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ABSTRACT 

 

Over the last two decades genetic advances have provided novel insights into the molecular 

basis of familial and sporadic cancers and provided the basis for the development of novel 

therapeutic approaches.  For example, the identification of the gene for von Hippel Lindau 

disease provided seminal insights into its role in most clear cell renal carcinomas (RCC) and 

led to new treatments for RCC.   

In this thesis I investigated three related genetic aspects of neoplasia. Firstly, I analyzed the 

results of genetic testing for inherited phaeochromocytoma and investigated how clinical 

features could be used to stratify patients and improve the cost effectiveness of genetic testing. 

Secondly, I sought to identify novel causes of inherited neoplasia. Through exome 

sequencing of familial RCC kindreds, CDKN2B was identified as a novel familial RCC 

gene.  The role of CDKN2B mutations in neoplasia was evaluated in familial and sporadic 

RCC and phaeochromocytoma.  In vitro assays confirmed that germline CDKN2B mutations 

associated with inherited RCC caused an abrogation of tumour suppressor function. Finally, I 

explored how a gene-based strategy might be used to identify novel therapeutic strategies, 

Thus, using a siRNA library screen, in RCC cells with inactivated VHL, potential candidate 

targets (e.g. PLK1/STK-10) were identified for selectively decreasing the viability of RCC 

cells with inactivated VHL.  
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CHAPTER 1: INTRODUCTION 

1.1 Current clinical management of cancers 

Cancer is defined by the World Health Organisation as ‘the uncontrolled growth and spread of 

cells’(1).  Until recently, the diagnosis and treatment of cancer was tissue specific.  Diagnosis 

was largely achieved by biopsying areas of potentially cancerous tissue and evaluating them 

under the microscope.  Histopathological features such as nuclear grade and cell type enabled 

diagnoses with the aid of immunohistochemical markers (2).   Treatment of metastatic solid 

organ tumours rested predominantly on empirical chemotherapeutic agents which targeted 

proliferating cells.  Such treatments are associated with significant systemic toxicity, and 

when used in metastatic adult solid organ cancers with the exception of some cancers such as  

testicular cancer and lymphoma, are infrequently associated with cure (3).  Response rates to 

chemotherapeutic agents can be modest and vary depending on context and disease stage for 

example in advanced breast cancer can be between 18 and 30% (4). 

 

The initial sequencing of the human genome in 2000 (5) has greatly facilitated the field of 

genomics (the study of genes and their function).  There has been much interest in the study 

of the molecular basis of cancer and it has been described as a disease driven by genetic 

changes.(6)  This research project was undertaken in the context of an evolving paradigm shift 

in the treatment of patients with cancer away from ‘site specific treatments’ to treatments 

based on specific genetic variants in tumours of individuals with cancer.  Therefore, the work 

presented in this thesis has taken place in an exciting time for translational oncology where 

important improvements have taken place in patient care due to close collaboration between 

laboratory scientists and clinicians managing individuals with cancer.  This change has in no 

small part been achieved by the work of the previous three decades; understanding important 
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cancer genes, signaling pathways and importantly the developments in cancer genetics 

attributed to the human genome project.  Thus, in the introduction to this thesis both the 

clinical and basic scientific background to current cancer management and research is 

discussed.  The aim of this research fellowship is to better understand the molecular pathology 

of cancer in order to facilitate more personalized cancer care in the future. 

 

1.1.1 Clinical management of solid organ cancers  

Despite a decade of improvements in the management of cancers described in section 1.4, in 

the case of adult cancers, with the exception of lymphoma and testicular cancers, unless 

tumours are detected and treated at a local stage (i.e. without evidence of metastatic spread) 

they tend to be incurable. The main treatment of solid organ tumours is either surgical 

resection alone, a combination of radiotherapy and surgery or in some cases radiotherapy at a 

radical (‘curative’) dose.  These treatments aim to remove all macroscopic disease and thus 

eradicate the complications of local tissue invasion and spread.  However, in the treatment of 

many cancers despite there being no clinical evidence of disease post radical treatment 

(surgery and/or radiotherapy), patients can succumb to metastatic disease many years later.   

This is presumed to be due to the presence of micro-metastases known as the ‘seed’, which 

move via the blood and/or lymphatics away from the primary site and once in the appropriate 

microenvironment or ‘soil’  develop into macroscopic deposits if they receive adequate 

nutrition.  These metastatic deposits are responsible for the significant morbidity and 

mortality associated with cancer (7).  Metastatic disease if localized to specific areas can be 

treated with local therapies such as; surgical resection, radiotherapy and radiofrequency 

ablation.  However, widespread recurrent disease requires systemic treatment.  To reduce the 

chance of metastases developing, patients can receive adjuvant or neo-adjuvant treatment to 



18 
 

help eradicate micro-metastases.  These are adjuncts to radical treatments and typically 

comprise either chemotherapy, hormonal therapy or both dependent on the tumour type (8, 9). 

 

1.1.2 The development of chemotherapy as a treatment for cancer 

Until recently the commonest method of treating disseminated disease was chemotherapy.  

Chemotherapy is usually either administered as oral tablets or more commonly intravenously.  

Although the term chemotherapy was first coined in the early 1900s, its development has been 

partly serendipitous.  Different agents have differing mechanisms of action summarized in 

Table 1.1.2. The first chemotherapy agents were developed when it was noted that individuals 

exposed to mustard gas experienced depletion of the bone marrow and lymph nodes (10).  

Mustard compounds were subsequently used in lymphoma.(10)  Mustard compounds are 

alkylating agents which form covalent links with DNA thus inhibiting DNA replication.  

Numerous other alkylating agents have been produced such as; chlorambucil and 

cyclophosphamide.  Alkylating agents effect proliferating cells and are thus unable to 

differentiate between rapidly dividing normal cells and malignant cells.  This can lead to 

toxicities affecting the gastrointestinal, haemopoeitic systems and alopecia.  Despite these 

toxicities, these agents were responsible for the first durable responses demonstrated in the 

treatment of lymphoma. (10)  Platinum agents such as cisplatin also cause adducts to DNA 

primarily within  the same strand (11).  The adducts cause DNA damage which result in 

cellular apoptosis (11).  Cisplatin effects proliferating cells and can cause toxicity, classically; 

peripheral neuropathy, ototoxicity and nephropathy in addition to nausea, vomiting and 

alopecia. Cisplatin is commonly used today. In germ cell tumours cisplatin is responsible for 

cure (12).  Platinum agents produce durable responses in epithelial ovarian cancer (13), and 
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are used in the adjuvant/neoadjuvant setting in a wide range of cancers including lung (14) 

and breast cancer (15). 

Antimetabolites were the next class of drug identified in the treatment of cancer, folic acid is 

required for bone marrow function and methotrexate, an inhibitor of folate metabolism was 

shown to cause remissions in paediatric leukaemias.(10)  Methotrexate continues to be used 

today and also effects normal proliferating cells.  Pemetrexed is a multi-targeted folate 

antagonist which is active in mesothelioma and non-small cell lung cancer.(16)  In the 1950s, 

rat hepatomas were found to use more uracil than normal cells.  Thus, 5-FU was produced, it 

could be taken up by tumours and would replace the uracil reducing cell growth.  5-FU 

remains the key agent in the management of colorectal cancer.(10) 

Another common mode of action of anti-cancer drugs is targeting tubule formation required 

for cell division.  There are two main anti-microtubule agents; vinca alkaloids derived from 

the periwinkle (e.g. vincristine and vinblastine) and taxanes derived from the Pacific Yew 

Tree (docetaxel and paclitaxel). These function by inhibiting microtubule formation and thus 

mitosis.(17)  These agents are also associated with toxicity due to their non-selective action 

and cause alopecia and neuropathy in addition to gastrointestinal and haemopoeitic toxicity. 

Taxanes are used in a wide range of malignancies including breast (18), lung (19) and 

oesophago-gastric cancers (20).  The vinca alkaloids are used in a wide range of paediatric 

and adult cancers including leukaemia, lymphoma and sarcoma(21). 

Chemotherapy is given on a cyclical basis and scheduling is important.  This is because at any 

given dose of drug, a constant fraction of cells are killed ‘the Cell Kill hypothesis’(10)  Thus, 

the number of remaining cancer cells is influenced by the number of cells present at the 

beginning of a cycle.  Treatment is given repeatedly at a time where there is an equipoise 
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between toxicity to ‘normal tissues’ and prevention of cancer cell growth.  Combining 

different agents into a regimen enables more cancer cells to be killed at any one time by 

utilizing a number of varied anti-cancer mechanisms (22). 

Over five decades in the last century, medical oncology has developed using 

chemotherapeutic agents to treat cancer.  These drugs were used to influence rapidly dividing 

cells which causes some associated toxicity to normal tissues.  Thus, there was a need for 

targeted therapies and these were established through better understanding of the pathology of 

cancer.  Currently available targeted therapies will be described in section 1.4, however the 

basic science of tumourigenesis will be described first. 

Table 1.1.2.  A summary of the mechanism of action of different chemotherapy drugs. 

 

 

Drug Class Example Mechanism of action Clinical uses 

Vinca alkaloids Vincristine/vinblastine Microtubule inhibitor Haematological 

malignancies/ 
sarcoma 

Taxanes Docetaxel/paclitaxel Microtubule inhibitor Breast/lung/upper 
GI/ prostate 

Antimetabolite 5FU/ methotrexate/ 

pemetrexed 

Antimetabolites Colorectal, breast, 

lung cancer 

Alkylating 

agent 

Chlorambucil/ 

cyclophosphamide 

Covalent links across DNA 

stopping DNA replication 

Haematological 

malignancies 

Platinum agents cisplatin Adduct formation causing 
DNA damage and apoptosis 

Germ cell, lung, 
upper GI and 

breast cancers 
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1.2 Genomics and cancer medicine 

1.2.1 Overview of the genetics of cancers 

1.2.1.1 Hallmarks of cancer: pathways to human cancer 

Cancer has been eloquently described by Hanahan and Weinberg (23) in their seminal review 

as a ‘disease involving dynamic changes in the genome’.  This definition encompasses many 

diseases with different characteristics but at whose heart is genetic alteration.  Cancers grow 

and cause morbidity because of their ability to adapt to differing milieu such as inadequate 

blood supply by gaining new genetic alterations allowing them to evolve.  Thus, it is 

important to reflect on the general pathophysiological processes that occur in normal cells 

over a period of time in order for them to become malignant.  These processes have been 

termed the ‘Hallmarks of cancer (23)’ and are described in figure 1.2.1.   These characteristics 

have been summarized below, however for a more detailed explanation the reviews by 

Hanahan and Weinberg are recommended.(23, 24)  In order for a cancer to develop, changes 

occur not only in the cancer cells but also in surrounding stromal cells, thus these hallmark 

traits involve the tumour microenvironment in addition to the tumour cells themselves.(24) 

1.2.2 The step-wise process of cancer development and accumulation of genetic 

alterations 

Cancer is a step-wise process. Cancer cells gain genetic alterations that enable them to 

achieve the processes described as the ‘Hallmarks of Cancer’. These are: unlimited 

proliferation potential, resistance to apoptosis, self-sufficiency in growth signals, 

angiogenesis, immune evasion and the ability to metastasize.(25)  The cancer phenotype is 

achieved by ‘re-wiring’ pre-existing signaling pathways within the cell.  This is achieved by 

genetic alterations in key genes.  Cancer develops as cells with alterations involving such 

pathways survive and grow faster producing a clone which can grow more efficiently than 

other cells in the same situation where other cells would not.(25) pRb was the first tumour 
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suppressor gene (TSG) (see section 1.2.3 for a more detailed explanation) to be described, it 

remains unique as inactivation of pRb is both necessary and sufficient for the development of 

retinoblastoma (26).  Most cancers need between four and seven rate limiting genetic events 

to develop (27).  Pathological examinations of the colonic tract have identified pre-cancerous 

lesions that progress to become cancers (the adenoma to carcinoma sequence described in 

colorectal cancer)(28). 70% of colorectal adenoma contain a mutation in APC, then 

subsequently mutations occur in KRAS and P53.  These mutations allow cell growth and 

decreased DNA repair.  There is associated chromosomal instability, thus progressive 

mutations enable the adenoma to develop in to a carcinoma by gaining the ‘hallmarks of 

cancer’, being able to have a proliferative advantage and invade other tissues.(28) These 

transitional steps in cancer are exploited in screening programmes for cervical and colorectal 

cancer.  Thus, cancer develops in a process analogous to Darwinian evolution where 

successive genetic changes allow cells to gain growth advantages, leading to the progressive 

conversion of normal cells to cancer cells.(23).   

1.2.2.1 The hallmarks of cancer 

Key Characteristic 1- Sustaining Proliferative Signaling 

In healthy tissue there is strict control of growth by careful control of the production and 

release of growth promoting signals which allow cell cycle entry and progression.  Growth 

factors bind to receptors typically containing intracellular tyrosine kinases which activate 

branched intracellular signaling pathways that regulate cellular growth and cell cycle 

progression.  This control is abrogated in cancer cells, allowing cells to become more 

autonomous and replicate at higher rates.  Increased intracellular signaling can also influence 

cell survival and energy metabolism.  Sustained signaling can occur by: (i) altered growth 

factor production, (ii) deregulated receptor expression (iii) structural changes in the receptors 
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leading to ligand independent signaling and (i.v.) constitutive activation of downstream 

signaling pathways.  This activation is achieved by mutations in genes encoding key proteins.  

Other mechanisms of uncontrolled cellular proliferation are the loss of negative feedback 

loops.  For example phosphatase and tensin homologue deleted from chromosome 10 (PTEN) 

negatively regulates PI3kinase, PTEN loss is associated with a number of different cancers.  

Cancer cells can also continue to proliferate is by avoiding senescence and apoptosis.  For 

example, in cultured cells high levels of RAS, MYC and RAF expression are associated with 

senescence however, in melanoma cells for example mechanisms leading to senescence and 

apoptosis are overcome.(29)  

Key Characteristic 2- evasion of growth suppression 

Cancer cells avoid growth suppressing mechanisms within cells.  TSG play a key role in 

preventing inappropriate cell proliferation. pRB transduces growth inhibitory signals that 

originate largely outside the cell.  If cells have excessive genomic damage, or insufficient 

nucleotide, oxygen or glucose reserves, p53 can halt the cell cycle until conditions improve or 

if the situation is irretrievable, trigger apoptosis.  Thus, inactivation of TSG such as p53 or 

pRb allows evasion of growth suppression.  (23, 24)  These genes and genes connected to 

them are commonly inactivated in cancers. 

Key Characteristic 3- Resisting Cell Death 

Apoptosis or programmed cell death usually occurs when cells experience physiological 

stressors such as hypoxia or hypoglycaemia.(24)  Thus, cancer cells must gain mechanisms to 

avoid apoptosis.  Apoptosis is controlled by two main systems: (i)  internal stresses such as 

DNA damage are monitored by p53 protein (24), the so called ‘intrinsic system’ (ii)external 

stressors are monitored by the Fas ligand and receptor, this is the ‘extrinsic system’.  Better 

understanding of the cells apoptotic machinery and how cancer evades these mechanisms has 
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been achieved.(24)  This hallmark is believed to be an important factor in cancer 

development.  

Another mechanism by which cancer cells grow is by inhibiting autophagy, a process by 

which cellular organelles are broken down and recycled.  Autophagy occurs in times of 

cellular stress such as nutrient deficiency.  Autophagy allows organelles to be broken down 

and their catabolites to be used by other cells in nutrient deficient environments.  Thus, by 

being relatively resistant to autophagy, cancer cells can benefit from the catabolites produced 

by neighbouring healthy cells.(24) 

Key Characteristic 4 -Enabling Replicative Immortality 

Most cells in the body are only able undergo a certain number of replication cycles.  

However, cancer cells have an unlimited replication potential achieved by loss of senescence 

and by altering telomeric length.  In normal cells, telomeres are tandem hexanucleotide 

repeats at the end of chromosomes, each time the cells divide they become shorter.  

Eventually they are so short they cannot protect the ends of DNA, and the chromosomes join 

up, and unstable chromosomes lead to the cell becoming non-viable.  In cancer cells, there is 

activation of the telomerase enzyme which adds telomeres to the ends of DNA, thus the 

number of cell divisions is not limited.  These mechanisms work together to promote 

uncontrolled cellular growth, e.g. early in cancer development, cells experience a telomere 

loss crisis allowing breakage-fusion-break cycles to occur.  This allows deletions and 

amplifications of the genome to occur.  However, apoptosis does not occur as TP53 mediated 

surveillance of genome integrity is impaired, subsequent telomerase activity allows defective 

cells to proliferate despite acquired mutations.(24)   
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Figure 1.2.1. ‘ The hallmarks of cancer’ as described by Hanahan and Weinberg. (24) 

 

Enabling 

Characteristic 

Features 

Genome Instability 

and Mutation 

Successive alterations give cancer cells a survival advantage.  This 

requires the caretakers of the genome which include genes that 

detect DNA damage, repair damage or those genes which 

inactivate DNA damage (e.g. p53) to not function properly. 

Tumour Promoting 

Inflammation 

Leucocytic infiltration of tumours promotes tumour growth by 

producing bioactive factors and growth factors aiding processes 

such as epithelial-mesothelial transition, proliferation and 

angiogenesis. 

Reprogramming 

Energy Metabolism 

(Warburg effect) 

Anaerobic glycolysis occurs in normoxic conditions.  This is less 

efficient than aerobic respiration, therefore cancer cells utilize 

more glucose. Glycolysis produces intermediates that are 

substrates required for active cell proliferation.  Tumours may 

contain two populations of cells; one producing glucose 

aerobically and the other anaerobically, thus balancing energy and 

substrate production.   

 

 Table 1.2.2 The Enabling Characteristics of Cancer. (taken from Hanahan and Weinberg) 

(24) 
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 Key Characteristic 5- Induction of Angiogenesis 

Tumours need a blood supply to gain nutrients and eliminate waste.  In adults, angiogenesis is 

quiescent and ‘switched on’ only transiently e.g. in wound healing or within the female 

reproductive tract.  Cancers are dependent on angiogenesis as they require new vessel 

formation in order to provide nutrients and eliminate waste so that they can continue to 

survive and grow. Thus, in cancers, the ‘angiogenic switch’ is permanently switched on.  

Angiogenesis is usually under finely balanced control achieved by counterbalanced growth 

factors.  For example, vascular endothelial growth factor (VEGF) binds to one of three 

receptor tyrosine kinases (VEGFR1-3), and its downstream signaling is regulated at many 

levels reflecting its important and complex function.  VEGF signaling can be upregulated by 

hypoxia but is abnormally activated in tumours.(24)  The abnormal angiogenesis seen in 

cancer also allows tumour cells to gain nutrients and leave their environment and metastasize.  

Aberrant angiogenesis is a target for many novel cancer therapies including in renal cell 

carcinoma (RCC).(24, 30) 

 

Key Characteristic 6-Activation of invasion and metastasis 

Cancers cause clinical morbidity due to their ability to invade and metastasize.  In order to 

invade and metastasize cancer cells need to detach from other cells and the extracellular 

matrix and alter shape.  This process is known as the ‘invasion-metastasis cascade’  Simply, 

these are successive changes including; invasion of local tissue, intravasation of cancer cells 

into the blood and the lymphatic tissues, escape of cancer cells into the distant tissues, 

formation of micrometastases and finally development of macroscopic tumours i.e. 

‘colonialisation’.(24)  This cascade is controlled by the epithelial-mesenchymal transition 

(EMT).  This is a process whereby transcription factors achieve a change in the cell biology 

by facilitating the following changes; loss of adherens junctions, change of cell shape to a 



27 
 

spindle shape, expression of matrix degrading enzymes, increased motility and increased 

resistance to apoptosis.  One mechanism by which this is achieved is through loss of E-

cadherin protein which is important in cell-to-cell contact.(24)  

1.2.2.2 Other important enabling characteristics of cancer and stress factors 

Enabling Characteristics 

In addition to the key characteristics of cancer, there are a number of enabling characteristics 

that allow tumorigenesis to occur.  These include: (i) genome instability, (ii) reprogramming 

metabolism, (iii) tumour promoting inflammation and are summarized in figure 1.2.2. 

Genomic instability: Mutant clones gain a selective advantage over the subclones.  This is 

achieved by gaining successive alterations which increased the chance of the subclone to 

dominate the other cells.  Genetic changes can occur due to epigenetic changes and mutation.  

Cells are normally resistant to mutation, this accumulation of mutations is achieved by; 

sensitivity to mutagenic agents and breakdown of genomic surveillance mechanisms.  These 

are achieved by alteration in p53 and other ‘caretaker’ genes. Caretaker genes include those 

involved in: detecting DNA damage, activating DNA repair machinery, inactivating and 

intercepting mutagenic agents before they damage DNA.  Furthermore, impaired telomerase 

activity causes karyotypic instability by causing chromosomal amplification and breakdown. 

(24) 

Leucocytic infiltration: Tumours are associated with leucocytic infiltration similar to that 

noted in inflammation.  Leucocytes aid tumorigenesis by: providing growth factors, degrading 

extracellular matrices, aiding angiogenesis, secreting survival factors and facilitating 

EMT.(24) Inflammatory cells also produce free radicals such as reactive oxygen species 

which are mutagenic promoting genetic instability. 
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Anaerobic glycolysis: Cancer cells utilize glycolysis instead of oxidative phosphorylation to 

meet their energy requirements, even in normoxic conditions.  Glycolysis is eighteen times 

less efficient than oxidative phosphorylation and requires increased glucose utilization hence 

the up-regulation of glucose transporters like GLUT-1.  The glycolytic switch is mediated by 

oncogenes such as RAS which can upregulate transcription factors such as HIF that increase 

glycolysis.  The glycolytic pathway may confer an advantage on cells as it produces 

macromolecules which can be used to produce organelles required in rapidly proliferating 

cells.  Within a tumour, there are some cells that utilize aerobic respiration, these cells utilize 

the lactate produced by cells using glycolysis.  This enables a symbiotic relationship 

minimizing waste.(24) 

Immune evasion: Tumour cells often express atypical proteins however they evade immune 

detection and eradication.  This enables micrometastases to spread and tumour invasion to 

take place.  The reasons why tumour cells evade normal immunological responses are 

incompletely characterized, however may be due to secretion of factors such as TGF-β which 

suppress immunity.(24) 

 

1.2.2.3 The stress phenotype of cancer 

Cancer cells typically display distinct stressors such as DNA damage, proteotoxic, mitotic, 

metabolic and oxidative stress.   These occur in non-cancer cells but represent a potential 

vulnerability of cancer cells to cell death (25) therefore these maybe targets for cancer 

therapies. 

DNA damage and replication stress:  

Genomic instability causes cancer cells to have numerous genetic alterations including; 

mutations, deletions, chromosomal rearrangements and aneuploidy.(25)  This instability 
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occurs due to endogenous DNA damage, combined with activation of a DNA damage stress 

response.  The mechanisms have been described previously and can lead to translocations and 

amplification.  These can cause oncogene activation and genomic instability which can be a 

target for cancer therapies.(25) 

Proteotoxic Stress: Aneuploidy and gene copy number differences can shift the cell towards 

expressing proteins associated with cell proliferation.  There is also a difference in protein 

subunit production that can cause problems in protein stoichiometry, resulting in increases in 

quantities of toxic unfolded aggregates in the cell.  The presence of unfolded protein 

aggregates produce proteotoxic stress which also can be exploited by targeted treatments.(25) 

Mitotic Stress: Chromosome mis-segregation causes a chromosome instability phenotype, 

this results in a shifting chromosome distribution allowing cells to evolve rapidly.  This 

phenotype is present due to alterations in genes associated with mitosis and mitotic pathways.   

Furthermore, abnormal chromosome segregation can occur due to aforementioned problems 

in oncogenes, double strand breaks and loss of TSG.(25) 

Metabolic Stress:  This glycolytic switch called the Warburg effect leads to increased use of 

glucose by the cancer cell.  The glycolytic switch provides cancer cells with a survival 

advantage as they are able to thrive in low oxygen conditions. This promotes tumour invasion 

and immune evasion.(25)  Some researchers are exploiting the cancer cells dependence on 

glycolysis by targeting glucose uptake as a potential cancer treatment.(31) 

Oxidative Stress: Cancer cells produce more reactive oxygen species than normal cells, this 

occurs due to mitochondrial dysfunction and oncogenic signaling.  Reactive oxygen species 

are highly reactive and contribute to increased levels of endogenous DNA damage.(25)  

Reactive oxygen species may also represent a vulnerability of the cancer cell.  
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1.2.3  Oncogenes and Tumour Suppressor Genes 

The fundamental genetic changes in cancer are in two sets of genes (i) oncogenes in which 

mutations lead to a dominant gain in function and (ii) tumour suppressor genes in which 

mutations have recessive loss of function (figure 1.2.3). 

1.2.3.1 Oncogenes 

The archetypical oncogene is RAS, which was shown to have a transforming function in the 

late 1970s (32).  As more genes were found to be altered in cancer, it became apparent that 

the progression from the normal to malignant phenotype occurred due to the gain of 

alterations that enabled cells to evade normal homeostatic mechanisms(32).  RAS is mutated 

in many human cancers including colorectal, melanoma and lung cancers. There are three 

RAS genes which encode four proteins (33).  RAS promotes tumour formation by activating a 

number of mechanisms required for cancer formation. RAS proteins are transducers that 

enable cell surface receptors to be coupled to intracellular signaling pathways. Genetic 

alterations of RAS cause incessant activation of a large number of downstream effector 

pathways: mutated RAS allows cells in G0 to enter the cell cycle in the absence of growth 

factors, increases transcription of growth factors, growth factor receptors and other 

transcription factors required for cell cycle progression. The consequence of these genetic 

changes is rapid, less controlled cell growth.  Examples of oncogenes and their functions are 

described in table 1.2.3.1. 

Oncogenes are derived from proto-oncogenes by a number of different processes (Figure 

1.2.3(B).  These include activation by increased copy number (i.e. amplification) seen in 

HER2 positive breast cancers, translocation e.g. BCR/ABL in chronic myeloid leukaemia and 

point mutation commonly seen in B-RAF e.g. V600E in melanoma.  The end result of these 

genetic changes are constitutive activation of the gene i.e. uncontrolled positive stimuli.  
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Cancer cells can become dependent on the products of these genes to continue to survive and 

this process is called oncogene addiction.(34) Oncogene addiction is believed to be achieved 

by oncogenes producing strong pro-survival signals.(25) This is perceived by some to be the 

‘Achilles Heel’ of cancer cells and maybe utilized as a therapeutic strategy.  The potential of 

this strategy is discussed in chapter 5 of this thesis. 

  

Oncogene Associated cancer Mechanism of action as per Hanahan and 

Weinberg 

Myc Haematological malignancy, 

sarcoma and some epithelial 

cancers 

Sustained signalling – transcription factor 

influencing 10-15% of cellular genes. 

BRAF Colon, melanoma, thyroid, 

ovary 

Sustained signalling – Ser/Thr kinase 

EGFR Lung, upper gastric cancers Sustained signalling –EGF receptor 

activation 

ABL Chronic myeloid leukaemia Enhanced tyrosine kinase activity 

Bcl-2 Diffuse B cell lymphoma Resistance to cell death -anti-apoptotic 

protein 

MDM-2 Liposarcoma Resistance to cell death- complexes with p53 

ALL1 Acute myeloid leukaemia Sustained signalling, resistance to cell death 

– involved in chromatin remodelling 

Table 1.2.3.1 Some oncogenes, their clinical associations and mechanisms of action(35, 36) 

1.2.3.2 Tumour Suppressor Genes (TSG). 

Knudson first described TSG in the context of retinoblastoma, a paediatric retinal tumour.  

Sporadic cases had a later onset than those inherited in an autosomal dominant manner.  

Knudson hypothesized retinoblastoma occurred due to molecular inactivation of both alleles 

of the retinoblastoma gene (Rb).  Inherited retinoblastoma presents earlier, because 

individuals have one functional Rb gene and therefore only one allele needs to be inactivated.  
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Whereas in sporadic retinoblastoma inactivation of both alleles is required therefore, 

presentation occurs at a later stage.  This is known as the ‘Knudson two hit hypothesis’ and is 

described in figure 1.2.3.  Inactivation of a gene can occur due to: non-sense, frameshift, 

splice site and truncating mutations, deletions or epigenetic silencing.  pRB is mutated in a 

wide range of cancers indicating its important role in cell cycle control (pRb has been shown 

to stop the expression of genes required for progression into the S phase of the cell cycle).(26) 

TSG mutations lead to loss of function, thus both alleles need to be inactivated to cause an 

effect, examples of common TSG are in table 1.2.3.2. 

TSG Associated cancer Mechanism of action as per Hanahan and 

Weinberg(24) 

NF2 CNS malignancy e.g. 
schwannoma, ependymoma,  

Sustained signalling – usually inhibits several 
key signalling pathways including mTOR 
and PI3 kinase. 

P53 Many cancer subtypes Resisting cell death – usually induces 
apoptosis 

ARH1 Ovarian Sustained signalling and resistance to cell 
death –usually inhibits PI3 kinase and other 
kinases,  is associated with autophagy 

BRCA1 Breast, ovarian, prostate Resisting cell death- involved in DNA repair  

Table 1.2.3.2. Common TSG, their cancer associations and mechanisms of action (24, 37-39) 

1.2.3.3 Mechanisms of genetic alteration in proto-oncogenes and TSG 

In order for oncogenes and TSG to influence cancer development a genetic or epigenetic 

change is required.  The common mechanisms of gene activation and silencing are described 

in figure 1.2.3.  These include: point mutations, deletions, duplications, inversions, 

translocations, frame-shift, pre-mature stop, splice site disruption, and epigenetic 

silencing(40).  Chromosome gain and loss can also lead to cancer associated genetic changes, 

aneuploidy has long been associated with tumour cells.  In a typical cancer cell, 10% of the 

cancer genome is associated with gains and losses.(41)  Data from whole genome sequencing 
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has also led to the identification of two processes associated with genetic alteration; 

chromothripis and kataegis.   

Chromothripsis occurs when usually one of two chromosomes is shattered and then scrambled 

fragments are misjoined on repair.(42) It occurs in 2-3% of human cancers and is particularly 

prevalent in bone and paediatric cancers.(41)  It is believed to occur due to abnormal 

chromosome separation in mitosis, chromosomes are entrapped within micronuclei which 

prematurely condense and can then be pulverised.  The process of chromothripsis can 

generate many oncogenes and TSG in one event.(43) 

Kataegis is localised areas of multiple point mutations that occur in cis near rearrangement 

breakpoints.(41, 42)  This is believed to occur by activation- induced deaminase and 

apolipoprotein B mRNA editing enzyme catalytic polypeptide like protein families. (41)  

Kataegis is much more common than chromothripsis occurring in one in forty cancer 

genomes.(43) As with chromothripsis this process enables multiple mutations to occur at one 

time rather than in a step-wise fashion. Potentially, these mechanisms can lead to increased 

rapidity in oncogenesis. 

1.2.3.4 Driver and passenger mutations 

Mutations in oncogenes and TSG represent key changes in cancer. Cancers develop in a 

process where successive genetic changes allow cells to gain growth advantages which leads 

to the progressive conversion of normal cells into cancer cells.(23)  With the clonal evolution 

of cancers, an accumulation of genetic changes occurs, resulting in the presence of numerous 

mutations some of which are thought to be key to driving the process of oncogenesis (‘driver 

mutations’) whereas other mutations are so called ‘passenger’ mutations.  Driver mutations 

are therefore defined as mutations which provide a growth advantage to tumour cells, whereas 

passenger mutations occur at the same time as driver mutations but do not influence cell 
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growth (44).  In a somatic cancer cell there can be around sixty gene alterations which alter 

protein function (44). Determining which of these alterations are ‘driver mutations’ is a 

challenge facing cancer genomics. This is explored in chapter 4 of this thesis.  

