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Abstract 

The aim of this research was to investigate the ability of red sandstone to oxidise dissolved 

organic carbon (DOC). Ascorbic acid (H2A) has been used as a relatively simple 

representative of DOC, because it has functional groups in common with more complex 

natural organics, is relatively easy to analyse, safe and environmentally friendly. Preliminary 

experiments revealed that ascorbic acid is able to reductively dissolve oxide in sandstone and 

showed that Mn as well as Fe oxides are involved. Before running final batch experiments 

studies were undertaken on sorption of ascorbic acid, Fe and Mn to  sandstone. Sorption was 

similar to that seen for synthetic hematite (possibly a two- slope linear isotherm).  Two sets 

of batch experiments were undertaken  under anoxic conditions one under biotic and one 

under abiotic condition. The results showed that the release of  Fe and Mn depends on the 

concentration of H2A and pH. The decrease in H2A concentration was greater than the 

increase in Fe and Mn concentrations (corrected for sorption of metals on the sandstone 

surfaces) and this was ascribed to sorption. A revised possible sorption model was proposed 

that included sorption of both ascorbate and dehydroascorbic acid (main product of H2A 

oxidation). The rate of H2A oxidation was higher in biotic experiments than in abiotic 

experiments. It was concluded that this was due to the difference of pH between two sets of 

experiments rather than due to bacteria presence. The rate of ascorbic acid oxidation by 

natural oxides was higher than found by previous researchers for synthetic hematite. This 

result was not expected because less crystalline and newly  prepared synthetic hematite is 

usually considered more reactive than geological hematite, though the rates recorded here 

also include the effect of Mn oxides.  However, the processes determined by the synthetic 

mineral studies do seem appropriate also to geological systems. Many questions are left to 

investigate but the present study has shown that the sandstone will provide a possibly 

significant natural oxidative attenuation of some organics.
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1. Introduction 

1.1 Background 

On the  Earth, groundwater is the largest resource of fresh water available (Freeze and Cherry, 

1979). Many countries rely heavily on groundwater for their water supplies; therefore to 

understand the groundwater geochemistry and to protect groundwater quality are considered 

top priorities. Sandstone aquifers are a common type of aquifer worldwide, and a common 

type of sandstone aquifer are redbed continental sandstones of moderate intergranular 

permeability and fracture permeability (Barker and Tellam , 2006). About 25% of the total 

groundwater abstraction from licensed wells in the UK comes from the Permo-Triassic 

Sandstones (Allen et al. 1997). 

Redbed sandstones provide a potentially significant amount of oxidative capacity from  

hematite (Fe2O3) grain coatings that could naturally attenuate either natural dissolved organic 

matter or dissolved organic contaminants coming from human activity. If we could quantify 

the oxidation process, we would be much more better able to estimate the natural attenuation 

of organic pollutants which took place in different areas like, rural areas where natural 

organic matter or farm wastes / sewage leakage to groundwater, urban and industrial leakage, 

beside landfill leachate leakages. Lovely and Anderson (2000) point out that generally 

sandstone aquifers often have a reddish colour due to the presence of iron oxide, while after 

contamination by organic carbon the colour of the sediment converts to grey or even white 

(bleaching),especially under higher temperatures. Heron et al. (1994) mention that oxides 

present in aquifer sediments can make significant potential contributions to natural 

attenuation and control of many kinds of contaminations. Canfield et al. (1993) point out that 

iron oxides in sediment free from sulphide minerals contribute about three -quarters of the 

oxidation of organic carbon in sediments world-wide. However the oxidation capacity of 
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sediment varies considerably from high to low oxidation capacity depending on the amount, 

types and characteristics of oxide grain coatings on sediment (Heron et al., 1994). 

Furthermore oxic and anoxic conditions have also considerable effect on the oxidation rate of 

organic carbon in sediment. For instance, Heron et al. (1994) give anaerobic sediment 

examples where organic matter oxidation capacity ranges from 4 to 10 µmol/g, and examples 

of aerobic sediment with higher oxidation capacity ranging from 25 to 30 µmol/g, the 

difference being due to the absence of oxide species like Fe(III) and Mn(IV) oxides in the 

aquifer sediments under anoxic conditions (Heron et al., 1994).  

Oxidization of dissolved organic carbon in aquifers converts possibly toxic or unwanted 

dissolved organic carbon in water to relatively non-toxic inorganic carbon forms like carbon 

dioxide CO2 and bicarbonate. Oxidation, e.g. by oxides, can act to limit the 

expansion of organic contamination plumes in groundwater (Heron and Christensen, 1995; 

Tuccillo et al., 1999). However, oxidation of organic matter coupled with reductive 

dissolution of Mn and Fe (III) oxides creates concern because of significant rise of Fe
++ 

and 

Mn
++ 

concentrations (Thomas et al., 1994; Hiscock and Grischek, 2002). Moreover the 

oxidizing of organic compounds could play a significant role in diagenesis.  

Redox reactions are important in a number of ways in natural aquatic environments.  Firstly 

release of dissolved inorganics occurs, e.g. Mn
++ 

which is more available to uptake by plants 

roots. Secondly oxidation of organic compounds increases humification. Thirdly many types 

of hazardous and toxic compounds which leach to aquatic environment as a result of man- 

made actions can be removed before affecting ecosystems (Bertino and Zepp, 1991).  

Reeburgh (1983) pointed out that there is no full understanding of the mechanisms of 

oxidation of dissolved organic matter by sediment oxides, and though there has been much 
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progress since his paper there is still a basic lack of understanding. Therefore more studies 

are required.  

1.2 Previous Research 

1.2.1  Introduction 

In this section a lot of previous studies will be mentioned that deal with the reactions that take 

place between oxides (synthetic and natural) and organic acids, especially ascorbic acid, and 

also mention the role of bacteria in this kind of reaction. Purpose is to provide some 

background for the later chapters. 

1.4.2 Oxide Reduction in Sedimentary Aquifers 

All kinds of soils and sediments have their own capacity to withstand changes in redox 

conditions, but this redox buffering capacity varies for each sediment according to the type, 

quantity and availability of electron donors and acceptors present in the system (Davranche 

and Bollinger, 2000). In subsurface anaerobic environments, solubility and quantity of iron 

oxides in sediments play a key role in determining the rate of organic carbon oxidation 

(Sulzberger et al. 1989). 

Froelich et al. (1979) and Champ et al. (1979) report that oxygen is likely to be the first 

electron acceptor for organic carbon oxidation. Then under anoxic condition when oxygen 

has been used up, nitrate and Mn oxides are the next electron acceptors. After depletion of 

both of these, ferric oxides are the next electron accepter followed by sulphate and finally 

CO2 (methanogenesis).  

Iron reduction often predominates in contaminated anoxic aquifers containing higher 

concentrations of dissolved organic carbon especially in the absence of NO3 and Mn(IV) as 

terminal electron accepters. However in the presence of these terminal electron acceptors less 



Introduction-chapter1 

4 
 

iron reduction may take place (Lovely and Chapelle 1995, mentioned in Lovely and 

Anderson, 2000). 

Lindsay (1991) cites a lot of studies to explain that when plants suffer from a deficiency of 

available iron, addition of organic matter (e.g. manure) compensates for this shortage of 

available iron to the plants. The addition corrects this lack by promoting reductive dissolution 

and making Fe more available to plants roots.  

Under anaerobic conditions, iron oxides present in sediment are often considered the 

principle electron acceptors for many kinds of aliphatic and aromatic organic compounds, 

with the oxidation mediated by microorganisms (Lovely, 1991; Lohmayer et al., 2014). 

Heron and Christensen (1995) found that iron oxides in contaminated sediments collected 

from a landfill site in Denmark were completely removed by the effect of organic 

contamination over a period of 15 yr. Larsen et al. (2006) observed a sharp rise of [Fe
++

] in 

groundwater in pristine sandy aquifers in Denmark from below detection  limit to around 0.5 

mM that were coupled with an increase in alkalinity and depth. They interpret this as 

indicating oxidation of organic matter with the rate increasing with depth due to iron oxide 

reductive dissolution.  

1.2.3 Lab Studies on Synthetic Minerals 

There is three general mechanisms that explain the dissolution of iron oxides as listed below 

(Zinder et al., 1986 ; Suter et.al., 1991): 

1-. Protonation mechanism (e.g. dissolution by inorganic acids like HCl) 

2-reductive dissolution mechanisms (e.g. by ascorbic acid) 

3-complexation mechanisms (e.g. by oxalic acid).  
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Suter et al.(1991) use ascorbic acid to reductively dissolve synthetic  hematite, determining 

the rates of reduction. They proposed (Figure 1-1) that attachment of ascorbic acid to the 

surface of iron oxides led to the formation of FeIII/ascorbic acid surface complexes that 

allowed an electron to be transferred to the FeIII in the  hematite. The resulting ascorbate 

radical was released and the now ferrous surface ion was released into solution. Suter et al. 

(1991) state that the reductive dissolution mechanism takes place quicker than other kinds of 

dissolution mechanism. 

 

 

 

 

 

 

 

 

Figure (1-1) Suter et al.’s (1991) model for the reductive dissolution of synthetic hematite by 

ascorbic acid. >Fe
III

OH2
+
 is the ferric surface site and >Fe

III
HA is the surface ascorbate 

complex. 

Banwart et al. (1989) found that the rate of reduction dissolution of synthetic  hematite by 

ascorbic acid at pH =3 increased around four times in presence of oxalate (from 1.48 ×10
-7 

mol m
-2

 h
-1

 to 6×10
-7 

mol m
-2

 h
-1

). On the other hand the rate of reductive dissolution dropped 

by about one order of magnitude (to 0.21 ×10
-7 

mol m
-2

 h
-1

) if they used just oxalate alone.  
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The rate of reductive dissolution depends on the kinds of oxide minerals present. For 

instance, Larsen and Postma (2001) attempted to reductively dissolve three types of synthetic 

iron oxides namely poorly crystalline goethite, lepidocrocite and ferrihydrite using 10 mM of 

ascorbic acid. They found considerable  variation in rate of dissolution, the least being with 

goethite (with an initial first order in Fe rate of 5.4 ×10
-6

 s
-1

), while the highest dissolution 

rate being for ferrihydrite (with an initial rate two orders of magnitude higher at (7 ×10
-4

 s
-1

).  

pH is often considered a master parameter in reductive dissolution of oxides. The rate of 

reductive dissolution varies considerably with change in pH. In general with decline in pH 

there is a rise of reductive dissolution rate in synthetic  hematite dissolution facilitated by 

ascorbic acid. However at pH above six the reductive dissolution of  hematite was not 

recognized by Suter et al. (1991). With a drop in pH, the solubility of ferric iron rises 

significantly and vice versa (Stumm and Morgan, 1996). Generally ferrous iron Fe 
++

oxidizes 

to ferric iron Fe
+++

 in the presence of oxygen, while not being affected by oxygen at pH 

values less than 4. In this case Fe
++

 still exists in solution even if exposed to oxic conditions. 

This means that ferrous ion is more stable in acidic conditions (Weber et al., 2006). 

1.2.4 Lab Studies on Natural Sediment 

Larsen et al. (2006) used ascorbic acid to reductively dissolve natural iron oxides present in 

sandy aquifer samples collected from Denmark and found that there was more than three 

orders of magnitude variation in rate of dissolution of iron oxide (first order rate constants of 

1×10
-3

 to 7×10
-6

 s
-1

). They interpreted this as indicating the wide range of reactivity of natural 

iron oxides compared synthetic iron oxides prepared in the lab. Larsen et al. (2006) also 

studied reductive dissolution of natural hematite coated sandy sediment collected from a 

pristine aquifer using HCl and ascorbic acid in separate experiments. They found that the 
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amount of ferrous iron released using HCl acid was about 2 times less than the amount 

released using ascorbic acid.  

1.2.5 Studies of the Roles of Bacteria in the Reductive Dissolution of Oxides 

Taylor et al. (1997) studied the effect of iron bacteria on the redox reactions of groundwater 

samples collected from a contaminated aquifer in New York. They found  that the presence of 

iron reducing bacteria (Shewanella sp.) catalyses reductive dissolution of iron hydroxide in 

these sediments, and this leads to the rise of Fe
++

 concentration in groundwater (8 to 18 mg/l).  

Lovely et al. (1987) note at the same time as the reduction of oxides mediated by bacteria, the 

bacteria also significantly contributed to the oxidation of dissolved aromatic organic carbon 

in contamination aquifers.  

Wahid and Kamalam (1993) also studied the ability of soil bacteria to convert crystalline iron 

oxide to amorphous iron oxides and release Fe
++

 into soil solution. After carrying out the 

experiments under sterilized and unsterilized conditions, they found soil irradiated for 2, 6 

and 20 days released about 25, 40and 80 µg/g of Fe respectively, while the Fe released by 

unsterilized soils was significantly higher at about 500, 5000 and 9000 µg/g. Ferrous iron 

release reached around 3 orders of magnitude greater from unsterilized soils. 

Petrunice et al. (2005) carried out column experiments on sandstone collected from 

Fredericton, Canada, to investigate the effect of bank infiltration on the oxidation of high 

dissolve organic carbon (DOC). In terms of reaction between DOC and MnO2 oxides, they 

found unsterilized columns released significantly more Mn
++

 than sterilized columns. 

Munch and Ottow (1980) and Ottow (1981) suggest that both anaerobic bacteria and aerobic 

bacteria are able to mediate reductive dissolution of iron oxide but anaerobic bacteria are 

more active in reductive dissolution in soil.  
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The degree of crystallinity of Fe (III) oxide in the soil and sediment may also have a 

significant effect on the rate of reductive dissolution of oxides when mediated by bacteria. 

For instance, Wahid and Kamalam (1993) carried out a lab experiment to examine two kinds 

of wetland soils, the first dominated by crystalline iron oxides and the second dominated by 

amorphous iron oxides. They found that the soil rich in crystalline iron oxide did not 

participate significantly in reductive dissolution by soil bacteria while the soil containing 

predominantly amorphous iron oxide did.  

Mn (IV) and Fe oxide reduction can take place with bacterial mediation (Lovley et al., 2004) 

and without (abiotic reduction) (Ehrlich, 1981) but the first is more prevalent in the natural 

environment. Iron oxides are able to oxidize aromatic organic carbons without 

microorganism mediation  (McBride,1987; Stone and Morgan, 1987) and with 

microorganism mediation (Lovely, 1991). The rate of oxidation of organic matter is higher 

when the interaction between oxides and organic matter is mediated by bacteria (Lovely, 

1991). Iron oxide reduction mediation by microorganisms plays an important role not just in 

natural environments but also in applied industrial systems. For example Lee et al. (1999) 

were able to remove about 45% of iron oxide from kaolin clay by injecting bacteria with 

5%(w/w) of glucose (a reducing agent), that led to a decline in the redness intensity and 

increase of whiteness colour of kaolin in comparison with the same experiment but without 

bacteria. Some researchers mention that microorganisms are able to reductively dissolve both 

low and high crystallinity iron oxide (Roden and Zachara, 1996; Neal et al., 2003; Hansel et 

al., 2004; Gonzalez-Gil et al., 2005). While other researchers point out that the biotic 

reduction only took place at a considerable rate in the cases of amorphous and poor 

crystalline iron oxides rather than highly crystalline iron oxides (Lovley and Phillips, 1986; 

Glasauer et al., 2003). This means that up to date there is no consensus about the effect of the 

degree of iron oxide crystallinity on reductive mediation by microorganisms.  
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Larsen and Postma (2001) studied the biotic reduction rate of groups of synthetic iron oxide 

minerals by ascorbic acid. They found an increase in the following sequence from low to high 

reduction rate:  hematite, then goethite, then lepidocrocite and finally ferrihydrite.  

Microorganism attachment on the surface of iron oxides facilitates biotic reduction of these 

oxides in the sediment. This process is considered a key mechanism in the biotic reduction 

(Lovley et al., 2004). Moreover Lovley (1987) and Nealson and Saffarini (1994 ) point out 

that without this direct attachment of bacteria the microbial reduction of oxides might not 

occur. 

1.2.6 Oxidation of dissolved organic carbon  

Oxidizing of organic matter occur in many environments for example in submersible soil the 

reduction of ferric iron and Mn oxides occurs under anoxic conditions and that leads to the 

oxidizing of organic matter in for example paddy fields (Ponnamperuma,1972).  

Lee and Bennett (1998) found high concentrations of ferrous iron Fe 
++

and Mn
++

 in shallow 

glacial aquifers in one site at Cape Cod, Massachusetts, USA, reaching up to 13 and 7 mg/l 

respectively. These high concentrations of metal result from the involvement of 

microorganisms in reductive dissolution of manganese and iron oxides in glacial outwash 

sediments as a result of infiltration of sewage effluent into this aquifer. Biotic oxidation of the 

organic carbon in this sewage water led to a drop of DOC concentration as organic carbon 

was converted to inorganic carbon. This chemical process was considered one of the defences 

against the spread of contamination in the aquifer. 

1.2.7 The Effect of Mineral Properties 

There are many properties of iron oxides that have a significant effect on its stability and 

dissolution, including specific surface area. For instance  hematite has less specific surface 
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area by about 10 fold than ferrihydrite which means the  hematite is more stable and will be 

less easy to dissolve than ferrihydrite in nature (Cornell and Schwertmann, 2003). In general 

there is a decline in rate of reductive dissolution of iron oxides with decrease in the specific 

surface area of oxides (Larsen et al., 2006). However, Larsen et al. (2006) suggest that both 

natural and artificial iron oxide reductive dissolution takes place at the same order of 

magnitude in spite of the fact that natural iron oxide is more variable in terms of its surface 

area and degrees of crystallinity. Natural iron oxides contain mixtures of oxides with 

significant variations in their degree of crystallization from excellent crystallinity and low 

reactivity to very poorly crystalline or amorphous iron oxides (Larsen et.al, 2006). As 

mentioned above, crystallinity is thought to be important. Munch and Ottow (1983) also 

report the degree of iron oxide crystallinity affects dissolution rates. For example crystalline 

iron oxides like hematite have a lower dissolution rate in comparison with more poorly 

crystalline (amorphous) iron oxides like ferrihydrite.  

In aquatic environments with increase of dissolved organic matter (DOM) there is often an 

increase of metal solubility and mobility (Blaser, 1994; Piccolo, 1994; Zsolnay, 1996). Also 

the presence of ferrous iron in solution can be more effective in chemical reduction of Mn 

oxides than even biotic reduction (Nealson, and Myers ,1992 cited in Benelli, 2015). 

Levy et.al (1992) point out one of the most vital sink in sediment for many dissolved metals 

are Mn and iron oxides and that depend on redox potential and pH conditions. In addition to 

oxidization of various organic pollutants, these oxides also have some ability to absorb 

dissolved metals and metalloids. For instance Mulvaney et al. (1988) point out that hematite 

has a strong ability to sorb dissolved ferrous iron at pHs higher than 5. Another situation 

where oxidation of organic carbon by oxides is important therefore is in the release of arsenic 

under reducing conditions occurring in young sedimentary aquifers for example in 

Bangladesh and West Bengal. In this case low pH favours sorption as As will usually be 
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present as an anion. Here microorganisms play a significant role according to Bose and 

Sharma (2002). The release of As poses a major health issue for those people who use 

groundwater for drinking.  

1.3 Aim  

The primary  aim of this research is to determine the capacity and mechanism of oxides 

present in redbed sandstone to oxidize dissolved organic carbon.  The secondary aim is to 

determine the possibility of using the results from previous experiments carried out on 

synthetic iorn oxides in predicting the oxidation of dissolved organic matter in the much more 

mineralogically complex system of the sandstones. 

The sandstone chosen for the research was from the Triassic Sandstone of the English 

Midlands. This has a coating of  hematite and also contains manganese oxides and clays. The 

sandstone used has no carbonate cement.  

Ascorbic acid was chosen to represent dissolved organic matter (DOM). It is well known that 

natural dissolved organic matter can be extremely complex in its chemical composition and 

difficult to analyze, therefore an alternative simple organic carbon compound (ascorbic acid) 

was chosen to study some of the mechanisms involved. Ascorbic acid can 

be relatively easy to analyze and therefore monitor during experiments. It is also cheap, 

non- hazardous and environmental friendly . Perhaps most important, there have been 

previous studies (Suter et al.,1991; Banwart et al., 1989; Afonsa et al., 1990) that have shown 

that synthetic  hematite can oxidize ascorbic acid suggesting that it is possible that natural  

hematite may be able to do so as well. If there is agreement between the behaviour of 

synthetic and natural  hematite then lab studies could be used with more confidence in 

predicting behaviour in field systems.  
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This study focuses on determining the rate of reductive dissolution of Mn and Fe oxides in 

sandstone, and concurrently determining the rate of the oxidation of ascorbic acid in aqueous 

solution. Moreover the project involves a study of the effect of microorganisms on the rates 

of reduction of oxides and oxidation of organic carbon by comparing the results of 

experiments completed under heat –treated (Abiotic ) and unsterilized conditions. The 

experimental procedure has been used to produce data from which the kinetics of the 

reactions involved are being determined, and these will be used to deduce a conceptual model 

of the mechanisms involved in the reactions.  

This approach looks only at the reductive dissolution mechanism associated with the 

functional groups of ascorbic acid. Future experiments would then look at the roles of other 

functional groups and also consider the role of complexation (e.g. by oxalic acid; Suter et al., 

1991).  

1.4 Approach 

The basic approach has been to use batch experimentation with disaggregated sandstone and 

ascorbic acid solutions. 

First work was to undertake a wide range of preliminary experiments to determine under 

what conditions ascorbic acid reacts with the sandstone. Trails were made under various 

temperatures, concentrations, times, shaking rates and filtering until reliable results under low 

temperature were achieved. 

Next a method was developed for ascorbic acid analysis in the presence of Mn and Fe. 

Next the sorption of ascorbic acid to the sandstone was investigated with the aim of 

quantifying it.  
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Next a series of ion exchange experiments were completed. When Fe and Mn are released by 

reductive dissolution of sandstone oxides the Fe
+2

 and Mn
+2

 released will be taken up by 

clays and oxides in the sandstone. So this had to be quantified to enable corrections to be 

made to the final batch experiment results.  

Finally the final batch experiments were undertaken under anaerobic conditions, analysed 

using the ascorbic acid method developed earlier and processed using the ion exchange 

results. In addition, an MSc project (Benelli, 2015) was helped to be supervised who repeated 

some of the batch experiments under heat –treated conditions for comparison with the 

unsterilized batch experiments.  

1.5 Thesis Format 

Chapter 2 outlines a set of preliminary experiments designed to determine whether ascorbic 

acid reacts with the English sandstone chosen, what the approximate rates of dissolution are, 

the effects of temperature and concentration on the dissolution, and the most appropriate 

experimental procedures.  

Chapter 3 develops a method for the analysis of ascorbic acid and investigates the stability of 

ascorbic acid.  

Chapter 4 attempts to quantify the sorption of ascorbic acid onto the sandstone. 

Chapter 5 quantifies the ion exchange properties of the sandstone, specially the exchanges of 

Fe and Mn.  

Chapter 6 report on the detailed anaerobic batch experiments under unsterilezed and heat –

treated  conditions using results from previous chapters. 

Chapter 7 is the conclusion and provides recommendations for future work. 
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2. Preliminary experiments 

2.1 Introduction 

This chapter reports on preliminary experiments on the reductive dissolution of oxides in 

sandstone by ascorbic acid (H2A), under different conditions, including: rock water ratio; 

H2A concentration; pH; redox conditions; and different procedural techniques. The aim of the 

experiments was to provide the data needed to design the final experiments that would be 

necessary to achieve the aim laid out in Chapter 1. 

 There are many potential impacts of the reduction of iron and manganese hydroxides in 

natural environments. For example, Reddy and Delaune (2008) point out one of these effects 

of reduction of oxides in a wetland soil was a significant increase in dissolved Mn
++

 and 

ferrous iron (Fe
++

) concentration in pore waters. Presence and absence of oxygen (aerobic 

and anaerobic condition) also effect on the reduction of these oxides in sediment; for instance 

Weng et al. (2007) studied the groundwater chemistry in the Hang jia-Hu-plain aquifer in 

China and found that there is a decrease of dissolved oxygen over depth that is associated 

with an increase of Mn
++

 and Fe
++

 concentrations. The [Mn] increased from 0.03 to 3.87 

ppm, and [Fe
++

] increased from 0 and 8 ppm over depth in this aquifer. 

Lovely and Phillips (1998) suggest that reductive dissolution reactions for oxides in aquifers 

occurs as follows 

CH2O +2MnO2+3H
+
……→….2Mn

+2
+CO2+2H2O+OH

-
 

CH2O +4Fe(OH)3+7H
+
……→…….4Fe

+2
+CO2+10H2O+OH

-
 

where CH2O (formaldehyde) represents the organic matter (organic carbon), and MnO2 and 

Fe(OH)3 represent the solid oxide phases coating sediment grains. The reduction reactions are 
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mediated by bacteria. The reductive dissolution of Mn oxide occurs before the iron oxide 

reduction in the absence of oxygen and nitrate as a terminal electron acceptor (TEAP). 

The aims of the work described in this chapter were to: 

i. determine if and under what conditions H2A will react with the 

sandstone oxides; 

ii. determine what effects experimental methods have on the results so as 

to help to plan the final more quantitative experimental work. 

 

No H2A analysis was undertaken, as the analytical method required developing and it was 

necessary first to find out roughly what reaction happened between sandstone and ascorbic 

acid. So experiments looked mainly at determining Fe and Mn concentrations. An 

introduction to the properties of ascorbic acid will be given in Chapter 3.  

The experiments concentrated on high H2A concentration, elevated temperature experiments 

as these yielded higher concentrations of Fe and Mn more quickly.  

As experience was gained, more realistic conditions were investigated, i.e. lower 

concentrations of H2A and lower temperatures. 

2.2 Materials and Analysis 

2.2.1 Ascorbic Acid (H2A) 

Ascorbic acid has been chosen to represent dissolved organic matter to simulate the reaction 

between oxides in sandstone and dissolved organic carbon in terms of reductive dissolution 

oxides, as explained in Chapter 1. The ascorbic acid was obtained from Sigma-Aldrich 

Company Ltd., ≥99.0% .   



Preliminary experiments-chapter2 

16 
 

2.2.2 Sandstone 

All experiments were carried out using red sandstone samples collected from an outcrop 

located at Quatt in Worcestershire (national reference grid SO75528823)(Batty, 2016). The 

sandstone was chosen because it is typical of the English Midlands in most ways but because 

it is from shallow depth it has no carbonate cement. This avoids problems with much 

dissolution of carbonates when the ascorbic acid is added and means that the rock can be 

prepared for batch experiments easily as it is friable. It was used for other experimental work 

by Batty (2016) who describes the sandstone in detail. 

Batty (2016) found the sandstone consists mainly of quartz (40-50% by volume) and feldspar 

(mainly alkali; 15-20%), but with lithic fragments, mica, and clay minerals. All grains are 

coated in  hematite with some Mn oxides. Porosity is about 20% (Batty, 2016).  

Most of the oxide in the red sandstone is hematite (Plant et al., 1999), but there will also be a 

range of other Fe oxide phases, including possibly goethite and magnetite. In addition there 

will be a range of Mn oxides, including forms of MnO2, mixed oxidation state Mn oxides and 

hydroxides. Fe and Mn will also occur in lithic fragments and biotite. So the sandstone is a 

complex mix of minerals. These minerals cannot easily be separated out for experimentation. 

Even identifying the exact mineral phases in many cases is challenging as they are present in 

amounts that are too small for XRD to resolve in the background of other minerals present. 

Another technique to find out where Fe and Mn are present in in the sandstone would be 

microprobe analysis, but this was not available and would have in anycase still required 

probably optical identification of the phases concerned and this would be difficult. Often Mn 

oxides appear to be more reactive than Fe oxides, but Mn oxides are present in smaller 

concentrations than Fe oxides (Plant et al., 1999),so the latter may be more important in 

oxidation .The sandstone is friable and was lightly disaggregated for experimental work 



Preliminary experiments-chapter2 

17 
 

following the procedure of Batty (2016). This was initial breaking of the rock into about 

centimetre cubes and then carefully breaking these pieces up using a mortar and pestle. The 

resulting separate grains were thoroughly mixed by hand before use.2.2.3 Analysis for Fe 

and Mn
++

 

Concentration of Fe and Mn
++

 were determined using flame atomic absorption spectroscopy 

(FAAS) in the Public Health laboratory of the University of Birmingham. Even at low 

concentrations (< 1ppm), if repeatability exceeded 7% the value was excluded from the 

results, and the analysis repeated again until a better level of precision was obtained. 

The iron measured using the FAAS method represents the total iron, which equals the sum of 

ferrous iron Fe(II) and ferric iron Fe(III). However, most Fe is expected to be FeII. There will 

be some FeIII released due to dissolution at low pH, but this is small in comparison with the 

Fe released when ascorbic acid is present, strongly suggesting that reductive dissolution is 

occurring and the product will be FeII. Any FeIII present will be converted quickly to FeII by 

ascorbic acid. Though the Pt electrode EH values cannot be used as thermodynamic valid 

values, their low values (<130 mV; see Chapter 6), also suggests also that the predominant 

form of Fe is FeII. For the experiments in aerobic conditions there may be some oxidation of 

FeII to FeIII by atmospheric oxygen and a significant amount of the FeIII produced in this 

way would be stable in the lowest pH experiments. However, in the main anaerobic 

experiments the only likely oxidant is MnO2, and this would result in FeIII oxide 

precipitation at the pHs involved, or FeIII would be reduced by the ascorbic acid, and this 

possibility has been taken into account in the processing of the results of the final 

experiments. Though it would have been interesting to see whether there is FeII present, the 

ferrozine method (Viollier et al., 2000) is labour intensive and the results would not have 

helped in the interpretation, as any FeIII identified could have come from either MnO2 

reduction or non-reductive dissolution of hematite. 
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Before undertaking experiments on sandstone / H2A interactions, it is necessary to determine 

if the method used for determination of Fe and Mn, flame atomic absorption spectrometry 

(FAAS), is affected by high concentrations of H2A.  

To do this, Fe and Mn
++

 standards were made up in deionised water (DIW) and 10 mM H2A 

solutions, and then analysed using FAAS. The results are given in Figures 2.1, 2.2 and 

appendix 2.1 , which indicate that there are at most only minor effects of the presence of 

10mM of ascorbic acid on the absorption values for Fe and Mn. No account was therefore 

taken of H2A concentration in the analysis. In the great % of experiments undertaken in the 

research the H2A concentrations were less than 0.6 mM. 

 
 

Figure 2-1: Comparison of the absorption of various concentrations of  a) Fe prepared in 

DIW and b) in 10 Mm ascorbic acid solution. 
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Figure 2-2: Comparison of the absorption of various concentrations of  a) Mn
++  

prepared in 

DIW and b) in 10 Mm ascorbic acid solution.  

2. 3. High [H2A], generally high temperature experiments 

2.3.1 Introduction 

Initial experiments, carried out using 1 g of sandstone and 500 ml of 10 mM H2A (initial 

rock/water ratio = 0.002 g/ml) at lab temperature periodically hand-stirred, indicated no 

FAAS-detectable Fe or Mn was released over a period of time up to 72 hours.   
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As results, the experiments were repeated using a greater mass of sandstone (10 g), and at a 

higher temperature. These experiments are described in this section (Section 2.3). In later 

sections lower temperature experiments will be described.  

 

2.3.2 Will high [H2A] reduce  hematite at high temperatures? 

The experiments were done using a mass of sandstone of 10 g and in a water bath at a 

temperature of 42 
o
C (Appendix 2.2). The volume of H2A solution was 500 ml, making the 

rock/water ratio 0.02 g/ml initially (each sample extracted was of 5 ml). Again, the reaction 

vessel was periodically hand stirred.  

The results are shown in Figure 2.3. It is clear from Figure 2.3 that there is a linear increase 

of iron concentration with time, reaching 3.92 mg/l after 195 hours of reaction at pH around 

3. From Figure 2.3 a reaction rate constant (k) can be calculated of about 0.2×10
-7

 mol/g/h. 

The approximately 15% drop in volume during the experiment due to the taking of the 

samples looks like to have no significant effect on the rate. It is concluded that H2A is 

capable of reductively dissolving  hematite from English Triassic sandstone samples at 42 
o
C 

in this rock water ratio.   

 

Figure 2-3: The relationship between the concentration of Fe and time of contact of 10 g 

sandstone and 500 ml of 10 mM ascorbic acid solution at 42 
o
C. 
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2.3.3  Reductive dissolution dependence on temperature 

The main aim of this experiment was to find out the effect of temperature on the rate of iron 

and Mn oxide hydroxide reductive dissolution in red sandstone. In addition, the effect of 

storage temperature was also investigated. 

500 ml of 10 mM ascorbic acid was added to each of four beakers containing 1 g of 

disaggregated sandstone. Each beaker was put in a water bath under four different 

temperatures (50, 60, 75 and 90 
o
C), and samples were collected at intervals of 1.5 hours after 

an initial 24 hours of reaction time. Each sample was split into two subsamples, one stored 

under lab temperature and the second at 4 
o
C.  

The concentration / time results are presented in Figure 2.4and Appendix 2.3. Figure 2.5 

shows that the increase of temperature considerably enhanced the rate of reductive 

dissolution of ferric iron.  

 

Figure 2-4: The concentration of Fe released after 24 hours of contact of 1g of sandstone 

with 500 ml of 10 mM ascorbic acid solution at pH = 3. 
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Figure 2.5 shows plots of Fe and Mn concentrations when the samples were stored at lab 

temperature against the Fe and Mn concentrations when the samples were stored at 4 
o
C (in 

fridge ).  

 

Figure 2-5. Plot of Fe and Mn concentration for samples stored at lab temperature against the 

Fe and Mn for samples stored in fridge at 4
o
C. Black lines in A and B is 1:1 line.  

At 50 and 60
o
C there is no significant effect of sample storage conditions on concentration of 

Fe and Mn. However the Mn relationship was weak at 50 and 60 C. This may be due to the 

very low concentration of Mn that was close to detection limit for FAAS. Above 60
o
C the 

concentrations are underestimated (about 13%) if the samples are stored at 20
o
C. 
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The slope of each line in Figure 2.4 represents an apparent rate constant k for the experiment 

under the conditions run for Fe. The rate constant possibly appears to be a zero order rate 

constant in Fe and Mn because the concentrations of Fe are still very low even after over 24 

hours of reaction time, i.e. the reaction is still far from equilibrium. 

The Arrhenius equation has been used to allow determination of rate constant (k) as a 

function of time. The Arrhenius equation is:  

k = A exp[-Ea/(RT)]  

where A is the pre-exponential factor and Ea is the activation energy. k was the rate constant 

and T represents absolute temperature. R represents gas constant. 

