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Abstract

Modern software is created from components which can often perform a large number

of tasks. For a given task, often there are many variations of components that can

be used. As a result, software with comparable functionality can often be produced

from a variety of components. The choice of software components influences the energy

consumption. A popular method of software reuse with the components’ setting selection

is Software Product Line (SPL). Even though SPL has been used to investigate the energy

related to the combination of software components, there has been no indepth study of

how to measure the consumption of energy from a configuration of components and the

extent to which the components contribute to energy usage. This thesis investigates how

software components’ diversity affects energy consumption in virtualised environments

and it presents a method of identifying combinations of components that consume less

energy. This work gives insight into the cultivation of the green software components by

identifying which components influence the total consumption of energy. Furthermore,

the thesis investigates how to use component diversity in a dynamic form in the direction

of managing the consumption of energy as the demand on the system changes.

The contribution of the thesis can be divided into five parts. Firstly, the thesis intro-

duces a method of measuring energy usage for each process in virtualised environments

such as a Cloud system. Secondly, the thesis suggests a technique using various graph-

based approaches to create a feature model from a large software repository. Thirdly, the

thesis presents a method for predicting the consumption of energy from a large number

of combinations of software components with the help of machine learning algorithms.

Fourthly, the thesis offers a new approach called Energy Prediction Trees (EPTs) for

dealing with the prediction of energy for a feature model that is retrieved from a large

software repository. And finally, the thesis proposes a method to build a self-adaptive

system that adjusts to the change of workload and energy usage by reconfiguring the



software architecture to have combinations of components that use less energy, in real-

time. The suggested approaches are evaluated using case studies that are developed from

a software repository and virtualised environments.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In recent years, a rapid increase in the number of businesses that use Cloud computing

for their main activities [144, 50], such as virtual offices and online stores, has established

a large demand for data centres across the globe. A data centre, which typically hosts

thousands of servers, consumes a large amount of electrical energy to power the servers

[48, 213, 205]. When the energy to produce electricity is generated using fossil fuel (e.g.

coal, oil and natural gas), it will lead to a large amount of Carbon Dioxide (CO2) emis-

sions. Furthermore, the CO2 emissions [70] increase global warming - an increasing global

average temperature at the earth’s surface - that is argued to affect climate change [52]

resulting in stronger hurricanes and severe heat waves – that reduce water supplies.

In 2013, the power consumption of data centres reached approximately 10% [48] of

the worldwide power consumption. It is predicted that in the year 2020 [213] the power

consumption of global data centres may increase to 100 Gigawatt. In the United States

[205] alone, the data centres consumed 91 billion kilowatt-hours of energy in 2013 produc-

ing 97 million metric tonnes of CO2, and it is projected that in the year 2020 they will

consume 139 billion kilowatt-hours of energy producing 147 million metric tonnes of CO2,

a 53% increase, costing American businesses $13 billion per year of electricity bills [57].

In the United Kingdom, in the year 2012 the average energy bill to run a corporate data
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centre was about £5.3 million per year [32]. Considering the on-going increase in the cost

of energy, the efficient energy management of applications within the Cloud computing

system is an active area of research [222, 228, 135, 25].

There are a number of ways to reduce energy consumption and to increase energy

efficiency in Cloud systems. One method is to utilise renewable energy [93, 151, 136]

which includes wind, solar and fuel cell as alternative energy sources. One of the largest

Cloud providers claimed efficiency, using renewable energy, of 35% on its data centre

operations [93]. By raising the temperature of the data centre to 80oF and using outside

air for cooling, Google [93] reduces 12% of the consumption of energy. A study shows

[146] that a small increase of temperature for cooling a high-powered server reduces the

consumption of energy, when compared to a low-power server. Therefore, it is not only

using the renewable energy as a reason to have a green data centre, but also its level of

operations temperature can give advantages in terms of the cost and the consumption of

energy.

The location of data centres spreading all over the world may also take advantage of

the electricity cost differences by using the smart-grid [158] - ”the smart grid uses two-

way flow of electricity and information to create an automated and distributed advanced

energy delivery network” [74]. The Cloud providers can integrate [217] into the smart-

grid network in a different region to seek to minimise their total energy cost, where the

electricity prices and workload assignment may become an option of which, as an example,

a data centre should operate a low workload.

Measurement is a key aspect of energy management. A typical large data centre uses

thousands of sensors, which collect information such as temperature, electricity usage

and server performance for monitoring purposes [84]. In order to support the reduction of

energy, researchers have proposed techniques which work by predicting the performance of

a data centre based on the sensors data to provide an opportunity to improve the energy

efficiency [84, 133, 134]. In these techniques, a policy-based system uses information such

as the energy costs, peak power costs, the impact on energy cooling costs and current

2



electricity prices – from the smart-grid network – to provide suggestions about whether

or not to migrate the workload within a data centre to a different location.

Currently, autonomic computing [166, 46, 227, 35, 69] is widely used in the data

centre for providing dynamic provision based on the change of environment, which is

capable of scaling the infrastructure up and down. Such autonomic computing provides an

integrated intelligent strategy to manage Cloud system services [35]. One of the autonomic

computing approaches is a self-adaptive system which includes feedback and an estimation

of response [118] to automate the mechanism within the system, where a Rule-Based

System [11] may be involved in order to provide an accurate decision.

To have an energy efficient data centre, one of the requirements is to have better server

technology [149, 229, 145, 88]. In a typical data centre, the servers consume 40% of the

overall power [108]. Although turning off an idle server is the best option to reduce energy

[145], the dynamic and rapid user demand within the Cloud computing system makes a

system shut down difficult. One of the methods to reduce energy in a server is to adjust the

Central Processing Units (CPUs) job-scheduling [88] that needs to monitor continuously

the server power consumption in order to provide the data to manage this task. Another

technique to reduce energy is via balancing power consumption [149] and minimising

the total execution time [229], using an energy-aware scheduling policy to assign tasks

to CPUs in order to increase the system’s throughput. Furthermore, scheduling tasks

[138, 2] to a minimum numbers of servers, while keeping the task response to its time

constraints, will also reduce the consumption of energy.

Most existing solutions focus on hardware [146, 84], location [217], policy [229, 138, 2]

and the cooling system [93] to reduce the consumption of energy. This thesis focuses on the

role of software in the management of energy. With increases in the growth of Open Source

software and public repositories, a software developer has options to create a system, such

as a web application, that perform the same action from different combinations of software

components. For example, we can build a web application using more than 20 different

options of web (HTTP) server on top of the Ubuntu Server operating system, and it
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will not change the mechanism regarding access to and performance of the system. As a

consequence, this combination of components increases the possibility of having various

applications by reusing the artefacts of the software products, within the same domain,

that are members of a product line. Such a combination of software components may have

commonality and variability, and with a selection technique, components can be reused

to configure new software products known as Software Product Line (SPL) engineering

[49, 27, 179].

Capra et al. show [37] that a different combination of software components with a

similar job, such as web services, run in a similar operating system and execute similar

tasks and deployed in a similar platform, may consume a different amount of electrical

energy. This gives insight into the selection of software components that may affect the

consumption of energy. Many approaches have been developed to reuse the software

artefacts such as code or software libraries that can be deployed by organisations to meet

their business needs, such as Object Oriented Programming (OOP) [72] and Software

Product Line (SPL) [49, 27, 179].

Among these approaches, the SPL is receiving increasing attention as a reliable ap-

proach to compose the software components from a number of products’ artefacts [62,

195, 194, 196]. A study carried out by Eriksson et al. [71] shows that the traditional

software reuse approaches, such as OOP, has failed to fulfil its promise to increase the

productivity, produce high quality software and reduce the budget, compared with the

SPL that supports large-grained intra-organisation software reuse. This thesis is built on

the existing SPL technique to identify combinations of software components that consume

less energy.

As the cost of energy rises, it is crucial to adapt to the change of environment. In order

to support dynamic systems, the Dynamic Software Product Line (DSPL) [104, 107, 36] -

an SPL that is capable of adapting to the change of environment, user needs and evolving

resource constraints - is also receiving attention. As an example, a web service has options

to change its HTTP servers when the incoming request to the system has reached 100,
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1000 or 10000 users per second. For this, the system should adapt to the change of

the incoming workload to the system, and also provide a set of valid combinations of

software components that allows the system to have options in response to the change of

environment, with or without minimum human intervention. Therefore, a system that is

developed using the DSPL approach should be able to monitor the information from the

current running system as sensor data and provides action as feedback, simultaneously,

in response to the sensor data.

The main thesis of this research is to develop methods to reduce the consumption of

energy in a virtualised environment by identifying combinations of software components

which consume less energy using a Software Product Line (SPL) development framework,

and then derive methods for the reduction of energy for a dynamic system. This thesis

raises three research questions, as follows:

(Q1) Virtualised environments such as the Cloud system is a shared infrastructure. In

order to obtain knowledge of energy usage in virtualised environments, we need to develop

a technique to measure energy in the virtual machine without the use of Wattmeter

devices.

(Q2) A typical SPL model may have a large number of combinations of components. It is

infeasible to measure the energy usage of all possible combinations. As a result, we need a

method to approximate the consumption of energy for a large combination of components,

such as combinations that are retrieved from a large software repository.

(Q3) In a typical Cloud system, workloads are dynamic which may influence the consump-

tion of energy. As the cost of energy rises, we need a technique to deal with a dynamic

system that is based on the SPL method for reducing the consumption of energy.

Measurement is an essential part of planning and management of energy consumption.

Some techniques for the measurement of energy [228, 135, 25] make use of hardware de-

vices commonly known as Wattmeters. An example of such a hardware devices is WattsUp

[220]. It is also possible to use software products such as Intel Power Gadget [115] and

Joulemeter [150] to measure energy usage of a running system. Most of these measurement
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methods use workload to simulate the users activities when they interact with the system

under test. However, there is a problem with the current measurement methods: these

methods are not designed for measuring the energy consumption of individual processes

of the running system. In virtualised environments, we cannot use Wattmeter devices

to measure energy consumption per process of a virtual machine (VM) because the re-

sources are shared and virtual machines can move from one host to another. In a shared

infrastructure, it is difficult to isolate each VM and measure the energy consumed by the

particular VM. In addition, VMs can be allocated to other hosts dynamically to allow

load-balancing within the Cloud system. As a result, we need a method of measurement

that is not reliant on Wattmeter devices.

In this thesis, we propose a technique to measure energy in the virtualised system which

is software-based and combines software tools for measuring energy and the workload tool

to generate a load to the system being measured. For example, we can measure energy

consumed by different HTTP servers to find out which one is more efficient on energy

usage and make a recommendation based on the measurement results.

To measure energy consumption of any given application, a suitable workload must be

provided to simulate its usage. We use a workload generator tool, such as JMeter [6], to

simulate the load of users incoming to a system. Under a given workload, each one of the

processes within the system consumes a different amount of energy. We then capture the

energy usage using a software power meter, Powertop [200]. This measurement method

can be applied within a Laptop and a Cloud environment, which makes use of Advanced

Control and Power Interface (ACPI) [152] that enables us to monitor the power usage in

a Cloud system. This measurement method answers Q1 , providing a technique to obtain

the information of energy from a virtualised environment.

The above methods of measurement are suitable when dealing with a small number

of features. For a large number of variations, there are two challenges, as follows:

1. A method is required that will automatically capture dependencies and variabilities

within large SPL models. This is necessary because capturing such information
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manually would be infeasibly time consuming when dealing with large SPL models.

In addition, as repositories frequently change over time, this task has to be repeated

over and over again, making automated methods even more desirable.

2. As the number of product configurations is high, it is impossible to use methods

that answer the Question Q1 to measure energy consumption for every single com-

bination. An understandable method that can scale to large repositories is needed.

This thesis proposes an approach to deal with these two challenges in the context

of the software repositories, to extract feature models automatically from the software

repository and to create an understandable and scalable machine learning model design

for providing insights into the configuration to choose.

Most large software repositories have metadata, which may consist of the name, ver-

sion, dependencies and size, to provide information about the existing resources and how

they can be useful for a deployment. These metadata are beneficial in order to obtain the

dependencies between components. In a feature model, the dependency between features

describes how a feature can be configured to a particular combination. By using the in-

formation contained in metadata, a feature model can be built and reconfigured. Using a

feature model [179, 49], the categories of software components and the component depen-

dencies from the information of metadata can be modelled and visualised. Furthermore,

this will enable the stakeholder to choose which software components should be included

in the final product by analysing the feature model.

We propose a method to build a feature model for SPL development automatically, i.e.,

without human intervention, from a software repository. In previous work, the process of

building the feature model required human intervention, which is particularly expensive

when dealing with a large repository. Our method also facilitates analysing the consistency

between feature dependencies in the feature model and component dependencies in the

original repository, making the checking process straightforward. This is particularly

important because the package repository evolves with time. Therefore, after creating

a feature model from a repository, we need to check whether the feature model is still
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consistent with new versions of the repository, i.e., if it is still valid. Our approach can also

adjust the size of the feature model generated from the repository, in order to manage

the complexity of a feature model, by adding some constraints, such as excluding the

conflicts and common features – this includes the library components that are used in

most software configurations, to the retrieval procedure as a script of constraint. This

is useful because it allows the management of the feature model to include only relevant

packages.

In the large package repository, the number of possible combinations of packages is

enormous. Measuring the energy consumption of all possible combinations is inefficient

and impractical. Machine learning models to predict the CPU power consumption of

configuration can be created based on a reduced number of energy measurements. The

thesis proposes a new machine learning model design to predict CPU power consumption

when there is a large number of product configurations. This model overcomes the issue

of existing approaches, being accurate and interpretable. Users can thus use this model

to decide what combinations of packages to use in order to reduce energy consumption.

This technique answer to the Question Q2 to measure energy from a large number of

components and select the combination that consume less energy.

We create a comparative study between different machine learning approaches, such as

Linear Regression, Regression Tree, Random Forest, Bagging + Regression Tree, Bagging

+ Linear Regression, and our new model – a new Regression Tree design tailored for

energy prediction, Energy Prediction Trees (EPTs) – to find out which one performs

better to predict the consumption of energy in a virtualised environment, including a

large number of combinations and components. The comparison is based on the case

study of two feature models that are retrieved from the Ubuntu package repository.

The energy consumed in the Cloud system is directly affected by the amount of re-

sources used to cope with a workload. A challenging characteristic of Cloud systems is

that their workload is highly dynamic [180, 4] as the number of concurrent users changes

rapidly over time. One solution to handle a dynamic workload is to rely on elastic com-
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puting, increasing or reducing the available resources to meet a Service Level Agreement

(SLA). Scaling up a service leads to providing and using more resources, which also

increases the cost of operation. We believe that it is possible to leverage techniques for

reconfiguring the system in order to cope with different workloads without directly scaling

up and yet saving energy.

In order to answer Q3, to build a dynamic system, the thesis proposes an approach

to building a self-adaptive system in a virtualised environment. The architecture of this

system reconfigures the combination of software components, automatically, based on the

change of environment. In this work, the architecture has a sensor module that constantly

monitors energy consumption and workload, which then feeds the information from the

sensor to a Rule-Based System (RBS) [11] that helps to reconfigure the system dynami-

cally based on the workload and energy consumed. In this approach, the thesis combines

the SPL, models@runtime [24], and Rule-based system [11] to provide a self-adaptive

energy aware system. The SPL, as core architecture, gains its resources from a software

repository, such as Ubuntu package repository, that can be retrieved and reconfigured into

a system based on the change of environment. A consolidation of the models@runtime

and SPL provides a mechanism to change the configurations that is triggered via a deci-

sion made by the RBS, where a real-time monitoring of workload and energy usage of the

servers are the input for the RBS. To evaluate this approach, a case study is created that

build a self-adaptive web system that uses DROOLS [11] as the rule-engine, and Ansible

[101] as a manager to configure and deploy the combination of packages that are retrieved

from the Ubuntu package repository, in real-time.

1.2 Overview

Figure 1.1 shows an outline of our approach to managing the energy usage of a Software

Product Line (SPL) and a Dynamic Software Product Line (DSPL) model within a Cloud

and a virtualised system. The first approach measures energy usage from the virtualised
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Figure 1.1: Overview of our approach.

environment with a workload to execute tasks within a system. In order to generate

suitable workloads for each domain of application, a network traffic model is developed

using a scenario to simulate users accessing the system. In the second approach, we create

a data set for the Machine Learning process that combines the product configurations,

as Boolean, and workload. These data sets use the CPU power values as the prediction

targets. The Machine Learning ensembles present the prediction of energy usage within

the product configurations of a Software Product Line. The third approach creates a Dy-

namic Software Product Line with energy that adopts the models@runtime [24] to adapt

to the environment change, such as workload and energy. This approach reconfigures

the software architecture, based on the change of the adaptive parameters that perform
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resilient to the variation of energy usage corresponding to the workload before scaling up

their infrastructure. In order to develop a Dynamic Software Product Line (DSPL) with

energy, a self-adaptive system with a rule-based system within the virtualised environ-

ment is developed. The dynamic system uses real-time monitoring of energy as feedback

to make a decision whether or not the architecture should be reconfigured.

It is worth noting that the feature model of product configurations for Software Prod-

uct Line (SPL) and Dynamic Software Product Line (DSPL) with energy, in this thesis,

are built using an approach that retrieves package dependencies from a software reposi-

tory.

The detail of the contributions is defined in the following section.

1.3 Contribution

The contribution of this thesis is the following:

• A technique to measure energy usage for an individual process under a given work-

load in a Cloud and virtualised system was developed (Chapter 3). In particular:

1. The thesis introduces a technique to generate workload using a scenario to

execute tasks, i.e., end-users accessing an e-Learning system and doing several

activities, in the virtualised system.

2. The thesis introduces a measurement technique in the virtualised environment

in a Laptop, where the software application for measuring energy monitors the

electric current drainage from the battery.

3. The thesis presents a technique to measure energy usage in the Cloud envi-

ronment where the implementation of Advanced Control and Power Interface

(ACPI) enables us to monitor the power usage in a Cloud system.

• A method to find the variability of and create a feature model from a large software

repository, automatically (Chapter 4). In particular:
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1. A technique using an Open-Source application to retrieve and merge packages

from the large software repository is presented.

2. The mapping from the text graph file into a constraint of a feature model is

presented.

3. The transformation model from the text graph structure into a constraint of a

feature model is defined.

4. The mapping of the package dependency and structure from the software repos-

itory into a cross-tree and hierarchy structure of a feature model of Software

Product Line (SPL) is defined.

• The machine learning model to predict energy consumption of product configura-

tions of an SPL.

1. We introduce a technique to prepare a data set for the Machine Learning pro-

cess from the product configuration of a Software Product Line, the workload

of the measurement of energy, and the CPU power usages. (Chapter 3, 5 and

6)

2. The configurations to compose the data set can be selected randomly, or par-

tially randomly, by ensuring that each package is included in at least one con-

figuration, and popular configurations are included, and are presented. (Chap-

ter 5)

3. The thesis introduces a predictive model to estimate energy usage using Ma-

chine Learning that predicts a numeric target variable (CPU Power) given a

set of input variables (Workload and Product Configuration). (Chapter 5)

4. We present a technique using Regression Trees (RTs) and the Bagging+Regression

Trees ensemble to predict energy usage of product configurations of a product

line. (Chapter 5)
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• A method to enhance the prediction of energy usage in a data set from product

configurations of an SPL model using the machine learning ensemble. In particular:

1. The thesis introduces the Energy Prediction Trees (EPTs) by restricting the

split of variables representing the product configurations of an SPL. The EPTs

provide an easy interpretation of the prediction results using a combination of

the regression tree and linear model. (Section 5)

2. The thesis discusses the model-based recursive partitioning procedure to pro-

vide a linear regression model of EPT’s leaves to predict a single CPU power

value. (Section 5)

• A Dynamic Software Product Line (DSPL) with energy. In particular:

1. The thesis presents an approach for the autonomous software architecture con-

figuration by using the variant of the feature model where the monitoring of

real-time energy usage and workloads become the input. (Chapter 6)

2. A mechanism to manage and reconfigure a dynamic system using broker-agent

software is developed. (Chapter 6)

3. A self-adaptive load balancer, with the Rule-Based System in a virtualised

environment for the DSPL with energy, is built. (Chapter 6)

1.4 Structure of This Thesis

This thesis is structured as follows:

• Chapter 2 introduces the essential background material of this thesis to the reader.

These are the Cloud computing, the Software Product Line Engineering, the Feature

Model, and the Dynamic Software Product Line, the power model, energy measure-

ment, machine learning and the autonomous system for the virtualised environment.

In addition, reviews on related work for the static and dynamic Software Product

Line with energy are discussed.
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• In Chapter 3, we present the energy measurement technique in the Cloud and vir-

tualised system. This chapter, then, discusses a method to generate workload with

a scenario to execute tasks within the system under measurement that uses a traf-

fic model to simulate users accessing the system. We conduct an experiment to

measure energy usages for virtualised environments and present the results.

• Chapter 4 presents a technique to create a Feature Model from a Large Software

Repository. This technique describes how to retrieve packages and their dependen-

cies from a software repository. The retrieval results are then transformed into a

Feature Model.

• Chapter 5 discusses a method to model a Software Product Line with Energy. The

machine learning ensemble is used to approximate and predict the consumption of

energy from the combination of features. In addition, the comparative consumption

of energy of features is also discussed in this chapter. We conduct an experiment

using feature models that are retrieved from a large software repository. In this

chapter, we compare the results of our prediction technique to several other machine

learning algorithms.

• Chapter 6 presents the management of energy by reconfiguring, at runtime, the

software architecture based on the change of environment (i.e. workloads and en-

ergy usages) using the Dynamic Software Product Line (DSPL). An experiment is

conducted on a self-adaptive Load-Balancer with a Rule-Based System (RBS) to

demonstrate our approach. We also compare our DSPL approach to a simplified

elastic virtualised environment approach.

• Chapter 7 discusses the conclusion and the future works of our research.

1.5 Publications Resulting from this Thesis

Parts of the research in this thesis have been published in several papers:
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1. I Made Murwantara and Behzad Bordbar,

A Simplified Method of Measurement of Energy Consumption in Cloud and Vir-

tualised Environment, In 4th IEEE Big Data and Cloud Computing Conference,

2014.

2. I Made Murwantara, Behzad Bordbar and Leandro L. Minku,

Measuring Energy Consumption for Web Service Product Configuration, In ACM

16th Integrated Information and Web Application Services (iiWAS) Conference,

2014.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, firstly we present an introduction to the Cloud computing system. Next,

we present available techniques to measure energy in virtualised environments. We then

introduce Software Product Line (SPL) because the approaches that we present in this

thesis are derived from SPL. Afterwards, we introduce and discuss Dynamic Software

Product Line (DSPL). Then, we introduce a large software repository. Finally, we intro-

duce the Machine Learning approach.

2.1 Cloud Computing

This section provides an essential background of Cloud computing systems. It begins with

essential characteristics of the Cloud system, then service models, followed by deployment

models.

There are two well-known definitions of Cloud computing that are widely cited:

(1) The US National Institute of Standard and Technology (NIST) defines Cloud com-

puting [147] as “a model for enabling ubiquitous, convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”.

(2) According to Rajkumar Buyya [33] “Cloud [computing] is a type of parallel and dis-

tributed system consisting of a collection of inter-connected and virtualised computers
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that are dynamically provisioned and presented as one or more unified computing re-

sources based on service-level agreements established through negotiation between the

service provider and consumers”.

In practical, as depicted in figure 2.1, Mell and Grance [147] stated that a cloud model

is composed of five essential characteristics, three service models, and four deployment

models.

Figure 2.1: Cloud computing, adopted from [33, 147] .

2.1.1 Essential Characteristics of Cloud Computing

Cloud technology has options that are enticing various businesses around the globe.

Therefore, it is important to know the essential characteristics of the Cloud [147].

1. On-demand self-service enabling users to provision resources, such as network

storage and server time, without requiring human interaction for each cloud provider

service.

2. Broad network access provides an accessible network through standard mecha-

nism, such as heterogeneous thin and thick client platforms, which enable devices

such as mobile phones, tablets, laptops and workstations to have access to the virtual

system.
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3. Resource pooling enables consumers to enter and use the data within a Cloud at

the same time, from any different location and at any time. This capability leverages

the efficiency for businesses that have offices around the world.

4. Rapid elasticity provides scalable resources with affordable prices to any business

needs, which enables consumers to add and remove resources easily and quickly.

5. Measure service provides transparency for both the consumer and provider of

the utilised service. The Cloud systems have a metering capability at some level of

abstraction, such as storage, processing and bandwidth, where this typical services

exist as pay-per-use basis.

2.1.2 Service Models of Cloud Computing

The Cloud computing service model is divided into layers, as shown in Figure 2.2, where

Platform and Ecosystem views promote a new way of computing [47].

Figure 2.2: Cloud computing service models, adopted from [47, 147].
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1. Software as a Service (SaaS) allows consumers to use a provider’s application

running in a Cloud infrastructure. SaaS enables various clients to access applications

through a thin client interface, e.g. internet browsers. Nevertheless, the consumer

cannot manage the cloud infrastructure such as networking, operating system and

storage, only a limited application configuration setting may be allowed to the end-

users. For example, Google Apps, Salesforce.com are SaaS providers.

2. Platform as a Service (PaaS) enables capabilities that are provided for the

consumers to manage the software stacks, which include integration of web services

and databases, and build a collaborative platform for software development. For

instance, Force.com and Google App Engine are PaaS providers.

3. Infrastructure as a Service (IaaS) is a way of delivering infrastructure on-

demand services, such as storage, CPU, network and operating systems, in the Cloud

computing environment. This service model allows for dynamic scaling of Cloud in-

frastructure. For instance, Amazon Web service (EC2,S3,others), Rackspace, Win-

dows Azure are IaaS providers.

2.1.3 Deployment Models of Cloud Computing

Cloud deployment models represent the environment category, prominently distinguished

by their ownership, distribution, physical location and the purpose of their services. It is

categorized as follows:

1. Private cloud is implemented for the exclusive use of the particular organizations.

This deployment model only permits the authorized users, so that the organization

can have direct control over their data and applications. Such models are largely

deployed using Openstack and Opennebula.

2. Community cloud is deployed for the exclusive use of a community, e.g. a research

group, where a different organisation may be involved in using this cloud model.
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A community cloud can be internally managed or use a third party, where their

intention is to achieve their related business objectives.

3. Public cloud is a deployment model that is delivered over a network that is open to

the public. This model is a representation of commercial Cloud providers, where the

consumers do not have control over the location of the infrastructure. For instance,

Amazon EC2 and Windows Azure are public clouds.

4. Hybrid cloud is a type of Cloud deployment model that is integrated, which is

the combination of two or more deployment models. Hybrid cloud has the benefit

of overcoming the limitation in the public, community and private cloud. Such a

hybrid cloud manages and provides their resources either in-house or by external

providers. For example, an organization can use the cloud for archiving old data,

and keep operational data exclusively.

2.2 Energy Usage in a Cloud and Virtualised Envi-

ronment

Considering the ongoing increase in the cost of energy, efficient energy management of

applications within a Cloud system has attracted many researchers [197, 12, 61, 92, 111,

17, 16]. This section describes existing techniques to measure energy usage in the Cloud

and virtualised environment. In particular, this section explains a technique to measure

energy using a software power meter and workload.

2.2.1 Power and Energy

It is essential to know the terminology in order to understand the energy measurement.

Energy is the capacity or power to do work [90] that exists in a variety of forms, such

as electrical and mechanical. The electrical energy is the amount of power over a period

of time. It is worth noting that the International System Unit - Système international
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d’unités (SI) - of power is the watt (W), and energy is the joule (J), where 1 watt second is

equal to 1 joule [90]. To describe this formally, power (P) and energy (E) can be defined

as in 2.1 and 2.2.

P = I · V (2.1)

E = P · T (2.2)

where P is the power, I is the electric current, V is the electric potential difference, T is

a period of time and E is the energy. Energy differs from Power in terms of the period of

time or time length of an execution of tasks running in a system.