1.3 Developments in cancer genomics 

The first genome was sequenced at a cost of $3 billion.  The current cost of genome 

sequencing is approximately $5000.(45)  The technological advancements in genomics have 

led to there being a great deal of information available about the cancer genome. Much of this 

information has been achieved by large multinational collaborations such as the Cancer 

Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC).(46) In fact, 

there has been a lag between improvements in the understanding and interpretation of 

genomic data compared to its production.  The average solid tumour contains around sixty 

mutations that will alter protein function (47).  Most of these substitutions are single 

nucleotide variations (95%), the remainder are usually single nucleotide insertions and 

deletions.  Somatic cancers have more translocations than normal cells but these are not 

usually driver translocations and occur in non-coding regions, so called ‘gene deserts’.(47)  

Translocations are better tolerated in cancer cells compared to healthy cells as the normal 

DNA damage sensors within the cell (e.g. p53) are not functioning properly.(47) Different 

tumour types contain different numbers of mutations, lung cancer and melanoma have over a 

hundred mutations as they are associated with potent mutagens (cigarette smoking and 

ultraviolet light exposure) (48, 49).   Colorectal cancer associated with mismatch repair can be 

associated with even more mutations.  Thus, it can be very difficult to determine the 

significance of these mutations. 
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Figure 1.2.3 Tumour Suppressor Genes and oncogenes 

A.  Mechanism of carcinogenesis achieved by (i) an inherited TSG mutation and (ii) in 

non-inherited TSG mutation.  In order for tumourigenesis to occur both alleles need to 

be inactivated i.e. a double hit is required e.g. by point mutation, deletion, splice site 

mutation or epigenetic silencing.  

B.  The conversion of a protooncogene into an oncogene.  Gene activation must take 

place, this can occur by a number of different mechanisms (e.g. gene translocation, 

amplification or activating mutation).  The consequence of this is uncontrolled 

transcription of the gene.  Typically these genes influence an aspect of cancer growth 

e.g. angiogenesis or DNA replication. 
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Identifying ‘driver mutations’ is further complicated by the fact that mutations occur more 

frequently over a period of time. The ‘gatekeeper’ mutation enables a normal epithelial cell to 

grow more than other cells to produce a sub-clone of cells.(47).  Subsequently, further 

mutations occur, each driver mutation provides a further growth advantage.  The older the 

tissue the more mutations are likely to be present i.e. the same tumour in an older person will 

have more mutations than the equivalent tumour in a younger person.  Furthermore, tissues 

that undergo frequent self-renewal such as gastrointestinal and urogenital cancers have more 

mutations but these tend to occur in the ‘pre-cancerous’ stage and do not confer a growth 

advantage.(47).  These are passenger mutations.(47)   

 

Given the number of different mutations present in any given sample, the task of 

differentiating driver and passenger mutations is difficult.  When data-sets were small this 

often involved in vitro analysis of potential mutations with assays such as colony formation 

assays and soft-agar assays to indicate anchorage dependent growth.(50, 51)   These 

techniques are time consuming and not easily translated to the evaluation of a large number of 

miss-sense variants.  Therefore, in silico methods of evaluation of genes have been adopted.  

One such method involves labelling somatic cancer predisposition genes (CPG) as potential 

TSG if in ≥20% of cases there is inactivating mutation, similarly an oncogene could be 

defined as a gene in which ≥20% of cases there are recurrent missense mutations (the 20/20 

rule).  This has been validated in some tumours, however can lead to some rarer driver 

mutations being missed.(47).  The number of driver mutations present in each cancer varies in 

each tumour type however there are believed to be between three and six in most solid 

tumours.(47) 
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1.4 The application of cancer genomics to patient care 

1.4.1 Examples of personalized cancer treatment 

Information regarding cancer development that has been determined from cancer genomics 

has already been translated into routine clinical practice.  One of the first targeted treatments 

derived from genomic studies is trastuzumab which is a monoclonal antibody directed 

towards HER-2(52) used in breast cancer.  HER-2 amplification is determined by 

immunohistochemistry which if equivocal is further evaluated by fluorescence in-situ 

hybridization (FISH).  Trastuzumab is standard of care for individuals with HER-2 positive 

breast cancer which has been radically treated (i.e. in the adjuvant setting)(53, 54) and those 

with metastatic disease(55). 

 

Currently, clinicians treating non-small cell lung cancer routinely provide personalized 

medicine.  The first of the new drugs used in ‘personalised’ non-small cell lung cancer care 

was established after retrospective analysis of the tumours of patients who responded to 

EGFR (epidermal growth factor receptor) inhibitors (56). 21% of adenocarcinomas have 

activating mutations of EGFR (57, 58). Now all lung adenocarcinoma are screened for 

activating mutations in EGFR.  Individuals with these mutations receive orally available 

EGFR inhibitors such as erlotonib (59) and gefitinib.(60)  Response rates to oral agents in 

these patients are much higher than with conventional chemotherapy (74% c.f. 31%) as is 

progression free survival (PFS) (10.8 months c.f.  5.4 months).(60)  Crizotinib is an orally 

available ALK inhibitor, this however was designed to treat the 5% of patients with non-small 

cell lung cancer with an ALK re-arrangement determined by FISH (61, 62).  It was associated 

with a 57% response rate in the first line treatment of advanced ALK positive disease(62). In 

comparison to chemotherapy, crizotonib had a better response rate (65% versus 20%) and 
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PFS (7.7 versus 3.0 months) and had better responses than chemotherapy in the second line 

setting.(61)   

The most commonly cited example of personalized cancer care is the use of vemurafenib in 

melanoma.(63) The V600E mutation of BRAF was identified in 59% of melanoma cell lines 

(64), BRAF activates the MAPK-ERK signaling pathway contributing to cell growth and 

proliferation.(65) Therefore, BRAF was thought to be an important target in melanoma.  In 

individuals with a BRAF mutation determined by real-time PCR, vermurafenib was associated 

with a 48% response rate versus 5% with chemotherapy and 84% six month survival 

compared with 64% in the chemotherapy group.(63) Further study of individuals on 

vemurafenib revealed that 50% of patients develop resistance to drug.  Resistance is 

multifactorial, however re-activation of MAPK signaling is a significant contributory factor.  

Translational laboratory work revealed that complete MAPK inhibition would be required to 

cause cell death in V600E melanoma.  Therefore, a MAPK inhibitor (MEK) was combined 

with BRAF inhibition in vitro and demonstrated to stop MAPK signaling and induce death.  

This combination was evaluated in patients and shown to improve PFS (4.8 months compared 

with 1.5 months).(66) The model of personalized care exemplified by BRAF and ALK 

inhibitors is what is hoped can be achieved by genetic analysis of cancer cells, so the most 

appropriate agent can be given to patients dependent on their ‘cancer genotype’.  This 

approach maximizes efficacy, reduces toxicity and potentially decreases cost.  Therefore, 

genomics has been incorporated in to early phase trial design in order to facilitate focusing of 

drugs to the appropriate patients. However, the examples of vemurafenib and crizotinib 

exemplify that genomic medicine is not a panacea for cancer care.  Despite these drugs 

targeting key driver genes, because of the inherent genetic plasticity of cancer cells, resistance 

occurs.  Thus, work on cancer treatments must follow the model of translational oncology by 
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being iterative and going from the patient to the ‘bench’ and back again.  The genomic 

spectrum of patients’ tumours may also need to be sampled multiple times as resistance 

develops.  

In inherited cancers, genome analysis is becoming increasing used and will be discussed in 

chapter 3.  Genome and exome analysis of individuals with family histories of cancer have 

enabled the detection of new cancer related genes such as PALB2 associated with breast and 

pancreatic cancer.(67)  Potentially, genomic assessment of patients with inherited syndromes 

may allow assessment of the risk of the development of cancer, facilitate risk reducing 

strategies including surgery and chemo-prevention in addition to production of 

pharmacogenomics markers.(67)   

1.4.2 Application of genomics to diagnosis and prognosis of cancer 

As described previously, in most cases treatment for cancer remains empirical based on the 

organ in which the cancer is derived and histopathological features.  Individual gene 

mutations are routinely evaluated in some conditions in order to guide targeted treatment 

choices.  These include: KRAS analysis in colorectal cancer as mutations in KRAS are 

associated with resistance to EGFR inhibitors (68, 69), and ALK and EGFR analysis in non-

small cell lung cancer (see section 1.4.1). Although there are some direct to consumer whole 

genome sequencing companies in the US (70), genome sequencing at present remains 

predominantly a research tool used in clinical trials.  However, there have been some attempts 

to bring genomic technologies into clinical care.  Clinically, genomics have been used in 

prognostication and stratification. Women with early stage breast cancer can receive adjuvant 

chemotherapy with concordant toxicities with relatively low absolute survival benefits if 

selected using clinical criteria alone (often an absolute benefit of~5%).  Gene-expression 

profiles such as 70 gene Mammaprint profile approved in the US by the FDA and the 21 gene 
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recurrence score (Oncotype DX) which has been recommended by the American Society of 

Clinical Oncology(2) have been developed to estimate the risk of relapse. Patients identified 

at high risk of relapse can be offered chemotherapy whereas those at lower risk can be 

managed expectantly. Other gene expression arrays have been developed in colon cancer to 

determine who may benefit from adjuvant treatment.(2) These arrays however are still in the 

process of prospective evaluation in the form of randomized controlled trials.(2, 71) 

 

1.5 The scope of the research presented in this thesis 

Given the considerable progress made in cancer genomics, the aim of this research is to 

improve the understanding of molecular pathophysiology of cancer.  This includes improved 

identification of individuals with genetic predisposition to cancer, identification of potentially 

new cancer associated genes (actionable targets) and using molecular aberrations to identify 

possible new ‘druggable’ targets.    Actionable targets represent cancer drivers which alter the 

cancer’s growth and development but may not be druggable.  Whereas druggable targets 

represent genes that produce a protein that can be bound by a small molecule at a required 

binding affinity and affect its function.(72) For example, HER2 overexpression is a poor 

prognostic sign in breast cancer hence is an actionable target.  As there is anti-HER2 

treatment it is also a druggable target.   

 

In order to facilitate the study of cancer genomics, two exemplars of cancer genetics are 

evaluated.  Phaeochromocytoma is evaluated in order to establish genetic testing protocols as 

although it is a relatively rare cancer it is associated with some seminal findings in cancer 

genetics.  Historically, it was thought to be only associated with a 10% genetic risk (73) but is 

now believed to be one of the most important genetic cancers with over 40% of individuals 
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harbouring a mutation causing the condition(74).   Furthermore, laboratory investigations into 

the function of mutations in SDHx have revealed the novel role of Kreb’s cycle intermediates 

such as succinate and fumarate in pseudohypoxia and the hypermethylator phenotype(74, 75).   

The second cancer studied in this thesis is familial RCC, although familial RCC is relatively 

rare (representing 3% of all renal cancers)(76), studies of the condition have led to key 

findings in the oncogenesis of renal cancer.  Notably, the identification of the von Hippel 

Lindau gene (VHL) in families with the disease(77) was later found to be inactivated in almost 

90% of all clear cell renal cancers(78).  Functional evaluation of VHL led to agents being used 

therapeutically which were up-regulated by loss of VHL e.g. anti-VEGF agents.  Therefore, 

familial RCC represents a good model for the evaluation of CPG and potentially new TSG.  

The advantage of studying familial kidney cancer is also that there are fewer mutations 

present therefore, potentially fewer passenger mutations improving the efficiency of 

evaluating variants. Thus, in this thesis research into novel familial RCC genes and new 

therapeutic targets in RCC will be described. 
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CHAPTER 2 METHODS 

2.1 Materials 

2.1.1 Companies materials obtained from 

Company Name Address 

Abcam Cambridge, UK 

Appleton Woods Birmingham, UK 

Agilent Biotechnology Berkshire, UK 

Alta Biosciences Birmingham, UK 

Ambion, Life Technologies Paisley, UK 

Applied Biosystems Warrington, UK 

Autogen Ltd Wiltshire, UK 

Bioline London, UK 

Biorad Hemel Hemstead, UK 

Cambridge Bioscience Cambridge, UK 

Cell Signalling Hitchin, UK 

Fermentas (Thermo Scientific) St. Leon-Rot, Germany 

Fisher Scientific Loughborough, UK 

GE Healthcare Amersham, UK 

GeneFlow Litchfield, UK 

Gibco, Life Technologies Paisley, UK 

Invitrogen Paisley, UK 

MRC Holland Amsterdam, Netherlands 

New England Biolabs Hitchin, UK 

PAA Laboratories Yeovil, UK 

Promega Southampton, UK 

Qiagen Crawley, UK 

Roche Welwyn Garden City, UK 

Sigma-Aldrich Poole, UK 

StarLabs Milton Keynes, UK 

Sarstedt Leicester, UK 

Strategene Cambridge, UK 

Stratech Scientific Limited  Suffolk, UK  

Web Scientific Crewe, UK 
 

2.1.2 General chemicals 

General laboratory chemicals were obtained from Sigma-Aldrich unless otherwise specified.  

Methanol, ethanol and isopropanol were supplied by Fisher Scientific.  Agarose, DNA and 

protein ladders were obtained from Fermentas.  Tissue culture flasks, plates and dishes were 

obtained from Corning and Sarstadt.  Pipettes were purchased from Appleton Woods.  PCR 

plates and tubes were obtained from WebScientific UK.   
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2.2 DNA samples 

All patients gave written informed consent for genetic studies and ethical approval was 

provided by the South Birmingham Research Ethics Committee (Molecular Pathology of 

Human Genetic Disease Study). 

2.2.1 Germline familial RCC samples 

Germline DNA from patients with a family history of RCC were obtained from the West 

Midlands Familial RCC Registry.  DNA was extracted using standard protocols by the West 

Midlands Regional Genetics Service (WMRGS) (79).  The registry was analysed in order to 

identify DNA samples from individuals with no known mutations in RCC associated genes, 

notably VHL, FLCN, MET, SDHB.  DNA was chosen from individuals who had been 

reviewed by a consultant cancer geneticist and believed to have an inherited renal cancer, 

have a personal history of RCC, and either a strong family history of RCC or multiple RCC.   

2.2.2 Sporadic RCC DNA samples 

Paired normal kidney and RCC samples were provided to Professor’s Maher’s laboratory as a 

gift from Professor Noel Clarke, University of Manchester.  DNA had been extracted from 

these samples by Mr Dean Gentle. RCC samples were derived from patients without a family 

history and with a single tumour. 

2.2.3 Familial phaeochromocytoma germline samples 

Germline DNA from patients with familial phaeochromocytoma were obtained from the West 

Midlands Familial Phaeochromocytoma Registry.  DNA was extracted using standard 

protocols by the WMRGS as described previously (79).  DNA studied was chosen from 

patients with no known mutations in the common phaeochromocytoma predisposing genes: 

VHL, SDHB, SDHD, RET and NF1.  
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2.2.4 Sporadic phaeochromocytoma DNA samples 

DNA from sporadic phaeochromocytoma samples were provided to Professor Latif as a gift 

from Department of Urology; Yokohama City University School of Medicine, Japan. 

2.3 DNA extraction from tissues 

DNA was extracted from cell lines in order to perform mutational analysis. The Roche DNA 

isolation kit for cells and tissues was used.  DNA was extracted from cell pellets.  Cells were 

cultured as described in section 2.11. The media was removed and the cells washed in sterile 

phosphate buffered saline (PBS) (appendix 1).  Cells were trypsinised using 1ml of trypsin 

(Invitrogen) and resuspended in 10 ml of media.  The cells were then centrifuged at 280 x g 

for three minutes.  The supernatant was removed and the pellet was resuspended in 10ml of 

ice cold PBS.  This was then re-centrifuged and the supernatant removed.  The pellet was 

resuspended in PBS and centrifuged again.  The supernatant was removed and the pellet snap 

frozen in liquid nitrogen.   

In order to extract DNA, 1ml of cellular lysis buffer was added to each cell pellet and mixed 

by gentle flicking.  1.5µl of the supplied Roche proteinase K solution was added and the 

sample vortexed for 2-3 seconds to ensure adequate mixing.  The sample was placed on a pre-

heated heat block at 65o for one hour.  100µl of RNase solution at a concentration of 10mg/ml 

was then added and vortexed for a further 2-3 seconds to ensure the RNase solution was well 

mixed.  The sample was then incubated at 37o for 15 minutes and divided into different 500µl 

aliquots. 1ml of the Roche supplied precipitation solution was added to each aliquot. Each 

sample was mixed by vortexing for 5-10 seconds.  The samples were then placed on ice for 5 

minutes.  The samples were centrifuged at 26,900 x g  for 30 minutes.  Whilst the samples are 

being centrifuged, double the number of eppendorfs was labeled.  After centrifugation, the 

supernatant was carefully pipetted into the aforementioned labeled eppendorfs.  To each 
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sample 560µl of isopropanol was added (0.7 x sample volume) and then gently mixed.  The 

samples were centrifuged at 1370 x g  for 10 minutes.  The supernatant was gently pipetted 

off and discarded.  500µl of cold 70% ethanol was added to the pellet.  This was flicked 

gently to ensure the pellet was washed with ethanol.  The pellet was then centrifuged at 1370 

x g  for 5 minutes, the supernatant was gently pipetted off and the sample allowed to air dry.  

10µl of nuclease free water was then added to each sample and then the same samples were 

pooled.  The concentration of the DNA was estimated using the Nanodrop® 

Spectrophotometer ND 1000.   The A260/280 value for the DNA was between 1.7 and 1.9 

suggesting adequate quality. 

2.4 Whole Exome Sequencing (WES) 

DNA from eight individuals with RCC who had been seen by a consultant cancer geneticist 

and identified as having inherited RCC was sent for WES. These individuals also had either a 

strong family history of familial RCC or multiple tumours.   WES was performed by the 

group of Dr Michael Simpson, Division of Medical and Molecular Genetics, Kings College 

London, Guy’s Hospital exome sequencing and bioinformatic analysis service.  The process is 

summarized below.  

WES was performed on DNA extracted from peripheral blood lymphocytes using standard 

techniques.  5µg of DNA with an OD of 1.8-2.0 was required for WES.  DNA was sheared 

using adaptive focused acoustics from Covaris (Woburn, USA).  This method enables DNA 

to be fragmented at controlled temperatures in a sealed tube, reducing the risk of 

contamination and damage to the stability of the DNA.  The protocol was carried out on a 

bench top centrifuge. After shearing, the DNA was attached to Solid Phase Reversible 

Immobilisation Beads (SPRI) beads.   (Beckman Coulter, High Wycombe, UK).  The beads 

are paramagnetic and made of polystyrene covered with a magnetite layer and then coated in 
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carboxylate.  In the presence of a mixture of polyethylene glycol (PEG) and sodium chloride, 

DNA binds to the carboxylate.  The beads are able to bind vast amounts of DNA, the binding 

of DNA depends on the concentration of salt in the solution and the ratio of DNA to beads. 

Once the DNA has been bound to the beads, the beads were washed remove excess unbound 

DNA.  Double SPRI was used to select DNA, the first binding removes base pairs >250bp as 

they are bound to beads and those less than 250bp are in the supernatant.  The beads were 

then discarded and the supernatant re-incubated with the SPRI beads and concentrations so 

that all DNA between 150 and 200bp is bound.  The supernatant was discarded and the DNA 

was eluted off the beads and the DNA recovered.  Overall DNA recovery with this technique 

is between 80-90%. 

After the DNA was cleaned, the 5’ ends of DNA were phosphorylated and a poly-adenosine 

tail was added to the 3’ end. The fragmented DNA was ligated to adapter sequences. These 

adapter sequences correspond to sequences on the Illumina flow cell. After the DNA was 

attached to adapter sequences, PCR enrichment took place and excessive reagents removed. 

After enrichment, exon capture was performed with Sure Select Target Enrichment system 

(Agilent Technologies UK Ltd, Berkshire).  The DNA was then hybridized with 120mer 

biotinylated RNA library baits.  Post hybridization, the DNA was mixed with streptavidin 

coated magnetic beads.  DNA which had been adequately hybridized with RNA baits bound 

to the streptavidin and then these beads were removed using magnetic fields.  The unbound 

fraction (i.e. that without RNA baits) was discarded.  The beads were then washed so that the 

DNA was removed and the RNA digested.  The DNA with appropriate adapter sequences 

formed a library which was ready for next generation sequencing (NGS).  

Sequencing was performed on the Illumina Analyser IIX with 76 base paired ends and has 

been described previously by Dr Simpson’s group (80, 81)  The paired end reads for each 
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exome were in two FASTQ files. Initial checks on the quality of the data were performed 

using the FASTQC programme (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).  

The Phred score of the sequence should be ≥15 and the minimum coverage 25x. The depth 

and breadth of sequence coverage was calculated using the BedTools software package (82)  

Similarly, sequence alignment, identification of single nucleotide variants (SNV), small 

deletions were identified by the SAMTools software package, this package also filtered the 

SNV for quality (variant frequency >20%, coverage ≥5%)(83). The sequence was aligned to 

the reference human genome sequence (hg 18 NCBI build 36).  Low read scores were 

excluded as were reads going to multiple alignments.  The Annovar software package (84) 

was used to annotate variants to genes and transcripts. The data was then  filtered and variants 

identified in NCBI dbSNP build 129 and common SNPs in the 1000 genomes data (85) were 

removed.  Furthermore data was compared to 250 control exomes sequenced by the same 

method. 

2.5 Whole genome amplification 

In order to perform and aid mutational analysis germline DNA was amplified using the 

Qiagen REPLI-g Minikit.   Filter tips were used for the transfer of all DNA and buffers.  

These were obtained from Corning Ltd.  42 samples were amplified in each experiment.   

Stock DNA at a concentration of (>100ng/µl) was diluted 1 in 10 with TE Buffer (see 

appendix 1).  1µl of the diluted DNA was aliquoted into a clean, dry PCR plate.  A further 

1.5µl of TE buffer was added to each sample.  500µl of nuclease free water was added to 

buffer DLB.  REPLI-g mini DNA polymerase was then thawed on ice.   Buffers D1 and N1 

were prepared for these samples.  Buffer D1 consisted of 25.2µl of reconstituted buffer DLB 

and 118.9µl if nuclease free water.  Buffer N1 consisted of 34.8µl of stop solution and 

197.2µl of nuclease free water.  2.5µl of buffer D1 was added to each sample and mixed by 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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pipetting.  The samples were incubated at room temperature for 3 minutes.  Whilst the 

samples were incubating, a master-mix was prepared. This consisted of: 42 µl of nuclease free 

water, 1218µl of REPLI-g mini reaction buffer, 42µl of REPLI-g mini DNA polymerase.  5µl 

of buffer N1 was added to each sample and then 30µl of master-mix was added and mixed by 

gentle pipetting.  The samples were then placed in a PCR machine with a heated lid and 

incubated at 30o for 10-16 hours.  The samples were then heat inactivated at 65o for 3 minutes.  

The PCR samples were then diluted 1 in 20 with TE buffer and 3µl of DNA were used for 

subsequent PCR reactions.  If a variant was found, the stock DNA was analysed in order to 

confirm the mutation. 

2.6 Polymerase Chain Reaction 

Unless stated otherwise all PCR reagents were obtained from Roche (Fast Start Taq DNA 

Polymerase) stored at -20o.  Working concentrations (10mM) of dNTP were produced by 

adding 12.5µl of 100mM stock deoxyadenosinetriphosphate (dATP), 

deoxycytosinetriphosphate (dCTP), deoxyguaninetriphosphate (dGTP) and deoxythymidine 

triphosphate (dTTP) in 450µl ddH20. dNTP were stored at -20o.  Stock dNTP were obtained 

from Roche.  Primers were obtained from AltaBiosciences or Invitrogen. 

2.7 Sequencing genes 

2.7.1 Primer design 

The reference sequence of the gene was obtained from the UCSC genome browser (86), 

intronic regions were in lower case and exonic regions in uppercase.  The cDNA sequence of 

the gene was then obtained from Ensembl (87).  The Primer 3 programme (88) was used to 

design appropriate primers.  A nucleotide blast search (89) was performed in order to ensure 

specific binding to the gene in question,  Ensembl was also used to confirm the primers were 

not placed in areas with SNP(87). 
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2.7.2 Polymerase chain reaction (PCR) for sequencing 

All PCR reactions were performed in a BioRad Tetrad 2 Peltier thermocycler unless stated 

otherwise.  Table 2.7.2.1 demonstrates the standard PCR reagent concentrations used in each 

reaction.  A negative control was also performed in each reaction to ensure no contamination.  

Thermal cycling conditions varied depending on the primer combination (table 2.7.2.2 in 

appendix 2). Those for CDKN2B exons 1 and 2 are described in table 2.7.2.3 in appendix 3.  

5µl of sample was mixed with 2µl of loading dye (appendix 1).  The samples were 

electrophoresed on a 1.5% volume/volume (%) (v/v) agarose gel produced by warming 3g of 

Agarose (Sigma) in 200ml of 1x TBE (10x TBE obtained from GeneFlow Ltd (89mM Tris 

Borate pH 8.3, 2mM Na2EDTA) in the microwave for 2 minutes.  The liquid was allowed to 

cool by running under a cold water tap and once able to be held comfortably, 2µl of ethidium 

bromide (10ng/ml) was added to the liquid.  The gel was then poured and allowed to set.  

100bp ladder (Fermentas) was also added to the gel to allow comparison between samples. 

Gels were visualised using UV visualised (Ingenius Syngene Bioimaging Machine) and 

photographed using Gene Snap v 7.04, Synoptics Limited. 
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Reagent Volume (µl) for one reaction 

10 x Buffer 2.5 

20mM MgCl2 2.5 

2mM dNTP (1:1:1:1) 2.5 

GC rich solution (5x). 5 

10mM Forward Primer 1.25 

10mM Reverse Primer 1.25 

Taq 0.2 

ddH2O 7.8* 

DNA 1* 

Total 25 

Table 2.7.2.1.  Concentrations of reagents used in a PCR reaction. * if whole genome 

amplified DNA was used 3µl of DNA was used and thus the ddH2O decreased to 5.8µl.  This 

correlated with 10-200ng of genomic DNA, 0.1-1ng of plasmid DNA 

2.7.3 Cleaning the PCR product  

Prior to carrying out the sequencing reaction, the amplified DNA was cleaned using a 

combination of exonuclease I (New England Biolabs) and alkaline phosphatase (Fermentas) 

known as the ExoSAP reaction.  Exonuclease I removes excess primer and alkaline 

phosphatase removes excess dNTP.  The reaction concentrations for the ExoSap and 

conditions for the PCR reaction are described in table 2.7.3. 

 (A)                                                                                                (B) 
 
 

 
 

 

 

Table 2.7.3. Reagents and conditions required for the ExoSAP reaction. (A) Reagents 

required for ExoSAP cleaning of one PCR reaction and (B) The cycling conditions for the 

ExoSAP reaction. 

Reagent Volume (µl) 

Exonuclease I 0.25 

Fast alkaline phosphatase(AP) 1 

Fast AP Buffer 1.45 

ddH20 1.35 

DNA 10 

Temperature (oC) Time(s) 

37 1800 

85 1200 
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2.7.4 Gel extraction 

DNA from PCR reactions for amplification of tumour/normal DNA pairs was extracted prior 

to sequencing instead of carrying out Exosap reactions.  This was because the sequence was 

not clear when Exosap reactions were performed.  Gel extraction was performed using the 

Qiagen gel extraction kit.  PCR product was run out on a 2% v/v agarose gel, the product was 

then visualised using a UV light and excised using a clean scalpel.  The scalpel was cleaned 

with ethanol before each band was excised.  The cut band was placed in a clean dry 

Eppendorf container, 300µl of buffer QG was added to each eppendorf and incubated at 50o 

for 10 minutes until all the gel was dissolved.  The eppendorf was vortexed every 2-3 

minutes.  Once dissolved 100µl of isopropanol was added to the sample and mixed.  Qiaquick 

spin columns were labelled appropriately and the sample added to the column.  The column 

was centrifuged at 17900 x g   for 1 minute to bind the DNA.  The follow through was 

discarded and 500µl of buffer QG added to the column, the column was spun again at 17900 x 

g  for 1 minute.  The wash through was discarded and 750µl of buffer PE added to the spin 

column, the column was incubated at room temperature for 5 minutes.  The column was spun 

again at 17900 x g   for 1 minute.  The follow through was discarded and then the column was 

spun again at 17900 x g to ensure that the excess buffer had been removed.  The column was 

then placed into a clean dry eppendorf and 30µl of double distilled water (ddH2O) added to 

the column. The column was incubated for 5 minutes at room temperature and subsequently 

spun at 17900 x g for 1 minute to elute DNA   

2.7.5 The sequencing reaction 

A sequencing reaction was carried out on clean DNA using the reagents as described in the 

table below.  Big Dye terminator version 3.1 sequencer kit (Applied Biosystems).  The 

sequencing reaction was carried out as described in table 2.7.5 below. 
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(a)                                                 (b) 

                                          

 

 

 

 

Table 2.7.5 Reactions andconditions for the sequencing reaction. (a) Reagents required (b) 

thermocycling conditions. 

2.7.6 Ethanol precipitation 

Sequencing reactions were typically 10µl and DNA was precipitated as follows. 1µl of 

precipitation buffer (appendix 1) was added to each well followed by 25µl of 100% ethanol.  

The plate was then placed in an Eppendorf 580R centrifuge at 2254 x g for 30 minutes.  The 

plate was then removed and excess ethanol gently removed by tapping on some filter paper 

and the plate was spun upside down for 10s at 23 x g.  50µl of 70% ethanol was added to each 

well and the plate spun at 2254 x g for 20 minutes.  The excess ethanol was then removed as 

described previously and another 50µl of 70% ethanol added to the plate.  This was 

centrifuged for a second time at 2254 x g for 20 minutes and the excess ethanol removed.  The 

ethanol was then removed from the sample by heating the PCR plate to 65o for 15 minutes 

and then re-suspending the DNA in 10µl of Hi-Di (Applied Biosystems).  The DNA was then 

heated at 95o for 5 minutes and placed on a 3730 ABI DNA Analyser. Analysis for mutations 

was performed using either Sequencing Analysis 5.2 (Applied Biosystems) or Mutation 

Surveyor (Soft Genetics).   

Reagent Volume 

(µl) 

Big Dye 1 

5x Buffer 2 

Primer 1 

Cleaned PCR 
product 

6 

Step Temperature (oC) Time(s) 

1 95 300 

2 95 30 

3 50 30 

4 60 4 

5 Cycle to step 2 39 more times  

6 12 Forever 
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2.7.7 Determination of predicted functional significance of genetic alterations using in 

silico analysis 

The possible functional significance of genetic alterations was determined using in silico 

tools.  Polyphen-2 (Polymorphism phenotyping version 2) (90) was used to predict whether 

alterations would have a damaging effect on the protein structure and also consider the 

evolutionary conservation of the particular amino acid. The SIFT programme (91) was used to 

model the influence of amino acid changes to protein function. In order to determine whether 

missense alterations influenced splice sites, the splice site prediction programme (NNSplice 

0.9)(92) was used to predict the splice sites of the gene investigated.  

2.8 Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

This was performed to establish the presence of RNA corresponding to specific genes.  The 

first step in this process is RNA extraction. 

2.8.1 RNA extraction 

RNA extraction was performed using the Qiagen RNeasy kit, prior to commencing the 

procedure, 10µl of β mercaptoethanol were added to the provided RLT buffer.  Cells from 

which RNA was to be extracted were harvested. This consisted of aspirating off media, 

washing cells with 2ml of ice cold PBS and then adding 350µl of buffer RLT.  Cells were 

removed using a cell scraper and then the cells were placed in a clean eppendorf.  The 

eppendorf was centrifuged at 300 x g  for 3 minutes and the supernatant taken off and placed 

in a fresh eppendorf.   350µl of ice cold ethanol was added to the supernatant and mixed by 

gentle pipetting.  This mixture was placed on an RNeasy mini-spin column and centrifuged 

for 15s at 17900 x g.  The follow-through was discarded and 700µl of RW1 was added to the 

column and this was centrifuged at 17900 x g for 15s.  The follow through was discarded and 

then 500µl of buffer RPE was added to the spin column and centrifuged again at 300 x g for 

15s.  The follow through was discarded and a further 500µl of buffer RPE was added to the 
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spin column and the column was centrifuged again for 300 x g for 2 minutes.  After the 

follow through was discarded, the column was centrifuged again to remove excess buffer.  

The column was then transferred to a new eppendorf tube and 30µl RNase free water was 

added to the column and centrifuged at 300 x g for 1 minute.  The RNA was quantified using 

a spectrophotometer, the quality was assessed by checking the ratio of the absorbance at 

260nm and 280nm and ensuring the ratio was between 1.9 and 2.1. 

