trauma patients (Zhang et al., 2010). 

MtDNA did not have an effect on modulating responses to other agonists, including 

ADP and collagen (results not shown). Due to the lack of effect with isolated mtDNA 

and the difficulties in the isolation process only giving a small yield of mtDNA for 

testing, other nuclear-related Alarmins were then tested.  

 

3.2.4 High-Mobility-Group-Box-1 (HMGB-1) does not affect platelet aggregation 

in suspension  

HMBG-1 is another nuclear-related Alarmin shown as a pro-inflammatory mediator 

(Hauser et al., 2010). HMGB-1 was used to stimulate washed platelets in suspension at 

concentrations shown to have effects in other cell types (Schiraldi et al., 2012, Tadie et 

al., 2013). HMGB-1 did not induce significant platelet aggregation at any of the 

concentrations used, based on concentrations shown to have effects on other cell types 

in other peer studies (Figure 3.5B). There was no visible shape change after stimulation 

nor was there a dose-dependent response (Figure 3.5Bii), HMGB-1 had no effect on 

modulating platelet responses to other agonists as no synergy or increased levels of 

aggregation were seen in response to collagen with pre-treatment of washed platelets  
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Figure 3.5 - MtDNA and HMGB-1 have no effect on platelet aggregation in human 

washed platelets.  A) Human washed platelets (2x10
8
/ml) were stimulated with isolated 

mtDNA. A(i) Dose response curve after stimulation with different mtDNA 

concentrations (12, 24 and 60 µg/ml). A(ii) Maximum aggregation in response to 

mtDNA compared to collagen (10 µg/ml) control. N=1. B) Human washed platelets 

(2x10
8
/ml) were stimulated with HMGB-1 (1, 10, 30 and 50 µg/ml). B(i) Dose response 

cure of platelets stimulated with HMGB-1. Representative trace of 6 experiments. B(ii) 

Mean aggregation induced by HMGB-1. Mean ±SEM showed. One-way ANOVA 
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performed with Bonferroni post-hoc test to compare HMGB-1 responses with collagen 

(10 µg/ml) control (n=6); ***p<0.005. C(i) Human washed platelets (2x10
8
/ml) were 

treated with HMGB-1 (10 µg/ml) before addition with collagen (1 -10 µg/ml). 

Aggregation of synergy shown as mean ±SEM; n=4. C(ii) Human PRP was treated with 

HMGB-1 (10 µg/ml) for 1 before collagen (1 -10 µg/ml) stimulation. Aggregation of 

synergy shown as mean ±SEM; n=3. 
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and PRP with HMGB-1 (Figure3.5Ci&ii). HMGB-1 therefore does not affect platelet 

aggregation. 

 

3.2.5 Calf thymus histones (CTH) induces platelet aggregation in washed platelets 

and PRP 

CTH experiments were in collaboration with two undergraduate students – Najiat 

Sarker and Paul Carter, who performed some experiments as stated in the Figures. 

Some experimental data for this section has been published (Alshehri et al., 2015b).  

Histones are another extensively studied nuclear-related Alarmin released after 

nucleosome breakdown following damage (Abrams et al., 2013). Calf thymus histones 

(CTH) are a commercial source of histones, containing a heterogeneous mixture of 

histone fractions, including the most active ones in effecting other cells, H3 and H4 

(Fuchs et al., 2011b). Histones have close sequence homology between species, 

therefore CTH was used as an agonist for stimulation of washed platelets and PRP. 

CTH induced a dose-dependent response causing shape change and full platelet 

aggregation after stimulation of human washed platelets and PRP (Figure 3.6A&B 

respectively). The dose response curve of CTH stimulation of washed platelets is 

approximately 10 times lower than in PRP, suggesting plasma protein binding to 

histones may reduce bioavailability to platelets in PRP. CTH aggregation in washed 

platelets is integrin αIIbβ3-dependent as aggregation is blocked in the presence of the 

αIIbβ3 inhibitor, integrilin (eptifibatide 9 μM; Figure 3.6Cii), at a concentration well 

recognised in our laboratory to block aggregation to other agonists, although secretion is 

still retained (Figure3.6Cii) The CTH dose response curve for aggregation and secretion 

are PRP sigmoidal (Figure 3.6Bii&iii). 
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Figure 3.6 - Calf thymus histones (CTH) induce platelet aggregation in washed 

platelets and PRP. A) Human washed platelets (2x10
8
/ml) were stimulated with CTH. 

A(i) Dose response curve after stimulation with different CTH concentrations (5, 24 and 

60 µg/ml). A(ii) Aggregation in response to increasing concentrations of CTH shown as 

mean ±SEM. B) CTH does response in human PRP. B(i) Representative CTH dose 

response of 4 experiments. B(ii) Aggregation response to CTH in PRP. Mean ±SEM 

shown, n=4. B(iii) ATP secretion in response to CTH stimulation of human PRP at 

different concentrations, mean ± SEM shown (secretion result of project student Najiat 

Sarker). C) CTH (2 mg/ml) stimulation of human PRP pre-incubated with integrilin (9 

µM). C(i) Representative aggregation trace of 3 separate experiments. C(ii) ATP 

secretion in response to CTH (2 mg/ml) in the presence of integrilin (9 µM). C(iii) 
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Aggregation response of CTH stimulation with and without integrilin (9 µM). Results 

are shown as mean ± SEM; n=3, ***p<0.005 (Integrilin results of project student Paul 

Carter).  
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3.2.6 CTH induced platelet activation is Src and Syk dependent  

Histone induced aggregation was blocked by inhibitors of Src and Syk tyrosine kinases. 

Washed platelets were pre-treated with dasatinib (10 µM) and PRT060318 (10 µM) for 

5 min before CTH stimulation. Both dasatinib and PRT060318 significantly inhibited  

histone-mediated aggregation (Figure3.7A). CTH stimulated strong phosphorylation in 

mouse washed platelets above the unstimulated basal levels (Figure 3.7B).  PLCγ2 and 

Syk were among the predominant phosphorylated proteins, with phosphorylation of 

FcRγ-chain also observed (Figure 3.7Bi&ii). The increase in tyrosine phosphorylation 

was similarly observed in human washed platelets (Figure 3.7Biii).  In the presence of 

dasatinib, phosphorylation of all these signalling proteins was blocked. In the presence 

of PRT060318, only PLCγ2 phosphorylation was completely blocked, with reduced 

phosphorylation of Syk being observed, consistent with Syk and FcRγ-chain 

phosphorylation lying downstream of Src kinases in mouse washed platelets 

(Figure3.7Bi&ii), which was also observed in human washed platelets. There was 

negligible phosphorylation of CLEC-2 after histone stimulation of mouse platelets 

(Figure 3.6Bii). No CLEC-2 phosphorylation was observed after CTH stimulation of 

human washed platelets (data not shown).  These results suggest that histones stimulate 

phosphorylation through the GPVI- FcRγ-chain complex. 

 

3.2.7 CTH mediated synergy with adrenaline is Src-dependent 

CTH induced strong aggregation at concentrations of 50 µg/ml in washed platelets and 

500 µg/ml in PRP. Although these concentrations fall in the range of levels measured in 

in trauma patients (10-230 μg/ml), histones have however, been shown to have 

cytotoxic affects at concentrations as low as 10 µg/ml (Abrams et al., 2013). Therefore,  
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Figure 3.7 - CTH phosphorylation response is blocked with Src and Syk inhibitors 

in mice. A) Mouse PRP pre-incubated with dasatinib (10 µM), PRT060318 (10 µM) or 

vehicle were stimulated with CTH (1 mg/ml) A(i) Aggregation trace representative of 3 

experiments. A(ii) Aggregation response to CTH in the presence of inhibitors. Results 

shown as mean ±SEM, n=3, unpaired T-test performed **p<0.01, ***p<0.005. B) 

Mouse washed platelets (5x10
8
/ml) were stimulated with CTH (50 µg/ml) in the 

presence of dasatinib (10 µM), PRT060318 (10 µM) or vehicle and analysed for 

tyrosine phosphorylation. Lysates prepared in the presence of integrilin (9 µM), 

indomethacin (10 µM) and apyrase (2 U/ml).  B(i) Whole cell lysate representative of 3 

experiments, molecular mass (kDa) indicated as numbers on left-hand side. B(ii) IPs for 

Syk, PLCγ2 and CLEC-2 separated by SDS/PAGE and Western blotted for 

phosphotyrosine using mAb 4G10. Representative image of 4 experiments (work 
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completed by project student Najiat Sarker). B(iii) IPs for Syk, PLCγ2 and CLEC-2 at 

CTH stimulation of human washed platelets (5x10
8
/ml) separated by SDS/PAGE and 

Western blotted for phosphotyrosine using mAb 4G10. Representative image of 4 

experiments. 
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Figure 3.8 - Synergy seen between adrenaline and sub-threshold levels of CTH in 

human washed platelets, which is blocked with Src inhibitors. A) Human washed 

platelets (2x10
8
/ml) were treated with adrenaline (10 µM) for 1 min before CTH (10 

µg/ml) treatment. A(i) Aggregation trace of synergy with adrenaline and CTH, 

representative of 6 experiments. A(ii) Aggregation of synergy shown as mean ±SEM. 

Unpaired T-test performed. **p<0.01, n=6. B) Adrenaline and CTH synergy observed 

when washed platelets pre-incubated for 1 min with dasatinib (10 µM), PP2 (10 µM) 

and PRT060318 (10 µM). B(i) Aggregation trace representative of 3 experiments. B(ii) 

Aggregation of synergy in the presence of inhibitors shown as mean ±SEM, n=3. 

Unpaired T-test performed to assess synergy in presence of inhibitors, *p<0.05.    
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the ability of histones to modulate platelet function at lower concentrations was 

examined. During the preparation of washed platelets, platelets become desensitised to 

ADP and adrenaline due to loss of activation of the Gq-coupled P2Y1 receptor and 

adrenaline 2-receptor. This allows the testing for synergy between CTH activation and 

the Gi-coupled P2Y12 ADP or adrenaline 2-receptor. Washed platelets were stimulated 

with a strong dose of adrenaline (10 µM), at a concentration greater than found in 

physiological conditions, which gives minimal platelet aggregation in washed platelets 

alone but has been previously shown in our laboratory to induce robust platelet 

aggregation in PRP,  before addition of sub-threshold levels of CTH (10 µg/ml), which 

alone induce minimal aggregation. In the presence of adrenaline, CTH gave robust 

platelet aggregation (Figure 3.8Ai), which was significantly greater than the sum of the 

responses to the individual agonist (**p<0.01; n=6; Figure 3.8Ai). When tested in the 

presence of Src inhibitors, dasatinib and PP2, the synergy in washed platelets was 

blocked (*p<0.05, n=3; Figure 3.8B). A slightly smaller effect in reducing the synergy 

response was observed with PRT060318, suggesting a great role for Src kinases in the 

CTH-adrenaline synergy.  

 

3.2.8 Platelets bind and activate to immobilised CTH and OxLDL but not HMGB-

1 

Of the Alarmins and DAMPs tested, CTH was the most effective at inducing 

aggregation, with OxLDL and HMGB-1 only having a small response when used to 

stimulate platelets in suspension. To determine if the Alarmins and DAMPs can activate 

platelets when immobilised on a surface, platelets were added to agonist coated-

coverslips and levels of adhesion and activation were assessed. Platelets adhered to  



101 
 

 

Figure 3.9 - Platelets bind and activate on immobilised CTH and OxLDL but not 

HMGB-1. Human washed platelets (2x10
7
/ml) were incubated on pre-coated slides 

with immobilised agonists; collagen (10 µg/ml), CTH (10 & 30 µg/ml), OxLDL (30 

µg/ml), HMGB-1 (30 µg/ml) and the BSA-PBS control. A) Images of spread platelets 

on different immobilised agonists. Representative images of 6 separate donors. Scale 

bar = 10 µm. B(i) Number of total platelets, spread and unspread platelets adhered on 

immobilised agonist, results shown as mean ±SEM. Unpaired T-test to compare number 

of platelets to BSA controls, n=6, *p<0.05, **p<0.01. ***p<0.005. B(ii) Number of 

spread platelets observed per field of view on immobilised CTH (10 µg/ml) with pre-

treatment of platelets for 5 min with dasatinib (10 µM), PP2 (10 µM) and PRT060318 
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(10 µM) compared to collagen (10 µg/ml) control. Results shown as ±SEM, n=4. 

Unpaired T-test was performed to compare differences of spread platelets on 

immobilised CTH compared on collagen and compare difference in the number of 

spread platelets on CTH in the presence of inhibitors, *p<0.05 and **p<0.01. 
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immobilised CTH (10-30 µg/ml) to a similar level on collagen (10 µg/ml). Platelets did 

not significantly adhere to coated OxLDL (30 µg/ml), with even fewer platelets 

adhering to HMGB-1 (30-50 μg/ml) near to levels of the PBS-BSA control (Figure 

3.9Aand Bi). Platelets adhered and spread on immobilised CTH at significantly higher 

levels than the BSA-PBS control (**p<0.01, n=6; Figure 3.9Bi), although the number of 

spread platelets was less with CTH compared to the collagen control coated surfaces. 

When platelets were pre-treated with dasatinib and PRT, platelets still adhered to CTH 

surfaces, but remained in an inactive state, as less spread platelets were observed 

(**p<0.01, n=4; Figure 3Bii). There was a significant reduction in number of platelets 

spreading on CTH when pre-treated with the Syk inhibitor, PRT (*p<0.05).  

 

To determine whether tyrosine phosphorylation caused by CTH was similar when CTH 

was presented as a monolayer rather than in solution, lysates were prepared from 

platelets following adhesion to the immobilised agonists. Non-adhered cells were 

removed and lysis buffer was then added to the adhered platelets. Whole cell lysates of 

adhered samples showed there was an increase in tyrosine phosphorylation in platelets 

adhered to CTH (10 µg/ml), OxLDL (30 µg/ml) and collagen (10 µg/ml), compared to 

the non-adherent basal platelets (Figure 3.10A). There were very minimal increases in 

phosphorylation after HMGB-1 (30 µg/ml) stimulation of washed platelets. When 

immunoprecipitating samples for Syk, FcRγ-chain and PLCγ2, there was increased 

phosphorylation in platelets adhered to collagen, CTH and OxLDL, with minor 

phosphorylation of PLCγ2 seen after HMGB-1 stimulation (Figure 3.10B&C.  

However, collagen had a greater level of phosphorylation then the other agonists. Also, 

when comparing tyrosine phosphorylation of platelets after CTH stimulation at low 

concentrations, less tyrosine phosphorylation of key signalling proteins was observed  
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Figure 3.10 - Platelets bind and activate leading to phosphorylation of key 

signalling proteins when incubated on immobilised CTH and OxLDL but not 

HMGB-1. A) Washed platelets (5x108
/ml) were added on to plates coated with immobilised 

agonists; collagen (10 µg/ml), CTH (10 µg/ml), OxLDL (30 µg/ml), HMGB-1 (30 

µg/ml) for 45 min. Non-adherent (NA) cells were extracted and lysed. Adherent cells 

were also lysed. A) Whole cell lysate representative of 4 experiments. B) IPs for Syk 

and PLCγ2 separated by SDS/PAGE and Western blotted for phosphotyrosine using 

mAb 4G10. C) IPs of lysates prepared from washed platelets (5x10
8
/ml) stimulated with 

agonists as above in suspension for 5 min at 1200 rpm.  
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after CTH stimulation in suspension compared to stimulation by immobilised CTH 

(Figure 3.10C), whereas there was phosphorylation when CTH was immobilised. 

 

3.2.9 GPVI transfected cells do not signal after incubation on immobilised CTH 

To confirm that immobilised CTH can activate and signal through GPVI, immobilised 

CTH was used to stimulate Jurkat cells (a human T-lymphocyte cell line) transfected 

with GPVI using a NFAT luciferase assay. Jurkat cells were transfected with vectors 

and GPVI and FcRγ constructs before being incubated on immobilised surfaces 

including collagen (100 µg/ml) and CTH (100 µg/ml) for 6 h. The readout of the NFAT  

luciferase reporter assay was the luciferase signal in response to cells binding and being 

activated by the immobilised agonists. The relative luciferase activity of GPVI 

transfected cells on immobilised histones and collagen were compared to basal 

(unstimulated) samples and cells transfected with a mock (empty) vector. Increases in 

relative luciferase activity of Jurkat cells transfected with GPVI above the basal samples 

and vector controls were only seen when cells were incubated on immobilised collagen 

surfaces (*p<0.05, n=4; Figure 3.11Ai). There was no increased luciferase activity when 

GPVI- transfected Jurkat cells were incubated on CTH coated surfaces (Figure 3.11Ai).  

 

After the initial NFAT luciferase assays were performed with immobilised CTH and a 

range of other agonists tested (as described in (Alshehri et al., 2015b)), it was suggested 

that the serum and antibiotic added to the transfection media could interfere with the 

binding of the transfected cells to the immobilised agonists, which may have reduced 

the luciferase signal. The assay was then repeated after Jurkat cells were transfected 

with GPVI in transfection made that did not contain any antibiotic or serum, which  
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Figure 3.11 - GPVI binds to immobilised CTH in vitro but cannot confer signalling 

in a cell line. A) A NFAT luciferase reporter assay was performed to assess if Jurkat 

cells transfected with GPVI become activated when incubated with immobilised CTH 

(100 µg/ml) and collagen (100 µg/ml). Cells were transfected with a mock(empty) 

vector or GPVI-FcR-γ-chain and a NFAT-luciferase reporter. Cells were incubated on 

immobilised agonists for 6 h and luciferase activity measured. A(i) Results shown as 

relative NFAT luciferase activity above basal control. N=4, results shown as mean 

±SEM. Unpaired T-test performed to assess luciferase activity above basal and empty 

vector, *p<0.05. A (ii) NFAT luciferase assay performed as before, however, no 

antibiotic was present in the transfection media during GPVI transfection into Jurkat 

cells.  Cells were also transfected with CLEC-2 vector for which rhodocytin was used as 

a positive control agonist. Results representative of three experiments, and means 

shown ±SEM. *p<0.05, ***p<0.001. B) GPVI ectodomain ELISA binding assay. GPVI 
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ectodomain (80 ng/ml) from NEM-treated plasma was incubated on pre-coated 

microtiter plates with immobilised agonists, collagen (100 µg/ml) and CTH (100µg/ml) 

compared to BSA-PBS control. GPVI concertation bound was calculated using the 

ectodomain standard curve generated. Results shown as mean ±SEM, n=3. Unpaired T-

test was performed to compare levels of binding to BSA control.  **p<0.01 
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increased the luciferase signal to give a higher fold increase over basal with the positive 

control agonist, collagen (*p<0.05, n=3; Figure 3.11Aii). There was however, no 

difference in signalling of GPVI transfected cells after incubation with immobilised 

CTH. For the second set of NFAT luciferase reporter assays, Jurkat cells were also 

transfected with CLEC-2 constructs to see if immobilised CTH could induce CLEC-2 

signalling.  There were no increases in luciferase activity when transfected cells were 

incubated with immobilised CTH, whereas a large signal was seen when transfected 

cells were activated by the CLEC-2 ligand, rhodocytin (***p<0.005, n=3; Figure 

3.11Aii). These results suggest that in a cell line, CTH was not able to activate GPVI or 

CLEC-2 signalling. 

 

3.2.10 GPVI ectodomain binds to immobilised CTH  

We next sought to measure direct GPVI binding to CTH, to determine if GPVI can 

directly bin to CTH. A GPVI ELISA binding assay was then developed based on an 

existing GPVI ELISA (Al-Tamimi et al., 2011a). GPVI ectodomain (80 ng/ml) 

produced from N-ethylmaleimide (NEM) treated plasma (which cleaves GPVI) was 

incubated with immobilised agonists on a 96 well plate before washing and addition of 

GPVI antibodies. Chemiluminescence signal was measured using a Wallac-Victor2 

luminescence plate reader and concentrations of bound-GPVI were extrapolated from a 

generated standard curve. CTH bound to the GPVI ectodomain at similar levels to 

collagen (12 ± 1.7 ng/ml and 15 ± 20.6 ng/ml respectively) and were significantly 

higher than binding to the BSA-PBS control (0.19 ± 0.3 ng/ml; **p<0.01, n=3; Figure 

3.11B).  
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3.2.11 CTH mediates platelet aggregation in mice through GPVI and not CLEC-2   

CTH induced platelet aggregation is Src and Syk dependent. These are important 

proteins involved in ITAM signalling. To determine if GPVI is an important ITAM 

receptor predominantly involved in the histone response and not the hemITAM 

receptor, CLEC-2, platelets from GPVI knock out mice (GPVI
-/-

) and mice deficient in 

platelet CLEC-2 (CLEC-2
-/-

) were stimulated with CTH histones. CTH-induced 

aggregation and shape change were blocked in GPVI
-/- 

mice (Figure 3.12A). There was 

no effect on the response to CTH in CLEC-2-deficient mice, with full aggregation and 

shape change occurring to similar levels as wild type (WT) mice (Figure 3.12A). When 

studying tyrosine phosphorylation, there was reduced phosphorylation after CTH 

stimulation of washed platelets from GPVI
-/-

 mice, which was similar to the reduction in 

tyrosine phosphorylation observed in mice platelets deficient in both CLEC-2 and 

GPVI
-/-

 mice (Figure 3.12Bi). There was a weak increase in tyrosine phosphorylation 

after CTH stimulation of GPVI/CLEC-2 double deficient platelets compared to basal 

(Figure 3.12Bi) The key signalling proteins, Syk, FcRγ-chain and PLCγ2 showed 

reduced phosphorylation in the GPVI/CLEC-2 double-deficient platelets (Figure 

3.12Bii). There were no reductions in phosphorylation were observed after stimulation 

of CLEC-2 deficient platelets.  
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Figure - 3.12 CTH mediates platelet aggregation in mice through GPVI and not 

CLEC-2. A) PRP was stimulated with CTH (1 mg/ml) for 5 min from WT mice, GPVI
-

/- 
mice and mice deficient in platelet CLEC-2 (CLEC-2

-/-
). A(i) Aggregation trace 

representative of 3 experiments. A(ii) Aggregation results shown as mean ±SEM, n=3, 

***p<0.005 (experiments from project student Najiat Sarker). B) Lysates prepared after 

CTH (1 mg/ml) stimulation of PRP from WT mice and GPVI
-/-

/CLEC-2
-/-

 (DKO) mice 

in the presence of integrilin (9 µM), indomethacin (10 µM) and apyrase (2 U/ml).  B(i) 

Whole cell lysate separated by SDS/PAGE and Western blotted for phosphotyrosine 

using mAb 4G10. B(ii) IPs for Syk and PLCγ2 of WT and DKO samples stimulated 

with CTH compared to basal.    
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3.2.12 GPVI
-/- 

mice are not protected from CTH-induced thrombocytopenia  

Histone-medicated aggregation and phosphorylation is GPVI dependent in vitro, as 

CTH response is lost after CTH stimulation of GPVI-deficient platelets. Histone 

infusion models in mice were used to determine if CTH activation in vivo is also GPVI 

dependent. CTH induced thrombocytopenia over a concentration range of 2.5-75 mg/kg 

(Figure 3.13A). Basal platelet counts were measured in blood taken from mice 

immediately prior to CTH injection. After 3 min mice were sacrificed and platelet count 

measured again. The drop in platelet count indicated platelet consumption. CTH 

injections of 7.5mg/kg and above significantly reduced platelet count in the mice, with 

25 and 75 mg/kg injection inducing a severe level of thrombocytopenia, to 

approximately 20% of basal levels (Figure 3.13A). 