2.2.1.1 Power Consumption in a Computer System

In a UNIX-like operating system, a system call [203, 137] (sometimes referred to as a

Kernel call) is a request made via a software interrupt by an active process for a service

performed by the Kernel – a program that constitutes the central core of a computer

operating system, and it has complete control over all resources on the system and their

activity. Further, an active process utilises the CPU by sending tasks through the Kernel

to run services, which include process control, communication, device management, file

management, and information maintenance.

According to Intel Labs [153], in a server architecture, the CPU consumes the highest

amount of energy, followed by the memory and the power supply efficiency loss, as de-

picted in Figure 2.3. Current CPU technology uses a multi-core architecture that is more

efficient than a conventional older technology that implements a single core technology. In

addition, the CPU power efficiency and power saving techniques have improved, enabling

low-power active modes.

Most current processor architectures and operating systems have adopted Advanced

Configuration and Power Interface (ACPI) [152] for power management. The ACPI of-
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Figure 2.3: Intel server energy usage [153].

fers the structure and mechanism to design an operating system that directed power

management, and also provides control and information needed to perform device power

management such as turning-off or -on a virtual machine.

The CPU power states (C-states) [152] are a CPU idle state to save power by deac-

tivating CPUs that are not in use. The C-states are defined in a sequence of number

to represent the power saving. In C-States, the greater the power saving, the higher the

number, as follows:

C0 – CPU is working in the normal operating state of a core to execute code, not idle.

C1, Halt – CPU is not executing any instructions, not in a lower power state and will

continue the process with no delay. The core halts.

C2, Stop Clock – CPU clock is stopped. In this state, CPU maintains all software

visible by the system, but may take longer to wake up.

C3, Sleep – CPU is in a deep sleep state, and to wake it up takes a longer time than

C2, where the CPU does not keep the cache of the system.

It is worth mentioning that ACPI defines the power state of CPU as being either active

(executing) or sleeping (not executing) [152].

In the old Linux Kernel operating systems, they periodically interrupted the CPU on a

system call to pre-determine their working frequency. Such action gathers the information
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of tasks that are being executed to manage the processes and load balancing, which is

known as the timer tick, regardless of the power state of the CPU. As a result, a CPU

always responds to this request, preventing the CPU to stay idle long enough. To address

this, in the Linux kernel, since Version 2.6.21 [116, 98], it runs tickless to allow idle CPUs

to remain idle, and to stay in the lower power states longer. When a new task is queued

for processing, then the CPU is awakened to execute tasks. This power saving mechanism

uses ACPI that are interfaced with C-states.

2.2.2 Measurement of Energy

The measurement of energy consumption in Information Technology is an active area

of research [228, 26, 25, 123, 77, 214, 222, 167]. Kansal et al. [123] proposed a tool to

monitor the resource usage of runtime software components. Jason et al. [77] and Vergara

et al. [214] use an advanced combination of a software tool and hardware power meter,

which involves specific hardware to measure energy usage for more specific purposes, such

as Analog to Digital Converter (ADC) that is combined with Wi-Fi or communication

systems. An example of a hardware device to measure the energy consumption of a

computer system is WattsUp [220]. These devices are commonly known as Wattmeters.

Chen et al. [45] measure a cluster of computer systems’ energy consumption using a

Wattmeter. In their measurements, they simulate the user via a workload tool.

Most existing techniques involve the use of a Wattmeter [228, 25, 45] to measure

total energy usage of the computer system. As a result, we need a different method of

measuring energy consumption by individual processes. For this reason we can group

a number of processes, such as HTTP server and Database system, and measure their

energy consumption. However, this is non-trivial as we cannot use Wattmeter products to

measure individual processes within a computer system; they do not distinguish between

processes. We need to identify the energy that is being used when a process is running. In

a virtualised environment, the Wattmeter devices cannot measure the energy consumption

of a virtual machine (VM) because the resources are shared and VM can move from one
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host to another. As a result, we need to consider using a software power meter that is

not dependent on Wattmeter devices, i.e. Powertop, as explained in the next section.

2.2.3 Measurement of Energy Consumption via Software and

Workload

There are a number of software applications for measuring power consumption in a com-

puter system [150, 200, 77, 114]. Some of these software products use battery drainage

to measure how much energy is consumed. Among these tools are Joulemeter [150] and

Powertop [200]. Joulemeter [150], developed by Microsoft Research, measures the specific

running services energy consumption in real time. It estimates power usage of a computer

system by reading the log file of CPU utilization, the Monitor brightness and the Disk

usage. The Joulemeter measures energy usage of a typical laptop on battery mode and

other infrastructure, such as servers, using a Wattmeter device.

Powertop [200] is an Intel open-source tool designed to measure, inform and reduce

the electrical power consumption of a computer system. This tool analyses the device

drivers, kernel and programs running on a Linux based system and estimates – using a

machine learning [157] approach – the power consumption resulting from their use. In

predicting a measurement, first, a data set is created and projected to build a reference

model as a calibration activity. Then, based on the reference model, Powertop estimates

the power consumption of a computer system. It is worth noting that the sources of data

to calibrate and measure power come from a virtual file system – sysfs – provided by

Linux. Sysfs [106] provides a set of virtual files by exporting information about various

kernel subsystem, hardware devices and associated device drivers from the kernel’s device

model to user space. Such a file system allows Powertop to capture information that

relates to power usage and system activities, such as battery condition and CPU status.
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2.2.3.1 Workload for Computer System

The workload model for a computer system, such as web workloads [176], is an abstraction

of the real workload that reproduces users’ behaviours and ensures that a particular task

within the target of the workload performs as it would do when working with real users.

Further, workload appears in many contexts to aim at different interests [76]. According

to Feitelson [75], in order to schedule a CPU, each job arrival and running time should

correspond to the relevant attributes. If memory usage is the interest then the total

memory usage and locality of tasks that utilise the memory should be considered. In

addition, a repeatable method to provide similar workloads, i.e. network traffic, should

be consistent with the system configuration being tested to obtain persistent results [76].

A traffic model is a combination of network traffic with some amount of loads to provide

Figure 2.4: An example of the user session in Tsung, Liu et al. [139].

a suitable workload to a system [139]. A user session, as depicted in Figure 2.4, is used

by Liu et al. [139] to distribute a load in a traffic model.

In order to measure the consumption of energy of any given application, a suitable

workload must be provided in order to simulate its usage. Such a workload should be able
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to simulate the end-users’ request traffic to a system. Liu et al. [139] built an approach

for the application of web traffic to evaluate the Web servers performance, which was

adopted as a workload tool [209]. Ortiz et al. [176] are concerned with dynamic load in

order to evaluate the current and the incoming workload of a web system. They use a

traffic model with a session level to simulate users arriving at the server and how end-

users use an internet browser, such as Mozilla and Chrome, to browse the HTTP server.

It is worth noting that a session is a sequence of an end-user clicks the hyperlink in their

browser pointing to the same server. Figure 2.4 shows a user session using a Web browser

accessing an HTTP server to execute tasks involved in each scenario, where τ represents

the time taken to retrieve Web pages, and γ represents the inter-arrival times of clicks

that describe the time durations elapsed between the clicks on the hyperlink and the

completion of loading the requested page.

2.2.3.2 Workload Tool

There are a number of workload tools [209, 6, 123]. Among others are Tsung [209] and

JMeter [6]. Tsung is a distributed load testing tool that implements a stochastic model

for real user simulation, and is built in the Erlang [39] programming language, where the

user event distribution is based on a Poisson process [139], and uses a traffic model [165]

to simulate real-world user behaviour. JMeter [6], a java based application, is designed

to generate a load to test functional behaviour and measure performance. Both Tsung

and JMeter are capable of distributing workload for static and dynamic resources, such

as Web systems and Database management systems.

A workload scenario [187] represents the way an application executes tasks in real-life

systems. Such a workload scenario provides a kind of mechanism to send a load to the

object of measurement in a consecutive way. For example, steps to commit a transaction

in an online shopping system. It begins with a user login into the system, then selecting

one or more items. After that, it makes a payment with a banking agent system attached

to the shopping system. Both Tsung and Jmeter support the use of workload scenarios
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within their script. Despite this, there are some limitations, among others that neither of

the workload tools can handle JavaScript request.

Discussion

In measuring energy usage for virtualised environments such as a Cloud computing sys-

tem, researchers have provided approaches by using Wattmeter devices and a software

power meter. Kansal et al. [123] and Bohra et al. [25] have developed techniques using a

combination of Wattmeter devices and a software power meter. Their approach includes

a prediction method that obtains its sources by measuring the CPU, memory and disks

energy usage of physical servers. The Kansal [123] method only measures one process at

a time, where the total consumption of energy associated with the software components

cannot be included. As a result, total energy caused by executing tasks is not measured.

Bohra [25] developed a power model by adding the consumption of energy in CPU, mem-

ory and disk, and also includes the interdependence between them. However, it is hard to

isolate processes within virtualised environments, and also a unique combination of soft-

ware components within a system may execute different tasks. In this work, we propose a

technique to measure energy usage for individual tasks within a virtualised environment,

where a workload is used to execute combinations of components within the system under

measurement.

There exist approaches that use models to migrate the underutilised or idle virtual

machine in a Cloud system [16, 34, 17, 13, 4]. Beloglazov et al. [16, 34, 17] developed

algorithms to detect a host with an overload problem using the Markov Chain model,

and also implemented a distributed dynamic approach for the virtual machine consolida-

tion. This approach migrates the virtual machine instances to improve the utilisation of

resources and to reduce energy. Basmaidjan et al. [13] and Alansari et al. [4] use policies

to build the energy management in the Cloud system. They optimise the energy usage

by managing the business rules that are associated with the consumption of energy of a

virtual machine and by continuously monitoring the Cloud environment. Even though
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promising, these approaches still require some adjustment in order to reduce energy usage.

For example, although Alansari et al. enforce the energy policy into a business rule system

through interaction with the Cloud manager to migrate under-utilised virtual machine,

the workload to the Cloud system dynamically changes over the time line. Moreover,

when the system under management is a dynamic system, it is inefficient to predict the

consumption of energy based on a growing number of data, such as Basmaidjan et al.

have proposed.

Smith et al. [199] and Yu et al. [224] introduced methods to measure energy in a

virtualised system by using a workload to execute tasks to utilise CPU, memory, hard

drive and network. These methods monitor the energy usage of a private Cloud through

agents that are installed in the servers to find out the behaviour of the system when a

workload arrives at the system. Smith et al. simulate processes such as file compression

to perform tasks in the system under measurement in order to measure the consumption

of energy. Yu et al. propose to use the relationship between the measurement result

and workload to manage the Service Level Agreement (SLA) for Cloud provider services.

Even though the workload that is used in both the Smith and Yu techniques do not

aim to execute individual tasks of combination of software components in the system,

these approaches are worthy of mention because their methods continuously monitor the

consumption of energy without interrupting the running services.

2.3 Software Product Line and Dynamic Software

Product Line

This section provides a brief introduction to software component reuse and its extension to

a dynamic system. Two approaches are reviewed: Software Product Line engineering and

Dynamic Software Product Line engineering. This section aims to provide the literature’s

perspectives and to show potential uses of these approaches to pursue the goals of this

thesis.
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2.3.1 Software Product Line Engineering

According to Clements and Northrop [49] “A software product line is a set of software-

intensive systems sharing a common, managed set of features that satisfy the specific

needs of a particular market segment or mission and that are developed from a common

set of core assets in a prescribed way”. A Software Product Line (SPL) engineering builds

new competitive and distinctive products from assets or artifacts of software products’

members that are included into a product line, and it aims to configure new high quality

products that reduce the time and cost of software development. In recent years, SPL

has been succesful in many different domains, such as avionics [190], electronic consumer

products [168], firmware [208] and the health systems [221].

Software Product Line (SPL) engineering focuses on the reuse of assets of products

with a mass customisation of multiple or more similar products. Further, a family of

software products [174] could be treated as related sets, in modules or component forms

which can be composed or decomposed [173] to achieve better results. Therefore, reuse of

assets in a family of products [122] in the same domain should be packaged, managed and

reused as software modules for each variant product in the domain to develop a domain

architecture and reuse the software components.

In pursuing its goals, software product line engineering is divided into two processes,

namely Domain engineering and Application engineering, as depicted in Figure 2.5. The

task of Domain engineering is responsible for identifying or creating reusable assets and

Application engineering is to reuse assets to build new products in a similar domain. It

is worth noting that both Domain and Application engineering are interrelated without

any specific order.

2.3.1.1 Domain Engineering

Pohl et al. [179] state that “domain engineering is the process of software product line en-

gineering in which the commonality and the variability of the product line are defined and
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Figure 2.5: Software product line engineering framework [179].

realised”. Further, domain engineering identifies and categories the artefacts of members’

products of a product line in order to plan a software product line development. Among

other aims is to set a scope for development, and to construct reusable artefacts. In

domain analysis, the commonality and variability of assets are accomplished to obtain

the desired construction of the reference architecture. The reusable software components

are designed and configured in the domain realisation phase, and then created into the

variability of software product line.

2.3.1.2 Application Engineering

“Application engineering is the process of software product line engineering in which

the applications of the product line are built by reusing domain artefacts and exploiting

the product line variability” [179]. In the application for the requirement engineering,

aims to find the commonality and variability between the application and the domain
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requirement to build a product configuration. After that, in the application realisation

phase, a software product is built by assembling the reusable and application-specific

assets that are derived from the reference architecture.

2.3.1.3 Variability Management

According to Kang et al. [121], variability is the notion of relationship, data-flow across

domain, binding times, application domain, environmental differences and assumptions.

Variability management defines and represents the commonality and variability artefacts

and is the key part of software product line development [44]. It is one of the most

important activities that distinguishes software product line engineering from traditional

software reuse and other software development approaches [27].

Variability management is the key factor in software product line development. The

Variability model is dedicated to manage variability in a software product line. In this

report, we use Feature Modelling to create our variability model.

2.3.2 Feature Model

Feature modelling is the most common technique to model the variability of a Software

Product Line development. It represents commonality and variability as a set of features

and their dependencies. Kang et al. [121] introduced Feature Oriented Domain Analysis

(FODA) to perform the domain analysis. They defined a feature as “a prominent or

distinctive user-visible aspect, quality, or characteristic of a software system or systems”.

Thus, the feature model is considered the prominent standard to describe the variability

in a software product line.

2.3.2.1 Notation

According to Czarnecki and Eisenecker [54], a feature model should represent the intention

of a concept throughout a set of instances, which are the assets of a product line. A feature

diagram, which is represented in a hierarchical structure, derives the feature’s description
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as a concept, as depicted in Figure 2.6.

Figure 2.6: A feature model of web services [built using FeatureIDE [206]].

A feature model is organised in a tree like structure. Features are represented as a

rectanglular box with a title inside to indicate specific goals. The root feature describes

the main feature under development, e.g. web service. A feature’s edge is used to show

the parent-child relationship among features. There are two ways to describe variability;

firstly, features can be decomposed into sub-features, where a sub-feature may be optional

or mandatory. For example, http and security are mandatory and optional features,

respectively, that are illustrated with a filled black circle and unfilled circle. Secondly,

expression of variability using “or” and “alternative” relationship, where “or” means at

least one or more sub-features can be selected, and ”alternative” means only one sub-

feature is allowed if the parent feature is selected. Further, in a feature model, a cross-

tree relationship is presented as constraints, as shown under the tree-relationship in Figure

2.6. As an example, when “Nginx” is selected then “php-cgi” and “php-native” cannot

be included in a product configuration.

2.3.3 Dynamic Software Product Line Engineering

Dynamic Software Product Line (DSPL) engineering augmented the Software Product

Line (SPL) engineering approach by moving its variability binding to runtime [104, 107,
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41, 18, 24]. In the DSPL [107], variability management describes different adaptations

of the system, where the adaptability scoping identifies the range of adaptation. Such

an approach enables the system to reconfigure itself during operation, adaptive to the

environment changes [107].

Monitoring the current situation and controlling the adaptation are a key tasks of the

DSPL [104, 40]. Moreover, a DSPL should have at least the following [107]: the properties

that support dynamic variability, variation points change during runtime, it deals with

changes made by the user or unexpected changes, it contains an explicit representation

of the configurations of components and be self-adaptive. It is worth noticing that the

changes of environment should minimize or not disrupt [130] the current running system.

2.3.3.1 Dynamic Adaptation

Dynamic adaption, e.g. self-adaption, in a software system allows the software structure

to improve performance and increase availability corresponding to the changes of envi-

ronment [175, 36, 85]. Moreover, according to Alférez et al. [5] dynamic adaptations of a

software system need to include context awareness, policies, infrastructure support, and

verification. One of the well-known reference models for an adaptive model, developed

by IBM, is MAPE [113], as depicted in Figure 2.7, which organises the internal structure

into a set of capabilities or functions that includes Monitor, Analyse, Plan and Execute

(MAPE). Furthermore, IBM’s MAPE model has been defined for control loops runtime.

However, adaptation not only covers the architecture of a system, it also pinpoints the

change of software architecture at the runtime phase.

Dynamic adaption refers to the change of architecture or software architecture while a

system is running or being executed, where components of a system or application such as

software structures and configurations can be replaced or modified without restarting the

whole running system [125]. This adaptation capability is usually based on feedback on

a control loop that manages the characteristics of the system to meet their goals, where

an architecture transformation may emerge during execution or operation.
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Figure 2.7: An autonomic system MAPE-K, adopted from [113, 215].

2.3.3.2 Self-adaptivity using models@runtime

The Models@runtime [24] technique is defined as “a casually connected self-representation

of the associated system that emphasises the structure, behaviour, or goals of the system

from a problem space perspective”. This technique is built – for engineering self-adaptive

software systems – to support a continuous adaption to the changes in the environments

or requirements. A self-adaptive system, which adopts IBM’s MAPE approach, splits the

software into domain and adaptation logic [215, 183]. The domain logic implements the

adaptable software, and the adaption logic performs as a feedback loop to represent the

self-adaptation. As depicted in Figure 2.8, the transition diagram [96, 97, 18] shows how

a system adapts to correspond to the feedback, using automaton as the state and edges as

the transition rules. For example, State 1 changes to State 3 when the workload increases

from 1 to 5000 requests per second within 10 minutes.

According to Aßmann et al. [8], the models@runtime model should be based on the
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Figure 2.8: Transition diagram, adopted from [96, 97, 18].

reflection principles that includes introspection and intercession by avoiding complexity,

danger and irreversibility of reality, where the perceived reflection, modelling and sep-

aration of concerns are the main requirements. Furthermore, models@runtime should

comprise layers for managing models of the system, configuration management and a goal

management for all these layers to work in a feedback loop. In order to make a system

adaptation that is driven by models [19], models@runtime has a framework that is slightly

similar to an SPL, except in the dynamic behaviour, that consists of two parts, the ap-

plication and the runtime platform, which define the delivery of an adaptive system and

the nature of infrastructure can make a system adaptable to the environment.

In models@runtime, the evolution of a software system [38], such as the Debian/Ubuntu

package repository, is managed as a crosscutting concern - the concern that affects many

other parts of the system - where the software components that evolve are not included at

the design-time. This is because components that evolve are not known at design-time or

do not yet exist, where the human intervention is needed to reflect these new components

into the design of the system.

Discussion

Several approaches to reducing energy consumption through SPL exist [194, 196, 62,

160]. Siegmund et al. [194, 196] optimise product configuration by selecting features
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according to user-defined non-functional requirements that include energy usage. Their

approach is based on building a feature library containing information that can be used to

compute energy consumption. However, their method is impractical when the number of

possible features is large, because the number of combinations of feature for which energy

consumption would need to be measured is very high. In addition, they do not specify

how exactly to measure energy consumption based on the feature library.

Dubslaff et al. [62] introduced a feature composition framework using Markov Deci-

sion Processes (MDP) to reason on energy consumption based on the feature-dependent

behaviour between actions of the system. However their approach only considers the en-

ergy consumption of features in isolation; It does not consider the energy consumption of

configurations.

Martin et al. [160] reduce energy consumption of supplementary lighting for green-

houses. They used weather forecasts and electricity prices to compute cost and energy

efficiency of supplementary light plans. The SPL approach is then used to tune the

lighting so as to reduce energy consumption. Their method is only suitable for green-

house development.

Dougherty et al. [61] created an auto-scaling technique to reduce energy in a virtualised

System. Their approach uses pre-booted virtual machine instances to handle periods of

high demand. Moreover, they adopted model-driven engineering to pre-configure the

pre-booted virtual machines. This technique uses a constraint solver to optimise the

virtual machine configurations and energy usages. However, an idle virtual machine still

consumes a significant amount of energy; if there are many combination options to create

the pre-configured instances, then number of the pre-booted virtual machines will be high.

As a result, this condition leads to a high cost and energy expenditure.

Bencomo [18] and Gamez et al. [82] built the runtime model of a software product

line for a middleware system. Both models emphasize that energy reduction can be

managed using a self-adaptive technique. They used the dynamic variability model that

relates to the change of environment as a constraint for their runtime model. Their
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approach considers communication, such as Wi-Fi, as an energy exhaustive component.

Both approaches built a transition mechanism to select which communication component

consumes less energy corresponding to the change of environment.

Götz et al. [95] developed a contract negotiation approach to match user requirements

that allowed them to identify the relationship between energy usage and software compo-

nents. This approach uses a runtime model on a combination of hardware and software

systems. Their model realizes energy effeciency by selecting which resources match the

software configuration in order to serve the user’s demands. Moreover, this model requires

a runtime adjustment that takes its knowledge from the system’s variability. Götz et al.

claim that this approach allows them to optimise a dynamic system.

2.4 Large Software Repository as a Source for Soft-

ware Product Line

This section provides an essential background about large software repositories and their

usage as the source for the software product line development. An overview of current

research that uses different repositories is also presented. This section also investigates

the evolution of an Open-Source distribution.

2.4.1 Introduction to Large Software Repository

A large software repository is a collection of software components [63], artefacts and infor-

mation that relate to deployment, configuration and sometimes bugs. The large software

repository has been used as the resource artefact in Software Product Line development,

such as Ubuntu/Debian package repository [216, 81, 58], Linux Kernel Kconfig [119, 191]

and the eCos embedded system component repository [21]. These repositories evolve over

time to achieve better performance and to remove bugs within a timeline.

Package dependency describes the relationship between packages to provide a conve-

nient way for end-users to check the software deployment. Large software repositories

37



can have different methods to describe dependencies. For example, Debian/Ubuntu uses

package description files to describe package dependencies, and eCos uses the Component

Definition Language (CDL) [78] to describe component dependencies.

Figure 2.9: Ubuntu Release Evolution - Categorized into Their Dependency Rules

A large software repository such as the Ubuntu/Debian package repository, is an exam-

ple of Software Product Line development [3, 58]. The package repository provides infor-

mation about package dependencies. In addition, the Ubuntu/Debian package repository,

like any other large software repository, provides information about product evolution that

can be reconfigured and reused [63] for the benefit of further development. For example,

a package may have functionality similar to others or replace other package functionality

[106]. As shown in Figure 2.9, absolute package dependencies have increased to more than

200,000 dependencies and the conflict dependencies have decreased to less than 15.000

dependencies over the last 7 Ubuntu releases for a x64 bit environment. Figure 2.9 also
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Figure 2.10: Debian Package Control Script - Wordpress in Ubuntu 12.10

shows that the Ubuntu Precise and Saucy distributions have conflict that has affected

almost 50,000 packages, and the trend descents in the next Ubuntu distribution. Fur-

thermore, the graph also shows that the Ubuntu Quantal and Saucy distribution has a

higher number of replace and break packages, which exist to overcome the high number

of conflict packages. In the case of the Ubuntu Precise distribution, the next distribu-

tion, the Ubuntu Quantal, has a high number of replace packages to reduce the conflict

in the Ubuntu Precise. This further motivates the need for an automated approach for

extracting feature models.

2.4.2 Debian/Ubuntu Package Repository

This section provides a description of the package control script that manages the package

dependency within the Debian/Ubuntu package repository. This information is important

because the configuration and deployment of this repository, prominently, is handled

by these two elements. Further, this subsection also explains how to resize numbers of

components that are retrieved from a large software repository.

Debian is a Linux distribution that provides software for installation in a package-

based structure, where the packages are kept in a software repository. Each package is

associated with a configuration file to manage dependencies, conflicts and suggestions of

other Debian packages to be installed [106, 81], as shown in Figure 2.10.

In the Debian/Ubuntu package repository, each package is described in a package
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control script. The control script file consists of information of the following,

• A package name as a unique identifier of each package.

• The priority to describe how important the package is for the installation of Ubun-

tu/Debian, that is categorized into optional, essential, required, important, standard

and extra.

• The section informs the location of the package in the repository.

• The installed-size to indicate disk space that is required to install the package.

• The maintainer of the package that shows the contact name and email address.

• The architecture specifies the hardware system environment which this particular

package was compiled for, such as i386.

• The version field gives the version number.

• The depends field presents a list of packages that need to be in place to satisfy

dependencies in order to have a successful installation.

• The description gives a brief summary.

• The filename field gives information on the full name of file and its location in the

software repository.

Overall, the relationship among packages from the Debian package system [106] is

described by some rules, which are designed to indicate the level at which a package can

operate independently of the existence of other packages in a system. Even though the

relationships can be of different types and only one of them represents a strict dependency

between packages, we will refer to all of these rules as dependency rules. Figure 2.11 shows

an excerpt from the WordPress package’s dependencies. The dependency rules are the

following:
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• Package A pre-depends on Package B: This rule forces the dependency to com-

plete installation of the pre-depending packages before starting the installation of a

package. For example, in order to successfully install A, B must be installed.

• Package A depends on Package B: B must be installed for A to run properly. In some

cases, a package may have more than one dependency or also have dependencies to

specific versions of a package. For example, Package A depends on version 1.1 of

package B or the latest version of package B.

• Package A recommends Package C: the package maintainer may have privileges

to add or change dependency to other packages that have similar functionality.

For example, A is recommended to specifically use C, even though B has similar

functionality to C.

• Package A suggests Package D: this rule lists related packages that may be installed

to enhance the system, but that are not essential for the original package to work

properly. As an example, D may enhance the functionality of A; however, A can

run without D.

• Package A conflicts with Package B: a package may conflict with a particular pack-

age installed on the system, i.e., the installation of both packages on the same

system will cause a problem. For example, if A is installed, then B will not operate

properly. This may happen when a package has some improvement that may violate

other functionality.

• Package A replaces Package C: this rule may be used to handle conflicts within

packages. It is usually used to overwrite other files or to force an installation.

• Package A breaks Package B: the package maintainer software will not allow a

broken package to be included in a configuration. For example, if A and B have

problems to be configured together because of bugs within their code, then only

either A or B can be included into a configuration.
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• Package C provides Package D: several packages may have similar functions that

may provide the same services. For example, C and D may have similar functions

that provide web services. If both C and D are installed, only one of them will run

as the default.

As an illustration, the Ubuntu 14.04 package repository has more than 46,000 pack-

ages that may increase and evolve continuously. For example, the “WordPress“ package

in “Ubuntu 12.10“ and “Ubuntu 14.04“ have differences in their packages library and

database connections, as shown in Figure 2.12. Moreover, as each package may have

dependencies, the relationship among packages is very complex. Therefore, a method to

build a feature model from the Debian package repository automatically and to facilitate

checking conflicts between an existing feature model and evolved versions of a system is

necessary.
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Figure 2.11: Excerpt from WordPress Package Dependency – Ubuntu 12.10
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Figure 2.12: Package repository evolution – (a) Wordpress in Ubuntu 12.10, (b) Wordpress
in Ubuntu 14.04, (c) Subgraph of a and b. Arrows represent dependency rules. All
packages may have dependencies, but we show only the direct dependencies of WordPress
and libjs-cropper.

2.4.3 Commonalities and Variabilities

We determine the commonalities and variabilities based on graph isomorphism, which

describes the similarities between two or more graphs. Our graphs are ordered pairs of

finite sets G = (V,E), where V are the vertices or nodes and E are the edge sets. In our

context, nodes represent packages and edges represent relationships between packages.

