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ABSTRACT  

 
 

Road safety is a global issue. Road crashes are estimated to be the eighth leading cause of 

death and result in approximately 1.25 million deaths and 50 million nonfatal injuries on the 

world’s roads every year. The crash statistics show that 50% of the world’s road crash deaths 

occur among vulnerable road users (e.g. pedestrians, cyclists, motorcyclists) and among them, 

motorcyclist deaths account for 23%. In a number of developing countries, motorcycles are 

the predominant vehicle type because of their affordability and ease of use particularly in 

urban environments. Consequently, the number of crashes resulting in death and serious 

injury involving motorcycles in these countries is significant. Particularly in most Southeast 

Asian countries, motorcycle crashes may reach about 70% of the total road crashes.    

In motorcycle-dominated traffic environments, motorcycles do not usually conform to lane 

disciplines as passenger cars do and they tend to swerve to change their directions and speeds 

frequently. These movement characteristics are described as non-lane-based movements of 

motorcycles and were found to be major causes contributing to increased crash risk for 

motorcyclists. Although the non-lane-based movements of motorcycles have been found to be 

a significant risk factor contributing to motorcycle crashes, it seems that to date there are no 

models taking into account explicitly this risk factor. To this end, and to examine the effect of 

such manoeuvre of motorcyclists on crash risk, this research developed a methodology and 

associated models to estimate the potential of rear-end and sideswipe crashes.  

The proposed methodology sought to provide a good estimate of both the rear-end crash and 

sideswipe crash risks for motorcyclists and the operating speed, the speed difference, the 
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traffic density, the front distance, the longitudinal gap, the lateral clearance and the road 

surface condition were found to contribute to these crashes risk. 

In addition, a new concept of the Conflict Modification Factor (CoMF) was proposed as a 

measure to assess the crash risk for a particular road site and facilitate the development of an 

appropriate countermeasures programme by assessing the crash risk reduction effectiveness of 

a specific countermeasure. By using the developed crash risk models together with the 

proposed CoMFs, several potential countermeasures to improve motorcyclist road safety were 

identified. These were: i) installing changeable speed limit signs, ii) installing changeable gap 

warning signs, iii) installing changeable road surface condition warning signs and iv) 

providing segregated motorcycle lanes.    

Furthermore, a methodology was also proposed to integrate the risk of rear-end and sideswipe 

crashes into the current International Road Safety Programme (iRAP) star rating system for 

motorcyclists and the proposed methodology seems to produce results consistent with 

historical crash data and subject to more testing, may be considered for full implementation. 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. Global Road Safety 

Road safety is a global issue as road crashes are estimated to be the eighth leading cause of 

death and result in approximate 1.25 million deaths and 50 million nonfatal injuries on the 

world’s roads every year (WHO, 2015). Road crash injuries have been increasing, particularly 

in low-income and middle-income countries, where rates are twice as high as those in high-

income countries. In addition, as presented in WHO (2015), the road crash fatality rate is the 

highest in low-income countries (LIC), at 24.1 per 100,000 population, followed by middle-

income countries (MIC) with a rate of 18.4 compared to only 9.2 in high-income countries 

(HIC). The report also indicates that 80% of road traffic deaths occurred in low- and middle-

income countries (LMICs) while these countries account for only 54% of the world’s 

registered vehicles.  

Moreover, the crash statistics show that nearly 50% of the world’s road crash deaths occur 

among vulnerable road users (e.g. pedestrians, cyclists, motorcyclists) and among them, 

motorcyclist deaths account for 23% (WHO, 2015). However, the proportion of crash deaths 

involving motorcyclists is different between regions. In most LMICs, motorcycles are used 

frequently because they are relatively affordable to buy and run. Consequently, road crash 

deaths among motorcyclists are very high in these countries. For example, in the South-East 

Asia region, the proportion of motorcycle crash deaths accounts for 34% of all crash deaths 

(see Figure 1.1). 
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This indicates that improving motorcyclist safety is a key road safety area requiring 

immediate action in both developed and developing countries. WHO (2013) has consequently 

defined it as a priority goal within the Decade of Action for Road Safety Global Plan (2011-

2020).  

World’s Road Crash Deaths 
 

South-East Asia region 

 

 

 

Figure 1.1. Road crash deaths by type of road user (WHO, 2015) 
 

Motorcyclists’ safety is a major concern in a number of cities worldwide including most 

Southeast Asian cities where motorcycles are the predominant mode of transport. In recent 

years, although the number of passenger cars is increasing due to economic growth, 

motorcycling is still the predominant mode of urban transport in a number of LMICs 

worldwide, particularly in most Southeast Asian cities due to affordability and flexibility in 

terms of movement and parking. Consequently, the number of crashes resulting in death and 

serious injury involving motorcycles in these countries is significant. According to the report 

of WHO (2015), the number of motorcycles accounts for 54.1% of the total registered 

vehicles in the Southeast Asian countries, and the proportion of crashes involving 

motorcycles accounts for 34% of the total road crashes in this region. However, in certain 
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countries, motorcycles’ crashes may reach about 70% of the total road crashes (Manan and 

Várhelyi, 2012). For example, in the city of Danang in Vietnam, motorcycles constitute over 

80% of total traffic, and motorcycle crashes account for nearly 70% of the total road crashes 

(DoT, 2013). Similarly, in Indonesia, it has been reported that motorcycles account for 78.3% 

of the total vehicle population and 75% of fatalities in traffic crashes involved motorcyclists 

(Indriastuti and Sulistio, 2010). This issue has also been reported in Taiwan (Ming, Wucheng 

and Cheng, 2013) and Malaysia (MIROS, 2011).  

As motorcycling is the predominant mode of transport and motorcyclists are involved in a 

large proportion of road crashes, motorcyclist safety is a crucial issue in the Southeast Asian 

region. A crash results from a number of risk factors related to humans, vehicles and 

environment, and the effect of these risk factors on crash potential is different between areas, 

countries and regions (Elvik et al., 2009; WHO, 2015). Therefore, to improve motorcyclist 

safety in the environment of LMICs and particularly in Southeast Asia countries, it is 

necessary to identify the major causes and associated risk factors leading to motorcycle 

crashes in this particular traffic environment.  

 

1.2. Road Safety in Vietnam 

Road safety is a major concern in Vietnam as road crashes result in about 11,000 deaths 

every year and economic losses are estimated to account for approximately 2.89% of the 

national annual gross domestic product. This issue is particularly urgent for motorcyclist 

safety as motorcycle is the predominant mode of transport in Vietnam, accounting for about 

87.5 % of total registered vehicles, and the number of new registered motorcycles has been 

increasing every year (NTSC, 2014). In 2013 for example, the data shows that there was 



 

4 
 

11,785 road crashes occurring and resulting in 11,094 deaths and 7,559 injuries. The crash 

statistics indicate that motorcycle crashes account for 81.2% of total road crashes and 75.8% 

of fatal crashes involved motorcyclists (see Figure 1.2). As also revealed from the crash data, 

the percentage of crashes occurs on national highways, urban and rural roads were 27.9%, 

46.9% and 25.2% respectively (NTSC, 2014). 

This situation suggests that there is a need of urgent actions to improve urban traffic safety in 

general and motorcyclist safety in particular in Vietnam.  

Road crash deaths by types of road users Road crashes by types of areas 

  

Figure 1.2. Road crash statistics in Vietnam in 2013 (NTSC, 2014) 

 

1.3. Problem Definition 

In motorcycle-dominated traffic environments, motorcycles do not conform to lane discipline 

and lane markings as passenger cars do, and they tend to swerve to change their direction and 

speed frequently (Hsu, Sadullah and Dao, 2003; Minh, 2007; Huyen, 2009; Long, 2012; 

Shiomi et al., 2013). These movement characteristics are described as ‘non-lane-based 
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movements’ and were found to be major causes (or risk factors) contributing to crash 

potential (Indriastuti and Sulistio, 2010; Long, 2012; Ming, Wucheng and Cheng., 2013). 

According to Hosking, Liu and Bayly (2010), and Wong, Chung and Huang (2010), the 

movement behaviour of motorcyclists is one of the most important human factors in road 

safety, especially in developing countries. In Vietnam for example, crash data revealed that 

“failed to keep safe following gap”, “changing lanes improperly”, and “failed to look 

properly” are three most common causes of motorcycle-involved crashes, accounting for 

19.3%, 16% and 15.9% respectively (DoT, 2013). These risky movement behaviour of 

motorcyclists have resulted in a large proportion of rear-end and sideswipe crashes involving 

motorcycles. For example in Danang, the crash statistics show that rear-end and sideswipe 

crashes account for 25.9% and 36.3% of the total motorcycle crashes in urban environment 

respectively (DoT, 2013). Similarly, in Taiwan, it has been reported that rear-end and 

sideswipe crashes account for 20% and 32% of the total motorcycle-involved crashes on 

urban roads (Ming, Wucheng and Cheng, 2013). This issue has also be reported in Indonesia 

and Malaysia (Indriastuti and Sulistio, 2010; Manan and Várhelyi, 2012).   

Although the non-lane-based movement characteristics of motorcycles have been found to be 

a significant factor contributing to motorcycle crashes, it seems that to date there are no 

models that take into account explicitly these risk factors. To this end, and to examine the 

effect of such manoeuvre behaviours of motorcyclists on crash risk, this study developed a 

methodology and associated models to estimate the potential of rear-end and sideswipe 

crashes associated with these manoeuvre characteristics for motorcycles moving in a 

motorcycle-dominated traffic environment of urban roads. The preliminary results of the 

proposed models may be used to support traffic engineers in improving urban road safety and 
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developing appropriate countermeasures to mitigate the crash risk for motorcyclists. 

Furthermore, the proposed methodology is expected to provide a better understanding of the 

influence of non-lane-based movement characteristic of motorcycles on crash potentials, and 

to trigger further research on road safety assessment for motorcyclists in LMICs where 

motorcycles are the predominant mode of urban transport.  

1.4. Aim and Objectives 

The aim of this project was to enhance motorcyclist safety and offer practicable 

countermeasures by examining the movement characteristics of motorcycles in a motorcycle-

dominated traffic environment of urban roads, such as those found in Southeast Asian 

countries and using the city of Danang in Vietnam as a typical road environment.   

The specific objectives were: 

1. To develop crash risk models to estimate the potential of rear-end and sideswipe 

crashes for motorcycles in a motorcycle-dominated traffic environment of urban roads. 

2. To investigate the effect of contributing factors on motorcycle crash potentials and to 

assess the relative contributions of these risk factors to rear-end and sideswipe crashes 

for motorcyclists. 

3. To develop a new measure to assess the motorcyclists crash risk without reliance on 

historical crash data. 

4. To identify countermeasures related to the specific risk factors of motorcyclist safety 

for implementation in urban areas of LMICs. 
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5. To develop a methodology to enhance the existing International Road Assessment 

Programme (iRAP) star rating system for motorcyclists based on the crash risk models 

developed in this study.    

1.5. Thesis Layout 

To meet the above aim and objectives, this thesis is structured as follows: 

Chapter 2 gives the literature review for this research. It includes the review of two main 

modelling approaches in road safety analysis, existing road safety assessment tools, the 

unique characteristics of motorcycles and their crash risk factors, and also existing studies 

related to motorcyclist safety, risk factors contributing to motorcycle crash risk and associated 

countermeasures.            

Chapter 3 presents the methodology of this research. It includes its overall approach, the 

modelling approach adopted and the statistical techniques used to develop crash risk models. 

It outlines the approach used to determine the contributing risk factors included in the models, 

and the approach followed to identify countermeasures related to these specific risk factors.      

Chapter 4 describes the process of developing both rear-end and sideswipe crash risk models. 

In this chapter, the model forms are presented along with a detailed description of the steps 

used to build these two models.   

Chapter 5 shows the methodology used to collect the data for model fitting and model 

validation. A summary of the characteristics of the road segments datasets are also presented. 

Chapter 6 presents the process of fitting the models. In this chapter, the coefficients of 

variables are estimated based on real traffic data. The significance of variables is also assessed 
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with the view to determine whether the variables included in the model are significantly 

related to the outcome variable and the insignificant variables are removed from the model to 

achieve the best fitting model. 

Chapter 7 shows the process of validating the models. In this chapter, three validation tasks 

are conducted to assess the performance of the developed models including: (1) assessing the 

goodness-of-fit to test how effective the model is in describing the outcome variable, (2) field 

validation to compare the output from the developed models with the real data collected in the 

field, and (3) a test to compare the output from the developed models with that from the 

existing models found in the literature and with actual historical crash data. 

Chapter 8 presents the sensitivity analysis results of the developed models with regard to the 

effects of the variables included in the risk models of the rear-end and sideswipe crashes.               

Chapter 9 shows the process of developing the new concept of the Conflict Modification 

Factor (CoMF) together with an examination of the relative contributions of factors to the 

overall crash risk.  

Chapter 10 describes the methodology being suggested to enhance the existing the iRAP star 

rating system for motorcyclists. 

Chapter 11 gives the discussion of this research. 

Chapter 12 presents the conclusions and future work.    
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

This chapter presents the literature review on road safety assessment models, risk factors and 

countermeasures and it is organised as follows. The first section reviews two main approaches 

applied in road safety analysis. The second section summarises the methodologies of two 

existing road safety assessment tools. The third section reviews the unique characteristics of 

motorcycles that affect crash potential and then, motorcycle movement behaviour models are 

summarised in section four. The fifth section reviews studies related to motorcyclist safety for 

both motorcycle-dominated traffic environments and conventional traffic environments. The 

next section reviews risk factors contributing to motorcyclist safety and then countermeasures 

are summarised in the final section.          

 

 

 

 

 

 



 

10 
 

2.1. Road Safety Assessment Approaches 

There are two main approaches in road safety assessment: the traditional approach which is 

based on historical crash data and the surrogate approach which is based on the observation of 

traffic conflict events (Saunier, 2013).  

2.1.1 Traditional road safety assessment approach 

2.1.1.1   Modelling method 

Road safety is associated with crash risk. To assess the crash risk, most traditional road safety 

approaches have been based on historical crash data to build safety performance functions (or 

crash prediction models) via a regression equation using various statistical analyses to 

estimate the expected number of crashes for a particular road location (Archer, 2004; 

Gettman, et al., 2008; HSM, 2009). A safety performance function (SPF) is a mathematical 

function used to describe the relationships between road crash frequencies and traffic volume, 

road geometric features, and traffic control features. The basic form of a SPS is as follows 

(Reurings et al., 2005):  

� =  � ���∑ ����  

(Equation 2.1) 

where, N is the estimated number of crashes, V is the traffic volume, xi (i = 1, 2, 3 … n) is a 

set of risk factors, , β and  are estimated coefficients.    

For example, Bonneson and McCoy (1997) predicted the number of crashes on urban road 

segments as a function of explanatory variables including the average annual daily traffic, the 

median treatment type, the section length, the land use, the parallel parking, the driveway 
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density, and the public street approach density. The historical crash data used to develop the 

model were collected in the city of Phoenix in Arizona and the city of Omaha in Nebraska 

over three years from 1991 to 1993. Qudais (2001) developed crash prediction models for 

urban roads in the city of Irbid in Jordan. The models were built based on observed crash data 

collected over three years from 1996 to 1998. They found that the lane width is the most 

significant factor contributing to the number of crashes per million vehicle kilometres. 

Moreover, the number of lanes, the average annual daily traffic, the road surface condition, 

the peak hour factor and the speed factor were found to influence the estimated number of 

crashes. Greibe (2003) built crash prediction models to predict the expected number of 

crashes on road sections in urban areas in Denmark by using data collected from 142 km 

urban roads and historical crash data collected over five years from 1990 to 1994. They found 

that the number of crashes per year per km was significantly affected by contributing factors 

such as the average annual daily traffic flow, the speed limit, the road width, the parking 

facilities and the land use.  

2.1.1.2   Limitations of the traditional approach 

It seems that the traditional road safety approach has received considerable attention and a 

large number of safety performance functions (crash prediction models) have been developed 

in a number of countries (Mountain and Fawaz, 1996; Sayed and Rodriguez, 1999; Lord and 

Persaud, 2000; Bauer and Harwood, 2002; Greibe, 2003; Salifu, 2004). Such models focused 

on establishing the relationship between the number of crashes or crash rate and risk factors 

by using various statistical regression methods. However, key drawbacks of this approach are 

that the driving behaviour of road users was not considered and there is a problem in 

obtaining a reliable historical crash data for the model development process particularly in 
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countries where crash data were not recorded sufficiently. The use of historical crash data in 

road safety analysis is likely to produce unreliable estimates of crash frequency and severity 

as well as an increase in the level of uncertainty of the estimated influences of road safety 

treatment measures due to the following reasons: 

 Crashes are rare events and therefore it takes a long time period to obtain a sufficient 

amount of crash data for model development. For example, to build crash prediction 

models, the historical crash data used in the modelling process are required to observe at 

least over 3-5 years, in order to satisfactorily capture the effect of risk factors on crash 

occurrences. If longer time periods are analysed, risk factors such as traffic volume, 

weather, traffic control, land use and geometric design may change over time, and 

therefore it is difficult to associate their changes to the crash frequency during the study 

periods (HSM, 2009; Laureshyn, 2010). 

 Crashes are random events and therefore the number of crashes observed at a particular 

location is likely to fluctuate over time. For this reason, the use of short-term crash 

frequencies alone is not reliable to estimate the frequency of crash occurrence in the long 

term. In addition, this characteristic causes difficulty in determining whether the change of 

crash frequency is caused by the effectiveness of a treatment at that location or by its 

fluctuation characteristic (HSM, 2009; Laureshyn, 2010).  

 Not all crashes are recorded. In addition, the level of under-reporting and accuracy 

depends on the crash severity and road user types. It was found that fatal and severe injury 

crashes are reported more reliably than property-damage-only and slightly injurious 

crashes. This may produce biassed estimates if the issue of underreporting is not 

considered in the modelling process (HSM, 2009; Ismail, 2010; Laureshyn, 2010).  
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 The information related to the mechanism of crash occurrence is not normally fully 

recorded in crash reports (e.g. road users behaviour leading to crashes). Without 

understanding the failure mechanism and the contribution of risk factors on crashes, it is 

difficult to identify appropriate countermeasures to prevent the occurrence of crashes 

(HSM, 2009; Ismail, 2010; Laureshyn, 2010).            

Due to the aforementioned limitations of using historical crash data for model development, 

there is a growing interest in using surrogate safety measures for road safety assessment 

(Gettman and Head, 2003). Surrogate in this context means that these measures are not based 

on observed crash data, but rather on other occurrences of traffic events that are causally 

related to the process of crashes occurring (Laureshyn, 2010).  

2.1.2 Surrogate safety measures approach 

As discussed in the previous section, to overcome the limitations of traditional road safety 

analysis, surrogate safety measures have been proposed and used in road safety assessment. 

The most commonly used surrogate safety measure is related to the traffic conflict techniques 

(Gettman et al., 2008; Guo et al., 2010).  

The traffic conflict technique is an approach to estimate traffic safety aspects based on 

observing and recording traffic events that are not as severe as crashes, but similar to them in 

terms of the mechanisms (Hydén, 1987). This technique is based on the observation of 

interactions between road users to estimate the potential of crashes and it has been advocated 

as an alternative approach to crash-based road safety analysis (Ismail, 2010). 

The traffic conflict technique was initially presented in 1968 by Perkins and Harris at the 

Detroit General Motors Laboratory in USA (Perkins and Harris, 1968). Thereafter the use of 
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traffic conflict technique in road safety assessment has been spread to a number of countries. 

Miglez, Glauz and Bauer (1985) established the relationship between traffic conflicts and 

crashes using data collected at 46 signalised and un-signalised intersections in the Greater 

Kansas City area. They found that the estimates of average crash frequencies based on traffic 

conflicts were nearly accurate as the observed crash data. Hydén (1987) proposed a general 

model to describe the relationship between normal traffic events, traffic conflicts and crashes 

which can be visualised as a pyramid shown in Figure 2.1. The top of the pyramid represents 

the occurrence of crashes due to the failures of taking evasive actions of road users involved 

in the most severe conflicts. Traffic conflict events (or near-crashes) are located next to the 

crash events and they are classified as serious, slight or potential conflicts based on the level 

of their severities. Potential conflicts refer to events where two road users approach each other 

and the occurrence of a conflict is imminent unless at least one road user takes an evasive 

action. Slight conflicts refer to events that two road users approach each other and the 

potential of a serious conflict is obvious. Serious conflicts refer to events that two road users 

are in a situation that they must take a sudden and harsh actions to avoid crashes. Serious 

conflicts will lead to crashes if road users involved in conflict events cannot take evasive 

action sufficiently. The outcome of a serious conflict therefore may be a near-crash or crash. 

Below the conflict events of this pyramid are the normal traffic events that will not lead to 

conflict potentials between vehicles. 
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Figure 2.1. The pyramid model (Hydén, 1987) 

Similarly, HSM (2009) described the continuum of traffic events that may lead to crashes and 

the proportion of crash events to non-crash events as shown in Figure 2.2. According to this 

relationship, the occurrence of crashes resulting from serious conflict events in which road 

users failed to take evasive action properly to avoid crashes.     

 

Figure 2.2. The relationship between conflict and crash events (HSM, 2009) 

Gettman et al. (2008) developed a Surrogate Safety Assessment Model (SSAM) to determine 

the occurrence of traffic conflicts for a specific site. The SSAM tool is available to the public 

Fatal

Serious conflicts

Slight conflicts

Potential conflicts

Undisturbed passages

Severe injury

Slight injury

Damage only

Crashes

Slight conflict events

Potential conflict events

Serious conflict events

Crash occur



 

16 
 

from the Federal Highway Administration (FHWA). The surrogate measures developed in 

SSAM are based on the identification, classification, and evaluation of traffic conflicts that 

occur in the simulation model. The model was validated by comparing the outputs from the 

SSAM with real-world crash records at eighty-three intersections from British Columbia, 

Canada. They found that the simulation-based intersection conflicts data provided by SSAM 

were significantly correlated with the crash data collected in the field.  

Guo et al. (2010) conducted a 100-car naturalistic driving study to evaluate the relationship 

between near-crash (conflict) and crash events and the use of near-crash as a surrogate 

measure to crash analysis approach in crash risk assessment. They investigated the effect of 

contributing factors (e.g. gender, age group, level service, lighting conditions, traffic density, 

road alignment, road surface condition and weather) on both crash and near-crash events and 

they found that there is a strong relationship between crashes and near-crashes frequency. In 

addition, they also found the influence of risk factors on the causal mechanism of crashes and 

near-crashes is not significantly different and the use of near-crashes as surrogates can 

significantly improve the precision of the estimation. From the findings of their research, they 

suggested that the use of near-crashes as surrogate measure is informative for crash risk 

assessment and will help identify contributing factors that have a significant impact on crash 

risk for small-scale studies with the limited number of observed crashes.  

 

2.2. Road Safety Assessment Tools 

2.2.1 Highway Safety Manual (HSM) 

The Highway Safety Manual (HSM) was published in 2009 by the American Association of 

State Highway and Transport Official (AASHTO) to assist users in developing road safety 
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management programmes. The HSM provides tools for identifying locations with the most 

potential of crash frequency and severity, identifying risk factors contributing to crashes and 

potential countermeasures to improve road safety, and then evaluating the crash reduction 

effectiveness of selected countermeasures. To determine locations needed for safety 

treatments, the HSM developed a predictive method to estimate the expected average crash 

frequency for a network, facility or individual location. Each predictive model in the HSM 

methodology consists of a Safety Performance Function (SPF), which is adjusted to site 

specific conditions using Crash Modification Factors (CMFs) and to local jurisdiction 

conditions using a calibration factor (C). The general form to estimate the average crash 

frequency for a particular site (x) is as follows: 

���������� = ����� × (����� × ����� × … × �����) × �� 

(Equation 2.2) 

where, ���������� is the predicted average crash frequency for a specific year for site type x, 

�����  is the predicted average crash frequency determined for base conditions of the SPF 

developed for site type x, ����� is the Crash Modification Factor specific to SPF for site type 

x,  C� is the calibration factor to adjust for local conditions for site type x. 

The SPF is an equation that estimates the average crash frequency for a site with the base 

conditions (e.g. a specific set of geometric design and traffic control features). SPFs were 

modelled as a function of traffic volume and roadway characteristics (e.g. number of lanes, 

median type, intersection control, number of approach legs) based on observed crash data 

using statistical regression techniques. In the HSM methodology, SPFs were developed for 

segments and intersections for urban and suburban arterials, rural multilane highways and 

rural two-lane roads. For example, the SPF for four-lane divided arterials is as follows: 



 

18 
 

���� = exp(−12.34 + 1.36 ×ln(����)+ ln (�)) 

(Equation 2.3) 

where, ���� is the predicted average annual multiple-vehicle crashes, AADT is the average 

daily traffic volume (vehicles/day) on roadway segment, L is the length of roadway segment 

(mi). 

In the HSM methodology, a Crash Modification Factor (CMF) is a factor that estimates the 

changes in crash frequency or crash severity due to the implementation of a particular 

countermeasure. 

2.2.2 The International Road Assessment Programme (iRAP) 

The International Road Assessment Programme (iRAP) is a registered charity and a member 

of the United Nations Road Safety Collaboration that was established to support in tackling 

the devastating social and economic cost of road crashes with the view to meet the needs and 

data availability of low- and middle income countries. iRAP has developed a methodology to 

assess and improve the safety of roads by inspecting high-risk roads, developing Star Ratings, 

building Crash Risk Maps and Safer Roads Investment Plans. Star Ratings are developed to 

assess the safety level for a particular road segment, ranging from 1-star to 5-star. The safest 

roads are 4-star and 5-star and the least safe roads are 1-star and 2-star. Star Rating Scores for 

specific road segments are determined based on an assessment of infrastructure attributes and 

are linked to the likelihood and severity of crashes. 

Four Star Rating Score (SRS) are produced separately for four road user types including 

vehicle occupants, motorcyclists, bicyclists and pedestrians. The SRS methodology was 
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developed based on the types of crashes that account for a large proportion of road deaths and 

serious injuries for each road user as shown in Table 2.1. 

Table 2.1. Crash types included in the SRS methodology (iRAP methodology, 2013) 

Vehicle occupants Motorcyclists Bicyclists Pedestrians 

 Run-off road  

 Head-on 

 Intersections  

 Access points 

 Run-off road  

 Head-on 

 Intersections 

 Access points 

 Moving along 

the road 

 Travelling along road 

 Intersections 

 Run-off road 

 Walking along 

road 

 Crossing road 

 

  

The SRS is calculated for each 100 metre segment of road and each of the four road users by 

using the following equation (iRAP methodology, 2013): 

SRS =  Crash Type Scores    

(Equation 2.4) 

where, 

 The SRS represents the relative risk of death and serious injury for an individual road user 

 Crash Type Scores = Likelihood  Severity  Operating speed  External flow influence  
                                         Median traversability  

(Equation 2.5) 

where, 

 Likelihood refers to road attribute risk factors that account for the chance that a crash 

will be initiated; 

 Severity refers to road attribute risk factors that account for the severity of a crash;  



 

20 
 

 Operating speed refers to factors that account for the degree to which risk changes 

with speed;  

 External flow influence factors account for the degree to which a person’s risk of 

being involved in a crash is a function of another person’s use of the road;  

 Median traversability factors account for the potential that an errant vehicle will cross 

a median.  

The iRAP methodology is particularly useful to road safety engineers as a proactive tool that 

can be used where road crash data are not readily available. However, it should not be viewed 

as a substitute for the collection and analysis of crash data. This tool presents several 

limitations: (i) the underlying models are based on research undertaken in HICs which has 

been adapted for use in LMICs, (ii) it focuses mainly on inter-urban roads and, (iii) and 

limited validation has been undertaken in the traffic environment of LMICs.  

2.3. Unique Characteristics of Motorcycles Affecting Motorcyclist Safety 

2.3.1 Non-lane-based movement characteristics 

When moving in a traffic stream, motorcycles use non-lane-based movement characteristics 

which are distinct from the conventional movements of passenger cars. This may increase 

crash risk for motorcyclists (Hsu, Sadullah and Dao, 2003; Minh, 2007; Lee, 2007; Huyen, 

2009; Long, 2012; Shiomi et al., 2013). These manoeuvre patterns has been discussed in a 

number of previous studies. 

2.3.1.1   Alongside manoeuvre  

Due to their small size (with the average width of 0.75 m which accounts for only 25 per cent 

of an average lane width of 3.0 m), motorcycles occupy a small space while moving on roads 
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and they are therefore capable of travelling alongside other motorcycles in the same lane 

(Hsu, Sadullah and Dao, 2003; Minh, 2007; Lee, 2007; Long, 2012). According to Minh 

(2007), alongside manoeuvre is described as the pair-riding manoeuvre of motorcycles and it 

is commonly observable in a motorcycle-dominated traffic environment. 

2.3.1.2   Oblique following manoeuver  

Due to a flexible movement characteristic, motorcycles can follow the preceding vehicle at an 

oblique position (Lee, 2007; Long, 2012). According to Lee (2007), this manoeuvre 

behaviour helps motorcyclists to achieve a better front view and a better condition to overtake 

the preceding vehicles.  

2.3.1.3.   Filtering manoeuver  

Due to a small size and a flexible turning radius, motorcycles can move freely in the traffic 

stream. A motorcycle filters when it moves through the lateral clearance between vehicles to 

achieve a desired speed and a better riding condition (Elliott, Baughan and Broughton, 2003; 

Minh, 2007; Lee, 2007; Long 2012). According to Minh (2007), this behaviour is similar to 

the zigzag movement of motorcycles and they are frequently observable in motorcycle-

dominated traffic environments.  

2.3.1.4.   Swerving manoeuvre  

Due to a small turning radius, motorcycles can make turns easily. In a swerving manoeuvre, 

the motorcycle changes its current direction to move to the left or right beside the front 

vehicle. This may be sometimes followed by an overtaking or filtering movement. Swerving 

is a typical behaviour that represents the non-lane-based movement characteristic of 

motorcycles and can be observed frequently  in motorcycle-dominated traffic environments 



 

22 
 

(Minh, 2007; Lee, 2007; Long, 2012). This movement behaviour may result in a sideswipe 

crash  with a laterally-following vehicle.  

In addition to the aforementioned non-lane-based movement characteristics, in a motorcycle-

dominated traffic situation, motorcycles tend to maintain a short headway with their front 

vehicles (Hsu, Sadullah and Dao, 2003; Lee, 2007; Minh, 2007; Long, 2012). This behaviour 

may lead to the potential of rear-end crashes.   

2.3.2 Braking reaction time 

Braking reaction time is defined as the interval from the instant that the driver recognises the 

existence of an obstacle ahead that necessitates braking to the instant that the driver actually 

applies the brakes (ASSHTO, 2004). According to Green (2000), when passenger car drivers 

are fully aware of the time and location of the brake signal, they can detect a signal and move 

their foot from the accelerator to the brake pedal in about 0.70 to 0.75 sec. However, in the 

same condition, Ecker et al. (2001) found that the mean of braking reaction times for 

motorcycle riders on the rear-wheel and front-wheel brakes were 0.463 and 0.423 sec, 

respectively. Similarly, Minh (2007) measured the reaction times of 100  motorcycle riders 

and found that the average reaction time was 0.52 sec. Davoodi et al. (2011) also measured 

brake reaction time for motorcycle riders and investigated the difference between the brake 

reaction time of older and younger riders. Their findings suggested that the mean and standard 

deviation of motorcycles braking were 0.44 and 0.11 sec, respectively. They also claimed that 

the age and gender of riders did not have a significant effect on their reaction times. 

According to Davoodi et al. (2011), the mean braking reaction time of a motorcycle rider is 

lower than that of a passenger car driver in the same situation. This may be explained by the 

fact that passenger car drivers need more time to lift the foot off the accelerator pedal, move it 
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laterally to the brake, and then depress the pedal, whereas motorcyclists can depress the brake 

pedal directly and instantly (Davoodi et al., 2011).                  

2.3.3 Braking deceleration characteristic  

2.3.3.1   For passenger cars 

The design standard of highways and streets (AASHTO, 2004) recommended a value of 3.4 

m/s2 for deceleration to calculate the stopping sight distance for passenger cars. The Traffic 

Engineering Handbook (ITE, 2009) suggested that a value of 3.0 m/s2 is a comfortable 

deceleration for most passenger car drivers. According to a study conducted by Fambro et al. 

(2000), most passenger car drivers are likely to apply a braking deceleration greater than 5.6 

m/s2 when confronted with an unexpected object in the roadway and approximately 90 % of 

all drivers tend to decelerate at rates greater than 3.4 m/s2 when confronted with an expected 

object.   

2.3.3.2   For motorcycles 

Ecker et al. (2001) conducted a study to determine the maximum deceleration for motorcycles 

by testing Austrian motorcyclists covering the full range of age and riding experience. In their 

test, the braking deceleration was measured under dry road conditions for straight-path 

braking manoeuvres starting from approximately 60 km/h to a full stop. They found that the 

mean of distance-averaged deceleration is 6.19 m/s2 with a standard deviation of 1.2 m/s2. 

Winkelbauer and Vavryn (2004) examined the braking performance of 134 experienced 

motorcyclists and compared between the decelerations produced by using their own 

motorcycles and ABS-equipped motorcycles. The findings revealed that the mean value for 

braking deceleration of all test riders using their own motorcycles was 6.6 m/s² with a 
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standard deviation of 1.4 m/s2 while that of for using ABS-equipped motorcycles was 7.8 m/s² 

with a standard deviation of 1.1 m/s2. Davoodi and Hamid (2013) carried out a study to 

measure the motorcyclists’ braking distances and decelerations for both unexpected and 

expected objects situations associated with wet and dry pavement conditions. For the braking 

manoeuvres to an expected object, the mean and standard deviation of the deceleration values 

on the dry pavement were 4.59 m/s² and 1.04 m/s2 respectively while those of on the wet 

pavement were 3.66 m/s² and 0.72 m/s2 respectively. For the scenario when the riders 

confronted with the need to stop for an unexpected object in the roadway, the mean of 

deceleration was 6.02 m/s² with a standard deviation of 1.32 m/s2. 

The literature review seems to suggest that the average braking decelerations measured in stop 

emergency braking manoeuvre on dry pavements are quite similar and were greater than the 

average braking deceleration for passenger cars under similar conditions.  

 

2.4. Behavioural Modelling for Motorcycles 

To model the behaviour of motorcycles in motorcycle-dominated traffic environments, a 

number of models have been developed to date. Minh (2007) developed a lane selection, gap 

acceptance and adjacent gap acceleration model to describe zigzag manoeuvre of 

motorcycles. They introduced the concept of the “motorcycle dynamic lane” where 

motorcycles do not follow the lanes as passenger cars lane but move flexibly between other 

vehicles. In other words, the motorcycle dynamic lane is not stable as passenger car lane but 

flexible according to the subject motorcycle position. The width of this lane is defined as the 

comfort area around the subject motorcycle and may be determined based on the lateral 

distance between two motorcycles in a paired riding. Similarly, Lee (2007) developed a 
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longitudinal headway, oblique and lateral headway, and path choice model to describe 

motorcycle behaviour based on the concept of the “dynamic virtual lane”. They assumed that 

motorcycles follow virtual lanes formed dynamically in relation to the surrounding vehicles 

but their models focused only on the preceding vehicle which was assumed to be a passenger 

car. It is felt, however, that this assumption seems to be appropriate for traffic dominated by 

passenger cars rather than for traffic where the motorcycle is the predominant mode of 

transport. Moreover, Long (2012) developed a motorcycle-following model to describe non-

lane based movements of motorcycles in mixed traffic condition based on a social force 

model. Although the model primarily captures the behaviour of motorcycles, it is limited in 

terms of explanatory variables considered in the model. 

 

2.5. Motorcyclist Safety Assessment Models 

2.5.1 In motorcycle-dominated traffic environments 

Several researchers have examined the risk factors affecting motorcycle crash frequency in 

the traffic environment of low-income and middle-income countries by developing crash 

prediction models based on historical data and statistical methods.  

For example, Harnen et al. (2006) developed a model to predict motorcycle crashes at 

junctions on urban roads in Malaysia using the generalised linear modelling approach. They 

found that the flow of non-motorcycles on a major road, the approach speed of vehicles, the 

junction geometry, the junction control and the land use are significant factors contributing to 

the occurrence of motorcycle crashes at junctions. In their model, the number of motorcycle 

crashes per year is modelled as a function of contributing factors as follows:  
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MCA = 0.01109 ∙ ����
�.����∙ ����

�.����∙ ���
�.����∙ ���

�.����

∙ exp(0.01515SPEED − 0.1171��� − 0.0874��� − 0.01694���

+ ��CTRL −  ��SHDW + � �LU) 

(Equation 2.6) 

where, MCA is the estimated yearly number of motorcycle crashes; β7 = 0.0 and 0.0315 for 

signalised and non-signalised (CTRL) respectively; β8 = 0.0, 0.02174 and 0.02745 for 

shoulder width (SHDW) of 0.0 m, ≤ 1.0 m and < 1.0 m respectively; β9 = 0.0 and 0.01873 for 

non-commercial and commercial area respectively; QNMm, QNMn are non-motorcycle 

volumes on major road and minor road respectively; QMm, QMn are motorcycle volumes on 

major road and minor road respectively; SPEED is the approach speed on major and minor 

roads; LWm, LWn are the average lane width on major road and minor road respectively; 

LNm, is the number of lanes on major road.   

Indriastuti and Sulistio (2010) developed a probability model to predict the motorcycle crash 

occurrence for the city of Malang in Indonesia using a logistic regression model. They found 

that male riders, an increase in motorcycle ownership, long travel distances and reduced 

riding knowledge have a significant influence on the occurrence of motorcycle crashes. The 

probability of motorcycle crashes is modelled as a function of explanatory variables 

contributing to the occurrence of crashes as follows:   

�(��� )

= 
1

1 + � �(�.���.����.���.������.����.���.�����.���.�����.���.�����.���.�����.���.�����.���.�����.�
 

(Equation 2.7) 

where, P(mca) is probability of a motorcycle rider involving in an crash; x2 is the gender 

factor (x2.1 = male); x6 is the number of motorcycle owned; x10 is the travel purpose factor 
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(x10.1 = social); x12 is the distance factor (x12.1 = < 1.0 km, x12.2 = 1.0 – 5.0 km, x12.3 = 6.0 – 

10.0 km, x12.4 = 11.0 – 15.0 km, x12.5 = 16.0 – 20.0 km).  