On a plot of ln(K) against temperature 1/T, see Figure 2.6, the slope represents –Ea/R, and the 

intercept represents ln A. Though Figure 2.6 has an approximately linear relationship, but it is 

not quite linear may be indicating a change in conditions as temperature rises. From the plot, 

A = 0.031 mol/g/h and Ea = 30.7 kJ/mol. At 10
o
C the about temperature of shallow UK 

groundwaters, the predicted k would be 6.7 x 10
-8

 mol/g/h.  

Torres et al. (1989) report that a drop in pH and a rise in temperature leads to an increase 

number of reactive sites on the  hematite surface and a significant acceleration of the 

dissolution.  However, they did not use ascorbic acid in their experiments.  

Figure 2.7 shows the Mn released during the same experiments. Mn
+2

 release was significant 

lower than for Fe for this water rock ratio and close to detection limits. The release of Mn
++

 

happened before 24 hours of contact time, with insignificant increase with time after 24 

hours. 
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Figure 2-6: A linearised Arrhenius relationship plot for the apparent rate constant of the 

experiments shown in Figure 2.4.   

It is probable that the MnO2 content of the rock is small and effectively all of the Mn was 

dissolved out. In general there is a slight increase in concentration with temperature 

suggesting that perhaps a small amount of Mn is released from sources other than MnO2, e.g. 

possibly from silicates. 

 

Figure 2-7: The concentration of Mn released after 24 h reaction under four different 

temperatures, using 10 mM ascorbic acid at pH =3.  
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2.3.4 Reductive dissolution dependence on H2A concentrations at high temperature 

The aim of this experiment was to find out the effect of ascorbic acid concentration on 

reductive dissolution at constant temperature (60 
o
C). To achieve this goal, 1 g of red 

sandstone was put in each of 3 beakers. 500 ml of 75, 50 and 25 mM H2A was added to each 

breaker, and all beakers put in a water bath at 60 
o
C. There is slight increase of pH with 

decrease of concentration of ascorbic acid, the pH of these solutions being 1.8, 1.95 and 2.04 

for 75, 50 and 25 mM H2A respectively. Half the samples were filtered before analysis using 

a 0.45 micron filter, and half were analysed unfiltered. It was found that filtering made no 

significant difference (Figure 2.8). Details are given in Appendix 2.4.  

 

Figure 2-8:  The relationship between filtered (0.45µm) sample concentrations and unfiltered 

sample concentrations at 60 
o
C.  
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Figure 2.9 shows the results of this experiment. It is clear from Figure 2.9 that an increase in 

concentration of ascorbic acid increases the total amount of reductive dissolution of Fe 

oxides. Joseph et al. (1996) also found that increasing the amount of ascorbic acid (from 10 to 

80mM), but in presence of EDTA and citric acid too, also increased the iron release into 

solution from  hematite during 8 h of batch experiment.   

However, the rate of increase of Fe concentration with time is approximately constant. The 

difference between the experiments at different concentrations is the intercept at time = 0. 

The simplest explanation is that this is due to the different initial pH, lower pHs resulting in 

greater initial solution (Figure 2.10). 

 

Figure 2-9: The amount of Fe and Mn released from 1 g of sandstone by 500 ml of 75, 50 

and 25 mM H2A at 60 
o
C. 
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Figure 2-10: The relationship between the Fe concentration extrapolated to time = 0 and 

initial hydrogen ion concentration in sandstone / H2A (75, 50, 25 mM) experiments at 60 
o
C. 

Mn
 
concentrations remain approximately constant (Figure 2.9) or even have a slight decrease. 

They have reached their maximum concentration within one hour of contact with the 

sandstone. This is consistent with the data of the previous experiment (Figure 2.7). 

 

2.3.5 Reductive dissolution at lower H2A concentrations at lower and high temperatures 

Experiments were carried out using 10 times lower H2A concentrations than the experiments 

described in Section 2.3.4 under two temperatures (20 and 80 
o
C), but for longer times of 

reaction. 1 g masses of sandstone were reacted with 500 ml of 1 and 0.75 mM H2A (rock 

water ratio = 0.002 g/ml) at 20 and 80
o
 C.  

Figure 2.11 and appendix 2.5 shows the results. No Fe measurable by FAAS was released in 

the 20 
o
C experiments. (No Fe is released by experiments repeated using DIW also (though 

the pHs for these experiments would have been different)). At 80 
o
C, the rise in Fe 
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concentrations appears to slow down for both the 0.75 and 1 mM H2A solutions. However, 

this cannot be explained by lack of H2A as the amount of Fe released is much smaller than 

the initial H2A mass. It may therefore be that the concentrations increase beyond 72 hours. 

The 1 mM solutions have significantly greater Fe concentrations. This could be because of a 

difference in the initial pH values. These pH were 3.79  and 4.07  for 1 and 0.75  of  mM 

H2A.  However, could also be due to dependence of rate on H2A concentration.  

 

Figure 2-11: The concentration of Fe released from 1 g mass sandstone using 500 ml of 1 

and 0.75 mM H2A at 20 and 80 
O
C. 

2.3.6 How does reductive dissolution by high concentration H2A change with sandstone 

mass at high temperatures over long time interactions 

The purpose of this experiment was to determine if the oxide dissolution rate changed 

significantly with time and as the total amount of dissolved oxide got close to the total 

amount of oxide on the sandstone.  
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1, 5 and 10 g of sandstone and 500 ml of 10 mM H2A (pH = 3.21) solution were used at 80 

o
C and the reaction monitored by taking samples over the period 163 to 400 hours (Appendix 

2.6 a & b). No shaking was undertaken and the reaction vessels were open to the atmosphere, 

i.e. potentially aerobic. The samples were analysed unfiltered and also after passed through a 

0.2 micron filter.  There was no effect of filtration on Fe or Mn concentrations as shown in 

Figure 2.12.  

 

Figure 2-12: The effect of filtration through 0.2 µm filters  

As shown in Figure 2.13 the concentrations increase with mass of sandstone used. The 

concentrations increase with time and the rock is still not changed to white colour and the 

moles of Fe removed are much less than the moles of H2A available. So there is still oxide 

and reductant available. The mass released from 5 g of sandstone is only 2.6 times greater 

than the mass released from1 g of sandstone. It is concluded that the reductive dissolution is 
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still occurring even if very slowly. This slowness may be because the reactors are not stirred. 

It is clear from Figure 2.13 that the release rate must have been greater at earlier times 

because there are big intercept values. The release rates increase with mass of sandstone used. 

Comparing the release rates in this experiment with that in Section 2.3.3 (Figure 2.4) 

indicates that at about 24 hours the rates were greater (about 0.05 ppm/h compared with 

0.003-0.03 ppm/h). As the current experiment was not stirred, this may be the main reason 

for the slower rates, and all subsequent experiments were stirred.   

 

 

 

 

 

 

Figure 2-13: Fe released (average of filtered and unfiltered samples) on contact of 500 ml of 

10 mM H2A solution (pH~3.2) with sandstone at 80 
o
C. 

Figure 2.14 shows the release of Mn
++

 in the same experiment. The Mn
++

 released is less than 

the Fe released. However, similar comments can be made about the very slow increase in 

Mn
++

 concentration occurring and how it must have been at a greater rate at earlier times 

(when the rate may be was less dependent on diffusion from the sediment?). The increase in 

Mn
++

 released is not proportional to the sandstone mass as was also found for Fe. Fe 

concentration increase for the 5 g sample is 2.7 times that for the 1 g sample, while for Mn 

the concentration increase for 5 g sample is 3.6 times that for the 1 g sample. The explanation 
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may be that there is proton-promoted dissolution (pH is about 3.2) as well as reductive 

dissolution. But also that the controlling factor is diffusion through the sediment. 

 

 

 

 

 

 

Figure 2-14: Mn
++

 released (average of filtered and unfiltered samples) on contact of 500 ml 

of 10 mM H2A solution (pH~3.2) with sandstone at 80 
o
C. 

2.3.7 Monitoring the colour change of the solution and sandstone at high temperature  

A simple experiment has been carried just to monitor the colour of ascorbic acid solution 

after put in contact with sandstone at high temperature over time. Three beakers were 

prepared each one containing 10 mM of H2A and 10 g sandstone. All beakers were put in a 

water bath at 80 
o
C.  

It was observed that the solution changed from colourless during the first 4 h of reaction, to 

yellow, to dark yellow and eventually to dark brown after 150 hours of reaction (Figure 2.15). 

The sandstone sediment became partly bleached, but not completely white.  This indicates the 

increase of released Fe and Mn over time. As the pH was about 3 and there is no difference in 

measured concentrations between filtered and unfiltered samples, it is likely that the colour is 

due to Fe being present as ferric complexes ([Fe(H2O)6]
+++

). Observations of other 
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experiments at lower temperatures and higher pHs indicated that colour did not change 

though leaving a reactor for about 3 weeks resulted in a pale yellow colour. It is concluded 

that in these high temperature low pH experiments, Fe
+++

 is released partly by non-reductive 

dissolution as suggested in Section 2.3 and also some of the Fe
++

 released is oxidized 

according to: 

4Fe
++

 + O2 + 4H
+
  4Fe

+++
 + 2H2O 

 

Figure 2-15: The change of colour of 10 mM ascorbic acid as it reacts with 10 g red 

sandstone.  A) dark brown colour, 168 hours; B) yellow colour, 72 hours;  C) colourless 

solution, 4 hours. The sandstone becomes lighter with time but never completely white. 

2.3.8 The effects of filtration and acidification at high temperature 

Further experiments were undertaken to study the effect of filtration and also to investigate 

the effect of acidification of samples by nitric acid were undertaken. 500 ml of 10 Mm 

(pH=2.93) of H2A were put with 1 g mass of sandstone at 90 
o
C. The reactors were monitored 

from around 20 h to 90 h with 15 ml samples collected. The samples were divided into three 

sub-samples: the first 5 ml were left unfiltered; the second 5ml sample was filtered through a 



Preliminary experiments-chapter2 

33 
 

0.2µm syringe filter; and to the third 5ml sample was added 20 µl of 1 M HNO3 without 

filtration in order to reduce the pH to 2.09. 

Figure 2.16 (and Appendix 2.7) shows that the filtering, as previous experiments have 

indicated, does not affect the results. It also shows that acidification of the samples after 

separated from the sediment does not affect the results.  

 

Figure 2-16:  Fe release from 1 g mass sandstone using 500 ml of 10 mM H2A (pH~2.93) at 

90
o
C using different sample treatments.  

2.3.9 Combining previous experiment results to look at how concentrations vary over 

longer times at high temperature 

The rates of dissolution appear to be different in some of the previous experiments. Results 

from two experiments at 80
o
C and one at 90

o
C under same conditions were combined to see 

how these differences were related to time.  Results are shown in Figure 2.17 (combination 

from Figures 2.4, 2.13 and 2.16). It is clear from this plot the curve comes from a first order 

reaction in Fe: 
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d[Fe]/dt = k([Fe]max-[Fe]) 

where [ ] indicates concentration and subscript max indicates the maximum concentration. 

Integrating from t=0 to t=t, 

t = -1/k{ln[1-[Fe]/[Fe]max]}, i.e. [Fe] = [Fe]max{1-exp(-kt)}.   

A fit to the data was made by trial and error using Excel (Figure 2.17B), giving 

k = 0.019 h
-1

 = 5.3 x 10
-6

 s
-1

 and [Fe]max = 6.5 ppm (1.2 x 10
-4

 mol/l). 

So the apparently linear increases with time shown in all previous plots are the result of short 

time intervals. The dependence on ([Fe]max-[Fe]) suggests that the actual dependence may be 

on [H2A], as it would be expected that [H2A] decreased as ([Fe]max-[Fe]) decreased. The 

proper rate would have to use [H2A] concentrations, which could be estimated with the data, 

but also take into account Mn concentrations.  

Larsen et al. (2006) found the rate constant of reductive dissolution of natural iron oxides in a 

sandy aquifer sediment collected from Denmark by 10 mM ascorbic acid at pH =3 varied 

between 7×10
-6

 and 1×10
-3

 s
-1

, similar to the approximate figure obtained here. Joseph et al. 

(1996) found that the rate constant of dissolution of synthetic  hematite using ascorbic acid 

alone was 1.98×10
-5

s
-1

 using 80 mM of [H2A].  While Roden (2004) determined the rate 

constant of iron oxides present in soil and sediment ranged between 3×10
-6

 to 1.6 ×10
-6

 s
-1

 

using the same concentration and pH of H2A as in the experiments of Figure 2.17.  
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Figure 2-17. The relationship between time vs Fe concentration at higher temperatures from a 

combination of several experiments. A the experiments at 75, 80 and 90
o
C. B the experiments 

at 80 and 90
o
C with a fitted first order reaction relationship. 

 

2.3.10 The effect of contact with oxygen at high H2A concentration at lab temperature 

In order to represent the aquifer under anaerobic conditions, the techniques to compare the 

effects of aerobic and anaerobic conditions on the rate of reductive dissolution must be 

developed. The purpose of this experiment is to monitor the amount of Fe and Mn
++

 released 

during long term reaction under aerobic and anaerobic conditions at lab temperature (21 
O
C). 
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To achieve this goal, two 500 ml aliquots of 10 mM ascorbic acid (pH=3) with 1 g of red 

sandstone were placed in beakers. One beaker was purged by N2 gas for 10 min to remove 

dissolved oxygen before placing it in an anaerobic chamber. The second beaker was 

maintained under oxic conditions at lab temperature. Neither beaker was shaken as putting 

the shaker in the anaerobic chamber was not easy (but was resolved for experiments Chapter 

6). Samples were collected from both beakers. The samples from the anaerobic chamber were 

put in glass vials with rubber stoppers and aluminium caps sealed to prevent sample exposure 

to oxygen until analysis.  Figure 2.18 (and Appendix 2.8) presents the results. The anaerobic 

experiments resulted in higher concentrations of Fe and Mn. Fe concentrations are greater 

than Mn concentrations in both anaerobic and aerobic experiments. It is concluded that in 

future experiments anaerobic conditions should be attempted.  

 

Figure 2-18: Fe and Mn release from 1g sandstone using 500 ml of 10 mM H2A under 

aerobic and anaerobic conditions at 21 
o
C. 

2.3.11 Measurement of dissolved oxygen in ascorbic acid solutions 

As previous experiments indicated that the presence of oxygen significantly affected the rate 

of release of Mn and Fe, another experiment has been carried out to find out the effect of 

ascorbic acid alone and with the sandstone on the dissolved oxygen (D.O.) content of the 
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solutions.  500 ml of 10 mM H2A solution was put in a beaker containing 1 g of red 

sandstone. Another 500 ml of ascorbic acid was put in a second beaker without sandstone.  

Also 500 ml of deionised water was put in a third beaker that contained 1 g of sandstone. 

Dissolved oxygen measurement was carried out using a dissolved oxygen probe (pro DO, 

YSI) whilst the beakers were gently shaken. This experiment was undertaken four times and 

once at 5 mM H2A. It was not possible to operate the DO probe at high temperatures but it 

would be expected that there would be lower concentrations of dissolved gases.  

The results are shown in Figure 2.19 (see Appendixes 2.9, 2.10 and 2.11). The experiments 

show similar patterns of change in dissolved oxygen concentrations. The deionised water 

with sandstone experiments showed the least change in DO. A slight increase or decrease was 

observed possibly because of change in temperature. Figure 2.20 shows D.O. plotted against 

temperature together with the saturation relationship and it confirms that the concentrations in 

the DIW/sandstone experiments is control by temperature-dependent saturation. The H2A 

alone and with sandstone produced drops in D.O. that were similar suggesting that H2A reacts 

with O2 and that the sandstone does not make significant difference. The drop in D.O. was up 

to about sixth millimole per litre over up to 70 hours, so rather limited. The drop appeared to 

stabilised, possibly because the solutions were not stirred sufficiently perhaps. This 

experiment therefore revealed that ascorbic acid has some capacity to decrease the dissolved 

oxygen in the solution. The DO in the H2A / sandstone experiment was lower than in the case 

of the H2A experiment in some experiments. The latter is explained by H2A reductive 

dissolution of  hematite releasing Fe(II) that then reacts with the DO.  

These results are interesting when compared with the data from measuring H2A stability with 

time (chapter 3). In latter the concentrations of H2A dropped quicker in anaerobic conditions 

though did drop under oxic conditions too.  
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Figure 2-19: Dissolved oxygen variation with time for 500 ml of deionised water with 1 g 

sandstone, 500 ml of 10 mM ascorbic acid alone and 500 ml of 10 mM ascorbic acid with 

sandstone, all at lab temperature for different time . The last plot is for a repeat experiment at 

5mM of ascorbic acid. 
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Figure 2-20: Dissolved oxygen variation with temperature for deionised water with 

sandstone, ascorbic acid alone and ascorbic acid with sandstone. Also the solubility of 

oxygen(http://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html). Generally 

time increases right to left. The H2A solutions were approximately O2 saturated at the start of 

the experiments. 

 

2.3.12  Variation in TOC with time at high temperatures 

Experiments have been undertaken to see if there is any loss of total organic carbon (TOC) 

detectable during the reaction of H2A and sandstone.  

10Mm of H2A solution was reacted with 1 g mass of sandstone at two different temperatures 

(50 
o
C and 90 

o
C). Seven samples were collected 24 to 33 h of reaction (see Appendix 2.12). 

Figure 2.21, 2.22 and 2.23 shows the results. Fe concentration slightly increases during the 

experiments at a greater rate at the higher temperature and with higher concentrations at the 

higher temperature. TOC falls at similar rates with time at the two temperatures (see Figure 

2.22). 

http://www.engineeringtoolbox.com/oxygen-solubility-water-d_841.html
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Figure 2.21 shows the relationship between Fe and TOC. TOC falls as Fe rises, but much 

more TOC is removed from solution than Fe released. A decrease of 0.5 moles of H2A would 

be expected for one mole of Fe released. However, if H2A reduces Fe oxides then the product 

is thought to be dehydroacscorbic acid (Suter et al., 1991), i.e. all C remains organic C and 

TOC remain constant. But there may be some sorption of H2A (Chapter 4) or some sorption 

of Fe (Chapter 5) or release of Mn (see above). Also may be there is some non-Fe related 

degradation of H2A at the higher temperatures used here. Figure 2-22 includes data of TOC 

against time for experiments completed at the same time but without sandstone present (i.e. 

just H2A). TOC concentrations do appear to decrease with time in both cases in similar way 

to when in the presence of sandstone. At 90 but not at 50 
o
C the TOC concentrations are less 

for the sandstone experiments suggest that the sandstone may possibly have some influence 

at the higher temperature but this could just be coincidence. As yet the implications of these 

results are not clear but possibly the decrease is related to the decrease in D.O. and is 

independent of the sandstone presence. D.O. dropped by about 0.2 mmol/l over 30 hours at 

most (but at lab temperatures)(Section 2.3.11) and [H2A] here drops by about at most the 

same amount. So may be degradation of H2A by oxidation by O2 but why then is DOC less as 

the product is likely to be organic. H2A stability is looked at again in Chapter 3.  

 

Figure 2-21: The relation between TOC and iron using 10 mM H2A with 1 g sandstone at 50 

and at 90 
o
C. 
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Figure 2-22: Comparison of TOC variation with time between 10 mM H2A solutions in 

contact with and not in contact with sandstone at 50 and at 90 
o
C. 

 

Figure 2-23: Plot of Fe concentration versus time at 50 and 90 
o
C. 

 

2.4 Low concentration H2A, lab temperature experiments  

2.4.1 Will low concentration H2A reduce sandstone oxides measurably at low 

temperatures?  

The experiments described above were undertaken at high temperature as preliminary 

experiments had indicated insignificant reductive dissolution of hematite at lab temperature 

in low rock water ratio range between 0.002 to 0.02 g/ml. However, shaking was not possible 

in water baths needed for higher temperatures. So a few experiments were undertaken to see 
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if using a high rock-water ratio with shaking would release measurable Fe and Mn at lab 

temperature. 0.04 litre samples of H2A solutions at concentrations from 10 to 100 ppm were 

used with 10 g of sandstone (rock water ratio 250 g/ml). The samples were shaken for 2 hours 

at 300 rpm, then centrifuged for 10 minutes at 4500 rpm before analysis by FAAS. Replicate 

samples were filtered through 0.2 µm filters.   

The pH of H2A solution with sst range from 4.8 to 4.41 for 10 to 100 ppm of H2A 

respectively. The results, which shown in Figure 2.24 and appendix 2.13, show that 

measurable amounts of Fe and Mn (concentrations > 0.1 ppm) are released using this method. 

The filtering is not needed as the results from filtered and unfiltered samples are the same. 

Variation of replicates indicated a variation of about 10% of the mean value indicating that 

the sandstone is heterogeneous. This is even though a large quantity of sandstone was 

crushed and thoroughly mixed before being taken for the reaction vessels. In addition, this 

method results for the first time in Mn concentrations being greater than Fe concentrations, 

but this could be because the experiments have short contact times (see later).  

 

Figure 2-24: Fe and Mn
++ 

concentrations as a function of H2A concentration at lab 

temperature. 10 g sandstone with 0.04 l of H2A solutions, shaken for 2 hours. “(F)” is with 

filtering, “without F” is without filtering. 
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2.4.2 Does filtering and shaking affect dissolution at low H2A concentrations and low 

temperatures 

Following the successful preliminary experiments with high rock-water ratios and shaking, 

further experiments were undertaken to determine the effect of the shaking at lab 

temperature. 10 g samples of red sandstone were put in 50 ml centrifuge tubes, then 0.04 l of 

various concentrations of ascorbic acid, (vary from 10 to 100 ppm)  were added and reacted 

for 4 hours. One group of samples was put in a (slow to avoid particle damage) shaker at 300 

rpm and the other was not shaken. All samples were centrifuged for 10 minutes at 4500 rpm 

and then filtered using 0.2 µm filters. 

Figure 2.25 shows the results (see also Appendix 2.14). The significant effect of shaking is 

confirmed. Previous release rates may therefore be associated with diffusive transport of 

reaction products rather than rates at the mineral surfaces. Therefore it is important to include 

the shaking when designing the final experimental procedure. In these experiments again the 

Mn
++

 concentrations are greater than the Fe concentrations. This could be because of the 

shaking or because the time of contact is much shorter. The pH range from 4.25 to 4.79 for 

100 and 10 ppm of H2A with sandstone respectively. 

 

Figure 2-25: The effect of shaking on the rate of reductive dissolution of Fe and Mn oxides 

in 10g sandstone samples in 0.04 l of H2A solutions at lab temperature after 4 h reaction. 



Preliminary experiments-chapter2 

44 
 

 

2.4.3 Effect of shaking at lab temperatures and without shaking at higher temperatures 

To determine whether the experiments undertaken at elevated temperatures were also 

affected by lack of shaking, the amount of Fe and Mn
++

 released using the same rock /water 

ratio and time but under different temperature and shaking conditions was determined.  One 

group of samples was placed in a shaker at lab temperature while a second group was put in a 

water bath under higher temperatures without shaking (as cannot use shaker in the water 

bath). Both groups of samples have the same mass of sandstone and concentration of ascorbic 

acid and also were run for the same period of time.  10 ±0.01 g samples of sandstone were 

put in 50 ml centrifuge tubes and 0.04 l of H2A solution added. One group of centrifuge tubes 

was put in a shaker for 2 h under 300 rpm at lab temperature and after that put in centrifuge at 

4500 rpm for 10 min before analysis.  The second group was put in a water bath at 73 
o
C for 

2 h without shaking, and then centrifuged for 10 min at 4500 rpm. In addition, a standard 

solution was treated as a sample. 

Figure 2.26 and appendix 2.15, shows the results. pH was 4.3 to 4.9. The shaking has a larger 

effect than the temperature increase. It is concluded that high temperature experiments are not 

required, just shaking needed.  

Figure 2.25 indicates that again Mn
++

 concentrations are greater than Fe concentrations. 

solution under lab temperature, compared with release at high temperature without shaking. 

In general, comparing all the results of relevant experiments in this chapter (Table 2.1), Mn 

concentrations are greater than Fe concentrations when concentrations are low (<100 ppm), 

temperature is lab temperature, or water rock ratio is high (10g/40ml rather than 

<10g/500ml). The reason for this is not known. 
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Figure 2-26: Fe and Mn release after 2 hours of shaking  and without shaking  for  10 g 

sandstone in 40 ml H2A  

 

Table 2-1: The relative concentration of Fe and Mn
++

 in all comparable experiments. 

Concentrations Shaken Time 

(hours) 

Temperature (oC) 

[g:ml] 

Figure 

number 

H2A 

concentration 

Fe>Mn No 24-33 50-90 [1:500] 2.4, 2.7 10mM 

Fe>Mn No 1-6 60 [1:500] 2.9 25-75mM 

Fe>>Mn No 150-400 80 [1,5,10:500] 2.13, 2.14 10 mM 

Mn>Fe Yes 2 20 [10:40] 2.24 10-100ppm 

(0.06-0.6 mM) 

Mn>Fe Yes 4 20 [10:40] 2.25 10-100 ppm 

Mn>Fe No 2 20 [10:40] 2.26 10-100ppm 
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2.5 What is the effect of initial conditions on dissolution at low H2A concentrations and 

low temperatures? 

2.5.1 The release of Fe and Mn
++

 from sandstone by HCl 

The purpose of this experiment was to compare the amount of Fe and Mn released from 

sandstone by H2A with that released by an inorganic acid, in this case HCl.  

HCl was prepared at various concentrations (2 to 0.00625 M). Also several concentrations of 

ascorbic acid was prepared (0.56 – 0.14M, 100 to 25 ppm).10 g of red sandstone was 

weighed and put in each of 22 centrifuge tubes. Then 40 ml of each inorganic and organic 

acid was added to each centrifuge tube separately (low HCl experiments (0.05 to 0.00625M) 

were done in duplicate). All samples were shaken for 4 hours at 300 rpm and afterwards 

centrifuged for 10 minutes at 4500 rpm.  Ascorbic acid samples were acidified by adding 100 

µl (1-2 drops) of 0.5 M of HNO3, which dropped the pH from 4.7 to 2.4. The results are 

shown in Figure 2.27 and Appendix 2.16.  

The H2A released more Mn than Fe as is usual for lab temperature experiments (Table 2.1). 

Though no release of Fe was seen with deionised water, there was quite a lot of Mn. This 

might be because of colloids that were not retained during the centrifuging but subsequently 

dissolved during acidification before analysis. However, any Fe(II) release might result in 

MnO2 reductive dissolution.  

The HCl experiment results are very different. The pH is much lower and therefore the 

comparison is not direct. Fe concentrations are higher than Mn (and Mn higher than for the 

H2A experiments especially for higher than  0.05 M of HCl). As pH falls Fe becomes 

dominant over Mn at pH lower than 1 (Figure 2.28). It is clear that dissolution by strong acids 

is much more rapid than by reductive dissolution by weaker organic acids.  
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Another experiment was carried out to compare the amount of Mn and Fe released from 

sandstone by very dilute HCl but at higher pH values (around 3.85 and 4.75). As in previous 

experiments, 10 g of sandstone were accurately weighed and put in each of four centrifuge 

tubes to which were added 40 ml of 0.162 and 0.00064 mM of HCl with two replicates for 

each concentration. Each reactor was put into a shaker for 16 h at 300 rpm, then centrifuged 

for 10 min and filtered using 0.2 µm filter before analysis using FAAS.  

Results (appendix 2.17) revealed that using extremely dilute HCl alone, at pH 3.8 and 4.6, no 

measurable iron was released from sandstone. On the other hand, very dilute HCl was able to 

release Mn
++

. The concentrations are slightly higher than concentrations obtained using 

deionised water in the previous experiment (0.75 ppm). There is a slight rise in pH after 

interaction with sandstone. These results are interesting because there is no obvious reductant 

in the system. One possibility is that H
+
 is sorbed, raising the pH, and this results in release of 

Mn(II) from sorption sites on the  hematite. The change in pH is equivalent to about 10
-5

 M 

for both the higher and lower concentrations of HCl, but change in Mn is respectively 10
-4

 M 

and 10
-5

 M. Without further investigation the mechanism cannot be determined for sure. In 

conclusion very low pH can result in significant increase in Fe concentrations without H2A 

being present. But at pHs of the H2A experiments the release of Fe is very little. For Mn
++

 

there was much released at low pH and even some released with deionised water and at 

higher pHs (lower concentration of HCl experiments). So Fe and Mn
++

 can be released 

without H2A, but it is only Mn
++

 concentrations that need to be considered in terms of H2A-

independent dissolution.  
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Figure 2-27: Fe
 
and Mn

 
release from 10 g sandstone at lab temperature A) by ascorbic acid at 

pH 4.5 to 4.75. B) by various concentrations of HCl at very low pH. 



Preliminary experiments-chapter2 

49 
 

 

Figure 2-28 The relationship of [Fe] and [Mn] with pH. A) Using ascorbic acid.  B) using 

[HCl]. 

 

2.5.2 The effect of washing sandstone with dilute HCl on the reductive dissolution of 

oxides by H2A 

The initial condition of the surface of a solid may affect the reactions seen when H2A is 

added. In the case of previous work, e.g. Suter et al. (1991)’s work, the solid was synthetic 

and its surface had been in contact only by ascorbic acid and Fe solutions. So this experiment 

was planned to see if changing the surface composition has any effect on reaction with H2A. 
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Sediment samples were washed by dilute HCl (12.5 mM). The reason for choosing this 

concentration was that at this concentration the average pH was the same as that of ascorbic 

acid after acidification by 1-2 drops of 0.5 M nitric acid. 10 g samples of red sandstone were 

put into six 50 ml centrifuge tubes and 40 ml of dilute HCl (12.5 mM, pH ~ 2) was added. 

The tubes were then put in a shaker for 2 h at 300 rpm, then centrifuged for 10 min at 4500 

rpm. The HCl supernatant was then discarded. 3-4 ml still filled the pore space of the 

sandstone samples and the sandstone sediment remained attached to the bottom of centrifuge 

tube, even if turn the tube upside down. Then 40 ml of H2A (15,25,50 ,75 and 100 ppm) 

solution was added to each sample, and also to unwashed sediment and to two samples 

without ascorbic acid (just deionised water with sediment). The samples were then placed in 

the shaker for 16 h, centrifuged for 10 min, and 15 ml aliquots were filtered through 0.2 µm 

filters. 10 ml of this filtrate was used for analysis by FAAS after acidifying using 150 µL of 

nitric acid.   

Figure 2.29 a (and Appendix 2.18) compares the results from washed and unwashed samples. 

All washed and unwashed samples had pH values of 2.1±0.1 ppm. From these results it is 

obvious that washing samples with dilute HCl results in the release of higher amounts of iron. 

In general there is about 3 to 6 times greater iron release after washing the sediment.   

May be the reason for more iron release is that the HCl makes the surface of the iron oxide 

saturated with hydrogen ions (H
+
). Zinder et al. (1986) and Suter et al. (1991) point out that 

protonation of the surface of oxides leads to broken and weakened metal – oxygen bonds and 

hence easier release of iron. In both washed and unwashed samples there is an increased 

release of iron with increase of H2A concentration.  

The opposite result was true for Mn (Figure 2.29 b). The amount of Mn
 
released into solution 

from the washed sediment was lower than the amount released from unwashed samples by 
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more than 1.5 times. It is possible that the HCl-washed sediment may have led to dissolution 

of Mn oxide resulting in little Mn oxide still in present in the washed sediment when the 

ascorbic acid was added. In the zero H2A unwashed sample about 0.75 ppm of Mn was 

present in samples.

Figure 2-29: The amount of Fe and Mn
 
released from 10 g of sandstone washed with dilute 

HCl and unwashed using ascorbic acid after 16 h shaking at lab temperature. pH~2 in all 

cases. 

To investigate the release of Fe and Mn in more detail, a further experiment was undertaken 

where the sandstone was washed with HCl and then twice more with DIW and each washing 

analysed, before finally reacting it with H2A. The idea is that the washing removes the HCl in 

the pore water but retains the H
+
 on the sorption sites of the oxide surfaces. Firstly 10 g 

samples of sandstone were weighed and put into each of 12 centrifuge tubes. 0.04 l of 12.5 

mM HCl (pH~2) was then added to each of the six centrifuge tubes.  

These were then shaken for 1 h at 300 rpm and centrifuged for 10 min at 4500 rpm. 30 ml of 

the dilute HCl supernatant was removed by pipette and 10 ml kept for analysis of Mn and Fe. 

Then 30 ml of DIW (in order to keep the same volume of 40 ml) was added to the centrifuge 

tubes containing the sandstone and the latter centrifuged for 5 minutes. Again 30 ml of the 

DIW supernatant were removed by pipette and 10 ml kept to analyse for Fe and Mn . Another 

30 ml of DIW was then added to the centrifuge tubes containing the sandstone. These were 
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put in a centrifuge for 5 minutes and around 36 ml were removed. This washing procedure 

means that the dilute HCl was diluted by 16 times, each sample containing around 4 ml of 

fluid in the pore space of the sediment.  Finally 40 ml of various concentrations of H2A (100, 

75 and 50 ppm) were added to the washed and unwashed sandstone samples with two 

replications for each concentration. The very diluted HCl in the pore volume of the sediment 

will mean that the concentration of H2A will be reduced by about 8% compared with 

unwashed samples. Finally all samples were put in a shaker for 15 h at 300 rpm, then 

centrifuged for 10 min at 4500 rpm, and the 10 ml samples filtered using 0.2 µm syringe 

filters. pH was measured for each sample in contact with sediment before acidification and 

after acidification for both washed and unwashed sandstone . 

 Finally each sample was acidified by using 150 µl of 0.5 M HNO3 to drop the pH from 

around 3.8 to around 2. The washings samples for HCl and DIW were not acidified because 

they already had a low pH value.  

Results showed (Figure 2.30 and Appendix 2.19) that the amount of Mn released from 

unwashed sandstone samples was higher by a factor of about 2.5 to 3 times than the washed 

samples. As explained above, washed samples dissolved significant amounts of Mn oxides 

which leads to a drop in concentration after washing.  For Fe, washed samples had slightly 

higher concentrations than unwashed samples in spite of the washed samples having about 

8% lower ascorbic acid concentrations (see below) (Figure 2.30). This indicates that the HCl-

washed samples underwent slightly enhanced reductive dissolution of iron oxides. This was 

not as much as for the experiments of Figure 2.29 as the latter retained more acid as there was 

no DIW flushing. It suggested that H
+
 enhances the reductive dissolution but that only at 

lower pHs is there direct dissolution of  hematite by H
+
.  



