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Abstract 

Daphnia magna is gaining interest as a model for epigenetic research, especially as it is easy 

to maintain in large numbers under laboratory conditions and has low genetic diversity due 

to parthenogenetic reproduction. The D. magna genome is responsive to a wide range of 

stimuli, multigenerational studies can be conducted in short period of time, and a wide range 

of genomics resources is being developed for this species. Despite these great advantages, 

information regarding the epigenome of D. magna and its regulation is still lacking. Thus, the 

main aim of this work was to describe the methylome of D. magna and investigate its 

regulation and responsiveness to environmentally relevant exposure conditions. Despite the 

low levels of global DNA methylation, a defined profile could be identified. DNA methylation 

in D. magna is sporadic and mainly found at coding regions.  These data suggest that D. magna 

encodes a complete set of genes for DNA methylation reactions. Evidence of direct effects on 

the DNA methylation profile were also found when animals were exposed to the DNA 

Methylation Inhibitor 5-azacytidine and these changes were persistent after the removal of 

the stressor. Acute and chronic exposures to environmentally relevant concentrations of 

stressors (arsenic and hypoxia) also induced changes in gene transcription levels and 

concentrations of one-carbon pathway metabolites. These findings indicate that the 

epigenome of D. magna is responsive to changes in the environment and thus support its use 

as an environmentally relevant model organism for epigenetics research. Furthermore, the 

maintenance of some of the epigenetic changes in the absence of the initial stressor provides 

evidence in support of the concept of ‘epigenetic memory’ and its potential use in chemical 

risk assessment.   
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Chapter 1  

General introduction  
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1.1 Introduction 

An introductory overview of epigenetics is provided in section 1.2, including DNA methylation, 

methyltransferase enzymes and the mechanisms and pathways involved in DNA methylation. 

Section 1.3 is mainly focused on discussing the evolution of DNA methylation with a specific 

emphasis on differences in DNA methylation distribution across the genome and its function 

between vertebrates and invertebrates. Furthermore, the role of DNA methylation as an 

interface between the environment and the genome is discussed in section 1.4. In this section 

the concept of “epigenetic memory” is introduced and examples of stressor-induced DNA 

methylation changes and their potential effects are provided. The model organisms often used 

for epigenetic studies are described in section 1.5, followed by introducing the model 

organism Daphnia and discussing its potential for use in epigenetic studies. Finally, the aims 

and objectives of the research presented in this thesis are outlined in section 1.6. 

1.2 Epigenetics 

Epigenetics refers to mitotically heritable molecular factors and process that regulate genome 

accessibility and consequently gene expression and potentially organisms’ phenotype, 

without altering the DNA sequence (Skinner et al., 2010). Epigenetic mechanisms can be 

thought of as a second layer of information on top of the DNA sequence, regulating and 

interacting with the genome (from the prefix epi-, meaning over, outside of or around 

genetics). Epigenetic mechanisms include, but are not limited to, post-transcriptional chemical 

modifications of histones, non-coding RNA, including microRNAs and long non-coding RNAs, 

and chemical modifications of DNA (Felsenfeld, 2014). It is important to highlight that these 
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different epigenetic mechanisms are not separate entities but rather components of a 

complex system that work in conjunction to influence and regulate chromatin structure and 

eventually the function of a cell (Probst et al., 2009). These mechanisms have been identified 

and investigated in wide range of organisms, from prokaryotes to eukaryotes, including fungi, 

plants and animals. The focus of this thesis is on one particular epigenetic mechanism referred 

to as DNA methylation and it is studied in the crustacean Daphnia magna. 

1.2.1 DNA methylation 

Methylation of DNA at cytosine bases is one of the most frequently studied epigenetic markers 

(Suzuki and Bird, 2008; Tan and Shi, 2012). DNA methylation is defined as post-replication 

addition of a methyl group to the 5th carbon position of a cytosine base. This process is 

mediated by a family of enzymes known as DNA methyltransferases (DNMTs), transferring a 

methyl group from the universal methyl donor, S-adenosylmethionine (SAM) to the cytosine 

base (Figure 1.1). DNA methylation is involved in many biological processes and plays an 

important role in regulation of gene expression. In specific, it can function  as a method for 

cells to maintain a memory of the genes that require long-term transcriptional inactivation 

(Jaenisch and Bird, 2003). For example, in vertebrates it is important for X-chromosome 

inactivation, imprinting and tissue-specific gene expression (Crider et al., 2012).  
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Figure 1.1 DNA methylation reaction. DNMTs mediate the transfer of a methyl group from S-
adenosylmethionine (SAM) to cytosine, resulting in the formation of S-adenosylhomocysteine 
(SAH) and 5-methylcytosine. 

 

In animals, methylation of cytosine bases predominantly occurs in a CpG context, where a 

cytosine nucleotide is followed by a guanosine. Despite DNA methylation often being 

associated with CpG dinucleotides, it has been detected at CHG and CHH sites too (H = A, C or 

T), however CHG and CHH methylation are rare events in animals. 

For many years, the main focus of study has been on the methylation status of CpG 

nucleotides within transcription initiation regions. It was expected that the relationship 

between DNA methylation and gene expression would be an inverse correlation, where high 

methylation levels are associated with repressed gene expression, due to direct or indirect 

blocking of transcription. However, it is now becoming evident that the relationships between 

DNA methylation and gene expression are much more complex than originally thought. DNA 

methylation can be both associated with gene activation and inactivation. The function of DNA 

methylation is highly dependent on both its location within the genome and the context of 

the methylated site (Crider et al., 2012; Jones, 2012). A good example is the different impact 
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of DNA methylation on regulation of gene expression at CpG sites within regions referred to 

as CpG islands versus CpG sites located along gene bodies. CpG islands (CGIs) are defined as 

regions with high density of CpGs and are often found in association with promoters and first 

exon regions. Usual parameters for CGIs prediction include a region with at least 200 bp, 

containing a CG percentage greater than 50% and an observed/expected ratio of at least 60%. 

In mammals, CpGs within CGI context are usually unmethylated and associated with 

transcriptionally active genes. Their methylation usually leads to transcriptional inactivation 

(follows the general assumption) (Jones, 1999). In contrast, CpG sites that are found along the 

gene bodies are usually linked to transcriptionally active genes, deviating from the past 

assumption (Jones and Takai, 2001; Suzuki and Bird, 2008).  

1.2.2 One-carbon pathway 

The one-carbon pathway functions as a metabolic integrator of nutrient status. It is a bi-cyclic 

metabolic pathway comprised of the folate and methionine cycles (Locasale, 2013) (Figure 

1.2). Several dietary nutrients, such as folate, choline and some amino acids, are required for 

the maintenance of the pathway, ensuring sufficient products for downstream reactions, 

including DNA methylation (Crider et al., 2012). The one-carbon pathway is comprised of a 

series of reactions, shown in Figure 1.2, that lead to the production of SAM, the immediate 

methyl donor for DNA methylation reaction and several other reactions, involving methylation 

of proteins, phospholipids and xenobiotic compounds (Lu, 2000). Several enzymes are 

involved in this pathway. Their levels are highly regulated to ensure appropriate production 

of SAM and removal of the rate limiting metabolite, S-adenosylhomocysteine (SAH) (Herceg 

and Vaissière, 2011; Ulrey et al., 2005). SAH is produced after the transfer of the methyl group 
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from SAM to the cytosine. SAH has a higher binding affinity to methyltransferase than SAM 

and thus is a potent inhibitor of SAM-dependent methyltransferases. Accumulation of SAH is 

known to disrupt the one-carbon pathway, leading to decreased functionality of 

methyltransferases and subsequently altering the levels of DNA methylation (Mirbahai et al., 

2013; Tollefsbol, 2012; Yi et al., 2000). Therefore, a series of reactions, as illustrated in Figure 

1.2, ensure efficient removal of SAH and continuation of the cycle (Herceg and Vaissière, 2011; 

Ulrey et al., 2005). 
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Figure 1.2 The one-carbon pathway. Methionine cycle is presented in black. Folate cycle is 
represented in green. Choline input in the pathway is shown in blue. Metabolites and enzymes 
(in bold) are displayed in the pathway. 

Abbreviations: BMHT: betaine- homocysteine methyltransferase, CDP-choline: cytidine 
diphosphate-choline, DNMT: DNA methyltransferase, GNMT: glycine N-methyltransferase, 
MAT: methionine adenosyltransferases, MS: methionine synthase, MTHFR: 
methylenetetrahydrofolate reductase, MTRR: Methionine synthase reductase, PC: 
phosphatidylcholine; SAH: S-adenosylhomocysteine, SAHH: S- adenosylhomocysteine 
hydrolase, SAM dependent MT: S-adenosylmethionine dependent methyltransferase, THF: 
tetrahydrofolate.  
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1.2.3 DNA methyltransferases 

The DNA methyltransferases (DNMTs) are the primary enzymes involved in the establishment 

and maintenance of DNA methylation. Three families of DNMTs, DNMT1, DNMT2 and DNMT3, 

have been identified in vertebrates while in invertebrates the number of detected DNA 

methyltransferases can vary from organism to organism (Goll and Bestor, 2005).  

In vitro experiments suggest that DNMT1 has a preference for hemimethylated CpG, therefore 

it is mainly involved in maintaining the methylation pattern of a newly synthesised DNA strand 

after replication. Often, mutation in this enzyme leads to global hypomethylation, confirming 

the role of DNMT1 in DNA methylation maintenance (Bestor, 2000; Chen et al., 2013; Jaenisch 

and Bird, 2003). However, it has been demonstrated that under in vitro conditions, DNMT1 

can cause de novo methylation (Pradhan et al., 1999). 

The DNA methyltransferase 3 family are classified as de novo DNA methyltransferases as they 

show equal affinity towards both hemi- and un-methylated DNA, adding the methyl group to 

the DNA regardless of the methylation status of the complementary strand (Arand et al., 2012; 

Gowher and Jeltsch, 2001; Jones and Liang, 2009). DNMT3 is required for genome-wide de 

novo methylation and is essential during early development and gametogenesis (Klose and 

Bird, 2006; Okano et al., 1999). In Mus musculus (mouse), the knockout of DNMT3s caused 

increases in hemi-methylated CpG sites in regions with repeats, suggesting that DNMT3s are 

important in methylation and inactivation of these regions (Jones and Liang, 2009). 

Therefore, despite the classic classification of DNMT1 and DNMT3 as maintenance and de 

novo methyltransferases, respectively, as described above there are overlaps between their 

functions (Elliott et al., 2016). It is thought that this is partly to ensure that DNMT1 and 3 can 
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compensate for each other to ensure maintenance of normal DNA methylation pattern within 

a cell even if the function of one of them is compromised (Jin and Robertson, 2013; Rhee et 

al., 2002).  

DNMT2 was originally assigned as a DNA methyltransferase due to its highly conserved DNA 

methylase domain. Goll et al. (2006) has demonstrated that in fact this DNMT is responsible 

for methylation of small tRNAs rather than DNA, and it is involved in regulation of protein 

synthesis and tRNA stability (Schaefer et al., 2010; Tuorto et al., 2012). Some of the DNA 

methyltransferases found in insects, such as Drosophila melanogaster, are closely related to 

the mammalian DNMT2 and it seems to be conserved along evolution (Hendrich and Tweedie, 

2003; Okano et al., 1998).  

Vertebrate species generally possess genes of all the three DNMT families. Variation is mostly 

found in the numbers of genes in each family. While mammals have a single copy of DNMT1 

and three copies of DNMT3, Zebrafish have six copies of DNMT3 (Capuano et al., 2014; 

Kamstra et al., 2015b; Li et al., 2010; Robertson et al., 1999; Smith et al., 2011). 

Invertebrates present far greater variability in the presence and numbers of the DNMTs. 

Insects, as an example, present distinct DNMTs profiles (Figure 3.16). The classic genetic 

model organism, D. melanogaster, only has DNMT2 and so far no defined DNA methylation 

pattern has been identified, suggesting that DNMT2-only genomes are unmethylated 

(Capuano et al., 2014; Lyko et al., 2000; Raddatz et al., 2013; Rasmussen and Amdam, 2015). 

Bombyx mori, Nasonia vitripennis and Apis mellifera have similar levels of global DNA 

methylation, although B. mori does not encode the gene for DNMT3 while the others do. 

Regarding DNMT1, B. mori has one copy, while A. mellifera has two copies and N. vitripennis 
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has three copies (Beeler et al., 2014; Lyko et al., 2010; Pegoraro et al., 2016; Wojciechowski 

et al., 2014; Xiang et al., 2010). Therefore, a clear relationship between number of DNMTs and 

DNA methylation levels cannot be directly identified. This is shown in Figure 3.16 and 

discussed in detail in chapter 3. 

Furthermore, DNMTs can be involved in the removal of DNA methylation. Recent studies have 

demonstrated that de novo methyltransferases in mammals can act as DNA 

dehydroxymethylases, converting 5-hmC to C (Chen et al., 2012). Also, DNMTs were reported 

to act as Ca2+ ion- redox state-dependant demethylases, at least in in vitro systems (Chen et 

al., 2013). 

1.2.4 DNA methylation and transcription regulation 

DNA methylation, in association with other genetic and epigenetic mechanisms, is involved in 

regulation of transcription. Although the underlying mechanisms are not fully understood, it 

is thought that epigenetic regulation of transcription is partly achieved by remodelling the 

chromatin structure (Spruijt and Vermeulen, 2014; Vaissière et al., 2008). Transcription 

repression can be achieved by two main mechanisms: (i) occupying transcription factor (TFs) 

binding sites and (ii) recruitment of methylated-DNA binding domain proteins (MBD) (Figure 

1.3). 

(i) Occupying binding sites for TFs: It was discovered that methylation of DNA at CpG 

dinucleotide sites located within the binding site of transcription factors can inhibit their 

binding and subsequently prevent transcription (Iguchi-Ariga and Schaffner, 1989). However, 
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it is now known that this is not the main mechanism for transcription repression via DNA 

methylation (Kass et al., 1997; Vaissière et al., 2008). 

(ii) Methylated-DNA binding domain proteins (MBD): The alternative model of transcription 

repression involves the recruitment of MBD protein. These proteins will recognise and bind to 

methylated CpG sites. Their binding will block both recruitment and binding of all the required 

molecular factors for activation of transcription. This is achieved partly by their interactions 

with several proteins, such as histone deacetylases (HDACs), and induction of local changes to 

the chromatin structure (Wade, 2001; Vaissière et al., 2008).  

Repression of transcription by methylation is not restricted to the promoter regions of genes. 

In vertebrates, more than 90% the methylated cytosines are located at the transposable 

repetitive elements, also referred to as transposons (Baccarelli and Bollati, 2009; Yang et al., 

2004). Maintenance of methylation levels of repetitive elements is crucial for both 

chromosomal stability and genome integrity (Putiri and Robertson, 2011). 
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Figure 1.3 Epigenetic mechanisms for gene silencing. Methylated sites in promoter regions can be directly repressed due to blocking of 
transcription factors biding. Methylated DNA can also form heterochromatin, preventing the access of transcription factors to DNA. Methylation 
of DNA can also result in binding of methyl-binding proteins (e.g. MePC2) which recruit histone deacetylases (HDAC) leading to a chromatin state 
that prevents transcription factors binding to the promoter (Reproduced from Vaissière et al., 2008).  
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Despite gene silencing being recognised as the main function of DNA methylation for many 

years, several other functions have been identified for DNA methylation. For example, DNA 

methylation at gene bodies has been associated with transcriptionally active genes (Jones, 

2012). As highlighted by Jones (1999), there is an apparent paradox in DNA methylation. DNA 

methylation in the promoter regions is inversely correlated with gene expression; on the other 

hand, methylation in the gene body is positively correlated with expression. Therefore, 

presence of a methylated CpG site alone is not sufficient to determine the outcome on 

transcription level.  Both the location of the methylated CpG site and presence or absence of 

other interacting molecular factors play a significant role in determining the outcome of DNA 

methylation on transcription level (Schübeler, 2015). 

DNA methylation in genic regions is highly conserved throughout the phylogenetic tree; 

however, it is still poorly understood at both molecular and functional levels. Studies suggest 

that is involved in disruption of chromatin, such as nucleosome displacement, which is caused 

by elongating RNA polymerase (Jones, 2012; Simmen et al., 1999; Suzuki et al., 2007). Genic 

methylation has also been linked to regulation of alternative splicing (Lev Maor et al., 2015; 

Maunakea et al., 2013). However, experimental evidence is still lacking and there is no full 

characterisation of how the splicing machinery can be affected by methylation (Schübeler, 

2015; Shukla et al., 2011).  

The main point to consider when analysing transcription regulation by DNA methylation is the 

fact that it is not an isolated event and it works in collaboration with other epigenetic 

mechanisms. Additionally, it cannot be related to only one function, since it is likely variable 

according to different genomic contexts.  
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1.2.5 DNA demethylation pathways 

DNA demethylation can either occur through active or passive pathways. Ten-Eleven-

Translocation (TET) enzymes are responsible for the active removal of methylation by a 

multistep reaction, while DNA methylation can be passively lost during replication of DNA, due 

to malfunction of enzymes from the one-carbon pathway or absence of methyl donors 

(Piccolo and Fisher, 2014; Song et al., 2013; Tahiliani et al., 2009). 

In contrast to the well-studied DNA methylation mechanism, the pathway for active 

demethylation of DNA has only recently been revealed and thus it is still not completely 

characterised (Bhutani et al., 2011; Kohli and Zhang, 2013). The intermediate bases of the 

demethylation pathway were first observed in 1972 in mammalian genomes (Penn et al., 

1972), but it was only with the discovery of TET enzymes that these observations received 

attention and the pathway was proposed. Since then, different demethylation mechanisms 

have been proposed which are summarised in Figure 1.4 (Kohli and Zhang, 2013).  

After the discovery of TET hydroxylases and identification of 5-hydroxymethylcytosine (5hmC), 

5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) bases, a multistep reaction was 

proposed for active removal of methylated cytosine (Ito et al., 2011; Song et al., 2013; Tahiliani 

et al., 2009). After oxidation or deamination of 5mC, DNA glycosylase TDG removes 5hmU or 

5caC and the base-excision-repair pathway adds an unmethylated cytosine to the gap (Gong 

and Zhu, 2011). 
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Figure 1.4 Pathways for dynamic demethylation of cytosine. A) DNA demethylation through 
TET enzymes. 5mC bases, introduced by DNA methyltransferase (DNMT) enzymes, can be 
oxidized iteratively to 5hmC, 5fC and 5caC. Then, modified bases can either be passively 
removed or excised by TDG generating an abasic site as part of the base excision repair (BER) 
process that regenerates unmodified C. B) The individual reactions in the pathway are shown 
with all reactants depicted. α-KG, α-ketoglutarate; SAM, S-adenosylmethionine; SAH, S-
adenosylhomocysteine (Reproduced from Kohli and Zhang, 2013). 

 

The role of the additional chemical modifications is not completely clear. Besides 5hmC being 

an intermediate base during DNA methylation by TET enzymes, it is proposed that it can also 

be a stable base with influences on chromatin structure and transcriptional activity. As well as 

5mC, 5hmC can recruit selective hmC-binding proteins or exclude methyl-CpG-binding 

proteins affecting chromatin modifications. It can also facilitate passive loss of methylation 

since it is poorly recognized by DNMT1 (Tahiliani et al., 2009). Studies also suggest 5fC may 

have functional roles as an epigenetic mark of regulatory elements (Song et al., 2013).  
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The demethylation pathway is completed by the thymine DNA glycosylase (TDG). TDG can 

directly excise the TET oxidation products, 5fC and 5caC. Then, the excised base is replaced 

with a cytosine by base excision repair (BER) pathway (Kohli and Zhang, 2013; Robertson et 

al., 2009). 

DNA methylation can also be passively lost during DNA replication. When DNA is replicated 

the DNMTs recognise the methylated cytosine on the parent strand, adding the methyl group 

to the new strand, therefore, maintaining the normal levels of DNA methylation. When this 

mechanism is disrupted, for example either due to malfunction of methylation enzymes or 

absence of methyl donors, DNA methylation is passively lost.  This will result in global loss of 

DNA methylation and passive demethylation (Piccolo and Fisher, 2014). 

1.2.6 DNA methylation reprogramming during development 

Epigenetics modifications are usually stable in somatic cells, but in germ cells and during early 

embryogenesis (Figure 1.5) they undergo an extensive reorganisation involving large scale loss 

and resetting of the DNA methylation patterns and remodelling of histones, referred to as 

reprogramming. The first epigenetic reprogramming event occurs in the fertilised eggs. It is 

necessary that the previous sperm- and oocyte-specific epigenetic patterns are removed and 

the DNA methylation pattern is reset in a tissue-specific manner as the embryo develops. 

Furthermore, the resetting of DNA methylation markers will reduce the risk of perpetuation 

of epimutations through mitotic and meiotic division (Feng et al., 2010b; Lees-Murdock and 

Walsh, 2008). Likewise, a demethylated state may increase epigenomic plasticity, facilitating 

the massive transcriptional changes associated with embryogenic development (Seisenberger 

et al., 2013). As described in Figure 1.5, the demethylation events in maternal and paternal 
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alleles occur through different mechanisms, with the paternal genome actively demethylated 

while the maternal genome is passively demethylated (Seisenberger et al., 2013). The only 

genes that escape this wave of de-methylation event are imprinted genes. Imprinted genes 

are genes whose expression is determined by the parent that contributed them. Therefore, 

imprinted genes in the embryo will inherit the DNA methylation pattern of the parent, with 

one allele reflecting maternal DNA methylation patterns and the other the paternal DNA 

methylation pattern. Once the DNA is demethylated, the methylation pattern is re-established 

by the de novo DNMT3a and 3b just prior to implantation stage (Kelsey and Feil, 2013; 

Seisenberger et al., 2013). 

The second reprogramming event occurs in primordial germ cells (PGC) once they reach the 

embryonic gonads (Feng et al., 2010b; Jirtle and Skinner, 2007; Law and Jacobsen, 2010). This 

reprogramming is potentially important for the development of the germ line as well as being 

essential for removal of parental imprinting and setting the base for totipotency intrinsic to 

this cell lineage and establishment of germ-cell specific methylation marks, leading to 

formation of sperm- and oocyte-specific patterns.  It is important to highlight that the DNA 

methylation patterns of imprinted genes are only reset during this reprogramming event. Thus 

any mistake during their re-methylation is maintained in the following generations, leading to 

transgenerational epigenetic inheritance (Seisenberger et al., 2013). In general, epigenetic 

reprogramming events may occur at an extremely critical stage, with greater vulnerability, 

where the environment can affect the mechanism of resetting the epigenetic marks and may 

lead to disruption of epigenetic mechanisms. 

The embryonic epigenetic reprogramming event in invertebrates has not been studied to the 

same extent as it has been in vertebrates, such as mammals. However, theories about DNA 
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methylation reprogramming in invertebrates are being developed and indicate similarities 

between the reprogramming events in vertebrates and invertebrates (Head, 2014; Patalano 

et al., 2012). These associations have been made between the events of reprogramming 

occuring in mammals and the reprogramming of castes in insects, such as Apis mellifera. 

 

 

Figure 1.5 DNA methylation reprogramming events in mammalian development. Two waves 
of demethylation occur in the genome. The first happens following fertilization when the 
methylation in gametes is erased. Paternal gamete (in blue) undergoes rapid active 
demethylation, followed by a passive demethylation event in maternal gametes (in red). 
Methylation pattern is then re-established through de novo DNA methylation. Primordial 
germ cells (PGCs) (in green) suffer a second global demethylation event. DNA methylation 
pattern is once more re-established during sex determination. BER – Base excision repair; TET 
– Ten-eleven translocase enzymes; DMR – Differentially methylated region; IAP – 
intracisternal A particles; ICM – inner cell mass; AID - Activation-Induced Cytidine Deaminase; 
piRNA - Piwi-interacting RNA (Reproduced from Seisenberger et al., 2013).  
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1.3 DNA methylation in vertebrates and invertebrates 

DNA methylation is an epigenetic mechanism highly conserved throughout evolution (Zemach 

et al., 2010). It is present in many organisms ranging from prokaryotes to eukaryotes. 

However, there are some differences between organisms in terms of function, distribution, 

level and bases that are methylated. For example, methylation in prokaryotes mostly occurs 

at adenine bases, while in eukaryotes it is largely detected on cytosines (Collier, 2009; Feng et 

al., 2010a; Rivière, 2014; Suzuki and Bird, 2008; Zemach et al., 2010). However, in recent years 

other methylated bases, such as methylated adenosine, have been detected in different 

eukaryote organisms, such as C. elegans, C. reinhardtii, D. melanogaster and H. sapiens (Greer 

et al., 2015; Luo et al., 2015; Wu et al., 2016). 

Furthermore, although DNA methylation is detected in majority of the organisms, the level 

and distribution pattern of DNA methylation can vary dramatically among species (Jiang et al., 

2014; Rivière, 2014). For example, vertebrates present higher DNA methylation levels than 

invertebrates. Table 1.1 summarises the main findings regarding DNA methylation in key 

species throughout different taxa.  

In vertebrates, DNA methylation is distributed throughout the whole genome, with sections, 

close to the promoter regions and the 5’ end of the genes presenting a drop in methylation 

level (Figure 1.6). Also, genes differ in their CpG content. Usually, promoters with low numbers 

of CpG sites are often hypermethylated while promoters with high repeats of CpG 

dinucleotides (CpG islands) are often demethylated, leading to maintaining an active 

transcriptional status (Rivière, 2014; Zemach et al., 2010).  
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H. sapiens, M. musculus and D. rerio are the main vertebrate organisms used in epigenetic 

studies.  The overall distribution of DNA methylation is very similar among these organisms 

and follows what was described above, although the global levels of DNA methylation are 

usually higher in fish than in mammals (Zhang et al., 2016). Methylation can occur in different 

features of the genome, including repetitive regions, transposons and gene bodies (Feng et 

al., 2010a) (Figure 1.7).  

 

 

Figure 1.6 General DNA methylation distribution in vertebrate (A) and invertebrate (B) 
genomes. Methylation level is presented for the different context, CpG, CHG and CHH, 
showing high levels in CpG context in both. A) a drop in DNA methylation close to the 5’ end 
of the gene and a slight increase in gene bodies is observed for vertebrates; B) overall low 
level of methylation with enrichment along genes is observed for invertebrates (Reproduced 
from Feng et al., 2010a).   
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Figure 1.7 Distribution of methylated cytosine in an invertebrate and vertebrate genome. 
Different genomic regions are represented, including active and inactive genes with proximal 
promoter, other regulatory region (enhancer) and repetitive elements. The height of grey bars 
indicates the relative amount of methylation in invertebrates and vertebrates (Reproduced 
from Schübeler, 2015). 
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Table 1.1 Main findings regarding DNA methylation occurrence and pattern in different taxa. 

Species Global % 5mC 
Distribution 
pattern 

Main findings Reference 

Caenorhabditis 
elegans 

0.0033% Absent Very low levels of global DNA methylation. DNMTs were not 
identified. 

Hu et al., 2015 

Drosophila 
melanogaster 

0.03% Absent Very low levels of global DNA methylation. Only DNMT2 was 
identified in fruit fly genome. DNA methylation does not follow a 
defined pattern. 

Lyko et al., 2000 

Bombyx mori 0.11% Sporadic Low levels of DNA methylation, occurring in CpG dinucleotides and 
targeting gene bodies. 

Xiang et al., 2010 

Nasonia vitripennis 0.18% Sporadic Low levels of DNA methylation, in CpG dinucleotides and occurring 
in exonic regions. 

Beeler et al., 2014 

Apis mellifera 0.11% Sporadic Low levels of DNA methylation, in CpG dinucleotides and occurring 
in exonic regions. 

Lyko et al., 2010 

Crassostrea gigas 1.96% Sporadic DNA methylation restricted to CpG sites, enriched in gene bodies 
and repetitive regions. 

Wang et al., 2014 

Ciona intestinalis 4.07% Global DNA methylation occurring specially in CpG sites along the entire 
genome, however with the genes being the major target. 

Feng et al., 2010a 

Danio rerio ~8% Global High levels of CpG methylation, globally distributed with 
enrichment in gene regions and depletion close to TSSs. 

Feng et al., 2010a 

Homo sapiens 3.93% Global High levels of CpG methylation, globally distributed in the genome 
with depletion close to TSSs. 

Li et al., 2010 
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In contrast, DNA methylation is not distributed evenly throughout the genome of 

invertebrates. The majority of the genome of invertebrates is unmethylated with limited 

peaks of DNA methylation (Figure 1.6 B). This pattern of DNA methylation is referred to as a 

sparse or sporadic pattern (Figure 1.8).  The methylation peaks usually correspond to gene 

bodies (Breiling and Lyko, 2015; Rivière, 2014). However, there are some exceptions where 

DNA methylation is either extremely low (just above noise) for example the fruit fly D. 

melanogaster or the DNA methylation is restricted to a specific life stage, for example the 

beetle Tribolium castaneum (Breiling and Lyko, 2015; Feng et al., 2010a; Jiang et al., 2014). 

 

 

Figure 1.8 Major categories of DNA methylation distribution in animals. Data are presented in 
(Reproduced from Breiling and Lyko, 2015). Whole genome bisulfite sequencing analyses of 
mouse (top), honey bee (middle) and Drosophila DNA (bottom) are used to exemplify the 
ubiquitous/global, sporadic/sparse and absent DNA methylation profiles. Methylation ratios 
for each CpG site are shown in a randomly selected 40 kB window. Transparent blue bars 
indicate the range of bisulfite conversion artefacts (methylation levels below 20%). 
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The presence of methylated DNA in D. melanogaster has been discussed for many years 

(Capuano et al., 2014; Lyko and Maleszka, 2011; Lyko et al., 2000; Raddatz et al., 2013). 

Recently, it has been shown that the global DNA methylation level measured by 

chromatographic methods is 0.03%, and it is too low to be correctly assessed at single-base 

resolution by bisulfite sequencing methods (Capuano et al., 2014). As shown in Figure 1.8, it 

is difficult to distinguish the methylated sites from bisulfite conversion artefacts, therefore, 

no DNA methylation pattern could be identified in D. melanogaster (Breiling and Lyko, 2015; 

Raddatz et al., 2013). 

As cited above, some insects, such as the flour beetle T. castaneum, present DNA methylation 

only during embryonic stages. For many years it was believed that the T. castaneum genome 

lacked methylation even though its genome encodes DNMTs genes. Feliciello et al. (2013), 

was the first researcher to discover a cyclic DNA methylation event, occurring in embryonic 

stages followed by a loss of DNA methylation in later stages in these species. The evidence 

suggests that the absence of DNA methylation in some insect groups is probably due to 

lineage-specific loss events (Glastad et al., 2011). 

High-throughput sequencing technologies have rapidly increased the knowledge regarding 

DNA methylation in invertebrates. With the understanding of this mechanism in various 

groups it is now possible to infer about the evolution of DNA methylation marks, together with 

its conservation and divergence, and its significance for the different species (Standage et al., 

2016). 

Assumptions regarding the evolutionary conservation of DNA methylation function have been 

made for several years (Regev et al., 1998; Tweedie et al., 1997). The divergence in the DNA 
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methylation distribution patterns between vertebrates and invertebrates indicates that it can 

have distinct functions for the two groups, and in relation to its context (Head, 2014).  

Analysing the relationship between DNA methylation distribution and evolution, it was 

possible to identify that gene methylation was already present in invertebrates, in the 

ancestral organism of vertebrata (the chordate C. intestinalis), and are still identified in higher 

taxa, such as fish and mammals (D. rerio and H. sapiens) (Table 1.1).  On the other hand, global 

DNA methylation arose only in the Chordata group along with the appearance of vertebrates 

(Regev et al., 1998; Tweedie et al., 1997). Therefore, in terms of function of DNA methylation, 

the usage for global genome silencing (e.g. silencing of repeats and transposons) was likely 

gained in vertebrate groups. Zemach et al. (2010) proposed that the evolution of global 

methylation profile was driven by sexual reproduction and the need to silence the transferred 

transposable elements. 

Gene methylation has been identified in several vertebrate and invertebrate organisms. 

Interestingly, it is not related exclusively to silencing of the genes. In fact, DNA methylation 

within genes is related to transcription activation, in both vertebrates and invertebrates (Feng 

et al., 2010a; Sarda et al., 2012; Spruijt and Vermeulen, 2014; Suzuki et al., 2007; Wang et al., 

2013).  

Gene body methylation has also been suggested to increase mutation rates leading to reduced 

numbers of CpG dinucleotides in DNA sequences (Goll and Bestor, 2005; Zemach et al., 2010). 

This observation led to the idea that methylated genes should show reduced sequence 

conservation among different taxa. However, studies conducted in insects and plants have 
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contradicted this hypothesis. In fact, highly methylated genes have shown greater sequence 

conservation than low methylated genes in invertebrates (Sarda et al., 2012).  

Additionally, the new insights presented for gene body methylation, suggest that the function 

is not only related to quantity of transcripts, but rather the composition, since some studies 

have already linked it to alternative splicing (Head, 2014; Suzuki and Bird, 2008; Wang et al., 

2013). 