2.8.2 Conversion of RNA to DNA 

1µg of RNA was converted to DNA using the superscript II system (Invitrogen).  Briefly this 

consisted of diluting 1 µg of RNA in 10l of nuclease free water and adding 50ng of random 

hexamers and 1 µl of 10mM dNTP mixture to an eppendorf.  The eppendorf was mixed well 

and centrifuged briefly and heated to 65o for 5 minutes and then quick chilled on ice. 4µl of 

single strand buffer, 1µl of 0.1M dithiothreitol, 40 units of RNaseOUT inhibitor and 200 units 

of the superscript II reverse transcriptase were added to the eppendorf.  The mixture was 

mixed gently and incubated at the following temperatures: 25 o for 5 minutes, 55 o for 60 

minutes, 70 o for 15 minutes.  DNA quantity is then determined using a nanodrop as described 

in section 2.3.   

2.9 Evaluating sporadic samples for copy number changes using Multiplex Ligation 

Dependent Probe Amplification (MLPA) 

This was carried out using the ME024-B1 9p21 CDKN2A/B region kit produced by MRC 

Holland.  This kit detects copy number changes in genes located at 9p21.3.  Each individual 

MLPA reaction evaluates using 33 probes evaluating the genes of interest and compares them 

to 12 reference probes.  The peak size of individual probes is compared to normal samples (a 

total of four was included in each experiment) and the intra-experimental reference probes.  

Each MLPA run contained a total of 20 samples including normal controls and one TE buffer 

control (see appendix 1).   The MLPA reaction was performed using the manufacturer’s 
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protocol (MSP-003 updated 23-01-12) which was split into a number of stages: (i) DNA 

denaturation, (ii) hybridisation (iii) ligation (iv) PCR reaction. 

2.9.1 Sample preparation and DNA denaturation 

Initially, three sets of 0.2µl thin walled PCR tubes were labelled 1-20 in three different 

colours on three different racks.  A table was made with the following headings: sample 

number, tumour (T) or normal (N), Label (1-20) and dilution required to make 250ng. The 

table was completed and the DNA diluted to a concentration of 250ng using TE buffer in 

0.2µl PCR tubes.  1µl of diluted DNA was added to 4µl of TE in another labelled tube, to the 

tube labelled 20 only 1 µl of TE was added.  A drop of mineral oil (Sigma) was added to each 

sample, lids closed and then the tubes were placed in a tetrad thermocycler ensuring that there 

is random distribution of the controls within the sample. The DNA was then denatured for 5 

minutes at 98 o and then cooled to 25o for 30 minutes.   

2.9.2 Hybridisation 

The provided Salsa probe mix was mixed by gently flicking and pipetting and the 

hybridisation master mix prepared for 22 samples as described in the table 2.8.2 below. 3 µl 

of the hybridisation mixture was added to each tube underneath the mineral oil, mixed by 

gentle pipetting and the lids closed firmly.  The tubes were then placed in the thermocycler at 

95o for one minute and then 16 hrs at 60o 

 Hybridisation Mix (µl) X22 

SALSA Probe 1.5 33 

MLPA Buffer 1.5 33 

Total 3  

Table 2.9.2 Master Mix preparation for hybridisation 

2.9.3 Ligation reaction 

These were performed following the overnight hybridisation reaction.  Initially the master-

mixes for the reactions were made as described in the table 2.9.3, mixed by gentle pipetting 
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and kept on ice. The thermocycler was then set to 20o forever and the tubes removed from the 

cycler.  13µl of ligase-65 buffer A was added to each tube and mixed by pipetting, this was 

the ‘dosage mix’.  10µl of the above dosage mix was added to the unused and pre-labelled 

tubes and placed in another rack.  The cycler was incubated at 48o forever and the tubes were 

added to the cycler. 10µl of the dosage mix was added to the tubes, mixed by pipetting, the 

tubes were then closed and incubated at 48o for 30 mins, 98o for 5 mins and then 20 o forever. 

Then the PCR step was performed. 

(A) 

 Ligation Buffer A X22 

Ligase-65 Buffer A (µl) 3 66 

Water(µl) 10 220 

Total(µl) 13 286 

(B) 

 

Table 2.9.3 Ligase Master-mixes for copy number assays;  

(A) Master-mix for Ligase A (B) Master-mix for Ligase B  

 

 2.9.4 PCR reaction  

Salsa polymerase was warmed in the hand to reduce viscosity and a master-mix of Salsa PCR 

primers and Salsa Polymerase was prepared (see table 2.9.4).  This was mixed by gentle 

pipetting and stored on ice.  At room temperature, 5µl of the polymerase mix was added to 

each tube and mixed by gentle pipetting.  The tubes were then placed in a thermocycler and 

the following programme initiated: 35 cycles of: 30 seconds 95o, 30 seconds 60o, 60 seconds 

                                                              Ligase -  65 Mix  FOR DOSAGE ONLY 

                                                                      X1                           x22 

Ligase-65 Buffer B(µl) (white cap) 1.5 33 

Ligase-65 (µl) (green cap) 0.25 5.5 

Water(µl) 8.25 181.5 

Total(µl) 10 220 
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72o followed by 20 minutes at 72o.  After completion of the task the tubes were opened in 

another room and the product transferred in to another set of clean labelled tubes.  These were 

stored at 4o for up to a week or for longer periods at -15o to -25o wrapped in foil.   

 

 

 

Table 2.9.4 Reaction components for PCR reaction 

2.9.5 Fragment separation by electrophloresis 

0.7µl of the above PCR reaction was aliquotted into a PCR plate.  To this 9µl of formamide 

(Life technologies) and 0.2µl of GeneScan LIZ-500 size standard (Life Technologies) were 

added.  The plate was sealed, incubated for 2 minutes at 80o and cooled rapidly.  The reaction 

was then run on an AB3730 sequencer equipped with fragment analysis software.   

 

2.9.6 Relative quantification of amplification products. 

Data was analysed using the Genemarker software (edition 1.71), Softgenetics LLC, USA.  

The TE control was analysed to ensure that there was no contamination.  The internal quality 

controls were then assessed.  A CDKN2B panel was devised using the probe sizes given in the 

MRC Holland Protocol.  Genes were labelled A-I on the basis of the position on the 

chromosome (described in table 2 of the MRC Holland Protocol), and probes marked 

according to size (described in table 1of the protocol) with a letter _ name of the gene, and a . 

followed by the appropriate number (e.g. A_DOCK8, G_CDKN2A.1).   Control and reference 

probes were labelled with the prefix and then the size for reference probes.  The software 

compared the peak heights in the samples to the mean of the controls to produce a ratio.  

Deletions were denoted by a loss <0.75 and gain by a ratio of 1.3. 

 SALSA PCR x44 

Salsa PCR PRIMERS (brown cap)(µl) 1 44 

Salsa Polymerase (orange cap)(µl) 0.25 11 

Water(µl) 3.75 165 

Total(µl) 5 220 
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2.10 Experiments performed by transfecting cells with a vector containing CDKN2B  

Prior to commencing cloning experiments LB broth, LB agar and Kanamycin were prepared 

as per appendix 1.  LB broth containing kanamycin was produced at a final concentration of 

50ng/ml by adding 50µl to 500ml of LB broth.  Kanamycin plates were produced by allowing 

LB agar to cool to room temperature and adding 25µl of kanamycin to every 50ml of LB agar.  

The agar was poured gently into 10cm dish and left to cool.  The plates have their lids placed 

on them, were labelled and stored upside at 4o. 

2.10.1 CDKN2B clone 

The CDKN2B clone was obtained from Cambridge Bioscience (True ORF Gold RC204895).  

This was streaked onto a kanamycin plate and incubated at 37o overnight.  Six individual 

colonies were picked and placed in 2ml of sterile LB broth containing kanamycin.  This was 

incubated overnight at 37oC and agitated at 250RPM in a shaking incubator.  The clone was 

then purified using the Qiagen miniprep spin kit as described below as per manufacturer’s 

instructions(93). 

2.10.1.1 Purification of the high copy number plasmid  

The bacterial broth was purified using the Qiagen mini-spin kit as per manufacturer’s 

instructions(93).  Briefly, 1.5ml of bacterial broth was placed in an eppendorf and spun at 

17,000 x g  for 10 minutes.  The supernatant was then discarded and the pellet resuspended in 

250µl of buffer P1.  250µl if buffer P2 containing LyseBlue was added to the eppendorf and 

mixed by inverting.  The solution then became colourless.  350 µl of Buffer N3 was added to 

the sample and immediately mixed by inversion until the solution was colourless. The 

eppendorf was centrifuged at 17,000 x g  for 10 minutes.  During centrifugation, QIAprep 

spin columns were labeled using a permanent marker.  The supernatant from the 

centrifugation was then pipetted onto the appropriately labeled spin column.  The spin column 

was centrifuged at 17,000 x g  for 60s and the follow through discarded. 500µl of buffer PB 
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was added to the spin column and then centrifuged for 60 seconds at the same speed.  The 

follow through was discarded and 750µl of buffer PE added to the spin column.  This was 

centrifuged for a further 60s, and the follow through discarded.   The column was then 

centrifuged at 17,000 x g for a further minute to remove residual buffer.  Then the column 

was added to a clean microcentrifuge tube and 30µl of nuclease free water added to the 

column.  The column was left for one minute and then centrifuged at 17,000 x g for a further 

minute.  The concentration of the plasmid was determined by spectrophotometry. 

2.10.1.2 Confirmation of sequence of the clone 

The clone was sequenced as described previously using the following primers: 

VP1.5 (Forward Primer) 5’to3’ GGACTTTCCAAAATGTCG, XL39 (Reverse Primer) 5’ to 

3’ ATTAGGACAAGGCTGGTGGG. 

The sequencing reaction contained the following concentrations: 4µl of purified vector, 0.5 µl 

of big dye, 2 µl of 10x buffer, 1 µl of primer, 2.5 µl of ddH2O 

 

2.10.2  Purification of large quantities of plasmid 

2.10.2.1 Transformation of bacterial cells with CDKN2B 

Once the plasmid was confirmed to contain the correct CDKN2B sequence, alpha-select 

competent silver competent cells (Bioline) were transformed.  The following technique was 

utilized:  Silver competent cells were gently thawed on ice.  30µl of silver competent cells 

were aliquotted into a clean sterile eppendorf, 5µl of plasmid was placed in the cells and 

stirred gently using a pipette tip.  The mixture was incubated on ice for 20 minutes.  The 

eppendorf was then placed into a heat block at 42o for 45s.  The cells were then incubated on 

ice for 2 minutes.  500µl of SOC medium (Invitrogen) was added to each eppendorf which 

was then snapped shut and wrapped with parafilm (Sigma Aldrich).  The eppendorf was then 
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placed in a horizontal position and secured to prongs in an orbital incubator (Gallencamp 

Orbital Incubator) and incubated at 37o for 1 hour.  100µl of cells were then plated out on 

kanamycin plates for >15hrs.  A colony was then picked the following day using a sterile 

pipette and placed in 100ml of sterile kanamycin containing media overnight (12-16 hours) in 

a conical flask. 

2.10.2.2 Purification of plasmid DNA  

The Qiagen Endotoxin Free Maxiprep kit (94) was used to purify DNA from the overnight 

culture prepared above.  The culture media was placed into two 50ml falcon tubes and 

centrifuged for 15 minutes at 4o at 6000 x g.  Whilst the culture was being centrifuged, one 

vial of RNase was added to buffer P1 and one vial of LyseBlue added to buffer P1.  After 

centrifugation, 10ml of buffer P1 was added to the first pellet and this resuspended.  Then this 

was removed and placed in the second falcon and the second pellet was also resuspended by 

gentle pipetting.  10ml of buffer P2 was added to the falcon tube and mixed by inverting 6 

times, at this point the liquid became blue.  The mixture was then incubated for 5 minutes.  A 

further 10ml of chilled buffer P3 was then added to the mixture.  The falcon tube was inverted 

6 times until there was a colourless liquid.  The liquid was placed in a Qiagen filter making 

sure not to pipette any of the suspended flocculent material.  The remainder of the flocculent 

material was then filtered and added to the Qiagen filter cartilage and the lysate incubated at 

room temperature for 10 minutes.  The cap was removed from the Qiagen filter cartilage and 

the plunger gently inserted the filtrate was collected into a new labeled falcon tube. 2.5ml of 

buffer ER was added to the filtered lysate and mixed by inversion ten times.  The mixture was 

incubated on ice for 30 minutes.  In the interim, a Qiagen tip-500 was equilibrated by adding 

10ml of buffer QBT and allowing it to pass through the tip by gravity.  The buffer was 

discarded and the filtrate from the maxi-cartridge was applied to the Qiagen tip and allowed to 
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pass through the tip by gravity.  The tip was washed twice using 30ml of buffer QC.  The 

DNA was eluted into a fresh falcon tube using 15ml of buffer QN. The DNA was precipitated 

by adding 10.5ml of isopropanol and centrifuged at 14000 x g  at 4o for 30min.  The pellet 

was re-suspended in 1.5ml of 70% ethanol and converted into a clean eppendorf.  This was 

centifuged at 26,900 x g  for 10 minutes.  The supernatant was removed and the pellet was air 

dried for 10 minutes.  The pellet as then re-suspended in 500µl of TE buffer.  The 

concentration of the DNA was then estimated using a nanodrop and the DNA diluted to an 

end concentration of 1µg/µl.  DNA was stored at -20o. 

2.10.3 Site directed mutagenesis 

Site directed mutagenesis was performed on the CDKN2B clone obtained from Cambridge 

Biosciences (True ORF Gold, Expression Validated cDNA clones, RC204895).  The clone 

had been sequenced to ensure that it contained the correct sequence.  Site directed 

mutagenesis was performed using the Quik Change II Site Directed Mutagenesis Kit 

(Stratagene, obtained from Agilent Technologies).   

2.10.3.1 Primer design 

Primers were designed using guidelines recommended by the company (95).  The mutation 

was placed at the centre of the primer with 15 further bases extended in both directions.  The 

Tm was ≥78o and determined using this equation: 

Tm=81.5+0.41(%GC)-((675/N)-% mismatch)).   

The GC content of the primer was at least 40% and the primer should terminate in one or 

more C or G bases.  Primers were not 5’ phosphorylated, purified by polyacrylamide gel 

electrophloresis and obtained from Invitrogen (see table 2.10.3.2 (appendix 4)) 

2.10.3.2 Mutant strand synthesis reaction 

PCR reactions were performed for each mutation in addition to one control reaction.   
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The control reaction was set up as follows: 2.5µl of 10x reaction buffer, 1 µl of pWhitescript 

4.5kb control plasmid, 0.625 µl of oligonucleotide control primer number 1, 0.625 µl of 

oligonucleotide control primer number 2, 0.5 µl of dNTP mix, 19.25 µl of ddH2O. Then 0.5 µl 

of PfuUltra DNA polyermase (2.5U/ µl) was added. 

The sample reactions were set up as follows: 50ng of CDKN2B gene expression plasmid, 

2.5µl of 10x reaction buffer, 0.5 µl of dNTP mix, 1 µl of forward primer (1µl of 1:10 dilution 

of 100µM stock), 1 µl of reverse primer (1µl of 1:10 dilution of 100µM stock), 19.25 µl of 

ddH2O. Then 0.5 µl of Pfu Ultra DNA polyermase (2.5U/ µl) was added. 

These reactions were completed as per table 2.10.3.3 in a thermocycler.  After the PCR 

reaction is completed the samples were placed on ice for 2 minutes to ensure the samples 

were cooled to ≤37 o. 

Step Temperature (oC) Time(s) 

1 95 30 

2 95 30 

3 55 60 

4 68 180 

5 Cycle to step 2 for 12 cycles 

 

Table 2.10.3.3   Thermocycling conditions for Mutant Strand Synthesis 

 

2.10.3.3 Digestion of amplification products 

1µl of the DpnI restriction enzyme (10U/µl) was added to the previously described 

amplification reaction.  This was mixed by gentle pipetting and incubated at 37o for one hour.  

This step is to ensure digestion of the non-mutated parental DNA. 

2.10.3.4 Transformation of XL-1 Blue Supercompetent Cells 

XL-1 Blue supercompetent cells were gently thawed on ice.  25µl were aliquotted into pre-

chilled eppendorfs.  1µl of the aforementioned digested amplified PCR product was added to 
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the cells and mixed by stirring.  The mixture was incubated on ice for 30 minutes.  The 

mixture was then heat pulsed for 45 seconds at 42o using a heat block and then placed on ice 

for 2 minutes.  500µl of pre-warmed SOC media (Sigma) was added to the eppendorf and the 

transformation reaction was incubated at 37o for 1 hour shaking at 250RPM in the orbital 

incubator.  125µl of the transformation mixture was placed on two kanamycin plates.  These 

were incubated at 37o for greater than 16 hours.   

2.10.3.5 Confirming accurate site directed mutagenesis. 

10 colonies were picked using a clean sterile pipette, each colony was incubated in 3ml of LB 

broth containing kanamycin.  These were incubated at 37o in a shaking incubator.  1.5ml of 

the culture was transferred into an eppendorf and DNA extracted using a Qiagen minispin kit 

as described in section 2.10.1.1.  A sequencing reaction was then carried out using 4µl of 

DNA, 1 µl of primer, 0.5 µl of Big Dye, 2 µl of 10x buffer and 2.5 µl of ddH2O . Once the 

mutation was confirmed the DNA was amplified using the Qiagen endotoxin free maxiprep 

kit as described previously (see section 2.10.2.2). 

2.11 Cell culture 

All tissue culture experiments were carried out in class II tissue culture hoods.  Prior to use 

the hoods were cleaned with 1% trigene solution (Starlabs). 

2.11.1 Cell lines used in this thesis 

The following RCC cell lines were utilised in this study: SKRC-39, KTCL-26, SKRC-47, 

786-P, RCC4, ACHN. These were all previously used and characterised by Professor Maher’s 

research group (50, 96-98).  The cells were maintained in complete medium described below.  

In addition to this, paired isogenic SKRC-39 cell lines were used in the kinase screening 

experiments.  These cells were previously produced in our laboratory by transfecting SKRC-

39 with PC DNA 3.1 vector alone or PC DNA vector 3.1 containing the VHL gene.  These 
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cells were maintained in complete media containing 1% v/v G418 (PAA laboratories).  All 

cell lines were maintained in a humidified incubator containing 5% CO2 at 37o.   

2.11.2 Media for cell culture 

Native cell lines were maintained in ‘complete medium’ which consisted of Dubecco’s 

Modified Essential Medium (Sigma) containing 10% fetal calf serum (PAA laboratories), 1% 

penicillin and streptomycin(Sigma)  v/v, 1% L-glutamine(Sigma, UK) and 1% v/v non-

essential amino acids (Sigma).  Cell lines selected for G418 sensitivity were maintained in the 

complete medium with 1% v/v G418 solution at 0.5mg/ml (PAA laboratories)    

2.11.3 Maintaining cells 

Cells were maintained in T75 flasks until they were required for experiments.  PBS, media 

and trypsin were warmed to 37o prior to use using a Grant Sub Aqua 18 water-bath.  Cells 

were maintained in the media described above and split every five days.  Cells were visually 

inspected using a Nikon TMS light microscope for viability and absence of infection.  Media 

was removed from the cells and discarded.  The cells were washed using 10ml sterile PBS and 

1ml of trypsin (Sigma) was added after the PBS was discarded.  The flask was gently agitated 

to ensure the bottom of the flask was evenly covered with trypsin and incubated at 37o for 10 

minutes. The flask was agitated and light microscopy was used to ensure that there were no 

further adherent cells.  10ml of fresh media was added to the flask.  The cells were re-

suspended, and 9ml of cells discarded.  A further 9 ml of fresh media was added to the flask.  

Every three months, mycoplasma testing was performed.   

20.11.4 Mycoplasma testing 

Cells were tested for possible mycoplasma infection three monthly basis or if suspected using 

the EZ-PCR mycoplasma test kit (Geneflow).  10ml of cells were centrifuged at 200 x g for 

10 minutes using a Labnet International benchtop spectrafuge 24D centrifuge.  The 

supernatant was pipetted out and placed in a new clean centrifuge.  The supernatant was then 
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centrifuged at 16300 x g  for 10 minutes.  The supernatant was discarded and the pellet re-

suspended in 50µl of the buffer mix.  The tube was heated at 95o for 3 minutes. Three  

reactions were prepared in separate 200µl PCR tubes using 17.5µl of water, 5µl of reaction 

mix, and either 2.5µl of test sample, 2.5 µl of water (negative control) and 1 µl  of positive 

control supplied.  The tubes were covered with mineral oil and the following PCR reaction 

carried out: 94o for 30s, then 35 cycles of 94o for 30s, 60o for 120s, 72o for 60s, then 94o for 

30s, 60 o for 120s and 72 o for 5 minutes.  The PCR products were loaded on a 2% agarose gel 

without any loading dye.  A 270bp fragment would indicate the presence of mycoplasma.   

 

2.11.5 Counting cells for experiments 

Cells were trypsinised and resuspended in 10ml of media as described above. 1ml of cells 

were aliquotted into a container, 20µl of cells were placed on an improved Neubauer 

haemocytometer. The haemocytometer was visualised using a light microscope at x10 

magnification, the number of cells in the four outer sections of the haemocytometer were 

counted.  Cells touching the outer and upper borders were not counted.  The total number of 

cells were divided by four to give the number of cells x 104/ml.  Cells were then diluted as 

appropriate. 

2.11.6 Cryopreservation of cells 

Cells contained in a T75 flask were trypsinised and re-suspended in 10ml of medium.  These 

cells were centrifuged at 280 x g for 5 minutes.  The media was decanted and discarded.  

Subsequently, the pellet was suspended in 3mls of 10% FCS containing 1% v/v of DMSO.  

The resuspended cells were aliquotted into three different cryovials (Sarstedt).  These were 

then placed in a Nalgene Mr Frosty freezing device containing isopropanol, this was placed in 

the -70o freezer for 48 hours prior to transfer of the cryovials to liquid nitrogen. 
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2.11.7 Resurrecting cells from storage. 

On removal from liquid nitrogen cell lines were placed in an icebox and transported to the 

tissue culture facility.  The cryovials were placed into a waterbath maintained at 37o.  Once 

the cells were defrosted they were placed in to a new sterile 75ml tissue culture flask.  

Warmed media was then added drop wise to the cells and maintained as described previously.  

2.11.8 Colony formation assays 

Colony formation assays were performed using the native CDKN2B plasmid and the mutated 

forms of the plasmid described in section 2.10.3. The plasmids were amplified using the 

Qiagen endotoxin free maxi-prep kit and diluted to a concentration of 1µg/µl using nuclease 

free water.  Colony formation assays were performed in VHL inactivated KTCL-26 cell lines 

which are known to contain Ser68X mutation in exon 1 of VHL.  This line was chosen as in 

most clear cell RCC VHL is inactivated.   The first transformation was carried out using the 

native CDKN2B plasmid and a vector without the gene (empty vector EV).  6 x 104 cells/ml 

were plated out in 6 well plates on day 0.  These cells were suspended in complete medium.  

On day 1, transfection was carried out in triplicate.  For one transformation, 2µl of plasmid 

was diluted in 200 µl of optiMem solution (Invitrogen) and 6µl of Fugene HD (Promega) was 

added directly to the optiMem taking care not to touch the sides of the eppendorf.  The 

eppendorf was vortexed and incubated at room temperature for 15 minutes.  The transfection 

reaction was added dropwise to the media.  On day 4, the cells were washed in PBS and 

trypsinised.  Cells were resuspended in 10ml of complete media containing G418.  For the 

first experiment, these cells were further diluted at the following concentrations 0, 1:5, 1:10, 

1:20.  Plates were incubated in a humidified incubator at 37o.  They were inspected twice 

weekly and media replaced after 5 days and then as required.  After three weeks the plates 

were stained to allow counting.  This was performed as follows: media was aspirated off the 

plates, each plate was washed with 10ml of PBS.  Then to each plate a few drops of crystal 
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violet solution (250ml ddH20, 250ml methanol and 0.5% v/v crystal violet) was added.  The 

plate was gently tipped to ensure even covering and then washed off gently using ddH2O.  

The plate was washed three times and then placed upside down on tissue paper.  Once the 

plates had dried the total number of colonies counted.  

The best results came from performing a 1 in 5 dilution, i.e. diluting the 2ml of cells in the 6 

well plate in 10ml of G418 containing media.  Thus the experiment was repeated three times, 

the mean number of colonies were determined.  Unpaired t tests were used to determine the 

significance of any difference between means.  One in five dilutions were also used for 

subsequent experiments using mutant plasmids compared to empty vectors.  In order to 

confirm transfection efficiency, immunoblotting was carried using lysates from the 

transfected cells (see section 2.15) 

 

2.12 Investigating possible synthetic lethal interactions  

2.12.1 Screening for synthetic lethal interactions using a siRNA screening library. 

The Silencer® Select Human Kinase siRNA Library v4 (Ambion) Kinase library contains 

2130 unique siRNA targeting a total of 710 human kinase genes.  Within this experimental 

system there is post-transcriptional silencing of genes with double stranded RNA in the form 

of siRNA with sequence homology to the target sequences of interest(99). Initially the 

working parental plates were diluted to produce working plates for use in the experiment.  

This was done by diluting the parental plate 1:10 using sterile nuclease free water (Ambion).  

2µl of stock siRNA was added to a PCR plate containing 20l of sterile nuclease free water.  

This plate was labelled working plate.  There were three oligonucleotides for each gene, thus 

for each experiment three plates were made labelled ABC1-4.  These and the parental plates 

were stored at -70o. 
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Prior to setting up the experiment media, trypsin, optiMem (Gibco) and INTERFIRin  (Polyplus 

transfection, Autogen Bioclear Ltd) were warmed at room temperature.  OptiMem was placed 

into a reservoir and then 22.5l added to a second clean PCR plate labelled master mix plate 

‘A/B/C 1_3 ’.  To this 6l of siRNA from the working plate was added to the corresponding 

well on the PCR plate.   In column 12 of the master mix plate 6l of siRNA directed against 

luciferase was added to wells 12A-D, these wells represented the controls. This mixture was 

homogenised by placing on a Grant-bio PMS-100 plate shaker.  To a second clean PCR plate, 

60l of INTERFIRin was added to each well in column 1, this column was the master column.  

To each column in each master mix plate add 1.5l of INTERFIRin using a multichannel 

pipette. The master mix plate was covered with a thermolid and left on a plate shaker for 10 

minutes.   

Whilst the plate was mixing, SKRC-39ev and SKRC-39wt cells were trypsinised and diluted 

to a concentration of 6 x 104 cells/ml.  After the cells had been diluted, 10l of the siRNA 

INTERFERin mixture was transferred from the mastermix plates into the corresponding black 

plates (Costar, Black bottomed 96 well Assay plates, Corning Inc) which were labelled 

A/B/C, 1/2/3_1/2/3 EV or WT.  Each diluted cell line was placed in a separate sterile 

reservoir and 90l of cells was pipetted into wells in the corresponding black assay plate 

using a multichannel pipette.  Each well was mixed by gentle pipetting.  To the last 2 wells in 

column 12 of each black assay plate (12E-H) 10l of 100mM mitramycin was added as a 

negative control, 2 wells were left empty i.e. contained cells only.  The cells were maintained 

at 37o in a humidified 5% CO2 atmosphere using standard techniques for 76 hours. 
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2.12.2 Assessment of cell viability using cell titre blue assay 

After incubation for 76 hours, 20l of cell titre blue reagent (Promega) was added to each 

well containing transfected cells (black plates).  Plates were agitated for 10 seconds and 

incubated at 37o for 4 hours.  Fluorescence recorded at 560/590nm using the Perkin Elmer 

Victor X3 plate reader (PerkinElmer).  Data was analysed by comparing the normalised 

luminescence values of SKRC39wt cells to SKRC39ev cells this represents the change the 

change in cell viability of VHL expressing cells compared to those lacking VHL 

2.12.3 Assessment of cell apoptosis using the caspase-glo assay 

Depletion of genes was carried out as described in 2.12.1 however cells were plated into white 

bottomed 96 well assay plates (Costar, Corning). Apoptosis induced by kinase gene knock 

down was determined using the Caspase-Glo 3/7 Assay (Promega).  Caspase-Glo 3/7 reagent 

was prepared as per the manufacturer’s recommendations.  It was allowed to equilibriate at 

room temperature.  Under sterile conditions 30l of media was removed from each well and 

50l of caspase-glo reagent was added to each well.  The plates were then incubated at room 

temperature for an hour, luminescent light was measured in a Victor X3 Plate Reader (Perkin 

Elmer).  

2.13 Protocol for transfection of siRNA using Dharmacon SmartPool siRNA 

Dharmacon ON-TARGETplus SMARTpool siRNA was purchased from ThermoScientific 

directed towards STK10, PLK1 and CDKN2B.  siRNA tubes were centrifuged to ensure the 

siRNA pellet was at the bottom of the tube. 100µM stock was prepared by adding 50µl of 

RNAase  free water to the tube. siRNA was diluted in RNAase free water in sterile conditions 

using filter tips.  The stock tube was mixed by gentle pipetting and then placed on an orbital 

shaker for 90 minutes at room temperature.  The tube was then aliquotted into smaller tubes 

and then stored at -70o. The experimental conditions investigated were as follows: 
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1. Untreated cells in triplicate: SKRC39EV, SKRC39WT, 786-0, KTCL-26, RCC4 

2. Cells treated with mithramycin: SKRC39EV, SKRC39WT, 786-0, KTCL-26, RCC4 

3. Cells treated with luciferase: SKRC39EV, SKRC39WT, 786-0, KTCL-26, RCC4 

4. Cells treated with siRNA to PLK1: SKRC39EV, SKRC39WT, 786-0, KTCL-26, 

RCC4 

5. Cells treated with siRNA to STK10  siRNA: SKRC39EV, SKRC39WT, 786-0, KTCL-

26, RCC4 

6. Cells treated with siRNA to STK10  siRNA and PLK1: SKRC39EV, SKRC39WT, 

786-0, KTCL-26, RCC4 

7. Cells treated with siRNA to STK10  siRNA and PLK1: SKRC39EV, SKRC39WT, 

786-0, KTCL-26, RCC4 

The cells were plated out as below in figure 2.13 in triplicate on black assay plates. 

2.13.2 Reverse transfection methodology 

A serial dilution of the 100µM stock was performed in sterile RNAse free tubes to produce a 

1µM working solution. In a separate RNAse free tube, DharmaFECT1 was diluted by adding 

1.8µl Dharmafect 1 in 373.2 µl of buffer per sample. As there were 30 samples, 54 µl was 

diluted in 11.196 ml.  For each transfection, 600µl of Dharmfect 1 was added to a clean sterile 

tube, to this 9µl of siRNA was added i.e. 9µl siRNA directed against STK in one tube and to a 

second tube 9µl siRNA directed against PLK  was added to Dharmafect 1.  For ‘50%’ dose, 

4.5µl of siRNA was used.   25 µl of the siRNA/Dharmafect mixture was pipetted into black 

bottomed assay plates as shown above and incubated at room temperature.  Cells were 

trypsinized and diluted at a concentration of 5x 104 cells/ml in complete media without 

antibiotics.  100µl of cells to each well as per the experimental plan (figure 2.13).  The plate 
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was incubated at 37o in 5% CO2 for 72 hours and cell viability was assessed using cell titre 

blue as described previously (2.12.2). 

 1 2 3 4 5 6 7 8 9 10 11 12 Treatment 

A SKRC39-EV SKRC39-WT 786-0 RCC-4 Untreated 

B SKRC39-EV SKRC39-WT 786-0 RCC-4 Luciferase 

C SKRC39-EV SKRC39-WT 786-0 RCC-4 Mithramycin 

D SKRC39-EV SKRC39-WT 786-0 RCC-4 STK-10 

E SKRC39-EV SKRC39-WT 786-0 RCC-4 PLK1 

F SKRC39-EV SKRC39-WT 786-0 RCC-4 STK10+PLK1 

G SKRC39-EV SKRC39-WT 786-0 RCC-4 STK10+PLK1 

at 50% 

H SKRC39-EV SKRC39-WT 786-0 RCC-4 STK10 25nM 

 

 1 2 3 4 5 6 7 8 9 10 11 12  

A KTCL-26    Untreated 

B KTCL-26    Luciferase 

C KTCL-26    Mithramycin 

D KTCL-26    STK10 

E KTCL-26    PLK1 

F KTCL-26    STK10+PLK1 

G KTCL-26    STK10+PLK1 
at 50% 

H KTCL-26    STK-10 

25nM 

 

Figure 2.13 Experimental design for knockdown of STK-10 and PLK1. The layout of Black 

Assay Plates used to analyze the effect of depletion of STK-10, PLK and both on RCC cell 

lines. 