According to Vasudev [212], two graphs G1 and G2 are isomorphic to each other if there

is a one-to-one correspondence between their vertices and between their edges. Formally,

graphs G1 and G2 are isomorphic if there is a bijection f : V (G1) → V (G2) such that,

whenever uv ∈ E(G1), then f(u)f(v) ∈ E(G2). If G1 and G2 are isomorphic, we write

G1
∼= G2 or G1 = G2.

According to Harary [105], the two graphs G1 and G2 may have intersections if at

least a subset of graph G1 is isomorphic to a subset of G2. The packages and their

dependencies are sub graphs of the graph representing our cross-tree relationship. The
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intersections of the sub graphs representing two or more packages and their dependencies

are viewed as the commonalities of these packages, and will become mandatory features.

The dependencies not in the intersection are the variability among these packages.

For example, in figure 2.12, sub graphs a and b are built from “Wordpress” depen-

dencies of “Ubuntu 12.10” and “Ubuntu 14.04”, consecutively, where the edge label is

the version of the package. Graph c is the isomorphic subgraph of a and b, which repre-

sents the commonalities. The remaining features, “libjs-prototype”, “ca-certificates” and

“libjs-mediaelement”, are the variability.

Discussion

In creating feature models using large software repository as a source, several researchers

have provided approaches for modelling the Debian package repository for software prod-

uct line development. Galindo et al. [81] developed a technique to detect uninstallable

packages by analysing package dependencies using the SAT solver. Their approach in-

cludes detection of dead features in a Debian package configuration using a variability

model language. They also map their Debian variability language into propositional for-

mulae to make it compatible with the feature model constraints. Galindo et al. built a

tool [73] using a meta-model to represent the packages and their relationships. DiCosmo

et al. [58] managed the evolution within the repository by analysing the interdependent

packages. However, these approaches require many steps to build the feature model from

the repository, several of which require human intervention. Given that the Debian pack-

age repository is very large and evolves with time, creating and evolving feature models

using existing approaches is an expensive task. In this work, we propose a graph-based

approach able to automate the entire process of creating a feature model from the Debian

package repository.

There are approaches that use graphs to retrieve dependencies automatically in order

to build feature models [141, 189, 9]. Lopez-Herejon et al. [141] proposed a Graph Product

Line (GPL) approach with basic components consisting of weighted, unweighted, directed
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and undirected graph structures. They also used Edge-Neighbour Representation (GEN)

to represent graph attributes such as edges and neighbours. Segura et al. [189] have

automated the merging of features into a feature model using a graph transformation

approach. They built a feature model with the help of the Attributed Graph Grammar

(AGG) system [201]. Bachmeyer et al. [9] built a feature model from a conceptual graph

to produce a natural and more easily expressed mapping to the problem domain. Even

though promising, these approaches still require a good amount of human manual work

for creating the feature model, which is a problem for large-scale systems. For instance,

even though Segura et al. automates the merge process itself, each graph corresponding

to a feature must be manually provided to the tool. Moreover, as none of the existing

graph approaches have been developed for the Debian repository, they are not directly

applicable to this repository.

Automated feature model extraction has been done on the Linux kernel and eCos em-

bedded system [191, 119, 21]. Even though the Linux kernel and eCos embedded system

work in a very different way from the Debian repository and their corresponding auto-

mated approaches for feature model extraction are not applicable to the Debian/Ubuntu

packages repository, these automated approaches are worthy of mention because of their

minimal need for human intervention during the extraction process.

She et al. [191] introduced a method to build a feature model automatically for the

Linux kernel configuration by retrieving configuration options, which are known as configs,

using the Kconfig model. The types of value allowed in the configs are boolean, tristate,

integer (int or hex), and string [21]. She et al. transformed the dependency of configs

into a cross-tree relationship and the Kconfig model into a hierarchy relationship.

Sincero et al. [119] built the Linux Kernel Configurator (LKC) to enable feature se-

lection for the Linux Kernel. LKC parses and checks the dependencies of the kernel

configuration. Sincero et al. map the feature relation to LKC to build the feature model.

Berger et al. [21] transformed the eCos components into a feature model using the

Component Definition Language (CDL) [78], which defines the component relationship
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of the eCos repository. The eCos system is an embedded system that supports more

than 100 hardware architectures, where each package consists of a CDL file describing

the variability of the packages. Berger et al. map the similarity of Kconfig and CDL into

a feature model and constraints. In CDL, a component is a feature or group of features

with options for distinct or individual configuration. The eCos configurator is a common

tool to configure the eCos environment. To check the eCos configuration, a method called

range fix was proposed by Xiong et al. [223] to validate the variability. For instance,

it initiates the pre-defined rules when a component is added or activated in the eCos

configurator.

The approaches of She et al. [191], Sincero et al. [119] and Berger et al. [21] are able to

generate a feature model automatically, even though the scale-in/out of the feature model

does not consider the options of pre-dependency or conflict packages before retrieving the

package dependencies. Instead, they retrieve information on all existing packages, even the

ones that would be not necessarily included in the feature model due to pre-dependencies

or conflicts. This makes the retrieval process and the process of checking dependencies in

the feature model expensive.

2.5 Machine Learning

This section provides a brief but essential background of Machine Learning. It begins

with definitions and essential concepts, and continues with methods to build a machine

learning ensemble. Then, methods to measure the performance of the machine learnings’

outcome is presented. The definitions are as follows:

(1) According to Arthur Samuel [188] Machine learning is “the field of study that gives

computers the ability to learn without being explicitly programmed”.

(2) In a more formal definition, Tom Mitchell [157] proposed that “a computer program

is said to learn from experience E with respect to some tasks T and some performance

measure P , if its performance on T , as measured by P improves with experience E”,
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where tasks that can be performed by machine learning approaches include prediction,

classification and planning.

2.5.1 Machine Learning Essentials

The Machine learning algorithms are typically divided into two broad categories, which

are Supervised and Unsupervised learning.

2.5.1.1 Supervised Learning

In Supervised learning, the algorithm uses a dataset to make predictions, which includes

input data and response values. These algorithms build a model to make predictions of

response values from a new dataset. If necessary, a test data set is used to validate the

model. Decision tree, Regression tree and Random Forest are examples of Supervised

learning.

Decision tree learning is one of the most widely used and practical methods in machine

learning for inductive inference [157]. A decision tree [185] represents a function that has

input is a vector of attribute values and output is a decision, in a single output value.

In the decision tree, a learning method to approximate the discrete-valued, the learning

function is represented as a decision tree. Further, the input and output values of a

decision tree can be discrete or continuous. The decision tree performs a sequence of tests

before making a decision, where by each node in the tree corresponds to a test that has

the value of an input attributes. It starts at the root node of the tree, moving down to the

branch that corresponds to the value of the attribute after testing the attribute specified

by the root node. This process is then repeated for the whole subtree.

A regression tree is a decision tree with a target variable that can take typical real

numbers of continuous values, making predictions [132] based on the average value of

examples that reach a leaf of a tree. A regression tree combines the strength of decision

trees to model numeric data. This algorithm also operates an automatic feature selection

to allow the approach to be utilised with a very large number of features, and also interpret
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a model without statistical knowledge [132]. However, this algorithm requires a large

amount of training data to provide a good prediction result.

Random forest [31] is an ensemble learning approach that combines several tasks, e.g.

classification and regression, and operates by constructing decision trees in a form of

nearest neighbour predictor. The random forest algorithm begins with a decision tree,

where an input is traverse down the tree, the data grows the tree into smaller sets. A

random forest is able to deal with unbalanced and missing data, and its runtime is also

quite fast. Nevertheless, random forest has weaknesses when it is used for regression, such

as it cannot predict beyond the range in the training data, and when it deals with noisy

data, it may over-fit the dataset - over-fitting arises when a statistical model shows noise

instead of the basic relationship.

2.5.1.2 Unsupervised Learning

The unsupervised learning algorithms address a machine learning task that aims to de-

scribe the associations and patterns in relation to a set of input variables [172] without

explicit supervision, as exist in the supervised learning. These algorithms use a descrip-

tive model, i.e. ranges of ages between 2 - 5 is toddler and 8 - 16 is teenager, that gives

insight into summarising data in new and interesting ways. Cluster analysis is the most

common method used by unsupervised learning to find hidden patterns or grouping data

in an exploratory data analysis. Furthermore, the cluster models a similarity using de-

fined metrics such as probabilistic distance. Hierarchical and K-means clustering are the

most popular in clustering algorithms.

Hierarchical clustering [172, 86] aims to build a hierarchy of clusters by grouping a

dataset over a variety of scales. Typically, this cluster algorithm uses a bottom-up and

top-down approach. The bottom-up approach begins the observation in its own cluster,

and then merges pairs of clusters as one moves up to the hierarchical structure, recursively.

Furthermore, the bottom-up approach requires a distance metric to measure a distance

between observations, where distance in the same cluster should be much smaller than the
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distance of different clusters. Subsequently, the bottom-up approach also requires linkage

methods that use a linkage rule to calculate the inter-cluster distances, to determine

distance between two clusters. In the top-down approach all observation begins in a

cluster, then splits recursively as one moves down to the hierarchical structure.

K-means clustering [172] aims to partition a set of data points into clusters in order

that each dataset belongs to the cluster which acquires the nearest mean. In general,

given n data points Xi, i = 1..n, K-means clustering aims partitioning in k clusters. The

aim is to assign a data point to each cluster, so that n data point is partitioned into

k(≤ n) sets Si, i = 1..n. K-means is a clustering method which aims to find the positions

µi, i = 1..k in the clusters, to minimise the square of the distance from the data points to

the cluster. The K-means clustering objective is to find:

arg min
S

k∑
i=1

∑
x∈Si

||x− µi||2 (2.3)

where µi is the mean of data points in Si

2.5.2 Machine Learning Ensemble

A machine learning ensemble combines the predictions of several base estimators built

with a given learning algorithm to improve robustness and accuracy over a single esti-

mator. The ensemble method [59] is used to improve the performance of a model, e.g.

classification and prediction, to select the optimal features and error-correcting. This

system is quite useful when dealing with a large volume of data that have problems with

accuracy, such as when a single classifier has performed poorly with too much data. Then,

the data sets can be partitioned into smaller subsets.

Bootstrap aggregating (bagging) [29], is an example of a machine learning ensemble

technique designed to improve the stability and accuracy of machine learning algorithms

used in statistical classification and regression. Bagging reduces variance of a prediction

by generating additional data for training from the original dataset using combinations
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with repetitions to produce multisets of the same cardinality or size as the original data.

In bagging, given a standard training set S of size n, bagging generates W new training

sets Si, each of size n′, by sampling from S uniformly and with replacement. By sampling

with replacement, some observations may be repeated in each Si. If n′ = n, then for large

n the set Si is expected to have the fraction (1 − 1/e) of the unique examples of S, the

rest being duplicates.

2.5.3 Performance Measurement

Performance measurement of machine learning evaluates the learning algorithms[157, 117,

110] for their accuracy (percent correct over all test instances) and precision. The perfor-

mance measures used in this study were Mean Absolute Error (MAE), Root Mean Square

Error (RMSE) and Median Magnitude of the Relative Error (MdMRE):

• MAE = 1
T

∑T
i=1 |ŷi − yi|;

• RMSE =

√∑T
i=1(ŷi−yi)2

T
; and

• MdMRE = Median {MREi|1 ≤ i ≤ T}, where

MREi = 100 · |ŷi−yi|
yi

,

where ŷi is the predicted CPU power, yi is the actual CPU power and T is the number of

examples used for testing. MAE is a measure recommended for being unbiased towards

under and overestimations [192]. RMSE is a popular measure in the machine learning

community which emphasizes large errors more. RMSE is suitable for evaluating how

close the observed data points are to the models’ predicted values [124, 43] and MAE to

describe uniformly distributed errors [43]. Both, RMSE and MAE are sufficient to measure

performance using the data set that is created, based on a combination of workload,

configuration of software components and CPU power usage. MdMRE can be biased

towards underestimations, i.e., it may favour methods that make underestimations [192].

So, MAE and RMSE are more appropriate for comparing methods, whereas MdMRE was
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included only to give a general idea of the performance in terms of percentage of the

actual CPU power levels.

Discussion

Machine Learning (ML) approaches have been investigated as decision support tools for

performing several software engineering tasks. In order to contextualise our work, this

section explains a few of these. An example of a software engineering task that can be

formulated as a ML problem is software defect prediction [148, 103]. This task can be seen

as a classification problem (prediction of whether or not a software component is likely

to contain faults), regression problem (prediction of the number of faults in a software

component) or ranking problem (task of providing a ranking of software components

according to how faulty they are likely to be). Software defect prediction is frequently

a problem with skewed distributions, where there are much fewer examples of defective

software modules than non-defective ones. This has been shown to affect prediction

results considerably [143]. Conclusions in this context can therefore be very different

from conclusions obtained in studies for predicting energy consumption, such as our work.

Examples of approaches used for software defect prediction are naive bayes, decision trees

and logistic regression, as well as other approaches specifically designed to deal with

skewed distributions [218].

There have also been several studies in the area of ML for software effort estimation

[148]. One of the similarities between effort estimation and prediction of energy consump-

tion is that both can be formulated as regression learning problems. A key difference is

that the data sets available for building software effort estimation models are typically

very small. For instance, it is not uncommon to have data sets with only around 15

projects collected within the company for which estimations should be provided. ML

algorithms frequently struggle to achieve good predictive accuracy when training sets are

very small, as small training sets do not represent the whole data distribution well. As

a result, locality-based approaches that performed estimations by finding the software
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projects most similar to the project being estimated (e.g., RTs and k-nearest neighbour)

have been shown to achieve better results [126, 154]. Combinations of locality-based ap-

proaches with ensembles such as bagging have also been shown to improve software effort

estimations [154]. Transfer learning approaches, which use data from different companies

to create predictive models, have also been showing promising results [127, 155, 210].

Kolesnikov et al. [128] investigated the prediction of software quality attributes such

as performance, reliability and footprint associated to configurations. Different from

previous work on energy prediction [162], their approach performs qualitative rather than

quantitative predictions. For that, it requires the definition of quality categories. For

example, a given configuration could be assigned to either the category of “high risk of

high-severity failures” or “low risk of high-severity failures”. According to the authors,

their approach could result in low predictive accuracy if quantitative predictions had

been attempted, because it does not use runtime information such as workload as input

variables, only the configuration.

A problem more closely related to the prediction of energy consumption is quantitative

prediction of software systems’ performance (e.g., response time in seconds). An example

of work in this area is Guo et al. [99] who apply Classification and Regression Trees

(CART) [30] to model the nonlinear correlation between configurations and performance.

CARTs were then used to predict the performance associated with configurations. Guo

et al. [99] showed that CARTs were effective and to be recommended over a previous

approach called SPLConqueror [193] when the number of features is large, due to shorter

time needed for building the predictive model. CARTs are RTs very similar to the ones

used for measuring energy consumption [162].These results therefore corroborate the good

predictive accuracy results obtained using RTs in the context of energy prediction [162].

Nevertheless, one of the key differences between the problem investigated by Guo et

al. [99] and the problem being investigated in this thesis is that we consider not only the

configuration, but also the workload when making predictions of energy consumption.
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2.6 Chapter Summary

This chapter provides a literature review of energy reduction and reuse of combination

software components within virtualised environments. Following this, it provides a brief

introduction into software product line engineering and dynamic software product line

engineering. In relation to the enhancement of a software product line model with energy

usage, our survey revealed that existing works had proposed several approaches, such

as a feature library and a feature composition framework, to design and investigate the

reduction of energy for a product line. However, none of the existing works provide a

method or an approximation approach to find energy expenditure from a combination of

features associated with workload and energy usage from the virtualised environments.

The following chapters will discuss our approaches to fill this gap.
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CHAPTER 3

MEASUREMENT OF ENERGY USAGE IN A
VIRTUALISED ENVIRONMENT

This chapter introduces an approach to measuring energy by simulating a workload for

the virtualised system using a set of systematic steps, which include environment settings

and parameters, such as a web directory and authorisation elements. One of the main

outcomes of this measurement is the energy usage for each distinctive process within

a virtualised system. This chapter also provides the basic material of this thesis, the

energy usage of combinations of software components, in order to evaluate the methods

for Chapter 5 and 6, which discuss the Software Product Line and Dynamic Software

Product Line.

Our work is achieved through the following: Section 3.1 presents the scope of our

technique that requires the system to allow the activity of the measurement of energy in

a virtualised environment. In Section 3.2, a technique to generate a workload with a set

of a plan is presented. This is considered an important effort to measure energy usage,

as it helps to execute tasks involved within the target system. Section 3.3 introduces an

approach to measuring energy in virtualised environments in order to obtain the energy

expenditure of the Virtual Machine instances, in response to the workload that is sent in

an incremental way. This measurement captures energy usage of each individual process

in the system, such as the web server and the database management system. We save

these results in files for analysis via Machine Learning. In addition, our measurement
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often results in a large number of files. For example, in one case a single configuration

produces 1000 files. As a result, in Section 3.4, we explain how to filter these files to find

suitable information on the corresponding product configurations, and how these files can

be used to prepare data sets for the Machine Learning process. In order to evaluate our

measurement approach, we conduct two experiments using the technique explained in

this chapter. Section 3.5 reports the first experiment comparing the measurement results

within the Cloud and virtualised environment. Section 3.6 reports the second experiment

within the virtualised environment that uses the iteration technique to reduce the effect

of the C-state CPU [116] in the measurement results. Finally, Section 3.7 summarises the

chapter.

3.1 Description of Our Approach

This section presents the description of our technique to measure energy in a virtualised

environment. Such a technique runs on top of the Ubuntu Server operating system, and

the target of measurement is accessible within the system or through the computer net-

work, such as a virtual machine running a web application in the Cloud system. Firstly,

a workload can be generated to execute tasks within a virtualised environment. This

technique should provide a workload that increases gradually and smoothly - in a linear

way - in order to simulate the increase in the number of requests to a virtualised system.

Secondly, there is a mechanism to measure energy, which captures energy usage for each

individual process, within a virtualised environment. In addition, the component of mea-

surement includes the system environment and operating system within the system. For

example, an HTTP server such as “apache” consumes a different amount of energy when

running on top of a different hypervisor and Linux distribution.

Now we give an example of our approach. In our measurement, we use Powertop [200],

an Intel Open-Source software power meter tool, to capture energy usage within a virtu-

alised system. This measurement tool is required to run on top of the Ubuntu (Linux)
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operating system that uses the Linux Kernel (not older than the version 2.6.38) [200].

Furthermore, in a measurement that includes two or more Virtual Machines (VM), a

workload is sent using network traffic to execute tasks within the system under examina-

tion. An example of this measurement is a Web-based system that receives requests from

a Client browser. The details of the workload will be explained in Section 3.2.

This work measures energy in a Laptop and Cloud system. In a Laptop, the software

power meter captures the information of the electrical power drain from the battery,

which is provided within the log files of the Linux system. In the Cloud system, the

measurement uses the Advanced Configuration and Power Interface (ACPI) [152] as an

interface between the software power meter and the operating system.

Our measurement approach can be implemented in two modes, manual and automatic.

In the manual mode, the system under examination runs a number of activities within its

environment, such as a drawing application. During drawing activities, the application

executes tasks within the system, where the software power meter runs continuously

to capture the consumption of energy. In the automatic mode, this technique requires

having at least two Virtual Machine (VM) nodes; One VM node to send the workload

and the other one to respond to the requests. Further, the workload tool sends a load in

order to execute tasks within the target system. As a result, this technique requires an

application that receives input from an external or remote system, such as a web-based

system. Moreover, the workload sends a load to the system under examination using

network traffic as a communication medium. For example, a typical HTTP server uses

port 80 of the Transmision Control Protocol (TCP) to receive requests from clients.

3.2 Workload

This section introduces a technique to generate a workload for a virtualised environment.

Such a technique simulates an end-user accessing an HTTP server. In generating the

workload, a set of steps is implemented for each specific domain of application, in the
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direction of the execution of tasks within the system under measurement.

According to Ortiz [176] “a workload model, such as a web workload, is an abstraction

of the real workloads that reproduce user behaviour and ensure that a particular (web)

application performs as it would do when working with real users”. In addition, a workload

reproduces the behaviour of a system [139]. To measure the consumption of energy for any

given application, a suitable workload must be provided to trigger the execution of tasks

within the system under examination; otherwise, the existing combination of software

components cannot be measured properly. For example, a web application consists of a

database management system and an HTTP server. Hence, a workload should execute

tasks that associate to both the database management system and the web system. These

tasks may be presented as a sequence of activities, such as a request to log in, open a

web page and then fill in a message in a web forum, before logging off from the system.

However, a system may perform well in one workload, and poorly for another workload

[75]. Therefore, the workload should target the system under measurement based on its

existing component configuration.

In our approach, a workload scenario [187] enables us to simulate the end-user activity

to execute tasks that are associated with the components in the system under examination.

In addition, a workload scenario [187] also has the capability to simulate the steps of an

application, which executes tasks as required by the system. In an online learning system,

an example would be an end-user login to the system that executes the authorisation

feature. This feature interacts with the database management system and security system

to get the credential information, such as the username and password that are saved

in the database storage. Furthermore, each password is encrypted using an encryption

technology, e.g. a database management system such as MySQL supports Secure Hash

Algorithm 2 (SHA2) [198], to secure the credential entity. When an end-user has been

granted access to the online learning system, they will have the privilege of accessing some

web pages, such as courses and discussion forum web pages. To finishing, the end-user

can log out from the online learning system.
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The illustration of the workload scenario, as shown in Figure 3.1, uses JMeter [6] as a

workload generator tool that supports different protocols and concurrent threads. JMeter

uses a Java [64] application to provide load testing, and was originally designed for testing

web applications. Nevertheless, JMeter does not perform all the features supported by

web browsers, such as Javascript. As our measurement is independent from the workload

technique, we can use different workload tools that support distinctive web utilities, such

as HP LoadRunner [109] and Apache benchmark [7].

The workload tool predefines all target information, such as folders of the web pages,

web server port, and user credentials, as references to execute tasks within a system under

measurement. As an example, the target of the system being measured requires credential

data, e.g. a distinct username and password. These data, which are consistent with the

workload generator and the target of measurement, should be provided beforehand. As

an example, for the measurement of the online learning system, in the workload tool side

the user credential data is setup as a file reference. In the target of measurement side,

the credential data is stored in the system, where both sides must have a similar and

consistent credential data. In an online learning system [159], a test course generator

tool has options to generate 100, 200 or more pairs of distinct usernames-passwords as

credential data for workloads, where numbers of users accessing the system correspond

to the time spent for the whole workload to finish the activities. Therefore, the greater

the number of user credential data are added into the workload, the more loaded the

infrastructure will be.

In a workload scenario, a load is sent to the object of measurement via a network.

This requires information on how a load can be sent, what is allowed for each transaction

and what protocol should be used. We adopted a traffic model [139] in order to simulate

the activity of sending a workload to a system, as explained in the next subsection.

59



Figure 3.1: An example of a workload scenario for an Online-Learning System - MOO-
DLE [182], the left part is the scenario flow of the system and the right part is the example
of the scripts in the workload tool [6].
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Figure 3.2: Workload and Measurement.

3.2.1 Traffic Model

In generating a load to a system under examination, a workload tool implements a traffic

model [139] as a way to simulate network traffic when a client application such as a web

browser accesses an HTTP server to execute tasks involved in each workload scenario. A

traffic model activity mimics a user navigating the request to an HTTP server, such as

when the user arrives and how requests are generated. In this work, we use a workload

tool, JMeter [6], to create a traffic model that generates a load to execute tasks within

the target system. As illustrated in Figure 3.2, JMeter [6] sends the workload to a system

that requests a web page to an HTTP server for a specific time span, such as a request

each second for 60 seconds. In the same interval, the software power meter, Powertop

[200], captures the consumption of energy. The details of the measurement procedure will

be explained in Section 3.3.

In our technique to measure energy, we aim to obtain information about the energy

within a virtualised environment. In order to increase the number of users and change the

types of their requests, we use a scenario that simulates users accessing a web system, such

as an eLearning system. Firstly, users accessing a login page, when they get through, then
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secondly, lists all available courses. After that, users fill in the discussion box in the forum

page before log out from the system. We generate a workload in a linear smooth way,

where the load is sent in an increasing sequence order from low to high, such as from 1

user request per second to 100 user requests per second. As a result, the workload change

can be monitored as a linear increase of resource usage within the target of measurement.

3.3 Measurement of Energy Usage in Virtualised En-

vironments

This section introduces a technique to measure energy usage in the virtualised environ-

ments with a workload. This measurement technique uses a software power meter tool

from Intel open-source project (Powertop [200]) to capture information of power estima-

tion that is spent for each individual process.

As explained in Section 2.1, a virtualised system, such as Cloud, shares its infras-

tructure to provide the configurable computing resources. It is non-trivial to measure

energy in order to investigate the behaviour of software component configurations in a

virtualised environment. However, this measurement requires a technique that is differ-

ent from a conventional energy measurement. For example, we cannot use a Wattmeter

device because it is a shared infrastructure and virtual machines can move from one host

to another.

In this thesis, we propose a measurement technique for energy consumption in the

virtualised environment for individual processes. This technique captures energy usage of

an individual process of an application within a virtual machine. For example, Nginx [164]

an HTTP Server that processes tasks such as Master and Worker. Under a given workload,

each one of these processes consumes a different amount of energy. Such a technique allows

us to measure the energy consumed by the load generated from a workload tool [6]. As a

result, we will be able to select components in the software application that consume less

energy, to be included in a virtualised environment.
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This section also presents a technique to measure energy in the virtualised system

of a Laptop. We demonstrate the measurement of the virtual machine instance within

a different hypervisor, the Kernel-Based Virtual Machine (KVM) [112] and Virtualbox

[219]. In this environment, the software power meter [200] captures the electric current

drainage from the battery. For the measurement in a Cloud system, we take advantage

of the virtual machine power management [207] where a typical power management in

the Cloud is used to stop or start the virtual machine instances. The measurement of

energy in the Cloud and the virtualised system makes use of the Advanced Control and

Power Interface (ACPI) [152], an open standard power management specification. ACPI

provides instruction lists which are parts of the system firmware, that are accessible by

the kernel of an operating system to execute some tasks. Such firmware instructions allow

an operating system to monitor power and electric current, and turn-off or -on a virtual

machine.

It is worth noting that Powertop [200] needs to be calibrated once before it measures

the energy within a new environment. The calibration generates a Powertop Reference

file that is read as a reference every time we start Powertop.

3.3.1 Steps of Measurement

This section presents a set of steps to measure energy in a virtualised environment. We

categorise the measurement into two activities; the first is sending the workload to the

target of measurement for a specific time-span. This activity generates the workload that

sets up the types of load based on the domain of the tested application, such as an online

learning system, as described in Section 3.2. The second activity captures energy usage

using a software power meter tool within the system under measurement. It is important

to note that both the workload and software power meter tool operate over the same

interval of time. Therefore, the results of this activity represent the execution of tasks

within the target system under measurement.

Figure 3.3 shows that the workload tool sends a given load to the application in-
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Figure 3.3: Steps to measure energy usages in a virtualised and Cloud environment.

side the virtual machine. The load simulates users, for example, accessing a web page

within an HTTP server. At the same time, the software application for measuring energy

simultaneously records the energy consumption in the system.

In our measurement approach, we implement a workload scenario to perform several

activities in a consecutive way. As shown in Figure 3.3, the steps to measure energy usage

in the virtualised environment, are as follows:

(A) We start the software application for measuring energy and the workload tool,

(B) The workload tools (acting as a client) send a request to the system, for example

to access web pages and files on the Web server. At the same time, the software

application to measure energy captures the power usage of each process running in

the virtual machine. In this step, some amount of workload is sent ten times to
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overcome the tickless kernel effect [116, 98].

(C) The workload tool and the software application for measurement generate their re-

ports. The software application for measuring energy reports the amount of energy

that is consumed per individual process that is generated every one second. The

workload tool then generates information from the overall sending process.

(D) The measurement ends when all the reports are generated. The software power meter

and the workload tool are switched off.

3.3.1.1 Iteration on Measurement

In our energy measurement, we use Powertop [200] as a software power meter. Powertop

was originally designed to diagnose power consumption and power management in a lap-

top, which includes software applications and active components in the system, by means

of an approximation approach.