Although some hypotheses have arisen, DNA methylation function and impact on vertebrate 

and invertebrate genomes has not been comparatively studied. This is interesting, since the 

conservation of gene body methylation from invertebrates to vertebrates has been 

demonstrated many years ago (Regev et al., 1998; Tweedie et al., 1997), and has been cited 

in many studies and reviews throughout this time (Feng et al., 2010a; Sarda et al., 2012; 

Zemach et al., 2010). In vertebrates it could be due to the lack of clear relationship between 

DNA methylation distribution and the different contribution to gene expression, especially 

due to the constant focus on DNA methylation in promoter regions. In invertebrates it can be 

attributed to the absence of an ideal invertebrate model organism for epigenetic studies. The 

near absence of DNA methylation in D. melanogaster and C. elegans, traditional model 

organisms for invertebrate genetics, has contributed to this lack of interest in investigating 

the functional differences between DNA methylation in vertebrates and invertebrates 

(Capuano et al., 2014; Park et al., 2011; Simpson et al., 1986).  

Therefore, it is important to avoid assumptions based on previous observations, because often 

they will lead to the simplistic idea of DNA methylation as a repressor. Instead, the highly 

conserved DNA methylation in gene bodies can be hypothesised as the key feature, often 
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associated with transcription activation, while the repression of unwanted regions should be 

seen as an added function of DNA methylation, observed in higher chordate taxa (vertebrates) 

(Tweedie et al., 1997). 

1.4 The interactions between the environment and the epigenome 

External stressors, such as chemical pollutants, dietary components, predators and 

temperature changes can disturb an organism’s development, metabolism and health. In part, 

organisms respond to external cues by specifically altering their DNA methylation patterns 

(Feil and Fraga, 2012). Alternatively, changes in DNA methylation profiles can be due to 

malfunction of the mechanisms of DNA methylation maintenance. Both responses can lead to 

changes in the phenotype of the organism, either having a negative effect or as an adaptive 

response (Jaenisch and Bird, 2003; Vandegehuchte and Janssen, 2013). 

In animals, heritable epigenetic adaptation in response to environmental changes is often 

related to quantitative epigenetic traits rather than individual genes. In contrast, plants 

present several examples of single or multiple loci where methylation was altered in response 

to cold, osmotic and salt stress, and was maintained through subsequent generations 

(Chinnusamy and Zhu, 2009; Heard and Martienssen, 2014; Whittle et al., 2009). 

DNA methylation differences can be associated to mechanisms that contribute to biological 

diversity, such as the mechanisms of cell differentiation, or with mechanisms that allow 

adaptation or organisms to changing environments. On the other hand, abnormal DNA 

methylation alterations can be associated with the development and/or progression of several 
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diseases, such as cancer and neurological disorders, impairing the organisms’ health (Bird, 

2002; Jones and Baylin, 2002; Jones, 2012).  

The effects of several different chemicals and stressors on DNA methylation have already been 

investigated. Carcinogenic metals, including nickel, cadmium, lead, and particularly arsenic, 

show a weak mutagenicity capacity, therefore, it is suggested that epigenetic mechanisms 

underline the carcinogenicity of these compounds (Baccarelli and Bollati, 2009). In general, 

metals affect DNMTs expression and activity leading to global DNA hypomethylation 

(Takiguchi et al., 2003; Zhao et al., 1997). However, some compounds can have specific effects 

on chromatin structure. 

Arsenic detoxification occurs by the methylation of inorganic arsenic, using SAM as the methyl 

donor. Therefore, the metabolism of arsenic can have an effect on the availability of methyl 

groups for DNA methylation (Reichard and Puga, 2010; Reichard et al., 2007; Zhao et al., 1997). 

Arsenic is a major concern as an environmental contaminant, naturally present in freshwater 

and groundwater, affecting populations in different places in the world, including Chile, 

Argentina, India and the United States of America (WHO, 2011). Even low concentrations of 

arsenic in the water represent a great hazard to human health due to continuous exposure 

through drinking water and food. Populations in Bangladesh have been diagnosed with skin 

lesions and increased risk of developing cancer due to arsenic exposure (Argos et al., 2015). 

It is not only metals that can affect the methylome of organisms. Different endocrine 

disruptors, such as polychlorinated biphenyl (PCBs), 17β-estradiol (E2) and Bisphenol A (BPA), 

have demonstrated effects on global methylation and in specific regions of the DNA.  
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PCB exposure causes alteration on the DNA methylation levels when exposed in vitro and in 

analysed populations that were exposed to environmental contamination of different 

persistent organic pollutants (POPs). For example, PCB-153 caused DNA hypomethylation in 

murine N2A cell line (Bastos Sales et al., 2013). Hypomethylation was also observed in 

different human populations exposed to PCBs, including healthy Japanese women, a 

population of healthy Koreans and in a population of Inuits (Itoh et al., 2014; Kim et al., 2010; 

Rusiecki et al., 2008). For all those groups the concentration of PCBs in the serum was inversely 

correlated with global DNA methylation. On the other hand, a study analysing methylation 

levels in an elderly Sweden population identified hypermethylation of DNA (Lind et al., 2013). 

Differences were attributed to divergence in age, geographical location, and lifetime exposure 

levels to different PCBs (Keil and Lein, 2016). 

BPA has also been related to effects on DNA methylation. DNMT1 and DNMT3 expression was 

upregulated in ovaries of zebrafish exposed to 5µg L-1 of BPA for 3 weeks, while DNMT4, 

DNMT6 and DNMT7 showed reduction in relative abundance (Santangeli et al., 2016). In 

another study, also analysing the effects of BPA on zebrafish (1 mg L-1 for 15 days), the 

expression of DNMT1 was reduced, along with significant global hypomethylation of ovaries 

and testis DNA (Laing et al., 2016). 

Mirbahai et al. (2011) demonstrated the effects of environmental exposures in contaminated 

marine sites off UK shores on the flatfish dab (Limanda limanda). High occurrence of liver 

tumours and altered DNA methylation profiles were related to the increased contamination 

in the analysed sites, especially endocrine disruptors, such as PCBs. 
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Besides the contamination from chemical compounds, adverse environmental conditions can 

also be harmful to aquatic organisms. Hypoxia is an important stressor, since the depletion of 

oxygen can impair growth, disturb the reproduction and even cause death of aquatic 

populations (Long et al., 2015). An increase in anthropogenic input of organic matter and 

nutrients can increase algal growth leading to reduction of dissolved oxygen concentrations 

in water bodies (Wu, 2002).  

Some studies have linked the organisms’ responses to hypoxic conditions to regulation by 

epigenetic mechanisms, however the investigations often use a medical perspective since 

hypoxia is often linked to tumour progression or ischemic events (Brown and Rupert, 2014; 

Hattori et al., 2015; Lachance et al., 2014; Tsai and Wu, 2014; Tudisco et al., 2014). 

As demonstrated above, several stressors have the ability to modify epigenetic marks, altering 

DNA methylation profiling. The changes in epigenetic marks can also be maintained during 

lifetime, and potentially beyond into subsequent generations, emphasizing the concept of 

“epigenetic memory” (Bird, 2002; Mirbahai and Chipman, 2014; Skinner, 2008). 

The “epigenetic memory” also can play a role in the transmission of disrupted epigenetic 

information to following generations. The possibility of transgenerational epigenetic 

inheritance has been suggested for multiple generations for several organisms, including 

mammals, plants and invertebrates (Hauser et al., 2011; Skinner, 2014; Skinner et al., 2010).  

The term “memory” in epigenetic studies can have different interpretations. In this study, this 

refers to the persistence of abnormal epigenetic marks without the presence of the stressor, 

within the same generation. This can represent a potential initiation factor for negative health 

outcomes later in life (Head et al., 2012).  
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Studies analysing the DNA methylation profiles of monozygotic twins provide strong evidence 

of memory of epigenetic alterations. One of the most important studies was conducted by 

Fraga et al., (2005), and demonstrated that identical twins can be distinguished later in life 

when comparing their epigenetic profiles and suggest that differences were caused by the 

accumulation of epigenetic alterations during their life-times based on their different 

environmental exposures. These findings help to explain how different phenotypes can 

originate from the same genotype and how the environment can be the key to modulate such 

changes. 

Therefore, it is proposed that different classes of stressors can induce class-specific alteration 

in the normal DNA methylation profile. These altered epigenetic marks can potentially have 

effects on the organism, either immediately or at a later stage of life.  

Additionally, the stressor-specific epigenetic profile offers a unique opportunity for 

environmental monitoring, since it could provide a lifetime history of past exposures and be 

used to infer to which class of pollutants the organisms were exposed during their lifetime 

(Mirbahai and Chipman, 2014). Therefore, stressor-specific changes in DNA methylation could 

be used as biomarkers of exposure to certain stressors as well as for early detection of adverse 

effects and monitoring of the progression of diseases (Mikeska and Craig, 2014).  

The addition of an epigenetic perspective to toxicology and ecotoxicology studies could 

improve the understanding of modes of action of several compounds that affect the 

epigenome and leading to changes in gene expression and later on the phenotype (Head et 

al., 2012). Several endpoints are important in ecotoxicological studies and many of them, such 
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as growth, development and reproduction, are known to be regulated by epigenetic 

mechanisms (Head et al., 2012). 

Some studies have analysed the effects of the environment on the epigenome. However, most 

of the studies have been conducted in mammalian model organisms. These are not directly 

relevant for ecotoxicology but are an important tool to understand the different epigenetic 

mechanisms (Vandegehuchte and Janssen, 2013). 

One of the major challenges for future research is linking epigenetics and ecotoxicology to 

evaluate the possible effects on populations, since protection of communities and populations 

is the main goal for ecological risk assessment (Vandegehuchte and Janssen, 2013).  

1.5 Model organisms for epigenetic studies 

The current knowledge on epigenetics is the result of many studies conducted in a wide variety 

of organisms, from fungi to mammals (Table 1.1). Each can play a significant role in advancing 

our understanding of different processes and mechanisms in the epigenetic field. 

The model organism Saccharomyces cerevisiae (yeast) has been crucial in genetic and 

epigenetic discoveries. Several genetic and epigenetic regulatory mechanisms, such as histone 

post-translational modifications, were first discovered in yeast. However, DNA methylation 

was not observed in this organism (Fuchs and Quasem, 2014; Grunstein and Gasser, 2013). 

While Drosophila melanogaster (fruit fly) and Caenorhabditis elegans (roundworm) are 

undeniably two of the most powerful model organisms for genetic research, their uses in 

epigenetic research are limited to markers, such as histone modifications and microRNAs. 

They are not suitable for DNA methylation studies as either DNA methylation levels are very 
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low, without a defined pattern and, as yet, no indication of function (D. melanogaster) or DNA 

methylation has not been detected (C. elegans) (Capuano et al., 2014; Hu et al., 2015; Park et 

al., 2011; Simpson et al., 1986; Takayama et al., 2014).  

Originally, efforts were focused on the use of vertebrate species such as H. sapiens (human), 

M. musculus (mouse) and D. rerio (zebrafish). However, the use of mouse requires a large 

number of animals, requiring large efforts to maintain them in the lab, increasing the costs of 

research (Mukherjee et al., 2015). Human and mouse cell lines can be applied for different 

studies in epigenetics mechanisms. They are of great value to understand the molecular bases 

of epigenetic and genetic mechanisms, especially for medical research. Nevertheless, their 

limiting factors include the difficulty of inferring the effects on organisms’ phenotype, 

interaction among different cell types and transgenerational effects.  

Zebrafish (D. rerio) is a suitable model organism for DNA methylation studies in a non-

mammalian species, and a promising system to study the epigenetic effects of environmental 

stressors (Kamstra et al., 2015a). Effects of several chemicals on DNA methylation have been 

identified, such as global hypomethylation caused by exposure to benzo[a]pyrene, 5-

azacytidine and sodium arsenite, and gene specific hypomethylation when exposed to 17α 

ethinylestradiol (Fang et al., 2013; Li et al., 2009; Olsvik et al., 2014; Strömqvist et al., 2010). 

However, despite the advantages of using zebrafish for epigenetic studies it does not 

overcome the ethical constrains of using vertebrates for research.  

One of the future steps of epigenetics research is also to investigate the effects of and 

interactions with different environmental conditions. In light of this, epigenetic mechanisms 

have been investigated across a wide range of environmentally relevant invertebrate species, 
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such as the honey bee Apis mellifera (Lyko et al., 2010; Rasmussen and Amdam, 2015), the 

wasp Nasonia vitripennnis (Beeler et al., 2014; Wang et al., 2013; Zwier et al., 2012), the ant 

Camponotus floridanus (Glastad et al., 2015), and the oyster Crassostrea gigas (Gavery and 

Roberts, 2010; Rivière, 2014; Wang et al., 2014).  

The advantages of using invertebrates are partly linked to their short generation time and 

small size as well as their ease of culturing and maintenance for multiple generations in the 

laboratory. Studies in invertebrates in general, are also considered ethically acceptable, and 

regulations are less strict for these organisms (Mukherjee et al., 2015).  

Insects have been highlighted as promising model organisms for epigenetic studies 

(Mukherjee et al., 2015), and can be valuable for studies trying to comprehend the effects of 

environmental factors and can help to infer about evolutionary adaptation to stressors and 

effects on the ecosystem. However, it can be challenging to induce phenotypic plasticity in 

these species in response to environmental cues under laboratory conditions. The epigenetic 

studies in these species have, so far, been restricted to analyses of the mechanisms and, in 

some cases, the relationship with the social behaviour in hymenoptera. No studies analysing 

the effects of chemicals or stressors on the DNA methylation profile of these organisms have 

been reported.  

Besides all the discussed advantages of using invertebrates for epigenetic studies, the use of 

Daphnia species adds the advantage of using an organism already standardised for 

ecotoxicological testing and with an extensive database of responses to several chemicals. 

Phenotypic responses to environmental cues are also described for Daphnia, including 



35 
 

morphological modifications to avoid predation and increase in haemoglobin concentration 

to survive low oxygen environments (Stollewerk, 2010; Zeis et al., 2013). 

Therefore, Daphnia is a highly suitable organism model for toxicological studies, including the 

ones investigating epigenetic mechanisms, due the particular features as morphological 

responses and clonal reproduction, and due to an extensive knowledge base constructed for 

many years on this recognised model organism.  

1.5.1 Daphnia magna as a test organism 

Daphnia spp. are considered keystone species in both lakes and ponds and are well-studied in 

terms of their ecology and response to stressors, both under laboratory conditions and in the 

field (Lampert and Kinne, 2011). Daphnia magna are freshwater microcrustaceans, with a 

short life span and short time until reproduction (Figure 1.9). Contrary to other model 

organisms, Daphnia play important roles in ecosystems worldwide and interact with different 

trophic levels (Lampert and Kinne, 2011). These species are already well-studied in the context 

of their ecological role and show great potential to be used for epigenetic studies (Harris et 

al., 2012).  
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Figure 1.9 Adult D. magna showing parthenogenetic offspring in the brood pouch. 

 

Daphnia magna has been used extensively for ecotoxicological assays for many years (OECD, 

2004, 2012) while Daphnia pulex has been listed as a model system for biomedical research 

by the National Institutes of Health, USA (Colbourne et al., 2011). Furthermore, both species 

have been proposed as model organisms for environmental genomics, toxicogenomics and 

epigenetics studies (Eads et al., 2008; Colbourne et al., 2011; Harris et al., 2012; Miner et al., 

2012). 

Daphnia are key model organisms used for research into the molecular mechanisms of 

phenotypic plasticity, adaptation and microevolution (Giessler et al., 1999; Van Doorslaer et 

al., 2009; Messiaen et al., 2010; Messiaen et al., 2013; Geerts et al., 2015). The extensive use 

of Daphnia spp. in a wide range of research fields has motivated the development and 
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optimisation of several ‘omics technologies to probe the molecular machinery within these 

species (Taylor et al., 2008; Dircksen et al., 2011; Colbourne et al., 2011).  

The resulting growth of genomic resources for Daphnia spp., coupled with the dramatic 

reduction in costs and accessibility of sequencing technologies and other genomic tools, has 

fuelled their increasing use in environmental genomics, toxicogenomics and evolutionary 

biology (Pfrender et al., 2000; Omilian and Lynch, 2009; Orsini et al., 2012; Hochmuth et al., 

2015).   

Daphnia species are ideal as environmentally-relevant invertebrate model organisms for 

epigenetic research. They can easily respond to environmental cues, altering some 

characteristics of their life-cycle, creating phenotypic variability in organisms, allowing them 

to face environmental changes (Colbourne et al., 2011). The cyclic parthenogenetic 

reproduction of Daphnia creates a stable genetic background very useful for epigenetic 

studies (Figure 1.10) (Castonguay and Angers, 2012; Robichaud et al., 2012). Therefore, 

Daphnia can be applied to investigate the role of DNA methylation in multiple areas, such as 

response to stressors, adaptation, phenotypic plasticity and maternal transfer of information, 

without the variation in genetic background found for other species (Harris et al., 2012; 

Vandegehuchte and Janssen, 2013). 

Daphnia genome sequencing has been pursued by the Daphnia Genomics Consortium. The 

genome of D. pulex was published in 2011. The draft genome is an extremely densely packed 

sequence, it contains more than 30,000 genes, a higher number of genes than predicted for 

human, and is only 200 megabases (Colbourne et al., 2011; Ezkurdia et al., 2014; Human 

Genome Sequencing Consortium, 2004). Recently, the transcriptome generated after the 
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exposure to 12 stressors was published for D. magna (Orsini et al., 2016). However, D. magna 

still lacks a complete annotated genome. The predicted size of the D. magna genome is 238 

Mb (Routtu et al., 2014). The available genome sequence (NCBI BioProject PRJNA298946) is 

shorter than predicted (122 Mb) and only encodes 65% of the predicted gene transcripts 

(Orsini et al., 2012; Routtu et al., 2014). 

 

Figure 1.10 Life cycle of Daphnia species. Parthenogenetic reproduction occurs under 
favourable conditions while stress conditions lead to switch to sexual reproduction 
(Reproduced from Ebert D., 2005). 

 



39 
 

1.5.2 Epigenetic studies using Daphnia magna  

As discussed above, Daphnia magna shows great potential as an environmentally relevant 

model organism to investigate the role of DNA methylation in multiple areas, such as response 

to stressors, adaptation, phenotypic plasticity and maternal transfer of information (Harris et 

al., 2012).  

Despite the great potential of Daphnia for epigenetic studies, its DNA methylation toolkit (i.e. 

genes involved in DNA methylation and demethylation and one-carbon pathway) has not been 

profiled comprehensively. 

The occurrence of DNA methylation in D. magna was firstly described in Vandegehuchte et 

al., (2009a). The homologous genes for the vertebrate DNA methyltransferases were also 

described for D. magna. However, the additional enzymes involved in the DNA methylation 

pathway have not been described in D. magna. Histone modifications are also present in 

Daphnia (Robichaud et al., 2012).  

Global levels of DNA methylation, measured by LC-MS, are described for two different inbred 

strains. For the Iinb1 strain, the global DNA methylation was 0.49 ± 0.19%. The Xinb3 strain 

presented a global methylation level of 0.52 ± 0.16% (Asselman et al., 2015). 

Global DNA methylation changes were observed in D. magna in response to several chemicals, 

including 5-azacytidine, genistein and vinclozolin (Vandegehuchte et al., 2009a, 2009b, 2010a, 

2010b) and environmental stressors, such as dissolved humic substances, predation cues, low-

quality food and salinity (Asselman et al., 2015; Menzel et al., 2011). Furthermore, recent 

studies have analysed the distribution of DNA methylation across various regions of genome 

in Daphnia species (Asselman et al., 2016; Strepetkaitė et al., 2015). Gene specific methylation 
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was also analysed in D. magna and showed relationship with gene family size and 

diversification of genes (Asselman et al., 2016). 

Although D. magna present a great potential for epigenetic studies and have shown altered 

global levels of DNA methylation when exposed to chemicals, no studies have been published 

analysing gene-specific hyper/hypomethylation in response to stressors. Therefore, the major 

goal of this thesis was to describe the DNA methylation mechanisms in D. magna, and to 

identify the altered methylation profiles caused in response to different stressors.  

1.6 Aims 

Overall, the aim of this thesis was to describe the genome-wide distribution of DNA 

methylation as well as the DNA methylation changes induced in response to environmentally 

relevant exposure conditions in Daphnia magna, a potential invertebrate model organism for 

epigenetic studies.  

The specific aims of this study are: 

i) To describe the overall pattern of DNA methylation across the genome of D. 

magna; 

ii) To present the DNA methylation machinery of D. magna and the dynamic changes 

in DNA methylation machinery that occur in response to age. Accomplishing these 

aims was necessary to achieve a basic knowledge of Daphnia’s methylome, 

enabling specific investigations regarding the role of DNA methylation in Daphnia. 

iii) To test different methods of differentially methylated regions (DMRs) 

identification (biased vs. unbiased methods) using the visualisation software 
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SeqMonk and whole genome bisulfite sequencing datasets from Daphnia exposed 

to 5-azacytidine and respective control  

iv) To identify DMRs induced in Daphnia as a result of exposure to 5-azacytidine (3.7 

mg L-1, 5 days exposure), arsenic (100 µg L-1, 14 days exposure) and hypoxia (<2 mg 

L-1 of dissolved oxygen, 14 days exposure) using the selected method of analysis in 

aim (iii). 

v) To investigate the sensitivity of the Daphnia’s epigenome to three stressors: 5-

azacytidine, arsenic and hypoxia, using acute and chronic exposures. The 

epigenome was investigated under three perspectives: (i) methylation of 

regulatory regions and gene bodies using Whole Genome Bisulfite Sequencing 

(WGBS) and direct bisulfite sequencing, (ii) metabolites quantitation from the one-

carbon pathway, and (iii) expression levels of selected genes. 

vi) To test the concept of epigenetic memory and recovery. Therefore, the aim was to 

assess the presence of stressor-specific alterations on the DNA methylation, 

metabolites concentration and gene expression, and the maintenance of those 

alterations once the stressor is removed.  

These aims are addressed in chapters 3, 4 and 5. 
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Chapter 2  

Material and methods 
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2.1 Chemicals 

All chemicals were obtained from Sigma-Aldrich Co. (UK) unless otherwise stated. 

2.2 Culturing of Daphnia magna 

Daphnia magna Bham2 strain was used for all the exposures in this study (original animals 

were obtained from  where they were categorised as IRCHA 

Clone Type 5). The animals were maintained in a 16:8 hrs light:dark photoperiod and 

temperature of 20 ± 2°C. The organisms were maintained in density of 20 Daphnia in 1200 mL 

of media. The media was renewed once a week. All cultures were initiated using third brood 

neonates aged <24 h. Animals were acclimated for a minimum of 3 generations prior to use in 

any experiments.  

2.2.1 Modified high hardness COMBO media preparation 

The modified high hardness COMBO medium (mHHCOMBO) was prepared according to the 

protocol adapted from Baer and Goulden (1998) and Kilham et al. (1998). The mHHCOMBO 

was prepared by the addition of the stocks to distilled water to the final concentrations 

described in Table 2.1 (Keating and Dagbusan, 1984). The media was aerated for 24h and the 

pH was adjusted to the range between 7.6 to 7.8 using hydrochloric acid (HCl). Animal trace 

element (ANIMATE), a micronutrient solution, was also added to the media.  
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Table 2.1 Modified High Hardness COMBO (mHHCOMBO) for culturing of Daphnia magna. 

Compound Stock Final medium 

 (g L-1) (mg L-1) 

Major Stocks   

CaCl2.2H2O 110.28 110.28 

MgSO4.7H2O 55.45 55.45 

K2HPO4 1.742 1.742 

NaNO3 17 17 

NaHCO3 63 126 

Na2SiO3.9H2O 28.42 28.42 

H3BO3 24 24 

KCl 5.96 5.96 

Na2SeO3 0.04 0.002 

   

Animal Trace Elements (ANIMATE)  

LiCl 310 0.31 

RbCl 70 0.07 

SrCl2.6H2O 150 0.15 

NaBr 16 0.016 

KI 3.3 0.0033 

 

2.2.2 Culturing of Chlorella vulgaris  

Chlorella vulgaris was cultured in Bold’s basal media (BBM) in a closed aerated system, under 

constant light. The protocol for preparation of BBM is detailed in Table 2.2. 

For algae suspension preparation, a known volume was taken from the culture flasks and the 

optical density (1:10) was measured at 440 nm. Algae were centrifuged at 2,250 x g for 30 

minutes at room temperature.  Algae were re-suspended in deionised water to obtain the 

required optical density of 0.800. The final volume was calculated as follow:  

𝐹𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 =  (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑂𝐷 (1: 10)  ×  𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒) / 0.800 
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Cultures were fed daily on suspensions of algae. The volumes varied according to age: <2 days 

old: 1 mL; 3-7 days old: 1.5 mL; >7 days old: 2 mL per culture. 

Table 2.2 Bolds Basal Medium (BBM) for culturing of Chlorella vulgaris. 

Compound Stock Final medium 

 (g L-1) (g L-1) 

KH2PO4 17.5 0.175 

K2HPO4 7.5 0.075 

MgSO4.7H2O 7.5 0.075 

NaNO3 25 0.25 

CaCl2.2H2O 2.5 0.025 

NaCl 2.5 0.025 

EDTA Na4 50 0.05 

KOH 31 0.031 

FeSO4.7H2O 4.98 0.00498 

H2SO4 10 mL/L  

H3BO3 11.42 0.01142 

ZnSO4.7H2O 14.12 0.001412 

MnCl2.4H2O 2.32 0.000232 

CuSO4.5H2O 2.52 0.000252 

Co(NO3)2.6H2O 0.8 0.00008 

Na2MoO4.2H2O 1.92 0.000192 

   

 

2.3 Treatments and exposure design 

2.3.1 Exposure design 

The exposure design followed the OECD guidelines for assessment of chronic toxicity with 

some modifications (OECD, 2012). As described in section 1.2.6, in mammals, DNA 

methylation undergoes two cycles of demethylation and remethylation. The first one occurs 

immediately after fertilization and the second one occurs in primordial germ cells. The 

function of these events is related to reprogramming and gain of cell type specific DNA 
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methylation profiles. These are also the most critical and sensitive periods for disruption of 

DNA methylation (Feng et al., 2010b).  

The reprogramming events are not yet described for Daphnia, however the exposures were 

designed to be compatible with such events.  

The exposure design is represented in Figure 2.1. Neonates <24h of age were kept in clean 

media until the eggs in the brood pouch were visible and detectable (around 8 days old). The 

female Daphnia carrying eggs were randomly divided into two groups; exposure and control. 

The exposure group were exposed while the control group was maintained in clean media. 

The first and second broods in both groups were discarded. The third brood was maintained 

either in clean media (control group) or continuously exposed (treatment group). In contrast 

to the OECD exposure procedures, this exposure design ensures that the Daphnia are exposed 

throughout embryogenesis.  

The duration of each exposure differed according to each experiment. For the whole genome 

bisulfite sequencing (WGBS) experiment the exposure to arsenic and hypoxia lasted for 14 

days while animals were exposed to 5-azacytidine for 5 days. For the experiment evaluating 

accumulation and persistence of the effects on the epigenome the animals were exposed for 

21 days to arsenic and hypoxia and 5 days to 5-azacytidine. Each group then was kept in clean 

media for an additional 7 day recovery period. In both experiments the animals were exposed 

during embryonic stage, while in the brood pouch, as detailed before. 
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Figure 2.1 Schematic representation of exposure design used for experiments 1 and 2. F0: 
Animals exposed only after maturity until the release of third brood (broods represented by 
dark red lines). F1: Animals used for experiment after exposure during developmental stages. 
Blue: animals maintained in clean media. Red: animals exposed to stressor. Green arrows 
represent the moment where samples were obtained. 
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2.3.2 Treatments  

The exposures consisted of three different treatments: 5-azacytidine, arsenic and hypoxia. 5-

azacytidine was used as a chemical with known effects on DNA methylation (positive control). 

5-azacytidine is a cytosine nucleoside analogue that is incorporated into DNA synthesised 

during replication. DNA methyltransferases (DNMTs) recognise 5-azacytidine as a substrate. 

During this process the enzyme becomes inactivated, due to a covalent and irreversible biding 

to the 5-azacytidine, leading to DNA hypomethylation (Santi et al., 1984; Stresemann and 

Lyko, 2008). 

5-Azacytidine (7.4 mg L-1) is known to reduce the global DNA methylation levels in D. magna 

(Vandegehuchte et al., 2010b). A pilot study was conducted using the same concentration 

reported in this paper, however this concentration caused high levels of toxicity to the 

Daphnia, therefore, half of this concentration (3.7 mg L-1) was used in our study. In addition, 

a shorter exposure duration of 5 days was used for DNA methylation profiling and evaluation 

of the concept of “epigenetic memory”. 

Arsenic is a non-genotoxic carcinogenic metal known to induce changes in DNA methylation 

and is an important environmental pollutant. There are two pathways described for the 

metabolism of inorganic arsenic (Hayakawa et al., 2005; Vahter, 2002) and both include 

biomethylation of arsenic by S-adenosylmethionine (SAM) reducing the amount of SAM 

available for DNA methylation (Lindberg et al., 2007). 

The arsenic concentration used in this study (100 µg L-1) is based on environmentally relevant 

concentrations. Surface and groundwater values stated in the literature show a wide range 

from <0.5–5000 µg L-1, but high values have only been related to mining activities. 



49 
 

The third selected stressor is hypoxia, an environmental stressor potentially caused by organic 

contaminants and eutrophication. The discharge of organic compounds to surface water leads 

to increased levels of primary production in the ecosystems. Once the organic matter starts 

to decompose, oxygen is depleted. Dissolved oxygen levels below 2 mg L-1 can be harmful to 

aquatic organisms. The effects of hypoxia are potentially related to changes in DNA 

methylation. Previous research has demonstrated that in response to hypoxia the hypoxia-

inducible transcription factors (HIFs) are expressed and activated in human cell lines and rats. 

This transcription factor can recognise specific binding sites within the genome and activate 

and regulate the expression of many downstream genes. However, it has been shown that the 

recognition site for HIF contains CpG sites which are required to be unmethylated for the TF 

to be able to access and bind to its binding site (Rössler et al., 2004; Wagner et al., 2003). 

To produce the hypoxic condition, air with low oxygen content (4% O2, balanced with 

nitrogen, BOC, UK) was bubbled into the media. A continuous flow of oxygen and nitrogen 

gases ensured that the media contained 2 mg L-1 of dissolved oxygen at 20°C throughout the 

experiment. The amount of oxygen was monitored during the exposure using a Unisense 

microrespiration system (Unisense S/A, Denmark). 

2.4 Sample preparation 

Fifty neonates (<24h old), 30 juveniles (5 days old), 10 adults (12 and 14 days old) or 5 adults 

(21 and 28 days old) were used per biological replicate. When necessary embryos were 

dissected and removed from the brood pouch and the samples were snap frozen in liquid 

nitrogen and stored at -80°C until processed. 
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Samples from the first experiment were ground with a plastic pellet pestle, homogenised in 

methanol:water and DNA was extracted for genome wide DNA methylation analyses. Samples 

from second experiment were homogenised in 320 µL of methanol and 128 µL of water (both 

HPLC grade) using a ceramic bead-based system (Precellys 24, Stretton Scientific Ltd, UK). 

Samples were aliquoted for RNA extraction, metabolites extraction and DNA extraction. 

The different methods of DNA extraction from Daphnia, including sample storage, 

homogenisation and extraction were assessed and have been published in Athanasio et al. 

(2016).  

2.4.1 DNA extraction 

2.4.1.1 CTAB method for DNA extraction 

DNA samples from the first experiment were obtained from 10 animals, dissected and frozen, 

and extracted using a modified CTAB protocol (Doyle et al., 1987). The frozen organisms were 

ground using a plastic pestle and homogenised in 300 µL of methanol:water (214:86 µL) 

solution. CTAB buffer (2% hexadecyltrimethyl ammonium bromide CTAB, 1.4 M NaCl, 20 mM 

EDTA, 100 mM Tris-HCl pH 8, 0.2% β-mercaptoethanol) was added to the homogenised 

sample (500 µL). After 60 minutes of incubation period at 50°C, the extraction was performed 

using 500 µL of chloroform:isoamyl alcohol (24:1). The samples were centrifuged at maximum 

speed (13,000 x g) and the top aqueous layer containing the DNA was transferred to a clean 

sterile 1.5 mL eppendorf tube. RNAse A (4 µL from 1 µg/µL stock) was added to the sample, 

and incubated for 30 minutes at 37°C. Another extraction was performed using 

chloroform:isoamyl alcohol. In a clean tube, 1 volume of isopropanol was added to the 

aqueous layer to precipitate the DNA. Sample was incubated for at least 1h at -80°C. Then, the 
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sample was washed using cold 100% (v/v) ethanol followed by 70% ethanol. The pellet was 

air-dried and resuspended in sterile water. Following extractions, all samples were stored at -

80°C. 

The extracted DNA was quantified with: (1) 8000 UV-Vis spectrophotometer (NanoDrop, 

Wilmington, DE, USA) and (2) SYBR Green DNA I dye (Thermo Fisher Scientific, Paisley, UK) 

using an Infinite® 200 PRO microplate reader (Tecan, Männedorf, Switzerland). These 

represent an absorbance- and a fluorescence-based methods of DNA quantification, 

respectively. The quality and integrity of DNA samples and potential RNA contamination were 

also assessed using a 1% agarose gel in TBE buffer containing Midori Green Advance DNA Stain 

(Nippon Genetics, Dueren, Germany). Same amount of DNA for each sample was loaded onto 

the gel and electrophoresis was performed at 80 V for 50 minutes.   