 

CTH was injected into GPVI
-/- 

mice to determine whether CTH-induced 

thrombocytopenia could be rescued in the absence of GPVI. A collagen-adrenaline 

infusion model was set up based previous studies to induce thrombocytopenia (Abrams 

et al., 2013), to establish the levels of rescue that could be expected in GPVI
-/-

. Collagen 

and adrenaline (25 µg and 1 µg) were injected into WT and GPVI
-/-

 for 3 min and the 

drop in platelet count was measured as before. The collagen and adrenaline infusion 

induced thrombocytopenia to similar levels as with CTH infusion, being significantly 

lower than the basal counts (Figure 3.13B). The reduction in platelet count was 

significantly reduce in GPVI
 -/-

 (n=3).  
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Figure 3.13-CTH induces thrombocytopenia in mice which is not rescued in 

 GPVI
-/- 

mice or with hirudin treatment. A) Platelet count drop measured after WT 

mice were injected with different doses of CTH (2.5-75mg/kg) for 3 min. Platelet 

counts were measured from samples taken before injection (basal) and after a terminal 

bleed. Mean shown, individual points represent one mouse. T-test was performed to 

compare counts after injection with basal levels, *p<0.05, ***p<0.005. B) Collagen and 

adrenaline infusion model. WT mice and GPVI
-/- 

mice were injected with a mixture of 

collagen (25 µg) and adrenaline (1 µg). Platelet counts were measured from blood 

samples before and after injection. Mean shown. *p<0.05, **p<0.01 and ***p<0.005. 

C) CTH infusion model. WT mice and GPVI
-/-

 mice were injected with 25 mg/kg CTH. 

In some experiments mice were injected subcutaneously with hirudin (10 mg/kg). 

Platelet counts were measured pre and post CTH infusion. Mean shown, ***p<0.005. 
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GPVI is the major platelet receptor for collagen. To establish if GPVI is also an 

important receptor for CTH in vivo, it would be expected that the degree of rescue in 

the platelet count after CTH infusion would be similar to that of collagen infusion in 

GPVI
-/-

 mice. CTH (25 mg/kg) was injected into WT and GPVI
-/-

 mice. There was no 

prevention of the reduction of platelet count in GPVI
-/-

 mice as the levels of activation 

and thrombocytopenia induced were similar to WT and all significantly different to 

basal count (***p<0.005; Figure 3.13C). Therefore, CTH-induced aggregation in vivo 

is not GPVI dependent.   

 

Histones have been shown to activate the coagulation cascade and to lead to thrombin 

generation (Fuchs et al., 2011b, Semeraro et al., 2011). To assess if the strong CTH-

aggregation in vivo was a result of thrombin generation by histones leading to platelet 

activation observed, the direct thrombin inhibitor, hirudin (10 mg/kg) was injected 5 

min before CTH infusion (Figure 3.13C). No rescue was seen with pre-treatment of 

hirudin in WT mice GPVI
 -/-

 mice, with levels of thrombocytopenia induced remaining 

the same (36%- and 35%- of basal count respectively) Therefore, CTH-mediated 

platelet activation was not dependent on GPVI or thrombin.  
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3.3 Discussion  

Alarmins and DAMPs released in response to trauma have been proposed to lead to 

inflammation after interacting with Alarmin receptors located on immune cells and 

increasing production of pro-inflammatory cytokines (Manson et al., 2012). Alarmins 

have the potential to interact with and activate platelets, as some of the identified 

Alarmin receptors have been described on the platelet surface (Cognasse et al., 2005, 

Zhu et al., 2012). A number of Alarmins including DNA and histones have been shown 

to activate platelets. The aim of this chapter was to assess a several Alarmins and 

determine if they can activate or modulate platelets and establish any signalling 

mechanisms behind the Alarmin-mediated response.  

 

One of the first Alarmins/DAMPs tested was AGE. AGE has been implicated in a range 

of conditions including diabetes and consequent cardiovascular events (Lapolla et al., 

2007, Ono et al., 1998, Giacco and Brownlee, 2010). AGE has been shown to signal 

through RAGE and CD36, a scavenger receptor located on the platelet surface (Saboor 

et al., 2013, Zhu et al., 2012). AGE has been proposed to modulate ADP aggregation 

after stimulation of platelets pre-incubated with AGE-BSA through CD36 (Zhu et al., 

2012). To confirm this finding, different concentrations of ADP were used to stimulate 

platelets pre-incubated with AGE-BSA for 30 min under the same conditions previously 

described (Zhu et al., 2012). However, the AGE-BSA tested was unable to induce 

aggregation after direct stimulation or be able to modulate the ADP response when 

platelets were pre-treated with AGE-BSA at a range of concentrations and different 

doses of ADP.  This finding was confirmed in both mice and human platelets, even with 

different AGE-BSA sources being tested. AGE-BSA was found not to modulate ADP 
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response, which differs from the findings of the Zhu et al. (2012) studies. An 

explanation for this result is unclear, as the source and concentrations of AGE-BSA 

used, along with the experimental conditions described in Zhu et al. (2012) studies 

being the same. The previous study did however only show a weak potentiation of the 

ADP response, which along with these findings suggests AGE is not an important 

DAMP for mediating platelet activation or modulating platelet responses to other 

agonists.  

 

Oxidised Low Density Lipoprotein (OxLDL) has been implicated in atherosclerosis 

(Matsuura et al., 2008, Jackson and Calkin, 2007, Ghosh et al., 2011). OxLDL is also a 

lipid based DAMP and was tested to see if OxLDL could induce platelet activation. 

OxLDL, along with AGE-BSA has been shown to interact with the scavenger receptor 

CD36, therefore giving a potential route for platelet activation. OxLDL was shown in 

this study to induce weak aggregation in washed platelets and no aggregation in 

platelet-rich-plasma (PRP). Other studies have shown a greater platelet aggregation 

response after OxLDL stimulation of washed platelets (Wraith et al., 2013). However, 

this response may depend on the oxidation process to produce the OxLDL. In this set of 

experiments I have used a commercial source of OxLDL, which may have given a 

reduced response compared to a self-produced OxLDL. Comparisons of the different 

oxidation process and consequent OxLDL products would be a future approach to 

establish fully the effects of OxLDL on platelet aggregation. Platelets did not however 

significantly adhere to immobilised OxLDL above the BSA-PBS control, with the level 

of adhesion also being much less than to other platelet agonists such as collagen. 

OxLDL induced a small shape change after stimulation of washed platelets, which was 
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not blocked with Src and Syk inhibitors, suggesting no major involvement of Src and 

Syk in OxLDL-induced aggregation.   

 

An interesting finding with OxLDL however was observed when examining the 

tyrosine phosphorylation after OxLDL stimulation, with a similar increase in tyrosine 

phosphorylation above basal observed after OxLDL and collagen stimulation of washed 

platelets, suggesting a similar ITAM signalling mechanism. The level of increase in 

phosphorylation of key GPVI signalling proteins such as, Syk, FcRγ-chain and PLCγ2 

were however much lower than observed with collagen.  Other studies have since 

shown that OxLDL induces mild platelet activation and shape change through a Src and 

Syk kinase dependent mechanism downstream of CD36 and a Src/RhoA kinase 

(ROCK) dependent pathway, which overall lead to myosin light chain (MLC) 

phosphorylation and the OxLDL aggregation response (Wraith et al., 2013). It is 

therefore unclear why Src and Syk kinases had no effect on the aggregation and 

phosphorylation response to OxLDL in this present study. Further experiments looking 

at immunoprecipitates of different signalling proteins and the use of phospho-specific 

antibodies to other signalling proteins would allow further investigation of the OxLDL 

phosphorylation patterns and clarification of the signalling proteins involved in the 

OxLDL signalling pathway.  

 

The DAMPs, OxLDL and AGE did not induce extensive platelet activation. Therefore 

the effects of a variety of nuclear-related Alarmins were also assessed. Alarmins are a 

term for DAMPs released after trauma. Mitochondrial DNA (mtDNA) can be released 

from mitochondria after cell damage and has been shown to mediate inflammatory 
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responses (Zhang et al., 2010). MtDNA are proposed to interact with TLR-9, which has 

been shown to be expressed on the platelet surface (Zhang et al., 2010) and therefore 

could potentially induce platelet activation. MtDNA was extracted from mitochondria 

from the blood of a healthy control donor and used to stimulate platelets at 

concentrations previously shown to affect other cells (Sun et al., 2013, Hauser et al., 

2010).  MtDNA failed to have a major effect on platelet aggregation at all 

concentrations tested. The MtDNA studies were limited as the isolation of mtDNA from 

donated blood did not give a high yield of mtDNA to perform an adequate number of 

experiments per donor. There were no further mtDNA experiments performed due to 

the limited aggregation response observed and the small yield produced.  The use of a 

commercial or recombinant source of mtDNA would allow further experiments to be 

performed and useful in confirming whether mtDNA does not affect platelet function.  

 

High-mobility-group-box 1 (HMGB-1) was an alternative nuclear-related Alarmin 

tested. HMGB-1 been shown to be elevated after trauma (Peltz et al., 2009) and is a 

potent inflammatory mediator (Schiraldi et al., 2012). HMGB-1 has been proposed to 

interact with TLR4 and therefore could induce platelet activation. A commercial source 

of HMGB-1 was used to stimulate washed platelets and PRP. There was minimal 

platelet aggregation in response to HMGB-1 stimulation at any of the concentrations 

tested, previously shown to have effects on other cells. Platelets did not significantly 

adhere and bind more to immobilised HMGB-1 above the BSA coated control. Recent 

studies have however shown that platelets can be activated and substantial aggregation 

can be induced with recombinant HMGB-1 (Yang et al., 2015). This suggests there is a 

potential issue with the isolation process of HMGB-1, which could affect reactivity. 
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HMGB-1 can also be released after platelet activation, therefore comparisons between 

isolated HMGB-1, recombinant HMGB-1 and different sources of HMGB-1 would be 

crucial to confirm whether HMGB-1 can mediate platelet activation.  

 

Histones are the most extensively studied Alarmin. Histones are released in the plasma 

after nucleosome breakdown and are elevated after trauma and sepsis developed 

(Abrams et al., 2013, Xu et al., 2009). Histones are very reactive and can cause damage 

to endothelial cells (Abrams et al., 2013). Histones have been shown to activate 

platelets through TLR4 mechanisms (Semeraro et al., 2011, Fuchs et al., 2011b), 

however the signalling mechanisms have not been fully established, with multiple TLRs 

and other receptors such as TLR-2 have also been implicated in the histone-mediate 

aggregation (Xu et al., 2011). This study first set out to confirm that histones can 

mediate platelet activation in vitro and secondly to further investigate the signalling 

mechanisms behind the histone-mediated response.  

 

CTH were used to stimulate platelets to examine the histone response. CTH are a 

heterogeneous mixture of different types of histones (H1-H4) and have been used in 

many previous histone studies (Fuchs et al., 2011b, Xu et al., 2009). CTH induced full 

platelet aggregation in both washed platelets and PRP in mice and humans, which was 

αIIbβ3 dependent, supporting the finding that histones-induced aggregation was the 

result of platelet agglutination only. The CTH concentrations used for stimulations were 

high in comparisons available plasma concentration, with histone concentrations as low 

as 10 µg/ml shown to have cytotoxic effects on endothelial cells (Abrams et al., 2013). 

The ability of histones to modulate the response to other agonists were therefore 
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studied. Sub-threshold levels of CTH were able to synergise with other agonists such as 

adrenaline in washed platelets to amplify the response and cause robust platelet 

activation, giving an explanation as to how histones can mediate effects at the lower 

concentrations. This along with platelets adhering and spreading on immobilised CTH 

at low concentrations supports the ability of histones to mediate platelet activation at 

physiological concentrations.  

 

The signalling mechanisms behind the CTH-mediated activation were studied. CTH 

induced aggregation was Src and Syk dependent, with the CTH response being 

diminished in platelets pre-treatment with the Src inhibitor, dasatinib and the Syk 

inhibitor, PRT060318. Aggregation was reduced in the presence of the Src and Syk 

inhibitors and increases in tyrosine phosphorylation above basal of key signalling 

proteins such as Syk, FcRγ-chain and PLCγ2 was abolished. The synergy with 

adrenaline was significantly reduced in the presence of Src inhibitors, dasatinib and 

PP2, however there was no reduction observed in the presence of PRT060318, 

suggesting a Src dependent mechanism being involved in CTH/adrenaline synergy over 

a Syk dependent mechanism. Platelet spreading after adhesion to immobilised CTH was 

reduced in the presence of the Syk inhibitor. Overall, the aggregation, phosphorylation 

and spreading results in response to CTH stimulation suggests a Src and Syk dependent 

mechanism behind CTH mediated platelet activation.  

 

Src and Syk are major signalling proteins involved in ITAM signalling (Senis et al., 

2014). Therefore, to determine if CTH-induced aggregation was dependent on ITAM 

signalling, CTH was used to stimulate platelets from GPVI
-/-

 and CLEC-2
-/-

 mice. 
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Deficiencies in CLEC-2 did not affect CTH-induced aggregation and phosphorylation. 

CTH aggregation was reduced after CTH stimulation of platelets from GPVI
-/-

 mice and 

there was no increase in phosphorylation of Syk, FcRγ-chain and PLCγ2 signifying a 

role of GPVI in CTH-induced platelet aggregation response.  

 

To confirm if histones can induce GPVI signalling, Jurkat cells were transfected with 

GPVI and added to immobilised CTH before an NFAT luciferase reporter assay was 

performed. This assay measured the luciferase activity of the transfected cells, where 

increased luciferase signal represented signalling of GPVI in the transfected cells. There 

was no increase in NFAT-luciferase activity in the transfected GPVI cells incubated 

with immobilised CTH in contrast to the response to collagen. One explanation for this  

is due to the limitations of the NFAT assay and use of cell lines to transfect with GPVI. 

Activation by the positive control agonist collagen was lower than expected, suggesting 

the transfection efficacy may not be substantial enough to show activation by CTH. 

Other factors may have also interfered with binding and activation, such as antibiotics 

in the media, as in the absence of antibiotics the collagen response was increased. 

Another explanation is that activation of GPVI in platelets by CTH is indirect and 

requires other co-factors or receptors to be present to bind and active GPVI. A direct 

binding assay showing the binding of the GPVI ectodomain to immobilised histones 

was shown to be similar to that for collagen. Future experiments performing surface 

plasmon resonance would confirm whether there was direct binding of CTH to GPVI. 

 

To determine if CTH could induce platelet aggregation in vivo, histone infusion assays 

were performed in mice. CTH infusion induced a rapid dose dependent reduction in 
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platelet count, with a CTH dose of 25-75 mg/kg causing thrombocytopenia to 

approximately 10% of basal count after 3 min. Interventions were tested to establish if 

any could improve the severe reduction in platelet count. A collagen-adrenaline infusion 

assay was performed as a proof of concept based on Abrams et al. studies (Abrams et 

al., 2013). WT mice experienced a severe drop in platelet count after infusion of 

collagen and adrenaline, with a less severe reduction in platelet count being observed in 

GPVI
-/- 

mice. GPVI is a major signalling receptor on platelets; therefore the collagen-

induced thrombocytopenia would be rescued because collagen would not be able to 

interact with GPVI to induce platelet activation and aggregation. A full recovery, 

representing no reduction in platelet count would not be observed as other minor 

collagen receptors on the platelet surface, including scavenger receptors wound be able 

to bind collagen and induce a small degree of platelet activation. If the CTH-induced 

aggregation in vivo was mediated through GPVI, then the same level of rescue of the 

platelet count to collagen would be expected. A CTH dose of 25 mg/kg was chosen for 

injection as it delivered a substantial level of thrombocytopenia in the mice. A CTH 

dose of 7.5 mg/kg only induced a moderate decrease in platelet count, therefore any 

further reduction in platelet count would be minimal. WT mice injected with CTH (25 

mg/kg) experienced the substantial reduction in platelet count. There was no rescue in 

the reduction of platelet count after CTH infection in GPVI
-/- 

mice, suggesting 

alternative mechanisms were involved in the CTH-induced thrombocytopenia.  

 

Histones have been shown to enhance thrombin generation (Semeraro et al., 2011). 

Hirudin, a direct inhibitor of thrombin, was injected into the mice before CTH infusion 

to assess if it could neutralise the CTH-induced thrombocytopenia by reducing fibrin 
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formation through inhibiting thrombin’s activity to convert fibrinogen to fibrin. There 

was however no rescue in the reduction of platelet count in WT mice pre-treated with 

hirudin or in GPVI
-/-

 mice pre-treated with hirudin, suggesting that the CTH-induced 

aggregation and thrombocytopenia observed was independent of GPVI and thrombin, 

with alternative mechanisms being involved. The hirudin treatment may however, not 

been effective enough to inhibit the CTH-induced aggregation, with heparin treatment, 

another thrombin inhibitor, previously been shown to reduce the effects of histones 

(Fuchs et al., 2011b). Another explanation for the insufficient effect of hirudin and 

GPVI could result from other factors, such as the cytotoxic effect of histones on other 

cell types potentially leading to platelet activation. Histones have been shown to 

damage endothelial cells (Abrams et al., 2013), which could then release mediators 

causing platelet activation and aggregation. Staining for endothelial cell damage after 

histone injection or investigating for endothelial markers in the future would help show 

role for endothelial cells in the histone response. An alternative explanation may result 

from histones interacting with other receptors, such as the TLRs, resulting in platelet 

activation. Most therapeutic targets for preventing histone-mediated effects are with the 

use of anti-histone blocking antibodies or developing antibodies against multiple TLRs 

to give the most therapeutic value (Abrams et al., 2013, Semeraro et al., 2011, Fuchs et 

al., 2011b). 

 

Histones are highly positively charged molecules, which could cause disruption to the 

membrane due to the charge affects. It is therefore proposed that the disruption of the 

membrane caused by the charged histones can lead to clustering of receptors, such as 

GPVI and result in the Src and Syk signalling mechanism mediating the platelet 
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aggregation. This new alternative GPVI signalling mechanism by charge interactions 

was also confirmed with other agonists such as diesel exhaust particles (Alshehri et al., 

2015b). Histone-induced aggregation may also be mediated by a similar mechanism 

causing clustering of other receptors such as the TLRs that have previously been shown 

as receptors for histones. The histone charge effect would support the findings that 

heparin injections and treatment can reduce histone effects and increase survival of mice 

histone-induced thrombocytopenia and heparin-mediated cytotoxicity in a rat model 

(Fuchs et al., 2011b, Iba et al., 2015). Heparin is a heavily negatively charged molecule, 

which has been shown to bind to positively charged histones to neutralise the charge 

effect (Wildhagen et al., 2014). Therefore, this gives a potential explanation as to how 

heparin can have a more effective response against histones than hirudin and how 

survival is improved. Further studies investigation histone induced thrombocytopenia 

after pre-treatment of heparin would be useful to determine if the histone response is 

due to increased thrombin generation or whether the histone charge effect is a more 

important factor and if the in vivo histone-mediated aggregation could be rescued.  

 

The aim of this study was to assess a variety of Alarmins to establish which Alarmins 

could activate platelets and determine the mechanism behind this.  AGE and OxLDL are 

DAMPs implicated in a range of inflammatory conditions, but were unable to directly 

induce platelet activation or modulate responses to other agonists. Of the nuclear-related 

Alarmins, only histones effected platelet function. Histones were found to be powerful 

mediators of platelet activation in vitro and in vivo. More work is required to establish 

interventions that are sufficient to prevent histone-induced platelet activation. Direct 



124 
 

neutralisation of the histone charge, a crucial aspect of their action has the greatest 

potential to reduce histone-mediated activation.  
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CHAPTER 4 

 

SOLUBLE GPVI (sGPVI) AS A 

MARKER OF PLATELET 

ACTIVATION IN 

INFLAMMATION 
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4.1 Introduction  

Platelets have been implicated in the pathophysiology of a wide range of thrombotic and 

inflammatory conditions, including atherosclerosis, diabetes and inflammatory bowel 

disease (IBD) (Lindemann et al., 2007, Ponder and Long, 2013). Markers of platelet 

activation have been proposed to have clinical relevance as prognostic markers and 

relate to disease severity. Most markers proposed are based on detection of plasma 

protein levels, including various granule proteins released from α- and dense-granules 

after platelet activation, such as fibrinogen and ATP, respectively (Ang et al., 2013, 

Ghoshal and Bhattacharyya, 2014).  Importantly these markers are not specific to 

platelets as they can originate from a number of other cells, such as endothelial cells 

(Gurney et al., 2002). Therefore, there is a requirement to identify and study a specific 

platelet activation marker.  

 

Membrane glycoproteins on platelets, including P-selectin, the integrin αIIbβ3 and 

Glycoprotein V (GPV), are potential candidate markers. P-selectin is an extensively 

studied glycoprotein, which is a 140 kDa adhesion molecule that binds to P-selectin 

glycoprotein ligand-1 (PGSL-1) on leukocytes, allowing platelet-leukocyte interactions. 

P-selectin is predominately located on platelet α-granules, and upon activation, becomes 

exposed on the platelet surface. P-selectin surface expression can be measured by flow 

cytometry and increased expression is a marker of platelet activation. Soluble P-selectin 

(sP-selectin) is elevated in the plasma in patients with thrombotic conditions, such as 

atherosclerosis, myocardial infarction and stroke (Blann et al., 1997, Shimomura et al., 

1998, Liu et al., 2005) and has been reported as a predictor of cardiovascular events 

(Ridker et al., 2001). Although sP-selectin has been proposed as a platelet activation 
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marker, questions surrounding its value have not been conclusive, with more sensitive 

markers being described (Naitoh et al., 2015, Gurbel et al., 2000).  Endothelial cells 

express P-selectin on their surface so difficulties arise in discriminating between platelet 

and endothelial sP-selectin. Platelets internalise sP-selectin which will alter plasma 

measurements.  

 

GPVI is the major signalling collagen receptor found on platelets. GPVI can be shed 

after activation through various mechanisms resulting inactivation (Gardiner et al., 

2004). Cleavage of GPVI results in the release of a soluble 55-kDa GPVI fragment, 

which can be measured in plasma, leaving a 10-kDa remnant fragment membrane 

bound (Figure 4.1). Soluble GPVI (sGPVI) is a specific marker of platelet activation, as 

GPVI is restricted to platelets and megakaryocytes. Multiple groups have reported 

elevated levels of sGPVI in thrombotic conditions including microangiopathy and 

ischaemic stroke (Wurster et al., 2013, Al-Tamimi et al., 2011a).   

 

The sheddase A disintegrin and metalloproteinase domain-containing protein 10 

(ADAM10) has been shown to play the major role in GPVI shedding in humans, with 

ADAM17 also contributing to shedding in mice (Bender et al., 2010, Facey et al., 2016, 

Bergmeier et al., 2004). ADAM10 and ADAM17 are type 1 transmembrane proteases 

that are closely related to matrix metalloproteinases (MMPs) and which regulate levels 

of several surface receptors and ectoenzymes (Facey et al., 2016). The transmembrane 

of ADAM10 is thought to critical for regulation of ADAM10 activity. ADAM10 and 

ADAM17 are expressed on a wide variety of cells (Matthews et al., 2016, Facey et al., 

2016). 
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GPVI shedding can be mediated by a range of mechanisms. Ligand-mediated shedding 

occurs when ligands such as collagen, collagen-related peptide (CRP), and the snake 

venom toxins alborhagin, crotarhagin and convulxin activate and signal through GPVI 

leading to ADAM10 activation (Gardiner et al., 2004, Wijeyewickrema et al., 2007, 

Stephens et al., 2005, Bergmeier et al., 2004). GPVI shedding can also be induced to be 

induced by activation of the other two platelet ITAM receptors, FcγRIIA and CLEC-2 

(Gitz et al., 2014, Gardiner et al., 2008a). GPVI shedding can also be induced by shear 

stress and FX activation (Gardiner et al., 2008a, Al-Tamimi et al., 2011b). 