Powertop monitors the device and software activity [200] that are associated with the

CPU processes to predict the energy usage. Since this tool reads the energy usage of a

CPU, Powertop is also influenced by the CPU operating state – CPU C-State to save

power – where in the Linux operating system is adopted to manage the idle system that

is known as Tickless Kernel. In the Tickless Kernel [116, 98], an idle CPU will remain

idle until a new task is queued for processing. Further, the CPUs that are in the lowest

power state can remain in this condition longer [200]. As a consequence, in capturing

the measurement data, Powertop may have a delay that creates high or low spikes in the

measurement results.

In order to reduce the possibility and frequency of spikes during the measurement,

we repeat the measurement procedure at least ten times for each workload. This is

because when we measure less than 10 iterations with low workloads (between 1 – 20

users per second) Powertop fails to capture the information of energy, whereas more than

10 iterations with high workloads (between 80 – 100 users per second) will produce too
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much information. This is based on our experience in measuring energy in the virtualised

systems [161, 162]. As an example, a workload to simulate five users accessing a system

is repeated ten times, producing ten value items of power consumption. We then retrieve

the median data for each workload [162] for the next research activity.

3.3.2 Measurement in a Laptop

To measure energy usage of a virtualised environment in a laptop, we use an HP Elite-book

8440P with i5 processors and 4 GB memory. The host computer uses Ubuntu 12.10 x64

with Kernel-based Virtual Machine (KVM) as a hypervisor for the virtual environment.

The virtual machine instances are installed with Ubuntu Server 12.10 x64, and configured

with 1 CPU core, 1 GB of memory and 10 GB of storage.

Figure 3.4: To measure energy of a virtualised system in a Laptop.

Figure 3.4 depicts the measurement of energy in a laptop. This measurement includes

at least two virtual machines (VM), the first machine (VM1) simulates the incoming

requests by sending a workload to the measurement object, the second machine (VM2)

running the web application that receives the incoming workload. In the second machine

(VM2), the software power meter, Powertop, captures the energy usage for each second

during measurement. We take advantage of the ACPI (Advanced Control and Power
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Interface) [129, 152] to have the real time power consumption from the battery. To

standardise the software application for measurement, we calibrate it against the current

drainage of the Laptop’s battery for several minutes. The outcome of the calibration is

saved into a file called Power Reference.

In the KVM-based laptop, a hypervisor - we use KVM - is installed on top of an Ubuntu

Server. The system receives its workload from another Ubuntu Server, and measures the

power usage using Powertop [200], where the software application for measurement runs

within each system. Therefore, each measurement result is dedicated to a particular

software configuration within distinctive VMs.

3.3.3 Measurement in a Cloud System

In a Cloud system, the software that measures the power usage relies on the Advanced

Control and Power Interface (ACPI) [129, 152], a platform-independent interface, which

is usually used by the Cloud system to switch the virtual machines on or off [55]. As

explained in Section 3.3, ACPI exists both in Cloud and Laptop, but it is implemented

and used differently. Further, the ACPI in Cloud and virtualised environment has similar

features, such as turning a virtual machine on or off.

Figure 3.5: To measure energy of a virtualised system in a Cloud system.
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Figure 3.5 shows the mechanism to measure energy in a Cloud system. In measuring

energy for a Cloud system, when the software application to measure energy is run for the

first time, it reads the Power Reference File and then captures the virtual environment

information such as the number of virtual processors and memory capacity. After that,

the software application to measure energy will renew its power reference file and become

ready to measure the energy consumption per process. In this work, we use the virtual

machine within the Elastichost [67] Commercial Cloud computing environment because it

uses KVM as its hypervisor, which is similar to the one in the laptop. A snapshot of the

measurement is shown in Figure 3.6, and an indication of the virtualised environment can

be found in the virtio0-request [131] process. In addition, in our approach the Kernel up-

dates will not affect the measurement as long as the software application for measurement

[200] is not updated.

Figure 3.6: Virtual I/O - power per process in a Linux virtualised environment.

The measurement in the Cloud commercial provider uses a similar workload scenario

to the one implemented in the Laptop environment, and uses Powertop [200] to capture

energy usage. All the measurements and the workloads are run in Ubuntu Server 12.10 x64

which is provided by the Cloud provider as a virtual machine image.
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3.4 Extraction of Data from the Measurement Re-

sults

Our measurement of energy produces ten files for each folder with a total of 100 fold-

ers, where each file has at least 110 lines of text. Therefore, the measurement for one

configuration produces 10×100=1000 files, where each file has 110 lines of text, lead-

ing to 110×1000=110.000 lines of text per configuration. In this work, we measure 12

configurations for a small product line model.

This section discusses steps to extract the data from the energy measurement results.

The measurement of energy, as explained in Section 3.3, produces a large number of files.

This requires us to extract the data as needed for our next research on the prediction

of energy, such as the CPU power usage that corresponds to a set of workloads. These

steps are mostly written in the AWK programming language [94] within the Ubuntu

environment. The following subsection will present a technique to obtain data from the

measurement results’ files in order to prepare a data set for the next process.

3.4.1 Preparing the Data

We develop a technique to obtain data from the measurement results for analysis via a

UNIX shell script. The script makes use of a combination of Awk [94], an UNIX-based

interpreted programming language for text processing with pattern-matching, and UNIX

Bash command environment [181].

In preparing the data, as shown in Algorithm 1, we begin by identifying the folders

of the measurement results regarding the complete data set. The data that are produced

by the measurement are structured as follow: for each configuration, there are 100 folders

for the workload that was set up to have a maximum of 100 users per second, as depicted

in Figure 3.7. For each workload, there are 10 files for each measurement iteration. The

median data is then calculated for each workload folder. After that, the median results
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Figure 3.7: Structure of folders and files of the measurement result.

for each workload are appended into a file, which collects all the measurement results for

a single scenario of a configuration.

Steps to elicit data from the measurement results are divided into four stages, as follows:

1. Scanning text position in the files and capturing lines of data that match the pattern.

2. Eliminating values in the lines of data which are not needed (this is based on the

requirements of the machine learning process).

3. Transforming all the data values into a single standard. For example, we transform

data from milliWatt or microWatt into Watt to cover all values of energy usage.

4. Calculating the median data from all folders using the step 3 results.
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Data: Measurement Results

Result: Data Total Power Usage and CPU Power Usage

Read and List the Directory;

Create a file text;

Change the directory into the measurement directory;

while not at end of directory do

Change the directory into the measurement directory;

while not at end of directory do

search Total Power Usage and CPU Power Usage;

if target not exist then

Skip the directory;

else

Captures the text result;

Calculate the median result;

Append the calculation result into a file;

end

Change directory up;

end

Change directory up;

end

Algorithm 1: Iteration to retrieve data from the measurement result files.

Figure 3.8: Steps to elicit data.
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3.4.1.1 Obtain CPU Information

Figure 3.8 shows the steps to obtain the CPU energy values from the measurement data.

We begin by identifying and scanning the whole text in the files. The text that is not

needed are subsequently eliminated. The CPU energy value is then transformed to have

a similar range of values, such as milliWatt into Watt. Finally, the median data are

calculated. In conclusion, we present the details to obtain the CPU power information

from the measurement results.

Figure 3.9: Excerpt of Powertop measurement data - individual process power usage of
MOODLE with workload.

First Step – captures the information of total and CPU power usage from the measure-

ment results. Powertop generates files from an energy measurement activity, where each

file consist of information about system architecture, processes and CPU power usage.

As shown in Figure 3.9, in the top part of the measurement file, Powertop captures the

information of processes and their energy usage within the system, such as the “Apache2”

HTTP server which consumes 1.59 Watts running in a Virtualbox environment. Another

part of the file, as depicted in Figure 3.10, presents the estimation of total power usage

and CPU power usage per core. To obtain this information, the script captures the es-

timation of CPU and total power usage in a VM that matches a line text, as shown in

Listing 3.1 line 7 and 8.

72



Figure 3.10: Part of Powertop measurement data - total energy estimation and CPU
energy usages of MOODLE with a workload of ten users per second.

Listing 3.1: Script to match a line and capture the text.

1 #!/bin/bash
2 for file in *.csv
3 do
4 for ((i=0; i<1;i++))
5 do
6 name=${file}
7 awk ’/System baseline power is estimated /{ print $7""$8}’ $file
8 awk ’/;CPU misc/{ print $1""$2""$3""$4}’ $file
9 done

10 done

Second Step – eliminates text from the measurement result files by matching the pattern.

As shown in Listing 3.2 line 3, all alphabetic characters are eliminated using a pattern

match of [A–Za–z].

Listing 3.2: Script to eliminate text.

1 #!/bin/bash
2 awk ’{gsub ( "[;%/]",""); print $0}’ cpux.txt > cpux1.txt
3 awk ’{gsub ( "[A-Za -z]",""); print $0}’ cpux1.txt > cpux2.txt

Third Step – convert the measurement values into the same standard for the next

process. While capturing the energy usage, Powertop may print different values into the

file report, such as Watt, milliWatt, and microWatt. In doing so, the energy value is

transformed to a single standard (Watt) to cover all measurement results. As shown in

Listing 3.3 line 2 and line 3, milliwatt (mW ) and microWatt (µW ) are transformed into

Watt (W ).
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Listing 3.3: Script to transform values.

1 #!/bin/bash
2 awk ’{if ($2=="mW")$1=$1 *0.001; print $0}’ cpu1.txt > cpux1.txt
3 awk ’{if ($2=="uW")$1=$1 *0.000001; print $0}’ cpux1.txt > cpuxa1.txt

Fourth Step – calculates the median data for our next research. As shown in Listing 3.4,

the median data is calculated for each folder. When there are 100 folders for a product

configuration, we will obtain 100 tuples of data.

Listing 3.4: Script to calculate median data.

1 awk ’{for(i=1; i<=NF; i++)
2 a[i][NR]=$i}
3 END {for(i=1;i<=NF;i++) {
4 asort(a[i])
5 printf("%.1f",NR%2? a[i][(NR+1) /2]:(a[i][NR/2]+a[i][NR /2+1]) /2)}
6 print ""}’ cpu -ok.txt > median.txt

The above steps produce median data for each folder that match to the workload, which

is from one to 100 users per second. It is worth noting that such steps only apply for this

particular measurement technique.

3.5 A Case Study of a Three-Tier System

In this case study, we aim to report the measurement regardless of the effect of the tickless

kernel, as explained in Section 2.2. All virtual environments in these measurements use

KVM as the hypervisor and are set up with one core of Processor, one GB of memory

and 10 GB of storage. The virtual machine images run on Ubuntu 12.10 x64. In the

Cloud environment (we use the Elastichost cloud provider) the processor is the AMD

Opteron Processor 6128 2GHz, and in the laptop environment, it is the Intel Core i5 M520

2.4GHz. We measure three combinations of software components that configure with

different HTTP servers. In this experiment, we analyse and compare the measurement

results for each configuration. It is worth noting that this experiment only measures each

configuration once (no repetition).
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3.5.1 Workload for Experiment

To produce a workload for the system, there is a wide range of choices, as explained in

Section 3.2. Here we make use of JMeter [6]. We have conducted the measurement by

producing the same load for all environments and dividing the experiment into blocks of

four minutes. During the experiment, in the first four minutes we produce the load of one

user per second, and the second four minutes period for two users per second, and so on.

This has resulted in 240, 480, 720, 960 and 1200 users per period of 4 minutes.

As an example, Figure 3.11 plots the energy consumed by the Nginx HTTP server in

the Cloud where the thick line is the average within every four minutes block of time.

Furthermore, figure 3.12 (a) shows the boxplot graph that uses the same data as in Figure

3.11.

One application of our method is when a software product can run on an in-house

system or Cloud. We can compare the energy consumption between them when the

application runs on an in-house system such as a Laptop and Cloud, as explained in the

next section.

3.5.2 Analysis of the Measurement Results

The measurement of power consumption in the Cloud computing system and virtualised

environment is comparable, because both systems use similar virtualised technology, the

Kernel-based Virtual Machine (KVM). The power consumption is measured based on the

Advance Control and Power Interface (ACPI) that exists in the Laptop to manage the

battery and in the Cloud system to turn the virtual machines on or off .

There are some spikes on each workload graph, as shown in Figure 3.11, where the

increase of workload triggers the CPU to consume a higher amount of energy. We specu-

late two possibilities regarding these measurement results. The first, the software power

meter, Powertop, has a delay in capturing the values of energy. And the second, the

tickless kernel effect influences the CPU, when a workload arrives at the system under
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Figure 3.11: Nginx power consumption in the Cloud environment.

examination, the CPU awakes instantly, which consumes a higher amount of energy.

As depicted in Figure 3.12, when a smaller load is used, the laptop consumes less

energy than the Cloud. However, when the load increases, for example at 3 users per

second (720 users accessing in a 4 minutes interval), the Cloud consumes less. This trend

continues as the load increases. For example, at 5 users per second (1200 users accessing

the servers in a 4 minutes interval) the laptop consumes approximately 50% more energy.

We speculate that the infrastructure in the Cloud is more complex than in a laptop that

provides a better energy management. For example, the Cloud infrastructure is built on

a shared environment that manages the CPU and memory more efficiently, compared to

a laptop.

In addition, we observe that the pattern of energy consumption in the Cloud as the

number of users increase becomes more stable. In contrast, in a laptop, we observe fewer

spikes when the system under examination receives workloads up to two users per second.

This can be seen in the outliers as depicted on Boxplot graph in Figure 3.12.
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Figure 3.12: Nginx Web Server Power Consumption in two different environments - (a)
Cloud System and (b) Ubuntu KVM in Laptop
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Figure 3.13: HTTP server power consumption in a Cloud system - Nginx (a), Apache (b)
and Lighttpd (c).
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3.5.3 Comparison of HTTP Server Energy Consumption

The configuration of the application in the Cloud system should also include the cost

of operation as an important aspect. For example, the Cloud system designer must

know the cost of running HTTP servers, deploying different combinations of software

components, and workload behaviours from the energy consumption point of view. In

this experiment, we measured the power consumption of the HTTP server that is listed

in the top ten HTTP servers [51], which includes “Apache”, “Nginx”, and “Lighttpd”,

and we measured them within a Commercial Cloud system. As shown in Figure 3.13 and

Table 3.1, the measurement results show us that when 1 user per second arrives at the

HTTP server, “Apache” and “Lighttpd” are more efficient on average, consuming less

than 50 milliWatt. However, when 5 users per second arrive at the system, “Apache”

and “Lighttpd” on average consumed more than 150 milliWatt. Meanwhile, “Nginx”

power consumption for the arrival of 5 users per second is 118.98 milliWatt. “Lighttpd”

is the lowest in consuming power; when less than 3 users arrive at the system per second

that is less than 71 milliWatt. This amount exceeds “Nginx”, when three or more users

arrived at the system. As shown in Figure 3.13 (a) and (c), “Nginx” and “Lighttpd”

for 3 users loads have similar maximum outliers; but, “Nginx” has a smaller minimum

outlier compared to “Lighttpd”. It shows us that “Lighttpd” may not have a constant

service when 3 users arrive at the system, as when more users arrive, we speculate, it will

accumulate the unfinished service and increase the power consumption.

In the measurement within the Cloud system, the average rise of power consumption,

such as the increment of power usage from one user per second to two users per second

of load, tells us how the HTTP server will consume energy when more users arrive on

the system. From the measurement results, the highest average of power usage increment

is “Apache”, which consumed on average 31,63 miliWatt, followed by “Lighttpd” which

consumed 29,57 miliWatt. “Nginx” has the lowest power usage increment per user per

second, 50% lower than the “Apache” power increment expenditure.
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Table 3.1: Average power consumption using different loads in a Laptop and Elastichost
Cloud.

OS & App. 1 User* 2 User* 3 User* 4 User* 5 User*
virtualised System in Laptop
Apache 44 84.49 122.79 161.15 198.54
Nginx 46.09 77.25 109.22 136.70 165.14
Lighttpd 37.03 73.76 109.27 145.33 181.42
Elastichost Cloud
Apache 48.19 84.77 109.40 136.83 174.72
Nginx 56.83 75.92 86.06 107.33 118.98
Lighttpd 36.48 70.27 96.98 127.08 154.77

* All measurement results in miliWatt

To conclude, the same workload and combination of components in different virtualised

environments consumes different amounts of energy. Furthermore, each combination of

components has different behaviours when a similar workload arrives at the system under

measurement. In comparing the virtualised environment energy usage, the Cloud system

has better performance than a virtualised system in the laptop when dealing with a higher

workload.

3.6 A Case Study to Reduce the Tickless-Kernel Ef-

fect in the Measurement of Energy

This section reports a case study that aims to reduce the tickless kernel effect [116] when

measuring the consumption of energy in the virtualised environment. In this case study,

we measure energy iteratively, this is because the tickless kernel moves the idle CPU into

a sleeping state, which restricts the number of incoming requests [116] into a virtualised

system. The iteration avoids such limitation by executing tasks continuously, so that the

CPU will always be in the normal state. This measurement send a workload that increases

gradually from 1–100 users/second, and repeats the process of measurement ten times,

as explained in Section 3.3.1.1. For extracting the measurement results, this case study

uses a technique that is described in Section 3.4, by calculating the median data for each

80



group of workload.

Table 3.2: List of combinations of packages for small feature model.

No Configurations
1 nginx, mysql, php5-fpm, php5-cli
2 apache2, mysql, php5-cgi
3 apache2, mysql, php5-fpm
4 apache2, mysql, python
5 apache2, mysql, php5-fpm, pear
6 apache2, postgresql, python, lib-apache
7 apache2, postgresql, sqlite, python, python-django, lib-apache
8 apache2, tomcat7, mysql, openjdk-7
9 apache2, sqlite, php5-fpm
10 apache2, mysql, ruby, python, rails, rubygem, ruby-on-rails
11 nginx, postgresql, python, python-django
12 apache2, mysql, php5

This case study uses Virtualbox [219] as a hypervisor and makes use of a virtual

manager tool, Vagrant [56], to automate the measurement process. The target of mea-

surement consists of 12 combinations of software components, as depicted in Table 3.2,

that are deployed in distinct virtual machines, running on top of the Ubuntu server op-

erating system, where the source of application packages are retrieved from the Ubuntu

package repository, as explained in Chapter 4. In this measurement of energy, the hard-

ware environment uses a Laptop with Intel Core i5 M520 2.4Ghz. The host machine runs

on the Ubuntu 12.10 x64 operating system and each virtual machine instance is setup

with Ubuntu 14.04 x64 and is configured with 1 core CPU, 1 GB memory and 10 GB of

storage.

3.6.1 Workload for Experiment

This case study uses JMeter [6] to produce a workload for the system under measurement

that increases from 1 to 100 users per second, consecutively, aiming to create a smooth

increase of workload, in order to execute tasks that produce a smooth increment of energy

usage within the target of measurement.

81



Figure 3.14: Measurement result for configuration 1 – 6.
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Figure 3.15: Measurement result for configuration 7 – 12.
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3.6.2 Analysis of the Measurement Result

In this case study, the measurement of energy in the different combinations of software

components are comparable, because all the systems are running on the same hypervisor

and operating system. The energy consumption is measured based on the electric cur-

rent drain from the Laptop battery that is captured by the Advance Control and Power

Interface (ACPI) [152].

As shown in Figure 3.14 and 3.15, when a lower workload arrives, the configurations

2, 3, 5, 8 and 9, mostly have apache2 and mysql in their configurations, have fewer fluctu-

ations than others. Configuration 3 (configured with apache2, mysql and php5-fpm) and

4 (configured with apache2, mysql and python) have their maximum cpu power consump-

tion less than 30 Watt. We speculate that the CPU activities for both configuration 3 and

4 do not increase, when the workloads are more than 30 users per second, as the demand

of processes does not increase significantly. Furthermore, when the workload reaches more

than 20 users per second, configurations 1, 2, 5, 6, 8, 9 and 11 have lower fluctuations

than other configurations. Whereas for configurations 1, 5 and 11, these fluctuations ex-

ist because of the measurement has reached the maximum power the system can handle.

However, the configurations 3, 4, 7, 10 and 12 produce fluctuations in their measurement

results, since the workload arrives at the system under measurement, where configuration

10, that has apache2, mysql, ruby, rails and python as its components, and configuration

12, that has apache2, mysql and php5, have more fluctuations than other configurations.

In configuration 10, the CPU can handle the workload of less than 40 users per second,

and configuration 12 of less than 60 users per second. We speculate that configurations

10 and 12 execute tasks intensively, which call the operating system using a system call -

in a random pattern that is different to other configurations. Furthermore, the CPU may

also have its maximum capacity to handle the demand of processes. As a consequence,

some running processes are terminated by the operating system in order to avoid overload

within the running system. However, some running processes in configuration 10 and 12,
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as shown in Figure 3.15, still try to continue their execution that shows a similar pattern

as depicted in configuration 12, when more than 50 users per second arrive at the system

under examination.

In this case study, we observe that the combination of software components that in-

clude apache2 and python (when the measurement does not reach the maximum capacity

of the system) produce more fluctuations than other configurations. Overall, configura-

tion 6 (configured with apache2, postgresql, python, lib-apache) and 8 (configured with

apache2, tomcat7, mysql, openjdk-7) outperform all other configurations and act differ-

ently as their results are almost linear. Moreover, most of the measurement results in

figure 3.14 and 3.15 show the fluctuations when the first workload arrived at the system.

We speculate that the first arrival of the workload triggers the CPU to force its maximum

capacity to handle the requests.

To conclude, by sending a repeated workload, we can reduce the tickless kernel effect

on the measurement of energy significantly. In this case study, from 12 configurations, only

configuration 10 (configured with apache2, mysql, ruby, python, rails, rubygem, ruby-on-

rails) and configuration 12 (configured with apache2, mysql, php5) produce almost non-

linear graphs. This result supports Suresh et al. [116] that in a virtualised environment

the idle CPU will limit the number of possible incoming requests. When compared with

the results in Sections 3.4 and 3.5, especially figures 3.11, 3.14 (configuration 1) and 3.15

(configuration 11) that use nginx as a HTTP server, the measurement of energy in the

virtualised environment with the repeated workload outperforms other measurements, in

terms of the linearity of the results. This case study demonstrates that our approach to

measuring energy is not restricted by the tickless kernel effect, and produces results of

the consumption of energy within a different combination of software components in a

virtualised environment.
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3.7 Chapter Summary

Chapter 3 presents a technique to measure energy with a workload within the virtualised

environment. In particular, this chapter introduces a technique to generate a workload,

as explained in Section 3.2, in order to execute tasks within the target of measurement.

This chapter has also presented techniques to measure energy in two different virtualised

environments; in a Cloud and in a virtualised system in a laptop. Section 3.4 presented

steps to prepare a data set for the machine learning process that includes filtering out the

measurement results to obtain the data needed. Sections 3.5 and 3.6 evaluate our mea-

surement technique to measure energy usage in the virtualised environments that focuses

on the tickless kernel effect. The results of this experiment show that our measurement

technique is suitable for measuring energy in the virtualised system.
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CHAPTER 4

AUTOMATIC CREATION OF FEATURE MODELS
FROM A LARGE SOFTWARE REPOSITORY: A

CASE STUDY

Chapter 3 described how to measure the consumption of energy from combinations of

software components in virtualised environments. To apply a Software Product Line, we

need a feature model to represent all the products [121, 179, 54]. For a small system such

as a web based system [80], we can build the feature model manually by exploring all

of the dependencies between components. However, for a large system there are a large

number of component dependencies, for which it is infeasible to use the same technique

as for the small system.

This chapter presents a technique to automate the creation of a feature model for a

Software Product Line (SPL) development from a software repository, with the help of

graph approaches. The aim of using the graph approach is to reduce the complexity,

which emerges as a result of package dependencies such as when we merge two or more

configurations from sets of features. Furthermore, this technique also reduces the steps and

provides more flexibility compared with the previous technique [81] to create constraints

for a feature model. Such a technique allows us to resize the composition, such as including

only relevant packages of a feature model automatically. In this chapter, we also present

the graph applications to merge and modify the feature models that are retrieved from a

software repository.
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Section 4.1 provides a description of our approach to retrieving and to building a

feature model from a software repository. Section 4.2 presents the software repository

metadata as the main source of obtaining the information about dependencies between

components. Section 4.3 offers a technique to retrieve package dependency from the

Ubuntu package repository. Section 4.4 introduces the steps required to extract the pack-

age repository into a feature model, which covers package dependency and constraints.

Section 4.5 suggests a technique, which uses a running example, to transform the package

dependency graph into a constraint structure for a feature model.

4.1 Description of Our Approach

This section provides a description of our approach to create a feature model from the

software repository that requires several components so as to achieve its goals. Firstly,

there are metadata within a software repository to describe the contextual condition of the

sources. Secondly, the repository has transparent information and its content is accessible

for viewing. Thirdly, each package can be retrieved as a single component.

Most large software repositories use metadata as their information library to provide a

description of what the existing resources are and how they can be useful for a deployment

[178, 42, 10, 211]. This metadata mostly consists of source name, description, working

environment, file size and version. Furthermore, the metadata for a software repository

is slightly similar to a file property, where there is some description of component sources

and its size

Figure 4.1: Excerpt Metadata of Ubuntu package repository.
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In large software repositories, such as Git [42], Ubuntu package repository [211] and

SVN [178], metadata are utilised to manage the information of files associated with soft-

ware components. In particular, each software repository may have a different structure

of metadata. For example, the Debian/Ubuntu package repository uses a reference file to

describe information about dependencies between components, versions and system envi-

ronments. The metadata of a package in a Ubuntu package repository, as shown in Figure

4.1, can have more than one version, where each version has its own package dependency.

By contrast, Git uses a database to provide a track of a committed project as a snapshot

of the project over time.

In this work, we can only handle a Debian/Ubuntu package repository, where the

retrieval result is in a text graph file format, which is in .dot Graphviz [68] format. Our

graph result can be transformed into different graph formats such as GraphML [202] and

pajek [15], using graph tools, e.g. Gephi [14] and Igraph [53].

4.2 Metadata in Software Repository

This section describes the metadata in a software repository in the interest of creating

a feature model from a repository. A metadata within a software repository consists of

the name of the component, version, file size and dependency, as shown in Table 4.1. A

typical component in a repository may have more than one version and a different size

of files. Furthermore, a dependency presents something that is required when installing a

component in order to have a system run accordingly. For example, the package apache2-

bin requires libpcre3 to run a Perl script in an Ubuntu system.

The information about dependency varies between software repositories. For exam-

ple, Debian and Ubuntu make use of a script file as the metadata, and categorise the

dependency between components as ‘suggest’, ‘depends’, ‘recommends’ and ‘conflicts’, as

explained in Section 2.4.2. In the RPM repository, the metadata is in an XML file that

is linked to the information about the components, such as ‘version’, ‘release’ and ‘de-
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Table 4.1: Excerpt of metadata in several software repositories.

Repository Name Version Dependency Category Size Description
Debian [55] yes yes yes yes yes yes
Ubuntu [211] yes yes yes yes yes yes
FreeBSD [79] yes yes yes yes yes yes
RPM [169] yes yes yes yes yes yes
Git [89] yes yes yes yes yes
eCos [65] yes yes yes yes yes yes

pendency’, and list of the files in the repository. Slightly similar to RPM, the FreeBSD

metadata is in the form of two files that are compact-manifest and manifest to divide

the information about components and its file locations. The eCOS repository, which is

an embedded Linux-based system, manages the dependency within the configuration of a

pre-compile code that a required component should be listed in the configuration code.

We believe, based on the metadata, one can build a graph that represents the de-

pendencies between components, such as require or exclude, in order to build a feature

model from a software repository. For example, we can build the feature dependency for

a feature model using metadata by creating a graph that traces the dependencies between

components in the software repository. One of the challenges of creating the graph de-

pendencies from the software repository is that each repository has its own rules which

may have differences from each another. In doing so, we need further exploration in order

to get a graph’s dependencies.

In the subsequent section, we will present a technique to extract component depen-

dencies from a software repository in creating a feature model.