A crash is the result of a number of contributing factors and their effects on crashes may be 

different between areas (e.g. rural or urban environment) and countries. Hence, a model 

developed for a specific area or country may not be transferable to other locations without 

calibration and validation. In addition, the usefulness of such models depends on the 

availability and quality of the data used for their modelling, arguably they may be appropriate 

for research purposes and not be appropriate for the practicing transport engineer. 

Manan, Thomas and Andras (2013) developed a safety performance function for fatal 

motorcycle crashes on Malaysian primary roads using the generalised linear modelling 

approach. They established a relationship between motorcyclist fatalities per kilometre and a 

set of factors contributing to fatal motorcycle crashes, and they suggested that increases in 

traffic flow and the number of access points per kilometre contribute to an increase in 

motorcycle crash fatalities. The form of model is as follows: 

MCFatal/km = exp(-4.891)  ADTMC0.404  Access-per-km0.262 

(Equation 2.8) 

where, MCFatal/km is the number of motorcycle crash fatalities per kilometre, Access-per-km 

is number of access points per kilometre; ADTMC is the average daily traffic of motorcycles.  

Using mixed effects logistic regression, Manan (2014) examined the contributions of 

motorcyclist behaviour and road environment attributes to the occurrence of serious conflicts 

involving motorcycles entering primary roads from access points. They suggested that 

motorcyclist behaviour is the main factor in predicting conflict occurrence, but they also 
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found that traffic volume and speed limit factors contribute significantly to the occurrence of 

motorcycle conflicts. 

2.5.2 In conventional traffic environments 

Although a number of researchers focused on investigating the effect of manoeuvre behaviour 

of motorcyclists on crash risk, they mainly focused on the conventional traffic environment of 

high-income countries where the passenger cars are the predominant vehicle type. 

For example, Elliott, Baughan and Saxton (2007) developed a motorcycle rider behaviour 

questionnaire and used generalised linear modelling to investigate the effect of motorcyclist 

behaviour on crash risk in the UK. They found five types of motorcycle rider behaviour 

relating to crash risk (i.e. traffic errors, speed violations, stunts, safety equipment and control 

errors) and suggested that traffic errors are the main factors in predicting crash risk for 

motorcyclists. Savolainen and Mannering (2007) used a crash database from the state of 

Indiana to estimate the probability of motorcyclists’ crash-injury severities based on the 

nested logit model and standard multinomial logit model. They found that poor visibility, 

unsafe speed, alcohol consumption, not wearing a helmet and an increasing motorcyclist age 

are significant factors contributing to the increase of crash-injury severity for motorcyclists. 

Pai and Saleh (2008) developed models to evaluate factors contributing to the severity of 

motorcyclist injuries in sideswipe collisions involving motorcycles at T-junctions in the UK 

and found that motorcyclist injuries were more severe when an overtaking motorcycle 

collides with a turning vehicle and such manoeuvres took place more frequently at unsignaled 

junctions than at signaled junctions. Haque, Hoong and Helai (2009) developed models to 

investigate the factors contributing to motorcyclist fault in motorcycle crashes by using binary 

logistic regression. They examined the effect of roadway characteristics, environmental 
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factors, motorcycle descriptions and rider demographics on the fault of motorcyclists involved 

in crashes at three location types (intersections, expressways and non-intersections). They 

suggested that the likelihood of at-fault crashes on expressways increases with increased 

motorcycle speeds and at-fault crashes at non-intersections increase in wet road surface 

conditions. They also found the potential of not-at-fault crashes decrease with the presence of 

surveillance cameras at intersection. Shaheed, Gkritzab and Hans (2013) used motorcycle 

crash data of Iowa from 2001 to 2008 to investigate the effect of factors on the severity 

outcomes in collisions involving motorcycles based on the mixed logit model. They found 

that the roadway surface condition, clear vision, light conditions, speed limit, and helmet have 

a significant impact on severe injury outcomes.   

2.6. Risk Factors Related To Motorcycle Crash Risk 

2.6.1 Human factors related to motorcycle crash risk 

The aim of studying driver behaviour is to reduce the probability and the consequences of 

crashes related to driver errors within the traffic systems by designing countermeasures to 

prevent these errors (HSM, 2009). Driver errors have been found to be significant 

contributing factors in most crashes and driving behaviour of road users was identified as the 

most important risk factor (Ulleberg and Rundmo, 2003; HSM, 2009). Treat et al. (1977) 

found that the human, the road environment, and vehicle failures are factors contributing to 

approximately 95.4%, 44.2%, and 14.8% of crashes respectively and they also found the 

majority of crash causation is due to a mismatch between the road environment and road 

users’ behaviour as shown in Figure 2.3. Similarly, Sabey and Taylor (1980) found the human 

factors contributed to 95% of the crash causations. The same situation was also stated in the 

study conducted by Sanders and McCormick (1992).  
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Figure 2.3. Proportion of crash causation factor (Treat et al.,1977) 

2.6.1.1   Riding behaviour factor 

Vlahogianni et al. (2012) stated that the common traffic violations related to the movement 

behaviour of motorcyclists were speeding, disobeying traffic signals, making illegal turns and 

maintaining short gaps with the preceding vehicles. Speeding was found to be the most 

frequent traffic violation of motorcyclists (Horswill and Helman, 2003; Elliott et al., 2007). 

Shankar (2001) found that speeding contributed to about two-thirds of motorcyclist deaths in 

single vehicle crashes. Similarly, NHTSA (2007) stated that motorcyclist fatal crashes 

resulted from speeding causation were twice as high in comparison to other heavier vehicle 

types. Savolainen and Mannering (2007) found that speeding significantly increased the 

severity level of motorcycle crashes. According to Pai and Saleh (2007), the effect of 

speeding was more severe at un-signalised junctions. In motorcycle-dominated traffic 

environments, the unique movement characteristics of motorcycles such as swerving or 

weaving, filtering and maintaining short gap with preceding vehicles were found to be 

significant causes affecting motorcyclist safety (Hsu Sadullah and Dao, 2003; Minh, 2007; 

Lee, 2007; Huyen, 2009; Indriastuti and Sulistio, 2010; Long, 2012; Shiomi et al., 2013; 

Ming, Wucheng and Cheng, 2013).   
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2.6.1.2   Operating speed factor  

Elvik et al. (2009) found that high speeds and difference in speed between vehicles in the 

traffic flow are two significant factors contributing to the increase in the probability of crashes 

and serious injuries. They also found the risk of fatal injuries increases by the fourth power of 

the change in speed to which the body is exposed in a crash. 

The higher the speed at the instant a crash occurs the more severe the crash consequence (Lin 

et al., 2003; Lin and Kraus, 2009). Inappropriate speed for traffic conditions was found to 

increase crash risk (Claret, Ward and Truman, 2005). According to Aljanahi, Rhodes and 

Metcalfe (1999), the difference in speed between vehicles in a traffic stream has a significant 

contribution to the occurrence of crashes.             

2.6.1.3   Age, gender and experience of motorcyclist factor 

Riders characteristics such as age, gender and experience were found to have a significant 

influence on their movement behaviours. Young riders were found to have a stronger 

propensity for risky behaviours (e.g. speeding, aggressive behaviour, negligence of traffic 

regulations) and these risky movements have been shown to be associated with the increase in 

motorcycle crash risk (Sexton et al., 2004; Yeh and Chang, 2009; Haque, Hoong and Helai, 

2009). Older riders were found to be more involved in severe injury crashes due to the 

decrease in their physical resiliency and perceptual abilities (Savolainen and Mannering, 

2007; Pai and Saleh, 2007; Nunn, 2011). Limited experience and poor driving skills were 

found to increase the occurrence of crashes (Claret, Ward and Truman, 2005; Chang and Yeh, 

2007; Wong, Chung and Huang, 2010). According to Liu, Hosking and Lenne (2009), 

experienced motorcyclists were more likely to respond  better to hazardous conditions 

compared to inexperienced motorcyclists.  
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2.6.2 Road environment factors related to motorcycle crash risk 

2.6.2.1   Road geometry factor  

Manan (2014) found the number of access points on roads had a significant effect on 

estimating the number of motorcyclist fatalities. They also found the road width and the 

presence of median contributed to the frequency of fatality crashes at access points. Similarly, 

Harnen et al. (2006) found the number of lanes, lane width and shoulder width have an 

influence on the number of motorcycle crashes at junctions. Motorcycle run-off crashes were 

found to occur more frequently at curve road segments (Sexton et al., 2004; Clarke et al., 

2007). Schneider, Savolainen and Moore (2010) found the radius, the length and the shoulder 

width of curves are significant factors contributing to the frequency of motorcycle crashes on 

rural roads. 

2.6.2.2   Road surface condition factor 

Road surface conditions (e.g. surface grip, surface irregularities, potholes, loose materials and 

patch repairs) were found to account for about 15% of total motorcycle crashes (Haworth et 

al., 1997). Shankar and Mannering (1996) stated that road surface conditions have a 

contribution to the occurrence of sideswipe crashes between motorcycles and other vehicles at 

junctions. According to Elliott, Baughan and Broughton (2003), wet bitumen surface caused 

steering problem for motorcyclists, particularly when they rode at high speed or applied a 

sudden brake. They also suggested that parallel longitudinal grooves in the road surface and 

inefficient road markings caused induce instability to motorcycle riders. Similarly, Haque, 

Hoong and Helai (2009) also found wet road surface was significant causation contributing to 

at-fault motorcycle crashes at non-intersections.    
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2.6.2.3   Roadside objects factor 

Roadside objects were found to have a significant contribution to the severity of motorcycle 

run-off crashes (Vlahogianni, Yannis and Golias, 2012). Gabler (2007) found that the fatality 

rate of motorcyclists resulted from guardrail crashes accounted for 42% of all fatalities while 

crashing with concrete barrier accounted for 22% of fatalities. In addition, they also found the 

fatality rates of motorcyclists involved in guardrail crashes were approximately 80 times 

higher than that of for other drivers. Similarly, Daniello and Gabler (2011) found the fatal 

rates of motorcyclists were 7 times higher when crashing in guardrails compared with hitting 

the ground.   

2.6.2.4   Visibility and lighting factor 

Poor visibility was found to increase the severity level of motorcycle crashes (Savolainen and 

Mannering, 2007; Wanvik, 2009). NPRA (2004) found poor visibility increased the frequency 

of motorcycle crashes at intersections. Riding in darkness with no street lighting was also 

found to have an effect on the severity of motorcycle crashes (Lapparent, 2006; Pai and Saleh, 

2008). Pai and Saleh (2007) found motorcycle crashes occurring after midnight were more 

severe, particularly at non-signalised intersections. Similarly, Haque, Hoong and Helai (2009) 

also found motorcyclists’ injuries involved in crashes occurring during night time were more 

severe at both intersections and expressways. 

2.6.3 Other factors related to motorcycle crash risk 

2.6.3.1.   Helmet use factor   

Motorcyclists only rely on their own protection equipment if a crash occurs. The use of 

helmet while riding is a typical protection equipment for motorcyclists. It was found that the 
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enforcement of helmet use significantly increases the motorcyclist safety (Morris, 2006; 

Houston, 2007; Mayrose, 2008). According to Houston (2007), after establishing the helmet 

use law in the USA, the proportion of fatalities related to severe head injuries reduced 

significantly.  

2.6.3.2   Alcohol consumption factor  

Alcohol consumption when riding was found to be a significant factor affecting the increase 

in motorcyclist crash risk (Huang and Preston, 2004; Kasantikul et al., 2005; Lin and Kraus, 

2009). Creaser et al. (2009) found that riding after consuming alcohol increased motorcyclist 

crash risk due to loss of attentiveness, slower reaction times, impaired judgment and poor 

performance on riding skills. Similarly, Haworth, Greig and Nielson (2009) also found 

alcohol consumption was associated with traffic violations such as speeding and non-use of 

helmets. 

 

2.7. Countermeasures  

There are a wide range of safety treatment measures that have been suggested and evaluated 

in a number of studies and tools. This study focused on reviewing several countermeasures 

that may have the potential to apply in urban areas to improve motorcyclist safety in the 

traffic environments of low-income and middle-income countries. The countermeasures were 

reviewed in this study presented in the Highway Safety Manual (ASSHTO, 2009), the iRAP 

toolkit (iRAP, 2013) and the Handbook of Road Safety Measure (Elvik et al., 2009) related to 

road condition and traffic control measures such as providing separate motorcycle lanes, road 

surface condition improvement, speed limit, reduced-speed devices and traffic signs. 
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2.7.1 Providing segregated motorcycle lanes  

The iRAP Toolkit (2015) suggested a countermeasure to reduce the potential for conflicts 

between motorcycles and larger vehicles in motorcycle-dominated traffic environments by 

providing segregated motorcycle lanes. As presented in the iRAP Toolkit (2015), motorcycle 

lanes can be inclusive or exclusive on the roadway. Inclusive motorcycle lanes are installed 

on the existing road and may be separated from the rest of the road by painted lines or 

physical barriers. Exclusive motorcycle lanes are constructed separately from that used by 

other vehicle types.  

Providing separate motorcycle lanes in urban areas appears to reduce swerving or weaving 

manoeuvres by motorcyclists. They also separate motorcyclists from interaction with heavier 

vehicles. Therefore the frequency and severity of motorcycle crashes are reduced. The iRAP 

Toolkit (2015) suggested separate motorcycle lanes of at least 1.8 m wide for each direction 

and at least 3.6 m wide if overtaking is permitted. The effect of this countermeasure on 

motorcycle crashes is estimated within the iRAP tool as shown in Table 2.2. 

Table 2.2. Estimated effect of segregated motorcycle lane on motorcycle crash (iRAP, 2013) 

Facilities for Motorcycles Likelihood of along crash type 

Segregated one-way motorcycle path with barrier  0.0 

Segregated one-way motorcycle path without barrier  0.1 

Segregated two-way motorcycle path with barrier  0.0 

Segregated two-way motorcycle path with barrier  0.1 

Dedicated motorcyclist lane on roadway 1.0 

None  2.0 

Along crash type is defined as a crash occurs along the road between motorcycle and heavier vehicle  
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2.7.2 Road surface rehabilitation and resurfacing 

Due to ageing, weathering and traffic activities, road surfaces may become worn or damaged. 

Therefore, road surface rehabilitation or resurfacing treatment is needed to improve the road 

surface to the required level of service. This treatment may provide a road surface with a high 

resistance to skidding and therefore reducing the potential of loss of control and rear-end 

crashes. As presented in the iRAP methodology (2013), the estimated effect of road surface 

condition on the likelihood of motorcycle crashes is shown in Table 2.3.  

Table 2.3. Estimated effect of road condition on motorcycle crash (iRAP, 2013) 

Road condition 
Likelihood of motorcyclist crash 

Run-off Head-on (loss of control) 

Good 1.0 1.0 

Medium 1.25 1.25 

Poor 1.5 1.5 

 

2.7.3 Improving road surface friction 

Friction affects both steering and braking distances and therefore good friction is an essential 

condition for vehicles to ride safely (Elvik et al., 2009). Improving the friction of the road 

surface is to ensure a sufficient road grip for manoeuvring and braking during all weather and 

road surface conditions for normal traffic conditions. The friction of road surface can be 

improved by laying a new road surface with extra good friction (e.g. porous asphalt) on top of 

the old road surface (Elvik et al., 2009). Improving friction has been found to have a 

significant effect on crash reduction. The relationships between friction and crashes have been 

investigated in a number of studies and were summarised by Elvik et al. (2009) as shown in 
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Table 2.4. The effects of friction improvement on crash reduction presented in this table were 

summarised from various previous studies conducted in different countries (e.g. UK and US). 

In addition, those studies focused on all crash types and all transport modes rather than 

focused on a particular crash type or motorcycle crashes only.  

Table 2.4. Effects of friction improvement on crash reduction (Elvik et al., 2009) 

Measure Types of crashes effected Percentage of reduction 

Increase of friction by 0.05, initial 

friction below 0.50 

All crashes 10% 

Crashes on wet roads 35% 

Crashes on wet roads 1% 

Increase of friction by 0.10, initial 

friction below 0.50 

All crashes 17% 

Crashes on wet roads 42% 

Crashes on wet roads 10% 

Increase of friction by 0.25, initial 

friction below 0.50 

All crashes 32% 

Crashes on wet roads 56% 

Crashes on wet roads 12% 

  

2.7.4 Road markings 

Road markings have been applied to direct traffic by indicating the path of the carriageway 

and marking the road in relation to the surroundings, in order to help drivers to drive safety 

and comfortably. For example, the centre lines separate opposite traffic streams. Lane 

marking lines separate traffic lanes for traffic in the same direction. Edge lines mark the outer 

edge of the carriageway. Elvik et al. (2009) found that installing traffic lane lines and centre 

rumble strips reduced the number of all crashes to 18% and 4% respectively.  
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2.7.5 Speed limits 

According to Elvik et al. (2009), a signposted speed limit states the highest permitted driving 

speed on a road and therefore the effects of changing speed limits on crashes, injuries and 

fatalities depend on the effects of the speed limit changes on the operating speeds. Elvik, 

Christensen and Amundsen (2004) summarised the relationship between speed limit changes 

and operating speed and they found when the speed limit is changed by 10 km/h, operating 

speed changes by about 2.5 km/h. They also suggested the relationship between changes in 

speed limit and changes in average operating speed may be described as a linear function as 

follows: 

� = 0.2525� − 1.2204 

(Equation 2.9) 

where, y is the changes in average speed (km/h), x is the changes in speed limit (km/h). 

Accordingly, they suggested the relationship between speed changes and changes in numbers 

of crashes, injuries and fatalities due to the changes of average operating speed may be 

described as a power function as follows: 
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(Equation 2.10) 

where, exponent = 3.6 for all fatal crashes, exponent = 2.4 for all serious injury crashes, 

exponent = 1.2 for all slight injury crashes, exponent = 2.0 for all injury crashes and exponent 

= 1.0 for all property-damage-only crashes.  
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2.7.6 Speed-reducing devices 

Speed-reducing devices have been applied to force vehicles to keep to low speeds, in order to 

reduce the risk of crashes. Several speed-reducing devices are commonly used such as speed 

humps and rumble strips (Elvik et al., 2009).  

Speed humps are artificial elevations installed on the road to reduce the speeds of vehicles. 

Speed humps were found to reduce the operating speed and injury crashes to 24% and 41 % 

respectively (Elvik et al., 2009). As presented in the HSM (2009), the installation of speed 

humps reduces the total number of crashes to 0.60 compared to the absence of this treatment.  

Rumble strips are changes constructed in the road surface using coarse road surfaces or strips 

of plastic that lead to knocks, vibration or noise within the vehicles. Rumble strips were found 

to reduce the number of injury crashes at junctions by around 33% and the number of 

property-damage-only accidents by around 25% (Elvik et al., 2009).  

It is felt that these treatments seem to be appropriate for convention traffic environment rather 

than for motorcycle-dominated traffic environment as speed humps and transverse rumble 

strips can de-stabilise motorcycles.  

2.7.7 Variable message signs 

Variable message signs (VMS) are traffic signs on which a feedback or warning message can 

be displayed or altered as required. Variable warning signs may be used to warn road users of 

hazardous road surface condition, short headways between vehicles, or exceeding speed limit. 

For example, “advisory speed signs” are installed to warn drivers need to reduce their speeds. 

As presented in the HSM (2009), the provision of advisory speed signs reduces the total 

number of injury crashes to 0. 87 compared to the absence of signage. 
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Variable feedback signs may be used to inform information to road users about their 

behaviours in real time. These signs are commonly used to give feedback on compliance with 

speed limits and on too short headways between vehicles that may lead to the potentials of 

crashes. They are wired up to detectors and inductive loops installed in the road surface to 

record driver behaviour and to provide immediate feedback on it. For example, “changeable 

speed warning signs” give drivers feedback regarding their real-time speeds. As presented in 

the HSM (2009), the installation of changeable speed warning signs reduces the total number 

of injury crashes to 0.54 compared to the absence of signage. 

As summarised by Elvik et al. (2009), the effect of different traffic signs on the reduction of 

crashes is shown in Table 2.5. 

Table 2.5. Effects of variable message signs on crash reduction (Elvik et al., 2009) 

Measure Types of crashes effected Percentage of reduction 

Crash warning signs Injury crashes 44% 

Weather-controlled speed limits 
Crashes in winter 13% 

Crashes in summer 2% 

Queue warnings on motorways Rear-end crashes 16% 

Collective feedback signs for speed All crashes 46% 

Individual feedback signs for speed All crashes 41% 

Individual feedback signs for close 

following 
Rear-end crashes 6% 
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2.8. Summary 

The literature review revealed that a number of studies focusing on motorcyclist safety have 

been conducted in a number of countries to date. Most of these studies developed models to 

predict crash frequency or crash severity for motorcycles based on historical crash data and 

statistical methods. The key drawbacks of this traditional approach are that the movement 

characteristics of motorcycles are not fully considered and it is problematic to obtain reliable 

historical crash data for model development purposes. 

As also revealed from the literature review, the use of traffic conflict technique as a surrogate 

measure has been evaluated and validated in a number of studies carried out in different 

countries. Several findings from the previous studies may be summarised as follows:  

 There is strong relationship between the frequency of conflict and crash events 

(Amundsen and Hydén, 1977; Miglez, Glauz and Bauer, 1985; Hydén, 1987; 

Svensson, 1992; Archer, 2004; Gettman et al., 2008; Ismail, 2010; Guo et al., 2010).  

 The causal mechanism for both conflict and crash events are similar (Guo et al., 2010).  

 The effects of contributing factors on the occurrence of conflicts and crashes were not 

found to be different (Guo et al., 2010).        

From these points, it may be suggested that the traffic conflict analysis may be used in road 

safety assessment as a surrogate measure to overcome the limitations of traditional method 

which based on analysing historical crash data. According to Svensson (1992), the use of 

surrogate measures might be as good as actual crash data in estimating the expected number 

of crashes. 
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Moreover, the literature review also indicated that most of these studies focused on the 

conventional traffic environment found in high-income countries where passenger cars are the 

predominant vehicle type. Therefore, it seems to suggest that there is a lack of studies 

focusing on investigating the contribution of non-lane-based movement characteristics of 

motorcycles to motorcyclist safety in the traffic environment where the motorcycle is the 

predominant mode of transport.   

There is a need therefore to obtain a surrogate measure to address the limitations of traditional 

approach and to develop a methodology to capture crash potentials associated with the unique 

movement behaviours of motorcyclist in motorcycle-dominated traffic environments. The 

preliminary results of the developed models may be used to support traffic engineers in 

improving urban road safety and developing appropriate countermeasures to mitigate the 

crash risk for motorcyclists. The literature review of studies on motorcyclist safety is 

summarised in Table 2.6.  

Table 2.6. Summarisation of studies on motorcyclist safety assessment 

Authors Year 
Traffic 

environments 
Area 

Modelling 

approach 
Risk factors 

Manan  2014 
Motorcycle 

dominated 

Urban 

/Rural  

Surrogate 

measures 

Speed, manoeuvre behaviour, rider 

gender, helmet use. 

Shaheed et al. 2013 Conventional Urban Traditional 

Roadway surface condition, clear 

vision, light conditions, speed limit, 

and helmet. 

Manan et al. 2013 
Motorcycle 

dominated 
Urban Traditional 

Number of access points, presence of 

median, land use. 

Daniello and 

Gabler 
2011 Conventional 

Urban 

/Rural 
Traditional Roadside objects 

Nunn 2011 Conventional Urban Traditional Roadside objects, risky behaviour, 
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speed, alcohol and drugs, lighting, age 

of riders. 

Rome et al. 2011 Conventional 
Urban 

/Rural 
Traditional 

Helmet use and protective clothing, 

age and experiences of riders. 

Schneider et 

al. 
2010 Conventional Rural Traditional 

Radius and length of horizontal curve, 

shoulder length. 

Indriastuti and 

Sulistio 
2010 

Motorcycle 

dominated 
Urban Traditional 

Rider gender, travel purpose, travel 

distance, rider experience, number of 

motorcycles owned.  

Haque and 

Chin 
2010 Conventional 

Urban 

/Rural 
Traditional 

Road type, curbs, nighttime, red light 

cameras. 

Haque et al. 2009 Conventional Urban Traditional 

Errors, pavement surface, lighting, 

speed limit, pillion passenger, engine 

capacity, age of rider. 

Haworth et al. 2009 Conventional 
Urban 

/Rural 
Traditional 

Alcohol consumption, speeding, non-

use of helmets and unlicensed riding. 

Wanvik 2009 Conventional 
Urban 

/Rural 
Traditional 

Road lighting, weather condition, 

road surface conditions. 

Yeh and 

Chang 
2009 Conventional 

Urban 

/Rural 
Traditional Age, gender and experience of riders. 

Li et al. 2008 Conventional 
Urban 

/Rural 
Traditional 

Road type, gender and age of riders, 

helmet use. 

Majdzadeh et 

al. 
2008 Conventional 

Urban 

/Rural 
Traditional 

Road conditions,  gender and age of 

riders, weather conditions  

Pai and Saleh 2008 Conventional Urban Traditional 

Crash type, manoeuvre behaviour, 

junction control, engine size, speed 

limit, light condition, weather 

condition, age and gender of riders. 

Elliott et al.  2007 Conventional Urban Traditional 

Traffic errors, speed violations, 

stunts, safety equipment and control 

errors, age and experience. 

Chang and 

Yeh 
2007 Conventional Urban  Traditional 

Age and gender of riders, traffic 

violations, negligence of potential risk 
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Savolainen 

and 

Mannering 

2007 Conventional 
Urban 

/Rural 
Traditional 

Crash type, roadway characteristics, 

alcohol consumption, helmet use, 

unsafe speed. 

Clarke et al. 2007 Conventional 
Urban 

/Rural 
Traditional 

Crash type, curves, age and 

experience of riders 

Harnen et al. 2006 
Motorcycle 

dominated 
Urban Traditional 

Speed, lane width, number of lanes, 

shoulder width and land use at 

junctions 

Dandona et al. 2006 Conventional 
Urban 

/Rural 
Traditional 

Drivers licences, helmet use, vehicles 

conditions 

 Lapparent 2006 Conventional Urban  Traditional 

Crash types, lighting, weather 

condition, gender and age of riders, 

helmet use 

Keng 2005 Conventional 
Urban 

/Rural 
Traditional 

Speed limit, weather condition, 

lighting, age and gender of riders,  

helmet use 

Claret et al. 2005 Conventional 
Urban 

/Rural 
Traditional 

Speeding, age and gender of riders, 

alcohol consumption, helmet use 

Lin et al. 2003 Conventional 
Urban 

/Rural 
Traditional 

Risky behaviour, alcohol 

consumption, traffic violations, age 

and experience of riders 

Ferrando et al. 2000 Conventional Urban  Traditional Helmet use, age and gender of riders 

Shankar and 

Mannering 
1996 Conventional 

Urban 

/Rural 
Traditional 

Roadway conditions, vehicle and 

rider characteristics 

 Conventional: conventional traffic environments where passenger cars are the predominant 

vehicle type;  

 Motorcycle dominated: traffic environments where motorcycles are the predominant mode of 

transport; 

 Traditional: the traditional road safety approach which is based on analysing historical crash 

data;   

 Surrogate measure: the surrogate road safety approach which is based on analysing traffic 

conflicts. 
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CHAPTER 3 

METHODOLOGY 

 
 

3.1. Introduction    

The overall aim of this research is to improve road safety for motorcyclists in a motorcycle-

dominated traffic environment of urban roads. To achieve this, it appears necessary to develop 

a model capable of capturing satisfactorily the potential of motorcycle crashes for this 

particular traffic environment with the view to identify treatment measures to prevent them. 

As stated in Chapter 1, in a motorcycle-dominated traffic situation, motorcycles perform non-

lane-based movements which are distinct from lane-based movements of passenger cars in a 

conventional traffic environment. Although these movement characteristics are found to be 

the predominant cause for the majority motorcycles crashes in urban areas, it seems there are 

no models that take them into account explicitly.  

To fulfil this gap, this research seeks to develop models to estimate the potential of rear-end 

and sideswipe crashes which are two major crash types associated with the non-lane-based 

movement behaviour of motorcyclists in a motorcycle-dominated traffic environment. The 

proposed models may support traffic engineers in detecting hazardous traffic locations 

associated with higher crash potentials and assessing their contributing risk factors with the 

aim to develop appropriate countermeasures to mitigate the crash risk for motorcyclists. 

This chapter comprises six sections. The first section describes the overall approach of this 

research and the overall reasoning is outlined in the next section. The third section describes 

the modelling approach associated with the non-lane-based movement characteristics of 
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motorcycles that may lead to the crash risk for motorcyclists. The fourth section presents the  

techniques that are used to develop crash risk models. The fifth section outlines the approach 

used to determine the contributing factors included in the models and the approach used to 

determine countermeasures is shown in the final section.         

 

3.2. Overall Approach 

The literature review revealed that a number of models and systems have been developed to 

date to estimate the frequency of motorcycle crashes or the severity of crashes in terms of 

injuries and fatalities or in measuring the relative risk of crashes (road scoring) based on the 

assessment of attributes related to the infrastructure, the traffic environment and the road 

users (Archer, 2004; Elvik at al., 2009). However, the application of these tools may produce 

eroneous results because: 

1. They are not appropriate for the motorcycle-dominated traffic situation which is 

common in a number of low-income and middle-income countries.  

2. There is lack of satisfactory crash data and therefore it is felt that they may not capture 

satisfactorily motorcycles’ crash types which have been found to account for the 

majority of motorcyclists’ injuries and fatalities in urban environments (section 1.3).  

3. They do not consider the non-lane-based movement characteristic of motorcycles 

which has been found to have a significant contribution to the occurrence of 

motorcycle crashes.  

To address these three gaps, this study proposes a methodology to assess the motorcyclist 

safety focussing on: 
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1. The assessment of motorcyclist safety in a motorcycle-dominated traffic environment 

where motorcycle is the predominant mode of urban transport.  

2. The estimation of the risk for rear-end and sideswipe crash types which are the two 

major types of motorcycles’ crashes in urban areas (Manan and Várhelyi, 2012; Ming, 

Wucheng and Cheng, 2013; DoT, 2013). 

3. The modelling of non-lane-based movement of motorcycles as a significant factor 

contributing to the potential of the above crash types (Long, 2012; Ming, Wucheng 

and Cheng, 2013; DoT, 2013). 

It was therefore felt reasonable to suggest that to meet the above objectives, it was critical to 

understand the interactions between the elements of a traffic system as shown in Figure 3.1. 

The traffic system is complex and dynamic in nature due to the relationships amongst its 

elements that include the vehicles, the drivers, the road infrastructure and the overall road 

environment. Therefore, the occurrence of a road crash was considered as the result of 

inappropriate interactions between or amongst these components (Archer, 2004). 

 
 

 

 

 

 

 

 

 

Figure 3.1. Interactions between elements in a traffic system (Archer, 2004) 

Driver 
Performance 

and behaviour 
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Design, control, maintenance 
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Based on this system and by studying the major causation resulting in crashes, this study 

proposes a methodology to estimate the crash risk for motorcyclists resulted from the 

contribution of infrastructure (i.e. road attributes), traffic condition (i.e. motorcycle-

dominated traffic environment) and road user behaviour (i.e. non-lane-based movement 

behaviour of motorcyclist). The contribution of vehicle-related factors were not considered as 

it was felt to be beyond the scope of this research.        

 

 

 

 

 

 

     Figure 3.2. Attributes contributing to motorcyclist crash risk   

To capture the contribution of these three components to crash risk, the non-lane-based 

movement behaviour of motorcyclists was chosen as the core of the modelling process in 

which the road environment and associated traffic conditions were the predominant factors 

affecting the movement characteristics of motorcycles and ultimately their crash potential (see 

Figure 3.2). Having assessed the crash potentials for a specific location using the above 

approach, countermeasures may be designed based on the assessment of the relative 

importance of risk factors contributing to the overall motorcycle crash risk. The overall 

approach of this process is shown in Figure 3.3.  

 

Road attributes 
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Crash risk for 
motorcyclists 
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Contributing factors: Developing crash risk 

models for motorcycles 

 Rear-end crash risk 

 Sideswipe crash risk 

Assessing crash risk for 

motorcyclists 

Assessing the relative 

importance of risk factors 

contributing to crash risk 

Proposing new concept of 

Conflict Modification Factor 

(CoMF) 

Selecting appropriate 

countermeasures  

Improving motorcyclist safety 

(Chapter 4) 

(Chapter 4) 

(Chapter 9) (Chapter 9) 

(Chapter 7) 

(Chapter 9) 

(Chapter 4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 3.3. Overall approach to improve motorcyclist safety 

 

3.3. Overall Reasoning 

The first step of the above process is to develop appropriate crash risk models and use them as 

a tool to identify hazardous traffic locations in need of countermeasures. Two crash risk 

models that capture satisfactorily the majority of total motorcycle crashes associated with the 

movement characteristics of motorcycles are suggested in this research. The first model is for 

Motorcycle-dominated 
traffic environment factor 

Non-lane-based movement 
behaviour factor 

Road attribute factors 
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the rear-end crashes that may occur when a motorcycle follows the front vehicle in a short 

distance. The other one is for the sideswipe crashes that may occur when a motorcycle 

swerves to the left or the right suddenly and may be hit on the side by a vehicle following the 

motorcycle on its side. The second step of this approach uses the outputs of developed models 

to determine appropriate countermeasures to prevent the occurrence of crashes based on the 

concept of the Conflict Modification Factors (CoMF). This new concept is based on the 

change in the relative risk of the contributing factors and may be used as a measure to 

evaluate the effectiveness of the selected countermeasures.       

However, the proposed theoretical models should be calibrated and validated using real data 

to be of practical use. Consequently, road segments from the city of Danang in Vietnam were 

chosen as representative of a motorcycle-dominated traffic environment for this purpose as 

Vietnam is a developing country where motorcycles constitute over 80% of total traffic on 

urban roads and motorcycle crashes account for nearly 70% of the total road crashes in urban 

areas. It is envisaged however that the proposed methodology may be transferable to similar 

environments where the motorcycle is the predominant mode of urban transport.  

 

3.4. Definition of Non-lane-based Movements in the Modelling Process  

To take into consideration the causation of non-lane-based movements resulting in crash 

potentials, it was critical to understand the characteristics of this particular movement as 

stated in Chapter 1. It is felt that due to their small size and flexible turning radius, 

motorcycles can manoeuvre relatively freely in the traffic stream. Particularly in a 

motorcycle-dominated traffic environment, motorcycles do not conform to lane discipline and 

tend to swerve to change their direction and speed frequently. Also, because they occupy a 
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small space when travelling, motorcycles are able to travel alongside with other vehicles in 

the same car-lane as well as filter through the lateral clearances between vehicles (section 

2.3.1). These movement characteristics were described to be as the non-lane-based 

movements characteristics of motorcycles (Minh, 2007; Lee, 2007; Long, 2012; Shiomi et al., 

2013). Such movements are found to be major causes of crashes for motorcyclists (Hsu, 

Sadullah and Dao, 2003; Amelia and Harnen, 2010; Long, 2012; Manan, 2014). As stated in 

Section 1.3, rear-end and sideswipe crashes resulted from these movements account for more 

than 20% and 30% of the total motorcycle crashes respectively. Consequently, the causation 

of these non-lane-based movements potentially resulting in the motorcycle crashes risk taken 

into account in this study may be illustrated in Figure 3.4.   

    

   

 

 

 

 

 

 

Figure 3.4. Consequence of non-lane-based movements resulting in crash risk 

 

3.5. Techniques Used to Build Motorcycle Crash Risk Models 

The method used to develop rear-end and sideswipe crash risk models was based on the 

discrete choice analysis and the traffic conflict technique. The former was adopted to capture 

the non-lane-based movement behaviour of motorcyclists that lead to the potential of rear-end 

and sideswipe crashes and the latter was employed as a surrogate measure to traditional 
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approach to determine the occurrence of these two crash potentials. The use of discrete choice 

analysis and traffic conflict technique in this study is justified in the following sections.   

3.5.1 Applying the discrete choice analysis   

The use of the discrete choice analysis for modelling the non-lane-based movement behaviour 

of motorcyclists in this study may be justified as follows. First, non-lane-based manoeuvre 

behaviour may be regarded as a discrete choice decision made by the motorcyclists for their 

next movements under given traffic conditions generated by the surrounding vehicles. 

Therefore, it was felt that the discrete choice theory may capture this assumption 

satisfactorily. Second, the discrete choice models are designed to be calibrated on real data, 

thus the proposed models may be calibrated from real traffic data collected in the field. 

The discrete choice analysis is a methodology used to model the choice from a set of mutually 

exclusive and collective options (Ben-Akiva and Lerman, 1985). A choice is defined as an 

outcome of a sequential decision-making process that includes the following steps: (1) 

defining the choice problem, (2) determining available options, (3) evaluating the attributes of 

these options, (4) choosing the most attractive option, and (5) implementing this choice. As 

presented by Ben-Akiva and Lerman (1985), the framework of discrete choice theory is 

defined by four components:  

 The decision maker: denotes the decision-making entity which can be an individual 

person, group of people, a firm or an organization. 

 The set of options (choice set): denotes available options that a decision maker 

considers during a choice process. 
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 Attributes of options: denote the attractiveness of the options of the choice set and 

each option is characterised by a set of attributes.  

 Decision rules: denote the process used by the decision maker to choice an option 

from the choice set.  

Based on this framework, a choice of a manoeuvre made by a motorcyclist may be viewed as 

an outcome of a sequential decision-making process that includes the following components 

(see Figure 3.5): 

 The decision maker of this process is the motorcyclist who will evaluate available 

movement options to choose for his/her next path. 