Preliminary experiments-chapter2 

53 
 

Analysis of the washing supernatant (Figure 2.31; Appendix 2.20) revealed that: the average 

Mn
 
in the diluted HCl was 2.9 ppm; the first washing with deionised water contained 0.37 

ppm; and the second washing contained no detectable Mn. No detectable Fe was present in 

either the HCl or the DIW washings. This means that this dilute concentration of HCl was not 

able to dissolve the iron oxides, but that attachment of H
+
 on the surface of the oxides slightly 

accelerated the rate of reductive dissolution by H2A suggesting that H
+
 was retained on the 

oxide surfaces throughout the washings.  Figure 2.32 compares washed and unwashed results 

in terms of Fe and Mn concentrations and pH. Despite much care the pH values were 

different between the washed and unwashed samples, the former being about one unit lower. 

Fe concentrations remain constant but Mn drop probably because of the initial dissolution 

during the washings.  

 

Figure 2-30: The amount of Fe and Mn released from unwashed and dilute HCl -washed 

sandstone by ascorbic acid. 
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Figure 2-31: The variation of Fe and Mn concentration and pH in the washing supernatants.  

 

Figure 2-32: The relationship between pH and the concentration of Fe and Mn after H2A 

contact with the sandstone for unwashed and HCl-washed sandstone samples. 

 

2.5.3 Effect on reductive dissolution of saturation of the surface of the oxides with Ca
++

  

A final experiment on washing was carried out using CaCl2. This was to see how much Ca
++

 

sorption to the oxide surface would affect dissolution by H2A. The same double DIW 

washing procedure was used as described above.  
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10 g mass of sandstone was weighed and put into each of six centrifuge tubes, then 40 ml of 

4.12 mM calcium chloride (from CaCl2 .2H2O) solution was added to each tube. All samples 

were shaken for 1 h at 300 rpm to saturated the surface of oxides with Ca
++

. Then the reactors 

were centrifuged for 10 minutes at 4500 rpm, and 30 ml of the supernatant removed keeping 

10 ml for Fe and Mn analysis. Then 30 ml of DIW was added to keep the volume to 40 ml, 

centrifuged for 5 minutes, 30 ml of supernatant removed and a sample kept for analysis of Fe 

and Mn
++ 

content. Then another 30 ml of DIW was added and centrifuged for 5 minutes. 

Then 36.5 ml of supernatant was removed and H2A solution added to the 40 ml mark. The 

concentrations of H2A were 100, 75 and 50 ppm each in duplicate. Both washed and 

unwashed samples were shaken for 16 h, and then centrifuged for 10 min at 4500 rpm, and 

aliquots of 10 ml filtered using 0.2µm filters before analysing.  

The Fe and Mn concentrations after contact with the H2A are shown in Figure 2-33 (data in 

Appendix 2.21). It is clear that washing with Ca
++

 solution has an effect on both Fe and Mn
++

 

concentrations. Fe concentrations in the washed samples are very low. Presumably the Ca
++

 

sorbed to the oxide surface reduces the interaction of the H2A with the surface. However the 

washed samples ended up with higher pHs so may be this is the main effect. For unwashed 

samples much more Fe is released. No measureable Fe was released in the washings (see 

appendix 2.22). The same general relationship is seen with Mn, but this has been the case in 

previous experiments and is explained by the washing removing the finite amount of Mn
++

 

available. This is supported by the data on washing concentrations shown in Figure 2.34 as 

they decrease a lot with each washing and are undetectable in the final washing.  Figure 2.35 

shows the relationship between pH and concentrations of Mn
++

 and Fe. It is clear that there is 

a close similarity of range of pH between washed and unwashed sandstone samples, the 

variation between them not exceeding 0.5 pH units. 
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Figure 2-33: Concentrations of  Fe and Mn
++

 released by contact of ascorbic acid with 

unwashed sandstone samples and CaCl2 -washed sandstone samples. 

 

 

 

 

 

 

 

 

 

 

Figure 2-34:  The variation of Fe and Mn
++

 concentration and pH in the washing 

supernatants. All Fe concentrations are below detection limit.  
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Figure 2-36: Concentrations of Fe and Mn
++

 as a function of pH for unwashed and CaCl2-

washed sandstone. 

2.6 Summary and Conclusion 

At high [H2A] and high temperatures, H2A appears to dissolve Fe and Mn oxides reductively, 

as both [Fe] and [Mn] rise during the experiments. Also the results revealed filtering and 

acidifying have a negligible effect on Fe and Mn
++

 concentrations. Fe concentrations are 

greater than Mn
++

 concentrations in low water rock ratio (500ml / 1 or 10 g). It was found 

that Fe and Mn
++

 concentrations increased with increased temperature, sandstone mass, and 

H2A concentration and decreased with increased O2 and increased pH. The rate of rise of 

concentration of Fe decreases slowly with time where there is limiting sandstone mass or 

H2A concentration especially, but over limited time intervals the rate can appear linear. The 

rate can be related to temperature using the Arrhenius equation, but the results are specific to 

the conditions of the experiment and cannot be applied elsewhere. Rise in Mn
++ 

concentrations appears to flatten off earlier than Fe. TOC measurements suggest a small 

amount of degradation of H2A occurs. 
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At low [H2A] experiments at lab temperature shaking the reactors considerably increases the 

concentrations measured. With appropriate water/rock ratio(e.g. 40 ml/10g) and time, low 

(<0.6 mM) concentration H2A reductive dissolution of sandstone Fe and Mn oxides can be 

measured even over short periods (e.g. 2 h) with shaking. Under these conditions Mn
++ 

concentrations are measurable even in the absence of H2A. Mn concentrations are greater 

than Fe concentrations at least for short times. Concentrations change with [H2A] 

concentration, pH and initial condition (protonated, Ca-rich) of the sandstone surface, but it is 

difficult to distinguish Ca effects and pH effects. Also HCl in the absence of H2A resulted in 

some dissolution.  

In summary H2A reductively dissolves Fe and Mn oxides from the sandstone samples, but the 

final experiments should have appropriate water/rock ratio (e.g. 40 ml/10g), have [H2A] of up 

to 0.6 mM, be anaerobic, be shaken, do not need filtering and consider initial sandstone 

surface composition and pH.
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Chapter Three 

The Analysis of Ascorbic Acid Using the Reduction of KMnO4 

3.1 Introduction 

The main goal of this project was to determine  the oxidising capacity and mechanisms of  

red sandstone. Therefore a method must be found to quantify the dissolved concentration of 

the organic carbon compound, and this is the subject of this chapter. The aim of the work 

described in this chapter is therefore to develop an analysis method for ascorbic acid. 

 Ascorbic acid (also generally known as vitamin C) (C6H8O6) is an organic acid and an 

important reducing agent (Elmagirbi et al., 2012). It is essential for humans, lack of ascorbic 

acid resulting in serious diseases like scurvy (Ball, 2006). There are several reasons for 

choosing ascorbic acid to represent dissolved organic carbon in this project. Firstly, it is a 

simple organic carbon compound, which is easily dissolved in water; secondly, it has types of 

functional groups present in humic acids (carboxyl, hydroxyl); thirdly, experiments have 

previously been carried out on ascorbic acids using synthetic iron oxides, showing that there 

is a strong interaction and also providing a baseline against which to test the experiments 

involving geologically ancient iron oxides; fourthly, it is cheap, environmentally friendly, and 

does not impose any significant hazards during lab work (Elmagirbi et al., 2012).  Table 3.1 

gives some details of the general chemical properties of ascorbic acid. 
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Table 3-1: Some chemical and physical properties of ascorbic acid  

Properties  Sources  

Molecular Formula 
 

C6H8O6  

 

 

 

(Ball,2006) 

Molecular Weight 176.12 g/mol 

Structure 

 
Physical Description White to slightly yellow powder  (Ball, 2006) 

Melting Point 
190 

o
C   (Ball, 2006) 

Solubility in water 
330 g/l at 25

O
C 

 

(Kuellmer and Othmer, 

2001) and (Ball, 2006) 

Density 
1650 kg/m

3
  (Lide, 2007)  

pH pH = 3 (5 g/l); pH = 2 (50 g/l)  

 

(Crawford and 

Crawford,1980), (Ball, 

2006) 

pKa 
pK1=4.17  ,pK2= 11.79  

pK1 = 4.17 and   pK2 = 11.57 

(Ball, 2006) 

(O'Neil, 2006) 

 

H2A is used here as the symbol for ascorbic acid. Bhagavan (2001) points out that there are 

three main factors that enhance the oxidation of ascorbic acid: rise in temperature; presence 

of cations; and exposure to high intensity light.  

There are various methods and techniques for determination of ascorbic acid concentration, 

for instance: spectrophotometrically  (Güçlü et al., 2005; Fadhel, 2012); using liquid 

chromatography (Kall and Anderson, 1999; Iwase and Ono, 1998); using cyclic voltammetry 

(while Pisoschi et al, 2008); using oxidant titration (Mussa and El Sharaa, 2014).   

Most of the methods listed above were not available for the current study and so several 

alternative methods were initially trialled. Several unsuccessful trials were made to analyse 

ascorbic acid using total organic carbon (TOC) determination. Fluorescence measurements 
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were also unsuccessfully attempted. Finally, uv sepectrophometry gave promising results 

when the decrease in absorption of potassium permanganate (KMnO4) solutions was 

measured in the presence of ascorbic acid, essentially the method of Güçlü et al. (2005) and 

Fadhel (2012).  

The rest of this chapter gives more explanation and detail of the development and testing of 

the spectrophotometric KMnO4 method used to measure the concentration of ascorbic acid. 

3.2 KMnO4 solutions at equilibrium  

The spectrophotometric method relies on the measurement of Mn(VII) in solution. As H2A is 

oxidised by Mn(VII), the absorbance of Mn(VII) drops, and this can be calibrated to 

determine the amount of H2A initially present. Details are provided later. Mn(VII) has a 

characteristic sorption wavelength of 530 nm (Fadhel). If in solution KMnO4 gradually 

breaks down to produce Mn species of other oxidation states, absorbance will change in the 

absence of H2A. So it is needed to look at the chemistry of KMnO4 in solution at equilibrium.  

When KMnO4 is dissolved in water, various reactions may occur, including (Zumdahl and 

Zumdahl (2014):  

 

i-  KMnO4 → K
+
+ MnO4

-
 ……..(1) 

ii-  MnO4
-
 + 3H

+
 → 1.5H2O + 1.25O2 + Mn

+2
……….(2) 

iii-  Mn
+2

 +H2O → MnOH
+
 +H

+
…………..(3) 

iv- 0.5 Mn
+2

 +0.5 MnO4
-2

 → MnO2…………(4) 

The phreeqc program (Parkhurst and Appelo, 1999) has been set up to check the dissolution 

of KMnO4 in water at equilibrium at a wide range of fixed pH values varying from 3 to 8.5, 

in order to find out which Mn species are dominant when dissolution of KMnO4 takes place.  

The calculations assumed 0.31 mol/kg H2O KMnO4, and a PO2 of 0.2 bar to be similar to lab 
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analysis. The results are shown in Figure 3.1. They reveal that Mn(II) concentration decreases 

rapidly with increase in the pH. This means at equilibrium Mn (VII) would be present at 

extremely low concentrations at acidic pHs (see Appendix 3.1).  

Preliminary measurements of KMnO4 solutions gave significant absorbances (e.g. 1.5 the 

absorbance value for 100 ppm of KMnO4). According to the phreeqc calculations, the 

KMnO4 solutions used in the experiments had not reached equilibrium as the absorbance 

measured at the wavelength associated with Mn(VII) would have been extremely low.  

To look at this in more detail, other experiments were carried out to measure the absorbance 

of KMnO4 as a function of pH.  

 

Figure 3-1: Modelling of KMnO4 solutions at equilibrium using phreeqc. 

 

3.3 The absorbance (A) as a function of pH in pure KMnO4 solutions 

The main aim of this experiment was to check the effect of variation of pH on the absorbance 

of KMnO4 solutions. A 0.5 M solution of HNO3 and a 76.25 Mm solution of NaOH were 

prepared and used to adjust the pH of the 100  ppm solution of KMnO4 (see Appendix 3.2).   

Results showed that pH has no effect on the absorbance of pure KMnO4 solution, see Figure 

3.2. This result confirms that reaction 2 does not occur significantly under the conditions 
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present during use in the laboratory. This result shows that corrections need not be made for 

pH when using KMnO4 in the analysis of H2A. 

 

Figure 3-2: The absorbance of a 100 ppm solution of KMnO4 at different final pH values.  

 

3.4 The absorbance of KMnO4 solutions as a function of concentration 

The absorbance of KMnO4 was measured from 20 to 200 ppm (see Appendix 3.3).  The 200 

ppm solution of KMnO4 has a dark purple colour, the intensity of which decreases linearly 

(r
2
=0.99) with concentration as shown in Figure 3.3.  Also the intercept of this plot goes 

through zero as expected by Beer’s Law. The result is broadly similar to that obtained by 

Fadhel (2012), but with a slope lower than that obtained by Fadhel (2012).  The absorptivity 

(ε=A/(bC), where b is cell length, C is concentration, A is absorbance  (Swinehart, 1962) 

agrees well with values from the literature (Table 2.2).  Interestingly, Fadhel (2012) reports a 

similar ε530nm.  
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Figure 3-3: (A) Dependence of absorbance on [KMnO4] this study. (B) the relationship 

between [KMnO4] and absorbance obtained by Fadhel (2012). 

 

Table 3-2: Values for absorptivity for KMnO4 from the literature and this study. 

No. Absorptivity ε 

(L/mol/cm) 

ε (nm) Authors 

1 2192 546 Ganesh et al. (2012) 

 2279 526 Ganesh et al. (2012) 

2 2356 530 Fadhel (2012) 

3 2038 520 Bohman (2006)  

4 2380 546 Stewart (1965) as cited in Gauger & Hallen 

(2012) 

4 2400 526 Stewart (1965) as cited in Gauger & Hallen 

(2012) 

4 1800 311 Stewart (1965) as cited in Gauger & Hallen 

(2012) 

5 2100 530 This study 
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3.5 Reaction between KMnO4 and H2A 

Based on the method of Fadhel (2012), 5 ml of different concentration solutions of 

H2A (100 to 20 ppm) were mixed with 5 ml of 100 ppm of KMnO4. Within 1 minute 

the absorbance of the mixture was measured at 530 nm with three replicates for each 

sample. The absorbance values for the H2A+KMnO4 mixtures increased linearly with 

decline of ascorbic acid concentration as expected from Beer’s Law with an excellent 

correlation coefficient (r
2
= 0.99), as shown in Figure 3.4 a &b. The slope of the 

calibration plots are around 25% of those obtained by Fadhel (2012) (Figure 3.4 (C)), 

but it has been noted above that there is a discrepancy between Fadhel’s (2012) data 

and absorptivity values. The precision of this method for example for 100 ppm of 

H2A is ±1.69 mg/L and for 20 ppm is ±0.61 mg/l , based on the standard deviation of 

repeat measurement data on standards before and after experiments. 

 

Figure 3-4: (A) absorbance against [H2A]; (B) absorbance change against [H2A]; (C) 

calibration curve from Fadhel (2012). 

The reaction between ascorbic acid and KMnO4 suggested by Babatunde (2008) is:  

2MnO4
-
+5H2A+6H

+
 →2 Mn

+2
+5A+8H2O …….…(5)  

In order to investigate if the above reaction took place, KMnO4 / absorbance (A) and [H2A]  / 

absorbance relationships have been compared (Figures 3.3 a & 3.4 a).   
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The plots show that the absorbances are linearly related: 

A=m1[KMnO4]ppm+C1; A=m2[H2A]ppm +C2 

where m is a gradient and C an intercept.  

 dA/d[KMnO4]ppm = m1; dA/d[H2A]ppm = m2 

 d[KMnO4]ppm /d [H2A]ppm = m2/m1 ,  

From the data, slope m1= 0.0133/ ppm, and slope m2= 0.0047  

d[KMnO4]ppm/d[H2A]ppm = 0.0047/0.0133= 0.353 

d[KMnO4]/d [H2A] (i.e. ratio in molar terms) = 0.353(176.1/158.1)=0.394 

The expected ratio is 2MnO4
-
/5H2A (Reaction (5)) =2/5= 0.4.  

Hence the experimental results are consistent with Reaction 5.  

In addition, measurement the pH of each H2A solution before and after adding KMnO4 was 

made, and the change of [H
+
] calculated (see Table 3.3). Figure 3.5 shows the relationship 

between [H2A]ppm and change of [H
+
].  The drop in [H

+
] is much less than predicted by 

Reaction (5)(d[H
+
]/d[H2A] = 1.2 compared with observed value of 0.14). This may be 

because H2A buffers  the pH change by dissociating to HA
-
 as follows (Benelli, 2015): 

H2A → H
+
 + HA

-
 …………… (6) 

(pK1 = 4.17; Domitrović, 2006) 

HA
-
 → H

+
 + A

-2
 ……………. (7) 

(pK2 = 11.8 so less important; Domitrović, 2006) 
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Table 3-3: pH of [H2A] solutions before and after adding KMnO4  

H2A ppm pH before adding 

KMnO4 

pH after adding 

KMnO4 

∆ [H
+
] mmol/l  

90 3.8 4.05 0.06936 

80 3.82 4.09 0.07007 

60 3.94 4.18 0.04874 

20 4.21 4.39 0.02092 

0 5.6 5.37 -0.00175 

 

 

Figure 3-5: H
+
 change (positive is rise) after adding KMnO4 as a function of [H2A] initially 

present in solution. 

 

After taking the measurement of absorbance of ascorbic acid with KMnO4, the solutions were 

left for one day. It was found that a brown or black precipitate formed especially in the cases 

of higher [H2A] like 90 and 100 ppm. This indicates MnO2 precipitation has occurred. No 

precipitate was visible for the initial hours of reaction or for the lower H2A concentrations 

even if left for long time (more than 24 h) (see Table 3.4). It is assumed that the reaction is as 

follows (Kawamura (1991) as cited in USEPA (2001)): 

3Mn
++

 + 2KMnO4 + 2H2O → 5MnO2+ 4H
+
+2K

+
………. (8) 
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This precipitation was insufficient to identify visibly other than in the most concentrated H2A 

solutions and was not enough to spoil the relationship between H2A and KMnO4, presumably 

because there was insufficient time for the precipitation to occur (all the measurements were 

carried out no longer than 2 minutes after adding KMnO4 to the ascorbic acid containing 

sample). 
 

Table 3.4: Observations on particle formation in H2A after addition of KMnO4 and leaving 

for 24 h. 

Samples [H2A] ppm Form of precipitation of colloid in brown colour 

90 yes 

80 no 

60 no 

20 no 

0 no 

 

3.6 Effect of different [KMnO4] on the absorbance of ascorbic acid 

The aim of this experiment was to find out the best [KMnO4] to measure the ascorbic acid 

concentration in range between 0 and 100 ppm. A range of H2A solutions were prepared 

(100, 80,60,40,20, 0 ppm) along with two KMnO4 solutions (100 and 40 ppm). 5 ml of each 

H2A solution were added to 5 ml of the 100 ppm KMnO4 , solutions, and the mixtures then 

shaken by hand for less than 30 seconds before measuring the absorption at 530 nm.  The 

results (Figure 3-6; Table 3-5 and appendix 3.4) demonstrated that there is an increase of 

absorption with decline of [H2A] for both KMnO4 concentrations, but the slopes are identical 

(both have the same value = -0.0047 /ppm). As long as KMnO4 is in excess, i.e. there is 

enough to oxidise the H2A present, the concentration of KMnO4 is not important, as might be 

expected:  the slope is a direct function of the stoichiometry of the reaction, so the reaction 

appears to remain the same independent of the initial KMnO4 concentration. In conclusion 

the reaction is independent of [KMnO4], but it is better to use the higher [KMnO4] (100 ppm) 
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concentrations of H2A up to 100 ppm are to be used. Also to avoid lower absorbance values 

when using 40 ppm of KMnO4 especially with relatively high concentration of ascorbic acid. 

 

Figure 3-6: Measurements of the absorbance of H2A using 100 ppm of KMnO4 and using 40 

ppm KMnO4. 

Table 3-5: Variation in colour for different [H2A] in presence of 40 and 100 ppm of KMnO4  

[H2A] ppm Colour of mixture using 

40 ppm KMnO4 

Colour of mixture using 100 

ppm KMnO4 

100 colourless colourless 

80 colourless Very pale yellow  

60 colourless Pale yellow  

40 pale yellow Dark yellow 

20 pink Pink  

0 pink Pink  

 

3.7 Effect of Fe on the measurement of [H2A]  

3.7.1 Effect of adding Fe(III) to KMnO4 

Fe was expected to be released when H2A is placed in contact with sandstone, and therefore it 

is appropriate to determine if Fe affects the measurement of H2A. Both Fe(III) and Fe(II) are 

examined because Fe(III) could be present if low pH experiments are undertaken and if 

Fe(III) is initially released from the haematite. The aim of this experiment therefore was to 

find out if there was any effect of the presence of Fe(III) on the reaction between KMnO4 in 

the absence of H2A. Ferric iron solutions were prepared from Fluka Fe standard solutions, 

added to both 100 and 40 ppm solutions of KMnO4 and the absorbance measured at 530 nm. 
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The results from both KMnO4 concentrations showed (Figure 3.7) that there is insignificant 

different in absorbance between control samples free from ferric iron and samples containing 

various Fe(III) from 1 to 10 ppm (see Appendix 3.5 a & b). This result is as expected, as 

KMnO4 cannot oxidise Fe(III) as the latter is already in its most oxidised form.  

 

Figure 3-7: The effect on absorbance of KMnO4 solutions by various concentrations of 

Fe(III). (a) 40 ppm of KMnO4 ;  (b) 100 ppm of KMnO4. 

 

3.7.2 KMnO4+Fe(III)+H2A 

Another Fe(III) experiment was also carried out, this time in the presence of ascorbic acid 

(see Appendix 3.6). The absorbance of various H2A/KMnO4 solutions was measured in the 

presence of 0 and 4 ppm Fe(III). The results (Figure 3.8) showed that ferric iron has no effect. 

 

Figure 3-8: The effect of addition of 0 and 4 ppm of Fe(III) on absorbance of KMnO4 / H2A  

solutions.  
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3.7.3 KMnO4 +Fe (II) 

The aim of this experiment was to study effect of the presence of ferrous iron (FeII) on the 

absorbance of KMnO4 solutions. The ferrous solutions were prepared from ferrous chloride 

tetrahydrate salt (FeCl2.4H2O) (Appendix 3.7).  

Results of this experiment (Figure 3-9) revealed that there is a slight drop of absorbance with 

increase of Fe(II) in solution. This means that there is a reaction between KMnO4 and ferrous 

iron, thus reducing the absorbance of KMnO4 at 530 nm. The likely reaction is (EPA, 2001): 

3Fe
+2

 + KMnO4 + 7H2O → 3Fe(OH)3 + MnO2 +K
+
 + 5H

+
 ……..(9)   

3Fe
+2

 + MnO4
-
 + 7H2O → 3Fe(OH)3 + MnO2 + 5H

+
 ………(9a)   

(or: 3Fe
+2

 + MnO4
-
 + 4H2O → 3Fe(OOH) + MnO2 + 5H

+
 ………(9b)) 

The maximum measure amount of Fe released during the sandstone/H2A reduction 

experiments did not exceed 4 ppm (see Chapter 6). Therefore the effect of Fe(II)/KMnO4 

reaction on the interpreted H2A would be less than, and mostly much less than, 4% in terms 

of H2A concentration.  

Because absorbance falls, it seems that colloidal Fe(OH)3 (or other FeIII oxide or hydroxide – 

similar stoichiometry) (and colloidal MnO2)(Reaction 9) does not seem to be causing an 

increase in absorbance; in addition, the excellent repeatability of the measurements of the 

absorbance (replicates R1, R2, R3) suggests that colloidal particles are not involved.  

Measured pHs show that there is a drop of pH after adding the Fe
++

, as shown in Figure 3.9 b. 

The relationship between change in H
+
 and (change in) Fe

++
 concentration is linear with a 

high correlation coefficient (r
2
=0.97). This result would be surprisingly well for a reaction 

that involves precipitation. Also it is observed that the pH falls during this reaction as 



The Analysis of Ascorbic Acid -chapter3 

72 
 

expected from Reaction 9, but by less than this reaction would suggest (observed d[H+]/d[Fe] 

= 0.8-0.9, expected rate from Reaction 9 = 1.67).  

 
Figure 3-9: Effect of ferrous iron on KMnO4 solution absorbance. a) Plot of absorbance 

against Fe (II) concentration. b) Change in [H
+
]mol /l plotted against [Fe

++
]mol/l. Red line is 1:1 

line.  

Looking at the Fe/KMnO4 stoichiometry of Reaction 9 using the experimental data (Figure 3-

9), it is possible to express on absorbance in presence of ferrous iron with this equation 

A = -0.008[Fe]ppm + 0.5416  

and from previous experiments (Figure 3-3) absorbance as a function of [KMnO4] can be 

expressed as 
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A = 0.013 [KMnO4]ppm + 0.078  

Assuming that all added Fe
+2 

reacts with KMnO4, a given addition of Fe
+2

 will cause a 

change in absorbance (=∆A) of -0.008∆[Fe]ppm, where ∆[Fe] is the amount of Fe added. This 

∆A is caused by a change in [KMnO4], and this ∆[KMnO4] can be calculated knowing that 

∆A = 0.0133 ∆[KMnO4]ppm.  

Hence ∆[KMnO4]ppm = ∆A/0.013 = -0.0083∆[Fe]ppm/-0.013. 

Hence ∆[KMnO4]ppm = 0.624 ∆[Fe]ppm, or 

∆[KMnO4] = 0.624 x  56/158 ∆[Fe] = 0.221 ∆[Fe]. 

Hence [Fe]:[KMnO4] (molar) ratio from this experiment, assuming all Fe reacts, is 4.5:1 

(=1/0.221:1). However, according to Reaction 9 the ratio should be 3:1. The implication is 

that not all the added Fe
+2

 reacts with KMnO4. Thus the stoichiometry does not seem to agree 

with Reaction 9, either from the Fe:KMnO4 or Fe:H
+
 point of views.  

However, Fe
+2

 is also likely to react with MnO2 quickly, according to the following reaction 

(Thornton et al., 2011): 

2Fe
+2

 + MnO2 + 4H2O → 2Fe(OH)3 + Mn
+2

 + 2H
+
……(10)    

In this case the Fe:KMnO4 ratio rises to 5:1, which may be close enough to explain the 

calculated 4.5:1 ratio. This would also mean less colloidal MnO2, agreeing with the lack of 

experimental evidence for colloids production. With Reaction 10 also occurring, the 

predicted d[H
+
]/d[Fe] becomes 7/5 = 1.4. Presumably the Mn

+2
 does not then react 

significantly with the MnO4
-
, or else the ratio would go back down to 3:1. The observed 

d[H
+
]/d[Fe] is still too low (0.8-0.9) suggesting that Reactions 9 and 10 are not the complete 

story, and again may be H2A/HA
-
 adjustment is occurring.   
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Presumably Reaction 8 would also occur given enough time (Section 3.5) . 

3.7.4 KMnO4+H2A+Fe(II) 

The aim of this experiment was to find out the effect of adding ferrous iron on the absorbance 

of ascorbic acid in the presence of KMnO4, and therefore the effect on interpreted [H2A]. 

Concentrations of H2A ranging from 0 to 100 ppm were used, with Fe concentrations of 0, 1 

and 4 ppm (see appendix 3.8).  

The results are shown in Figure 3.10 (see also Appendix 3.9 &3.10 ). It is clear from the 

results that there is only slight increase of absorbance of all samples in case of the 4 ppm Fe
+2

 

experiments in comparison with the absorbance seen in the experiments with [Fe
+2

] = 0. The 

average dA/d[Fe
+2

] for all H2A concentrations (Figure 3.10b) is 3.3 x 10
-4

 /ppm. This is 

equivalent to a difference in interpreted [H2A] of 0.25 ppm. This is further represented 

graphically in Figure 3.11.  

In conclusion, these experiments have confirmed the conclusion of Section 3.7.3 that the 

presence of [Fe
+2

] has no significant effect on the absorbance of H2A hence there is no need 

to correct measurement of [H2A] for the presence of released Fe. In fact the effect of Fe(II) 

even less in the presence of H2A than in its absence (compare between the results here with 

those from Section 3.7.3). 
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Figure 3-10: Addition of Fe
+2

 to KMnO4 solutions in the presence of H2A: a) Absorbance 

against [H2A] ppm; b) absorbance against  [FeII] for each [H2A]. 



The Analysis of Ascorbic Acid -chapter3 

76 
 

 

Figure 3-11: Addition of Fe
+2

 to KMnO4 solutions in the presence of H2A: (a) Absorbance 

for [FeII]=0 against A for [FeII] = 1 and 4 ppm; (b) apparent [H2A](ppm) against [FeII] 

(ppm). 

 

3.8 Effect of Mn+2 on measurement of [H2A] 

3.8.1 Effect of Mn++ on the absorbance of KMnO4 

A series of experiments has been carried out to study the effect of presence of Mn
+2 

, varying 

from 0.625 to 10 ppm, on the absorbance of KMnO4 in the absence of ascorbic acid. The 
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Mn(II) salt used was MnCl2.4H2O salt. Three replicates were used for each sample, as in 

previous experiments.  

Results showed that there is a consistent and significant linear increase of absorbance with 

increase of [Mn
+2

], as shown in Figure (3.12 a) (see also Appendix 3.11). For example, the 

presence of 10 ppm of Mn led to a 22 % increase the absorbance in comparison with the 

absorbance of KMnO4 in solutions free from Mn
++

. The measurements are stable over the 

period of determination of the three measured values.  

The most important observation here is that absorbance (A) increases with initial [Mn
+2

]. A 

rise in absorbance might be caused by either a rise in MnO4
-
 or by a rise in colloidal MnO2. 

These represented by Reaction 2 (in reverse direction) 

MnO4
-
 + 3H

+
 → 1.5H2O + 1.25O2 + Mn

+2
……….(2) 

and by Reaction 8 

3Mn
+2

 + 2KMnO4 + 2H2O → 5MnO2+ 4H
+
+2K

+
……….(8) 

(Kawamura (1991) as cited in USEPA (2001)).  

Though under the conditions of the experiments the theoretical equilibrium for Reaction 2 

should be to right hand side, it has been shown that this reaction does not occur to any 

significant extent in the time length of the experiments. Calculations indicate that increase in 

Mn
+2

 does not reverse the direction of the reaction. It is therefore concluded that Reaction 8 

is more likely. Harish and Manisha (2013) find that MnO2 NPs have an absorption peak at 

340nm, but Balan et al. (2013) find a large increase in absorbance  over a range including 

530nm as MnO2 NPs form. Though takes 5-10 mins at pH>7, may be still fast enough at the 

conditions here. 
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Figure 3-12: Addition of Mn
+2

 to KMnO4 solutions. a) Absorbance against [Mn
+2

]; (b) 

replicate absorbance measurements. 

It is concluded that Mn increases absorbance by a rate defined by dA/d[Mn] = 0.0106 /ppm 

(Figure 3.12a). Need next to see if same relationship happens when there is H2A in the 

solution. 

 

3.8.2 Effect of KMnO4+H2A+Mn
++

 

The goal of this experiment was to determine the effect of added Mn
+2

 on the absorbance of 

ascorbic / KMnO4 solutions (see Appendix 3.12). The absorbance in the presence of 0, 1 and 

4 ppm concentrations of Mn
++

 was measured. This range of concentrations covers the likely 

range of Mn released during the final sandstone leaching experiments, as indicated by 

preliminary test runs. The salt used was MnCl2.4H2O.  
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It was found that the addition of Mn
++ 

makes a significant difference to the absorbance as 

shown in Figure 3.13a (Appendix 3.13). As in the case of the H2A-free solutions (Section 

3.8.1), the absorbance are increased. Figure 3.13b (and Appendix 3.13) indicate the 

equivalent apparent decrease in interpreted H2A as a result of the added Mn
++

 present. Figure 

3.14 shows the relationship between absorbance change and added Mn
++

 concentration. 

Though there is some scatter (Figure 3.14a), the averaged relationship (Figure 3.14b) is very 

close to that seen in the absence of H2A (Figure 3.12) as indicated also by Figure 3.15.  

 

Figure 3-13: The effect of the addition of Mn
+2

 on A. (a) the relationship between A and 

[H2A] for 0, 1 and 4 ppm [Mn
++

] under oxic conditions; (b) replotted in terms of interpreted 

[H2A] as a function of [Mn
++

]. 
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Figure 3-14: The dependence of {A[Mn]>0 –A[Mn]=0} for H2A solutions in the presence of Mn 

(II) under oxic conditions. (a) all data; (b) data averaged for each [Mn]. 

 

 

 

 

 

 

 

 

 

Figure 3-15: The dependence of A for all H2A solutions investigated in the presence of Mn 

(II) under oxic conditions.  

There was no significant difference in pH before and after adding KMnO4, which ranged 

from 3.8 to 4.3 (see Appendix 3.14), except for the samples free from H2A.  

Leaving the mixture for about 24 h led to the formation of observable colloids of brown 

colour especially for the higher H2A concentrations in the presence of 4 ppm of Mn, as 

shown in Table 3.6. This is consistent with the idea that MnO2 is forming, the reason 

suggested in Section 3.8.1 for the increase in Absorbance. 
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Table 3.6: Observations on particle formation in H2A solutions after adding 4 and 1 ppm of 

Mn
+2

 after the solutions have been left for 24 h. 

Samples [H2A] 

ppm 

1 ppm 4 ppm 

Form of precipitation of colloid in 

brown colour 

90 yes yes 

80 No yes 

60 No yes 

20 No No 

0 No No 

 

It concluded that Mn(II) in the test solution will give MnO2 precipitation in colloids form, at 

first invisible but later aggregating enough to become visible. This causes the measured 

absorbance to be higher than expected, resulting in an apparently lower H2A concentration.  

2.8.3  Correcting H2A Measurements for the Presence of Mn
++ 

 

Figure 3.15 shows the relationships between [Mn] and absorbance for all concentrations 

including [Mn]=0. This figure indicates that the rate of change of absorbance with [Mn] is 

similar for all [H2A]. This hence suggest that correction for [Mn] can be done using the 

correlation equation indicated on Figure 3.15. The method used for correcting the data for the 

presence of Mn is 

dA/d[Mn] = 0.0095 /ppm (Figure 3.15) 

dA/d[H2A] = -0.0024 /ppm (Figure 3.13)  

hence d[H2A]/d[Mn] = 0.0095/-0.0024 = -3.96 (ppm/ppm) 

i.e. when [Mn]=1ppm the measured value of [H2A] will be decreased by 3.96 ppm. 