2.4.1.2 DNA extraction using protein precipitation method. 

DNA samples from the second exposure were extracted using a MasterPure DNA purification 

kit (Epicentre, USA). The protocol was modified from the manufacturer’s instructions. Briefly, 

samples were preserved and homogenised using the same procedure as described for the 

CTAB method. After homogenisation, samples were centrifuged at maximum speed (13,000 x 

g) for 6 minutes to remove methanol:water supernatant on a benchtop centrifuge (Eppendorf, 

UK). Tissue and Cell Lysis solution (300 µL) and Proteinase K (1 µL at 50 µg/µL) were added to 

the pellet. The samples were homogenised and incubated at 65°C for 15 minutes, vortexing 

briefly every 5 minutes.  After incubation samples were cooled to 37°C and RNase A (1 µL at 5 

µg/µL) was added to the sample. Followed by 30 minutes of incubation at 37°C, samples were 

placed on ice for 5 minutes. 
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Precipitation of DNA was achieved by adding 175 µL of MCP Protein Precipitation Reagent. 

Samples were centrifuged at 4°C for 10 minutes at 13,000 x g. The supernatant was transferred 

to a new tube. Isopropanol (600 µL) was added to the recovered supernatant. Samples were 

spun at 4°C for 10 minutes at 13,000 x g. Samples were washed with ethanol as described for 

CTAB method. Samples were re-suspended in sterile water and stored at -80°C. Quality and 

yield were assessed using NanoDrop, agarose gel and fluorescence quantitation with Sybr 

green I. 

2.4.2 RNA extraction 

RNase free eppendorfs (Axygen, USA), and barrier tips were utilised at all times to prevent 

degradation of the RNA samples. 

The samples homogenised in methanol:water were aliquoted for RNA extraction 

corresponding to 1/5 of total volume. RNA extraction was performed using RNeasy Micro kit 

(Qiagen Ltd., UK) according to the manufacturer’s instructions with some minor modifications. 

Samples were centrifuged for 6 minutes at ≥8000 x g to remove methanol:water solution. 

Buffer RTL (300 µL containing 3 µL of β-Mercaptoethanol) was added directly to the pellet. 

After mixing, 1 volume of 70% ethanol was added to the lysate. Then, the lysate was 

transferred into the column and centrifuged for 15 seconds at ≥8000 x g. Column was washed 

once with 350 µL of RW1 buffer. DNase treatment was performed by addition of 10 µL of 

DNase I stock and 70 µL of Buffer RDD directly to the column membrane. After 15 minutes of 

incubation at room temperature, 350 µL of Buffer RW1 was added to the column and 

centrifuged. Buffer RPE (500 µL) was added to the column and centrifuged, followed by 500 

µL of 80% ethanol. Spin column was dried by centrifuging the columns at full speed (13,000 x 
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g) for 5 minutes. RNase-free water (14 µL) was added to the centre of the column and 

centrifuged for 1 minute at full speed to elute the RNA. 

Samples were quantified with NanoDrop 8000 UV-Vis Spectrophotometer (NanoDrop, USA) 

and were stored in -80°C until future use. 

2.4.3 Extraction of metabolites 

Metabolites were extracted from one aliquot (89 µL) of the homogenised samples. The final 

volumes of the samples were adjusted by addition of 358 µL of methanol:water and 

transferred from plastic tubes to a 1.8 mL glass vials. Then, 320 µL of chloroform and 160 µL 

of water were added (final solvent ratio of 2:2:1.8) and samples were vortexed for 30 seconds. 

Samples were left on ice for 10 minutes and were centrifuged at 1,500 x g at 4°C for 10 

minutes. Samples were left at room temperature for 5 minutes to achieve biphasic separation. 

From the upper layer of the samples containing the polar metabolites, 300 µL were removed 

and aliquoted (150 µL) into two 1.5 mL microtubes using a glass Hamilton syringe. Polar 

samples were then dried in a centrifugal concentrator (Thermo Savant, USA) and stored at -

80°C until analysed. 
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2.5 Phenotypic measurements 

2.5.1 Body length 

Pictures were taken from the exposed and control animals using a stereomicroscope SMZ800 

(Nikon, Japan) coupled to a digital camera DS-Fi2 (Nikon, Japan). 

The measurement of body length was made from the base of the spine to the top of the head 

using the Software Image Measurement (KLONK, Denmark) (Figure 2.2). The animals exposed 

to hypoxia and arsenic were measured at day 1, day 21 and day 28. The group exposed to 5-

Azacytidine was measured at day 1, day 5 and day 12. 

 

 

Figure 2.2 Body length measurement using Image measurement software (KLONK, Denmark). 
Black line indicates the method of measurement, taken from the top of the head/eye until the 
base of the spine. 
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2.5.2 Haemoglobin quantification 

Haemoglobin (Hb) concentrations of samples exposed to hypoxia and respective controls 

were quantified according to Yampolsky et al. (2014) with modifications.  

A single adult Daphnia was placed in a 1.5 mL microtube and was frozen in liquid nitrogen. 

Samples were ground using a plastic pestle and homogenised in 25 µL of Tris-HCl buffer, 

0.05M, pH 7.2, and centrifuged at 13,000 x g for 6 minutes.  

Supernatant was transferred to a new tube and kept on ice. Absorbance at 414nm, 560nm, 

576nm and 600nm was measured using NanoDrop 8000 UV-Vis Spectrophotometer 

(Nanodrop, USA). Each sample was measured three times for technical replicates. Each group 

of samples consisted of six biological replicates.   

Haemoglobin content was compared between group using Δ576nm values calculated as 

follow:  

𝛥576𝑛𝑚 =  𝐴𝑏𝑠 576𝑛𝑚 – ((𝐴𝑏𝑠 560𝑛𝑚 +  𝐴𝑏𝑠 600𝑛𝑚)/2) 

Values were normalized by dividing the Δ576nm values by the total protein concentration 

measured by the Bradford method (Bradford, 1976). Briefly, Protein Assay Dye Reagent 

Concentrate (Bio-Rad, USA) was diluted in sterile water to final concentration 1:5. Diluted 

reagent was filtered using 0.45 µm filter and each cuvette received 1 mL of reagent. Standard 

curve was constructed using 1, 2, 4, 6, 8 and 10 µg/mL of bovine serum albumin (BSA). Each 

sample was measured using 2 µL in 1 mL of reagent. Absorbance at 595 nm was measured 

using a spectrophotometer. Linear regression was calculated based on standards absorbance 

measurements for known concentrations and use to calculate total protein content of 

samples.  
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2.6 Global methylation 

2.6.1 DNA hydrolysis  

DNA hydrolysis was performed according to Quinlivan and Gregory (2008). Genomic DNA (1 

µg) was added to 50 µL of digestion buffer (20mM Tris-HCl (pH 7.9), 100 mM NaCl and 20 mM 

MgCl2) containing 2.5 U of Benzonase (Sigma Aldrich, UK), 3 mU of phosphodiesterase I (Sigma 

Aldrich, UK) and 2 U of alkaline phosphate (Sigma Aldrich, UK). Samples were incubated 

overnight at 37°C. After incubation, samples were filtered using a Ultrafree-MC GV Centrifugal 

Filter (pore size 0.22 µm). Samples were dried using a centrifugal concentrator (Thermo 

Savant, USA) and stored at -20°C until further analysis. 

2.6.2 LC-MS/MS 

The prepared hydrolysed DNA samples were analysed in the Department of Toxicology, 

University of Wurzburg, Germany for measurement of the percentage of methylated DNA via 

LC-MS/MS. 

DNA hydrolysate was dissolved with 100 µL double-distilled H2O in a vial. LC-MS/MS analysis 

was performed using an Agilent 1100 series LC coupled to an API 3000 triple quadrupole mass 

spectrometer equipped with a turbo ion spray source (Applied Biosystems, Germany). 

Separation was performed by a Reprosil Pur ODS 3 column (150 × 2 mm, 5 μm) with a gradient 

elution with 0.1% formic acid (solvent A) and methanol (solvent B) using the following 

conditions: 90% A and 10% B (starting conditions) followed by an increase to 40% in the first 

3 minutes and a linear increase to 100% B in 2.5 minutes, at a flow rate of 300 µL/minute. 

Positive ion mode was used for the detection of the nucleosides at a vaporizer temperature 
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of 400°C. Data acquisition was performed by multiple reaction monitoring (MRM) of mass 

transitions of 268.2 mass to charge ratio (m/z) (parent compound) to 152.1 m/z (product) for 

2-deoxyguanosine and mass transitions of 242.17 m/z (parent compound) to 108.95 m/z 

(product) for 5-methyldeoxycytidine. Quantitation of a serial dilution of known amounts of 

2‑deoxyguanosine and 5‑methyldeoxycytidine was used to generate a standard curve for the 

compounds of interest. Global methylation level was expressed as percentage of methylated 

cytosines in the total amount of cytosines (measured by the amount of guanosine nucleotide). 

2.7 Whole genome bisulfite sequencing (WGBS) 

Sodium bisulphite treatment is the standard method for detection of DNA methylation at 

single nucleotide resolution. When DNA is treated with sodium bisulphite, the unmethylated 

cytosines are deaminated and converted to uracils while the methylated cytosines are not 

converted. After PCR amplification, the methylated cytosines remain as cytosines and the 

unmethylated ones are consequently read as thymines (Frommer et al., 1992). Sodium 

bisulphite treatment can be combined with whole genome high throughput sequencing 

allowing the analysis of the methylation status across the entire genome at single nucleotide-

resolution (Cokus et al., 2008). Despite being the standard method for DNA methylation 

analyses, the bisulfite treatment is not able to differentiate 5mC from 5hmC.  Due to the 

general low occurrence of 5hmC, the results obtained with bisulfite treatment are still valid. 

Few alternatives have been proposed, however, improvements on these techniques are 

required to be used for genome-wide methylation mapping (Booth et al., 2012). 
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2.7.1 Sodium bisulfite treatment 

DNA samples were treated with EZ DNA Methylation-gold kit (Zymo Research Corporation, 

USA) for bisulfite conversion following the manufacturer’s instructions. Firstly, CT Conversion 

reagent was dissolved in 900 µL of water, 300 µL of M-Dilution Buffer, and 50 µL M-Dissolving 

Buffer and vortexed for 10 minutes at room temperature. CT Conversion reagent is light 

sensitive; therefore, it was handled avoiding exposure to light.  

Then, CT conversion reagent (130 µL) was added to the DNA sample (1 µg of DNA in 20 µL). 

Samples were incubated at 98°C for 10 minutes followed by 64°C for 2.5 hours and chilled at 

4°C. M-Binding buffer (600 µL) was added to the Zymo-Spin IC column followed by the addition 

of sample. Samples were mixed by inverting the column several times and centrifuged at full 

speed (13,000 x g) for 30 seconds. M-Wash buffer (100 µL) was added to the column and it 

was centrifuged again. M-desulphonation buffer (200 µL) was added to the columns and 

samples were incubated for 20 minutes at room temperature. After incubation, they were 

centrifuged at full speed (13,000 x g) for 30 seconds. Columns were washed twice with M-

wash buffer (200 µL) and centrifuged for 30 seconds. Following the final wash, columns were 

placed in clean eppendorfs and nuclease free water (10 µL) was added directly to the 

membranes, and then columns were centrifuged (13,000 x g) for 30 seconds to elute the 

bisulfite treated DNA samples. Treated samples were stored at -80°C until analysed. 

2.7.2 Library construction 

The libraries used for sequencing were constructed using EpiGnome Methyl-Seq kit (Epicentre, 

USA). The library construction kit was used for sodium bisulfite treated samples, as well as a 
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non-converted DNA sample. The latter was used for the de novo assembly of D. magna 

genome Bham2 strain. It followed the same procedure for library preparation, with exception 

of the sodium bisulfite treatment step and adjusting the starting amount of DNA (20 ng).  

The first step of the protocol was the annealing of the DNA synthesis primers followed by the 

synthesis of DNA. The DNA samples (50 ng for sodium bisulfite converted and 20 ng for non-

converted samples) were diluted in 9 µL of nuclease-free water, mixed with 2 µL of DNA 

synthesis primer and incubated at 95°C for 5 minutes. Samples were placed on ice and 5 µL of 

the mastermix (containing 4 µL of EpiGnome DNA synthesis premix, 0.5 µL of 100 mM DTT 

and 0.5 µL of EpiGnome polymerase) was added to each sample. The reactions were incubated 

as 25°C for 5 minutes, 42°C for 30 minutes and 37°C for 2 minutes. Then, 1 µL of exonuclease 

I was added to each sample and incubated for 10 minutes at 37°C, 3 minutes at 95°C followed 

by 2 minutes at 25°C. 

Next step was the tagging of the DNA. TT master mix was prepared on ice as follows: 7.5 µL of 

EpiGnome terminal tagging premix and 0.5 µL of DNA polymerase. TT master mix was mixed 

by pipetting and 8 µL was added to each reaction. Samples were incubated at 25°C for 30 

minutes followed by 3 minutes at 95°C. Reactions were cooled to 4°C and purified using 

AMPure XP system (1.6x beads) (Beckman Coulter Inc., USA) as recommended. 

The final step of library construction comprised the amplification of the libraries and addition 

of barcodes. Each reaction contained 22.5 µL of the purified tagged DNA, 25 µL of FailSafe PCR 

premix E, 1 µL EpiGnome forward primer, 1 µL of EpiGnome index PCR primer and 0.5 µL of 

FailSafe PCR enzyme (1.25 U). PCR was performed according with the suggested steps: initial 

denaturation at 95°C for 1 minute, 10 cycles of 95°C for 30 seconds, 55°C for 30 seconds and 

68°C for 3 minutes. Final extension was performed at 68°C for 7 minutes. 
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Samples were purified once more using AMPure XP beads (1x beads). Samples were re-

suspended in 20 µL of nuclease-free water and quantity and quality of the sequencing libraries 

were assessed. 

2.7.3 Library quantitation and quality control  

Library quality and quantity was accessed using 2100 Bioanalyzer (Agilent Technologies, USA) 

and qPCR.  

A high sensitivity DNA chip (Agilent Technologies, USA) was used in order to identify library 

insert size and to access quality. High sensitive dye and gel matrix mixture was prepared by 

the addition of 15 µL of concentrated high sensitive DNA dye to the gel matrix vial. The mixture 

was transferred to a spin column and centrifuged at 2240 x g for 10 minutes. 

A high sensitive DNA chip was placed in the chip priming station and 9 µL of the gel mix was 

pipetted into the well of the chip marked as G in black. The plunger was set to 1 mL mark 

followed by closing of the chip priming station. The plunger was pressed down until it reached 

the chip surface and was held in this position for 60 seconds and then released. After the chip 

was removed from the chip priming station, an additional gel-dye mix (9 µL) was pipetted into 

the two wells of the chip marked as G in grey. Then, 5 µL of the marker was pipette to each 

well. High sensitive DNA ladder (1 µL) was added to the marked well. The samples (1 µL) were 

pipetted to the other wells. The chip was vortexed using the Agilent Chip Vortexer for 1 minute 

at maximum speed (2400 rpm) and analysed in the 2100 Bioanalyzer.  

The quantification of the purified libraries was performed using KAPA Library Quantification 

kit (Kapa Biosystems, Inc., USA). An initial dilution of 1:100 of the libraries was prepared using 

the library dilution buffer (10 mM Tris-HCl, pH 8.0, 0.05% Tween 20). qPCR reactions were set 
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up with 12 µL of 2X KAPA SYBR FAST qPCR master mix, 4 µL of PCR-grade water and 4 µL of 

diluted library or DNA standards (six DNA standards with serial 10-fold dilution). Amplification 

was performed on a Mx3005P PCR System (Agilent Technologies, USA) with the following 

program: Initial denaturation at 95°C for 5 minutes, 35 cycles of denaturation at 95°C for 30 

seconds and annealing/extension at 60°C for 45 seconds. Samples and DNA standards were 

run on triplicate. Libraries concentration was determined by the qPCR relation to the 

concentration of the annotated NDA standards. Size adjustment was performed to account 

for the differences between the average fragments size of the library (obtained for Bioanalyzer 

results) and the DNA standards (452 bp). Concentrations of the undiluted libraries were 

calculated using the relevant dilution factor. 

2.7.4 High throughput sequencing (HTS) 

The high-throughput sequencing was performed at The University of Birmingham on an 

Illumina HiSeq 2500 Platform. The sequencing run was performed using a rapid run flow cell 

with paired-end and read length of 150bp.   

Libraries (11 bisulfite samples and 1 non-bisulfite converted) were combined based on the 

index sequence of each library to generate two pools for each of the two lanes of the flow cell. 

A non-converted sample, in addition to PhiX, was run in duplicate in both lanes to account for 

the over simplification of the base composition of bisulfite treated samples. Both samples 

accounted for approximately 25% of the library content in each library pool. After being mixed, 

the samples were denatured for 5 minutes at room temperature with the addition of 10 µL of 

0.1M NaOH to 10 µL of pooled libraries. Then, 980 µL of HI1 (hybridization buffer) was added 
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to the samples. PhiX was spiked in the samples at a final concentration of 1%. Pooled libraries 

(12 pM) were loaded to cBot (Illumina, USA) for cluster generation.  

After template hybridization on the cBot, the flow cell was transferred to the HiSeq 2500 

system (Illumina, USA) and run on rapid mode setting. 

2.8 Bioinformatics analysis 

The data analyses, including quality control, genome assembly and DNA methylation calls, 

were performed in collaboration with Genotypic Technologies, India. 

First, sequencing reads were de-multiplexed to fastq files using Illumina bcl2fastq Conversion 

Software. The raw reads were quality checked using Genotypic Pvt. Ltd., proprietary tool 

SeqQC_v2.2. Then, the reads were processed using TrimGalore to remove adapters towards 

3'-end, low quality bases (Phred <20), and sequences shorter than 50 bases. 

2.8.1 Draft genome assembly 

De novo assembly of Illumina HiSeq data was performed using ABySS 3.8 assembler (Simpson 

et al., 2009). ABySS is a de novo, parallel, paired-end sequence assembler that is designed for 

short reads and that is able to assemble large genomes. ABySS de novo assembly was followed 

by scaffolding using paired-end data. Scaffolding was carried out using SSPACE scaffolder 

(Boetzer et al., 2011). SSPACE scaffolds pre-assembled contigs by using the distance 

information of paired-end data, SSPACE is able to assess the order, distance and orientation 

of contigs and combine them into larger scaffolds. Due to scaffolding using unknown insert 

between two pairs of reads, the assembly is introduced with distance-estimated numbers of 

Ns in-between scaffolds. These intra-scaffold gaps (represented by Ns) were closed using 
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GapCloser tool (Luo et al., 2012), to the maximum level possible. GapCloser takes into account 

unaligned reads and performs local assemblies, where one of the read pairs thought to be 

originated from the gaps.  

2.8.1.1 Draft genome annotation 

The draft de novo assembled genome was used for prediction of the GpG islands (CGI), 

annotation of transcription start sites (TSS) and gene annotation. 

 CGI were identified using EMBOSS newcpgreport software 

(http://emboss.bioinformatics.nl/cgibin/emboss/newcpgreport) with default parameters 

(window size = 100 bp; minimum length = 200 bp; Minimum observed/expected = 0.6; 

minimum percentage = 50). 

The draft de novo assembled genome was also annotated to the available gene sets. First, it 

was blasted against the D. magna genome v2.4 gene set, generated by gene prediction, for 

TSS annotation. Then, due to the new release of D. magna gene set (finloc9b) in April of 2016, 

the draft genome for Bham2 was annotated again. The transcript sequences were blasted to 

the de novo assembled Bham2 genome. Then, the annotation of the mRNA sequences was 

transferred to the Bham2 assembled genome and used for further analysis on methylation 

profiling.  

2.8.2 Whole genome bisulfite sequencing analyses 

Sequencing quality control for bisulfite treated samples used the same methods as described 

in section 2.8. Mapping of the reads and methylation call were performed using Bismark 
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software (version 0.12.2, with the parameters: –bowtie2 –score_min L, 0, −0.4) using the de 

novo assembled draft genome for Daphnia magna Bham2 as reference.   

After DNA methylation mapping, the output files from Bismark were visualised using SeqMonk 

software (www.bioinformatics.babraham.ac.uk/projects/seqmonk/). Methylation levels were 

quantitated using the ‘bisulfite methylation over features’ pipeline available in the software. 

Differential methylation was investigated using different approaches, as described in chapter 

4, section 4.3.3. 

2.9 Direct bisulfite sequencing PCR (BSP) 

Different regions identified with WGBS were also confirmed with BSP. For this, firstly the DNA 

samples were treated with sodium bisulfite as described in section 2.7.1. Then, using specific 

primers, the regions were amplified, purified and sequenced for quantification of DNA 

methylation at site specific resolution.  

2.9.1 Design of BSP primers 

The primers for BSP were designed with MethPrimer software (Li and Dahiya, 2002). 

MethPrimer can identify CpG islands in a given sequence using the following parameters; 

percentage of CG >50, observed/expected >0.6, length >200bp. Usually the primers for BSP 

are then placed within CpG islands. However, for this study, the primers were designed for 

targeted regions. These regions presented differential methylation that were identified with 

WGBS for the different groups and experiments.  

A list of all the primers used for BSP analysis are presented in Tables 2.3 and 2.4. 
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Table 2.3. Primers sequences for BSP analyses and analyses of methylation level cut-off. 

DMR ID Forward Primer Reverse Primer Product size 

C001 5’-GTAGTGAGATATTTTTATAGGTTGT-3’ 5’-CTATTCAATTAAATTCTTTAAACTC-3’ 178 

C002 5’-TTTTATAATTGTGTTAGTTATTTGTTAAAA-3’ 5’-AAACTCATTAAAAATAAATTTATTAAAATC-3’ 278 

C003 5’-GTAGAGAAGTTTTTTTGTTTAGTAGAAAGT-3’ 5’-AACCCACAATACAACCTAATACTTCTT-3’ 243 

C004 5’-GGATTTTTTTTATGGAAGGTT-3’ 5’-AAAACCAAAAATATTTTCAAAAAC-3’ 238 

C005 5’-TTTTTTAATTTGGGTGGATGAAAT-3’ 5’-AAATAAAATAAACAAAACCCTAAATC-3’ 268 

C006 5’-GGAGGATTATTTAGGAGATTAAATAAAT-3’ 5’-TAAACATAAACATATTCAAAAACCC-3’ 261 

C007 5’-AAGTTGTTTGATTTTTTATTTTTAT-3’ 5’-TTTTTATTTTACTACTTAACTATCTCC-3’ 237 

C008 5’-TAGGTATTTATATGGATAGGAATGT-3’ 5’-CACCTACATAATATTTTAAAAATTAAA-3’ 175 

C009 5’-GGTTTTAGTTGATTTTTGGTTTTTA-3’ 5’-CCATAAAAATCCTCTTTATATACCTATC-3’ 233 

C010 5’-TTTTTTTTGAGTTTGTTGAATTA-3’ 5’-AAAACCATAACATTATACAATACTTTAC-3’ 214 

C011 5’-TTTTTAGATTGATTTTTGTAGGGTTAAAA-3’ 5’-ATCAAATCTTCCCAAAAAATAAAAAAT-3’ 272 

C012 5’-TAATTGTTAAAATAAATATTTTAGGTGTAA-3’ 5’-ACCTACTAAACAACTACTAAATCAACTTAA-3’ 267 

C013 5’-TAGTTTGGAAAAGGATGTAAAAATAGTTA-3’ 5’-AACTAATCAAACAATAAAAACCTTAAAC-3’ 233 

C014 5’-TAATTTTGGTGGTAGTAATATTGTATAATG-3’ 5’-TTCTACTTTCAACTTCCCTATAACC-3’ 189 
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Table 2.3. Continued from previous page 

C015 5’-TTATTGTTTTTTGTGTGAGTGTTGT-3’ 5’-CACTTAAAAAAATTATTATTCTAACTAAAA-3’ 254 

C016 5’-TTTTGGTAATTGTTGATTTTGTAAATT-3’ 5’-ACTACTATTCCTACAACCCCAAATC-3’ 280 

C017 5’-TAGGGATATTAGGTAATAGGGTAGGGA-3’ 5’-TTTCATTATTAAAACAAAACACCAACA-3’ 257 

C018 5’-AATGTGGTTAGTTTAAAGGTGATTG-3’ 5’-AACCACAATAAAAAACAAAAC-3’ 284 

C019 5’-TTGTTTGTAATAGTATAGAATTATGGAATT 5’-AAAAAACTTAAACTCCCTCTTACCC-3’ 204 

C020 5’-AGAAAATAAGTTTAATATGAATGTATGTTA 5’-TACTACTTTATTAAAAAACCCAAAA-3’ 197 

C021 5’-TTTTTTGAATTTGAGTTTAGTATTAATTA 5’-ATCAACACACTCTAAACCACCATAC-3’ 189 

C022 5’-TTATTTAAGTATTTAGGGATGTTATTTTTT 5’-AAACTATATAAACTCCAAACTAACC-3’ 191 

C023 5’-AGTTTGATGGTTAAATGTTATTTGA 5’-CATCTTCCTTACCAATAATCAACTACTC-3’ 262 
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Table 2.4. Primers sequences for BSP analyses and confirmation of WGBS data. 

DMR ID Forward Primer Reverse Primer Product size 

19 5’-TTATTGTTTTTTGTGTGAGTGTTGT-3’ 5’-CACTTAAAAAAATTATTATTCTAACTAAAA-3’ 254 

223 5’-TTTTTTGAATTTGAGTTTAGTATTAATTA-3’ 5’-ATCAACACACTCTAAACCACCATAC-3’ 189 

337 5’-TTATTTAAGTATTTAGGGATGTTATTTTTT-3’ 5’-AAACTATATAAACTCCAAACTAACC-3’ 191 

341 5’-AATGTGGTTAGTTTAAAGGTGATTG-3’ 5’-AACCACAATAAAAAACAAAAC-3’ 284 

382 5’-AGAAAATAAGTTTAATATGAATGTATGTTA-3’ 5’-TACTACTTTATTAAAAAACCCAAAA-3’ 197 

422 5’-TAGGGATATTAGGTAATAGGGTAGGGA-3’ 5’-TTTCATTATTAAAACAAAACACCAACA-3’ 257 

487 5’-GTGATTTTGTGTTGTAATGAGTTAGGA-3’ 5’-AAAAAAAACTAAACTACCTAATAACTTC-3’ 276 

2176 5’-AGTTTGATGGTTAAATGTTATTTGA-3’ 5’-CATCTTCCTTACCAATAATCAACTACTC-3’ 262 

2398 5’-ATGTTATTTGGTATTAGGTTTTTGG-3’ 5’-CATTTATCAATATCTACATAAAACAATTTA-3’ 208 
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2.9.2 Amplification of bisulfite treated DNA 

Amplification of sodium bisulfite treated DNA is known to be difficult due to oversimplification 

of base composition of DNA after treatment, often resulting in primer dimer and non-specific 

product formation. Therefore, ZymoTaq DNA Polymerase (Zymo Research, USA), a hot-start 

polymerase, was used for all the work requiring bisulfite sequencing PCR in this study. 

The reaction was performed with a mastermix containing 25 µL of 2x reaction buffer, 0.5 µL 

of dNTP mix, 0.4 µL of Zymo Taq DNA polymerase, 10 pmol of forward and reverse primer and 

1 µL of bisulfite treated DNA. Total volume of the PCR reaction was 50 µL. 

The samples were amplified using a thermocycler (Mastercycler nexus, Eppendorf, USA) with 

the following steps: 95°C for 10 minutes, 38 cycles of 95°C for 30 seconds, variable annealing 

temperatures for 35 seconds and 72°C for 45 seconds. After completion of the cycling phase, 

a final extension step was performed at 72°C for 7 minutes. 

The primers were optimised prior the use for BSP analysis. Validation was performed running 

the PCR products on agarose gel for size confirmation and by sequencing and comparison to 

the expected sequences.  

2.9.3 DNA gel electrophoresis 

DNA gel electrophoresis was used to separate amplified products based on their size. Agarose 

concentration varied from 1 to 2.5% based on expected product size and resolution needed. 

Molecular grade agarose (Bioline Ltd., UK) was added to 1XTBE buffer (89 mM Tris base, 89 

mM boric acid and 2 mM EDTA, adjusted to pH 8.0) according to the required gel 

concentration. Midori Green Advance DNA Stain (Nippon Genetics, Germany) was used for gel 
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staining. Then, 100 bp or 1 kb DNA molecular weight markers (New England Biolabs, USA) and 

DNA samples were mixed with 6X loading dye (New England Biolabs, USA) and loaded into the 

wells. Gel electrophoresis was performed at 80 V for 30 to 60 minutes and the gel was 

visualised in an UV transilluminator. 

2.9.4 DNA purification and sequencing 

After amplification the PCR products were purified using QIAquick PCR purification kit (Qiagen 

Ltd., UK). Briefly, 5 µL of sodium acetate (3M, pH5.2) and 250 µL of PB buffer were added to 

50 µL of amplified DNA samples. Samples were mixed by pipetting, transferred to QIAquick 

spin columns and centrifuged (1 minute, 5900 x g). Flow through was discarded and 750 µL 

buffer PE was added to the columns and centrifuged for 1 minute at 5900 x g. Columns were 

dried for an additional 1 minute at 5900 x g. Columns were placed in 1.5 mL eppendorfs and 

water (20 µL) was added to the centre of the column and centrifuged for 1 minute to elute 

the DNA sample. 

The purified DNA samples were sequenced by the Functional Genomics and Proteomics 

facility, School of Biosciences, University of Birmingham, Birmingham, UK using an ABI3730 

DNA analyser (Applied Biosystems, UK). Each sequencing reaction was prepared using 10 ng 

of the purified DNA samples and 0.4 µL of either reverse or forward primers (10 pmol) adjusted 

to the final volume of 10 µL using nuclease-free water. To analysis of the BSP data was 

performed using the peak heights for C and T bases at each CpG site obtained from the 

electropherogram.  
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Methylation level was calculated using the formula below: 

% 𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑 𝐶 𝑎𝑡 𝑒𝑎𝑐ℎ 𝐶𝑝𝐺 𝑠𝑖𝑡𝑒 = (
𝐶 𝑝𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡

𝐶 𝑝𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑇 𝑝𝑒𝑎𝑘 ℎ𝑒𝑖𝑔ℎ𝑡
) ∗ 100 

2.9.5 Generation of artificially methylated and un-methylated DNA 

In order to assess the sodium bisulfite conversion efficiency, artificially methylated and 

unmethylated DNA was generated.  

DNA samples were amplified using GenomePlex Complete Whole Genome Amplification 

(WGA) Kit (Sigma-Aldrich, UK). The amplification of DNA fragments passively removes the 

methyl group from the cytosine nucleotide since it will not be added to the new DNA strand. 

This reaction started with the fragmentation step where DNA at 1 ng/µL and 10X 

fragmentation buffer (1 µL) were mixed and incubated for 4 minutes at 95°C. Fragmentation 

was followed by library preparation. 1x library preparation buffer (2 µL) and library 

stabilisation solution (1 µL) were added to the chilled sample and incubated at 95°C for 2 

minutes. Then, the sample was chilled again and the library preparation enzyme (1 µL) was 

added. The reaction was incubated on a thermocycler at 16°C for 20 minutes, 24°C for 20 

minutes, 37°C for 20 minutes and 75°C for 5 minutes. After generation of the library, the 

sample was placed on ice and a mastermix containing 10x Amplification Master mix, water 

and WGA DNA polymerase were added to the sample. The sample was incubated on a 

thermocycler with the following conditions: initial denaturation at 95°C for 3 minutes, then 14 

cycles of 94°C for 15 seconds (denaturation) and 65°C for 5 minutes (annealing/extension).  

Methylated DNA was generated with CpG methylase (New England Biolabs, USA) following 

the protocol provided. Briefly, 1 µg of DNA was mixed with 10X NEBuffer 2 (2 µL), S-
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adenosylmethionine (2 µL), 1 µL of SssI methylase (4 U/μL), in a final volume of 20 µL. Sample 

was incubated at 37°C for 4 hours followed by incubation at 65°C for 20 minutes.  

Unmethylated and fully methylated DNA samples were purified using QIAquick spin columns 

(Qiagen Ltd, UK), as described in section 2.8.4, and stored at -20°C until further use. 

2.9.6 Sodium bisulfite conversion efficiency 

Purified methylated and un-methylated genomic DNA samples were used to assess the 

sodium bisulfite conversion efficiency. Both samples were treated with sodium bisulphite as 

described in section 2.7.1. One region was selected to analyse the efficiency of conversion.  

The fragment sequenced contained 37 cytosines, of these, 8 were within a CpG context, 6 in 

CHG and 23 in CHH. Fully methylated and un-methylated samples were sequenced and results 

are in Figure 2.3. Sodium bisulfite conversion efficiency was virtually 100%.  