 The choice set consists of two movement options: keep the current direction 

(following manoeuvre and braking manoeuvre) or change the current direction 

(swerving manoeuvre).  

 The attributes of the movement options: in order to choose either a following or a 

swerving manoeuvre, the motorcyclist will evaluate the current driving conditions 

with respect to the surrounding environment. The presence of neighbouring vehicles 

on the road directly affects the motorcyclists’ decisions for their next movement 

choices. Therefore, the attributes of traffic condition will be included in the modelling 

process. 
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Figure 3.5. The process of choosing manoeuvre behaviour of motorcyclists 

3.5.2 Applying the traffic conflict technique 

The traditional methods for road safety assessment are based on historical crash data to build 

a safety performance function or a crash prediction model to estimate the expected crash 

frequency (Saunier, 2013). However, this method faces challenges regarding to obtaining a 

reliable data for model development process (see section 2.1.1). Therefore, there is a need for 

surrogate measures for road safety assessment that do not rely on historical crash data but:  

1) they are related to traffic events that are more frequent than crashes and can be 

observed in the field; and  

2) they are correlated to crashes logically and statistically.  

As stated in Section 2.1.2, to fulfil this need, the traffic conflict technique has been proposed 

as a surrogate method to crash history data analysis (Amundsen and Hydén, 1977; Hydén, 

1987; Svensson, 1998). Albeit not a better technique compared to those using crash data, 

according to Svensson (1998), the traffic conflict technique is an approach to estimate crash 

risk based on determining and measuring conflicts which have the characteristics of crashes, 
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but where no crash actually results. Amundsen and Hydén (1977) defined a traffic conflict as 

“an observable situation in which two or more road users approach each other in space and 

time to such an extent that there is the risk of crash if their movements remain unchanged”. 

According to this definition, a conflict event will lead to a crash if road users do not take 

sufficient evasive action to avoid it. Therefore, a crash is always preceded by a conflict and 

conflict events may be used as a measure to assess the likelihood of crashes (see Figure 3.6). 

Based on this approach, a motorcycle crash risk is defined in this study as a motorcycle 

conflict event potentially resulting in a crash if the motorcyclists involved in the conflict do 

not take evasive action properly. 

 

 

 

 

       

 

Figure 3.6. The conflict and crash events 

In road safety analysis, using historical crash data is the most useful reactive approach. Good 

quality data are required for this to be reliable. However, in some LMICs good crash data are 

not readily available (Lynam, 2012; WHO, 2015) and alternative techniques must be used. 

Therefore to deal with this issue, it was felt necessary in this study to apply the traffic conflict 

technique as a surrogate measure to historical crash analysis method to determine the risk of 
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rear-end and sideswipe crashes for motorcycles. The traffic conflict technique proposed to use 

in study was based on the following properties:  

 There is statistical relationship between the frequency of conflict and crash events 

(Amundsen and Hydén, 1977; Miglez, Glauz and Bauer, 1985; Hydén, 1987; 

Svensson, 1992; Archer, 2004; Gettman et al., 2008; HSM, 2009; Ismail, 2010; 

Laureshyn, 2010; Guo et al., 2010). Gettman et al. (2008) found that the ratio of 

traffic conflicts to actual crashes may be 20,000 to 1. 

 The causal mechanisms for both conflict and crash events are similar (Guo et al., 

2010). According to Laureshyn (2010), the occurrence of a crash is always proceeded 

by a conflict.  

 The effects of contributing factors on the occurrence of conflicts and crashes do not 

seem to be different (Guo et al., 2010).        

In addition, the use of traffic conflict technique in this study was further supported by the 

following three reasons:    

 The traffic conflict technique is based on observing the interactions of road users in 

the field, therefore this method may be used to assess the contribution of non-lane-

based movement behaviour of motorcyclists to crash potentials. 

 Traffic conflicts are more frequent than crashes and therefore the data needed for 

assessing motorcycle crash risk can be collected in a short period time using video 

recordings (Ismail, 2010; Laureshyn, 2010). In addition, road safety improvement as a 

result of countermeasures for a specific location may be evaluated quickly based on 

the observation of traffic conflicts (Guo et al., 2010).  
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 Traffic conflicts are observable events, therefore both traffic condition features and 

road environment factors that contribute to crash potentials can be studied, as all these 

data can be obtained together with traffic conflict events in the field (Ismail, 2010; 

Laureshyn, 2010). 

To determine a traffic conflict event, several measures have been developed to date. One of 

the most commonly known measures is “Time-to-Collision” (TTC) which was initially 

proposed by Hayward (1972). TTC is defined as “the time that remains until a crash between 

two vehicles would have occurred if the crash course and speed difference are maintained” 

(Hayward, 1972). This measure was then utilised by several researches for traffic safety 

assessment (Hyden, 1987; Hayward, 1972; Sayed et al., 1994). For vehicles manoeuvring in 

the same direction, TTC can be calculated by: 

��� =
(�� − ��)− � �

�� − � �
 

(Equation 3.1) 

where, PL and PF are the positions of the leading and following vehicles respectively, LL is the 

length of the leading vehicle, vL and vF are the speeds of the leading and following vehicles 

respectively. 

The major advantage of TTC is that it is a very simple time-based indicator in use and 

calculation, and therefore this measure has been used widely in traffic safety studies (Wang, 

2013). However, TTC still has the following drawbacks.  

 TTC is implicitly represented by the time-value derived from measures of speed and 

distance (Equation 3.1). This implies that all minimum TTC values of, for example, 

1.0 second are regarded as having an equal level of severity irrespective of whether the 
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speed used in the calculation is 10 km/h or 100 km/h. The TTC concept may therefore 

be less useful as a comparative measure of crash risk (Archer, 2004; Ismail, 2010; and 

Wang, 2013).  

 TTC does not consider the potential evasive actions after the conflict occurrence. The 

fact is that drivers have varied reaction times and vehicles have varied braking abilities 

under different speed levels and road surface conditions. Therefore, different conflict 

types can have different levels of crash potentials with the same TTC. Even for the 

same conflict type, different speeds can pose different levels of difficulty for drivers to 

avoid the conflict as well as different levels of crash severity (Archer, 2004; Ismail, 

2010; and Wang, 2013).   

Therefore, to fulfil the above two gaps, the concept of Stopping Distance (SD) was suggested 

as a measure to determine traffic conflicts. The SD concept was originally proposed by Allen, 

Shin and Cooper (1978) and thereafter has been adopted by a number of researchers for traffic 

safety assessment (Gettman and Head, 2003; Oh, Park and Ritchie, 2006; Son, Kweon and 

Park, 2008). Oh, Park and Ritchie (2006) proposed a Stopping Distance Index based on the 

concept of Stopping Distance to assess the potential of rear-end crashes. According to them, 

to avoid rear-end collisions, the stopping distance of the leading vehicle should be larger than 

that of the following vehicle and may be calculated as follows: 

�� ∗ ℎ +
��
�

2��
> �� ∗ � +

��
�

2��
 

(Equation 3.2) 

where, vL and vF are the speeds of the leading and following vehicle respectively, aL and aF 

are the braking deceleration of the leading and following vehicle respectively, h is the time 

headway between the two vehicles,  is the reaction time of drivers.  
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As illustrated in Equation (3.1) and (3.2), the “Time-To-Collision” concept is defined as a 

function of speed and distance while the “Stopping Distance” concept is calculated as a 

function of vehicle speed, driver time reaction and vehicle braking deceleration. Therefore, 

for the purpose of this study, to evaluate the effect of the unique characteristics of 

motorcycles (e.g. braking reaction time, maximum braking deceleration) on crash risk that are 

distinct from other vehicle types (see sections 2.3.3 and 2.3.3), this study adopted the concept 

of Stopping Distance to calculate Threshold Safety Distance (TSD) indicators in order to 

determine the rear-end and sideswipe conflicts. 

 

3.6. Risk Factors Determination Approach 

Any factor that increases the probability of crash occurrence and crash severity is a risk factor 

and it is statistically related to crash frequency and severity (Elvik et al., 2009). These risk 

factors affect the consequence of events before, during and after a crash period (HSM, 2009; 

WHO, 2013). Therefore the main aim of road safety analysis is to investigate risk factors 

associated with the occurrence of a crash with the view to identify appropriate 

countermeasures to mitigate crash frequency and severity (HSM, 2009; Elvik et al.,2009; 

WHO, 2013). To achieve this, it is necessary to understand the cause and effect relationships 

related to crash probabilities.  

The occurrence of a road crash is the result of a series of events effected by a large number of 

risk factors related to the components of the traffic system. Haddon (1980) developed a matrix 

to identify risk factors before, during and after the crash related to human, vehicles and the 

environment as shown in Table 3.1. Haddon’s matrix assists in understanding driver 

behaviour, road environment and vehicle factors that influence the frequency and severity of 
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crashes. Once risk factors associated with crashes are identified and evaluated, appropriate 

countermeasures may be developed to prevent the occurrence of crashes and their severities. 

For the pre-crash phase (before-crash period), countermeasures are determined to prevent the 

crashes from occurring. The crash phase (during-crash period) is related to interventions that 

reduce the severity of crashes if they occur. The post-crash phase (after-crash period) is 

associated with measures that mitigate the outcome of crashes after they have occurred.  

Table 3.1. The Haddon Matrix (Haddon, 1980)  

Phase Human factors Vehicle factors Environment factors 

Pre-crash 

Factors 

contributing 

to increased 

risk of crash 

Distraction, 

fatigue, poor 

judgment, age, 

alcohol and drug 

use, experience 

and skill, driving 

behaviour. 

Worn tyres, 

lighting, braking, 

handling, speed 

management. 

 

 

Road geometry, 

signs and markings, 

road surface, 

surroundings, traffic 

condition, speed 

limits. 

Crash 

Factors 

contributing 

to crash 

severity 

Vulnerability to 

injury, age, failure 

to wear a seat belt, 

driving speed, 

sobriety. 

Occupant 

restraints, other 

safety devices, 

crash protective 

design. 

Pavement friction, 

grade, roadside 

environment. 

Post-crash 

Factors 

contributing 

to crash 

outcome 

Age, gender. Ease of removal of 

injured passengers, 

fire risk. 

Emergency 

response, medical 

treatment. 
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Based on Haddon’s approach, this study seeks to identify and evaluate critical risk factors 

related to the pre-crash and crash phases by considering human and environment factors as 

shown in Table 3.2. When the effects of these risk factors on motorcycle crash potentials are 

determined and investigated, infrastructure solutions and traffic control measures may be 

subsequently designed to reduce the motorcyclist crashes risk.        

Table 3.2. Risk factor included in crash risk models for motorcycles 

Phase Human factor Environment factor 

Pre-crash 
Factors contributing to 

increased risk of crash 

 Manoeuvre behaviour 

of motorcyclists 

 Operating speed 

 Traffic condition 

 Road condition  

Crash 
Factors contributing to 

crash severity 

 Operating speed  Traffic condition 

 Road condition 

 

3.7. Countermeasure Selection Approach  

It has been suggested that the safety of a traffic system may be measured by the three basic 

dimensions: exposure, crash rate and injury severity (OEDC, 1997; Nilsson, 2004; Archer, 

2004; Elvik et al., 2009). The exposure denotes the magnitude and character of the activities 

that generate the crashes. Therefore, the exposure may be measured by the number of trips 

(traffic volume), the types of transport (pedestrians, cyclists, motorcyclists, car occupants or 

public transport) and the traffic environments (e.g. motorcycle dominated traffic). Crash rate 

refers to the frequency of crash occurrence and defined as the risk of crash per unit of 

exposure. Injury severity refers to the consequence of crashes in terms of injuries or property 
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damage. Changes in any one of these three dimensions, will influence the entire safety 

situation. By focusing on these safety dimensions, Elvik et al. (2009) proposed the taxonomy 

of factors affecting the number of injuries and fatalities in road crashes (see Figure 3.7) and 

suggested ways of improving road safety by: (1) reducing the exposure to crash risk by 

reducing the number of trips or shifting to transport modes that have a lower level of risk, (2) 

reducing the crash rate by implementing countermeasures related to risk factors, (3) reducing 

injury severity by increasing the protective measures for road users.  

 

 

 

 

 

 

 

 

 
Figure 3.7. A taxonomy of factors affecting road safety (Elvik et al., 2009) 

Based on this approach, this study focused on reducing motorcycle crash potentials by 

selecting countermeasures to target specific risk factors related to the road environment factor 

and road user as shown in Table 3.2. Countermeasures to reduce the crash risk may include: 

 Road improvement and maintenance: This measure may reduce or eliminate crash 

risk by improving and maintaining the transport system in terms of road design and 

road equipment. For example, improving sight distance and road surface friction, 
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redesigning junctions, maintaining pavements, road lighting, road signs and markings, 

and correcting erroneous traffic signs (HSM, 2009; Elvik et al., 2009; iRAP Toolkit, 

2015).    

 Traffic control: This measure may reduce crash risk by intervening in traffic 

conditions. For example, speed limits, installing road markings and variable message 

signs, providing segregated motorcycle lane, and applying the intelligent transport 

systems (ITS) (Elvik et al., 2009; iRAP Toolkit, 2015).      

 Policy/Legislation and Enforcement: This measure may reduce crash risk by 

influencing the driving behaviour of road users and road designs. For example, 

mandating helmet wearing, requiring minimum design standards, penalising illegal 

behaviour such as excessive speeding and drunken driving, and installing automatic 

speed enforcement (HSM, 2009; Elvik et al., 2009). 

 Education: This measure may reduce crash risk by influencing the driving behaviour 

of road users such as education programmes in school, driver training programmes 

and public awareness campaigns (HSM, 2009; Elvik et al., 2009). 

 Public transport mode shifting: Public transport is, overall, a very safe mode of 

transport. Compared with riding a motorcycle, public transport has a considerably 

lower level of risk. For example, Savage (2013) conducted a research to compare the 

fatality risks in the United States for various modes of transport and they found that 

passenger fatalities per billion passenger-miles for riding a motorcycle and public 

transport mode (e.g. bus) are 212.57 and 0.11 respectively. Therefore, shifting to 
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public transport may be a preferred solution to reduce crash risk of private transport 

modes such as motorcycles.  

While all of the above countermeasures play an important role in reducing crash risk, the 

majority of these measures are beyond the scope of this research. This study focuses on the 

reduction of motorcycle crash potentials where it is believed that the road environment and 

traffic condition are contributing factors, either exclusively or through interactions with the 

movement behaviour of motorcyclists. Based on the crash risk models developed in this 

research, the effect of risk factors on crash risk is assessed and countermeasures related to risk 

factors subsequently may be determined to mitigate their contribution to crashes. 

         

3.8. Conclusion 

This chapter presented a methodology to estimate the potentials of both rear-end and 

sideswipe crashes for motorcycles based on an assessment of traffic conflict events associated 

with the non-lane-based movement characteristics of motorcycles in a motorcycle-dominated 

traffic environment of urban roads. The discrete choice model and the traffic conflict 

technique are proposed to build the model forms. This modelling approach will be applied to 

overcome the limitation of traditional road safety analysis which is based on historical crash 

data. The developed models may then be used to support traffic engineers in designing 

appropriate countermeasures to mitigate the crash risk for motorcyclists. The proposed 

methodology is expected to provide a better understanding of the effect of non-lane-based 

movement characteristic of motorcycles on crash potential, and to trigger further research on 

road safety assessment for motorcyclists in low-income and middle-income countries where 

motorcycles are the predominant mode of urban transport system.  
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CHAPTER 4 

MODEL DEVELOPMENT 

 
 

 

4.1. Introduction    

This chapter presents the development process of a rear-end and a sideswipe crash risk model 

for motorcycles moving in a motorcycle-dominated traffic environment of urban roads. The 

chapter is organised in three main sections. The first section describes the modelling 

framework to develop the risk of rear-end and sideswipe crashes. The second section presents 

the model formulation of these two crash types. The third section describes the components 

included in the formulation of these models.  

  

4.2. Modelling Framework  

When travelling on roads, a motorcyclist has three choices for his/her manoeuvre: keep 

following the front vehicle, swerve to the left or swerve to the right to overtake the front 

vehicle as shown in Figure 4.1. When following the front vehicle, a rear-end crash may occur 

if the front vehicle suddenly decelerates while the subject motorcyclist maintains an 

inadequate distance that does not allow the subject motorcyclist to take an evasive action to 

avoid crashing with the front vehicle. When swerving to the left or the right, a sideswipe crash 

may occur if the available gap between the subject motorcycle and the laterally-following 

vehicle is less than the distance needed for the laterally-following vehicle to take evasive 

action to avoid crashing with the subject motorcycle. Using this assumption, to capture the 
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potentials of these crash types for motorcycles moving in the traffic stream, a rear-end and a 

sideswipe crash risk model may be developed. 

 

Figure 4.1. Movement scenarios of motorcycles in the traffic 

The crash risk is defined in this research as a conflict potentially leading to a crash if the 

motorcyclists involved in the conflict do not take evasive action properly. Under this 

assumption, two types of conflicts are considered in this study (See Figure 4.2).  

 a rear-end conflict, occurring when a motorcyclist follows a front vehicle in a short 

distance that cannot allow the motorcyclist apply a brake to avoid a potential rear-end 

crash with the front vehicle.  

 a sideswipe conflict, occurring when a motorcyclist swerves to left or right and causes 

a potential sideswipe crash with the laterally-following vehicle.  

To build model forms for describing rear-end and sideswipe crash risk, this study uses the 

logistic regression model and the lognormal distribution function. The former is adopted to 

capture the manoeuvre behaviour of motorcyclists potentially causing an interaction and the 
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latter is employed to identify the occurrence of conflicts potentially resulting in crashes. The 

risk of a crash may be illustrated as the consequence of two independent events:  

 the cause resulting in a potential conflict, and  

 the condition in which the conflict may occur.  

In the context of this study, the cause of a conflict is defined as the risky movement of the 

motorcycle and the condition for a conflict to occur is the inadequate gaps maintained 

between motorcycles. Therefore, the proposed crash risk models are formed by the joint 

probability:  

 the probability of the causes leading to the conflict, and  

 the probability of the condition resulting in the conflict occurrence.  
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4.3. Model Formulation  

This section presents the overall form of the rear-end and the sideswipe crash risk models. 

The components included in these models are presented in detail as follows.   

4.3.1 Rear-end crash risk model 

This model is developed to capture the potential of a rear-end crash for the motorcycle when 

it follows the front vehicle with an inadequate gap in the traffic stream. The potential of a 

rear-end crash for a motorcycle (n) moving in a motorcycle-dominated traffic situation may 

be defined as the result of a series of events:  

 the subject motorcycle (n) keeps its current direction to follow the front vehicle (n-1) 

with a front distance (���
���),  

 the front vehicle suddenly slows down,  

 the subject motorcycle must decelerate to reduce its speed to avoid a possible rear-end 

crash with the front vehicle, 

 a rear-end crash potential occurs if the front distance is less than the proposed 

threshold-safety-distance (D���
�� ) and it potentially leads to a crash if the motorcycles 

involved in the conflict do not take proper evasive action.  

Under the assumption that these events are independent, the risk of a rear-end crash that may 

occur at a point of time t under a given traffic condition X (e.g. high traffic density) may be 

estimated by the joint probabilities of these events as follows: 

��(�����
� )=  ��(���|�)× �� (�����|�)× �� (��

���|����
�� ) 

(Equation 4.1) 
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where, 

 ��(���|�): is the probability that the subject motorcycle (n) will keep its current 

direction under a given traffic condition X. 

 ��(�����|�): is the probability that the preceding vehicle (n-1) will keep its current 

direction under a given traffic condition X. 

 ��(��
���|����

�� ): is the probability of rear-end conflict occurring between the subject 

motorcycle (n) and the front vehicle (n-1).  

4.3.2 Sideswipe crash risk model 

This model is developed to capture the potential of a sideswipe crash for the motorcycle when 

it performs a swerving manoeuvre in the traffic stream. The potential of a sideswipe crash for 

a motorcycle (n) moving in a motorcycle-dominated traffic situation may be defined as the 

result of a series of events:  

 the subject motorcycle (n) swerves to the left or right to overtake the front vehicle,  

 the laterally-following vehicle (m) must decelerate to reduce its speed to avoid a 

possible sideswipe crash with the subject motorcycle,  

 a sideswipe crash potential occurs if the longitudinal gap (Lo�
�) is less than the 

threshold safety distance (D���
�� ) and it potentially results in a crash if the motorcycles 

involved in the conflict do not take proper evasive actions.  

Under the assumption that these events are independent, the potential of a sideswipe crash 

may occur at a point of time t under a given traffic condition X (e.g. high traffic density) may 

be estimated by the joint probabilities of these events as follow: 
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��(���
� )=  ��(���|�)× �� (��� |�)× �� (��

� �����
�� ) 

(Equation 4.2) 
where, 

 ��(���|�): is the probability that the subject motorcycle (n) will swerve to the left 

and right under a given traffic condition X. 

 ��(��� |�): is probability that the laterally-following vehicle (m) will keep its 

current direction under a given traffic condition X. 

 ��(��
� �����

�� ): is the probability of sideswipe conflict occurring between the subject 

motorcycle and the laterally-following vehicle (m).  

 

4.4. Model Components 

To use Equations (4.1) and (4.2), two probabilities should be calculated:  

 the probabilities that the subject motorcycle chooses either a swerving or a following 

manoeuvre to perform in a given traffic condition, and  

 the probabilities that the conflicts occur between the subject motorcycle with the front 

vehicle or with the laterally-following vehicle when it performs a following or a 

swerving manoeuvre.  

To obtain these probabilities, a manoeuvre choice model and conflict occurrence models are 

developed. These are presented in the following sections.    

4.4.1 Manoeuvre choice model 

To capture the probability that the subject motorcycle chooses either a swerving manoeuvre or 

a following manoeuvre to perform in a given traffic condition, a manoeuvre choice model is 
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developed based on the discrete choice analysis method using the logistic regression model 

(section 3.5.1). The process of model development is conducted in the following two steps (A 

and B). 

Step A: Identification of factors affecting manoeuvre choice 

It appears that before deciding to choose a path to travel in the traffic stream, drivers normally 

evaluate the current driving conditions with respect to the relation with the surrounding 

vehicles. In other words, the presence of neighbouring vehicles on the road directly affects the 

subject drivers’ decisions for their movement choices (Toledo, 2003). It therefore seems 

reasonable to suggest that the riding behaviour of the motorcyclist depends on the relative 

positions and relative speeds of the subject motorcycle with respect to its surrounding 

vehicles, including: the front vehicle, the laterally-following vehicles and other vehicles 

defining gaps in traffic. From this assumption, it may be seen that there are several significant 

factors involved in the decision-making process of motorcyclists choosing their manoeuvre 

behaviour, as follows:     

1. The speeds of front vehicles: This factor reflects the driving conditions in the current 

direction of the motorcyclists. If the motorcyclists are satisfied with the speed of the 

vehicles ahead, they will keep their current direction and follow the front vehicles. 

Otherwise, they will decide to change their direction by swerving to the left or right to 

overtake the front vehicles. 

2. The lateral clearances between the front vehicles: If the motorcyclists are not 

satisfied with the current positions and they feel the lateral clearance spaces between 

the front vehicles are large enough to move in, they will swerve to move toward these 
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positions, otherwise, they will keep their current direction and wait for a chance to 

swerve.     

3. The relative distances with respect to the surrounding vehicles: When travelling in 

the traffic, the motorcycles are constrained by their neighbouring vehicles in front and 

side. This will affect their movement decisions. For example, if the motorcyclists feel 

the relative distances with the front vehicles are too short and the gaps with the 

laterally-following vehicles are large enough, they will choose to swerve to overtake 

the front vehicles, otherwise, they are likely to keep their current directions. 

4. Type of vehicles in the front or aside: In a mixed traffic environment, it seems that 

the type of front vehicles and laterally-following vehicles affecting the manoeuvre 

choice behaviour of motorcyclists. The observations of motorcycles movement in the 

field reveal that they tend to choose swerving manoeuvre if the laterally-following 

vehicle is a motorcycle rather than a passenger car.         

5. Other contributing factors: Other factors that may affect the riders behaviour such as 

their knowledge and experience, alcohol or drugs consumption, their ages and gender, 

their risk taking and the motorcycle’s capabilities. In most cases, this information is 

not available and cannot be directly measured from vehicles’ trajectory data in the 

field, therefore these factors are not considered in this study. 

Step B: Model formulation development  

As stated in Section 2.3.1, swerving manoeuvre is a typical behaviour representing the non-

lane-based movement of motorcycles and it is captured based on the discrete choice analysis 

method (see section 3.5.1). In the context of this study, the choice of a manoeuvre behaviour 
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made by a motorcyclist may be viewed as an outcome variable consisting of two alternatives: 

following manoeuvre or swerving manoeuvre. This outcome variable is of the binary type, 

and therefore the binary logistic regression model may be used to build the model equation.  

Logistic regression analysis of the discrete choice theory is a method used to find the best 

fitting model to describe the functional relationship between an outcome (dependent or 

response variable) and a set of independent (predictor or explanatory) variables. The logistic 

regression model is used when the outcome variable is binary (Hosmer and Lemeshow, 

1989). 

In the logistic regression analysis method, the key quantity is the mean value of the outcome 

variable, given the value of the independent variables. This quantity is called the conditional 

mean and will be expressed as E(Y|x), where Y denotes the outcome variable and x denotes a 

value of the independent variable. If let the conditional probability that the outcome is 

presence be denoted by P(Y=1|x) = (x), then the logit of the logistic regression model for a 

collection of n independent variables xi = (x1, x2, …, xn) is given by (Hosmer and Lemeshow, 

1989):   

�(��)= �� + ���� + ���� + ⋯+ � ���  

(Equation 4.3) 
in which case 
 

�(��)=
��(��)

1 + � �(��)
  

(Equation 4.4) 
where,  β  = (β1, β2, … βn) are the coefficients of the independent variables. 

By applying the logistic regression model in this study, the outcome variable stands for the 

manoeuvre choice of motorcyclists and is of the binary type, which is coded with a value of 1 
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to indicate the subject motorcyclist choose swerving manoeuvre, or zero to indicate that the 

subject motorcyclist choose following manoeuvre. The independent variables that may affect 

this outcome variable include: the relative speed with the front vehicle (��
���), the relative 

distance with the front vehicle (���
���), the lateral clearance spaces of the front vehicle 

(�����), the relative speed of the laterally-following vehicle (��
�), the longitudinal gaps 

(���
� ) with the laterally-following vehicle, the type of the front vehicle (�����) and type of 

the laterally-following vehicle (��� ). In a motorcycle dominated traffic environment, the type 

of front vehicle and laterally-following vehicle may be a motorcycle or a passenger car. 

Heavier vehicles such as buses or trucks were not considered in this study. These variables are 

shown in Figure 4.3.  

Therefore, the logit of the logistic regression model g(xi) may be formulated as a function of a 

set of seven independent variables xi = (���
���, ��

��� , ���
� , ��

�, �����, �����, ��� ) as 

follows: 

�(��)= �� + �����
��� + ����

���+ �����
� + ����

� + ������� + ������� + �����    

(Equation 4.5) 

where, ���
��� is the front distance between the subject motorcycle (n) and the front vehicle (n-

1), ��
��� is the relative speed between the subject motorcycle (n) and the front vehicle (n-1) 

(��
��� = �� − ����), ����� is the lateral clearance of the front vehicle (n-1), ���

�  is the 

longitudinal gap between the subject motorcycle (n) and the laterally-following vehicle (m), 

��
�  is the relative speed between the subject motorcycle (n) and the laterally-following 

vehicle (m), ����� ��� ���  are the type of the front vehicle (n-1) and the laterally-following 

vehicle (m) respectively (e.g. motorcycle or passenger car), and β0, β1, β2, β3, β4, β5, β6, β7 are 

unknown coefficients of independent variables to be estimated from the real data. 
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Figure 4.3. Independent variables of the manoeuvre choice model 

Using Equation (4.5), the probability that a motorcycle chooses a swerving manoeuvre to 

perform in a given traffic condition X represented by a set of xi independent variables is given 

by (Hosmer and Lemeshow, 1989): 

��(���|�)= 
��(��)

1 + � �(��)
    

(Equation 4.6) 

Also, the probability that a motorcycle chooses to follow the front vehicle in a given traffic 

condition X is as follows: 

��(���|�)= 1 −  ��(���|�)= 1 −
��(��)

1 + � �(��)
=

1

1 + � �(��)
   

(Equation 4.7) 

The values of the probability of swerving manoeuvre choice presented in Equation (4.6) can 

take any value between 0 (‘Do not choose swerving manoeuvre’) and 1 (‘Choose swerving 

manoeuvre’), but it cannot exceed the range of 0 and 1. 
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4.4.2 Conflict occurrence models 

To obtain the probabilities of the conflicts occurring presented in Equation (4.1) and (4.2), 

two conflict occurrence models are developed. The model development process is based on  

the concept of the Threshold-Safety-Distance (TSD) which is used as an indicator to 

determine the occurrence of conflicts. The model building process is described as follows 

(Step A and B).          

Step A: Development of Threshold-safety-distance indicators 

The threshold-safety-distances (TSD) are determined based on incorporating the stopping 

distance of a vehicle and the two manoeuvre scenarios of the motorcycles. 

Stopping distance 

The stopping distance may be  defined as the sum of the reaction distance of the driver and 

the braking distance of the vehicle (AASHTO, 2004). Reaction time is the time that drivers 

need from the instant they recognise the danger ahead to the instant that they actually apply 

the brake. The braking distance of a vehicle is the distance needed from the instant that the 

driver begins applying the brake to stop the vehicle. The stopping distance may be formulated 

from the kinematic equation as follows (AASHTO, 2004): 

� = �� +
��

2�
  

(Equation 4.8) 

where, , v and a are the reaction time, initial speed and braking deceleration respectively.  
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Threshold-safety-distance (TSD) indicators 

The calculation method of the threshold-safety-distances is based on the critical condition in 

an emergency situation where it is assumed that a vehicle must stop to avoid a possible crash 

with the front vehicle or swerving motorcycle. In this study, two such indicators are 

developed for the cases of the following manoeuvre and the swerving manoeuvre of 

motorcycles.    

For the scenario of the following manoeuvre as shown in Figure 4.4, it is assumed that the 

front vehicle (n-1) suddenly decelerates to slow down and the subject motorcycle (n) responds 

to this urgent situation by applying the brake to avoid a possible crash. The threshold-safety-

distance of this scenario is defined as the distance that the subject motorcycle needs for 

stopping to avoid a possible crash with the front vehicle. This distance may be calculated as:  

����
�� = ���� +

��
�

2��
−

����
�

2����
  

(Equation 4.9) 
 
where, ����

��  is the threshold-safety-distance for the following manoeuvre scenario; n, vn and 

an are the reaction time, initial speed and braking deceleration of the subject motorcycle 

respectively; vn-1 and an-1 are initial speed and braking deceleration of the front vehicle 

respectively. 
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Figure 4.4. Following manoeuvre scenario 

With regard to the swerving manoeuvre scenario, it is assumed that the trajectory of the 

subject motorcycle (n) is the hypotenuse of a right triangle as illustrated in Figure 4.5 and the 

laterally-following vehicle (m) starts braking while the subject motorcycle starts swerving. 

The threshold-safety-distance of this movement scenario is defined as the distance that the 

vehicle (m) needs for stopping to avoid a possible crash while the motorcycle (n) is executing 

a swerving manoeuvre. This distance is formulated as: 

 

����
�� = �� �� +

��
�

2��
−
���

� × ���� �

�����
   

(Equation 4.10) 
 

where, ����
��  is the threshold-safety-distance for swerving manoeuvre scenario; m, vm and am 

are the reaction time, initial speed and braking deceleration of vehicle (m) respectively, ���
�  

is the initial lateral gap between motorcycle (n) and vehicle (m), and n is the swerving angle 

of motorcycle (n). 
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Figure 4.5. Swerving manoeuvre scenario 

 
Step B: Model formulation development 

This study defines the conflict as a condition of two consecutively moving motorcycles 

having inadequate threshold-safety-distance (TSD) such that the following motorcycle will 

crash into the front motorcycle when it swerves or make an unexpected stop. In the traffic 

stream, the motorcyclist may choose to follow the front vehicle or to swerve to overtake the 

front vehicle. When the subject motorcycle follows the front vehicle, a rear-end conflict may 

occur if it maintains a front distance (���
���) less than the ����

�� . For this assumption, the 

probability that a following manoeuvre event involves in a rear-end conflict is determined by: 

��(��
���|����

�� )= �
1       �� ���

��� ≤ ����
��

 
0       �� ���

��� > ����
��

 

(Equation 4.11) 
 
Similarly, a sideswipe conflict may occur when the subject motorcycle performs a swerving 

manoeuvre and the longitudinal gap (���
� ) with the laterally-following vehicle is less than the 
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����
�� . For this assumption, the probability that a swerving manoeuvre event involves in a 

sideswipe conflict is determined by: 

��(��
� �����

�� )= �
1       �� ���

� ≤ ����
��

 
0       �� ���

� > ����
��

 

(Equation 4.12) 

 

Equation (4.11) and (4.12) are focused only on one specific interaction between a subject 

motorcycle with a front vehicle and with a laterally-following vehicle at a given time on a 

road segment. To estimate the average conflict occurrence frequency on a road segment in a 

specific time period, a distribution probability function may be applied. In the real traffic, the 

front distances and the longitudinal gaps have been determined to follow a lognormal 

distribution (Minh, 2007; Lee, 2009). Therefore, in order to estimate the probability of 

conflicts occurring for a road segment, the lognormal distribution function was used in this 

study. 

It is assumed that when a random variable Z (0 < Z < ) follows a lognormal distribution with 

mean μ and standard deviation σ, the probability that variable Z is less than the value of z is 

given by (Aitchison and Brown, 1957):  

Pr(� ≤ �) = �
��(�)− �

�
�      

(Equation 4.13) 
where, [] is the cumulative standard normal distribution 
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From this theory and under the assumption that the front distances (���
���) follow a 

lognormal distribution with mean ����
���

 and standard deviation ����
���

, the probability that a 

rear-end conflict occurs when the motorcycle follows the front vehicle is given by: 

��(��
���|����

�� )= �� (���
��� ≤ ����

� )=   Φ �
��(����

�� )− � ���
���

����
��� �   

(Equation 4.14) 
 
where, Φ[] denotes the cumulative standard normal distribution, ����

��  is the threshold-safety-

distance for following manoeuvre scenario as presented in Equation (4.9). 

Similarly, under the assumption that the longitudinal gaps (���
� ) follow a lognormal 

distribution with mean ����
�
 and standard deviation ����

�
, the probability that a sideswipe 

conflict occurs when the motorcycle swerves to change its current direction is given by: 

��(��
� �����

�� )= Pr(���
� ≤ ����

�� )=   Φ �
ln(����

�� )− � ���
�

����
� �   

(Equation 4.15) 
 

where, Φ[] denotes the cumulative standard normal distribution, ����
��  is the threshold-safety-

distance for swerving manoeuvre scenario as presented in Equation (4.10). 

 
4.5. Summary 

In this study, to develop crash risk models for motorcycles, crash risk is defined as the result 

of a series of traffic events which are assumed to be independent. Therefore, the crash risk 

models are determined by multiplying the probabilities of these events. The crash risk models 

developed in this work are summarised in Table 4.1.      
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Table 4.1. Summary of developed models 

Models Following manoeuvre scenario Swerving manoeuvre scenario 

Manoeuvre Choice 

Models 

Following manoeuvre choice 

��(���|�) 

(Equation 4.7) 

Swerving manoeuvre choice 

��(���|�) 

(Equation 4.6) 

Threshold-Safety-

Distance Indicators 

(TSD) 

TSD indicator for following 

manoeuvre scenario 

����
��  

(Equation 4.9) 

TSD indicator for swerving 

manoeuvre scenario 

����
��  

(Equation 4.10) 

Conflict Occurrence 

Models 

Rear-end conflict occurrence 

��(��
���|����

�� ) 

(Equation 4.14) 

Sideswipe conflict occurrence 

��(��
� �����

�� ) 

(Equation 4.15) 

Crash Risk Models 

Rear-end crash risk 

��(�����
� )=  ��(���|�)

× �� (�����|�)

× �� (��
���|����

�� ) 

(Equation 4.1) 

Sideswipe crash risk 

��(���
� )=  ��(���|�)

× �� (��� |�)

× �� (��
� �����

�� ) 

(Equation 4.2) 

 
 

4.6. Conclusions 

In this chapter, the modelling process for both rear-end and sideswipe crash risks for 

motorcyclists in a motorcycle-dominated traffic environment was presented. The potential of 

each crash type is identified by the joint probability of the motorcyclists’ manoeuvre choice 

and that of conflicts to occur. The manoeuvre choice model was developed based on the 
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discrete choice analysis method using the logistic regression model. For the probabilities of 

conflicts to occur, the lognormal distribution function was used and based on the concept of 

the threshold-safety-distance.       
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CHAPTER 5 

DATA COLLECTION 

 

 

This chapter presents the data collection methodology of this research. The chapter is 

organised in five main sections. The first section describes the data requirements for the 

process of model definition. The second section discusses two main methods used to collect 

the trajectory of vehicles. The third section presents the method selected to collect the data  

and then the method used to extract the data for this research is shown in section four. The 

statistical properties of two data sets collected on two road segments from two different 

Streets in the city of Danang in Vietnam are summarised in the final section.                

          

5.1. Data Requirements  

Based on the generic model definitions shown in Chapter 4, the variables included in the 

proposed models and the associated data required for the model definition are follows: 

 Speeds: include the speed of the subject motorcycles, the front vehicles and laterally-

following vehicles. 

 Relative distances: include the front distances between the subject motorcycles and the 

front vehicles, the longitudinal and the lateral gaps between the subject motorcycles 

and the laterally-following vehicles, and the lateral clearances between the front 

vehicles. 
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 Road attributes: include the number of lanes, the lane width, the road surface condition 

and the road grade. The traffic density depends on the number of lanes and lane width 

and therefore these attributes were collected to investigate the effect of traffic density 

on crash risk (Equations 4.14, 4.15, 6.11 and 6.12). The braking deceleration and 

stopping distance of motorcycles depend on the road surface condition (surface 

friction) and road grade and therefore they also affect crash risk (Equations 4.9 and 

4.10).  