4.3 Retrieval of Package Dependency into a Graph

Model

This section presents a technique to retrieve package dependencies from the software

repository in order to build a graph model. This model is in the form of a directed acyclic
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graph, which provides information about related components that are included into a set

of component configurations.

In this work, we use the Ubuntu package repository as the source of our activity. As

explained in Section 2.4.1, the Ubuntu package repository provides information on package

dependencies in their file description. The Ubuntu package dependencies can be retrieved

and built into a directed graph. The graph model enables us to analyse and check the

package dependencies, such as which packages influence configuration and the conflicts

existing between packages. Another benefit of having a package dependency as a graph

model is that we can compare and reproduce the package configuration of different release

versions. For example, we can analyse why a configuration for the package Wordpress on

release Ubuntu 14.04 has better performance than on release 15.04. In addition, we can

analyse the evolution of a package such as Wordpress through its common and variant

packages.

A graph model of the retrieval result is represented as .dot files that serve as input

for DOT language package of the Graphviz [68]. For example, a result of the debtree – a

Debian/Ubuntu utility to generate a graph from a software repository –, as shown in List

4.1, can be customised to reduce or to enlarge the graph size. One of the techniques to

resize the graph model is to limit the depth of the levels of the package dependencies. This

technique reduces the dependency by removing the branch of package dependency where

the choice of branch to be removed is based on the commonality of the components (the

packages that are used by most of the configuration, such as library components). It is

worth noting that this technique aims to create a feature model, and it is not remove the

software components. For example, ”wordpress” -> ”libjs-scriptaculous”, “wordpress”

depends to “libjs-scriptaculous”, where the symbol “ -> ” means the left part has a

dependency to the right part. Then, ”libjs-scriptaculous” ->”libjs-prototype”, “libjs-

scriptaculous” depends on “libjs-prototype”. To limit the size of a graph model, the

depth of dependency is reduced, such as removing the “libjs-scriptaculous” dependency

to the “libjs-prototype”.
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Listing 4.1: An excerpt dot file of package Wordpress

1 digraph "wordpress" {
2 rankdir=LR;
3 node [shape=box];
4 "wordpress" -> "libjs -cropper" [color=blue];
5 "libjs -cropper" -> "libjs -scriptaculous" [color=blue];
6 "wordpress" -> "libjs -prototype" [color=blue];
7 "wordpress" -> "libjs -scriptaculous" [color=blue];
8 "libjs -scriptaculous" -> "libjs -prototype" [color=blue];
9 "wordpress" -> "libphp -phpmailer" [color=blue];

10 "libphp -phpmailer" -> "php5" [color=blue];
11 "wordpress" -> "libphp -snoopy" [color=blue];
12 "libphp -snoopy" -> "php5" [color=blue];
13 "wordpress" -> "tinymce" [color=blue];
14 "wordpress" -> "apache2" [color=blue];
15 "wordpress" -> "mysql -client" [color=blue];
16 "wordpress" -> "libapache2 -mod -php5" [color=blue];
17 }

In a Software Product Line development, combinations of features are merged and

customised to produce new configurations, where commonalities and variabilities make

their effort. We merged packages to model product configurations for a feature model

development. For example, to build a Blog system, we combined packages of HTTP

server, Database management system and Web application. However, some redundancy

may exist from the merging process. In doing so, we can eliminate duplicate edges of

package dependencies using Proximity Stress Model (PRISM) [83].

4.4 Proposed Method for Automatic Extraction of

the Feature Model

This section presents steps to create a feature model from a software repository. We

believe this technique has the potential to be used for different repositories that require

certain conditions, such as a metadata with information of a component’s name, version

and dependency – such as require and exclude –, and the file of the component itself.

Figure 4.2 shows an approach to creating a feature model from a software repository where

the metadata provides information to build the graph of components dependencies. This

graph then transforms into a feature model using a technique that will be explained in
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the next subsection.

Figure 4.2: Excerpt of build a feature model from a software repository.

In a feature model, the cross-tree relationship represents the feature dependencies and

the tree hierarchy represents the parent-child features, as explained in Section 2.4.2. In

a large software repository, such as the Ubuntu/Debian package, the repository consists

of thousands or more of packages. The package dependencies are described in the control

script file. As a result, when a modification occurs within a set of packages, this will

influence their dependencies. Furthermore, these steps include a technique to resize the

generated feature model using an Ubuntu utility, and transform the graph results into

constraints of a feature model.

The package within a repository evolves with time because of product development.

Therefore, after creating a feature model from a repository, if the package repository

evolves, we need to check whether the feature model is still consistent with the new

version of the repository, i.e., if it is still valid. The process to check consistency observed

in previous work [3] is complex, possibly requiring a change in the behaviour of the tools,
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in order to check consistency when there is a change in the package repository. In addition,

we can adjust the size of the feature model generated from the repository by adding some

constraints. For example, we can exclude the conflict packages by adding this option in a

script that runs by the Debtree, before retrieving the package dependency from a Ubuntu

package repository. This option of constraints is based on the Ubuntu package rules, as

explained in Section 2.4.2. This is useful because it allows management of the size of the

feature model to include only relevant packages. Previous work [81, 58] did not consider

this issue.
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Figure 4.3: Steps 1–5 to build the feature model from the Debian package repository. In Step 4, constraints are in the form of the
Propositional Logic
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4.4.1 Extracting Package Metadata from a Repository to a Fea-

ture Model

This subsection explains our method to find the variability from the Ubuntu/Debian

package repository and to build a feature model, as depicted in Figure 5.5. Our method

consists of the following steps:

Step 1 – Retrieving Data: In this step, we aim to create a graph that shows the

package dependencies which are retrieved from the Ubuntu package repository. We make

use of the Debian utility, debtree [1], to extract the information from the package file

description. The result of this retrieval activity is transformed into a directed acyclic

graph. The edges of this graph have different colours to distinguish rule dependencies, as

explained in Section 2.4.2. This graph is saved in a DOT Graphviz format [68], which is

a text file structure.

Step 2 – Merging Configuration: We merge a given set of packages to configure a

new software product. This step creates a graph containing all the required packages and

their dependencies, which merge two or more sets of graphs from Step 1. For example, to

build a feature model of web services based on Debian Linux, we merge all the packages

required for web services development, such as Web Servers and Database Management

systems. We use the Proximity Stress Model (PRISM) [83] to perform the merging to

avoid overlaps, while retaining the structural information inherent in a layout using little

additions area. The result from this activity is a combination of graphs that merge similar

nodes (packages), but may have redundancy on their edges.

Step 3 – Removing Duplicated Edges: This step aims to remove the redundant

edges of Step 2. We remove the duplicate edges to have a unique relationship between

packages. In this step, each line of graph syntax is compared one-to-another to find any

duplicate statements. When one is found, the second statement is eliminated from the

file. Moreover, by converting the graph format from the results of this step into Pajek

[15] and GraphML [202], we gain more information of its nature from the graph, such as
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its diameter, whether it is edge-in or -out and its isomorphism is analysed using the graph

tool, Igraph [53]. We plan to extend the results of this step using a combination of graph

and machine learning approaches as part of our future work.

Step 4 – Creating Constraint Rules: Steps 1–3 will lead to a directed acyclic

graph with merged nodes and edges. Each node of this graph corresponds to a leaf in the

feature model, whereas the edges represent the features’ dependencies. Therefore, this

graph is used to create the constraints describing the cross-tree relationship of the feature

model. Further detail of this step is explained in Section 4.5.

Step 5 – Finalising the Feature Model: This step constructs the hierarchy and

cross-tree relationship of a feature model. The hierarchy relationship builds a tree of

parent-child from the categories of all the packages that are retrieved from the repository.

The cross-tree relationship is taken from the results of Step 4. The combination of the

hierarchy and the constraints forms the feature model.

After the feature model is created, we can use FeatureIDE [206] to visualise the feature

model. We can also analyse the feature model to obtain several practically important

pieces of information, such as the key features and the complexity of the dependencies.

Section 4.4.2 explain how to acquire this information.

4.4.2 Key Features and Complexity of Feature Dependency

We can analyse whether a feature is a a key feature in the model. For example, if we are

creating a feature model of a web service, the web server possibly has more dependencies

than others, i.e., it may be a key feature. Our approach can be used to identify key

features based on the number of edges-in and -out from its corresponding node in the graph

representing the cross-tree relationship. It is also possible to measure the graph diameter

to ascertain the complexity of the feature dependency. Based on this information, one

may wish, for instance, to filter out some packages from the feature model.

The information about key features may reduce the cost of analysis in an SPL de-

velopment. It gives insight into which features will influence the product configuration
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Figure 4.4: Merge of packages - Edge-In [The bigger the object, the higher number of
packages depend on it]. This graph is generated using SocNetV [120]

process as Pre-Configuration knowledge. Furthermore, using graph approaches, such as

edge-in or -out, the key features can be observed at the early stages of development. As

shown in Figure 4.4, package libssl1.0.0, which is a package to serve the security of the

online system as the Secure Socket Layer (SSL), has a bigger size than any node in the

graph (node in red) and many edges (line with arrow and in black) pointing in to this

package, which reveals that this node is required by many packages in order to have a

valid software configuration for the Ubuntu system.
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4.4.3 Comparing a Feature Model and the Current Information

within the Ubuntu Package Repository

In the Debian/Ubuntu package repository, packages evolve to improve their performance

or to remove bugs within the time line. Since a feature model is created from the reposi-

tory, it will only receive the information of the latest updates. As a result, when there is

a change in their dependencies, because of a development result, the next feature model

becomes invalid.

Checking the consistency between a given feature model and the newest version of the

package repository is straightforward when using our method. We can generate a new

cross-tree relationship automatically, based on the latest version of the repository and

compare it to the cross-tree relationship of the existing feature model. This can be done

based on a textual comparison between the constraints from the existing feature model

and the new one extracted from the repository.

As an example, as shown in Listing 4.2 line 2 and Listing 4.3 line 2, “php5-cgi” package

installed for “wordpress” in Ubuntu 12.02 and 14.04 has differences on “libdb5.1” and

“libdb5.3”. A simple linux command such as diff can be used as a consistency check.

The diff command compares the old and new text of graph files from the repository

retrieval results, as depicted in Listing 4.4 line 2. Moreover, the graph comparison check

also supports the consistency check with more cost on building the graph.

Listing 4.2: Ubuntu 12.04 – Precise.

1 "alt7 ":"php5 -cgi" -> "libbz2 -1.0" [color=blue];
2 "alt7 ":"php5 -cgi" -> "libdb5 .1" [color=blue];
3 "alt7 ":"php5 -cgi" -> "libpcre3" [color=blue];
4 "alt7 ":"php5 -cgi" -> "libssl1 .0.0" [color=blue];
5 "alt7 ":"php5 -cgi" -> "libxml2" [color=blue];
6 "alt7 ":"php5 -cgi" -> "mime -support" [color=blue];
7 "alt7 ":"php5 -cgi" -> "php5 -common" [color=blue];
8 "alt7 ":"php5 -cgi" -> "libmagic1" [color=blue];
9 "alt7 ":"php5 -cgi" -> "ucf" [color=blue];

10 "alt7 ":"php5 -cgi" -> "tzdata" [color=blue];

Listing 4.3: Ubuntu 14.04 – Trusty.
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1 "alt7 ":"php5 -cgi" -> "libbz2 -1.0" [color=blue];
2 "alt7 ":"php5 -cgi" -> "libdb5 .3" [color=blue];
3 "alt7 ":"php5 -cgi" -> "libpcre3" [color=blue];
4 "alt7 ":"php5 -cgi" -> "libssl1 .0.0" [color=blue];
5 "alt7 ":"php5 -cgi" -> "libxml2" [color=blue];
6 "alt7 ":"php5 -cgi" -> "mime -support" [color=blue];
7 "alt7 ":"php5 -cgi" -> "php5 -common" [color=blue];
8 "alt7 ":"php5 -cgi" -> "libmagic1" [color=blue];
9 "alt7 ":"php5 -cgi" -> "ucf" [color=blue];

10 "alt7 ":"php5 -cgi" -> "tzdata" [color=blue];

Listing 4.4: Diff results.

1 diff trusty.txt precise.txt
2 2c2
3 < "alt7 ":"php5 -cgi" -> "libdb5 .3" [color=blue];
4 ---
5 > "alt7 ":"php5 -cgi" -> "libdb5 .1" [color=blue];

Using the above technique, the consistency between releases of the Debian/Ubuntu

package dependencies and a feature model can be checked to find any changes. Consis-

tency checks for another large software repository will need further research.

Next, we present a technique to transform the packages’ dependencies that are re-

trieved from the Ubuntu package repository into a cross-tree relationship (constraints of

a feature model), which adopts the Debian/Ubuntu package rules [106], as explained in

Section 2.4.2.

4.5 Transforming Package Dependency into a Cross-

Tree Relationship

This section presents a method to transform the package dependency from the De-

bian/Ubuntu package repository to a cross-tree relationship in a feature model. The

package dependencies are transformed from a graph format file into a Propositional Logic

format, that is suitable as input for the constraint of the feature model tool [206]. The

transformation uses the results of the package retrieval from the Ubuntu package reposi-

tory. Thus, it is restricted a human intervention transformation.

The retrieval results, as explained in section 4.4, produce a graph file with a format
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based on DOT Graphviz graph text file. When transforming the package graph file,

we can observe that the relationship between packages has a variety of structures. So,

each type of dependency should have an equivalent symbol, whereas the colours of edges

provide an insight into the relationship between features.

We transform the package dependencies from the debtree results into constraints as

follows,

Pre-Depends Rule

The graph below represents the rule that the wordpress package should have package dpkg

previously installed in order to be installed. If package dpkg is not installed beforehand,

then package wordpress will be uninstallable. It is worth noticing that this rule must be

presented at the early line of script of the constraint.

The Graphviz DOT format for this graph is:

1 "wordpress"->"dpkg"[color=purple ,style=bold];

The corresponding constraint in propositional logic is:

wordpress ⇒ dpkg

Depends Rule

The graph below represents the rule that package Wordpress must include libjs-cropper

to have a valid configuration.

The Graphviz DOT format for this graph is:

1 "wordpress"->"libjs -cropper "[color=blue];

The corresponding constraint in propositional logic is:

wordpress ⇒ libjs-cropper
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Conflicts Rule

The graph below represents the rule that package php5-mysql will conflict with package

php5-mysqli.

The Graphviz DOT format for this graph is:

1 "php5 -mysql"->"php5 -mysqli "[color=red];

The corresponding constraint in propositional logic is:

php5-mysql ⇒ ¬php5-mysqli

Suggests Rule

The graph below represents the rule that wordpress is suggested to include mysql-server.

Including mysql-server may enhance the usefulness of wordpress; however, not including

mysql-server would not cause any problem.

The Graphviz DOT format for this graph is:

1 "wordpress"->"mysql -server "[style=dotty ];

The corresponding constraint in propositional logic is:

wordpress ⇒ (¬mysql-server ∨ mysql-server)

Recommends Rule

The graph below represents the rule that wordpress may include wordpress-l10n to sat-

isfy the installation. For example, when dealing with a Chinese language application, a

Chinese language support package is recommended to be installed. If it is not installed,

wordpress would still work, but would not satisfy the Chinese language user requirement.

The Graphviz DOT format for this graph is:

1 "wordpress"->"wordpress -l10n"
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The corresponding constraint in propositional logic is:

wordpress ⇒ ¬wordpress-l10n ∨ wordpress-l10n

Provides Rule

The graph below represents the rule that the wordpress package depends on a virtual

package1 httpd, which has three options of packages.

The Graphviz DOT format for this graph is:

1 "wordpress" -> "alt1" [color=blue];
2 "alt1 ":" httpd" -> virt1 [dir=back ,
3 arrowtail=inv ,color=green ];
4 alt1 [
5 shape = "record"
6 label = "<httpd > httpd"
7 ]
8 virt1 [ shape = "record"
9 style = "rounded"

10 label = "<lighttpd > \{ lighttpd \} |
11 <apache2 -mpm -worker > \{apache2 -mpm -worker \}
12 | <nginx -full > \{nginx -full \}" ]

The corresponding constraint in propositional logic is:

wordpress ⇒ httpd

httpd ⇒ (lighttpd ∨ apache2-mpm-worker ∨ nginx-full)

It is worth noting that the order of the propositional logic statements is important, as

former statements affect later statements.

Extended 1

In the Debian package repository, a virtual package may depend on another virtual pack-

age. In the example below, a package wordpress has options to include apache2 or httpd,

1A virtual package represents a group of packages with similar functionality.
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where httpd is a virtual package with options of some other packages.

Graphviz DOT format for this graph is:

1 "wordpress" -> "alt1" [color=blue];
2 "alt1 ":" httpd" -> virt1 [dir=back ,
3 arrowtail=inv ,color=green ];
4 alt1 [
5 shape = "record"
6 label = "<apache2 > [apache2] | <httpd > httpd" ]
7 virt1 [
8 shape = "record"
9 style = "rounded"

10 label = "<lighttpd > \{ lighttpd \} |
11 <apache2 -mpm -worker > \{apache2 -mpm -worker \} |
12 <nginx -full > \{nginx -full\} |
13 <apache2 -mpm -event > \{apache2 -mpm -event \}" ]

The corresponding constraint in propositional logic is:

wordpress ⇒ apache2 ∨ httpd

httpd ⇒ (apache2-mpm-prefork ∨ apache2-mpm-itk ∨ lighttpd ∨ nginx-full)

4.5.1 An Example of Transformation from Package Dependency

to Constraint

An example of a transformation from package dependencies to a constraint of the large

feature model, as depicted in Figure 5.8, using the rules explained in the previous section

is as follows: Package “php-pear” has option to include “mysql-server” or “postgresql-

server”. Package “php-pear” depends on packages “php5-fpm”, “php5-cgi” and “php5-

gd”. However, package “php5-cgi” has a conflict with package “php5-fpm”. As a result,

package “php-pear” can only be installed with “php5-fpm” or “php5-cgi”, as illustrated

in figure 4.5.

The steps of transformation are:
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Figure 4.5: Example of package dependencies used to create a constraint rule in a feature
model.

(1) php5-cgi ⇒ ¬ php5-fpm (Conflicts Rule)

(2) php-pear ⇒ php5-fpm (Depends Rule)

(3) php-pear ⇒ php5-cgi (Depends Rule)

(4) php-pear ⇒ php5-gd (Depends Rule)

(5) php-pear ⇒ php5-cli (Depends Rule)

(6) php-pear ⇒ apache2-bin (Depends Rule)

(7) php-pear ⇒ php5 (Depends Rule)

(8) php-pear ⇒ (mysql-server ∨ postgresql-server) (Provides Rule)

Combines (1)(2)(3):

(9) php-pear ⇒ php5-fpm ∨ php5-cgi

Combines (9)(4)(5)(6)(7):

(10) php-pear ⇒ php5-fpm ∨ php5-cgi ∧ php5-gd ∧ php5-cli ∧ apache2-bin ∧ php5
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Combines (10) and (8):

(11) php-pear ⇒ php5-fpm ∨ php5-cgi ∧ php5-gd ∧ php5-cli ∧ apache2-bin ∧ php5 ∧

(mysql-server ∨ postgresql-server)

The combination (11) is a constraint for the large feature model.

4.6 Chapter Summary

In this chapter, we presented a technique to create a feature model automatically from

the Ubuntu package repository. This technique has used the graph approaches to add

feature and modify the relationships between features which have shown their effective-

ness in order to build a feature model from a large software repository. As presented in

Section 4.4.1, this chapter has described steps to extract the graph information into a

feature model. The package dependency describes the features cross-tree relationship and

the package categories present the features hierarchy relationship. Section 4.5 presented

a transformation from a graph syntax into a propositional logic format to match the fea-

ture model constraints. This transformation was built using the Debian/Ubuntu package

dependency rules.
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CHAPTER 5

A SOFTWARE PRODUCT LINE WITH ENERGY
MANAGEMENT FOR A VIRTUALISED

ENVIRONMENT

As explained in Chapter 1, this work proposes a technique using an amalgamation of

Software Product Line (SPL) and an approximation of energy usage to reduce energy

in a virtualised environment. Such an approximation technique is essential to find out

the combination of features that consume less energy associated with a workload. In

this work, for a small number of features, we can measure energy corresponding to all

the possible combinations, but it is infeasible to measure the consumption of energy for

all possible combinations that include a large number of configurations of features. As

a result, this chapter describes a machine learning ensemble - which combines multiple

learning algorithms to obtain better predictions - to make an estimation of energy usage

for a large feature model.

Our work is achieved through the following steps: Section 5.1 presents machine learn-

ing techniques to create a prediction model for a Software Product Line development

using a synthesis of workload, product configuration and energy consumption. These

techniques make use of the CPU power information from the energy measurement results,

as the prediction target. Section 5.2 introduces a technique to create a machine learning

model from a feature model where features are retrieved from a software repository. This

chapter then introduces Energy Prediction Trees (EPTs) in Section 5.3. EPTs aim to
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make the results of a prediction more interpretable. In Section 5.4, we conduct a compar-

ative study between EPTs and several other prediction techniques from the performance

point of view. The comparison is based on the case study that is created from the Ubuntu

package repository. Finally, Section 5.5 summarizes this chapter.

5.1 Machine Learning for an SPL with Energy

This section presents a technique using an approximation approach to select the combi-

nation of features from a feature model that uses less energy.

As explained in Chapter 2, there are a large number of possible components and vari-

ations of features within a Software Product Line with energy that is retrieved from the

software repository. This, in turn, needs a method to predict the CPU power consump-

tion of a given workload and configuration of features. Building a model to make such

predictions can be viewed as a machine learning regression problem, i.e., the problem of

learning how to predict a numeric target variable (CPU power) given a set of input vari-

ables (workload and configuration). Machine learning methods build predictive models

based on a training set composed of examples of input values and their corresponding

target outputs.

Several different machine learning methods exist for regression problems [23]. If the

relationship between the input and target variables is linear, linear regression methods

can be used. These methods usually mathematically and deterministically estimate the

coefficients of linear equations so as to minimise the error associated with the estimations

on the training set. One of their advantages is that they produce models that are easy to

interpret and visualise. However, they are restricted to linear models.

If the relationship between the input and target variables is non-linear, the Multi-Layer

Perceptron (MLP) is a very popular model [23]. MLPs are composed of several nodes

arranged in an input layer, one or more hidden layers, and one output layer, as shown in

Figure 5.1. Each node computes a function of the weighted sum of its inputs. Learning
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Figure 5.1: Example of structure of MLPs with three input and one target variable.

consists of determining the best weights so as to minimise the error on the training set.

One of the most well-known algorithms for learning the weights is called Backpropagation

[23]. A key advantage of MLPs is that they can approximate any continuous function.

However, they are difficult to interpret by humans and tend to be sensitive to parameter

choices, making them more difficult to use by practitioners [87].

Regression Trees (RTs) are also widely used with non-linear models. They divide the

input space into a tree structure based on the values of the input variables. Learning

consists of deciding which variables and values to split up at each level of the tree. When

dealing with regression problems, splits are usually created so as to minimise the variance

of the target values of the training examples allocated to each child node. The human

interpretability of RTs is often seen as one of its key advantages over models such as

MLPs. However, RTs produce predictions with discontinuities at the split boundaries,

which can be an issue when aiming to model smooth functions, such as the measurement

results explained in Section 3.2.1. It is worth noting that, in our measurement of energy,

we generate a workload in a linear smooth way, where the load is sent in an increasing

sequence order from 1 – 100 user requests per second. Therefore, the workload can be

monitored as a linear increase of resource usage within the target of measurement.

In order to improve predictive accuracy, ensembles of models can be created by using

methods such as Bagging [29]. By combining different models into an ensemble, it is
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expected that the wrong predictions given by some of the models are compensated for

by the correct predictions given by the others, increasing the predictive accuracy of the

ensemble as a whole. Bagging uses the fact that models such as MLPs and RTs can

be considerably different when created, based on different training sets. Bagging builds

different models of a given type (e.g., different MLPs) based on different bootstrap samples

of the training set. A prediction given by the ensemble is the simple average of the

predictions given by each model. However, as ensembles are composed of several different

models, they are more difficult to interpret.

In this work, we compare the performance of Linear Regression, MLP, RT and bag-

ging. We aim to find which machine learning approaches perform better to predict the

consumption of energy from different combinations of features.

5.1.1 CPU Power Consumption Prediction

As explained in Chapter 1, we use machine learning for predicting the CPU power con-

sumption of different workloads and configurations. According to Andrew [163], when

applying machine learning for a given problem for the first time, at least, these questions

should be asked :

(Q1) Can we consider the performance of the methods acceptable for the problem in

hand?.

(Q2) Which machine learning method is best to use for this problem?, and

(Q3) Can we get any insight into the problem, based on the models created?

This section presents a comparative study of the performance of models that is ex-

plained in the previous section, aiming at answering the first two questions above. The

interpretable models are also analysed to gain insight into the problem, answering the

third question. Section 5.1.2 reports the setup of the prediction process and section 5.1.3

reports the analysis done to answer the questions above.
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5.1.2 Experimental Setup

In this work, the data set is obtained from an experiment that measures the consumption

of energy of a variant php-based web system [162]. We use WEKA [102], a machine learn-

ing tool, to help us predict energy usage from a feature model of a Software Product Line.

WEKA’s implementation of linear regression, MLP, RT (REPTree), bagging using MLPs

and bagging using RTs was used with its default parameters in the experiments [102].

Using the default parameters is a reasonable choice for a first analysis, as practitioners

would frequently leave parameters untuned unless they are experts in machine learning.

Figure 5.2: Example of a data set for machine learning setup.

Figure 5.2 describes the data set, which consists of workload, combination of features

and CPU power. This data set combines the feature model and the results of energy

measurement. As depicted in Figure 5.2, this data set consists of the following: one input

variable is used to describe the workload, seven binary variables (a – g) are used to describe

the configuration of features, and the target variable is the CPU power. The combination
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of features is depicted in Table 5.1 showing six configurations. The feature model for

this experiment can produce more configurations, as shown in Figure 5.3, but we create

constraints to limit it to only six configurations, in the direction of reducing the complexity

of the feature model. In order to limit the possible configurations from a feature model,

we create a cross-tree relationship. For example, when we include the feature lighttpd

into a product configuration, it must be configured with php-cgi or php-fpm (php-cgi ∨

php-fpm), and exclude php-native (¬php-native). When nginx is selected, then php-fpm

must be included, excluding both php-cgi and php-native (¬php-cgi ∧ ¬php-native) from

the configuration.

Figure 5.3: Feature model of php-based web system.

The performance measures used in this study were Mean Absolute Error (MAE), Root

Mean Square Error (RMSE) and Median Magnitude of the Relative Error (MdMRE), as

explained in Section 2.5.3.

Our approach can be scaled up to include many more features. One of the methods

is by retrieving a large scale software repository, such as the Ubuntu package repository,

where the package dependencies within it can be transformed into a feature model, as

explained in Chapter 4. Furthermore, the combination of the measurement of energy
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Table 5.1: Configuration variables in the data set of php-based web system.

a b c d e f g Configuration
0 0 1 1 0 0 1 apache + php-cgi + mysql
0 0 1 0 1 0 1 apache + php-fpm + mysql
0 0 1 0 0 1 1 apache + php-native + mysql
1 0 0 1 0 0 1 lighttpd + php-cgi + mysql
1 0 0 0 1 0 1 lighttpd + php-fpm + mysql
0 1 0 0 1 0 1 nginx + php-fpm + mysql

Boolean indicating whether a feature included (1) or not
(0) into the configuration.

values, the feature configurations and workloads create the data set for our approximation

approach.

5.1.3 Experimental Results

Table 5.2 shows the results of the average test performance. Given that the average and

standard deviation of the target CPU power levels in the full data set were 18.56 and

7.33, we can consider the average MAE and RMSE to be generally small for all methods.

This is further confirmed by the very low MdMRE. For instance, the MdMRE for bag-

ging+RT was only 2.22% of the actual CPU power levels. This answers Q1 concerning

the performance of the acceptable methods, as mentioned in Section 5.1.1, showing that

the methods investigated in this study present a good performance for the problem of

predicting CPU power. It is worth noting that we used the default parameters of the

methods for these experiments. If the parameters are tuned, even better results may be

obtained.