 

An established sGPVI sandwich- ELISA method has been developed to measure sGPVI 

in the plasma of patients (Al-Tamimi et al., 2009) and used to show its elevation in 

thrombotic conditions (Wurster et al., 2013, Al-Tamimi et al., 2011a). The recent 

observation that GPVI is also activated by fibrin (Alshehri et al., 2015a, Mammadova-

Bach et al., 2015) however makes it unclear whether the increase in GPVI is a reflection 

of activation by collagen or by fibrin, or by both ligands.  Furthermore, platelets are 

now recognised as key players in inflammation and in a variety of 

thromboinflammatory disorders such as deep vein thrombosis and sepsis.  Under these 

conditions, sGPVI may potentially be activated by exposure to fibrin or to other 

pathways of platelet activation alongside classical collagen activation.  
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Figure 4.1 Schematic diagram of soluble GPVI (sGPVI) release into the plasma 

after GPVI cleavage by ADAM10. Activation of the sheddase ADAM10 (and 

ADAM17 in mice) leads to cleavage of GPVI leading to a 10-kDa membrane bound 

remnant and a 55-kDa fragment (sGPVI) that is released into the plasma and which can 

be measured by an established sGPVI ELISA.   
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The main aims of this chapter are (i) compare the level of shedding of GPVI ligands by 

collagen and CRP alongside activation by, G protein-coupled receptor (GPCR) agonists 

and fibrin; and (ii) the level of sGPVI in the plasma of patients with a variety of 

inflammatory conditions, namely rheumatoid arthritis (RA), thermal injury, clinically 

diagnosed sepsis or inflammatory bowel disease (IBD). 
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4.2 Results  

4.2.1 GPVI is not detected in GPVI deficient patients 

To confirm the validity of the anti-GPVI antibody, lysates were collected from 

unstimulated and fibrin stimulated samples of patients with GPVI deficiencies (Matus et 

al., 2013) and blotted for GPVI using an anti-GPVI antibody to the cytosolic tail, which 

recognises full length GPVI and the 10 kDa membrane remnant. Reductions in full 

length GPVI and the appearance of the remnant tail represent shedding of the 

glycoprotein receptor. As expected, no GPVI or tail remnant was recognised in the 

samples from the patients with GPVI deficiencies compared to healthy controls (HCs; 

Figure 4.2). GPVI shedding was observed in stimulated samples of HCs, supporting the 

finding that the anti-GPVI only detects GPVI and the tail remnant is also of GPVI 

origin.  

 

4.2.2 Classical GPVI agonists induce GPVI shedding  

This study initially set out to quantitate GPVI shedding by classical GPVI ligands. 

GPVI ligands, collagen and CRP, along with A23187, a potent GPVI shedding 

stimulus, were used to activate platelets under stirring conditions (1200 rpm) for 1 h in 

the presence of the αIIbβ3 blocker integrilin (eptifibatide; 9 µM) and CaCl2 (1 mM). 

Lysates were prepared and blotted for GPVI using an anti-GPVI antibody to the 

cytosolic tail and again reductions in full length GPVI and the appearance of the 

remnant tail represent shedding of the glycoprotein receptor. Collagen, CRP and 

A23187 induced shedding of GPVI as shown by the reduction of full length protein and 

appearance of a doublet, with a major band of approximately 14 kDa and a smaller band 

below (Figure 4.3Ai).   
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Figure 4.2 – GPVI is not detected in GPVI deficient patients. Washed platelets 

(5x10
8
/ml) of patients with GPVI deficiencies (P1 and P2) were stimulated with 

thrombin (1 U/ml) in the presence of fibrinogen (100 µg/ml: polymerised fibrin) under 

stirring conditions in the presence of eptifibatide (9 µM) and blotted for GPVI using the 

anti-GPVI antibody.  Washed platelets from healthy controls (HCs) were also 

stimulated with thrombin (1 U/ml) in the presence of fibrinogen (100 µg/ml), thrombin 

(1 U/ml) in the presence of fibrinogen (100 µg/ml) and GPRP (10 mM). This 

experiment was performed once experiment with two unrelated families. 
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Figure 4.3 - Stimulation of platelets with GPVI and ITAM ligands induces GPVI 

shedding. A(i) Washed platelets (5x10
8
/ml) were stimulated with collagen (30 µg/ml), 

CRP (30 µg/ml), thrombin (1 U/ml), rhodocytin (300 nM) and caclium ionophore 

(A23187: 10 µM), a potent shedding medaitor, in suspension under stirring conditions 

for 1 h at 37
o
C, in the presence of eptifibatide (9 µM) and CaCl2 (1 mM). Membranes 

were blotted with an anti-GPVI antibody for GPVI (60-65-kDa) and the GPVI remnant 

band (10-17-kDa). Representative figure of stimulations from 8 separate donors. A(ii) 

Quantitation analysis of GPVI shedding after platelet stimulation with various GPVI 

and ITAM ligands. GPVI shedding represented as % of intact GPVI remaining after 

stimulation compared to unstimulated GPVI levels. Results are shown as mean ±SEM. 

One-way ANOVA performed with Bonferroni post-test, n=8, ***p<0.005. Bi) Western 

blot for GPVI after platelet treatment with collagen, CRP and thrombin for 5 min or 1 h 

stimulation. Representative figure of at least 6 donors. B(ii) Quantitation analysis of 
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GPVI shedding after 5 min and 1 h stimulation with GPVI ligands and thrombin. GPVI 

shedding represented as % of GPVI remaining compared to unstimulated GPVI levels. 

Results are shown as mean ±SEM. One-way ANOVA performed with Bonferroni post-

test, n=6, ***p<0.005. 
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Shedding could be first observed after 5 min as illustrated by the increase in the remnant 

tail, but was more prominent after 60 min (Figure 4.3B). There was no evidence of 

shedding of GPVI in unstimulated samples as shown by the absence of the membrane 

remnant.  There was minimal shedding observed with calf thymus histones (Figure 

4.3Ai). The level of GPVI shedding was calculated using a Li-cor Odyssey-FC imager 

and Image Studio software based on the percentage of GPVI left after stimulation.  

Collagen (30 µg/ml), CRP (30 µg/ml), and A23187 (10 µM) reduced the level of GPVI 

on platelets to 51.0 ± 22.4%, 40.1 ± 25.3% and 29.5 ± 18.1% (± SD, n=7) relative to 

unstimulated controls (Figure 4.3A).   

 

GPVI cleavage has also been shown to be mediated by the two platelet ITAM receptors, 

FcγRIIA and CLEC-2 (Gitz et al., 2014, Gardiner et al., 2008b). The CLEC-2 ligand, 

rhodocytin (300 nM) reduced the level of GPVI to 49.6 ± 27.0% of unstimulated GPVI 

samples (figure 4.3B). These results show that GPVI is shed by several mechanisms, 

namely by direct receptor activation, by the hemITAM receptor CLEC-2 and by the 

Ca
2+

 ionophore CLEC-2.  The former all induce a similar level of shedding of GPVI 

after 1 h, namely approximately 50% of controls.  A23187 induced a great degree of 

shedding in the order of 75% of control levels. 

 

4.2.3 Activation of G protein-coupled receptors does not induce GPVI shedding 

Studies were performed to investigate whether G protein-coupled receptors (GPCRs) 

could induce GPVI shedding.  To address this, the GPCR agonists, ADP, a P2Y1 and 

P2Y12 ligand, PAR-1 peptide (SFLLN), a PAR-1 receptor ligand and thrombin, a PAR-

1 and PAR-4 agonist, were used to activate platelets under stirring conditions for 1 h in  
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Figure 4.4 – Activation of GPCRs does not induce GPVI shedding. A(i) Western 

blot for GPVI after platelet stimulation with GPCR agonists, thrombin (1 U/ml), ADP 

(10 µM) and PAR-1 peptide (SFLLRN :100 µM) in the presence of eptifibatide (9 µM) 

and CaCl2 (1 mM) under stirring conditions for 1 h at 37
o
C. Representative figure of at 

least 8 donors. A(ii) Quantitation of GPVI shedding after platelet stimulation with 

GPCR agonists. % of GPVI represents levels of intact GPVI remaining compared to 

unstimulated GPVI levels. Results are shown as mean ±SEM. One way ANOVA with 

Bonferroni post-test was performed to compare shedding to unstimulated platelets, n=8-

12, ***p<0.05 B) GPVI shedding measured by flow cytometry. Washed platelets 

(2x10
8
/ml) were pre-incubated with IG5(Fab’)2-488 (8 µg/ml), an antibody that 

recognises GPVI, before stimulation (static) with A23187 (10 µM), thrombin (1 U/ml), 

ADP (10 µM) and PAR-1 peptide (SFLLRN :100 µM) in the presence of CaCl2 (1 mM) 
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for 45 min at 37
o
C. % of Median intensity fluorescence (MFI) of unstimulated samples 

were compared to stimulated samples. One-way ANOVA performed with Bonferroni 

post-test, n=4, mean shown ±SEM, *p<0.05, **<0.01. 
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the presence of the αIIbβ3 blocker eptifibatide (9 µM) and CaCl2 (1 mM).  The level of 

GPVI was measured using the antibody to the cytosolic tail of GPVI as described above 

and by flow cytometry using mAb 1G5 to the GPVI ectodomain. The GPCR agonists, 

ADP (10 µM) and PAR-1 peptide (SFLLRN; 100 µM), did not induce shedding as 

measured by western blotting (Figure 4.4A) and by flow cytometry (Figure 4.5B). 

A23187 was used as a control and shown to reduce the level of GPVI to 29.8 ± 8.6% of 

controls as measured by flow cytometry (Figure 4.4B).  

 

In contrast to the above results for ADP and PAR-1 peptide, thrombin (1 U/ml) induced 

a similar level of GPVI shedding to that induced by collagen as measured by western 

blotting, 47.6 ± 20.6% and 51.0 ± 22.4% of unstimulated GPVI levels, respectively (± 

SD, n=8-12). The appearance of a band of an ~14 kDa major and 10 kDa minor band 

corresponding to the GPVI remnant was also seen in 50% of donors (Figure 4.4 and 

4.5A). The basis for the variation between donors in formation of the GPVI tail remnant 

is not known, although this could be related to variation of donor responses to thrombin, 

but indicates that in some donors, it may undergo further cleavage.  Thrombin (1 U/ml) 

also induced a similar level of shedding of GPVI when measured by flow cytometry to 

40.0 ± 26.5% of controls (n = 4; Figure 4.4B). These results demonstrate that thrombin 

but neither ADP nor PAR-1 peptide induces shedding of GPVI indicating that shedding 

is not mediated by activation of the Gi- and Gq-coupled GPCRs.  

 

4.2.4 Fibrin stimulation of platelets induces GPVI shedding  

The mechanism of shedding of GPVI by thrombin was further investigated.  Two 

possibilities for thrombin-induced shedding were considered, namely either that   
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Figure 4.5 – Fibrin stimulation of platelets induces GPVI shedding. A(i) Western 

blot for GPVI after washed platelets (5x10
8
/ml) were stimulated with fibrinogen (100 

µg/ml), thrombin (1 U/ml) in the presence of fibrinogen (polymerised fibrin) and fibrin 

formed in the presence of GPRP (10 mM) and under stirring conditions for 1 h at 37
o
C 

in the presence of eptifibatide (9 µM) and CaCl2 (1 mM). GPRP was addded with 

fibrinogen 3 min before thrombin stimulation to prevent fibrin polymerisation. 

Representative figure of stimulations from 5 donors. A(ii) Quantitation analysis of 

GPVI shedding induced by different forms of fibrin. % of GPVI represents levels of 

intact GPVI remaining after stimulation compared to unstimulated GPVI levels. Results 

are shown as mean ±SEM. One-way ANOVA performed with Bonferroni post-test to 

compare fibrin-induced shedding in the presence of GPRP and fibrinogen alone to 

unstimulated samples, *p<0.05 **p<0.01 ***p<0.005, n=5 donors. B(i) Western blot 

for GPVI after stimulation with thrombin (1U/ml) in the presence of fibrinogen (100 
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µg/ml; polymerised fibrin) in the presence of inhibitors under same conditions as 

before. Representative figure of 5 separate donors. GI254023 (2 µM) and GM6001 (10 

µg/ml) were added 5 min before fibrinogen and thrombin stimulation. B(ii) Quantitation 

GPVI shedding analysis of fibrin in the presence of sheaddase inhibitors (GI254023: 2 

µM, GM6001: 10 µg/ml), GPRP (10 mM) and dasatinid (10 µM) and PRT (10 µM). % 

of GPVI represents levels of intact GPVI after stimulation compared to unstimulated 

GPVI levels. Results are shown as mean ±SEM. A two-tailed t-test was performed to 

show significant differnece between fibrin-induced shedding with and with out 

inhibitors. n=3; *p<0.05 **p<0.01 ***p<0.005. 
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thrombin can directly cleave GPVI or that cleavage results from activation of GPVI by 

fibrin. There is however no cleavage site in GPVI for thrombin. Therefore, this favours 

the latter option that fibrin, formed from cleavage of fibrinogen (released from platelets) 

by thrombin, mediated shedding. 

 

To further investigate the mechanism of shedding of GPVI, platelets were stimulated 

with thrombin in the presence of fibrinogen (100 µg/ml) to ensure that a constant 

amount of fibrin was formed between experiments.  In the presence of fibrinogen, 

thrombin induced a marked reduction in GPVI and stimulated formation of a doublet 

corresponding to the GPVI tail remnant, with the lower band being prominent in some 

studies (Figure 4.5Ai).  Fibrinogen alone did not induce GPVI shedding (Figure 4.5Ai). 

In the presence of fibrinogen, thrombin induced a greater level of GPVI shedding than 

in the absence of fibrinogen and was similar to that induced by A23187 (31.4 ± 10.9%, 

47.6 ± 20.6% and 29.5 ± 18.1% of unstimulated GPVI, respectively; Figure 4.5Aii).  

 

Fibrin can be present in a monomeric form and polymerised form. To determine if 

thrombin induces cleavage of GPVI through monomeric or polymerised fibrin, 

polymerisation of fibrin was inhibited by addition of GPRP (10 mM). In the presence of 

GPRP, there was a marked reduction in the level of GPVI cleavage (Figure 4.5A&Bi) 

suggesting monomeric fibrin does not induce GPVI shedding in platelet suspensions. 

 

4.2.5 D-dimers do not induce shedding of GPVI 

Fibrin is degraded through activation of fibrinolytic pathways. D-dimers are a 

degradation product of fibrin breakdown and can be released into the circulation  
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Figure 4.6 – Platelet stimulation with D-dimer does not induce GPVI shedding. 

A(i) Western blot for GPVI after washed platelets (5x10
8
/ml) were stimulated with 

different concentrations of D-dimer (5-10 µg/ml) under stirring conditions for 1 h at 

37
o
C in the presence of eptifibatide (9 µM) and CaCl2 (1 mM). A23187 (10 µM) used 

as positive control. Representative figure of 3 donors. A(ii) Quantitation analysis of 

GPVI shedding induced by D-dimers. % of GPVI represents levels of GPVI remaining 

after stimulation compared to unstimulated GPVI levels. Results are shown as mean 

±SEM, n=3-5. One way ANOVA with Bonferroni post-test was performed to compare 

shedding to unstimulated platelets, ***p<0.005. 
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(Ohlmann et al., 2006). To determine if this fibrin degradation product can also induce 

GPVI shedding, platelets were stimulated with D-dimers (5-10 µg/ml) and blotted for 

GPVI. D-dimers had no effect on GPVI shedding. There was no reduction in GPVI and 

no appearance of the tail remnant (Figure 4.6A), demonstrating that D-dimers do not 

induce shedding of GPVI. 

 

4.2.6 Multiple sheddases are involved in fibrin-induced GPVI shedding 

Collagen-induced GPVI shedding has previously been shown to be predominately 

through the activity of the sheddase ADAM10 (Facey et al., 2016), with a partial role 

for ADAM17 in mice  (Bergmeier et al., 2004).  To determine if this was the case for 

fibrin-induced GPVI shedding various inhibitors known to reduce GPVI shedding, 

including collagen-mediated GPVI shedding were used. GM6001, a general 

metalloproteinase inhibitor, which inhibits ADAM10 and ADAM17, and the specific 

ADAM10 inhibitor, GI254023, were added to fibrinogen before thrombin stimulation. 

GM6001 reduced GPVI shedding by thrombin in the presence of fibrinogen, with less 

reduction in GPVI being observed and less tail remnant expressed (Figure 4.5Bi). To 

determine if ADAM10 was the major contributor to this reduction, GI254023, the 

ADAM10 inhibitor, was added before stimulation. In the presence of GI254023, only 

the upper band of the doublet GPVI tail was observed suggesting that the lower band is 

formed by the action of a second sheddases (Figure 4.5Bi). Fibrin-induced GPVI 

shedding was significantly reduced in the presence of GM6001 (*p<0.05), but there was 

no significant difference in fibrin-induced stimulation in the presence of GI24023 

(Table 4.1 and Figure 4.5Bii). This suggests that other sheddases other than ADAM10 

are involved in fibrin-induced GPVI shedding. DAPT (10µM), a γ-secretase inhibitor, 
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also had no effect on the degree of fibrin-induced GPVI shedding (42.0 ± 15.8% of 

unstimulated GPVI ± SD, data not shown). Overall these results suggest multiple 

sheddases and alternative mechanisms are involved in fibrin-induced shedding.    

 

4.2.7 GPVI signalling does not mediate fibrin-induced GPVI shedding  

Ligand-mediated shedding of GPVI, such as collagen-induced shedding, can be blocked 

in the presence of inhibitors of Src and Syk kinases (Stephens et al., 2005). To 

investigate if this was a similar result in the presence of thrombin and fibrin 

polymerisation, the Src and Syk inhibitors, dasatinib (10µM) and PRT060318 (10µM) 

were added before fibrinogen and thrombin stimulation. There was no difference was 

seen in the amount of GPVI shed by thrombin/fibrinogen in the presence of dasatinib 

and PRT060318 compared to fibrin alone (38.1 ± 12.1% and 21.6 ± 1.25% compared to 

37.3 ± 13.7% respectively, Figure 4.5Bii and table 4.1). This demonstrates that GPVI 

signalling does not mediate shedding by fibrin.  

 

4.2.8 Soluble GPVI is detectable in patients with chronic inflammation including 

rheumatoid arthritis and inflammatory bowel disease  

The results above have shown GPVI shedding occurs after platelet stimulation with 

GPVI ligands including collagen and fibrin. The cleavage of GPVI results in a 55kDa 

soluble fragment, referred to as sGPVI being released into the plasma. An aim of this 

study was to show sGPVI can be detected by sGPVI ELISA (Al-Tamimi et al., 2009) in 

a range of inflammatory conditions, therefore, sGPVI was measured in patients with 

rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and patients that have  
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Table 4.1 – Inhibitors effects on fibrin-induced GPVI shedding. Quantitation 

analysis of GPVI shedding induced by fibrin in the presence of sheaddase inhibitors 

(GI254023: 2 µM, GM6001: 10 µg/ml), GPRP (10 mM) and Src and Syk inhibitors 

(dasatinib: 10 µM, PRT: 10 µM). % of GPVI remaining compared to unstimulated 

samples, mean shown as ±SD.  A two-tailed t-test was performed to compare fibrin-

induced shedding with and without inhibitors to unstimulated platelets. T-test also 

performed to show significant differnece between fibrin-induced shedding with and 

with out inhibitors.  *p<0.05 **p<0.01 ***p<0.005 

  

  

Condition 

% of GPVI 

of 

unstimulated 

samples  

 Mean (± 

SD) 

Significance to 

unstimulated samples 

Significance to Fib + 

Thr samples 

Unstimulated  100 - - <0.0001 ***p<0.001 

Fibrinogen 82.2 (34.3) 0.1270 N.S. 0.0082 **p<0.001 

Fibrinogen + 

Thrombin 
31.4 (10.85) <0.0001 ***p<0.001 - - 

Fibrinogen 

Thrombin + 

GPRP 

61.8 (23.6) 0.0223 *p<0.05 0.0422 *p<0.5 

Fibrinogen 

Thrombin + 

GI254023 

43.2 (32.13) 0.0030 **p<0.01 0.409 N.S. 

Fibrinogen 

Thrombin + 

GM6001 

49.4 (10.75) 0.0005 ***p<0.001 0.040 *p<0.5 

Fibrinogen 

Thrombin + 

Dasatinib 

36.4 (4.59) 0.0020 **p<0.01 0.141 N.S. 

Fibrinogen 

Thrombin + 

PRT060318 

25.1 (6.51) 0.0020 **p<0.01 0.275 N.S. 
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undergone thermal injury and septic patients. RA is a chronic inflammatory condition, 

associated with platelet activation, predominately effecting and causing damage to 

joints (Del Rey et al., 2014). Plasma was obtained from 10 RA patients and compared to 

healthy controls. sGPVI levels were significantly in RA patients compared to HCs 

(***p<0.005; Figure 4.7A).  

 

sGPVI was also measured in IBD patients, another chronic inflammatory condition 

linked with platelet activation.  sGPVI was detected in the plasma of 42 IBD patients 

consisting of either active/inactive Crohn’s disease and active/inactive ulcerative colitis 

(UC). sGPVI levels were not raised in patients with active/inactive Crohn’s disease and 

inactive UC compared to HCs, with a similar distribution of sGPVI levels being 

observed (Figure 4.7B). sGPVI was only significantly elevated in patients with active 

UC, with higher levels then both inactive UC patients and HCs (*p<0.05 and **p<0.01 

respectively; Figure 4.7B). Active UC patients also had a wider distribution range of 

sGPVI levels compared to controls.  
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Figure 4.7 - sGPVI is elevated in patients with chronic inflammatory conditions 

including rheumatiod arthritis (RA) and Ulcerative Colitisis (UC). A) sGPVI levels 

measured by sGPVI ELISA in 10 RA patients compared to 10 HCs. Mann-Whitney 

statistical test was performed to compare sGPVI levels of RA patients and HCs, 

***p<0.005: median shown. B) sGPVI levels of inflammatory bowel disease (IBD) 

patients with inactive, active Crohn’s disease (n=13, n=4), inactive and active UC 

(n=12, n=13), compared to HCs (n=20). Mann-Whitney statistical test was performed to 

compare sGPVI levels of different IBD patient groups and HCs, *p<0.05, **p<0.01: 

median shown. C) sGPVI levels of IBD patients with haemoglobin (Hgb) levels of 

above or below 120 g/l (n=28, 13 respectively) compared to HCs (n=20). A Kruskal-

Wallis statistical test with Dunn’s multiple comparisons was performed to compare the 
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three patient groups (**p<0.01, ***p<0.005). D) Table of statistical values after 

Spearman’s rank correlation performed to examine correlations between sGPVI levels 

and clinical parameters, including age, Hgb levels, platelet count, ferritin levels (CRP 

represents C-Reactive protein levels). Significant correlation is observed when p<0.05. 