 

Figure 2.3 Artificially fully methylated and un-methylated DNA fragments sequenced to assess 
the conversion efficiency from un-methylated C to T. A) Artificially un-methylated DNA due to 
whole genome amplification. B) Fully methylated DNA using SssI methylase. Arrows indicate 
CpG nucleotides. 
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2.10 Gene expression analysis 

2.10.1 Primer design and validation 

The forward and reversed primers were designed with Primer3 http://simgene.com/Primer3) 

and are described in Table 2.5. Primer were synthesised by Integrated DNA technologies 

(Belgium).  

Primers were validated and sequenced for confirmation. BIOTAQ DNA polymerase (Bioline, 

UK) was used for product amplification. Each reaction contained: 10x NH4 Reaction buffer (5 

µL), 50mM MgCl2 solution (1.5 µL), 100mM dNTP Mix (1 µL), BIOTAQ (0.5 µL), 1.5 µL of each 

primer at 10 µM, 3 µL of cDNA (40 ng/µL) and water to a final volume of 50 µL. The samples 

were run on a thermocycler using the following program: initial denaturation at 95°C for 10 

minutes, 40 cycles of 95°C for 30 seconds, 60°C for 35 seconds and 72°C for 45 seconds. 

Following completion of the cycling phase, a final extension step was performed at 72°C for 7 

minutes. Samples were analysed on a 1.5% agarose gel electrophoresis and sequenced for 

confirmation. Methods are described in sections 2.8.3 and 2.8.4. 

2.10.2 cDNA synthesis 

The cDNA was synthesised using Tetro cDNA Synthesis Kit (Bioline, UK). Each reaction 

contained 2 µg of RNA, 1 µL of random hexamer, 1 µL of 10mM dNTP mix, 4 µL of 5x RT buffer, 

1 µL of RiboSafe RNase inhibitor and 1 µL of Tetro reverse transcriptase (200 U/µL). RNase 

free water was added to a final volume of 20 µL. Samples were incubated for 10 minutes at 

25°C followed by 30 minutes at 45°C. Then, the reaction was terminated by incubation at 85°C 

for 5 minutes and chilled on ice. Samples were stored at -80°C until processed. 
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2.10.3 RT-PCR 

RT-PCR analysis was performed on an AriaMx Realtime PCR system (Agilent technologies, UK) 

using SensiFAST SYBR Lo-ROX kit (Bioline, UK). Three biological replicates, with three technical 

replicates were run for each group. Each sample contained 80 ng of synthesised cDNA, 10 µL 

of SensiFAST mix, forward and reverse primer (2 to 5 pmol depending on primer efficiency) 

and nuclease free water (to a final volume of 20 µL). The amplification was performed with a 

2-step cycle: 95°C for 5 seconds (denaturing) and 60°C for 30 seconds (annealing and 

extension). Melting curves were generated to ensure single product amplification. ROX was 

used as a reference dye. After correction and baseline setting the threshold cycle (CT) values 

were exported. The geometrical average of Actin and Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) genes were used as internal reference for normalisation 

(Vandesompele et al., 2002). Data were analysed using delta-delta CT method of relative 

quantification (Livak and Schmittgen, 2001).  

 



74 
 

Table 2.5. Primer sequences for real-time PCR used for gene expression analyses of the one-carbon and demethylation pathways. 

Symbol Gene ID Forward Primer Reverse Primer Product size 

DNMT1 Dapma7bEVm005001 5'-CCTGATCCGTTCTGCATTGG-3' 5'-TCCAGTCAGAGCGAAAACCT-3' 157 

DNMT2 Dapma7bEVm011900 5'-GCGGAAGATCAATGGGCAAT-3' 5'-AACAGTTCCCCATCCATCGT-3' 225 

DNMT3 Dapma7bEVm006722 5'-AGTTACAGCGTTGGGGAAGA-3' 5'-ATTTAAGGGCCCAGTCGGAA-3' 247 

MAT Dapma7bEVm004771 5'-CGACATGCCGGGTAAAGAAG-3' 5'-GACCAACACCATGCCAGTTT-3' 214 

SAHH Dapma7bEVm024816 5'-TGCAAGCACTCTCTTCCTGA-3' 5'-AGAGCGCAGATAGGATCGAC-3' 167 

MTRR Dapma7bEVm003609 5'-TGTATGCCGCTTCATTGGTG-3' 5'-CAACTGCCTTCTTCGCTTGT-3' 151 

BHMT Dapma7bEVm018566 5'-CGGTTAGAATTGCTCGCGAA-3' 5'-ACGCCAAATAATCCACACCG-3' 234 

MS Dapma7bEVm002113 5'-TGAGCGGTGGTGTGTCTAAT-3' 5'-AGAGTTGCAGCAATTTGGGG-3' 174 

GNMT Dapma7bEVm001624 5'-GTACTGCTGCGGAAGGATTG-3' 5'-TTGAATCGATCCCTGTGCCA-3' 183 

TET1 Dapma7bEVm018501 5'-GGTTAGAAAGTTGGGCGCAA-3' 5'-GGACGAACGACCTATTTGCC-3' 233 

TET2 Dapma7bEVm029206 5'-CGAATAGAGCAACAACGGCA-3' 5'-ACGGAAATGCGTGATGGATG-3' 178 

ACTIN Dapma7bEVm019018 5'-GGTATGTGCAAGGCTGGATT-3' 5'-GGTGTGGTGCCAGATCTTTT-3' 225 

GAPDH Dapma7bEVm015323 5'-GGGGACAGACGTTTCCTGTA-3' 5'-AAGGGGTCATTGACAGCAAC-3' 168 
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2.11 Target quantification of one-carbon pathway metabolites 

The targeted metabolomics study was funded by the NERC Biomolecular Analysis Facility - 

Birmingham node (NBAF-B) in the School of Biosciences at the University of Birmingham, UK.   

Metabolites samples were prepared as described in section 2.4.3. Target metabolites 

quantitation was performed according to Mirbahai et al. (2013) with modifications. S-

adenosyl-L-methionine-d3 (S-methyl-d3) tetra (p-toluenesulfonate) salt (CDN Isotopes, UK) 

was used as the internal standard. 

Samples were re-suspended in 5 µL of acetonitrile:water mixture 1:1 containing SAM-d3 at 

the concentration of 0.125 µmol/mL. The re-suspended samples were vortexed and 

centrifuged for 10 minutes at 13,000 x g at 4°C. Then, the samples were transferred to a 96 

well plate for analysis. Six biological replicates were analysed (2 µL injections; acetonitrile was 

used for injection loop). Negative controls and quality control samples were run at the 

beginning and intercalated with the sample runs to correct the background noise.  

The samples were analysed using Dionex UltiMate 3000 liquid chromatography system with 

micropump coupled to a triple stage quadrupole (TSQ) tandem mass spectrometer (Thermo 

Fisher Scientific, UK) with Ion Max-S atmospheric pressure ionisation (API) spray source 

(Thermo Fisher Scientific, UK). Separation was achieved using a reverse phase column with 

weak anion exchange properties (Acclaim Mixed-Mode WAX column, 250 x 0.3 mm internal 

diameter, 5 μm particle size, 120 Aº pore size, Dionex, Idstein, Germany) with column oven 

temperature of 18°C (minimum and maximum temperature of 16°C and 22°C), and under a 

gradient running buffer including buffers A, B and C (Buffer A: 10mM ammonium formate, pH 
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6.2; Buffer B: 10mM ammonium formate, pH 4.2, 75% acetonitrile and 25% water; Buffer C: 

acetonitrile:water (1:1))(Table 2.6).  

 

Table 2.6. Buffers gradient used for liquid chromatography. Buffer A: 10mM ammonium 
formate, pH 6.2; Buffer B: 10mM ammonium formate, pH 4.2, 75% acetonitrile and 25% water; 
Buffer C: acetonitrile:water (1:1). 

Steps Retention time  

(minutes) 

Flow  

(µL/min) 
%B %C %A 

1 0 8 100 0 0 

2 5 8 100 0 0 

3 10 8 40 0 60 

4 14 8 10 0 90 

5 17 6 10 0 90 

6 17.01 6 0 100 0 

7 18 6 0 100 0 

8 18.01 6 100 0 0 

9 24 8 100 0 0 

10 28 8 100 0 0 

 

The 10 metabolites of interest were: SAH, methionine, adenosine, betaine, sarcosine, SAM, 

glycine, dimethylglycine, choline and stachydrine. The masses of the precursor and product 

ions used for detection of the 10 metabolites and the internal standard are described in Table 

2.7. Data acquisition was performed as multiple reaction monitoring. 
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Table 2.7. The masses of the precursor and product ions used for detection of the 10 metabolites of interest and internal standard using LC-
MS/MS. The chemical formula, ion mode, S-lens value, collision energy parent (precursor) masses and product masses used for detection. 

Compound Formula Ion form Parent mass S-lens 
Collision 

energy (%) 
Product 

mass 

Adenosine C10H13N5O4 [M+H]+ 267.935 88 
45 118.981 

19 135.993 

Betaine C5H12NO2 [M+H]+ 118.000 78 

53 42.041 

26 58.045 

19 59.077 

Sarcosine C3H7NO2 [M+H]+ 89.985 43 

51 30.103 

25 42.064 

12 44.068 

Stachydrine C7H13NO2 [M+H]+ 143.973 93 

36 42.056 

25 58.052 

22 84.040 

Methionine C5H11NO2S [M+H]+ 150.045 56 

16 56.107 

23 61.052 

10 104.076 

6 133.060 

Glycine C2H5NO2 [M+H]+ 76.000 43 
11 30.100 

9 48.100 

Dimethylglycine C4H9NO2 [M+H]+ 104.07 61 
39 42.100 

10 58.160 
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Table 2.7. Continued from previous page 

Choline C5H15NO2 [M+H]+ 104.028 70 

21 45.060 

34 58.066 

17 60.080 

S-(5'-Adenosyl)-L-homocysteine C14H20N6O5S [M+H]+ 384.937 106 

37 87.962 

19 133.950 

20 135.987 

12 249.982 

S-(5'-Adenosyl)-L-methionine C15H23N6O5S [M+H]+ 398.944 110 

30 96.953 

28 136.022 

15 250.014 

13 298.015 

S-Adenosyl-L-methionine-d3  C15H20D3N6O5S [M+H]+ 402.063 114 

31 96.998 

15 250.037 

16 267.092 
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2.12 Statistical analyses 

The statistical analysis of the data was performed using SPSS 21. Normal distribution of the 

data was evaluated via Shapiro-Wilk’s test and homogeneity of variance was analysed with 

Levenes’ test. For comparison of two or more groups with normal distribution and 

homogenised variance 2-tailed independent student’s t-test and one-way ANOVA with 

Tukey’s post-hoc test were used, respectively.  

When the requirements for normal distribution and homogeneity of variance were not met, 

data were analysed by applying non-parametric statistics, using a Kruskal-Wallis test (more 

than two independent groups) or Mann-Whitney test (two independent groups).  

Statistical approaches for differential methylation analyses are described in Chapter 4. 
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Chapter 3  

Distribution and levels of DNA 

methylation across the genome of 

Daphnia magna 
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3.1 Introduction 

DNA methylation is involved in many biological processes. In general, DNA methylation is 

considered an important regulator of gene expression, acting as a system of cellular memory 

especially for long-term silencing of genes (Jaenisch and Bird, 2003). In vertebrates it is also 

important for X-chromosome inactivation, imprinting and tissue-specific gene expression 

(Crider et al., 2012). 

Interestingly, DNA methylation patterns differ between vertebrate, plants and invertebrates. 

DNA methylation is generally widespread and evenly distributed in vertebrates, occurring 

mainly where a cytosine is directly followed by a guanosine (CpG) except for regions known 

as CpG islands (CGI). CGIs are GC-rich regions, often unmethylated, that show a high density 

of CpG dinucleotides relative to the rest of the genome and are positioned at the 5′ ends of 

many vertebrate genes. On the other hand, invertebrates, plants and fungi present a sporadic 

pattern of DNA methylation, where regions of heavily methylated DNA are interspersed with 

regions that are unmethylated (Suzuki and Bird, 2008).  

Although DNA methylation is present in invertebrates, its function has not been 

comprehensively studied. As distribution of DNA methylation across the genome is different 

between vertebrate and invertebrates (reviewed in section 1.3), it is essential to determine if 

DNA methylation machinery and its function is conserved between vertebrates and 

invertebrates. In addition, it is important to determine and understand the significance and 

functional implications that arise from these differences between the two groups. In addition, 

epigenetic reprogramming events need to be investigate in invertebrates. 
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The traditional invertebrate model organisms for genetic studies, Drosophila melanogaster 

and Caenorhabditis elegans do not contain DNA methylation or it is restricted to a few sites 

(Capuano et al., 2014; Park et al., 2011; Simpson et al., 1986). Therefore, epigenetic studies in 

invertebrates have been limited to alternative organisms, such as the honey bee Apis mellifera 

(Lyko et al., 2010; Rasmussen and Amdam, 2015), the wasp Nasonia vitripennnis (Beeler et al., 

2014; Wang et al., 2013; Zwier et al., 2012), the ant Camponotus floridanus (Glastad et al., 

2015), and the oyster Crassostrea gigas (Gavery and Roberts, 2010; Rivière, 2014; Wang et al., 

2014). These environmentally relevant species are often difficult to maintain in the laboratory 

and it is challenging to induce phenotypic plasticity in these species in response to 

environmental conditions under laboratory conditions. In contrast, Daphnia species have 

great potential as an environmentally-relevant invertebrate model organism for epigenetic 

research (Harris et al., 2012; Vandegehuchte and Janssen, 2013). They are widely distributed 

across the globe with well-known ecology (Lampert and Kinne, 2011). Also, Daphnia have been 

used as a model organism in ecotoxicology and have been maintained under laboratory 

conditions for many years. In addition, in favourable conditions their reproduction happens 

through parthenogenesis, producing clonal offspring (see section 1.5.1). 

Despite the great potential of Daphnia for epigenetic studies, its DNA methylation toolkit (i.e. 

genes involved in DNA methylation and demethylation and one-carbon pathway) has not been 

profiled comprehensively. This is partly due to lack of a fully annotated genome. Although 

limited, some information regarding Daphnia’s methylome is already available. Global levels 

of DNA methylation, measured by LC-MS, are described for two different inbred strains. For 

the Iinb1 strain the global cytosine methylation was 0.49 ± 0.19% on average. The Xinb3 strain 

presented a global methylation level of 0.52 ± 0.16% (Asselman et al., 2015). Global DNA 
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methylation level was also measured for D. magna bham2 and is presented in section 3.3.3. 

Furthermore, several chemicals are known to affect the global DNA methylation levels in 

Daphnia, including 5-azacytidine, genistein and vinclozolin (Vandegehuchte et al., 2010a, 

2010b, 2009a, 2009b). Gene specific methylation was also analysed in D. magna and showed 

relationships with gene family size and diversification of genes (Asselman et al., 2016).  

The methyl donors, essential for DNA methylation, are obtained from a series of reactions, 

part of the one-carbon pathway that leads to the production of S-adenosylmethionine (SAM). 

The methyl group is transferred from SAM to the cytosine resulting in 5-methylcytosine and 

S-adenosylhomocysteine (SAH). DNA methytransferases catalyse the methylation of the DNA 

molecule. The additional enzymes of the one-carbon pathway are essential for the 

maintenance of normal levels of methylation (Herceg and Vaissière, 2011; Ulrey et al., 2005) 

(see section 1.2.2). 

DNA demethylation can either occur through active or passive pathways. TET enzymes are 

responsible for the active removal of methylation by a multistep reaction, while DNA 

methylation can be passively lost during replication of DNA, due to malfunction of enzymes 

from the one-carbon pathway or absence of methyl donors (Piccolo and Fisher, 2014; Song et 

al., 2013; Tahiliani et al., 2009) (see section 1.2.5). 

The use of Daphnia for epigenetic studies can potentially have a significant impact on the 

current approaches for risk assessment and environmental monitoring. Currently, epigenetic 

mechanisms are not considered during risk assessment of substances. However, several 

studies have demonstrated the importance of epigenetic mechanisms, such as DNA 

methylation, in mediating chemical effects upon the phenotype and health of organisms. 
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However, the lack of knowledge about Daphnia’s methylome is still a barrier for epigenetic 

studies in this species.  

To overcome this problem, a comprehensive overview of the DNA methylation profile in 

Daphnia magna was necessary. This would facilitate investigation of the induction of gene 

specific DNA methylation changes in response to stressors, and analyses of the persistence 

and accumulation of the induced changes. For these studies it was most important to use 

environmentally relevant stressors with reported effects on DNA methylation at 

concentrations detected in the environment.  

To meet these aims, the first objective was to obtain a reference genome for D. magna strain 

Bham2. At the time this part of the project started, no publicly accessible published genome 

sequence was available for D. magna. However, recently the genome and transcriptome of D. 

magna strain Xinb3 have been released (Orsini et al., 2016). Still, the currently available draft 

genome sequence is incomplete, based on its genome size of 129 Mb, and not fully annotated 

(Orsini et al., 2016; Routtu et al., 2014). Therefore, it was decided for this study to generate a 

new draft genome sequence for the D. magna Bham2 strain and to use the available gene sets 

for annotation of the assembled genome. 

In the second stage of the project the aim was to identify and describe the DNA methylation 

toolkit and the methylome of D. magna Bham2 to establish the “normal” DNA methylation 

profile. Furthermore, homology searches were employed to identify D. magna enzymes and 

metabolic pathways potentially involved in DNA methylation. The expression levels of genes 

and concentrations of metabolites in the one-carbon pathway were analysed for different 

ages of organisms and after their exposure to several stressors to characterise dynamic 

changes in DNA methylation machinery in response to age and stress. Changes in the 
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methylome distribution and levels were also analysed using whole genome bisulfite 

sequencing (WGBS) and gene specific bisulfite PCR. 

Overall, the aims of chapter 3 were to describe: i) the overall pattern of DNA methylation 

across the genome of D. magna, ii) the DNA methylation machinery in D. magna, iii) the 

dynamic changes in DNA methylation machinery in response to age. Accomplishing these 

three aims was necessary to achieve a basic knowledge of Daphnia’s methylome, enabling 

specific investigations regarding the role of DNA methylation in Daphnia undertaken in 

chapters 4 and 5. 

3.2 Overview of experimental design 

DNA samples extracted from 5 and 14 days old whole Daphnia magna Bham2 strain were used 

for the analyses presented in this chapter (Figure 3.1). Methods of sample preparation are 

described in section 2.4. DNA extraction was performed as described in section 2.4.1.1. 

Genome sequencing and WGBS procedures are described in section 2.7 and were performed 

with three biological replicates per age. Global methylation levels were analysed using LC-MS 

(n=6) and the methods are presented in section 2.6.  

RNA samples were obtained as shown in section 2.4.2 for Daphnia at different ages (1, 5, 12, 

21 and 28 days old). Three biological replicates and three technical replicates each were used 

for gene expression analysis using RT-PCR. All procedures, including the primers designed for 

each gene are described in section 2.9. 
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Figure 3.1 Workflow of analyses performed in chapter 3. Distribution and level of methylation 
across the D. magna genome and age-related changes.  
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3.3 Results 

3.3.1 Characterisation of DNA methylation machinery  

The first step in the characterisation of the Daphnia magna methylome was performed by 

identifying the genes potentially involved in DNA methylation and demethylation pathways 

and the one carbon pathway. To achieve this, Homo sapiens protein sequences for the genes 

listed in Table 3.1 were obtained from NCBI and homologous searches against the Daphnia 

magna database (v2.4) was performed using BLAST available at 

(http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/BLAST/).  

Similarity of Daphnia’s protein sequences to human, honey bee and zebrafish protein 

sequences were assessed using EMBOss Matcher software, a pairwise sequence alignment 

tool (Rice et al., 2000). Conserved domains for DNMTs were identified using NCBI’s conserved 

domains database with default settings (Marchler-Bauer et al., 2015) and Pfam (Finn et al., 

2015) and analysed in Jalview (Waterhouse et al., 2009).  
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Table 3.1. Daphnia magna sequences encoding enzymes involved in DNA methylation mechanisms and protein similarity to Homo sapiens, Danio 
rerio and Apis mellifera. All similarity comparisons were made at protein level. D. magna protein ID for geneset (finloc9b).  

Enzyme 

symbol 
Sequences ID D. magna protein ID 

H. sapiens 

protein 

accession 

Similarity 

to  

H. sapiens 

D. rerio protein 

accession 

Similarity  

to  

D. rerio 

A. mellifera 

protein 

accession 

Similarity  

to A. 

mellifera 

DNMT1 dmDNMT1A Dapma7bEVm005001 P26358 66% AI63894 65.3% XP_006562865 67.5% 

 dmDNMT1B Dapma7bEVm024669  90%  76.7%  59.6% 

DNMT2 dmDNMT2 Dapma7bEVm011900 Q6ICS7 47.1% AAI14323 62.2% XP_006563008 49.5% 

DNMT3 dmDNMT3 Dapma7bEVm006722 Q9Y6K1 43.9% AAI62467 44.9% XP_006568730 41.2% 

MAT dmMAT Dapma7bEVm004771 Q1JL80 72.1% NP_956165 86.3% XP_006564332 98.1% 

SAHH dmSAHH Dapma7bEVm024816 P23526.4 75.4% AAI65366 72.5% XP_391917 74.3% 

MTRR dmMTRR Dapma7bEVm003609 Q9UBK8.3 57.4% XP_689157 58.3% - - 

BHMT dmBHMT Dapma7bEVm018566 Q93088.2 43.4% AAI09473 47.1% XP_003250116 57.1% 

MS dmMS Dapma7bEVm002113 Q99707.2 81.9% NP_932338 81.8% - - 

GNMT dmGNMT Dapma7bEVm001624 Q14749.3 68.2% AAH62527 68.4% - - 

MTHFR dmMTHFR Dapma7bEVm002622 P42898.3 78.7% NP_001268769 77.5% XP_006566979 65.9% 

         

TET dmTET1 Dapma7bEVm018501 Q8NFU7 68.3% XP_005156766 58.9% A0A088ALU5 74% 

 dmTET2 Dapma7bEVm029206  50.9%  51.3%  81.6% 
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3.3.1.1 DNMTs homologs and conserved domains 

Homology searches against the D. magna genome identified one complete copy of each 

DNMT1, DNMT2, and DNMT3 genes and a partial sequence similar to DNMT1. 

Comparing D. magna’s DNMT1 protein sequence to human, zebrafish and honey bee 

dmDNMT1A revealed 66%, 65.3%, 67.5% similarity, respectively. Protein alignment revealed 

highly conserved sequences within the domain regions (Figure 3.2). For dmDNMT1B the 

similarity was 90%, 76.7%, and 56.6% compared to human, zebrafish and honey bee, 

respectively. However, this is described as a partial protein and it is not mapped to the 

Daphnia genome, indicating that it could be due to contamination or misassembled 

sequencing reads. Therefore, dmDNMT1B was excluded from further analyses. 

DNMT2 presents the structural characteristics of DNA methyltransferases, the DNA methylase 

domain, however it has been shown to methylate a small tRNA instead, and this function is 

likely conserved from plants to mammals (Goll et al., 2006; Schaefer and Lyko, 2010). For D. 

magna DNMT2 the similarity is low when comparing the full protein sequence to human 

(47.1%), honey bee (49.5%) and zebrafish (62.2%) DNMT2, but DNA methylase domain 

sequence showed high conservation (Figure 3.3).  

A homolog was found for DNMT3 and, as for DNMT2, the similarity with the human protein is 

very low (43.9%) (41.2% similarity to honey bee and 44.9% to zebrafish) when comparing the 

full sequence. However, conserved domain regions presented higher similarity, as evidenced 

in Figure 3.4.  Nevertheless, comparing DNMT1 and DNMT3, showed more variability for 

DNMT3 protein sequence. 
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Overall, the number of DNMT genes in Daphnia appears to be restricted to a single copy of 

each gene. As demonstrated before for invertebrates, there is no correlation between the 

evolutionary relationship of two species and the number of genes encoding DNMTs, therefore 

there is no standard number of enzymes that is characteristic to the invertebrate groups ( Lyko 

and Maleszka, 2011; Glastad et al., 2011).  

As presented before, most of the conserved domains found in humans were identified in D. 

magna (Figure 3.5). The first domain, DMAP biding, was not found in dmDNMT1. DMAP biding 

mediates the interactions of DNMT1 and the transcriptional repressor DMAP1 (Rountree et 

al., 2000).  The same organization was observed for the two honeybee enzymes (DNMT1a  and 

DNMT1b), the three enzymes of Nasonia vitripennis (DNMT1a, DNMT1b and DNMT1c),  and 

DNMT1 for silkworm (Mitsudome et al., 2015; Werren et al., 2010). The lack of the first domain 

for honeybee and silkworm could explain the low methylation levels of transposable elements 

and repeated sequences (Lyko et al., 2010; Xiang et al., 2010). The same probably happens for 

D. magna, but analyses need to be performed to confirm this. 

DNMT2 and DNMT3 have similar conserved domains organization as the other organisms 

analysed. DNMT2 presents a DNA methylase domain despite its function methylating a small 

RNA. DNMT3 has two conserved domains, PWWP and DNA methylase characteristic for de 

novo methyltransferases. In mammals, DNMT3 is responsible for the establishment of new 

pattern of methylation and the same functions is hypothesised for D. magna (Klose and Bird, 

2006; Okano et al., 1999).  

Regarding the enzymes involved in the one-carbon pathway and DNA demethylation, the 

similarity is low for most of them (Table 3.1). However, it was possible to find homologs for all 

proteins of interest. This indicates that D. magna has the complete toolkit for DNA 
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methylation and that the pathways are likely to be ancestrally conserved for DNA methylation 

and active demethylation. However, further analyses still need to be conducted to assure the 

functions of the identified proteins. 
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Figure 3.2 Protein alignment for DNMT1 sequences for human, zebrafish, honey bee and Daphnia. Only DNMT1a sequence is presented for 
honey bee. Conserved domains are highlighted within the sequences; more information on domain organisation is presented in Figure 3.5.  
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Figure 3.3 Protein alignment for DNMT2 sequences for human, zebrafish, honey bee and Daphnia. Conserved domain is highlighted within the 
sequences; further information on domain organisation is presented in Figure 3.5. 
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Figure 3.4 Protein alignment for DNMT3 sequences for human, zebrafish, honey bee and Daphnia. Only DNMT3a sequence is presented for 
human and zebrafish. Conserved domains are highlighted within the sequences; further information on domain organisation is presented in 
Figure 3.5. 
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Figure 3.5 Conserved domains structure of the DNMT1, DNMT2 and DNMT3 for Daphnia 
magna, honey bee, zebrafish and human. Only DNMT1a sequence is presented for honey bee 
and DNMT3a sequence for human. Honey bee DNMT1b and human DNMT3b presented same 
domain organisation as the enzymes already shown for each species. Different domains are 
represented by different colours as demonstrated in the figure legend.
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3.3.2 Analysis of gene expression levels of enzymes involved in the DNA 

methylation processes 

Following identification of the enzymes potentially involved in DNA methylation and 

demethylation processes and the one-carbon pathway in Daphnia (Table 3.1), their 

transcription levels were investigated at different time points using RT-PCR. The methods for 

primer design and analyses of the data are described in sections 2.9.1 and 2.9.3, respectively. 

RNA was obtained from D. magna at different ages (days 1, 5, 12, 21 and 28) in order to 

characterize the changes that occur throughout the lifespan of the organism. Results are 

presented as Log2 fold-change comparing the expression level at different ages to the 

expression at day 1. 

DNMTs expression was analysed for different ages (Figure 3.6). DNMT1, encoding the enzyme 

responsible for the maintenance of DNA methylation, presented increased expression (p < 

0.05) at days 12, 21 and 28. DNMT2, encoding an RNA methyltransferase, was downregulated 

only after day 5. The de novo methytransferase, DNMT3, was downregulated at days 5 and 

12. Expression returned to day 1 levels at day 21 and increased at day 28 (Figure 3.6).  

Furthermore, the transcripts encoding enzymes involved in the one-carbon pathway were also 

analysed. GNMT followed the same expression pattern as DNMT3 (Figure 3.7). SAHH 

expression was increased at day 12, while MTRR expression was decreased at day 5. MS 

presented increased expression at all ages compared to day 1, although not statistically 

significant at day 21. BHMT and MAT were upregulated at days 5 and 12 (Figure 3.8). 
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Ten-eleven translocases (TETs) expression was also quantified. The two homologs identified 

were downregulated at day 5 compared to day 1 and TET_1 was also downregulated at day 

21 (Figure 3.9). 
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Figure 3.6 Gene expression analysis of DNA methyltransferases (DNMTs). Relative log2 fold 
change to day 1 expression. * Significantly different from day 1 (t-test; p<0.05). Error bars 
indicate standard error of the mean. Three biological replicates were analysed with three 
technical replicates. 
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Figure 3.7 Gene expression analysis of GNMT, SAHH and MTRR. Relative log2 fold change to 
day 1 expression. * Significantly different from day 1 (t-test; p<0.05). Error bars indicate 
standard error of the mean. Three biological replicates were analysed with three technical 
replicates. 
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Figure 3.8 Gene expression analysis of MS, BHMT and MAT. Relative log2 fold change to day 
1 expression. * Significantly different from day 1 (t-test; p<0.05). Error bars indicate standard 
error of the mean. Three biological replicates were analysed with three technical replicates. 
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Figure 3.9 Gene expression of TET homologs. Relative log2 fold change to day 1 expression. 
 * Significantly different from day 1 (t-test; p<0.05). Error bars indicate standard error of the 
mean. Three biological replicates were analysed with three technical replicates. 
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3.3.3 Global DNA methylation 

Global DNA methylation was measured with liquid chromatography coupled to mass 

spectrometry (methods are presented in section 2.6).  Results are presented as percentage of 

methylated cytosine. For 14 days old daphniids, the overall DNA methylation level was 

measured as 0.14 ± 0.007% (mean ± SEM). Overall DNA methylation for Bham2 is lower than 

the other D. magna strains (0.49 and 0.52%), but it is in accordance with the values reported 

for other invertebrates. 

3.3.4 The draft genome of Daphnia magna Bham2 strain 

Daphnia species play an important role in freshwater ecology. Also, several Daphnia species 

are well established as model organisms for ecotoxicology. Thus, Daphnia is a model organism 

used for linking laboratory-based studies directly to field studies. Unravelling the genome 

sequence of D. magna will allow determination of the relationships between genotype and 

phenotype of organisms and aid understanding the effects the environment on populations 

and communities. It will be a powerful tool to answer several questions from an ecological, 

ecotoxicological and evolutionary perspective. An effort to sequence the D. magna genome 

(Xinb3 strain) is already being made by the Daphnia Genomics Consortium, however it was 

only published in April of 2016, and still as a draft genome. It is available via NCBI BioProject 

PRJNA298946. 

The genome sequencing was performed at the University of Birmingham using a Hiseq 2500 

platform on Rapid run mode, producing 24.1 Gb of raw data. The data analyses, including 
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quality control, genome assembly and DNA methylation calls, were performed in collaboration 

with Genotypic Technologies. 

3.3.4.1 Raw data quality control and processing 

The Illumina HiSeq paired end raw reads were quality checked and processed using 

TrimGalore to remove adapters and poor quality reads. The SeqQC report for the Illumina raw 

data and processed reads statistics are presented in Table 3.2. Processed reads generated 19.8 

Gb of data corresponding to approximately 86X coverage (considering a genome of 200 Mb).  

 

Table 3.2. Quality control statistics for raw and processed sequencing reads. 

Sample Raw reads Processed reads 

1 2 1 2 

Mean Read 

Length 

151 151 138 138 

Total Number of 

Reads 

(71.13 millions) (71.13 millions)  (62.79 millions)  (62.79 millions) 

Total Number of 

HQ Reads 1* 

(68.22 millions) (59.68 millions)  (63.31 millions)  (63.31 millions) 

Percentage of 

HQ Reads 

95.91% 83.91% 100.00% 100.00% 

Total Number of 

Bases 

10740134267 

bases 

10740134267 

bases 

8713888298 

bases 

8713888298 

bases 

Total Number of 

Bases in Mb 

10740.13427 

Mb 

10740.13427 

Mb 

8713.88830 Mb 8713.88830 Mb 

Total Number of 

HQ Bases 2* 

10275779095 

bases 

9138945739 

bases 

8591320524 

bases 

8330093451 

bases 

Total Number of 

HQ Bases in Mb 

10275.77909 

Mb 

9138.94574 Mb 8591.32052 Mb 8330.09345 Mb 
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Table 3.2. Continued from previous page 

Percentage of 

HQ Bases 

95.68% 85.09% 98.59% 95.60% 

Total Number of 

Non-ATGC 

Characters 

89409 bases 3441781 bases 42071 bases 492964 bases 

Total Number of 

Non-ATGC 

Characters in 

Mb 

0.089 Mb 3.4418 Mb 0.042 Mb 0.493 Mb 

Percentage of 

Non-ATGC 

Characters 

0.00% 0.03% 0.00% 0.01% 

Number of 

Reads with Non-

ATGC 

Characters 

59925 339586 41830 258023 

Percentage of 

Reads with Non-

ATGC 

Characters 

0.08% 0.48% 0.07% 0.41% 

* >70% of bases in a read with >20 phred score and reads which are of low quality can be 
trimmed and used 2* bases with >20 phred score. 
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3.3.4.2 Draft De novo assembled genome of Daphnia magna Bham2  

De novo assembly of Illumina HiSeq data was performed using ABySS 3.8 assembler, followed 

by scaffolding using paired-end data with SSPACE scaffolder. Then, the intra-scaffold gaps 

were closed using GapCloser tool to the maximum level possible. The de novo assembly QC 

statistics at each step are presented in Table 3.3. 