It is noted that in this series of measurements that all the results have lower slopes for the 

A/[H2A] plots than usually found. However, they are consistent across all experiments in the 

study of the effect of Mn (4, 1 and 0 ppm) and another experiment produced more usual 
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slopes with a final value of -3.58 ppm/ppm. So it concluded that -3.96 ppm/ppm, is the value 

for correction of presence of Mn on the concentration of H2A . 

3.9 The stability of ascorbic acid  

The purpose of this experiment was to determine the apparent stability of ascorbic acid, as 

indicated by absorbance, over times comparable with experiments conducted later with 

sandstones under anaerobic conditions.    

2 x 100 ml of H2A were prepared at each of six concentrations (100, 80, 60, 40, 20, 0 ppm) 

and then split into two groups. Group one samples were put into an anaerobic chamber 

(‘Glove Box’ manufacture by Laboratory Products INC), while the second group of samples 

were retained under aerobic conditions. 5 ml samples were then collected from both groups at 

4.5, 28, 52, and 126 hours. There was a slight difference of temperature between the 

experiments: the aerobic experiments were carried out under 21 
O
C, while the anoxic 

experiments were carried out at 24 
o
C. All experiments were done in triplicate. The times 

recorded were experimental time, but in reality times were about 2 hours greater because of 

preparation time for setting up experiments and analysis. 

The results are shown in Figure 3.16 (see also Appendix 3.15). There is a slight increase of 

absorbance over time under both oxic and anoxic conditions for all H2A concentrations. The 

solution free from H2A (just KMnO4) did not show any increase of absorbance over time, in 

fact a possible very small decrease. 

Figure 3-16 shows the variation with time for aerobic conditions plotted as absorbance 

against time for each H2A concentration and as absorbance against H2A concentration for 

each time. There is little change with time. There is no pattern to change in slope with time or 
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concentration. However, overall averages indicate possibly a slightly increase in absorbance 

with time and therefore a slightly decrease in concentrations with time (Figure 3-17).  

 

Figure 3-16: Change of absorbance under oxic conditions over time. 

 

Figure3-17: Change of H2A under oxic conditions over time. Each point is the average 

change for each time. Error bars indicate plus and minus one standard deviation. 

Similar plots are given for anaerobic systems in Figure 3.18 and 3.19. Main difference seen is 

that the data for 100ppm H2A appear anomalous (Figure 3-18). Removing the 100ppm data 

indicates much more consistency of absorbance with H2A concentration (last plot Figure 

3.18). Calculating the change in interpreted H2A concentration with time the result is in 
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Figure 3.19. Left hand plot shows all data and indicates a greater drop but with large 

uncertainty. Right hand plot has no 100 ppm data and shows much less change in 

concentration and less uncertainty (though still significant). These plots assume that there is 

no change in decay rate with initial concentrations as this is indicated by there being no 

obvious variation in slopes in Figure 3.18 (top plot left).  

 

Figure 3-18: Change of absorbance under anaerobic conditions over time. 

 

Figure 3-19: Change of H2A under anaerobic conditions over time. Each point is the average 

change for each time. Error bars indicate plus and minus one standard deviation. Left is all 

data. Right is without the anomalous 100ppm data.  
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The anoxic experiments indicate greater degradation of H2A (i.e. higher absorbance values) 

than the oxic experiments. Tannenbaum et al. (1985) observed that the degradation of H2A 

can occur under anoxic conditions, the product being diketogulonic acid. Also Ball (2006) 

found out that under acidic conditions at pHs between 3 and 4, degradation rates of H2A were 

higher under oxygen-free conditions. Kennedy et al. (1992) observed that though the main 

pathway of degradation of ascorbic acid took place under oxic conditions, when the dissolved 

oxygen was eliminated the degradation continued, though was markedly impacted by 

temperature. To account for the change in time of H2A concentrations in the final 

experiments of Chapter 6 the correlations of Figure 3.17 and Figure 3.19 can in principle be 

used. In case of Figure 3-19 there are two possible corrections. However, without more 

certainty the H2A degradation rate obtained using all data has been used in Chapter 6. The 

difference would be up to about 2ppm in the longer time experiments if the correlation 

excluding the 100ppm data were used. 

The degradation reactions are probably biotic and therefore corrections may not be required 

for experiments undertaken under sterile conditions. 

 

3.10 Recommendations for H2A Analysis Using KMnO4  

The KMnO4 spectrophotometric method provides good results for the determination of H2A 

concentrations. A correction is needed for H2A degradation with time, and this is slightly 

different depending on whether the experiment has been undertaken in oxic or anoxic 

conditions (Section 3.9).  

In the final experiments using sandstone, it is expected that Fe(II) and Mn(II) will be in 

solution, and both of these species could potentially be oxidised by KMnO4 during the 
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analysis of H2A, and hence be recorded incorrectly as H2A. As a result, the effects of Fe(II) 

and Mn(II) have been investigated.  

Fe(II) concentrations were found not to affect absorbance to any significant amount at 

relevant pHs (Section 3.7) but Mn(II) concentrations increase absorbance by enough that a 

correction should be considered and this was proposed in Section 3.8.  

However, in all experiments using sandstone, Fe(II) and Mn(II) were both found to be 

present. As deduced in Section 3.7, Fe
2+

 reacts quickly with colloidal MnO2, and therefore 

the rise in absorbance due to the presence of colloidal MnO2 is likely to be removed if there is 

enough Fe. Thus corrections to absorbance due to colloidal MnO2 should only be done on 

[Mn] - [Fe]/2, and not on total [Mn].  

The measurement of H2A using the KMnO4 / spectrophotometer method therefore requires 

care but was the only practicable method available and has the advantages of quickness and 

cheapness. Its application in the interpretation of the final sandstone experiments will use the 

discussions and results of this chapter. 
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Chapter four  

Sorption of ascorbic acid on sandstone 

4.1 Introduction 

The aim of this chapter is to determine the ability of sandstone to sorb ascorbic acid from 

solution as this is expected to be one of the necessary steps in oxidation of organic carbon . It 

is assumed that the sorption will mainly involve the iron and manganese oxides grain 

coatings but could also involve clay minerals.  

4.2 Sorption 

4.2.1 Introduction 

Sorption is considered a key geochemical process  (Bencala et al., 1984; Harvey and Fuller, 

1998 ). In aquifer systems, sorption plays a key role in delaying the arrival of contaminants at 

receptors (Chiou et al., 1983; Pignatello, 1998; Delle Site, 2001). However, in the present 

context sorption is important in that it is thought to be first stage in reductive dissolution of  

hematite (Suter et al., 1998) and so it needs to be quantified if possible if reductive 

dissolution is to be understood.  

 

4.2.2 The distribution coefficient (Kd) and Isotherms 

The ratio representing the distribution of ions (organic or inorganic) between liquid and solid 

phases is called the Kd, generally expressed in l/g or ml /g. The Kd value has a significant 

variation from extremely high (e.g. in fine grained sediment which contains a high percentage 

of organic matter it may reach around 1000 ml/g) to nonsorbent material when the Kd value 

equals zero  (Freeze and Cherry, 1979). This distribution coefficient (Kd) is obtained from 

specific lab experiments undertaken under a specific range of concentrations. However, such 
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experiments are expensive to undertake and leading to use in practice of Kd values for field 

conditions very different from the lab experiment conditions.  This may produce invalid 

results  (Gillespie et al., 2000). 

In general in a batch experiment the mass sorbed on the surface of a solid can be calculated 

using equation (4-1) (Domenico and Schwartz ,1990). 

S=   (C0-C ) × V / Sm         (4-1) 

C0= initial concentration of solute (e.g. mg/l)  

C = concentration of solute after equilibrium within the solid medium is reached (e.g. mg/l) 

V= volume of samples (e.g. litres)  

Sm= mass of the sediment (e.g. g)  

S= sorbed concentration (mass of contaminant per mass of solid, e.g. mg/g).  

A plot of S values against C values represent a sorption isotherm. The slope of this curve 

represents the partition coefficient Kd (L/g), of most use if the sorption follows a linear 

sorption model which considered the simplest kind of sorption.  

In batch sorption experiments to determine Kd values for sediments, there are so many factors 

potentially affecting Kd values, including temperature of reaction, pH, non-sorption reactions, 

the ratio between the solid and solution, other species present in the solution competing for 

sorption sites, grain size / surface area of sediment and which kind of minerals are present 

(Moody, 1982, (cited in Domenico and Schwartz ,1990)); Linge, 2008). It is therefore 

possible to get significantly different Kd values depending on the precise conditions of the 

experiment (Domenico and Schwartz ,1990).  
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One advantage of determining Kd values of sediment, to use this value to estimate the 

retardation factor (Rf) (Freeze and cherry, 1979)  

Rf=1+ 
  

 
 Kd 

where Rf represents retardation factor (dimensionless), θ represents the water content  of 

sediment, b represents the bulk density of sediment (g/cm
3
), and Kd  distribution coefficient 

ml/g. 

The importance of Rf is to estimate the ability of sediment to attenuate transport of organic or  

inorgnic chemicals in an aquifer system via sorption. Rf values are the ratio of the average 

linear velocity to the apparent velocity of a sorbing contaminant.  So an Rf of 2 means that 

the sorbing contaminant will take twice as long to reach an observation point than a non-

sorbing contaminant. The Retardation Equation is a formula that is suited to modelling 

hydrophobic sorption of organic chemicals.  The limitations of the equation are that it 

assumes ideal, linear, instantaneous equilibrium sorption and may, therefore, not be 

appropriate for all dissolved organic carbon compounds. 

  

4.2.3 Speed of Sorption Reactions, Kd Values and relevant controlling factors. 

Generally most sorption reactions take place within very short times to reach equilibrium, 

within a time scale range between a few hours to several minutes (Morel and Hering, 1993). 

There is wide variation in Kd with different type of organic compounds and type of geological 

sorbent material. For instance, Kd varies from 0.11, 1.7 and 94 ml/g for sorption of toluene on 

the London Clay, Merica Mudstone and Oxford Clay respectively (Gillespie et al., 2000 ). 

This indicates that even for fine grain sediments the Kd of sorption toluene on the clay surface 

varies considerably. It is clear from literature review that the Kd value significantly varies 
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amongst geological materials and chemical composition of organic fraction (Beaven et al., 

2009).   

Though both sorption and desorption commonly can occur in soil -water systems (Marschner 

and  Kalbitz 2003), hydrophobic organic compounds are much more likely to be associated 

with the sorbed phase than hydrophilic compounds, i.e. they are unsurprisingly more sorbed.  

Sorption of organic compounds can be affected by change in pH, for example Jardine et al. 

(1989) report that lower pH soil solutions favour greater sorption of dissolved organic carbon. 

Many reported lab experiments demonstrate that considerable amounts of dissolved organic 

matter can be sorbed on the surface of different kinds of synthetic iron oxides and hydroxides 

(Schwertmann 1966; Sibanda and Young 1986). Jardine et al. (1989) observed considerable 

decline in sorption capacity of soil for dissolved organic matter (DOM) after eliminating iron 

oxide / hydroxide from the soil. Tipping (1981) compared the sorption of different molecular 

weight humic substances on synthetic  hematite and goethite and found out that with decrease 

in molecular weight of humic substances there is a decrease of adsorption capacity, which 

indicate that higher molecular weight and more complex structures of organic compounds 

have more potential to sorb to synthetic iron oxides.  

4.2.4 Mechanisms of Sorption Reactions 

At low pHs, protons (H
+
) attach to hydroxyl groups on mineral surfaces, leading to increase 

in net positive charge on the surface of metal oxide. This attracts negatively charged ions 

including anionic organic species which then form complexes on the mineral surface. With 

increase in pH, removal of protons (deprotonation) leads to a significant decline in net 

positive charge of mineral oxides and the oxide surface becomes more negatively charged 

hence more attractive of cations and metals. As a consequence of this, organic matter (OM) 

release into the solution is often observed as a result of pH rise (Parfitt et al., 1977; Sibanda 
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and Young, 1986; Loganathan et al., 2014). For example, Avena and Koopal (1998, cited in 

Grybos et al., 2009) found out that there is considerable sorption of humic acid (HuA) on the 

surface of iron oxide at lower pH values, but with pH rise the reverse process took place and 

a considerable proportion of the HuA desorbed from the iron oxide surface. This means that 

there is a considerable drop of adsorption capacity for HuA on the surface of iron oxide under 

higher pHs.  

The net charge on solid phase surfaces plays a significant role in the sorption process. There 

are four main factors controlling the net charge on the surface of a solid (e.g. Essington 

2003). Firstly, the fixed charge of the particle independent of pH variation and due to 

substitution within the crystal lattice. Secondly net protonation charge. Thirdly charge due to 

the presence of sorbed inner sphere complexes. Finally charge due to the presence of sorbed 

outer sphere complexes. All these factors vary as a function of pH change with the exception 

of the first parameter. Oxyhydroxides are considered to have predominantly variable surface 

charges (i.e. pH dependent) while 2:1clay minerals are considered to have a much greater 

permanent, pH-independent charge (fix charge) (Eby, 2004). Change of pH therefore plays a 

critical role with altering surface charge of particles (Eby, 2004).  

Table 4.1 shows the zero point charge (ZPC) for some minerals, if the pH of the solution 

equals  the pH of the mineral at ZPC, then the surface of the  solid has a net zero charge, (i.e. 

its negative and positive charges are equal). For example, for quartz, the net zero point is very 

low at pH =2. This means that if the pH is higher than 2, the surface charge of silica will be 

dominated by negative surface charge and will attract dissolved cations while at pH less than 

2 the surface charge will be dominated by positive charge and will attract anions to attach to 

the silica surface. Another example is  hematite. The net zero point of charge lies between 5 

and 9. This means that if the pH is higher than 9, its surface charge will be dominantly 

negative, while at pH lower than 5 it will be dominantly positive.   
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Table (4-1): Values of net zero point charge for some natural mineral and materials. Data 

from Stumm (1992), Drever (1982) and Kehew (2001).  

Mineral or material Symbol ZPC 

Quartz SiO2 2 

Feldspars  

 

KAlSi3O8 – NaAlSi3O8-CaAl2Si2O8 

 

2-2.4 

Birnessite δ- MnO2 2.8 

Magnetite Fe3O4 6.5 

Goethite α FeOOH 6-7 

 hematite αFe2O3 5-9 

Amorphous iron(III)hydroxide Fe(OH)3 8.5 

In addation to the effect of surface charge, specific reactions also occur between the ion and 

the surface. So an organic ion might react to form a surface complex even if it has the same 

charge as the surface. So sorption is combination of these processes though in practice the 

two are usually considered as one “sorption” process (e.g. Essington, 2003).  

Also temperature affects sorption reaction, for instance MacIntyre et al. (1991) who studied 

the sorption of naphthalene on the surface of sediment samples collected from the Columbus 

alluvial aquifer. They investigated temperature and found out that rise of temperature led to 

decrease of sorption capacity of alluvial sediment because the sorption mechanism was 

exothermic.   

Generally the sorption capacity for organics of sandstones is not high as they often contain 

little organic matter. Kaiser and Zech (1997) mention that binding sites of iron oxides in 

mineral soils are less preferred for the hydrophilic (dissolved) fraction of dissolved organic 

matter than the hydrophobic  fraction of dissolved organic matter DOM. 

 

https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Potassium
https://en.wikipedia.org/wiki/Silicon
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Sodium
https://en.wikipedia.org/wiki/Calcium
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4.2.5 Implications from Literature for Experiments on Sandstone 

From previous studies it is concluded that experiments need to be undertaken with care to 

make the conditions the same. All experiments were undertaken at relatively low 

temperatures, i.e. lab temperature (20-24
o
C), the temperature of the final reductive 

dissolution experiments, but above UK groundwater temperatures (about 10
o
C). From the 

literature it is seen that most sorption is completed within a few hours and so all experiments 

were conducted for 120 minutes. At 120 minutes there is very limited release of Mn and Fe 

from the sandstone using lower concentrations of ascorbic acid (40 ppm and below) so this 

suggests that by this time very little H2A reaction has occurred so change in H2A 

concentration is mainly because of sorption. These low Fe and Mn concentrations also mean 

that no correction for H2A concentrations need be made (see Chapter 3) but may be the 

correction for the effect of [Mn] on the ascorbic acid concentration also needs to be done to 

compare between both cases (see below). Other implications of sorption experiments will be 

discussed in the results section below.     

4.3 Sorption Batch Experiments  

4.3.1   Initial sorption experiment with higher mass of sandstone: (Experiments E1 & 

E2) 

The detail of the first two sorption experiments, E1 and E2, is explained in this section. The 

following H2A concentrations were prepared: 40, 30, 25, 20, 15, 10, and 0 ppm and measure 

the absorption  for each standard solution, (see appendix 4.1) . Then 20 g masses of sandstone 

were weighed and put in 50 ml centrifuge tubes. Then 40 ml of the following [H2A] (30, 25, 

20, 15, 10 and 0) ppm were added to each centrifuge tube, all in duplicate. All samples were 

then put in a shaker for 120 min at 300 rpm. 2 h was chosen as redox reactions at this time 

were likely to be very limited (very low Mn
++

 and Fe concentrations, see Chapter 2), but 
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sorption was likely to be nearly complete (Morel and Hering, 1993).  The samples were then 

centrifuged for 10 min at 4500 rpm. Samples were then analysed using UV-vis spectrometer. 

The sorbed concentration (S) was calculated using equation (4-1), see appendix 4.2. No 

corrections were undertaken for decay (Chapter 3) as the experiments were so short 

(correction would be equals about 0.2ppm).   

Figure (4.1) shows the isotherm obtained, which gave a reasonable linear correlation 

coefficient of r
2
= 0.78, but is probably better fitted using a Langmuir isotherm (see below). 

However, it is possible to get this type of isotherm if Mn
++

 was present in solution. Though 

little Mn
++

 would be expected experiments in Chapter 6 later indicated that perhaps might get 

up to at most 1ppm Mn initially due to non-H2A reactions. Correction for Mn at 

concentrations of about 1 ppm would mean for data of Figure (4.1) that the intercepts could 

be reduced to close to zero.   

 

Figure (4-1) Sorption isotherm for E1 various [H2A] with 20 g mass of sandstone. 

Another sorption experiment has been carried out using the same procedures and time for 

previous experiment, but using a lower mass of sandstone - 15 g. The absorbance of 
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sandstone sample free from ascorbic acid (0 ppm of H2A) gave 1.63 ppm, therefore the data 

were corrected by subtracting this value. Appenxdix 4.3 and Figure (4.2) shows the isotherm 

which is very similar to that for E1. Figure (4.3) includes both sets of data, E1and E2. 

 

Figure (4-2) Sorption isotherm for E2 various [H2A] with 15 g mass sandstone. 

 

Figure (4-3) Sorption isotherm for various concentrations of ascorbic acid with 20 and 15 g 

sandstone (E1 and E2). 
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The most common sorption isotherm for organic compounds on the surface of natural solid 

material (sediment) is nonlinear, like Langmuir and Freundlich (Schwarzenbach, 1993). In 

this kind of sorption isotherm plot, the Kd value varies according to the change in the 

concentration (C), not like the linear sorption isotherm, when distribution coefficient (Kd) has 

unique value. Also in the Langmuir sorption model the sorbed concentrations (S) do not 

continue to increase with the rise in concentration like in the linear sorption isotherm model, 

but reach a maximum sorbed concentration (S max). 

The Langmuir equation can be express as below equation  

S=
       

     
……………(4-4) 

S = sorbed   (mg/g)  

Cmax = the maximum concentration of H2A that can be adsorbed on the sandstone (mg/g) 

K= an coeffiecent constant (l/mol)  

C = equilibrium concentration of H2A,  

Excel was used to fit a Langmuir isotherm to the data. This done in the following way.  

  
      

    
 

From a mass balance, 

          

where V represents the volume of solution, M represents the mass of sandstone, and Co is the 

initial concentration of  H2A.  Combining these two equations gives 

                            

Solving this to get concentration: 
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By trial and error the fit indicated in Figure (4.4) was obtained.   

Attempting the fitting for E1 gave the results shown in Figure (4.4) (a). Figure (4.4)(b) shows 

the isotherm obtained by adding Mn
++

 until the isotherm passes through the origin. The final 

Mn concentration, 1.07 ppm, is slightly higher than would be expected from result from 

Chapter 6.   

 

Figure (4-4). Experiment E1. (a) Langmuir fit (K= 28561 l/mol; smax = 2.17 x 10
-7

 mol/g. (b) 

corrected for [Mn] so that passes through origin ([Mn] = 1.07ppm)(Kd = 0.0097 l/g). 
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Attempting the fitting for E2 gave the results shown in Figure (4.5). Figure (4.5) (b) shows 

the isotherm obtained by adding Mn
++

 until the isotherm passes through the origin. The final 

Mn
++ 

concentration is too big (3.6 ppm) suggesting that Mn
++

 cannot explain all isotherms 

with apparent intercepts.  Figure (4.5) (c) shows the results of not having 10ppm points (as 

these appear like outliers on a linearized Langmuir plot (1/S against 1/C)). The result is not a 

very good fit. 

 

Figure (4-5). Experiment E2. (a) Langmuir fit (K= 106016 l/mol; smax = 1.6 x 10
-7

 mol/g). (b) 

corrected for [Mn] so that passes through origin ([Mn] = 3.6 ppm)(Kd = 0.0095 l/g). (c) 

10ppm points excluded as they appear as outliers on linearized Langmuir plot (1/C v 1/S) 

(K= 11997 l/mol; smax = 3.09 x 10
-7

 mol/g) 
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4.3.2 Sorption of ascorbic acid using a higher concentration range of H2A (E3) 

The main purpose of this experiment was to investigate sorption at a higher range 

concentrations of ascorbic acid (20-120 ppm), but using a lower mass of sandstone (10 g). 

The method was the same as for E1 and E2. All standard solutions were stable within no more 

than 2%  difference over the experiment time period, except for one standard sample (100 

ppm) that gave an absorbance about 4% greater at the end of experiment. This was because of 

instrument drift that developed during time of these experiments and methods to correct are 

discussed in following sections where experiment results were affected significantly. See 

appendix (4.4).  

Appendix 4.5 and figure (4.6)(a) shows the isotherm. Highest concentration point is very low. 

It is not know why this was the case so the point has been removed and the isotherm shown 

in Figure (4.6)(b) used. In all other work using concentrations of H2A above 100ppm has 

been avoided as it may be that at this concentration all the KMnO4 is used up. 

The isotherm of Figure (4.6) is very similar to that of Figure (4.3). Applying the Langmuir 

trial and error fit method resulted in the fit shown in Figure (4.7). 

Figure (4.7) (a) shows an attempted Langmuir fit. This is not a very good fit. Using Mn 

concentration resulted in the isotherm passing through the origin but the amount of Mn that 

had to be added was too large (3.35ppm).  
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Figure (4-6) Sorption isotherm plot for experiment E3 A) [H2A] range from 20 – 120ppm. B) 

[H2A] range from 20-100ppm after excluding the 120 ppm point.  
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Figure (4-7). Experiment E3. (a) Langmuir fit (K= 4313 l/mol; smax = 9.46 x 10
-7

 mol/g). (b) 

corrected for [Mn] so that it passes through origin ([Mn] = 3.35 ppm)(Kd = 0.0015 l/g).  
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4.3.3 Sorption of ascorbic acid using a lower mass of sandstone and lower concentration 

range of [H2A] (E4) 

The purpose of this experiment was to measure the sorption of H2A on the surface of smaller 

masses of sandstone (2 and 5g) and with a moderately low range of inital [H2A] (30, 25, 20, 

15 and 10 ppm). As the same procedure of previous sorption experiments was then 

completed. However, in this experiment machine drifted, (see appendix 4.6 a&b). There was 

an increase in the absorbance between the calibration at the start of the experiment and at the 

end. A time-dependent linear correction was applied assuming each sample took the same 

amount of time to analyse and knowing what the order of the analysis was.  

Appendix 4.7 and figure (4.8) shows the isotherms for 2 and 5 g.  The experiment with the 

smaller mass did not work well for an unknown reason.  However, the results for 5g were 

similar to those for previous experiments.  

 

Figure (4-8) Sorption isotherms for E4  
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Figure (4.9) shows the fitted model isotherms to data. The Langmuir model is possible. A 

linear isotherm can be fitted if the Mn
++

 concentration is set at 0.815ppm which is reasonable. 

 

Figure (4-9). Experiment E4. (a) Langmuir fit (K= 34129 l/mol; smax = 3.64 x 10
-7

 mol/g). (b) 

corrected for [Mn] so that it passes through origin ([Mn] = 0.815 ppm)(Kd = 0.0011 l/g).  

 

 

 

a 

b 
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4.3.4 Confirming the drift of the UV-vis spectrophotometer 

Recording time was very important to correct the drift of absorbance of UV-vis machine, due 

at the time of analysis there being a slight drift occurring. Therefore small experiment has 

been carried out to measure the absorbance of 40 and 80 ppm  KMnO4 alone (after adding 5 

ml of KMnO4 to 5 ml of diw) at 530nm wavelength in the absence of H2A for about 50 min at 

5 min intervals. The reason for choosing this time (50 min) is that almost sorption 

experiments are conducted within no more than 1 hour. The results (Figure 4.10 and appendix 

4.8) confirmed the drift and that it was linear.  Drift was only important from E5 onwards as 

there was no observable drift before and after the set of sorption experiments reported in this 

chapter the machine was repaired. 

 

Figure (4-10) Monitoring the absorbance of different [KMnO4] over time.   
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4.3.5 Sorption of ascorbic acid using 10g sandstone and a moderate range of 

concentrations of H2A (E5) 

In this final sorption experiment the time each analaysis was done has been recorded in order 

to correct the drift of the absorbance of the uv -vis spectrophotometer accurately. The 

absorbance of some control samples (without sandstone) was also made in between run 

samples, to check the accuracy of the correction technique.  

The experiment was otherwise undertaken in the same was as before, with 10g sandstone and 

concentrations of 30, 25, 20, 15, 10 ppm. The concentrations were again interpreted using a 

linearly varying calibration, but this time knowing the exact times of the analyses,see 

appendix 4.9.  

The pH of the H2A standards and samples revealed the pH of samples vary very slightly (4.82 

to 4.90), while the pH of the standards  vary from 4.21 to 4.92, with increasing pH with 

decrease of [H2A](Figure (4.11)).  

The absorbance measurement revealed there is an increase of absorbance for the same [H2A] 

over time, and therefore several steps have been done to correct the absorbance drift 

depending on the recorded time for each sample. The correction was based on subtracting the 

initial absorbance value for each [H2A] from the intercept for the same [H2A] , appendix 4.10 

&4.11. The resulting plot against time (Figure 4.12) gave an excellent linear relationship 

(r
2
=0.96), the slope of which was used as a basis to correct the rise of absorbance over time. 

Figure (4-13) and appendix 4.12 shows the matching of absorbance after correction. 

 



Sorption of ascorbic acid on sandstone–chapter4 

106 
 

 

Figure (4-11) Relation between [H2A] and pH. A) H2A standards    B) samples in contact 

with sandstone.   
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Figure (4-12). A plot of the (absorption –intercept) for [H2A] analysis against time. 

 

Figure (4-13) The relationship between the absorbance and [H2A]   A) before correction B) 

after correction for both first and last standard solutions. 

 
A 

B 
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The resulting isotherm is shown in Figure (4.14) and appendix 4.13. Again the shape suggests 

a possible Langmuir model if the high intercept is to be explained.  

 

Figure (4-14) The sorption isotherm plot for E5 for a range of ascorbic acid with 10 g 

sandstone, after correction.   

Figure (4.15) shows the isotherm model fits. Figure (4.15) (a) indicates that the Langmuir 

isotherm flattens off at lower values than the experimental data. A linear isotherm model is 

possible (Figure (4.15)(b)) if Mn concentrations are set at 1.15ppm which is too big.  
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Figure (4-15). Experiment E5. (a) Langmuir fit (K= 103912 l/mol; smax = 3.18 x 10
-7

 mol/g). 

(b) corrected for [Mn] so that passes through origin ([Mn] = 1.15 ppm)(Kd = 0.0020 l/g).  
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4.4 Discussion and Conclusion 

Figure (4.16) shows all the data plotted together as one isotherm. It is obvious there is 

consistency among all the results as isotherm slope was almost same but with a slight 

variation in the intercept may be due to pH difference.  

Table (4.2) lists the fits obtained  using Langmuir and linear with intercept and linear 

isotherms (last with initial Mn
++

 concentrations chosen to make intercept zero) in this 

chapter. Neither Langmuir or linear isotherms are really good fits. For two experiments a 

linear fit with an initial Mn
++

 concentration is impossible so this suggest that the linear 

isotherm is not correct. The Langmuir isotherms are also generally not good fitting and there 

are a big range in parameter values.  

The general shape of the uncorrected (no account of possible initial Mn
++

) isotherms is a 

quick rise to a flatter linear increase  (Figure (4.16)). Afonso et al. (1990) (Figure (4.17)) and 

Banwart et al. (1989) also found this. These studies just use Langmuir isotherms without 

further comments. It probable that the isotherm is not Langmuir and may even be a two site 

sorption. It is probable that by combining small Mn corrections and fitting Langmuir 

isotherms less variability of the isotherm shape would be seen, but even then the shape is not 

proper Langmuir. However any of the fits listed in Table (4.2) below would be appropriate as 

empirical equations for estimating sorption in the range of dissolved concentrations for which 

the experiments were undertaken (generally 5-30 ppm after reaction).  
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Table (4-2) Summary of sorption isotherm parameters for all sorption experiment. Slope and 

intercept are for a least squares linear fit to the uncorrected data. Fit: > means better, < means 

worse. Mn: means an initial concentration of Mn
++

 needed to be assumed to get the isotherm 

to pass through the origin. 

Exp 

code 

Isotherm 

slope 

l/g 

Intercept 

mg/g 

Zero 

[H2A] 

data 

Sst mass & 

conc range (g, 

ppm) 

Langmuir 

K (l/mol) 

Langmuir 

smax mol/g 

Fit Kd 

l/g 

Mn 

ppm 

E1 0.001 0.011 Yes 15 

10-30 

28561 2.17 x 10-7 > 0.009

7 

1.07 

E2 0.001 0.009 Yes 20 

10-30 

106016 

11997 

1.6 x 10-7 

3.09 x 10-7 

< 

< 

(0.009

5) 

3.6 

E3 0.001 0.019 No 10 

20-100 

4313 9.46 x 10-7 < (0.001

5) 

3.35 

E4 0.0013 0.024 No 5 

10-30 

34129 3.64 x 10-7 > 0.001

1 

0.815 

E5 0.002 0.016 Yes 10 

10-30 

103912 3.18 x 10-7 < 0.002

0 

1.15 

 

 

Figure (4-16) All experimental isotherms plotted together 
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Figure (4-17) Langmuir sorption isotherm for ascorbic acid on the surface of synthetic 

hematite (α Fe2O3) at 25
o
C from (Afonso et al., 1990). 

In conclusion different sorption experiments  revealed that red sandstone was able to sorb 

ascorbic acid from solution, at pHs of 4.5-5, and that the sorption isotherm did not follow 

either linear or Langmuir sorption types properly but either might be used to obtain an 

estimate of the sorption over the range of concentration used in the experiments. The 

isotherms were the same shape as previous researchers obtained for synthetic hematite. 
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Chapter 5                                                                                            Cation Exchange 

5.1 Introduction 

When Fe and Mn
++

 are produced by reductive dissolution of haematite by ascorbic acid some 

of the produced Fe and Mn
++

 will probably be taken up following ion exchang. This means 

concentrations of Fe and Mn
++

 may be underestimated. Therefore determining cation 

exchange capacity (CEC) and selectivity coefficients is important to correct the concentration 

of Fe and Mn
++

. The goal of the studies described in this chapter was to determine CEC and 

selectivity coefficients for Fe and Mn
++

 on the red sandstone. 

5.2  Cation Exchange 

Cation exchange capacity is the capacity of sediment or soil to adsorb cations present in 

solution at aqueous phase (Gillespie  et al. 2000). It is measure of the total concentration of 

cations attached by ion exchange (mainly charge attraction) and may be some other sorption 

(includes bonding) processes to the mineral surfaces. The most common unit to express CEC 

values is meq/100 g dry mass or centi-mol /kg dry mass (cmolc/kg) (Essington, 2004). 

Cation exchange capacity is a fundamental parameter for many sciences, for example in soil 

sciences this parameters can be used as an indicator for evaluating the degree of soil fertility 

(Alyabina, 2009). In environmental sciences, CEC plays a considerable role in determining 

the capacity of sediment for natural attenuation of various contaminants (Fetter, 1994). 

Determining CECs is also very important in groundwater studies in order to estimate 

retardation of contaminant movement from landfill site to pristine aquifers (Gillespie, et.al 

2000). Ceazan et al. (1989)  studied a sand aquifer with <0.1% clay, but found that even with 

this tiny fraction of clay, the sediment was capable of causing a considerable drop of [NH4
+
] 

and [K
+
] in a leachate plume coming from a landfill site.  
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CEC values vary with many factors including grain size of sediment, the kind of cations 

involved in the reaction and the competition among them, and pH (Essington, 2004). Not 

surprisingly, particle size has a big effect on cation exchange capacity. For instance, Kennedy 

(1965) found that with the decrease in the fraction size of selected stream sediments from 60-

1000 µm to <4 µm that CEC increased from (0.3-13) meq/100g to (14-65) meq/100g. 