Table 5.2: Average performance (+- standard deviation) of machine learning methods for
predicting CPU power.

Method MAE RMSE MdMRE
Linear regression 0.79+-0.22 1.74+-1.01 2.43+-0.52
MLP 1.17+-0.56 2.07+-1.03 4.41+-2.81
RT 0.72+-0.18 1.28+-0.60 2.64+-0.43
Bagging+MLP 0.89+-0.25 1.86+-1.00 2.66+-0.85
Bagging+RT 0.61+-0.14 1.15+-0.52 2.22+-0.38
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Table 5.2 shows that the MAE and RMSE of each method was compared to the

highest ranked approach (bagging+RT), based on the Wilcoxon Sign-Rank Test with

Holm-Bonferroni corrections at the overall level of significance of 0.05. The p-value is

a random variable derived from the distribution of the test statistic used to analyse a

data set and to test a null hypothesis [100], where p-value < 0.005 indicates very strong

evidence against the null hypothesis in favour of the alternative. In this experiment, all p-

values were smaller than 2.5·10−5. Therefore, we can conclude that bagging+RT obtained

significantly better MAE and RMSE than the other methods. It is thus recommended

over the other methods for predicting CPU power, if the main aim is to achieve high

performance. This answers part of Q2.

It is important to notice that the magnitude of the differences in performance between

bagging+RT and the other methods is not large, despite being statistically significant.

For instance, the difference in MAE between bagging+RT and RT, which is the second

ranked approach in terms of MAE and RMSE, is only 0.11 units of power. Therefore, a

practitioner might prefer to use RT instead of bagging+RT in order to get more insight into

the problem. This provides the remainder of the answer to Q2, finding a suitable machine

learning method for our problem of the consumption of energy by different combinations

of features.

In order to answer Q3, we thus provide a closer look into the RT model. As ten times

ten fold cross-validations generate 100 different models, we report here insights gained

based on a single RT model built using the full data set as training data. This RT model

used the input variable workload as the sole variable to create splits from the first to the

fourth levels of the tree. This means that the workload was the main factor affecting CPU

power, which is reasonable.

As the RT divided the input space into several different workload sections, it was quite

large. In this section, we present only part of the fourth to eigth levels of the RT in Figure

5.4 as an example, and put the whole RT in Appendix A.

Depending on the workload value, no further splits were performed by the RT based
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on configuration. This is the case, for example, for the workload in the interval [93.5, 96.5)

shown in Figure 5.4. This gives the insight that, depending on the workload, different

configurations are unlikely to lead to a significant impact on CPU power consumption.

However, for certain workload values, configuration becomes more important. The config-

uration variable c was the most importance one, having been used to make several splits,

as depicted in figure 5.4. This gives the insight that the choice between configuration

c = 0 and c = 1 (i.e., using or not using Apache) is the one that will usually affect CPU

power usage the most.

Figure 5.4: Section of the RT model created using the whole data set as training data.
W stands for workload and P stands for CPU Power. c stands for Apache and d stands
for PHP-CGI.

The linear regression model could also be used to get some insights into the problem.

However, as it is constrained to a linear function, it is likely to be less accurate compared

to reality. For instance, the relationship between workload and CPU power for a fixed

configuration is roughly linear, but there are some non-linear variations in CPU power.
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Linear regression will ignore potential non-linear variations in CPU power that could be

caused by certain workload levels or configurations.

The linear regression model created using the whole data set as training data is the

following:

CPU power = 0.244 ∗Workload + 0.6696 ∗ c+ 5.8008

We can see that the only configuration variable considered important by the linear

regression model was c. This model gives the insight that, approximately, a configuration

using c = 0 (i.e., not using Apache) tends to use less CPU power, and other configuration

choices tend not to affect CPU power as much as c. If one is trying to improve a given

service, one may wish to invest mainly in improving the potential to provide configurations

c = 0 (i.e., configurations that avoid the use of Apache). Examples of such configurations

are nginx + php-fpm + mysql and lighttpd + php-cgi + mysql.

5.2 Creating a Data Set for Machine Learning Model

from a Software Repository

This section introduces a technique to create a data set for the machine learning process

for a Software Product Line with energy from a large software repository, such as the

Ubuntu package repository. As explained in Chapter 4, debtree, an open source tool to

generate feature dependencies from the Debian /Ubuntu repository, is used extensively.

Using this technique, we can resize the feature model according to our needs, i.e. excluding

conflict packages.

In order to provide information on the energy-efficiency of different configurations,

we need to, first, extract a feature model from the software repository being used and

second determine the energy consumption associated with different configurations from

this feature model. The process of extracting a feature model from a large software
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repository is very time consuming, even if the intended application is associated with

a small number of different possible configurations. As explained in Chapter 1, it is

desirable to have an automated method to extract feature models when dealing with large

repositories. When dealing with a very small feature model, it may be possible to measure

the energy consumption of each possible configuration in order to find out which of them

is more energy efficient. However, more complex applications can result in a large number

of possible configurations, making infeasible not only the manual extraction of the feature

model, but also the measurement of the energy consumption of all possible configurations.

Machine learning approaches investigated in the previous section on predicting energy

consumption would lead to very large models [162], from which it is difficult to gain

insights into what configuration to choose.

In this work, we deal with the problems explained above by proposing an interpretable

and scalable machine learning model design for providing insights into which configuration

to choose. The next subsection will describe steps to create the Machine Learning data

set from a feature model that is built from a large software repository.

5.2.1 Steps to Building a Machine Learning Model from a Large

Software Repository

This section explains the steps to build a machine learning model for energy prediction

from a large software repository. The steps included in retrieving packages to build a

feature model from the repository have already been explained in Chapter 4 (using Debian

utility to retrieve the package dependencies).

The approach is depicted in Figure 5.5. Our approach to building a Machine Learning

model consists of the following steps:

• Step 2 – Build a Machine Learning (ML) Model for Predicting Energy

Consumption: three steps are required to build an energy prediction model in

order to avoid measuring energy consumption of all possible configurations and
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workloads. They develop from Step 1 that creates a feature model from a large

software repository – as explained in Chapter 4.

• Step 2.1 – Create input variables for ML model: features from the feature

model are used as binary input variables of the ML model in order to represent a

configuration. The binary value 1 means a feature is included in a configuration,

and 0 not included. Each input variable indicates whether an existing package is

used in the configuration or not . An additional numeric input variable represents

a given workload, with higher values indicating a higher workload.

• Step 2.2 – Generate data set: a subset of all possible configurations is selected

in order to create a data set for building or evaluating the ML model. The configu-

rations that make up the data set can be selected randomly, or partially randomly,

by ensuring that each package is included in at least one configuration and popular

configurations are included, so that there is a representative of well-known config-

urations. For example, to generate a data set for a Blog system, the “Wordpress”

configurations should be included. Different workloads are then simulated as ex-

plained in Section 3.2. The workloads are fed into the system using the selected

configurations, and their corresponding energy consumption is measured using Pow-

ertop, as described in Chapter 3 [161]. Each tuple of the configuration, workload

and energy measurement forms one example in the data set. It is worth noting that

the energy measurement performed here is platform specific, e.g., a measurement

taken on VirtualBox x64 may be different from a measurement taken on VMWare

X86 64. Therefore, the data set should be created with a specific platform in mind.

• Step 2.3 – Build ML model: the data set created in step 2.2 is then fed to a

ML algorithm in order to build a model able to predict the energy consumption

associated with a given configuration and workload. Details on how to build the

ML model proposed in this work are given in Section 5.3. This ML model is specific

to the platform used for generating the data set, e.g., if the data set created was
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based on energy measurements on VirtualBox x64, the ML model should only be

used for making predictions for this platform.

These steps are bonded to the procedure that creates a feature model from a large software

repository, as explained in Chapter 4. Any changes of product configurations will affect

the prediction of energy usage.
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Figure 5.5: Step 1–2 to build feature model and ML prediction model for predicting energy consumption from the Debian package
repository. Step 1 already explained in Chapter 4.
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5.3 Energy Prediction Trees

This section presents an approach to approximating the energy usage of a feature model

built from a large software repository. This approach extends the regression tree model

to give a better prediction result.

The feature model generated using the method proposed in Chapter 4 can be used

to determine all valid configurations. However, measuring the energy consumption of all

valid configurations is infeasible when the number of configurations is high. For example,

the large feature model, as shown in Figure 5.8, has 4519 possible configurations. In

that case, as explained in Section 1.2, we need an accurate and interpretable model for

predicting the energy consumption of configurations and workloads without the need for

measuring the energy consumption of all valid configurations. This section explains our

proposed Machine Learning (ML) model design for predicting energy consumption based

on a subset of the configurations from the feature model. This method combines the

advantages of Regression Trees (RTs) and linear regression, and is expected to be both

accurate and interpretable in this domain.

As explained in Section 5.1, the ML methods Bagging+RTs and RTs are the most

accurate methods in the literature for predicting CPU power (target variable) based on

configuration and workload (input variables) [162]. However, Bagging+RTs are inherently

not easily interpretable because they consist of several RTs and Single RTs are hard to

interpret because their size becomes very large in this domain. The probable reason

for their large sizes is that CPU power consumption increases smoothly with the input

variable workload. This causes RTs to create several node splits based on workload, leading

to very large trees. Figure 5.4 in Section 5.1.3 can be used to illustrate this problem. From

the 163 nodes of the RT part of which is shown in that figure, 112 were split into branches

based on workload. The whole RT can be found in Appendix A. Another problem of RTs

is that their discontinuous predictions are not ideal for modelling smooth functions.

In order to overcome these issues, we propose a new RT design tailored for this domain,
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called Energy Prediction Trees (EPTs). The design is based on the observation that

CPU power is expected to increase fairly linearly with the workload, and that different

configurations can lead to different linear functions, causing CPU power to increase more

or less rapidly. Figure 5.6 shows an example of this for two different configurations. We

thus restrict our EPTs to make splits only on input variables representing configurations,

i.e., splits on workload are not allowed. Each leaf of the EPT uses its corresponding

training examples to build a linear regression model of CPU power based solely on the

workload. This model is used for providing CPU power predictions based on the workload

of any configuration corresponding to the leaf. This design is expected not only to reduce

the size of the trees, but also to improve predictive accuracy, by avoiding discontinuous

predictions through the linear regression models.

We also note that different configurations can only cope with workloads up to a max-

imum level, above which the extra workload is simply rejected by the CPU. For example,

as shown in Figure 5.6, this maximum is just above 20 for configuration 1, whereas con-

figuration 2 can withstand larger workloads. We speculate that configuration 2, that

includes packages Apache2, Tomcat, MySQL and Java, does not making much system

calls to the operating system compared with the configuration 1 that configured with

Apache2, MySQL, php-fpm and Pear when an increasing amount of workloads arrives at

the system. Although, the configuration 1 and 2 have commonality, both include Apache2

as an HTTP server, MySQL as a database management server and run in the same oper-

ating system - Ubuntu 14.04, their configuration with Java and php-fpm create different

behaviour, in terms of CPU energy usage. We argue that the php-fpm create many more

system calls to the operating system than Java, which utilises CPU to its maximum

processing capacity. Moreover, the CPU power measurement for the minimum workload

is frequently an outlier, due to the measurement process. We use this prior knowledge

to filter the data, eliminating training examples that would otherwise hinder the linear

regression learning procedure. Specifically, we filter out training examples containing a

workload above the maximum for each given configuration, and training examples corre-
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Figure 5.6: Examples of plots of CPU power versus workload for two different config-
urations. Configuration 1 uses Apache2, MySQL, Ubuntu 14.04, PHP-FPM and Pear.
Configuration 2 uses Apache2, Tomcat, MySQL, Ubuntu 14.04 and Java.

sponding to an inaccurate CPU power measurement due to a minimum workload. Should

the EPTs be required to make predictions for workloads above the maximum allowed for

a given configuration, the maximum CPU power actually measured for that configuration

should be provided, rather than the CPU power predicted by the corresponding linear

model.

Given that the EPT’s leaves contain a linear regression model rather than a predic-

tion of a single CPU power value, we build our EPTs using the model-based recursive

partitioning procedure proposed by Zeileis et al. [226]. This procedure has a rigorous

theoretical background for integrating parametric models (such as linear regression) into

trees. Its basic steps are as follows:
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1. To build a parametric model using all the training examples associated with the

current node, i.e., using the current sample. In the case of EPTs, this parametric

model is a simple linear regression model.

2. To check whether splitting the sample in some input variable can capture instabilities

in the model and thus improve the fit of the model to the data. This is done based

on a modern class of instability statistical tests [225].

3. To split the node on the input variable associated with the highest instabilities, i.e.,

the variable that can improve the fit the most.

4. To repeat the process for each child node.

5.4 Creating and Evaluating Machine Learning Mod-

els for CPU Power Prediction

This section presents the experiments performed with the objective of evaluating our En-

ergy Prediciton Trees (EPTs) in terms of predictive accuracy, interpretability and scalabil-

ity. To this end, experiments were performed not only using EPTs, but also the Machine

Learning (ML) approaches that have shown to perform best (Bagging+Regression Trees

(RTs) and RTs) and that have been shown to be the most interpretable ones (Linear Re-

gression (LR)) in the domain of CPU power prediction [162]. RTs have also been shown

to perform well in the related domain of performance prediction. In addition, we have

included an extra model for the experiments, namely Random Forests (RFs) [31].

RFs are ensemble learning methods that combine the idea of bagging [29] with random

selection of input variables. In order to decide the splits of the decision trees, a certain

number of randomly chosen input variables is selected, rather than considering all input

variables for the split, as is the case for Bagging. This can help to reduce the correlation

between the trees that compose the ensemble, potentially resulting in a better prediction

performance than bagging+RTs [31]. Therefore, even though RFs have the same inherent
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interpretability problem as bagging+RTs, it is worth investigating them in this domain

to check how much improvement in predictive accuracy they can provide. To the best of

our knowledge, RFs have not been used for CPU power prediction in the past.

The experiment activity is divided into subsections as follows: Section 5.4.1 explains

the data sets, Section 5.4.2 explains the design of the experiments and Section 5.4.3

presents the analysis of the results.

5.4.1 Data Sets

As explained earlier in Chapter 5, we extracted both a relatively small and a large feature

model from the Debian/Ubuntu package repository in order to investigate the scalability

of our approach. In order to build the ML models (step 2.3 of the procedure as explained

in Section 5.2.1) corresponding to each of these feature models, we first need to determine

what the input variables are (step 2.1) and generate data sets (step 2.2).

We have 23 and 57 input variables corresponding to the small and large feature models,

respectively. Of these, 22 and 56 variables are binary variables representing whether or

not each of the 22 and 56 packages from the feature models is used. The remaining input

variable is a numeric variable representing the workload. The target output is CPU power

in Watts.

We created two data sets S and L, one corresponding to the relatively small and

one corresponding to the larger feature model. Each example in a data set represents a

given configuration (combination of packages), workload and its associated CPU power

in Watts. Different examples for data sets S and L were created by selecting 12 and

29 different possible configurations, respectively, based on the feature models extracted

in Chapter 4. The feature models are shown in Figure 5.7 for the small feature model

and in Figure 5.8 for the large feature model. The configurations were chosen so as to

ensure that each package was used in at least one configuration and that the most popular

configurations, according to the web applications used in this study, were covered. Work-

loads were generated as explained in Chapter 3 and varied from 1 to 100 users, leading
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to a total of 12 × 100 = 1200 and 29 × 100 = 2900 examples for data sets S and L,

respectively. Each workload level was simulated for 10 seconds for each configuration on

the VirtualBox x64 platform. Our energy measurement method for virtualised systems

[161] was used to capture the CPU power consumption at every second. As the measure-

ment procedure contains noise, for each given workload and configuration, the median of

the 10 measurements was used as the target output. The data sets were then filtered to

exclude examples with the minimum workload and with a workload above the maximum

supported by each given configuration. This resulted in 667 and 1504 examples for data

sets S and L, respectively.

5.4.2 Experimental Design

The evaluation procedure used in the experiments was 10 times 10 fold cross-validations,

which is a standard evaluation procedure in Machine Learning (ML). This gives a total

of 100 runs using different subsets of data for training and testing each ML approach.

The performance measures used in this study were Mean Absolute Error (MAE), Root

Mean Square Error (RMSE) and Median Magnitude of the Relative Error (MdMRE), as

explained in Section 2.5.3.

The number of nodes of the RT and EPT trees was used to compare their interpretabil-

ity. For Bagging+RTs and RFs, the sum of the number of nodes of all their trees was

used. LR is equivalent to a single node.

Wilcoxon Signed-Rank statistical tests were also performed with Holm-Bonferroni cor-

rections at the overall level of significance of 0.05 to support the comparison of size and

performance of the ML models.

In performing a significance test in statistics, p-value helps us to determine the signifi-

cance of our data estimates [91, 184]. The significance tests are used to test the validity of

a claim that is made about a model that is created using a data set and a Machine Learn-

ing (ML) approach, which has its calculation based on an assumption that null hypothesis

is true [60], where the claim on trial is the null hypothesis. The evidence in the trial is our
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measurement data and the statistics that collaborate with it. In this experiment, we use

the significance level α = 0.005 and the p-value can be interpreted as follow [184, 177],

• A small p-value (≤ 0.05) indicates strong evidence against the null hypothesis, which

means our data set and an ML model are relevant for the prediction.

• A large p-value (> 0.05) indicates weak evidence against the null hypothesis, which

means our data set and an ML model may not be relevant for the prediction.

The accuracy and size of the models created using data sets S and L were compared

in order to analyse their scalability.

Following previous work [162], WEKA’s implementation [102] of Bagging+RTs, RTs

(REPTree) and LR were used to build the ML models in the experiments with its default

parameters, unless stated otherwise. WEKA’s RF implementation was also used with its

default parameters, except for the number of trees, which was set to 10 in order to allow a

fair comparison with bagging, which uses 10 trees in its default configuration. EPTs were

created, based on the model-based partitioning algorithm provided by R’s party package

[226] with its default parameters, except for the parameter MinSplit. This parameter

refers to the minimum permitted number of training examples in a node, and corresponds

to the parameter MinNum of REPTrees. In order to allow fair comparisons between these

approaches, MinSplit was set to the default WEKA value of 2 used in previous work [162].

5.4.3 Experimental Analysis

Our analysis is divided into two parts. The first part consists of investigating EPTs’

interpretability and predictive performance in comparison with Bagging+RT, RT, RF

and LR. Table 5.3 shows the size (in number of nodes) and Table 5.4 shows the predictive

performance achieved by each model. The results of the Wilcoxon Signed-Rank tests for

comparison of size, MAE and RMSE against EPT are also shown. All models’ sizes,

MAEs and RMSEs were statistically significantly different from EPT’s, except for RT’s

RMSE for data set S.
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Table 5.3: Median size (number of nodes) of ML models across 100 runs and p-values of
Wilcoxon Sign Rank Tests for a comparison with EPT

Machine Learning Model Data Set S (Small) Data Set L (Large)
Size P-Value Size P-Value

LR 1 0.00000 1 0.00000
EPT 19 – 43 –
RT7 / RT5 81 0.00000 43 0.80258
RT 154 0.00000 297 0.00000
Bagging+RT 1556 0.00000 2942 0.00000
RF 5219 0.00000 11901 0.00000

Models are sorted in ascending order of size. P-values in lime
(grey) indicate statistically significant difference when using Holm-
Bonferroni corrections at the overall level of significance of 0.05
considering six comparisons.

LR is the easiest model to interpret, as it always consists of a single linear regression

equation. However, LR was the last ranked model in terms of predictive performance,

both in terms of MAE and RMSE. By observing its MdMRE, we can see that the size of

the difference in performance between LS and the first ranked approach (RF) was small

(8.18 for data set S and 8.84 for data set L). This means that, as LR is easy to interpret,

it is a good model in the domain of CPU power prediction, representing accurately the

relationship between the configuration and the workload against CPU power.

RF was the first ranked model in terms of MAE, RMSE and MdMRE for both data

sets S and L. However, it contained an extremely large number of nodes (5,219 for S

and 11,901 for L), making it very difficult to be interpreted by people. Bagging+RT also

contained a large number of nodes in this domain (1,556 for S and 2,942 for L).

EPTs were the easiest models to interpret after LR, containing 19 nodes for S and 43

for L. They also achieved significantly better MAE and RMSE than LR for both data

sets. Even though the EPT’s MAEs and RMSEs were statistically significantly worse than

those of the best ranked approach (RF), the margin of the difference in performance was

very small (only 0.83 for data set S and 0.71 for data set L). Therefore, it is advantageous

to adopt EPT as opposed to LR, Bagging+RT and RF.

RTs had a considerably larger size and significantly worse MAE and RMSE than
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Table 5.4: Median performance of different ML models across 100 runs and p-values of
Wilcoxon Sign Rank Tests for comparison of MAE and RMSE against EPT

Machine Learning Model Data Set S (Small)
MAE P-value RMSE P-value MdMRE

RF 1.63 0.00000 3.00 0.00000 7.20
Bagging+RT 1.79 0.00000 3.00 0.00000 8.41
EPT 2.03 – 3.53 – 8.03
RT 2.21 0.00020 3.61 0.40654 10.27
RT7 2.68 0.00000 3.97 0.00000 13.80
LR 3.32 0.00000 4.80 0.00000 15.38

Data Set L (Large)
MAE P-value RMSE P-value MdMRE

RF 1.25 0.00000 2.26 0.00000 7.04
EPT 1.55 – 2.87 – 7.75
Bagging+RT 1.67 0.01208 2.77 0.00452 9.77
RT 2.04 0.00000 3.46 0.00008 10.81
LR 2.68 0.00000 4.01 0.00000 15.88
RT5 3.77 0.00000 5.53 0.00000 24.93

Models are sorted in ascending order of MAE. P-values in lime
(grey) indicate statistically significant difference when using Holm-
Bonferroni corrections at the overall level of significance of 0.05
considering six comparisons.

EPTs. Therefore, it is also advantageous to use EPTs as opposed to RTs. Moreover,

an RT with a small data set has a p-value higher than 0.005, as shown in Table 5.4,

which means based on a performance measurement using RSME, RT with small data set,

statistically, is not significant to be used for our prediction of CPU energy usage. Even

though RTs were larger than EPTs, RTs have a parameter which allows us to restrict

their size. This parameter sets a maximum depth for the tree. Therefore, it is important

to analyse whether restricting an RT’s depth would allow us to obtain models competitive

to EPTs in terms of interpretability and predictive performance. As the depth of EPTs

created using the full data sets S and L was 7 and 5, respectively, we have also trained

and evaluated (using cross-validation) RTs with a maximum depth restricted to 7 and

5 (RT7 and RT5) for data sets S and L. For data set S, RT’s size is reduced from the

median value of 154 to 81, whereas for data set L its size is reduced from the median value

of 297 to 43. The reduction in size was particularly significant for data set L, probably
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because RT5’s depth is lower than RT7’s. This depth was similar to EPT’s depth on this

data set. However, RT7’s and RT5’s predictive performance was drastically worsened. In

particular, the magnitude of the differences in MdMRE compared to the EPT was 5.77

and 17.18 for data sets S and L, respectively. Therefore, despite achieving a reduced size,

RT7 and RT5 create a misleading model in the domain of CPU power prediction. Even

though RT5 creates a similar number of nodes to EPT, as shown in Figure 5.3, it does

not indicate statistically significantly at the 0.005 level, which means the RT5 for small

(S) data set are not significant for the estimation of CPU energy usage with relation to

the workload and the combination of components.

We have also built RTs and EPTs using the entire data sets, rather than only the

training sets, in order to check how the interpretability of these models would be af-

fected. When using the full data sets, RTs had 169 and 275 nodes for data sets S and

L, respectively. EPTs had only 13 nodes for both data sets S and L, as shown in fig-

ures 5.9 and 5.10. This means that adding more training examples can help EPTs to find

more concise representations of the relationships between configurations and workloads

against their CPU power consumption. RTs, on the other hand, did not become concise

even after adding extra training examples.
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Figure 5.9: EPT created using the full data set S (Small). The circled points plotted in the leaf nodes represent training examples.
The number of training examples associated with each leaf node is n. The red lines show the LR model created in each leaf.
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Figure 5.10: EPT created using the full data set L (Large). The circled points plotted in the leaf nodes represent training examples.
The number of training examples associated with each leaf node is n. The red lines show the LR model created in each leaf.
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It is worth noting that the EPTs shown in Figures 5.9 and 5.10 are easy to interpret

by humans. They can be used to decide what packages to choose in order to reduce CPU

power when using the Ubuntu/Debian packages repository, and to find out how much

CPU power this choice is likely to save. Input variables not included in the model are

considered unlikely to affect CPU power consumption significantly. Input variables at

higher levels of the tree have a stronger impact on CPU power.

Moreover the EPT’s predictive performance may be improved even further by elimi-

nating outliers from the training examples associated with each leaf. Figures 5.9 and 5.10

show that the linear models created in certain nodes (e.g., node 12 for data set S and

node 13 for data set L) were badly influenced by single training examples, with workload

much higher than the others in that node. The use of techniques for filtering outliers from

leaf nodes is proposed for future work.

The second part of our analysis consists of analysing EPT’s scalability. In terms of

size, the EPT’s number of nodes increased from 19 to 43 when moving from the smaller

data set S to the larger data set L. Data set L has 2.26 times more than the number

of input variables of data set S, and its corresponding EPT’s number of nodes was 2.48

times the number of nodes of data set S’s EPTs. We can consider this as an acceptable

increase in the number of nodes. Indeed, when using the whole data sets for building the

EPTs, data set L’s and S’s EPTs were the same size. This is very good behaviour in

terms of size scalability.

In terms of predictive performance, it is interesting to observe that EPT’s performance

for data set L was very similar to EPT’s performance for data set S. The magnitude of

the difference in MdMRE was negligible (only 0.28). The 29 configurations used to create

data set L’s examples represents a linear increase over data set S’s 12 configurations,

given the increase in the number of input variables from 23 (data set S) to 57 (data set

L). Therefore, EPT’s scalability in terms of predictive performance was good, i.e., it did

not deteriorate as the number of input variables increased.

In Figure 5.10, nodes 4 and 13 show anomalies as training examples, the circle points
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plot in the leaf nodes, have extreme differences where node 4 has a lot more plots (1052

nodes) compared with node 13 (23 nodes). We speculate that, during our measurement

of energy, the first arrival of the workload to the system utilised the CPU to its maximum

capacity, which resulted in spikes at the beginning of measurement. These spikes are

outliers for the prediction of energy usage, which might lead to an unbalanced distribution

of the training examples. We argue that by filtering the outliers, we can get a bettter

prediction. The case in nodes 4 and 13 also raises new future work about method to

reduce noise in the data set to predict energy usage using EPT.

5.5 Chapter Summary

This chapter has presented a technique to predict the consumption of energy by com-

binations of features in a Software Product Line (SPL) for a virtualised system. This

prediction technique performs well for our problem, which includes combinations of work-

loads, features and energy usage. Section 5.1 described a prediction method using an

ensemble of learning to find out the configurations of features that consumed less en-

ergy. This chapter also showed that splitting trees of Regression Trees (RTs) based on

input variable workload or product configurations, can make an impact on the prediction

results. Section 5.3 presented a technique called the Energy Prediction Trees (EPTs)

combining the Regression Tree (RT) with Linear Regression, to produce both accurate

and interpretable prediction results, by restricting the tree to make splits on input vari-

ables representing configurations. Our experiment, in Section 5.4, used the data sets that

are created by retrieving the package dependencies from the Ubuntu package repository.

This experiment showed that the EPTs outperform several prediction techniques to be

more accurate. Furthermore, the EPTs results are easy to interpret by humans, as the

EPTs combine the tree that was split based on configurations, and the linear regression

models on each of its leaves.
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CHAPTER 6

A DYNAMIC SOFTWARE PRODUCT LINE WITH
ENERGY MANAGEMENT FOR A VIRTUALISED

SYSTEM

As discussed in Chapter 5, we can select the configuration of features that consume less

energy, using a consolidation of Software Product Line (SPL) engineering and approx-

imation of energy usage. When this approach is executed in a continuously changing

environment, such as a Cloud system, it becomes more challenging because the process

of selection should adapt to the change of environment (e.g. workloads and energy). As

a result, we need to reconfigure the software architecture within a virtualised system that

corresponds autonomously to the change in environment.