A Spearman’s rank value of 0.3 gives weak correlation, 0.5 moderate and above 0.7 

represents strong correlations.  
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Table 4.2 - Patient parameters: Inflammatory Bowel Disease. IBD patient parameters and 

healthy controls (HC). Patients were categorised into the types of IBD, Crohn’s disease or 

ulcerative colitis (UC) and diagnosed with inactive and active inflammatory flares based on 

clinical diagnoses, C-Reactive Protein (CRP) levels and endoscopy results. Results shown as 

mean with inter-quartile range (IQR).  
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sGPVI correlations with other IBD clinical parameters were also investigated. There 

was no correlation between platelet count and sGPVI levels in any of the IBD patient 

groups (Figure 4.7B). When analysing the IBD patients as a whole cohort, C-reactive 

protein levels of the patients also did not correlate with sGPVI levels. There was also no 

significant correlation between age and sGPVI levels in the IBD patients (Figure 4.7B), 

which supports previous findings in other studies (Al-Tamimi et al., 2011a). Iron 

deficiency anaemia (IDA) is commonly associated with IBD cases, with around 17% of 

IBD patients having IDA, increasing in prevalence to around 60% when studying 

hospitalised IBD patients (Guagnozzi and Lucendo, 2014, Bergamaschi et al., 2010). 

Iron deficiency can affect disease severity in IBD patients and chronic gastrointestinal 

bleeding has been proposed as a cause. To establish if there are associations between 

platelet activation and iron deficiency in IBD patients, sGPVI correlations with 

haemoglobin (Hgb) levels and ferritin levels were studied. A weak correlation was seen 

with sGPVI and Hgb levels (Spearman’s rank = -0.3; figure 4.7D) and a moderate 

correlation of sGPVI levels with ferritin levels of patients with a C-Reactive Protein 

level greater than 5 (Spearman’s rank = -0.53). When separating IBD patients into 

groups of low Hgb levels (<120g/l) and high Hgb (>120/l) there was a significant 

difference, with patients with low Hgb have significantly higher levels of sGPVI 

compared to patients with higher Hgb levels and HCs (**p<0.01 ***p<0.005, figure 

4.7C).  
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4.2.9 Soluble GPVI is detectable in patients with thermal injury and raised in 

patients that develop sepsis  

sGPVI was measured in patients who have undergone thermal injury to establish sGPVI 

kinetics in an inflammatory condition over time. Burns patients were recruited as part of 

the Scientific Investigation of the Biological Pathways Following Thermal Injury in 

Adults (SIFTI) study, (Table 4.3; (Hampson et al., 2016)). This was a multi-centre 

prospective observational study which recruited patients with burns of various size from 

1.5-95% total body surface area (TBSA). sGPVI was detected in 99 patients and were 

subdivided into non-septic and septic groups according to whether they met the 

American Burns Association (ABA) sepsis criteria (Greenhalgh et al., 2007) had a 

positive culture and/or an antibiotic response. 

 

In this patient cohort sGPVI levels were measured at regular intervals from Day 1 (D1) 

to Month 12 (M12) in 99 burns patients. There was an increase in sGPVI levels from 

D1 until D14, where levels peaked in the majority of patients before declining back 

down to levels of HCs by M12 (Figure 4.8A and Table 4.4). With each time point there 

was a wide distribution of sGPVI levels, with some patients having significantly high 

levels than average (Figure 4.8A). However, statistical significance above healthy 

controls was only reached at D14 (***p<0.005; Figure 4.8A and Table 4.4). There was 

only weak correlation between sGPVI levels and total body surface area at D1 

(Spearman’s rank = 0.28, ***p<0.005).  
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Table 4.3. Patient parameters: thermal injury patients with and without sepsis. Patient 

parameters listed for thermal injury patients and healthy controls (HC). For patient recruitment 

details see Hampson et al. (2016). Sepsis diagnosis made when at least 3 of the criteria agreed 

in 2007 by the American Burn Association (ABA) were met along with either a positive 

bacterial culture or evidence of clinical antibiotic response. (Hampson et al., 2016, Greenhalgh 

et al., 2007). MOF represents Multiple Organ Failure based on a Denver Post-injury MOF score 

>3 on two consecutive days involving two organ systems (Kraft et al., 2014). %TBSA, 

percentage of total body surface area. IQR, inter-quartile range.  

 

 

  

Parameter HC All  Septic Non-septic  

Number of 

patients 
15 99 57 42 

Age, mean 

(min-max) 
29 (20-47) 49 (16-93) 49 (16-91) 49 (16-93) 

Gender M:F 
9:6 61:38 36:21 25:17 

% TBSA: Mean 

(IQR) 
- 24 (8-38) 34 (16-51) 12 (6-21) 

Survival Y:N 

(%) 
- 78:21 (79) 38:19 (67) 40:2 (95) 

MOF Y:N (%) 
- 25:71 (21) 23:32 (42) 2:39 (5) 
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Figure 4.8 - sGPVI is detectable in patients with thermal injury and raised in 

patients who experience at least one episode of sepsis. A) sGPVI levels of patients 

with thermal injury (n=99) measured in samples taken from Day 1 (D1) to month (M12) 

compared to HCs (n=15). Mann-Whitney statistical test was performed to compare each 

patient time point to HC. ***p<0.005: median shown. B(i) Peak sGPVI levels in septic 

and non-septic patients with thermal injury and HCs. Sepsis diagnoses as meeting at 

least 3 of the American Burn Association (ABA) sepsis criteria and a positive culture. 

Mann-Whitney statistical test was performed to compare sGPVI levels of septic patients 

to non-septic patients and HCs, **p<0.01 ***p<0.005: median shown. B(ii) 



154 
 

Comparisons of sGPVI levels of septic patients compared to non-septic patients. Mann-

Whitney statistical test was performed to compare sGPVI levels of septic and non-septic 

***p<0.005: median shown. C(i) Longitudinal analysis using a linear mixed-effects 

model examining the relationship between sGPVI and time according to sepsis status. 

Line represents mean predicted effects and shaded area represents 95% confidence 

interval. B(ii) Table showing the discriminatory performance of GPVI for predicting 

sepsis on different sample days after logistic regression analysis. Discriminatory power 

represented as area under the receiver operator characteristic curve (AUROC) with a 

95% confidence interval. A value of 0.9 represents a strong predictive value. 
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Sepsis was a common complication in thermal injury patients with a 56.7% incidence. 

Separating into septic and non-septic groups revealed a significant elevation in sGPVI 

levels at D7, which is associated with the time point were sepsis manifests in the 

patients (***p<0.005; Figure 4.8Bii).  There is a limited time window in sGPVI 

elevation, which could reflect the different time course of sepsis onset. Peak levels of 

sGPVI were significantly higher in the septic patients compared to those non-septic 

patients and HCs (**p<0.01 ***p<0.005; Figure 4.8Bi).  

 

To establish if sGPVI levels could be a potential diagnostic marker for sepsis 

progression, longitudinal statistical analysis and prediction models were performed, 

showing curves representing sGPVI levels of septic or non-septic patients over time 

(Figure 4.8C). The analysis shows crossovers of sGPVI levels and 95% confidence 

intervals of the septic and non-septic patients and a discriminatory predictive value 

(represented as an area under the receiver operating characteristic (AUROC) curve 

value) of 0.73 (0.61-0.84; 95% confidence interval), whereas a value of 0.9 is a strong 

predicator (Figure 4.8C), therefore suggesting sGPVI is not a good diagnostic predictor 

of sepsis progression. 

 

sGPVI levels could be influenced by platelet count. Previous burn’s studies have 

reported large drops in platelet counts at D3 post injury, which is followed by a rebound 

thrombocytosis phase (Marck et al., 2013). Figure 4.9A shows the platelet kinetics for 

non-septic and septic patients.  The platelet counts reached a nadir at D3 and then 

rebounded to a peak between D14 for non-septic and D21 for septic patients (Figure 4.9 

A&B). To establish there was no masking of low GPVI levels at the earlier time point 

by a low platelet count, sGPVI levels were normalised to platelet count (Figure 4.9C).  
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Figure 4.9 - sGPVI is elevated in patients with thermal injury who develop sepsis 

even when platelet count is taken into effect. Platelet counts of patients with thermal 

injury split into (A) non-septic and (B) septic groups, measured using the Sysmex XN-

1000-Hematology Analyser, over the full time course, from Day 1 (D1) to month 

(M12): median shown with interquartile range. C) sGPVI levels normalised to platelet 

count of septic and non-septic thermal injury patients. Mann-Whitney statistical test was 

performed to compare sGPVI levels of septic patients and non-septic burns patients. 

*p<0.05, **p<0.01 ***p<0.005 and median shown. 
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Table 4.4–sGPVI levels and platelet count at the different time points of patients with thermal injury. Median, mean values (±standard 

error of mean) and inter-quartile (IQR) range of sGPVI levels (ng/ml) and platelet counts (x10
9
/l) of patients at the different time points (Day 

1- Month 12). HC=Healthy control. 

  

Time 

point 

sGPVI levels ng/ml Platelet count x10
9
/l 

N 

number 
Median IQR Mean ±SEM Significance to HC 

N 

number 
Median IQR 

Mean 

±SEM 
Significance to M12 

D1 71 37.6 22.3-52.4 47.7 (4.84) 0.109 N.S. 64 202 182-265 216 (10.4) 0.124 N.S. 

D3 88 29.8 17.2-52.4 39.9 (3.79) 0.430 N.S. 79 137 99-203 149 (6.63) <0.0001 ***p<0.005 

D7 77 32.7 19.9-47.9 42.6 (4.83) 0.237 N.S. 68 202 151-281 223 (13.7) 0.13 N.S. 

D14 74 61.3 34.6-102.7 71.3 (6.52) 0.0005 
***p<0.00

5 
69 469 300-615 481 (27.5) <0.0001 ***p<0.005 

D21 61 50.1 29.0-85.9 60.9 (5.55) 0.0057 *p<0.05 57 501 330-600 507 (32.6) <0.0001 ***p<0.005 

D28 62 38.2 16.7-68.5 47.3 (5.30) 0.148 N.S. 55 367 237-467 366 (24.0) 0.0034 **p<0.005 

M2 44 27.6 18.5-55.5 44.5 (6.90) 0.537 N.S. 35 333 256-424 359 (21.6) 0.0006 ***p<0.005 

M3 34 23.6 12.9-43.9 35.9 (7.37) 0.770 N.S. 22 301 245-388 325 (19.9) 0.0018 **p<0.005 

M6 27 30.8 19.4-45.7 36.4 (3.84) 0.294 N.S. 20 257 227-310 271 (15.6) 0.148 N.S. 

M12 30 29.0 17.3-42.1 36.4 (6.05) 0.622 N.S. 19 228 198-259 251 (19.3) - - 

HC 15 27.2 17.5-37.1 23.0 (5.21) - - - - - - - - - 
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From this there were significantly elevated sGPVI levels in septic patients at D3, D7 

and D14 compared to non-septic patients (**p<0.01, ***p<0.005 and *p<0.05 

respectively: Figure 4.9C). D28 also showed significant elevation in sGPVI between the 

septic groups (*p<0.05). 

 

4.2.10 Soluble GPVI measurements in patients with sepsis  

sGPVI were elevated in thermal injury patients that developed sepsis. To further the 

study of platelet activation in sepsis, sGPVI was measured in different sepsis groups, 

including patients with sepsis, severe sepsis, and patients with acute respiratory distress 

syndrome (ARDS). These patient samples were kindly given by the Dr D. Thickett’s 

respiratory group.  Initially, there seemed to be elevated sGPVI levels in all septic 

groups to the level of the heparin-induced thrombocytopenia (HIT) patient sample, 

which was used as a positive control (Figure 4.10A). However, these patients did not 

show any significant elevation above HCs, which were also much higher than the usual 

sGPVI levels observed with the other HCs. This proposed questions as to why the 

patient groups and HC gave higher levels. It was eventually found that the sepsis patient 

sample preparation differed as different centrifugation speeds were used. Blood was 

then collected from more HCs and spun at the different centrifugation speeds to 

establish any differences. Samples spun at 560 g gave significantly higher levels than 

double spun samples at the usual 2500 g speed (**p<0.01: Figure 4.10B), suggesting 

there was an issue with sample preparation.  
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Figure 4.10 - sGPVI is not elevated in septic patients. A) sGPVI levels measured by 

sGPVI ELISA in septic patients; S=sepsis (n=20), VS= very septic (n=20) and ARDS= 

acute respiratory disease syndrome (n=22) and HCs (n=22). HIT= heparin-induced 

thrombocytopenia patient (n=1: positive control). Mann-Whitney statistical test was 

performed to compare sGPVI levels: median shown. B) sGPVI levels of HC samples 

spun at different centrifugation speeds (n=4). Unpaired T-test statistical test was 

performed to compare speeds, **p<0.01: median shown.  
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4.3 Discussion  

The major platelet receptor for collagen, glycoprotein VI (GPVI) can undergo 

proteolytic cleavage after activation releasing a soluble GPVI fragment (55-kDa), 

known as sGPVI into the plasma (Gardiner et al., 2004). sGPVI is a recognised marker 

of platelet activation in thrombotic conditions (Al-Tamimi et al., 2011a, Wurster et al., 

2013). Previous studies have shown ligand-mediated mechanisms behind GPVI 

shedding in response to platelet stimulation by known GPVI ligands, collagen and CRP 

(Gardiner et al., 2004, Bergmeier et al., 2004, Stephens et al., 2005). Moreover, 

activation of ITAM receptors FcγRIIa and the hemITAM receptor, CLEC-2, can also 

induce GPVI shedding (Gardiner et al., 2008b, Gitz et al., 2014). This study firstly 

wanted to confirm these findings and extend this to investigate if signalling through 

GPCRs also mediates GPVI shedding. GPVI ligands, collagen and CRP did mediate 

GPVI shedding, with increased shedding seen over time, reducing GPVI levels to less 

than half of GPVI in unstimulated samples.  Signalling through GPCRs such as, P2Y1 

and PAR-1 did not induce GPVI shedding after platelet stimulation by ADP or PAR-1 

peptide (SFLLRN). Using more GPCR ligands, such as PAR-4 peptide, arachidonic 

acid or U46619 to stimulate platelets would be required to further confirm that 

signalling through GPCRs do not induce GPVI signalling.  

 

Thrombin was able to induce GPVI shedding to levels observed with the GPVI ligands, 

However, there was marked variation between donors in the thrombin-mediated 

shedding, with reduction in GPVI seen with some and appearance of the 10-17-kDa 

GPVI remnant observed in 50% of donors and others showing little shedding. This 

supports findings from previous studies where some showed thrombin inducing 
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shedding (Stephens et al., 2005) and others showed thrombin is a poor mediator of 

GPVI shedding (Gardiner et al., 2004). There are two potential explanations for the 

variation observed. Firstly, thrombin could directly cleave GPVI or there is wide 

variation in fibrinogen levels released from donor platelets after stimulation, which 

could lead to fibrin formation and shedding. Thrombin-mediated shedding did increase 

over time, suggesting more fibrinogen release and consequent shedding. As GPVI lacks 

of cleavage site for thrombin, which argues against direct cleavage by the protease. 

Overall thrombin-mediated shedding is not a result of signalling through PAR receptors 

and other mechanisms are involved.    

 

Recent work from our lab (including work mentioned before; (Alshehri et al., 2015a) 

and from Jandrot-Perrus group (Mammadova-Bach et al., 2015) have discovered that 

fibrin is now GPVI ligand, which activates GPVI and contributes to thrombus 

stabilisation. It was previously unknown whether fibrin can also induce GPVI shedding. 

This part of the study demonstrated that polymerised fibrin, where platelets were 

stimulated with thrombin in the presence of fibrinogen induced GPVI shedding to a 

similar degree observed with the potent shedder, A23187 and other GPVI ligands. 

Fibrin-induced shedding was independent of the fibrinogen with integrin αIIbβ3 

interaction with shedding still being observed in the presence of the integrin blocker 

eptifibatide.  

 

The different mechanisms behind fibrin-induce shedding were then assessed. GPVI-

shedding usually involves action of sheddases in the metalloendopeptidase family, a 

disintegrin and metalloproteinase (ADAMs)  with shedding mediated by GPVI ligands 
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predominately being ADAM10 (Facey et al., 2016) dependent with a minor role for 

ADAM17 in mice (Bergmeier et al., 2004). Fibrin-induced shedding was shown to be 

dependent on multiple sheddases, presumably ADAM17 among others and not just 

through the activity of ADAM10, as ADAM10 inhibition only partially reduced 

shedding and a broad MMP inhibitor, GM6001 was needed for a greater reduction of 

GPVI shedding, suggesting other sheddases and potential other mechanisms are 

involved.   

 

The conformational state of fibrin formed during stimulation seemed to have a major 

effect on GPVI shedding. The monomeric soluble form of fibrin, which is the 

predominant form when in the presence of GPRP, a peptide which inhibits 

polymerisation, only induced minimal GPVI shedding in comparisons with polymerised 

fibrin. Fibrin-induced shedding in suspension was observed with polymerised fibrin and 

not monomeric. Interestingly monomeric fibrin was shown to bind GPVI and induce 

activation when immobilised (Alshehri et al., 2015a). Fibrin fragments, such as D-

dimers, released after fibrin degradation were also not able to induce GPVI shedding.    

 

Ligand-mediated GPVI shedding by GPVI agonists has previously been shown to be 

dependent on receptor activation and signalling (Stephens et al., 2005).When inhibitors 

such as PP2 were added to inhibit signaling proteins downstream of GPVI, shedding 

was prevented.  To establish if this was the case for fibrin-induced GPVI shedding, 

inhibitors for Src and Syk kinases were added before fibrinogen and thrombin 

stimulation. Fibrin-induced GPVI shedding was not reduced in the presence of src and 

Syk tyrosine kinases inhibitors suggesting that GPVI signaling is not required for 
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shedding to occur and fibrin-induced GPVI shedding is not ligand-mediated shedding. 

Moreover, the GPRP inhibition data showing that only polymeric fibrin induces 

shedding, suggests there is an alternative, yet undiscovered mechanism involved in 

fibrin-induced GPVI shedding, as observed during shear-induced or FXa-induced 

shedding (Al-Tamimi et al., 2011b, Al-Tamimi et al., 2012). Measuring GPVI shedding 

by fibrin under flow conditions at different shear rates and measuring GPVI shedding in 

the presence of Factor Xa inhibitors would give future directions to test whether shear 

and FXa has a role in fibrin-mediated GPVI shedding.  

 

The findings that GPVI can be shed in response to fibrin stimulation of platelets as well 

as collagen provides an alternative physiological agonist that could cause sGPVI to be 

released into the plasma after GPVI shedding. sGPVI has previously been shown to be a 

platelet activation marker in thrombotic associated conditions (Yamashita et al., 2014a, 

Wurster et al., 2013, Al-Tamimi et al., 2011a). This study has extended this to show 

sGPVI can be a platelet activation marker in a range of different inflammatory 

conditions. sGPVI was detected in two chronic inflammatory conditions, rheumatoid 

arthritis (RA) and inflammatory bowel disease (IBD). Both these inflammatory 

conditions have episodes of flare ups followed by remission. sGPVI levels were 

elevated above healthy controls (HCs) in RA patients. As RA is associated with platelet 

activation (Del Rey et al., 2014, Boilard et al., 2010). sGPVI is therefore a potential 

platelet activation marker in patients with inflammatory flare ups.  sGPVI levels were 

also elevated in patients with active ulcerative colitis (UC), but not Crohn’s disease nor 

inactive UC patients. The majority of the Crohn’s patients had lower C Reactive protein 

levels than active UC patients in this cohort, which could be a potential explanation for 
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the wider distribution of sGPVI levels observed and suggests the activate UC patients 

had more severe inflammation than the Crohn’s patients.  

 

sGPVI correlations with various clinical parameters of IBD patients were studied. There 

was no significant correlation with age and sGPVI,  supporting findings of previous 

sGPVI studies (Al-Tamimi et al., 2011a) . Of the other parameters tested, haemoglobin 

levels and ferritin levels of patients with active inflammation gave the strongest 

correlations, with sGPVI levels being negatively correlated to both. These parameters 

suggest there is a potential link between platelet activation and iron deficiency.  Patients 

with C-reactive protein levels greater than 5, had greater levels of inflammation, 

reduced ferritin levels and higher sGPVI, suggesting links between inflammatory status 

causing iron deficiency, which leads to increased platelet activation. Iron deficiency 

anaemia (IDA) is commonly associated with IBD cases, with around 17% of IBD 

patients developing IDA (Guagnozzi and Lucendo, 2014, Bergamaschi et al., 2010) and 

affects disease severity. Elevated sGPVI levels in iron-deficient patients may potentially 

arise from platelet activation during times of chronic gastrointestinal bleeding, where 

blood is lost from inflamed luminal surfaces leading to the development of IDA. GPVI 

plays a critical role in maintaining vascular integrity at sites of inflammation (Gros et 

al., 2015a) and could be cleaved once activated by fibrin at these inflamed areas, 

increasing sGPVI levels. sGPVI may therefore represent a novel marker to predict 

development of IDA in IBD patients. However, more patients with Crohn’s disease and 

UC would need to be recruited and full medical history determined to confirm whether 

the higher sGPVI levels in these patients are a result of iron deficient and not other 

factors such as levels of inflammation, C reactive protein levels or medication taken. 
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The study also looked at sGPVI kinetics longitudinally in patients with thermal injury. 

sGPVI levels were measured in 99 patients from Day 1 post initial injury to Month 12. 

sGPVI was significantly elevated above HCs at Day 14. Surprisingly, sGPVI levels 

were not raised initially at early time points (Day 1-3) post injury, where it would be 

expected that with more tissue damage would occur and presumably more collagen 

exposure to allow platelet activation. This suggests that only a fraction of platelets were 

activated by collagen exposed after damage and other mechanism, potentially fibrin, 

was involved for the platelet activation observed at later time points.  

 

An alternative explanation for low levels of sGPVI initially post injury is that elevations 

may be masked by the low platelet counts observed at Day 3. To address this, sGPVI 

levels were normalised to the platelet count. This then showed that sGPVI levels 

became elevated at Day 3 in septic patients, suggesting that some GPVI shedding is 

mediated through collagen exposed after damage. However, sGPVI levels remained 

elevated in the septic patients at Day 7 and 14.  Collagen exposure at these time points 

would be minimal as the damaged area would undergo recovery.  There was also only 

weak correlation between sGPVI levels and burn injury severity, suggesting sGPVI 

released at these time points was mediated through alternative mechanism associated 

with sepsis development. Overall sGPVI levels were significantly higher in those 

patients that developed sepsis.  sGPVI did only have a moderate predictive value of 

0.73 for predicting sepsis alone, where a strong predictive value would range between 

0.9 and 1.0. The discriminatory power for predicting sepsis is likely to be increased 

when combined with other sepsis markers, such as cell-free DNA, neutrophil function 

or immature granulocytes, which have already been shown to be good prediction 
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markers of sepsis (Hampson et al., 2016). sGPVI elevations observed in the septic 

patients post injury is potentially due to platelet activation through alternative 

mechanisms. The main plausible explanation for elevation of sGPVI, where there is 

minimal activation of platelets by collagen, is that during disseminated intravascular 

coagulation (DIC) seen in sepsis (Semeraro et al., 2010a, Levi et al., 2003), platelets 

become activated by many DIC associated mechanisms, leading to the formation of 

thrombi encompassed by polymerised fibrin networks, which then induce GPVI 

shedding after activation. Correlating plasma fibrinogen levels or d-dimer levels (a 

breakdown product released after fibrinolysis), of patients with thermal injury and 

sepsis with sGPVI levels, would help provide support in the future as to if the elevations 

of sGPVI observed were mediated through fibrin-induced GPVI shedding. sGPVI 

measurements in a other patient cohorts, where increased fibrin formation is clinical 

characteristic such as patients with deep vein thrombosis (DVT), would be helpful in 

supporting the hypothesis that fibrin can mediate GPVI shedding, leading to increased 

sGPVI levels observed in these patients.  