 Traffic observations: include the following manoeuvre, the swerving manoeuvre, the 

rear-end conflicts and the sideswipe conflicts. 

 Traffic data: include the number of vehicles passed the traffic survey area.    

 

5.2. Data Collection Methods 

The required data described above can be obtained from the vehicle trajectories collected in 

the field. Vehicle trajectories are the observations of the positions of vehicles at discrete 

points in time. Trajectory data points are spaced in time with short time intervals between 

them, typically 1 second or less (Toledo, 2003). Speeds, accelerations and decelerations of 

vehicles are extracted from the time series of the positions of vehicles. Other variables such as 

relative distances between vehicles, front distances, lateral clearances, lateral gaps and 

longitudinal gaps may be inferred from the trajectory data.  

There are two main methods for collecting the vehicle trajectory data: the video recording 

method and the floating-car method (Lee, 2007). The former is based on the use of video 

cameras to record the traffic stream and the latter is based on sensors that are installed on 
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instrumented vehicles to capture the motion and interaction information of those instrumented 

vehicles.  

The major advantages of using the video recordings are that it is low cost and the trajectories 

of all vehicles in the traffic stream are captured. In addition, this is a naturalistic observation 

method that is not affected by the observers and researchers, and a video file can be reviewed 

repeatedly to ensure the quality of information extracted. The main disadvantage of this 

method is that it is extremely time-consuming to extract vehicles’ trajectories from a video 

file. For example, to extract vehicles’ trajectories from an hour’s video file, it requires 

approximately 200 person-hours to process (Lee, 2007).   

The advantages of the floating-car method are that the data extraction process is simpler than 

that of video recording method because the required information is directly obtained from 

sensors, and a instrumented vehicle can accommodate a wide range of sensors, including 

video recorders, to collect all required data. However, the main drawback is that this method 

can only capture the information of the instrumented vehicles and the number of parameters 

collected depends on the type and number of sensors installed on the instrumented vehicles 

because each sensor can only collect a specific type of information. Therefore, to obtain all 

required data, the instrumented vehicles need to be installed with a wide range of sensors 

which would make the cost of data collection very expensive. Another drawback of this 

method is that the behaviour of drivers may be affected under surveillance and therefore the 

information collected may be not naturalistic (Minh, 2007; Lee, 2007; Gue et al., 2010).  

5.3. Data Collection Methodology for this Research 

As the video recording method can capture all the required information at low cost, this 

method was chosen. 
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5.3.1 Video recording equipment selection 

A Sony HDR PJ-670 Handycam Camcorder was used to collect data for this research. This 

video camera was used for recording the traffic stream for several reasons. First, the device is 

capable of recording image video files with a high resolution of 1280 x 720 pixels and 

therefore the trajectories of vehicles may be extracted from these video files with high 

accuracy. Second, it has a large focal length ranged from 32.8 mm to 984.0 mm and thus 

allows the capture of a wide traffic survey area. In addition, the price of this camcorder is 

affordable and commensurate for use in this research.  

5.3.2 Data collection locations 

This research was funded by the Government of Vietnam with the requirement to focus on the 

country of Vietnam. Therefore, the city of Danang in Vietnam was chosen for conducting the 

traffic surveys to collect data for this research. Danang is a major city of Vietnam where 

motorcycles constitute over 80% of total urban traffic and motorcycle crashes account for 

nearly 70% of the total road crashes. Therefore, it is a good representative of a motorcycle-

dominated traffic environment such as those found in South and South East Asia (see Chapter 

2). The selected road segments for conducting traffic surveys were chosen in such a manner 

so that the following criteria could be satisfied: 

 The traffic volumes should be large enough in order to be capable of capturing the 

movement behaviour of the subject motorcycles and their interactions between the 

subject motorcycles with other influential vehicles.  

 There should be no bus stops, parking lots and intersections near the sites in order to 

capture discrete movements of vehicles and to avoid behaviour of road users affected 

by these road features.  
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 There should be normal driving conditions with clear weather, a dry pavement, low 

wind and un-congested traffic flows.  

Consequently, two representative road segments one on Nguyen Van Linh Street and another 

on Nguyen Tri Phuong Street were chosen to collect data for the models. Moreover, eight 

additional road segments were also surveyed to supplement the various tests conducted, 

including: Dien Bien Phu Street, Bach Dang Street, Cach Mang T-8 Street, Nguyen Huu Tho 

Street, Duong 2-9 Street, Nguyen Tat Thanh Street, Ton Duc Thang Street and Truong Chinh 

Street. This section only describes the data collection process of the two representative road 

segments on Nguyen Van Linh Street and Nguyen Tri Phuong Street. The data collected from 

those eight road segments are shown in Appendix F.      

5.3.3 Data collection time 

The traffic surveys were conducted on 21 and 22 August 2014, from 6:00 am to 9:00 am and 

3:00 pm to 6:00 pm (peak slots: 7:00-8:00 am, and 4:30-5:30 pm). These were clear weather 

days and thus provided good conditions for capturing the traffic streams by a video camera. 

As a result, 6 hours of traffic survey was recorded at each site. The selection of these time 

periods for data collection is justified by several reasons. First, these times are capable of 

capturing fully the movement characteristics of motorcycles and their interactions during peak 

hours and non-peak hours of a day. Second, the sample size obtained from 6 hours of traffic 

observation is large enough to produce a reliable result in statistical analysis process (Peduzzi 

el al., 1996; Toledo, 2003; Minh, 2007; Lee, 2007; Long, 2012; Shiomi et al., 2013). The 

trajectories of vehicles were observed at discrete points in time with intervals of 0.5 second 

and each vehicle was observed from 3.0 to 5.0 seconds, therefore the collected data were 

likely to capture a wide range of traffic conditions (e.g. various traffic density conditions) and 
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a large number of vehicle trajectories can be obtained from 6 hours of traffic observation. In 

addition, these are clear and bright times of a day that provide good visibility for obtaining 

high quality video images. 

5.3.4 Characteristics of road segment on Nguyen Van Linh Street 

A road segment of length 35.0 m and of width 8.0 m on Nguyen Van Linh Street was the first 

site for the traffic survey. This road has two lanes and the width of each lane is 4.0 m. The 

grade of this segment is 0.0 per cent, and the road surface was in good condition. The 

characteristics of this road segment are shown in Figure 5.1.   

 

 

Figure 5.1. The road segment on Nguyen Van Linh Street 

Traffic survey area

35.0 m

8
.0

 m



 

90 
 

5.3.5 Characteristics of road segment on Nguyen Tri Phuong Street 

A segment of length 40.0 m and of width 7.0 m on Nguyen Tri Phuong Street was the second 

site for the traffic survey. This road has two lanes and the width of each lane is 3.5 m. The 

grade of this segment is 0.0 per cent, and the road surface is in good condition. The 

characteristics of this road segment are shown in Figure 5.2.   

 

 

Figure 5.2. The road segment on Nguyen Tri Phuong street 

5.4. Data Extraction 

The trajectories of the vehicles were extracted from the recorded video files using the SEV 

(Speed Estimation from Video Data) computer software which converts video screen 

Traffic survey area
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 m
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coordinates into roadway coordinates. This computer programme was developed by Minh 

(2007) and it is free to use. The software displays a video file on screen and the users are 

capable of tracking the trajectories of the target vehicles by clicking the mouse on the 

positions of front central point of these vehicles on screen. The coordinates of the positions of 

target vehicles in the video image were obtained by mouse clicks then converted into roadway 

coordinates and recorded into a database in Excel file format. The trajectory data of all 

vehicles in the sections considered and the speeds derived from these trajectories were used to 

generate the required variables included in the developed models. The conflict events were 

observed in the field via the video recordings (Parker and Zegeer, 1989).    

5.5. Data Sets Statistics 

5.5.1 Statistical properties of dataset from Nguyen Van Linh street 

The data set of this road segment contains 535 observations of the trajectories of 108 subject 

motorcycles and 2140 observations of 432 influential vehicles. The trajectory data of vehicles 

and the speeds derived from these trajectories were used to generate the required variables. 

Table 5.1 summarises the statistics of the variables included in the proposed models. The data 

shows that the speeds of subject motorcycles range from 4.68 m/sec to 12.51 m/sec, with a 

mean of 9.68 m/sec while that of the front vehicles range from 4.07 m/sec to 10.88 m/sec with 

a mean of 7.04 m/sec. The front distances vary from 0.97 m to 5.58 m with a mean of 2.08 m. 

The longitudinal gaps range from 1.21 to 7.18 m with a mean of 2.96 m and the lateral gaps 

range from 0.53m to 4.02 m with a mean of 1.48 m. This dataset is presented in Appendix G. 
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Table 5.1. Statistics of data set on Nguyen Van Linh Street 

Variables Mean Std Minimum Maximum 

Speed of subject motorcycles (m/s) 9.68 1.32 4.68 12.51 

Speed of front motorcycles (m/s) 7.04 1.10 4.07 10.88 

Relative speeds (m/s) 1.19 1.01 -1.09 4.11 

Front distances (m) 2.08 1.20 0.97 5.58 

Longitudinal gaps (m) 2.96 1.22 1.21 7.18 

Lateral gaps (m) 1.48 0.65 0.53 4.02 

Lateral clearance (m) 1.62 0.76 0.70 3.88 

 

5.5.2 Statistical properties of dataset from Nguyen Tri Phuong Street 

The data set in this road segment comprises 461 observations of the trajectories of 95 subject 

motorcycles and 1844 observations of 368 influential vehicles. The statistics of variables 

included in the proposed model are summarised in Tables 5.2. For this road, the speeds of 

subject motorcycles range from 4.58 m/sec to 12.06 m/sec with a mean of 9.48 m/sec while 

the mean of speed of front vehicles is 7.43 m/sec. The mean of front distances is 2.42 m and 

they range from 1.05 m to 5.31 m. The longitudinal gaps range from 1.82 to 6.63 m with a 

mean of 3.15 m and the lateral gaps range from 0.5 to 3.48 m with a mean of 1.43 m. This 

dataset is presented in Appendix E. 

Table 5.2. Statistics of data set on Nguyen Tri Phuong Street 

Variables Mean Std Minimum Maximum 

Speed of subject motorcycles (m/s) 9.48 1.29 4.58 12.06 

Speed of front motorcycles (m/s) 7.43 1.21 4.35 10.74 
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Relative speeds (m/s) 0.86 0.97 -2.24 3.67 

Front distances (m) 2.42 1.27 1.05 5.31 

Longitudinal gaps (m) 3.15 1.19 1.82 6.63 

Lateral gaps (m) 1.43 0.67 0.50 3.48 

Lateral clearance (m) 1.79 0.86 0.79 3.82 

 

These two datasets were used to fit the model developed in this research. It should be 

appreciated that a more comprehensive dataset comprising road segments different from the 

above and preferably collected from other cities or countries with similar traffic 

characteristics would be required for the model fitting purpose with a wider application. 

However, such a task was beyond the scope of this study, which sought to demonstrate the 

development process of the model and its testing, and would require significant resources 

which were not available during this PhD programme. 

5.6. Summary 

In this chapter, the methodology of data collection for this research was presented. The video 

recording method was used to record the traffic data on road segments in the city of Danang 

in Vietnam. It was felt that the locations selected to collect data could be a good 

representative of a motorcycle-dominated traffic environment considered in this study and the 

data collected to use for the purpose of model specification and validation could satisfy an 

empirically driven sampling process within the resource constraints of this study.   
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CHAPTER 6 

MODEL FITTING 

 
 

 

This chapter presents the process of fitting the models developed in Chapter 4. The model 

fitting is the process of using the real data collected in the field (see Chapter 5) to estimate the 

unknown coefficients of the independent variables and to select independent variables either 

for inclusion or exclusion from the proposed models that are only found to be significant in 

explaining the outcome variable. The fitting process of the proposed crash risk models are 

conducted for the two components included in these model formulations. The first component 

is the manoeuvre choice model capturing the manoeuvre behaviour of the motorcyclist and 

the second component is the conflict occurrence models capturing the probability of conflicts.  

This chapter is organised in two main sections. The first section describes the process of 

fitting the manoeuvre choice model and the second section presents the process of specifying 

the conflict occurrence models.                    

 

6.1. Manoeuvre Choice Model 

6.1.1 Methodology 

The process of fitting the manoeuvre choice model was conducted in the following two steps 

(A and B).   
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Step A: Estimating the coefficients of independent variables  

This step presents the process to fit the logistic regression model by using the real traffic data. 

Suppose there is a sample of n independent observations of the pair (xi, yi), i = 1, 2, …, n, 

where yi is the value of a binary outcome variable representing the choice of the subject 

motorcycle to perform either a swerving or following manoeuvre, and xi is the value of the 

independent variable explaining the manoeuvre choice for the subject motorcycle ith. To fit 

the logistic regression model of Equation (4.5) to a set of data collected in the field requires 

that the values of unknown coefficients β = (β0, β1, β2, β3, β4, β5, β6, β7) are estimated.     

The method used to estimate the unknown coefficients of the linear regression model is that of 

the least squares. For this method, the values of coefficients that minimise the sum of squared 

deviations of the observed values of outcome variables from the predicted values are chosen. 

The method that leads to the least squares function is called maximum likelihood and this 

approach is used to estimate the unknown coefficients of the logistic regression model 

(Hosmer and Lemeshow, 1989). For the maximum likelihood method, the likelihood function 

expressing the probability of the observed data as a function of unknown coefficients is built. 

The maximum likelihood estimators of these coefficients are chosen to those values which 

maximise the likelihood function. A brief review of fitting the logistic regression model is 

given below. Further details may be found elsewhere (Hosmer and Lemeshow, 1989). 

If the outcome variable Y is coded as 1 or zero representing the choice of the swerving or 

following manoeuvre of the subject motorcycle respectively, the expression (x) = P(Y=1|x) 

provides the conditional probability that Y is equal to 1 given x. It follows that the quantity  

1 – (x) gives the conditional probability that Y is equal to zero given x, P(Y=0|x). Thus, for 

those pairs (xi, yi) where yi=1, the contribution to the likelihood function is (xi), and for 
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those pairs where yi=0, the contribution to the likelihood function is 1 − (xi), where the 

quantity (xi) denotes the values of (xi) computed at xi. A convenient way to express the 

contribution to the likelihood function for the pair (xi, yi) is through the term (Hosmer and 

Lemeshow, 1989): 

�(��)=  �(��)
��[1 − �(��)]

����  

(Equation 6.1) 
 
Since the observations are assumed to be independent, the likelihood function is given by: 

�(�)= ��

�

���

(��)  

(Equation 6.2) 
 
It is easier mathematically to work with the log of Equation (6.2), thus this function is 

rewritten by the log-likelihood as follow:  

�(�)= ln [�(�)] =�{�� ln[�(��)]+ (1 − ��)��[1 − �(��)]}

�

���

   

(Equation 6.3) 
 
To find the value of β, the log-likelihood function L(β) is maximised by differentiating this 

function with respect to β and setting the resulting expressions equal to zero. These likelihood 

equations are as follows (Hosmer and Lemeshow, 1989): 

�[�� − � (��)]

�

���

= 0 

���[�� − � (��)]

�

���

= 0    

(Equation 6.4) 
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The value of β given by the solution to Equations (6.4) is called the maximum likelihood 

estimate. 

Step B: Assessing the significance of independent variables (Hosmer and Lemeshow, 

1989)  

To obtain the best fitting model, the significance of independent variables included in the 

model is assessed after the coefficients estimated. This step involves in testing a statistical 

hypothesis to determine whether the independent variables included in the model are 

significantly related to the outcome variable. This process is carried out by comparing 

observed values of the response variable to predicted values obtained from models with and 

without the variable in question. The comparison of the observed to predicted values using the 

log likelihood function in Equation (6.3) is based on the likelihood ratio expressed as follows: 

 

� = −2 �� �
(������ℎ��� �� �ℎ� ������� �����)

(������ℎ��� �� �ℎ� ��������� �����)
�      

(Equation 6.5) 
 
In Equation (6.5), the saturation model is one that contains as many parameters as there are 

data points, and the current model is one that contains only the variable under question. Using 

Equation (6.3), Equation (6.5) becomes: 

 

� = −2 � ����� �
���

��
� + (1 − ��)�� �

1 − � ��

1 − ��
��

�

���

     

(Equation 6.6) 
 
where,  ���  is the maximum likelihood estimate of �(��) 
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To assess the significance of an independent variable, the value of D should be compared with 

and without the independent variable in the equation. The change in the value of D due to the 

inclusion of the independent variable in the model: 

 
G = D (for the model without the variable) – D (for the model with the variable) 

 
Because the likelihood of the saturated model is common to both values of D being 

differenced to compute G, this change can be expressed as: 

 

� = −2 �� �
(������ℎ��� ���ℎ��� �ℎ� ��������)

(������ℎ��� ���ℎ �ℎ� ��������)
�      

(Equation 6.7) 
 
 

6.1.2 Data description 

A data set containing 535 observations of the trajectories of 108 subject motorcycles and 2140 

observations of 432 influential vehicles on Nguyen Van Linh Street (Chapter 5) is used to fit 

the manoeuvre choice model (see Appendix G). Within the resource constraints of this study, 

it was felt that a data set containing 535 observations used to estimate the unknown 

coefficients of the logistic regression model could satisfy an empirically driven sampling 

process. It should be appreciated that enhanced results could be obtained if a more 

comprehensive data set were used.  

6.1.3 Results and discussions 

The estimation process was based on the maximum-likelihood algorithm as presented in step 

A and to simplify the calculation process, a statistic software package, named SPSS, was used 
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in this study. The estimate results for the values of unknown coefficients, β0, β1, β2, β3, β4, β5, 

β6, β7, along with the statistic test are summarised in Table 6.1. 

Table 6.1. Estimated coefficients of the manoeuvre choice model 

Variables 
Coefficients Estimated 

Coefficients 

Standard 

Error 
Wald test p-value 

���
���

 ��  -1.676 0.234 36.364 < 0.001 

��
��� �� 1.452 0.283 18.685 < 0.001 

���
�  �� 0.139 0.056 48.656 0.013 

��
� �� 0.223 0.110 10.564 0.043 

����� �� 1.444 0.193 24.411 < 0.001 

����� �� -2.035 1778.123 14.497 0.999 

���  �� -0.641 0.096 0.000 < 0.001 

constant �� 2.040 2240.436 0.000 0.999 

 

In this step, along with fitting the model, all the independent variables were first tested on the 

Wald statistic as defined in Equation (6.7) to determine those variables that are significant and 

then continue with testing for the significance of variables as presented in step B. The first 

statistic test for the estimate results of coefficients show that the p-value of Wald test for 

variable (�����) is 0.999 which is much greater than the desired significance level of 0.05, 

therefore it is necessary to continue to conduct step B to assess the significance of this 

variable in explaining the outcome variable.     

In step B, for the fitted model whose estimated coefficients are given in Table 6.1, the change 

in log likelihood along with its p-values were calculated for the independent variables in the 

model. The statistical results are summarised in Table 6.2. As the results shown, the change in 

log likelihood for the variable “�����” is rather low, being 0.015, and the p-value of 0.903 is 
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much greater than the desired significance level of 0.05. This statistic demonstrates that this 

variable is found to be not significant in explaining the outcome variable and therefore this 

variable should be removed from the model to obtain a reduced model.       

  Table 6.2. Likelihood ratio test for estimated coefficients 

Variables 
Estimated 

Coefficients 

Model Log 

Likelihood 

Change in -2 

Log Likelihood 

Significance of 

the Change 

���
���

 -1.676 -132.549 95.051 0.000 

��
��� 1.452 -100.922 31.797 0.000 

���
�  0.139 -88.333 6.618 0.010 

��
� 0.223 -87.087 4.126 0.042 

����� 1.444 -148.927 127.807 0.000 

����� -2.035 -85.031 0.015 0.903 

���  -0.641 -123.541 77.034 0.000 

The coefficient of the independent variables include in the reduced model was re-estimated 

and was tested statistically as summarised in Table 6.3.  

Table 6.3. Estimated coefficients for the best fitting manoeuvre choice model 

Variables 
Estimated 

Parameters 
Standard Error Wald test p-value 

���
���

 -1.677 0.234 51.246 < 0.001 

��
��� 1.452 0.283 26.379 < 0.001 

���
�  0.139 0.056 6.161 0.013 

��
� 0.224 0.109 4.196 0.041 

����� 1.445 0.193 56.020 < 0.001 

���  -0.642 0.096 44.652 < 0.001 

constant -0.524 0.591 0.785 0.376 
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By considering the Wald statistical tests for coefficients shown in Table 6.3, all p-values of 

the tests for estimated coefficients are less than the level of significance of 0.05, implying that 

the model contains those variables that should be in the model and these variables have been 

entered in the correct functional form. As the results show, the front distance is a significant 

factor contributing to the decision of motorcyclists in choosing the swerving manoeuvre. The 

coefficient of this variable is negative, implying that motorcyclists are more likely to swerve 

to change their current directions if the gaps maintained with the front vehicles become 

shorter. The difference in speeds between the subject motorcycles and the front vehicles, and 

the lateral clearance space of the front vehicles are factors found to contribute significantly to 

the manoeuvre behaviour of motorcyclists. These coefficients are positive, indicating that 

motorcyclists are more likely to choose swerving manoeuvres with an increase in the values 

of these factors. The coefficients of the longitudinal gap variable and the difference in speed 

between the subject motorcycles and the laterally-following vehicles are positive as expected, 

meaning that the motorcyclists tend to perform the swerving manoeuvre as the values of these 

factors increased. 

Consequently, the logit model with the variables found to be significant contributing to the 

decision of the motorcyclists in choosing their manoeuvre behaviour is given by: 

�(��)=  

−0.524 −  1.677���
��� + 1.452��

��� + 0.139���
� + 0.224��

� + 1.445����� − 0.642���  
 

(Equation 6.8) 
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As such, the best fitting model capturing the probability that the motorcyclist chooses the 

swerving manoeuvre is given by:  

��(���|�)= 
���.���� �.������

�����.�����
�����.������

���.�����
���.����������.������

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������
 

(Equation 6.9) 
 

Therefore, the probability that the motorcyclist chooses the following manoeuvre is: 

��(���|�)= 
1

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������
 

(Equation 6.10) 

 

6.2. Conflict Occurrence Models  

To estimate the mean and standard deviation of the logarithm of the front distance and  

longitudinal gap as presented in Equation (4.14) and Equation (4.15), a dataset from Nguyen 

Van Linh Street was used (section 5.1). SPSS statistic software has been used to analyse the 

statistical properties and the distributions of these variables.   

6.2.1 Front distance and longitudinal gap distribution  

The statistical properties of the front distance (���
���) and longitudinal gap (���

� ) from the 

dataset are summarised in Table 6.4 and Figure 6.1. As shown in Figure 6.1, the histograms of 

these variables have the shape of a lognormal curve. The Kolmogorov–Smirnov test (KS test) 

measure was applied to verify the assumption of the distribution for the longitudinal gap and 

front distance and the results illustrate that they follow a lognormal distribution. 
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Table 6.4. The statistical properties of the front distance and longitudinal gap 

Factor 
Number of 

observations 

Observation data Lognormal distribution 

K-S test for 

Lognormal 

distribution 

Mean 
Standard 

Deviation (SD) 
Mean SD Confidence level 

Front distance 1047 2.08 1.20 1.23 0.52 0.509 

Longitudinal gap 792 2.96 1.22 1.29 0.30 0.948 

 

  

Figure 6.1. Histogram of the front distance and longitudinal gap 

6.2.2. Relationship of front distance and longitudinal gap with traffic density 

In this research, the traffic density is defined as the number of motorcycles travelling on a 

road segment of length 100.0 m and width 10.0 m. From the dataset considered, it is found 

that the traffic density is correlated with the front distance and longitudinal gap and their 

relations are described in Figure 6.2. To examine their mathematical relationships, a data 

analysis procedure is conducted by investigating four common regression functions: Linear, 

Exponential, Polynomial and Power. The results of estimating the coefficients and the 
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statistical test for all candidate functions are shown in Tables 6.5 and 6.6. The statistical tests 

suggest that the polynomial function form fits well to the observed data, with the highest 

value of R-squared for both front distance and longitudinal gap, and therefore this function 

form is selected in this research.   

 

  

Figure 6.2. The relationship of traffic density with the front distance and longitudinal gap 

             

Table 6.5. The relationship between the front distance and traffic density 

Statistical 

relationship 
Equation form 

R-squared 

value 

Linear ������� = ln(���
���)=  −0.0101��� + 1.857 0.722 

Exponential ������� = ln(���
���)=  2.0011���.������  0.718 

Polynomial ������� = ������
����=  � ∗ ���� ���� − �.������ + �.��� 0.750 

Power ������� = ln(���
���)=  7.5428�����.��� 0.707 
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Table 6.6. The relationship between the longitudinal gap and traffic density 

Statistical 

relationship 
Equation form 

R-squared 

value 

Linear ����� = ln(���
� )=  −0.0075��� + 1.6594 0.603 

Exponential ����� = ln(���
� )=  1.7433���.������  0.596 

Polynomial ����� = ��(���
� )=  � ∗ ���� ���� − �.������ + �.��� 0.621 

Power ����� = ln(���
� )=  4.9205�����.��� 0.592 

 
where, Den is the traffic density, ln(���

� ) is the natural logarithm of the longitudinal gap, 

ln(���
���) is the natural logarithm of the front distance, � (≈ 2.71828) is the mathematical 

constant. 

6.2.3 Model specification 

Using Equation (4.14), with the parameters of the front distance distribution estimated in 

Section 6.2.1 and 6.2.2, the probability that a rear-end conflict occurs when the motorcycle 

follows the front vehicle is given by: 

��(��
���|����

�� )=  �
��(����

�� )− (7 ∗ 10�� ���� − 0.019��� + 2.108)

0.52
�  

(Equation 6.11) 
 
Similarly, using Equation (4.15), the probability that a sideswipe conflict occurs when the 

motorcycle swerves to change its current direction is given by: 

 

��(��
� �����

�� )=  �
��(����

�� )− (4 ∗ 10�� ���� − 0.013��� + 1.823)

0.3
�  

(Equation 6.12) 
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6.3. Summary 

6.3.1 Rear-end crash risk model 

Combining Equations (6.10) and (6.11), the rear-end crash risk model presented in Equation 

(4.1) becomes: 

��(�����
� )=

1

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������

×
1

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������

×   �
��(����

�� )− (7 ∗ 10�� ���� − 0.019��� + 2.108)

0.52
� 

(Equation 6.13) 
 
6.3.2 Sideswipe crash risk model 

 
Combining Equations (6.9), (6.10) and (6.12), the sideswipe crash risk model presented in 

Equation (4.2) becomes: 

 

��(���
� )=

���.���� �.������
�����.�����

�����.������
���.�����

���.����������.������

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������

×
1

1 + � ��.���� �.������
�����.�����

�����.������
���.�����

���.����������.������

×   �
��(����

�� )− (4 ∗ 10�� ���� − 0.013��� + 1.823)

0.3
� 

 (Equation 6.14) 
 
6.4. Conclusion 

In this chapter, the process of fitting the rear-end and sideswipe crash risk models was 

presented. The dataset collected from Nguyen Van Linh Street was used to estimate the 
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unknown coefficients of the proposed models. The statistical tests were applied to verify the 

fitting process and the test results illustrated that the developed models fit well to the real data 

from the dataset considered. The significance of independent variables was also assessed and 

the statistical tests showed that the independent variables included in the best fitting models 

were significantly related to the dependent variables.    
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CHAPTER 7 

SENSITIVITY ANALYSIS 

 

 

This chapter presents the sensitivity analysis of the rear-end and sideswipe crash risk models 

developed in this study. The main purpose of this task is to capture the effect of input 

variables on the outputs of the proposed models. This sensitivity analysis serves to 

supplement the field validation procedure and to assist in developing countermeasures to 

reduce the crash risk for motorcyclists. 

This chapter is organised in three main sections. The first section presents the methodology 

used to investigate the effect of independent variables included in the developed models on 

the crash potentials. The second section describes the dataset used for this task. The final 

section shows the contribution of these variables on the potential of both rear-end and 

sideswipe crashes for motorcycles.    

 

7.1. Methodology 

As stated in Chapter 4, this study defines the crash risk as the probability of conflict occurring 

that potentially results in crash event if the two consecutive motorcycles involved in the 

conflict do not take any evasive action to avoid the occurrence of a crash. Therefore, to 

investigate the effect of risk factors contributing to the crash risk, their influence on the 

probabilities of conflicts are examined using the developed models presented in Equations 

(6.13) and (6.14). The changes in the input variables may lead to the changes in the outputs of 

the proposed models, meaning that the crash risk may change correspondingly to the values of 
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input factors. Consequently, the effect of contributing factors included in the proposed models 

on the crash risk for motorcyclists are investigated as follows: 

a. Front distance variable 

b. Speed difference variable 

c. Longitudinal gap variable 

d. Lateral clearance variable 

e. Speed variable  

f. Traffic density variable  

The methodology used to investigate the effect of a variable on crash risk is based on the 

changes of outputs due to the change in values of that variable while the values of other 

variables are kept unchanged. The range of input values for an investigated variable is based 

on the minimum and maximum values determined from the real data collected in the field. 

The unchanged values of other variables inputted in the models are the means estimated from 

the data set considered. Understanding the effect of contributing factors on crash risk, means 

that countermeasures may be subsequently developed to reduce the crash potential. 

      

7.2. Data Description 

The data set from Nguyen Tri Phuong Street was used for this task (Chapter 5). The statistics 

of input variables used to estimate the potential of crashes are summarised in Table 5.18. To 

simplify the calculation process, several input variables such as reaction time of 

motorcyclists, braking deceleration of motorcycles and swerving angle of motorcycles are 

assumed to be a constant. Specifically, the reaction time () of the motorcyclists is 0.52 

second (Minh, 2007), the braking deceleration of motorcycles in emergency situation is 6.02 
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m/s2 and that for dry and wet surface conditions are 4.59 m/s2 and 3.66 m/s2 respectively 

(Davoodi and Hamid, 2013), the swerving angle is 12.5 degrees (the mean estimated from the 

data set considered).  

Table 7.1. Summary of the data set for sensitivity analysis 

Variables Mean Std Minimum Maximum 

Speed of subject motorcycles (m/s) 9.48 1.29 4.58 12.06 

Speed difference (m/s) 0.86 0.97 -2.24 3.67 

Front distances (m) 2.42 1.27 1.05 5.31 

Longitudinal gaps (m) 3.15 1.19 1.82 6.63 

Lateral clearance (m) 1.79 0.86 0.79 3.82 

 

7.3. Result and Discussions 

7.3.1 The effect of the front distance variable on crash potentials 

To investigate the influence of the front distance variable on crash potentials, the different 

values of this factor ranging from 1.0 m to 5.0 m were used to input in the proposed models to 

obtain the outputs. The probabilities of conflicts occurring derived by those values are shown 

in Table 7.2. These probability results represent the potential of a crash due to the changes of 

front distance variable. The trend of this change is shown in Figure 7.1. It can be seen from 

the results that the rear-end crash potential increases as the front distance increases and 

reaches a peak at the value of 3.0 m and then decreases onwards while the sideswipe crash 

risk decreases as the values of front distance increase. This may be explained that when the 

front distance is long, motorcyclists are more likely to choose to follow the front vehicles and 

this leads to an increase in the rear-end crash potential and a decrease in sideswipe crash 



 

111 
 

potential. Rear-end crashes are likely to occur if the front distance is less than 3.0 m because 

those of values are less than the threshold safety distance needed for the motorcyclists to take 

proper evasive actions to avoid the rear-end crash. The outputs also illustrate that the total risk 

of crashes increases significantly if the front distance factor is less than 2.5 m. This may be 

due to that when the front distance is less than 2.5 m, the rear-end crash risk increases 

significantly while the sideswipe risk decreases insignificantly and therefore the total risk will 

increase correspondingly. The results found in this investigation may be used as a guidance to 

develop safety treatment measures to reduce the occurrence of crash potential affected by this 

contributing factor.  

   Table 7.2. The effect of the front distance factor on crash risk 

Front distance (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rear-end crash risk 0.025 0.043 0.064 0.082 0.089 0.081 0.064 0.045 0.030 

Sideswipe crash risk 0.134 0.129 0.119 0.101 0.075 0.047 0.025 0.012 0.006 

Total crash risk  0.16 0.17 0.18 0.18 0.16 0.13 0.09 0.06 0.04 

      

 

Figure 7.1. The effect of the front distance factor on crash risk 
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7.3.2 The effect of the speed difference variable on crash potential 

The effect of the difference in speed between the subject motorcycle and the front vehicles is 

investigated by evaluating the change in crash potential output due to the change in the values 

of this factor. Table 7.3 shows the results estimated for different values ranged from -7.5 km/h 

to 15.0 km/h for the speed difference factor and the tendencies of those changes are illustrated 

in Figure 7.2. As shown in the results, the potential of rear-end and sideswipe crashes 

approach to zero when the differences in their speeds are less than -5.0 km/h. Although the 

speed of the subject motorcycle is slower than that of the front vehicle (from -5.0 km/h to 

zero), the probabilities of rear-end crash potential are still different form zero. This may be 

explained by the scenario as follows: i) the subject motorcycle follows the front vehicle when 

the speed of the front vehicle is higher than that of the subject motorcycle, ii) the front vehicle 

suddenly slows down when an emergency situation ahead occurs, iii) the subject motorcycle 

must apply a brake to avoid a possible rear-end crash with the front vehicle, iv) because the 

subject motorcycle maintains a short distance with the front vehicle and this distance is less 

than the distance needed for the subject motorcycle to apply a brake to avoid a rear-end crash 

with the front vehicle and therefore a rear-end crash may occur. It may also be seen the rear-

end crash risk decreases from the value of 2.5 km/h onwards and the sideswipe crash risk 

increases significantly from that value. This may be due to that motorcyclists are more likely 

to change their current directions to overtake the front vehicles instead of choosing the 

following manoeuvre. The outputs also show the total risk of crashes is significant when the 

speed difference values ranged from 2.5 km/h to 7.5 km/h.                        
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Table 7.3. The effect of differential speed on crash risk 

Speed difference 

(km/h) 
-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 

Rear-end crash 

risk 
0.000 0.009 0.051 0.093 0.109 0.089 0.053 0.026 0.020 0.015 

Sideswipe crash 

risk 
0.001 0.003 0.008 0.020 0.044 0.077 0.107 0.125 0.128 0.131 

Total crash risk 0.00 0.01 0.06 0.11 0.15 0.17 0.16 0.15 0.15 0.15 

 

 

Figure 7.2. The effect of speed difference factor on crash risk 

 
7.3.3 The effect of the longitudinal gap variable on crash potential 

The influence of the longitudinal gap factor on the crash potentials is examined by estimating 

the crash risk for different values of this factor ranged from 0.5 m to 4.5 m. The estimate 

results are described in Table 7.4 and Figure 7.3. It may be seen from the results that the crash 

risk decreases with the higher value of this factor. As may also be seen, the potential of 

sideswipe crash approaches to zero from the values of 3.5 m onwards.  
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Table 7.4. The effect of longitudinal gap on crash risk 

Longitudinal gap (m) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Rear-end crash risk 0.103  0.099  0.096  0.092  0.089  0.085  0.082  0.078  0.075  

Sideswipe crash risk 0.495  0.498  0.377  0.188  0.071  0.023  0.007  0.002  0.001  

Total crash risk 0.60  0.60  0.47  0.28  0.16  0.11  0.09  0.08  0.08  

        

 

Figure 7.3. The effect of front distance factor on crash risk 
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that motorcyclists are more likely to choose the swerving manoeuvre behaviour to overtake 

the front vehicles as the lateral clearances increase and this results in the higher risk of 

sideswipe crash. However, the total crash risk shows a decreasing trend on the lateral 

clearance increase and this may be explained by that the proportion of rear-end crash risk is 

greater than that of sideswipe crash risk and thus the decrease in rear-end crash potential 

leading to the decrease in the overall risk.               

Table 7.5. The effect of lateral clearance on crash risk 

Lateral clearance (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rear-end crash risk 0.182  0.165  0.137  0.102  0.066  0.039  0.021  0.011  0.005  

Sideswipe crash risk 0.014  0.026  0.045  0.069  0.093  0.111  0.124  0.130  0.134  

Total crash risk 0.20  0.19  0.18  0.17  0.16  0.15  0.14  0.14  0.14  

 

 

Figure 7.4. The effect of lateral clearance factor on crash risk 
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7.3.5 The effect of the speed variable on crash potential 

The speed variable included in the proposed models affects both the manoeuvre choice 

behaviour and the threshold safety distance of a motorcycle. Therefore, the speed of 

motorcycles is an important factor influencing the crash risk output. To investigate the 

contribution of this factor to the crash risk, the crash potentials are estimated for different 

levels of the motorcycles’ speed as shown in Table 7.6 and Figure 7.5. The results reveal that 

the crash potentials increase as the speeds of motorcycles increase. The crash risk increases 

dramatically when the motorcycles’ speeds are higher than 30 km/h. This finding may be used 

as a guidance in designing treatment measures to reduce the crash risk regarding to this 

contributing factor.      

Table 7.6. The effect of speed factor on crash risk 

Speed (km/h) 15 20 25 30 35 40 45 50 55 60 

Rear-end crash 

risk 0.01  0.03  0.05  0.07  0.09  0.11  0.12  0.14  0.15  0.16  

Sideswipe 

crash risk 0.00  0.00  0.00  0.00  0.08  0.20  0.30  0.37  0.42  0.45  

Total crash 

risk 0.01  0.03  0.05  0.07  0.17  0.31  0.42  0.51  0.57  0.60  
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Figure 7.5. The effect of motorcycle speed on crash risk 
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density is 150 motorcycles/1000 m2 and higher. This may be due to that motorcycles can 

manoeuvre freely in the low traffic density (less than 100 motorcycles/1000 m2), implying 

that they tend to move at high speeds and change their directions frequently in this traffic 

condition. Therefore, the potentials of both rear-end and sideswipe crash risk increase 

significantly. In higher traffic density conditions (from 100 motorcycles/1000 m2 to 150 

motorcycles/1000 m2), it seems that motorcyclists feel some restrictions to perform swerving 

manoeuvre behaviour and therefore most of them tend to choose the following manoeuvre. 