This chapter presents an approach to reducing costs and energy usage for a virtu-

alised environment that proposes a mechanism to handle different workloads and energy

consumption. In this work, we build an architectural design that adapts to the change

of workload and energy usage without scaling-up/down the reference architecture. Such

a design reconfigures the software architecture autonomously, without interrupting the

running services. We also present a technique to define and to enforce the high-level

policies in a dynamic system that allows us to add new requirements without stopping or

restarting the running system.

A technique to create a Dynamic Software Product Line (DSPL) with energy is intro-

duced in Section 6.1, and we also suggest a dynamic variability – variant of features that
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can be selected based on the change of the environment of a dynamic system – to support

the selection of variants and a policy-based mechanism to manage the feedback-response

of a dynamic system in order to build a runtime model. Section 6.2 then presents an

application of a DSPL with energy using a self-adaptive load-balancer, which makes use

of a Rule-Based System to create an autonomous system. In Section 6.3, we evaluate our

approach by conducting an experiment on a self-adaptive load-balancer with a Rule-Based

System (RBS) within a virtualised system. This experiment provides the proof of concept

for our approach for an autonomous system that responds to the change of environment.

6.1 Modelling a Dynamic Software Product Line with

Energy

This section introduces a technique to model a dynamic software product line to manage

energy usage in a virtualised environment. Such a technique does not require the running

system to be stopped and restarted.

We categorize the development of a dynamic software product line with energy for

a virtualised environment into two stages. In the first stage, a platform and reference

architecture is prepared and developed. This includes identifying the dynamic variability

and product configurations which influence the consumption of energy. The second stage

presents a runtime technique to serve a dynamic system, which creates a dynamic model

that adapts to the changes of environment. The second stage also provides a mechanism

to select which configuration should be applied to a system that is suitable to the current

contexts, such as the change of workload. It is worth noting that the second stage depends

on the first stage.

First Stage

In this stage, we begin by identifying the dynamic variabilities from a feature model to

describe which features adapt to the change of environment. This selection is based on
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input from the environment, such as workload and energy, which change continuously

over a time line. Accordingly, features of a feature model should be related to the change

of environment.

In a virtualised system, the workload utilises the computation unit that has always

made transitions over time, because the consumption of energy dynamically shifts from

low to high, or vice versa, in an unpredicted time. To identify whether a workload

may influence the computation unit demands, a measurement of energy within a running

system is calculated, as presented in Chapter 3 and 5. We create a simple prediction, as

explained in Chapter 5, as pre-knowledge for the next stage.

Second Stage

In this stage, a dynamic system is built based on the first stage. We make use of mod-

els@runtime [24] to deal with the change of environment (workload and energy) and to re-

configure the virtual machine’s software architecture. The models@runtime decides which

composition should be reconfigured, based on the change of environment. We implement

a policy-based mechanism to manage the change of configuration that also enables us to

add new requirements into the system without interrupting the running system. To exe-

cute the decision that is made by the policy-based mechanism, a configuration manager

composes the combinations of components into the system.

6.1.1 Creating a Dynamic Variability Model

This section presents a technique to create a dynamic variability model for a virtualised

environment.

Unlike a product configuration for a static system, a dynamic system has variants that

reconfigure, or are automatically selected when there is a change from the input values,

such as the change of environment. As a result, this system should provide a mechanism

to identify and to respond, based on the architecture design. There are many applications

to handle the change of architecture needed to support a dynamic system, one of which
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makes use of a Rule-Based System, which will be explained in Section 6.1.3.

In this work, the combinations of features change autonomously, where several features

of the feature model bind to the environment parameters. For example, the variant

features of HTTP (Web Server) bind to the workload and energy usage of the environment

parameters that allow the system to adapt to the change of environment.

In this report, the product configurations include the following information to adapt

its deployment:

• Firstly, the workload and energy usage of each virtual machine (VM), as the en-

vironment parameters, are monitored continuously. The Rule-Based System (RBS)

makes decisions based on the change of the environment parameters.

• Secondly, the feature model is used as the reference model to reconfigure the

system, where several features bind to the environment parameters as elements that

adapt to the environment changes.

Figure 6.1: A dynamic variability that adapts to workload and energy usage.

Figure 6.1 shows the dynamic variability with workload and energy as input for an

adaptive mechanism, where the feature model, as a reference model, has options to be

reconfigured into different product configurations. There are two elements of the environ-

ment, energy and workload, that influence the adaptive selection of feature configurations,
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where the measurement of energy and the incoming workload are used as input to decide

which composition of features is suitable for the current context. Using the measurement

technique explained in Chapter 3, we obtain the information of energy expenditure of the

product configurations. Moreover, both the workload and energy usage are monitored

continuously to support the adaptive mechanism.

6.1.2 Creating a dynamic model

This section describes our technique to create a dynamic model to accommodate the

change of environment by reconfiguring the software architecture.

In a virtualised system, the software architecture is reconfigured, as depicted in Fig-

ure 6.2 (a), to cope with new requirements, such as workload and energy usages, using a

feature model as the reference architecture. Another technique is to create the virtual ma-

chine instance to adapt to the change of environment by scaling the system architecture,

i.e. elastic cloud, as shown in Figures 6.2 (b).

Figure 6.2: Architecture of back-end server related to (a) auto-reconfigure software archi-
tecture and (b) auto-scale infrastructure.

In our approach to reducing energy, we reconfigure the instances of a virtualised en-

vironment to select the combination of software components that consume less energy.

Subsequently, to manage the artefacts or components of the system, a feature model is

utilised to build a dynamic model. As shown in Figure 6.3, the feature model is attached

to the software configuration of the virtual machines, where some features bind to the
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runtime reconfiguration. In the runtime reconfiguration, the software configuration binds

to the features in a composition based on the environment change.

Figure 6.3: Models@runtime for auto-reconfigure of software architecture based on the
change of workload and energy usage.

We adopt the models@runtime [24] to develop our Dynamic Software Product Line.

As depicted in Figure 6.3, this technique has four layers that represent the stages of the

process in order to build a self-adaptive system, by reconfiguring the software architecture

which adapts to the change of workload and energy. The following will describe the work

of each layer:

• The software repository layer provides the sources for creating the feature model by
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retrieving the packages with its dependencies from the Ubuntu package repository,

as explained in Chapter 4.

• The feature model layer creates a feature model from the results of the software

repository layer, and provides the prediction of which combinations of software

components influence the consumption of energy, as described in Section 5.

• The product configuration layer selects the combination of components that are

suitable for the adaptive system, where the tools for software distribution, such as

Ansible [101], are used. The combinations of components that are included into the

self-adaptive system are selected based on the information from the feature model.

Furthermore, the deployment of the software components into the system is run in

an automatic way, based on the change of environment.

• Finally, the transition layer creates a self-adaptive system that adapts to the change

of environment in order to reduce the consumption of energy. In this layer, the rule-

based system manages the dynamic change of combinations of software components

based on the monitoring of input data, which are the workload and the consumption

of energy.

To show the work of the Dynamic Software Product Line (DSPL), a feature model is

projected into a transition diagram to describe which composition of features is included in

a particular state. This is accomplished by linking the features – the members of the SPL –

to the product configuration, then to the state of the transition. As an example, Figure 6.3

has a mapping between a feature model, a product configuration and a transition diagram,

where the feature change is related to the change of the states in the automaton. As an

example, feature “A” maps to automaton “State 1” via product configuration “Config 1”

to handle the change of environment.
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6.1.3 The Application of a Policy-Based Approach in a Runtime

System

A policy-based mechanism manages a decision to determine how to adapt to the change of

environment. This mechanism creates an autonomic architecture for managing not only

the workload, but also for changing the software architecture to use a configuration that

consumes less energy. In addition, this mechanism also allows us to enforce a high-level

policy into a running system, such as changing the requirements.

Figure 6.4: Drools Rule-Engine with workload and energy usage as facts input.

We use a Rule-Based System (RBS) to apply the management of the architecture

reconfiguration, which uses a policy-based approach to manage rules – with a condition

statement – to adapt to the environment changes. We use Drools [11] as the Rule-

engine to manage the runtime reconfiguration that requires Working Memory (Facts) and

Production Memory (Rules) as the main input, as shown in Figure 6.4. The Working

Memory is short term memory, which obtains workload and energy usage as input which

needs to be evaluated by the rule-engine as domain data. The Rule Base, or Production

Memory, is long term memory to store rules loaded from a Drools Rule File. In this

thesis, the Drools Rule File is created using our technique to measure and predict the

consumption of energy in the virtualised system as “pre-knowledge” information. To

execute rules based on facts, the Agenda tackles the rules sequence of execution tasks. It

is worth noting that the order of rules affects the execution queues.
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We use a rule-engine to make a decision about how and when to change the software

configuration. The policy-based system manages the information that is coming in as

input from the system monitoring process, which includes workload and energy usage as

sensor data, and the duration of an event as a reference for how long this condition is

occuring within the system.

Figure 6.5: Transition of state to reconfigure the system.

The mechanism of decision and action is illustrated in the form of states within the

automaton. For each state, the automaton relates to product configurations, as explained

in the previous section. For example, as illustrated in Figure 6.5, the change of config-

uration takes place when conditions/constraints are encountered. These constraints are

shown as lines to represent the change of state. The current state of the system is using

“Apache” to provide services for “Low” incoming requests and uses low energy. When

a “High Load” is predicted, which will consume a high amount of energy when running

using the current configuration, then the rule-engine makes a decision to reconfigure the

system to use “HHVM fastcgi” to make the system cope with the Service Level Agreement

(SLA).
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6.1.4 Managing a Dynamic Reconfiguration

This section presents a technique to reconfigure, dynamically, the software architecture

of a virtualised system, without human intervention.

Figure 6.6: Dynamic configuration management.

In order to create a dynamic reconfiguration, we develop a mechanism that recomposes

the software architecture within the virtual machine using several elements, as depicted

in Figure 6.6:

• Feature Model creates the software model from the artefacts of feature members

in the Software Repository. The feature model also acts as a reference model for

the software architecture within the system.

• Software Repository provides all the software components or packages to be de-

ployed in the architecture. The repository has its metadata, as explained in Chapter
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2, to describe dependencies and constraints that are embedded with particular soft-

ware components. An example is the Ubuntu package repository.

• Configuration Manager manages the transformation of feature dependencies of

a feature model into component or package dependencies, which are retrieved from

the software repository. In addition, before the deployment, a product configuration

is checked as to whether or not any configuration violates the software configura-

tion version or has misplaced component dependencies. The Deployment Manager

subsequently executes a new line-up of software configuration by retrieving from

the repository and installing or deploying the software components into the virtual

machine.

Figure 6.7: A sequential deployment by the Configuration Manager [VM = Virtual Ma-
chine, t = session].

In managing the dynamic reconfiguration, we deploy the software components in a

sequence that does not interrupt the running services. This technique consumes various

time and energy to deploy configurations depending on component dependencies and the

virtualised environment specification. As depicted in Figure 6.7, the configuration man-

ager disables the incoming request to the virtual machine instance being reconfigured (in

red), and then enables it when finished (in green). It is worth noting that the reconfig-

uration can be executed in parallel across a cluster of back-end servers. For example,
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when there are 100 instances of Virtual Machines, we can reconfigure 10 instances for

each session.

6.2 The Application of Dynamic Software Product

Line with Energy

This section presents the application of a Dynamic Software Product Line to reduce

energy in a dynamic system for a virtualised environment. This application is explained

as our reference architecture for a self-adaptive load-balancer architecture with a Rule-

Based System. As illustrated in Figure 6.8, our architecture consists of the components

as explained in the following subsections.

Figure 6.8: An architecture of a Self-adaptive load balancer with a Rule-Based System.
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6.2.1 Components of a Self-adaptive Load-Balancer with a Rule-

Based System

Load-Balancer

A load-balancer acts as a runtime manager which determines an instance of the virtual

machine being disabled or enabled from the running services, and identified what the

object is before making a decision over an action. The load-balancer is a key component

that will address the TCP and HTTP incoming workloads. We use HAProxy [204] as

a load-balancer in this work. In our reference architecture, we assume that this com-

ponent has socket stream access that allows us to provide the monitoring data available

to a rule-engine. For example, we can acquire the information concerning the workload

for a particular back-end server and use this information as a means to reconfigure the

system. Furthermore, a load-balancer also has the capability to reconfigure the reference

infrastructure without any detriment to the services. One method is through enabling or

disabling the network traffic session of the particular back-end server.

Back-End Servers

A back-end server is a web server that runs a web application. A web server responds

to requests by executing tasks that utilize the CPU, which may then increase the total

amount of energy usage, and then sends the information about the consumption of energy

to the Rule-engine. In addition, the back-end servers also have options to reconfigure with

a different software architecture. In this work, we build the back-end servers as a cluster

of virtual machines, and the reconfiguration is based on a feature model [54], a tree-based

structure describing the possible combinations of the features of a system, as explained

in detail in Section 6.1.2.
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Rule-Engine

The Rule-Based System (RBS) dynamically enforces high-level policies in a system. This

is important for a self-adaptive system in order to avoid an interruption when a new

policy/requirement needs to be implemented in a running system. By using a RBS we

are addressing the design of an adaptive system for a virtualised environment that applies

the system design by auto-scaling the infrastructure and accommodating the high-level

policy. We use Drools [11] as an RBS, where the Drools rule-engine requires a working

memory and rules as its main input. The working memory is short-term memory, which

is obtained from the sensors that needs to be evaluated by the rule-engine as domain

data. The rules are long term memory that is stored as a Drools Rule File that defines

the running configuration, based on the input from the sensors, which acts as the working

memory. The configurations change from one set of components to another using a state

machine that is described as a transition mechanism. For example, states S1, S2, S3 and S4

are a set of rules, and current running configuration is S1. If the workload and energy

values match the conditions within the Rule-engine, then the state changes to S2.

We adopted the models@runtime [24] approach to abstract the rules that are imple-

mented using a runtime model, which model an autonomous software architecture re-

configuration in a self-adaptive system. Furthermore, the runtime model state transition

is based on a feature model and the user requirements, where the architecture reconfig-

uration is established in three dimensions: energy usage, incoming traffic requests and

the current software architecture configuration; it is also supported by the load-balancer

traffic information and the ACPI. In addition, our architecture uses a Linear Model [157]

to predict when the architecture should be reconfigured and to which state, based on the

Sensor information.
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Sensor

The Sensor component continuously monitors the workload of the load-balancer and its

energy usage with respect to the back-end servers. This monitoring supports the rule-

engine to make a decision, to help the system become more adaptive to the change of

environment by providing the measurement data of the current running system. Such a

component uses a message broker software, like RabbitMQ [28], to transfer workload and

energy usage data as messages from the load-balancer and the back-end servers to the

rule-engine. Using a queueing system, all messages are managed as a stack of queue data

transactions.

Configuration Manager

This component configures the load balancer and back-end servers to reduce energy usage,

without interrupting the running system. Configuration management tools, the Ansible

configuration manager [101], deploy and update the software architecture within the back-

end servers and reconfigure the load balancer. To reconfigure the software architecture,

a feature model [54] is used as the model of composition that allows us to have options

for combinations of software components to be included into the software architecture. A

feature model consists of a tree hierarchy and cross-tree relationship to manage constraints

within a model. A great advantage of using such a model is the capacity to reason over

the possible configurations of a system and to avoid possibly faulty combinations from

the use of constraints.

Furthermore, using a sequence of procedures, the configuration manager provides an

uninterrupted service while reconfiguring the architecture. The reconfiguration process

uses the software packages that are provided by the external system, e.g., the Ubuntu

package repository.
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6.2.2 The Mechanism of a Self-adaptive Load Balancer with a

Rule-based System

This subsection explains the mechanism of the self-adaptive load-balancer with a rule-

based system, as depicted in Figure 6.8.

We assume that the virtual machine instances are running on one CPU, 512 MegaByte

of memory and 10 GigaByte of storage. The steps are as follows:

1. The load-balancer checks the health of each back-end server to find out which one

is ready to receive requests, then it allocates requests to the servers.

2. The sensor monitors the workload of the load-balancer and energy usage of each

back-end server, continuously. Then the data stream is sent, continuously, to the

rule-engine as a stack queue transaction using the middleware system (i.e. Rab-

bitMQ [28]).

3. The rule-engine examines the information from the sensor. When a condition

matches the rules, the rule-engine’s decision is sent to the configuration manager.

4. In response to the rule-engine’s decision, the configuration manager assesses the

valid combinations of features. This is accomplished by renewing the current fea-

ture model and its constraints. After that, the configuration manager retrieves the

software components from the software repository. The configuration manager then

deploys the components into the back-end servers using a sequential action, which

is managed by the load-balancer, to maintain the current running system to provide

the services.

5. Repeat the steps above.
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6.3 Case Study: Energy Management of a Self-Adaptive

Load-Balancer with a Rule-Based System

In this section, we conduct an experiment to evaluate our approach to the Dynamic

Software Product Line (DSPL) with energy. This experiment builds a self-adaptive load-

balancer with a Rule-Based System (RBS) to reduce energy in a virtualised system.

In order to evaluate our approach, we implement a self-adaptive and energy-aware

system that follows our proposed architecture, as explained in the previous section. We

then test the system against changes in the workload, providing evidence of its applica-

bility and efficiency. The evaluation, as depicted in Figure 6.9, begins with setting up

the environment of the experiment and system. We then perform an experiment to ob-

tain information on energy usage as pre-knowledge. After that, we create rules for the

rule-engine as high-level policies, guided by the pre-knowledge. Subsequently, we run the

system, increasing the workload from 60 to 600 users/minutes, to simulate the incoming

requests. Hence, we obtain the median for each minute of measurement as energy values.

Finally, we compare our results with a simplified elastic approach.

Figure 6.9: Flow of the Evaluation

6.3.1 Implementation of the Dynamic System

Before actually running the experiment, we need to implement the system based on our

reference architecture. The implementation is described in the following subsections.
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6.3.1.1 High-Level Policies

The self-adaptive system needs to cope with high-level policies that are defined by non-

technical users or stakeholders at the managerial level of Cloud providers. Part of these

policies can be expressed in the form of a feature model, as illustrated in Figure 6.10.

Figure 6.10: Feature Model of Simple Back-end Server

In our approach, the prior knowledge is the main source for these high-level policies,

similar to the prediction of energy usage. In this implementation, the back-end servers

are created from the Debian/Ubuntu package repository. Such a web application con-

sists of the HTTP server and Database Server. Using our measurement method from

previous work [161], we could verify that these servers consume a different amount of

energy, using a similar workload arriving to the servers. As depicted in Figure 6.10,

the feature model has three variants, which are “HTTP”, “PHP”, and “load”. We can

calculate, with the help of satisfiability solvers, the possible configurations of the sys-

tem: (“Apache”-“MariaDB”-“PHP-FPM”-‘Low”), (“HHVM”-“MariaDB”-“PHP-CGI”-

“Medium”) and (“HHVM fastcgi”-“MariaDB”-“PHP-CGI”-“High”).

In this self-adaptive system, the back-end server is reconfigured without any human

154



intervention. During a change in the configuration process, all traffic is rerouted by

the load-balancer using runtime configuration techniques [204], so the change of software

configurations will not be detrimental to any incoming traffic

6.3.1.2 Creation of Rules from Transition Diagram

Figure 6.5 shows the implementation of the runtime model following the models@runtime

paradigm. Based on the energy predictions from our previous work [162], we can define

the following runtime states:

High Workload: when the incoming workload has increased to more than 300 requests

for more than 20 minutes, the back-end server is reconfigured with “HHVM fastcgi” and

“PHP-CGI”. This option will reduce the amount of energy consumed by the system.

Medium Workload: when the back-end servers received a workload between 240 and

300 requests, and the consumption of energy is more than 18 Watts, the software of the

back-end server is configured using “HHVM” and “PHP-CGI”, which improves the energy

usage.

Low Workload: when the energy usage is more than 18 Watts and the workload is less

than 240 requests, the server’s software architecture reconfigures to have “Apache” and

“PHP-FPM”.

6.3.2 Experimental Setup

In this subsection, we describe the requirements of an experiment on a load-balancer with

a rule-based system in a virtualised environment.

6.3.2.1 Experiment Setup

We setup the experiment environment using HAProxy as the load balancer and HTTP

servers as back-end with “Wordpress” installed in each back-end in the Virtualbox [219]

using Ubuntu 14.04 x64 images. The computer host is a laptop HP Elitebook 8440p with

an i5 processor and 4 GigaByte of memory running Ubuntu 14.04 x64, and using Vagrant
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[56] as the virtual environment manager. Each virtual machine is provisioned with 1 CPU,

512 MB of memory and 10 GB of storage running Ubuntu 14.04.

In our experiment, the load-balancer, the configuration manager and the back-end

servers are virtual machines in the same network to simulate the Cloud environment.

The rule-engine obtains information from the load-balancer and back-end servers, and

sends a message using a work queue. For example, when the energy consumption of the

back-end servers is high and the incoming workload is low, the rule-engine sends a message

to the configuration manager to reconfigure the back-end with a different HTTP server.

The configuration manager then executes the process by using a sequence procedure that

disables the back-end being configured and enables it when the processes are complete.

We built the load balancer in HTTP mode to serve three active back-ends with one

back-up server. We use socat, a Linux utility, to relay bidirectional data transfer, which is

able to listen on UNIX sockets to monitor the environment of the load balancer, such as

the workload of the back-end servers. To monitor current energy usage in a web server,

we captured the information regarding the power usage of battery electric drain. The

information from monitoring results is sent to the rule-engine every 5 minutes. We used

cron, a Linux time-based scheduler, to create a schedule of the data transmission between

machines. The RabbitMQ [28] middleware is used to create communication between the

load balancer, back-end servers, the configuration manager and the rule-based engine,

using queue messaging.

6.3.2.2 Measurement of Energy

We measured the energy usage of four combinations of HTTP servers, database manage-

ment server and web middleware. The combination of web application servers is explained

in Section 6.3.1.1. All web applications are configured with “MariaDB” and “Wordpress”

in Ubuntu 14.04. As depicted in Figure 6.11, for the 120 users accessing the system under

examination, the configuration with “Apache” consumed the highest amount of energy

and “HHVM fastCGI” the lowest. When the number of users increased to more than

156



240 users per second, the configuration with “Apache” consumed the highest amount of

energy.

Figure 6.11: Energy Usages for Web Application with combination of Optional HTTP
(“Apache”, “HHVM” and “HHVM-FastCGI”) and optional PHP (“PHP-CGI” and
“PHP-FPM”) - with prediction of energy usage associated with workload [Solid lines
with different colours show the prediction of energy usages.]

This measurement is performed using the method in our previous work [161], which

uses workload to execute tasks within the system under examination, operating a virtual

machine with hardware specification of 1 CPU, 512 MB memory and 10 GB storage. When

measuring the energy usage using a different hardware specification the results might be

different. In addition, the result of this measurement is used as the prior knowledge for

the Rule-Based System.
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In our experiment, we reconfigure the back-end servers at runtime, where the package

to install is retrieved directly from the Ubuntu package repository. During the reconfig-

uration process, we send a workload to the system continuously every 300 users/minute.

The reconfiguration steps are as follows: firstly, the load-balancer disables services to a

particular back-end, secondly, when there is no traffic activity, the configuration man-

ager executes the configuration process, thirdly, the load-balancer enables services to a

particular back-end to receive the incoming workloads.

The configuration process takes different amounts of time, which also leads to a dis-

tinctive amount of energy. The time of configuration is measured based on “real” wall

clock time, “user” is the amount of CPU time spent in user mode within the process or

the actual CPU time used in executing processes, and “sys” is the amount of CPU time

spent in the kernel within the processes. As shown in Table 6.1, “HHVM fastCGI” spent

the shortest real time and HHVM had the longest amount of time. In the user mode and

kernel process, “Apache2” spent the least time.

Table 6.1: Time transition for HTTP configuration (in Seconds)

Configuration real user sys
Apache2 24,353 1,604 2,016
HHVM 35,185 2,376 3,165
HHVM fastCGI 3,548 2,239 3,378

We also experimented on the reconfiguration of web applications. This procedure is similar

to the HTTP reconfiguration; we performed “Wordpress” basic packages and “Wordpress”

with additional three plugins, with the average workload of 300 users/minute. As shown

in Table 6.2, the “real” time spent with the basic configuration is lower than the advanced

one. It is noteworthy that in our measurement, we capture energy usage for each second,

so that, for 60 seconds, we produce 60 results. Then we use the median data as the value.
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Table 6.2: Time transition for Wordpress configuration (in Seconds)

Configuration real user sys
Basic 45,377 3,090 4,023
Advanced 318,8 4,994 6,516

6.3.2.3 Rule-Based

In this experiment, we run two scenarios. In the first scenario, we send a workload to

a load-balancer in order to reconfigure the software architecture at runtime. We varied

the workload in the following fashion: 60, 120, 180, 240, 300, 360, 420, 480, 540 and

600 users/minutes, taking 5 minutes for each load. When workloads arrive, the load-

balancer should respond based on a decision from the rule-engine. In the second scenario,

workloads trigger the rule engine to switch-on/off or to enable the hot backup of the back-

end server. The process to switch-off the back-end server is started by disabling the server

by reconfiguring the load-balancer at runtime. Then we switch off the virtual machine

when there is no transaction according to the Server-side Session (SS) information. We

assume that the current configuration is a load-balancer running with three active back-

end servers and one back-up server. To allow these two scenarios, the rules are defined as

follows:

Rule Reconfigure Back-end: is activated when the drainage of electric power

is more than 18 Watts, with a real-time incoming workload of less than 120 requests.

Then the load-balancer reroutes the traffic of the virtual machine. After that, the web

application is reconfigured to have “Apache” as the HTTP server and activates the routing

to the particular virtual machine.

Rule Switch-Off: is activated when the load-balancer receives the incoming work-

load of less than 20 requests for more than 30 minutes, rerouting the traffic and shutting

down the back-end servers to have only two servers left running and one as hot back-up.

The shut down command is sent when there are no more HTTP transactions within a

particular VM.
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Table 6.3: Transition of back-end software configuration.

HTTP server Wordpress Instalation Database
apache basic mariadb
hhvm basic mariadb

hhvm fcgi basic mariadb

Rule Switch-On: is activated when the load-balancer receives a workload of more

than 100K requests for more than 20 minutes, enabling a hot back-up server and switching

on another back-up server.

As we use the HAProxy [204] as the load-balancer, clients connected to the disabled

back-end server will not be affected by this condition, as long as the Server-side Session

is not disrupted or disconnected.

Figure 6.12 shows the energy usage transition of back-end configuration from one

HTTP server to another, where the transition to “HHVM” consumed the highest amount

of energy. Each transition consumed a different amount of energy and time. In doing

so, the requirement can be set up to have optimal services by modifying the rules. Table

6.3 shows the reconfigurations of back-end servers, where the transitions are serialised to

have uninterrupted services.
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Figure 6.12: Boxplot of energy usage for software architecture reconfiguration [web1–web3 = back-end servers, details in Table 6.3]
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Figure 6.13: Comparison of elastic Cloud and models@runtime energy expenditure.

6.3.2.4 Comparison of Our Dynamic System to a Simplified Elasticity

We compare the energy consumption between a simplified elasticity and our architecture

using models@runtime techniques. We aim to find which system consumes less energy

corresponding to workload and infrastructure. It is important to note that there are many

elasticity approaches for a virtualised system. This experiment uses a simple elasticity

to add virtual machines when a certain value of the incoming workload matches a rule.

In the simplified elastic system, we set up the rules of the rule-engine to add a back-end

server when the workload reaches 300 and 540 users/minute. In our autonomous system

using models@runtime, the software architecture reconfigures to have “HHVM” when the

workload reaches 300 users/minute and “HHVM fastcgi” on 540 users/minute.