The genome was assembled to 1,828,469 contigs, later grouped to 124,614 scaffolds with a 

total length of 122 Mb. The maximum scaffold length is 288,378 bp and the minimum length 

200 bp. The average scaffold length is 985.4 ± 2,281.8 bp. The number of generated scaffolds 

with less than 500 bp is 70,043, while only 31,116 scaffolds were more than 1kb.  The N50 

value, the length for which 50% of all bases in the assembly are in a contig of specified length, 

for the GapClosed scaffolds is 2,014. In other words, this means that 50% of the assembly 

contains contigs with length equal or greater than 2,014 bp (Additional File 3.1). 

The high number of small contigs and scaffolds is not ideal for assembling a genome, making 

it a challenging task, especially for genomes with a high number of repetitive elements, such 

as in Daphnia. Nevertheless, the assembled genome provides a good starting point for 

mapping DNA methylation data and conducting DNA methylation experiments in this 

invertebrate model organisms.  
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Table 3.3. Statistics for the different steps of genome construction. 

Description ABySS contigs Scaffolds GapClosed scaffolds 

Contigs Generated  1828469 124614 124614 

Maximum Contig Length  78705 287464 288378 

Minimum Contig Length  64 200 200 

Average Contig Length  156.1 ± 474.9 985.4 ± 2278.9 985.4 ± 2281.8 

Median Contig Length  117 421 421 

Total Contigs Length  285476057 122796826 122791038 

Total Number of Non-

ATGC Characters  

638727 1060445 210008 

Percentage of Non-ATGC 

Characters  

0.224 0.864 0.171 

Contigs >= 100 bp  867472 124614 124614 

Contigs >= 200 bp  128114 124614 124614 

Contigs >= 500 bp  54166 54571 54571 

Contigs >= 1 Kbp  30689 31117 31116 

Contigs >= 10 Kbp  587 616 614 

Contigs >= 1 Mbp  0 0 0 

N50 value  140 2013 2014 
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3.3.4.3 CpG island prediction 

The draft de novo assembled genome was used for prediction of the GpG islands (CGI) using 

EMBOSS newcpgreport software. A total of 30,600 CGIs were identified using this method. 

The size ranged from 200 bp to 3,606 bp with an average size of 385 bp. The identified CpG 

islands were used for analyses of DNA methylation profiles described in this chapter 

(Additional File 3.2). 

3.3.4.4 Annotation of transcription start sites (TSS) 

The first attempt to annotate the de novo assemble genome was by blasting the D. magna 

genome v2.4 to the Bham2 de novo genome. The first gene set available for D. magna v2.4 

was based on gene prediction on the draft genome assembly, therefore it was not a high 

quality gene set. However, at the time, it was the only gene set available for the D. magna 

genome.  

Also, due to the length of the scaffolds and contigs, several regions of the genome were only 

partially annotated to the new Bham2 genome. To try to overcome this problem the 

annotation was centred around the transcription start sites (TSS), however due to the nature 

of the methods employed, the hits did not represent single regions or genes. This method  

 resulted in the identification of 25,820 TSSs in Bham2 genome (Additional File 3.3).   

Methylation is known to occur around TSS located at promoter and first exon regions.  Thus, 

the identified TSS represent an option that can be used to focus the DNA methylation profiling 

of Daphnia’s genome. 
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3.3.4.5 Annotation of transcripts based on Daphnia evidential genes 

With the release of the new D. magna gene set (finloc9b) in April of 2016, this one based on 

mRNA assembly and therefore much more complete, the draft genome for Bham2 was 

annotated again.  

The major difference between the gene sets is the method of gene prediction. The first one, 

used for TSSs annotation, is based on gene prediction using the D. magna draft genome (v2.4), 

while the second gene set was achieved mostly through mRNA assembly, with a minor portion 

being from genome prediction. This makes the second gene set (finloc9b) much more reliable. 

It is important to note that the draft genome was not improved with the release of this new 

gene set, therefore the choice of sequencing and de novo assembling of the Bham2 genome 

was still appropriate. 

From the 29,121 genes predicted for D. magna genome based on the transcripts, 5,831 were 

annotated to the Bham2 draft genome, representing 20% of the total genes. The parameters 

for blast search in this case were more severe than TSSs and could be influenced by the 

fragmentation of the de novo assembled genome, explaining the low number of genes that 

were annotated (Additional File 3.4).  

It is worth mentioning that only 65% of the predicted genes from the finloc9b dataset were 

mapped to the reference genome v2.4 (Orsini et al., 2016). 
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3.3.5 DNA methylation profiling in Daphnia magna 

3.3.5.1 Analysis of Methylation  

For methylation mapping, firstly the reference genome was transformed to a bisulfite-

converted version. Then, sequences were aligned to these reference using the short read 

aligner Bowtie2 (Langmead et al., 2009), searching for unique alignments. After that, Bismark 

determines the methylation status of each DNA strand for different contexts (CpG, CHG and 

CHH, where H can be either A, T or C) (Krueger and Andrews, 2011). 

Mapping efficiency of the bisulfite treated samples was around 35%. Low mapping efficiency 

could be attributed to the genome used as reference coupled with the already difficult read 

alignment of bisulfite treated sequences due to decreased complexity.  

3.3.5.2 DNA methylation profile 

After DNA methylation mapping, the output files were visualised using SeqMonk software. 

Each cytosine site was represented by different reads that are either methylated or not. The 

proportion of methylated reads for the same site is used to measure the methylation levels. 

The overall levels and site specific methylation can be identified for different contexts as CpG, 

CHG and CHH.  

The output files were loaded to SeqMonk for visualisation of the methylation calls for the 

different contexts. Some scaffolds were identified with unusually high levels of methylation in 

CHG and CHH context and high numbers of reads. Based on these results and what was 

previously reported for arthropods, such as A. mellifera, N. vitripennis and B. mori, the 

occurrence of DNA methylation outside CpG context is very rare. Therefore, the scaffolds 
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presenting a non-expected pattern of methylation and high number of reads were excluded 

from the analysis (Additional File 3.5). 

 The initial genome size was 122Mb. After the removal of the excluded scaffolds the genome 

size was reduced to 119Mb, representing 92% of the length of the D. magna draft genome 

(v2.4).  

The removal of the excluded scaffolds improved the analysis of global patterns of DNA 

methylation for D. magna. This allowed the proper identification of overall methylation levels, 

without the interference of regions presenting anomalous high methylation. In addition, two 

different steps (non-CpG methylation and biological replicates) to avoid false positives were 

applied to these data and the results are described below.  

Non-CpG methylation is often described as a rare event for related invertebrates (Lyko et al., 

2010). Therefore, the amount of reads represented as methylated can be used as an 

estimation of bisulfite C-to-T conversion efficiency and to estimate the false positive rate for 

DNA methylation quantitation (Xiang et al., 2010). Methylation values at non-CpG contexts 

were given by the ratio of the total number of reads and the methylated reads at CHG and 

CHH sites. The false positive rate for the 3 replicates was measured as 1.14%. It indicates that 

those reads are likely derived from non-converted cytosines, sequencing errors or can be from 

contaminating DNA. Xiang et al. (2010), when describing the silkworm methylome also 

encountered the same problem, obtaining higher methylation outside CpG contexts than 

expected. The use of biological replicates was able to solve this problem, as often mCpGs are 

conserved among replicates while mCs at non-CpG context are discordant. Therefore, 

independent biological replicates were used for the methylome analyses.  
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A methylated site was defined by Wang et al. (2013) as a site containing 10% methylated Cs 

and coverage ≥10. For this study, only sites containing 3 or more reads in 3 biological replicates 

were considered for the measurements. The cut-off value for methylated sites was set as 

≥50%. This way, it requires at least two unconverted reads at minimum coverage for that site 

to be called as a methylated site, as one methylated read only accounts for 33.33% of 

methylation level, and it needs to be a consistent value for the replicates. 

In summary, filtering for methylation profiling was done within and between samples. Only 

sites containing 3 or more reads in each of the three replicates were used for methylation 

quantitation. From those, only sites with methylation level higher than 50% were considered 

as methylated. These results are displayed in Table 3.4. 

Table 3.4. Methylated cytosines in CpG, CHG, and CHH genomic context (H = A, T, or C) 

Cytosines Sites in Genome Methylated Sites % of All mCs 

CpG 2425520 18228 98.58 

CHG 1969049 151 0.817 

CHH 5213998 112 0.606 

Total 9608567 18491  

 

After the filtering step, only 263 Cs were methylated in non-CpG context, corresponding to 

0.0027% of total cytosine sites and 0.0036% of non-CpG sites. Therefore, the use of biological 

replicates and strict cut-off values was effective in removing the false-positive methylated 

cytosines in the final methylation profile.  

Overall, only a relative small proportion of the D. magna genome was found to be methylated 

(Additional File 3.6). For the cytosines sites covered during the analysis, 0.19% of these sites 
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were methylated, while for all CpGs, 0.63% were methylated. Primarily, methylation occurs at 

CpG sites accounting for approximately 98.6% of the methylated cytosines (Figure 3.10).   

  

Figure 3.10 Total DNA methylated sites in different context along the D. magna Bham2 
genome. 

 

The distribution of methylation along the genome is not random. The analyses indicate that 

DNA methylation is located within gene bodies, especially at the beginning of the genes 

(Figure 3.11). Lower levels of methylation were observed for the predicted CGIs, compared to 

the flanking areas (Figure 3.12).  
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Figure 3.11 DNA methylation distribution along genes and flanking areas for CpGs and at non-
CpG context. Flanking areas are set 2kb upstream and downstream the gene. Due to the 
different length of genes, they are presented with relative distance. Methylation in CpG 
context is presented in blue, non-CpG methylation is presented in red. 

 

Figure 3.12 DNA methylation distribution along CGIs and flanking areas for CpGs and at non-
CpG context. Flanking areas are set 2kb upstream and downstream of the CGI. Due to the 
different length of CGIs, they are presented with relative distance. Methylation in CpG context 
is presented in blue, non-CpG methylation is presented in red. 
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Comparisons between methylation profiles in 14 days old Daphnia and 5 days old were 

performed following the same procedure described above (Additional File 3.7). A scatter plot 

containing all covered cytosine sites in 14 and 5 days old samples revealed a widespread 

distribution of methylated probes (Figure 3.13). In total 26,283 probes were methylated for 

at least one of the samples. Both samples shared 10,432 methylated probes, while 8,055 were 

exclusive of 5 days old samples and 7,796 were considered methylated only in 14 days old 

Daphnia. Figure 3.13 shows that most of the probes were present in both groups, however 

many did not pass the cut-off value of 50% methylation. This indicates that the methylation 

level of those probes can be affected by age and could be related to developmental 

mechanisms in one or several different tissues, through tissue-specific methylation.  
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Figure 3.13 Scatter plot of cytosine probes (single Cs) at CpG context for 5 and 14 days old 
daphniids. A) All probes for 5 days old Daphnia and 14 days old Daphnia. Each probe is 
represented by a dot. Density of probes is represented by red (high density) and blue (low 
density). B) Light blue probes were classified as methylated in both samples. Red probes were 
classified as methylated only in 5 days old daphniids and green probes were methylated only 
for 14 days old daphniids. Probes in grey were not methylated for both groups.  



119 
 

Yet, when looking at probes within gene bodies, it was possible to observe that the 

methylation is more consistent between 5 days and 14 day groups (Figure 3.14). The figure 

clearly indicates that some probes fall in the regions highlighted in green and red in Figure 

3.13. However, no differences in the overall distribution of methylation across the gene bodies 

was identified (Figure 3.15).  

 

 

Figure 3.14 Scatter plot of cytosine probes (single Cs) at CpG context for 5 and 14 days old 
daphniids that are overlapped by an annotated gene. Each probe is represented by a dot. 
Density of probes is represented by red (high density) and blue (low density). R=0.943 
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Figure 3.15 DNA methylation distribution along genes and flaking areas at CpGs sites in 5 days 
old and 14 days old Daphnia. Flanking areas were set as 2kb upstream and downstream the 
gene. Due to the different length of genes, they are presented with relative distance. 
Methylation in CpG context is presented in blue, non-CpG methylation is presented in red. 
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3.4 Discussion 

DNA methylation has been investigated across a wide range of species. Originally the efforts 

were focused on the use of vertebrate species such as human and mouse, specifically due to 

medical application or their use as model organisms. Lately many studies have concentrated 

on uncovering the DNA methylation profiles of invertebrates. Figure 3.16 presents a summary 

of information available for a number of species, including plants, invertebrates and 

vertebrates, that will be discussed within this section. 

It is now known that the level and distribution pattern of DNA methylation can vary 

dramatically between species (Jiang et al., 2014).  In vertebrates, especially mammals, the 

DNA methylation pattern has a “global” distribution, where candidate sites are methylated 

across the entire genome, excluding promoter regions that remain largely unmethylated and 

are associated with gene transcription. On the contrary, invertebrates present a distinct 

distribution of methylated cytosines, having in general a “sporadic” pattern of DNA 

methylation. However, some invertebrate species have a very low level of DNA methylation 

or their DNA methylation is restricted to a specific life stage (Breiling and Lyko, 2015; Feng et 

al., 2010a; Jiang et al., 2014).  

The nematode C. elegans does not present any enzyme homologous to DNA 

methyltransferases, and only 0.0033% of its cytosines were found to be methylated (Hu et al., 

2015; Simpson et al., 1986), although epigenetic control is still important through other 

mechanisms. The model organism D. melanogaster also exhibits a very low level of DNA 

methylation (0.03%) but from the known DNMTS, it only encodes the gene for DNMT2, a RNA 

methylase (Capuano et al., 2014; Glastad et al., 2011). Other invertebrates, like A. mellifera, 
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B. mori and N. vitripennis, have higher levels of DNA methylation than C. elegans and D. 

melanogaster (0.11-0.18%), but still very low when compared to vertebrates (~4-8%) (Beeler 

et al., 2014; Lyko et al., 2010; Rasmussen and Amdam, 2015; Xiang et al., 2010). The global 

DNA methylation level in Daphnia was measured in different strains and found to vary from 

0.14% to 0.52% (Asselman et al., 2015).  This is in accordance with the overall values for other 

arthropods. 

Despite the conservation of overall methylation levels among invertebrates, the presence of 

DNMTs homologs is not distributed along the evolutionary tree (Lyko and Maleszka, 2011). 

The DNMTs encoded on the genomes of different invertebrates do not occur according to the 

phylogenetic divergence of these organisms. Also the number of DNMTs within each class is 

not conserved even with a taxonomy group (i.e. hymenoptera). A. mellifera and N. vitripennis 

belong to the same order in the Insecta class and differ in the number of DNMT1 (Glastad et 

al., 2011; Lyko and Maleszka, 2011). Therefore, while it is possible to say that mammals 

encode the same number of DNMTs, there is not a number or pattern of DNMTs that can be 

associated with invertebrates, or even to a more limited group, such as arthropods. 

Another important difference identified between vertebrates and invertebrates was the lack 

of DMAP domain in DNMT1. This was identified for A. mellifera, B. mori and D. magna and it 

is suggested that, as the result of lacking of this domain, transposable elements on these 

organisms are largely unmethylated (Lyko et al., 2010; Mitsudome et al., 2015; Rountree et 

al., 2000; Werren et al., 2010; Xiang et al., 2010).  

DNA methylation machinery includes the enzymes involved in DNA methylation and 

demethylation pathways. The mechanisms of DNA methylation are mostly conserved across 

different species. The enzymes of the one-carbon pathway are the responsible for providing 
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the necessary metabolites and to maintain the reaction of DNA methylation. For some species, 

the complete set of enzymes failed to be identified. However, for several of them, this 

problem is more likely linked to a lack of high quality genome construction and annotation.  

On the other hand, the pathway of DNA demethylation does not appear to be conserved along 

different groups. The presence of 5hmC was analysed in many species, and for example, it was 

not possible to identify 5hmC in C. elegans, even with an extremely low detection limit 

(Erdmann et al., 2014; Hu et al., 2015). Several species still lack information about the 

presence of 5hmC as illustrated in figure 3.16.  

The lack of a complete and annotated genome is one of the complications for the analyses of 

the DNA methylation profile in any species. For D. magna the quality of the available genome 

is very poor, although the recently published gene set adds a lot to it (Orsini et al., 2016). We 

aimed to produce a de novo assembled genome for D. magna bham2 strain. However, due to 

many aspects described in this chapter, it was only possible to assemble a partial genome, 

with incomplete annotation. Although far from ideal, this draft genome allowed the analyses 

of the DNA methylation profile in D. magna. 
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Figure 3.16 Phylogenetic distribution of DNA methylation in vertebrates and invertebrates. 
Phylogenetic tree was generated with NCBI Taxonomy (http://www.ncbi.nlm.nih.gov/guide/ 
taxonomy/). Branches are named for species for which DNA methylation information has been 
obtained. Branch colour indicate species taxa (grey: Nematoda; red: Crustacea; blue: Insecta; 
light blue: Tunicata; orange: Vertebrata; yellow: Mammalia; green: Plantae). The number of 
DNA methyltransferases (DNMTs) are represented as dots, with blue representing DNMT1, 
orange representing DNMT2 and green for DNMT3. The percentage of cytosine methylation 
is shown for each species. “*” to indicate the presence of DNA methylation in embryonic 
stages of T. castaneum. Presence of 5hmC is indicated by a check mark. An “” marks the 
species where 5hmC was not identified. Question marks indicate no data for 5mC and 5hmC. 

References are listed per species as follows: C. elegans (Hu et al., 2015; Simpson et al., 1986); 
D. magna (Asselman et al., 2015); P. humanus (Glastad et al., 2011); T. castaneum 
(Cunningham et al., 2015; Feliciello et al., 2013; Zemach et al., 2010); D. melanogaster 
(Capuano et al., 2014; Lyko et al., 2000; Rasmussen and Amdam, 2015); B. mori (Xiang et al., 
2010); N. vitripennis (Beeler et al., 2014; Pegoraro et al., 2016); A. mellifera (Lyko et al., 2010; 
Wojciechowski et al., 2014); C. intestinalis (Ponger and Li, 2005; Zemach et al., 2010); D. rerio 
(Kamstra et al., 2015b; Smith et al., 2011); M. musculus (Capuano et al., 2014); H. sapiens (Li 
et al., 2010); C. reinhardtii (Feng et al., 2010a; Ponger and Li, 2005); A. thaliana (Capuano et 
al., 2014; Erdmann et al., 2014). 

  



125 
 

Although the common approaches for DNA methylation profiling could not be applied to the 

de novo assembled genome, it allowed an overview of DNA methylation distribution and 

patterns in D. magna. Therefore, future studies need to address the link between DNA 

methylation and regulatory regions on the genome. Future analyses will be reliant on the 

construction of the full sequence and annotation of the D. magna genome. 

The overview of D. magna methylation profile confirmed what was already predicted. DNA 

methylation is targeted to gene bodies, especially at the beginning (5’ end) of the genes. 

Additionally, the overall pattern of DNA methylation suggests that CGIs are generally 

unmethylated in Daphnia. Changes in the global levels of DNA methylation have already been 

reported in Daphnia exposed to chemicals and environmental stressors (Asselman et al., 2015; 

Menzel et al., 2011; Vandegehuchte et al., 2010b, 2009a, 2009b). This information coupled to 

the findings in this study classifies D. magna as a useful model organism for epigenetic studies, 

due to its responsive epigenome, extensive knowledge on its ecology and the easy 

maintenance in laboratory conditions allowing the manipulation of different conditions and 

assessment of responses. To this point, gene specific DNA methylation changes were not 

investigated in D. magna.  

As presented above, D. magna encodes the full toolkit for DNA methylation and 

demethylation. The DNMTs transcription varies substantially with ageing. DNMT1 gene 

expression increases when the animals achieve maturity (approximately at day 12) and the 

expression level is maintained until at least day 28. Expression of DNMT3 decreases after day 

5 in comparison with day 1. At day 28 DNMT3 expression is increased once more. This pattern 

of gene expression was already demonstrated to occur in humans (Xiao et al., 2008), hence 

these differences related to ageing could be significant for the global hypomethylation and 
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targeted hypermethylation that are shown to occur during across a lifetime (Zampieri et al., 

2015).  

Regarding DNA methylation profiling for D. magna at different timepoints, the analysis of 

overall distribution of DNA methylation suggests some differences between 5 days old and 14 

days old Daphnia. Those changes appear not to be occurring in the regions of the annotated 

genes. It is possible that the timepoints chosen for the comparison in DNA methylation profiles 

are not optimal, despite being covering two distinct stages of development in Daphnia 

(juvenile and mature Daphnia). Nevertheless, the use of organisms with different ages (i.e. 

neonates, mature and “old” animals) could help to differentiate the effects on DNA 

methylation more easily. The investigation of the alterations in DNA methylation during 

development could also add to the knowledge about DNA methylation in D. magna and its 

possible dynamic changes. 

3.5 Conclusions 

In conclusion, the results presented in this chapter demonstrate that D. magna has the 

complete toolkit for DNA methylation. Homologs of genes encoding the enzymes of the one-

carbon cycle were identified in the D. magna genome as well as the TETs enzymes involved in 

the active demethylation pathway. The profile of DNA methylation follows the sporadic 

distribution described for invertebrates, presenting an increase in DNA methylation for gene 

bodies, mainly at the beginning of the genes. 

The expression of transcripts for the enzymes from the one-carbon pathway, especially 

DNMTs, changes with ageing. The overall distribution of DNA methylation also suggests age-
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specific changes; however further analyses need to be done to identify the regions of the 

genome where DNA methylation is altered.  

Therefore, based on the presented results, D. magna could represent a good model organism 

for epigenetic studies. However, to achieve full use of the information provided by this 

organism an improved genome has to be constructed. It will also be important to define the 

strain to be used and age of the exposed animals.  

It is proposed that, in contrast to studies on the genome that use inbred strains (Xinb3, Iinb1), 

epigenomic studies should be performed in non-inbred strains (i.e. Bham2). Besides the 

possible deleterious effects of inbreeding (Charlesworth and Willis, 2009), the differences in 

global methylation found for inbred strains (up to 0.52%) and the strain used in this study 

(0.14%) could indicate an alteration of the DNA methylation profile when comparing strains.  

Regarding the age of the organisms, we have demonstrated that the expression of transcripts 

encoding the enzymes on the one-carbon pathway already vary with age.  Likely, the DNA 

methylation profile can also vary. Therefore, it is important to establish a standard approach 

for exposures and analysis of the effects on DNA methylation profile. 
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Chapter 4  

Age-related and stress-induced 

Differentially Methylated Regions 

(DMRs) in Daphnia magna 
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4.1 Introduction 

DNA methylation studies in Daphnia have shown the great potential of these organisms as an 

environmentally relevant invertebrate model species for epigenetic studies. The results in 

chapter 3 describe the “normal” status of DNA methylation in Daphnia magna. Also, age-

related changes in the overall DNA methylation status and in expression of genes involved in 

the DNA methylation process were reported.  

It is recognised that the “normal” status of DNA methylation may fluctuate to some extent 

but, having this as a starting point, the analysis of stress-induced changes was the subsequent 

analysis to be performed. The aim of the work reported in this chapter was to identify, at a 

single nucleotide resolution, the alterations in DNA methylation between control and stressor-

exposed groups.  

Sodium bisulfite treatment is the standard method for DNA methylation analysis at a single 

nucleotide resolution, although it presents some limitations as shown in section 2.7. When 

DNA is treated with sodium bisulfite, the unmethylated cytosines are converted to uracils 

while the methylated cytosines are not converted. After several PCR amplifications, the 

methylated cytosines remain as cytosines and the unmethylated ones appear as thymines 

(Frommer et al., 1992). 

Bisulfite treatment can be coupled with whole genome high throughput sequencing allowing 

the analysis of the methylation status across the entire genome at single nucleotide-resolution 

(Cokus et al., 2008). This is an extremely powerful approach for achieving high resolution DNA 

methylation profiling and detailed analysis of distribution of DNA methylation across various 

sections (e.g. regulatory regions, intergenic and intragenic regions) of the genome. The 
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comparison of DNA methylation profiles of two or more different sample types will result in 

identification of Differentially Methylation Regions (DMRs). 

Differential methylation is often associated with diseases or disorders, moreover it has been 

identified to contribute to tissue-specific gene expression (Slieker et al., 2013; Song et al., 

2009; Wan et al., 2015). As detailed in section 1.2.4, the relationship with gene expression is 

not simple as previously believed. The context where DNA methylation occurs appears to 

affect gene expression either negative or positively (Wan et al., 2015). Therefore, DMRs are 

part of the normal DNA methylation pattern and contribute to biological diversity, even within 

cell types. Thus, problems can arise when the established normal DNA methylation pattern is 

affected in one or more cell type of the organism. 

Abnormal DNA methylation is associated with the development and/or progression of several 

diseases, such as cancer and neurological disorders (Bird, 2002; Jones and Baylin, 2002; Jones, 

2012). Most importantly, it has been identified that several of the differentially methylated 

regions can be used as biomarkers of exposure to certain stressors as well as for early 

detection and monitoring of the progression of diseases (Mikeska and Craig, 2014). Thus, DNA 

methylation profiling and identification of DNA methylation biomarkers and DMRs that are 

indicative of a stressor category can prove to be a useful resource.   

Different approaches can be used to identify DMRs. Several statistical methods and software 

packages have been developed to compare and detect regions with altered DNA methylation 

(Rackham et al., 2015). Consequently, it is extremely important to select the most appropriate 

statistical approach based on the experimental design and the model organism in order to 

identify and analyse DMRs.  
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According to Rackham et al. (2015), the choice of software package for DMRs analysis is a 

difficult task since it is difficult to judge the differences between the methods as there are no 

benchmarks for direct comparison. For the work presented in this thesis, the SeqMonk 

software was used for identification of DMRs (www.bioinformatics.babraham. 

ac.uk/projects/seqmonk/).  SeqMonk, developed by the Babraham institute, is a research tool 

that allows the visualisation of the data and can be used to analyse the mapped DNA 

methylation high throughput sequencing data. It allows the use of custom genomes and 

annotation tracks, allowing analyses of non-annotated, or incomplete, genomes for DNA 

methylation studies. Another advantage is that data can be directly imported from Bismark 

outputs (Chatterjee et al., 2012). 

In SeqMonk software the first step in quantifying the level of DNA methylation is to define 

probes. Probes can be defined as either regions with different length (e.g. genes, CGIs, running 

windows) or single cytosine sites, set around predefined annotation tracks (e.g. mRNA, CDS, 

CpG islands), or unbiased (i.e. entire genome). When annotation tracks are used, the analysis 

is considered to be “biased”, since the comparison will be done in specific regions that can 

have a different CpG composition and distribution. When the analysis is “unbiased”, every 

region with enough coverage will be analysed. 

Despite the majority of studies focusing on methylation pattern around promoters or CGI, 

problems can arise with the use of biased methods for DNA methylation analysis. Firstly, CpGs 

are not randomly distributed across the genome, as evidenced by regions containing higher 

concentration of CpGs, termed CpG islands. DNA methylation does not appear to be randomly 

distributed either. Also, the previous knowledge about DNA methylation distribution and 

profiling, mostly built based on mammalian studies, suggested a simple relationship of 
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presence of methylation and transcription repression (Wan et al., 2015). In fact, DNA 

methylation at several sites has been positively correlated with transcription activation and 

these sites are sometimes located far from the responding gene (Irizarry et al., 2009). 

Therefore, the use of unbiased genome-wide analyses, without the focus on promoter regions 

or CGI, can help to elucidate the effects of DNA methylation on gene expression. 

Based on what was discussed previously, the aims of chapter 4 are: i) To test different methods 

of DMRs identification (biased vs. unbiased methods) using the visualisation software 

SeqMonk. To achieve this aim, Daphnia exposed to 5-azacytidine and respective controls were 

used for analysis; 5-azacytidine is a chemical with known demethylation effects and therefore 

it can be used as a positive control; ii) To identify DMRs induced in Daphnia as a result of 

exposure to 5-azacytidine (3.7 mg L-1, 5 days exposure), arsenic (100 µg L-1, 14 days exposure) 

and hypoxia (<2 mg L-1 of dissolved oxygen, 14 days exposure) using the selected method of 

analysis in aim (i). 

4.2 Overview of experimental design 

The data used in this chapter were obtained after high throughput bisulfite sequencing of the 

DNA samples extracted from Daphnia exposed to three different stressors, arsenic, hypoxia, 

5-azacytidine and respective controls (n=3). The stressors and concentrations were defined 

based on literature research and previous studies with Daphnia (details in sections 1.4 and 

2.3.2). The DNA was extracted using CTAB method as described in section 2.4.1.1. Samples 

were bisulfite treated using EZ DNA methylation gold kit (see section 2.7.1). The method for 

library construction, quality control, quantitation and sequencing on Illumina HiSeq 2500 are 

described in sections 2.7.2, 2.7.3 and 2.7.4.  
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The sequencing data were subjected to quality checks and were aligned to the D. magna de 

novo assembled genome generated in Chapter 3. Alignment and methylation call were 

performed with the software Bismark (Krueger and Andrews, 2011). After, methylation data 

were visualised and analysed on SeqMonk.  

The workflow for analysis of DNA methylation profiles after WGBS is described in Figure 4.1.  

 

 

Figure 4.1 Workflow of the analysis performed in chapter 4. Comparison of unbiased and 
biased method of DNA methylation quantification and identification of Differentially 
Methylated Regions (DMRs).  

Whole Genome Bisulphite Sequencing

Reads mapping to 
reference genome

Methylation call

Biased analysis 
(section 4.3.3.1)
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Single 
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4.3 Results   

After the mapping (section 3.3.5) of the sequencing reads the analysis can either be done 

visually or using a software package for DMRs identification. To identify stress-induced DNA 

methylation changes the methylation status was compared between the non-exposed 

(control) and exposed (treated) groups at determined loci or regions, and when statistically 

different, they were characterised as a DMRs. 

Ideally, every cytosine should be compared between control and treated groups. However, 

the high number of comparisons make this very difficult or impossible, both in terms of 

computational resources and statistical power, since an enormous amount of tests will be 

performed. This requires a multiple testing correction, and due to the high number of 

statistical tests, it is subject to a large number of false negatives. Therefore, a reliable method 

of analysis needs to be used in order to extract maximum information, without compromising 

the quality of the data.  

4.3.1 Read mapping and DNA methylation call 

Read mapping and methylation calls were performed using the software Bismark. After quality 

control and trimming of the poor quality reads, the sequence reads were aligned to the de 

novo assembled genome for Daphnia magna Bham2. DNA methylation calls were performed 

generating a list containing all covered cytosine sites with the methylation status for each site 

represented either as a ‘+’ for methylated or ‘-‘ for unmethylated. 
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4.3.2 Pre-treatment of DNA methylation reads 

Sample files were loaded to SeqMonk software for visualisation. Similar to what was observed 

in chapter 3, section 3.3.5.2, some regions presented a high number of reads conferring an 

abnormal coverage when compared to adjacent regions. For the analysis presented in chapter 

3, it was possible to identify which scaffolds contained the unusually high number of reads, 

due to the methylated sites presented in non-CpG context (a rare event in invertebrates). 

Using this information, the scaffolds were removed from the final analysis of the normal 

profile of DNA methylation.  

However, since only the reads in CpG context were used for the DMRs identification a different 

approach needs to be used. To remove the regions with high coverage a filter was applied for 

outliers. Firstly, the probes were defined with the window size of 3kb. Then, they were 

quantified with read count and corrected with the total read count (Figure 4.2). Probes were 

then filtered using box whisker test for outliers using a stringency of 10 above the median for 

at least one of the data stores. The identified outliers were converted to an annotation track 

and removed from the data.  
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Figure 4.2 Read count quantitation over probes with 3kb in length for one replicate of control group. Only reads in CpG context were used. 
Coverage is shown with colour scheme ranging from blue to red. Red bars indicate probes with abnormally high coverage compared to adjacent 
regions. Abnormal regions were removed with box whisker test for outliers using a stringency of 10 above the median for at least one of the 
three replicates. 
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4.3.3 Methods for identification of Differentially Methylated Regions (DMRs)  

A DMR is defined as a region with significant difference in methylation levels between two or 

more samples (Rijlaarsdam et al., 2014). In order to identify which method of DMRs 

identification was the best for this experimental design, six different approaches were taken. 

They are divided into ‘biased analyses’, where the regions are set based on an annotated track, 

and ‘unbiased analyses’, where the regions are compared across the genome without the use 

of any annotation track to set the regions (see Figure 4.1). 

Independent of the method used for identification of DMRs, the methylation levels for the 

sets of probes were quantified using the ‘bisulfite methylation over features’ pipeline 

available on SeqMonk. This pipeline measures the methylation levels of individual cytosines. 