 

sGPVI levels were also measured in the plasma of patients with various forms of sepsis, 

including sepsis, severe sepsis, and acute respiratory distress syndrome (ARDS). No 

elevations were observed in the septic patients compared to HCs, although all samples 

had sGPVI levels raised above all the other samples in the other patient cohorts. 

Unfortunately, this resulted due to the different sample preparation as different 

centrifugation speeds were used. This affected the results as samples spun at 560 g gave 

significantly higher levels than the usual double spun samples at 2500 g when blood 

was collected and spun following this observation. This suggested an artefact produced 
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from the sample preparation, which caused the increase in sGPVI and not elevated 

levels due to sepsis. It would therefore be of great interest to repeat the sGPVI 

measurements in the various sepsis patient plasma cohorts to establish if sepsis 

development can cause platelet activation and elevated sGPVI levels.  

 

Overall the findings in this chapter here provide more support for sGPVI as a platelet 

activation marker in certain inflammatory conditions, including RA, active UC patients 

and patients with thermal injury. sGPVI can be linked to some secondary complications 

such as iron deficiency in IBD patients and sepsis in certain patients following thermal 

injury. The mechanisms behind the GPVI cleavage resulting in the release of the soluble 

GPVI fragment into the plasma were extensively studied. Signalling through GPVI and 

other ITAM containing receptors, but not GPCR activation can induced GPVI shedding. 

Fibrin is a newly discovered GPVI agonist that can also induce GPVI shedding through 

multiple mechanisms, including the activity of multiple sheddases, including ADAM10 

and ADAM17. Ligand-mediated mechanisms behind GPVI shedding by fibrin did not 

seem to have a predominant role, whereas fibrin conformational state having the most 

important role in mediating fibrin-induced GPVI shedding. Polymerised fibrin and not 

monomeric fibrin, or fibrin degradation productions can induce GPVI shedding.  Fibrin 

along with collagen can mediate shedding and be physiological agonists involved in 

platelet activation in inflammatory conditions. 
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CHAPTER 5 

PODOPLANIN UPREGULATION IN 

INFLAMMATORY SETTINGS  
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5.1 Introduction  

The role of platelets is predominately in haemostasis and thrombosis, with emerging 

roles in development, angiogenesis, and maintaining vascular integrity (Bertozzi et al., 

2010, Kisucka et al., 2006, Gros et al., 2015a). The roles of platelets in infection and 

inflammation are now also being extensively studied. This chapter will look at potential 

roles of platelets in inflammation through studying the podoplanin/ C-type lectin-like 

receptor 2 (CLEC-2) axis.  

 

CLEC-2 is an important platelet-activating receptor involved in haemostasis and 

thrombosis (May et al., 2009). CLEC-2 is expressed on platelets with around 2000 

copies per platelet and expressed on subset set of circulating inflammatory dendritic 

cells in mice (DCs; (Gitz et al., 2014, Lowe et al., 2015c)). CLEC-2 was thought to also 

be expressed on subsets of murine myeloid cells, including monocytes, in resting 

conditions, which increased in expression seen in response to inflammatory stimuli 

(Acton et al., 2012a, Mourao-Sa et al., 2011). However, recent studies  have showed 

CLEC-2 with a more restricted expression profile to platelets and activated DCs in mice 

(Lowe et al., 2015c). 

 

Podoplanin, a 36-43-kDa heavily glycosylated type-1 transmembrane sialoglycoprotein, 

is the only known endogenous CLEC-2 ligand. Podoplanin is expressed on kidney 

podocytes, alveolar type-1 epithelial cells lymphatic endothelial cells (LECs) and 

fibroblastic reticular cells (FRCs) from the T-cell zone of lymphoid cells (Breiteneder-

Geleff et al., 1997, Astarita et al., 2015). In inflammatory settings, podoplanin 
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expression can be upregulated on T-helper 17 (TH17 cells), tumour cells and 

inflammatory macrophages (Peters et al., 2015, Kato et al., 2003, Kerrigan et al., 2012). 

Podoplanin and CLEC-2 have important roles in several process including in 

development and maintenance of the lymphatic system. Deletions in podoplanin or 

CLEC-2 lead to similar blood lymphatic mixing, oedema and haemorrhaging observed 

during development, and are unable to properly inflate the lungs at birth, greatly 

effecting survival (Bertozzi et al., 2010, Finney et al., 2012, Turner et al., 1995, Schacht 

et al., 2003, Ramirez et al., 2003).  

 

Podoplanin and CLEC-2 have roles in other processes beyond development. Podoplanin 

upregulation has been described in numerous inflammation settings, with CLEC-2 

interactions also being implicated. Podoplanin upregulation has been observed on FRCs 

during inflammation and interactions with CLEC-2 affects FRC function. FRCs are 

mesenchymal cells found in lymph nodes, which form a dense reticular network, acting 

as a scaffold for lymph, T-cells and DCs to move along (Link et al., 2007, Astarita et 

al., 2015).  In resting conditions, podoplanin regulates the contractility of actomyosin in 

FRCs to maintain FRC contraction and stability of the lymph node microarchitecture 

(Astarita et al., 2015). During inflammation, the contractility of FRCs is reduced due to 

CLEC-2 expressed on DCs interacting with podoplanin. This interaction leads to 

relaxation of FRCs, causing changes in FRC and T cell spacing and expansion of the 

FRC network, allowing greater movement of immune cells through the network (Acton 

et al., 2012a, Astarita et al., 2015). Platelet-CLEC-2 interactions with podoplanin 

expressing FRCs have also been shown to maintain the integrity of high-endothelial 
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venules within the lymph nodes, with blood-filled lymph nodes forming in the absence 

of CLEC-2 (Herzog et al., 2013). 

 

Podoplanin upregulation in other inflammatory settings has also been described. Studies 

into multiple sclerosis (MS), an auto-immune inflammatory disorder, have shown that 

CLEC-2/podoplanin interactions improve the resolution of inflammation (Peters et al., 

2015). Podoplanin expression is upregulated on TH17 cells in inflamed central nervous 

system (CNS) tissue of mice in an autoimmune encephalomyelitis model (Miyamoto et 

al., 2013). Podoplanin on TH17 cells acts to negatively regulate the persistence of T 

effector cells, with enhanced T-cell responses observed in podoplanin-deficient mice 

(Peters et al., 2015).  In rheumatoid arthritis (RA), another chronic inflammatory 

disease, CLEC-2 and podoplanin were proposed to modulate the progression of the 

disease. Podoplanin and CLEC-2 expression have also been shown in tissue sections 

isolated from RA patients (Del Rey et al., 2014, Ekwall et al., 2011). Increased 

podoplanin expression was also detected in synovial arthroscopic biopsies from RA 

patients with lymphoid neogenesis and proposed as an early feature of RA (Del Rey et 

al., 2014). Overall, podoplanin upregulation is increased at sites of inflammation in RA, 

including areas where synovial fibroblast activation occurs (Miyamoto et al., 2013, 

Ekwall et al., 2011, Del Rey et al., 2014). In addition, platelet-CLEC-2 interactions with 

synovial fibroblasts through CLEC-2/podoplanin interactions could lead to release of 

pro-inflammatory cytokines (Del Rey et al., 2014).  

 

Podoplanin upregulation also occurs on multiple tumour cells, including colorectal 

adenocarcinomas and CNS tumours (Kato et al., 2003, Shibahara et al., 2006b). Indeed, 
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tumour cells have been shown to upregulated podoplanin and induce platelet 

aggregation through podoplanin and platelet-CLEC-2 interactions after addition of 

tumour cells to platelets (Kato et al., 2003, Suzuki-Inoue et al., 2007, Kato et al., 2006). 

Some studies suggest podoplanin upregulation on cancer-associated fibroblasts (CAFs) 

in the stroma of areas near tumours can act as barriers to reduce tumour cell invasion 

(Yamanashi et al., 2009). However, other studies have suggested the formation of 

platelet/tumour aggregates protects the tumour from shear stress, helping with evasion 

of the immune system (Gay and Felding-Habermann, 2011, Jain et al., 2009). Targeting 

podoplanin with blocking antibodies has also been shown to reduce platelet aggregation 

and pulmonary metastasis (Takagi et al., 2013). 

 

Podoplanin upregulation has been observed during inflammation in response to 

infection. Podoplanin expression has been described on fibroblastic macrophages (FN), 

a F4/80
+
 subtype macrophage found in the red pulp of the spleen, which is upregulated 

in response to zymosan induced peritonitis (Hou et al., 2010). Podoplanin upregulation 

has also been shown in response to bacterial infection. Hitchcock et al. showed that 

during inflammation of the liver after Salmonella typhimurium infection, podoplanin 

was upregulated on liver macrophages (F4/80+ cells) of infected mice (Hitchcock et al., 

2015). This upregulated podoplanin was shown to trigger CLEC-2-mediated thrombosis 

in the liver (Hitchcock et al., 2015). The absence of platelet CLEC-2 reduced venous 

thrombosis, suggesting platelet CLEC-2/podoplanin interaction mediates the infection-

driven thrombosis.  
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Podoplanin expressed on LECs has also been shown to induce platelet activation 

through interactions with CLEC-2. Studies have shown platelets form aggregates when 

blood is flowed over the surface of LECs; aggregation is CLEC-2 and SLP-76 

dependent (Bertozzi et al., 2010, Pollitt et al., 2014). Platelet activation through 

podoplanin/CLEC-2 interactions has been shown following upregulation of podoplanin 

on RAW264.7 macrophages (a mouse macrophage cell line) following exposure to 

lipopolysaccharide (LPS;  (Kerrigan et al., 2012)). However, this has not been described 

in macrophages in humans.  

 

To mediate platelet activation, podoplanin interacts with CLEC-2 through its O-

glycosylated platelet-aggregation stimulating domain (PLAG domain; (Suzuki-Inoue et 

al., 2007, Pollitt et al., 2014)).  CLEC-2 binding to podoplanin shares a number of 

structural features with binding of CLEC-2 binding with rhodocytin (Nagae et al., 

2014). Additionally, podoplanin can be cleaved at the O-glycosylated Thr52 site (Figure 

5.1) from lymphatic endothelial cells (LECs) after treatment with proteases and 

sialidases (Pan et al., 2014). There is therefore the potential that upregulated podoplanin 

is released into the circulation although, as yet, the presence of podoplanin ectodomain 

in the plasma has not been reported. 
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Figure 5.1 - Schematic of podoplanin. A) Podoplanin consists of a transmembrane 

domain and an O-glycosylated platelet-aggregation stimulating domain (PLAG 

domain), which interacts with the CLEC-2 receptor. B) Architecture of podoplanin. The 

amino acid sequences of the different PLAG domains (PLAG1-3) are listed. The star 

indicates the O-glycosylated Thr52. This area has the potential to undergo cleavage with 

treatment of proteases and sialidases (Pan et al., 2014, Nagae et al., 2014). 
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Podoplanin is upregulated on multiple cell types in several inflammatory settings and is 

therefore a potential biomarker of inflammation. The overall aim of this chapter is to 

determine which cell types in blood upregulate podoplanin when challenged with an 

inflammatory stimulus and to investigate if this upregulation is sufficient enough to 

induce platelet activation. Alongside this a series of pilot studies will be performed to 

measure podoplanin in plasma of patients with inflammatory conditions.  
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5.2 Results  

5.2.1 Podoplanin upregulation on monocytes is not observed after LPS stimulation 

in whole blood 

LPS is potent activator of monocytes and macrophages and a pro-inflammatory 

mediator (Meng and Lowell, 1997). Two serotypes of LPS (E. coli 0111: B4 and 055: 

B5) were added to stimulate monocytes in whole blood to assess if podoplanin could be 

upregulated by 4 and 24 h after stimulation (6 and 8 h were also tested, but didn’t show 

much difference compared to 24h). Whole blood was stained with CD14, a monocyte 

marker, to allow gating for cell interactions and to determine podoplanin upregulation 

on monocytes. Co-staining with CD41, a platelet marker, was used to determine the 

percentages of monocyte/platelet complexes in the blood. In a single pilot experiment, 

there was an approximate 50% increase in levels of CD14+ and CD41+ platelet-

leukocyte complexes after 4 h following stimulation with both types of LPS, which 

remained constant up to 24 h (Figure 5.2A). However, a similar increase in 

platelet/monocyte interactions was observed over time with unstimulated blood (Figure 

5.2A). CD14+ cells were stained with CD69 or CD38 (monocyte activation markers), to 

follow their activation status. Limited activation of monocytes was observed in response 

to serotype 0111 (100 ng/ml) following stimulation after 4 h or 24 h (Figure 5.2B). To 

determine if podoplanin becomes upregulated on stimulated monocytes in whole blood, 

CD14+ cells were stained for podoplanin using the NZ-1.3 anti-podoplanin antibody 

and compared to isotype and unstimulated controls. Podoplanin upregulation was not 

observed after 4 or 24 h with or without LPS (0111) stimulation. (Figure 5.2C).  

 

  



177 
 

 

Figure 5.2 – Podoplanin is not upregulated on monocytes after LPS stimulation in 

whole blood. A) Whole blood was stimulated with two serotypes of LPS (E. coli 0111: 

B4 and 055: B5) in the presence of GPRP (10 µM) and integrilin (9 µM) for 4 h and 24 

h at 37
O
C on a shaker (low speed). Blood was stained for CD14 (monocyte marker) and 

CD41 (platelet marker). % of CD14+ CD41+ cells were measured by flow cytometry 

after LPS stimulation. N=1. B) % of cells stained for CD14 and monocyte activation 

markers CD69/38 after whole blood stimulation with LPS (0111; 100 ng/ml). Mean 

shown ±SEM, n=3. C) Median fluorescence Intensity (MFI) of podoplanin (Pdpn) 

staining of CD14+ cells after 4 h and 24 h LPS stimulation compared to unstimulated 

(US) blood and isotype (iso) control. 
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5.2.2 Podoplanin is not upregulated on THP-1 cells after LPS stimulation  

THP-1 cells (a human acute monocytic leukaemia cell line (Auwerx, 1991) were also 

stimulated to test for podoplanin upregulation. Some studies have shown that 

podoplanin is upregulated on neuronal apoptotic cells after LPS injection (Song et al., 

2014). Podoplanin upregulation on apoptotic THP-1 cells was also tested after cells 

were treated two agents that induce apoptosis, staurosporine (1 µM) and cycloheximide 

(25 µg/ml) which are a protein kinase inhibitor and protein synthesis inhibitor, 

respectively and stained with Annexin V (an apoptosis/activation marker). Annexins 

belong to a family of calcium-dependent phospholipid-binding proteins, which bind to 

cells exposing phosphatidylserine (PS). PS is exposed during cell activation and when 

cells are undergoing apoptosis. Cells stained with Annexin V were gated to determine 

whether podoplanin can be upregulated on Annexin V+ and Annexin V- THP-1 cells 

(Figure 5.3A). There was no podoplanin upregulation on Annexin V+ cells after 

stimulation with LPS or staurosporine and cycloheximide treatment compared to 

unstimulated cells (Figure 5.3Bi). Podoplanin upregulation was not observed in 

Annexin V- cells after stimulation with LPS or staurosporine and cycloheximide (Figure 

5.3Bii). Moreover, no differences were seen in podoplanin upregulation in Annexin V+ 

or Annexin V- cells when podoplanin MFI (median) ratio over isotype was calculated 

(Figure 5.3C).  

 

5.2.3 Podoplanin is not upregulated on isolated monocytes after stimulation  

To confirm podoplanin was not upregulated on stimulated monocytes, monocytes were 

isolated from whole blood by negative selection of peripheral blood mononuclear cells  
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Figure 5.3 – Podoplanin is not upregulated on THP-1 cells after LPS stimulation. 

THP-1 cells (acute monocytic leukaemia cell line; 1x10
6
 cells/ml) were stimulated with 

LPS (100 ng/ml) for 24 h at 37
o
C followed by CD14, Annexin V and Pdpn staining. A) 

Gating strategy for determining Annexin V+ and Annexin V- cells that are Pdpn 

positive. Isotype in black, Pdpn in red. B(i) Median fluorescence Intensity (MFI) of 

podoplanin staining of Annexin V+ cells after LPS stimulation and treatment with 

staurosporine (1 µM) and cycloheximide (25 µg/ml) for 24 h compared to isotype 

controls. Mean shown ± SEM, n=4. B(ii) MFI (median) of podoplanin staining of 

Annexin V- cells after LPS stimulation and treatment with staurosporine (1 µM) and 

cycloheximide (25 µg/ml; S+C) for 24 h compared to isotype controls. Mean shown ± 

SEM, n=4. C) Ratio of podoplanin staining over isotype control of Annexin V+ and 
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Annexin V- THP-1 cells after stimulation. Mean shown ± SEM, n=4. One-way 

ANOVA performed with Bonferroni’s post-hoc test. No significant difference observed.  
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Figure 5.4 – Podoplanin is not upregulated on isolated monocytes after stimulation. 

Isolated monocytes (1x10
6
 cells/ml) from donor blood were stimulated with LPS (100 

ng/ml) or staurosporine (1 µM) and cycloheximide (25 µg/ml) for 24 h at 37
o
C. A) 

Gating strategy for determining Annexin V+ and Annexin V- cells that are Pdpn 

positive. Isotype in black, Pdpn in red. B(i) Median fluorescence Intensity (MFI) of 

podoplanin staining of Annexin V+ cells after LPS stimulation and staurosporine (1 

µM) and cycloheximide (25 µg/ml) treatment compared to isotype controls. Mean 

shown ± SEM, n=5. B(ii) MFI (median) of podoplanin staining of Annexin V- cells 

after stimulation compared to isotype controls. Results shown as mean  ± SEM, n=5. C) 

Ratio of podoplanin staining over isotype control of Annexin V+ and Annexin V- 
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monocytes stimulated with LPS and staurosporine and cycloheximide. Mean shown ± 

SEM, n=5. 
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(PBMCs) and stained for CD14, podoplanin and Annexin V after LPS or staurosporine 

and cycloheximide stimulation (Figure 5.4A). There was no podoplanin upregulation on 

CD14+ and Annexin V+ cells after LPS stimulation and treatment with staurosporine 

and cycloheximide (added together; Figure 5.4Bi&C). There was also no upregulation 

seen with CD14+ and Annexin V- cells (Figure 5.4Bii&C). 

 

5.2.4 Absence of upregulation of podoplanin after stimulation of PBMCs 

In order to establish whether other blood cells can upregulate podoplanin following LPS 

stimulation, human PBMCs were isolated and stimulated with LPS. Citrated-human 

whole blood was collected from healthy donors, with no sign of infection or medication, 

and PBMCs were isolated using a ficoll-paque gradient using differential centrifugation. 

PBMCs were stimulated with LPS (100 ng/ml) or treated with staurosporine (1 µM) and 

cycloheximide (25 µg/ml) for 24 h followed by podoplanin and Annexin V staining and 

gated on size scatter and CD45 positivity. Podoplanin was measured on Annexin V+ 

cells and Annexin V- cells as before (Figure 5.5A). As expected, there was no 

upregulation of podoplanin was observed after LPS stimulation or staurosporine and 

cycloheximide treatment on Annexin V+ and Annexin V- cells (Figure 5.5B). There 

was no difference in the ratio of podoplanin staining over isotype with Annexin V+ and 

Annexin V- PBMCs after stimulation (Figure 5.5C).  
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Figure 5.5 – Podoplanin is not upregulated after stimulation of PBMCs. Peripheral 

blood mononuclear cells (PBMCs; 1x10
6
 cells/ml) were isolated from donor blood and 

stimulated with LPS (100 ng/ml) or staurosporine (1 µM) and cycloheximide (25 µg/ml) 

for 24 h at 37
o
C. A) Gating strategy for determining Annexin V+ and Annexin V- cells 

that are Pdpn positive. Isotype in black, Pdpn in red. B(i) Median fluorescence 

Intensity (MFI) of podoplanin staining of Annexin V+ cells after stimulation compared 

to isotype controls. Mean shown ± SEM, n=5. B(ii) MFI (median) of podoplanin 

staining of Annexin V- cells after stimulation compared to isotype controls. Mean 

shown ± SEM, n=5. C) Ratio of podoplanin staining over isotype control of Annexin 

V+ and Annexin V-  after stimulation of PBMCs. Mean shown ± SEM, n=5  
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5.2.5 Podoplanin is upregulated on M-CSF treated monocyte-derived macrophages 

but not GM-CSF treated cells after stimulation  

Podoplanin was not upregulated on PBMCs or monocytes after LPS stimulation. 

Studies have shown that podoplanin can be upregulated on cultured RAW264.7 cells 

(inflammatory macrophages from a mouse cell line) after LPS stimulation (Kerrigan et 

al., 2012). To test whether this was the case for human macrophages, monocyte-derived 

macrophages were produced as an alternative, as macrophages are very difficult to 

isolate and there are very few reliable macrophage cell lines. Monocytes were isolated 

from the blood and treated with granulocyte-macrophage colony-stimulating factor 

(GM-CSF) or macrophage colony-stimulating factor (M-CSF) for 5-6 days to produce 

monocyte-derived macrophages, which were initially confirmed by CD68, CD14 (low), 

CD16 (high) expression by flow cytometry. Treatment with these cytokines was used to 

polarize monocyte into macrophage-like cells with ‘M1 and M2’ macrophage 

phenotype, respectively, resulting in profound differences in morphology (Figure 5.6). 

Untreated monocytes adhered to the plate wells and most cells had uniformed circular 

appearance after 6 days. GM-CSF treatment causes differentiation of monocytes into the 

‘M1’ phenotype, which are cells with a pro-inflammatory phenotype and DC antigen-

presenting properties (Masurier et al., 1999). M-CSF treatment of monocytes causes 

differentiation into the ‘M2’ macrophage phenotype with anti-inflammatory properties 

(Verreck et al., 2004, Lacey et al., 2012). Most cells had long thin extrusions when 

spreading on the plate well. M-CSF treatment cells had a different appearance with 

fewer extrusions. A CD206 marker was used initially to determine differences between 

M2 phenotype compared to M1 by flow cytometry, which then allowed consequent 

gating based on size and characteristics for future experiments.  
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Figure 5.6 – Differentiation of monocyte-derived macrophages after GM-CSF and 

M-CSF treatment of isolated monocytes. Isolated monocytes (1x10
6
 cells/ml) were 

incubated in a well of a 6-well plate added to wells and treated with GM-CSF (50 

ng/ml) or M-CSF (100 ng/ml) to differentiate into ‘M1’ and ‘M2’ macrophages. For 

some conditions macrophages were treated with LPS (0111: B5 100 ng/ml) or 

staurosporine (1 µM) and cycloheximide (25 µg/ml). Brightfield images taken with the 

EVOS FL Cell imaging system. Scale bar represents 400 µm. 
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Figure 5.7 – Podoplanin is upregulated on LPS treated monocyte-derived 

macrophages treated with M-CSF. Isolated monocytes (1x10
6
/ml) were treated with 

GM-CSF (50 ng/ml) or M-CSF (100 ng/ml) for 6 days to allow for macrophage 

differentiation. Cells were then stimulated with LPS (100 ng/ml) or staurosporine (1 

µM) and cycloheximide (25 µg/ml) for a further 24 h. A) Gating strategy for 

determining Annexin V+ and Annexin V- cells that are Pdpn positive. Isotype in black, 

Pdpn in red. B) Ratio of podoplanin staining over isotype control of Annexin V+ and 

Annexin V- GM-CSF treated cells stimulated with LPS and staurosporine (1 µM) and 

cycloheximide (25 µg/ml). Mean shown ± SEM, n=5. C) Ratio of podoplanin staining 

over isotype control of Annexin V+ and Annexin V- M-CSF treated cells stimulated 

with LPS. Mean shown ± SEM, n=5. Unpaired T-test performed to determine difference 

between untreated cells, **p<0.0.1.  
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LPS (100 ng/ml) stimulation of both types of treated cells resulted in cell accumulation. 