Another example is MacIntyre et al. (1991) who report that alluvial aquifer material passing 

through 2mm sized sieves has higher CEC values of around (0.6 to 0.9 meq/100g) than the 

unsieved alluvial aquifer sediment. Figure (5.1) indicates typical ranges of CEC from some 

clay minerals, oxides and soils of various grain sizes. The highest range of CEC belongs to 

montorillonite clay, while the lowest range of CEC belongs to sandy soils. 

pH also affects CEC values. CEC represents the total amount of negative charges actually 

existing on the surface of sediment (clay + oxides in sediment) (Camberato, 2001).  El-

Ghonemy (1997) points out that pH at zero point of charge (ZPC) can be considered the 

boundary between cation exchange and anion exchange being dominant. At pHs of higher 

than ZPC, cation exchange is dominant while at pHs lower than ZPC was anion exchange is 

dominant. In groundwater systems, the majority of cation exchange reactions take place on 

the surface of clay minerals, and this is almost certainly the case for the English Triassic 

sandstones (El-Ghonemy, 1997; Tellam et al., 2002). As long as pH is greater than the ZPC 

for clay minerals which is about 3 cation exchange will dominate. The reaction is considered 

very quick and reversible (Parker, 2005).  
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Figure (5-1) Typical ranges of values for cation exchange capacities of different soil texture 

and clay minerals (data from Dragun, 1988) 

Physical and chemical properties of sediments and soils can result in a significant variation of 

CEC. In some sediments, organic matter (OM) can contribute significantly to cation uptake 

(El-Ghonemy, 1997; Aprile and Lorandi, 2012), but the Triassic Sandstone studied here 

contains only a tiny amount of organic matter. There is sometimes a positive correlation 

between CEC and pH, because of changes in surface charge particularly on oxides but also on 

clay edge sites (Aprile and Lorandi, 2012). CEC values for iron oxides depend on the pH 

value, for example the CEC of iron oxide may reach 100 meq/100 g, if the pH is bigger than 

8.3 (Appelo and Postma, 2005). However, in general the CEC is much lower for oxide 

minerals (McBride,1995).  

Sandy soil and sandy loam soil have relatively small CEC values which range between 5 to 1 

meq/100 g (Soil Chemistry, 2011). Boguslavsky (2000) found that in glacial sand sediment 

about 3 % of the CEC came from quartz and other non-clay silicates, while the remaining 97 

% came from clay minerals, organic matter and oxides coating the sand grains. This suggests 

that the vast majority of CEC in sandstone will come from the small fractions of clay and 
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oxides. Batty (2015) has shown that the majority of the CEC in the sandstones used in the 

present study are not pH-dependent and this suggests that most of the CEC is from clays as 

usually assumed. Jaweesh (In Prep) has investigated the heterogeneity of CEC variation in a 

65m length of English Triassic sandstone and found that from 129 samples the matrix 

sandstone excluding mudstones and mudclasts varies from 1 to 11 meq/100g with average, 

median and geometric means around 2.1 meq/100g. 

In terms of reaction time Ogwada and Sparks (1986)(cited in Pandey et al. 2014) and 

Gillespie et al. (2000) state that very short time scales are needed for ion exchange reactions 

to occur in sediments, usually in time frames not exceeding 5 minutes, though Sparks (1989) 

indicates that ion exchange reactions take several seconds to 24 hours to get to equilibrium. 

Longer time periods are possibly associated with diffusion into inter-layer locations in clay 

structures.   

 

5.3 Measurement of Cation Exchange Capacity of Sandstone Samples Using 

Strontium Chloride  

The CEC of the sandstones was measured using a SrCl2 flushing method of a type common in 

CEC estimation (e.g. Schäfer and Steiger (2002) who use the same concentration of SrCl2 to 

determine CEC in sandy sediment). The method is to add Sr
++

 at concentrations great enough 

to displace effectively all other cations from the sandstone surfaces and then measure the 

Ca
++

, Mg
++

, Na
+
 and K

+
 released, the sum of these being the CEC estimate (other cations are 

assumed to be present in only negligible amounts). There is no need to correct for carbonate 

dissolution (Jaweesh, In Prep) as the sandstones contain no carbonate mineral.  

The following steps explain the procedure to determine CEC for sandstone samples  
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1. Disaggregate about 400 g of red sandstone and mix well to make it homogeneous.  

Then weigh 10±0.002 g masses of sandstone and put them in each of four centrifuge 

tubes. 

2. Dissolve 33.550 g of strontium chloride (SrCl2.6H2O) in 500 ml of deionised water to 

prepare 0.25 M of SrCl2.6H2O, then add 40 ml of this solution to each centrifuge tube 

containing the 10 g mass of sandstone. (This water-rock ratio will be the same as that 

used in the final ascorbic acid/sandstone experiments.) 

3. Repeat the experiment but using deionised water instead of strontium chloride. 

4. Measure the pH of the solution with sediment before separating the supernatant from 

the sediment. 

5. Analyse the solutions for Ca
++

, Mg
++

, Na
+
, K

+
, Fe

++ 
and Mn

++
 using FAAS 

6. Put the all centrifuge tubes in a shaker and shake for 1 h under gentle speed (300 rpm 

) and then centrifuge for 15 min at 4500 rpm in order to settle the sediment in the 

bottom of the tubes (the fine fraction (clay) settled on the top of sand grains). Remove 

around 25 ml of supernatant and filter using a 0.2 µm pore size filter. 

7. Analysis for potassium, magnesium, manganese and iron was carried out without 

dilution, while calcium and sodium samples were diluted. The Mn
++

 and Fe samples 

were acidified by nitric acid after separating from the sediment in order to stop the 

oxidation of Mn
++

 and Fe
++ 

which could have led to decline in concentration.  

All the samples have pHs in the range from 4.98 to 4.18. The pH of the samples with 

strontium chloride have pHs lower than those with deionised water by about 0.5 pH units. 

The pH values in the final experiments described in Chapter 6 have a minimum value of 

about 4.4 so this suggest that the CEC values obtained in this chapter are appropriate.  

These pHs also confirm that there is negligible carbonate in the sandstone. This is good as 

carbonate will affect CEC measured using SrCl2 as the presence of carbonate minerals leads 
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to increase in the apparent CEC value (Gillespie et al. 2000;cited in Aprile and Lorandi, 

2012).  Jaweesh (in preparation), working with carbonate-containing English Triassic 

sandstones and correcting for carbonate dissolution used different concentrations of CsCl 

ranging from 0.1 M to 4 M to determine CEC. Jaweesh (in preparation) found that there is 

no significant correlation between CEC and concentration of CsCl with a shaking time in the 

range from 10 min to 100 min and water/rock ratio.  

The CEC results are listed in Table (5.1). Because the deionised water experiments resulted 

in small but significant release of ions possibly from precipitated pore water salts as well as 

existing mineral dissolution, the concentrations from the deionised water experiments have 

been subtracted from the concentrations from strontium chloride experiments to obtain the 

CEC estimates.  The results are given in Table (5.2).  

Table (5-1): The concentrations in solution obtained after contact of deionised water and 

strontium chloride solutions with the sandstone. Calcium ions dominate. Iron was not 

detectable using FAAS.  

Samples  Ca
++

 Mg
++

 Na
+
 K

+
 Fe

++
 Mn

++
 pH 

ppm 

diw (1) 21.50 3.72 13.29 5.93 b.d.l. 1.13 4.98 

diw(2) 21.47 3.63 13.47 6.0 b.d.l. 1.12 4.88 

diw(3) 20.80 3.50 13.58 6.19 b.d.l. 1.18 4.86 

diw(4) 20.48 4.10 13.39 6.34 b.d.l. 1.20 4.78 

min 20.48 3.50 13.29 5.93 b.d.l. 1.12 4.78 

max 21.47 4.10 13.58 6.34 b.d.l. 1.20 4.98 

average 21.04 3.74 13.43 6.12 b.d.l. 1.16  

        

SrCl2.6H2O (1) 141.50 7.95 13.65 9.75 b.d.l. 2.85 4.19 

SrCl2.6H2O (2) 147.80 8.22 13.50 10.43 b.d.l. 2.73 4.31 

SrCl2.6H2O (3) 145.90 8.27 13.24 10.35 b.d.l. 2.52 4.35 

SrCl2.6H2O (4) 136.30 8.12 13.47 9.97 b.d.l. 3.04 4.32 

min 136.30 7.95 13.24 9.75 b.d.l. 2.52 4.19 

max 147.80 8.27 13.65 10.43 b.d.l. 3.04 4.35 

average 142.87 8.14 13.47 10.12 b.d.l. 2.78  

 

 



Cation Exchange –chapter5 

119 
 

Mn
++

 and Fe  may be released at low concentrations by desorption from hematite, especially 

at low pH values. In addition there will be some dissolution of hematite and MnO2 especially 

at low pH. The release is shown by ascorbic acid free experiments (Table (5-1)) . The 

concentrations are small in comparison with the release in the presence of ascorbic acid and 

have been taken into account during the processing of the experimental data. In addition, both 

Fe and Mn
++ 

will also be involved in ion exchange reactions and the experimental data were 

processed to try and take the exchange processes into account. However, the significant effect 

of the presence of ascorbic acid on both Mn
++

 and Fe concentrations strongly suggests that 

reductive dissolution has occurred and dominates.  

The CEC values for the sandstone samples using 0.25 M of SrCl2.6H2O ranged from 2.5 to 

2.74  meq/100 g with an average of 2.64 meq/100g. This is close to the average CEC (2.1 

meq/100g) obtained by Jaweesh (In Prep) mentioned above. Tellam et al. (2002) found 

similar CEC values for the analysis of 12 samples of English Triassic sandstone. They found 

values ranging from 0.6 to 2.3 meq/100 g with an average value of 1.2 meq/100g. Variation 

in CEC may be caused by differences in the amounts of clay present or the type of clay 

(Shafie et al. 2013; El-Ghonemy 1997). Gillespie et al (2000) found a mean value for CEC 

using SrCl2 of Permo-Triassic Sherwood Sandstone Group rocks where they measured grains 

bigger than 0.2µm was 2.41meq/100 g with a 0.11 meq/100g standard deviation, while the 

same sediment but looking at the grain size “< 0.2 µm” (may be means <2m?) was CEC 

14.46 meq/100 g (0.61 meq/100g standard deviation). Similarly Reardon et al. (1983) 

determined CEC for calcareous sands in Ontario, Canada, and found that the average CEC 

value was about 0.51 meq/100 g.  
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Ca
++

 was the dominant cation on the exchange sites. Bjerg and Christensen (1993) also found 

this for their sandy aquifer sediments but also observed H
+
 was important under acidic pH 

conditions.  

Table (5-2): Concentration of cations corrected for concentrations from deionised water 

experiments and resulting total CEC for the sandstone samples. (b.d.l. = below detection 

limit.) 

samples  Ca
++

 Mg
++

 Na
+
 K

+
 Fe

++
 Mn

++
 CEC 

meq/100 g dry sandstone 

1 2.39 0.13 0.006 0.039 b.d.l. 0.025 2.606 

2 2.52 0.15 0.0006 0.045 b.d.l. 0.023 2.741 

3 2.49 0.15 0.004 0.042 b.d.l. 0.019 2.720 

4 2.31 0.13 0.001 0.037 b.d.l. 0.026 2.509 

min 2.31 0.13 0.0006 0.037 b.d.l. 0.019 2.509 

max 2.52 0.15 0.006 0.045 b.d.l. 0.026 2.741 

average 2.43 0.14 0.003 0.040 b.d.l. 0.023 2.644 

 

5.4 Selectivity Coefficients  

The simple definition of selectivity coefficient is the relationship between the dissolved 

cations in aqueous phase and cations on the exchange sites (sediment surface) under 

equilibrium. The selectivity of cations rises with increase in cation charge and declines with 

hydrated ionic radius (McBride, 1995; Essington, 2004; Dube et al., 2001; Appelo and 

Postma, 2005). The sequence below indicates the order from more favoured to less favoured 

on the exchange surfaces (Fetter, 1999), though the actual composition on exchange sites is 

also dependent on the ions’s activity in solution: 

Al
+3

>>Ca
++

>Mg
++

>>NH
+

4>K
+
>H3O

+
>Na

+
>Li

+
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In low ionic strength solutions, many exchangers prefer multivalent cations rather than 

monovalent cations, whereas in elevated ionic strength solutions the exchange phase on the 

solid surface prefers monovalent cations (Drever, 1997; Essington, 2004).  

To see the dependence on hydrated radius sequences of cations from lower to higher 

likeliness to attach to a surface have been put together by Essington (2004) for monovalent 

and divalent cations. For monovalent cations (hydrated ion radius) 

Li
+
(0.382 nm) >Na

+ 
(0.358 nm)>K

+ 
(0.331 nm)> Cs

+
 (0.329 nm)  

More replaceable      Less replaceable 

and for divalent cations  

Mg
++ 

(0.428 nm) >Ca
++ 

(0.412 nm) > Pb
++ 

(0.401 nm)  >Ba
++ 

(0.404 nm)  

More replaceable      Less replaceable 

 

Ion exchange is usually modelled using equations based on the equilibrium constant equation 

and this is the formal definition of the selectivity coefficient. A straightforward example to 

explain the method is to take the example of exchange between Ca
++ 

and K
+
:  

Ca
++ 

(aq)+2K-X……Ca-X2(ex)+2K
+
(aq). 

 KS=
           

           
......................................... (5-1) 

Ks= selectivity coefficient (dimensionless) 

(K
+
 ) = aqueous activity (dimensionless) 

(KX) = activity of ion on the exchange site (dimensionless). 
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The main problem is that there is no generally accepted method for estimating the activity of 

the sorbed ions. However, there are various approximate ways to do this named after people 

who proposed it. For example Vanselow, and Gaines and Thomas. There are also other 

methods (the Rothmund-Kornfeld method modifies the equation by raising one of the 

concentration ratios by a power and the Gapon method changes the reaction so that only 

single charges are transferred (e.g. Essington, 2004)). In this chapter the Gaines-Thomas 

method (Gaines and Thomas, 1953) will be used as this is the most common in hydrogeology 

(El-Ghonemy 1997; Bolt,1982: Evangelou and Phillips, 1988).  

The Gaines-Thomas convention approximates the exchanged activities by using equivalent 

fractions (Vanselow uses mole fractions): 

KCa/K= 
        

  
       

...................................(5-2) 

where 

XCa  represents the equivalent fraction of cation on the exchange site, i.e. the 

concentration in meq/100g of the ion divided by the CEC: 

Xca=
                                               

   
.......................... (5-3) 

(Ca
++

) represents the dissolved activity (from multiplying the concentration in mol/l by 

the activity coefficient for that ions).   

So in the case of the six cations concerned in the present results (Ca, Mg, Na, K, Fe and Mn) 

this means  

Xca+Xmg+XNa+XK+XFe+XMn= 1..................(5-4) 

Because the sorbed activities are approximations, the K value is not really an equilibrium 
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constant and is therefore called a selectivity coefficient. It was shown by El-Ghonemy             

(1997) to vary with composition of the exchange sites for Triassic sandstone. Table (5-3) lists 

the definitions of the selectivity coefficients used in this study.  

Table (5-3) Equations used to determine selectivity coefficient for different pairs of cations 

using the Gaines - Thomas convention used in this study. 

 

 

 

 

 

 

To calculate the selectivity coefficients, dissolved phase activity coefficients were calculated 

using the extended Debye-Huckel equation: 

-log γi=
      

        
...........................(5-5) 

γi =activity coefficient (molality
-1

)  

m= concentration (mol/kg H2O) 

I = the ionic strength of the solution (mol/kg H2O). 

A and B = constants dependent on temperature of solution (e.g. Fetter, 1994) 

ai =  the ion size parameter which varies between 3 and 11 x 10
-10

 m according the type of ion 

(e.g. Fetter, 1994). In the absence of anion concentration data the ionic strength was 

estimated using Reardon et al. (1983) and Carlyle (1991): 

       
  

 ..........................(5-6) 

KCa/Mg =
          

         
 

 

KCa/Na =
            

            
 

 

KCa/K =
      

   

           
 

 

KCa/Mn =
          

          
 

 

KCa/Fe =
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mi = molality of cation  

zi =the charge of cation i 

n = number of cations. 

The activities were calculated using the total concentrations observed in solution. The 

exchanged ion concentrations were calculated by correcting the observed concentrations 

using the deionised water experiment results as described above. Calculations are provided in 

Appendix (5.1).   

The results are shown in Table 5.4. Table (5.5) lists Gaines-Thomas selectivity coefficients 

from the literature for sandstones and sandy sediments. The values obtained here are 

generally within the range found elsewhere though KCa/Mg values are a little higher in this 

study. 

Table (5-4) Gaines-Thomas selectivity coefficient values 

Samples No. KCa/Mn KCa/Mg KCa/K KCa/Na 

1 1.44 1.61 0.08 1.74 

2 1.49 1.57 0.07 10.78 

3 1.59 1.56 0.07 14.74 

4 1.37 1.57 0.07 1.69 

average 1.47 1.58 0.07 1.71 

standard deviation  0.092 0.022 0.005 6.57 
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Table (5-5) Gaines-Thomas selectivity coefficients from the literature for sandstones and 

sandy sediments. 

References  KCa/Mg KCa/K KCa/Na KCa/Mn  KCa/Fe 

Appelo & Postma (2005)   2.5 1.4 1.5 

Carlyle (1991) 

English Triassic Sandstone 

1.27 0.2    

Reardon et al. (1983) 1.3 0.001    

Tellam et al. (2002) 

English Triassic Sandstone 

0.96 0.2    

El-Ghonemy (1997)  0.28-0.6    

The present study 1.58 0.07 1.71 1.47  

 

5.5 Experiments on Fe (II) Exchange 

Iron was not released in measureable amounts from the treatment of the sandstone samples 

with SrCl2 during the determination of CEC.  Therefore separate experiments were carried 

out to determine the selectivity coefficients for Fe (II) exchange.  

20, 15, 10, 5, 2.5, 0 ppm Fe
++

 solutions were made up from a FeCl2 stock solution. Then 40 

ml of these ferrous iron solutions were added to 10 g of sandstone (similar rock water ratio 

for final experiment, Chapter 6) in duplicate. Ca
++

, Mg
++

, Na
+
, K

+
, Mn

++
 and Fe

++
 

concentrations were measured after shaking for 1 h at 300 rpm and centrifuging for 15 min at 

4500 rpm. All samples were filtered using 0.2 µm filters before analysis. pH was also 

measured on each sample.  

All the data are provided in Appendix (5.2). As can be seen from Figure (5.2), there is 

considerable increase of Ca
++

 with increase in ferrous iron concentration in solution and a 

slight increase of the concentrations of the other cations except sodium.  In all cases the 

initial iron concentration dropped after interaction with the sandstone, consistent with 

sorption taking place. Though oxidation of Fe
++

 by oxygen is possible it will be assumed 

insignificant. The drop in Fe concentration was greater than the increase in Mn
++ 

which might 
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have been the result of reductive dissolution of MnO2 by Fe (II). For instance the initial 20 

ppm of Fe
  
dropped to 11.3 ppm after interaction with the sandstone, while the total amount 

of Mn present was 1.7 ppm. And the initial concentration of Fe
  
 of 5 ppm dropped to 2.2 ppm 

after interaction with sandstone, while the amount of Mn
++ 

present was 1.3 ppm. In other 

words the amount of Fe decline was higher than amount of Mn
++

 increase even taking into 

account the fact that 2 moles of Fe are required to reduce one mole of Mn. This does not 

mean that no MnO2/Fe reaction occurred just that this did not control the Fe concentrations. 

Even if some oxidation of Fe had occurred it would not necessarily mean that all Fe was 

removed from the system by precipitation as a ferric oxide. However this is still uncertain.  

 

Figure (5-2) Concentrations of cations released from 10 g sandstone in contact with various 

initial concentrations of ferrous iron solutions. 

To calculate the selectivity coefficient for Ca/Fe exchange,  

a hydrochemistry numerical model (Phreeqc) has been used. The rock was equilibrated with 

the composition of the solutions after DIW was added and assuming Fe concentration was 0.4 

ppm. The CEC and selectivity coefficients used were those from the previous analysis but 

KCa/Fe was used as a calibration variable. Then FeCl2 was added in same amounts as in the lab 
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experiment. KCa/Fe was varied until the observed data were matched by the model. The best 

match was judged by eye.  

The results are plotted in Figure (5.3) and appendix (5.3). The match of the model to the lab 

data seem good though perhaps Ca
++

 and Mg
++

 are a bit low. From the results it looks like the 

calibrated selectivity coefficient of KCa/Fe  was very low ,around 0.01. This is much lower than 

Appelo and Postma’s (2005) value of 1.5.  

 

Figure (5-3) Results of Phreeqc modelling of the FeCl2 experiments.  

5.6    Sorption of Mn
++

  

A further experiment was undertaken using Mn
++

. Concentrations of  20, 15, 10, 5, 2.5, and 0 

ppm were prepared and 40 ml of each was added to 10g of sandstone in duplicate. The 

procedure of this experiment was the same as for the Fe experiments described in the 

previous section.  

The results are shown in Figure (5.4) and appendix (5.4). The sorbed concentrations have 

been corrected using the average concentrations measured in the two 0 ppm  Mn experiments. 

It is clear that they cannot be correctly interpreted just as a sorption isotherm. The negative 

sorption concentrations suggest that there is Mn
++

 supplied from another source. This may be 
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just for the two negative sorption value results but also may be for the other values. 

Insufficient time was available to repeat the experiments.  

 

Figure (5-4): The isotherm for the Mn experiments. 

So we rely on the Mn selectivity coefficient values obtained during the ion exchange 

experiments though even these are not certain for the same reasons as given here. However, 

they are very similar to values from the literature.  

5.7 Conclusions 

The reason to investigate the ion exchange reactions was to find out the effect on the Fe and 

Mn
++

 concentrations following ascorbic acid being added to sandstone. Without correction 

the measured values of Fe and Mn
++

 would be underestimated, due to adsorption on the 

surface of oxides and clay.  

Many batch  experiments have been carried out to determine cation exchange capacity of the 

sandstone samples. The results revealed that CEC varies from 2.50 to 2.74  meq/100 g with 

good repeatability among samples.  This value is relatively low in comparison with CEC 

values for other kinds of sediment like clay.  
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Selectivity coefficients have been determined for Mn and Fe and the value for Mn was 

significantly higher than for Fe (KCa/Mn =1.47 while for KCa/Fe =0.01). The values interpreted 

are not precise and depend on the models used (Gaines-Thomas) and the other assumptions 

made (initial concentrations for example). The final Mn experiments indicate possible 

problems. However the models used were able to reproduce acceptably the concentrations 

observed in the experiments. The Mn selectivity coefficient agreed very well with the value 

obtained from literature but the Fe one was much less. However as Mn
++

 concentrations are 

greater in the experiments of Chapter 6 than the Fe concentrations the main effect of 

corrections depends on the Mn selectivity coefficient. The results will be used in Chapter 6.
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Chapter 6   Reaction of Ascorbic Acid and English Triassic Sandstone  

6.1 Introduction  

From experiments carried out by previous authors on synthetic hematite it was thought that 

ascorbic acid may be able to reductively dissolve natural hematite and may provide insights 

into the oxidation of dissolved organic matter by hematite coated surfaces of the English 

Triassic Sandstone (Chapter 1). In Chapter 2 it was shown that ascorbic acid was capable of 

reductively dissolving hematite and Mn oxides  from sandstone samples form the English 

Triassic Sandstones. In Chapter 3 a method for the analysis of ascorbic acid was developed. 

In Chapter 4 the sorption of ascorbic acid in the sandstones was investigated as this was 

assumed to be the first stage of the reductive process. In Chapter 5 ion exchange was 

investigated as it was expected that any Fe and Mn
++

 released by reductive dissolution may 

be taken up in part by exchange sites. In this chapter the final experiments on the reaction of 

ascorbic acid and sandstone are undertaken under both unsterile (biotic) and sterile (abiotic; 

Benelli, 2015) conditions. Both set of experiments are in anaerobic box. 

6.2 Methods 

The method used is listed below. 

1- Preparation of sandstone samples. Samples were collected from sandstone outcrop 

close to Quatt, Shropshire (National Grid Reference SO75528823). Samples were 

disaggregated using a pestle and mortar, to covert the slightly cemented sandstone to 

sand. The sand was then mixed well together to make them homogeneous.  Then 10 g 

± 0.001g subsamples of the crushed sand were put in 50 ml centrifuge tubes (Corning 

Centristart
TM

). 
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2- Preparation of H2A. 100 ppm stock solution of H2A was prepared and diluted to 80, 

60, 40 20 and 0ppm under aerobic conditions. Then these solutions were put inside 

the anaerobic chamber. The chamber was purged with N2 gas which was also used to 

purge each standard solution for 5 min to remove dissolved oxygen from it. 

3- Preparation of the anaerobic box. All the equipment (pipette, pH & Eh meter, shaker, 

syringe and 0.5 M of HNO3) for the experiment and all samples were placed inside 

the anaerobic box.  

4- Preparation of reactions. 40 ml of 100, 80, 60, 40, 20 and 0 ppm ascorbic acid 

solution were added to each centrifuge tube which contained the 10 g sandstone 

samples. Replicates were as indicated in Table (6-1). 

 

Table (6-1) Replication of samples  

[H2A] ppm Number of replicates 

100 3 

80 1 

60 3 

40 1 

20 3 

0 1 

Total  ∑12 

 

5- Reaction. All the centrifuge tubes were put in a shaker inside the anaerobic box, and 

shaken at 300 rpm for different times: 4.5, 16, 24, and 49 h.  

6- Sample preparation.  After shaking measure the pH and Eh for each sample in 

presence of the sediment, then filter 15 ml of each solution using a 0.2 µm syringe 

filter (Acrodisc syringe filters). 

7- Analysis of Mn
++

 and Fe.  10 ml of filtered sample was used to determine the 

concentrations of Fe and Mn by FAAS, after acidification by 150 µl of 0.5M of HNO3 



Reaction of Ascorbic Acid and English Triassic Sandstone –chapter6 

132 
 

to maintain low pH and prevent precipitation of ferric iron, and Mn
+4

 oxides during 

exposure of samples to the oxygen during analysis. 

8- Analysis of H2A. 5 ml of KMnO4 was added to 5 ml of ascorbic acid sample, then 

shaken by hand for less than 1 min and put in a cuvette to measure the absorbance at 

530 nm with three replicates using UV-vis spectrophotometry. 

The same above lab procedure was repeated by Benelli (2015) under the author’s supervision 

unsing  heat –treated   samples and all equipment used in this experiment was sterilized . 

Many previous researchers suggest using autoclaves to sterilize sandstone core samples (Jang 

et.al 1983; Jenneman,1985, 1986). Therefore, dry heating has been use to prepared Abiotic 

sandstone samples. Each sample was put in an oven at 90 
o
C for 48 h.  NEB (2015) state that 

at around 60 
O
C most microorganisms will be killed and this was confirmed by Handley-

Sidhu (pers. comm., 2015). Higher temperatures were not used because of possible damage to 

the sandstone mineral surfaces. To test how well this worked, microbiology plate tests were 

carried out for heat –treated  and unsterilized sandstone samples. From Figure (6.1) it is clear 

that most bacteria are killed off though may be not all. The sandstone may not be completely 

sterilised, but it is likely from the observed results that biotic activity will be significantly 

inhibited using this method.All equipment was washed first with 5% HCl, and then rinsed 

with deionised water several times before placing in an autoclave at 120 
o
C for about 20 

minutes. The inside surfaces of the anaerobic box were wiped using an antibacterial solution. 

Solutions used were all filtered. 
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Figure (6-1) Agar plates after 3 weeks of incubation of untreated sandstone (left) and heat-

treated sandstone (right). High bacteria population growth in the left plate, which represents 

sandstone without any treatment (unsterilized), while there are many less bacteria in the right 

plate sample which represented an attempt at providing  an abiotic control condtion (Benelli, 

2015).    

There are three steps to correct the raw data:  correct the apparent H2A analytical 

concentration for the effect of Mn; correct for the degradation observed in experiments 

without sandstone (Chapter 3) over time; and correct for Fe and Mn concentration as a result 

of ion exchange uptake of these metals.  

For the Mn
++

 correction, the below equation has been used to carry out this correction for all 

the concentrations of ascorbic acid  

[H2A] c = [H2A] dissolved – (-3.96) × ([Mn] /55- [Fe]/56/2) ×55 

[H2A] c= the concentration of H2A after correction for the concentration of Mn in the sample 

-3.96  constant is derived from the data in Chapter 3. The main effect (Chapter 3) was due to 

MnO2 colloids forming due to oxidation of MnII by the permanganate. This causes rise in 

absorbance. But FeII reacts with MnO2 colloids to produce MnII so reducing the effect of the 
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colloids. It is possible that the produced MnII reacts again with permanganate to produce 

more MnO2 colloids within the time of the analysis. But checks on including and excluding 

the Fe correction indicate that there is only a slight effect.  

After applying this correction to the raw data, the corrected H2A concentration was a higher 

than the raw concentration value. The effect of correction increased with the rise in [Mn
++

 ] in 

the solution. For example the average H2A after 4.5 h was 73 ppm before correction but 

increased to 82 ppm after correction, (see appendices 6.1 to 6.5). 

The effect of degradation of H2A was corrected for using the equation below (Chapter 3).  

[H2A] deg = 0.0921 × (time in hours +2) 

 where 0.0921ppm /hour  is  the constant derived  in  Chapter 3. The 2 hours was added to the 

reaction time for preparation and analysis. 

[H2A]deg = the concentration of H2A corrected for degradation. 

The correction effect of degradation was minor. For example after 4.5 h in one biotic 

experiment the 82 ppm increased to 82.6 ppm after correction, while after 49 h 30 ppm 

increased to 34.9 ppm, the effect of degradation increasing over time, (see appendices 6.1 to 

6.5). 

Fe and Mn will be up taken on exchange surfaces and the selectivity coefficients and cation 

exchange capacities were determined in Chapter 5. The corrections were done in the 

following way. A Phreeqc model was set up that equilibrated the sandstone with the 

measured cation exchange capacities and Gaines-Thomas selectivity coefficients with a water 

with concentrations obtained from analysis of DIW in contact with sandstone. Fe and Mn
++ 

were then added by trial and error in amounts that produced the observed concentrations in 

solution. The total added Fe and Mn
++

, i.e. the increase in solution and the increase in sorbed 
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concentration, were the predicted amounts of Fe and Mn
++

 added through reductive 

dissolution.  

The amount of increase was significant for the [Mn] and minor for Fe. For example in a 

biotic experiment after 4.5 h the average of Mn released was 2.68 ppm but after ion exchange 

was taken into consideration using Phreeqc it increased to 5.1 ppm, while in the case of Fe 

the ion exchange correction changed the concentration from 1.13 to 1.28 ppm. (see 

appendices 6.1 to 6.5). 

6.3 Results and Initial Observations 

This section presents the results of the experiments and commenting on the data. Following 

sections present an interpretation of the data based on the initial observations made in Section 

6.3.  

Appendices (6.1) to (6.5) and figures (6.2) to (6.12) summarize the results of the data after 

correction. The H2A measurements have been corrected for Mn concentrations and 

degradation using the methods suggested in Chapter 3. The correction for ion exchange have 

been undertaken on the Fe and Mn values. A number of preliminary observations can be 

made by referring to these plots.   

For the biotic experiments there is an increase in the release of Mn
++

 and Fe over time and a 

sharp drop of [H2A] from its initial concentration with time. For all concentrations of H2A, 

Mn released was significantly higher than Fe release as found for low temperature and 

concentrations and high water rock ratios in Chapter 2. Besides the increase release of Mn 

and Fe over time for given initial [H2A], also there is a rise of release of Mn
++

 and Fe with 

rise in the initial [H2A]. pH values showed a decrease with greater initial H2A concentrations 

as expected. They also increased a small amount through each biotic experiment, and Eh fell.  
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In the abiotic experiments (Benelli, 2015) there was a similar pattern. Increase in Fe and 

Mn
++

 concentrations (except for 49h, see below), the latter being greater than the former, with 

both time and initial [H2A], and a decrease in [H2A] with time. However the Fe and Mn
++ 

concentrations were generally lower and the H2A concentrations were higher than for the 

biotic expirments.  In all abiotic cases the change in concentration in Fe and Mn
++

 between 

the 24 and 49hour samples appeared not consistent with the previous rise and in many cases 

there was a fall in concentration. pH showed similar relationship with initial H2A 

concentration as with the biotic experiments with pH linearly decreasing with increasing 

[H2A], but the pH value for abiotic was higher.  Similar with Eh, but here abiotic Eh was 

lower than biotic (Figure 6.12).  In summary in all cases there is a drop of H2A over time for 

biotic and abiotic experiments, though the amount of decline was higher in biotic experiments 

than in abiotic experiments. In general these results confirm the ability of red sandstone to 

oxidise the dissolved organic carbon. 

 

Figure 6-2 Amount of Fe and Mn
++

 released into the solution and concentration of H2A for 

biotic experiments using an initial H2A of 100 ppm. 
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Figure 6-3 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for 

abiotic experiment using initial H2A of 100 ppm. 

 

Figure 6-4 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for 

biotic experiment using initial H2A of 80 ppm. 
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Figure 6-5 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for  

abiotic experiment using initial H2A of 80 ppm. 

 

Figure 6-6 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for  

biotic experiment using initial H2A of 60 ppm. 
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Figure 6-7 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for  

abiotic experiment using initial H2A of60 ppm. 

 

Figure 6-8 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for 

biotic experiment using initial H2A of 40 ppm. 
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Figure 6-9 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for  

abiotic experiment using initial H2A of 40 ppm. 

 

Figure 6-10 Amount of Fe and Mn
++

 released in the solution and concentration of H2A for  

biotic experiment using initial H2A of 20 ppm. 
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Figure 6-11 Amount of Fe and Mn
++ 

released in the solution and concentration of H2A for 

abiotic experiment using initial H2A of 20 ppm. 

The results from the biotic and abiotic measurements are different (e.g. Figures (6-2) and (6-

3)). In all case, the Fe and Mn concentrations are greater in the biotic (unsterilized) than 

abiotic experiments (e.g. Figures (6.2) and (6.3)). Also the H2A concentrations fall more in 

the biotic experiments. This is expected because if bacteria are involved there is likely to be 

faster reactions. Another possible explanation is that the biotic experiments have lower pHs 

(Figure (6.12)) and this was found to speed up the reactions in synthetic systems by Suter et 

al. (1991). Suter et al (1991) did not say anything about sterilizing their experiments but they 

used newly prepared hematite that may be did not contain appropriate environmental 

bacteria.  
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Figure (6-12) Plot of pH and Eh against time for all experiments, appendix (6.6 A&B). 

 

 



Reaction of Ascorbic Acid and English Triassic Sandstone –chapter6 

143 
 

In all cases the Fe concentrations are smaller than the Mn
++

 concentrations despite Fe oxides 

being much greater in the sandstone. This has nothing to do with bacteria as the same is seen 

for both biotic and abiotic experiments. This could suggest that Mn oxides are more quickly 

reactive than the Fe oxides. But could also mean that Fe is produced and then reacts with 

MnO2 to release Mn into solution and precipitating Fe(III) oxides.  E.g.  

2Fe2+ + MnO2 + 4H2O → 2Fe(OH)3 + Mn2+ + 2H+      (6-1) 

(e.g. Postma, 1985; Thornton et al., 2001). This reaction suggests reduction in pH and this is 

what is seen in the experiments (Figure (6.3)).  

 

Mn concentrations reach a maximum at low initial H2A concentrations and at high times (e.g. 