Consequently, the sideswipe crash risk is more likely to reduce while the rear-end crash risk 

still increases in this situation. In the extremely high traffic density condition (from 150 

motorcycles/1000 m2 onwards), it is observed that the motorcycles cannot perform the 

swerving manoeuvre freely and are likely to move with a lower speed. Therefore, the 

potential of sideswipe crashes approach zero and the rear-end crash potential also tends to 

decrease in this case. For example, this situation can be observed in the congested traffic 

where motorcyclists normally travel at very low speeds and they cannot perform any swerving 

manoeuvre behaviour to overtake the front vehicles. The crash risk of this situation is 

therefore rather low but it is not desirable as vehicles cannot move in the traffic.                    

 

Table 7.7. The effect of traffic density on crash risk 

Density 

(motorcycles/1000m2) 60 65 70 75 80 85 90 95 

Rear-end crash risk 0.06  0.07  0.08  0.09  0.10  0.11  0.12  0.14  

Sideswipe crash risk 0.05  0.06  0.07  0.08  0.09  0.10  0.10  0.11  

Total crash risk 0.11  0.13  0.15  0.17  0.19  0.21  0.23  0.24  
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Density 

(motorcycles/1000m2) 
100 105 110 115 120 125 130 135 

Rear-end crash risk 0.15 0.17 0.18 0.20 0.21 0.23 0.24 0.25 

Sideswipe crash risk 0.11 0.10 0.09 0.08 0.06 0.04 0.03 0.01 

Total crash risk 0.26 0.27 0.27 0.28 0.27 0.27 0.26 0.26 

Density 

(motorcycles/1000m2) 
140 145 150 155 160 165 170 175 

Rear-end crash risk 0.25 0.26 0.26 0.25 0.25 0.23 0.22 0.20 

Sideswipe crash risk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total crash risk 0.26 0.26 0.26 0.25 0.25 0.23 0.22 0.20 

 

 

Figure 7.6. The effect of traffic density on crash risk 
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speed, the speed difference, the traffic density, the front distance, the longitudinal gap, the 

lateral clearance and the road surface condition were found to have a significant contribution 

to both rear-end and sideswipe crashes risk for motorcycles. These findings may be used as a 

guidance to develop appropriate countermeasures to reduce the crash potential affected by 

these contributing factors.                     
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CHAPTER 8 

MODEL VALIDATION 

 
 

 

 

This chapter presents the process of validating the developed models. The purpose of the 

model validation task is to assess the predictive capabilities of the methodology developed in 

this study. The validation effort for the proposed crash risk models consists of three tasks: 

 Assessing the goodness-of-fit 

 Field validation  

 Validation Test 

These three validation tasks are presented in the following three main sections.  
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8.1. Assessing the Goodness-of-Fit 

The purpose of assessing the goodness-of-fit of the model is to test how effective the model is 

in describing the outcome variable. This task focuses on assessing the fit of the proposed 

model in capturing the movement characteristics of a motorcycle in a motorcycle-dominated 

traffic environment that has been found to be a major cause leading to rear-end crash and 

sideswipe crash potentials.   

8.1.1 Methodology 

Assessing the goodness-of-fit of the model is the process of comparing the predicted 

outcomes of the model against the observed values. Suppose that the observed sample values 

of the outcome variable is denoted by the vector y, where �� = (��, ��, … , ��), and the values 

predicted by the model is denoted by the vector ��, where ��� = (���, ���, … , ���). It is concluded 

that the model fits if (1) summary measures of the difference between ��and ��� are small and 

(2) the contribution of each pair (��, ���), i = 1, 2, …, n to these measures is unsystematic and 

is small relative to the error structure of the model (Hosmer and Lemeshow, 1989). The 

summary measures of the difference between the observed and fitted values are functions of a 

residual defined as the difference between the observed and fitted values. This study applied 

the most often used test method for goodness-of-fit statistic proposed by Hosmer and 

Lemeshow (1980). 

8.1.2 Data description 

For this task, the dataset containing 535 observations of the trajectories of 108 subject 

motorcycles and 2140 observations of 432 influential vehicles from Nguyen Van Linh Street 

was used.   
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8.1.3 Results and discussions  

To test the goodness-of-fit of the developed model, Hosmer and Lemeshow (1980) proposed a 

grouping method based on the values of the estimated probabilities. According to this method, 

535 observations of motorcycle trajectories was divided into 10 groups that result in the first 

group containing 54 subjects having the largest estimated probabilities, and the last group 

containing 49 subjects having the smallest estimated probabilities. For example with group 1, 

the estimate values are obtained by summing the estimated probabilities over all subjects in 

this group. As shown in Table 8.2, the total estimated probabilities of group 1 is 53.99. The 

estimate values of other group were calculated similarly to group 1. The results are shown in 

the contingency Table 8.1 and they were used to calculate the agreement between the 

observed and estimated values as shown in Table 8.2. A comparison of the observed and 

expected frequencies in Table 8.2 shows that the model fits quite well. As illustrated in Table 

8.2, the overall agreement percentage of the predicted to the observed values reaches 94.0 per 

cent, implying that the proposed model predicts the movements of motorcycles in a 

motorcycle-dominated traffic environment with a high degree of accuracy.   

Table 8.1. Contingency Table for Hosmer and Lemeshow Test 

Groups choice = 0 (following manoeuvre) choice = 1 (swerving manoeuvre) Total 

Observed Expected Observed Expected 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

54 53.990 0 0.010 54 
54 53.801 0 0.199 54 
54 51.694 0 2.306 54 
31 36.856 23 17.144 54 
11 8.474 43 45.526 54 
2 1.050 52 52.950 54 
0 0.113 54 53.887 54 
0 0.019 54 53.981 54 
0 0.002 54 53.998 54 
0 0.000 49 49.000 49 
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    Table 8.2. Classification Table 

Observed 

Predicted 

choice 
Percentage Correct 

0 1 

choice 
0 190 16 92.2 

1 16 313 95.1 

Overall Percentage   94.0 

 

 

8.2. Field Validation 

The main purpose of the field validation is to test the performance capability of the proposed 

models in the real-world by comparing the predictive conflict frequency produced by the 

proposed models with the actual conflict frequency observed in the field.   

8.2.1 Methodology 

The methodology used for the field validation task is based on comparing the observed 

conflict frequency with the estimated conflict frequency. This validation task was conducted 

in two steps. First, rear-end conflict and sideswipe conflict frequencies were observed in the 

field for different time periods in a day in order to fully capture the frequency of conflict for 

both peak hours and non-peak hours. Second, the frequencies of rear-end and sideswipe 

conflicts were predicted using the proposed models for those same time periods and then the 

estimate results were compared with the actual conflict frequency observed in the field by 

determining the percentage agreement of the estimated with observed values.    
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8.2.2 Data description 

The dataset from Nguyen Tri Phuong Street was used for this field validation task (Chapter 

5). The statistical properties of variables from this dataset were used to estimate the rear-end 

and sideswipe conflict frequency of each hour for six hours from 6:00 am to 9:00 am and 

from 3:00 pm to 6:00 pm. These estimate results were then used to compare with the 

observations of these conflict types for those same period times. The traffic volume and traffic 

density for each hour used to estimate conflict frequency are described in Table 8.3.  

Table 8.3. Traffic volume and density for various time periods 

Time periods 
Traffic volume 

(motorcycles/hour) 

Average density 

(motorcycles/1000m2) 
Average speed (m/s) 

6:00am-7:00am 3137 74 9.75 

7:00am-8:00am 4297 102 8.72 

8:00am-9:00am 3471 82 9.45 

3:00pm-4:00pm 2971 70 9.91 

4:00pm-5:00pm 3975 90 9.15 

5:00pm-6:00pm 5284 125 7.95 

 

8.2.3 Results and discussions 

The comparison results are shown in Table 8.4. The results reveal that the percentage 

agreement of the estimated and observed conflict frequency for each time period range from 

78.5% to 89.8%. This indicates that the crash risk models developed in this study produce 

good estimates for both rear-end and sideswipe crash potentials for motorcycles in a 

motorcycle-dominated traffic environment.   
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Table 8.4. Conflict frequency outcome and comparison results 

Time 

periods 

Predicted conflicts Observed conflicts (*) Percentage 

correct 

(%) Rear-end Sideswipe Total Rear-end Sideswipe Total 

6:00am-

7:00am 
7.4 3.6 11.0 9 5 14 78.5 

7:00am-

8:00am 
32.7 8.1 40.8 27 10 37 89.8 

8:00am-

9:00am 
19.6 11.8 31.4 24 14 38 82.6 

3:00pm-

4:00pm 
4.1 1.7 5.8 5 2 7 83.0 

4:00pm-

5:00pm 
18.6 8.8 27.3 22 12 34 80.4 

5:00pm-

6:00pm 
57.3 12.9 70.2 46 15 61 84.9 

(*): Conflicts were observed directly in the field via video recordings 

 

8.3. Validation Test 

The main purpose of this validation test is to assess the predictive capabilities of the 

methodology developed in this study. The first purpose of this test is to afford a correlation of 

the crash potentials produced by the proposed models with actual crash history. The second 

purpose of this test is to identify any correlation between the output of the proposed models 

and the existing methodologies available from the literature. Two existing methodologies 

employed for this validation task are: (1) the crash prediction methodology developed by the 

Highway Safety Manual (HSM) (AASHTO, 2009) and (2) the crash risk assessment 

methodology developed by the International Road Assessment Programme (iRAP, 2013). 

Further details of these methodologies are found in Chapter 2.  
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8.3.1 Methodology 

The methodology used for the validation test is based on the correlation of the actual 

historical crash data from real-world roads with the corresponding outputs of the same roads 

from the crash risk models developed in this study. In this test, the ranking of locations from 

the proposed models according to the average daily conflict frequency was compared to the 

ranking of those same locations from the actual annual crash frequency, the existing iRAP 

methodology and the existing HSM methodology. The output of the proposed models is the 

average daily conflict frequency while that of the iRAP methodology is the Star Rating Score 

and that of the HSM methodology is the average annual crash frequency. Therefore, the 

ranking comparison technique was applied to compare the predictive capability of these 

methodologies. This validation test process was conducted in the following five steps (A, B, 

C, D and E): 

Step A: Proposed model ranking  

In this step, the average daily frequencies of rear-end and sideswipe conflicts were estimated 

for each location using the crash risk models developed in this study. These locations were 

then ranked based on the total number of conflicts in ascending order. 

Step B: HSM model ranking 

In this step, the average yearly crash frequencies for a road segment were determined using 

the predictive methodology presented in the Highway Safety Manual (HSM) (ASSHTO, 

2009). The annual frequencies of rear-end and sideswipe crash were estimated for each 

location using the safety performance functions (SPF). These locations were then ranked 

based on the predicted average annual crash frequencies in ascending order. 
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Step C: iRAP model ranking 

In this step, Star Rating Scores (SRS) and average yearly fatalities for each road segment 

were estimated using the methodology developed by the International Road Assessment 

Programme (iRAP methodology, 2013). In the existing iRAP methodology, rear-end and 

sideswipe crash types are not included in Star Rating Score system. Therefore, for the purpose 

of this test, it was assumed that both rear-end and sideswipe crash were taken into account in 

the iRAP SRS system by the along crash type. However, the SRS value of along crash type 

for all selected road segments were not different, therefore these locations were ranked based 

on an estimate of average annual fatalities in ascending order.   

Step D: Actual crash ranking 

In this step, the average yearly actual crash frequencies for each road segment were 

determined by dividing the total number of historical crashes collected over the period from 

2008 to 2015 by the number of years of this period. These locations are then ranked based on 

their average annual actual crash history in ascending order. 

Step E: Ranking comparison 

In this step, the road segment rankings based on the crash risk models developed in this study, 

the HSM model and the iRAP model were compared to the road segment rankings based on 

average yearly actual crash frequencies. To determine the level of agreement between these 

rankings, the Spearman rank correlation coefficient was used in this test. This is a 

nonparametric statistical test and thus it is appropriate to use for this purpose. According to 

this method, there is a perfect correlation between two rankings if the value of correlation 
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coefficient is 1.0 and there is no correlation between them if the value of coefficient is 0.0. 

The Spearman rank correlation coefficient (��) is calculated as follows: 

�� = 1 −
6∑ ��

�

�(�� − 1)
 

where, 

��: is the difference between two rankings for sample i 

n: is the number of samples ranked 

 

8.3.2 Data description 

Ten road segments on ten different roads in the city of Danang in Vietnam were selected for 

this validation test. The geometry and traffic characteristics of these road segments are 

described in Table 8.5 and Table 8.6. The average annual actual crash history occurring on 

these roads was used to examine the relation with the proposed model, the iRAP model and 

the HSM model. To identify the average yearly crash frequency, this study collected the 

historical crash data (per 1000m of road length) for the period of eight years from 2008 to 

2015 and calculated the average crash per year by dividing the total number of crashes by the 

number of eight years. The total numbers of crashes over 8 years for different roads were 

collected from Danang Department of Transport as reported in Table 8.6.            
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Table 8.5. Geometry characteristics of road segments 

Location Road name Road length (m) Number of lanes Lane width (m) 

1 Nguyen Van Linh 2170 2 4 

2 Bach Dang 2542 4 3.75 

3 Duong 2-9 3377 3 3.5 

4 Nguyen Tri Phuong   1295 2 3.5 

5 Dien Bien Phu 2700 4 3.5 

6 Nguyen Huu Tho 4680 3 3.5 

7 Cach Mang T-8  1000 3 3.5 

8 Nguyen Tat Thanh 2000 3 3.5 

9 Truong Chinh 1000 3 3.5 

10 Ton Duc Thang 1000 3 3.5 

 

Table 8.6. Traffic characteristics of road segments and historical crash data 

Location 
Volume 

(vehicles/day) 

Density 

(vehicles/1000m2) 

Average 

speed (m/s) 

Crash records (2008-2015) 

(serious and fatal motorcycle 

- motorcycle crashes) 

Rear-end Sideswipe  

1 59704 89 9.68 21 5 

2 41621 68 9.99 9 2 

3 49706 72 9.83 16 4 

4 61402 94 9.48 27 7 

5 78945 76 9.19 35 9 

6 32706 72 9.83 11 3 

7 43857 75 9.71 12 4 

8 28865 68 9.99 11 2 

9 65551 83 9.41 27 15 

10 67563 85 9.33 24 14 

 Historical crash data collection source: Danang Department of Transport  
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8.3.3 Results and discussions 

Table 8.7 shows the average daily conflict frequency estimated by the proposed models (RE, 

SW: the number of rear-end and sideswipe conflicts respectively; TT: total of rear-end and 

sideswipe conflicts), the average annual crash frequency estimated by the HSM methodology 

(RE, SW: the frequencies of estimated average annual rear-end and sideswipe crashes 

respectively; TT: total of average annual rear-end and sideswipe crashes), the star rating score 

and average annual fatalities estimated by the iRAP methodology ( SRAS-A, SRS-T: star 

rating scores of along crash type and all crash types respectively; Fa-TT: estimated average 

annual fatalities of all crash types) and the average annual actual crash data (RE, SW: 

observed average annual rear-end and sideswipe crashes) for 10 selected road segments and 

their rankings. Table 8.8 shows the Spearman rank correlation coefficient values of six 

comparisons. Compared with the HSM methodology and iRAP methodology, the 

methodology developed in this study presents the strongest correlation with the actual crash 

history. The correlation coefficient value for the proposed methodology is 0.98 while those of 

for the HSM methodology and iRAP methodology are 0.91 and 0.87 respectively. This 

implies that the proposed models produce a reliable estimate of crash potentials which were 

found to have a strong association with the actual crash frequency data for the data set 

considered.                      
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Table 8.7. Outputs and rankings for locations 

Locations 

Average daily conflict estimated by 
the proposed models 

Average annual actual crash history 

RE  SW TT Ranking RE SW TT Ranking 

1 190 41 231 6 2.7 0.6 3.3 6 

2 42 11 52 2 1.1 0.3 1.4 1 

3 121 31 152 5 2.0 0.5 2.5 5 

4 308 74 381 7 3.4 0.8 4.2 7 

5 511 128 639 10 4.4 1.1 5.5 10 

6 42 13 55 3 1.4 0.4 1.8 3 

7 82 31 113 4 1.5 0.5 2.0 4 

8 22 5 27 1 1.3 0.3 1.6 2 

9 280 153 433 8 3.4 1.8 5.2 9 

10 346 200 546 9 3.0 1.8 4.8 8 

Locations 

Average annual crash frequency 
estimated by HSM methodology 

SRS and average annual fatalities 
estimated by iRAP methodology 

RE SW TT Ranking SRS-A SRS-T  Fa-TT Ranking 

1 0.5 0.1 0.6 4 0.2 0.8 0.02 2 

2 0.3 0.1 0.4 2 0.2 0.8 0.01 1 

3 0.4 0.1 0.5 3 0.2 0.8 0.01 1 

4 0.5 0.1 0.6 4 0.2 0.8 0.02 2 

5 0.6 0.1 0.8 6 0.2 0.8 0.02 2 

6 0.3 0.1 0.3 1 0.2 0.8 0.01 1 

7 0.3 0.1 0.4 2 0.2 0.8 0.01 1 

8 0.2 0.1 0.3 1 0.2 0.8 0.01 1 

9 0.5 0.1 0.6 4 0.2 0.8 0.02 2 

10 0.5 0.1 0.7 5 0.2 0.8 0.02 2 
 
RE: rear-end; SW: sideswipe; TT: total of rear-end and sideswipe; SRS-A: star rating score for along crash 

types; SRS-TT, Fa-TT: star rating score and average annual fatality for total crash type respectively.   
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Table 8.8. Correlation coefficient 

Methodology HSM methodology iRAP methodology Actual crash 

Proposed methodology 0.96** 0.87**        0.98** 

HSM methodology  0.89**        0.91** 

iRAP methodology          0.87**   

** Correlation is significant at the 0.01 level 

 

8.4. Summary 

The validation results presented in this chapter indicated that the developed methodology 

produced a good estimate of both rear-end and sideswipe crash risk for motorcycles in a 

motorcycle-dominated traffic environment for the data set considered. In addition, the 

validation test showed that the proposed methodology presented the strongest correlation with 

the actual historical crashes and produced consistent and slightly better estimates compared 

with the HSM methodology and iRAP methodology for motorcycles in this particular traffic 

environment.   
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CHAPTER 9 

MODEL APPLICATION: RELATIVE RISK ASSESSMENT  

 
 

 

This chapter presents the application of the developed models in selecting countermeasures to 

reduce the crash risk for motorcycles in motorcycle-dominated traffic environments of urban 

areas. The chapter is organised in two main sections. The first section proposes a new concept 

of the Conflict Modification Factor  (CoMF) used to assess the relative contribution of risk 

factors on the potential of both rear-end and sideswipe crashes. The second section identifies 

several potential countermeasures related to risk factors included in the developed models that 

may be considered to implement for the improvement of motorcyclists safety.        

 

9.1. Assessing the Relative Contribution of Risk Factors 

By evaluating the relative contribution of risk factors to the sequence of traffic events, crashes 

and crash severities may be reduced by implementing specific countermeasures to target 

specific risk factors. In addition, the relative contribution of risk factors to crashes may assist 

in determining how to best allocate available resource to a safety improvement programme 

(ASSHTO’ HSM, 2009). This section presents the application of the existing Crash 

Modification Factor (CMF) in measuring the relative contribution of risk factors and then 

proposes a new concept of the CoMF as a surrogate measure to CMF. They are as follows.    
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9.1.1 Crash Modification Factor (CMF) 

CMFs represent the relative change in the crash frequency due to the change in one specific 

condition (e.g. widening road width) while all other conditions remain constant. Therefore, a 

CMF may be used to evaluate the effect of a particular road infrastructure attribute or traffic 

condition on the likelihood of crashes and severities or the change in crashes due to the 

implementation of a particular countermeasure (HSM, 2009; Gross et al., 2010; Carter et al, 

2012). CMFs are defined as the ratio of the expected average crash frequency of a specific 

location under one condition to the expected average crash frequency of the same location 

under a different condition. The different condition is often the base condition (HSM, 2009). 

A CMF may be calculated as follows:  

��� = 
����ℎ ��������� ���ℎ ��������� 1

����ℎ ��������� ���ℎ ��������� 2
  

(Equation 9.1) 

CMFs defined in Equation (9.1) may be used to compare the predicted crash frequency 

between “condition 1” and “condition 2” for a specific location. The values of CMFs are 

determined in relation to the base condition that is presented as “condition 2” in Equation 

(9.1). Under the base condition (e.g. with no change in the conditions), the value of a CMF is 

1.0. CMF values less than 1.0 indicate that the countermeasure reduces the estimated average 

crash frequency in comparison to the base condition. CMF values greater than 1.0 indicate the 

countermeasure increases the estimated average crash frequency in comparison to the base 

condition. CMF is usually used as a tool to evaluate the effectiveness of a countermeasure 

(HSM, 2009). 
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CMFs have been applied in several existing road safety assessment system such as the 

Highway Safety Manual (ASSHTO, 2009) and the International Road Assessment 

Programme (iRAP, 2013). In the iRAP Star Rating methodology, CMFs are applied to 

calculate the scores of crash types for different road users based on an assessment of road 

attributes related to the likelihood and severity of crashes for a specific road segment (section 

2.2.2). In the Highway Safety Manual, CMFs are used for the following purposes (section 

2.2.1):   

 A CMF is multiplied with a crash frequency of base conditions determined by a Safety 

Performance Function (SPF) to estimate the average crash frequency for a specific site 

under the existing conditions based on an assessment of existing geometric design and 

traffic control features. The CMFs are used to assess the difference of crash frequency 

between the base conditions and the existing conditions. 

 A CMF is multiplied with the observed crash frequency of a specific site that is being 

considered for implementing countermeasures to estimate the change in the expected 

crash frequency after a countermeasure is implemented. The CMFs are used to assess the 

difference of crash frequency before and after implementing a countermeasure.  

9.1.2 The concept of the Conflict Modification Factor (CoMF) 

In low-income and middle-income countries, obtaining reliable crash data to determine CMFs 

is a difficult task due to the under-reporting of accidents and the poor quality of historical 

crash data. Therefore, this study proposes a concept of the Conflict Modification Factor 

(CoMF) that may be used as a surrogate measure to CMF in road safety analysis due to the 

following reasons: 
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 There is statistical relationship between the frequency of conflict and crash events 

(Amundsen and Hydén, 1977; Miglez, Glauz and Bauer, 1985; Hydén, 1987; 

Svensson, 1992; Archer, 2004; Gettman et al., 2008; HSM, 2009; Ismail, 2010; 

Laureshyn, 2010; Guo et al., 2010). Gettman et al. (2008) found that the ratio of 

traffic conflicts to actual crashes may be 20,000 to 1. 

 The causal mechanisms for both conflict and crash events are similar (Guo et al., 

2010). According to Laureshyn (2010), the occurrence of a crash is always proceeded 

by a conflict.  

 The effects of contributing factors on the occurrence of conflicts and crashes do not 

seem to be different (Guo et al., 2010).        

The CoMFs proposed in this study represent the relative change in the conflict frequency due 

to the change in one specific condition while all other conditions remain constant. The process 

to determine CoMFs is as follow. 

Using the theory of probabilities, the likelihood of event occurrence is defined as the ratio of 

the probability of event occurrence to the probability of event non-occurrence (Guo et al., 

2010). Therefore, the likelihood of conflict occurrence may be defined as follows: 

������ℎ��� �� �������� = 
����������� �� ����� ���������� 

����������� �� ����� �������������
 

(Equation 9.2) 

Furthermore, based on the approach of determining CMFs as described in previous section, 

CoMFs may be defined as the ratio of the likelihood of conflicts for a specific location under 

one condition to the likelihood of conflicts for the same location under a base condition. 
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Consequently, the ratio of the likelihood of a particular traffic condition to the likelihood of 

the baseline traffic condition may be used to evaluate the change of conflict frequency 

between these two conditions. This likelihood ratio is defined as the Conflict Modification 

Factor (CoMF) and may be expressed by: 

�������� ������������ ������ = 
������ℎ��� �� �������� �������� ������� ����������
������ℎ��� �� ���������������� ������� ����������

  

(Equation 9.3) 

9.1.3 Determining the relative risk value of risk factors  

With regard to Equation (9.3), a risk factor contributes significantly to conflict occurrence if 

the likelihood of conflict for a particular traffic condition is much higher than the likelihood 

of conflict for the baseline traffic condition. The baseline traffic condition is defined in this 

study as the normal driving condition in which motorcyclists can move freely in a traffic 

stream at a low crash risk level. Using the proposed crash risk models, CoMFs may be 

developed for each of their variables (e.g. operating speed, speed difference, traffic density, 

front distance, longitudinal gap, lateral clearance, lateral gap, road surface condition, 

segregated motorcycle lane) based on the sensitivity analysis outputs as presented in Chapter 

7. The potential of a crash is defined as a conflict (or near-crash) event potentially resulting in 

a crash and therefore the CoMF of a risk factor may be defined as the relative risk value 

representing the changes in crash potentials due to the change of that particular risk factor. 

The relative risk values (CoMFs) of these variables are presented in Table 9.1 through to 

Table 9.9. An example of calculating the relative risk value for a contributing factor using 

Equations (9.2) and (9.3) is presented in Appendix A. 
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a) The relative risk value of the operating speed factor 

Table 9.1 shows the relative risk values of the operating speed factor for rear-end crash and 

sideswipe crashes. This factor has been found to have a significant contribution to both rear-

end crash and sideswipe crashes. The risk values indicate the higher the speed of vehicle the 

higher the rear-end crash and side swipe crash risk.                         

Table 9.1. Relative risk values of operating speed factor 

Speed (km/h) 25 30 35 40 45 50 55 60 65 70 

Rear-end crash 0.5 0.8 1.0 1.2 1.4 1.6 1.8 1.9 2.1 2.3 

Sideswipe crash 0.0 0.1 1.0 2.9 5.0 7.0 8.6 9.6 10.9 11.8 

 

b) The relative risk value of the speed difference factor 

Table 9.2 shows the relative risk values for various speed differences for rear-end crash and 

sideswipe crash type. This factor has been found to have a significant contribution to 

sideswipe crashes and the higher the difference in speed between the motorcycles and the 

front vehicles the higher the sideswipe crash risk. The rear-end crash risk decreases if the 

speed differences are higher than 2.5 km/h while the sideswipe crash risk increases 

significantly from this value.                        

Table 9.2. Relative risk values of the speed difference factor  

Speed difference 

(km/h) 
-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 

Rear-end crash  0.0 0.1 0.5 1.0 1.2 1.0 0.5 0.3 0.2 0.1 

Sideswipe crash  0.1 0.1 0.4 1.0 2.2 4.1 5.9 7.0 7.3 7.4 
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c) The relative risk value of the traffic density factor 

Table 9.3 shows the relative risk values of traffic density factor for rear-end crash and 

sideswipe crash type. In order to simplify the presentation, it was assumed that the traffic 

density conditions may be categorised by six levels in which each level was determined by 

grouping all traffic density values found to have similar influence on crash risk. 

Consequently, six levels of traffic density conditions were determined as follows:  

(1) “Free flow” condition denoted for the traffic density has a value of under 70 

motorcycles/1000 m2, 

(2) “Very low restricted flow” condition denoted for the traffic density has a value of 

from 70 to under 90 motorcycles/1000 m2, 

(3) “Low restricted flow” condition denoted for the traffic density has a value of from 90 

to under 115 motorcycles/1000 m2,  

(4) “Moderate restricted flow” condition denoted for the traffic density has a value of 

from 115 to under 140 motorcycles/1000 m2,  

(5) “High restricted flow” condition denoted for the traffic density has a value of from 

140 to under 165 motorcycles/1000 m2,  

(6) “Very high restricted flow” condition denoted for the traffic density has a value of 

greater than 165 motorcycles/1000 m2.   

The relative risk values for various traffic density conditions are shown in Table 9.3. Under 

very high traffic (e.g. nearly congestion), both rear-end crash and sideswipe crash present a 

low risk. The sideswipe crash type approaches the highest risk in low traffic density 

conditions where most motorcycles choose to perform swerving manoeuvres. As also it may 
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be seen from the risk values that the higher the traffic density condition the higher the rear-

end crash risk.                         

   Table 9.3. Relative risk values of traffic density condition   

Traffic density 

Free flow 

(< 70 

motorcycles

/1000 m2)  

Very 

restricted 

flow 

(70 - 90 

motorcycles

/1000 m2) 

Low 

restricted 

flow 

(90 - 115 

motorcycles

/1000 m2) 

Moderate 

restricted 

flow 

(115 - 140 

motorcycles/1

000 m2) 

High 

restricted 

flow 

(140 - 165 

motorcycles

/1000 m2) 

Very high 

restricted 

flow 

(> 165 

motorcycles

/1000 m2) 

Rear-end crash 0.75 1.0 2.0 3.0 3.5 2.5 

Sideswipe crash 0.75 1.25 1.5 0.5 0.25 0.10 

 

d) The relative risk value of the front distance factor 

Table 9.4 shows the relative risk values for front distances for rear-end crash and sideswipe 

crash type. Front distance has a significant contribution to sideswipe crashes and the shorter 

the front distance the higher the sideswipe crash risk. The rear-end crash risk slightly 

increases with the increase of front distance and slightly decreases when front distances are 

3.0 m or higher.  

   Table 9.4. Relative risk value of the front distance factor 

Front distance (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rear-end crash 0.5 0.8 1.0 1.1 1.0 0.8 0.5 0.4 

Sideswipe crash 3.0 2.7 2.3 1.6 1.0 0.5 0.2 0.1 
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e) The relative risk value of the longitudinal gap factor 

Table 9.5 shows the relative risk values for various longitudinal gaps for rear-end and 

sideswipe crashes. This factor has been found to have a significant contribution to the 

sideswipe crashes and it affects insignificantly rear-end crash risk. The risk values indicate the 

shorter the longitudinal gap between the laterally-following vehicle and the motorcycle the 

higher the sideswipe crash risk.                        

Table 9.5. Relative risk values of longitudinal gap factor 

Longitudinal gap (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Rear-end crash 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.8 

Sideswipe crash 12.9 7.9 3.0 1.0 0.3 0.1 0.05 0.01 

 

f) The relative risk value of the lateral clearance factor 

Table 9.6 shows the relative risk values for varying lateral clearances for rear-end and 

sideswipe crashes. This factor has been found to have a significant contribution to rear-end 

crashes while its influence on sideswipe crashes is less. The risk values indicate the higher the 

lateral clearance of the front vehicle the lower the rear-end crash risk while the higher the 

lateral clearance the higher the sideswipe crash risk.                         

Table 9.6. Relative risk values of lateral clearance factor 

Lateral clearance (m) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Rear-end crash 3.1 2.8 2.2 1.6 1.0 0.6 0.3 0.2 0.1 

Sideswipe crash 0.1 0.3 0.5 0.7 1.0 1.2 1.4 1.5 1.5 
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g) The relative risk value of the lateral gap factor 

Table 9.7 shows the relative risk values of the lateral gap factor for rear-end and sideswipe 

crash risk. This factor has been found to have a significant impact on sideswipe crash risk 

when the lateral gap less than 1.5 m while the factor does not affect rear-end crash risk. 

   Table 9.7. Relative risk values of lateral gap factor  

Lateral gap (m) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Rear-end crash 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Sideswipe crash 3.8 2.4 1.0 0.1 0.05 0.05 0.05 0.05 0.05 

 

h) The relative risk value of the road surface condition factor 

Table 9.8 shows the relative risk values for two road surface conditions for rear-end and 

sideswipe crashes. It has been found that both rear-end and sideswipe crash risk increase 

when the road surface is wet. 

   Table 9.8. Relative risk values for road surface condition factor  

Road surface condition Dry Pavement Wet Pavement 

Rear-end crash 1.00 1.1 

Sideswipe crash 1.00 1.7 

 

i) The relative risk value of the segregated motorcycle lane presence factor 

Table 9.9 shows the relative risk values for segregated motorcycle lanes for rear-end and 

sideswipe crashes. It has been found that the presence of segregated motorcycle lanes will 

lead to a decrease in both rear-end and sideswipe crash risk. 
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   Table 9.9. Relative risk values of segregated motorcycle lane presence  

Segregated motorcycle lane Non-presence Presence 

Rear-end crash 1.00 0.66 

Sideswipe crash 1.00 0.43 

 

9.2. Several Countermeasures for Improving Motorcyclist Safety 

Countermeasures are developed to reduce the frequency of crashes and their severity. 

Therefore, to determine appropriate measures to reduce the potential of rear-end and 

sideswipe crashes for motorcyclists, it is critical to investigate the contribution of risk factors 

to  the occurrence of these two crash types. Using the proposed crash risk models, 

countermeasures may be developed based on an assessment of the effect of risk factors on the 

potential of rear-end and sideswipe crashes. These risk factors are: speed of motorcycles, 

speed difference, traffic density, road surface condition, front distances, longitudinal gaps, 

lateral gaps and lateral clearances (section 9.1). Consequently, the following possible 

countermeasures may be proposed:  

 Changeable Speed Limit Signs;  

 Changeable Gap Warning Signs;  

 Changeable Road Surface Condition Warning Signs;        

 Segregated Motorcycle Lanes.  

The potential effectiveness of these measures in reducing motorcycle crashes in urban traffic 

environments particularly in Danang, where motorcycles account for over 90% of urban 

transport and land uses for road infrastructure improvements are limited and expensive, 
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require further verification through, for example, long-term pilot studies. Such studies were 

beyond the scope and the duration of this research. Yet they are particularly necessary for 

motorcycle-dominated traffic environments that are frequently found in Southeast Asia 

countries but not in the rest of the world. However, it should be also noted that the 

effectiveness of these measures depends on a number of other factors such as the degree to 

which road users understand and obey traffic laws, the degree of rigorous enforcement 

applied by the authorities, the reliability and maintenance of the entire traffic system.  

Their choice, from a number of other options, may be justified as follows. 

9.2.1 Installing “changeable speed limit signs” 

Variable mandatory speed limit signs are installed to provide the notice of speed limit for road 

users in real time. For the proposed models, the speed factor has been found to have a 

significant contribution to crash potentials. The risk of rear-end and sideswipe crashes 

increases dramatically when the speed increases, and therefore controlling the speed limit for 

different road users based on an assessment of traffic conditions in real time may be a 

potential measure to reduce the crash risk. For example, the speed limit may change with the 

change of traffic condition in peak hours and nonpeak hours or in various zones of urban 

areas using active traffic management technology.  

The impact of changing a speed limit has been examined in a number of studies in developed 

countries and the results of these studies have been summarised by Elvik, Christensen and 

Amundsen (2004). The impact of changing speed limits on crashes, injuries and fatalities will 

depend on how much vehicles change their speeds in response to a speed limit change (see 

section 2.7.5). According to Elvik, Christensen and Amundsen (2004), when the speed limit is 

changed by 10 km/h, the operating speed changes by about 2.5 km/h. In the case of a city such 
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as Danang, the effects of operating speed changes on injuries and fatalities may be estimated 

according to the model developed in this research. For example, as shown in Table 9.1, when 

the operating speed decreases from 50 km/h to 45 km/h, the theoretical crash risk of rear-end 

and sideswipe crashes for motorcycles could be reduced to 0.88 and 0.71 respectively. 

According to HSM (2009), the provision of advisory speed signs reduces the total number of 

injury crashes to 0. 87 compared to the absence of signage.     

 9.2.2 Installing “changeable gap warning signs”  

Changeable gap warning signs are installed to provide the notice of threshold safety distances 

for road users in real time. This warns the drivers to pay attention in maintaining appropriate 

distances with their neighbouring vehicles to reduce the potential of crashes from occurring. 

In the proposed models (Equations 6.13 and 6.14), the threshold-safety-distance is used to 

estimate the potential of crashes and this indicator is affected by both traffic density and road 

surface condition. Therefore, warning the drivers of unsafe threshold-safety-distances  may be 

an effective measure to prevent the risk of crashes in urban areas where there is high traffic 

density and availability of appropriate technology. According to Elvik et al. (2009), the 

installation of “close following gap warning signs” reduces the total number of rear-end 

crashes to 6% compared to the absence of signage.  Similarly, using the models developed in 

this study, the effect of front distances on crash risk may be estimated and it was found that 

the risks of rear-end and sideswipe crashes reduce up to 25% when the gaps increase 0.5 m 

(see Table 9.4). 

9.2.3 Installing “changeable road surface condition warning signs”  
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The road surface condition warning signs may be installed to provide notice of the road 

surface condition to drivers in real time. This warns the drivers to pay more attention and 

adjust their driving due to adverse conditions such as slippery or wet pavements. As these 

conditions may reduce the efficiency of braking systems and the potential of crash occurrence 

may therefore increase. Using the conclusion drawn from the examination of the proposed 

models it may be induced that installing such signs may be another measure to reduce the 

crash risk from occurring. As shown in Table 9.8, for example, the risks of rear-end and 

sideswipe crashes in wet pavement are 0.1 and 0.7 higher than that of in dry pavement 

respectively.    