Some extrusions were seen with the GM-CSF treated cells but not as many as with 

unstimulated GM-CSF treated cells. LPS stimulation of the M-CSF treated cells also 

lead to accumulation of cells, however, more extrusions were seen and some cells had 

expanded surface areas. The addition of staurosporine (1 µM) and cycloheximide (25 

µg/ml) to both GM-CSF and M-CSF treated cells lead to cell disruption and apoptosis. 

(100 ng/ml) stimulation of both types of treated cells resulted in cell accumulation. 

Some extrusions were seen with the GM-CSF treated cells but not as many as with 

unstimulated GM-CSF treated cells. LPS stimulation of the M-CSF treated cells also 

lead to accumulation of cells, however, more extrusions were seen and some cells had 

expanded surface areas. The addition of staurosporine (1 µM) and cycloheximide (25 

µg/ml) to both GM-CSF and M-CSF treated cells lead to cell disruption and apoptosis. 

GM-CSF and M-CSF treated monocytes were stimulated with LPS (100 ng/ml) and 

treated with staurosporine (1 µM) and cycloheximide (25 µg/m) for 24 h and then 

stained for podoplanin. Cells were gated on size and CD68 positivity (CD68 is a 

macrophage marker). Podoplanin upregulation was measured on Annexin V+ cells and 

Annexin V- cells (Figure 5.7A). There was a marginal increase in the MFI ratio of 

podoplanin staining over the isotype controls in Annexin V+ cells compared to 

untreated GM-CSF cells (Figure 5.7B) which however did not reach significance. There 

was no upregulation observed with GM-CSF treated cells which were stimulated with 

staurosporine and cycloheximide. There was no increase in podoplanin upregulation of 

GM-CSF treated cells that were Annexin V- (Figure 5.7B). Podoplanin was 

significantly upregulated on Annexin V+ M-CSF treated cells stimulated with LPS 

(Figure 5.7C). This suggests that only M2 macrophages have the capacity to upregulate 
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podoplanin once stimulated with LPS. M-CSF treated cells stimulated with 

staurosporine and cycloheximide did not show podoplanin upregulation.  Podoplanin 

was not upregulated on Annexin V- M-CSF treated cells (Figure 5.7C). 

 

5.2.6 Upregulated podoplanin on macrophages is unable to activate platelets  

M-CSF treated monocytes (M2 macrophages) were the only blood cell type where 

podoplanin was upregulated after LPS stimulation. The ability of these macrophages to 

cause platelet activation was therefore studied. Monocytes were isolated from the blood, 

treated with M-CSF for 6 days before being stimulated with LPS for a further 24 h. 

These inflammatory macrophages were added to washed platelets from the same donor 

at 37
o
C under stirring conditions (1200 rpm). Platelet interactions with macrophages 

were measured using anti-CD41 and -CD68 antibodies by flow cytometry. Activation of 

the platelets was measured by P-selectin expression, shown as increased MFI (median; 

Figure 5.8A). Positive CD68 and P-selectin staining represented the activated platelets 

on CD68 cells. P-selectin on CD68+ gated cells was measured in GM-CSF and M-CSF 

treated cells that were stimulated with LPS (Figure 5.8C). There were no increases in P-

selectin expression on LPS treated monocyte-derived macrophages compared to 

unstimulated cells in the absence of platelets, suggesting the increases in P-selectin 

observed is through activation of the platelets.  NZ-1.3 antibody was used to bind to and 

block podoplanin expressed on the macrophages, before the addition of macrophages to 

platelets, to investigate whether blocking podoplanin reduced any platelet-macrophage 

interactions. There were no increases in P-selectin expression on platelets added to the 

GM-CSF treated cells after stimulation (Figure 5.8Ci). 
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Figure 5.8 – Upregulated podoplanin on macrophages is not sufficient enough to 

induce platelet activation. GM-CSF (50 ng/ml) and M-CSF (100 ng/ml) treated cells 

were stimulated with LPS (0111; 100 ng/ml) for 24 h. Washed platelets (2x10
7
 cells/ml) 

from same donor were mixed with macrophages (0.3 x10
6
 cells/ml) in the presence of 

integrilin (9 µM) under stirring conditions (1200 rpm) at 37
o
C for 10 min. Samples were 

then stained for CD68, CD41 and CD62P (P-selectin antibody) for 20 min before 

fluorescence signals were measured by flow cytometry. A) Gating strategy for 

determining CD68+ and CD62P+ cells. B) Shift of P-selectin on CD68+ cells after 

platelets were added to LPS stimulated M-CSF treated cells with and without NZ-1.3 
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antibody. C(i) MFI (median) of P-selectin staining of CD68+ cells (in M6) after 

platelets were mixed with unstimulated and LPS stimulated GM-CSF treated cells. NZ-

1.3 antibody was added before mixing in some conditions. Mean shown ± SEM, n=6. 

One-way ANOVA performed with Bonferroni’s post-hoc test; N.S: no significance 

shown. C(ii) MFI (median) of P-selectin staining of CD68+ cells (in M6) after platelets 

were mixed with unstimulated and LPS stimulated M-CSF treated cells were mixed. 

NZ-1.3 antibody was added before mixing in some conditions Mean shown ± SEM, 

n=5. One-way ANOVA performed with Bonferroni’s post-hoc test; N.S: no significance 

shown. 
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There were no significant increases in P-selectin expression on platelets on M-CSF 

treated monocyte-derived macrophages stimulated with LPS (5042 ± 2492 MFI ± SEM, 

compared to 2294 ± 1383 MFI respectively; Figure 5.8B). There were also no 

significant increase when measuring the percentage of CD68+ CD62P+ cells (instead of 

MFI), with LPS stimulated monocyte-derived macrophages treated with M-CSF and 

GM-CSF. Unstimulated M-CSF cells and untreated cells also did not increase the P-

selectin expression or induce platelet activation (Figure 5.8Cii). Interestingly, the 

addition of the anti-podoplanin antibody NZ1.3, previously shown to neutralise tumour-

induced platelet aggregation (Kato et al., 2006), seemed to increase P-selectin 

expression on LPS-treated M-CSF differentiated cells following platelets addition (7529 

± 2925 MFI), but again this did not reach significance. It would be expected however 

that the NZ-1.3 antibody would reduce activation and P-selectin expression through 

blocking the podoplanin/CLEC-2 interactions, therefore the antibody might cause some 

off-target platelet activation, possibly through the low affinity FcγRIIA receptor.  

 

5.2.7 Podoplanin is not upregulated on microvesicles of IBD or septic patients  

Podoplanin is upregulated on a sub-set of human macrophages and on other cells in a 

range of inflammatory conditions, such as RA (Del Rey et al., 2014). Podoplanin has 

previously been shown in our lab to be upregulated on microvesicles derived from 

leukocytes in patients with RA (unpublished data). To further test this, podoplanin 

upregulation was measured on CD45+ microvesicles from two inflammatory cohorts, 

inflammatory bowel disease (IBD) and septic-patents. There was no difference in the 

number of microvesicles in IBD patients compared to healthy controls (HCs) and no 

podoplanin upregulation on CD45+ microvesicles (Figure 5.9A). There was only a 
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significant increase in the number of microvesicle compared to HCs in very septic 

patients (*p<0.05: Figure 5.9 Bi). However no significant podoplanin upregulation on 

the microvesicles in any patient group compared to HCs and isotype controls was 

observed (Figure 5.9 Bii). 

 

5.2.8 Podoplanin detection by ELISA  

Podoplanin has been shown to be cleaved after sialadase treatment (Pan et al., 2014). 

This study set out to confirm cleavage of podoplanin and to develop an ELISA for 

podoplanin detection in order to measure the cleaved form or microvesicle-associated 

form in patients with inflammatory conditions. Podoplanin cleavage and the use of 

suitable antibodies for detection were first established. Anti-human podoplanin 

antibodies, NZ-1.3 and 18H5 were tested. Both recognised podoplanin expression on 

human 293T cells, a cell line which constitutively expresses podoplanin, with the NZ-

1.3 clone being preferred due to reduced background relative to the isotype control 

(Figure 5.10Ai).  To test for cleavage of podoplanin, 293T cells were treated with 

trypsin (10%) for 15 min and 1 h.  Podoplanin expression on cells and levels in the 

supernatant after centrifugation were then measured by flow cytometry (Figure 

5.10Aii). Podoplanin expression on 293T cells decrease over following exposure to 

trypsin, with podoplanin levels in the supernatant increasing over time (74.3 ± 32.5% 

and 34.9 ± 17.1% of unstimulated MFI respectively, n=2; Figure 5.10B), suggesting 

cleavage; however, this could not be tested statistically due to the low n value. 

Podoplanin was also detected in the supernatant post trypsin treatment after western 

blotting using the anti-podoplanin (NZ1.3) antibody (Figure 5.10C).   
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Figure 5.9 – Podoplanin is not upregulated on microvesicles in patients with IBD 

or in septic patients. A(i) average number of microvesicles counted/ml in plasma 

samples of IBD patients with inactive, active Crohn’s disease (n=13, n=4), inactive and 

active UC (n=12, n=13), compared to HCs (n=20), Mean shown ±SD. A(ii) Median 

intensity fluorescence (MFI) of microvesicles gated on size and CD45+ of IBD patient 

groups and HCs. – and + represents presence of isotype or podoplanin (PDPN) 

antibody. Mean shown ±SD B(i) average number of microvesicles counted/ml in plasma 

samples of septic patient groups compared to HCs. Mean shown ±SD. Unpaired t-test 

was performed to compare microvesicle count between septic patients and HC. 

*p<0.05. B(ii) Median intensity fluorescence (MFI) of microvesicles gated on size and 

CD45+ of septic patient groups and HCs. – and + represents presence of isotype or 

PDPN antibody. Results are shown as mean shown ±SD.  



195 
 

The presence of podoplanin in the supernatant from trypsin-treated cells facilitated the 

development of the podoplanin ELISA. A sandwich ELISA, using the two anti-

podoplanin antibodies (18H5 and NZ-1.3) as a capture and detection antibodies 

respectively was first tested (Figure 5.11A). Human recombinant podoplanin, with the 

Fc region attached, was used to generate a standard curve for extrapolation of test 

podoplanin concentrations (Figure 5.11Bi). The best standard curve generated using the 

recombinant podoplanin gave a R-square value of 0.747 (Figure 5.11Bi). The standard 

curve gave values in the µg/ml range, instead of the ng/ml range expected. There were 

also a number of inconsistencies using the sandwich ELISA method, with spiking of 

HC plasma samples with recombinant podoplanin reducing detection levels (Figure 

5.11Bii).  

 

Further assessment of podoplanin antibodies used revealed a potential overlap in 

binding sequences of the podoplanin epitopes. Therefore, a competitive podoplanin 

ELISA was developed, which used only the NZ-1.3 podoplanin antibody (Figure 

5.12A). Varying amounts of recombinant podoplanin were pre-incubated with the NZ-

1.3 antibody separately. Samples were incubated on a recombinant podoplanin (3 

µg/ml) pre-coated plate to assess for antibody competition. With increased podoplanin 

in the samples, less antibody would be available to bind to recombinant podoplanin on 

the plate, giving a reduced signal (Figure 5.12B). The R-square value generated from 

the recombinant podoplanin standard curve was a respectable 0.96, in line with values 

observed with the sGPVI ELISA. The signal did decrease when the sample was spiked 

with recombinant podoplanin (3 µg/ml) as expected.  
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Figure 5.10– Podoplanin levels are reduced after trypsin treatment of 293T cells. 

A(i) Gating strategy for podoplanin staining of 293T cells by flow cytometry. Shift to 

right of unstained cells shows expression of podoplanin by the anti-podoplanin antibody 

(NZ-1.3). A(ii) Shifts of podoplanin expression of trypsin treated cells compare to 

unstimulated cells over time. B) Median intensity fluorescence (MFI) of cells and 

supernatant stained for podoplanin over various time points after trypsin treatment. 

Results are shown as mean shown ±SD. C) Detection of podoplanin in lysed 293T cells 

and in the supernatant post trypsin treatment using a dot plot with the NZ-1.3 antibody. 

Representative of 2 experiments.  
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Figure 5.11 – Podoplanin sandwich ELISA development. A) Schematic of the 

podoplanin sandwich ELISA developed including capture, detection and signal 

antibody details. B(i) Best standard curve generated from measurements of a serial 

dilution of rPdpn containing FC region in ddH2O. RLU represents relative luminescence 

units. B(ii) Podoplanin concentrations extrapolated from the standard curve in the 

difference conditions tested.  Average values of 3 readings.  
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Figure 5.12 – Podoplanin competitive ELISA development and commercial 

podoplanin ELISA results. A) Schematic of the podoplanin competitive ELISA 

developed including capture, detection and signal antibody details. B) Standard curve 

generated from measurements of a serial dilution of rPdpn incubated with NZ-1.3 

antibody added to a pre-coated rpdpn plate, with and without extra rPdpn spike. RLU 

represents relative luminescence units. C(i) Standard curve generated using the 

commercial podoplanin ELISA kit (Biomatik) showing optical density increases with 

increased podoplanin concentrations. C(ii) Podoplanin concentrations of the rPdpn 

serial dilution extrapolated from the standard curve. C(iii) Podoplanin concentrations 

detected by commercial ELISA in plasma samples of septic patients (n=4) and HCs 

(n=3). Results are shown as mean shown ±SD.  
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However, the generated standard curve was in the µg/ml range and the ELISA was not 

able to detect podoplanin in the plasma. 

 

A commercial podoplanin ELISA (Biomatik) was the obtained and tested for 

podoplanin detection in patient samples. The standard curve generated using the 

manufacture’s agonists, gave a reasonable R-square value of 0.93 (Figure 5.12Ci). 

However, the commercial podoplanin ELISA was unable to detect any human 

recombinant podoplanin (0-3 µg/ml; Figure 5.12Cii) thereby questioning its validity. 

When detecting podoplanin in the plasma samples of HCs and patients, no significant 

difference between podoplanin concentrations in the plasma of HCs compared to the 

septic patients  was observed (very septic; Figure 5.12Cii).  
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5.3 Discussion 

Podoplanin upregulation on different cells, including fibroblasts, LECs and a subset of 

liver macrophages has been described in several inflammatory settings (Astarita et al., 

2015, Bertozzi et al., 2010, Hitchcock et al., 2015). Podoplanin upregulation has also 

been shown after LPS stimulation of mouse macrophages from the RAW264.7 cell line 

(Kerrigan et al., 2012). This chapter aimed to establish which cells, if any in human 

blood can upregulate podoplanin in response to inflammatory stimulus, in order to 

provide a route for podoplanin/CLEC-2 interactions, potentially leading to platelet 

activation.   

 

LPS is potent pro-inflammatory mediator, used in many studies to induce inflammation. 

LPS stimulates myeloid cells, including monocytes and macrophages, triggering 

secretion of multiple cytokines including IL-1, IL-6 and TNF-α, leading to pro-

inflammatory responses (Meng and Lowell, 1997). LPS is proposed to bind to TLR4 

and CD14 to induce responses leading to the production and release of cytokines and 

chemokines (Tan and Kagan, 2014). Genomic analysis of LPS-mediated response has 

shown pro-inflammatory responses are similar across all myeloid cells after stimulation 

(Hutchins et al., 2015). In this study, LPS was used to stimulate a range of isolate blood 

cells to test for podoplanin upregulation in response to the inflammatory stimulus. 

Different serotypes of LPS (0111 and 055) were first tested to see which affect the cells 

the most. There was no difference observed with the LPS serotypes used.  As LPS 0111 

was used at lower concentrations to give the same potency of 055 serotype, this was 

used for further studies.  
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Stimulation of whole blood with LPS showed a small increase in CD14+ CD41+ 

complexes as measured by flow cytometry. This increase was also seen in the 

unstimulated blood samples, suggesting the blood incubation process could have 

affected the results, with platelets and monocytes forming more complexes over time.  

There was no significant increase in CD14+ CD69/38+ cells after time or with LPS 

stimulation, suggesting there was no activation of monocytes. The reduced monocyte 

activation may have potentially resulted from the ‘resting’ monocytes in the 

unstimulated samples being already slightly activated, so further increases in activity 

could not be detected. When staining CD14+ monocytes for podoplanin, there was no 

podoplanin upregulation observed after LPS stimulation for 4 h or 24 h after 

stimulation, suggesting monocytes do not express podoplanin. An alternative 

explanation is that the LPS stimulation of monocytes in whole blood is not sufficient 

enough to cause activation or podoplanin upregulation. To confirm there was no 

podoplanin upregulation on stimulated monocytes, both isolated monocytes from whole 

blood and THP-1 monocytes from the human acute monocytic leukaemia cell line 

(Auwerx, 1991), were stimulated with LPS for 24 h. THP-1 cells were used to give a 

good yield of monocytes to stimulate with LPS and look for podoplanin upregulation. 

The monocytes from the THP-1 cell line would give slightly different characteristics to 

isolated monocytes, however, with both types of monocytes, there was no podoplanin 

upregulation was observed after stimulation. Podoplanin upregulation on other blood 

cells, such as PBMCs and neutrophils were assessed after LPS stimulation for 24 h but 

again no podoplanin expression was seen.  
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Studies have shown upregulation of podoplanin on apoptotic cells. Podoplanin is 

upregulated on neuronal apoptotic cells after LPS infection into the CNS (Song et al., 

2014). In this study, apoptosis was induced on monocytes, PMBCs and monocyte-

derived macrophages after treatment with staurosporine and cycloheximide for 24 h, 

before being stained for Annexin and podoplanin. There was no increase in podoplanin 

upregulation of both apoptotic monocytes and PBMCs. Propidium iodide was also used 

to show cells were apoptotic, however, no podoplanin upregulation was seen either, 

confirming that both apoptotic and non-apoptotic monocytes and PBMCs do not 

upregulate podoplanin after LPS stimulation.   

 

Podoplanin expression has previously been described on a subset of macrophages. 

Indeed, a population of macrophages F4/80+ in the red pulp of the spleen and in 

inflamed livers were shown to express podoplanin (Hou et al., 2010, Hitchcock et al., 

2015). The macrophages found in the spleen have been termed as fibroblastic 

macrophages, which upregulate podoplanin in response to zymosan induced peritonitis 

(Hou et al., 2010). On the other hand, liver macrophages were shown upregulated 

podoplanin in response to Salmonella typhimurium driven inflammatory response to 

infection of mice. Podoplanin upregulation in response to an inflammatory stimulus has 

also previously been shown in vitro after LPS stimulation of mouse RAW264.7 cells 

(macrophage cell line; (Kerrigan et al., 2012). A main aim of this work is to study 

podoplanin upregulation in human macrophages in response to an inflammatory 

stimulus, such as LPS. To test these macrophages were derived from isolated 

monocytes with the addition of growth factors. These monocyte-derived macrophages 

will have some differences in characterises compared to isolated macrophages 
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(Ohradanova-Repic et al., 2016); however macrophage isolation is very difficult and 

there is a very limited availability of a reliable immortalised human macrophage cell 

line, therefore was the alternative option avaliable. THP-1 cells were also used for 

macrophage differentiation but did not produce a high yield of CD68+ macrophages. 

Therefore, monocytes isolated from human blood were differentiated into macrophages 

after GM-CSF and M-CSF treatment. GM-CSF addition leads to the formation of ‘M1 

macrophages’ with a pro-inflammatory phenotype and DC antigen-presenting properties 

(Masurier et al., 1999). M-CSF addition leads to the formation of ‘M2’ macrophages 

with an anti-inflammatory phenotype (Verreck et al., 2004, Lacey et al., 2012). 

Macrophages have great heterogeneity during inflammation depending on the tissue in 

which they reside (Gordon and Taylor, 2005). Monocyte-derived macrophages were 

treated with GM-CSF or M-CSF for 5-6 days. This was a sufficient number of days to 

give reasonable yields of monocyte-derived macrophages, without increasing the levels 

of cell death. The GM-CSF and M-CSF treated monocyte-derived macrophages were 

both stimulated with LPS for 24 h before podoplanin expression was determined. It was 

initially expected that both types of monocyte-derived macrophages would be converted 

into an inflammatory macrophage after LPS stimulation. However, differences were 

seen between the two, both phenotypically and functionally. LPS stimulation lead to 

different morphological appearances. There was no major podoplanin upregulation with 

GM-CSF treated cells after LPS stimulation. M-CSF treated monocyte-derived 

macrophages did significantly upregulated podoplanin after LPS stimulation, which is 

interesting as M-CSF treatment is proposed to give a M2, anti-inflammatory phenotype. 

LPS stimulation is thought to switch the M2 phenotype to an M1 like, pro-inflammatory 

phenotype; however reasons why the LPS stimulated GM-CSF treated monocyte-
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derived macrophages did not induce podoplanin upregulation are uncertain and suggests 

a preferential role for the M2 macrophages leading to the upregulation of podoplanin 

after an inflammatory stimulus. Interestingly however, podoplanin was upregulated in 

both bone-marrow derived macrophages and macrophages from the RAW 264.7 cell 

line, stimulated with LPS and when treated with staurosporine and cycloheximide to 

induce apoptosis (unpublished results in the laboratory; (Rayes et al., 2015)). Therefore, 

this suggests that the expression profile for podoplanin and upregulation in response to 

inflammatory stimulus is limited to inflammatory and apoptotic macrophages in mice 

and limited further to a few sub-types of inflammatory macrophages in humans. 

 

Importantly in the context of platelets, podoplanin can interact with CLEC-2, leading to 

platelet activation. Platelet activation through CLEC-2 has been shown in response to 

up-regulation of podoplanin on inflammatory mouse macrophages (RAW264.7 cells), 

tumour cells and LECs (Kerrigan et al., 2012, Kato et al., 2003, Bertozzi et al., 2010).  

Podoplanin upregulation on liver macrophages in response to Salmonella typhimurium 

infection in vivo triggers a long-lasting, CLEC-2-dependent venous thrombosis in the 

liver (Hitchcock et al., 2015). My results show for the first time that a subset of human 

macrophages (monocyte-derived) upregulate podoplanin in vitro following LPS 

treatment. Podoplanin-upregulation on the M-CSF treated monocyte-derived 

macrophages was not sufficient to induce platelet activation, as measured by P-selectin 

expression on gated CD68+ cells. A small shift in P-selectin expression was seen with 

M-CSF derived macrophages stimulated with LPS, although this did not reach 

significance, which may have result from the cell ratio of platelets to macrophages. 

There was also no increase in P-selectin after platelets were added to GM-CSF treated 
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cells.  The differentiation process of macrophages derived from treated monocytes only 

yielded a limit number of macrophages, therefore increased numbers may be required 

for significant platelet activation to occur. Therefore this part of the study was 

underpowered and would require increased sample size to conclude if the upregulated 

podoplanin can mediate platelet activation. In vivo studies may also be required to see if 

human macrophages can upregulate podoplanin in response to an inflammatory 

stimulus and if platelet activation consequently occurs.  