Figure 6.7). At low H2A it is clear that the H2A is nearly  used up in some cases (e.g. Figure 

(6.11)) as though concentration does not reach zero the fall has stopped. Perhaps the 

maximum Mn concentrations seen at slightly higher H2A and longer times (e.g. Figure 6-7) 

are because the source of Mn is used up. The Fe concentrations continue to rise for higher 

times at higher H2A and may be this supports the idea that Fe dissolution by H2A is driving 

Mn oxide dissolution, but the rates of rise are less and in some abiotic cases the rise does not 

occur (e.g. Figure 6.11).  

 

6.4 Rates of Apparent Reductive Dissolution 

In order to determine the rate of apparent reductive dissolution of hematite and Mn oxides 

and compare it with previous studies, all the data for Mn
++

 and Fe concentrations were 

plotted against time for biotic experiments (Figure 6.13). The plot shows how the 

concentration of the sum of half the Fe concentration and the Mn concentration in mmol/l 

(=M), varies with time. This sum is calculated because each H2A can reduce two FeIII to two 

FeII and reduce one MnIV to one MnII.  
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As we can see from Figure (6.13a) in general the higher the initial [H2A] the higher metal 

[M] released into solution and metal concentrations increase roughly linearly with time. The 

slopes of the plots are similar, unlike the case for Suter et al. (1991) who have slopes 

increasing with increasing initial [H2A]. The intercepts however increase with increase in 

initial [H2A].  

Figure (6.13b) is a plot of the same data but with averaged metal M values and with the 

average of the 4.5 hour data subtracted from each value as was done by Suter et al. (1991). 

The reason for subtracting the results obtained for the first 4.5 hours is that during this early 

period of reaction there will be processes occurring additional to those being studied, in 

particular sorption / desorption and may be even some dissolution. In addition, it may take a 

finite time for the different reduction reactions to adjust to a constant set of rates. This was 

done in order to see the relative rates of change in concentrations more clearly. There is a 

range of slopes and 100ppm is the steepest but there is no other pattern in the other slope 

values and they are all very similar. The subtraction of the initial 4.5 hour experiment results 

does not make much difference to the gradients. 

Figure (6.14) shows a plot of average pH against the intercept on the [M] /time plot of Figure 

(6.13a) but with also the results from the less than 49h abiotic experiments added (see 

below). This shows that there is a negative linear relationship between the intercepts and pH 

indicting that even slightly lower pHs are associated with greater release of Fe and Mn
++

. 
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Figure 6-13.  Variation of the sum of Fe/2 and Mn
++

 concentrations as a function of time in 

the biotic experiments. (a) is the plot of total concentrations corrected for ion exchange. (b) is 

plot of same data but using averaged values for each point and with the 4.5hour results 

subtracted from each value as was done by Suter et al. (1991). 
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Figure 6-14. Plot of average pH for each initial [H2A] against the intercept on a time = 0 on a 

[Fe]/2 + [Mn] against time plot (i.e. Figure 6.13(a)) for both biotic and abiotic experiments. 

49h data are not included for the abiotic data (see Section 6.2). 

As shown in Figure (6.15), the drop of [H2A] as a result of reaction with the sandstone 

([H2A]initial –[H2A]aq) plotted vs [Fe]/2+[Mn] shows a positive relationship, the drop of H2A 

leading to more release of metal (Mn
++

 and Fe )in the solution. But the drop in [H2A] is 

greater than the rise in [M] indicating that some other process is involved. We would have 

expected a gradient of 1 if the decrease in [H2A] is all due to interaction with Fe and Mn 

oxides. Similar relationships are also seen for the experiments at lower initial H2A 

concentrations. 
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Figure (6-15 )  Decrease in [H2A] plotted against increase in metal concentration for (a) 

biotic and (b) abiotic conditions (excluding 49 hour results). All results for 100 ppm initial 

concentration of H2A.  

Comparing the rates of dissolution with the results of Suter et al. (1991), the data from a 

present study indicate rates (d[M]/dt) of about 1 mol/l/h (Figure (6.13)) in the biotic 

experiments, and Figure 6.16 indicates that the rate of change of metal concentrations with 

time in the case of the sandstone is larger than Suter et al. (1991) saw with synthetic hematite 

and at the same pH but they are of the same magnitude. Suter et al. (1991) do not comment 

on sterilizing but it is likely that the procedure they used with synthetic hematite would have 

contained many less numbers of relevant environmental bacteria than the natural sandstone 

used here so may be best comparing their data with the abiotic data here. Though the abiotic 
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rates are lower as seen in Figure (6.16) they are still higher than the rates seen by Suter et al. 

(1991) at lower pHs. 

 

Figure 6-16. Comparison of rates of dissolution of Fe and 2M (2 x {[Fe]/2+[Mn]}). 2M is 

used as Suter et al. (1991) data is in terms of moles of Fe.  

6.5 Mass balance and Surface Interactions 

Suter et al. (1991) used the equation to determine the amount of H2A attached to the surface 

of hematite [H2A]sur: 

[H2A]T = [H2A]aq + [H2A]sur + 0.5 [Fe
++

]  

In principle, in this study all the components of the system have been measured so that a mass 

balance can be done rather than simply calculating [H2A]sur by difference:   

[H2A]T = [H2A]aq + [H2A]sur + [H2A]deg + [H2A]hae …………………………(6-1) 

[H2A]T = [H2A]aq + [H2A]sur + [H2A]deg + {[Fe]/2+[Mn]} 

where 

[H2A]T= initial [H2A] before reaction with sandstone in [M]/[L
3
] 
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[H2A]aq= concentration of H2A measured in the solution after reaction with sandstone in 

[M]/[L
3
] 

[H2A]deg= mass per unit volume of H2A degraded/decayed in [M]/[L
3
] 

H2A]sur= concentration of [H2A] attached to the rock surfaces in [M]/[L
3
] 

[H2A]hae= mass per unit volume of [H2A] that has reacted with hematite in [M]/[L
3
]. 

If take for example the 100 ppm case to determine the mass balance, we get the result in 

Figure (6.17). In this plot all values have been expressed in mmol rather than mmol/l as in the 

balance equation above. The red line represents the initial mass of H2A added. The blue 

diamond represents the total mass calculated using equation (6-1) where [H2A]sur is estimated 

using the results from Chapter 4 (Sorption).  Initially the values are greater than [H2A]T, but 

then they fall to less than [H2A]T over time. Following Suter et al. (1991) and taking the 

concentrations as differences from the first measurement (4.5hours), gets rid of the problem 

of the initial overestimate, but of course still underestimates the total mass at later times. Of 

the mass balance components ([H2A]aq + [H2A]sur + [H2A]deg + {[Fe]/2+[Mn]}) the least well 

constrained is the reaction with hematite. However, it is not obvious what process would 

result in removal of Fe and Mn other than ion exchange which has been taken into account. 

Looking at [H2A]sur it is possible that the sorption may be different in this system compared 

with the system of Chapter 4 because there are other reactions occurring here and the pH is 

different and changing.  Assuming this is correct, if the calculated sorption is removed from 

the balance, the balance is as shown in Figure 6.17 with green triangles (i.e. all H2A 

components added together except for sorption). The missing mass in this case is indicated by 

the difference between the green triangles and the red line.  



Reaction of Ascorbic Acid and English Triassic Sandstone –chapter6 

150 
 

 

Figure (6-17) Mass balance variation with time for the 100ppm H2A case. 

Figure 6.18 shows the relationship between this missing mass (i.e. [H2A]T – [H2A]aq - 

[H2A]deg - {[Fe]/2+[Mn]}) and[H2A]aq and pH for an example experiment (100ppm). It is 

observed that the missing mass increases with increases in the pH value and with decreases in 

[H2A]aq. If the missing mass is all due to, following Suter et al. (1991), to sorption, then the 

result is surprising as sorption then increases with a decrease in [H2A]aq, which is not 

expected in theory or from the results of Chapter 4.To get an increase in sorption despite 

decreasing dissolved concentration suggests that the sorption capacity increases with time 

(and hence with pH). One possibility may be is that dehydroascorbic acid  (DHA), the final 

product of the oxidation of H2A, sorbs onto the hematite and that HA
-
 sorbs onto the DHA. 

To model this it was assumed that 

i. H2A dissociation was occurring to produce HA
-
 (pKa = 4.17; Domitrović, 2006) 

ii. DHA concentration was set equal to M (=[Fe]/2+[Mn]) 

iii. activity corrections can be ignored 
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iv. HA
-
 attaches to the hematite by linear sorption, i.e. can be represented by a Kd (KHA-/Hae 

which represents HA
-
 sorbing onto hematite) 

v. DHA attaches to the hematite by linear sorption (KDHA/Hae) 

vi. HA
-
 attaches to DHA attached to hematite by linear sorption (KHA-/DHA) 

So, 

KDHA/Hae=[DHA]sur/[DHA];  

KHA-/Hae=[HA-]sur/[HA-];  

KHA-/DHA=[HA-]sur/[DHA] 

Hence 

sorbed [HA
-
]  = [HA

-
]KHA-/Hae + [DHA]surKHA-/DHA  

  = [HA
-
]KHA-/Hae + KDHA/Hae[DHA]KHA-/DHA  

This model was then used to fit the lab data for all the experimental results. This was done by 

trial and error in Excel by varying the Kd values until a good fit with the lab data was 

obtained as judged visually. The model production were compare against the mass balance 

estimated for [H2A]sur . The values for the calibrated Kd were kept constant in all the 

experiments. The results are shown in Figure (6.19) for biotic experiments. 

After initial calculations, in all cases the 49h data were excluded. As noted before the 49hour 

data reduce the slopes of the concentration/time plots for the lower concentrations (e.g. 

Figure  6.11, 20ppm), but on closer looking this also happens for the higher concentrations 

though at lesser amounts (e.g. Figure 6.4, 80ppm). In addition, the 24h value for 20 ppm was 

removed as this seems affected by the low concentration of H2A.  
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Figure (6-18) Plots of the sorbed HA
-
 estimated from the mass balance against [H2A]aq and 

pH for the 100ppm experiments.  

Though the fit shown in Figure (6.19) is not exact the model reproduces roughly the data 

observed. Possible reasons for a lack of perfect agreement are that the conceptual model is 

not right and that using a simple Kd approach is not appropriate. However, the calculations 

suggest the conceptual model is a quantitatively possible explanation. 

From the model the Kd values can be estimated. Because KDHA/Hae is always multiplied by 

KHA-/DHA in the model, only the product of these two Kd values can be determined. So the 

results indicate KDHA/Hae x KHA-/DHA = 0.003 (l/l) and KHA-/Hae = 0.2 (l/l). 
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Figure 6.20 shows the results for fitting the abiotic experiments using the same model. It was 

not possible to use the same KDHA/Hae x KHA-/DHA value as for the biotic experiments as there 

was less sorption occurring than in the biotic experiments but the KHA-/Hae value was held 

constant. KDHA/Hae x KHA-/DHA was calibrated at 0.01 (l/l).  

The use of different Kd for the sorption involving DHA may indicate that the model is not 

correct. For example, it is possible that as the bacterial community developed during the 

unsterilized experiments that they provided the extra sorption capacity rather than the sorbed 

DHA.  The higher pH values of the abiotic experiment may have affected the surface sorption 

sites, though normally it expected that higher pH to mean less H
+
 competition for the sites so 

more efficient DHA sorption.  

The apparent KHA-/Hae values obtained from Chapter 4 experiments, converted for HA
-
 from 

H2A, range from about 0.3 to 0.6 l/l depending on what assumptions are made (especially 

what dissolution there may have been of Mn over the experimental period). This is slightly 

greater than for the current model (0.2), but of the same order.  

One question is why does the sorption of HA
-
 to sorbed DHA happen here but was not 

observed with synthetic hematite by Suter et al. (1991)? This is unknown, but could relate to 

the fact that the coatings of hematite are thin and that the minerals underneath have an impact 

on the sorption or perhaps the dissolution exposed clay surfaces that then sorbed DHA.   

It is concluded that one way of explaining the data is that the sorption increases as a result of 

sorption of DHA.  This means that H2A is removed by sorption and reductive dissolution and 

the reductive dissolution is indicated by metal released (M )(=[Fe]/2+[Mn]). 
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Figure (6-19) Comparison of the DHA sorption model predictions and the lab data for the 

biotic experiment results 
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Figure 6-20 Comparison of the DHA sorption model predictions and the lab data for the 

abiotic experiment results  
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6.6 Rates of Reductive Dissolution of Sandstone Oxide Coatings 

The rate of removal of H2A from solution is roughly  linear with time over the time interval 

0-49 hours (24 hours for 20ppm) as seen in Figures 6.2 to 6.11.  However the 49h results are 

below the best fit line, and as result only the earlier results (4.5, 16 and 24h) are included in 

the following analysis. The drop at 49 hours might relate to the built up of Al as Suter et al. 

(1991) noted for their experiments where the pH was above 3.   

Figure 6.21 plot the rates of change of [H2A] as a function of average dissolved concentration 

over the 0-24 hour period for the 100, 80, 60 and 40 ppm experiments, and for 0-16hour for 

the 20ppm experiment. The plot indicates that there is a rough linear relationship between the 

rate of decrease in [H2A] and the average concentration for each experiment, showing that the 

reaction is approximately first order. The constant of proportionality is more negative for the 

biotic system, i.e. there is a faster rate of decrease in [H2A]. In both cases forcing a linear 

relationship through the origin reduces the correlation coefficient only a little suggesting that 

the relationship passes through the origin as expected .The relationship represents the 

removal of [H2A] from solution, including sorption and oxidation by the sandstone (but not 

any other degradation reaction) and hence it is not representative of oxidation of the [H2A] or 

its degradation, these will be less and represented by d{Fe]/2+[Mn]}dt = d[M]/dt. In other 

words Figure 6.21 cannot be used to indicate the oxidation of ascorbic acid as it include 

sorption. 
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Figure (6-21) the rate of decrease in [H2A] with time as a relation of [H2A]. 

Over the whole time period of the experiments Figure 6.13 indicated that there was no clear 

relationship between rate of change of metal released (M) with time and H2A concentration.  

However, replotting the data without the 49 hour results and without the 24 and 49 hours 

results for 20ppm gives the plot of Figure 6.22(a). It shows that the rate of [H2A] oxidation is 

proportional to the average concentration in each experiment, i.e. is first order in [H2A].    
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Figure 6-22 The rate of change of [Fe]/2 + [Mn] with time plotted against average [H2A] for 

each of 100,80,60,40 and 20ppm experiments. (b) is same as (a) but one point removed for 

biotic results (see text).  

The rate constant for biotic system is about three times the rate constant for the abiotic system 

and suggests it is faster with bacteria or lower pH. In Figure 6.22(a), the biotic relationship 

does not pass through the origin. This may be due to non-H2A dissolution of hematite, may 
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be dissolution by H
+
.   However, remove a possible outlier and the correlation improves and 

passes through the origin (Figure 6.22(b)). 

Another plot, Figure 6.23 shows the relationship between abiotic experiment rate of H2A 

oxidation and that for the biotic experiments. The rate for the biotic conditions is as expected 

from Figure 6.22 about three times that for the abiotic conditions.  

 

Figure (6-23) Comparing the rates of reductive dissolution for biotic and abiotic experiments 

Figure 6.24 (a) and (b) shows the relationship between the rate of H2A oxidation and the 

amount of HA
-
 sorbed on the hematite according to the model used for biotic and abiotic 

conditions respectively. There appears to be a relationship between the sorbed HA
-
 and the 

rate of oxidation of H2A, as Suter et al. (1991) found too. Figure 6.24 (c) and (d) shows the 

relationship between the rate of H2A oxidation and the total amount of HA
-
 sorbed onto 

hematite directly and sorbed onto DHA which itself is sorbed onto hematite directly. This 

relationship is not very important as DHA does not involved with reduction of the hematite 

but it does indicate total ascorbate sorption according to the model used.  
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Figure 6-24 The rate of metal reduction versus sorbed concentrations of HA
-
.  a &b [HA

-
]sur 

on hematite only deternined from the model for biotic and abiotic cases. c&d total [HA
-
]sur 

on all surfaces from the model 

Figure 6.25 show that the pH of the experiment is related to the rate of oxidation of H2A. This 

could be through change in sorption reactions or change in protonation of sites. The same 

relationship seen with biotic and abiotic suggests that possibly it is pH differences rather than 

the presence of bacteria that affect the rates. 
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Figure 6-25.  The relationship between pH and oxidation rate of H2A for all experiments (a) 

data separated into biotic and abiotic. (b) biotic and abiotic together.  

Suter et al. (1991) present rate constants (ke) defining them as d[Fe]/dt = ke[H2A]sur. Figure 6-

26 compares their values with the equivalent values obtained here (2 x d[M]/dt ) as Suter et 

al. (1991) have used Fe change rather than Fe/2 change, and M is defined as [Fe]/2+[Mn]). 

conclusion from this figure (6.26 a and b) is that very roughly the results are similar between 

the studies. But closer looking, Figure 6.26 c and d show  what has already been presented in 

Figure 6.16 that the rates in the present study are greater even when average values have been 

plotted. 
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Figure 6-26.  (a) Total HA
-
 sorbed as estimated using the model for this study (biotic and 

abiotic) and all data from Suter et al. (1991). The data from this study are presented as one 

average for biotic and one average for abiotic experiments. (b) as for (a) but only HA
-
 sorbed 

on hematite. (c) Data plotted against (H
+
) for pH≥2.5. (d) As for (c) but including only pH≥4 

points.  

6.7 Conclusions 

After setting  up the final experiment under anoxic conditions, the concentrations of Fe, Mn
++

 

and ascorbic acid have been monitored over time for periods extending up to 49 h.The same 

experiments has been repeated but under sterile condition (Benelli, 2015).  

It is found out over time that there is an increase of released metal (Fe+Mn) and a drop of 

[H2A]. In the abiotic experiments the concentration of metal released and the drop in [H2A] 

was less than in the biotic experiments. This may be ascribed to effect of bacteria, but also 
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the pH was lower in the abiotic experiments. One of the main and unexpected findings is that 

the rate of reductive dissolution is slightly greater than has previously been found for 

synthetic hematite. One possibility is that this is because of the presence of bacteria on the 

sandstone that are adapted to the sandstone / water conditions and speeds up the reaction. It 

was meant that the abiotic experiments would determine if bacteria were important but in the 

end the pH of these experiments was greater than for the biotic experiments and this would 

have also resulted in a decrease in rate even if the bacteria were not involved. The plot of rate 

against pH (Figure 6-25) indicates that the relationship between rate and pH for biotic and 

abiotic experiments lies on the same trend. It might be expected that this would not occur if 

bacteria were involved, but on other hand may be the bacteria change the pH and in doing so 

speed up the reaction. Without more experiments the effect of the bacteria cannot be proved. 

However, the experiments show that the rate is only slightly greater than was found for 

synthetic hematite and indicate that experiments on synthetic hematite might be used as a 

guide for what happens in hematite covered sandstones. The drop of H2A concentration after 

reacting with sandstone can be ascribed to oxidation by oxides in the sandstone, which is 

indicated by the rise of Fe and Mn in solution, and to sorption. Mass balance calculations 

done using the sorption estimation equations from Chapter 4 predict that total H2A was 

higher than initial H2A at early time and over time the total H2A mass fell below initial H2A. 

Assuming this error was due to incorrect sorption estimates, the mass balance was used to 

determine the H2A sorption. This calculation showed that the amount of sorption increased 

with time and therefore with decline of [H2A ], which is not expected from theory or from the 

results of Chapter 4. In order to determine if the model of sorption to sorbed DHA is correct, 

various studies could be undertaken including: (i) determine if there is any DHA and 

diketogulonic acid in the samples; (ii) undertake sorption experiments using DHA;  and (iii) 

undertake sorption experiments on H2A in the presence of DHA.  
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One possibility to explain this is that the final product of oxidation of H2A, dehydroascorbic 

acid (DHA) adsorbed on the sandstone surface, and then HA sorbed to DHA. Calculations 

suggest that this might be possible but the mechanism needs further invigation. However, it 

assumed that this or an equivalent process occurs so that the sum Fe/2 + Mn concentrations is 

equivalent to the amount of H2A oxidation. The rate of H2A oxidation by natural oxides in 

sandstone is higher than the rate reported for synthetic hematite by Suter et al. (1991), which 

is very interesting given that it might have been expected that newly precipitated synthetic 

hematite would be more reactive than old more crystalline hematite. 
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Chapter seven                                                         Conclusions and Recommendations 

7.1 Conclusions 

7.1.1 introduction   

The principal aim of this project was to determine the capacity and mechanisms of natural 

oxides (hematite (Fe2O3) and Mn oxides) coating sand grains of redbed continental sandstone 

to oxidize dissolved organic carbon in water under anoxic conditions. Because natural 

organic matter is so complicated the project has concentrated on studying a relatively simple 

organic, ascorbic acid.  

The method used in the investigation was undertaking a lot of batch experiments to determine 

rate oxidation of dissolved ascorbic acid by sandstone via reductive dissolution of these 

oxides. This follows the approach taken previously on synthetic single minerals by various 

people (e.g. Suter et al., 1991). Because the sandstone is more complicated than a single 

synthetic mineral the interpretation has involved rather more modelling rather than just 

calculating parameter values. And comparisons have been made between the rates of 

reductive dissolution of natural oxides studied here and the rates seen by previous workers for 

synthetic haematite.  

7.1.2  Preliminary batch experiments (Chapter 2)  

The aim of the experiments was to provide the data needed to design the final experiments 

that would be necessary to achieve the aims laid out in Chapter 1. So temperature, 

concentration of H2A, aerobic or anaerobic condition, shaking time, filtering and different 

water rock ratios were investigated. Results of these experiments   revealed that H2A 

reductively dissolved Fe and Mn oxides from red sandstone. Generally under low water rock 

ratio it was not  possible to measure the released Fe and Mn
++ 

 using FAAS, but only under 

higher temperatures (40 
o
C and above). In these higher temperature experiments the amount 

of Fe released was higher than Mn
++

. Mn
++

 did not show a continuing increase in 
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concentration after long times of reaction, unlike Fe, which indicates, may be that all Mn 

oxides have been reductively dissolved from the system.  

At increased water rock ratios it was possible to measure the released Fe and Mn
++

 under lab 

temperatures. With high water rock ratios the amount of Mn
++

 released was higher than Fe. 

Generally there is more released metals in the solutions with higher temperatures, increased 

mass of sandstone, greater reaction time, and when shaking was used, and anoxic rather than 

oxic conditions were present. Moreover, changing the initial condition of the surface oxides 

by protonation (adding H
+
) or saturating with Ca has some effect on the rate of reductive 

dissolution.  

7.1.3 Development of methods to analyse ascorbic acid (Chapter 3)  

 

The aim of the next step of the research was to develop a method to measure the 

concentration of H2A. After many lab experiments an existing method was development and 

then  adapted to  measure the [H2A] in the range from 0 to 100 ppm using KMnO4.The 

method is  based on a spectrophotometric technique and produced acceptably repeatable 

results . However ,the method requires corrections to be applied. It is affected by the presence 

of Mn
++

 which was released via reductive dissolution, though release of Fe did not have any 

measureable effect. Furthermore there is a minor effect of degradation over time which leads 

to a slight drop of ascorbic acid concentration over time. New correction methods were 

developed for these effects. 

7.1.4 Sorption of ascorbic acid on the red sandstone (chapter 4) 

The aim of this chapter is to determine the capcity of red sandstone to sorb ascorbic acid.  

Various sorption experiments were therefore carried out for a short reaction time (2h). The 

results revealed that at pHs between 4.5 and 5  natural oxides in red sandstone were able to 
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sorb dissolved ascorbic acid. The sorption isotherms were linear but with an intercept, as has 

also been found by previous research on synthetic hematite. This previous research used 

Langmuir isotherms to approximate the observed relationships. The linear-with-intercept fits, 

and forced Langmuir fits obtained could be used to estimate the amount of sorption under the 

same range of concentration of ascorbic acid and the same experimental conditions.  But it 

clear that sorption is not either Langmuir or linear but may be two- site linear. This needs 

further study. 

7.1.5 Cation exchange /total sorption of Fe and Mn
++

 on the red sandstone (chapter 5) 

The purpose of carrying out ion exchange experiments was to quantify the sorption of Fe and 

Mn
++

 on the surface of red sandstone so that uptake of these metals could be taken into 

account when determining oxidation of ascorbic aicd . It was expected that when Fe and Mn 

were released from the sandstone some of Fe and Mn would be up taken by the sandstone. So 

ion exchange properties have been investigated to determine the cation exchange capacity 

CEC and selectivity coefficients for the sandstone. The results give an average CEC value 

around 2.65 meq/100g with excellent repeatability and consistency with other work. The Fe 

and Mn selectivity coefficients showed that the selectivity coefficients for Mn were higher 

than Fe. Applying ion exchange corrections to the final data were much more significant for 

Mn than for Fe. The results showed that sorption of Fe and Mn released by reductive 

dissolution is potentially significant. So the  correction of [Mn
++

] and [Fe] is necessary when 

undertaking measurements of reductive dissolution of hematite and Mn oxides by ascorbic 

acid. 

7.1.6 Reductive dissolution mechanisms (Chapter 6) 

The aims of the final set of experiments was to determine mechanisms of reductive 

dissolution of hematite by ascorbic acid for the first time and to determine if the previously 
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published work on synthetic hematite could be used when estimating oxidation behaviour of 

the sandstones, again for the first time. The experiments were designed on basis of the results 

of the preliminary experiments (Section 7.1.2), used the newly-developed H2A analysis 

method (Section 7.1.3), and required data processing that took into account sorption of H2A 

(Section 7.1.4) and sorption of Fe and Mn
++ 

(Section 7.1.5). All the equipment was set up 

under anoxic conditions and the amount of Mn
++

 and Fe released from the sandstone and the 

concentrations of ascorbic were measured for a range of different time intervals up to 49 

hours. This was to estimate the rate of  Fe and Mn
++

 production and rate of removal of 

ascorbic acid. The same experiment was repeated but using heat –treated red sandstone 

samples, filtered solutions and equipment –treated with sterilizing solutions    (Benelli, 2015) 

to find out the effect of bacteria on the rates of reaction. It is found  that  release of metals (Fe 

and Mn) increased over time, that [H2A] decreased with time and decreased  at a greater rate 

with higher initial values of [H2A], and the [H2A] decrease was higher in biotic than abiotic 

experiments. Some of the decrease in [H2A] can be accounted for by oxidation by Fe and 

Mn
++

 oxides as indicated by rise in [Fe] and [Mn
++

] corrected for ion exchange using the 

approach developed in Chapter 5, and the rest of the decrease is assumed to come from 

sorption of ascorbic acid. However, mass balances including the predicted sorption from 

Chapter 4 overestimated the total H2A mass at early times and underestimated the total mass 

at later times .Using the mass balance to estimate the sorption, it was found that amount of 

sorption increases with time and therefore with decrease in [H2A] and with the (small) 

increase in pH during the experiments. This is odd because it does not agree with theory that 

suggests that sorption should decrease with decrease in dissolved concentrations. One 

possible explanation was found to be that the dehydroascorbic acid (DHA, the oxidised form 

of ascorbic acid) sorbed to the sandstone surface and then HA
- 
sorbed to the DHA. 

Calculations show that this may be possible but the suggestion is speculative and the 
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mechanism not defined. However, if we take this as an explanation, oxidation rates can be 

estimated from the increase in Fe and Mn corrected for ion exchange. The oxidation rates 

seen are greater than found for experiments on synthetic oxides by Suter et al. (1991). This is 

surprising as it is normally assumed that better crystalline solids produced a long time ago 

would have less sorption ability than newly made lab minerals. This may indicate that the 

hematite in the rock is something that is possibly being continuously remade. XRD results for 

the sandstones usually do not indicate very well crystalline Fe oxides (J. Tellam, Pers. 

Comm., 2016). The rate of oxidation is a function of concentration of H2A and specifically 

the concentration of H2A on the surfaces of the oxide(s) (first order) and pH. Rates were also 

faster for biotic experiments than abiotic ones though this may be because the abiotic 

experiments were at higher pHs.  

Though the rates were found to be faster than for synthetic hematite, the results are consistent 

with the basic mechanisms proposed following the studies by Suter et al. (1991) on synthetic 

hematite, i.e. that sorption occurs (Section 7.1.4), an electron is transferred, the ascorbate 

radical is released, then the FeII is released. In broad terms the results from the previously 

published synthetic hematite experiments are similar to the results obtained from the 

sandstones, but in the case of the sandstones the rates determined are greater. In addition, the 

more complex mineral composition of the sandstone means that Mn oxide play a significant 

role and that on release both Fe and Mn
++

 can be significantly sorbed.    

7.2 Review of objectives  

The primary aim of the research was to determine the mechanism and capacity of the 

sandstone to oxidise organic matter. The secondary aim was to determine if synthetic 

hematite is a suitable model system for investigating hematite coated sandstone. This is the 

first time, as far as auther aware, that the results of such synthetic hematite studies have been 

compared in detail with hematite coated rock behaviour. 
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The mechanism proposed by ascorbic acid studies on synthetic hematite (Suter et al 1991) 

includes three stages: sorption, electron transfer, FeII release.  

There is direct evidence for sorption from the sorption experiments of Chapter 4. The 

isotherms are very similar to those obtained from synthetic hematite (Afonso et al., 1989). 

Though not commented on before these isotherms are neither Langmuirian or linear and 

suggest possibly two sorption sites. That sorption is important is also indicated by the need to 

include a sorption model in the interpretation of final experiments (Chapter 6).  

Electron transfer cannot of course be seen. However the increase of Fe release with increase 

in ascorbic acid concentration strongly suggests that dissolution of hematite is promoted by 

the ascorbic acid and the simplest explanation is reductive dissolution. The mass balances 

work when reductive dissolution is included (Chapter 6). More confirms come from the fact 

that the rates of inferred reductive dissolution are dependent on the same factors as for the 

synthetic hematite. However in the rock system there are other mechnisms occurring too in 

particular Mn oxide dissolution (by ascorbic acid or FeII) and sorption of Fe and Mn
++

. The 

synthetic hematite model includes no explicitly allowance for bacteria and the experiments 

undertaken here following heat treatment of the rock, filtering of solutions and cleaning of 

equipment result in inferred dissolution rates that lie on the same relationship with pH as the 

experiments that have been undertaken without attempt to sterilize. So this again suggests 

that there is consistency with the previous synthetic hematite experiment derived reductive 

dissolution models.  

With regards to capacity it is possible that there may be some protection of remaining 

hematite if the sorption model proposed involving DHA is correct. However at least at high 

temperature all the hematite can be removed so at high temperature any protection of the 

surface by sorbed unreacting organic daughter compounds does not seem to occur. This 

suggest that the capcity is limited only by the total amount of hematite and Mn oxide present. 
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This has been evaluated by Jaweesh (In Prep) and using his data there would be 0.3-0.7 mol 

Fe + Mn / litre groundwater available.  

With regards to the applicability of the results on synthetic hematite dissolution to rock 

coating hematite it is clear that though there are other addional reactions occurring (Mn 

oxides, sorption of Fe and Mn) the mechanisms identified by the synthetic experimenst 

appear to be also seen in the red sandstone experiments. The rates seen in the rock are greater 

than in the synthetic experiments so that latter cannot be used direct in prediction but the 

factors that the rates depend on appear to include those identified by the synthetic 

experiments. So the synthetic experiment results should not be used directly but are a very 

good basis for developing a conceptual understanding of the mechanisms involved.   

 

7.3 Implications 

The rates of oxidation observed is promising in terms of the ability of natural oxides in 

sandstones to oxidise dissolved organic carbon in groundwater, and possibly have a 

significant effect on the attenuation of contaminants in pristine and polluted  aquifers. 

However it should be borne in mind that the studies on synthetic minerals indicate that the 

effects become much less as pH rises from the low values studied in the present study. The 

capacity of the sandstone for oxidation is limited to the amount of oxide present. This is 

probably about 0.2% of the rock mass in total (Jaweesh, In Prep) and this would be about 0.5 

mol Fe + Mn /litre groundwater and this is a lot.  

Preliminary work in Chapter 2 indicates that may be some oxidation also occurs in oxic 

conditions for instance found in the unsaturated zone.  

The study has given results that are similar to the results of previous research on synthetic 

minerals. This suggests that the reaction mechanisms are similar and that gives 
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encouragement that we can use synthetic mineral experiments to help interpret field data in 

general. The surprising result is that rates are greater than for synthetic hematite, though this 

may be partly because of Mn oxides.  

If ascorbic acid reduces the oxides because it has some functional groups like humic 

substances the humic substances might also reduce the oxides in a similar way. Other 

functional groups in humic substances need to be investigated. Also needs to be investigated 

is other mechanisms of promoting hematite dissolution including complexation of Fe by 

organic ligands (see Section 7.4).  

The results have indicated sorption is significant. The mechanisms are not very clear as the 

isotherms are not linear or Langmuir. They may indicate two sorption sites and this needs to 

be investigated. The model suggested here for sorption to sorbed organic matter might be an 

important process for other organics and contaminants. 

In conclusion the oxidation of organic matter by reaction with oxides may be an important 

mechanism for removal of organic material from soils in aquifers and an explanation of the 

drop of TOC with depth seen in the sandstone aquifer (Stagg et al., 1998; recent unpublished 

analysis undertaken by author for MSc project work of R.Bradford and H.Prosser). 

7.4 Recommendation and future research   

The following works are recommended: 

1. Look at the effect of organic ligands, e.g. oxalic acid, using the same batch 

experiment method. 

2. Look at other organics that are relevant to the various humic functional groups present 

in the natural environment. 
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3. Having completed the previous studies, look at humic interactions with sandstone and 

link to the mechanisms found out in points 1 and 2 above. 

4. Look at the different roles of Mn and Fe oxides by using a sequential extraction 

technique to remove Mn oxides without removing iron oxides, then carry out the same 

experiments to find out the effect hematite alone on the rate of oxidation of ascorbic 

acid. 

5. Use different type of sandstone. May be sandstone collected from outcrop as in this 

study, it gives higher oxidising rates than samples collected from cores either because 

of less Mn oxides with depth or because of reduction of Fe oxides with depth (as 

Massmann et al. (2004 ) found for sandstones in Germany). The main difference may 

be related to the position in relation to the water table.   

6. The effect of other cations and anions present in the groundwater and present on the 

oxide surfaces needs to be evaluated. 

7. Other environmental factors must be considered in future lab work, including 

temperature and higher pH values. 