If probes were set containing more than one cytosine, the DNA methylation value is presented 

as the average value.  

4.3.3.1 Biased analyses 

4.3.3.1.1 Probes over transcription start sites 

Based on the annotation tracks available for the Daphnia magna Bham2 genome, an option 

was to set the methylation quantitation around the transcription start sites (TSS), since 

methylation alteration is often described around the promoter regions and first exon of the 

genes and controls transcription (Brenet et al., 2011; Suzuki and Bird, 2008). 

The positions for TSS described in section 3.3.4.4 were loaded to SeqMonk. The probes for 

methylation quantitation were set around TSS with 1kb upstream and 1kb downstream to 

account for promoter and first exon region (Figure 4.3). 
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Figure 4.3 Schematic representation of TSSs location and the probes set around it. Gene is 
represented in blue and promoter region in grey. 2kb probe is represented in green with the 
TSS located in the middle of the probe.  

 

25,820 probes were set around the TSS, the methylation was quantified and the 2 kb regions 

were compared between control and treatment using replicate statistical test (Figure 4.4). The 

replicate statistical test looks for a consistent effect across the biological replicates. It uses a 

t-test to assess whether a set of replicates (exposed group) shows a significant difference to 

the other (control group). With the p-value of < 0.1, 2,094 probes passed, while with a p-value 

of 0.05 and 0.01, the number of probes different probes were 1,051 and 245, respectively. 

However, no probes passed the multiple testing correction (p<0.1). Therefore, using this 

approach no region was identified as a DMR.  
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Figure 4.4 Scatter plot of probes set around TSS. Probes set for 3 replicates for each control 
and 5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in the y axis. 

 

4.3.3.1.2 Probes over CpG islands 

For this analysis the probes were set on CpG islands (CGI). CGI detection is detailed in chapter 

3, section 3.3.4.3. The total number of probes is equal to the number of identified CGIs, 

therefore the number of probes is 30,600. Lengths of the probes are variable due to the 

differences in CGI length. They vary from 200 to 3,606 bp but with the majority (82%) being 

between 200 and 500 bp (Figure 4.5). 

Probes were tested with replicate statistical tests (t-test comparing control and treatment) 

and no probes passed the multiple test correction. In general, methylation level was very low 
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for the probes analysed (Figure 4.6). This is due to the averaging of the values per probe, which 

was affected by the large size of the probes. Thus, the quantitation of methylation over CGI 

was not a good option for this study.  

 

 

Figure 4.5 Length of probes set over CGIs. Number of probes in the y axis, length in bp in the 
x axis.  

 



141 
 

 

Figure 4.6 Scatter plot of probes set over CGI. Probes set for 3 replicates for each control and 
5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in the y axis. R=0.876. 

 

4.3.3.1.3 Probes over genes 

The de novo assembled genome of Daphnia magna Bham2 was annotated against the publicly 

available 29,121 primary transcripts (finloc9b) from the Daphnia genome v2.4 database 

(http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/), as shown in 

section 3.3.4.5.  In total 5,831 genes were identified. Probes were set to cover the entire gene 

(Figure 4.7) and used for quantification of DNA methylation level.  
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Figure 4.7 Length of probes set over annotated genes. Number of probes in the y axis, length 
in bp in the x axis.  

 

In general, the methylation levels of the majority of the probes in the 5-azacytidine treatment 

group compared to the control group were decreased (Figure 4.8). However, this trend was 

not statistically significant after applying the Benjamini and Hochberg multiple test correction. 

This is mainly caused by the fact that regions defined as probes in this setup cover a large 

section of the genome with multiple CpG sites. Although the methylation levels of some of the 

CpG sites may have been affected and altered as a result of the treatment, these changes can 

be averaged out by large sections in the probe with no change between the control and 

treatment. Therefore, it is thought that defining very large regions as probes can often mask 

truly important changes at certain CpG sites.   
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Figure 4.8 Scatter plot of probes set over annotated genes. Probes set for 3 replicates for each 
control and 5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in the y axis. 
R=0.949 
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4.3.3.2 Unbiased analyses 

For the unbiased analyses the regions were set without the use of annotation tracks. Three 

methods were tested: i) fixed windows; ii) fixed number of CpGs; iii) Single CpGs applying 

running window statistical test. 

4.3.3.2.1 Fixed window 

For the fixed window analysis, the probes were set as fixed windows with 100 bp in length at 

regions with detectable CpG sites. A total of 1,352,514 probes were set for the analysed 

samples (Figure 4.9). The set probes presented a very uneven coverage along the genome, 

caused by the unequal distribution of CpG sites across the genome. Therefore, the set probes 

containing a high number of CpG sites will have a larger averaging effect than regions with 

few cytosine sites causing problems in downstream analyses. Nevertheless, the replicate set 

statistical test was applied to search for statistically different regions. The p-values of 0.1, 0.05 

and 0.01 were considered. 

Applying p-value cut-off points of less than 0.1, 0.05 and 0.01, the number of probes that were 

identified as statistically significant were 19,443, 10,631 and 3,107, respectively. However, 

only 9 probes passed the multiple testing correction at a p-value of 0.1. Therefore, very few 

regions were identified as DMRs using this design of analysis.  
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Figure 4.9 Scatter plot of probes set with fixed length of 100 bp. Probes set for 3 replicates for 
each control and 5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in the 
y axis. R=0.907 
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4.3.3.2.2 Fixed number of CpGs 

One option to overcome the problem of uneven coverage detected when using fixed length 

of probes, is to define probes as regions with a fixed number of 100 CpGs. In this approach the 

probes will differ in length but will contain same number of CpGs, although the number of 

reads per probe can differ (Figure 4.10).  

As demonstrated in figure 4.11, a trend of decreasing methylation prevalence was observed 

in the treatment group compared to control group with 8,244, 4,183 and 946 probes identified 

as hypomethylated in the treatment group with p-values less than 0.1, 0.05 and 0.01, 

respectively. However, the identified probes did not pass the Benjamini and Hochberg 

multiple testing correction.  

 

 

Figure 4.10 Length of probes set over probes with a fixed number of 100 CpGs. Number of 
probes in the y axis, length in bp in the x axis. 
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Figure 4.11 Scatter plot of probes set with fixed number of CpGs. Probes set for 3 replicates 
for each control and 5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in 
the y axis. A) All the probes are plotted for control and 5-azacytidine. B) Probes that passed 
the replicate statistical test are highlighted (blue p<0.1; red p<0.05; green p<0.01) (no multiple 
test correction was applied). R=0.9 
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4.3.3.2.3 Single CpGs with windowed statistical test 

As discussed previously, ideally the identification of differentially methylated regions should 

be achieved by comparing the methylation levels of every single cytosine base between the 

different experimental conditions. However, it is impossible to collect enough data, for several 

replicates or in sequencing depth, to analyse each cytosine and have p-values that can survive 

the multiple testing correction since the p-value is adjusted based on the number of tests 

performed (Noble, 2009). 

Thus, one way to overcome this problem is to set the probes for each cytosine position but 

instead of comparing the cytosines individually, the comparison can be set within windows 

(Baumann and Doerge, 2014). Data interpretation using windows compared to individual 

locations increases statistical power, simplifies computational resources, reduces sampling 

noise, and reduces the total number of tests performed (Beissinger et al., 2015). 

The window size is an arbitrary choice and will have an effect on the results and outcome 

interpretation. Larger windows will have more data and more statistical power, generating 

low p-values. On the other hand, the averaging effect will be higher. Small windows will 

generate good resolution for better interpretation of the biological significance of the results, 

however will include lesser observations and will have higher p-values. In the end, it is a trade-

off between statistical power and more specific biological effects identification (Beissinger et 

al., 2015). Therefore, all cytosine sites with 3 or more reads were set as probes and the 

comparison was performed with windows of 100 bp (Zhong et al., 2013). The probes where 

filtered to include only the probes present in both groups, with a total of 1,217,496 probes. 

The ‘windowed replicate test’ with Benjamini and Hochberg multiple test correction (p-value 

<0.1) resulted in identification of 6450 differentially methylated probes between treatment 
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and control groups. Furthermore, 5434 and 3676 probes were differentially methylated in the 

treatment group with p-value < 0.05 and 0.01, respectively (Figure 4.12). 

This method was chosen to be used for the further analyses in this study. It was able to identify 

differentially methylated cytosines when applying a conservative strategy and p-value, even 

after FDR. Probes still need to be grouped into DMRs, nonetheless it is done by simply 

combining the adjacent probes presenting concordant methylation levels. DMRs methylation 

level is expressed as the average value of each cytosine within the region. 
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Figure 4.12 Scatter plot of probes in single CpGs. Probes set for 3 replicates for each control 
and 5-azacytidine exposure. Control probes in the x axis and 5-azacytidine in the y axis. A) All 
the probes are plotted for control and 5-azacytidine. B) Probes that passed the windowed 
replicate statistical test with Benjamini and Hochberg multiple test correction are highlighted 
(blue p<0.1; red p<0.05; green p<0.01), R=0.878. 
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4.3.3.3 Determining the appropriate DNA methylation level cut-off for 

bisulfite treated invertebrate samples 

As demonstrated in chapter 3, section 3.3.5.2, sequencing artefacts are present in these data 

due to bisulfite treatment, the sequencing procedure and alignment. Consequently, it is 

necessary to determine the levels of false positive methylated sites, and assess the effects on 

DMRs.  

Despite a high bisulfite conversion efficiency (section 2.8.6, Figure 2.4), the inner 

characteristics of the WGBS analyses can lead to mismapping of sequencing reads and 

miscalculations of the methylation levels since it is calculated by the ratio between methylated 

and unmethylated reads. 

In chapter 3, false positive methylated sites were eliminated by selecting an arbitrary 

methylation level greater than 50% coupled to the use of biological replicates. The value of 

50% was selected based on the coverage (minimum of 3 reads). This way, one methylated 

read present on a non-methylated site (possibly a sequencing artefact) will not call that 

cytosine as methylated (false positive).  

For DMRs identification, biological replicates were already used for statistical test. Probes 

listed as differentially methylated passed the statistical test showing that there is little 

divergence in DNA methylation level among biological replicates for those sites. However, no 

cut-off on the level of methylation was applied. 

In order to determine the DNA methylation level to be used as a cut-off point for these 

samples, different regions were selected across the genome for direct bisulfite PCR. The 

regions contained variable number of probes with different levels of DNA methylation varying 
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from 100% to 0%. There is a low occurrence of regions with percentage of DNA methylation 

from 20% to 60%. Therefore, when available, specific primers were designed and the PCR 

products were sequenced to quantify the methylation levels for each CpG position. 

Methylation values for the cytosines in the region were averaged and the results are 

presented as percentage of methylation for the region. 

Table 4.1 presents the value for each region obtained with WGBS and BSP. It was possible to 

observe that regions with high methylation level were consistent between WGBS and BSP 

results.  However, regions with low methylation levels measured with WGBS were not 

confirmed with BSP. Therefore, these regions were considered as false positives.  

Breiling and Lyko (2015), in the study comparing the methylation distribution of vertebrates 

and invertebrates, considered the cut-off point of 20% of DNA methylation as bisulfite 

conversion artefacts. Based on the measurements made, the cut-off value of DNA methylation 

level was set as 40%. This value is higher than reported previously; however, it was set 

according with the obtained results and in a conservative way to avoid misinterpretation of 

the effects of the stressors on the methylation profiles. 
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Table 4.1. Cut off value for methylation quantitation with WGBS and BSP. 

Region ID % 5mC WGBS % 5mC BSP 

C001 0.31 0 

C002 4.84 0 

C003 7.2 0 

C004 8.54 0 

C005 10.41 0 

C006 10.41 0 

C007 10.97 0 

C008 11.11 0 

C009 11.11 0 

C010 12.31 0 

C011 23.97 46.67 

C012 41.52 68.20 

C013 48.33 69.35 

C014 49.00 69.16 

C015 60.79 66.55 

C016 94.89 100 

C017 95.89 100 

C018 96.21 100 

C019 97.52 100 

C020 97.71 100 

C021 98.55 100 

C022 99.52 100 

C023 100 100 
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4.3.4 Age-related DNA methylation changes 

After deciding on the most appropriate method to be applied to further DMR identification, 

two datasets were analysed, to investigate the age-related and stress-induced alterations on 

the DNA methylation profile.  

For the age-related changes analyses, the dataset presented in chapter 3, section 3.3.5 was 

used. Previously it was used for an overview of DNA methylation profile in 5 days old and 14 

days old Daphnia.  

Probes were defined as single cytosines for sites containing at least 3 reads. Methylation was 

quantified using bisulfite quantitation pipeline. Then, probes were filtered to include only 

probes that were measured in both groups (5 days old and 14 days old). The windowed 

replicate test was applied, followed by Benjamini and Hochberg multiple test correction. 6955 

probes were identified as statistically significantly different between groups (p-value < 0.01) 

(Additional File 4.1). After setting the cut-off value of DNA methylation level of at least 40% 

for one group, only 38 probes passed. Using the genes annotated to the Bham2 genome 

(section 3.3.4.5) no annotation was identified. The 38 probes were grouped into 9 DMRs.  

The sequences were then extracted and blasted to the D. magna reference genome (available 

at: http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/BLAST/). From 

the 9 DMRs, 6 were annotated to the D. magna genome. Results are presented in Table 4.2. 
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Table 4.2. DMRs detected for the different ages (5 days and 14 days) after use of 40% of DNA methylation as a cut-off point. DMRs were annotated 
to the Daphnia magna genome (version 2.4, geneset: finloc9b). 

DMR Name Gene ID Location for SeqMonk Length 
CpG 

count 

%5mC 

5 days 

%5mC 

14 days 

1 60S ribosomal protein L7a 

(100%D) 

Dapma7bEVm009851t1 Chrpseudo5:22729-

22784 
55 7 47.04 15.99 

2 RING finger protein (100%T) Dapma7bEVm012692t1 Chrpseudo6:535527-

535567 
40 3 97.14 100 

3 Ubiquitin-conjugating enzyme E2 

(95%D) 

Dapma7bEVm011441t1 Chrpseudo7:7376618-

7376649 
31 3 95.99 100 

4 Uncharacterized protein (98%D) Dapma7bEVm028259t1 Chrpseudo8:5513286-

5513310 
24 3 42.93 60.73 

5 no hits no hits Chrpseudo11:1094393-

1094414 
21 3 14.41 42.96 

6 no hits no hits Chrpseudo11:1094580-

1094591 
11 4 13.61 42.35 

7 no hits no hits Chrpseudo11:1094750-

1094781 
31 3 16.65 44.81 

8 Uncharacterized Dapma7bEVm026673t1 Chrpseudo12:2990773-

2990859 
86 6 53.91 72.02 

9 40S ribosomal protein S4 (100%P) Dapma7bEVm001645t1 Chrpseudo14:6498000-

6498017 
17 3 23.44 68.02 
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4.3.5 Stress-induced DNA methylation changes 

Genomic DNA extracted from control and three treatment groups (arsenic, hypoxia and 5-

azacytidine) were subjected to whole genome bisulfite sequencing (described in section 2.7) 

to obtain stressor-induced DNA methylation profiles. After conducting the initial quality 

control steps (described in 4.3.2), the sequences were mapped to the de novo assembled 

genome using the software Bismark.  

Again, based on the results discussed in section 4.3.3, the best option for DMRs identification 

was to quantify the methylation for single cytosines and to compare the different samples 

using the running window statistical test. Therefore, this method was applied to the different 

sample groups (arsenic, hypoxia and 5-azacytidine) in order to identify the DMRs for each 

treatment group compared to the control group. 

After applying Benjamini and Hochberg multiple test correction, a total of 9,834 unique probes 

were identified as statistically significantly different between treatment and control groups 

(p-value < 0.01) (Additional File 4.2). The majority of the identified DMRs were unique to each 

treatment category, however some were shared between 5-azacytidine and arsenic (24), 5-

azacytidine and hypoxia (11) and arsenic and hypoxia (464) (Figure 4.13). These results 

indicate that the majority of effects are stressor specific and potentially linked to their 

different modes of action (MoA). 
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Figure 4.13 Venn diagram of stress-induced differentially methylate probes. Probes set for 
single CpGs, using 3 biological replicates for each treatment and respective control. Probes 
were identified using windowed replicate test with multiple test correction.  

 

Figure 4.14 A and B demonstrates that the DMRs in the 5-azacytidine treatment group can be 

separated into two distinct groups of probes, some presenting less than 30% and other with 

methylation levels over 60%. Most of the probes have less than 30% methylation level and 

only a smaller proportion of the DMRs have methylation levels higher than 60%, at least for 

one of the groups, showing a bimodal distribution. The same did not apply to arsenic (Figure 

4.14, C and D) and hypoxia (Figure 4.14 E and F), where the vast majority of the significantly 

different probes presented a low level of methylation (< 30%). 
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Figure 4.14 Scatter plots comparing exposures (5-azacytidine, arsenic and hypoxia) and 
controls. A) All probes measure for 5-azacytidine treatment and control; B) Probes that passed 
the windowed replicate test with multiple test correction p<0.01 for 5-azacytidine exposure; 
C) All probes measure for arsenic treatment and control; D) Probes that passed the windowed 
replicate test with multiple test correction p<0.01 for arsenic exposure; E) All probes measure 
for hypoxia treatment and control; F) Probes that passed the windowed replicate test with 
multiple test correction p<0.01 for hypoxia exposure; 
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4.3.5.1 Differentially methylated CpGs grouping and annotation 

After the identification of statistically significant different probes and using the established 

percentage of DNA methylation as a cut-off value, the probes, originally single CpGs, were 

grouped into DMRs. The criteria used were based on proximity and methylation value. 

Grouping of probes was performed manually and they were individually numbered. 

Before applying the cut-off value, the 9834 differentially methylated CpGs were grouped to a 

total of 1622 DMRs for all the treatment groups. 607 for 5-azacytidine treatment, 505 for 

arsenic and 510 for hypoxia. However, when the 40% cut off value was applied, only 27 DMRs 

were detected (Table 4.3 and 4.4). Being 22 for the 5-azacytidine treatment, 1 for arsenic and 

4 for hypoxia.  

The 27 DMRs were blasted against the D. magna reference genome (available at: 

http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_magna/BLAST/) and 

regions were annotated to the closest transcript. 

The majority of DMRs presented very low methylation percentage and could represent 

bisulfite conversion artefacts, represented by the number of DMRs excluded with the cut-off. 

Therefore, a confirmation of these results through gene-specific bisulfite sequencing is an 

important step in order to verify these results.  
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Table 4.3. DMRs detected for the three treatments after use of 40% of DNA methylation as a cut-off point. 

Treatment DMR Location for SeqMonk Length CpG count Control %5mC Treatment %5mC 

5-azacytidine 7 pseudo1:1100940-1101033 93 9 95.38 73.72 

8 pseudo1:1126959-1127051 92 6 79.29 44.93 

19 pseudo1:3827448-3827489 41 4 60.79 38.48 

26 pseudo1:4394907-4395003 96 8 97.50 77.32 

29 pseudo1:4566232-4566288 56 3 100 91.16 

62 pseudo2:3039863-3039938 75 5 100 67.55 

154 pseudo3:6175914-6176005 91 12 97.25 71.70 

193 pseudo4:2884026-2884121 95 9 96.55 78.46 

223 pseudo4:5935071-5935128 57 5 97.71 73.97 

305 pseudo6:1949624-1949722 98 10 94.90 79.83 

337 pseudo7:2426207-2426304 97 5 99.52 85.96 

341 pseudo7:2858392-2858477 85 6 96.22 74.51 

382 pseudo8:3547888-3547960 72 12 97.53 77.08 

422 pseudo9:1977525-1977612 87 4 95.89 71.89 

470 pseudo10:5051355-5051432 77 7 97.54 75.36 

487 pseudo11:2128683-2128782 99 8 93.21 51.73 

514 pseudo12:636836-637003 167 13 100 98.85 

566 pseudo14:4620314-4620374 60 6 64.84 24.63 

584 pseudo15:4043969-4044079 110 12 100 88.58 

591 pseudo16:1132424-1132484 60 5 98.89 59.05 

595 pseudo16:2774168-2774223 55 7 97.96 65.81 

607 pseudo18:1598357-1598427 70 6 98.10 80.99 
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Table 4.3. Continued from previous page 

Arsenic 1085 pseudo15:3321858-3321879 21 4 96.82 91.67 

       

Hypoxia 2010 pseudo1:428692-428765 73 5 42.14 13.01 

2128 pseudo3:1888486-1888575 89 6 40.68 13.48 

2176 pseudo4:1204565-1204603 38 3 100 94.81 

2398 pseudo10:3449455-3449537 82 3 100 93.33 
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Table 4.4. DMRs that were annotated to the Daphnia magna genome (version 2.4) 

Treatment DMR Name Gene ID 

5-azacytidine 7 Serine/threonine-protein kinase NLK (80%D) Dapma7bEVm003687 

 8 Glucose dehydrogenase precursor (99%D) Dapma7bEVm007219 

 19 sp zinc finger transcription factor (64%H) Dapma7bEVm011563 

 26 WD repeat, SAM and U-box domain-containing protein Dapma7bEVm002638 

 29 Proteasome subunit alpha type-2 (100%D) Dapma7bEVm004440 

 62 Argonaute-2 (90%D) Dapma7bEVm009641 

 154 Protoporphyrinogen oxidase (100%R) Dapma7bEVm010840 

 193 Inturned (67%H) Dapma7bEVm000179 

 223 protein serine/threonine phosphatase (100%D) Dapma7bEVm004815 

 305 WD repeat and FYVE domain-containing protein (100%M) Dapma7bEVm004992 

 337 Host cell factor (57%H) Dapma7bEVm010207 

 341 Guanine nucleotide-binding protein G(s) subunit al.. Dapma7bEVm007254 

 382 Cyclin-dependent kinase (100%R) Dapma7bEVm015316 

 422 Galactose-1-phosphate uridylyltransferase (100%P) Dapma7bEVm006311 

 470 - no hit 

 487  LIM and calponin domains-containing protein (100%D) Dapma7bEVm000208 

 514 - no hit  

 566 Uncharacterized  - 

 584 Uncharacterized protein (77%P) Dapma7bEVm017325 

 591 Dynactin subunit (96%D) Dapma7bEVm015177 

 595 Uncharacterized protein (68%P) Dapma7bEVm014899 

 607 Uncharacterized protein (98%P) Dapma7bEVm021583 
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Table 4.4. Continued from previous page 

Arsenic 1085 Uncharacterized protein (100%P) Dapma7bEVm021083 

    

Hypoxia 2010 - no hit 

 2128 - no hit 

 2176 Tubulin alpha-1 chain (100%D) Dapma7bEVm009691 

 2398 Calcium-transporting ATPase type 2C member (94%H) Dapma7bEVm004556 
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4.3.6 Gene specific bisulfite sequencing 

In order to confirm the methylation values obtained with WGBS, regions were selected to be 

tested using gene specific bisulfite sequencing. In total 6 regions were tested for 5-azacytidine 

(19, 223, 337, 341, 382, 1085). Region 1085 and 337 were also tested for arsenic treatment 

and 337 was tested for hypoxia (Table 4.3). Methylation percentage was quantified using the 

relative peak height for each cytosine in the CpG context on the sequencing chromatograms. 

All regions tested for the 5-azacytidine treatment presented hypomethylated sites when 

comparing to control samples. Region 337 was annotated as a host cell factor gene and it was 

tested for the three treatments. For the control samples, the region was fully methylated. A 

decrease of 11.9% in methylation was observed for 5-azacytidine, while for arsenic and 

hypoxia no changes were observed (Figure 4.15).   

For 5-azacytidine samples, DMR 19 identified as a zinc finger transcription factor presented a 

6% decrease in methylation while region 223, annotated as protein serine/threonine 

phosphatase showed a decrease of 10.3% (Figure 4.16 and 4.17). The largest decrease in 

methylation was observed for DMR 382 (19%), annotated as cyclin-dependent kinase (Figure 

4.18).  

Region 341 presented a different distribution of methylation than the others tested. In total, 

9 CpGs were covered during gene specific sequencing, however, only 4 were methylated, and 

affected by 5-azacytidine exposure (decrease of 11%) while 5 were completely demethylated 

for both control and treatment samples (4.19).   

Region 1085 was sequenced for both 5-azacytidine and arsenic groups. Despite being 

annotated to the D. magna’s genome it was likely composed of bacterial DNA as only one 
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methylated site was found in a CHG context. With this possibility raised, homology search was 

performed and the sequence for the transcript Dapma7bEVm021083 presented similarities to 

several Proteobacteria sequences, including Variovorax sp., known to occur as symbionts in 

Daphnia (Qi et al., 2009). Therefore, this DMR was eliminated from further analyses. 
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Figure 4.15 Direct bisulfite sequencing PCR data for DMR 377. To confirm the DMR 
identification using WGBS, three biological replicates were analysed for each treatment group 
and control using direct BSP. Methylation percentage is shown in the y axis and CpG sites in 
the x axis. Treatment and control values were compared using t-test and * represent the sites 
that were statistically significant different from control (p < 0.05). 
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Figure 4.16 Direct bisulfite sequencing PCR data for DMR 19. To confirm the DMR 
identification using WGBS, three biological replicates were analysed for 5-azacytidine group 
and control using direct BSP. Methylation percentage is shown in the y axis and CpG sites in 
the x axis. Treatment and control values were compared using t-test and * represent the sites 
that were statistically significant different from control (p < 0.05). 

 

 

Figure 4.17 Direct bisulfite sequencing PCR data for DMR 223. To confirm the DMR 
identification using WGBS, three biological replicates were analysed for 5-azacytidine group 
and control using direct BSP. Methylation percentage is shown in the y axis and CpG sites in 
the x axis. Treatment and control values were compared using t-test and * represent the sites 
that were statistically significant different from control (p < 0.05). 
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Figure 4.18 Direct bisulfite sequencing PCR data for DMR 382. To confirm the DMR 
identification using WGBS, three biological replicates were analysed for 5-azacytidine group 
and control using direct BSP. Methylation percentage is shown in the y axis and CpG sites in 
the x axis. Treatment and control values were compared using t-test and * represent the sites 
that were statistically significant different from control (p < 0.05). 

 

 

Figure 4.19 Direct bisulfite sequencing PCR data for DMR 341. To confirm the DMR 
identification using WGBS, three biological replicates were analysed for 5-azacytidine group 
and control using direct BSP. Methylation percentage is shown in the y axis and CpG sites in 
the x axis. Treatment and control values were compared using t-test and * represent the sites 
that were statistically significant different from control (p < 0.05).  
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4.4 Discussion 

4.4.1 Challenges for differential methylation analyses 

The genomic resources available for D. magna are still scarce. Although efforts have been 

made to construct and annotate its genome, it is still lacking important information for a 

complete DNA methylation profiling and DMR analyses. However, the available resources 

allowed overall DNA methylation profiling (as shown in chapter 3) and the identification of 

DMRs. 

In this chapter, several approaches for DMR analyses were presented. The main decision was 

either to use biased analysis (using known regions of the genome) or unbiased analysis (no 

predefined regions for the level of DNA methylation comparison). Both strategies have 

advantages and disadvantages. As an example, the use of predefined regions for methylation 

comparison in human presents the great advantage of limiting the number of regions to be 

analysed, and the possibilities to target the analyses to specific features (i.e. genes, CGIs, 

promoters, exons/intron, enhancers) (Baumann and Doerge, 2014). It is only possible due to 

the completeness of the human genome project since, additionally to the annotation of genes, 

the location of several regulatory regions are already mapped to the genome. The possibility 

to limit the number of regions analysed could consequently decrease the number of statistical 

tests performed, increasing statistical power for the detection of DMRs. In this case, the 

disadvantage of a biased analysis targeted to already known regions for detection of DMRs, is 

to limit the discovery of novel regions presenting differential methylation (DM) (Robinson et 

al., 2014). 
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For D. magna, due the size of the genome (predicted ~200Mb) and the lack of a high quality 

genome sequence and annotation, the best approach for DMR identification is to analyse it 

covering the entire genome, without targeting the analyses to specific regions. Once the DMRs 

are identified, they can be annotated using the information available for Daphnia or using the 

general blast search.  

Therefore, the best method for DMR analyses for the conditions used in this study was to use 

the level of methylation of single cytosines and compare the groups using windowed replicate 

test. It allows the search for DMRs in the entire genome, without bias to annotated regions, 

and the identification of consistent effects on DNA methylation along short sequences (100bp) 

(Zhong et al., 2013).  

The choice of short windows for the statistical tests was arbitrary. It allows greater resolution 

of the effects and a targeted identification of the affected region. Also a smaller averaging 

effect on the methylation levels is observed. Consequently, it will give less statistical power 

for identification of effects on DNA methylation, however it will provide greater biological 

relevance (Beissinger et al., 2015; Robinson et al., 2014; Wang et al., 2015). 

As discussed in chapter 3 and in section 3.3.5.2, the presence of artefacts in WGBS data is 

expected. Firstly, the method decreases the complexity of DNA sequences increasing the 

difficulty for sequencing alignment and assembly. Moreover, the conversion efficiency of non-

methylate cytosines, although close to 100%, can introduce errors on methylation 

quantitation of mapped reads (Breiling and Lyko, 2015; Warnecke et al., 2002). To overcome 

this problem, quality control steps need to be applied to WGBS data. Different approaches 

can be taken; in this study the DMR analyses was performed using three biological replicates 

for each group. The DNA methylation quantitation was performed on sites containing at least 
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3 reads and present in all three replicates for both control and treatment. Also, regions 

containing unusual number of reads were excluded from the analysis in order to avoid the 

effects of overrepresented regions.  The actions taken to avoid artefacts related to bisulfite 

sequencing and analyses were efficient and allowed the use of these datasets for DMR 

analyses. 

After DMR identification another step of filtering was applied to the results. Using direct 

bisulfite sequencing it was only possible to confirm the level of DNA methylation on the 

regions with DNA methylation higher than 40%. This was the level of DNA methylation chosen 

to be applied as a cut-off value for further DMRs analyses to remove false positives. 

Therefore, the methods used for DNA methylation quantitation and DMR identification used 

in this study were very conservative in order to avoid false positive results and increase 

confidence in the obtained results.  

4.4.2 Differential methylation related to ageing and stressors exposures 

It was possible to identify a number of effects of ageing and stressors on the DNA methylation 

profile. Age-related DMRs were analysed comparing the DNA methylation profile of 5 days old 

and 14 days old animals.  

Only 38 probes were statistically significantly differentially methylated between 5 and 14 days 

old Daphnia. They were grouped in 9 DMRs, however only 6 were annotated to the D. magna 

genome. From the annotated DMRs two were annotated to regions coding for the ribosomal 

proteins that are part of ribosomal structure, linked to protein biosynthesis. The 60S ribosomal 

protein L7a gene was hypomethylated in day 14 while 40S ribosomal protein S4 gene 

presented increased DNA methylation level in day 14 (in comparison to day 5). The other 
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genes presenting differential methylation were RING finger protein and Ubiquitin-conjugating 

enzyme E2. Both are known to play a role in the ubiquitination pathway, targeting substrate 

proteins for degradation (Lorick et al., 1999).   

Often, ageing is known to affect DNA methylation levels leading to overall hypomethylation 

and site-specific hypermethylation. In general, the identified age-related DMRs presented an 

increased DNA methylation level for 14 days old animals. It is important to note that the 

animals at this age had just reached sexual maturity, therefore, they are still “young”. It 

explains the results found for the analysed samples and indicates that studies aiming to link 

DM and ageing should focus on older animals, since a life span of 60 days can be estimated 

for D. magna cultured at 20°C (Smith, 1963). 

The analyses of stress-specific DMRs followed three steps: i) identification of DM cytosine 

sites; ii) grouping of DMRs based on methylation level and proximity; iii) filtering of DMRs 

based on cut-off value. In the end, a list of DMRs was built. 

The exposures to arsenic, hypoxia and 5-azacytidine caused the alteration in the DNA 

methylation level of several cytosine sites. It has already been shown that the distribution of 

DNA methylation in invertebrates, including D. magna, presents few genes that are classified 

as highly methylated while others present low levels of methylation (Asselman et al., 2016; 

Pegoraro et al., 2016). The identified DM sites followed the same distribution, especially for 

5-azacytidine. 

The DM sites were grouped into DMRs based on DNA methylation level and proximity and 

filtered using the cut-off value of 40%. Again, the majority of DMRs that passed the filtering 

were caused by the exposure to 5-azacytidine, meaning that very little DNA methylation 

change was observed for the animals exposed to arsenic and hypoxia. 
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Alterations in the DNA methylation level have been reported to occur due to exposure to 

arsenic. The effects could be due to the competition of the mechanism of arsenic 

detoxification and the DNA methylation for the same methyl donor, therefore it is suggested 

that arsenic exposures can affect the overall level of DNA methylation (Reichard and Puga, 

2010; Reichard et al., 2007; Zhao et al., 1997). Several studies suggest that arsenic exposure 

results in effects on DNA methylation, however only one DMR was identified for Daphnia using 

WGBS and the filtering approaches. Later direct bisulfite sequencing revealed that this DMR, 

despite being annotated to the reference D. magna genome was, in fact, a DNA fragment of 

a common symbiont of Daphnia. The lack of effects caused by arsenic suggests that the 

mechanisms of toxicity of arsenic require an exposure to a higher concentration, since it is 

based on the competition for the same methyl donors. 