 

In order to investigate whether blocking podoplanin could reduce the platelet activation 

by interactions with macrophages, the podoplanin antibody NZ-1.3 was added and 

platelet interaction with macrophages was assessed The anti-podoplanin antibody NZ-

1.3 has previously been shown to neutralise and prevent tumour cell mediated platelet 

aggregation through blocking podoplanin (Kato et al., 2006). P-selectin expression, 

representing platelet activation, however did not decrease in the presence of NZ-1.3, 

possibly because of the limited (non-significant increase in expression). Surprisingly, 

the NZ-1.3 antibody caused a small increase in P-selectin expression and in the number 

of platelets in complex with macrophages. There are two possible explanations for these 

results; firstly, the anti-podoplanin antibody had some off target effects through 

FcγRIIA inducing platelet activation or secondly, the blocking podoplanin induces the 

expression of new receptors on macrophages and their interaction with another receptor 

on platelets leads to platelet activation. Using another podoplanin blocking antibody, or 

only using the fab fragment of a podoplanin antibody would establish if the antibody 

caused platelet activation. The NZ-1.3 anti-podoplanin antibody however, was the best 

anti-podoplanin antibody tested in these studies, with the least background given 
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compared to the isotype control. Therefore, a CLEC-2 blocking antibody in future 

studies would be more useful to establish if the platelet activation induced by 

inflammatory macrophages is mediated through podoplanin-CLEC-2 interactions.  

 

Many studies showing podoplanin upregulation of fibroblasts and inflammatory 

macrophages in inflammatory settings have been limited to the study of mice. The 

results of this chapter have shown only a limited number of cells in the blood that have 

the capacity to upregulate podoplanin in response to an inflammatory stimulus. PBMCs 

and monocytes are unable to upregulate podoplanin after LPS stimulation. Monocyte-

derived macrophages treated with M-CSF were the only cells able to sufficiently 

upregulated podoplanin in response to LPS stimulation, confirming findings that only a 

sub-set of inflammatory macrophages can upregulate podoplanin. However, monocyte-

derived macrophages will have different morphology to human inflammatory 

macrophages and therefore further in vivo studies looking into podoplanin upregulation 

on macrophages after LPS stimulation would be required.  Furthermore, the functional 

consequence of the finding that a subset of human macrophages can upregulate 

podoplanin and activate platelets in inflammatory setting remains to be determined. 

 

Following a previous study in our laboratory of upregulation of podoplanin on CD45+ 

microvesicles, podoplanin has been proposed as potential candidate as an inflammatory 

marker. However, there was no significant upregulation of podoplanin on CD45+ 

microvesicles from IBD patients. Although some very septic patients had increased 

numbers of microvesicles compared to HCs, there was no increase in podoplanin on the 
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CD45+ microvesicles compared to HCs and isotype controls. Therefore, these results 

indicate that podoplanin is not upregulated on microvesicles in inflammatory settings.  

 

Podoplanin has previously been shown to be cleaved after sialadase treatment (Pan et 

al., 2014). Podoplanin cleavage was also observed after 1 h trypsin treatment of 293T 

cells.  Podoplanin could be detected in the cell supernatant by flow cytometry and by 

Western blotting. A podoplanin ELISA to measure microvesicle-bound podoplanin was 

developed. After various trials and development, it was found that a podoplanin 

sandwich ELISA could not be developed due to overlapping binding sequences of the 

podoplanin epitope in different podoplanin antibodies tested. Because of the lack of 

efficacy with the sandwich ELISA, a competitive ELISA was developed, using only the 

NZ-1.3 anti-podoplanin antibody. With the competitive ELISA, recombinant 

podoplanin was shown to generate a reasonable standard podoplanin curves although 

this fell in µg/ml range, reducing the sensitivity of the ELISA.  This was unable to 

detect podoplanin in plasma of controls or patients.  A similar sensitivity was seen with 

a commercial podoplanin ELISA. Further development is needed to increase the 

podoplanin ELISA sensitivity to establish if podoplanin is present in plasma at 

physiological levels.  

 

Although podoplanin has been shown to be cleaved and can potentially be measured in 

the plasma of patients, its reliability as a marker of inflammation is of doubt. CLEC-2 

has also been shown to be shed (Xie et al., 2008, Fei et al., 2012), making sCLEC-2 

another potential marker for platelet activation in inflammation. However, other studies 

from our laboratory have shown that CLEC-2 does not undergo cleavage after activation 
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and is instead be internalised (Lorenz et al., 2015, Gitz et al., 2014). sCLEC-2 is also 

not yet a reputable marker for platelet activation in inflammation. The results of the 

studies showed that podoplanin can be upregulated on a subset of human macrophages 

in response to an inflammatory stimulus. Although this upregulation in vitro was not 

sufficient to mediate platelet activation, this may not be the case in vivo. Therefore 

further in vivo experiments exploring whether podoplanin upregulation in response to 

inflammatory stimuli can lead to platelet activation would be required to determine if 

the CLEC-2/podoplanin interaction between platelets and podoplanin expressing cells, 

could provide a potential therapeutic target for resolving excess inflammatory-driven 

disease.  
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CHAPTER 6 

THE ROLE OF PLATELETS IN 

WOUND HEALING 
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6.1 Introduction  

Wound healing is an important process in response to trauma, thermal injury and in the 

fight against infection. In a trauma context, where substantial tissue damage will occur 

including to the skin, there is the potential of chronic wound development, scarring, 

infection and mortality with impaired healing. Thermal injury can also result in 

significant damage of the skin at varying depths, depending on burn type and thickness, 

with full thickness burns disrupting all skin layers. Thermal injury can increase the risk 

of mortality, with around 265,000 deaths resulting from thermal injury per year 

according to the World Health Organisation (Mock et al., 2008). In addition, damage to 

the skin results in the loss of integrity of the protective barrier against the environment 

and infection (Singer and Clark, 1999). Cutaneous wound healing is therefore a vital 

process for repairing damaged tissue and maintaining the barrier against infection. 

Studying the roles of platelets in the process of cutaneous wound healing acts as a 

model for healing and gives further insight into the role of platelets in vascular integrity. 

 

6.1.1 Structure of the skin  

The skin is made up of different layers containing extracellular matrix proteins and 

various cell types. Figure 6.1 shows a schematic of mouse and human skin, illustrating 

the basic components of the two main skin layers, the epidermis and dermis of both 

mice and humans. In general, the epidermis is made up of several stratum layers and a 

uniform layer of basal keratinocytes attached to the basement membrane.  Keratinocytes 

are specialised epithelial cells found abundantly in the epidermis, which can synthesise 

structural components of the epithelial barrier and can undergo differentiation-

dependent structural changes when required (Eckert and Rorke, 1989). Basal 



211 
 

keratinocytes can process environmental signals, leading to the production of cytokines 

and chemokines to attract and recruit immune cells. Keratinocyte-intrinsic pathways are 

proposed to have a major role in the regulation of immune homeostasis and 

inflammation in the skin (Pasparakis et al., 2014). The dermis is beneath the epidermis 

and is the location of lymphatic vessels, immune cells, extracellular matrix proteins, 

including elastin and collagen, and fibroblasts. Fibroblasts are heterogeneous and 

dynamic stromal cells, with essential roles in skin maintenance (Sorrell and Caplan, 

2004). Fibroblasts have several roles from synthesising granulation tissue and 

extracellular matrix components, such as collagen, to releasing cytokines in response to 

wound injury (Tracy et al., 2016). Fibroblasts are crucial at most stages of wound 

healing; they are attracted to the wound edge at initial stages of injury, involved in the 

deposition of extracellular matrices and differentiate into myofibroblasts during the 

latter remodelling stage (Li et al., 2007, Darby et al., 2014, Singer and Clark, 1999). 
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Figure 6.1 – Structure of skin in mice and humans taken from (Pasparakis et al., 

2014). Structure of mouse and human skin and components of the epidermis and 

dermis. A) Model of mouse skin. A layer of basal keratinocytes lies above the basement 

membrane in the epidermis.  Mouse skin contains densely packed hair follicles 

compared to human skin. Mouse epidermis contains Vγ5+ dendritic epidermal T cells 

(DETCs), which are not found in the epidermis of humans. Mouse dermis consists of 

macrophages, mast cells, conventional αβ T cells, innate lymphoid cells (ILCs) and 

dendritic cells (DCs) (Pasparakis et al., 2014). B) Model of human skin with less 

densely packed hair follicles and a thicker multi-layered epidermis. Human epidermis 

contains mainly Langerhans cells and CD8+ T cells in relation to other immune cells.  

Human dermis contains similar cells as mice dermis, however there is no major 

contribution of recruited γδ T cells, as seen with mouse skin (Pasparakis et al., 2014).  
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6.1.2 Process of wound healing 

There are three main stages of wound healing which take place after injury; 

inflammatory, proliferation and remodelling. These phases do not occur in a linear 

fashion but overlap in time, with strong regulation in place by the release of multiple 

growth factors and cytokines (Li et al., 2007). Tissue injury can often result in damage 

of both the epidermis, the dermis and underlying blood vessels. In the initial stage after 

tissue damage, keratinocytes in the epidermis become activated and depending on the 

nature of the injury can become damaged, causing disruption to the basement 

membrane. Haemostasis will initially occur to prevent excess blood loss. Platelets will 

become activated and aggregate to form fibrin rich clots, sealing off the damaged areas. 

Granular contents from platelets will be released, including several chemokines and 

growth factors, such as platelet-derived growth factor (PDGF) for initiation of wound 

healing and immune cell and fibroblast recruitment (Singer and Clark, 1999, Werner 

and Grose, 2003).    

Inflammatory phase  

Circulating leukocytes, such as neutrophils, monocytes and macrophages, will be 

recruited to the damaged areas through chemokine gradients. These cells will release 

further chemokines and growth factors to enhance the immune response. Neutrophils 

and macrophages will kill and phagocytose infectious agents along with any cell 

damage debris (Li et al., 2007).  Monocytes also infiltrate the wounded area and 

differentiate into macrophages, which go on to release PDGF and vascular endothelial 

growth factor (VEGF), leading to the formation of granulation tissue and the start of the 

proliferation stage (Singer and Clark, 1999). Granulation tissue formation involves 

fibroblast proliferation, deposition of extracellular matrix (ECM) proteins and the start 
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of the formation of new blood vessel (Li et al., 2007). Macrophages also promote 

keratinocyte migration and proliferation to reseal the epidermis and release mediators to 

promote dermal regeneration via activities of fibroblasts, including deposition of ECM 

proteins and myofibroblast differentiation (Shook et al., 2016, Lucas et al., 2010). This 

depletion of macrophages leads to defective wound repair through reducing granulation 

tissue and impaired re-epithelisation (Lucas et al., 2010, Singer and Clark, 1999).  

Resident cells, such as mast cells, located in the dermis, will also becoming activated 

post injury. This robust inflammatory response usually occurs around day 3 post wound 

injury in mice (Singer and Clark, 1999) and generally lasts for 24 to 48 hours. A similar 

time frame is observed in humans, however in some cases this stage can persist for up to 

2 weeks (Li et al., 2007). 

Proliferation phase  

Recruited cells migrate to the wound edge, along with the basal keratinocytes to start 

rebuilding the disrupted epidermis. These will eventually cover the surface of the whole 

wound, a process termed re-epithelisation (Li et al., 2007). First, keratinocytes 

proliferate at the wound edge to ensure there are sufficient number of cells to fully 

cover the wound (Li et al., 2007, Singer and Clark, 1999). During this re-

epithelialisation period, basement membrane proteins start to form a uniformed 

sequence (Singer and Clark, 1999) and fibroblasts from the dermis and monocyte-

derived fibroblasts from the circulation move towards the wounded edge. At the same 

time in the dermis, fibroblasts differentiate into contractile myofibroblasts, characterised 

by large bundles of actin-containing microfilaments, which contract to reduced wound 

size (Tracy et al., 2016, Desmouliere et al., 2005).  
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Remodelling phase  

The resolution and remodelling phase then follows to restore integrity of the wounded 

tissue. During this phase the epidermis thickens and the basement membrane is fully 

sealed. The dermal reconstruction occurs during this stage, which is characterised by 

granulation tissue formation and new blood vessel formation (Li et al., 2007). Blood 

vessels that have also undergone angiogenesis will mature to re-vascularise the 

damaged area. Fibroblasts, which have accumulated in the previous phases undergo 

proliferation and produce new collagen and extracellular matrix proteins (Li et al., 2007, 

Tracy et al., 2016).  Wounds continue to undergo contraction mediated through 

myofibroblast activity (Young and McNaught, 2011, Desmouliere et al., 2005), and 

when near completion of the wound healing process, the immune cells recruited during 

the inflammatory phase and the contracted myofibroblasts will undergo apoptosis. This 

remodelling process and wound contraction by the myofibroblasts can last for around 2 

weeks in mice, depending on size, depth and thickness of wound (Li et al., 2007). 

Remodelling in human wounds however can take much longer, up to two years. Scar 

tissue is formed if there is not a correct balance between synthesis and degradation of 

matrix proteins, such as collagen and fibronectin, deposited in the wound (Young and 

McNaught, 2011, Xue and Jackson, 2015). 

 

6.1.3 Role of platelets in wound healing 

Platelets have numerous roles at different stages of wound healing. The predominate 

role is during the immediate response after wound injury to maintain haemostasis by 

stopping blood loss. The clot formed to seal the wound also provides a matrix scaffold 

for recruited cells to infiltrate the damaged area (Li et al., 2007). Another important 
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function of platelets is in the release of chemoattractant and growth factors to recruit 

immune cells to initiate the healing process (Li et al., 2007). A range of pro-angiogenic 

and protein factors that promote differentiation, including, PDGF, transforming-growth 

factor-β (TGF-β), platelet factor 4 (PF4) are all released from platelets. These have all 

been implicated in wound healing, helping to increase the rate of granulation and 

promote tissue granulation formation (Ksander et al., 1990b, Li et al., 2007). Studies 

have looked into the roles of platelet releasate in the wound healing response; they show 

that platelet releasate, containing PDGF and TGF-β, can promote connective tissue 

deposition and improve wound healing in several animal models (Ksander et al., 1990b, 

Moulin et al., 1998, Margolis et al., 2001, Eppley et al., 2004). Furthermore, platelet 

releasate has been proposed to be an effective treatment in improving wound healing in 

large wounds caused by foot ulcers in diabetic neuropathic foot ulcers (Margolis et al., 

2001). In similar studies, growth factors released from platelets have also been found in 

platelet-rich-plasma (PRP), which is used to prepare platelet gels and concentrates to 

also help improve wound healing. This has therefore been suggested to be a potential 

therapeutic treatment (Eppley et al., 2004, Crovetti et al., 2004). Indeed, a recent study 

reported that co-culture of PRP with keratinocytes and fibroblasts modulated wound 

healing by promoting remodelling and increasing collagen deposition (Xian et al., 

2015). In addition, studies have proposed that platelets can modulate PBMCs directly to 

release growth factors and cytokines which help in wound healing when scratch wounds 

were performed (Nami et al., 2016). 

 

There are limited studies to show the effects of wound healing after platelet depletion to 

confirm the role of platelets. This is presumably due to issues with the requirement of 
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haemostasis immediately after wound injury. However, a study has looked at the effects 

of platelets in acute immune complex–mediated inflammation in the mouse skin using 

the reverse passive Arthus (rpA) reaction model. These data suggest that there is a loss 

of vascular integrity with platelet depletion (using the JAQ1 anti-GPVI antibody). In 

addition, they show that the (hem)ITAM receptor CLEC-2 and GPVI are required for 

the maintenance of vascular integrity in the rpA model and at other sites of 

inflammation (Boulaftali et al., 2013). More recently, the platelet receptor CLEC-2 has 

been investigated in cutaneous wound healing; here it was shown that CLEC-2 on 

platelets regulate the migration of keratinocytes via interaction with podoplanin 

primarily on expressed keratinocytes (Asai et al., 2016). The contribution of podoplanin 

will be discussed further below. 

 

6.1.4 Role of podoplanin in wound healing  

Podoplanin, the only reported endogenous ligand for CLEC-2 has been shown to have 

multiple roles in wound healing, at different stages. Podoplanin signalling generally 

leads to effects on cell motility and migration (Astarita et al., 2012a, Baars et al., 2015). 

In the context of wound healing, it has been reported to promote the migration of 

fibroblasts to the disrupted epidermis. In addition, Baars et al., suggest that podoplanin 

is absent during normal epidermal homeostasis but is significantly upregulated to high 

levels on basal keratinocytes during wound healing (Baars et al., 2015). Other studies 

have assessed the timing of expression of podoplanin during wound healing; together 

these investigations show that upregulation starts at day 1 during the inflammatory 

phase, with high expression and upregulation being observed between day 3 and 7.  

Levels then decrease to nearly negligible levels at day 10 post injury, when the wound 
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is closed (Asai et al., 2016, Honma et al., 2012). As with fibroblasts, podoplanin 

upregulation is proposed to be important for keratinocyte migration as reductions in 

expression of podoplanin using siRNA in normal human epidermal keratinocytes 

(NHEKs) cause significant reductions in keratinocyte motility (Asai et al., 2016). 

Podoplanin is proposed to mediate keratinocyte motility through the RhoA signalling 

pathway, by downregulating E-cadherin, leading to the upregulation of N-cadherin 

which then promotes cell motility (Asai et al., 2016). Asai et al. hypothesise that 

platelets, via CLEC-2 interaction, downregulate podoplanin expression, leading to the 

reduction of keratinocyte motility once re-epithelisation has occurred (Asai et al., 2016). 

However, other studies using conditional genetic deletion of podoplanin in K14-basal 

keratinocytes have suggest there are no defects in wound healing (Baars et al., 2015). 

Therefore, the importance of podoplanin in wound healing has yet to be fully 

established.  

 

In this chapter, a mouse model of wound healing will be used in conjunction with GPVI 

or platelet-specific CLEC-2 deficient mouse strains to determine the effects of ITAM 

receptors on wound healing.  In addition, a haematopoietic-specific podoplanin-

deficient strain will be used to assess the effects of podoplanin deficiency on wound 

healing. Together these mouse models will establish whether the platelet ITAM 

receptors contribute to wound healing, and/or whether podoplanin expressed on T cell 

and/or myeloid populations is required for appropriate wound closure.   
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6.2 Results  

  provided help in anaesthesia administration, mouse monitoring, 

mouse restraint for wound healing measurements and in the immunohistochemistry 

staining, in particular in the podoplanin staining as stated.   

 

6.2.1 Wounds of wild-type mice start to heal by day 5 post biopsy and are almost 

completely healed by day 10.  

Wound closure kinetics in wild-type mice (WT) were assessed after 4 mm full thickness 

punch biopsies taken from the flanks of WT mice aged 8-10 weeks. The primary 

outcome measurement was to measure the extent of wound closure at different time 

points post biopsy. Images of the wound were taken daily, as well as measurements of 

the horizontal and vertical length of the wound to calculate wound area, giving an 

overall indication of wound size. There were no significant adverse effects to the mice 

post biopsy. A small drop in weight was observed initially post biopsy but increased to 

normal levels between day 2 and 3, remaining consistent through the rest of the time 

course. The wounds generally increased in diameter between 4 hours (h) and 2 days 

post biopsy, due to the initial movement of mice causing the wound to open up to some 

extent. From day 2 onwards the wound reduced in size, with a significant reduction 

from the original wound being observed at day 5 (Figure 6.2B). By day 9 post injury the 

wound was greatly reduced to fully healed levels (Figure 6.2A&B).  

 

Platelet counts were measured in blood taken before mice were sacrificed for tissue 

extraction at day 10. There were no significant reductions in platelet counts between,  
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Figure 6.2 – Wound closure kinetics of wild-type (WT) mice. A) 4 mm punch 

biopsies were taken from the flank of WT mice. Wound diameters were imaged and 

measured daily for 10 Days to establish rate of wound closure, n=7. B) Percentage of 

wound closure was calculated compared to the original wound area at t=0. Mean shown 

±SEM. Individual points represents one individual mouse. One-way ANOVA 

performed with Bonferroni post-test to test to compare % of wound closure at the 

different time points to original wound. **p<0.01. ***p<0.005. C) Platelet counts of 

mice at Day 10; individual points represent one mouse. Mean ±SEM shown. 
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Figure 6.3 – Wound structure of WT mice during healing. Representative images of 

Haematoxylin and Eosin (H&E) staining of histology sections taken from WT mice at 

Day 3 (D3) and Day 10 (D10) post biopsy compared to skin tissue prior to biopsy. A) 

Normal undisrupted tissue showing the structure of the skin. Representative image of 

three wounds from three separate mice. B) Section of wounded area of skin from WT 

mice at Day 3. Representative wound image from seven separate mice C) Section of 

wounded area of skin at Day 10 post biopsy. Representative image of a wound from 

seven separate mice. BK = basal keratinocyte, Fb = fibroblast, LV = lymphatic vessel, V 

= blood vessel. Scale bar represents 200 µm and 50 µm, in small and large images, 

respectively.  
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GPVI
-/- 

and CLEC-2
-/- 

and WT mice, supporting the theory that it is the platelet 

receptors that potentially have a role in wound healing and not a result of reductions in 

overall platelet count (Figure 6.2C). Variations in platelet count were observed with the 

Pdpn
-/-

 mice, with one mouse having a reduced platelet count compared to the other.  

 

Wound structure of WT wounds were analysed after Haematoxylin and Eosin 

(H&E) staining of wound tissue extracted (Figure 6.3). At day 3 post biopsy, near the 

start of the proliferation phase and re-epithelialisation process, basal keratinocytes start 

to reform the epidermis layer and recruit other cells, including fibroblasts to the wound 

edge (Figure 6.3B). Red blood cells (RBCs) were observed at the wound edge, where 

bleeding potentially occurred in response to the punch biopsy. At day 10 post biopsy the 

re-epithelisation process had successfully sealed the wound, with the formation of 

granulation tissue and multiple layers of basal keratinocytes in the epidermis being 

observed (Figure 6.3C). 

 

6.2.2 Wound closure did not vary between Pdpn
fl/fl 

Vav-1-Cre and Clec1b
fl/fl

 PF4-

Cre mice compared to WT.   

To establish if the podoplanin/CLEC-2 axis has a role in wound healing, punch biopsies 

were taken from Pdpn
fl/fl 

Vav-1-Cre and Clec1b
fl/fl

 PF4-Cre mice and wound closure 

compared to WT littermate controls. There were no significant differences in wound 

healing observed visually, including no signs of excess bleeding with the Pdpn
-/- 

and 

CLEC-2
-/-

 mice compared to WT controls (Figure 6.4A). Wound closure kinetics of the 

CLEC-2
-/-

  mice were similar to those observed to WT, with an increase in size seen at 4 

h to day 2 post biopsy (Figure 6.4B). A marginal increase in wound size compared to  
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Figure 6.4 -  No difference in wound closure kinetics with Pdpn
fl/fl 

Vav-1
-Cre

and 

CLEC-2
-/- 

mice compared to WT.  4 mm punch biopsies were taken from the flank of 

Pdpn
fl/fl 

Vav-1-Cre and Clec1b
fl/fl

 PF4-Cre mice. A) Wound diameters were imaged and 

measured daily for 10 Days to establish rate of wound closure. Representative image of 

two separate mice per strain. B) Percentage (%) of wound closure calculated compared 

to the original wound area over time after biopsies were taken from Pdpn
fl/fl 

Vav-1-Cre 

and Clec1b
fl/fl

 PF4-Cre mice and compare to mice. (n=2 per strain).  
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Figure 6.5 – No major structural difference with wounds taken from Pdpn
fl/fl 

Vav-

1-Cre and Clec1b
fl/fl

 PF4-Cre mice compared to WT mice. Representative images of 

H&E staining of histology sections taken from WT, Pdpn
fl/fl 

Vav-1-Cre and Clec1b
fl/fl

 

PF4-Cre mice 10 Days post biopsy. A) Section of wounded area of skin from WT mice 

Day 10 post biopsy. Representative image of a wound from seven separate mice. B) 

Section of wounded area of skin from Pdpn
fl/fl 

Vav-1-Cre at Day 10. Representative 

image of two wounds C) Section of wounded area of skin at Day 10 post biopsy of 

Clec1b
fl/fl

 PF4-Cre mice. Representative wound image from two separate mice. Scale 

bar represents 200 µm. 
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WT was observed at day 2, but did not reach significance and the overall rate of wound 

closure phenocopied WT from day 3 onwards (Figure 6.5 B). Moreover, Pdpn
fl/fl 

Vav-1-

Cre mice did not vary greatly in wound closure time of size compared to WT controls 

(Figure 6.4B). H&E staining of day 10 wound tissue to determine structural differences 

also showed no major differences, with the re-epithelisation process completed and 

intact epidermis observed in all wound sections from Pdpn
fl/fl 

Vav-1-Cre Clec1b
fl/fl

 PF4-

Cre and WT mice (Figure 6.5). 