8. Confirm the importance or otherwise of bacteria in the reactions. 

Only when all this work is put together can a full picture of organic compound/sandstone 

interaction be quantified. 
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Appendices  

 chapter 2 

Appendix (2-1) Example calibration data for Fe and Mn using FAAS.  

Concentration of Fe 

 or Mn
++

 ppm Absorption of iron  

Absorption for 

Mn
++

 

0.156 0.002166 

 

 

0.3125 0.003955 
0.015559 

0.625 0.011057 
0.031865 

1.25 0.020294 
0.063479 

2.5 0.046603 
0.126799 

5 0.10395 
0.243912 

10 0.205346 
0.482276 

 

 

Plot of [Fe] against the absorption using the FAAS machine 

 

Plot of [Mn
++

] against the absorption using the FAAS machine 
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Appendix (2-2) Iron released from 1 g sandstone using 10 mM ascorbic acid at 42 
o
C. 

time h Fe ppm Fe mmol/l volume in ml  after took 

samples for each time 

2 b.d.l b.d.l 500 

4 0.09 0.0016 495 

6 0.088 0.0015 490 

21 0.358 0.0064 485 

26 0.432 0.0077 480 

29 0.451 0.0080 475 

45 0.615 0.0110 470 

51 0.691 0.0123 465 

75 1.202 0.0215 460 

95 1.44 0.0257 455 

116 2.15 0.0384 450 

125 2.494 0.0446 445 

142 2.757 0.0493 440 

148 2.82 0.0504 435 

169 3.057 0.0547 430 

195 3.925 0.0702 425 

 

Appendix (2-3) Fe and Mn
++ 

released from H2A reactions with sandstone at different reaction 

temperatures and different storage conditions for the samples. 

 

Fe(1) sample storage at lab temperature , Fe(2) sample storage in the fridge (4 
O
C) 
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Appendix (2-4) Fe and Mn
++

 released from reactions of different [H2A] with sandstone at 60 C , 

without and with filtering. 

 75 Mm H2A 

 Without ( F) with (F) % different between 

unfiltered and 

filtrate samples 

without F with F % different 

between 

unfiltered and 

filtrate samples 

time h Fe
 

ppm 

Fe
 

ppm 

Mn
++ 

ppm 

Mn
++

 

ppm 

1 0.5915 0.581 1.775 0.061 0.058 4.918 

2 0.717 0.695 3.068 0.057 0.056 1.754 

3 0.7875 0.774 1.714 0.0529 0.05 5.482 

4 0.904 0.89 1.548 0.044 0.0415 5.681 

5 0.9835 0.968 1.576 0.04 0.038 5.000 

6 1.0725 1.059 1.258 0.044 0.04225 3.977 

 50 Mm H2A 

 Without ( F) with (F) % different between 

unfiltered and 

filtrate samples 

Without  (F) with (F) % different 

between 

unfiltered and 

filtrate samples 

time h Fe
 

ppm 

Fe 

ppm 

% different Mn
++ 

ppm 

Mn
++

 

ppm 

% different 

1 0.449 0.439 2.227 0.04025 0.0403 -0.124 

2 0.5395 0.531 1.575 0.0338 0.0358 -5.917 

3 0.629 0.609 3.179 0.0785 0.079 -0.636 

4 0.692 0.705 -1.878 0.0715 0.074 -3.496 

5 0.7935 0.771 2.835 0.0724 0.07 3.314 

6 0.837 0.832 0.597 0.06945 0.0709 -2.087 

 25 Mm H2A 

 Without ( F) with (F) % different between 

unfiltered and 

filtrate samples 

Without ( F) with (F) % different 

between 

unfiltered and 

filtrate samples 

time h Fe
 

ppm 

Fe
 

ppm 

% different Mn
++ 

ppm 

Mn
++ 

ppm 

% different 

1 0.2515 0.249 0.9940 0.0619 0.0609 1.615509 

2 0.3840 0.382 0.5208 0.0605 0.057 5.785124 

3 0.4525 0.451 0.3314 0.061 0.058 4.918033 

4 0.5705 0.566 0.7887 0.056 0.055 1.785714 

5 0.6375 0.626 1.8039 0.052 0.0489 5.961538 

6 0.7250 0.717 1.1034 0.047 0.0469 0.212766 

 

with (F)= measured the concentration of Fe or Mn
++

 with filtration  

Without ( F)= measured the concentration of Fe or Mn
++

 with filtration using 0.45 m pore size 

syringe filter. 
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Appendix (2-5) The concentration of Fe released from 1 g mass sandstone using 500 ml of 1 and 0.75 

mM H2A at 20 and 80 
O
C. 

time h Fe
 
 ppm 

1mM H2A 

Fe  ppm 

0.75mM H2A 

Fe
 
 ppm 

1Mm H2A 

Fe ppm 

1mM H2A 

80 
o
C 80 

o
C 20 

o
C 20 

o
C 

6.5 0.033535 0.002 0.0002 0 

25.5 0.108626 0.018462 0.0001 0 

47.5 0.152994 0.046664 0.000015 0 

55.5 0.153212 0.047259 0.000415 0 

72 0.178893 0.050157 0.00004 0.0063 

 

Appendix(2-6 A) Fe released from two replicates (without and with filtering) following reaction of 

1,5 and 10 g mass sandstone for 163 to 400 hours with 10Mm[H2A] at 80 
O
C. 

Samples 

No. 

Filtration  

using 0.2 µm   

time (h) Iron ppm 

1g sst 5 g sst 10 g sst 

1 NO 163 6.197 14.919 17.863 

Yes 163 5.956 15.203 18.23 

2 NO 187 6.195 15.069 18.514 

Yes 187 5.923 15.436 18.529 

3 NO 235 6.162 16.083 19.596 

Yes 235 6.091 15.755 18.884 

4 NO 259 6.394 16.57 20.034 

Yes 259 6.029 15.788 19.319 

5 NO 338 6.701 17.594 20.74 

Yes 338 6.317 16.894 20.059 

6 NO 362 6.629 16.674 22.464 

Yes 362 6.421 17.072 21.876 

7 NO 378 6.383 17.104 22.638 

Yes 378 6.575 16.722 22.716 

8 NO 400 6.801 17.595 26.496 

Yes 400 6.65 17.343 25.976 
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Appendix (2-6 B) Amount of Mn
++

 released from two replicates (without and with filtering) from 

reaction of 1,5 and 10 g mass sandstone for 163 to 400 hours with 10Mm[H2A] at 80 
O
C. 

Samples 

No. 

Filtration  

using 0.2 µm   

time (h) 1g sst 5 g sst 10 g sst 

ppm 

 

1 

NO 163 0.162 0.563 1.021 

Yes 163 0.148 0.616 1.024 

 

2 

NO 187 0.154 0.584 1.046 

Yes 187 0.159 0.58 0.955 

 

3 

NO 235 0.153 0.65 1.138 

Yes 235 0.173 0.589 1.03 

 

4 

NO 259 0.175 0.628 0.977 

Yes 259 0.159 0.583 1.079 

 

5 

NO 338 0.169 0.617 1.089 

Yes 338 0.161 0.621 1.09 

 

6 

NO 362 0.178 0.624 1.115 

Yes 362 0.174 0.577 1.072 

 

7 

NO 378 0.175 0.62 1.099 

Yes 378 0.158 0.573 1.047 

 

8 

NO 400 0.175 0.614 0.998 

Yes 400 0.179 0.611 1.096 

 

Appendix (2-7) Amount of iron released from reaction of 1g mass sandstone and 10mM[H2A] at 90
o
C 
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Appendix (2-8) Amount of Fe and Mn
++

 released from reaction of 1g sandstone and 10 mM[H2A] 

under aerobic and anaerobic conditions at 21 
o
C. 

time Fe mg/l anaerobic Mn
++

 ppm 

anaerobic 

Fe ppm 

aerobic 

Mn
++ 

ppm 

aerobic 

98 0.429 0.012 0.178 b.d.l 

121.5 0.32 0.01 0.209 b.d.l 

145.5 0.368 0.045 0.231 b.d.l 

168 0.484 0.115 0.259 b.d.l 

193.5 0.522 0.107 0.28 b.d.l 

 

Appendix (2-9) Variation of dissolved oxygen concentrations versus time for deionised water with 

sandstone, and ascorbic acid with and without sandstone for 17 h of monitoring. 

Time h  Dissolved oxygen (D.O.) ppm  %the different between 

(H2A) - (H2A+sst) 

Temperature  

DIW+sst H2A H2A+sst 

0.0 8.20 8.2 8.16 0.48 21 

1.0 8.17 8.2 8.10 1.21 22 

2.6 8.08 8.02 7.95 0.87 21 

3.2 8.07 8.02 7.90 1.49 21 

9.8 7.50 6.75 5.97 11.55 21 

13.8 7.50 6.50 5.99 7.84 21 

16.8 7.50 6.40 5.75 10.15 21 

DIW+sst= deionised water +sandstone, H2A+sst= ascorbic acid +sandstone , H2A= ascorbic acid 

alone  

Appendix (2-10) Dissolved oxygen concentration versus time for deionised water with sandstone, and 

ascorbic acid with and without sandstone for 71 h of monitoring. 

time hr H2A+sst H2A Diw +sst %the different  between 

(H2A) - (H2A+sst) 

0 8.46 8.55 8.54 1.05 

1 8.3 8.43 8.54 1.54 

2 8.12 8.29 8.52 2.05 

3 7.91 8.12 8.43 2.58 

4 7.66 7.96 8.36 3.76 

5 7.41 7.81 8.26 5.12 

22 5.51 6.51 7.9 15.36 

24 5.56 6.39 7.8 12.98 

27 5.6 6.22 7.55 9.96 

50 5.55 5.46 6.65 -1.64 

71 5.06 5.32 7.11 4.88 

 

DIW+sst= deionised water +sandstone, H2A+sst= ascorbic acid +sandstone, H2A= ascorbic acid alone 
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Appendix (2-11) Dissolved oxygen concentration versus time for deionised water with sandstone, and 

ascorbic acid with and without sandstone for 30 h of monitoring. 

time h DIW+sst Temperature 
O

C 

[H2A] Temperature 
O

C 

[H2A]+sst Temperature 
O

C 

%the 

different 

between 

(H2A+sst)-

(H2A) 

0 7.82 24.3 7.56 24.3 7.66 24.3 1.30 

0.6 7.84 24.9 7.19 25 7.54 24.8 4.64 

1.6 7.88 23.6 6.55 23.8 6.97 23.6 6.02 

2.6 7.95 23 5.98 23.2 6.36 23 5.97 

3.6 7.97 22.7 5.4 22.8 5.77 22.6 6.41 

4.6 8.04 22.4 4.89 22.6 5.19 22.4 5.78 

5.6 8 22.9 4.38 22.3 4.7 22.5 6.80 

6.6 8.05 22.3 3.93 22.2 4.22 22.1 6.87 

7.6 8.08 23.3 3.68 22.1 3.94 22.3 6.59 

23.1 8.3 21 2.95 21.2 3.83 21 22.97 

28.8 8.29 21.8 2.89 21.4 4.01 21.3 27.93 

29.8 8.29 21.3 3.09 21.3 4.21 21.3 26.60 

DIW+sst= deionised water +sandstone  

H2A+sst= ascorbic acid +sandstone  

 

Appendix (2-12) Concentration of iron and TOC for 10 mM[H2A] with 1 g sst at 50 and 90 
o
C . 
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Appendix (2-13)  Fe and Mn
++ 

concentrations as a function of H2A concentration at lab 

temperature(20 
o
C). 10 g sandstone with 0.04 l of H2A solutions, shaken for 2 hours. 

[H2A] ppm Filtration Without  Filtration Filtration Without Filtration 

Mn
++ 

    ppm Fe ppm 

100 1.413 1.441 0.382 0.430 

40 1.056 1.052 0.097 0.110 

20 0.900 0.883 0.050 0.000 

10 0.713 0.708 0.000 0.000 

 

 

Table (2-14) Amount of iron and Mn
++

 released with and without shaking after 4h reaction between 

0.04 l of different [H2A] with 10 g sandstone. 

 Mn
++

 ppm Mn
++ 

ppm Fe
 
ppm Fe ppm  

times Mn(S) 

>Mn  

 

times 

Fe(S) >Fe 
             Shaking  

 [H2A]                

Yes  No yes No 

10 1.007 0.245 0.204 -0.099 4.0  

20 1.115 0.260 0.327 0.050 4.25 6.5 

40 1.304 0.433 0.519 0.073 3.0 7.0 

100 1.812 0.562 1.098 0.210 4.25 5.25 

Fe(S) =concentration of iron after shaking , Fe= concentration of iron without shaking  

 

Appendix (2-15) Amount of Mn
++

 and Fe released from sandstone under two situations. First 

condition shaking under lab temperature and second condition higher temperature without shaking.  

[H2A] 

ppm 

Shaking under 

20 
o
C 

Without shaker 

under 73
o
C 

Shaking under 

20 
o
C 

Without shaker 

under 73
o
C 

Mn
++

 Mn
++

 Fe Fe 

10 0.997 0.556 0.04 b.d.l 

20 1.176 0.518 0.117 b.d.l 

30 1.345 0.898 0.284 b.d.l 

40 1.480 1.243 0.432 0.111 

100 2.195 1.822 0.489 0.176 
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Appendix (2- 16) Amount of Fe and Mn
++

 released from 10 g sandstone using inorganic acid (HCl) 

and organic acid (ascorbic acid) after 4 h gently shaking.  

[H2A] 

ppm 

Fe Mn pH after 

acidification 

HCl (M) Fe Mn Initial pH 

100 1.036 2.073 2.41 2 15.91 5.072 0.02 

75 0.704 1.922 2.38 1 12.1 4.728 0.12 

50 0.445 1.566 2.36 0.5 9.016 4.467 0.34 

25 0.14 1.188 2.37 0.25 5.137 3.799 0.60 

0 0 0.762 2.09 0.1 2.792 1.981 1.02 

0 0 0.724 2.06 0.1 2.791 1.968 1.04 

 0.05 2.650 1.057 1.37 

0.05 2.657 1.057 1.4 

0.025 2.281 0.368 1.65 

0.025 2.233 0.310 1.68 

0.0125 2.050 0.267 2.03 

0.0125 2.071 0.269 2.05 

0.00625 1.706 0.044 2.43 

0.00625 1.681 0.037 2.44 

0 0.318 0.000 4.92 

0 0.320 0.000 5.03 

 

Appendix (2-17) the release of Fe and Mn
++

 using very dilute HCl. b.d.l. = below detection limit. 

[HCl](Mm)  Fe 
 
ppm  Mn

++
 ppm  pH After interaction with sst   Initial  pH  

0.162  b.d.l  0.929  4.92  3.84  

0.162  b.d.l  0.908  4.84  3.84  

0.00064  b.d.l  0.860  5.04  4.73  

0.00064  b.d.l  0.882  5.08  4.73  

 

Appendix (2-18) Amount of iron and Mn released from 10 g sandstone under unwashed and acid 

washed (12.5 mM HCl) conditions. 

[H2A]  

ppm 

Mn
++

 

ppm 

Fe  

ppm 

 

pH 

after acidification and separated 

from sediment  

washing  unwashed  washing  unwashed wishing  unwashed 

100 1.821 2.903 3.026 0.990 2.12 2.14 

75 1.686 2.666 2.356 0.619 2.11 2.15 

50 1.445 2.262 1.286 0.422 2.1 2.13 

25 1.154 1.846 0.918 0.149 2.13 2.09 

15 0.860 1.436 0.191 0 2.1 2.13 

0 0.542 0.748 b.d.l   b.d.l   2.14 2.12 
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Appendix (2-19) amount of iron and Mn
++

 released from 10 g sandstone unwashed and dilute HCl -

washed sandstone by ascorbic acid .   

[H2A] 

ppm 

 

Unwashed sandstone H2A ppm 

 

Washed sandstone by diluted HCl 

Mn Fe pH Mn Fe pH 

100 3.159 1.429 4.75 91.25 0.954 1.529 3.88 

100 3.262 1.507 4.73 91.25 1.097 1.458 3.76 

75 2.541 0.859 4.77 68.43 0.981 1.243 3.75 

75 2.842 0.937 4.76 68.43 1.153 1.030 3.89 

50 2.398 0.435 4.86 45.62 0.858 0.674 3.81 

50 2.663 0.489 4.83 45.62 0.845 0.634 3.82 

Appendix (2-20) Concentration of iron and Mn in the washing supernatants for, HCl , and for first and 

second washing by DIW .   

Washing samples   Fe
 
ppm  Mn

++
 ppm pH 

Diluted HCl(1) 
b.d.l 2.902 

2.03 

Diluted HCl(1) b.d.l 
2.836 

2.05 

Diluted HCl(1) b.d.l 
2.939 

2.04 

Diluted HCl(1) b.d.l 
2.780 

2.06 

First washed 1 b.d.l 
0.349 

2.76 

First washed 2 b.d.l 
0.396 

2.74 

First washed 3 b.d.l 
0.364 

2.77 

Second washed 1 b.d.l b.d.l 3.43 

Second washed 2 b.d.l b.d.l 3.46 

Second washed 3 b.d.l b.d.l 3.55 

Second washed 4 b.d.l b.d.l 3.51 

Appendix (2-21) Amount of iron and Mn released from 10 g sst unwashed and washed sst by calcium 

chloride   

[H2A] 

ppm   

Fe ppm Mn
++ 

ppm pH 

unwashed washed by CaCl2 unwashed washed by CaCl2 Unwashed Washed 

100  1.448  0.128  2.463  0.473  4.82  5.06  

100  1.369  0.054  2.612  0.529  4.83  5.11  

75  0.882  0.000  2.350  0.300  4.88  5.28  

75  0.868  0.000  2.384  0.272  4.89  5.21  

50  0.374  0.000  1.991  0.103  5.05  5.32  

50  0.352  0.000  2.002  0.193  4.99  5.35  
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Appendix (2-22) Amount of iron and Mn
++

 released from different washing stages for 

sandstone samples   

 

 

Chapter 3  

Appendix (3-1) Phreeqc model for dissolution of KMnO4 in water at different pHs under 

equilibrium conditions  

pH Mn(2) 

Mol/kg H2O 

Mn(7) 

Mol/kg H2O 

Cl 

Mol/kg H2O 

Mn total 

Mol/kg H2O 

Mn(7)/Mn log(Mn(7)/Mn) 

3.2 6.86E-04 1.70E-18  6.86E-04 2.48E-15 -14.60587519 

4 6.86E-04 4.20E-16  6.86E-04 6.12E-13 -12.21307483 

5 6.82E-04 4.20E-13  6.82E-04 6.16E-10 -9.210535085 

7 6.86E-04 4.20E-07  6.86E-04 6.12E-04 -3.213340639 

8 4.88E-04 1.98E-04  6.86E-04 2.89E-01 -0.539658925 

8.5 1.24E-04 5.61E-04  6.85E-04 8.19E-01 -0.08672771 

8.6 5.30E-05 6.32E-04 1.56E-04 6.85E-04 9.23E-01 -0.034973493 

8.8 not converged 

 

Appendix (3-2) Absorbance of pure KMnO2 at different pHs.  

Samples 

of 

KMno4 

ml 0.5 

HNO3 

(µl) 

76.25 Mm 

NaOH 

(µl) 

pH R1 R2 R3 Average 

absorbance % 

difference
*
 

1 10 0 0 6.68 1.435 1.433 1.43 1.433 0.00 

2 10 0 0 6.49 1.44 1.442 1.443 1.442 0.00 

3 10 5 0 3.46 1.442 1.44 1.437 1.440 0.14 

4 10 10 0 3.12 1.44 1.44 1.439 1.440 0.14 

5 10 15 0 2.89 1.435 1.436 1.436 1.436 0.42 

6 10 20 0 2.78 1.426 1.421 1.421 1.423 1.32 

7 10 0 5 7.08 1.428 1.431 1.427 1.429 0.90 

8 10 0 10 8.81 1.431 1.43 1.427 1.429 0.86 

9 10 0 15 9.79 1.429 1.427 1.426 1.427 0.99 

10 10 0 20 10.06 1.428 1.428 1.426 1.427 0.99 

*%difference of absorbance percentage between the absorbance of KMnO4 without any addition of 

acid or base and the absorbance of KMnO4 after adding tiny drops of nitric acid or NaOH.  R1 to R3 

are repeat measurements of absorbance. 

 

Washing samples   Fe ppm  Mn
++ 

ppm  pH  

CaCl2(1)  b.d.l  2.325  4.8  

CaCl2(2)  b.d.l  2.380  4.82  

CaCl2(3)  b.d.l  2.322  4.72  

First washing(1)  b.d.l  0.304  5.05  

First washing(2)  b.d.l  0.291  5.08  

First washing(3)  b.d.l  0.322  5.09  

Second washing (1)  b.d.l  b.d.l  5.38  

Second washing(2)  b.d.l  b.d.l  5.34  
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Appendix (3-3) The absorbance of different [KMnO4] ranging from 20 to 200 ppm 

 
[KMnO4] ppm Absorbance at 530nm 

abs1 abs2 abs3 average 

200 2.795 2.795 2.795 2.795 

180 2.508 2.508 2.508 2.508 

160 2.207 2.207 2.207 2.207 

140 1.896 1.896 1.896 1.896 

120 1.583 1.583 1.583 1.583 

100 1.271 1.271 1.271 1.271 

80 1.263 1.263 1.263 1.262 

60 0.949 0.949 0.949 0.949 

40 0.634 0.634 0.634 0.634 

20 0.318 0.318 0.318 0.318 

 

Appendix (3-4) the results of measuring H2A using 100 ppm KMnO4 and using 40 ppm 

KMnO4 

[H2A] ppm 100 KMnO4 40 KMnO4 Colour of mixture using 

40 ppm KMnO4 

Colour of mixture using 

100 ppm KMnO4 Average absorbance  

 

100 0.193 -0.096 colourless colourless 

80 0.288 -0.080 colourless Very pale yellow  

60 0.395 -0.069 colourless Pale yellow  

40 0.485 0.029 pale yellow Dark yellow 

20 0.568 0.122 pink Pink  

0 0.665 0.214 pink Pink  

Appendix (3-5a) Absorbance of 40 ppm of KMnO4 containing different levels of ferric iron 

Fe(III)
 

ppm 

Absorbance at 530nm average  Different of absorbance 

from blank  R1 R2 R3 R4 

0
*
 0.338 0.338 0.339 0.34 0.339 -0.332 

0
*
 0.342 0.342 0.341 0.339 0.341 0.330 

20 0.340 0.340 0.339 0.340 0.340 -0.037 

10 0.341 0.343 0.339 0.342 0.341 0.403 

8 0.343 0.341 0.343 0.342 0.342 0.694 

6 0.342 0.342 0.341 0.343 0.342 0.621 

4 0.342 0.343 0.343 0.344 0.343 0.911 

2 0.342 0.342 0.343 0.341 0.342 0.621 

*zero ppm of ferric iron (considered blank or control samples ) 
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Appendix (3-5b) Absorbance of 100 ppm of KMnO4 containing different levels of ferric iron 

      Just iron 

solution  

After adding 

KMnO4 

Fe ppm R1 R2 R3 average % different on 

compare with 

zero iron  

ph Eh Eh Eh  

10 0.663 0.658 0.66 0.660 0.707 2.57 273.4 2.87 254.7 

5 0.659 0.658 0.659 0.659 0.455 2.62 260.3 3.08 241.6 

3.5 0.663 0.661 0.661 0.662 0.907 2.83 247.7 3.34 226.2 

2.5 0.663 0.662 0.66 0.662 0.907 3.06 242.4 3.43 220.4 

1.25 0.66 0.66 0.658 0.659 0.556 3.29 272.2 3.62 206.1 

0 0.657 0.657 0.656 0.657 0.152 4.7 132.9 4.69 148.9 

0 0.655 0.654 0.655 0.655 -0.153 4.8 134.6 4.89 151.2 

 

Appendix (3-6) The absorbance of different [H2A] in absence and presence of 4 ppm of Fe(III).  

H2A ppm Absorbance % different  

0 ppm Fe
+++

 4 ppm Fe
+++

 

90 0.257 0.252 2.09 

80 0.302 0.308 -1.75 

60 0.414 0.403 2.64 

40 0.480   

20 0.570 0.558 2.12 

0 0.660 0.660 -0.01 

 

Appendix (3-7) Absorbance of KMnO4 in presence of different [FeII]  

Ferrous iron 

Fe(II) ppm 

Absorbance  % difference, absent and 

present FeII R1 R2 R3 average 

0  0.540 0.540 0.541 0.540  

0  0.540 0.541 0.541 0.541 -0.03 

0.321  0.538 0.537 0.537 0.537 0.59 

0.625  0.536 0.536 0.536 0.536 0.83 

1.25  0.529 0.530 0.530 0.530 2.00 

2.5 0.522 0.521 0.522 0.522 3.48 

5 0.515 0.510 0.515 0.513 5.03 

10 0.452 0.453 0.453 0.453 16.25 
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Appendix (3-8) Method to prepare different [H2A] solutions containing 4 and 1 ppm of ferrous iron 

(Fe) 

 

Fe++ ppm Fe++ ppm H2A ppm H2A ppm desire solution  total volume  

concentration volume ml concentration volume ml mix volume 
ml 

40 10 100 90 90 H2A + 4 Fe ppm 100 

20 20 100 80 80 H2A + 4 Fe ppm 100 

10 40 100 60 60 H2A + 4 Fe ppm 100 

5 80 100 20 20  H2A + 4 Fe ppm 100 

100 4 0 0 0 H2A +4 Fe ppm 100 

      

10 10 100 90 90 H2A + 1 Fe ppm 100 

5 20 100 80 80 H2A + 1 Fe ppm 100 

2.5 40 100 60 60 H2A + 1 Fe ppm 100 

1.25 80 100 20 20  H2A + 1 Fe ppm 100 

100 1 0 0 0 H2A + 1 Fe ppm 100 

 Appendix (3-9) Absorbance after adding 1 and 4 ppm of Fe
++

 to H2A  

[H2A] 

ppm 

Absorbance  

 

0 ppm Fe 

Absorban

ce  

 

Fe 4 ppm 

Absorban

ce  

 

Fe 1 ppm  

% different 

of 

absorbance 

with 4 ppm  

Fe 

% different 

of 

absorbance 

with 1 ppm 

Fe 

apparent 

H2A  

0 ppm 

Fe
++

 

apparent 

[H2A](ppm

) 

4 ppm Fe
++

 

 

apparent 

[H2A](ppm

) 1 ppm 

Fe
++

 

90 0.164 0.176 0.162 7.11 -1.22 91.10 88.42 91.56 

80 0.217 0.227 0.216 4.60 -0.61 78.83 76.53 79.14 

60 0.319 0.314 0.315 -1.46 -1.15 55.53 56.60 56.37 

40 0.368 0.377 

 

2.63 

 

44.26 42.03  

20 0.464 0.466 0.467 0.43 0.79 22.18 21.72 21.34 

0 0.568 0.553 0.561 -2.70 -1.23 -1.89 1.63 -0.28 
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Appendix (3-10) pH of various H2A solutions before and after adding KMnO4 in the presence and 

absence of ferrous iron  

samples  before add KMnO4 After add KMnO4 

pH pH 

90 H2A 3.74 4.28 

80 H2A 3.72 4.34 

60 H2A 3.87 4.49 

40 H2A 4.04 4.67 

20 H2A 4.4 4.8 

0 H2A 5.61  

   

90 H2A +4Fe 3.74 3.82 

80 H2A +4Fe 3.74 3.83 

60 H2A +4Fe 3.97 4.16 

20 H2A +4Fe 4.21 4.26 

0 H2A +4Fe 4.86 4.13 

   

90 H2A +1Fe 3.75 3.94 

80 H2A +1Fe 3.81 4.01 

60 H2A +1Fe 3.92 4.14 

20 H2A +1Fe 4.42 4.55 

0 H2A + 1Fe 4.99 4.88 

 

Appendix (3-11) effect of presence of [Mn
++

] on the absorbance of KMnO4.  

[Mn
++

]
 
ppm R1 R2 R3 average % of absorbance increase  

10 0.576 0.577 0.576 0.576 22.10 

5 0.513 0.513 0.514 0.513 8.76 

2.5 0.487 0.485 0.486 0.486 2.97 

1.25 0.481 0.48 0.48 0.480 1.77 

0.625 0.475 0.474 0.473 0.474 0.42 

0 0.471 0.473 0.472 0.472 0.00 
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Appendix (3-12) Preparation of various solutions containing different concentrations of ascorbic acid 

and Mn
++

. 

 

[Mn]ppm 

Mn
 
ppm  

[H2A] ppm 

 

AA ppm desire solution total volume 

volume (ml) volume (ml) mix volume  (ml) 

40 10 100 90 90 H2A + 4 Mn ppm 100 

20 20 100 80 80 H2A + 4 Mn ppm 100 

10 40 100 60 60 H2A + 4 Mn ppm 100 

5 80 100 20 20  H2A + 4 Mn ppm 100 

100 4 0 0 0 H2A + 4 Mn ppm 100 

      

10 10 100 90 90 H2A + 1 Mn ppm 100 

5 20 100 80 80 H2A + 1 Mn ppm 100 

2.5 40 100 60 60 H2A + 1 Mn ppm 100 

1.25 80 100 20 20  H2A + 1 Mn ppm 100 

100 1 0 0 0 H2A + 1 Mn ppm 100 

 

Appendix (3-13) Average absorbance of ascorbic acid in absence and presence of 1 and 4 ppm of 

Mn
++ 

[H2A] 

ppm 

Absorbance  

0 ppm Mn 4 ppm Mn 1 ppm 

Mn 

90 0.246 0.268 0.252 

80 0.273 0.301 0.283 

60 0.337 0.357 0.341 

40 0.375 0.418  

20 0.412 0.434 0.421 

0 0.469 0.510 0.479 

 

Appendix (3-14) pH of various H2A solutions before and after adding KMnO4 

samples before 

add 

KMnO4 

after  

KMnO4 

 Samples before 

add 

KMnO4 

after  

KMnO4 

 Samples  before 

add 

KMnO4 

after  

KMnO4 

pH pH  pH pH  pH pH 

90 H2A +4 Mn 3.81 3.84  90 H2A +1 Mn 3.82 3.95  90 H2A  3.81 4.0 

80 H2A +4 Mn 3.82 3.83  80 H2A +1 Mn 3.81 4.2  80 H2A 3.8 4.07 

60 H2A +4 Mn 3.93 3.9  60 H2A +1 Mn 3.94 4.31  60 H2A 3.88 4.2 

20 H2A +4 Mn 4.21 3.97  20 H2A +1 Mn 4.14 4.27  20 H2A 4.31 4.39 

0 H2A +4 Mn 5.67 4.12  0 H2A +1 Mn 5.66 4.81  0 H2A 5.47 5.34 
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Table (3-15) Absorbance of H2A under oxic and anoxic conditions for different times.  

 4.5 h  4.5 h 28 h 28 h 52 h 52 h 126 h 126 h  

H2A  

ppm 

oxic  anoxic oxic  anoxic  oxic  anoxic  oxic anoxic 

100 0.3097 0.3133 0.3193 0.3317 0.3196 0.3777 0.3206 0.4610 

80 0.4100 0.4163 0.4113 0.4237 0.4083 0.4353 0.4320 0.4580 

60 0.5087 0.5137 0.5083 0.5077 0.5133 0.5170 0.5184 0.5240 

40 0.5883 0.5917 0.5877 0.5947 0.5967 0.5990 0.6030 0.6197 

20 0.6783 0.6763 0.6787 0.6807 0.6890 0.6850 0.6970 0.6950 

0 0.7680 0.7763 0.7687 0.7623 0.7597 0.7697 0.7633 0.7653 

 

Chapter 4  

Appendix (4-1) Absorbance of standard ascorbic acid solutions for sorption experiment (E1) 

using 20 g sandstone. 

AA ppm ab1 ab2 ab3 average  

40 0.2233 0.2233 0.2266 0.224 

30 0.2865 0.2832 0.2935 0.288 

20 0.3343 0.3385 0.3385 0.337 

10 0.3787 0.3881 0.3801 0.382 

5 0.4059 0.4077 0.4077 0.407 

2.5 0.4262 0.4262 0.4294 0.427 

SLOPE -191.892 

Intercept 83.988 

ab = absorbance for repeat measurements 1 to 3. 

Appendix (4-2) Absorbance of samples (H2A+SST) using 20 g sandstone , and various [H2A] 

(E1) 

samples  

H2A ppm 

ab1 ab2 ab3 average  C1 

ppm 

C0 

ppm  

Mass g C1 after 

correction* 

ppm  

Sorbed 

S(mg/g) 

30  0.339 0.338 0.342 0.340 18.80 30 20 17.33 0.026 

30  0.336 0.336 0.336 0.336 19.47 30 20 17.99 0.025 

25  0.359 0.363 0.362 0.361 14.63 25 20 13.16 0.024 

25  0.363 0.363 0.365 0.364 14.17 25 20 12.69 0.025 

20  0.381 0.378 0.386 0.382 10.75 20 20 9.28 0.022 

20 0.384 0.384 0.384 0.384 10.32 20 20 8.85 0.023 

15  0.389 0.389 0.394 0.391 8.94 15 20 7.47 0.015 

15 0.388 0.398 0.395 0.393 8.49 15 20 7.02 0.016 

10  0.408 0.407 0.407 0.407 5.86 10 20 4.39 0.011 

10  0.411 0.406 0.408 0.408 5.63 10 20 4.15 0.012 

diw 0.430 0.430 0.429 0.430 1.53 0 20 0.06 -0.0001 

diw 0.430 0.431 0.430 0.430 1.41 0 20 -0.06 0.0001 

* for DIW concentrations 
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Appendix (4-3) Absorbance of samples (H2A+sst ) using 15 g sandstone, and various [H2A] (E2) 

samples  

H2A ppm  

Ab1 Ab2 Ab3 average  C1 C0 Mass 

g 

C1 after 

correction* 

ppm  

Sorbed 

S(mg/g) 

30 0.2786 0.2753 0.2786 0.2775 19.713 30 15 18.0793 0.031789 

30 0.2786 0.2786 0.2786 0.2786 19.494 30 15 17.86036 0.032372 

25 0.2819 0.2898 0.2898 0.2871 17.789 25 15 16.15526 0.023586 

25 0.2858 0.2931 0.2931 0.2906 17.092 25 15 15.45863 0.025444 

20 0.302 0.302 0.3053 0.3031 14.618 20 15 12.98392 0.01871 

20 0.3095 0.3095 0.3095 0.3095 13.344 20 15 11.71008 0.022106 

15 0.3254 0.3254 0.3212 0.324 10.458 15 15 8.824025 0.016469 

15 0.3286 0.3254 0.3286 0.3275 9.754 15 15 8.120757 0.018345 

10 0.3506 0.3506 0.3462 0.3491 5.455 10 15 3.821533 0.016476 

10 0.3538 0.3494 0.3494 0.3508 5.110 10 15 3.476533 0.017396 

diw 0.3707 0.3676 0.3707 0.3696 1.368 0 15 -0.26538 0.000708 

diw 0.369 0.368 0.364 0.3670 1.899 0 15 0.265384 -0.00071 

* for DIW concentrations 

Appendix (4-4) Absorbance of standard ascorbic acid solutions at the beginning and the end of 

sorption experiment (E3) 

H2A 

ppm 

In the beginning of experiment average  In the end of experiment  average Different % of 

absorbance  ab1 ab2 ab3 ab1 ab2 ab3 

20 0.572 0.571 0.573 0.572 0.575 0.578 0.578 0.572 0.87 

40 0.489 0.487 0.488 0.488 0.494 0.495 0.494 0.488 1.29 

60 0.399 0.397 0.396 0.3973 0.404 0.402 0.4 0.397 1.17 

80 0.296 0.291 0.289 0.292 0.302 0.297 0.295 0.292 2.05 

100 0.214 0.209 0.207 0.21 0.202 0.202 0.198 0.210 -4.44 

120 0.083 0.077 0.067 0.0756 0.082 0.075 0.072 0.076 0.88 

% different of absorbance between first and last measurement 
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Appendix (4-5) Results of sorption experiment (E3) with different concentrations of H2A with a 

fix mass of sandstone (10g). 