9.2.4 Providing “segregated motorcycle lanes” 

If the proposed models were considered, the probability of motorcycle crashes with heavier 

vehicles (e.g. passenger car) appears to be higher than that between two motorcycles due to 

the larger reaction time of drivers and the larger braking distance of vehicles. In addition, this 

measure also reduces the swerving/weaving manoeuvre and erratic movements of 

motorcycles that have been found to have a significant contribution to crash risk. This may 

suggest that the provision of a segregated motorcycle lane is a solution that may reduce crash 

risk by separating motorcycles and other vehicle types in mixed traffic conditions. It may be 

provided by installing road markings or rumble strips on the roadway to separately delineate 

lanes for motorcycles and lanes for passenger cars (iRAP, 2013). It aims to prevent the 

interactions between motorcycles and other vehicle types and therefore may reduce the 

likelihood and severity of crashes. A crash that occurs between motorcycles and heavier 

vehicles can be higher severity (iRAP, 2013). As shown in Table 9.9, the provision of 

“segregated motorcycle lane” could reduce the risks of rear-end and sideswipe crashes to 0.66 
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and 0.43 respectively compared to the absence of this treatment. However, this finding 

together with those shown in Sections 9.2.1 through to 9.2.3 should be further tested and 

contrasted against those concerning rear-end and sideswipe crashes between motorcycles. 

 

9.3. Conclusion 

In this chapter, a new concept of Conflict Modification Factor was proposed to determine the 

relative risk value of risk factor contributing to the potential of rear-end and sideswipe crashes 

for motorcycles. Based on assessing the relative contribution of risk factors to the crash 

potential for motorcyclists, several countermeasures were recommend that may be considered 

for the motorcyclists safety improvement programme.   
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CHAPTER 10 

APPLICATION: ENHANCING THE iRAP SRS  

 

 

 

10.1. Introduction 

This chapter suggests an application of the developed crash risk models with the view to 

enhance the International Road Assessment Programme star rating system (iRAP SRS) for 

motorcyclists in motorcycle-dominated traffic environments of urban roads. The chapter is 

organised in four main sections. The first section gives the motivation of choosing the 

existing iRAP SRS as an area of application of the developed models. The second section 

discusses the limitation of the existing iRAP SRS for motorcyclists and then its methodology 

is presented in section three. The final section proposes a methodology to enhance the existing 

iRAP SRS for motorcyclist by integrating the risk scores of rear-end and sideswipe crash 

types into the iRAP risk modelling process. 

 

10.2. Motivation of Enhancing the Existing iRAP SRS for Motorcyclists 

This study developed models to estimate the potentials of rear-end and sideswipe crash types 

which has been found to account for a large proportion of multiple vehicle crashes in urban 

areas (see section 1.2). However, in the real word, particularly in the complex environments 

of urban areas in low-income and middle-income countries where a greater variety of risk 

factors contributing to crash risk can be present at the same time and this may lead to the 

occurrence of various crash types. Therefore, in addition to these two crash types, to overall 
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assess the risk of crashes for an urban road segment, the risk of rear-end and sideswipe 

crashes estimated in this study may be integrated into the existing International Road 

Assessment Programme (iRAP) star rating system which assess the risk of other crash types 

including run-off crash, head-on crash, intersection crash, property access crash, and along 

crashes.  

The purpose of enhancing the existing iRAP Star Rating methodology by integrating the risk 

of rear-end and sideswipe crash types is to achieve a comprehensive tool for assessing 

motorcyclist safety in the environment of low-income and middle-income countries where 

motorcycles are the predominant vehicle types particularly in urban areas. The existing iRAP 

star rating system was chosen as an area of application of the models developed in this study 

due to the following reasons: 

 The iRAP star rating methodology has been developed to assess the risk for all road 

user types including motorcyclists in low-income and middle-income countries where 

motorcycle is the predominant mode  of transport. 

 The iRAP star rating methodology has focused on assessing a wide range of crash 

types for motorcyclists but it still does not take into account the rear-end and 

sideswipe crash types which have been found to account for a large proportion of total 

motorcycles’ crashes in urban areas (Manan and Varhelyi, 2012; DoT, 2013; Ming et 

al., 2013).   

 iRAP is a well-known road safety assessment system that has been used to assess and 

improve the safety of roads in a wide range of low-income and middle-income 

countries and the system’s strengths have been acknowledged by traffic engineers 

around the world (Lynam, 2012; iRAP, 2013; Jurewicz et al., 2014).  
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10.3. Limited Coverage of Crash Types for Existing iRAP Motorcyclist SRS 

The motorcyclist star rating score is determined based on assessing the risk of five crash 

types. However, due to the range of paths that motorcycles can take within traffic streams, 

those five crash types determined by the existing iRAP star rating score system are likely to 

capture less of the total motorcycles’ crashes (Lynam, 2012). Sideswipe crashes and rear-end 

crashes away from intersections are found to account for a large proportion of total 

motorcycles’ crashes in urban transport system, particularly in the motorcycle-dominated 

traffic environment, but these two crash types are not included in the existing motorcyclist 

star rating score (iRAP, 2013; DoT, 2013; Manan and Várhelyi, 2012; Ming, Wucheng and 

Cheng, 2013). Therefore, there is a need to enhance the existing motorcyclists SRS by 

integrating the risk of rear-end and sideswipe crash type into the system.      

 

10.4. The Existing iRAP Star Rating System for Motorcyclists 

As stated in section 2.2.2, the existing iRAP star rating system includes four road user types: 

vehicle occupants, motorcyclists, bicyclists and pedestrians. For each a score is calculated 

combining scores of various crash types. For motorcyclists, a Star Rating Score (SRS) is 

produced by calculating the scores for five crash types: Run-off, Head-on, Intersection, 

Property access, and Along. A motorcyclist SRS is calculated for each 100 metre segment of 

road using the following equation (iRAP methodology, 2013): 

Motorcyclist SRS = (Run-off + Head-on + Intersection + Property + Along) Crash Scores 

(Equation 6.3) 
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The score of a crash type is expressed by (see section 2.2.2):  

Crash Score = Likelihood  Severity  Operating speed  External flow influence   
                         Median traversability  

(Equation 6.4) 

The road attribute risk factors related to the likelihood and severity used to calculate the score 

of each crash type shown in Table 10.1. The score of a crash type is determined by 

multiplying the relative risk values of risk factors related to the likelihood and severity. The 

relative risk values of attribute risk factors used in the iRAP Star Rating methodology are also 

known as Crash Modification Factors (CMFs) (iRAP methodology, 2013).   

Table 10.1. Motorcyclist star rating score 

Crash type Factor Road attribute risk factor 

Run-off score 

(driver and passenger sides 

calculated separately) 

 

Likelihood 

 

 Lane width 

 Curvature 

 Quality of curve 

 Delineation 

 Shoulder rumble strips 

 Road condition 

 Grade 

 Skid resistance 

Severity 
 Roadside object  

 Distance to roadside object  

 Paved shoulder width 

Operating speed 

External flow influence 

Median traversability 

 

Head-on (loss-of-control) Likelihood 
 Lane width 
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score 

 

 Curvature 

 Quality of curve 

 Delineation 

 Centreline rumble strips  

 Road condition 

 Grade 

 Skid resistance 

Severity  Median type  

Operating speed 

External flow influence 

Median traversability 

 

Head-on overtaking score 

 

Likelihood 

 Number of lane 

 Grade 

 Skid resistance 

 Differential speeds 

Severity  Median type  

Operating speed 

External flow influence 

 

Intersection score 

 

Likelihood 

 

 Intersection type  

 Intersection quality  

 Grade  

 Street lighting  

 Skid resistance / grip  

 Sight distance  

 Channelisation  

 Speed management / traffic calming 

Severity  Intersection type 

Operating speed 

External flow influence 
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Property access score  

Likelihood 

 

 Property access points  

 Service road 

Severity  Property access points 

Operating speed 

External flow influence 

 

Along score 

 

Likelihood  Facilities for two wheelers 

Severity  Facilities for two wheelers 

Operating speed 

External flow influence 

 

 

10.5. Enhancing the Star Rating System (SRS) for Motorcyclists        

10.5.1 Risk scores of rear-end and sideswipe crashes 

Once crash risk factors have been identified and quantified, safety treatment measures may be 

chosen for consequent implementation based on a rational approach as suggested in Chapter 

9. For example, the relative risk of a segregated motorcycle lane for sideswipe crash is 0.43, 

implying that the likelihood of sideswipe crash for motorcyclists will reduce to 43 % if a 

segregated motorcycle lane was provided.   

This approach is essentially the same as that of the International Road Assessment 

Programme (iRAP) methodology developed to assess the crash risk for different road users 

with the view to design countermeasures for safety improvement programmes. In the iRAP 

methodology, the crash risk is measured by crash scores based on assessing road attributes. 

The score of a crash type is calculated by multiplying the relative risk value of factors related 

to the likelihood and severity for that crash type. By embedding the models developed in this 
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study in the iRAP methodology, the risk scores of rear-end and sideswipe crashes for 

motorcyclists may be determined using the relative risk of contributing factors (see Chapter 9) 

as identified in Table 10.2, and complement the risk factors of the existing types of 

motorcycle crashes.            

To demonstrate and assess the methodology being proposed, a dataset from Nguyen Tri 

Phuong Street (see Chapter 5) was used. The traffic characteristics and the observations of 

rear-end and sideswipe conflicts on this road segment for different time periods from 06:00 

am to 09:00 am and from 03:00 pm to 06:00 pm are described in Table 10.3. Consequently, 

the observed conflicts of each hour (one time period) for six hours were compared with the 

corresponding estimated risk scores for the same time periods. The results are shown in 

Tables 10.4 and 10.5. To compare the two different parametric variables, the ranking 

comparison technique was applied. The method assesses the correlation of the observed 

conflict frequency with the corresponding estimated risk scores. In this comparison, the 

estimated risk scores rankings during six hours were compared to the rankings of the same 

time periods resulted from the observed conflict frequency. This process is conducted in the 

following three steps (A, B and C). 

Step A: Risk score ranking  

In this step, the risk scores of rear-end and sideswipe crashes using the likelihood factors were 

estimated for each hour of six time periods on the road segment considered. These time 

periods were then ranked according to the estimated risk scores in descending order. 
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Step B: Observed conflict ranking 

In this step, the frequency of rear-end and sideswipe conflicts were observed on the road 

segment for each hour of six hours. These time periods were then ranked according to the 

observed conflict frequencies in descending order.   

Step C: Ranking comparison 

In this step, the time period rankings based on the estimated risk scores were compared to the 

same time period rankings based on the observed conflict frequency. To determine the level 

of agreement between these rankings, the Spearman rank correlation coefficient was used. 

This is a nonparametric comparison measure and therefore appropriate to use for this task. If 

there is a perfect correlation between two rankings, the value of correlation coefficient is 1.0 

and there is no correlation between them if the value of coefficient is 0.0. The Spearman rank 

correlation coefficient (ρ�) is calculated as follows: 

ρ� = 1 −
6∑ d�

�

n(n� − 1)
    

where, 

d�: is the difference between two rankings for the time period i  

n: is the number of time periods ranked (n = 6) 

The rankings for each time period are shown in Table 10.4 and the comparison results are 

shown in Table 10.5. The comparison results reveal that there is a strong correlation between 

the estimated risk scores with the observed conflict frequency, implying that the risk score 

measure produces a good estimate of crash potentials for motorcyclists with regard to the data 

set considered.       
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Table 10.2. Risk factors contributing to rear-end and sideswipe crashes  

Crash type Factor   Traffic and road attributes  

Rear-end crash 

Likelihood 

 Speed 

 Speed difference 

 Traffic density  

 Lateral clearance 

 Front distance 

 Longitudinal gap 

 Road surface condition 

 Presence of segregated motorcycle lane 

Severity  Segregated motorcycle lane 

Operating speed 
 

External flow 

influence 

Sideswipe crash 

Likelihood 

 Speed 

 Speed difference 

 Traffic density  

 Lateral clearance 

 Front distance 

 Longitudinal gap 

 Lateral gap 

 Road surface condition 

 Presence of segregated motorcycle lane 

Severity  Segregated motorcycle lane 

Operating speed 
 

External flow 

influence 
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Table 10.3. Dataset from Nguyen Tri Phuong Street 

Time periods 
Traffic volume 

(motorcycles/hour) 

Average density 
(motorcycles/1000

m2) 

Average 
speed (m/s) 

Rear-end 
conflicts 

Sideswipe 
conflicts 

6:00am-7:00am 3137 74 9.75 9 5 

7:00am-8:00am 4297 102 8.72 27 10 

8:00am-9:00am 3471 82 9.45 24 14 

3:00pm-4:00pm 2971 70 9.91 5 2 

4:00pm-5:00pm 3975 90 9.15 22 12 

5:00pm-6:00pm 5284 125 7.95 46 15 

 

Table 10.4. Risk score estimates and comparison results 

Time 
period 

Risk score estimate (likelihood factor) Observed conflict frequency 

Rear-end Sideswipe Total Ranking Rear-end Sideswipe Total Ranking 

6:00am-
7:00am 

1.4 1.4 2.8 5 9 5 14 5 

7:00am-
8:00am 

4.0 1.0 5.0 2 29 7 36 2 

8:00am-
9:00am 

2.1 2.0 4.1 4 17 10 27 4 

3:00pm-
4:00pm 

1.1 1.0 2.2 6 5 2 7 6 

4:00pm-
5:00pm 

2.9 2.0 4.9 3 22 11 33 3 

5:00pm-
6:00pm 

5.6 0.0 5.6 1 46 15 61 1 
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Table 10.5. Correlation coefficient 

Methodology Observed conflict frequency 

Risk score estimate 1.00** 

** Correlation is significant at the 0.01 level 

 

10.5.2 Proposing an enhanced star rating methodology 

To provide an enhanced tool for assessing the motorcyclist safety in a motorcycle-dominated 

traffic environment, the existing iRAP star rating score system may be enhanced by taking 

into account the risk of rear-end and sideswipe crashes as follows: 

Motorcyclist SRS = (Run-off + Head-on + Intersection + Property + Along  
                  + Rear-end + Sideswipe) Crash Type Scores 

(Equation 6.5) 

The scores of rear-end and sideswipe crashes are calculated as follows: 

(Rear-end / Sideswipe) Crash Type Score = Likelihood  Severity  Operating speed 
                                                External flow influence 

(Equation 6.6) 

The risk factors that contribute to the likelihood and severity of rear-end and sideswipe 

crashes are identified in Table 10.2. 

10.5.3 Testing, Outputs and comparisons 

To compare the outputs between the existing iRAP star rating system and a consequent iRAP 

star rating system based on the models developed in this study, dataset from five 

homogeneous road sections were chosen randomly from five divided roads in the city of 
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Danang in Vietnam as described in Table 10.6 and Table 10.7 and then analysed. An example 

of calculating the star rating score using the enhanced iRAP SRS is shown in Appendix D. 

Table 10.8 shows that the existing iRAP SRS produces the same star rating scores for five 

locations while star rating scores produced from the enhanced iRAP SRS had the same trend 

with actual crash history.               

Table 10.6. Geometry characteristics of road segments 

Location Road name Road length (m) Number of lanes Lane width (m) 

1 Nguyen Van Linh 2170 2 4 

2 Bach Dang 2542 4 3.75 

3 Duong 2-9 3377 3 3.5 

4 Nguyen Tri Phuong   1295 2 3.5 

5 Dien Bien Phu 2700 4 3.5 

 

Table 10.7. Traffic characteristics of road segments and historical crash data 

Location 
Volume 

(vehicles/day) 
Density 

(vehicles/1000m2) 
Average 

speed (m/s) 

Crash records (2008-2015) 

(serious and fatal 
motorcycle – motorcycle 

crashes) 

Rear-end Sideswipe  

1 59704 89 9.68 21 5 

2 41621 68 9.99 9 2 

3 49706 72 9.83 16 4 

4 61402 94 9.48 27 7 

5 78945 76 9.19 35 9 

 Historical crash data collection source: Danang Department of Transport  
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Table 10.8. Comparison results between existing and enhanced iRAP SRS system  

Location  Existing iRAP SRS 

system 

Enhanced iRAP SRS 

system 

Crash history 

1 0.76 1.28 26 

2 0.76 1.09 11 

3 0.76 1.20 20 

4 0.76 1.37 34 

5 0.76 1.47 44 

 

10.5.4 Verifying the enhanced iRAP SRS methodology 

To test the performance of a subsequent iRAP SRS system, the Star Rating Score of the 5 

road sections were compared with the actual crash data collected at those road segments and 

with the crash frequency predicted by the Highway Safety Manual (HSM) methodology 

(AASHTO, 2009). This test process is conducted in the following three steps (A, B, C and D). 

Step A: Enhanced iRAP SRS methodology ranking  

In this step, the Star Rating Score (SRS) of each road segment was calculated by the 

consequent iRAP Star Rating Score system. These locations were then ranked according to 

the values of SRS in descending order. 

Step B: HSM methodology ranking 

In this step, the average yearly crash frequency of each road segment was predicted using the 

methodology proposed by the Highway Safety Manual (HSM) methodology (AASHTO, 
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2009). These locations were then ranked according to the predicted crash frequency in 

descending order. 

Step C: Actual crash ranking 

In this step, the road segments were ranked according to the average actual annual crash 

frequency in descending order. The average yearly crash frequency was determined by 

dividing the total number of historical crashes by the number of years collected. The actual 

crash data were gathered over the period from 2008 to 2015 of each 1000m road length for 

this test. 

Step D: Ranking comparison 

In this step, to determine the level of agreement between these rankings, the Spearman rank 

correlation coefficient was used.  

The outputs of methodologies and the corresponding rankings for road segments are shown in 

Table 10.9 and the comparison results are shown in Table 10.10. The comparison results 

reveal that there is a strong correlation between the outputs of the enhanced iRAP star rating 

methodology with the actual historical crash data, implying that the enhanced iRAP 

methodology seems to produce enhanced results in comparison to the HSM methodology. 

However, a larger data set (which could not be collected during the course of this PhD 

programme because of its resource constraints) would be needed to increase the certainty of 

this finding.       
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Table 10.9. Outputs of methodologies and rankings for road segments 

Locations  Enhance iRAP SRS HSM methodology Actual historical crash 

SRS Ranking  Crash 
frequency 

Ranking Crash 
frequency 

Ranking 

1 1.3 3 0.6 2 3.3 3 

2 1.1 5 0.4 4 1.4 5 

3 1.2 4 0.5 3 2.5 4 

4 1.4 2 0.6 2 4.2 2 

5 1.5 1 0.8 1 5.5 1 

 

Table 10.10. Spearman rank correlation coefficient 

Methodology Average actual historical crash 

Enhanced iRAP SRS 1.00** 

HSM methodology 0.97** 

** Correlation is significant at the 0.01 level 

 
 
 

10.6. Conclusion 

This chapter suggested an application of the developed models in determining the risk scores 

of rear-end and sideswipe crashes for motorcycles at a specific site based on assessing the 

relative contribution of risk factors on crashes. Further application of this is to enhance the 

iRAP star rating system for motorcyclists by integrating the risk scores of these two crash 

types into the existing iRAP SRS system. The outputs of the enhanced iRAP star rating 

methodology produced satisfactory results and there were consistent with historical crash data 
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and therefore show the potential of the models developed for inclusion in the existing iRAP 

star rating system.               
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CHAPTER 11 

DISCUSSION 

 
 

11.1. Introduction 

This chapter presents a discussion of the findings of this study with regard to the modelling 

approach, the model development process, the effect of the contributing factors included in 

the developed models on crash risk, the potential application of the proposed concept of the 

Conflict Modification Factor in road safety analysis, and the applications of the developed 

models in enhancing the existing iRAP motorcyclist star rating methodology and selecting 

appropriate countermeasures to improve motorcyclist safety.  

 

11.2. Modelling Approach Adopted in This Study 

To develop models to assess the risk of rear-end and sideswipe crashes for motorcyclists, this 

study adopted the traffic conflict technique which is based on determining the occurrence of 

rear-end and sideswipe conflicts instead of using the traditional approach which is based on 

analyses of historical crash data. The adoption of the traffic conflict technique was chosen 

based on the statistical relationship between the frequency of conflict and crash events and 

their similar causal mechanisms as stated in Section 9.1.2.  

Therefore, by using the surrogate measure approach, the crash risk may be assessed from the 

determination of the occurrence of conflicts which have the characteristics of crashes, but 
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with no actual crash results (Hydén, 1987; Svensson, 1992; Archer, 2004; Ismail, 2010; 

Laureshyn, 2010).  

From the validation results, as stated in Chapter 8, it was found that the estimate of rear-end 

and sideswipe conflicts were strongly correlated to the actual crash data and the developed 

models produced more reliable results compared with the existing methodologies found in the 

literature. The former suggests a verification of the assumptions made in this Thesis and the 

latter that the produced models offer an enhancement over other existing methodologies. It 

may therefore be suggested that the use of the traffic conflict technique in road safety 

analysis, such as that presented in this Thesis, may be an appropriate approach to address 

issues found in most LMICs. These issues include that of obtaining a reliable historical crash 

data for road safety analysis and taking into account explicitly the contribution of movement 

characteristics of road users to the crash potential. The traffic conflict technique is based on 

the observation of traffic events in the field, therefore the actual behaviour of road users may 

be captured to assess their effects on crash risk. 

 

11.3 Traffic Conflict Technique Verification  

Road safety is one of the most essential aspects of transport engineering. The planning, 

design, and maintenance of transport facilities should consider the reduction of crashes when 

designing or evaluating alternative designs. Since crash data analysis is a direct measure of 

road safety studies, the development of crash prediction models is able to give policy-makers, 

planners and traffic engineers a clear insight into past, current and future safety. Therefore, 

crash prediction models play a very important role in road safety study and need to be 

carefully examined to ensure their accuracy and reliability. However, most crash prediction 
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models are statistically-based methods requiring significant efforts on the reliability and 

availability of crash data (see section 2.1.1). Therefore, it is necessary to apply surrogate 

measure instead of using crash data in countries where good crash data history are not 

available. Compared to crashes that are rare and random events, traffic conflicts are 

considered to be a more frequent and share the similar causal mechanisms to crashes. The 

traffic conflict techniques have been applied widely in road safety analysis and have been 

validated in a number of studies (see section 2.1.2). 

The key requirement for using conflict as a surrogate measure is that the frequency of conflict 

is strongly associated with the frequency of crashes. That is, if a certain number of conflicts 

are observed, an accurate estimate of the number of crashes to occur will be obtainable. This 

is directly corresponding to the motivation for using traffic conflict measure: instead of 

modelling or evaluating the relatively small number of crashes observed, the relatively larger 

number of conflicts can be used to attain an improved assessment of traffic safety. A strong 

association will guarantee that an analysis using conflicts will not depart significantly from 

the results of an analysis using crashes only. The association between crashes and conflict can 

be measured by the ratio between them. As stated in Section 2.1.2, the logical and statistical 

relationship between the frequency of conflict and crash has been validated in a number of 

studies. According to the research conducted by Gettman et al. (2008), they found that the 

ratio of traffic conflicts to actual crashes were 20,000 to 1. 

The relationship between the frequency of crash and conflict is critical for evaluating 

surrogate measures. A constant crash-to-conflict ratio is an ideal situation where risk 

estimation using either crash alone or in combination with conflict will lead to identical 

results. Even when the constant ratio is not satisfied, a strong linear relationship between 
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crash and conflict will also provide valuable information about crash risk. To verify the traffic 

conflict technique used in this research, two tests were conducted: 

 Test 1: Comparing the frequency of conflicts estimated by this study with the 

frequency of conflicts observed directly in the field. To record the conflicts in the field 

via video recordings, this study applied guidelines presented in the Observers Manual 

published by Federal Highway Administration (Parker and Zegeer, 1989). According 

to this guideline, conflicts were defined as the occurrence of evasive vehicular actions 

and were recognisable by braking and/or weaving manoeuvre of motorcycles. Braking 

is usually observed as brake–light indications, however, some motorcycles are driven 

with inoperative brake lights. A noticeable diving of the vehicle or squealing of tyres 

in the absence of brake lights is acceptable evidence of an evasive manoeuvre. This 

test illustrated that the agreement level between the estimated and observed conflicts 

reach 89.8% (see section 8.2).  

 Test 2: Comparing the frequency of conflicts estimated by this study with the real 

crash data. The full historical crash data are not available in Vietnam, therefore this 

study used the data of serious and fatal motorcycle-motorcycle crashes only. This test 

revealed that there was a strong correlation between estimated conflicts and actual 

crashes (see section 8.3).  

Although these two tests may verify the traffic conflict technique used in this study, the data 

used for these tests were limited from ten roads in the city of Danang in Vietnam. In addition, 

the crash data used in the test processes were serious and fatal motorcycle-motorcycle crashes 

only. Therefore, to validate the traffic conflict adopted in this study for a wider application, 

there is need of a more comprehensive historical crash data to establish the statistical 

relationship with conflict frequency (e.g. the ratio of conflicts to crashes). Moreover, the 
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validation process should be used more data collected from various cities and countries with 

similar traffic characteristics. However, such those tasks would require significant resources 

and were beyond the scope and duration of this study.    

 

11.4. Model Development Methodology 

11.4.1 The model development process 

As stated in Section 3.5, the models were based on the discrete choice model (e.g. logistic 

regression model) and the traffic conflict technique using the theory of probabilities. The risk 

of crashes was estimated from the probability of conflicts which, in turn, were determined by 

the probabilities of motorcyclists’ manoeuvre behaviour that may potentially result in the 

occurrence of conflicts. 

According to the proposed methodology, the crash risk is based on assessing the movement 

behaviour of motorcyclists and traffic conflict events, which are observed in real time in the 

field, and therefore data can be collected in a short time period by video recording. The major 

advantages of the video recording method are its low cost and the ability to capture the 

trajectories of all vehicles in the traffic stream. In addition, this is an objective observation 

method that is not affected by the observers and researchers, and a video file can be reviewed 

repeatedly to ensure the quality of the information extracted. However, the main disadvantage 

of this method is that it is extremely time-consuming. For example, to extract vehicles’ 

trajectories from an hour’s video file requires approximately 200 person-hours (Lee, 2007). 

Difficulties in this methodology are that a good computer software and well trained observers 

or researchers are required to collect, extract and process all data need from video files.  Both 

the technical specifications of the video camera and the software used to analyse the data may 
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affect the entire modelling process and this needs to be considered if the methodology 

developed reaches the stage of full commercial implementation. 

The data used for the models fitting and validation process were collected from ten road 

segments from various roads in the city of Danang in Vietnam. It should be appreciated that a 

more comprehensive data set comprising road segments different from the above and 

preferably collected from other cities or countries with similar traffic characteristics would be 

required for a model with a wider application. However, such a task was beyond the scope of 

this study, which sought to demonstrate the development process of the model and its testing, 

and would require significant resources which were not available during this PhD programme.    

11.4.2 The success of the developed crash risk models 

To validate the success of rear-end and sideswipe crash risk models developed in this study, 

three tests were conducted: a) assessing the goodness-of-fit, b) field validation, and c) 

literature validation tests. 

a) Test 1: The purpose of assessing the goodness-of-fit of the developed model is to test 

how effective the model is in describing the outcome variable. For this test, the data 

set from Nguyen Van Linh street was used and the result indicated that the overall 

agreement between the predicted to the observed values reaches 94.0 %, implying that 

the developed model captures satisfactory the movement behaviour of motorcyclists. 

b) Test 2 was conducted to verify the success of the developed models in the real world 

by comparing the predictive conflict frequency produced by the developed models 

with the actual conflict frequency observed in the field. For this test, a data set from 

Nguyen Tri Phuong Street was used. The field validation results showed that the 
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agreement between the estimated and observed conflict frequency reaches 89.8 %, 

implying that the developed crash risk models produce good estimates for both rear-

end and sideswipe conflict frequency. 

c) Test 3 was conducted for two purposes: the first purpose was to enable a correlation of 

the crash potentials produced by the proposed models with actual crash history. The 

second purpose was to identify any correlation between the output of the proposed 

models and existing methodologies found in the literature. For this task, a data set 

from ten Streets in Danang was used. The results were as follows.  

 For the first purpose, the test result illustrated that the crash risk estimated from the 

proposed models was strongly correlated to the historical crash data as the value of 

correlation coefficient between them was 0.98, implying that the proposed models 

produce most satisfactory crash risk estimates.  

 For the second purpose, compared with the Highway Safety Manual (HSM) 

methodology (AASHTO, 2009) and the International Road Assessment 

Programme methodology (iRAP, 2013), the methodology developed in this study 

presents the strongest correlation with the actual crash history. The correlation 

coefficient value for the proposed methodology is 0.98 while those of for the HSM 

methodology and iRAP methodology are 0.91 and 0.87 respectively. This implies 

that the proposed models produce consistent and slightly better estimates 

compared with the existing models found from the literature. 

From the results of three validation efforts it could therefore be suggested that the outputs of 

the developed models are reliable and may therefore be used to determine hazardous road 

locations associated with higher crash risk, in order to develop countermeasures to improve 
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motorcyclist safety. It could also be suggested that the developed methodology may have a 

number of applications in road safety analysis in motorcycle-dominated traffic environments 

in low-income and middle-income countries where the under-reporting of accidents and the 

poor quality of historical crash data is a major drawback in making decisions of good quality.  

 

11.5. The Importance of Data 

11.5.1 The quantity of data 

The data used for model fitting and validation was the vehicles’ trajectory extracted from the 

traffic video recordings in real time. The trajectories of vehicles were observed at discrete 

points in time with intervals of 0.5 second. Therefore the number of observations obtained 

from 6 hours of traffic recording at road segments in this study was likely to capture a wide 

range of traffic conditions (e.g. various traffic density conditions, various level of operating 

speeds, various relative distances and relative speed between the subject motorcycles and 

surrounding vehicles, various movement behaviours) for modelling purposes. 

In addition, the developed models investigate the effect of driving conditions with respect to 

the surrounding vehicles on the movement behaviour of the subject motorcyclist. In other 

words, the presence of neighbouring vehicles on the road directly affects the subject drivers’ 

decisions for their movement choices. Therefore, one observation may present one traffic 

condition, and the 535 observations of vehicles’ trajectories in real time used to fit the model, 

may mean that 535 various traffic conditions were captured to investigate their effects on the 

manoeuvre behaviour of motorcyclists.    

For all the above reasons, and within the resource constraints of this study, it was felt that the 

data used for this study could satisfy an empirically driven sampling process. It could be 
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argued that a robust statistical sample could produce different results.  It is felt however that 

these would not change the overall approach followed but possibly the various coefficients 

determined from regression analysis. However, there are reasons to believe that the 

enhancement of the coefficients would be probably small as already the various tests of the 

models showed that the models perform at least satisfactorily.  Moreover, the data collection 

process could be improved by selecting a video recorder with high resolution so that the 

trajectories of vehicles could be extracted from these video files with higher accuracy. In 

addition, the computer software used to track the vehicle trajectories could offer more 

satisfactory accuracy of the data computed. 

11.5.2. The number of samples used for the logistic regression analysis 

The coefficients of the proposed manoeuvre model were estimated using 2675 observations of 

vehicles’ trajectories (535 observations of 108 subject motorcycles and 2140 observations of 

432 influential vehicles) in the field. Based on the requirement of minimum samples used for 

the statistical process of the logistic regression analysis, the 535 samples used to estimate 

coefficients of the logistic regression model in this study were considered sufficient to achieve 

a reliable result (Peduzzi et al, 1996).  

Peduzzi et al. (1996) proposed an equation to determine the minimum number of samples for 

logistic regression as follows: 

� = 
10 × �

�
 

(Equation 11.1) 
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where, p is the smallest of the proportions of the following manoeuvre or the swerving 

manoeuvre cases in the total of observations, k is the number of independent variables 

included in the model. 

For this study (k = 7 variables and p = 0.39), the number of 535 observations used to estimate 

coefficients are much greater than the minimum number of samples required for logistic 

regression analysis (N = 10 * 7 / 0.39 = 179 observations). According to Peduzzi et al. (1996), 

although the number of samples used is much larger than the required minimum samples, the 

estimate results are not significantly affected. Therefore, if data are collected from more road 

segments, which means more than 535 observations will be used to estimate the coefficients 

of the models, this will not significantly affect the estimated results. For this reason, although 

more data are always desirable, it could be stated that the data used in this study seem to be 

satisfactory.        

 

11.6. Contributing Factors Included in the Models 

Factors contributing to the potential of crashes that were assessed in this study included: 

operating speed, speed difference, front distance, longitudinal gap, lateral clearance, traffic 

density, and road surface condition. The non-lane-based movements were considered via the 

lateral clearance and the longitudinal gap variables included in the developed models. For the 

developed models and the data sets used, it was found that the effect of these contributing 

factors on motorcycle crash risk was as follows.  
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11.6.1 The operating speed factor 

The operating speed of motorcycles was found to be the most significant factor contributing 

to both rear-end and sideswipe crash risk. This factor affected both the manoeuvre behaviours 

of motorcyclists and the threshold safety distance of a motorcycle. It was found that the crash 

potentials increase correspondingly with the greater values of motorcycles’ speed and the 

crash risk increases dramatically after a value of 30 km/h onwards. Although it seems that no 

study has to date investigated the effect of motorcycles’ speed on rear-end and sideswipe 

crashes in motorcycle-dominated traffic environments, the effect of this factor on the overall 

crashes (e.g. total crash injuries or fatality), as found from previous studies, showed a similar 

trend (Taylor et al., 2000; Elvik et al., 2009; iRAP, 2013).  

11.6.2 The speed difference factor 

The difference in speed of the subject motorcycle with the front vehicle (called speed 

difference) was found to significantly affect the manoeuvre behaviour of the motorcyclists. It 

was found that motorcyclists tend to choose swerving manoeuvres when their speeds are 

higher than that of the front vehicles and this leads to an increase in the sideswipe crash risk. 

It was also found that when the speed of the subject motorcycle was less than 5 km/h 

compared with the front vehicle, the risk of both rear-end and sideswipe crashes was 

insignificant. In addition, the rear-end crash risk decreases and the sideswipe crash risk 

increases significantly if motorcycle’s speeds were higher by 2.5 km/h than that of the front 

vehicles. The effect of this factor on crash risk was investigated by a number of researches but 

it appears that a very limited number of studies, if any, has focused on rear-end and sideswipe 

crashes and motorcycle-dominated traffic environment that were considered in this study. 
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However, the overall influence trend was found to be similar with that in other studies 

(Nilsson, 2004; Elvik et al., 2009).  

11.6.3 The front distance factor 

The gap between the subject motorcycle and its front vehicle (called the front distance) was 

found to be a significant factor contributing to the manoeuvres of motorcyclists. It was found 

that motorcyclists were more likely to choose a swerving manoeuvre if the gaps maintained 

with the front vehicles become shorter and led to an increase in sideswipe crash risk. The rear-

end crash risk was found to increase with the increase of the front distances but this risk 

decreased if the front distances were more than 3.0 m. This factor was considered in this study 

to investigate the effect of the unique movement of motorcycles (e.g. maintaining a short gap 

with the front vehicle) on rear-end and sideswipe crashes in motorcycle-dominated traffic 

environments, and it appears that no study, at least from those included in the literature review 

for this work, has focused on this aspect.      

11.6.4 The longitudinal gap factor 

The longitudinal distance between the subject motorcycle and the vehicle following behind on 

the left or right (called longitudinal gap) was found to influence the movement behaviours of 

motorcyclists. It was found that motorcyclists preferred to choose a swerving manoeuvre as 

the longitudinal gaps increased. This factor was not found to significantly contribute to the 

rear-end crash risk and not to affect the sideswipe crash risk if it was greater than 3.5 m. This 

factor was considered to investigate the effect of the non-lane-based movements of 

motorcycles on rear-end and sideswipe crashes in motorcycle-dominated traffic environments, 
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and no study, at least from those included in the literature review for this work, has focused 

on this aspect.      

11.6.5 The lateral clearance factor 

The lateral clearance distance (on the left or right) of the front vehicle (called lateral 

clearance) was found to have a significant impact on the movement behaviours of 

motorcyclists. This factor was included in the models to take into consideration the non-lane-

based movement characteristics of motorcyclists. It was found that motorcyclists were more 

likely to choose a swerving manoeuvre as the lateral clearance increased and this led to an 

increase in the sideswipe crash risk and a decrease in the rear-end crash risk. This factor was 

used to investigate the effect of the non-lane-based movements of motorcycles on rear-end 

and sideswipe crashes in motorcycle-dominated traffic environments, and no study, at least 

from those included in the literature review for this work, has focused on this aspect.        

11.6.6 Traffic density factor 

It was found that the rear-end crash risk increases with increasing values of traffic density and 

reaches a peak at 150 motorcycles/1000 m2 and then slightly decreases. It was also found that 

the sideswipe crash risk increases as the traffic density increases and reaches a peak at 100 

motorcycles/1000 m2 and then decreases slightly to approach zero when the density is 150 

motorcycles/1000 m2.  

According to six traffic density condition levels (see section 9.1.3), it was found that both 

rear-end crash and sideswipe crashes are of low risk in the “Very high traffic density 

condition” (e.g. nearly congestion). The sideswipe crash approaches the highest risk in the 

“Low traffic density condition” while the greater the traffic density the higher the rear-end 
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crash risk. No study, at least from those included in the literature review for this work, has 

investigated the effect of this factor on rear-end and sideswipe crashes in motorcycle-

dominated traffic environments.     

11.6.7 The road surface condition factor 

The wet and dry road surface conditions were investigated their effects on crash risk. It was 

found that the wet road surface condition increases the risk of both rear-end and sideswipe 

crashes. Although, the effect of this factor on crash risk was investigated by a number of 

researchers but no study found from the literature focused on two specific crash types and the 

particular traffic environment considered in this study. However, the overall effect trend of 

this factor on crashes was found to be similar with that in other studies (Haworth et al., 1997; 

Shankar and Mannering, 1996; Elliott et al., 2003; Haque et al., 2009). 

 

11.7. The New Concept of Conflict Modification Factor 

This study proposed a new concept, called the Conflict Modification Factor (CoMF), to use as 

a surrogate measure to the Crash Modification Factor (CMF) (section 9.1) in road safety 

analysis. CoMFs represent the relative change in the conflict frequency due to the change in 

one specific condition while all other conditions remain constant and CMFs represent the 

relative change in the crash frequency. Therefore, CoMF may be used as a surrogate measure 

to CMF in road safety analysis due to their statistical relationship and similar causal 

mechanism (section 9.1.2). 