Hypoxia is an important stressor for aquatic organisms. The depletion of oxygen can impair 

growth, disturb the reproduction and even cause death of aquatic populations (Long et al., 

2015). In water bodies it can be caused by the increase in anthropogenic input of organic 

matter and nutrients that later will affect the oxygen concentrations by increasing algal 

growth (Wu, 2002).  

Some studies have now linked the organisms’ responses to hypoxic conditions to regulation 

by epigenetic mechanisms (Brown and Rupert, 2014; Hattori et al., 2015; Lachance et al., 

2014; Tsai and Wu, 2014; Tudisco et al., 2014). In this study, only two DMRs were found in 

association to hypoxia exposure using WGBS and could be annotated to the D. magna 

genome. The confirmation of these results using direct bisulfite sequencing will be presented 

in chapter 5. 
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From the 22 DMRs identified from organisms exposed to 5-azacytidine, 6 were selected to be 

analysed by direct bisulfite sequencing. The decrease in DNA methylation levels was 

confirmed for all the 6 DMRs. DMR 337 was also tested in groups exposed to arsenic and 

hypoxia, but no effects were observed.  

5-azacytidine was selected because it is a chemical with known effects on the epigenome. 

Global methylation reduction has already been cited to occur in Daphnia exposed to 5-

azacytidine (Vandegehuchte et al., 2010b). Its effects target DNA methylation, since this 

chemical is an analogue of cytosine nucleoside and can be incorporated into the DNA during 

replication. During methylation of the DNA the DNMTs are then sequestrated by 5-azacytidine 

and remain attached to the DNA being unavailable for further methylation (Stresemann and 

Lyko, 2008). The exposure of D. magna for 5 days to 5-azacytidine presented decreased 

methylation levels at specific cytosine sites.  

The use of WGBS coupled to the proposed DMR detection method was successful to identify 

these effects on DNA methylation for D. magna. Also, these results were confirmed with 

region specific bisulfite sequencing. It indicates that the methodology chosen for comparisons 

of the DNA methylation profiles and DMRs identification are reliable and can be applied in 

future studies.  

4.5 Conclusions 

In conclusion, the first part of this chapter describes different methods for DMR identification 

and the main advantages and disadvantages of each method. Biased methods can directly 

generate information regarding specific regions of the genome and can compare the effects 

of the exposures to predefined known regions. On the other hand, unbiased methods do not 
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target any specific region of the genome and can be applied for the identification of novel 

effects on the DNA methylation profile.  

For organisms with complete genomes and with a set of mapped regulatory regions, like 

humans or mice, the use of biased analyses is the obvious choice. However, for partial 

genomes, lacking important annotations on regulatory regions (as D. magna) biased analyses 

is not the best option. In this case, unbiased analyses, that do not rely on annotation 

information, can provide important information on DNA methylation profiles even without a 

complete reference genome available.  

From the proposed unbiased analyses, the use of single cytosines for DNA methylation 

quantitation and the comparison between groups using window replicated tests proved to be 

the best option for this study. It presented less averaging effects with the use of short windows 

(100 bp) and more biological relevance of the identified difference between the groups.  

The effectiveness of the proposed method was tested on the dataset from the three groups 

exposed to arsenic, hypoxia and 5-azacytidine. Very few DMR were identified from the groups 

exposed to arsenic and hypoxia, however for 5-azacytidine, 22 DMRs were found. In addition, 

the 6 DMRs were confirmed with direct bisulfite sequencing. Therefore, using this effective 

method for DMR identification it was possible to determine stress-specific effects on the DNA 

methylation profile of D. magna. The effects of the stressors on the methylome and DNA 

methylation machinery will be addressed in chapter 5.   



176 
 

Chapter 5  

Sensing the environment: 

multidimensional investigation of 

effects on DNA methylation 
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5.1 Introduction 

External stressors, such as chemical pollutants, dietary components, predators and 

temperature changes can have long-lasting effects on the organism’s development, 

metabolism and health. In part, organisms respond to external cues by altering their DNA 

methylation patterns (reviewed in Feil and Fraga, 2012). However, so far the majority of 

genome-wide DNA methylation association studies have been conducted on mammals. The 

extrapolation of findings from these studies to invertebrates, particularly species that are 

environmentally relevant, is not without challenges. This is partially due to the differences in 

DNA methylation machinery and its distribution across the genome between invertebrates 

and vertebrate species (Vandegehuchte and Janssen, 2013). Thus epigenetic studies in 

environmentally relevant species, such as Daphnia, an environmentally relevant emerging 

model organism, can help to achieve a better understanding of the role of epigenetic factors 

in regulating the responses of invertebrates to external cues and their highly dynamic 

environment.  

As discussed in previous chapters, Daphnia magna is a useful environmentally relevant model 

organism to investigate the role of DNA methylation in multiple aspects, such as response to 

stressors, adaptation, phenotypic plasticity and maternal transfer of information (Harris et al., 

2012). For example, in Daphnia, global DNA methylation changes were observed in response 

to several chemicals (Vandegehuchte et al., 2010a, 2010b, 2009a, 2009b) and environmental 

stressors (Asselman et al., 2015; Menzel et al., 2011). Furthermore, studies are emerging 

which are paving the way to unravelling the distribution of DNA methylation across various 

genomic regions in Daphnia species (Asselman et al., 2016; Strepetkaitė et al., 2015). 
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Additionally, we have shown that changes in DNA methylation can be targeted to specific 

regions and occur in a stress-specific manner (see chapter 4). This is consistent with the 

concept of epigenetic memory, where the stressors could cause specific changes in DNA 

methylation profile, or a “footprint”, that could later be linked to previous exposures (Bird, 

2002; Mirbahai and Chipman, 2014).  

Evidence for stressor footprints exists, however numerous aspects still need to be elucidated. 

Firstly, the persistence of DNA methylation changes has to be assessed, since hypothetically, 

some changes could be conditional to the presence of the stressor and would not be seen 

after it is removed or the condition is altered. If persistent, the changes could either have an 

effect on the organisms’ health outcome or be useful as an epigenetic mark of exposure. 

Secondly, it is essential to analyse the effects of environmentally relevant conditions and 

concentrations. Several studies have focused on finding effects of chemicals on the 

transcriptome and metabolome, however, they often do not take into account the relevance 

of exposure duration or concentration. 

Here, the choice was made to expose the animals in a scenario more closely resembling 

environmental exposure. The animals were chronically exposed, including the development 

period in the brood pouch, to environmentally relevant levels of stressors (2 mg L-1 of 

dissolved oxygen for hypoxia and 100 µg L-1 of arsenic). 

In addition, to test for the persistence of the alterations in the DNA methylation pattern, after 

chronic exposure, the animals were kept for 7 days in clean conditions, without the presence 

of the stressor (see section 2.3.1 for details on exposure design, concentration and duration). 

After identifying target changes in DNA methylation profile caused by the stressors, gene 

expression and metabolite concentrations were analysed for part of the one-carbon pathway. 
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As reviewed in section 1.2.2, the one-carbon pathway comprises a series of reaction that lead 

to the production of SAM, the metabolite that provides the methyl group for DNA 

methylation. A series of reactions also occur to convert the product of DNA methylation, SAH 

back to the metabolic pathway (Herceg and Vaissière, 2011; Ulrey et al., 2005). This pathway 

has major importance for the maintenance of normal levels of DNA methylation and can either 

be the target of stressors or be affected at a later stage. Regardless of which, alterations may 

be useful to elucidate the modes of action of stressors affecting the methylome.  

Therefore, the aims of this chapter are:  

1) To investigate the sensitivity of the Daphnia’s epigenome to three stressors: 5-azacytidine, 

a known demethylating agent, arsenic and hypoxia. It is important to highlight that so far all 

studies have focused on the effect of stressors on global DNA methylation. Although valuable, 

these studies provide no information on the effect of stressor at a gene expression level. 

Furthermore, majority of the studies have been focused on a unique factor. Therefore, to 

achieve a better understanding of how the stressors affect DNA methylation the effects of 

stressors have been investigated on (i) methylation of regulatory regions and gene bodies 

using Whole Genome Bisulfite Sequencing (WGBS) results and direct bisulfite PCR, (ii) the one-

carbon pathway, and (iii) expression levels of selected genes.  

2) To test our pipeline described in Chapter 4 for identification of Differentially Methylated 

Regions (DMRs) in response to stressors.   

3) To design more environmentally relevant experimental conditions. The current approaches 

for toxicity testing often do not account for the differences between acute and chronic 

exposures. Additionally, especially for Daphnia, the tests, both acute and chronic, start with 

neonates released from the brood pouch. Therefore, they do not face the exposures during 
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the developmental stage, whereas in the environment they are exposed to the stressors from 

the beginning of the embryonic stage.  

4) To test the concept of epigenetic memory and recovery. The concept of epigenetic memory 

relies on the persistence of the alterations of the DNA of the organism caused by the stressor. 

This is proposed based on studies that have demonstrated the divergence of DNA methylation 

profiles from young and older twin siblings, and it has been proposed that can be linked to 

increased susceptibility to diseases later in life (Fraga et al., 2005; Skinner et al., 2010). 

Therefore, we aimed to assess the presence of stress-specific alterations on the DNA and the 

maintenance of those alterations once the stressor is removed.  

5.2 Overview of experimental design 

The exposure design is detailed in section 2.3. Briefly, animals were exposed to arsenic (100 

µg L-1), hypoxia (2 mg L-1 of dissolved oxygen) or 5-azacytidine (3.7 mg L-1). For arsenic and 

hypoxia, samples were collected after 1 day and 21 days of continuous exposure and after a 

7-day long recovery period where the Daphnia were transferred and maintained in exposure-

free media. For 5-azacytidine, samples were collected after 1 day and 5 days of continuous 

exposure and after a 7-day long recovery period. Animals were immediately dissected to 

remove the embryos in the brood pouch, if needed, flash frozen in liquid nitrogen and stored 

at -80 °C. 

During sampling, photographs were taken using a stereomicroscope to measure body length 

as an indicator of growth rate. Additionally, Daphnia from the hypoxia exposure were also 

sampled for haemoglobin quantitation (n=6) (see section 2.5.2).  
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DNA, RNA and metabolites were extracted from the same homogenate as described in 

sections 2.4.1.2 and 2.4.2. DNA samples were used for gene level DNA methylation analysis 

(n=3) (section 2.8). The latter was achieved using either WGBS approach (section 2.7) or 

targeted bisulfite sequencing (section 2.8).  RNA samples were used to measure the 

expression levels of selected genes using real-time qPCR as described in section 2.9 (n=3, three 

technical replicates). The extracted metabolites were used for a quantitative, target 

metabolomics study of one-carbon cycle as described in detail in sections 2.4.3 and 2.10. Six 

biological replicates were used for the metabolomics study.  

Parametric and non-parametric statistical tests were used to analyse the results obtained by 

the different methods.  For RT-PCR and BSP the results were compared between control and 

treatment using t-tests. Furthermore, the differences in phenotypic measurements and 

metabolites quantitation were assessed using non-parametric statistical analyses (Kruskal-

Wallis and Mann-Whitney). 
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Figure 5.1 Workflow of the analysis performed in chapter 5. Stress induced changes in the 
methylome, gene expression and metabolites quantitation in D. magna after acute and 
chronic exposure to environmentally relevant concentrations. 

5.3 Results 

After the identification of altered DNA methylation profiles, described in chapter 4, the aim 

was to analyse the accumulation and persistence of the effects on the methylome (epigenetic 

memory throughout lifetime) using two different time points of exposure (day 1 and day 5 or 

21), and an additional time point after seven days of recovery. One aim was to determine 

differences in response to acute (1 day) and chronic (5 or 21 days) exposures.  

Results are presented for target DNA methylation alterations, followed by measurements of 

the effects on phenotypic endpoints; body length and haemoglobin concentration, and effects 

on the one-carbon pathway indicated by gene expression and metabolite concentration 

alterations.  
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5.3.1 Targeted bisulfite sequencing PCR  

In Chapter 4 (section 4.3.5) several regions of DNA were identified to be differentially 

methylated in the treatment groups compared to controls. To test if chronic exposures 

throughout development at environmentally relevant concentrations can induce differential 

methylation, a subset of the identified DMRs were selected for further analysis for the three 

treatment groups at three different time points of 1 day and 5 or 21 days of exposure, and 

after 7 days of recovery. The latter will provide information to determine if stressor-induced 

DM can be maintained in the absence of the stressor, potentially throughout the life of an 

individual.  

In total seven regions were selected and analysed for the 5-azacytidine (5 regions) or hypoxia 

(2 regions) groups (Figures 5.8, 5.9). The sequences and primers used for amplification and 

sequencing are described in section 2.8.1. The exposure to arsenic did not induce any 

statistically significant DMR, as shown in section 4.3.5, therefore, samples from this group 

were not investigated with targeted bisulfite sequencing.  

Overall, for most CpG sites the methylation level was less variable between the same CpG sites 

in different biological replicates in the control group compared to treatment groups (Figure 

5.2 as an example). 5-azacytidine treatment caused a decrease in the methylation level of CpG 

sites located in regions 337, 341, 382, 422 and 487. Statistical differences were not identified 

for CpGs in regions 337 and 382, however, the average of methylation level, measured for the 

region at day 1 and day 5 were reduced in 10% and 20%, respectively. Average methylation 

level for region 341 was decreased at day 1 (7.1%) and day 5 (17.6%). For regions 422 and 487, 

the average methylation level at day 5 was reduced by 11.6% and 9.6%, respectively. 



184 
 

Nevertheless, the methylation level was restored to the control level after the recovery period 

for regions 337, 341 and 382. However, for regions 422 and 487 the average methylation level 

was not fully restored, showing a decrease of 14% and 8.7%. This potentially indicates that 

certain stressor-induced methylation changes are maintained even in the absence of the 

stressor (Figure 5.4 and 5.5).   

Region 2398 was analysed for both 5-azacytidine and hypoxia treatment groups. Neither 

exposure affected DNA methylation of this region. For hypoxia, region 2176 was also analysed 

and did not show any changes after the treatment. 
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Figure 5.2 Direct bisulfite sequencing PCR data for region 337. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean.  
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Figure 5.3 Direct bisulfite sequencing PCR data for region 341. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean. * represent the sites 
that were statistically significant different from respective control (t-test; p < 0.05). 
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Figure 5.4 Direct bisulfite sequencing PCR data for region 382. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean.  
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Figure 5.5 Direct bisulfite sequencing PCR data for region 487. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean. * represent the sites 
that were statistically significant different from respective control (t-test; p < 0.05). 
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Figure 5.6 Direct bisulfite sequencing PCR data for region 2398. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean.  
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Figure 5.7 Direct bisulfite sequencing PCR data for region 422. Three replicates were analysed for each control and 5-azacytidine groups. 
Methylation percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean. * represent the sites 
that were statistically significant different from respective control (t-test; p < 0.05). 
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Figure 5.8 Direct bisulfite sequencing PCR data for region 2176. Three replicates were analysed for each control and hypoxia groups. Methylation 
percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean.  
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Figure 5.9 Direct bisulfite sequencing PCR data for region 2398. Three replicates were analysed for control and hypoxia groups. Methylation 
percentage is shown in the y axis and CpG sites in the x axis. Error bars indicate standard error of the mean.  
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5.3.2 Phenotypic alterations caused by the stressors 

The impacts of stressors on phenotypic endpoints were assessed by measuring: (1) Body 

length and (2) Haemoglobin concentration. Body length was measured for all the treatment 

and control groups and haemoglobin concentration was measured for the groups exposed to 

hypoxic conditions after 21 days and after a recovery in clean media.  

5.3.2.1 Body length  

The measurement of body length is a useful endpoint to determine fitness of the organism 

and physiological effects of the exposures that could be affecting development and growth 

(Lampert and Trubetskova, 1996).  

Body length was measured using pictures taken from the animals at the different time points, 

at the beginning of exposure, after the exposure period and after recovery. The pictures were 

analysed with the Software Image Measurement (KLONK, Denmark). Body length was 

measured from the base of the spine to the top of the head and was expressed in millimetres. 

The values were compared for each group using non-parametric statistical analyses (Mann-

Whitney) in SPSS. 

No change in body length was observed for the animals exposed to arsenic at any of the time 

points compared to their corresponding controls. However, for the animals exposed to 

hypoxic conditions a statistically significant decrease in size was observed when compared to 

animals exposed to normal oxygen conditions. This decrease in body length was observed for 

neonates (1 day-old), adults (21 days-old) and was maintained even after the recovery period.  
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For 5-azacytidine the time of exposure was shorter than for the other treatments. No effects 

were observed for the neonates and 5 days-old Daphnia exposed to this chemical. However, 

the animals after the recovery period (12 days-old) had smaller body length compared to the 

control group. This result indicates a possible long lasting effect or a delayed effect for this 

chemical.  

 

 

Figure 5.10 Body length of Daphnia neonates exposed to stressors during development.  
* Statistically significant difference between neonates exposed to normoxia and hypoxia 
(p<0.05). For 5-azacytidine and arsenic group, 15 animals were measure, while 10 animals 
were measured for hypoxia groups. Values were compared using non-parametric test Mann-
Whitney between control and treatment groups. Error bars show standard error of the mean. 
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Figure 5.11 Body length of Daphnia exposed for 5 days to 5-azacytidine and control. No 
statistically significant difference between control and treatment (p > 0.05). For each group, 
30 animals were measured. Values were compared using non-parametric test Mann-Whitney 
between control and treatment groups. Error bars show standard error of the mean. 

 

Figure 5.12 Body length of Daphnia exposed to arsenic, hypoxia and respective controls for 21 
days. *Statistically significant different from respective control (p<0.05). For each group, 30 
animals were measured. Values were compared using non-parametric test Mann-Whitney 
between control and treatment groups. Error bars show standard error of the mean.  
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Figure 5.13 Body length of Daphnia exposed to 5-azacytidine, arsenic and hypoxia after a 
recovery period in clean media. *Statistically significant different from respective control 
(p<0.05). For each group, 30 animals were measured. Values were compared using non-
parametric test Mann-Whitney between control and treatment groups. Error bars show 
standard error of the mean. 

 

5.3.2.2 Haemoglobin quantitation 

The exposure of Daphnia to hypoxic conditions is known to induce the production of 

haemoglobin (Gerke et al., 2011; Paul et al., 2004; Pirow et al., 2001; Zeis et al., 2013). 

Haemoglobin is an extracellular protein that supports transportation and distribution of 

oxygen in the Daphnia circulatory system (Ebert, 2005). Haemoglobin genes are located in a 

tandem-duplicated gene cluster in Daphnia. The composition of protein can vary according to 

the different subunits expressed and post translational modifications, altering the oxygen 

affinity in an oxygen-dependent manner (Colbourne et al., 2011; Gerke et al., 2011; Trotter et 

al., 2015). 
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A quick and accessible method was used for haemoglobin quantification of the adult animals 

exposed to hypoxia and normoxia conditions for 21 days and after the recovery period in 

normoxia for 7 days. The results were obtained using single adult Daphnia and six replicates 

in each group. The protocol followed the method described in Yampolsky et al. (2014), with 

modifications described in section 2.5.2. The results are expressed using the average value for 

absorbance at 576 nm, normalized by the total protein content.  The values were compared 

for each group using ANOVA with post hoc Tukey test in SPSS. 

After the 21 days of treatment the animals exposed to low oxygen levels were visibly red 

(Figure 5.14). The hypoxia group presented a statistically significant 2-fold increase in the 

haemoglobin concentration when compared to normoxia group (Figure 5.15).  

 

 

Figure 5.14 Adult Daphnia exposed to normoxic (left) and hypoxic (right) conditions. 
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After 7 days of recovery the haemoglobin levels were decreased by 1.3 fold compared to 

hypoxic group. However, the levels of haemoglobin, although reduced, were still significantly 

higher in the recovery group compared to normoxia group by 1.7 fold. 

 

 

Figure 5.15 Haemoglobin concentration in adult Daphnia exposed to hypoxia for 21 days and 
after 7 days of recovery in normoxic conditions and respective controls. Following 
homogeneity of variance and normality test the groups were compared using ANOVA with 
Tukey post hoc test * Statistically significant difference between control and treatment 
(p<0.01). ** Statistically significant difference between hypoxia treatment at day 21 and after 
recovery (p<0.05). 
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5.3.3 Gene expression 

The expression levels of genes involved in the one-carbon cycle and demethylation pathway 

were investigated using RT-PCR. The primers used are described in section 2.9.1. The data 

were normalised to the geometric average of the two reference genes as described by 

(Vandesompele et al., 2002). Results are expressed as log 2 fold changes between control and 

treatment groups for each time point. 

As demonstrated in Figure 5.16, exposure to arsenic did not induced any statistically 

significant changes in the expression levels of the genes involved in one carbon and de-

methylation pathways at any of the investigated time points. Although not statistically 

significant, some trends were observed. For example, DNMT1, DNMT2 and DNMT3 expression 

levels were slightly increased at day 1, while DNMT3 was increased at day 21 (Figure 5.16; t-

test, p>0.05). 

On the other hand, hypoxic conditions induced changes in the expression levels of several 

genes. DNMT1 was upregulated at day 1 but downregulated by 4-fold at day 21 and after 

recovery. DNMT2 was upregulated for all time points with 6-fold increase at day 21 and more 

than 4-fold increase after recovery. DNMT3 was upregulated by almost 4-fold after 21 days of 

exposure but it was downregulated after recovery. TET_1 was upregulated at day 21 by 2-fold 

while TET_2 was slightly increased at day 1. MS, SAHH and GNMT expression levels were 

statistically significantly altered when compared to controls. MS was upregulated at day 1 and 

downregulated at day 21. SAHH expression was increased after recovery. GNMT was 

upregulated at days 1 and 21.  
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Similar to hypoxic conditions, exposure to 5-azacytidine affected the expression levels of 

several genes. The expression level of DNMT3 was decreased and increased after 1 day and 5 

days of exposure, respectively. Similar to DNMT3, the expression level of DNMT1 was 

increased after 5 days of chronic exposure. TET_1 and TET_2 genes were both downregulated 

after one day of exposure with expression levels of TET_1 increasing after 5 days of exposure 

to 5-azacytidine. In the one-carbon pathways, opposite to MTRR expression, the expression 

level of MAT gene was increased and decreased after one day and 5 days of exposure, 

respectively. MS expression, similar to MAT gene, was downregulated after 5 days of 

exposure. Interestingly, the expression level of GNMT was down-regulated compared to 

control and previous time points after the recovery period.  
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Figure 5.16 Gene expression results for the groups exposed to arsenic. Genes involved in the 
one-carbon pathway and demethylation pathway. Relative log2 fold change to control group 
expression. No statistical significantly different from control (t-test; p<0.05). Error bars 
indicate standard error of the mean. Three biological replicates analysed with two technical 
replicates. 
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Figure 5.17 Gene expression results for the groups exposed to hypoxia. Genes involved in the 
one-carbon pathway and demethylation pathway. Relative log2 fold change to control group 
expression. T-test was used as statistical test. * p<0.05; ** p<0.01; *** p<0.001; **** 
p<0.0001. Error bars indicate standard error of the mean. Three biological replicates analysed 
with two technical replicates. 
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Figure 5.18 Gene expression results for the groups exposed to 5-azacytidine. Genes involved 
in the one-carbon pathway and demethylation pathway. Relative log2 fold change to control 
group expression. T-test was used as statistical test. * p<0.05; ** p<0.01. Error bars indicate 
standard error of the mean. Three biological replicates analysed with two technical replicates.  
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5.3.4 Target quantitation of metabolites involved in the one-carbon cycle 

The levels of 10 metabolites involved in the one-carbon cycle were quantified using liquid 

chromatography coupled to mass spectrometry as described in section 2.10 for all three 

treatment groups and all time points (acute and chronic exposures, and recovery). The 

metabolites quantified were: methionine, choline, adenosine, betaine, sarcosine, stachydrine, 

glycine, dimethylglycine (DMG), S- adenosylhomocysteine (SAH) and S-adenosyl-L-methionine 

(SAM).  

Statistically significant changes in the concentration of metabolites were observed, mostly for 

the samples exposed to hypoxia and 5-azacytidine. For arsenic, adenosine was the only 

metabolite affected by the treatment, demonstrating increased concentration after 21 days 

of exposure (Figure 5.20).  

Hypoxic conditions induced changes in the concentration of several metabolites with the 

concentration of some of the metabolites not restored to the control level even after the 

recovery period. For example, DMG, methionine, sarcosine and SAH levels were elevated in 

the recovery groups compared to controls. Betaine and methionine concentrations were 

increased after chronic exposure to hypoxia while SAH levels were decreased. The only 

metabolites that were affected after acute exposure to hypoxia were choline and methionine, 

with both metabolites decreasing in the treatment group compared to control. 

Interestingly, 5-azacytidine treatment only caused a decrease in the concentration of 

metabolites (adenosine, stachydrine, sarcosine, glycine, SAM and SAH). This effect was only 

observed after 5 days of exposure. However, the concentration of all the metabolites was 

restored to the control level after the recovery period.  
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Figure 5.19 Choline concentration for samples exposed to arsenic, hypoxia and 5-azacytidine. 
Peak area was normalised to the peak are for the internal standard (S-adenosyl-L-methionine-
d3). Six replicates were used for each group. Groups were compared using Mann-Whitney 
statistical test. *(p < 0.05).  
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Figure 5.20 Adenosine concentration for samples exposed to arsenic, hypoxia and 5-
azacytidine. Peak area was normalised to the peak are for the internal standard (S-adenosyl-
L-methionine-d3). Six replicates were used for each group. Groups were compared using 
Mann-Whitney statistical test. *(p < 0.05); **(p < 0.01). 
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Figure 5.21 Betaine concentration for samples exposed to arsenic, hypoxia and 5-azacytidine. 
Peak area was normalised to the peak are for the internal standard (S-adenosyl-L-methionine-
d3). Six replicates were used for each group. Groups were compared using Mann-Whitney 
statistical test. **(p < 0.01). 
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Figure 5.22 Dimethylglycine (DMG) concentration for samples exposed to arsenic, hypoxia and 
5-azacytidine. Peak area was normalised to the peak are for the internal standard (S-adenosyl-
L-methionine-d3). Six replicates were used for each group. Groups were compared using 
Mann-Whitney statistical test. **(p < 0.01). 
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Figure 5.23 Methionine concentration for samples exposed to arsenic, hypoxia and 5-
azacytidine. Peak area was normalised to the peak are for the internal standard (S-adenosyl-
L-methionine-d3). Six replicates were used for each group. Groups were compared using 
Mann-Whitney statistical test. *(p < 0.05); **(p < 0.01). 
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Figure 5.24 Stachydrine concentration for samples exposed to arsenic, hypoxia and 5-
azacytidine. Peak area was normalised to the peak are for the internal standard (S-adenosyl-
L-methionine-d3). Six replicates were used for each group. Groups were compared using 
Mann-Whitney statistical test. **(p < 0.01). 
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Figure 5.25 Sarcosine concentration for samples exposed to arsenic, hypoxia and 5-
azacytidine. Peak area was normalised to the peak are for the internal standard (S-adenosyl-
L-methionine-d3). Six replicates were used for each group. Groups were compared using 
Mann-Whitney statistical test. *(p < 0.05); **(p < 0.01). 
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Figure 5.26 Glycine concentration for samples exposed to arsenic, hypoxia and 5-azacytidine. 
Peak area was normalised to the peak are for the internal standard (S-adenosyl-L-methionine-
d3). Six replicates were used for each group. Groups were compared using Mann-Whitney 
statistical test. *(p < 0.05). 
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Figure 5.27 SAM concentration for samples exposed to arsenic, hypoxia and 5-azacytidine. 
Peak area was normalised to the peak are for the internal standard (S-adenosyl-L-methionine-
d3). Six replicates were used for each group. Groups were compared using Mann-Whitney 
statistical test. **(p < 0.01). 
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Figure 5.28 SAH concentration for samples exposed to arsenic, hypoxia and 5-azacytidine. 
Peak area was normalised to the peak are for the internal standard (S-adenosyl-L-methionine-
d3). Six replicates were used for each group. Groups were compared using Mann-Whitney 
statistical test. *(p < 0.05); **(p < 0.01). 
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5.4 Discussion 

5.4.1 Stress-specific effects 

The effects of several stressors were investigated on the expression and methylation of 

selected genes and levels of metabolites involved in the one-carbon pathway. In general, 

exposure to an environmentally relevant concentration of arsenic induced little response in 

all the investigated end-points. Hypoxia significantly affected the different endpoints analysed 

(gene expression, metabolites concentration, phenotypic measurements and DNA 

methylation). In contrast to hypoxia, 5-azacytidine induced changes mainly in DNA 

methylation with some changes observed for the gene expression and metabolites. 

Arsenic has been reported to induce alterations at DNA methylation level (Reichard and Puga, 

2010). In most mammalian species, the mechanism of arsenic detoxification is centred on the 

methylation and reduction of inorganic arsenic generating monomethylarsonic acid (MMA) 

and dimethylarsinic acid (DMA). Both metabolites are less reactive and less toxic than its 

inorganic form. S-adenosylmethionine (SAM) is the main methyl donor for this reaction 

(Vahter and Concha, 2008; Vahter, 2002). Thus, both DNA methylation and arsenic 

detoxification pathways compete for the same methyl donor, therefore the presence of 

arsenic can indirectly impact DNA methylation. Furthermore, is reported that arsenic can 

disrupt the activity of DNMTs possibly leading to global hypomethylation (Reichard and Puga, 

2010; Reichard et al., 2007; Zhao et al., 1997). 

Despite several studies suggesting effects on DNA methylation following arsenic exposure, 

mostly performed in cell cultures, no effects were observed for Daphnia in this study. No 

differentially methylated regions were identified with whole genome bisulfite sequencing and 
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no effects on the expression levels of the genes involved in one-carbon metabolism were 

detected. Only adenosine concentration was increased, which could not be unambiguously 

related to alterations in the DNA methylation pathway. 

Hypoxia affects a wide range of biological processes. It is often caused by increase in 

anthropogenic input of organic matter and nutrients into water bodies that leads to a growth 

in primary production, reducing aquatic oxygen concentrations (Wu, 2002). Oxygen depletion 

can impair growth, disturb reproduction and even cause death of aquatic populations (Long 

et al., 2015).  

Due to the importance of the biological pathways that can be affected by hypoxia, aquatic 

organisms have developed mechanisms of acclimation and tolerance to oxygen depletion 

(Long et al., 2015). Most of these mechanisms are activated and regulated by hypoxia 

inducible factors (HIFs). However, some studies have shown regulation by epigenetic 

mechanisms (Brown and Rupert, 2014; Hattori et al., 2015; Lachance et al., 2014; Tsai and Wu, 

2014; Tudisco et al., 2014).  

The organisms exposed to hypoxia presented several changes in metabolites concentration 

and in gene expression. A summary of the results for gene expression and changes in the levels 

of metabolites for the groups exposed to hypoxia are presented in Figure 5.29.  

In general, the effects were spread along the pathway, affecting it at different points. The 

effects could either be observed on essential nutrients, like choline, or directly on 

transcription of the enzymes involved in DNA methylation reaction. The changes in the levels 

of metabolites and gene expression were affected both by acute and chronic exposure. 

However, it is interesting to note that the effects were mostly divergent. For example, 1 day 

of exposure to hypoxia led to a decrease in methionine levels, however, chronic exposure (21 



217 
 

days) caused an increase in the concentration of this metabolite when compared to respective 

controls. Methionine concentration was also increased after the recovery period. Methionine 

and ATP are the precursors of SAM in a reaction catalysed by methionine adenosyltransferase 

(MAT). No statistically significant changes were seen for MAT gene expression; however, SAM 

concentration was slightly decreased for all timepoints. This could indicate an inefficiency of 

MAT enzyme under hypoxic conditions or an effect due to limitation in ATP due to oxygen 

deprivation.   

The same effect was observed on the expression of DNMT1, being upregulated at day 1 and 

downregulated at day 21. These examples highlight differences in the effects of acute and 

chronic exposure. The physiological responses are most likely divergent when comparing 

acute and chronic responses to stressors, and compensatory changes might happen with time.  

Acute responses to oxygen depletion are controlled by the HIF pathway. Studies have shown 

that HIF-1 biding is directly controlled by the presence of methylation of specific CpGs within 

hypoxia responsive elements (HRE) (Mariani et al., 2014; Watson et al., 2010). Besides that, 

the maintenance of HIF regulation for long periods of time could be costly to the organism. 

Epigenetic mechanisms could work as a long term regulator of hypoxia responsive genes. 

Despite the possible effects, no changes in region-specific methylation were observed for the 

samples exposed to hypoxia. However, it is important to remember that the analyses were 

conducted using a draft genome, therefore, some genes involved in hypoxia response 

pathway were missing and were not covered with WGBS. 
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Figure 5.29 Overview of the changes observed for hypoxia after acute exposure (day 1), 
chronic exposure (day 21) and recovery (day 28). The significant changes on gene expression 
and levels of metabolites in the one-carbon pathway when comparing control and hypoxia 
exposure are presented in this figure. Arrows: decrease or increase. Continuous lines show 
results for gene expression while intermittent lines show changes in the levels of metabolites. 
Different colours are used for different time points: green – acute exposure (day 1); red – 
chronic exposure (day 21); blue – recovery (day 28). 