Figure 6.13 shows the comparison. At the beginning, both systems are running with

2 back-end servers configured with “apache2” as the HTTP server. The models@runtime

uses only 2 back-end servers, and the elastic system adds 2 more nodes during this exper-

iment.

When the workload reaches 240 users/minute, both techniques consume more than 16 Watts.

The simplified elastic system then adds a node to the back-end server, thus reducing the

consumption of energy to less than 16 Watts. Our system also reconfigures to have
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“HHVM” as the HTTP server, so it slightly reduces the energy consumption. How-

ever, the simplified elastic system increases its energy expenditure to 17 Watts when the

workload is increased to 360 users/minute. When the energy rises above 18 Watts, the

simplified elastic system adds one node server that slightly reduces the energy. After

that, when the workload increases to 600 users/minute, the energy usage of the simplified

elastic system also increases to more than 19 Watts. In our system, when requests reach

480 user/minutes, the back-end consumes more than 16 Watts. This action reduces a large

amount of energy expenditure into less than 14 Watts with requests of 540 users/minute,

fewer than the simplified elastic system technique.

Our approach proves 11.68% more efficient after 360 users/minute, as illustrated in

Figure 6.13. Moreover, when the requests increase to 540 users/minute the energy effi-

ciency increases to 46%, after the elastic added one more virtual machine, to total four

instances, and our self-adaptive system reconfigured to “HHVM fastcgi”.

6.4 Chapter Summary

In this chapter, a Dynamic Software Product Line (DSPL) with energy is introduced. This

approach uses the Rule-Based System to manage the nature, and timing of a software ar-

chitecture based on the change of environment. To present the self-adaptive mechanism,

we monitor the workload and energy usage as sensors, as depicted in Section 6.2.1. These

monitoring results are continuously sent to the rule-engine to make a decision on recon-

figuration action. This chapter has also proposed an application of a Dynamic Software

Product Line using a self-adaptive load-balancer with a Rule-Based System, as explained

in Section 6.1.3. In Section 6.3 we performed an experiment, based on our proposed ap-

proach, that showed a good result compared to a simplified elastic approach. Overall, our

technique has offered an alternative approach to reduce energy consumption, by reconfig-

uring the software architecture within instances of the virtualised system, autonomously,

without auto-scaling the infrastructure.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This chapter concludes the work presented in this thesis. Section 7.1 presents the summary

of this thesis. Section 7.2 discusses the future work that could be undertaken to extend

and improve upon this research.

7.1 Thesis Summary

This thesis presents a software-based approach in order to reduce energy within the vir-

tualised environments. In particular, the measurement of energy from the combination of

software components that are retrieved from a large software repository, an approxima-

tion technique to find the combinations that consumes low energy, and a dynamic system

that uses less energy, are prepared for the purpose of analysis. In order to approximate

the energy usage from combinations of components, the proposed approach uses machine

learning algorithms to build models of energy consumption.

More precisely, the first approach uses the Software Product Line Engineering (SPL)

to develop the product configurations with energy usage, allowing the developer to select

which configurations consume less energy suitable for their needs. This technique uses the

machine learning ensemble to find the combination of software components that influence

the consumption of energy. The second approach uses the Dynamic Software Product

Line (DSPL) to create a self-adaptive system with energy. This system reconfigures

the software architecture to reduce the consumption of energy based on current running
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information, concerning workload and energy usage. The feasibility of these approaches

was demonstrated through case studies. We believe both approaches used in this thesis, to

find the combination of features within a set of product configurations and the autonomous

runtime configuration that consumed less energy, can be generalised and applied in the

domain of software product line engineering. Furthermore, to clarify our approach, the

thesis presents a comparison study of energy measurement within different virtualised

environment infrastructures.

In Chapter 2, the thesis presents an overview of the essential material, introducing

Cloud computing, including its models of service. An introduction of energy measurement,

in particular the measurement of energy in virtualised environments, is then presented.

This is followed by a review of existing works on the measurement of energy and power

models for a virtualised system. This is continued by an introduction to the software

product line and the dynamic software product line, which includes reviews of existing

research on energy in product configurations. Next, an introduction to large software

repositories, in particular the Ubuntu/Debian package repository, is presented, followed

by an introduction to machine learning, including the machine learning ensemble. Finally,

related work on the Software Product Line, that uses machine learning as a tool to achieve

its goals, is reviewed.

Chapter 3 describes a technique to measure energy usage in a virtualised environment,

which is then used to provide the values of energy consumption for the Software Product

Line and Dynamic Software Product Line approaches. This chapter uses a workload

scenario to simulate users accessing the system under examination, including sending the

workload using network traffic. Moreover, Chapter 3 provides the mechanism for the

measurement of energy that is used for most of this thesis where a set of mechanisms

to conduct a measurement was defined. This mechanism is described with the help of a

running example.

Chapter 4 presents a method to create a feature model from a large software repository

automatically, by retrieving and transforming the components within a repository into
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a feature model. The components retrieved are transformed into a tree-hierarchy and

cross-tree constraints using a graph approach. The transformation of components from a

repository is described in two stages - creating a graph for component dependencies, and

transforming package dependencies into constraints for a feature model. To conduct the

transformation, a set of rules are defined in the second stage that is described with the

help of a running example.

Chapter 5 proposes a Software Product Line with energy to find which features con-

sumed less energy in a set of product configurations. This chapter begins with a few

combinations of features where the product configuration and its energy usage represents

a data set for the machine learning process. This chapter also suggests the machine learn-

ing approach to predict which combinations of features would consume less energy in a

larger feature model, because it is infeasible to measure energy usage for all possible con-

figurations. After that, we introduce the Energy Prediction Trees (EPT), a combination

of a Linear Model and a Regression Trees model, in order to enhance the prediction ac-

curacy for SPL with energy. In order to demonstrate the feasibility of our approach, this

chapter discusses how the running example can be modelled in a combination of machine

learning and Software Product Line approaches to find a set of features that consume low

energy. To evaluate our approach, we built a case study using feature models that are

retrieved from the Ubuntu package repository.

Chapter 6 describes a Dynamic Software Product Line (DSPL) with energy for a

virtualised system. Moreover, this chapter introduces an autonomous technique using

a runtime model that focuses on the reduction of energy by reconfiguring a software

architecture. To build an autonomous model, a set of rules is defined from a simple

prediction of energy. These are used by the rule-engine to decide whether a cluster of

virtual machines should be reconfigured, based on input from real-time measurement.

As an overall review, this thesis contributes, firstly, a technique to measure energy in

virtualised systems. This technique measures the consumption of energy using a work-

load to execute tasks in a system. Furthermore, for each unique combination of software
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components execute different tasks. We use a scenario of the workload to simulate a

real environment, such as users accessing an online shopping system, for the purpose of

executing a combination of software components in the system. In this technique, we

measure the combination of components that chiefly run the web services in the Linux

environment. Secondly, the creation of a feature model from a software repository where,

as in a typical large software repositories such as the Ubuntu package repository, it has

a high number of package dependencies. We propose a technique to transform package

dependencies into a constraint of a feature model with the help of graph approaches. This

technique is also able to resize the number of components, in order to create a feature

model, by limiting the dependencies to exclude the conflict packages and reduce the depth

of dependencies with the help of the Debian/Ubuntu utility, Debtree. Our technique only

covers the Ubuntu package repository; to implement on different repositories further re-

search might be needed. Thirdly, a technique to predict which combinations of features

consumes low level of energy. We extend the Software Product Line (SPL) engineering

with energy usage. This technique predicts the consumption of energy in order to search

for combinations of features that consume low energy. This prediction technique builds

their data set for the machine learning process from a combination of workload, con-

figuration of features that are retrieved from a large software repository and the CPU

power usage. A comparative study of several machine learning approaches is performed

in order to find which algorithms perform well with this data set. In our experiment, we

found that the noise of data, which we speculate is caused by the first workload arriving

at the system under measurement utilised the CPU to its maximum capacity, influenced

the prediction results. Fourthly, an approach using a dynamic system to reduce energy

usage within a virtualised environment. We extend the Dynamic Software Product Line

(DSPL) engineering to adapt to the change of environment by reconfiguring the features

that consume low energy. The models@runtime is adopted to integrate the Software

Product Line (SPL) model to the dynamic elements, such as energy usage and workload.

This approach creates a relationship between the features of a feature model and a rule-
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based system to manage the combination of features that should be included and the

timing of the execution of the runtime reconfiguration based on the change of workload

and the consumption of energy. These techniques contribute towards two product line

approaches - the Software Product Line engineering and the Dynamic Software Product

Line engineering - that aim to reduce energy in virtualised systems.

7.2 Future Work

The management of a Software Product Line (SPL) and a Dynamic Software Product

Line (DSPL) is an essential issue, especially with evolving feature dependencies and new

requirements in conjunction with the requirement for the reduction of energy. The SPL

model in this research, as presented in Chapter 5, used combinations of energy mea-

surements, the feature model and the machine learning ensemble to provide options for

configurations of features that consumes less energy. This approach is suitable for a design

delays architecture, such as an SPL, where the training data for prediction uses a batch

or offline setting.

In a dynamic system, large volumes of training data (i.e. workloads and energy us-

age) become available sequentially. To deal with a large volume sequential data set, our

technique can be extended to support the DSPL using an online learning ensemble [170],

an online version of the machine learning ensemble. Furthermore, in this learning ensem-

ble, the learning algorithm processes each training instance on-arrival without saving or

reprocessing all the training instances [171] that give benefit for data that arrives con-

tinuously (streaming data) [22]. Streaming data may arrive at such a high speed that

the algorithms must process them under a very strict constraint of time and space. As

a result, we face several challenges, which include resources of the computation unit and

the change of volumes of data.

In relation to our work in Chapter 6, as shown in Figure 7.1, the online learning

ensemble receives the data stream from the sensor, then feeds into the rule-engine in
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order to make a decision over the change of environment. In this self-adaptive system,

the Rule-engine sends instructions to the configuration manager as to whether the system

needs to be reconfigured, based on the online prediction. Therefore, the ensemble diversity

affects accuracy in a changing environment [156], where the old prediction results help

the learning of the new prediction.

Plans are also being drawn up to augment the robustness of models@runtime to sup-

port a reduction of energy for a self-adaptive system in a virtualised system [40, 5, 20],

where the existing work does not support the online (real-time) approximation. Initial

work revealed that the online approximation might create an adaptivity of a system in a

more flexible way. Time and context are the essential components to make a decision in a

self-adaptive system. Furthermore, because features are configured from a large software

repository, such as the Ubuntu package repository, a delay of configuration should be

avoidable - in the case of a good network connection.

Figure 7.1: A self-adaptive load-balancer with online learning ensemble.

An automatic configuration that adapts to the change of component dependencies

(i.e. components evolution) from a large software repository is a crucial technique. Such
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a technique supports the back-end of a self-adaptive system, as shown in Figure 7.1, to

reconfigure the software architecture automatically . In creating product configurations,

time and speed are the essential constraints; thus any on-the-fly configurations issues must

be addressed before this framework deploys a running system.

Another technique to address the time and speed with automatic (on-the-fly) recon-

figuration from a large repository is by applying a prediction on software configurations.

The online machine learning ensemble has the vision and the ability to predict all valid

software configurations available in the repository - in a real-time manner. Therefore, one

area of research would be the development of an automatically generated valid product

configuration from one or more large software repositories for real-time systems, such as

a load-balancer for a virtualised environment.

In this thesis, we measure the consumption of energy, mostly, in web services system

such as Wordpress using a workload in order to execute tasks within the system. We

also draw a plan to measure energy in a different domain such as security system to find

out the relationship between energy usage and methods of security. Furthermore, we also

plan to do a deep study on the noise within the data of our measurement of energy in the

direction of finding the symptoms that trigger such a problem.

The software repository evolves over a time line that may change or create new com-

ponent dependencies. We speculate that the repository evolution creates a defect to the

product configurations for an existing SPL. To address this, a transition architecture

design should be developed, in order to avoid the failure of the existing system. We envis-

age that graph approaches, such as Formal Concept Analysis (FCA) [65] and numerical

FCA (nFCA) [142], provide a conceivable solution. Moreover, the features (components)

dependencies can be analysed using the FCA [186, 66, 140] from all possible product

configurations within the SPL model. The online learning ensemble makes a prediction

of the possible product configurations that correspond to the change of environment.
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APPENDIX A

REGRESSION TREE

1 Whole RT:
2 REPTree
3 ============
4
5 Workload < 45.5
6 | Workload < 25.5
7 | | Workload < 1.5 : 22.27 (4/35.86) [2/36.49]
8 | | Workload >= 1.5
9 | | | Workload < 14.5

10 | | | | Workload < 8.5
11 | | | | | Workload < 5.5
12 | | | | | | c < 0.5 : 5.62 (10/0.09) [2/0.15]
13 | | | | | | c >= 0.5
14 | | | | | | | Workload < 3.5 : 5.96 (5/0.09) [1/0.01]
15 | | | | | | | Workload >= 3.5 : 6.25 (6/0.01) [0/0]
16 | | | | | Workload >= 5.5 : 6.62 (14/0.15) [4/0.05]
17 | | | | Workload >= 8.5
18 | | | | | Workload < 11.5 : 7.52 (11/0.08) [7/0.88]
19 | | | | | Workload >= 11.5
20 | | | | | | c < 0.5 : 8.14 (6/0.03) [3/0.09]
21 | | | | | | c >= 0.5
22 | | | | | | | Workload < 12.5 : 8.17 (2/0.01) [1/0.03]
23 | | | | | | | Workload >= 12.5 : 8.94 (4/0.05)

[2/0.27]
24 | | | Workload >= 14.5
25 | | | | Workload < 17.5 : 9.35 (14/1.77) [4/0.12]
26 | | | | Workload >= 17.5
27 | | | | | Workload < 21.5
28 | | | | | | c < 0.5 : 10.16 (8/0.07) [4/0.09]
29 | | | | | | c >= 0.5 : 10.58 (7/0.04) [5/0.09]
30 | | | | | Workload >= 21.5
31 | | | | | | c < 0.5 : 10.99 (8/0.09) [4/0.08]
32 | | | | | | c >= 0.5 : 11.7 (6/0.12) [6/0.68]
33 | Workload >= 25.5
34 | | Workload < 35.5
35 | | | Workload < 28.5
36 | | | | a < 0.5
37 | | | | | Workload < 26.5 : 12.26 (2/0) [2/0.28]
38 | | | | | Workload >= 26.5 : 13.07 (6/0.18) [2/0.24]
39 | | | | a >= 0.5 : 11.91 (4/0.17) [2/0.14]
40 | | | Workload >= 28.5
41 | | | | f < 0.5
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42 | | | | | Workload < 33.5
43 | | | | | | Workload < 29.5 : 12.55 (2/0.18) [3/0.11]
44 | | | | | | Workload >= 29.5
45 | | | | | | | b < 0.5
46 | | | | | | | | Workload < 32.5
47 | | | | | | | | | Workload < 30.5 : 15.57 (3/0.2)

[1/45.88]
48 | | | | | | | | | Workload >= 30.5 : 13.4 (5/0.05)

[3/0.1]
49 | | | | | | | | Workload >= 32.5 : 13.85 (4/0.35)

[0/0]
50 | | | | | | | b >= 0.5 : 13.06 (3/0.07) [1/0.06]
51 | | | | | Workload >= 33.5 : 14.26 (5/0.1) [5/0.6]
52 | | | | f >= 0.5 : 14.44 (4/2.86) [3/1.94]
53 | | Workload >= 35.5
54 | | | Workload < 39.5 : 15.09 (16/0.47) [8/0.17]
55 | | | Workload >= 39.5
56 | | | | Workload < 42.5 : 15.96 (13/1.14) [5/0.32]
57 | | | | Workload >= 42.5 : 16.86 (10/0.16) [8/0.36]
58 Workload >= 45.5
59 | Workload < 76.5
60 | | Workload < 61.5
61 | | | Workload < 53.5 : 18.71 (33/2.51) [15/1.23]
62 | | | Workload >= 53.5
63 | | | | c < 0.5
64 | | | | | Workload < 58.5
65 | | | | | | e < 0.5 : 20.84 (2/0.1) [3/6.34]
66 | | | | | | e >= 0.5 : 19.46 (6/0.03) [4/0.56]
67 | | | | | Workload >= 58.5 : 20.61 (5/0.04) [4/0.03]
68 | | | | c >= 0.5
69 | | | | | Workload < 54.5 : 21.59 (2/3.76) [1/1.25]
70 | | | | | Workload >= 54.5
71 | | | | | | Workload < 56.5 : 20.48 (4/0.21) [2/0.44]
72 | | | | | | Workload >= 56.5
73 | | | | | | | Workload < 59.5 : 20.97 (5/0.02)

[4/0.08]
74 | | | | | | | Workload >= 59.5 : 21.62 (3/0.03)

[3/0.1]
75 | | Workload >= 61.5
76 | | | Workload < 67.5
77 | | | | Workload < 63.5
78 | | | | | c < 0.5 : 21.12 (3/0.08) [3/0.07]
79 | | | | | c >= 0.5 : 21.89 (4/0.13) [2/0.31]
80 | | | | Workload >= 63.5
81 | | | | | c < 0.5 : 21.93 (9/0.02) [3/0.44]
82 | | | | | c >= 0.5 : 22.69 (8/0.24) [4/0.36]
83 | | | Workload >= 67.5
84 | | | | c < 0.5
85 | | | | | Workload < 73.5
86 | | | | | | Workload < 69.5 : 22.35 (4/0.06) [2/0.01]
87 | | | | | | Workload >= 69.5 : 22.81 (7/0.05) [5/0.07]
88 | | | | | Workload >= 73.5 : 23.57 (7/0.09) [2/0.08]
89 | | | | c >= 0.5
90 | | | | | Workload < 71.5
91 | | | | | | e < 0.5 : 23.84 (5/0.06) [3/0.84]
92 | | | | | | e >= 0.5 : 23.06 (2/0.03) [2/0.13]
93 | | | | | Workload >= 71.5
94 | | | | | | e < 0.5
95 | | | | | | | Workload < 72.5 : 24 (2/0.12) [0/0]
96 | | | | | | | Workload >= 72.5 : 25.23 (3/0.04)
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[5/4.33]
97 | | | | | | e >= 0.5 : 24.16 (4/0.12) [1/0.86]
98 | Workload >= 76.5
99 | | Workload < 89.5

100 | | | Workload < 84.5
101 | | | | c < 0.5
102 | | | | | Workload < 77.5 : 26.59 (3/11.39) [0/0]
103 | | | | | Workload >= 77.5
104 | | | | | | Workload < 82.5
105 | | | | | | | Workload < 80.5
106 | | | | | | | | Workload < 79.5 : 24.34 (3/0.04)

[3/0.05]
107 | | | | | | | | Workload >= 79.5 : 24.78 (3/0.06)

[0/0]
108 | | | | | | | Workload >= 80.5 : 25.23 (5/0.1) [1/0.6]
109 | | | | | | Workload >= 82.5 : 25.71 (5/0.19) [1/0]
110 | | | | c >= 0.5
111 | | | | | Workload < 78.5 : 25.06 (6/0.02) [0/0]
112 | | | | | Workload >= 78.5
113 | | | | | | Workload < 80.5 : 25.98 (5/0.12) [1/0.06]
114 | | | | | | Workload >= 80.5 : 27.03 (8/0.09) [4/1.47]
115 | | | Workload >= 84.5
116 | | | | c < 0.5 : 26.66 (10/0.3) [5/0.18]
117 | | | | c >= 0.5
118 | | | | | Workload < 88.5
119 | | | | | | f < 0.5
120 | | | | | | | Workload < 87 : 27.26 (3/0.08) [1/0.44]
121 | | | | | | | Workload >= 87 : 27.75 (2/0) [2/0.03]
122 | | | | | | f >= 0.5 : 27.19 (4/0.05) [0/0]
123 | | | | | Workload >= 88.5 : 28.01 (3/0.24) [0/0]
124 | | Workload >= 89.5
125 | | | Workload < 93.5
126 | | | | a < 0.5 : 28.82 (8/1.92) [8/0.25]
127 | | | | a >= 0.5 : 27.56 (7/0.04) [1/0]
128 | | | Workload >= 93.5
129 | | | | Workload < 96.5
130 | | | | | c < 0.5
131 | | | | | | Workload < 95.5 : 28.34 (3/0.06) [3/0.06]
132 | | | | | | Workload >= 95.5 : 28.76 (2/0.03) [1/0.29]
133 | | | | | c >= 0.5
134 | | | | | | d < 0.5 : 29.62 (4/0.17) [2/0.18]
135 | | | | | | d >= 0.5 : 30.18 (3/0.54) [0/0]
136 | | | | Workload >= 96.5 : 30.46 (13/4.19) [11/0.39]
137
138 Size of the tree : 133
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Mehmet Akşit, Pär Emmanuelson, Huang Gang, Nikolaos Georgantas, and David
Redlich. Mechanisms for Leveraging Models at Runtime in Self-adaptive Software,
pages 19–46. Springer International Publishing, Cham, 2014.

[20] Andreas Bergen, Nina Taherimakhsousi, and Hausi A. Müller. Adaptive manage-
ment of energy consumption using adaptive runtime models. In Proceedings of

175



the 10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’15, pages 120–126, Piscataway, NJ, USA, 2015. IEEE
Press.

[21] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof Czar-
necki. A study of variability models and languages in the systems software dom ain.
IEEE Transactions on Software Engineering, 39(12):1611–1640, 2013.

[22] Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Leveraging bagging for evolv-
ing data streams. In Proceedings of the 2010 European Conference on Machine
Learning and Knowledge Discovery in Databases: Part I, ECML PKDD’10, pages
135–150, Berlin, Heidelberg, 2010. Springer-Verlag.

[23] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, USA, 2006.

[24] G. Blair, N. Bencomo, and R.B. France. Models@ run.time. Computer, 42(10):22–
27, Oct 2009.

[25] A. E. Husain Bohra and V. Chaudhary. Vmeter: Power modelling for virtualized
clouds. In Parallel Distributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, pages 1–8, April 2010.

[26] A. Borovyi, V. Kochan, Z. Dombrovskyy, V. Turchenko, and A. Sachenko. Device
for measuring instant current values of cpu’s energy consumption. In Intelligent
Data Acquisition and Advanced Computing Systems: Technology and Applications,
2009. IDAACS 2009. IEEE International Workshop on, pages 126–130, 2009.

[27] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, J.Henk Obbink, and
Klaus Pohl. Variability issues in software product lines. In Frank van der Lin-
den, editor, Software Product-Family Engineering, volume 2290 of Lecture Notes in
Computer Science, pages 13–21. Springer Berlin Heidelberg, 2002.

[28] Sigismondo Boschi and Gabriele Santomaggio. RabbitMQ Cookbook. Packt Publish-
ing, 2013.

[29] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[30] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classication and Regression
Trees. Wadsworth and Brooks, 1984.

176



[31] Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

[32] Broad-consulting. Power market, power pricing and data centres in europe.
http://www.broad-group.com/reports/power-market. Accessed: 09/06/2016.

[33] Rajkumar Buyya. Market-oriented cloud computing: Vision, hype, and reality of
delivering computing as the 5th utility. In Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, CCGRID ’09, pages
1–, Washington, DC, USA, 2009. IEEE Computer Society.

[34] Rajkumar Buyya, Anton Beloglazov, and Jemal H. Abawajy. Energy-efficient man-
agement of data center resources for cloud computing: A vision, architectural ele-
ments, and open challenges. CoRR, abs/1006.0308, 2010.

[35] Rajkumar Buyya, Rodrigo N. Calheiros, and Xiaorong Li. Autonomic cloud com-
puting: Open challenges and architectural elements. CoRR, abs/1209.3356, 2012.

[36] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz-Corts, and Mike Hinchey.
An overview of dynamic software product line architectures and techniques: Ob-
servations from research and industry. Journal of Systems and Software, 91:3 – 23,
2014.

[37] Eugenio Capra, Chiara Francalanci, and Sandra A. Slaughter. Measuring applica-
tion software energy efficiency. IT Professional, 14(2):54–61, 2012.

[38] Walter Cazzola. Evolution as Reflections on the Design, pages 259–278. Springer
International Publishing, Cham, 2014.

[39] Francesco Cesarini and Simon Thompson. ERLANG Programming. O’Reilly Media,
Inc., 1st edition, 2009.

[40] C. Cetina, P. Giner, J. Fons, and V. Pelechano. Autonomic computing through reuse
of variability models at runtime: The case of smart homes. Computer, 42(10):37–43,
Oct 2009.

[41] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Prototyping dynamic
software product lines to evaluate run-time reconfigurations. Sci. Comput. Program.,
78(12):2399–2413, December 2013.

177



[42] Scott Chacon and Ben Straub. Pro Git. Apress, https://git-scm.com/book/en/v2,
2014.

[43] T. Chai and R. R. Draxler. Root mean square error (rmse) or mean absolute error
(mae)? arguments against avoiding rmse in the literature. Geoscientific Model
Development, 7(3):1247–1250, 2014.

[44] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability management in
software product lines: A systematic review. In Proceedings of the 13th International
Software Product Line Conference, SPLC ’09, pages 81–90, Pittsburgh, PA, USA,
2009. Carnegie Mellon University.

[45] Qingwen Chen, P. Grosso, K. van der Veldt, C. de Laat, R. Hofman, and H. Bal.
Profiling energy consumption of vms for green cloud computing. In Dependable,
Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Con-
ference on, pages 768 –775, dec. 2011.

[46] D. Cheng, J. Rao, C. Jiang, and X. Zhou. Elastic power-aware resource provisioning
of heterogeneous workloads in self-sustainable datacenters. IEEE Transactions on
Computers, 65(2):508–521, Feb 2016.

[47] David Chou. Rise of the cloud ecosystems.
http://blogs.msdn.com/b/dachou/archive/2011/03/16/rise-of-the-cloud-
ecosystems.aspx. Accessed: 28/12/2015.

[48] Jack Clark. IT Electricity Use Worse Than You Thought.
http://www.theregister.co.uk/2013/08/16/. Accessed: 02/07/2014.

[49] P. Clements and L.M. Northrop. Software Product Lines: Practices and Patterns.
The SEI Series in Software Engineering. Prentice Hall, 2002.

[50] Louis Columbus. Roundup of cloud computing forecasts and market estimates
q3 update. http://www.forbes.com/sites/louiscolumbus/2015/09/27/roundup-of-
cloud-computing-forecasts-and-market-estimates-q3-update-2015, September 2015.
[Online; posted 27-September-2015].

[51] Technologies Corp. Web servers market position report.
http://w3techs.com/technologies/market/webserver/10. Accessed: 25/11/2013.

178



[52] National Research Council. Advancing the Science of Climate Change. The National
Academies Press, 2010.

[53] Gabor Csardi and Tamas Nepusz. The igraph software package for complex network
research. InterJournal, Complex Systems:1695, 2006.

[54] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press, New York, NY, USA, 2000.

[55] Debian. Debian packages. Accessed: 5/01/2015.

[56] Richard Delaney. Vagrant. Linux J., 2014(244), August 2014.

[57] Pierre Delforge and Josh Whitney. Data Center Efficiency Assessment. Technical
report, Natural Resources Defence Council, 08 2014.

[58] Roberto Di Cosmo and Stefano Zacchiroli. Feature diagrams as package dependen-
cies. In Proceedings of the 14th International Conference on Software Product Lines:
Going Beyond, SPLC’10, pages 476–480, Berlin, Heidelberg, 2010. Springer-Verlag.

[59] Thomas G. Dietterich. Ensemble methods in machine learning. In Proceedings of
the First International Workshop on Multiple Classifier Systems, MCS ’00, pages
1–15, London, UK, UK, 2000. Springer-Verlag.

[60] F Dorey. In Brief: The P Value: What Is It and What Does It Tell You?, pages
2297 – 2298. Number 468(8). Journal of Clinical Orthopaedics and Related Research,
PMC, 2010.

[61] Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven auto-scaling
of green cloud computing infrastructure. Future Gener. Comput. Syst., 28(2):371–
378, February 2012.
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[176] Raúl Peña Ortiz. Accurate workload design for web performance evaluation. PhD
thesis, Editorial Universitat Politècnica de València, 2013.
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