The innovative feature of this approach is that the relative risk value of risk factors can be 

determined using conflict data instead of crash data. Therefore, CoMFs can be used in before 
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and after studies by observing the conflict frequency before and after a particular treatment 

measure implemented instead of waiting for sufficient years of crash data to build up. Hence, 

the effectiveness of a particular countermeasure already implemented can be assessed in a 

short time by using CoMFs compared with using crash data.  

The statistical relationship between crashes and conflicts is the key for proposing this new 

concept. Conflicts are less severe than crashes, and their frequency of occurrence is expected 

to be higher than crashes. It can also be shown that if there is a perfect relationship (e.g. 

constant crash-to-conflict ratio), the relative risk values for using crashes alone and combining 

crashes and conflicts will be identical. However, according to Guo et al. (2010), the combined 

analysis will provide a more accurate estimation due to tighter confidence intervals. 

Therefore, CoMFs can be used alongside crash data for before and after studies, and the result 

would be expected more accurately.  

 

11.8. Methodology to Enhance the Existing iRAP SRS for Motorcyclists 

This study proposed a methodology to enhance the existing iRAP star rating system for 

motorcyclists by integrating the rear-end and sideswipe crash risk into the star rating system 

(see Chapter 10). The enhanced model is likely to cover most crash types of motorcycles in a 

motorcycle-dominated traffic environment of urban roads and therefore the crash risk for a 

certain road segment would also be captured more satisfactorily leading to more appropriate 

countermeasures to improve motorcyclist safety.  

In the enhanced model, data associated with the new risk factors (e.g. front distance, lateral 

clearance, longitudinal and lateral gaps) cannot be collected using the current iRAP survey 

vehicle. Therefore, to collect all required data for the enhanced model, it could be suggested 
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that the current iRAP vehicle should be instrumented with an upgraded data collection system 

consisting of a computer that receives and stores data from a network of sensors distributed 

around the vehicle. Sensors may include an accelerometer box to obtain longitudinal and 

lateral kinematic information, a headway detection system to provide information about the 

leading or following vehicles, and a GPS sensor to record the vehicle’s location. It appears 

that this new system could potentially cost about 3,000 to 4,000 USD (source: roadtraffic-

technology.com) but the actual cost and the integration of the system with the current iRAP 

configuration should be systematically developed. Similarly to the iRAP methodology, the 

required data should be collected for each 100 metre segment of all roads.  

By comparing the proposed methodology with the existing iRAP SRS methodology, it was 

found that a consequent iRAP methodology could produce at least satisfactory outputs. It 

could therefore be suggested that the rear-end and sideswipe crash risk models developed in 

this study have the potential for inclusion in the iRAP star rating system for motorcyclists. 

However, the proposed methodology to enhance the current iRAP star rating system should 

be subject to more testing before further implementation. In addition if the modelling 

approach developed in this study were adopted by the iRAP methodology, it would facilitate 

significantly its introduction to a large number of countries with traffic conditions similar to 

Vietnam. Such countries are those of Southeast Asian in which the number of killed and 

serious injuries (KSI) is 230,652 per year and their cost is estimated to be approximately US$ 

15 billion.   
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11.9. Cost Consideration 

11.9.1 Cost of Variable Message Signs 

Variable Message Signs (e.g. changeable speed limit signs, changeable gap warning signs, 

changeable road surface condition warning signs) are more expensive than ordinary traffic 

signs. According to cost estimates published by the US Research and Innovative Technology 

Administration (RITA), variable message display signs cost between 3,200 and 4,400 USD, 

while dynamic (e.g. fully automated) message signs cost between 44,000 and 111,000 USD. 

For example in Vietnam, a variable speed sign board with the text ‘Your speed is XX 

kilometres per hour’ costs 10,469 USD (2014 prices). The price includes the board with the 

text, the display with light diodes to show speeds, a radar on the top of the board and the 

trailer upon which the board is mounted. The above price is considered affordable. 

An alternative measure for enforcing motorcyclists to maintain safety distances with the front 

vehicles may be chevrons painted on the road surface. In a project conducted by the iRAP in 

Vietnam in 2009, estimate costs of this treatment were 4,670 USD per carriageway kilometre. 

However, in order to choose an appropriate safety treatment measure, a cost analysis of 

various countermeasures should be considered. 

 

11.9.1 Cost of Motorcycle Lanes 

As stated in section 9.2.4, providing a separate motorcycle lane to prevent crashes between 

motorcycles and heavier vehicles and to reduce swerving/weaving manoeuvres and erratic 

movements is an efficient measure to improve motorcyclist safety. Separate motorcycle lanes 

can be provided by “painted logos only on-road” or “construct on road” or “segregated”. In a 

project conducted by the iRAP in Vietnam in 2009, estimate costs for building motorcycle 
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lanes per one kilometre by “painted logos only on-road”, “construct on road” and 

“segregated” were 5,241 USD, 491,317 USD and 335,883 USD respectively. The above 

prices are considered affordable. 

 

11.10. Application in Vietnam 

This research was funded by the Government of Vietnam to address the practical problem of 

motorcyclists safety in urban areas of Vietnam focusing on the city of Danang. It is felt that 

this Thesis achieved this goal as it offers an enhanced understanding of factors affecting the 

motorcyclists safety in the cities of Vietnam with similar traffic characteristics with those of 

Danang. In addition, the research has suggested road safety countermeasures for immediate 

pilot implementation so that a more generalised approach to planning urban roads may be 

ultimately facilitated. It is believed that the implementation of the findings of this study will 

have a significant impact on the reduction of road crashes and consequently of road safety 

costs. Furthermore the work reported herein may be considered as a first stage towards a more 

systematic analysis of motorcyclists safety issues in Vietnam and capacity building actions 

with impacts not only in Vietnam but in the South East Asia region and even beyond. 

 

11.11. Policy Implementation in Vietnam 

Notwithstanding the value of robust scientific findings, it is important to consider that  

legislation and enforcement are complementary tools which together with engineering 

approaches can reduce road traffic crashes, injuries and deaths effectively and improve the 

movement behaviour of motorcyclists. The most positive changes to the manoeuvre behaviour 

of motorcyclists happen when road safety legislation is supported by strong and sustained 
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enforcement, and where the public is made aware of the reasons behind the new law and the 

consequences of noncompliance. To this end, using the findings of this research, the 

following potential policies could be suggested for Vietnam:  

 Lane-based movement legislation: This research demonstrated that the non-lane based 

movement of motorcycles has a significant effect on road safety. Therefore setting a 

new legislation to enforce motorcyclists to follow lane disciplines and lane markings 

would assist in reducing swerving/weaving manoeuvres and erratic movements of 

motorcycles. 

 Minimum gap regulation: Keeping a short distance with the front vehicle will 

potentially result in rear-end collisions. Therefore, setting and enforcing motorcyclists 

to keep a minimum gap with the front vehicles could contribute to the reduction of 

rear-end crashes. 

 Motorcycle segregated lane legislation: This research has shown the value of 

providing segregated lanes for motorcycles in increasing road safety. Therefore, 

setting a legislation or even guidelines to separate motorcycles from other transport 

modes, not only could improve motorcyclist safety but also optimise land use planning 

and traffic management.  

 Road safety infrastructure standards: This research demonstrated that road designs and 

traffic condition features have a significant impact on motorcycle crash risk. 

Therefore, setting minimum standards for new road designs and existing road 

maintenance policy seems to be another need to be addressed by legislation to enhance 

motorcyclist safety. 

 Speed limit legislation: The research has shown that setting and enforcing speed limits 

is an important step in reducing motorcycle crashes. It is also found that motorcycle 
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crash risk increases significantly when the speed is higher than 35 km/h, therefore it 

would suggest that the urban speed limit for motorcycles in Vietnam should be less 

than or equal to 35 km/h, in line with best practice. Rigorous enforcement of speed 

limit legislation is essential to make it truly effective. Without ongoing and visible 

enforcement of speed legislation, the potential impact of speed legislation to improve 

motorcyclist safety remains vastly unattained. It is important that local authorities in 

Vietnam Government not only have the legal authority to reduce national limits, but 

also to manage local speeds according to particular road situations and in various 

traffic density conditions with other traffic calming or speed management policies. 

 Changes in the model split of travel: Compared with riding a motorcycle, public 

transport has a considerably lower level of risk (see section 3.7). Therefore, shifting to 

public transport may be a very effective strategy of the authorities to reduce crash risk 

of private transport mode such as motorcycle. Several management policies cause 

shifts from motorcycles to public transport mode by making public transport mode 

more attractive or by increasing the cost of motorcycle use. For example, encouraging 

funding decisions that strengthen public transportation and providing incentives to 

support a strong network of public transportation options which connect housing and 

jobs as well as improve access to healthy foods, medical care, and other services. 

 

11.12. Limitations of this Study    

11.12.1 Limitations related to data collection  

The methodology used to collect data for this study was video recording, and the data 

collection process was conducted during daytime and under clear weather condition in order 

to achieve good visibility for obtaining high quality video images. The effect of night-time or 
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various weather conditions on the manoeuvre behaviour of motorcyclists was not therefore 

considered. These factors may affect the behaviour of motorcyclists but it would seem likely 

that they would have an insignificant influence on the models developed in this study that 

focused only on the normal driving conditions.  

In addition, the traffic surveys were conducted on two weekdays (on 21 and 22 August 2014). 

The effect of varying traffic condition within a week (weekday and weekend days) or month 

on the movement behaviour of motorcyclists was not captured in the data set. Although this 

may have an influence on the result, it would seem likely that this effect would have an 

insignificant as the traffic conditions do not vary significantly throughout the year (DoT, 

2013).    

Due to the limited area that a video recorder is capable of capturing, the lengths of road 

segments observed were 40.0 m. Therefore, the behaviour of the subject motorcyclist for a 

longer journey was not captured. However, it would seem unlikely that this would have a 

significant effect on the model development process but could affect the accuracy of the 

models.          

11.12.2 Risk factors considered in the models 

The occurrence of a road crash is the result of a series of traffic events effected by a large 

number of risk factors related to the components of the traffic system that include the 

vehicles, the drivers and the overall road environment. This study investigated the effect of 

contributing factors related to the traffic conditions and the road environment on the 

movement behaviour of motorcyclists and their crash risks. Other factors related to 

motorcyclist characteristics that may affect the rider’s behaviour such as their ages, gender, 

knowledge and experience, alcohol or drug consumptions, and motorcycle capabilities were 
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not included in the proposed models. In most cases, this information was not available and 

cannot be directly measured from vehicles’ trajectory data in real time, therefore they were 

not considered in the study and these limitations will be addressed in proposals  for future 

works. 

 

11.13. Summary 

In summary, the developed methodology is capable of estimating the risk of rear-end and 

sideswipe crashes which are two major crash types associated with the non-lane-based 

movement behaviour of motorcyclists in motorcycle-dominated traffic environments. This 

filled in a significant gap in motorcycles road safety in these particular traffic conditions that 

had not been considered in previous studies to date. The developed methodology could 

provide an invaluable tool to assess and improve motorcyclist safety and it could potentially 

have an important contribution to saving a large part of the tens of thousands of human lives 

that are lost every year in South and South East Asia and ultimately help in both road safety 

management and traffic management in developing countries such as Vietnam.   
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CHAPTER 12 

CONCLUSIONS AND FUTURE WORK 

 
 

 

12.1. Conclusions 

This study developed a new methodology and new models for assessing the potential of 

motorcycle crashes and selecting countermeasures to improve motorcyclist safety in a 

motorcycle-dominated traffic environment of urban roads. The innovative features of this 

research are that the non-lane-based movements of motorcycles were captured to evaluate 

their contributions to crash risk and a new concept - that of the Conflict Modification Factor 

(CoMF) - was proposed to use as a surrogate measure to assess the relative contribution of 

risk factors to crashes. In addition, a methodology was also developed to enhance the existing 

iRAP star rating system for motorcyclists. The developed models were fitted and validated 

using data collected from urban road segments in the city of Danang in Vietnam. 

The following conclusions may be drawn from this study.  

1. The new models developed in this study provide a good estimate of both the rear-end 

crash and sideswipe crash risks for motorcyclists in a motorcycle-dominated traffic 

environment of urban roads.  

2. The outputs from the developed models can detect hazardous traffic conditions associated 

with higher motorcycle crash potentials and hazardous road segments and can therefore 

identify appropriate counter measures to improve motorcyclist safety. 
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3. The crash risk models developed in this study are the first of their kind in Vietnam and 

probably in Southeast Asia regions, in terms of the methodology used and the results 

achieved. The new findings from the developed models have shown that the rear-end and 

sideswipe crash risk of motorcyclists are associated with operating speed, speed 

difference, traffic density, front distance, longitudinal gap, lateral clearance and road 

surface condition were found to contribute to the risk of rear-end and sideswipe crashes. 

Specifically, the effects of these factors on motorcycle crashes were as follows: 

3.1. The operating speed has a significant contribution to both rear-end crash and 

sideswipe crashes; the higher the speeds of vehicles the higher the rear-end and 

sideswipe crash risk. 

3.2. The speed difference has a significant contribution to the sideswipe crashes but 

affects insignificantly the rear-end crash risk; the rear-end crash risk decreases 

if the speed differences are greater than 2.5 km/h; the higher the speed 

difference the higher the sideswipe crash risk; and the sideswipe crash risk 

increases significantly if the speed difference is higher than 2.5 km/h.  

3.3. The traffic density affects significantly crash risk. Under very high traffic 

densities (e.g. near congestion), both rear-end and sideswipe crashes present a 

low risk but this situation is not desirable as vehicles cannot move in the 

traffic. The lower the traffic density the higher the sideswipe crash risk while 

the higher the traffic density the higher the rear-end crash risk. 

3.4. The front distance has a significant contribution to sideswipe crashes and it 

affects insignificantly the rear-end crash risk.  

i) The shorter the front distances, the higher the sideswipe crash risk; 
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ii) The rear-end crash risk increases slightly with the increase of the front 

distances and decreases slightly when the front distances are 3.0 m or 

higher.  

3.5. The longitudinal gap has a significant contribution to the sideswipe crashes but 

affects insignificantly the rear-end crash risk; the shorter the longitudinal gaps 

the higher the sideswipe crash risk.  

3.6. The lateral clearance has a significant contribution to rear-end crashes while its 

influence on sideswipe crashes is less but still significant; the higher the lateral 

clearances the lower the rear-end crash risk while the higher the lateral 

clearances the higher the sideswipe crash risk.                         

3.7. With regard to the road surface conditions, it was found that both the rear-end 

and sideswipe crash risk increase when the road surface is wet. 

4. The new concept of the Conflict Modification Factor (CoMF) was proposed in this study 

to determine the relative risk values of factors contributing to crashes. The innovation of 

this concept is that CoMF can be determined by using conflict frequency data instead of 

the historical crash data required by conventional methodologies. The usefulness of CoMF 

is that it can be used to assess the effectiveness of a particular countermeasure by 

observing the conflicts in a short period of time to enable comparisons before and after 

implementing a particular countermeasure instead of waiting for sufficient years of crash 

data to build up. Therefore, CoMF would be an efficient tool in road safety assessment to 

overcome the under-reporting or unavailability of historical crash data in most LMICs. 

Specifically, CoMFs can be used in road safety analysis for the following purposes: 
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i) To assess the crash risk of a particular site: As CoMFs are used to assess the 

difference in conflict frequency between the base conditions and the existing 

conditions, the CoMF can be multiplied with a conflict frequency of base 

conditions to estimate the average conflict frequency for a specific site under the 

existing conditions; 

ii) To select an appropriate countermeasure for a particular site: A CoMF may be 

used to assess the difference of conflict frequency before and after implementing a 

countermeasure; therefore the most appropriate countermeasure may be chosen as 

part of a treatment programme. 

5. The developed crash risk models and the proposed CoMFs identified several potential 

countermeasures to improve motorcyclists safety. These are:  

i) installing changeable speed limit signs;  

ii) installing changeable gap warning signs;  

iii) installing changeable road surface condition warning signs;    

iv) Providing segregated motorcycle lanes. 

6. The proposed methodology to enhance the current iRAP star rating system for 

motorcyclists seems to produce results consistent with historical crash data and subject to 

more testing, the methodology may be considered for full implementation. As the 

methodology of this study could be adopted by the iRAP star rating system, it would 

facilitate significantly its introduction to a large number of countries with traffic 

conditions similar to Vietnam such as those in Southeast Asia countries and ultimately 

save lives and reduce economic losses resulting from motorcycle crashes.  
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7. The proposed methodology in this research enables a better understanding of the influence 

of the non-lane-based movement characteristics of motorcycles on crash risk and 

particularly in LMICs where motorcycles are the predominant mode of urban transport. 

8. The important contribution of this research is to enhance an understanding of the effect of 

risk factors on crash risk for motorcyclists in a motorcycle-dominated traffic environment 

and countermeasures may therefore be subsequently developed to reduce the potential of 

motorcycle crashes. The new findings of this research can be used to: 

i) identify sites with the most potential for motorcycle crash risk reduction; 

ii) identify risk factors contributing to motorcycle crash risk and associated potential 

countermeasures to address these issues; 

iii) evaluate the crash risk reduction benefits of implemented countermeasures; 

iv) calculate the effect of various design alternatives on motorcycle crash risk. 

9. The findings of this research are preliminary but will benefit researchers and practitioners, 

engineers and decision makers working in the area of motorcyclist safety not only in 

Vietnam but also in other countries that face similar issues. Therefore, to elaborate plans 

to improve motorcyclist safety, engineers or decision makers may use the developed crash 

risk models to identify hazardous sites and then using CoMFs measure to select 

appropriate countermeasures and also evaluate the effectiveness of countermeasures.  

10. At policy level the impacts of this research are significant and, subject to its 

implementation, may be seen as: 

i) significant improvement of motorcyclists safety; 
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ii) reduction in social and economic costs through the reduction of fatalities and serious 

injuries;  

iii) better management of the road infrastructure; 

iv) introduction of new legislation and enforcement practices; 

v) development of enhanced behavioural patterns by motorcyclists; 

vi) improvement of traffic conditions in cities in Vietnam and other similar countries. 
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12.2. Future Work  

The developed models in this study presented limitations associated with the data collection 

process and the variables included in the models. Therefore it is felt that future research may 

address the following aspects: 

1. The effect of the frequency and distances between major road intersections on the 

manoeuvre behaviour of motorcyclists and their contributions to crash risk.  

2. The effect of roadside activities (e.g. shopping centres, the presence of schools and office 

buildings, land uses) and parking lots on the manoeuvre behaviour of motorcyclists and 

their influence on crash potentials.  

3. The effect of lighting, visibility and weather conditions on the manoeuvre behaviour of 

motorcyclists and the contribution of these factors to the crash frequency and severity. 

4. The effect of motorcyclists’ characteristics such as ages, gender, knowledge and driving 

experience on their behaviour and on crash frequency and severity. 

5. The use of a wider and possibly more representative data set collected from various cities 

and countries with similar traffic characteristics to those considered in this study to 

calibrate the developed models. 

6. The applications of the Intelligent Traffic Systems (ITS) to improve the motorcyclists 

safety in urban environments in the conditions of low-income and middle-income 

countries.   
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APPENDIX A 

AN EXAMPLE OF THE CoMF CALCULATION PROCESS 

 
 
 
 
This appendix presents an example of calculating a value of CoMF as presented in Table 9.1 

through to Table 9.9. As stated in section 9.1.2, CoMFs represent the relative change in the 

conflict frequency and they are defined by the ratio of the likelihood of a particular traffic 

condition to the likelihood of the baseline traffic condition.     

For example, to determine CoMFs for the road surface condition factor, the calculation 

process is conducted in the following three steps (A, B and C). 

Step A: Using the developed models to calculate the probability of rear-end and sideswipe 

conflicts for dry and wet surface conditions. The results are shown in Table A1. 

Table A1. Probability of rear-end and sideswipe conflicts 

Road surface condition dry wet 

Probability of rear-end conflict 0.100 0.112 

Probability of sideswipe conflict 0.175 0.261 

       

Step B: Using Equation (9.2) and the outputs in step A to calculate the likelihood of rear-end 

and sideswipe conflicts for these two road surface conditions. For example, the likelihood of 

rear-end conflict for dry surface condition is calculated using Equation (9.2) and the output in 

Table A1 as follows: 

������ℎℎ��	��	����	���	��������	 = 	
0.1	

1 − 0.10
= 0.11 
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The likelihood of rear-end and sideswipe conflicts for these two road surface conditions are 

shown in Table A2. 

  Table A2. Likelihood of road surface condition factor 

Road surface condition dry wet 

Probability of rear-end conflict 0.11 0.13 

Probability of sideswipe conflict 0.211 0.353 

 

Step C: Using Equation (9.3) and the outputs in step B to calculate CoMFs for the road 

surface condition factor. The baseline traffic condition is defined in this study as the normal 

driving condition in which motorcyclists can move freely in a traffic stream at a low crash 

risk level. In this case, the baseline traffic condition is the dry road surface condition. For 

example, CoMF of rear-end crash type for dry surface condition is calculated using Equation 

(9.3) and outputs in Table A2 as follows: 

����	 = 	
0.13	

0.11
= 1.13 

Consequently, the relative risk values of the road surface condition factor are shown in Table 

A3. The results indicate that the relative risks of both rear-end and sideswipe crashes are 

higher in wet road surface condition than that of in dry road surface condition.  

  Table A3. Relative risk values of road surface condition factor (see Table 9.8)   

Road surface condition dry wet 

Probability of rear-end conflict 1.00 1.13 

Probability of sideswipe conflict 1.00 1.67 
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APPENDIX B 

AN EXAMPLE OF THE HSM METHODOLOGY CALCULATION 

PROCESS 

 
 
 
 
This appendix gives an example of estimating the expected average crash frequency of an 

individual site using the predictive method presented in the Highway Safety Manual (HSM) 

(AASHTO, 2009) (see section 2.2.1). In this example, the calculation process of estimating 

the average yearly crash frequency for a road segment on Nguyen Van Linh Street is 

described. The calculation process is similar to other road segments. Consequently, the 

calculation results for ten road segments are shown in Table B3. 

As presented in Equation (2.2), the predictive model for an individual roadway segment 

combines the Safety Performance Function (SPF), the Crash Modification Factors (CMFs), 

and a calibration factor (C). The SPF of urban roads determined for multiple-vehicle crashes 

is as follows: 

����� = exp	(� + � × ln(����) + ��(�)) 

(Equation B1) 

where, AADT is the average annual daily traffic (vehicle/day) on road segment; L is the 

length of road segment; a and b are regression coefficients.  

For example, with regard to the four-lane divided urban road segments, the values of the 

coefficients a and b used in Equation (B1) are shown in Table B1. 
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Table B1. SPF coefficients for four-lane divided urban road segments (AASHTO, 2009) 

Crash severity types a b 

Total crashes -12.34 1.36 

Fatal-and-injury crashes  -12.76 1.28 

Property-damage-only crashes -12.81 1.38 

 

To estimate the expected average crash frequency for a four-lane divided urban road segment 

of Nguyen Van Linh Street, the following three steps (A, B and C) are conducted.  

 

Step A: Equation B1 is first applied to determine Nbrmv using the coefficients for total crashes 

in Table B1. N’brmv(FI) for fatal-and-injury crashes and N’brmv(PDO) for property-damage-only 

crashes are then determined with Equation B1 using the coefficients for fatal-and-injury and 

property-damage-only crashes, respectively, in Table B1. An example of calculating these 

parameters for Nguyen Van Linh Street is as follows (L = 2170 m = 1.35 mile, AADT = 

59704 vehicles/day): 

����� = exp(−12.34 + 1.36 × ��(59704) + ��(1.35)) = 1.37 

�����(��)
� = exp(−12.76 + 1.28 × ��(59704) + ��(1.35)) = 0.83 

�����(��)
� = exp(−12.81 + 1.38 × ��(59704) + ��(1.35)) = 0.87 

Step B: Nbrmv is then divided into components by severity level, Nbrmv(FI) for fatal-and-injury 

crashes and Nbrmv(PDO) for property-damage-only crashes. The following adjustments are made 

to assure that Nbrmv(FI) and Nbrmv(PDO) sum to Nbrmv:  
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�����(��) = �����(�����) �
�����(��)

�

�����(��)
� + �����(���)

� � 

(Equation E.2) 

�����(���) = �����(�����) − �����(��) 

(Equation E.3) 

For the example of Nguyen Van Linh Street, these parameters are defined as follows: 

�����(��) = 1.37 ×
0.83

(0.83 + 0.87)
= 0.67 

�����(���) = 1.37 − 0.67 = 0.6 

Step C: To separate Nbrmv(FI) and Nbrmv(PDO) into components by crash type, the proportions in 

Table (B2) are used. 

Table B2. Distribution of multiple-vehicle crashes for four-lane divided urban road segment 

by crash type (AASHTO, 2009) 

Crash type Fatal-and-injury crashes Property-damage-only 
crashes 

Rear-end crash 0.832 0.662 

Sideswipe crash 0.09 0.259 

Other 0.078 0.079 

Total 1.00 1.00 
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For the example of Nguyen Van Linh Street, the expected average crash frequency of rear-end 

crashes is calculated as follows: 

���������(������) = 0.832 × 0.67 + 0.662 × 0.6 = 1.02 

Therefore, the expected average crash frequency of rear-end crashes for 1000 m road length 

on Nguyen van Linh Street ( L = 2170m) is defined as follows:  

���������(������) =
1.02

2170	(�)
× 1000� = 	0.5 

Consequently, the calculation results of ten road segment are shown in Table B3.  
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Table B3. Expected average crash frequency of rear-end and sideswipe crashes for ten road segments (see Table 8.7 in Chapter 8) 

Road name 
N.V Linh Bach Dang 2 Thang 9 N.T.P D.B.Phu N.H Tho C.M.T-8 N.T.Thanh 

Truong 
Chinh T.D.Thang 

Length (m) 2170 2542 3377 1295 2700 4680 1000 2000 1000 1000 

AADT 59704 41621 49706 61402 78945 32706 43857 28865 65551 67563 

Number of lanes 2.00 4.00 3.00 2.00 4.00 3.00 3.00 3.00 3.00 3.00 

Lane width 4.00 3.75 3.50 3.75 3.50 3.50 3.50 3.50 3.50 3.50 

Grade 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Road surface Dry  Dry  Dry  Dry  Dry  Dry  Dry  Dry  Dry  Dry  

Total crash/year 1.37 1.12 1.78 0.84 2.26 1.62 0.46 0.61 0.69 0.72 

N(F and I)' 
0.83 0.68 1.08 0.51 1.37 0.98 0.28 0.37 0.42 0.43 

N(POD)' 
0.87 0.71 1.13 0.54 1.44 1.03 0.30 0.39 0.44 0.46 

N (F and I) 
0.67 0.55 0.87 0.41 1.10 0.79 0.23 0.30 0.34 0.35 

Rear-end 
0.56 0.45 0.72 0.34 0.92 0.66 0.19 0.25 0.28 0.29 

Sideswipe 
0.06 0.05 0.08 0.04 0.10 0.07 0.02 0.03 0.03 0.03 

Other 
0.05 0.04 0.07 0.03 0.09 0.06 0.02 0.02 0.03 0.03 

N (POD) 
0.70 0.57 0.91 0.43 1.16 0.83 0.24 0.31 0.36 0.37 

Rear-end 
0.47 0.38 0.60 0.29 0.77 0.55 0.16 0.21 0.24 0.24 
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Sideswipe 
0.18 0.15 0.24 0.11 0.30 0.22 0.06 0.08 0.09 0.09 

Other 
0.06 0.05 0.07 0.03 0.09 0.07 0.02 0.02 0.03 0.03 

Total (F+I+POD) for total road length  

Rear-end 
1.02 0.83 1.32 0.63 1.68 1.21 0.35 0.46 0.52 0.53 

Sideswipe 0.24 0.20 0.31 0.15 0.40 0.29 0.08 0.11 0.12 0.13 

Other 
0.11 0.09 0.14 0.07 0.18 0.13 0.04 0.05 0.05 0.06 

Total (F+I+POD) for 1000 m road length  

Rear-end 
0.47 0.33 0.39 0.48 0.62 0.26 0.35 0.23 0.52 0.53 

Sideswipe 
0.11 0.08 0.09 0.11 0.15 0.06 0.08 0.05 0.12 0.13 

TT 
0.58 0.41 0.48 0.60 0.77 0.32 0.43 0.28 0.64 0.66 
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APPENDIX C 

THE EXISTING iRAP SRS FOR MOTORCYCLISTS 

 

This appendix presents an example of calculating the Star Rating Score (SRS) for 

motorcyclists using the existing iRAP star rating system (see Section 10.4). In this example, 

the calculation process of motorcyclist SRS for a road segment on Nguyen Van Linh Street is 

described. The calculation process is similar to other road segments. As a result, the Star 

Rating Scores for motorcyclists for ten road segments are shown in Table C. 

Road name: Nguyen Van Linh 

Motorcyclist Star rating Scores 

Run-off road (driver side) 

Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Lane Width Wide (>= 3.25m) 1   

Curvature Straight 1   

Quality of Curve Not applicable 1   

Delineation Adequate 1   

Shoulder rumble strips Not present 1.25   

Road condition Good 1   

Grade 0 to <4% 1   

Skid resistance/grip Sealed - adequate 1   

Product of road attribute (likelihood) risk factors 1.25 

Road attribute (severity) 

Roadside severity - distance  >=10m 0.1   

Roadside severity – objects Tree >10cm  60   

Paved shoulder width None 1   

Product of road attribute (severity) risk factors 6 

External flow influence 59704   0.5 

Median traversibility  Non-Traversable   0 

Operating speed 40   0.019 

Run-off road (driver side) Star Rating Scores 0 
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Run-off road (passenger side) 

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Lane Width Wide (>= 3.25m) 1   

Curvature Straight 1   

Quality of Curve Not applicable 1   

Delineation Adequate 1   

Shoulder rumble strips Not present 1.25   

Road condition Good 1   

Grade 0 to <4% 1   

Skid resistance/grip Sealed - adequate 1   

Product of road attribute (likelihood) risk factors 1.25 

Road attribute (severity)       

Roadside severity - distance  1 to <5m 0.8   

Roadside severity – objects Tree >10cm  60   

Paved shoulder width N/A 1   

Product of road attribute (severity) risk factors 48 

External flow influence 59704   0.5 

Operating speed 40   0.019 

Run-off road (passenger side) Star Rating Scores 0.54 

    Head-on (loss-of-control)  

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Lane Width Wide (>= 3.25m) 1   

Curvature Straight 1   

Quality of Curve Not applicable 1   

Delineation Adequate 1   

Centreline rumble strips Not present 1.25   

Road condition Good 1   

Grade 0 to <4% 1   

Skid resistance/grip Sealed - adequate 1   

Product of road attribute (likelihood) risk factors 1.25 

Road attribute (severity)       

Median type 
Safety barrier - 

concrete 0   

Product of road attribute (severity) risk factors 0 

External flow influence 41621   0.5 

Median traversibility Non-Traversable   0 

Operating speed 40   0 

Head-on (loss-of-control) Star Rating Scores 0 
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Head-on (overtaking)  

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Grade 0 to <4% 1   

Skid resistance/grip Sealed - adequate 1   

Differential speed Present 1.2   

Number of lanes Two 0.02   

Product of road attribute (likelihood) risk factors 0.024 

Road attribute (severity)       

Median type 
Safety barrier - 

concrete 0   

Product of road attribute (severity) risk factors 0 

External flow influence 59704   0 

Operating speed 40   0.019 

Head-on (overtaking) Star Rating Scores 0 

    Property Access 

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Property access points Commercial access 1+ 2   

Service road Not present 1.5   

Product of road attribute (likelihood) risk factors 3 

Road attribute (severity)       

Property access points Commercial access 1+ 50   

Product of road attribute (severity) risk factors 50 

External flow influence default   0.01 

Operating speed 40   0.019 

Property Access Star Rating Score 0.0285 

    Along 

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Motorcycle facilities None 2   

Product of road attribute (likelihood) risk factors 2 

Road attribute (severity)       

Motorcycle facilities None 50   

Product of road attribute (severity) risk factors 50 

External flow influence 59704   0.1 

Operating speed 40   0.019 

Along Star Rating Score 0.19 
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Motorcyclist Star Rating Score and Star Rating 

    
Crash types Star Rating Score 

Star 
Rating 

 Run-off road (driver side) 0   
 Run-off road (passenger side) 0.54   
 Head-on (loss-of-control) 0   
 Head-on (overtaking) 0   
 Intersection 0   
 Property access 0.029   
 Along 0.19   
 Total Score/Star Rating 0.759 5 
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Table C. Star Rating Score of motorcyclists for ten road segments 

Road name N.V Linh Bach Dang 2 Thang 9 N.T.P D.B.Phu N.H Tho C.M.T-8 N.T.Thanh 
Truong 
Chinh 

T.D.Thang 

Star Rating 5 5 5 5 5 5 5 5 5 5 

Total Risk (Star 
Rating Score) 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 

Run-off 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 

Head-on 0.00 0.00 0.00 0.00 0 0 0 0 0 0 

Property access 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

Along 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 

 

Fatality Estimate 
(crashes/road year) 0.359 0.293 0.465 0.220 0.590 0.424 0.121 0.160 0.181 0.187 

Fatality Estimate 
(crashes/100m/year) 0.017 0.012 0.014 0.017 0.022 0.009 0.012 0.008 0.018 0.019 

Run-off 0.012 0.008 0.010 0.012 0.016 0.006 0.009 0.006 0.013 0.013 

Head-on 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Property access 0.001 0.000 0.001 0.001 0.001 0.000 0.000 0.000 0.001 0.001 

Along 0.0041 0.0029 0.0034 0.0043 0.0055 0.0023 0.0030 0.0020 0.0045 0.0047 
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APPENDIX D 

THE ENHANCED iRAP SRS FOR MOTORCYCLISTS 

 

 

This appendix presents an example of calculating the Star Rating Score (SRS) for 

motorcyclists using the enhanced iRAP star rating system (see section 10.5). In this example, 

the calculation process of motorcyclist SRS for a road segment on Nguyen Van Linh Street is 

described. The calculation process is similar to other road segments. As a result, the Star 

Rating Scores of motorcyclists for five road segments are shown in Table D. 