Abbreviations: BMHT: betaine- homocysteine methyltransferase, CDP-choline: cytidine 
diphosphate-choline, DNMT: DNA methyltransferase, GNMT: glycine N-methyltransferase, 
MAT: methionine adenosyltransferases, MS: methionine synthase, MTHFR: 
methylenetetrahydrofolate reductase, MTRR: Methionine synthase reductase, PC: 
phosphatidylcholine; SAH: S-adenosylhomocysteine, SAHH: S- adenosylhomocysteine 
hydrolase, SAM dependent MT: S-adenosylmethionine dependent methyltransferase, THF: 
tetrahydrofolate. 
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DNMT2 was originally assigned as a DNA methyltransferase due to its highly conserved DNA 

methylase domain. Goll et al. (2006) have demonstrated that in fact this DNMT methylates 

small tRNAs rather than DNA, although the function of RNA methylation is not yet clear.  

For samples exposed to hypoxia, DNMT2 was upregulated for all time points. Two studies have 

indicated the relationship between DNMT2 overexpression and stress tolerance (Lin et al., 

2005; Schaefer et al., 2010). 

TET enzymes are involved in the demethylation pathway through the conversion of 5-

methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine (Cadet 

and Wagner, 2014; Ito et al., 2011; Kohli and Zhang, 2013). TET1 expression is known to be 

altered in neuroblastoma cells exposed to hypoxia, leading to an increase in 5-hmC and 

demethylation of HIF biding sites (Mariani et al., 2014). From the two TET homologs found in 

Daphnia genome, TET_1 presented the same expression pattern, being upregulated after day 

21, returning to normal level of expression after recovery.  

In general, the hypoxia effects demonstrated in Daphnia are related to changes in gene 

expression and metabolites concentration rather than alteration in DNA methylation profile. 

Nevertheless, according to the observed results, possible changes targeting DNA methylation 

cannot be discarded. 

Contrary to the physiological effects expected for hypoxia, 5-azacytidine’s mode of action is 

targeted to DNA methylation. It is an analogue of cytosine that can be incorporated to the 

DNA during replication. DNMTs are then sequestrated by 5-azacytidine and remain attached 

to the DNA being unavailable for further methylation (Stresemann and Lyko, 2008).  

Global methylation reduction has already been cited to occur in Daphnia exposed to 5-

azacytidine (Vandegehuchte et al., 2010b). Several regions of the genome were shown to be 
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altered by 5-azacytidine exposure (in Section 4.3.5). Also, direct bisulfite sequencing PCR 

showed changes in DNA methylation for target regions. Despite the broad effect of this 

chemical, some regions did not present altered DNA methylation indicating that 5-azacytidine 

may have different effects on different parts of the genome. This could be related to 

chromatin structure, accessibility of DNA or CpG density. 

Figure 5.30 shows a summary of the results for gene expression and changes in the levels of 

metabolites on the one-carbon pathway for the groups exposed to 5-azacytidine. In general, 

only gene expression showed alterations with acute exposure. However, after 5 days of 

exposure, the effects could be observed for the expression of the enzymes of the one-carbon 

pathway, especially those responsible for the methylation of DNA. Effects on metabolite levels 

were only observed after chronic exposure.  

DNMT3 expression was firstly downregulated at day 1, however, at day 5 both DNMT1 and 

DNMT3 transcripts were upregulated. In this context, both SAM and SAH concentrations were 

decreased following 5-azacytidine exposure. According to James et al. (2002), SAH is known 

to act as a regulator of DNMTs expression. Often, high levels of SAH are known to repress 

expression of DNMTs. In this case, the lower levels of SAH, caused by lower rates of cytosine 

methylation due to DNMTs inefficiency, could be acting as a stimulus for DNMT expression. 

The lower levels of SAM could be due to the downregulated expression of MAT as well as the 

reduction of methionine concentration, although not statistically significant different.  
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Figure 5.30 Overview of the changes observed for 5-azacytidine after acute exposure (day 1), 
chronic exposure (day 5) and recovery (day 12). The significant changes on gene expression 
and levels of metabolites in the one-carbon pathway when comparing control and 5-
azacytidine exposure are presented in this figure. Arrows: decrease or increase. Continuous 
lines show results for gene expression while intermittent lines show changes in the levels of 
metabolites. Different colours are used for different time points: green – acute exposure (day 
1); red – chronic exposure (day 5); blue – recovery (day 12). 

Abbreviations: BMHT: betaine- homocysteine methyltransferase, CDP-choline: cytidine 
diphosphate-choline, DNMT: DNA methyltransferase, GNMT: glycine N-methyltransferase, 
MAT: methionine adenosyltransferases, MS: methionine synthase, MTHFR: 
methylenetetrahydrofolate reductase, MTRR: Methionine synthase reductase, PC: 
phosphatidylcholine; SAH: S-adenosylhomocysteine, SAHH: S- adenosylhomocysteine 
hydrolase, SAM dependent MT: S-adenosylmethionine dependent methyltransferase, THF: 
tetrahydrofolate. 
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5.4.2 Cumulative and persistent changes in animals exposed to 5-azacytidine 

and hypoxia 

Observing the different time points of exposure, two main types of information can be 

assessed. Firstly, comparing the data for day 1 and day 5 or 21 the cumulative effects of 

exposures can be identified. Looking at the recovery timepoint, the persistence of the 

alterations can be analysed.  

Focusing on the results for gene expression and metabolites quantitation, both hypoxia and 

5-azacytidine appear to have a cumulative effect, since mostly divergent effects were 

observed for acute and chronic exposure. For gene expression, a shift in response was 

observed, where genes that were upregulated at day 1 were downregulated at the end of 

exposure and the ones downregulated at day 1 are upregulated at the end. These results 

indicate that the effects of exposures are divergent with time, and are different from the ones 

identified for acute exposures. 

For hypoxia exposures, no effects were observed in DNA methylation.  However, the effects 

on gene expression and levels of metabolites still remained after the normalisation of oxygen 

levels, suggesting a long lasting outcome on the organisms’ biology. 

It is known that the regulation of haemoglobin expression through the HIF pathway can only 

be maintained in low oxygen environment since in normoxic conditions the HIF-1α is degraded 

(Semenza, 2007). Since the metabolism was still altered and haemoglobin concentration was 

elevated even when moved to normal oxygen conditions (recovery), these findings suggest a 

possible long term regulation of haemoglobin expression that could be due to an epigenetic 

mechanism, however more studies need to be conduct to explore this hypothesis. As an 
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example, the time necessary for haemoglobin degradation in the Daphnia’s haemolymph 

needs could be measured to assess the protein stability in this animal. 

Regarding the possible persistence of the effect, groups exposed to 5-azacytidine did not 

present altered gene expression and metabolite levels after the end of exposure and period 

of recovery. This indicates that the organisms were able to recover to normal levels of gene 

expression and metabolites even after a period of chronic exposure to 5-azacytidine.  

One the other hand, BSP data for groups exposed to 5-azacytidine indicate both a cumulative 

effect on region-specific methylation and a persistent effect. For DMRs that presented altered 

methylation level, a tendency for lower methylation levels at day 5 when compared to day 1 

was observed. This is consistent with the mechanisms of action of 5-azacytidine, where during 

replication the cytosine analogue is incorporated to the DNA causing a cumulative effect on 

the DNA methylation levels at specific CpG sites. However, it is already known that the effects 

of 5-azacytidine exposure can be blocked after extended exposure, due to depletion of 

nucleotides, arrest of the cell cycle and cytotoxicity related to high doses (Choi et al., 2007). 

Therefore, it is impossible to reach complete demethylation after exposure to this chemical. 

Looking at the levels of DNA methylation after a recovery period, some regions analysed 

recovered to the normal levels. Nonetheless, some have still less methylation at specific sites 

that the control samples.  

Therefore, an important highlight of these findings is that although no effects were observed 

for gene expression and metabolite concentrations after the removal of the exposure, DNA 

methylation was still decreased in target regions of the genome. Consequently, based on 

these results, it is suggested that some effects of 5-azacytidine exposure on CpG methylation 

are reversible, but not all. This is consistent with the mechanism of “epigenetic memory” 
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where it is proposed that chemicals or stressors can cause specific changes in DNA methylation 

profile that can be maintained during life time (Bird, 2002; Mirbahai and Chipman, 2014). 

The “epigenetic memory” can also play a role in the transmission of disrupted epigenetic 

information to following generations. The possibility of transgenerational inheritance across 

multiple generations has been suggested for several organisms, including mammals, plants 

and invertebrates (Hauser et al., 2011; Skinner, 2014; Skinner et al., 2010). The identification 

of DNA methylation disruption that is not reversed after the removal of the stressors is 

another strong indication that those changes can act later in the organism’s life.  

5.5 Conclusions 

In this study, it was demonstrated that most of the stressors can affect the organisms in a 

stress-specific manner. Arsenic concentration was selected based on reported values that 

were found in different environments (Smedley and Kinniburgh, 2005) and no effects were 

observed for the endpoints analysed.  

Differing from arsenic, hypoxia affected the expression of genes and the levels of metabolites 

of the one-carbon pathway. Oxygen depletion also caused a decrease in body length showing 

that growth and energy metabolism were impaired. Thus, the results suggested physiological 

responses to hypoxia and effects that could target the DNA methylation machinery, although 

no alterations in region specific DNA methylation could be identified.  

It was also possible to identify long-lasting changes in DNA methylation caused by 5-

azacytidine. This in consistent with the proposed concept of epigenetic memory and highlights 

the need for further studies to understand the implications of long-lasting effects of altered 
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DNA methylation profiles, especially because gene expression and metabolite concentrations 

were restored after the removal of the stressor.  

These results are very relevant when thinking about the current approaches for chemical risk 

assessment and environmental monitoring. Usually, no test is employed to evaluate the 

effects of chemicals on the transcriptome and metabolome, although efforts have been to 

develop such tests. 
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Chapter 6  

General discussion 
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The overall aim of this thesis was to describe the methylome of Daphnia magna as well as to 

investigate if the methylome of Daphnia is responsive to environmentally relevant exposure 

conditions. To achieve this, several specific aims were outlined (section 1.6). Initially, the 

overall pattern of DNA methylation as well as the DNA methylation machinery were 

characterised for D. magna (Chapter 3). Following this, different methods of differentially 

methylated regions (DMRs) identification were tested and compared after treating Daphnia 

with 5-azacytidine, a chemical that is known to alter DNA methylation.  Subsequently, the 

chosen method of analysis of DMRs was applied to the samples obtained from chronic 

exposures to environmentally relevant concentration of two selected stressors, arsenic and 

hypoxia as well as the positive control, 5-azacytidine (Chapter 4). The effects of the stressors 

were also evaluated after acute and chronic exposure, on DNA methylation and the epigenetic 

machinery through gene expression and the concentration of metabolites of one-carbon 

pathway. The persistence of the identified alterations was also analysed to test the concept 

of epigenetic memory (Chapter 5). 

6.1 Evolution of DNA methylation and the potential benefit of using the 

model organism Daphnia magna in epigenetics research 

The first aim of this research was to characterise the overall distribution pattern of DNA 

methylation and the second aim was to identify the mechanisms involved in DNA methylation 

in the crustacean Daphnia magna, an important model organism for ecotoxicology studies.  

As reviewed in section 1.3 and discussed in chapter 3 (section 3.4), the DNA methylation 

patterns in vertebrates and invertebrates vary dramatically (Breiling and Lyko, 2015; Feng et 

al., 2010a; Jiang et al., 2014). Nevertheless, gene body methylation is a conserved feature of 
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these evolutionary distant organisms, including plants, fungi and invertebrate and vertebrate 

animals, although it has been nearly lost in some organism in a lineage-specific manner (Feng 

et al., 2010a; Glastad et al., 2011).  

Although the occurrence of gene body methylation is well conserved during evolution, the 

function of gene body methylation is not completely understood (Feng et al., 2010a; Tweedie 

et al., 1997). It is hypothesised that it is often linked with transcriptionally active chromatin 

regions. The organisms’ genes can also be classified into two distinct groups, which are high 

and low methylated genes (Dixon et al., 2016).  

DNA methylation has been suggested to increase mutation rates, reducing the numbers of 

CpG dinucleotides in DNA sequences (Goll and Bestor, 2005; Zemach et al., 2010). This leads 

to the idea that methylated genes should show reduced sequence conservation among 

different taxa. However, studies conducted in insects and plants have contradicted this 

hypothesis. In fact, highly methylated genes have shown high sequence conservation in 

invertebrates (Dixon et al., 2016; Sarda et al., 2012).  

Daphnia magna presents a methylation pattern very similar to those found for other 

invertebrates, showing increased DNA methylation in gene bodies, particularly on 5’ ends, 

rarely occurring in transposable elements and repetitive sequences and with CGIs largely 

unmethylated. Also, DNA methylation is restricted to the CpG dinucleotide context. The 

restriction of methylation to sites in gene bodies corroborates the low occurrence of 

methylated cytosines evaluated by global measurements (Chapter 3, section 3.3.5.2).  

The strain used in this study presented the lowest level of DNA methylation for this species 

measured so far (0.14%). It is important to cite that both D. magna strains analysed before 

(Xinb3: 0.52% and Iinb1: 0.49%) are inbred strains.  Potentially this could have influenced the 
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normal methylation pattern and caused a higher level of cytosine methylation of their genome 

(Asselman et al., 2015). Therefore, it is proposed that, in contrast to quantitative genetic 

studies that rely heavily on using inbred strains (Xinb3, Iinb1), epigenomic studies should be 

conducted using non-inbred strains (i.e. Bham2) with a normal DNA methylation pattern. The 

possible deleterious effects of inbreeding (Charlesworth and Willis, 2009), and the differences 

in global DNA methylation detected between the two inbred strains (up to 0.52%) and the 

strain used in this study (0.14%), indicates that it is preferable to use non-inbred strains in 

epigenetics studies, at least until the exact effect of inbreeding is investigated on DNA 

methylation profile.   

The identified DNA methylation profile in Daphnia (Figure 3.11) and other invertebrates is 

different from those of vertebrates (Chapter 1, section 1.3). Vertebrate animals present a 

global distribution of methylation, with ummethylated regions, often located in promoter 

sequences of different genes. This feature, considering the species analysed so far, seems to 

be specific to vertebrata, since it was not found in lower chordate taxa (e.i. Ciona sp.) (Breiling 

and Lyko, 2015; Tweedie et al., 1997). It has been proposed that the global distribution of 

methylated cytosine and the higher levels of methylated cytosine arose with the need for 

silencing of transposable elements and repetitive regions that were transferred through 

sexual reproduction (Zemach et al., 2010). 

Despite the current knowledge on differences in DNA methylation distribution and function 

between vertebrates and invertebrates, often epigenetic studies exclusively focus on 

analysing methylation changes around the promoter regions of the genes and CGIs, without 

considering the taxa of their model system. This could be due to lack of information on DNA 

methylation in invertebrate species, since studies on DNA methylation in invertebrates were 
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for a long time neglected. This lack of investment in understanding the role of DNA 

methylation in invertebrate models stems from the fact that DNA methylation is nearly 

completely absent in the two main invertebrate model organisms for genetic studies, D. 

melanogaster and C. elegans (Capuano et al., 2014; Park et al., 2011; Simpson et al., 1986). 

This resulted in generalising the finding to other invertebrate organisms and abandoning 

research on DNA methylation in invertebrates until recently. As shown in other invertebrate 

species, such as C. floridanus, N. vitripennis and A. mellifera, DNA methylation is present in 

invertebrates and plays a significant role in regulating various aspects of their life (Beeler et 

al., 2014; Drewell et al., 2014; Glastad et al., 2015; Pegoraro et al., 2016; Rasmussen and 

Amdam, 2015; Wang et al., 2013).  

Daphnia magna has the potential to revolutionise our understanding of the function of 

epigenetic factors in invertebrates. As presented in section 1.5.1, there are great advantages 

of using D. magna in epigenetic studies, as they are easy to maintain in large numbers under 

laboratory conditions, they have low genetic diversity due to their parthenogenetic 

reproduction, their genome is responsive to a wide range of stimuli, they are phenotypically 

plastic and a wide range of genomics resources is being developed for them. Furthermore, 

there is extensive knowledge regarding the ecology of this taxon, which can be used to help 

address environmentally relevant questions, including exposure to environmentally relevant 

stressors, trophic level interactions and evolution biology.   

Therefore, D. magna is a valuable addition to the model organisms used for epigenetic studies 

and can contribute to the knowledge on DNA methylation in arthropods and in invertebrates 

in general. It can also be used to investigate the interactions between various epigenetic 

mechanisms, as already described (Harris et al., 2012; Robichaud et al., 2012). 
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6.2 Pipeline of analysis of WGBS data and applicability for non-model 

organisms 

Whole genome bisulphite sequencing has been applied for the analysis of DNA methylation 

modifications, detecting methylated cytosines at single nucleotide resolution throughout the 

entire genome. An important step for accurate detection of methylated cytosines is to use an 

appropriate software for mapping and visualisation of WGBS data (Lee et al., 2015). Several 

programs have been used for methylation mapping. In this thesis, Bismark software was 

chosen for mapping of the sequenced reads (Krueger and Andrews, 2011).   

After the initial visualisation of the global DNA methylation profiling, often the next step is to 

identify the regions with differential methylation across a set of samples. Differentially 

methylated regions (DMRs) can be single cytosines or large regions, such as entire genes. The 

definition of the region length is totally arbitrary and will depend on the biological question 

that needs to be answered and the resources available (Bock, 2012).  

Different approaches can be used to identify DMRs. Numerous statistical methods and 

software packages have been developed to compare and detect regions with altered DNA 

methylation  (Rackham et al., 2015). Consequently, it is extremely important to select the 

most appropriate statistical approach based on the experimental design and the model 

organism in order to identify and analyse DMRs.  

In this thesis, DMR identification was performed using the software SeqMonk. It allows the 

visualisation of the data using the direct output from Bismark analyses and can be used for 

further analysis of the data. It is possible to set custom genomes and annotation tracks, 
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allowing analyses of non-annotated, or incomplete, genomes for DNA methylation studies 

(Chatterjee et al., 2012). 

This software allowed the use of different methods of DMRs detection. These were classified 

as “biased”, when the methylation levels were compared using a predefined region, such as 

genes or CGIs, or “unbiased”, when the comparison was performed without any predefined 

region and covered the entire genome (details in Chapter 4, section 4.3.3). 

It is important to note that the majority of pipelines for WGBS analyses were developed to be 

used in studies with mammalian species, such as human and mouse. An advantage of using 

these species is the availability of comprehensive genome sequence, assembly and 

annotation, meaning that not only the genes are annotated but several regulatory regions are 

also identified. In consequence, conclusions can be draw easily. As discussed in section 4.4.1, 

for the studies in species such as human and mouse, the use of “biased” analyses has great 

advantages. It limits the number of regions being tested, improving statistical power and 

targeting the analyses to specific features (i.e. genes, CGIs, promoters, exons/intron, 

enhancers) (Baumann and Doerge, 2014). However, for species, such as D. magna with 

genomes under construction, targeting the analyses to annotated regions could be less 

informative than analysing the whole genome. As demonstrated in section 4.3.3, the use of 

annotated genes caused a large averaging effect on the methylation levels in Daphnia. 

Additionally, the use of a biased analysis targeted to already known regions for detection of 

differential methylation limits the discovery of novel regions presenting altered methylation 

profiles (Robinson et al., 2014). Consequently, as the genome of D. magna was smaller than 

anticipated and not well annotated, the DMRs identification in this study was performed using 

an unbiased approach (Chapter 4, section 4.3.3.2.3). Additionally, of the proposed unbiased 
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methods, the best approach for DMR analyses for the conditions used in this study was to use 

the level of methylation of single cytosines and compare the groups using a windowed 

replicate test. This allowed the search for DMRs in the entire genome, without bias to 

annotated regions, and the identification of consistent effects on DNA methylation along short 

sequences (100bp) (Zhong et al., 2013).  

The use of short windows for the statistical tests was arbitrary. This was to achieve greater 

resolution of the observed effects and to easily target the identified region, providing greater 

biological relevance to the findings (Beissinger et al., 2015; Robinson et al., 2014; Wang et al., 

2015). Importantly, due to the large number of statistical tests performed for the comparison 

of genome loci, it is crucial to correct for multiple testing. In this study, the Benjamini and 

Hochberg multiple test correction was used. With the comparison of large numbers of CpGs 

and multiple test correction, there is a tendency for a large number of false negative values 

(Bock, 2012). The use of a windowed test allowed the identification of neighbouring CpGs that 

presented similar differences in DNA methylation. 

In conclusion, there are different approaches that can be used for the identification of DMRs. 

The choice of software and parameters used is of extreme importance when analysing DNA 

methylation data and need to be appropriate to the organism used and the availability of its 

genomic resources. For organisms with incomplete genome sequences, the analysis is not 

straight forward and the pipelines of analysis often need to be modified and adapted to each 

circumstance.  

The use of software that allowed input of a custom genome track was an important factor in 

the software selection step. It did not limit the analysis only to genomes publically available 

or to those entirely sequenced and annotated. The methylation level distribution could be 
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visualised over the entire genome and could be tested for DMRs, even in organisms with a 

non-sequenced or non-annotated genome. 

6.3 Exposure approaches and the implications for toxicity testing 

Daphnia magna and other Daphnia species are currently used in ecotoxicological testing. The 

guidelines provided by the Organisation for Economic Co-operation and Development (OECD) 

are the main literature that guides the laboratory procedures. The acute immobilisation test 

and the reproduction test are standardised by OECD test number 202 and 211, respectively 

(OECD, 2012, 2004).   

The acute immobilisation test assesses the effects of chemicals and stressors on the 

mortality/immobilisation of the animals after an acute exposure, usually for 24 or 48 hours. 

For this, Daphnia neonates are exposed to different concentrations of the test substance 

within 24 hours of their release from their mothers. Then, immobilised animals are recorded 

at the end of the period of exposure. Results are expressed as the concentration that causes 

immobilisation of 50% of the organisms (EC50) (OECD, 2004). The Daphnia reproduction test 

records first the mortality of the animals, then the number of offspring produced and the 

effect caused by chronic exposure to the tested stressor (OECD, 2012).  

The first point that should be considered to advance the current protocols for toxicological 

testing is the design of the exposures. Laboratory exposures should aim to better represent of 

what is happening in the natural environment. Current exposure procedures are based on 

using Daphnia that are less than 24hrs old. This means that the exposures miss the sensitive 

period of embryogenesis. In natural environments animals are usually exposed to compounds 

in their environment throughout their life, including during embryogenesis. Current 



235 
 

toxicological tests do not take this into consideration. In this study the animals were exposed 

form the beginning of their development, when still in the mothers’ brood pouch, to cover 

any possible interval of susceptibility to the epigenetic mechanisms that the animals could 

present during this period. Currently, the closest approach to this are the multigenerational 

studies that are being conducted in Daphnia. Several pollutants, such as propranolol and 

carbendazim have shown deleterious effects in Daphnia exposed for multiple generations. 

Indeed, some adverse effects of chemicals, especially compounds that are known to 

bioaccumulate, can become more severe following several generations of exposure. 

Furthermore, sometimes subtle adverse effects of chemicals are only recognised after 

persistence into the following generations (Jeong et al., 2015; Silva et al., 2016). Therefore, 

this method of exposure is much more representative of what is encountered in the 

environment and should improve our understanding of the real effects of environmental 

exposures.  

Secondly, it is important to highlight that the usual endpoints analysed in ecotoxicological 

tests using Daphnia, such as mortality and reproduction impairment, are very crude endpoints 

that are usually observed following exposure to high concentrations of a single compound, 

which are usually not environmentally relevant. It is also recognised that mode of action 

(MoA) of certain compounds are concentration dependent and the MoA of a compound can 

vary based on the concentration and duration of exposure  (Nendza and Wenzel, 2006).  In 

most circumstances animals in the environment are usually exposed to low concentrations of 

mixtures of compounds either for an extended or short period of time. Thus the observed 

effects are usually different (i.e. more subtle) from the ones detected in the laboratory setting 

and under high concentrations. Furthermore, some subtle effects can cause an adverse effect 
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at a later stage in an organism’s life rather than having an immediate effect (Jirtle and Skinner, 

2007). This highlights the need for introducing and considering a wider range of chemical 

testing guidelines and procedures.  

For that reason, in recent years, the application of omics technologies in toxicology studies 

has increased dramatically. The use of transcriptomics, proteomics and metabolomics can 

help to study how chemicals affect aquatic and terrestrial organisms in the environment and 

to screen for the molecular events that occur in response to exposure to different stressors 

(Martyniuk and Simmons, 2016). In addition to these omics technologies, epigenomics can be 

used to identify effects of the stressors on the level of epigenetic mechanisms. It is known that 

effects on the epigenetic marks, such as DNA methylation, can potentially act later in the 

organism’s life or be transmitted to further generations (Bird, 2002). 

Therefore, it is important to add to the usual strategies applied in toxicological studies, tests 

that analyse the effects on genetic and epigenetic mechanisms to allow further investigations 

of the effects of the stressors on the organisms. This would add a new layer of information to 

current strategies in risk assessment, being used for the screening of effects and possibly 

helping to extrapolate and relate the effects observed in different organisms. 

6.4 Stress-specific changes in DNA methylation and the concept of 

epigenetic memory 

In this thesis, the effects of three stressors were investigated on the expression and 

methylation of selected genes and levels of metabolites involved in the one-carbon pathway 

(details in Chapter 5). In general, exposure to an environmentally relevant concentration of 

arsenic induced little response in the investigated end-points. Hypoxia significantly affected 
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all the different endpoints analysed (gene expression, metabolites concentration, phenotypic 

measurements and DNA methylation). In contrast to hypoxia, 5-azacytidine mainly induced 

changes in DNA methylation and the enzymes and metabolites closely related to the DNA 

methylation reaction. 

Despite several studies linking arsenic exposure to changes in DNA methylation, no effects 

were observed for Daphnia in this study. Arsenic could affect DNA methylation due to the 

mechanism of detoxification that compete with DNA methylation for the same methyl donor 

(Reichard and Puga, 2010; Reichard et al., 2007; Zhao et al., 1997). However, no differentially 

methylated regions were identified with WGBS and no effects on the expression levels of the 

genes involved in one-carbon metabolism were detected. The reported EC50 value for arsenic 

is 7400 µg L-1 (Biesinger and Christensen, 1972). Therefore, it is possible that higher levels of 

arsenic are required to affect DNA methylation since the proposed mechanisms of toxicity 

requires the competition for the methyl donors.  

Hypoxia in water bodies is often caused by increase in anthropogenic input of organic matter 

and nutrients that leads to a growth in primary production (i.e. algae bloom) leading to even 

higher levels of organic matter. The decomposition of the organic matter reduces the 

dissolved oxygen concentrations in the water (Wu, 2002). Oxygen depletion can affect a wide 

range of biological processes, causing the impairment of growth, disturb reproduction and 

even cause death of aquatic populations (Long et al., 2015).  

In general, the effects of hypoxia exposure were spread along the one-carbon pathway, 

affecting it at different points. The effects could be observed on essential nutrients, like 

choline, and directly on transcription of the enzymes involved in DNA methylation reactions. 



238 
 

Due to the importance of the biological pathways that can be affected by hypoxia, aquatic 

organisms have developed mechanisms of acclimation and tolerance to oxygen depletion 

(Long et al., 2015). Some studies have shown hypoxic responsive elements regulated by 

epigenetic mechanisms (Brown and Rupert, 2014; Hattori et al., 2015; Lachance et al., 2014; 

Tsai and Wu, 2014; Tudisco et al., 2014).  

Daphnia has developed strategies to cope with low levels of oxygen. This was one of the main 

reasons for selecting hypoxia as a stressor and investigating the effects of low oxygen levels 

on the epigenetic mechanisms. Despite no direct effects on DNA methylation profile, hypoxia 

affects the one-carbon pathway. Therefore, a relationship between hypoxia and DNA 

methylation cannot be excluded. Additionally, several questions arose that can be the subject 

of future studies: 1) Are epigenetic mechanisms controlling and regulating the response to 

hypoxia or are the epigenetic changes secondary to hypoxia? 2) If epigenetics is the main 

mechanisms of response to hypoxia, can pollutants affect the epigenetic machinery and 

subsequently make the organisms susceptible to hypoxia effects by altering the main 

regulatory mechanism? 3) Can exposure to hypoxia cause persistent changes in the 

epigenome of an organism and what would be the consequences at the population level?  

Contrary to the physiological effects identified for hypoxia, 5-azacytidine acts by targeting 

DNA methylation. It is an analogue of cytosine that can be incorporated into the DNA during 

replication. DNMTs are then sequestrated by 5-azacytidine and remain attached to the DNA 

being unavailable for further methylation reactions (Stresemann and Lyko, 2008).  

Besides the global methylation reduction already cited to occur in Daphnia exposed to 5-

azacytidine (Vandegehuchte et al., 2010b), several regions of the genome were shown to be 

altered by 5-azacytidine exposure by WGBS and confirmed with direct bisulphite sequencing 
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PCR (in Section 4.3.6). Despite the broad effect of this chemical, altered DNA methylation was 

not observed in the entire genome. This indicated that 5-azacytidine may have different 

effects on different parts of the genome. Such differences could be related to chromatin 

structure, CpG density or accessibility of DNA. 

The important finding related to 5-azacytidine exposure is the maintenance of the observed 

effects on DNA methylation after the removal of the stressor. A decrease in methylation level 

was observed for CpGs in the target regions, as demonstrated in section 5.3.1. Although the 

methylation level of some CpG sites were restored to the original level after removal of the 

stressor, the methylation levels of some CpG sites did not recover. This indicates that certain 

modifications to the methylome, in contrast to changes at transcriptome and metabolome 

levels, are more persistent and thus have the potential to alter the response of an organism 

even in the absence of a stressor. Thus, these findings provide more evidence in support of 

the concept of “epigenetic memory”. Epigenetic memory means that chemicals or stressors 

can cause specific changes in DNA methylation profile that can be maintained during an 

individual’s life time (Bird, 2002; Mirbahai and Chipman, 2014). Additionally, it can play a role 

in the transmission of disrupted epigenetic information to following generations. The 

identification of DNA methylation disruption that is not reversed after the removal of the 

stressors is another strong indication that those changes can act later in the organism’s life or 

be transmitted to further generations. Therefore, in this study it was demonstrated that the 

stressors can affect the organisms in a stressor-specific manner and that it is consistent with 

the proposed concept of epigenetic memory.  

The results of this study indicate the need for working towards developing a standard set of 

epigenetic assays for incorporation into current chemical risk assessment procedures as well 
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as refinement of the current OECD guidelines for chemical risk assessment. Using multiple 

‘omic approaches, such as transcriptomics, proteomics, metabolomics and epigenomics, will 

aid the process of understanding the MoA of chemicals and that of developing a set of 

biomarkers, which can be used to predict the effects of compounds both at individual and 

population levels.  

6.5 Gaps in knowledge and future work 

As demonstrated in chapter 3 and discussed in section 6.1, it was possible to identify the 

overall distribution of methylated cytosines in D. magna. However, due to the lack of genome 

resources, the description of the methylome and altered profiles is still incomplete. The 

genome generated in this thesis was not able to overcome the problem of a poor constructed 

genome. Therefore, further major advances with the D. magna methylome and knowledge of 

other epigenetic mechanisms, depend on the construction of a complete and fully annotated 

genome.  

In this study whole organisms were used to obtain DNA samples for WGBS and direct 

bisulphite PCR analyses. It was useful to identify the normal DNA methylation distribution and 

the effects caused by stressors in D. magna. The further step would be to investigate the 

tissue-specific DNA methylation profile and possible effects of stressors. Single cell DNA 

methylation analyses and laser-capture microdissection could be alternative methods for 

tissue-specific analyses. However, optimisation of these techniques are likely necessary, since 

until now they have not been applied for studies in Daphnia. 

The identification of persistent effects on DNA methylation profile indicates that the 

mechanisms of repair might not be efficient, at least within the same generation. Due to the 
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need to incorporate different exposure procedures to classical ecotoxicological assays and the 

recent findings regarding increased effects after multigenerational exposures, the 

investigation of epigenetic reprogramming events is essential, especially to determine the 

potential of transgenerational effects in this species. It will allow the identification of possible 

susceptible periods during Daphnia’s development that should be either considered or 

deliberately excluded from the assays.  

Finally, with the development of genomic resources for D. magna, the construction of a 

detailed DNA methylation profile and the investigation of reprogramming events, future steps 

would be to work towards development of standard epigenetic assays for chemical risk 

assessment. However, it might be premature to suggest the use of epigenetic profiles as 

biomarkers of exposures, since there is still a lot to be investigated, the findings in this thesis 

have contributed to the development of the field and have highlighted the potential of DNA 

methylation studies in D. magna and the application of some concepts in studies with other 

species. Therefore, ideally in the next few years scientists will be able to construct a 

comprehensive database profiling the responses of various epigenetic markers to a range of 

chemicals and stressors and under multiple conditions using Daphnia as one of the key 

environmentally relevant species.   
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