2.14 Forward transfection using Dharmacon smartpool siRNA 

SKRC39ev and SKRC39wt cells were plated out in antibiotic free media on day one at a 

concentration of 2.5x105/ml in 6 well plates.  On day two, transfection was performed as per 

manufacturer’s instructions.  siRNA was diluted to a working concentration of 5µM in 1 x 

siRNA buffer (i.e. 1 in 20 dilution of 100µM stock).  3 eppendorfs were labelled tube 1 and 

also control, STK10, PLK1.  To each eppendorf was added 190µl of OptiMEM and 10 µl of 
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siRNA. These were mixed by gentle pipetting.   A further three eppendorfs were labelled tube 

2 Control, STK10 and PLK1.  To each tube two 1µl of Dharmafect 1 transfection reagent and 

199µl of OptiMEM were added.  These were mixed by gentle pipetting and the tubes were 

incubated at room temperature for 5 minutes.  Subsequently, the contents of eppendorfs 

labelled 1 were added to the corresponding tube 2.  After gentle mixing, the tube was 

incubated at room temperature for 20 minutes.  In the meantime, the media covering the 

previously plated out cells was replaced with 1600µl of media without antibiotics.  After, the 

incubation had completed 400µl of the appropriate transection mixture was added dropwise to 

SKRC39ev and SKRC39wt cells.  Each experiment was carried out in triplicate.  After 72 

hours the cells were harvested by washing the cells in ice cold PBS and adding trypsin.  The 

cells were then scraped off using a cell scraper.  Subsequently, they were centrifuged in ice 

cold PBS twice at 13000 x g  for 5 mins and the pellet snap frozen in liquid nitrogen.   

2.15 Immunoblotting to detect changes in protein expression 

2.15.1 Preparing protein lysates 

Protein from cell lines was extracted by initially trypsinising cells and resuspending the cells 

in media.  The cells were centrifuged at 13000 x g for 10 minutes.  The supernatant was 

removed and the pellet resuspended in 10ml of sterile PBS.  This was centrifuged again at 

13000 x g for 10 minutes.  PBS was removed and the pellet snap frozen in liquid nitrogen 

immediately or 1.5x the pellet volume of RIPA buffer (appendix 1) was added to the pellet 

and incubated on ice for 10 minutes.  After incubation the mixture was transferred into an 

eppendorf and centrifuged at 13000 x g for 10 minutes.  The supernatant was then removed 

and placed in a clean eppendorf and stored at -70o in a clean labelled eppendorf. 

Protein was extracted from cells treated in the 6 well setting by placing the cells on ice and 

removing the media of the cells and washing them in 2ml of sterile ice cold PBS. The PBS 
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was removed and 100µl of RIPA buffer was added to each well.  The cells were then removed 

using a cell scraper (Corning Ltd) and transferred to a clean eppendorf. After incubation for 

10 minutes with more RIPA, the cells were centrifuged at 13000 x g  for 10 minutes. The 

supernatant was stored. 

2.15.2 Protein estimation 

The Biorad DC Protein Assay kit (Biorad laboratories) was used to estimate the concentration 

of proteins.   The assay was carried out in a 96 well flat bottomed assay plate.  Reagent A* 

was prepared by adding 20µl of reagent S to reagent A.  This was stored up to a week at room 

temperature.  Standard albumin concentrations were then prepared using BSA 2µg/µl 

(Sigma).  The following concentrations were produced as follows.  BSA (µg/µl): 0.4, 0.8, 1.2, 

1.6, 2.0 (produced as described in figure 2.15.2). These were plated out as below in a 96 well 

plate. 5µl of each test sample was pipetted in duplicate in columns 3-4 position A and B on 

wards.  Then 25µl of mixture A* were added to each sample and 200µl of reagent B added 

and mixed by gentle pipetting.  The plate was left at room temperature for 15 minutes and 

then the absorbance measured using the WorkOut 2.0 programme (Dazdaq Ltd) on a Perkin 

Elmer Victor 3 Plate Reader which compared absorbance to a standard curve produced using 

the standards. 
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A) 

Concentration BSA (2µg/µl) Lysis Buffer (RIPA) 

0.4 4 16 

0.8 8 12 

1.2 12 8 

1.6 16 4 

2.0 20 0 

 

B) 

1  2  3  4  5    6     7     8       9       10        11         12 

5µl LB 5µlLB P P         
5µl LB 5µl LB           
5µl LB 5µl LB           
0.4µg/µl 
BSA 

           

0.8µg/µl 
BSA 

           

1.2µg/µl 
BSA 

           

1.6µg/µl 
BSA 

           

2.0µg/µl 
BSA 

           

 

Figure 2.1.5.2.  Protein concentration estimation 

A) A table showing how to dilute the bovine serum albumin (BSA) into the required 

concentrations. 

B) The layout of the protein estimation plate.  Each sample is placed in duplicate, 

columns 1 and 2 allow calibration of protein using albumin dilutions.  Proteins to be 

estimated (P) are placed in columns 3 onwards in duplicate. (Key LB=lysis buffer, 

BSA= bovine serum albumin) 
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2.15.3 Preparation of sodium dodecyl sulphate polyacrylamide gels 

Proteins were separated using sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) using equipment provided by BioRad Ltd.  Different concentrations of gel were 

used to resolve different sized proteins.  The constituents required to produce 12% gels are 

described in figure 2.14.3 below. Ammonium persulphate (APS) was prepared by dissolving 

0.1g of APS in 1ml of ddH20.  1.5mm plates and combs were initially washed using soapy 

water and then cleaned with 70% ethanol.  The plates were then gently placed together using 

the above equipment.  The resolving gel was added to the plate using a 1ml pipette ensuring 

no bubbles were present until the specified position on the plate (leaving approximately 1.5cm 

of the plate free from gel).  The gel was overlaid with ddH2O, the remainder of the resolving 

gel was retained in a universal container once this was set the water poured off the gel and 

plate dried using filter paper.  The stacking gel was then placed on top of the resolving gel and 

the comb placed into the gel.  Once set the gel was removed for use.   

 Resolving (12%) Gel Stacking gel 

ddH2O (ml) 6.6 6.8 

Acrylamide (ml) 8 2 

Tris Buffer (ml) 5 (1.5M Tris pH 8.8)  3 (0.5M Tris pH 6.8) 

10% SDS (l) 200 100 

APS (l) 150 100 

TEMED (l) 10  10  

Table 2.15.3 Concentrations of reagents required to make two 1.5mm SDS-PAGE gels 

2.15.4 Sample preparation 

Typically 20µl of sample were loaded onto 1.5mm thick gels.  After estimation of protein 

concentrations between 20 and 40µg of protein were placed in an eppendorf, together with the 

appropriate quantity of 5x loading buffer (appendix 1). The sample was heated to 95o for 5 

minutes on a heat block.  The gel tank was set up and plates placed in the equipment. 1x 

running buffer was made by diluting 10x stock (Ultrapure Tris/Glycine/SDS (Geneflow)) in 

ddH20. Running buffer was placed between the plates and in the tank.  The sample was 
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subsequently loaded onto the gel, with 5µl of protein ladder in an adjacent well (Pageruler 

Plus, Fermentas).  The sample was electrophoresed at 130V for 90 minutes or until the 

loading dye had run off the gel. 

2.15.5 Transfer of proteins onto a nitrocellulose membrane by electrophoresis 

Transfer was performed using the mini trans-blot Biorad equipment.  Transfer buffer was 

prepared in advance by diluting 100ml of 10x stock (Ultrapure Tris/Glycine (Geneflow) with 

200ml of methanol and 700ml of ddH2O and stored at 4oC.  4 pieces of Whatmann filter paper 

and nitrocellulose membrane (Amersham Hybond M (GE Healthcare)) were cut to the size of 

the front plate.   Filter papers and fibre pads were placed in in a tray containing cooled 

transfer buffer in order to ensure the system was adequately moistened.    Nitrocellulose was 

activated by placing in methanol.  The plates were also placed in to the tray and prized apart 

using the special wedge shaped tool.  The stacking gel was removed and discarded. The gel 

was removed carefully from the plates.  The Biorad cassette was placed in the tray with the 

black side was facing down, then a fibre pad, followed by two pieces of filter paper and the 

gel were placed.  Then the membrane was placed on the gel and gently rolled to ensure no air 

bubbles were present.  Two further pieces of filter paper and fibre pad were placed over the 

membrane and the cassette was closed.  The cassette was placed with the black side (cathode) 

facing the cathode.  A magnetic stirrer was placed in the equipment as was a container 

containing ice in order to aid the transfer process.  The stirrer was switched on and the 

transfer reaction performed by using electrophloresis at a voltage of 100V for 1 hour (see 

figure 2.15.5).  After one hour, the apparatus was switched off and the cassette opened, the 

membrane had its top left corner removed to allow orientation and was removed using 

forceps. 
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Figure 2.15.5.  The principle of electrophloretic transfer of protein.  The nitrocellulose 

membrane contains pores between 0.45µm and 0.2µm, proteins are transferred from the gel to 

the membrane due to the flow of current (voltage/resistance).  Resistance is due to the buffer, 

fibre pads and filter pads.  Resistance can also be increased by increasing temperature and 

thus the transfer equipment is cooled. 

2.15.6 Blocking the membrane and probing the membrane. 

The membrane was blocked by incubation with 5% non-fat milk (Marvel) in PBS for one 

hour.  The primary antibody was then diluted in 5% milk and 0.6% BSA (for antibodies used 

in this thesis see figure 2.15.6 in appendix 6).  The membrane was placed in 50ml falcon 

containing 5ml of the antibody/milk/albumin mixture.  The membrane was washed by 

agitation in PBS-Tween for 10 minutes four times (see appendix 1 for recipe).  The membrane 

was incubated with secondary antibody for 1 hour.  It was washed using PBS Tween four 

times for 10 minutes.  The secondary antibody was conjugated with horseradish peroxidase 

and thus chemo-luminescence was used to detect the protein.  After washing, excess PBS-

Tween was removed by dabbing the corner of the membrane with paper towel.  Then the ECL 

plus reagent was made by adding 25µl of reagent 1 to 1ml of reagent 2 (ECL, ECL plus and 
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ECL Prime were purchased from GE Healthcare).  The membrane was incubated with the 

reagent for 5 minutes and then the protein visualized using Biomax XAL film (Kodak).  The 

CC developer was used to visualize the proteins.  For some proteins such as tubulin, ECL was 

used to visualize proteins (1 ml of reagent 1 and 1ml of reagent 2 were mixed, placed on to 

the membrane and incubated for 10 minutes prior to developing), ECL prime was also used 

for other proteins (1ml of reagent 1 was added to 1 ml of reagent 2 and incubated for 5 

minutes prior to developing).    Differences in expression were quantified where appropriate.  

A photograph of the immunoblot was taken using the Ingenius Syngene Bioimaging System.  

The blot was on a white plate and white light was used.  The image was stored using Gene 

Snap v 7.04 (Synoptics Ltd), this image was then opened using GeneTools vs 4 (Synoptics 

Ltd).  The absorbance of each band was determined manually and the corresponding 

background was also determined.  The absorbance of the background was subtracted from the 

absorbance of the study band.  This was then performed for the corresponding band from the 

housekeeping gene.  Then a ratio was determined of the normalized absorbance of the gene of 

interest compared to the normalized housekeeping gene.  This was done for three experiments 

and the mean result used. 

2.15.7 Reprobing of the membrane 

In order to check loading or look for other proteins the membrane was stripped and reprobed.  

This was achieved by boiling the membrane in ddH2O for 5 minutes.  The membrane was 

blocked in 5% milk for an hour and then incubated in primary antibody.  This was then 

washed as described previously and incubated with the secondary antibody.  Detection was 

performed as described in section 2.15.6.  Tubulin was used as a loading control as it is 

ubiquitously present in all cells.  
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2.16 Real time evaluation of depletion of STK-10 using siRNA 

SKRC39ev and SKRC39wt were incubated with either 5nM or 10nM siRNA directed against 

STK-10 and LUC (Ambion) as described above.  RNA was extracted from cell pellets using 

the Qiagen RNeasy kit and assessed by running 2 µl of product on a 1.5% agarose gel.  RNA 

was quantified using a nanodrop, subsequently, 1µg was converted into cDNA using the 

Superscript II cDNA synthesis kit (Invitrogen) (as described in 2.8.2). The cDNA 

concentrations were measured using a nanodrop and a working concentration of 100ng/µl 

made by diluting the DNA with water. In order to determine the standard curve of CT values 

at different concentrations of cDNA were achieved by diluting the SKRC-39ev DNA treated 

with siRNA against 5nM LUC and STK-10 to achieve concentrations of 0, 1, 5, 50, 100 and 

500ng of cDNA/reaction.  The total volume of cDNA required for each reaction is 9µl and 

thus further water was added to make up the final volume. In each reaction, 1µl of gene 

expression assay mix (Taqman, Applied Biosystems) and 10 µl of TaqMan Universal PCR 

master mix (2x) was added. In order to determine the background rates, SKRC39ev cDNA 

derived from cells treated with 5nM LUC was used.  The two gene expression assays 

completed were for STK-10 and GAPDH.  For the background data each sample condition 

was replicated.  This provided the background data for experiments to determine the relative 

knockdown achieved for each gene in SKRC39ev and SKRC39wt cells.  Prior to analysis, the 

plate was sealed with a plastic seal and centrifuged at 400 x g for 1 minute. Real time PCR 

was carried out using a Biorad IQ5 Multicolour Real Time-PCR Detection System under the 

following conditions: step 1 incubation at 95o for 3 mins, step 2 incubation at 95o for 10s 

followed by step 3 incubation at 55o for 30s, with steps 2 and three repeated 40 times.  cDNA 

at a concentration of 100ng/reaction from SKRCev and SKRCwt cells treated with 5 and 

10nM LUC and STK-10 were analysed for expression of STK-10 and GAPDH using the real 

time PCR protocol described above.  The CT values for a mean of three wells calculated using 
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the REST programme, this compared the CT values to the background CT values and then 

allowed comparison between LUC controls and treated wells.  Each experiment was repeated 

three times and mean results presented. 

2.17 Drug testing using a growth inhibition assay 

Erlotonib was purchased from Stratech Scientific Limited (Suffolk, UK), the stock powder 

was diluted in 11.63ml DMSO to make 20mM stock and stored at -70o.  SKRC-39ev and 

SKRC-39wt cells were seeded on day 0 at a concentration of 2 x104 cells/ml (see figure 2.17).  

The first and last rows and columns contained media alone in order to reduce the influence of 

evaporation on cells.  Cells were plated out in two 96 well plates, one plate was to be used for 

drug treatment as shown below, the control contained only cells.  The control plate was 

harvested on day one by addition of 20µl of cell titre blue to each well and incubating for 4 

hours.  Luminescence was measured using a Perkin Elmer Plate reader.  On day one, the 

experimental plate was set up. 100x drug concentrations of erlotonib were produced in DMSO 

(five concentrations 1µM to 10mM).  These concentrations were further diluted 1:10 in media 

in a clean sterile eppendorfs, the dilution was performed by adding 108µl of media to each 

eppendorf and then adding 12µl to the first eppendorf (to make a concentration of 100µM) 

and then performing serial dilutions in further eppendorfs.  10µl of each drug concentration 

was added to each well, with each row representing a final concentration.  The plate was 

incubated at 37o for 72 hours. The plate was harvested by adding cell titre blue and measuring 

the luminescence.  Data was exported into a Microsoft Excel spreadsheet and the 

luminescence reading on Day 1 (control) subtracted from Day 3 (experimental) for cell line at 

a given concentration.  The mean and standard deviation for each concentration was 

determined and this was then analysed using the Prism programme (GraphPad Software Ltd), 

and the GI50 dose determined.  The GI value is the concentration of a test drug where 100x 
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(T-100)/(C-T0).  Where T is the optical density of the test well at 72 hours, C is the control 

optical density and T0 is the optical density on day 1.   It is a measure of the ability of a drug 

to inhibit cell growth.  The mean GI50 dose for three experiments was compared using a T 

test for SKRC39ev and SKRC39wt cells to determine any selective difference.

 

Figure 2.17 Experimental layout determining the effect of erlotonib in RCC. The layout of 96 

well plates used to analyse the influence of different doses of erlotonib on SKRC39ev and 

SRC39wt cells.  

2.18 Use of the Kinexus microarray to evaluate changes in protein expression 

 

In order to determine the effect of PLK1 and STK10 depletion on global protein expression 

the Kinexus Microarray service was utilised.  This produced an unbiased screen of the 

differential expression of dye labelled proteins from cell lysates. The array contains 518 pan-

specific antibodies, 359 phosphospecific antibodies, 234 kinase specific antibodies and 44 

antibodies directed towards protein phosphatases.  The proteins which the antibodies were 

directed towards included those involved in: cell proliferation, stress and apoptosis.  The 
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antibodies in the array are arranged in two identical fields.  This enables two experimental 

conditions to be directly compared.  Within each field there are sub-grids with 11 x10 spots 

containing antibody. 

Protein was sent to the company in the form of a cell pellet, shipped on dry ice.  This pellet 

was achieved by transfecting 2 million SKRC39ev and SKRC39wt cells with STK-10, PLK1, 

and control siRNA Dharmacon smartpool DNA as described in 2.14.  These cells were 

washed in ice cold PBS and detached using trypsin.  The cells were centrifuged at 500 x g and 

washed in ice-cold PBS.  The pellet was then snap frozen in liquid nitrogen and placed in dry 

ice.  Cell pellets were sent in order to compare protein expression in control cells and STK10 

and PLK1 depleted cells in SKRC39ev and SKRC39wt cells. 

The company lysed the cell pellets and then labelled the lysate with a proprietary fluorescent 

dye.  Free dye molecules were removed.  The array was then ‘blocked’ to reduce non-specific 

binding, then the array was incubated with labelled lysate.  Excess lysate was washed away 

and the array imaged using a Perkin Elmer Scan Array Reader laser array reader. 

Kinexus also processed the data from the array, this involved signal quantification using pre-

determined algorithms and determining z-ratios.  The background-corrected raw intensity data 

was transformed to the logbase 2.  A z score was then determined by subtracting the overall 

intensity of all the spots within a sample from the raw intensity for each spot and dividing it 

by the standard deviations (SD) of all measured intensities within each sample.  Z ratios were 

determined by taking the differences between the average Z scores and dividing them by the 

SD of all the differences for that particular comparison.  A Z ratio of +/- 1.2-1.5 was 

considered significant.  The manufacture provided a short-list of proteins which represented 

those which had demonstrated a significant change in expression. 
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Array technology is subject to false negative and false positive results as non-denatured 

proteins are used and also there is differential labelling of proteins with dye.  The 

manufacturer’s information states that only 30-45% of results are validated (100).  Thus 18 

proteins were chosen as described in section 5.8.9.2 to validate the results of the array using 

the Kinetworks custom KCPS 1.0 screen which uses immunoblotting to confirm the array 

results. 

2.19 Statistical considerations 

Most statistics performed in this thesis utilised the IBM SPSS Statistics Programme version 

21, 2012. Logistic regression was used to assess different models of genetic testing in 

phaeochromocytoma and these models were described as receiver operator characteristics 

using SPSS.  Pearson’s correlation was performed in SPSS to determine any correlation in z-

ratios of SKRC39ev and SKRC39wt cells treated with siRNA directed towards STK10 or 

PLK1.  Significance was determined if the p value was <0.05. Student’s t tests were used in 

GraphPad Prism 5, all tests were two tailed and p<0.05 was considered as significant.  

GraphPad Prism 5 was also used to determine the GI50 values described in section 2.17. 
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CHAPTER 3 THE MOLECULAR DIAGNOSIS OF CANCER – 

PHAEOCHROMOCYTOMA 

Preface 

Work presented in this chapter has been published in a review article by Jafri and Maher(73) 

and a paper by Jafri et al (101). 

3.1 The rationale for genetic testing in cancer 

In inherited disease, one of the most important promises of cancer genomics is to enable 

clinicians to prevent cancer or detect early disease in those with a genetic predisposition 

(102).  Identification of a germline variant in those with inherited predispositions to cancer 

allows doctors to screen for early disease and remove disease prior to it becoming clinically 

significant.  In addition, risk reduction strategies can be performed such as prophylactic 

mastectomy in the case of the breast cancer predisposition gene BRCA1 and BRCA2(103).  

These interventions could result in a significant decrease in the illness burden experienced by 

those affected by genetic mutations and also reduce costs to health services.   Furthermore, 

family members can be tested and if negative, costly and demanding screening programmes 

can be ceased.   Conversely, affected members can be screened appropriately and family 

planning is facilitated.  

In order for a genetic test to be utilized it must fulfil four criteria described by Korf and 

Rehm(103).   These criteria are the test should be: (i) valid, (ii) able to diagnose a condition 

(iii) guide clinical management, (iv) not cause discrimination(103).  Some cancers are 

inherited, defined as arising from an alteration in the germline DNA either inherited or 
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occurring due to mutation in an egg or sperm cell.(103) Thus, individuals can be tested for a 

cancer predisposing gene (CPG) to determine their risk of the condition.  Some cancer 

conditions have numerous associated CPG and therefore identifying the gene responsible for 

the cancer can be time consuming and costly, termed by some as a ‘diagnostic odyssey’.  

Therefore, it is important to determine whom to test for inherited predispositions and which 

genes to test.   

Phaeochromocytoma is the archetypal genetic disease.  It was initially believed that 10% of 

phaeochromocytoma were inherited(104),  however many genetic studies of 

phaeochromocytoma have established that around forty percent of tumours have a genetic 

cause (105).  This means that phaeochromocytoma may be the most inherited cancer.  The 

intensive investigation into the genetics of phaeochromocytoma has led to novel insights into 

tumour biology.  Phaeochromocytoma is a condition for which numerous genes are 

potentially responsible and therefore the aim of this chapter is to determine the characteristics 

of individuals who test positive for mutations in common phaeochromocytoma genes and 

characteristics that are associated with specific gene mutations in order to determine whom 

and which genes to test.  Throughout the time of this doctoral thesis, genetic technology has 

been associated with new developments in phaeochromocytoma, therefore new methods of 

gene testing and new phaeochromocytoma associated genes will also be discussed.  
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3.2 The genetics of phaeochromocytoma  

3.2.1 An overview of phaeochromocytoma 

Phaeochromocytoma is a relatively rare tumour derived from neural crest cells with an 

incidence of two to eight cases per million per year. The nomenclature of 

phaeochromocytoma can be confusing, the World Health Organisation tumour classification 

defines phaeochromocytoma as chromaffin tumours arising from the adrenal medulla, and 

extra-adrenal tumours as paraganglioma(75).  However, in the published literature the term 

paraganglioma may be used to refer to tumours derived from sympathetic nervous system or 

parasympathetic tissue (sympathetic tissue is located within the adrenal medulla, prevertebral 

and paravertebral thoraco-abdominal and pelvic paraganglia or in the reproductive organs, 

prostate, bladder, liver and organ of Zuckerkandl and parasympathetic paraganglia are located 

in the vicinity of the major arteries and nerves, e.g. carotid body, jugular, vagal, tympanic, 

pulmonary and aortic paraganglioma)(73).  In this chapter, phaeochromocytoma refers to both 

chromaffin tumours that arise from the adrenal medulla (adrenal phaeochromocytoma 

(aPCA)) and those extra-adrenal tumours derived from sympathetic ganglia (extra- adrenal 

functional paraganglioma (eFPGL)).  Phaeochromocytomas are usually secretory and 

typically present with features of catecholamine excess. In contrast, paraganglioma arising 

from the parasympathetic nervous system (usually within the head and neck and herein 

referred as HNPGL) are predominantly endocrinologically inactive. 

3.2.2 The genetics of ‘syndromic’ phaeochromocytoma 

Amongst individuals with phaeochromocytoma around ten percent may have a family or 

personal history of either phaeochromocytoma or another cancer (106).  Such individuals may 

have the phaeochromocytoma as part of a recognized syndrome affecting multiple organs.  

There are three main syndromes associated with phaeochromocytoma, (i) von Hippel Lindau 

(VHL) disease associated with mutations in the VHL gene (107), (ii) neurofibromatosis 
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associated with mutations in the NF1 gene (108) and (iii) multiple endocrine neoplasia 

associated with alterations in the RET gene (107).   However, the penetrance of these genes 

can be variable as can the phenotype of individuals affected by a particular gene mutation, for 

example some individuals with VHL only have a phaeochromocytoma(109).  

 

3.2.2.1 VHL associated phaeochromocytoma 

Twenty percent of individuals with suspected VHL disease present with a 

phaeochromocytoma(110).  VHL is an autosomal dominantly inherited disease with an 

incidence of 1 in 36,000.(111)  It is associated with numerous abnormalities including:  retinal 

angioma, haemangioblastoma, endolymphatic sac tumours, serous cyst adenomas,(112)  clear 

cell RCC (average lifetime risk >70% by age 60 years) (113) and pancreatic neuroendocrine 

tumours (114). VHL disease is categorized into type 1 which is not associated with 

phaeochromocytoma and type 2 which is associated with phaeochromocytoma.  Type 2 VHL 

is further subdivided in to 2A which is associated with haemangioblastoma, 

phaeochromocytoma and rarely RCC, type 2B which is associated with haemangioblastoma, 

phaeochromocytoma and RCC, type 2C phaeochromocytoma only(109).   Interestingly 

missense mutations in VHL are more likely to be associated with phaeochromocytoma 

compared to truncating mutation (110).  In particular, phaeochromocytoma is associated with 

mutations that lead to an alteration in an amino acid at the surface of the protein (pVHL) 

compared to those causing a truncated protein, exon deletion or a missense mutation at an 

amino acid at the core of a protein (110). Probably, patients with VHL gene deletions are 

unlikely to develop PPGL as some basal VHL protein expression is required for 

phaeochromocytoma development (115).   
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Early detection and treatment of retinal angiomas and renal tumours associated with VHL 

disease reduces morbidity and mortality. Thus, the detection of a germline VHL mutation in 

phaeochromocytoma can lead to the initiation of tumour surveillance protocols in patients and 

their families. aPCA/eFPGL in VHL disease is characterised by a younger age at diagnosis 

(mean 28 years) and increased frequency of bilateral or multiple tumours although the risks of 

malignancy are not elevated (4). As many VHL-associated aPCA/eFPGL are detected during 

routine imaging surveillance, they are more frequently asymptomatic at diagnosis than 

sporadic aPCA/eFPGL. 

Alterations in the VHL gene is believed to cause phaeochromocytoma due to stimulation of 

the pseudohypoxic pathway (see section 4.2.1 for a detailed explanation).  Briefly, there is 

decreased proteosomal degradation of HIF1α and HIF2α leading to HIF accumulation and 

downstream activation of multiple target genes.(105)  However, VHL mutations can be 

tumorigenic without activation of HIF as seen in type 2C disease where there is HIF 

independent phaeochromocytoma formation(116). 

 

3.2.2.2 RET associated phaeochromocytoma 

The RET gene encodes a tyrosine receptor kinase that when activated promotes growth and 

differentiation of neural crest tissue(117).  Gain of function mutations in RET affecting the 

specificity of the receptor to the substrate or constitutive activation of the gene lead to MEN2 

and loss of function mutations lead to Hirshsprung’s disease (117, 118).  Interestingly, a case 

of familial phaeochromocytoma described in 1886 was shown to result from a germline RET 

mutation 121 years later (119). MEN2 is inherited in an autosomal dominant manner and is 

divided into three clinical subtypes, two of which (MEN2A and MEN2B) are characterised by 

the development of medullary thyroid cancer (MTC) and aPCA (and hyperparathyroidism in 
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MEN2A and a marfanoid habitus and mucosal neuromas in MEN2B).  The third subtype 

familial medullary thyroid cancer is believed to be a variant of MEN2A without PPGL (120)  

 

Mutations in RET are an example of cancer phenomics, where different mutations are 

associated with different clinical pictures. Eighty-five percent of cases of MEN2A are 

associated with five mutations in cysteine (Cys609, Cys611, Cys618, Cys620 in exon 10 and 

Cys634 in exon 11) which mean that intramolecular disulphide bonding within RET cannot 

take place (117).  Therefore, the unpaired cysteines from two mutant RET molecules can bind 

causing dimerisation and constitutive activation of the receptor tyrosine kinase.  These 

proteins have less transforming activity than missense mutations in the intracellular tyrosine 

kinase domain(117).  The p.Met918Thr mutation is associated with 95% of MEN2B.  This 

amino acid is at the catalytic core of RET is associated with a strong transforming activity.   

This may be responsible for MTC and aPCA having an earlier age at onset in MEN2B than 

MEN2A.  Individuals with MEN2A have about a 50% risk of developing aPCA but the mean 

age at diagnosis of MTC is earlier than that of aPCA (~40 years) and therefore are less likely 

to present with sporadic non-syndromic phaeochromocytoma. Nevertheless, a germline RET 

mutation can be detected in about 5% of such cases (104).   Individuals with MEN2A often 

develop aPCA (which maybe synchronous or metachronous) but eFPGL and malignancy are 

rare (121). 

 

3.2.2.3 Neurofibromatosis 1 (NF1) associated phaeochromocytoma 

Germline mutations in NF1 cause neurofibromatosis, a multi-system disorder  involving both 

cutaneous tumours (localised and plexiform neurofibromas, neurofibrosarcoma) and internal 
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tumours such as aPCA/eFPGL, central nervous system tumours (glioma, astrocytoma and 

optic gliomas), carcinoid and leukaemia(122).  Although, NF1 is relatively common 

(incidence 1 in 3000 persons), the prevalence of  aPCA/eFPCA in NF1 is below 1% (108).  

Therefore, NF1 is not a common diagnosis in aPCA/eFPGL patients (123).  The median age 

at diagnosis of aPCA/eFPGL in NF1 is relatively late (~41 years) and so other features of the 

disease (e.g. cutaneous cafe-au-lait spots, axillary freckling, neurofibromas, Lisch nodules, 

etc) are usually present (making the clinical diagnosis of NF1 straightforward)(124, 125). The 

NF1 gene is a large gene (57 exons) and NF1 is associated with a wide variety of, frequently 

de novo, inactivating mutations making genetic analysis difficult.  Therefore, although 

molecular genetic analysis is becoming more available, it is usually not indicated for 

diagnosis because of the ease of clinical diagnosis (123, 126).  Somatic NF1 mutations have 

recently been found to be frequent in sporadic phaeochromocytoma, with somatic inactivating 

mutations being identified in twenty five out of sixty-one sporadic tumours in one cohort(127) 

and 21% of another cohort(108).  Inactivation of NF1 is associated with stimulation of the 

Ras/raf/mek/erk signalling pathway which is key to coupling responses from the extracellular 

membrane to transcription factors, controlling important processes such as cell cycle 

progression, apoptosis and differentiation(128). 

3.2.3. Genetic causes of non-syndromic phaeochromocytoma 

3.2.3.1 Succinate Dehydrogenase (SDH) subunit mutations 

Succinate dehydrogenase (SDH) is a mitochondrial protein involved in the tricarboxylic acid 

cycle and oxidative phosphorylation.(129)  SDH catalyses the oxidation of succinate into 

fumarate in the tricarboxylic acid cycle and acts as an electron donor to complex III in the 

electron transport chain via ubiquinone or  co-enzyme Q(129).  SDH is composed of four 

subunits SDHA, SDHB, SDHC, SDHD.  The main catalytic subunit is SDHA which converts 
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succinate to fumarate via the reduction of a flavin adenine dinucleotide.  Electrons pass three 

iron sulphate centres in SDHB which transfer them to ubiquinone.  Two smaller subunits, 

SDHC and SDHD anchor the protein complex to the inner mitochondrial membrane.(129)  

Succinate dehydrogenase complex assembly factor 2 (SDHAF2) is a highly conserved co-

factor of flavin adenine dinucleonucleotide, SDHAF flavinates SDHA which is essential for 

the structure and function of the SDH complex (130). Mutations that lead to loss of function 

of any of the four SDH subunits and SDHAF are associated with development of PPGL.  