 

6.2.3 Wound closure was slower with GPVI
-/- 

mice compared to WT.   

To assess whether GPVI, a major platelet receptor for collagen and fibrin, had a role in 

wound healing, wound closure was measured in GPVI
-/-  

mice and compared to WT 

controls after punch biopsy. When assessing the wounds visually, GPVI
-/- 

wounds 

seemed to be more pigmented and showed more signs of bleeding at early time points 

compared to WT controls (Figure 6.6). Furthermore, from observations only, the closed 

wound at day 10 in GPVI
-/-

 mice was also more pigmented. Wounds in GPVI
-/- 

mice did 

increase in size at 4 h post biopsy, as seen the WT controls. However, the wounds 

remained larger and took longer to reduce in size, as the percentage of original wound 

size remained higher in GPVI
-/-

 until day 5 post biopsy (Figure 6.7A). Observationally, 

GPVI
-/- 

wounds seemed to heal slower and the GPVI
-/- 

wounds remained a similar size 

to the original wound at day 3 compared to WT wounds (95.4 ± 35.0% and 77.7 ± 

16.5% of original wound respectively), however this did not reach significance (Figure 

6.7B). Two populations of GPVI
-/-

 mice also seemed to present, with one group having 

slower wound healing (Figure 6.7B).  
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Figure 6.6 – Wound closure kinetics with GPVI
-/- 

mice compared to WT.  4 mm 

punch biopsies were taken from the flank of WT and GPVI
-/- 

mice. Wound diameters 

were imaged and measured daily up to 10 days post to establish rate of wound closure. 

Representative images of three nine separate mice. 
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Figure 6.7 – Wound closure kinetics with GPVI
-/- 

mice compared to WT. A) 

Percentage (%) of wound closure calculated compared to the original wound area over 

time after biopsies were taken from WT and GPVI
-/-

 mice. Mean shown ±SEM. B) 

Percentage of original wound remaining with GPVI
-/-

 and WT wounds at Day 3 and 

Day 10. Individual points represent individual mice. Mean ±SEM shown. One-way 

ANOVA performed with Bonferroni’s post-hoc test to compare Day 3 and Day 10 

wounds to original wound and to compare WT and GPVI
-/-

 mice, ***p<0.005. N.S; not 

significant (n=9 (D0 and D3): n=7 (D10).  
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Wound structure after biopsy in WT and GPVI
-/-

 mice were also examined on day 3, 

and at day 10, to see if absence of GPVI had an effect on healing of the wound and if 

any subtle differences in structure of the healing wound could be observed. The re- 

epithelisation process seemed delayed with GPVI
-/-

 mice wounds compared to WT, with 

less granulation tissue formed (Figure 6.8A&B). 

 

6.2.4 Podoplanin expression is normal in WT and GPVI
-/-

 skin during wound 

healing 

GPVI
-/-

 and WT wound sections were assessed for podoplanin expression to establish 

any effects on podoplanin upregulation during wound healing. There was some 

difference in podoplanin staining of the wounds observed at day 3 and day 10 of GPVI
-/-

 

mice compared to WT mice, with podoplanin positive cells being located at the wound 

edge (keratinocytes) and in the dermis (primarily fibroblasts, but other immune cells 

cannot be ruled out; Figure 6.8A&B). Similar levels of podoplanin staining of the basal 

keratinocytes in the epidermis was observed near the wound edges in both GPVI
-/- 

and 

WT mice (Figure 6.8A&B). However, podoplanin staining appeared more intense in the 

dermis of WT mice compared to GPVI
-/-

 in day 3 tissue. This could represent more 

fibroblasts and immune cells being recruited and increased granulation tissue formation 

compared to GPVI
-/-

 mice (Figure 6.8A&B). However, further staining of tissues from 

multiple wound sections from more mice are needed to confirm this. By day 10 the 

epidermal layer at the wound edge was sealed, with an intact layer of basal 

keratinocytes being present in both WT and GPVI
-/-

 mice (Figure 6.8C&D). As 

expected, less podoplanin staining was observed in epidermal keratinocytes and dermal 

layers in day 10 wounds compared to day 3 wounds of both WT and GPVI
-/-

.  
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Figure 6.8 – Podoplanin staining and structure of wounds at Day 3 and Day 10 

post biopsy of GPVI
 -/- 

mice compared to WT mice. Representative images of 

podoplanin (brown colour) staining of histology sections taken from WT and GPVI
-/-

 

mice at Day 3 and Day 10 post biopsy. A) Section of wounded area of skin from WT 

mice at Day 3. Representative wound image from three separate mice. B) Section of 
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wounded area of skin at Day 3 post biopsy of a GPVI
-/-

 mouse. Representative wound 

image from three separate mice. C) Section of wounded area of skin from WT mice at 

Day 10. Representative wound image of three separate mice. D) Section of wounded 

area of skin of a GPVI
-/- 

mouse at Day 10. Representative wound image from three 

separate mice.  BK = basal keratinocyte, Fb = fibroblast, LV = lymphatic vessel, V = 

blood vessel. Scale bar represents 200 µm and 50 µm. All podoplanin staining was 

performed by  . 
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6.3 Discussion  

The main aim of this chapter was to establish whether the platelet ITAM receptors 

CLEC-2 or GPVI, and the endogenous CLEC-2 ligand podoplanin could affect wound 

healing. Wound biopsies were taken from mice deficient in GPVI or deficient in CLEC-

2 or podoplanin from haematopoietic cells to determine if any differences in wound 

healing compared to WT mice.  

 

The wound healing kinetics in WT mice were first established after punch biopsies 

taken, which showed wounds generally increased in size initially from 4 hours to day 2 

after biopsy, potentially due to movement of the mice to some extent. Wounds started to 

decrease in size from day 2 post biopsy, with significant reductions in size being 

observed at day 5. The reduction in wound size at day 2 would correspond to the end of 

the inflammatory phase and start of the proliferation stage of wound healing (Li et al., 

2007, Singer and Clark, 1999). When analysing wound structure by histology, at day 3 

the epidermal layer of basal keratinocyte started to reform following the disruption 

caused from the punch biopsy, representing the start of re-epithelisation. Cells, 

including fibroblasts appeared to be recruited near to the wound edge. RBCs were 

observed in wound sections at day 3, presumably a result of initial bleeding occurring 

when punch biopsy was taken. Wound structure at day 10 showed that wounds were 

mostly healed with re-epithelisation process completed and fully intact epidermis being 

observed.  

 

Platelet CLEC-2 and podoplanin have been shown to have crucial roles in migration and 

proliferation of keratinocytes and fibroblasts (Asai et al., 2016). To determine whether 
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there was a role for the CLEC-2/podoplanin axis in wound healing, biopsies were taken 

from Pdpn
fl/fl 

Vav-1-Cre and Clec1b
fl/fl

 PF4-Cre mice and compared to WT mice. 

Pdpn
fl/fl 

Vav-1-Cre are mice with haematopoietic cells deficient in podoplanin, as global 

podoplanin knockouts die at birth (Schacht et al., 2003). Clec1b
fl/fl

 PF4-Cre are mice 

with CLEC-2 knocked out of all CLEC-2 expressing cells, including platelets and 

dendritic cells. There were no structural differences in wounds of Pdpn
fl/fl 

Vav-1-Cre 

and Clec1b
fl/fl

 PF4-Cre mice, with wound closure similar to WT wounds for the full 

time course, and being healed between day 9 and 10.  Overall this suggests that 

deficiencies in podoplanin or CLEC-2 have little effect on wound closure, supporting 

findings by Baars et al. (2015), who showed that podoplanin function was not rate-

limiting in the re-epithelisation process in wound healing (Baars et al., 2015). However, 

to confirm this finding it would require increased sample number of mice to undergo 

biopsies. This study was a pilot study to give preliminary findings, as only two mice 

were used per condition, so therefore under-powered. The aim of the pilot study was to 

see which platelet receptors/ligands appeared to have roles in wound healing to pursuit 

further. The Pdpn
fl/fl 

Vav-1-Cre mice seemed to have varying phenotypes as one had a 

lower platelet count than the other and bleeding in the guts, suggesting varying severity. 

Therefore, increasing the sample number would confirm if podoplanin deficiencies 

effected wound healing. Other strains of mice with deficiencies in podoplanin, such as 

an epithelial specific deletion of podoplanin or strains with fibroblasts deficient in 

podoplanin may be a useful to determine if podoplanin can modulate the wound healing 

response. CLEC-2 deficient mice also showed no signs of impaired healing. However, 

again only a small number of mice were used for the pilot study and using another 

CLEC-2 deficient mouse model such as the tamoxifen induced global CLEC-2 
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knockout model, where CLEC-2 is removed from all CLEC-2 expressing cells may help 

to confirm whether there is a role for CLEC-2 in wound healing.  

 

GPVI and other ITAM receptors are important in maintain vascular integrity in the skin 

with acute immune complex–mediated inflammation (Boulaftali et al., 2013). Punch 

biopsies were taken from GPVI
-/- 

mice in these preliminary studies to assess effects on 

cutaneous wound healing. GPVI
-/-

 mice used were mice with GPVI knocked out from 

platelets and megakaryocytes (platelet precursor).  Wounds from GPVI
-/- 

mice did show 

visually differences in structure, size and composition at early time points (day 2 to day 

5) compared to WT wounds, when looking visually at the wounds compared to WT. 

GPVI
-/-

 mice tended to show more signs of bleeding, initially at the time of biopsy taken 

and through the ten-day time course. However, based on the wound healing 

measurements, the wound closure of GPVI
-/- 

mice was not significantly different to WT 

at day 3. There was a split in the population of GPVI
-/-

 mice on day 3 with some GPVI
-/-

 

mice having slower wound healing to the others. Explanations for this could be due to 

age of the mice, size of initial wound, sex or litter. However, most of the mice were 

aged between 8-10 weeks due to licence protocol and established methods, there was 

variation in the sex, with both males and females being used, which didn’t associate 

with the split in the groups and the initial size of the wounds were similar. Mice used 

were also from different litters, but this can not be fully ruled out as a possible 

explanation as this study was only able to use a small number of GPVI
-/-

 mice for this 

time point, therefore this could affect wound closure. Another limitation may arise due 

to the accuracy of the wound measurements. Due to animal licence restrictions and 

animal housing issues, only callipers were allowed for measuring the wounds whilst the 
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mice were awake, therefore potentially giving less accurate measurements. Future 

measurements could involve anaesthetising the mice to get exact wound measurements 

or using the appropriate cameras and software, which will accurately measure the 

wound lengths.  Further exploration with the methods and increasing the number of 

mice undergoing the biopsy procedure could provide more information as to the reasons 

for the split population and also potentially increase the significance to show whether 

there is a delay in wound healing in GPVI
-/-

 at day 3 post biopsy. By day 6 the wound 

healing processes of the GPVI
-/-

 mice appeared to have reached the same levels of WT 

wound healing with the wounds being healed at day 10, suggesting that GPVI 

deficiency may delay wound healing but not prevent full wound closure. The re-

epithelialisation process looked delayed when assessing wound structure using 

immunohistochemistry. There seemed to be less granulation tissue formed at day 3 in 

GPVI
-/-

 mice wounds compared to WT. However, at day 10, there was a uniformed 

layer of basal keratinocytes and intact epidermis being present in both WT and GPVI
-/-

 

mice. 

 

Wound sections were then co-stained for podoplanin to see if podoplanin staining could 

show more subtle differences in wound closure. Podoplanin upregulation during wound 

healing is regulated to modulate the migration of keratinocytes and fibroblasts at certain 

stages of healing (Asai et al., 2016). General podoplanin staining was similar at day 3 

and day 10 in wounds of GPVI
-/-

 and WT mice. Podoplanin positive cells were located 

at the wound edge, representing keratinocytes and the number of podoplanin positive 

cells, most likely fibroblasts, were located in the dermal layer at day 3, consistent with 

findings of previous studies (Asai et al., 2016). There was however denser podoplanin 
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staining observed in the dermis of WT mice compared to GPVI
-/-

, which could represent 

less fibroblasts and keratinocytes being recruited and reduced granulation tissue 

formation at this stage in GPVI
-/-

 mice, consistent with our findings that the 

proliferation phase may be delayed in these mice. More tissue sections would need to be 

performed to fully establish this, along with using other epithelialisation markers to 

stain sections to look for delayed wound healing and effects on re-epithelisation. The 

podoplanin positive cells are thought to be fibroblast however it would also be of use to 

stain for inflammatory macrophages (CD45
+
 or F4/80

+
 together) to confirm which cell 

type is present and expressing podoplanin. Co-staining with CD41 could also determine 

if are platelets are present at the different stages of wound healing. To determine 

whether there is a reduction in podoplanin positive cells in the dermis of GPVI
-/-

 

wounds at the earlier time points, flow cytometry, real-time QT-PCR and Western blots 

could all be used to measure podoplanin upregulation in cell suspensions from isolated 

dermis and epidermis of the wounds. Overall, further studies are needed to determine in 

GPVI has a role in cutaneous wound healing.  

 

The findings of these preliminary wound healing experiments suggest that deficiencies 

of podoplanin in haematopoietic cells and CLEC-2 deficiencies do not affect wound 

healing, supporting findings of Baars et al. (2015), which showed podoplanin deletion 

in keratinocytes did not affect migration or ability of wounds to heal (Baars et al., 

2015). Overall this suggests podoplanin mainly as an inflammatory maker or an 

alternative explanation is that there is a compensatory mechanism in place to maintain 

keratinocyte function in the absence of podoplanin (Baars et al., 2015). An important 

aim of this chapter was to establish if platelet ITAM receptors had any part in wound 
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healing. The results suggest that GPVI does not have a major role in wound healing, as 

the wounds did not significantly heal different in the GPVI
-/-

 mice compared to WT. 

However, based on some of the observations, the wounds did seem more pigmented, 

suggest a slight healing impairment. Further studies looking at healing in GPVI
-/-

 mice, 

including having more accurate ways of measuring wound closure, increasing the 

number of mice to increase power of the study and more H&E staining of the wounds to 

show subtle differences, will be required to confirm if there is a role for GPVI in wound 

healing. 

 

The potential role of GPVI in wound healing could be due to delays in proliferation and 

re-epithelisation, which may result from immediate haemostasis that occurs post injury. 

It is at this stage that platelet GPVI activation may be important for aggregate formation 

and release of chemokines and growth factors for the initiation of the inflammation 

phase for wound healing. The absence of GPVI may result in delayed immune cell 

recruitment, which only then occurs once the neutrophils and monocytes infiltrate the 

wound to the release the important mediations and growth factors needed to drive the 

wound healing process. However, further studies are required to determine the full role 

of platelet GPVI in all the different stages of the wound healing process. 
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CHAPTER 7 

 

GENERAL DISCUSSION 
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7.1 Summary of results  

Platelets play critical roles in thrombosis, inflammation and wound healing, which are 

essential processes needed in the response to trauma and have been fundamental to the 

work performed in this thesis. The following have driven the work in this thesis; (i) 

identifying which of the endogenous mediators released following trauma and during 

inflammation induce platelet activation; (ii) the molecular basis of activation; (iii) the 

consequences of platelet activation in disease as indicated using molecular biomarkers; 

and (iv) investigating the role of platelets in wound healing. 

7.1.1 Platelet activation in response to trauma and inflammation  

I have assessed several different types of Alarmins and other endogenous mediators 

released after trauma and have shown histones to be one of the most potent Alarmins in 

mediating robust platelet activation both in vitro and in vivo. Histone-mediated platelet 

activation in vitro was shown to be through the ITAM receptor, GPVI, providing an 

alternative mechanism to the toll-like receptor mechanism previously described 

(Semeraro et al., 2011, Fuchs et al., 2011a). However, histone-mediated platelet 

activation was shown to be independent of GPVI in vivo by measurement of 

thrombocytopenia after injection into mice, as this was not reduced in GPVI
-/-

 mice 

(even in the presence of a direct thrombin inhibitor, hirudin), suggesting an alternative 

in vivo mechanism(s) for histone-mediated platelet activation, such as endothelial 

damage and release of mediators or through activation of multiple platelet receptors. 

Histones are highly positive charged proteins, which have multiple effects on several 

different cells, suggesting that targeting or neutralising histones directly, such as heparin 

treatment, may have the greatest potential for preventing their cytotoxic effects. 
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Other mechanisms for platelet activation as a result of inflammation were also studied. 

Podoplanin, the endogenous ligand for the hemITAM receptor, CLEC-2, has been 

shown to be upregulated on several cells under inflammatory conditions (Astarita et al., 

2012b, Ekwall et al., 2011), including on inflammatory macrophages in mice (Mourao-

Sa et al., 2011, Kerrigan et al., 2012). I extended this to show an important difference 

with podoplanin upregulation on human blood cells, with podoplanin only being 

upregulated on inflammatory macrophages (monocyte-derived macrophages) in 

response to the inflammatory stimulus LPS.  Surprisingly, podoplanin upregulation was 

not sufficient to induce platelet activation. However, due to the low sample size for 

these sets of experiments, further studies looking to alter the platelet – macrophage ratio 

would be required to confirm whether the podoplanin upregulation can induce platelet 

activation.  In vivo studies would also be beneficial to determine precisely which cells 

can upregulate podoplanin in response to an inflammatory challenge and establish if this 

would be sufficient to induce platelet activation. 

7.1.2 Consequences of platelet activation  

It is known that soluble GPVI (sGPVI) is released into the circulation after GPVI 

cleavage following activation of the predominate sheddase ADAM10, in response to 

numerous stimuli including collagen, other ITAM ligand, shear and FXa (Facey et al., 

2016). In this study, I have confirmed that activation of GPCRs by ADP and PAR-1 did 

not induce GPVI shedding. Thrombin stimulation did however induce GPVI shedding 

in 50% of the donors, presumably as a result of fibrin formation. Fibrin-mediated GPVI 

shedding was found to be mainly dependent on the confirmation of fibrin, with only 

polymeric and not monomeric fibrin mediating shedding. There were limited roles for 

matrix metalloproteinases, including ADAM10 and ADAM17 in the fibrin-mediated 
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shedding.  Fibrin-mediated shedding did not appear to dependent on GPVI signalling, as 

inhibitors to key signalling proteins Src and Syk did not reduce fibrin-induced GPVI 

shedding. This is in contrast to activation by GPVI and indicates that shedding may not 

be related to binding to GPVI, however this remains to be investigated. The ability of 

fibrin to induce GPVI shedding provides an alternative physiological agonist to collagen 

for mediating GPVI shedding in vivo. 

 

sGPVI has been a recognised platelet activation marker in thrombo-inflammatory 

conditions, including stroke and microangiopathy (Wurster et al., 2013, Al-Tamimi et 

al., 2011a). This study extended this to show that sGPVI is a marker of platelet 

activation in patients with rheumatoid arthritis, inflammatory bowel disease (IBD) 

patients with active ulcerative colitis (UC) and patients with thermal injury (a model of 

trauma) who develop sepsis.  The level of expression of sGPVI in these cohorts of 

patients allows correlations to be drawn with clinical outcomes, such as iron deficiency 

in the IBD patients and sepsis in the thermal injury patients.  The elevation of sGPVI in 

the patients with thermal injury peaked around day 14 when minimal collagen exposure 

would be expected, suggesting another agonist or mechanism behind the shedding 

observed. sGPVI was shown not to correlate with age or platelet count suggesting 

alternative reasons for the elevations. This with the sGPVI elevations being 

significantly higher in septic patients, suggests a sepsis-driven response to cause platelet 

activation, and not due to initial size of injury. One potential explanation is that there is 

potentially increased disseminated intravascular coagulation (DIC) observed in sepsis 

(Semeraro et al., 2010b), whereby platelets could become further activated by 

polymerised fibrin networks associated with newly formed thrombi, inducing fibrin-
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mediated GPVI shedding. In the future, it will be important to correlate sGPVI levels 

with markers of fibrin formation, such as D-dimer levels to strengthen the evidence that 

sGPVI elevation is a consequence of fibrin activation of platelets. Measurements of 

patients with high levels of fibrin formed, such as in patients with deep vein thrombosis 

(DVT), may also allow further conclusions to whether fibrin mediates the GPVI 

shedding.  

 

Several attempts were made to measure soluble podoplanin and podoplanin-expressing 

microvesicles to establish if they present in inflammatory settings. Podoplanin has been 

previously shown to undergo cleavage after sialadase treatment in vitro (Pan et al., 

2014) and therefore could be released and detected into the circulation. Microvesicles in 

the circulation could also potentially express podoplanin in inflammatory settings. 

However, there was no detection of podoplanin expression on microvesicles in patients 

with inflammatory bowel disease and sepsis when measuring by flow cytometry and the 

podoplanin ELISAs developed were not sensitive enough to detect either microvesicle 

bound or soluble podoplanin at physiological ranges. A more sensitive bioassay would 

need to be developed to rigorously test this although searching of available proteomic 

databases has also failed to find evidence of podoplanin in plasma in inflammatory 

conditions (Burkhart et al., 2014).  

7.1.3. The role of platelets in wound healing  

A cutaneous wound healing model was developed to assess the roles of platelets in 

wound healing, in particular studying if the ITAM receptors, GPVI and CLEC-2, along 

with podoplanin, are involved in wound healing. A series of preliminary experiments 

took wounds from mice deficient in these receptors and ligands were compared to wild-
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type mice to assess differences in wound closure and in structures at certain time points 

post injury. Preliminary results suggest no differences in wound healing in mice with 

deficiencies of CLEC-2 or podoplanin. Preliminary data also showed mice deficient in 

GPVI did not impair wound healing compared to wild-type mice. However, due to the  

limited numbers of mice available at the time, further studies are required to fully 

establish if there is a role for GPVI in wound healing and the molecular basis of this 

role. 

 

 

 7.2 Final Conclusions  
 

The overall findings of this thesis have added to the evidence that GPVI can serve as a 

marker of platelet activation in certain inflammatory conditions and in thermal injury 

patients who develop sepsis. After exploring the mechanisms behind a range of 

Alarmins, histones were the only Alarmins where GPVI had a role. Histone-mediated 

platelet activation in vitro was GPVI dependent; however, multiple mechanisms were 

involved in vivo. Proteolytic cleavage of CLEC-2 (data not shown) and podoplanin gave 

slightly disappoint results and did not show increased levels in the plasma in patients 

with inflammatory conditions. sGPVI, released after GPVI cleavage, was shown to be 

elevated in certain inflammatory disorders, notably in association with sepsis and with 

iron deficiency in inflammatory bowel disease patients, supporting the clinical 

relevance of sGPVI as a platelet activation marker. The finding that fibrin induces GPVI 

shedding further strengthens the evidence that fibrin is a physiological ligand of the 

immunoglobulin receptor and a future potential target for therapeutic intervention in 

inflammatory and thrombosis settings.   
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