Samples  

No. 

[H2A ]oppm average 

absorbance  

[H2A ]t [H2A ]o -[H2A ]t ppm sorbed mg/g % difference
*
  

1 120 0.168 106.504 13.496 0.054 11.25 

2 120 0.168 106.574 13.426 0.054 11.19 

3 100 0.347 68.880 31.120 0.124 31.12 

4 100 0.345 69.440 30.560 0.122 30.56 

5 80 0.408 56.058 23.942 0.096 29.93 

6 80 0.418 54.096 25.904 0.104 32.38 

7 60 0.480 40.994 19.006 0.076 31.68 

8 60 0.483 40.434 19.566 0.078 32.61 

9 40 0.553 25.580 14.420 0.058 36.05 

10 40 0.555 25.160 14.840 0.059 37.10 

11 20 0.624 10.657 9.343 0.037 46.72 

12 20 0.621 11.357 8.643 0.035 43.21 

[H2A ]o =initial concentration of ascorbic acid  

[H2A ]t=concentration of ascorbic acid after 2 h reaction with sandstone  

Difference % = ([H2A]o –[H2A]t)/initial [H2A]o /100 

 

 

Appendix (4-6 a) Absorbance and drift-corrected absorbance according to the order of samples in 

the analysis for sorption experiment (E4) 

 

 

 

 

 

 

Standard First av A Last av A delA 1 2 3 4 5 6 7 8 9 10

40 0.079 0.095 -0.016 0.063 0.071 0.074 0.075 0.076 0.076 0.077 0.077 0.077 0.077

30 0.125 0.145 -0.020 0.106 0.115 0.119 0.120 0.121 0.122 0.122 0.123 0.123 0.123

25 0.143 0.166 -0.023 0.121 0.132 0.136 0.137 0.139 0.139 0.140 0.140 0.141 0.141

20 0.172 0.188 -0.016 0.156 0.164 0.166 0.168 0.168 0.169 0.169 0.170 0.170 0.170

15 0.188 0.202 -0.014 0.175 0.181 0.184 0.185 0.185 0.186 0.186 0.186 0.187 0.187

10 0.203 0.221 -0.018 0.185 0.194 0.197 0.199 0.199 0.200 0.200 0.201 0.201 0.201

5 0.223 0.238 -0.015 0.208 0.216 0.218 0.219 0.220 0.221 0.221 0.221 0.221 0.222

3 0.233 0.251 -0.018 0.216 0.224 0.227 0.229 0.230 0.230 0.231 0.231 0.231 0.231

Slope -240.905 -243.193 -243.895 -244.235 -244.434 -244.566 -244.659 -244.728 -244.782 -244.825

Intercept 55.401 57.850 58.665 59.072 59.316 59.479 59.595 59.682 59.750 59.804

r2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
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Appendix (4-6 b) Absorbance and drift-corrected absorbance according to the order of samples in 

the analysis for sorption experiment ( E4) (continued) 

 

 

 

Appendix (4-7) Calculated [H2A] after correction and sorbed values for experiment (E5) 

No. Mass in g Co Samples 

order 

Absorbance 

1 

Absorbance 2 [H2A] 

ppm 

Sorbed mg/g 

1 2 25 2g 25 ppm 0.16 0.16 16.857 0.16 

2 2 20 2g 20 ppm 0.179 0.178 14.440 0.11 

3 2 30 2g 30 ppm 0.141 0.141 24.276 0.11 

4 2 10 2g 10 ppm 0.219 0.218 5.707 0.09 

5 2 30 2g 30 ppm 0.14 0.139 25.217 0.10 

6 2 25 2g 25 ppm 0.157 0.157 21.082 0.08 

7 2 10 2g 10 ppm 0.218 0.217 6.381 0.07 

8 2 20 2g 20 ppm 0.177 0.176 16.487 0.07 

9 5 25 5g 25 ppm 0.169 0.17 18.259 0.05 

10 5 10 5g 10 ppm 0.223 0.222 5.330 0.04 

11 5 20 5g 20 ppm 0.188 0.188 13.814 0.05 

12 5 30 5g 30 ppm 0.151 0.15 23.029 0.06 

13 5 15 2g 15 ppm 0.196 0.196 11.913 0.02 

14 5 15 5g 15 ppm 0.204 0.204 9.976 0.04 

15 5 15 2g 15 ppm 0.196 0.196 11.955 0.02 

16 5 30 5g 30 ppm 0.15 0.15 23.241 0.05 

17 5 15 5g 15 ppm 0.204 0.204 10.028 0.04 

18 5 20 5g 20 ppm 0.187 0.186 14.329 0.05 

19 5 25 5g 25 ppm 0.168 0.168 18.874 0.05 

20 5 10 5g 10 ppm 0.222 0.222 5.654 0.03 

 

 

 

 

Standard First av ALast av A delA 11 12 13 14 15 16 17 18 19 20

40 0.079 0.095 -0.016 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078

30 0.125 0.1445 -0.0195 0.123 0.123 0.124 0.124 0.124 0.124 0.124 0.124 0.124 0.124

25 0.143 0.1655 -0.0225 0.141 0.141 0.141 0.141 0.142 0.142 0.142 0.142 0.142 0.142

20 0.1715 0.1875 -0.016 0.170 0.170 0.170 0.170 0.170 0.171 0.171 0.171 0.171 0.171

15 0.188 0.2015 -0.0135 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187 0.187

10 0.203 0.221 -0.018 0.201 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202

5 0.223 0.238 -0.015 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222

2.5 0.233 0.2505 -0.0175 0.231 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232

Slope -244.86 -244.89 -244.91 -244.93 -244.95 -244.97 -244.98 -244.99 -245.01 -245.02

Intercept 59.848 59.885 59.916 59.943 59.966 59.986 60.004 60.020 60.034 60.047

r2 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995
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Appendix (4-8) Drift of absorbance of [KMnO4] (5ml [KMnO4] +5ml of deionised water) over 

different times at 530nm.  

time min [KMnO4] 

40 ppm 

 

[KMnO4] 

80 ppm 

% absorbance increase  for 40 

[KMnO4] ppm 

% absorbance increase  for 80 

[KMnO4] ppm 

0 0.358 0.695   

5 0.359 0.710 0.37 2.16 

10 0.370 0.714 3.36 2.66 

15 0.378 0.735 5.52 5.50 

25 0.394 0.749 9.26 7.30 

35 0.404 0.777 11.50 10.65 

46 0.419 0.798 14.76 12.99 

52 0.432 0.806 17.32 13.81 

55 0.431 0.807 17.09 13.92 

58 0.431 0.807 16.98 13.92 

61 0.435 0.807 17.78 13.92 

64 0.434 0.806 17.58 13.81 
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Appendix (4-9) Absorbance with recording time for sorption experiment E5.  

Recording 

time  

Actual 

time  

Standard [H2A] 

ppm or samples  

Absorbance  

 

1 

2 3 average  

0 05:56 40 0.1858 0.1858 0.1833 0.185 

2 05:58 30 0.2449 0.2424 0.2449 0.244 

3 05:59 20 0.2939 0.2867 0.2867 0.289 

4 06:00 10 0.3386 0.3438 0.3361 0.340 

6 06:02 5 0.3681 0.3631 0.3575 0.363 

8 06:04 2.5 0.3851 0.3909 0.3826 0.386 

10 06:06 10 g sst 30 ppm 0.3207 0.3207 0.3207 0.321 

12 06:08 10 g sst  30 ppm 0.313 0.3157 0.3207 0.316 

14 06:10 10 g sst25 ppm 0.3383 0.3411 0.3436 0.341 

16 06:12 10 g sst 25 ppm 0.3411 0.3436 0.3359 0.340 

18 06:14 15 ppm 0.3281 0.3256 0.3256 0.326 

19 06:15 20 ppm 0.3011 0.3011 0.3059 0.303 

21 06:17 10 g sst 20 ppm 0.3621 0.3626 0.365 0.363 

22 06:18 10 gsst  20 ppm 0.3541 0.3596 0.3621 0.359 

24 06:20 10 g sst  15 ppm 0.3762 0.3811 0.3843 0.381 

26 06:22 10g sst 15 ppm 0.3762 0.3811 0.3811 0.379 

27 06:23 15 ppm 0.3381 0.3357 0.3383 0.337 

29 06:25 20  ppm 0.3109 0.3109 0.3132 0.312 

31 06:27 10 g sst  10 ppm 0.4008 0.4018 0.4072 0.403 

32 06:28 10g sst 10 ppm 0.4017 0.4017 0.4078 0.404 

34 06:30 10 g diw 0.4262 0.4201 0.4301 0.425 

36 06:32 15 ppm 0.3406 0.3406 0.3481 0.343 

37 06:33 20 ppm 0.3182 0.3132 0.3157 0.316 

41 06:37 40 0.213 0.2117 0.214 0.2129 

42 06:38 30 0.2781 0.2754 0.2614 0.2716 

43 06:39 20 0.3254 0.3206 0.3206 0.3222 

45 06:41 10 0.3724 0.3748 0.3699 0.3724 

46 06:42 5 0.4002 0.3992 0.3998 0.3997 

48 06:44 2.5 0.4141 0.4136 0.4189 0.4155 
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Appendix (4-10) Absorbance values arranged according to time and concentration for 

sorption experiment E5. 

time  (min) [H2A] ppm 

2.5 5 10 15 20 30 40 

8 0.3862       

48 0.4155       

6  0.3629      

46  0.3997      

4   0.3395     

45   0.3724     

18    0.3264    

27    0.3374    

36    0.3431    

3     0.2891   

19     0.3027   

29     0.3117   

37     0.3157   

43     0.3222   

2      0.2441  

42      0.2716  

0       0.1850 

41       0.2129 

Intercept  0.3803 0.3574 0.3363 0.3106 0.2870 0.2427 0.1850 

 

Red colour of absorbances represent ascorbic acid  alone without sandstone  
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Appendix (4-11) Absorbance obtained by subtracting the initial absorbance value from the 

intercept (Appendix 4-10) for each [H2A] for sorption experiment E5 . 

Time min 2.5 5 10 15 20 30 40 

8 0.0059       

48 0.0352       

6  0.0055      

46  0.0424      

4   0.0032     

45   0.0361     

18    0.0158    

27    0.0267    

36    0.0325    

3     0.0021   

19     0.0157   

29     0.0246   

37     0.0287   

43     0.0352   

2      0.0014  

42      0.0289  

0       0.0000 

41       0.0279 

SLOPE 0.0008       
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Appendix (4-12) Absorbance before and after correction, to determine [H2A] for sorption 

experiment E5  .  

Samples Mass of 

sst (g) 

time 

min 

pH Average 

absorbance 

Correct the 

absorbance 

[H2A] ppm [H2A] ppm 

after  zero 

ppm  

40  

 

Standard 

solution 

0 4.22 0.1850 0.1850 40.051  

30 2 4.32 0.2441 0.2425 28.769  

20 3 4.41 0.2891 0.2867 20.092  

10 4 4.6 0.3395 0.3363 10.362  

5 6 4.88 0.3629 0.3582 6.082  

2.5 8 4.92 0.3862 0.3799 1.822  

10 g 30 10 10 4.84 0.3207 0.3128 14.977 16.834 

10g 30 10 12 4.82 0.3165 0.3070 16.117 17.973 

10 g25 10 14 4.85 0.3410 0.3300 11.615 13.471 

10 g 25 10 16 4.88 0.3402 0.3276 12.081 13.938 

15 Control 

samples 

18 4.58 0.3264 0.3122 15.090  

20 19 4.49 0.3027 0.2877 19.900  

10 g 20 10 21 4.88 0.3632 0.3467 8.337 10.194 

10 g 20 10 22 4.9 0.3586 0.3412 9.401 11.257 

10 g 15 10 24 4.87 0.3805 0.3616 5.408 7.265 

10g 15 10 26 4.86 0.3795 0.3590 5.927 7.784 

15 Control 

samples 

27 4.6 0.3374 0.3161 14.339  

20 29 4.57 0.3117 0.2888 19.688  

10 g 10 10 31 4.87 0.4033 0.3788 2.033 3.889 

10 g10 10 32 4.86 0.4037 0.3785 2.096 3.953 

10 g0 10 34 4.91 0.4255 0.3986 -1.856 0 

15  

 

 

Standard 

solution 

36 4.60 0.3431 0.3147 14.607  

20 37 4.48 0.3157 0.2865 20.135  

40 41 4.22 0.2129 0.1806 40.916  

30 42 4.35 0.2716 0.2385 29.551  

20 43 4.44 0.3222 0.2883 19.789  

10 45 4.61 0.3724 0.3369 10.259  

5 46 4.86 0.3997 0.3634 5.047  

2.5 48 4.92 0.4155 0.3777 2.2577  
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Appendix (4-13) Final [H2A] after correction and calculated sorbed values for sorption 

experiment (E5).  

Samples  c0 

ppm 

c1 

ppm 

Mass (g)  sorbed mg/g 

1 30 
16.8341 

10 
0.0527 

2 30 
17.9738 

10 
0.0481 

3 25 
13.4716 

10 
0.0461 

4 25 
13.9380 

10 
0.0442 

5 20 
10.1942 

10 
0.0392 

6 20 
11.2576 

10 
0.0350 

7 15 
7.2654 

10 
0.0309 

8 15 
7.7840 

10 
0.0289 

9 10 
3.8898 

10 
0.0244 

10 10 
3.9530 

10 
0.0242 
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Chapter 5  

Appendix (5-1) steps to determine the selectivity coefficient of groups  pairs of cations in 

sandstone . 

 

 

 

 

 

samples Mn ++ ppm Mg ++ ppm k+ ppm ca++ ppm Na+ ppm Ph

diw (1) 1.132 3.726 5.936 21.435 9.863 4.98

diw(2) 1.129 3.63 6.033 21.47 8.794 4.88

diw(3) 1.186 3.5 6.195 20.8 9.893 4.86

diw(4) 1.207 4.109 6.345 20.48 8.842 4.83

0.25M of srcl2.6H2O (1) 2.855 7.958 9.757 141.5 10.163 4.22

0.25M of srcl2.6H2O (2) 2.738 8.223 10.43 147.8 9.049 4.31

0.25M of srcl2.6H2O (3) 2.523 8.275 10.35 145.9 9.618 4.35

0.25M of srcl2.6H2O (4) 3.041 8.123 9.97 136.3 10.156 4.32

Average DIW 1.2 3.7 6.1 21.0 9.3 4.9

ppm ppm ppm ppm ppm mol/L

SrCl2-avDIW 1 1.7 4.2 3.6 120.5 0.8 0.000047

SrCl2-avDIW 2 1.6 4.5 4.3 126.8 -0.3 0.000036

SrCl2-avDIW 3 1.4 4.5 4.2 124.9 0.3 0.000032

SrCl2-avDIW 4 1.9 4.4 3.8 115.3 0.8 0.000035

Concs in contact with sst

mol/L 1 0.00005191 0.00032749 0.00024954 0.00353750 0.00044187 0.00422000

mol/L 2 0.00004978 0.00033840 0.00026675 0.00369500 0.00039343 0.00431000

mol/L 3 0.00004587 0.00034053 0.00026471 0.00364750 0.00041817 0.00435000

mol/L 4 0.00005529 0.00033428 0.00025499 0.00340750 0.00044157 0.00432000

10 g 0.04 L

55 24.3 39.1 40 23 1

2 2 1 2 1 1 cec (meq/100g)

meq/100g 1 0.0246 0.1388 0.0371 2.4091 0.0142 0.0000 2.6

meq/100g 2 0.0229 0.1475 0.0440 2.5351 -0.0052 0.0000 2.7

meq/100g 3 0.0198 0.1493 0.0432 2.4971 0.0047 0.0000 2.7

meq/100g 4 0.0273 0.1443 0.0393 2.3051 0.0141 0.0000 2.5

av cec comp (meq/100g) 0.0236 0.1450 0.0409 2.4366 0.0069 0.0000 2.7

% 0.9 5.5 1.5 91.8 0.3 0.0 100.0

equiv fraction 1 0.0094 0.0529 0.0142 0.9182 0.0054 0.0000

equiv fraction 2 0.0083 0.0538 0.0160 0.9237 -0.0019 0.0000

equiv fraction 3 0.0073 0.0550 0.0159 0.9201 0.0017 0.0000

equiv fraction 4 0.0108 0.0570 0.0155 0.9111 0.0056 0.0000

a (m) 6.00E-10 8.00E-10 3.00E-10 6.00E-10 4.00E-10 1.00E-10

gamma 1 5.91E-01 6.13E-01 8.63E-01 5.91E-01 8.68E-01 8.51E-01

gamma 2 5.86E-01 6.09E-01 8.60E-01 5.86E-01 8.66E-01 8.49E-01

gamma 3 5.76E-01 5.99E-01 8.55E-01 5.76E-01 8.61E-01 8.43E-01

gamma 4 5.87E-01 6.10E-01 8.61E-01 5.87E-01 8.66E-01 8.49E-01

activity 1 3.07E-05 2.01E-04 2.15E-04 2.09E-03 3.83E-04 3.59E-03

activity 2 2.92E-05 2.06E-04 2.30E-04 2.17E-03 3.41E-04 3.66E-03

activity 3 2.64E-05 2.04E-04 2.26E-04 2.10E-03 3.60E-04 3.67E-03

activity 4 3.25E-05 2.04E-04 2.20E-04 2.00E-03 3.82E-04 3.67E-03

Kca/mn Kca/mg Kca/k Kca/ca - check Kca/na Kca/h

sample 1 1.44 1.61 0.08 1.00 1.74 8.89E+07

sample 2 1.49 1.57 0.07 1.00 10.78 1.68E+08

sample 3 1.59 1.56 0.07 1.00 14.74 2.19E+08

sample 4 1.37 1.57 0.07 1.00 1.69 1.64E+08

average 1.47 1.58 0.07 1.71

KCa/K =
(𝑋 𝑎 )( +)2

(𝑋 )2  ( 𝑎++)
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Appendix (5-2) effect of add various concentration of  Fe on the concentration of rest cations 

from the sandstone interaction with various concentration of Fe 

Samples 

Add Fe ppm 

Ca
++

  Mg
++

  Na
+
   k

+
   Fe  Mn

++
  

ppm 

20 23.84 5.04 7.71 6.96 11.55 1.90 

20 23.92 4.71 7.69 6.94 11.36 1.66 

15 22.20 4.64 6.62 6.86 8.07 1.59 

15 23.18 4.84 8.36 6.47 7.31 1.68 

10 21.12 4.56 7.33 6.29 4.64 1.59 

10 20.58 4.45 6.69 6.46 4.95 1.38 

5 19.14 4.15 8.47 6.39 2.01 1.27 

5 18.79 4.20 8.17 6.63 2.42 1.28 

2.5 17.65 4.06 7.68 5.94 1.26 1.15 

2.5 17.82 4.50 7.51 6.13 1.13 1.24 

0 16.78 3.91 6.31 6.43 0.00 0.91 

0 16.85 4.35 6.49 5.86 0.00 0.94 

 

Appendix (5-3) results of Phreqcee model on the interaction of DIW +sst in present various 

concentration of Fecl2 .  

 

 

 

 

 

 

 

 

 

 

sim state soln dist_x time step pH pe Ca Mg Na K Fe Mn Cl ppmFe

1 i_soln 1 -99 -99 -99 7 12 4.20E-04 1.70E-04 2.78E-04 1.57E-04 7.16E-06 1.67E-05 1.65E-03 0.40113 4.01E-01

1 i_exch 1 -99 -99 -99 7 12 4.20E-04 1.70E-04 2.78E-04 1.57E-04 7.16E-06 1.67E-05 1.65E-03 0.40113 4.01E-01

1 react 1 -99 0 1 6.98846 3.96127 4.34E-04 1.76E-04 2.82E-04 1.59E-04 2.87E-05 1.73E-05 1.74E-03 1.60978 1.61E+00

1 react 1 -99 0 2 6.97759 3.68782 4.47E-04 1.81E-04 2.85E-04 1.62E-04 5.05E-05 1.79E-05 1.83E-03 2.82985 2.83E+00

1 react 1 -99 0 3 6.95629 3.42946 4.74E-04 1.92E-04 2.91E-04 1.66E-04 9.70E-05 1.89E-05 2.01E-03 5.43105 5.43E+00

1 react 1 -99 0 4 6.93644 3.29678 4.99E-04 2.02E-04 2.97E-04 1.70E-04 1.45E-04 1.99E-05 2.19E-03 8.12616 8.13E+00

1 react 1 -99 0 5 6.9177 3.21285 5.23E-04 2.11E-04 3.02E-04 1.73E-04 1.95E-04 2.09E-05 2.37E-03 10.9273 1.09E+01

Averages Averages

Fe o Ca++ mg/lMg++ mg/lNa+  mg/lk+  mg/l Fe++  mg/lMn++ mg/l'Cl' Fe o Ca++ mg/lMg++ mg/lNa+  mg/lk+  mg/l Fe++  mg/lMn++ mg/l'Cl' ppmFe

0 16.82 4.13 6.40 6.14 0.00 0.92 58.55 0 0.00042 0.00017 0.00028 0.00016 0 1.7E-05 0.00165 0 0 57.8705 0.00163

2.5 17.74 4.28 7.60 6.04 1.19 1.19 64.24 4.5E-05 0.00044 0.00018 0.00033 0.00015 2.1E-05 2.2E-05 0.00181 1.1925 2.5 62.628 0.00177

5 18.97 4.17 8.32 6.51 2.22 1.28 69.06 8.9E-05 0.00047 0.00017 0.00036 0.00017 4E-05 2.3E-05 0.00195 2.215 5 66.7413 0.00188

10 20.85 4.51 7.01 6.37 4.80 1.48 74.78 0.00018 0.00052 0.00019 0.0003 0.00016 8.6E-05 2.7E-05 0.00211 4.795 10 70.6789 0.00199

15 22.69 4.74 7.49 6.66 7.69 1.63 83.61 0.00027 0.00057 0.0002 0.00033 0.00017 0.00014 3E-05 0.00236 7.69 15 77.5705 0.00219

20 23.88 4.87 7.70 6.95 11.46 1.78 91.64 0.00036 0.0006 0.0002 0.00033 0.00018 0.0002 3.2E-05 0.00258 11.455 20 83.1131 0.00234

56 40.00 24.30 23.00 39.10 56.00 55.00 35.50

Averages Averages

Fe o Ca++ mg/lMg++ mg/lNa+  mg/lk+  mg/l Fe++  mg/lMn++ mg/l'Cl' Fe o Ca++ mg/lMg++ mg/lNa+  mg/lk+  mg/l Fe++  mg/lMn++ mg/l'Cl'

0 16.82 4.13 6.40 6.14 0.00 0.92 58.55 0 0.00042 0.00017 0.00028 0.00016 0 1.7E-05 0.00165

2.5 17.74 4.28 7.60 6.04 1.19 1.19 64.24 4.5E-05 0.00044 0.00018 0.00033 0.00015 2.1E-05 2.2E-05 0.00174

5 18.97 4.17 8.32 6.51 2.22 1.28 69.06 8.9E-05 0.00047 0.00017 0.00036 0.00017 4E-05 2.3E-05 0.00183

10 20.85 4.51 7.01 6.37 4.80 1.48 74.78 0.00018 0.00052 0.00019 0.0003 0.00016 8.6E-05 2.7E-05 0.00201

15 22.69 4.74 7.49 6.66 7.69 1.63 83.61 0.00027 0.00057 0.0002 0.00033 0.00017 0.00014 3E-05 0.00218

20 23.88 4.87 7.70 6.95 11.46 1.78 91.64 0.00036 0.0006 0.0002 0.00033 0.00018 0.0002 3.2E-05 0.00236

56 40.00 24.30 23.00 39.10 56.00 55.00 35.50



 

223 
 

Appendix (5-4) sorption experiment data for adsorption of Mn
++ 

(from Mn standard for 

FAAS) 

on the surface of sandstone by assume [Mn
++

]o as explain in below table . 

Mn 
++ 

ppm (CO) 

Mn
++

 ppm  

(C1) 

Estimated 

[Mn]o (ppm) 

Corr C1 S S   

[=(CoC1+avDIW)V/M] 

20 20.63 1.2 19.43 0.00228 0.00568 

20 19.7 0.3 19.4 0.0024 0.0094 

15 16.16 1.7 14.46 0.00216 0.00356 

15 16.18 1.7 14.48 0.00208 0.00348 

10 12.66 3.15 9.51 0.00196 -0.00244 

10 12.55 3.05 9.5 0.002 -0.002 

5 7.86 3.3 4.56 0.00176 -0.00324 

5 7.79 3.2 4.59 0.00164 -0.00296 

2.5 3.53 1.25 2.28 0.00088 0.00408 

2.5 3.45 1.2 2.25 0.001 0.0044 

0 1.87 2 -0.13 0.00052 0.00072 

0 1.99 2.1 -0.11 0.00044 0.00024 

 0     
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Chapter 6 

(6-1): Raw and corrected results for final experiment under biotic and abiotic conditions using initial H2A =100 ppm for different time intervals . 
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 (6-2 ): Raw and corrected results for final experiment under biotic and abiotic conditions using initial H2A =80 ppm for different time intervals  

 

(6-3): Raw and corrected results for final experiment under biotic and abiotic conditions using initial H2A =40 ppm for different time intervals 

 

 

Raw Fe & Mn Data (ppm) Corrected Fe & Mn Data (ppm) Raw H2A Data Corrected H2A Data 0.264 0.0921

ppm -3.96 0.0921 0.0465

for 80 ppm Corrected for Mn & Fe IE using phreeqc [H2A] [H2A] corrected for [Mn] Corr for Degradation

[H2A] ppm time h Mn  bio Mn abio Fe bio Fe Abio Mn  bio Mn abio Fe bio Fe Abio time h biotic abiotic  biotic abiotic  biotic abiotic  

80 4.5 2.62 0.85 5.05 0.96 4.5 57.14 65.862 66.5

80 4.5 0.45 0.1 1.44 0.06 4.5 70.68 70.68 70.8

80 16 3.38 0.86 6.83 0.96 16 34.42 46.132 47.8

80 16 0.62 0.31 2.02 0.35 16 63.56 63.56 63.7

80 24 3.48 1.7 6.99 1.9 24 30.05 40.525 42.9

80 24 0.63 0.27 2.02 0.35 24 48.32 48.32 48.4

80 49 3.59 1.19 7.29 1.3 49 14.13 26.032 30.7

80 49 0.49 0.25 1.44 0.29 49 29.08 29.08 29.2

H2A Correction degrdation

Corrected Fe & Mn Data (ppm) -3.96 0.0921

for 40 ppm Corrected for Mn & Fe IE using phreeqc corr for [Mn] bio abio

[H2A] ppm time h Mn  bio Mn abio Fe bio Fe Abio Mn  bio Mn abio Fe bio Fe Abio time h biotic abiotic  biotic abiotic  

40 4.5 1.19 0.42 4.14 0.52 4.5 29.1 33.00 33.59

40 4.5 0.35 0 1.14 0.01 4.5 35.21 36.60 37.19

40 16 1.25 0.53 4.36 0.66 16 16.9 20.82 22.48

40 16 0.45 0.21 1.44 0.29 16 27.62 28.99 30.65

40 24 1.48 0.79 5.11 0.97 24 13.28 17.60 20.00

40 24 0.32 0.23 1.1 0.35 24 18.57 19.39 21.78

40 49 1.76 1.19 5.89 1.36 49 4.59 9.25 13.94

40 49 0.28 0.14 0.86 0.45 49 13.48 14.32 19.01
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(6-4 ): Raw and corrected results for final experiment under biotic and abiotic conditions using initial H2A =60 ppm for different time intervals 

 

 

 

Raw Fe & Mn Data (ppm) Corrected Fe & Mn Data (ppm) Raw H2A Data Corrected H2A Data 0.264 0.0921

ppm -3.96 0.0921 0.0465

for 60 ppm Corrected for Mn & Fe IE using phreeqc [H2A] [H2A] corrected for [Mn] Corr for Degradation

[H2A]ppm time h Mn  bio Mn abio Fe bio Fe Abio Mn  bio Mn abio Fe bio Fe Abio time h biotic abiotic  biotic abiotic  biotic abiotic  

60 4.5 2.41 0.65 4.47 0.74 4.5 39.03 47.31 47.91

60 4.5 2.55 0.6 4.85 0.69 4.5 43.59 52.52 53.12

60 4.5 2.31 0.56 4.26 0.62 4.5 40.87 48.93 49.53

60 4.5 0.44 0 1.32 0.01 4.5 41.94 43.68 44.28

60 4.5 0.37 0.01 1.1 0.01 4.5 50.47 51.92 52.51

60 4.5 0.46 0 1.38 0.01 4.5 51.60 53.42 54.02

60 16 2.9 0.73 5.74 0.81 16 26.27 36.33 37.99

60 16 2.88 0.77 5.62 0.85 16 27.93 37.84 39.50

60 16 2.42 0.64 4.53 0.72 16 24.22 32.56 34.22

60 16 0.55 0.23 1.71 0.28 16 33.03 34.76 36.42

60 16 0.51 0.25 1.6 0.28 16 39.47 41.00 42.66

60 16 0.6 0.24 1.87 0.28 16 37.50 39.41 41.07

60 24 3.41 1.25 6.81 1.39 24 18.27 29.34 31.74

60 24 3.27 1.29 6.49 1.45 24 16.03 26.47 28.87

60 24 3.4 1.29 6.85 1.42 24 15.57 26.53 28.92

60 24 0.64 0.35 2.15 0.45 24 35.20 37.05 39.45

60 24 0.5 0.24 1.65 0.28 24 32.70 34.21 36.61

60 24 0.42 0.28 1.21 0.35 24 33.91 35.03 37.42

60 49 3.56 1.24 7.27 1.39 49 3.75 15.44 20.13

60 49 3.4 1.33 6.81 1.45 49 2.23 13.11 17.80

60 49 3.37 1.31 6.81 1.45 49 2.02 12.82 17.51

60 49 0.44 0.26 1.21 0.35 49 24.33 25.57 30.26

60 49 0.49 0.25 1.49 0.34 49 23.08 24.53 29.23

60 49 0.4 0.2 1.1 0.28 49 20.66 21.86 26.55
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(6-5): Raw and corrected results for final experiment under biotic and abiotic conditions using initial H2A =20 ppm for different time intervals  

 

degredation

Corrected Fe & Mn Data (ppm) H2A H2A -3.96 0.09

for 20 ppm Corrected for Mn & Fe IE using phreeqcfor 20 ppm corr for [Mn] H2A H2A

[H2A] time h Mn  bio Mn abio Fe bio Fe Abio Mn  bio Mn abio Fe bio Fe Abio time h biotic abiotic  biotic abiotic  Biotic Abiotic 

20 4.50 1.07 0.35 3.70 0.44 4.5 11.27 14.83 15.43

20 4.50 1.10 0.38 3.82 0.46 4.5 10.89 14.51 15.11

20 4.50 1.18 0.29 4.18 0.32 4.5 10.69 14.80 15.40

20 4.50 0.40 0.00 1.21 0.01 4.5 15.81 17.39 17.99

20 4.50 0.31 0.00 0.91 0.00 4.5 15.32 16.55 17.15

20 4.50 0.26 0.00 0.72 0.01 4.5 16.86 17.89 18.49

20 16.00 1.34 0.45 4.60 0.53 16.0 6.25 10.68 12.34

20 16.00 1.39 0.40 4.77 0.47 16.0 6.93 11.66 13.31

20 16.00 1.31 0.49 4.85 0.56 16.0 6.63 10.86 12.52

20 16.00 0.34 0.19 0.87 0.36 16.0 12.42 13.40 15.05

20 16.00 0.40 0.18 1.24 0.33 16.0 13.18 14.41 16.07

20 16.00 0.34 0.17 1.20 0.34 16.0 12.73 13.75 15.40

20 24.00 1.71 0.66 5.77 0.76 24.0 2.02 7.51 9.90

20 24.00 1.81 0.60 6.05 0.64 24.0 3.79 9.79 12.19

20 24.00 1.65 0.46 5.65 0.52 24.0 3.63 9.27 11.66

20 24.00 0.20 0.23 0.46 0.35 24.0 10.64 10.98 13.38

20 24.00 0.17 0.20 0.21 0.35 24.0 10.56 10.84 13.24

20 24.00 0.15 0.22 0.17 0.34 24.0 10.32 10.49 12.88

20 49.00 1.90 0.85 6.23 0.97 49.0 0.40 6.27 10.97

20 49.00 1.92 0.73 6.33 0.82 49.0 0.43 6.61 11.31

20 49.00 1.90 0.66 6.21 0.76 49.0 0.29 6.53 11.23

20 49.00 0.26 0.13 0.55 0.17 49.0 8.39 9.17 13.86

20 49.00 0.13 0.14 0.10 0.17 49.0 9.97 10.21 14.91

20 49.00 0.20 0.13 0.26 0.17 49.0 8.95 9.49 14.19
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(6-6 A) pH and Eh for biotic and abiotic experiments for initial H2A = 100 ,60 and 20  ppm  
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(6-6 B) pH and Eh for biotic and abiotic experiments using initial H2A = 80 and 40 ppm 

 

 

 

 