These will be described below and vary in terms of their associated phenotype and mutation 

frequency.  Mutations in SDHx lead to decreased activity and stability of the SDH enzyme 

causing increased proteasomal degradation.  This means that the oxidation of succinate to 

fumarate is impaired causing succinate accumulation.(131) 

 

SDHB associated PPGL 

SDHB mutations are an important cause of HNPGL and aPCA/eFPGL (79, 104, 132). In 

addition, SDHB mutations predispose to renal tumours and may present with familial RCC 

(133). Important clinical features of SDHB aPCA/eFPGL are a high frequency of extra-

adrenal location and malignancy.  Approximately 20% of mutation carriers will develop 

malignant disease and up to 50% of patients with a malignant eFPGL harbour a germline 

SDHB mutation (79, 104, 134, 135). Compared to all patients with SDH mutations, the overall 

risk of HNPGL (e.g. carotid body tumours) is higher with SDHD mutations whereas the risk 

of aPCA/eFPGL is higher with SDHB mutations (104, 133). Initial reports had suggested a 

high clinical penetrance for SDHB mutations, however, as testing of apparently sporadic cases 

has become more widespread and asymptomatic relatives of mutation carriers undergo genetic 

testing, the observed penetrance of SDHB mutations has fallen (e.g. 25-40% in non-probands) 
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(136). In addition to renal tumours, SDHB mutations may predispose to thyroid tumours 

(though the absolute risk is small). SDHB and SDHC mutations have been found in 12% of 

individuals with gastrointestinal stromal tumours without PDGFRA receptor mutations (137, 

138). 

SDHB related tumours occur at a younger age than sporadic tumours with a mean age of 

presentation of 30 years of age, with some patients presenting even earlier (139).  As 

individuals with a SDHB mutation have a nineteen fold higher risk of malignancy (74) and 

have a worse prognosis than other tumours, screening in these carriers of SDHB mutations 

should occur from the age of ten.  SDHB mutations may cause malignancy as a result of 

intracellular metabolic changes that allow hypoxia inducible factor (HIF) accumulation and 

epigenetic alterations.  High levels of intracellular succinate cause SDH inactivation and 

inhibit HIF prolyl hydroxylases (PHD). Hydroxylation of HIF is required for binding of HIF 

to VHL, and subsequent ubiquitinisation and degradation.(139)  Thus, inhibition of PHD 

leads to accumulation of HIF and expression of HIF associated genes such as those involved 

in angiogenesis, cell proliferation and cell survival.(140)  This hypothesis has been supported 

by gene expression array data in which tumours with SDHx mutations overexpressed HIF1α 

and HIF2α target genes.(141)  Another potential mechanism of tumourigenesis achieved by 

SDH mutations is production of reactive oxygen species due to a defect in the function of the 

electron transport chain complex II.  SDH alterations in vitro can be associated with oxidative 

stress, and genomic instability.(139)   

Succinate accumulation can also lead to the inhibition of α-ketoglutarate dependent 

dioxygenases including histone demethylases.(139)  Typically, CpG clustered together in the 

form of CpG islands are demethylated in normal tissue and methylated in cancer cells, and 

CpG that are outside islands are highly methylated in normal tissue and demethylated in 
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cancer.  Letouze and colleagues used a methylation array to evaluate phaeochromocytoma 

tumours and found that tumours fell within three clusters.(74)  They classified 

phaeochromocytoma depending on their methylation pattern as being in cluster M1, M2 or 

M3.  M1 tumours were SDH deficient and demonstrated hypermethylation of both CpG in 

islands and outside islands ‘the hypermethylator phenotype’. M2 tumours were VHL deficient 

and had no hypermethylation in CpG islands but were hypomethylated if not in islands.  M3 

tumours included NF1 and RET deficient tumours together with some VHL deficient tumours 

and demonstrated hypomethylation of CpG both within islands and outside islands.  Patients 

with M1 tumours were younger and had a worse prognosis than those with M2 and M3 

tumours.  A mouse model of SDHB deficiency confirmed succinate accumulation in the 

presence of SDHB mutations, and its association with a hypermethylator phenotype.   

Integrative analysis of gene expression data and methylation data revealed hypermethylation 

was associated with down regulation of genes with key oncogenic functions.  For example, 

down-regulated genes included those associated with neuroendocrine differentiation (RBP1), 

catecholamine metabolism (e.g. PMNT which encodes phenyl-ethanolamine N-

methyltransferase which catalyses the conversion of noradrenaline to adrenaline), and EMT 

(KRT19).  Thus, hypermethylation secondary to succinate accumulation can explain the 

malignant potential of SDH associated tumours as differentiation and invasiveness are altered 

by methylation.(74) 

 

SDHD associated PPGL 

SDHD mutations were initially associated with HNPGL and subsequently with 

aPCA/eFPGL(139, 142, 143).  Although early studies suggested that SDHD mutations were 

more strongly associated with HNPGL than aPCA/eFPGL(144), a recent report suggests that 
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this is mainly attributable to a very low risk of aPCA/eFPGL with a common SDHD missense 

mutation (p.Pro81Leu)(79).  Missense mutations or in-frame deletions have been suggested to 

be less deleterious to protein stability compared to absent or unstable SDHD protein (79, 139). 

Multifocal tumours are more common with SDHD mutations.(144).  PPGL associated with 

SDHD are usually benign with an estimated prevalence of malignancy between 0-10%(139).  

SDHD associated PPGL have a parent-of-origin pattern of penetrance such that disease occurs 

(though there are very rare exceptions) after paternal transmission of the mutation. Thus if a 

male inherits a SDHD mutation from their mother then they will be unaffected but any of their 

children that they transmit the mutation to will be at risk of HNPGL/PPGL.(145) A similar 

inheritance pattern is seen with SDHAF2 and MAX mutations (see later). 

SDHC associated PPGL 

SDHC mutations may be present in ~ 4% of HNPGL patients and though aPCA/eFPGL can occur it is 

rare (146-150). In the French paraganglioma cohort, fourteen of the sixteen patients with SDHC 

mutations had HNPGL and two had a thoracic eFPGL (150). Malignancy is rare in SDHC associated 

tumours, given the rarity of these mutations, they are not routinely investigated.(139)SDHA and 

SDHAF2 Associated PPGLSDHA mutations were initially described in a biallelic state 

(homozygous or compound heterozygous) in children with an autosomal recessively inherited 

juvenile encephalopathy (Leigh syndrome) (151, 152).  Mutations in SDHA were initially 

thought to be absent from patients with HNPGL or aPCA/eFPGL. However, a recent report 

has described heterozygous germline SDHA mutations in a small subset of patients with 

HNPGL and aPCA/eFPGL(153, 154).  Furthermore, SDHA mutations have also been 

identified in patients with gastrointestinal stromal cell tumours (155).   

SDHAF2 encodes a protein required for the encorporation of FAD cofactor in the subunit A of 

the succinate dehydrogenase complex, flavination is necessary for the function of SDH and 
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thus SDHAF2 is highly conserved(139).  SDHAF2 mutations in have been described in 

association with HNPGL but, to date, not with phaeochromocytoma (130, 156, 157).   The 

SDHAF2 gene maps to chromosome 11q13 and, as with SDHD (11q23), there are parent-of-

origin effects on expression such that tumour development only occurs after paternal 

inheritance (130, 156).   

3.2.3.2 MAX associated phaeochromocytoma 

Exome sequencing of three unrelated individuals with a similar transcriptome profile 

identified germline inactivating mutations in MAX (158). Loss of wild type MAX was also 

noted in tumour DNA and immunostaining revealed loss of MAX expression consistent with 

a tumour suppressor function(158). MAX is a key component of the MYC-MAX-MXD1 

network that regulates cell proliferation and differentiation and there is crosstalk between this 

network and the mTOR pathway (to which TMEM127 has been linked (see 3.2.3.3)). 

Interestingly, evidence was found that paternal transmission of the gene was necessary for 

tumour development (as with SDHD and SDHAF2).  Most cases of MAX associated 

phaeochromocytoma were bilateral confirming the association between genetic abnormalities 

and multiple tumours(159).  A proportion of MAX associated PPGL are malignant (160).  

Overall, however MAX mutations were very infrequent occurring in between less than 1% 

(159) and 1.12% (160) of PPGL. As with other phaeochromocytoma susceptibility genes, 

MAX has also been identified in 1.65% of somatic PPGL (160), Individuals with MAX 

mutations were shown to have three times more urinary normetanephrine than metanephrine 

associated with intermediate levels of tissue PMNT.  Thus this clinical finding could be used 

to identify those with MAX mutations.(160) 
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3.2.3.3 TMEM-127 mutation associated PPGL 

Following genetic linkage studies that mapped a novel locus for familial phaeochromocytoma 

to chromosome 2q11, germline mutations were identified in TMEM127 (161). The presence 

of loss of function mutations and allele loss in TMEM127 phaeochromocytoma was consistent 

with the TMEM127 acting as a TSG.  TMEM127 encodes a three spanner transmembrane 

protein which is highly conserved and, although the function of TMEM127 is not well 

defined, it has been linked to mTOR signalling (161).  In an extensive cohort analysis of 990 

individuals with phaeochromocytoma or HNPGL the frequency of TMEM127 mutations was 

~2% (162).  In contrast to VHL and SDHB mutations, patients with mutations in TMEM127 

do not have an early age at diagnosis (median age of 41.5 years). Typically patients have 

adrenal phaeochromocytomas (often bilateral) and malignancy is infrequent (161, 162). The 

role of genetic testing for TMEM127 mutations in clinical practice is not well defined as, 

though mutations are uncommon (0.9% frequency in a series of 642 French patients (163), 

they may be present in patient groups that are frequently excluded from genetic testing(162).  

Furthermore, the recent description of HNPGL and eFPGL in association with TMEM127 

mutations demonstrates how the phenotype associated with inherited phaeochromocytoma can 

continue to evolve(164)  A summary of the phenotype and inheritance of different germline 

phaeochromocytoma mutations is described in table 3.2.3 . 

3.2.3.4 Other phaeochromocytoma associated genes  

Two apparently very rare causes of phaeochromocytoma are mutations in KIF1B beta and 

PHD2. Mutations in these genes have been described in only a few or single families 

respectively (165-167) and neither gene is routinely analysed in clinical practice. IDH1 has 

been observed in one sporadic paraganglioma and is also not believed to be a significant cause 

of PPGL.(168) 
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Gene Phenotype Mechanism of 

action 

Approximate 

Frequency (%) 

Inheritance 

VHL aPCA,retinal angioma, 
haemangioblastoma, 
endolymphatic sac 

tumours, serous cyst 
adenomas 

Pseudohypoxia 
and in some cases 
HIF independent 

11 Autosomal 
dominant 

RET aPCA, medullary 
thyroid cancer,  

Activation of 
tyrosine kinase 

5 Autosomal 
dominant 

NF1 sPCA/eFPGL, 

neurofibroma, central 
nervous system tumours 

Ras/Raf/Mek/Erk 

pathway 

~1 Autosomal 

dominant 

SDHB HNPGL and 
sPCA/eFPGL 

Pseudohypoxia 
and 
hypermethylation 

4 Autosomal 
dominant 

SDHD HNPGL and 

sPCA/eFPGL 

4 Paternal 

SDHC HNPGL rarely 

sPCA/eFPGL 

~1 Autosomal 

dominant 

SDHAF2 HNPGL Rare Paternal 

MAX Often bilateral 

phaeochromocytoma 

mTOR signalling,  ~1 Paternal 

TMEM127 Often bilateral 

phaeochromocytoma 
usually benign 

mTOR signalling ~1 Autosomal 

dominant 

 

Table 3.2.3. A summary of common genetic changes in aPCA/eFPGL and HNPGL. Clinical 

phenotypes, frequency and inheritance are described. (104, 112) (161) 

3.3. Current testing strategies in phaeochromocytoma 

The identification of inherited phaeochromocytoma genes provides the opportunity to define 

the frequency of specific gene mutations in both familial cases and in apparently non-

syndromic sporadic cases. Unexpectedly, mutation analysis of RET, SDHB, SDHD and VHL 
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revealed germline mutations in up to 25% of sporadic cases suggesting that at least a third of 

patients with phaeochromocytoma had inherited disease(104). Although it has been suggested 

that all patients with phaeochromocytoma should be offered genetic testing, such a policy is 

(with conventional mutation detection methodologies) expensive (e.g. a recent estimate for 

testing SDHB, SDHC, SDHD, VHL and RET by conventional Sanger sequencing was $4100 

(169)). Thus more targeted screening has been advocated. Clinical features that influence the 

odds of detecting a mutation in an individual case will include whether there is (a) a personal 

or family history to indicate a syndromic cause, (e.g. MTC, HNPGL, haemangioblastoma 

etc.), (b) a positive family history for phaeochromocytoma, (c) multiple primary 

phaeochromocytomas, (d) malignancy, (e) extra-adrenal location and (f) age at diagnosis 

(generally inherited tumours occur at an earlier age than non-inherited). In the seminal study 

by Neumann et al (13), 70% of individuals with phaeochromocytoma aged less than 10 years 

had a detectable mutation (in SDHB, SDHD, RET or VHL) compared to 8% of those who 

presented after age 40 years.  

If a targeted approach to mutation analysis is to be pursued then it is generally agreed that 

those with a personal or family history of a specific syndromic cause and, in apparently non-

syndromic cases, those with a positive family history for phaeochromocytoma, or multiple or 

bilateral tumours should be analysed. It is usual to test individual genes sequentially and the 

order of testing can be individualised according to the likelihood of a syndromic cause (e.g. 

RET if there is a family history/personal history of medullary thyroid cancer, SDHB/D if a 

HNPGL etc.) or, in apparently non syndromic cases with familial or multicentric 

phaeochromocytoma, the presence of extra-adrenal or malignant tumours would favour 

starting with SDHB analysis (but VHL if an adrenal phaeochromocytoma). There are no 

generally agreed criteria regarding which patients with apparently non-syndromic sporadic 
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phaeochromocytoma should be offered genetic testing for the most frequently mutated genes 

(SDHB, SDHD, VHL and RET). Clearly, the more targeted mutation analysis is designed to 

be, the more cost effective (in terms of expenditure per mutation detected) but less sensitive it 

will be. It is generally suggested that all patients with malignant phaeochromocytoma should 

be offered testing for SDHB, VHL and SDHD mutations as about 40-50% of such patients will 

have a detectable mutation (~35%, 5% and 1% respectively).  For patients with sporadic non-

syndromic extra-adrenal phaeochromocytomas the mutation detection rate is also high and 

thus it is suggested that SDHB, VHL and SDHD should be tested in such cases. For patients 

with a single benign adrenal phaeochromocytoma it is generally agreed that the age at 

diagnosis be used to prioritise testing – though the precise age cut-off has varied between 

investigators. In the largest study yet reported, Erlic et al (169) suggested that an age cut-off 

45 years would appreciably reduce the costs of genetic testing at the expense of only missing 

a relatively small number of mutation positive cases (<5%). As testing for TMEM127 and 

MAX becomes more widely available then the indications for including testing for these genes 

may need to be incorporated into genetic testing protocols.  

3.4 Aims  

This work aims to determine the characteristics of individuals with non-syndromic PPGL, in 

particular the frequency of mutations in SDHx and VHL genes.  As no clear guidelines are 

currently available regarding whom to test and in which sequence to test genes, characteristics 

of mutation carriers will be determined in order to inform clinicians regarding optimum 

testing strategies.    

3.5 Study methodology 

3.5.1 Patients included in the study 

The study population comprised probands with non-syndromic presentation of PPGL and 

HNPGL entered prospectively into the West Midlands PPGL/HNPGL database between 01 
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September 2001 and 01 September 2011.  This database included all individuals referred to 

the WMRGS for genetic testing for SDHB, SDHD or VHL.  If more than one member of a 

family was referred, only the proband was included in this study. Patients were referred from 

clinical genetics departments and endocrinologists from across the UK.  RET was not 

analysed although it is believed to contribute to only a small proportion of non-syndromic 

patients and NF1 was not tested as it is usually diagnosed clinically(123, 126). Testing of 

other genes such as TMEM127 and MAX was not performed as they had only been recently 

identified and therefore were not been routinely analysed.  

3.5.2 Data collated in this study 

Referring clinicians were contacted regarding demographic and clinical features of cases 

studied.  Data was collated on a standardised proforma and entered on a specified database.  

Demographic and clinical data including the following: gender, age at presentation, method of 

presentation (sporadic versus familial versus multicentric), location of tumour, presence of 

bilateral disease and evidence of malignancy were collected.  Malignancy was defined as the 

presence of distant or local/regional metastasis. Information on the clinical and genetic 

features of tested relatives was collated in order to determine the penetrance of SDHB 

mutations. 

3.5.3 Molecular genetic analysis 

The WMRGS received 10ml of EDTA or ACD anticoagulant blood for each individual 

included on the study.  Genomic DNA was extracted from peripheral blood leukocytes 

according to standard protocols described previously by our group (79).  Briefly, all DNA 

samples were analysed in the same genetic laboratory (WMRGS).  Mutation analysis was 

performed on the exonic and intronic flanking regions including splice sites for all exons of 

VHL (NM_000551.2), SDHB (NM_003000.2) and SDHD (NM_003002.2).  In addition to 
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PCR based mutation scanning, multiplex ligation dependent probe amplification (MLPA) was 

performed for SDHB, SDHD, and VHL (MRC Holland).  All genetic alterations were 

reviewed by consultant clinical geneticists and compared with available mutation data.(79, 

115, 170) 

3.5.4 Statistical considerations 

Data was analysed using the SPSS Statistical Package (v18).  Logistic regression was used to 

determine the predictive power of models explored and ROC curves drawn to determine the 

accuracy of models using different age cut offs. Student’s t tests were used to compare the 

ages in different subgroups 

3.5.5 Ethical considerations  

All patients gave written informed consent for genetic testing and evaluation of the genetic 

testing service was approved by Birmingham Women’s Hospital NHS Trust Research and 

Development Department. 

3.6 Results 

3.6.1 General demographic data for the cohort 

Five hundred and one patients were identified as having either a PPGL or HNPGL.  Four 

hundred and thirteen individuals had a PPGL and eighty eight individuals had a HNPGL.  The 

median age of PPGL patients was 36 years (range 5-94 years), the median age of HNPGL 

patients was 39 (range 8-74).  The male to female ratio was 0.84 for PPGL and 1.02 for 

HNPGL patients.   

3.6.2 Clinical and mutational data for individuals undergoing susceptibility testing with 

phaeochromocytoma/paraganglioma (PPGL) 

Of the PPGL cohort (n=413); 99 (24%) patients had a family history of either 

phaeochromocytoma or HNPGL and 314 had a sporadic presentation. 286 of the 314 patients 

(69% of total PPGL cases) with a sporadic presentation had a single tumour. 40 had bilateral 
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phaeochromocytoma and 30 patients had multiple PPGL (at least one paraganglioma (PPGL)) 

at the time of referral. 57 patients (14 % of the total PPGL referrals) had evidence of 

malignancy. 131 of the PPGL probands had a PGL (36 of 99 familial cases, 86 of 286 

sporadic cases, 9 of 30 multicentric cases, and 29 of 35 malignant cases).  Comparison of the 

age distribution of UK sporadic cases referred for genetic  testing with those in the 

population-based cohort described by Neumann et al (6) revealed a slight enrichment of 

younger cases in our series (see Figure 3.6.2). 

Characteristic No of patients (%) 

Positive family history 99 (24) 

Sporadic presentation 314 (76) 

Bilateral disease 40 (10) 

Multiple tumours 30 (7) 

Malignant 57 (14) 

Table 3.6.2.  Clinical characteristics of patients with PPGL. 

3.6.3 SDHB, SDHD and VHL mutation data 

Overall, 129 of 413 (31%) probands with PPGL had a detectable mutation in either SDHB, 

SDHD or VHL.  Some mutations had previously been described by Ricketts et al (11) 

however additional novel mutations are listed in figure 3.6.3. Overall, SDHB mutations were 

detected in 97 probands (accounting for 75% of mutations detected), SDHD in 13 probands 

(10 %) and VHL in 19 probands (15%).  11 of 97 probands with a pathogenic SDHB mutation 

had a deletion of one or more exons, 10 had a nonsense mutation, 13 had a frameshift 

mutation, 19 had a splice site mutation and 43 had a missense mutation.  There was one 

insertion. SDHD mutations were detected in 13 probands (missense =5, nonsense = 4, 

frameshift =2, splice site mutation=1 and a deletion were each seen in one case).  Pathogenic 
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VHL mutations in 19 cases consisted of missense mutations (n=17), deletions of one or more 

exons (n=1) and frameshift mutations (n=1). 

3.6.4 Characteristics of mutation positive and mutation negative probands 

3.6.4.1 Family history 

Sixty one of ninety nine (62%) probands with PPGL and a positive family history of PPGL or 

HNPGL had a detectable mutation in SDHB (n=47), SDHD (n=6) or VHL (n=8). The median 

age of probands with a positive family history was 26 years (range 7-69).  Of ninety-nine, 

twenty-two had multi-centric tumours, thirty one had a PGL and eighteen had a malignant 

PPGL. The age of those with a family history and mutation was significantly less (t=2.9, 

p=0.004) than those without a mutation (mean 26 versus 36 years). 

 

Figure 3.6.2. Age distribution of sporadic phaeochromocytoma. The age distribution of our 

cases included in this study (labeled UK) compared to those presented in the population based 

series described by Neumann and colleagues (labeled EAPR).(104) 
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Table 3.6.3.  Mutations in SDHB and SDHD.  This figure describes mutations in this cohort 

which have not previously noted in a published UK cohort.(79)  

3.6.4.2 Multiple tumours  

Individuals with SDHx mutations can also develop tumours other than PPGL, these tend to be 

rare and include RCC(133), pituitary adenoma (171, 172), papillary thyroid carcinoma and 

gastrointestinal stromal tumours.(173)  In this cohort, ten of thirty probands with multiple 

tumours and no family history of PPGL or HNPGL had a detectable mutation in SDHB (n=7), 

SDHD (n=2) or VHL (n=1). The median age of these probands with multiple tumours was 44 

years (range 12-83).  Three had malignant tumours and ten had one or more extra-adrenal 

tumour. The mean age at diagnosis for a proband with multi-centric tumours without a 

positive family history with a mutation and those without a mutation were 39.5 and 51 years 

respectively (t=3.09, p=0.003).   

Gene Exon DNA Mutation Predicted Result 

SDHB 1 c.17_42dup26 Frameshift 
p.Ala.15Hisfs*8 

2 c.88delC Frameshift 

p.Gln30Argfs*47 

2 c.158G>A  p.Gly53Glu 

4 c.287-1G>C Splice site 

6 c.591delC Frameshift 
p.Ser198Alafs*22 

6 c.587G>A p.Cys196Tyr 

7 c.685_6ins13 p.Glu229Alafs*31 

7 c.745_748dupTGCA  p.Thr250Metfs*7 

7 c.724C>T p.Arg242Cys  

SDHD 3 c.296delT Frameshift 
p.Leu99Profs*36 

3 c.191_192delTC Frameshift 
p.Leu64Profs*4 
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3.6.4.3 Malignant PPGL 

Thirty of fifty seven (53%) probands with a malignant tumour had a detectable mutation in 

SDHB (n=26), SDHD (n=3) or VHL (n=1). Excluding those with a positive family history 

and/or multiple tumours, 16 of 35 (46%) probands with a sporadic malignant tumour had a 

detectable mutation in SDHB (n=14), SDHD (n=1) or VHL (n=1). The mean age at diagnosis 

in this latter group for those with a mutation and those without a mutation was 29 and 50 

years respectively and there were no differences in the frequency of extra-adrenal 

phaeochromocytoma between the two groups. 

3.6.4.5 Location of PGL  

Overall fifty-eight of one hundred and thirty one (44%) probands with an extra-adrenal 

paraganglioma (PGL) had a detectable mutation in SDHB (n=40), SDHD (n=6) or VHL 

(n=12).  For patients with a PGL, the mean age of those with a mutation was 28 years 

compared to 41 years in those without a detectable mutation (t=4.13, p<0.001).  For 

individuals with a solitary, benign, adrenal phaeochromocytoma 29% (71/242) had a 

detectable mutation in SDHB (n=55), SDHD (n=6) or VHL (n=10). Sporadic 

phaeochromocytoma patients with a mutation were significantly younger than those without a 

mutation (mean age 29 versus 40 years respectively (t= 4.4, p<0.001).  The frequency of 

mutations in patients with a single sporadic phaeochromocytoma in different age groups is 

shown in figure 3.6.4A. Mutations were detected in all age groups. The proportions of 

mutations detected in patients with a single sporadic phaeochromocytoma at different age-at-

diagnosis cut-offs (<40, <50, <60 years and >60 years) are shown in figure 3.6.4 B. As the 

age cut-off is increased the proportion of mutations detected increases at the expense of less 

specificity. 
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3.6.4.6 Presence of additional tumour types 

In addition to PPGL and HNPGL, a variety of other tumour types have been reported to be  

associated, or potentially associated, with SDHB or SDHD mutations (133, 138, 172, 174, 

175). Therefore, the influence of the presence of another different tumour on the likelihood of 

mutation detection in individuals with PPGL was evaluated. In this cohort, there were three 

individuals with PPGL and breast cancer and none of these patients had a detectable mutation.  

Two individuals with PPGL also had had thyroid carcinoma and neither had a mutation. 

Three individuals with PPGL and renal tumours were tested and one individual (reported 

previously (176) had a mutation. Neither of two patients with PPGL and a second endocrine 

tumour (prolactinoma or adrenal adenoma) had a mutation.  This data suggests that there are 

other yet to be identified genetic causes of these multiple cancers. 

3.6.5 Characteristics of mutation positive cases by specific genes 

3.6.5.1 SDHB mutation positive probands  

Ninety seven probands harboured a SDHB mutation. The median age of SDHB mutation 

positive probands was 27 years.  49% of SDHB mutation positive probands had a family 

history and 7% had multi-centric tumours at presentation.   43% of individuals with an SDHB 

mutation had a sporadic presentation.   22% percent of those with a bilateral 

phaeochromocytoma had an SDHB mutation. Twenty seven individuals with SDHB mutations 

had a malignant tumour (26%), thirty one of those with SDHB disease had extra-adrenal 

tumours (32%).  This indicates that SDHB mutations are more likely to be associated with 

malignancy and extra-adrenal presentation. 
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Figure 3.6.4 Solitary adrenal phaeochromocytoma. (A)  The proportion of individuals with a 

solitary adrenal phaeochromocytoma with a detectable SDHB, SDHD or VHL mutation 

according to age at diagnosis. (B) A comparison of the proportion of mutation positive 

patients detected and the proportion of cases tested with different age cut-offs for offering 

testing. 
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3.6.5.2 SDHD mutation positive probands 

The median age of the thirteen patients with an SDHD mutation was 23 years and only one 

patient aged over fifty had a SDHD mutation. Forty six percent of those with a SDHD 

mutation (6/13) had a positive family history, 15% (2/13) had multicentric disease and 38% 

(5/13) had a sporadic presentation.  The proportion of those with multicentric disease included 

those with HNPGL which are strongly correlated with SDHD mutations.  23% of individuals 

with SDHD mutations had bilateral tumours, 15% had malignant tumours and 31% of 

individuals had extra-adrenal tumours. 

3.6.5.3 VHL mutation positive probands 

Ten probands harboured a VHL mutation, their median age was 20.  There were no patients 

aged ≥46 years.  38% had a positive family history of PPGL.  5% had multi-centric tumours 

and 57% had sporadic presentation.  Nineteen percent had extra-adrenal tumours and 32% of 

individuals had bilateral disease.  10% had a malignant tumour. 

3.6.6 Clinical characteristics and SDHB, SDHD or VHL mutation prediction 

This data suggests that the likelihood of detecting a SDHB, SDHD or VHL mutation was 

increased by the presence of a positive family history of PPGL or HNPGL, multiple tumours, 

extra—adrenal location and younger age at onset.  This was consistent with previous reports 

(see  Jafri and Maher(73) and references within). However, whilst there is a consensus about 

the risk factors for the presence of a mutation, there is little consensus about the age up to 

which patients with sporadic phaeochromocytoma should be offered genetic testing. 

Therefore different selection models were applied to this data to investigate the sensitivity and 

efficiency of different age cut-offs. Thus in model A, all patients with a positive family 

history, multiple tumours, extra-adrenal location and/or malignant PPGL plus those with 

sporadic adrenal phaeochromocytomas aged <45 years would be tested. Applying these 

criteria to this data and undertaking logistic regression analysis revealed that application of 
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model A would have detected 69% of all mutation positive cases (97% of SDHD mutations, 

95% of VHL mutations and 76% of SDHB mutations).  The effects of altering the age cut-off 

for sporadic phaeochromocytoma cases to 50 years (Model B) and 60 years (Model C) on the 

proportions of mutation positive cases detected were studied.  Increasing the age cut off to 50 

years would increase the number of mutation positive cases up to 69.1% and increasing the 

age cut off to 60 years would increase the number of mutation positive cases up to 76.4% 

respectively. The ROCs for each model are shown in figure 3.6.6. Although increasing the 

age cut-off improves the mutation detection rate, there is an increase in the number of tests 

undertaken. Thus, assuming an indicative rate of £1500 ($2300)  for mutation analysis of 

SDHB, SDHD and VHL the cost per mutation detected for analyzing all PPGL cases is £4802 

(approximately $7360). Using model A, the cost is  £4170 (approximately $6380),  £4245 for 

model B (approximately $6490) and £4500 for model  C (approximately $6885). 
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Figure 3.6.6   Receiver Operating Characteristic (ROC) Curves for Phaeochromocytoma. 

ROC curves  if testing occurs in all individuals with family history, extra-adrenal, multiple 

and malignant phaeochromocytoma and aged ≤45, ≤50, ≤60 years old (models A, B and C, 

labelled less_45, less_50 and Less_60 respectively). 

Area Under the Curve 

Test Result 

Variable(s) Area Std. Errora 

Asymptotic 

Sig.b 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

less_45 .578 .029 .012 .521 .635 

less_50 .581 .029 .008 .524 .639 

Less_60 .597 .029 .002 .541 .653 

The test result variable(s): less_45, less_50, Less_60 has at least one tie between the positive 

actual state group and the negative actual state group. Statistics may be biased. 

a. Under the nonparametric assumption 

b. Null hypothesis: true area = 0.5 
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3.6.7 Clinical and mutational data for individuals undergoing susceptibility testing with 

head and neck paraganglioma (HNPGL) 

Eighty eight probands presented with HNPGL and their median age at diagnosis was 40 years 

(range 8-75 years).  41% of the cohort had a positive family history of either HNPGL or 

PPGL.  Eight of fifty-two patients without a family history presented with multiple tumours.  

Median age at presentation was 38 years in those with a positive family history (n=36), 36 

years in those with sporadic multiple HNPGL (n=43) and 36 years in those with a single 

sporadic HNPGL (n=40).  

3.6.7.1 SDHB and SDHD Mutation Data in HNPGL 

Overall, 63% (n=55) of probands with HNPGL had a detectable mutation in SDHB (27%, 

n=24), or SDHD (35%, n=31).   Pathogenic mutations in SDHB consisted of deletions of one 

or more exons (n=2), nonsense mutations (n=3), frameshift mutations (n=1), splice site 

mutations (n=3) and missense mutations (n=15).  Pathogenic mutations in SDHD consisted of 

deletions of one or more exons (n=4), nonsense mutations (n=2), frameshift mutations (n=7), 

splice site mutations (n=0) and missense mutations (n=18). 

3.6.8 Characteristics of mutation positive and negative HNPGL probands 

3.6.8.1 Family history 

33 of 36 (92%) probands with a positive family history of PPGL or HNPGL had a detectable 

mutation in SDHB (n=15) or SDHD (n=18). Two patients had multi-centric tumours and two 

had malignant tumours.  