 

Road name: Nguyen Van Linh  

Motorcyclist Star rating Scores 

Rear-end risk score 

Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Speed 40.0 km/h 0.98   

Speed difference 5.0 km/h 1   

Traffic density 77 vehicles/1000m2 1.05   

Lateral clearance 2.6 m 1.45   

Front distance 2.9 m 1.1   

Longitudinal gap 2.7 m 0.98   

Road surface condition Dry 1   

Presence of segregated motorcycle lane Absence  1   

Product of road attribute (likelihood) risk factors 1.6 

Road attribute (severity) 

Segregated motorcycle lane  Absence  50   

Product of road attribute (severity) risk factors 50 

External flow influence 59704   0.1 

Operating speed 40   0.019 

Rear-end Star Rating Scores 0.16 
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Sideswipe risk score 

    Type of risk factor Category Risk factor Scores 

Road attribute (likelihood) 

Speed 40.0 km/h 0.9   

Speed difference 5.0 km/h 4.1   

Traffic density 77 vehicles/1000m2 1.05   

Lateral clearance 2.6 m 0.78   

Front distance 2.9 m 1.76   

Longitudinal gap 2.7 m 0.69   

Lateral gap 1.5 m 1   

Road surface condition Dry 1   

Presence of segregated motorcycle lane Absence  1   

Product of road attribute (likelihood) risk factors 3.67 

Road attribute (severity)       

Segregated motorcycle lane  Absence  50   

Product of road attribute (severity) risk factors 50 

External flow influence 59704   0.1 

Operating speed 40   0.019 

Sideswipe Star Rating Scores 0.36 
 

    

Risk scores of motorcyclists using the enhanced iRAP SRS methodology 

Crash types Star Rating Score Star Rating 

Run-off road (driver side) 0   

Run-off road (passenger side) 0.54   

Head-on (loss-of-control) 0   

Head-on (overtaking) 0   

Property access 0.029   

Along 0.19   

Rear-end 0.16  

Sideswipe 0.36  

Total Score/Star Rating 1.28 5 
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Table D. Risk scores of motorcyclists using enhanced iRAP model (see Table 10.8) 

Crash types N.V Linh Bach Dang 2 Thang 9 N.T.P D.B.Phu 

Run-off road 
(driver side) 

0 0 0 0 0 

Run-off road 
(passenger 

side) 
0.54 0.54 0.54 0.54 0.54 

Head-on (loss-
of-control) 

0 0 0 0 0 

Head-on 
(overtaking) 

0 0 0 0 0 

Property 
access 

0.029 0.029 0.029 0.029 0.029 

Along 0.19 0.19 0.19 0.19 0.19 

Rear-end 0.16 0.11 0.13 0.19 0.26 

Sideswipe 0.36 0.23 0.30 0.42 0.45 

Total 
Score/Star 

Rating 
1.28 1.09 1.20 1.37 1.47 
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APPENDIX E 

DATASET FROM NGUYEN TRI PHUONG STREET 

 

This dataset was used for the purpose of model field validation (see section 8.2) 

Table E. Statistics of dataset from Nguyen Tri Phuong Street 

Time periods 

Traffic 
volume 

(motorcycles
/hour) 

Average 
density 

(motorcycles
/1000m2) 

Average 
speed 
(m/s) 

Observed 
rear-end 
conflicts 

Observed 
sideswipe 
conflict 

Average 
Front 

distance 
(m) 

Average 
Lateral 

clearance 
(m) 

Average 
Longitudinal 

gap (m) 

Average 
Lateral gap 

(m) 

6:00am-7:00am 3137 74 9.75 9 5 3.0 2.7 2.5 1.5 

7:00am-8:00am 4297 102 8.72 27 10 2.4 1.8 1.9 1.4 

8:00am-9:00am 3471 82 9.45 24 14 2.8 2.4 2.3 1.5 

3:00pm-4:00pm 2971 70 9.91 5 2 3.1 2.8 2.6 1.5 

4:00pm-5:00pm 3975 90 9.15 22 12 2.6 2.2 2.1 1.4 

5:00pm-6:00pm 5284 125 7.95 46 15 2.1 1.2 1.6 1.4 
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APPENDIX F 

DATASET FROM TEN ROAD SEGMENTS  

 

This dataset was used for the purpose of model validation test (see section 8.3) 

Table F1. Geometry characteristics of ten road segments 

Location Road name Road length (m) Number of lanes Lane width (m) 

1 Nguyen Van Linh 2170 2 4 

2 Bach Dang 2542 4 3.75 

3 Duong 2-9 3377 3 3.5 

4 Nguyen Tri Phuong   1295 2 3.5 

5 Dien Bien Phu 2700 4 3.5 

6 Nguyen Huu Tho 4680 3 3.5 

7 Cach Mang T-8  1000 3 3.5 

8 Nguyen Tat Thanh 2000 3 3.5 

9 Truong Chinh 1000 3 3.5 

10 Ton Duc Thang 1000 3 3.5 

 

Table F2. Traffic characteristics of ten road segments and historical crash data 

Location 
Volume 

(vehicles/day) 
Density 

(vehicles/1000m2) 
Average 

speed (m/s) 

Crash records (2008-2015) 

Rear-end Sideswipe  

1 59704 89 9.68 21 5 

2 41621 68 9.99 9 2 

3 49706 72 9.83 16 4 

4 61402 94 9.48 27 7 

5 78945 76 9.19 35 9 

6 32706 72 9.83 11 3 

7 43857 75 9.71 12 4 

8 28865 68 9.99 11 2 

9 65551 83 9.41 27 15 

10 67563 85 9.33 24 14 

 Historical crash data collection source: Danang Department of Transport  
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APPENDIX G 

DATASET FROM NGUYEN VAN LINH STREET 

 

This dataset was used for model fitting and assessing the goodness-of-fit of model (see 

Chapter 6) 

Table G. Data set used for the logistic regression analysis 

ID choice ���
��� ���

� ��
��� ��

� ����� ����� ��� 

1 0 5.3 3.18 2.78 1.95 1.01 M C 

2 0 4.1 2.26 2.29 1.84 1.02 M C 

3 1 2.6 1.2 3.03 2.18 3.99 M C 

4 1 1 1.2 3.47 2.63 4.04 M C 

5 1 1.2 1.5 4.11 2.76 4.15 M C 

6 0 4.4 2.04 -0.59 -1.69 1.55 M C 

7 0 4.8 3.29 -0.65 -2.49 1.69 M C 

8 0 5.2 4.59 -0.78 -2.6 1.58 M C 

9 0 5.6 6.1 -0.85 -3.02 1.28 M C 

10 0 5.6 7.2 -1.03 -2.97 1.08 M C 

11 0 1.8 2.27 0.89 1.68 2.1 M M 

12 0 1.4 3.7 0.77 1.64 2.04 M M 

13 1 1 5.34 1.52 3.3 1.81 M M 

14 1 1.1 6.66 1.01 2.68 1.39 M M 

15 1 1.3 7.2 0.92 2.28 1.35 M M 

16 0 3.4 1.38 1.47 0.73 2.08 M M 

17 0 3.1 1.38 0.52 -0.66 1.92 M M 

18 0 3 1.2 0.29 -1.25 1.74 M M 

19 0 2.8 2.03 0.37 -8.52 0.83 M M 

20 0 2.9 1.2 -0.17 -1.69 1.12 M M 

21 0 2.9 1.2 -0.02 -1.48 1.33 M M 

22 0 1.8 1.73 0.91 -1.94 0.72 M M 

23 1 1.1 1.2 1.37 1.79 1.09 M M 

24 1 1 1.2 0.9 -0.25 1.65 M M 

25 1 1.1 1.2 1.25 0.87 2.44 M M 

26 1 1 1.38 1.35 0.77 2.62 M M 

27 1 1.3 1.83 1.51 0.9 2.87 M M 

28 0 3.4 1.33 1.27 1.21 1.95 M C 

29 0 2.7 1.35 1.37 1.96 2.06 M C 

30 0 2 1.2 1.55 1.17 2.15 M C 
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31 1 1.3 1.7 1.4 2.04 3.88 M M 

32 0 2.4 2.15 0.66 1.53 3.62 M M 

33 0 2.4 1.34 -0.14 1.06 3.5 M M 

34 0 2.6 1.2 -0.41 1.01 0.94 M M 

35 0 2.5 1.24 0.2 1.21 1.01 M M 

36 0 2.5 1.2 0.14 1.08 0.71 M M 

37 0 2.5 2.85 2.41 1.98 0.88 M C 

38 1 1.3 2.05 2.3 1.61 4.22 M C 

39 1 1.1 1.2 2.86 2.16 4.29 M C 

40 1 1.7 1.2 3.25 2.03 4.27 M C 

41 1 3.6 1.35 3.83 2.61 4.18 M C 

42 0 2.6 4.51 2.49 0.71 0.81 M M 

43 1 1.8 5.28 1.59 1.6 1.18 M M 

44 1 1.2 5.78 1.39 1.18 1.25 M M 

45 1 1.1 6.89 2.13 2.21 1.11 M M 

46 1 1 7.2 1.68 1.61 0.9 M M 

47 1 1.3 7.2 1.35 1.62 0.81 M M 

48 0 1.2 1.2 -0.2 -1.47 0.96 M M 

49 0 1.3 1.49 -0.06 -0.65 1.16 M M 

50 0 1.1 1.39 0.25 -0.38 0.81 M M 

51 0 1.1 1.2 0.1 -0.8 0.75 M M 

52 0 3.4 3.91 0.44 0.24 3.88 M C 

53 0 3.2 3.75 0.25 0.32 3.88 M C 

54 0 3 3.61 0.53 0.28 3.88 M C 

55 0 2.6 3.37 0.68 0.48 3.88 M C 

56 0 2.7 3.52 -0.18 -0.32 3.88 M C 

57 0 3.8 2.37 -0.75 -0.41 3.88 M C 

58 0 3.9 1.89 -0.06 -0.66 3.88 M C 

59 0 4.2 1.64 -0.66 -0.71 3.88 M C 

60 1 2.3 2.73 3.49 1.68 3.75 M M 

61 1 1.3 4.11 4.04 2.79 4.04 M M 

62 1 1.7 5.14 3.96 2.08 4.07 M M 

63 0 4.4 1.93 -0.58 0.24 0.71 M M 

64 0 4.4 2.57 -0.1 0.22 0.71 M M 

65 0 2.7 1.2 0.8 -2.45 2.86 M C 

66 0 2.2 1.2 1.04 0.54 3.06 M C 

67 1 1.9 1.2 0.52 0.96 3.1 M M 

68 1 1.6 1.2 0.7 1.1 2.8 M M 

69 1 1.3 1.5 0.59 1 2.24 M M 

70 1 1 2.14 0.62 1.33 1.77 M M 

71 0 3.1 1.21 1.47 0.66 3.77 M C 

72 1 2.4 1.2 1.42 1.12 3.89 M M 

73 1 1.6 1.2 1.56 1.06 4.05 M M 
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74 1 1 1.2 1.49 0.6 4.05 M M 

75 1 1.2 1.3 1.37 0.31 4.16 M M 

76 1 1 1.44 1.75 0.3 4.27 M M 

77 1 1.4 1.2 1.56 0.63 4.23 M M 

78 0 3 2.45 -1.09 -0.64 3.88 M M 

79 0 3.4 1.98 -0.76 -1.31 3.88 M M 

80 0 3.3 2.5 0.24 -1.05 3.88 M M 

81 0 3.3 3.61 -0.09 -2.21 4.48 M M 

82 0 1.1 1.2 0.27 0.32 0.77 M C 

83 1 1 1.2 0.34 0.06 2.37 M M 

84 1 1 1.2 0.21 -0.17 2.18 M M 

85 0 3.7 1.55 2.85 2.85 2.78 M C 

86 0 2.3 2.84 2.94 2.64 2.41 M C 

87 1 1 4.26 3.04 2.93 2.56 M M 

88 1 1 5.72 3.28 2.94 2.9 M M 

89 0 1.3 1.32 0.88 -0.93 0.71 M M 

90 0 1.1 1.2 0.28 0.33 0.87 M M 

91 1 1 1.2 0.95 1.98 2.84 M M 

92 1 1.3 1.35 1.87 0.87 2.96 M M 

93 1 1.3 1.24 2.09 1.88 3.18 M M 

94 1 1.7 5.11 1.05 7.56 3.88 M C 

95 1 1 7.2 1.61 8.25 4.4 M C 

96 1 1.2 7.2 2.39 9.29 4.33 M C 

97 1 1.3 7.2 2.21 9.34 4.39 M C 

98 1 2.4 7.2 2.33 9.03 3.88 M C 

99 1 1.9 1.4 1.27 2.15 2.51 M M 

100 1 1.1 2.28 1.69 1.79 2.58 M M 

101 1 1.4 3.24 1.36 1.92 2.32 M M 

102 1 1 4.74 2.09 3.02 2.22 M M 

103 0 1.1 1.49 0.7 -0.04 0.71 M M 

104 1 1 2.1 0.71 0.95 3.06 M M 

105 1 1.3 2.49 1 0.8 3.18 M M 

106 1 1.4 2.81 1.45 0.63 3.32 M M 

107 1 1.4 4.01 1.91 2.37 3.24 M M 

108 0 3.7 7.2 2.04 8.92 2.06 M C 

109 0 3 7.2 1.42 8.55 2.03 M C 

110 0 2.1 7.2 1.84 8.12 2.19 M C 

111 1 1 7.2 2.26 9.05 2.12 M C 

112 1 1 7.2 1.89 9.12 2.17 M C 

113 1 1 7.2 1.63 8.72 2.03 M C 

114 0 1.5 1.59 1.09 0.79 3.28 M C 

115 1 1 1.2 1.75 0.94 4.03 M M 

116 1 1.2 1.48 1.7 1.29 3.95 M M 
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117 1 1.3 1.33 2.16 1.64 4.13 M M 

118 1 2.7 1.38 2.78 2.1 4.15 M M 

119 1 1.4 1.2 1.92 3.05 3.38 M C 

120 1 1.1 2.55 2.94 3.55 3.65 M C 

121 1 2.9 4.35 3.61 3.62 3.7 M C 

122 0 4.3 7.2 3.71 -3.09 0.71 M C 

123 0 2.8 7.2 2.95 6.75 0.71 M C 

124 1 1.2 7.2 3.24 9.84 3.42 M C 

125 1 1 7.2 3.9 10.36 3.25 M C 

126 0 3.6 2.34 2.31 2.28 0.71 M C 

127 1 2.3 3.57 2.48 2.49 3.71 M M 

128 1 1 4.97 2.93 2.78 3.74 M M 

129 1 1 7.2 3.49 4.2 3.84 M C 

130 1 2.8 7.2 3.86 1.89 4 M C 

131 0 4.6 1.2 1.16 3.28 1.97 M C 

132 0 4.2 1.2 0.83 3.15 1.88 M C 

133 0 3.6 2.31 1.18 3.08 1.63 M C 

134 0 4.7 1.25 0.57 -0.75 3.75 M C 

135 0 4.1 1.2 1.03 1.06 3.91 M C 

136 0 3.5 1.2 1.33 -1.76 4 M C 

137 1 2.9 2.15 1.26 2.43 3.88 M M 

138 1 2.2 3.32 1.44 2.39 3.88 M M 

139 1 1.6 1.2 0.88 1.96 3.38 M M 

140 1 1 1.2 1.96 1.61 3.39 M M 

141 1 1.2 1.72 1.74 2.23 3.25 M M 

142 0 1.2 1.2 0.76 1.48 1.98 M M 

143 1 1 1.49 1.04 1.72 1.98 M M 

144 1 1.1 2.42 1.17 1.87 2.12 M M 

145 1 1.4 3.14 0.99 1.44 2.3 M M 

146 1 1 3.89 1.17 1.51 2.23 M M 

147 0 3.6 1.2 0.14 0.51 0.95 M C 

148 0 3.7 1.2 -0.16 -0.67 0.72 M C 

149 1 3.7 1.49 0.11 1.78 3.88 M M 

150 1 3.6 2.58 0.32 2.28 3.88 M M 

151 1 3.2 3.94 0.76 2.75 3.88 M M 

152 0 4.3 1.38 3.26 2.72 1.64 M C 

153 1 2.5 1.27 3.56 3.32 4.25 M C 

154 1 1 3.01 3.55 3.5 4.23 M C 

155 1 1.1 4.95 3.81 3.89 4.3 M C 

156 0 1.8 1.66 1.63 3.14 3.88 M C 

157 0 1.5 1.2 0.59 1.92 3.88 M C 

158 1 1 1.2 1.84 3.26 3.88 M C 

159 1 1.2 2.63 1.68 3.41 3.88 M C 
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160 0 1 1.2 -0.23 0.85 1.43 M M 

161 1 1 3.19 0.3 1.16 3.69 M M 

162 1 1 3.77 0.4 1.16 3.66 M M 

163 1 1.2 4.35 0.5 1.14 3.71 M M 

164 1 3.5 1.74 0.77 0.66 3.88 M M 

165 1 2.9 2.29 1.26 1.09 3.88 M M 

166 1 2.4 2.78 0.99 0.98 3.88 M M 

167 1 2 3.34 0.85 1.13 3.88 M M 

168 1 1.3 4.04 1.27 1.39 3.88 M M 

169 0 4.7 4.25 0.49 -3.57 1.41 C M 

170 0 4.8 6.47 -0.19 -4.49 1.17 C M 

171 0 4.9 7.2 -0.19 -5.04 0.88 C M 

172 0 4.9 7.2 -0.19 -5.97 0.71 C M 

173 1 1.5 1.2 3.37 1.79 3.88 M C 

174 1 1.2 1.54 2.54 1.4 3.88 M C 

175 1 1.2 2.36 2.94 1.65 3.88 M C 

176 1 2.4 3.04 2.4 1.37 3.88 M C 

177 1 3.3 3.2 1.75 0.33 3.88 M C 

178 0 2.7 3.39 -0.43 -2.5 0.77 M C 

179 0 3 4.13 -0.6 1.5 1.13 M C 

180 0 3.3 4.63 -0.57 -3.32 1.08 M C 

181 0 3.5 5.25 -0.46 0.72 0.85 M C 

182 0 4.1 1.2 -0.02 0.77 1.43 M M 

183 0 4.4 1.47 -0.61 0.65 1.23 M M 

184 0 4.7 1.42 -0.59 0.65 1.24 M M 

185 0 3.2 4.4 0.53 0.14 1.56 M M 

186 0 3.3 4.94 -0.32 -0.54 1.76 M M 

187 0 3.4 5.37 -0.14 0.86 1.99 M M 

188 0 3.3 4.91 0.19 -0.92 2.04 M M 

189 0 3.3 4.77 -0.01 -0.28 2.03 M M 

190 1 1 1.34 1.62 2.12 3.61 M C 

191 1 1 1.4 1.63 2.18 3.37 M C 

192 1 1 2.55 1.99 2.32 3.5 M C 

193 1 2.4 4 2.7 2.91 3.4 M C 

194 1 3.6 5.48 2.55 2.96 3.53 M C 

195 1 1.6 1.48 1.44 1.22 1.87 M M 

196 1 1.4 1.2 0.38 0.97 1.88 M M 

197 1 1.1 1.2 0.72 1.07 1.9 M M 

198 1 1 1.2 0.73 1.16 1.93 M M 

199 1 1.2 1.74 -0.91 1.33 1.82 M M 

200 1 1 2.18 0.67 0.89 1.79 M M 

201 1 1 2.55 0.37 0.73 1.77 M M 

202 0 3.2 4.55 0.6 8.23 3.88 M C 
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203 1 2.6 4.75 1.29 7.93 3.88 M M 

204 1 2.1 4.55 0.91 -0.42 3.88 M M 

205 1 1.3 4.8 1.52 0.52 3.88 M M 

206 1 1.4 5.24 1.88 0.88 3.88 M M 

207 1 1.4 5.41 1.53 0.34 3.88 M M 

208 1 1.2 5.75 1.69 0.67 3.88 M M 

209 0 1 2.19 0.96 0.61 1.77 M M 

210 1 1 2.28 0.95 0.21 1.78 M M 

211 1 1.2 2.55 0.81 0.52 1.67 M M 

212 1 1.4 2.54 1.08 0 1.67 M M 

213 1 1 2.4 1.13 -0.28 1.84 M M 

214 0 1.9 1.83 -0.24 0.34 0.95 M M 

215 1 1.9 2.81 0.14 1.76 3.88 M M 

216 1 2 4.39 -0.13 3.21 3.88 M M 

217 1 1.9 6.09 0.24 3.46 3.88 M M 

218 1 1.5 7.2 0.74 4.1 3.88 M M 

219 0 2.1 1.2 0.86 -0.41 0.94 M M 

220 0 1.8 1.2 0.52 -0.71 0.71 M M 

221 1 1.4 1.33 0.74 0.38 3.88 M M 

222 1 1 1.83 1.18 1.02 3.88 M M 

223 1 1.1 2.61 1.42 1.56 3.88 M M 

224 1 1.4 3.46 1.08 1.7 3.88 M M 

225 0 1.2 1.92 0.07 -1.75 0.75 M M 

226 0 1.2 2.91 -0.05 -1.98 0.71 M M 

227 0 1.2 4.04 -0.11 -2.27 0.71 M M 

228 0 1.5 6.17 1.48 0.33 1.12 M C 

229 1 1 6.23 1.53 -0.28 3.95 M C 

230 1 1.1 6.59 1.42 0.73 3.84 M C 

231 0 1.6 1.2 -0.17 0.4 0.83 M M 

232 0 1.4 1.2 0.54 0.8 0.83 M M 

233 0 1.2 1.95 0.25 0.61 0.9 M M 

234 1 1 2.94 0.81 1.95 3.88 M M 

235 1 1.2 3.98 1.31 2.09 3.88 M M 

236 0 1.2 1.2 1.13 -2.13 0.71 M C 

237 1 1 1.47 1.21 -0.71 1.43 M M 

238 1 1.4 1.2 1.88 0.62 1.79 M M 

239 1 1.5 1.37 2.16 1.18 2.26 M M 

240 1 2.6 1.6 2.21 0.46 2.66 M M 

241 0 2 2.62 0.58 -0.95 0.89 M M 

242 0 1.7 2.5 0.59 -0.72 0.87 M M 

243 1 1.2 2.37 0.97 -0.23 3.26 M M 

244 1 1 2.31 1.1 -0.04 3.25 M M 

245 1 1.2 2.62 1.7 0.65 3.15 M M 
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246 0 1 1.2 0.28 0.35 0.87 M C 

247 1 1 2.37 0.64 0.06 4.34 M C 

248 1 1.2 2.29 0.77 -0.16 4.35 M C 

249 1 1.3 2.41 1 0.19 4.42 M C 

250 1 1 1.52 1.22 -1.77 4.46 M C 

251 1 1.6 3.14 1.47 3.25 3.88 M C 

252 0 3.7 7.2 0.01 -1.05 3.88 M C 

253 0 3.4 7.2 0.7 -0.93 3.88 M C 

254 0 3 2.67 0.72 -1.12 3.88 M C 

255 0 2.7 1.2 0.64 -1.57 3.88 M C 

256 0 3.6 1.49 0.75 1.29 3.71 M C 

257 0 2.9 1.2 1.57 1.35 3.57 M C 

258 1 1.6 2.42 2.49 2.84 3.49 M C 

259 1 1.2 3.78 2.84 2.78 3.87 M C 

260 1 1.1 5.2 2.66 2.87 3.88 M C 

261 0 2.9 4.48 2.08 -1.49 1.01 M C 

262 1 1.9 3.92 2.12 -1.07 1.16 M M 

263 1 1 3.2 2.39 -1.46 3.88 M M 

264 1 1.4 2.5 2.31 -1.4 3.88 M M 

265 1 1.7 1.49 2.49 -2.04 3.88 M M 

266 1 3.2 1.2 2.95 -1.97 3.88 M M 

267 0 1.2 1.2 1.15 0.07 0.79 M M 

268 1 1.4 1.33 1.66 2.15 3.88 M M 

269 1 1 2.26 2.37 3.86 3.88 M M 

270 1 1.9 4.22 2.24 3.92 3.88 M M 

271 0 1.9 1.2 -0.76 -1.16 1.23 M M 

272 0 2.3 1.2 -0.84 -1.13 1.68 M M 

273 0 2.7 1.65 -0.66 -1.13 1.99 M M 

274 0 3 7.2 0.13 -1.81 0.73 C C 

275 0 2.7 7.2 0.73 -2.24 0.71 C C 

276 0 2.6 7.2 0.09 -2.28 0.71 C C 

277 0 2.6 7.2 0.04 -2.68 0.97 C C 

278 0 2.4 7.2 0.38 -2.76 0.97 C C 

279 0 3.5 4.47 0.32 8.2 0.84 M C 

280 0 2.9 7.2 1.15 8.51 0.83 M C 

281 0 2.7 7.2 0.52 8.66 1 M C 

282 0 2.6 7.2 0.07 8.35 1 M C 

283 0 2.4 7.2 0.44 8.67 1.2 M C 

284 0 2.5 7.2 -0.2 8.23 1.14 M C 

285 1 1.3 1.71 0.56 1.1 3.88 M C 

286 1 1.4 3.05 1.79 2.7 3.88 M C 

287 1 1.3 4.37 1.43 2.66 3.88 M C 

288 1 1.6 5.91 2.59 3.07 3.88 M C 
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289 0 2.4 1.34 -0.27 0.61 1.27 M M 

290 0 2.1 1.2 0.67 1.37 1.13 M M 

291 0 1.9 1.61 0.26 0.5 1.09 M M 

292 0 1.6 3.09 0.76 1.06 0.95 M M 

293 0 1.5 3.53 0.08 0.2 1 M M 

294 1 3.7 1.29 1.16 1.04 3.88 M M 

295 1 3 1.2 1.32 0.52 3.88 M M 

296 1 1.8 1.21 2.35 1.31 3.88 M M 

297 1 1 1.54 1.62 0.66 3.88 M M 

298 1 1.1 2.15 2.27 1.23 3.88 M M 

299 1 1.4 2.78 2.63 1.28 3.88 M M 

300 0 4.9 1.97 1.11 -0.39 1.07 M M 

301 0 4.1 1.36 1.68 -0.93 1.02 M M 

302 0 3.4 1.68 1.44 -0.63 0.82 M M 

303 1 2.3 1.2 2.25 2.42 4.01 M M 

304 1 1.1 1.45 2.33 1.6 3.92 M M 

305 0 2.9 7.2 0.08 7.05 4.31 M C 

306 0 3.2 7.2 -0.55 7.13 4.19 M C 

307 0 3.3 7.2 -0.24 7.55 4.19 M C 

308 0 3.4 7.2 -0.25 7.19 4.34 M C 

309 0 3.5 7.2 -0.2 7.46 4.45 M C 

310 0 1.3 1.37 0.8 -1.75 3.88 M M 

311 1 1.1 1.55 0.41 0.49 3.88 M M 

312 1 1 1.42 0.55 -0.04 4.29 M M 

313 1 1.3 1.94 1.32 1.09 4.03 M M 

314 1 1.4 2.48 1.55 1.08 3.95 M M 

315 1 1.2 2.89 1.61 0.83 3.82 M M 

316 1 2.2 3.42 1.89 1.07 3.9 M M 

317 0 1.8 1.22 0.38 -0.12 0.86 M C 

318 0 1.5 1.2 0.75 0.73 1.02 M C 

319 0 1.2 1.2 0.47 -0.17 0.85 M C 

320 1 1 1.2 0.62 0.32 3.88 M M 

321 1 1 1.2 0.65 0.44 3.88 M M 

322 1 1.2 1.46 0.89 0.22 3.88 M M 

323 1 1.2 1.25 0.69 0.41 3.88 M M 

324 0 1 1.71 0.65 0.23 3.88 M C 

325 1 1 1.2 0.81 0.37 3.88 M M 

326 1 1.1 1.5 1.55 1.78 4.17 M M 

327 1 1.4 2.25 0.69 1.56 3.85 M M 

328 1 1.1 3.38 1.35 2.29 3.62 M M 

329 0 2.6 6.28 1.94 9.31 1.11 M C 

330 1 2 7.2 1.31 8.72 3.96 M C 

331 1 1.5 7.2 1.02 8.72 4.03 M C 
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332 1 1 7.2 1.08 8.19 3.94 M C 

333 1 1 7.2 0.77 7.95 3.79 M C 

334 1 1 7.2 0.18 7.57 3.72 M C 

335 0 1 3.04 -0.21 0.12 0.98 M M 

336 1 1 3.03 0.37 -0.02 4.14 M M 

337 1 1 3.7 0.55 1.37 4.08 M M 

338 1 1 4.4 0.92 1.42 4.19 M M 

339 1 1.4 4.92 0.97 1.05 4.26 M M 

340 0 1.6 1.58 1.05 -0.46 3.51 M M 

341 0 1 1.77 1.41 -0.43 3.44 M M 

342 1 1 1.6 0.6 -0.29 3.88 M M 

343 1 1.2 1.93 1.73 0.68 3.88 M M 

344 1 1 2.01 1.12 0.18 3.88 M M 

345 1 1 2.09 0.47 0.16 3.88 M M 

346 1 1.5 2.35 0.9 0.51 3.88 M M 

347 1 1.7 2.54 0.5 0.39 3.88 M M 

348 1 2 2.86 0.48 0.64 3.88 M M 

349 0 1.1 3.33 1.36 0.13 2.9 M C 

350 1 1 3.55 1.04 0.43 2.82 M M 

351 1 1.4 3.57 0.21 0.05 2.66 M M 

352 1 1.2 3.77 1.27 0.4 2.84 M M 

353 1 1 4.33 0.92 1.12 2.62 M M 

354 1 1 4.68 0.77 0.69 2.69 M M 

355 1 1.5 4.89 0.99 0.43 2.74 M M 

356 0 2.4 1.2 0.38 0.31 3.88 M C 

357 1 1.9 1.22 0.88 0.17 3.88 M M 

358 1 1.6 1.39 0.67 0.35 3.88 M M 

359 1 1.1 2.14 1.02 1.51 3.88 M M 

360 1 1 2.68 1.2 1.09 3.88 M M 

361 1 1.3 3.46 1.56 1.54 3.88 M M 

362 1 1.1 4.19 1.59 1.45 3.88 M M 

363 1 2 6.81 2.3 -0.31 3.4 M C 

364 1 1 6.94 2.18 0.3 3.55 M C 

365 1 1.3 7.2 2.63 8.45 3.6 M C 

366 1 2.2 7.2 3.69 9.46 3.62 M C 

367 1 4.2 7.2 4.04 9.93 3.75 M C 

368 0 3 1.32 0.81 -1.07 3.88 M C 

369 0 2.4 1.33 1.05 -0.75 3.88 M C 

370 0 1.9 1.34 1.04 -0.86 3.88 M C 

371 1 1.5 4.23 1.03 7.85 3.88 M M 

372 1 1 1.2 1.07 -6.09 3.88 M M 

373 1 1 1.51 0.75 0.74 3.88 M M 

374 1 1.1 2.07 1.4 1.12 3.88 M M 
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375 0 2.7 6.73 1.03 2.94 1.63 M C 

376 0 2.2 7.2 1.05 2.99 1.67 M C 

377 0 1.6 7.2 1.19 10.19 1.71 M C 

378 0 1.2 7.2 0.69 9.09 1.77 M C 

379 1 1 7.2 0.47 9.59 1.74 M C 

380 1 1 7.2 0.1 8.81 1.64 M C 

381 0 3.2 4.17 2.77 -3.68 3.73 M C 

382 0 1.9 2.9 2.51 2.54 3.91 M C 

383 1 1 1.43 1.7 1.61 3.88 M M 

384 1 1.3 1.25 1.67 1.74 3.88 M M 

385 1 1 2.18 2.05 1.93 3.88 M M 

386 0 3.5 1.2 2.13 1.34 1.19 M C 

387 0 2.8 1.2 1.48 1.12 1.47 M C 

388 0 1.7 1.2 2.16 1.88 1.75 M C 

389 1 1 1.76 1.77 1.84 3.67 M C 

390 1 1.3 2.79 2.27 2.1 3.64 M C 

391 1 1.5 1.41 1.07 1.52 3.88 M C 

392 1 1 2.14 1.37 1.55 3.88 M C 

393 1 1.2 3.02 1.19 1.8 3.88 M C 

394 0 3.2 1.4 2.33 -1.51 0.9 M M 

395 1 2.3 2.86 1.92 1.73 3.88 M M 

396 1 1.5 3.62 1.68 1.61 3.88 M M 

397 1 1.4 4.28 2.12 1.37 3.88 M M 

398 1 1 5.21 2.1 1.91 3.88 M M 

399 0 3.1 1.36 3.04 2.16 1.13 M C 

400 0 2.1 1.27 2.13 2.01 1.36 M C 

401 1 1 1.2 3.06 2.48 3.74 M C 

402 1 1 2.21 2.2 2.51 3.71 M C 

403 1 1.2 4.74 2.51 4.78 2.48 M C 

404 1 1.2 7.2 2.12 10.09 2.56 M C 

405 1 1 7.2 2.06 10.68 2.59 M C 

406 1 1.8 7.2 1.97 9.5 2.75 M C 

407 1 2.6 7.2 1.64 10.08 2.72 M C 

408 0 3.2 6.86 2.52 10.7 0.97 M C 

409 1 1.5 7.2 3.41 11.63 3.64 M C 

410 1 1.2 7.2 3.51 11.68 3.76 M C 

411 1 2.5 7.2 4.47 13.28 3.96 M C 

412 1 4.5 7.2 3.98 11.45 4.08 M C 

413 0 4.2 1.2 0.28 0.72 3.94 M C 

414 0 4 1.33 0.29 1 4.08 M C 

415 1 3.8 1.2 0.63 1.25 3.88 M C 

416 1 3.4 1.46 0.69 1.12 3.88 M C 

417 1 3.2 2.19 0.61 1.54 3.88 M C 
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418 1 2.9 2.98 0.61 1.63 3.88 M C 

419 0 1.4 3.39 0.95 -1.27 0.85 M C 

420 1 1 2.8 1.84 -1.16 4.38 M M 

421 1 1.2 2.39 1.53 -0.82 4.41 M M 

422 1 1.2 2.25 1.86 -0.28 4.44 M M 

423 1 1.5 1.93 0.69 -0.64 4.39 M M 

424 0 4 4.51 -0.42 -0.56 4.22 M M 

425 0 4 4.64 -0.14 -0.25 4.27 M M 

426 0 4.4 5.13 -0.65 -1 4.24 M M 

427 0 4.2 5.22 0.35 -0.18 4.22 M M 

428 0 4.2 5.68 -0.08 -0.91 4.2 M M 

429 0 1.4 1.2 0.36 5.16 4 M C 

430 0 1.3 2.5 0.29 -4.88 4.15 M C 

431 0 1 5.24 1.09 -2.31 4.14 M C 

432 1 1 7.2 0.44 4.99 3.88 M C 

433 1 1.1 7.2 0.89 5.79 3.88 M C 

434 1 1 7.2 1.18 5.3 3.88 M C 

435 1 1.2 7.2 1.47 6.52 3.88 M C 

436 0 4.1 6.17 2.7 9.41 0.71 M C 

437 0 2.5 7.2 3.25 4.01 0.87 M C 

438 1 1.3 7.2 2.47 0.36 3.88 M C 

439 1 1 7.2 2.71 0.36 3.88 M C 

440 1 1.3 7.2 2.58 1.04 3.88 M C 

441 1 2.8 7.2 3.11 0.79 3.88 M C 

442 0 2 2.56 1.75 2 1.48 M C 

443 1 1 7.2 2.12 0.67 4.31 M C 

444 1 1.2 7.2 1.47 0.44 3.88 M C 

445 1 1 7.2 2 0.32 3.88 M C 

446 1 1.7 7.2 1.84 0.78 3.88 M C 

447 1 2.5 7.2 1.57 0.54 3.88 M C 

448 0 4.2 1.87 -0.51 -1.33 0.84 M M 

449 0 4.5 1.8 -0.61 -1.29 0.9 M M 

450 0 4.6 1.99 -0.32 -1.2 0.79 M M 

451 0 4.8 2.07 -0.31 -1.19 0.76 M M 

452 0 1.5 2.18 0.12 -0.35 3.88 M C 

453 1 1.3 2.13 0.58 -0.04 3.88 M M 

454 1 1 2.21 0.61 0.2 3.88 M M 

455 1 1 2.29 0.66 0.2 3.88 M M 

456 1 1.2 2.52 0.92 0.51 4.44 M M 

457 1 1.3 2.94 1.02 0.85 4.25 M M 

458 1 1 3.26 0.67 0.68 4.21 M M 

459 0 2.2 1.2 0.76 1.35 4.39 M C 

460 1 2.1 1.2 0.28 1.42 3.88 M M 
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461 1 1.7 1.87 0.9 1.35 3.88 M M 

462 1 1.2 2.78 0.98 1.84 3.88 M M 

463 1 1 3.48 1.2 1.41 3.88 M M 

464 1 1.4 4.21 2.04 1.49 3.88 M M 

465 1 1.5 5.13 2.19 1.83 3.88 M M 

466 1 2 7.2 1.82 8.66 3.88 M C 

467 1 1.3 7.2 1.43 7.07 3.88 M C 

468 1 1.3 7.2 2.06 8.56 4.5 M C 

469 1 1 7.2 1.99 8.02 3.88 M C 

470 0 2.5 2.88 0.46 -0.72 4.14 M C 

471 0 2.2 2.38 0.53 -1 4.02 M C 

472 1 1.8 7.2 0.83 1.88 3.88 M M 

473 1 1.5 7.2 0.6 6.35 3.88 M M 

474 1 1.1 7.2 0.76 -3.51 3.88 M M 

475 1 1 7.2 0.68 1.8 3.88 M M 

476 0 2.1 1.34 1.08 -0.19 0.92 M M 

477 1 1.2 3.5 1.84 2.16 3.88 M M 

478 1 1.2 4.33 2.04 1.78 3.88 M M 

479 1 1.4 5.23 1.28 1.8 3.88 M M 

480 1 1.3 5.55 1.82 0.66 3.88 M M 

481 0 2.8 6.52 1.07 -2.97 0.7 M C 

482 1 2.4 7.2 0.78 6.85 3.42 M C 

483 1 1.7 7.2 1.46 8 3.46 M C 

484 1 1 7.2 1.46 7.64 3.57 M C 

485 1 1 7.2 2.01 8.54 3.61 M C 

486 1 1 7.2 1.77 7.94 3.58 M C 

487 1 1.6 7.2 1.44 7.72 3.62 M C 

488 0 2.4 1.66 -0.1 1.17 1.12 M C 

489 1 2.4 2.47 -0.06 1.63 1.22 M M 

490 1 2.2 3.19 0.36 1.47 1.51 M M 

491 1 2.2 3.91 0.08 1.42 1.55 M M 

492 1 2 4.63 0.28 1.44 1.37 M M 

493 0 2.5 1.33 0.37 0.7 0.71 M M 

494 1 2.2 1.2 0.49 1 1.72 M M 

495 1 1.8 1.61 1.01 1.64 1.73 M M 

496 1 1.4 2.23 0.67 1.3 1.85 M M 

497 0 1.5 2.27 0.48 1.62 3.6 M C 

498 0 1.2 2.94 0.6 1.35 3.42 M C 

499 1 1 3.9 1.34 2.01 3.88 M M 

500 1 1.2 5.07 1.6 2.4 3.88 M M 

501 1 1 5.98 1.39 1.82 3.88 M M 

502 1 1.5 6.94 1.28 1.96 3.88 M M 

503 0 3.1 3.25 1.61 0.47 0.75 M C 
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504 1 2.4 3.17 1.51 -0.05 3.22 M C 

505 1 1.8 3.11 1.36 0.1 3.24 M C 

506 0 1.6 2.9 0.41 0.72 0.97 M M 

507 1 1.4 3.16 0.41 0.56 1.76 M M 

508 1 1 3.68 1.2 1.09 1.82 M M 

509 1 1 4.02 0.82 0.69 1.7 M M 

510 1 1.1 4.86 1.2 1.69 1.92 M M 

511 0 1.4 7.2 0.87 8.92 1.85 M C 

512 1 1 7.2 0.87 9.49 1.97 M C 

513 1 1 7.2 0.97 9.22 1.86 M C 

514 1 1.1 7.2 1.19 10.15 1.91 M C 

515 1 1 7.2 0.97 8.48 1.96 M C 

516 0 1.9 1.2 0.63 -0.84 1.46 M M 

517 1 1.4 2.73 1.04 -0.91 3.88 M M 

518 1 1 2.16 1.16 -1.14 3.88 M M 

519 1 1.2 1.8 1.86 -0.7 3.88 M M 

520 0 3.1 1.2 1.33 1.16 0.71 M C 

521 0 2.4 1.2 1.45 1.21 0.71 M C 

522 0 1.8 1.42 1.12 1.04 0.71 M C 

523 1 1 1.4 1.68 1.97 1.19 M M 

524 1 1.4 2.03 1.22 1.25 1.02 M M 

525 1 1.3 2.78 1.39 1.51 1.07 M M 

526 1 1 3.13 0.62 0.72 1.19 M M 

527 0 2.6 1.2 1.37 1.29 0.71 M C 

528 0 2 1.26 1.17 1.3 0.71 M C 

529 0 1.3 1.98 1.4 1.44 0.71 M C 

530 1 1 7.2 1.27 7.31 3.88 M M 

531 1 1.1 7.2 1.49 8.25 3.88 M M 

532 0 1.2 1.2 0.28 -1.64 3.88 M M 

533 1 1.2 1.2 0.04 -1.7 3.88 M M 

534 1 1 1.2 0.72 -1.37 3.88 M M 

535 1 1 1.55 0.05 -1.77 3.88 M M 

�����, ���: types of front vehicle and laterally-following vehicles (motorcycle or passenger cars)  

M: Motorcycle; C: passenger car  
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