3.6.8.2 Multiple tumours  

Eight of nine (89%) probands with multiple tumours and no family history of PPGL/HNPGL 

had a detectable mutation in SDHB (n=2), SDHD (n=6).  The median age at diagnosis for 

those with multiple tumours and a mutation was 38.5 years compared with 62 years for those 

without a mutation.  
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3.6.8.3 Malignant HNPGL  

Only three patients (2 of whom had a positive family history) were diagnosed with a 

malignant HNPGL.  Two had truncating mutations (one SDHB nonsense mutation (c268C>T, 

p.Arg 90X) and one a SDHD frameshift mutation (c.94_95del TC, p Ala33 Ile fs*35). No 

mutation in SDHD, SDHB, or VHL was detected in the third case. 

3.6.8.4 Single sporadic HNPGL 

Sixteen of forty four probands of individuals with a sporadic presentation had a detectable 

mutation in SDHB (n=7) and SDHD (n=9).    

3.6.9 Characteristics for mutation positive HNPGL cases for specific Ggenes 

3.6.9.1 SDHB mutation carriers 

The median age of SDHB mutation carriers was 46 years.  63% (15/24) of SDHB mutation 

carriers had a family history and 8% (2/24) had multicentric tumours at presentation.   29% 

(7/24) of individuals with an SDHB mutation had a sporadic presentation. 

3.6.9.2 SDHD mutation carriers 

The median age of individuals with SDHD mutations was 38.5 years. 58% (18/31) had a 

positive family history, 19% (6/31) had multicentric disease and 29% (9/31) had a sporadic 

presentation.  Two patients had both a positive family history and multiple tumours.   

3.7. Discussion 

3.7.1 Recommendations from this study in light of the current literature  

At the time of performing this study, mutations in 10 genes (SDHB, SDHC, SDHD, VHL, NF-

1, RET, TMEM127, SDHAF, SDHA, MAX), were accepted to cause inherited PPGL and/or 

HNPGL (see Jafri and Maher (73) and references within).  A further two possible inherited 

PPGL genes had been reported in single reports (PHD2/EGLN1 and KIF1β (165, 166)).  

These potential inherited phaeochromocytoma genes were not routinely evaluated due to their 

relative rarity.  At the time the contribution to inherited PPGL/HNPGL from mutations in 
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MAX, TMEM127, SDHAF, SDHA and SDHC appeared to be relatively small and/or not well 

defined (130, 153, 156, 160, 163, 177).  Among non-syndromic PPGL cases SDHB, SDHD 

and VHL account for most cases and, though VHL mutations may occasionally be associated 

with HNPGL, SDHD and SDHB are the major HNPGL genes (104, 135, 144, 150, 178-181). 

The frequency of VHL, SDHB and SDHD mutations among PPGL/HNPGL is variable 

because of the presence of founder mutations in some populations.  This study was the first 

extensive study describing mutation analysis of PPGL and HNPGL cohorts from the United 

Kingdom and was similar in size to large studies from the French COMETE Group (150) and 

Spain (179). In addition, in contrast to earlier studies(104), all patients in the current study 

were tested for germline exonic deletions/duplications in SDHB, SDHD and VHL.  

 

Two limitations of the current study were that RET germline mutation analysis was not 

performed as part of the genetic testing service and that the cohort represents a referral-based 

series and not a population-based series. RET gene mutations are less common in non-

syndromic populations however can occur in 5% of non-syndromic patients.(104)  Use of a 

referral based population potentially contributes to ascertainment bias as possibly more 

patients with a high risk phenotype were included in the study.  Nevertheless, many of the 

findings of this study are consistent with those of large population and referral-based studies 

from outside the UK in that a positive family history, multiple tumours, malignant disease, 

extra-adrenal location and younger age at diagnosis were all indicators of an increased 

mutation detection rate.  

This cohort  had a larger representation of malignant PPGL than the cohort described by  Erlic 

et al (169) (12.5% compared with 4%).     Furthermore, the frequency of germline VHL gene 
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mutations detected was less than that reported by Neumann et al (104). This latter finding 

might reflect more intensive investigation to detect subclinical features of VHL disease before 

genetic testing in the UK or some referral bias.  However, the age distribution of sporadic 

cases in our series described in figure 3.6.2 was not markedly dissimilar to that reported in 

population-based series (6).   

HNPGL are mostly associated with mutations of SDHB and SDHD (169), though SDHC and 

rarely TMEM127, SDHAF and VHL mutations may be detected(130, 153, 161, 182).  A 

minority of patients had a malignant HNPGL (3%), this proportion was similar to that seen by 

Boedeker et al who identified 3.6% of 195 individuals tested for HNPGL had evidence of 

distant metastases.(183)  All malignant HNPGL in Boedeker and colleagues study had SDHB 

mutations.   In this cohort, one patient had a SDHB mutation, one patient had a SDHD 

mutation and one patient had no detectable mutation in SDHB, VHL, or SDHD.    

The high mutation detection rate in this study compared to population-based series (104) may 

reflect a combination of ascertainment bias and MLPA analysis to detect SDHB and SDHD 

(and SDHC) exonic deletions. As universal genetic testing of all PPGL patients using 

conventional sequencing technology is expensive (even for just the major inherited PPGL 

genes; see below) a number of groups have suggested clinical stratification strategies to 

increase mutation detection efficiency and cut costs. Thus, Erlic et al (180) analysed mutation 

detection predictors in 989 cases of non-syndromic phaeochromocytoma and suggested that 

germline mutation testing for RET, SDHB, SDHD and VHL could be most efficiently focused 

on patients with one or more of the following: family history of PPGL/HNPGL, age <45 

years, multiple tumours, extra-adrenal location and previous HNPGL.  Although there is a 

consensus that patients with a positive family history or multiple tumours should be offered 

genetic testing and most would suggest at least SDHB and SDHD mutation testing in patients 
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with extra-adrenal or malignant tumours, there is less agreement regarding age cut-offs for 

targeting genetic testing of patients with a single benign phaeochromocytoma and no family 

history. Application of the Erlic et al (180) testing criteria to our cohort would detect most 

SDHB, SDHD and VHL mutations in the cohort. However, a significant minority of cases 

would not be detected. Increasing the age cut-off to 60 years would have increased the 

proportion of mutations detected but increased genetic testing costs (e.g. for sporadic benign 

phaeochromocytoma patients and age cut-offs of 40 years, 50 and 60 years would result in the 

detection of 52%, 72% and 93% respectively of all mutations, but would have involved 

testing 52%, 69% and 89% respectively of all sporadic benign cases). An age cut-off of 45 or 

50 years might appear to offer the best balance between mutation detection and genetic testing 

costs.  The majority of mutations “missed” by an age cut-off of 45/50 years were in the SDHB 

gene. Thus, there is a clear rationale for suggesting that if an age cut-off of 45/50 years is 

instigated then this could be combined with SDHB immunostaining (79, 154, 184) to identify 

those older patients who could benefit from mutation analysis. Although clinical and 

immunohistochemical criteria can be used to prioritize patients for genetic testing, it seems 

likely that, as the number of inherited PPGL genes increase (and the proportion of cases with 

a genetic basis), the demand for more extensive genetic testing will increase.    

 

The cost of VHL, RET, SDHB and SDHD by conventional (Sanger) sequencing technology 

has been estimated to be approximately £1800 ($2700) (181), but the advent of next 

generation sequencing (NGS) offers the potential for faster and less expensive testing of 

multiple genes simultaneously (see section 3.7.3).  Hence, in the near future comprehensive 

mutation analysis of all proven PPGL and HNPGL genes (excepting NF1) in all patients may 

emerge as the standard testing strategy and therefore patients that do not satisfy current local 
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criteria for genetic testing should have DNA stored for future analysis.   A major advantage of 

a comprehensive NGS testing strategy is that all genes are tested simultaneously rather than 

serially and so the time to mutation detection is reduced.  

However, it remains important to evaluate the results of genetic testing in service-based 

settings so that the recommendations for genetic testing are kept under review. This will 

enable genetic testing recommendations to reflect the characteristics of their associated  

population. For example, in this series, a significant proportion of patients did not have a 

detectable mutation whereas series of HNPGL and PPGL from the Netherlands have revealed 

that six founder mutations accounted for 88.8% of all mutations(177). Patients included in 

research studies are not necessarily representative of those in the general population and the 

phenotype associated with a particular gene may emerge over time. For example, TMEM127 

mutations were initially thought to be confined to adrenal phaeochromocytoma cases, often 

aged >40 years, but were subsequently reported in patients with paraganglioma and HNPGL 

(164).  

3.7.2 New developments in the genetic basis of phaeochromocytoma 

3.7.2.1 Recently identified genes in phaeochromocytoma 

NGS techniques have recently facilitated the identification of novel phaeochromocytoma 

associated genes.  As these have only recently been characterized the extent they influence 

phaeochromocytoma susceptibility remains to be ascertained.  However, the genes identified 

to fit the current paradigm regarding the pathophysiology of phaeochromocytoma.   

3.7.2.1.1 Fumarate Hydratase (FH) as a PPGL associated gene 

FH is a known TSG previously confirmed to be the cause of Hereditary Leiomyomatosis 

RCC (see section 4.2.3 for more detail)(185).  FH has been demonstrated to be associated 

with familial PPGL in 4 out of 598 cases (74, 186), Clark et al have also independently 
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identified FH mutations in phaeochromocytoma(187).  Individuals with FH associated PPGL 

are more likely to have multiple tumours and these tumours are more likely to be 

malignant(186).  Loss of heterozygosity of FH has been demonstrated in tumours and 

clinically these tumours have similarities to those seen in SDHB deficient individuals such as 

having elevated normetanephrine levels(186).  FH deficiency causes fumarate accumulation 

which acts as an oncometabolite in much the same way as succinate.  In SDHB deficient 

tumours, succinate inhibits PHD enzymes and TET enzymes leading to increased 

pseudohypoxic signalling and epigenetic abnormalities.   Fumarate accumulation causes TET 

inhibition which can be demonstrated using immunohistochemistry showing low levels of 

staining for 5-hydroxymethylcytosine.  Immunohistochemical staining of SDHB and FH 

deficient tumours revealed low levels of 5-hydroxymethylcytosine compared to NF1 and RET 

deficient tumours.  Similarly tumours from individuals with FH mutations demonstrated 

protein succination due to the interaction of fumarate with sulphydryl groups on proteins.  

Immunohistochemical staining of tumours could therefore be used as an adjunct to the 

identification of the most appropriate mutation.  It is hypothesized that the association of 

malignancy with SDHB and FH mutations is due to increased pseudohypoxic signalling and 

inhibition of demethylation leading to increased vascularization and increasing the probability 

of metastasis and EMT.   

 

3.7.2.1.2 HIF2A as a PPGL associated gene 

HIF2A mutations were initially identified in patients with polycythemia and 

phaeochromocytoma(188-190).  Most mutations found in HIF2A have been found in sporadic 

tumours, and more recently have been identified in the absence of erythrocytosis.(191)    

Mutations in HIF2A caused stabilization of HIF2α by affecting the residue involved in prolyl 
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hydroxylase binding.  This alteration leads to failure of HIF-2α ubiquitinisation and 

degradation.  A recent study revealed mutations of HIF2A occurred in tumour DNA from 

sporadic PPGL (2.4% of the cohort) but no inherited PPGL.  One specific mutation 

Pro531Thr was associated with decreased VHL binding and caused tumours when transfected 

cells were injected into mice.  Furthermore, HIF2A mutations were associated with increased 

expression of hypoxia associated genes, and a dedifferentiated phenotype.(192) HIF2A 

associated PPGL can be multi-centric tumours which are usually thought to be inherited 

through families.  The variable phenotype associated with HIF2A mutations may be caused by 

genetic mosaicism, with the mutation occurring as a de novo event in early embryogenesis in 

the post-zygotic phase.(193)  Thus individuals with a HIF2A mutation should undergo 

lifelong surveillance and their offspring should be screened for the mutation. 

3.7.2.1.3 HRAS as a PPGL associated gene 

Unlike the other PPGL associated genes, HRAS mutations have only been described as 

somatic events in sporadic PPGL.(194, 195)  Four of fifty eight patients in one series(195) 

had missense mutations in HRAS present in tumour DNA which were absent in the germline 

DNA.  The mutation was associated with a benign tumour with a low proliferative index and 

male sex.  There was evidence of elevated RAS signalling in the tumours and patients had 

increased metanephrines.  Germline HRAS mutations are associated with Costello syndrome 

which is not known to be associated with PPGL.  A second European study(194) also found 

that there was a ten percent rate of HRAS mutations in sporadic PPGL however, did not find 

any clinical correlates associated with mutation positivity. 

3.7.2.2 Clustering of phaeochromocytoma according to transcriptomic and genomic data 

Rather than phaeochromocytoma being subdivided based on whether they present as part of a 

syndrome or not, phaeochromocytoma can be clustered according to their genotype and 
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corresponding cell biological abnormalities.  This categorisation has been greatly aided by 

gene expression arrays and other genomic techniques. Analysis of PPGL on the basis of their 

gene expression has also facilitated the discovery of new phaeochromocytoma associated 

genes, for example the identification of MAX and FH was facilitated by analysing gene 

expression data 

Cluster I Pseudohypoxia associated PPGL (VHL, SDHx, FH, HIF2A associated 

tumours)  

Transcriptional profiling studies have demonstrated that VHL and SDHB associated tumours 

display an increased expression of genes related to pseudohypoxia and angiogenesis.(141)  In 

particular there was increased expression of hypoxia inducible factor 2 α (HIF-2α), NOX4 

(required for HIF-2 α transcriptional activity) and VEGF(141).  HIF-2α overexpression is the 

key differentiator of cluster I and II PPGL.(196).  Transient expression of HIF-2α is believed 

to occur in the chromaffin cell progenitor cells early in embryogenesis, thus overexpression of 

HIF-2α  in PPGL is a reflection of their tissue of origin and describes the susceptibility of the 

chromaffin progenitors to mutations that lead to stabilisation of HIF(196).  PPGL with a 

HIF2A mutation also form part of cluster I displaying upregulation of hypoxia induced 

genes(191). 

Cluster I PPGL are associated with secretion of higher quantities of immature catecholamines.  

This is due to decreased expression of key components of the catecholamine biosynthetic and 

secretory pathways.  In particular, the enzyme PNMT which converts norepinephrine to 

epinephrine is absent resulting in increased secretion of norepinephrine.  This is not seen in 

cluster II PPGL (see below) which tend to secrete epinephrine.(196) 

Within the ‘pseudo-hypoxia cluster’, transcriptomics enables differentiation of VHL and 

SDHB associated tumours.  VHL associated tumours are associated with activation of the TNF 
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pathway and HIF-1α.  The latter is associated with increased EgIN3 transcription.  HIF1-α  is 

important in the Warburg effect (discussed in section 1.2.2.2), it has several functions 

including: switching on glycolytic enzymes, inducing glucose transporters, inducing lactate 

dehydrogenase and mediating the expression of pyruvate dehydrogenase kinase 1.(197)  

Pyruvate dehydrogenase kinase 1 inhibits the conversion of pyruvate to acetyl coA reducing 

mitochondrial function and oxidative phosphorylation (197).   VHL associated PPGL also 

have no SDHB expression (197).   Glycolysis is stimulated preferentially in VHL associated 

phaeochromocytoma compared to SDHB associated PPGL indicating a HIF independent 

mechanism.  It was found that VHL activates p53 which in turn regulates a glycolysis 

regulator.(197)  SDHB associated tumours have increased expression of cell migration and 

adhesion genes which may be associated with their increased tendency for malignancy. (141) 

VHL associated tumours tend to be adrenal and benign whereas other cluster I tumours tend to 

be extra-adrenal and have an increased malignant potential. (131)  

Cluster II: PI3K/AKT/mTOR and Ras/Raf/Erk associated PPGL (NF1/RET/H-

ras/MAX associated tumours) 

Tumours with either NF1, RET or HRAS mutations share a transcriptional profile.(108) 

Cluster II tumours represent 70% of sporadic tumours (115) and tend to be adrenal (131).  

These tumours except those associated with MAX tend to be benign. Alterations in these genes 

are all associated with increased intracellular signalling.  Typically this involves increased 

signalling of the PI3K/akt/mTOR and Ras/Raf/erk pathways.     Other genes upregulated in 

this cluster include those genes associated with initiation of translation, protein synthesis, 

adrenergic metabolism (e.g. PNMT) and neuroendocrine differentiation.(115)  There is no 

difference in the gene expression profile of tumours associated with RET and NF1 mutations 

indicating a common tumourigenesis pathway.(115) 
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MAX associated tumours are found within a subcluster of cluster II, they are characterised by 

intermediate PNMT expression (more than cluster I tumours and less than cluster II tumours) 

and intermediate HIF-2α expression (more than cluster II tumours and less than cluster I 

tumours).  MAX inhibition in a cell line model was associated with decreased PNMT 

expression which suggested a causative role.  HIF1α levels were higher in MAX associated 

tumours than in either cluster I or cluster II tumours (196)   

3.7.3. Use of genetic testing to guide clinical management 

Identification of germline mutations in aPCA/eFPGL and HNPGL has important clinical 

implications.  Firstly, as the paternal mode of inheritance has been noted in MAX and SDHD 

mutations appropriate screening regimens can be applied.  Individuals carrying mutations can 

be screened for other associated conditions such as kidney cancer in VHL associated disease 

and MTC in RET associated disease.  In individuals found to have SDHB associated disease 

for example, the risk of malignant disease means a more cautious approach could be adopted. 

Finally, improved understanding of the pathophysiology associated with these mutations can 

lead to stratified medicine approaches in PPGL.  For example, cluster I associated PPGL 

could be treated with angiogenesis inhibitors such as sunitinib (198, 199) and demethylating 

agents are being trialled(200).  Cluster II tumours may be treated with key pathway inhibitors 

such as mTOR inhibitors (200).  This model of using genetics to understand tumour biology 

and then inform treatment choice maybe an example for other cancers in the future.   

3.7.4 Future directions for genetic testing in phaeochromocytoma and paraganglioma 

Given the fast moving pace of improvements in sequencing technology, the costs of genetic 

testing are decreasing year on year.   Furthermore, in PPGL new genes are being discovered 

in the condition on a yearly basis.  This has led to a trend towards more generalized testing in 

phaeochromocytoma with some authors suggesting all patients with the condition be tested 
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(201).  The advantage of this strategy is that the detection rate can increase as apparently only 

30-50% of individuals have a ‘strong enough’ family history to warrant genetic testing(202).  

Furthermore, rather than testing single genes sequentially in individuals with 

phaeochromocytoma, multiple genes can be tested at the same time.  This leads to a quicker 

result and an increased chance of a gene mutation being identified.  This ‘blanket’ testing of 

certain cancers has already been introduced in ovarian cancer in patients in Canada and 

Australia where all patients with ovarian cancer are tested for BRCA1 and BRCA2 as half of 

all patients with mutations in these genes have no positive family history.  Critically 

mutations in these genes are associated with improved platinum sensitivity and thus testing 

has clinical implications(203). 

The advantage of early identification of genetic causes of phaeochromocytoma in those at risk 

of phaeochromocytoma or paraganglioma is that screening can be initiated earlier.  Disease 

can be identified at an early stage and tumours removed.  This has the advantage that surgery 

would be less extensive and the serious risks associated with the disease can be abrogated.  

This can in severe cases be sudden death due to sudden catecholamine release.  Furthermore, 

related family members can be tested and then would be offered screening investigations if 

necessary or avoid screening if negative for the mutation.(204)  Dependent on the type of 

mutation identified different surveillance strategies may be instigated for example SDHB 

mutation associated tumours are associated with a poor prognosis whereas  HRAS mutations 

are associated with a more benign course at present. 

3.7.5 Use of NGS in the diagnosis of phaeochromocytoma. 

NGS (detailed in section 4.7 of this thesis) has been developed as means of interrogating 

numerous genes simultaneously.  This is both cheaper and quicker than the sequential 

approach utilized in this chapter. The advantages of using NGS should be considered with 
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regard to two possible negative aspects of the technique.  Firstly, testing of larger number of 

genes by NGS can be associated with an increased risk of identifying a variant of unknown 

significance (over 30% in some estimates)(202)  It is unclear how to manage such patients 

and having such a variant can be associated with anxiety and distress. Secondly, potentially an 

incidental finding of a mutation in another non-cancer associated gene could be identified.  

There are no clear guidelines regarding which alterations to report to patients in the UK. 

Two main methods have been utilized to harness the potential power of NGS in the diagnosis 

of phaeochromocytoma associated genes (i) whole exome sequencing (WES) and (ii) 

multiplex gene testing using custom designed libraries for genes of interest.(204, 205)   These 

techniques require careful validation in addition to the bioinformatics needed in order to 

quality assure and filter available data.    

WES does not cover the entire exome and the sequences captured are dependent on the probes 

used within the library.  One sample presented in McInerley-Leo’s cohort(204) had no 

discernible mutation using one exome sequencing library, however when the library was 

analysed in did not contain all the exons in SDHC.  Thus, NGS was performed using a 

different exon capture library and an SDHC mutation was identified.   This group compared 

the different capture rates for the main phaeochromocytoma genes for different exome capture 

platforms.  They identified that within the ‘real world’ laboratory setting, capture of exomic 

regions was not as efficient as the manufacturer supplied data, indicating validation of 

coverage should be performed.  Furthermore, different capture libraries had different coverage 

methods for example the Nimblegen and Agilent systems tended to have some coverage of all 

genes whereas the Illumina Nextera system was more ‘all or nothing’.(204) In addition, the 

5’UTR was not included in the Nextera exon capture system thus some alterations could be 

overlooked. This group however argued that WES has two main advantages over multiplex 
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gene sequencing (i) it is useful for gene discovery as novel alterations in ‘new’ genes can be 

identified and (ii) the technique does not need to be updated every time a new gene is 

identified.   A disadvantage of WES in a condition where there are many known genes is that 

potentially the technique may be more expensive and due to the amounts of data more time 

consuming.  Interestingly, this group was able to perform the analysis relatively quickly (<1hr 

for analysis after initial bioinformatics (quality control, sequence alignment, removal of 

common SNPs and filtering for common phaeochromocytoma genes).  The results were 

reported to clinicians within 5 weeks suggesting this is a feasible technique.  A similar study 

in Sweden also employed WES  in the genetic screening of paraganglioma and 

phaeochromocytoma.(206)  This group used the Agilent Sure Select exome capture kit and 

also focused on their analysis on the known phaeochromocytoma associated genes.  Their 

data was filtered in house using standard protocols and after this had been achieved reporting 

the data required only 30 minutes.  This group also felt that the ‘turn around’ time of NGS 

could be a week.(206) 

 

NGS in phaeochromocytoma or cancers in general is not without its complications.  A recent 

survey of the use of a cancer susceptibility gene testing panel revealed 30% of all cancer 

panels performed contained a variant of unknown significance or ‘benign’ variant (207).  

There is at present little work being carried out in order to determine how to characterize 

these variants and thus individuals with such genetic variants will experience a degree of 

uncertainty which may adversely influence them for years to come.  Furthermore, for some 

cancer susceptibility genes the penetrance and lifetime risk is not clearly defined.  Therefore, 

counselling regarding the implications of carrying such a gene is yet to be clarified (202). 
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Multiplex sequencing using a panel of susceptibility genes has been successfully achieved 

recently.(205, 208, 209).  Rattenberry and colleagues (205) used multiplex sequencing on a 

Roche platform to evaluate nine PPGL associated genes (MAX, RET, SDHA, SDHB, SDHC, 

SDHD, SDHAF, TMEM127, VHL).  They found the technique to have a sensitivity of 98.7%.  

However, exons with a GC content of greater than 66% produced poor results. There was also 

a considerable proportion of variants of unknown significance (61%).  The technique was 

associated with a considerable reduction in costs (70%) and time taking less than 60 days 

compared to 160 days.   The study demonstrated that multiplex testing was accurate and 

associated with substantial time and cost savings compared to Sanger sequencing.  NGS 

sequencing of the same nine genes was also carried out on germline DNA from thirty one 

patients with histologically proven PPGL using an Illumina platform at x50 coverage, MLPA 

was also performed to identify deletions(208).  This universal approach was associated with a 

31% rate of identification of mutations, the population tested was predominantly sporadic and 

interestingly two SDHAF mutations were identified which would otherwise have been missed.  

This group calls for universal testing as one patient with a TMEM127 mutation was 57 years 

old and would have been missed by most targeted testing protocols and one patient with a 

SDHAF2 mutation was 67 and would also have been missed.  Family members of these 

individuals would therefore require testing and potentially screening furthermore the patient 

with a TMEM127 mutation would benefit from further surveillance as TMEM127 mutations 

are associated with bilateral disease.(208)   However, careful cost-benefit analyses are 

required before universal screening is performed. 

In a Swedish study (209), tumour DNA from eighty-six patients were sequenced for 

mutations in ELGIN1(PHD2), KIF1ββ, MAX, MEN1, NF1, RET, SDHA, SDHB, SDHC, 
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SDHD,SDHAF, TMEM127 andVHL.  Ninety seven percent of the exons were covered with 

problems in areas of GC rich nucleotides and the average depth of coverage being x 915.  

NGS confirmed known mutations i.e. in SDHB and subsequent analysis of germline DNA 

revealed 19% of sporadic tumours harboured a germline mutation.  As this panel included 

genes less commonly investigated i.e. KIF1 ββ,  the study identified novel missense mutations 

and identified somatic KIF1 ββ  mutations.  This cost of the analysis by this group was 

believed to be €189 per sample.  As the group identified some novel mutations in sporadic 

tumours, the group suggested that a universal screening approach may be advantageous as 

some alterations would have been missed by conventional screening. However, the proportion 

of cancers that are associated with the ‘novel genes’ identified in PPGL is very small and thus 

others argue that routine testing of these genes may not be cost effective.(159) 

3.8 Conclusions 

There are no current UK based guidelines to guide clinicians regarding which individuals with 

PPGL or HNPGL should be offered genetic testing.  Decisions regarding who to test rest with 

endocrinologists and clinical geneticists based on their personal experience, clinical interests 

and the published literature.  Within the literature mutation frequency varies according to 

population studied: for example the founder mutations in the Black Forest region of Germany 

(210) and the Netherlands (177) lead to different mutations frequencies to those described in 

this study.  The UK benefits from a heterogenous population and thus may well have different 

mutation frequencies and characteristics.  Therefore, this study provides important 

information to guide clinicians in the UK population.  This data corroborates the 

recommendations of other key publications in the field, notably suggesting that all individuals 

with bilateral tumours, familial tumours, malignant, and extra-adrenal tumours should be 

tested.  Furthermore, individuals with HNPGL have a greater likelihood of harbouring a 
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mutation than those with a solitary adrenal phaeochromocytoma.  With regards to the best age 

for testing individuals with solitary adrenal phaeochromocytoma susceptibility genes there is 

no clear age cut off which will lead to no cases being missed. The cases that are missed are 

predominantly SDHB mutations and therefore perhaps testing could be combined with 

immunohistochemical tumour analysis in these older individuals.  This immunohistochemical 

analysis (211) is not currently routinely performed. Thus, the age at which patients should be 

tested requires a judgement based on a combination of the currently available literature 

regarding mutation frequency and the costs of testing.  
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CHAPTER 4.  INVESTIGATING THE MOLECULAR PATHOLOGY 

OF RENAL CELL CARCINOMA (RCC) 

 

Preface 

Some of the work in this chapter has been previously published Jafri et al, (212) 

Background 

4.1 Understanding the challenges in the current management of RCC. 

4.1.1 Background: histology and epidemiology 

RCC  is a cancer derived from the malignant proliferation of the renal tubular epithelium, it is 

the eighth most common cancer in the UK (213). There are several different distinct 

pathological subtypes of RCC. These subtypes are associated with a variety of clinical disease 

spectra.  Different subtypes can be associated with a number of inherited causes of RCC 

which will be discussed in section 4.2.  RCC is typically classified according to its 

histological subtype.  The most common subtypes of RCC are clear cell carcinoma (75%)  

followed by papillary, chromophobe, sarcomatoid and oncocytoma (which are benign 

tumours) (214).   With increased understanding of the molecular pathology of cancer, this 

classification may be superseded in the future.  The most recent pathological consensus into 

the classification of RCC (215) has recommended additional histological subtypes based on 

genotypic and phenotypic data.  These include the new subtypes of; tubulocystic RCC, 

acquired cystic disease-associated RCC, clear cell (tubulo) papillary RCC, the MiT family 

translocation RCCs (in particular t(6;11) RCC), and hereditary leiomyomatosis RCC 

syndrome-associated RCC. There were also two provisional potential subtypes of RCC which 

are based on the presence of a genetic alteration; SDHB deficiency-associated RCC; and ALK 

translocation RCC (215)  It is likely that with better understanding of the molecular 

pathogenesis of malignant tumours this classification may be further complicated by the 
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presence and absence of genetic changes. Histological examination of RCC tissue enables the 

determination of the Fuhrman grade.  This system grades tumours from 1 to 4 and has been 

shown to have prognostic significance.  Grade is assigned based on the nuclear size, shape 

and nucleolar prominence of cells (216).  Grade 4 tumours of the same size and subtype as a 

grade 1 tumour are more likely to metastasize. 

The incidence of RCC has been increasing in recent years (217); this may be ascribed to a 

number of factors including increasing use of imaging technologies in routine medical 

practice leading to identification of smaller asymptomatic tumours.  Furthermore, the risk of 

RCC increases with increasing age, and the increased prevalence of smoking, obesity and 

hypertension may have contributed to this increase in the incidence of RCC.(218)  Individuals 

on long term haemodialysis develop renal cysts (acquired renal cyst syndrome), these 

individuals are four times more likely to develop RCC (218) 

4.1.2 The diagnosis and staging of RCC 

Diagnosis is determined partly by the means by which patients present with RCC.  An 

individual may undergo a diagnostic imaging technique such as ultrasound imaging or 

computer assisted tomography (CT) and a lesion suspicious for a RCC can be identified 

incidentally.  This mode of presentation occurs in asymptomatic patients and can account for 

up to 80% of new diagnoses (219).  In those with symptomatic disease, the classical clinical 

triad of pain in the flank, haematuria, and a palpable mass occurs in only 9% of cases.(219)  

Other common clinical features include: fatigue, weight loss, anaemia, hypercalcaemia, raised 

erythrocyte sedimentation rate (ESR), erythrocytosis, fever and symptoms derived from the 

presence of metastatic disease such as a pathological fracture, cough and testicular 

varicocele.(219).   
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Once RCC is suspected, the extent of disease is then assessed radiologically using CT to stage 

the disease according to the tumour nodes metastases (TNM) classification which 

characterizes tumours on the basis of; the extent of the primary tumour, presence of nodal and 

distant metastases (figure 4.1.2)(220).  Staging determined by radiological investigations is 

denoted by a prefix c and has been demonstrated to be upstaged postoperatively when the 

pathological staging is performed (denoted by a prefix p)(220) Imaging enables surgical 

planning to take place in order to establish the proximity of the tumour to other organs and 

vascular structures.(221)   Typically, percutaneous biopsy is not carried out on presumed 

RCC due to the risk of seeding and primary surgical treatment is preferred.(221)  

Tumour 

Tx Not assessed 

T0 No tumour 

T1a ≤4 cm in greatest dimension limited to the kidney 

T1b ≥4cm and≤ 7cm in greatest dimension limited to the kidney 

T2a ≥7cm and≤ 10cm in greatest dimension limited to the kidney 

T2b ≥10cm in greatest dimension limited to the kidney 

T3a Extends into renal veins or its segmental veins, perirenal and/or renal sinus fat 
but not beyond Gerota’s fascia or below  

T3b Extends into the IVC below the diaphragm 

T3c Extends into the IVC above the diaphragm or invades the IVC wall 

T4 Extends beyond Gerota’s fascia 

Nodes 

Nx Not assessed 

N0 Absent 

N1 Present 

Metastases 

M0 None 

M1 Present 

Table 4.1.2.  The staging of RCC.  A table summarizing the TNM staging of renal cell 

carcinoma as described by the American Joint Committee on Cancer (AJCC).  IVC is the 

inferior vena cava.(220)  
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4.1.3 The treatment of RCC 

4.1.3.1 Surgical management of RCC – radical nephrectomy 

Management of localized sporadic (non-inherited) RCC is largely surgical with the aim of 

removing all macroscopic disease resulting in the best possible overall survival (OS).  For 

many years the gold standard of treatment has been the radical nephrectomy described by 

Robson(222) in 1969.  This involves removal of: the kidney with Gerota’s fascia, ipsilateral 

adrenal gland and regional lymph nodes.  This remains the most commonly performed 

surgery for RCC with nephron sparing treatment being reserved for specific clinical situations 

described in section 4.1.3.2.  After radical nephrectomy OS is typically between 71-97% for 

pT1 and pT2 tumours and 20-53% for tumours which have spread locally. 

4.1.3.2 Surgical management of RCC – nephron sparing treatment 

Nephron sparing treatment involves removal of the renal cancer with an appropriate margin as 

opposed to the entire kidney. This preserves renal function and can be particularly useful in 

the management of small cancers, in those with impaired renal function or a solitary kidney 

and is the preferred option in patients who are at risk of developing multiple primary tumours.  

In T1 tumours, partial nephrectomy is currently the standard of care as cancer specific 

survival rates are similar to those after radical nephrectomy, however the morbidity associated 

with renal impairment is reduced.(223, 224).  Furthermore OS in these patients is around 90% 

(225).  In older patients who could have been treated by either a partial or radical 

nephrectomy, survival rates were higher in those who had a partial nephrectomy presumably 

due to the preservation of more functioning nephrons (225). In patients with sporadic RCC 

with pre-existing renal impairment, for example those with acquired renal cysts, partial 

nephrectomy is preferred to help maintain renal function.  In those with familial RCC (see 

section 4.2) clinical features of renal cancer are different.  Patients are prone to recurrent, 

multi-centric tumours and thus there is a need to preserve renal function.  Individuals with 
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familial tendencies are therefore screened for the development of tumours and these are 

resected once the tumour reaches a particular size (usually 3cm in the case of VHL disease 

associated tumours) (226).   

4.1.3.3 Surgical management of RCC –minimally invasive treatment 

In the 2000s more patients were undergoing minimally invasive treatment using laparoscopic 

surgery.(223) This technique had the advantages of decreased post-operative morbidity and 

shorter hospital stays.  A number of studies have demonstrated that cancer specific outcomes 

in laparoscopic partial nephrectomy are equivalent to those in open nephrectomy (223)  Thus, 

this technique is commonly used in the management of RCC.  Recently, robot assisted total 

and partial nephrectomies have been performed using the da Vinci Robotic Surgical 

system.(227) The robotic system is believed to provide better three dimensional visualization 

than laparoscopic systems, in addition robotic wrists allow easier removal and suture of 

tumours.  Robot assisted and laparoscopic excision have been compared and had been shown 

to have comparable outcomes.(228)   Currently laparoscopic surgery is more widely available 

due to logistical and training considerations.  However, proponents of robot assisted therapies 

suggest that this technique may be less demanding and perhaps particularly useful for 

complex lesions.  

4.1.3.4 Surgical management of RCC – the role of cytoreduction 

Prior to the widespread use of targeted agents (described in section 4.1.3.5) the therapeutic 

options for metastatic RCC were limited.  Metastatic RCC is occasionally associated with 

spontaneous regression post resection of RCC (229) and  therefore, nephrectomy was carried 

out even in metastatic disease.  Two randomized controlled trials carried out in the early 

2000s revealed that nephrectomy combined with immunotherapy (the then standard of care) 

in the setting of metastatic disease RCC improved survival by between three (230) and ten 
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months(231).  Hanna et al, have retrospectively evaluated cytoreductive nephrectomy in the 

targeted era and found that it nephrectomy is associated with a significantly improved median 

OS (17.1 months compared to 7.7 months)(232). 

4.1.3.5 Targeted therapies in RCC 

Scientific understanding of the molecular pathology of RCC has been translated into novel 

treatments.  In RCC, agents directed against the angiogenesis pathways driven by the 

pseudohypoxic pathway and activated mTOR have led to tangible changes in patient 

outcomes (these pathways are described in more detail in section 4.2.1). One such drug, 

sunitinib targets VEGF, PDGFRα, FLT3 and c-kit has been shown in clinical trials to more 

than double PFS from five to eleven months (30).   In the second line setting and in the first 

line in those with poor prognostic features (on clinical evaluation), mTOR inhibitors have 

been used effectively.  Temsirolimus is used in individuals with high risk RCC and is the only 

targeted agent shown to improve OS (HR=0.75) in advanced disease (233).   Everolimus is an 

oral preparation used in the second line setting and has also improved PFS from two months 

to five months (234).   Other  agents such as the tyrosine kinase inhibitors (TKI) pazopanib 

(235) and axitinib (236) have been licensed in RCC.  Carbozantinib is a MET, VEGFR and 

AXL inhibitor which has been evaluated in a phase III in patients with RCC previously been 

treated with a TKI.  In comparison with everolimus, the PFS was 7.4 months compared with 

3.8 months and the hazard ratio for death or progression was 0.60 (p=<0.001)(237).  Targeted 

agents have also been utilized in ‘orphan’ cancers where historically there has been less 

investment in drug development for example sunitinib and everolimus are now used in 

neuroendocrine cancers(238, 239), and sorafenib in hepatocellular carcinoma(240).  These 

drugs are also being used in common cancers, for example everolimus is efficacious in 

hormone receptor positive breast cancer(241).   Thus, understanding the molecular biology of 
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RCC has helped improve the care for individuals with other cancers. Although, the PFS data 

described above suggests there is still more work to be done to improve outcomes for patients. 

4.1.3.6 Immunotherapy in RCC 

Historically RCC has been shown to be amenable to immunotherapy in the form of IL-2.  

Recently, immunotherapies directed towards antigens on T-cells (cytotoxic T lymphocyte 

antigen (CTLA-4), programmed death-1 (PD-1)) and tumour cells such as programmed death 

ligand 1(PD-L1) have demonstrated considerable efficacy in lung cancer and melanoma.  

Agents directed towards these targets are known as immune checkpoint inhibitors.  These 

agents are being investigated in RCC.  Nivolumab is a completely humanised anti-PD-1 

antibody(242).  Motzer et al, compared nivolumab with everolimus in metastatic RCC within 

a phase III trial, nivolumab was associated with an increased OS (25 months versus 19.6 

months), HR for death 0.73 and 25% overall response rate compared with 3% with 

everolimus(243).  There were no clear biomarkers indicating a response to nivolumab 

although in other cancer sites expression of PDL-1 on tumour cells and the presence of 

tumour infiltrating lymphocytes are thought to be of significance.  

4.1.4 The prognosis of RCC  

The outcome for individuals with RCC is very much dependent on the stage of the disease.  In 

those without distant disease at presentation, five year survival is around 50%. (221)  

However, in those with metastatic disease the prognosis remains grave with only around 2% 

of those with the condition achieving complete remission even in the era of targeted 

treatments (244).  In this setting, five year survival is approximately 10%.(221)   Given that 

up to a quarter of all patients with the condition present with metastatic disease (245) the 

management of RCC represents as a significant clinical challenge and further developments in 

the treatment of RCC are urgently required.  To date, the most recent developments in the 
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management of RCC have been derived from improved understanding of the molecular 

pathogenesis of RCC.  The pathogenesis of RCC has largely been elucidated by research into 

the molecular abnormalities in familial RCC. Thus, studies of familial RCC are crucial to 

understanding RCC. 

4.2 Familial RCC 

Familial RCC syndromes represent a small proportion (~3%) of all kidney cancers (76, 214), 

however individuals with a first degree relative with RCC are twice as likely to develop RCC 

suggesting a heritable tendency (218).   Furthermore, research into the genetic causes of 

familial RCC has led to the elucidation of the key cell signaling pathways which are aberrant 

in sporadic RCC.  Inherited kidney cancer disorders may be divided into syndromic and non-

syndromic kidney cancer. The clinical and molecular features of the main kidney cancer 

syndromes are described in table 4.2.1.1.  In many cases (but not all) of inherited kidney 

cancer, patients will have a family history of RCC or extra-renal features of one of the 

specific syndromes listed and multi-centric/bilateral tumours are frequent.  Familial kidney 

cancers typically present at an earlier age of diagnosis than sporadic RCC.  A specific 

disorder may be suggested by the presence of extra-renal features and RCC histopathology. 

Thus, hereditary papillary carcinoma is associated with a c-met mutation and type I papillary 

cancer and RCC associated with VHL disease are always clear cell. The known syndromic 

causes of familial RCC are inherited in an autosomal dominant manner and segregation 

analysis of non-syndromic RCC families indicates the most likely mode of inheritance to be a 

single gene autosomal dominant model with age related penetrance.(246)  Up to 10% of 

individuals with apparently non- syndromic RCC have mutations in SDHB or folliculin 

(FLCN).(133)  Thus, individuals in whom genetic susceptibility to RCC is suspected, can be 

offered genetic testing.  If a genetic cause is identified, predictive testing can be offered to at-
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risk relatives and appropriate surveillance initiated for mutation carriers.  Even if a known 

genetic cause is not identified, individuals in whom there is a strong suspicion of an inherited 

disease, and their close relatives, should be offered annual surveillance as currently known 

inherited RCC genes can only explain a minority of familial RCC cases.  Owing to the 

propensity of individuals with inherited RCC to develop multiple tumours, the surgical 

management of such cases is geared around the principles of early detection by screening and 

limited surgical resection (“nephron sparing”) aimed at preserving renal function.  

4.2.1 von Hippel Lindau Disease (VHL) 

VHL disease is the commonest cause of inherited RCC with an incidence of about 1 in 35,000 

live births and is caused by germline mutations in the VHL TSG. The lifetime risk of 

developing a clear cell RCC is >70% in many cases (76).  Other clinical features include: 

retinal and cerebellar haemangioblastomas, phaeochromocytoma, renal, pancreatic and 

epididymal cysts.   About 20% of VHL mutations occur de novo and such individuals do not 

have a family history (114).  Molecular genetic testing has been available since 1993(77) and 

is indicated in all suspected cases. Once a mutation has been detected, family members can be 

tested and those testing negative for the gene mutation do not require surveillance. In contrast, 

individuals testing positive for VHL mutations are offered regular screening for retinal and 

central nervous system haemangioblastomas, RCC, pancreatic tumours and 

phaeochromocytomas (247).  The precise VHL mutation detected may predict risk for some 

tumours (e.g. phaeochromocytoma or RCC described in section 3.2.3.1) and this allows more 

personalized screening protocols. 
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Familial 

RCC 

Syndrome 

Histological 

classification of 

RCC 

Clinical 

Features 

Gene 
 

Molecular Pathology 

VHL Clear cell Retinal and CNS 
haemangioblastoma, 

phaeochromocytoma, 
pancreatic tumours, 

visceral cysts. 

VHL Accumulation of HIF 
leading to increased 

production of HIF 
target genes, causing 

angiogenesis and 
oncogenesis 

HRPC1 Papillary type I Multiple 
micropapillary 
tumours.  Breast, 
stomach and pancreas 
cancer 

MET Increased MET-HGF 
signalling 

HLRCC Papillary type II Cutaneous and 
uterine leiomyomas, 

leiomyosarcoma 

FH Oncometabolite 
(fumerate) 

accumulation leading 
to a pseudohypoxic 

response 

SDH Variable Extra adrenal and 
adrenal 
phaeochromocytoma, 

head and neck 
paraganglioma 

SDHB  
SDHD 
SDHC 

Accumulation of the 
oncometabolite 
succinate leading to a 

pseudohypoxic 
response and altered 

HIF mediated 
transcription 

BHD Variable Fibrofolliculomas, 
lung cysts, 

pneumothorax and 
colorectal polyps 

FLCN Presumed mTOR 
activation, altered 

TGF-β signaling.   

 

Table 4.2.1.1.The clinical and genetic features of the main familial kidney cancer syndromes. 

Abbreviations: VHL-von Hippel Lindau, HRPC1-Heriditary Papillary RCC, HLRCC- 

Hereditary Leiomyomatosis RCC, SDH-succinate dehydrogenase subunit mutations, BHD- 

Birt-Hogg-Dube syndrome 
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RCC and other VHL-related tumours from individuals with VHL disease show biallelic VHL 

inactivation (a germline mutation in one allele and somatic loss, mutation or epigenetic 

silencing of the other allele). pVHL has multiple functions but the best characterized is the 

regulation of HIF-1 and HIF-2.  HIF-1 and HIF-2 have α and β subunits.  HIF1α and HIF2α 

have two transcription activating domains which initiate transcription of target genes on 

binding to DNA(248).  They act as heterodimeric DNA binding transcription factors which 

regulate >200 genes with key roles in tumourigenesis including: angiogenesis, glucose 

metabolism, cellular growth, metastasis and apoptosis(249) These include: transforming 

growth factor (TGF), EGFR, VEGF, platelet-derived growth factor B (PDGF-β), interleukin -

8 (IL-8),  glucose transporter 1,  stromal cell  derived factor involved in chemotaxis, and 

cyclin D1 associated with cell cycle (250)  (see Figure 4.2.1.2).  Expression of HIF-1 and 

HIF-2 is dependent on the stability of the HIF 1α and HIF2α subunits.(251)  Under normal 

physiological conditions, the HIFα subunits are hydroxylated on one or both prolyl residues 

(Pro405, Pro531) by members of the oxygen and 2-oxyglutarate dependent prolyl-

hydroxylase family (PHD).  There are least three PHD proteins, PHD1 (EGLN2), PHD2 

(ELGN1), and PHD3 (ELGN3).  PHD2 enables HIF1α and HIF2α hydroxylation, whereas 

PHD3 is responsible for HIF2α hydroxylation.     Hydroxylation of one or both proline 

residues creates a high affinity pVHL binding site.  pVHL forms a multi-subunit ubiquitin 

ligase with elongin-B, elongin-C, Cullin-2 and ring-box 1 (RBX1).  pVHL allows the 

ubiquitin conjugating machinery to come in close proximity with HIF allowing 

polyubiquitinisation and destruction of HIF.  When oxygen levels are low (i.e. in hypoxia), 

the PHD enzymes are not activated, and HIF1α and HIF2α do not interact with VHL and are 

thus able to accumulate, translocate into the nucleus and heterodimerise with HIFβ activating 

their target genes.  If VHL is inactivated, lack of pVHL has a similar effect to that of hypoxia 
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with HIF1α and HIF2α stabilization allowing transactivation of HIF target genes.(248)  This 

response that occurs in cells with inactivated VHL is called the pseudohypoxic response.(248).   

Both HIF-1 and HIF-2 degradation is regulated by pVHL but there is evidence that HIF-2 

overexpression is more important for RCC development. Factor inhibiting HIF (FIH) has also 

been identified in RCC.  FIH interacts with pVHL/HIF1α, and decreases HIF1 transcriptional 

activity.(252, 253).  Low nuclear levels of FIH are associated with poor prognosis in RCC 

(254).  VHL inactivation can also contribute to tumourigenesis in a HIF independent manner 

by suppression of p53 ubiquitinisation and so enhancing its transcriptional activity (16). 

These activities exemplify the key role of VHL in RCC tumourigenesis. 

 

Figure 4.2.1.2. VHL and pseudohypoxia.  The role of pVHL in the hypoxic response and the 

effect of inadequate pVHL producing a pseudohypoxic response. 

oxygen 
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Figure 4.2.2 Diagnostic criteria for Birt-Hogg-Dube Syndrome. (Individuals should have one 

major or two minor criteria)(255) 

4.2.2 Birt-Hogg-Dube Syndrome 

Birt Hogg Dube (BHD) syndrome is an autosomal dominant condition characterized by skin 

lesions, multiple lung cysts, spontaneous pneumothorax and kidney cancer.(255)  A classical 

triad of skin lesions can occur in BHD syndrome, these consist of fibrofolliculinomas, 

trichodiscomas and achrocordomas(256).  This syndrome was first described in 1977 and 

twenty-five years later was found to be caused by mutations in a gene called folliculin 

(FLCN).(257)  Clinical diagnostic criteria for BHD are available for diagnosis (Figure 4.2.2) 

but a FLCN mutation can be detected in most cases.  

 

The first clinical presentation of BHD syndrome may be to the urologist as a renal tumour, or 

to the acute physician with a spontaneous pneumothorax (255).  BHD is likely to be under-

diagnosed as the dermatological features (typically facial fibrofolliculomas) appear after 20 

years of age but may be absent or, if sparse, overlooked (256, 258).  Individuals with BHD are 

estimated to be at a seven fold increased risk of RCC. (259)  In contrast to VHL disease, BHD 

is associated with a variety of histological subtypes of RCC including; clear cell carcinoma, 

chromophobe RCC and a hybrid of oncocytoma and chromophobe RCC (246).  In a large UK 

Major Criteria 
• ≥5 fibrofolliculomas or trichodiscoma, at least one histologically confirmed 

of adult onset 
• Pathogenic FLCN mutation 

Minor Criteria 
• Multiple lung cysts bilaterally located at the lung bases with no apparent 

cause with or without spontaneous primary pneumothorax 
• Renal cancer: onset <50 years, multifocal or renal cancer of mixed 

chromophobe and oncocytic histology 
• A first degree relative with BHD. 
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study of individuals with familial kidney cancer without known mutations in VHL, MET and 

FH, FLCN mutations were found in 4.3% of cases.(246) Though there are no universally 

agreed guidelines for surveillance, annual renal MRI (or ultrasound) is recommended from 

age 20 years (246).  If a renal tumour is detected, the management is generally similar to that 

in VHL disease i.e. removal when 3 cm in diameter by nephron sparing surgery.  Often there 

is considerable phenotypic variation within families (e.g. some individuals have only 

cutaneous lesions, others have pneumothoraces and others have RCC).(256)  In addition to 

the three major features of BHD syndrome, there is also a reported association with colorectal 

cancer although this is not universally accepted (259). It has been suggested that only some 

FLCN mutations may predispose to colorectal cancer.(260)  

FLCN encodes a 579 amino acid protein which is evolutionarily well conserved.  (256, 257, 

261).  There are >150 reported variants of FLCN but the vast majority of pathogenic 

mutations lead to truncated proteins. (262, 263).   FLCN is believed to act as a TSG and 

somatic FLCN mutations can be detected in RCC from individuals BHD syndrome - in 

keeping with Knudson’s two hit hypothesis.(263)  Mutations in rat and canine orthologues of 

FLCN lead to renal tumours similar to those seen in BHD.(255, 264, 265) A kidney specific 

Flcn knock-out mouse had enlarged cystic kidneys with cystic RCC.  Flcn inactivation was 

associated with activation of the mTOR pathway suggesting that some of the TSG activity of 

FLCN was achieved by mTOR pathway inhibition (266, 267).  A FLCN interacting protein 

FNIP1 has been identified, this interacts with 5′-AMP–activated protein kinase [AMPK], an 

important energy sensor in cells that negatively regulates the mTOR (268-270).  Treatment of 

Flcn knockout mice with mTOR inhibitors led to decreased tumour growth and increased 

survival (271) but in other models the effect of folliculin deficiency on mTOR activity has 

been inconsistent and folliculin regulation of mTOR may be context dependent. Folliculin 
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may also have a role in regulating TGF-β pathway signaling, (272) mitochondrial function 

(273) and HIF transcription activity.(274) 

 

4.2.3 Hereditary leiomyomatosis and RCC 

Hereditary Leiomyomatosis (HLRCC) is a dominantly inherited disorder associated with 

cutaneous leiomyoma, uterine leiomyomas and in some individuals an aggressive type II 

papillary RCC (275). RCC is seen in 15-20% of HLRCC families(276). HLRCC is caused by 

mutations in the fumarate hydratase (FH) gene.  Biallelic  inactivation of FH occurs in almost 

all HLRCC associated renal tumours.(276)  Fumarate hydratase is an enzyme within Kreb’s 

cycle that catalyses the conversion of fumarate to malate. FH inactivation increases cellular 

fumarate which inhibits the PHD enzymes.  Proline hydroxylation of HIF1 and HIF2 are 

critical for pVHL regulation of HIF transcription factor levels. FH inactivation causes HIF 

stabilization and up-regulation of HIF-target genes (mimicking the effect of VHL 

inactivation) (277, 278).  HLRCC associated RCC are typically solitary, unilateral, have a 

high nuclear grade and are aggressive.  Most patients will die of metastatic disease within five 

years of diagnosis - even with small T1 tumours.  Thus, unlike in other familial cancer 

syndromes, urologists should not wait until a threshold of 3cm has been reached but should 

intervene when a tumour is detected.  RCC can occur in early adulthood so surveillance may 

be indicated from late childhood.(279) 

  

4.2.4 Succinate dehydrogenase (SDH) subunit disorders 

SDH disorders have been discussed in detail in section 3.2.3.1.  Briefly, SDH is a 

heterotetrameric protein located on the inner mitochondrial membrane consisting of four 

subunits (A, B, C and D). It has a critical role in cellular energy metabolism.  SDH catalyses 

the conversion of succinate to fumarate (280).  Mutations in SDH subunit genes (most 



143 
 

commonly SDHB and SDHD) are associated with predisposition to familial 

phaeochromocytoma, paraganglioma and head and neck paraganglioma syndromes (73).  

Individuals with SDHB mutations have ~15% lifetime risk of developing RCC (133, 281) and 

about 4% of individuals with features of non-syndromic inherited RCC have a SDHB 

mutation (133).   SDHB associated RCC may be associated with a distinctive 

histopathological appearance and a relatively good prognosis. (282)   Paraganglioma and 

phaeochromocytoma associated with SDHB mutations have been shown to have increased 

HIF-1 and VEGF expression suggesting a shared pathophysiology with FH deficiency and 

linking SDHB mutations to the pseudo-hypoxic pathway.(283)  Interestingly, in 

phaeochromocytoma SDHB mutations are associated with metastatic disease and worse 

outcomes.(134, 284)   Inhibition of SDH has been shown to:  increase succinate, cause  

inhibition of PHD and thus lead to stabilization of HIF1α (285).  Renal tumours may 

occasionally be associated with SDHC and SDHD mutations. (280)  

 

4.2.5  Hereditary papillary RCC (HPRC) 

 

HPRC occurs in approximately  1 in 10 million persons (76) and has a high penetrance (90% 

likelihood of developing RCC at 80 years of age) (286).  It is caused by activating mutations 

in the c-Met (MET) proto-oncogene.  HPRC is inherited in an autosomal dominant manner 

and is associated with the development of multiple bilateral type I PRCC (287).  13% of 

sporadic papillary RCC also contain a c-Met mutation (288, 289).   Identification of the c-Met 

mutation was facilitated by the fact that type I papillary RCC are associated with trisomy 7, 

and thus linkage analysis was performed and the proto-oncogene identified on 7q34.(289, 

290)   Breast, pancreas, and stomach cancers have been associated with HPRC in some 

families (279) (291). By fifty years of age, only around 30% of MET mutation carriers have 
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developed renal cancer.  Individuals with inherited papillary RCC can have over 1000 

microscopic papillary carcinoma in resected specimens, (292)  though HRPC tumours have a 

better prognosis than those associated with HLRCC.   Met is the tyrosine kinase receptor for 

hepatocyte growth factor.(293)  Point mutations occur in both sporadic and inherited papillary 

RCC leading to constitutive activation of the receptor pathway. Interestingly, MET expression 

is up-regulated in some clear cell RCC models (293, 294), suggesting that the MET/HGF 

pathway may have more general relevance in the pathogenesis of RCC.(295) 

4.2.6 Translocation associated RCC 

Inherited RCC may be associated with a constitutional translocation, most commonly 

involving the short arm of chromosome 3 (3p) and thus karyotyping is a standard 

investigation for patients suspected of inherited RCC. Translocation associated cancer is an 

important clinical problem accounting for approximately 15% of cancers in those aged under 

45.(296)  Initially, autosomal dominantly inherited familial RCC was reported in association 

with a constitutional t(3:8)(p12;q24) and since then eleven further RCC-associated 

translocations have been identified.(297) Investigation of these translocations has led to the 

identification of candidate TSGs for example; FHIT, TRC8, LSAMP and NORE1. In some 

cases it has been suggested that the genes disrupted by the translocation function, like VHL, as 

TSGs with a ‘two hit model of tumourigenesis’, but in others predisposition to renal 

tumorigenesis appears to result from instability of the translocated chromosome such that 3p 

is lost from the cell and then a somatic VHL mutation occurs on the remaining chromosome 3. 

In a recent population based study, individuals with translocations were of a similar age to 

individuals with FLCN or VHL mutations, and were more likely to have multiple 

tumours(297).   
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Low penetrance RCC susceptibility genes: MITF gene was reported to predispose to RCC 

and melanoma (76). BAP1 which is described in more detail in section 4.3.1 has also been 

identified as a cancer pre-disposition gene.(298, 299) TMEM127 has also been described in 

1.86% of RCC (in 2 mutations in early onset cases, 2 mutations in a cohort containing a wide 

range of histological subtypes).(300) 

There is some interaction between the mechanisms that cause oncogenesis in familial RCC 

cancer for example, impaired HIF regulation is described in a number of different disorders, 

FH mutations cause excessive fumarate and SDHx mutations cause excessive succinate.  

Accumulation of these ‘onco-metabolites’ inhibits PHD enzymes driving the pseudo hypoxic 

pathway.  The interaction of different alterations in RCC oncogenesis is described in figure 

4.3. 

4.3 The molecular genetics of sporadic kidney cancer 

4.3.1 Chromosomal changes in sporadic kidney cancer 

As discussed previously, the role of VHL in sporadic kidney cancers is pivotal with >80% of 

clear cell RCC demonstrating VHL inactivation (301) .  VHL resides on chromosome 3p and 

early cytogenetic studies indicated 3p allele loss in over 60% of sporadic kidney cancers 

(302).  Detailed mapping of the 3p area did not demonstrate a single area of critical allele loss, 

and 3p was found to contain a number of TSGs.(303)  Important TSGs on 3p include 

RASSF1A, which was silenced by methylation in 24-91% of clear cell kidney cancers (98, 

304) and PBRM1 which is mutated in about 40% of RCC (305).  Microarray-based studies 

have identified areas of increased copy number (1q, 2q, 5q, 7q, 8q, 12p and 20q) and 

decreased number (1p, 3p, 4q, 6q, 8p, 9p and 14q)(306).  Gerlinger et al (307) found 3p loss 

in all tumours studied, losses on chromosomes 4q, 8p and 14q were seen in some tumours as 

was gain of 5q.  Data from the TCGA suggested that 14q loss (associated with HIF1A loss) 
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was associated with more aggressive disease (308).  These differences in copy number can 

help identify possible genes of interest in the pathogenesis of kidney cancer for example: 

MDM4 on 1q is a p53 regulator, MYC at 8q, are amplified and putative tumour suppressor 

NEGR1 at 1p is deleted.(308)  

A specific somatic cytogenetic abnormality, (X;1)(p11.2) translocation, occurs in a rare subset 

of papillary RCC. (X;1)(p11.2) translocation positive tumours account for up to a third of 

paediatric or young adult RCC cases but are rare in older cases. Overall, Xp11.2 translocation 

positive cancers account for <1% of all RCC and have an aggressive course. The translocation 

breakpoint involves the TFE3 gene at (X;1)(p11.2). TFE3 is part of a family of transcription 

factors known as the MiT transcription factors.  These share a homologous basic-helix- loop-

helix leucine zipper DNA binding and dimerization domain. The (X;1)(p11.2) translocation is 

associated with the formation of a fusion gene between TFE3 and a variety of partners 

including PRCC (papillary RCC (translocation-associated)) (1q21), ASPSCR1 (ASPL, 

alveolar soft part sarcoma chromosome region, candidate 1) (17q25), SFPQ ((PSF, splicing 

factor proline/glutamine-rich) (1p34), CLTC (clathrin heavy chain) (17q23) and NONO (non-

POU domain containing octamer-binding) (Xq12). The translocation results in overexpression 

of the fusion protein and although Xp11.2 translocations are rare, expression of TFE3 is a 

more common finding and can result from TFE3 amplification(296) 

 

4.3.2 Somatic mutations in sporadic kidney cancer 

4.3.2.1 PBRM1 

Following the identification of frequent VHL gene mutations in sporadic clear cell RCC it was 

more than 15 years later that a second frequently mutated gene was identified. Exome 

sequencing revealed truncating mutations in the PBRM1 gene on chromosome 3p21 in 41% of 
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clear cell RCC.(305)  Most mutations in PBRM1 involve a loss of protein.  PBRM1 encodes 

BAF180 the chromatin targeting subunit of the PBAF SWI/SNF chromatin remodeling 

complex.   SWI/SNF complexes alter accessibility to DNA by changing the dynamics of 

nucleosome occupancy.(309) BAF180 has six tandem bromodomains, two bromo-adjacent 

homology domains and a high mobility box.(310).  These bromodomains target acetylated 

lysines and an alteration in one domain can impair TSG function.(310)  The complexes target 

many genes and signaling pathways involved in cell proliferation including: Wnt, Erb, p53, 

MAPK and processes involved in cell cycle regulation and apoptosis.(309) PBRM1 behaves 

as a classical TSG and the second allele is frequently co-deleted with VHL(310). 

4.3.2.2 SETD2 and other genes associated with histone modification 

Prior to the identification of PBRM1, re-sequencing of 3500 candidate cancer genes in RCC 

identified three genes were each mutated in ~3% of sporadic RCC and which were each 

implicated in histone modification (87). These were the histone three lysine demethylases 

UTX/KDM6A and JARID1C/KDM5C and the H3 lysine methylase SETD2.  Mutations in 

SETD2 have been identified in 10-15% of sporadic clear cell RCC.(310)   SETD2 causes 

trimethylation of lysine 36 on histone 3, this is associated with transcriptionally active genes 

and may play a role in transcriptional elongation and regulation of alternative splicing of 

target genes.(309) These findings suggested that disruption of normal patterns of chromatin 

modification play a key role in RCC development.  Interestingly NF2 mutations were detected 

in a small subset of tumours without VHL mutations.(311) Alteration of histone modifying 

genes in RCC have now been confirmed by a number of key publications (307, 312)   

4.3.2.3 BAP1 (BRCA associated protein 1) 

BAP1 mutations were identified in 14% of sporadic clear cell carcinomas(313). BAP1 is 

associated with other cancers notably mesothelioma and melanoma (313)  It encodes a nuclear 
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ubiquitin carboxyterminal hydrolase (UCH).  The UCH protein has a number of functions 

including: (i) interacting with BRCA1 causing enhanced BRCA1 mediated cell growth 

suppression (298) (ii) forming part of the Polycomb group Repressive De-Ubiquitinase 

Complex which aids the repression of the HOX transcription factor by chromatin 

remodification  (iii) binds to transcription factor HCFC1.(298)  

 

Figure 4.3.  Molecular pathophysiology of familial and sporadic RCC.  The interactions of 

different familial and sporadic mutations in the development of renal cancers. Different 

molecular pathologies can be involved in one or more pathway aberrations e.g. VHL 

inactivation/loss influences pseudohypoxia, wnt signaling and inhibits p53 induced 

senescence.  The main processes are boxed. 
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Subsequently, BAP1 alterations have been identified in a number of familial RCC cases.(298, 

299)  Evaluation of a cohort of individuals with familial RCC alone failed to identify any 

BAP1 mutations.  However, 18% of individuals with a family history of either uveal 

melanoma, cutaneous melanoma or mesothelioma harboured a BAP1 mutation.  Within these 

families there was an increased predisposition to RCC (8 fold increase relative to the 

population), suggesting BAP1 is a renal cancer pre-disposition gene within a ‘BAP1 

syndrome’ (298).  BAP1 mutations tend to be subclonal with focal loss in 2-3% of clear cell 

RCC (310).  If there is a BAP1 mutation it is less likely that there will be a co-existent 

PBRM1 mutation (310).  However, cells that lost both BAP1 and PBRM1 have a particular 

rhabdoid  morphology, and an aggressive de-differentiated appearance.(313)  This suggests 

that both genes effect different epigenetic pathways.(42)   BAP1 mutations were found in 

somatic tissue with co-existent VHL inactivation(314), indicating that BAP1 mutations 

occurred in VHL null clones and contributed to tumour progression.(314)  BAP1 loss is 

associated with a high Fuhrman grading of the tumour, mTOR activation(313), metastases at 

presentation(315) and poor prognosis(316).  BAP1 associated tumours have a 2.5-3.0 fold 

higher hazard ratio for death and BAP1 mutations are an independent poor prognostic factor 

in RCC.(310) Given the adverse outcome associated with BAP1 mutations, these patients may 

benefit from different therapeutic strategies for example initial treatment with mTOR 

inhibitors.     

4.2.3.4 Other somatically mutated genes 

TCEB1 the gene which encodes Elongin C a vital part of the VHL complex (see figure 4.2.2) 

This was found to be mutated in 3.3% of tumours.(314)  No alterations were noted in other 

components of the VHL, Elongin B, Elongin C and catalytic RING subunit (RBX1, which 

binds to the ubiquitin-conjugated E2 component) complex.  VHL and TCEB1 mutations were 
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mutually exclusive emphasizing the critical role of the VHL complex in renal 

oncogenesis.(314) TCEB1 gene mutations were associated with loss of 8p producing complete 

loss of wild type TCEB1. 

 

TET2, KEAP and MTOR are also mutated in RCC.(314)  TET2 encodes α-ketoglutarate 

dependent oxidase which has been inactivated in other malignancies, the enzyme is believed 

to be critical in DNA demethylation. TET2 was mutated in 5.7% of cases and deleted in 

10.4% of cases.  There was no loss of heterozygosity seen, indicating that loss of one allele is 

sufficient for tumour development.  PI3K have a catalytic subunit and a regulatory subunit, 

the p100α subunit encoded by the PIK3CA gene is mutated in 2 to 5% of ccRCC.(310)   TSC1 

a gene which forms a complex with TSC2 to act as a TSG and  has also been found to be 

mutated in 4% of RCC(310).  

4.3.3 Epigenetic changes in sporadic kidney cancer 

Epigenetic modifications have been implicated in the pathogenesis of many cancers. The best 

studied feature of cancer epigenetics is epigenetic silencing of TSGs by de novo promoter 

region hypermethylation (97).  VHL was one of the first human TSGs in which epigenetic 

inactivation was demonstrated. Though genetic changes (mutation or allele loss) are more 

common sources of VHL inactivation than de novo DNA methylation which is seen in 7-15% 

of cases (312, 317).  The RASSF1A TSG is inactivated much more frequently by promoter 

region hypermethylation than by intragenic mutations. More than forty candidate TSGs genes 

are reported to be methylated in more than 20% of kidney cancers (see (78)) and this number 

will expand as the results of large scale cancer genome projects are released.  Data from 

TCGA (312) showed 289 genes are epigenetically inactivated in at least 5% of RCC.  

Interestingly, SETD2 mutations were associated with increased loss of methylation of DNA at 
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non-promoter regions.(312)  SETD2 encodes H3K36 methyltransferase which may be 

involved in the maintenance of the heterochromatic state.  This altered methylation may lead 

to switching on of pathways which are advantageous to tumour growth.  More detailed 

knowledge of the patterns of epigenetic inactivation of TSGs in RCC will offer opportunities 

for therapeutic intervention. Thus, a key feature of epigenetic TSG inactivation is that it is 

potentially reversible (promoter hypermethylation may be reversed by demethylating agents). 

In addition, delineation of the key signaling pathways that are dysregulated by epigenetic 

TSG inactivation will offer new possibilities for targeted therapies.  

Integrative analysis of sequencing, methylation, copy number and RNA data held within the 

TCGA (312) suggested there are some other important pathways implicated in RCC 

oncogenesis.  28% of tumours had alterations in components of the PI(3)K/AKT/MTOR 

pathway.  As discussed, mTOR inhibitors (234, 318) play a role in kidney cancer and 

therefore individuals with tumours with aberrations in this pathway may preferentially benefit 

from treatment with these agents.  

Overall, in sporadic RCC  there are two main molecular pathophysiological processes (i) 

‘Oncogenic metabolism’ by which there is altered cellular metabolism due to genetic changes 

in cancer cells, for example stabilization of HIF complexes due to VHL mutations leading to a 

pseudohypoxic response (ii) ‘Epigenetic reprogramming’ changes in gene expression due to 

alterations in chromatin remodeling genes such as PBRM1.(312) 

4.4 Approaches to identifying new familial RCC genes 

4.4.1 The hypothesis driven approach 

 

Until the identification of PBRM1 in 2011, (305) other than VHL most RCC associated genes 

were altered in only ~ 5% of cases.(319)  Before NGS became widely available, focused 
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hypothesis based approaches were used to identify potential new genes in kidney cancer.  This 

involved utilizing data from a variety of sources to identify possible genes of interest.  One 

approach is to study genes associated with the VHL pathway, for example HIF1A and HIF2A.  

Mutational analysis of these genes revealed one functional mutation in HIF1A only (320).   

Similarly, the PHD genes were studied for potential inactivation in familial renal cancer (167) 

and no mutations found.  FIH, SDHB and FH were studied in sporadic renal cancer with no 

detectable mutation.(252)  SDHB mutations were known to be involved in 

phaeochromocytoma pathogenesis and were studied in familial RCC and found to have a 

causative role,(133) similarly TMEM127 was also found to be associated with RCC.(321)   

 

RASSF1A was identified as a kidney cancer associated gene because 3p21.3 was frequently 

deleted in RCC and RASSF1 was identified in this position.  This gene was a TSG in breast 

and lung cancer.  Thus, it was investigated in RCC and found to be inactivated by methylation 

in 91% of clear cell kidney cancers.(304)  Another approach is to study families with an 

inherited cancer predisposition and perform genetic linkage analysis described in detail by 

Pulst (322) to determine the area of a chromosome in which the cancer gene was positioned.  

This area could then be interrogated to determine the nature of the causative gene.  Co-

segregation of the gene can be used in order to confirm its significance. 

 

The approaches discussed above are time consuming and can yield negative results 

particularly as there is a degree of human bias regarding how to choose a ‘candidate’ gene.  

They may lead to genes not part of the current paradigm, and those whose function is not 

characterized to be overlooked.  Thus, an alternative approach to identifying novel candidate 

genes is to use genomic platforms to identify genes of interest.  
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4.4.2 Utilizing a hypothesis generating approach 

Given the high failure rate of finding CPG with candidate gene approaches, recently there has 

been a shift towards screening a large number of genes or the genome to identify areas and 

genes of interest (figure 4.4.).  These screening methods use genomics platforms such as 

arrays that can interrogate numerous genes by looking at many single nucleotide 

polymorphisms (SNP) or NGS investigating the whole genome or exome.  The use of NGS is 

discussed in section 4.7 and has led to the identification of more CPG in the last few years 

(see figure 4.5). 

 

Array technologies enable candidate gene identification by determining which genes are 

differentially expressed between RCC cells and normal cells or which genes undergo copy 

number changes.  Thus, one methodology is to look for differences in copy number between 

normal cells and cancer cells.  This can highlight areas of the chromosome which may contain 

cancer associated genes.  For example, as discussed previously these can identify areas of 

chromosome loss which may indicate the location of potential TSG.(323)  Once these areas 

are identified then important cancer associated genes for example known TSG, or members of 

key pathways can be studied. Alternatively regions of copy number gain may indicate the 

location of candidate oncogene.   

 

As many RCC cells have inactivated VHL, another approach to identify kidney cancer 

associated genes is to look for changes in methylation seen between cancer cells and paired 

normal cells.  In order to evaluate a large number of genes, these are initially evaluated on an 

automated platform such as the Illumina beadarray platform which analyses >400,000 CpG 

sites (324) and/or an expression microarray can identify which transcripts are silenced in 

tumour cells (50, 96).   If these screening methodologies suggest preferential methylation of 
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specific genes in cancer cells, these are confirmed by a more sensitive methodology and 

evaluated in a larger cohort of patients.  This has led to the identification of some potential 

kidney cancer associated genes such as;  OVOL1, DLEC1, TMPRSS2, SST and BMP4(167)  

Another method for identifying possible candidate genes is by considering gene expression 

levels after treatment with a demethylating agent such as 5-azadeoxycytidine. RNA can be 

extracted from cells treated with the demethylating agent and analyzed on an array.  Genes 

with increased gene expression post treatment would be, by inference, genes that  

might be epigenetically silenced by methylation in cancers.  Confirmation of differential 

expression can be achieved using RT-PCR and PCR based assays to confirm promoter 

methylation e.g. by using methylation specific primers(50).   This methodology led to 

identification of SPINT2 (50) as a potential kidney cancer associated gene.    

 

These methods enable researchers to make a rational choice of a gene for further study and 

reduce the likelihood of bias.  They are initially relatively expensive but have the advantage 

of focusing researchers’ time and effort.  
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Figure 4.4 Changes in the methodology used to identify cancer pre-disposition genes (CPG) 

in all cancers since 1982.  Initially CPG were identified by performing linkage analyses 

amongst individuals with strong cancer clustering within families. Then, more CPG were 

identified using candidate gene approaches based on knowledge of pre-existing genetic 

associations with the cancer.  However, with the improvements in genome sequencing 

technology most recently NGS approaches have led to the identification of more CPG 

resulting in the second peak seen at around 2009. (Taken from Rahman (325)) 

4.5 Using exome sequencing to identify novel familial RCC associated genes 

4.5.1 Next Generation Sequencing (NGS) technology 

Over recent years massive technological advances have enabled vast amounts of the genome 

to be investigated faster than ever before using NGS which has a higher throughput and 

sensitivity than Sanger sequencing.(326) NGS generates large amounts of sequencing data as 

instead of a single read taking place, multiple short strands of DNA are amplified and read at 

the same time in a ‘massively parallel fashion’.   There were three different platforms for 

NGS sequencing available at the time of this study (see figure 4.7.1).  These methods use 

parallel sequencing technology and have led to a fall in the cost of sequencing from up to $3 
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billion (at the time of the Human Genome project) (327) to $1000 for a genome.(328) In this 

study, NGS was performed in collaboration with King’s College London on an Illumina 

Sequencer.  The depth of coverage of the genome (50-100x) means that most single 

nucleotide variants (SNV) are detected, however copy number variation, structural 

rearrangements and small deletions may be missed.(329) Whole genome sequencing(WGS) is 

superior to Sanger sequencing for the detection of large deletions and duplicat ions(329). 

Detection of deletions has been shown to be equivalent to MLPA.(329)  

4.5.1.1 A summary of the processes involved in NGS 

Prior to being sequenced the DNA requires to be prepared for amplification.  The DNA 

sample of interest is sheared into fragments of 75-150bp (330) and then ligated with adapters.   

The DNA is then applied to a flow cell containing single stranded fragments ‘primers’ on its 

surface.    Subsequently, ‘bridge-amplification’ takes place as unlabeled nucleotides and DNA 

polymerase are placed on the flow cell.  A cluster of nucleotides contains millions of copies of 

the original fragment of DNA.  The nucleotide chain attached to each primer is then removed 

by denaturing.  These clusters of nucleotide (‘copies’) represent the single molecule that 

initiated the reaction.(331).    

 

In the Illumina system sequencing occurs using ‘sequencing by synthesis’.  Each cluster is 

incubated with DNA polymerase and nucleotides in a flow cell. Each nucleotide has a specific 

fluorescent label and the 3’-OH group is chemically blocked such that each incorporation is a 

unique event.  The reaction is then imaged. After the imaging step, the 3’ blocking group is 

removed and the PCR reaction is allowed to continue. This process continues for a predefined 

number of steps controlled by the user which permits discrete read lengths.  When data is 

analyzed, the bases are assigned to the reference sequence and the quality of the sequence 
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assessed.  Poor quality sequence is removed.  At present, Illumina is the dominant sequencing 

platform being used (330).  The Illumina platform provides more data and is cheaper per run 

than the Roche and SOLiD platforms described below(332). 

 

The Roche/454 sequencer was the first NGS platform available; it uses pyrosequencing to 

detect nucleotides.  Fragmented DNA is ligated to a specific library of adapters, this is 

incubated with agarose beads that contain complementary nucleotide sequences to the 

adapters.  As these beads are in excess, each bead is bound to a specific complementary 

fragment.  The beads-fragment complexes are incubated in a micelle with DNA polymerase 

and reactants.  Thermal cycling takes place (emulsion PCR) thus; each fragment is amplified 

into hundreds of copies attached to the bead.   Subsequently, the beads are placed into a plate 

containing several hundred thousand wells.  Each well contains a bead and then the plate is 

incubated with enzyme containing beads that catalyze pyrosequencing.  A solution of each 

nucleotide is then added step-wise to the plate.  Every time a nucleotide is incorporated, light  
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Figure 4.5.1. A summary of the processes involved in NGS.  A fragment library is prepared 

by fragmenting DNA, end repair and ligation with adaptor sequences.  Libraries are then 

amplified by (1) water in oil bead emulsion PCR (Roche and SOLID sequencing) or (2) solid 

surface bridge amplification (Illumina).  Flow cell signaling then produces a signal which is 

processed to produce a primary sequence. (Adapted from Voelkerding(333)) 
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is emitted and this is imaged as it is proportional to nucleotide length.  This technique finds it 

difficult to read runs of the same nucleotide accurately (homodimer runs) however, because 

each nucleotide is added step wise substitution errors are very rare.  (331) 

The SOLiD sequencer, uses a fragment library similar to those described with the Illumina 

and Roche platforms.  The platform also uses emulsion PCR on beads to amplify the DNA.  

Two flow cells are used per run.  Each cell contains a library comprising different DNA 

sequences, the cell is incubated with DNA ligase and octomers with fluorescent labelled 4 th 

and 5th bases.  At each ligation step the fluorescent signal is detected and then some bases 

(including the fluorescent ones) from the octomer are removed.  Subsequently a second 

ligation step occurs with this now longer primer.  Each fluorescent nucleotide is therefore read 

twice decreasing the chance of base calling errors.  This system is believed to be 99.99% 

accurate (326) but is more time consuming.(331) The SOLiD sequencer has the shortest run 

reads and therefore requires more computational analysis to align fragments to the reference 

sequence. 

 

Although the methodology differs between different NGS platforms (figure 4.5.1), in general 

NGS differs from conventional sequencing because the sequencing product has a shorter read 

length and different types of error. NGS requires greater computational and bioinformatics 

input.(331)  Furthermore, interpretation of data through analysis pipelines are more 

important.(67) 

 

4.5.2 Future techniques in sequencing 

Within this project, NGS using the Illumina platform was utilized as it is the most validated 

and widely used sequencing platform at the time of writing.  Newer sequencing technologies, 
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the so-called ‘third generation sequencing’ also exist (72) such as the PacBio RS, Ion Torrent 

and Oxford Nanopore technologies platforms.  These platforms do not use amplified DNA but 

read a single DNA molecule.  The Ion Torrent system measures an electrical change every 

time a nucleotide is added.(72).  In the Oxford Nanopore system, the DNA molecule passes 

through the nanopore.  Each nucleotide produces a specific change in current allowing the 

nucleotide sequence to be read as it passes through the nanopore. The PacBio system images 

dye labelled nucleotides every time they are incorporated in to a single strand of DNA by a 

polymerase.(72) 

 

4.5.3 Applications of NGS 

4.5.3.1 Multiplex gene panel testing 

NGS can be used to sequence DNA in different forms; these will be briefly discussed below. 

A collection of genes of interest can be analyzed on a ‘chip’ using NGS platforms, this 

method is called multiplex gene panel testing.(334)  This method can be useful for 

investigating conditions for which there are a large number of known disease causing genes  

as a number of genes can be screened for simultaneously.  This technology has been discussed 

in section 3.7.4.  Multiplex testing can be advantageous because a ‘result’ can be obtained 

more speedily.  However a disadvantage of this methodology is that multiple variants of 

uncertain significance can be detected and these lead to uncertainty for clinicians and patients.  

Furthermore, as more genes are found to be associated with a condition, the panel will have to 

be changed.  The panel methodology also does not allow for novel gene discovery.  

Therefore, as exome and genome sequencing improve technically and become cheaper they 

may supersede gene panel testing.(204) 
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4.5.3.2 Whole Genome Sequencing (WGS) 

Sequencing technology also enables the genome of organisms to be sequenced.  Given the 

technical limitations of NGS, using this method alone ~95% of the genome can be sequenced 

(48).  Areas with homodimers, high GC content and repetitive sequences are more difficult to 

sequence.  WGS provides the most complete picture of the genome including structural 

variations in non-coding regions.  WGS is more expensive than exome sequencing and 

requires more time consuming bioinformatics, filtering and processing.  Owing to this, 

currently exome sequencing is preferentially used in many centres to enable gene discovery.  

However, genome sequencing can provide additional information for example in breast 

cancer, WGS was performed in twenty one samples and detailed analysis performed on the 

types of nucleotide substitution and deletion.(335) This evaluation revealed five different 

mutational signatures which occurred in different cancers and therefore represented different 

mutational processes e.g. UV exposure or deamination.  These insights derived from 

mutational signatures may help tailor treatment on the basis of the tumour signature.  

Furthermore, WGS may help drive research into the reversal or eradication of mutational 

spectra. Enthusiasts for genome sequencing argue that important mutations can be missed 

with WES approaches as only 0.6% of the point mutations detected were in the exome of lung 

cancer samples.(336)  However, given the time and costs of investigating mutations it can be 

argued that investigating many more mutations that may be detected by WGS may be 

counterproductive as it could be argued that mutations in non-coding areas are less likely to 

be clinically significant.(6) 

4.5.3.3 Whole Exome Sequencing (WES) 

Exome sequencing involves sequencing all known coding regions (exons) of the genome.  

The advantage of WES is that by sequencing only 1% of the genome (326) 85% of all disease 

causing mutations could be identified.(337) In order for WES to be performed, sheared whole 
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genomic DNA must be selected in order to evaluate those sequences which can be transcribed 

into protein.  Most commonly this technique known as ‘exon capture’ is achieved using a 

commercially available system for example Agilent Sure Select or Nimblegen SeqCap 

EZ(338).  Different exome capturing technologies capture the exome in slightly different 

ways.  Some areas of the exome are over-represented as there are numerous probes over a 

certain region.  On the other hand, other areas of the exome may have fewer probes 

representing them. This lack of coverage can lead to false negative results.  Insufficient depth 

of coverage (typically preferred to be x 20) can also lead to false positive results.  This 

emphasizes the need for good quality control and bioinformatics filtering in NGS.   

Furthermore, WES is limited by technical considerations described previously for WGS.  

Typically there is ~95% coverage of target sequences (337). Once a potential disease 

associated variant is identified, it must be confirmed using a different methodology usually 

Sanger sequencing.  Exome sequencing has been used to identify disease causing alterations 

in a number of different conditions.  Initially WES was used to identify monogenic Mendelian 

disorders (339), however more recently it has been used to describe the somatic mutations in 

numerous cancers including common cancers such as prostate (340) and kidney (305, 314) in 

addition to rarer malignancies such as craniopharyngioma (341).   

 

In both exome and genome sequencing 80% of the variants identified will be missense.(44)  A 

key challenge for scientists is to try and identify the driver mutations from these.  Of these 

missense variants, it is important to determine the influence of the substitution on protein 

function.   It is believed that driver mutations influence protein function whereas passenger 

mutations are neutral in nature.(44) 



163 
 

4.5.3.4 Transcriptome Sequencing 

The transcriptome is the portion of the genetic code that is transcribed into RNA and 

represents ~2% of the genome (342). Cellular RNA is converted into cDNA and is then 

sequenced using a NGS platform. Sequencing of the transcriptome enables sequencing of 

DNA which is actually transcribed within the cell.  This provides more data than WES 

because an individual gene can give rise to numerous RNA molecules as different initiation 

and termination sites can be used, RNA can be edited and there is alternate spicing of genes.  

Transcriptome studies aid the detection of intergenic fusions, somatic mutations and 

alternative splice transcripts (326).  Furthermore, chimeric transcripts, novel transcripts and 

differentially expressed transcripts(102) can be identified.  Thus, there is better 

characterization of the molecular pathophysiology of a tumour. 

 

4.5.3.5 Whole Genome Bisulphite Sequencing 

In order to identify methylation in sporadic tumours, cellular DNA can be modified using 

bisulphite.  This technique converts cytosine to uracil, after PCR amplification the uracil is 

converted to thymidine.  However, methylated cytosine remains as cytosine.  In whole 

genome bisulphite sequencing cellular DNA is sheared and ligated to methylation adapters.  

Then size selection and bisulphite conversion occurs.  A library is then prepared and NGS 

takes place.  To date, this technique has not been widely used due to its cost, need for large 

amounts of DNA and technical issues with bisulphite conversion.(343) However, in colorectal 

cancer this technique has been performed (344) and over 80% of the CpG islands were 

included.  The study revealed areas of hypermethylation and hypomethylation in colorectal 

cancer indicating a role for chromatin reorganization in gene silencing.(344) 
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Aim 

 

To identify novel causes of familial RCC.  This study aims to use two strategies:  

(A.) A candidate gene approach – this involves evaluating a gene associated with other 

cancers and see if the gene can cause a familial RCC phenotype, this approach has 

been successfully used in determining the role of SDHB in familial RCC(133).   

(B.) An unbiased approach by evaluating whole genome or exome data to identify genes 

of interest.  This type of approach has successfully been used in phaeochromocytoma. 

(158) WES was utilized in this study because a pragmatic approach was taken; WES 

is cheaper to perform compared to WGS.  Furthermore, bioinformatical analysis 

required to evaluate the data is much reduced and the majority of the coding regions 

can be interrogated. This approach is believed to identify a substantial proportion of 

cancer causing driver mutations.(48) The disadvantage of WES over WGS in this 

setting is that there is the potential that variation in intergenic areas, for example in 

promoter regions may be missed. However, typically the exome is sequenced to a 

greater depth than the genome 

 Results 

4.7. PTEN as a candidate gene for familial RCC 

PTEN (phosphatase and tensin homologue deleted from chromosome 10) was chosen as 

potential kidney cancer associated gene to study as a cause for familial RCC.  PTEN  is  a 

TSG that was identified by investigation of brain, breast and prostate cancer.(345)  It lies on 

chromosome 10q23 and includes nine exons.  The gene has two main domains: C2 the lipid 

binding domain and a phosphatase domain.  Both domains are required for its tumour 

suppressor activity (figure 4.7.1).  The lipid phosphatase activity dephosphorylates the 3-
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phosphoinositide products of phosphatidyl-inositol 3,4,5, triphosphatase (PI3K).(345)  

Usually 3-phosphoinositide products activate survival kinases including the AKT pathway.  

PTEN negatively regulates the AKT pathway, this pathway controls a number of important 

cellular features such as cell cycle progression, metabolism, migration, apoptosis, 

transcription and translation.(345)  Loss of PTEN leads to excessive PI3K which activates 

AKT and subsequently mTOR.(346)   mTOR activation has been previously demonstrated to 

be associated with poor prognosis in kidney cancer (347). PTEN also binds to centromere 

proteins resulting in protein stability and nuclear localization is required for DNA double 

stranded break repair (345). 

 

 Until recently the role of PTEN in RCC was unclear.  Germline mutations in PTEN are 

associated with a specific clinical syndrome known as Cowden syndrome (348).  Cowden 

syndrome is an autosomal dominantly inherited condition where there is an increased risk of 

breast, endometrial, thyroid, benign and malignant brain tumours and skin tumours.  The 

syndrome is also associated with overgrowth of the bone causing macrocephaly.  Overgrowth 

of the skin can lead to the presence of benign tumours (348) causing the clinical features of: 

oromucosal papillomatous papules, and cutaneous verrucous papule(346).  

 

Given the role of PTEN in a number of inherited cancer syndromes it was investigated as a 

candidate TSG in familial kidney cancer.  When this work was carried out the association 

between Cowden syndrome and RCC had not been characterized.  The gene was sequenced in 

44 patients who had been seen by a consultant clinical geneticist and diagnosed with an 

inherited renal cancer but no known features of Cowden syndrome.  These patients had no 

known mutations of other kidney cancer genes.  Two sources of familial RCC DNA were 
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studied, cases from a West Midlands-ascertained series and another cohort of samples from a 

collaborator were studied.   Readable sequence was achieved for all nine exons that covered 

the amino acid coding sequence using Sanger sequencing including 50bp intronic sequence at 

the 5’ and 3’ end.  All nine exons were sequenced in forward and reverse.  The plan was to 

identify truncating mutations or missense mutations that had been found in Cowden’s 

syndrome or other tumour types.  Any other missense variants identified were to be assessed 

regarding whether they involved conserved residues, did not occur in the general population 

or had an allele frequency of <1%.  However, no variant was identified in any of exons, thus 

no further patients were evaluated. 

4.8 CDKN2B as a potential new kidney cancer associated gene 

4.8.1 Bioinformatic analysis of exome sequencing data 

Exome sequencing was performed as described in section 2.3.1 in collaboration with Michael 

Simpson’s group. Exome sequencing data was collated on eight individuals with RCC who 

had seen a consultant cancer geneticist and identified to have an inherited RCC.  These 

individuals had RCC, no known mutations in familial RCC carcinoma associated genes and 

multiple tumours and/or family histories of RCC.  Prior to further analysis by myself, this 

data had undergone in house bioinformatics performed by Michael Simpson and group as 

described in the methods (section 2.3.1).  Figure 4.8.1.1 summarises the bioinformatics 

pipeline WES performed at King’s College London.   

Post processing by King’s College, further analysis was performed (see Figure 4.8.1.2). 1392 

novel variants were identified.  There were 22 stop gain, 827 single nucleotide variants, 503 

splicing variants, and 40 frameshift changes. The novel variants were then compared to the 

COSMIC database of somatic mutations (319),  and TCGA(349). If a gene was already 

known to be associated with sporadic cancer it was deemed of interest due to the previously 
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described cross-over between cancer causing genes in sporadic and familial cancers.  The 

filtered data was also compared with methylation array data previously obtained by our group 

(96, 324).  Variants were also evaluated on the NHLBI Exome Variant server, if they were 

common germline variants they would be excluded from further evaluation.(350)   

Initially, in order to prioritize variants of interest, a shortlist was made of genes which 

fulfilled one the following criteria: (i) contained a stop-gain variant (truncating mutations), (ii) 

contained a frameshift variant, or (iii) were mutated in more than one individual.  A total of 

23 genes were subsequently shortlisted: BRAF, c10orf71, CDKN2B, DHAH8, DPP4, PARK2, 

PPIR10, PTPN18, SLc6a18, USP36, XPC, AGAP9, ALMS1, c14orf135, MTSS1, PCDH12, 

SMAD9, ST7L, CEP290, CSMD1, KNTC1, MUC4, MYO18b. 

Gene function was then summarized by searching for the gene on NCBI PubMed.  If a gene 

was described to play a role in an important cellular process e.g. cell signaling or cell cycle it 

would be considered for further evaluation.  Genes with no known function, or those with a 

function not clearly currently thought be associated with a key cellular function were also 

excluded.    Furthermore, whether the gene had been identified by COSMIC, TCGA or the 

group’s methylation array was considered.  Of the twenty three genes, three were chosen as 

potential candidate genes owing to their known function in cancer associated pathways.  As 

Sanger sequencing was to be used in candidate gene analysis, the size of the gene was also a 

factor.  The three candidate genes chosen were: CDKN2B, PARK2 and SMAD9.  CDKN2B is 

a known tumour suppressor coding for p15, a key regulator of the cell cycle (351), PARK2  is 

an E3 ubiquitin ligase and has also been identified as a TSG(352).  SMAD9 forms part of the 

TGF-ß pathway which is implicated in VHL inactivated renal cancer (353, 354).  CDKN2B 

was chosen as the initial candidate gene to study due to its known role as a TSG.(355, 356)  

PARK2, SMAD9 and BRAF were evaluated by another member of the group. 
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Figure 4.8.1.1 A.  The process of preparing genomic DNA and bioinformatic analysis. These 

processes were performed by Michael Simpson’s group. 
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Figure 4.8.1.2 Bioinformatic filtering of exome sequencing data performed leading to the 

identification of CDKN2B as a gene for further study.   

8 Exomes 
WES performed on 8 individuals with RCC, no known mutation in 
familial RCC genes with multiple tumours or a strong family history 
 

1392 novel non-synonymous variants identified 
827 single nucleotide variants,  

403 splicing variants,  
40 frameshift variants  

20 stopgain/nonsense 

Filter 1 
Exclude if allele frequency > 1% on NHLB1 exome variant server n=38 

Analysis 1 
1354 variants remaining 

Identify the following: 
• Methylated in house methylation array n= 13 

• Present on COSMIC/TCGA n=61 

Filter 2 
if one of the following: 
Stop gain mutation, Frameshift mutation, Present in 2 or more 

patients n =23 

Analysis 2 

23 variants remaining 

Consider whether: identified in analysis 1, or known TSG, or part of a 
cancer pathway  
 n=3 (CDKN2B, PARK2, SMAD9) 

CDKN2B 
chosen 
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4.8.2 Confirmation of mutation and segregation analysis 

Germline DNA from the patient with a germline stop-gain variant in CDKN2B was obtained.  

DNA was sequenced in forward and reverse and the stop-gain mutation G103T, pE35X in 

CDKN2B was confirmed (Figure 4.8.2 B).  Clinical notes from the index patient were 

retrieved and evaluated (these are summarized in figure 4.8.2A illustrating the family tree).  

The germline DNA of the patient had previously evaluated for the presence of FLCN, VHL 

and SDHB mutations.  The patient was diagnosed with a clear cell RCC aged 57, two brothers 

had clear cell RCC aged 54 and 60 respectively.  His mother had a RCC of unknown 

histology.  Germline DNA was obtained from 4 siblings, one of the siblings had a clear cell 

RCC, the patient’s other three siblings were unaffected.  The same mutation was 

demonstrated in the affected individual but not in the three unaffected individuals. 

4.8.3 Screening of CDKN2B mutations in familial RCC 

In order to investigate the influence of CDKN2B mutations in familial RCC, mutational 

screening was performed in DNA from patients who had been seen by a consultant cancer 

clinical geneticist and identified to have an inherited RCC, have no mutations in known RCC 

associated genes, a personal history of RCC and either a family history of RCC or multiple 

RCC.  Owing to the scarcity of available DNA, initial screening was performed on whole 

genome amplified DNA.  A total of 97 germline samples were evaluated, these included 77 

derived from the West Midlands Familial Renal Cell Carcinoma Repository and 20 samples 

donated to the research group for study.  Three further variants were identified in these 

patients (4% overall mutation rate).  Variants were confirmed in the germline stock DNA.  

The variants identified were missense mutations: P40T, A23E, D86N (figure 4.8.3.1).  In 

silico analysis using the Polyphen(90) and SIFT algorithms(91) suggested these non-

synonymous changes were probably damaging based on the influence of the amino acid 

change on protein structure and on the evolutionary conservation of the amino acid.  For all 
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three missense changes, the amino acid altered was well conserved amongst numerous 

organisms (figure 4.8.3.2). 

 

 

Figure 4.8.2.  The CDKN2B mutation identified in the index case. 

A family tree indicating the other members of the family with a renal cell carcinoma in the 

index family (A). The mutation in CDKN2B noted in this family (B), this was seen in both 

reverse and forward sequencing of stock DNA.     
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Figure 4.8.3.1 Variants of CDKN2B in familial RCC.  Electropherograms demonstrating the 

variants identified in the cohort of patients with familial renal cell carcinoma with 

corresponding normal sequences.  Sequencing was performed in forward and reverse (not 

shown).    
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Figure 4.8.3.2 Conservation of variants identified 

A  Missense variants identified in CDKN2B (highlighted in yellow) are also present in 

conserved homologous residues in CDKN2A.   

B  Amino acid homology of p15 across different species, changes are highlighted 

representing the amino acid change occurring due to the following variants (a) c.68C>A, 

p.A23E  (b) c.118C>A, p.P40T (c) c.256G>A,  p.D86N.  The amino acids are well conserved 

across species. (Figures obtained from Clusta Omega 

(http://www.ebi.ac.uk/Tools/services/web_clustalo) accessed 13/3/14) 

http://www.ebi.ac.uk/Tools/services/web_clustalo
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4.8.4 Screening of CDKN2A mutations in familial RCC 

CDKN2B is closely associated with CDKN2A (see sections 4.9.1 and 4.9.2).  It resides within 

35kb to CDKN2B.  CDKN2A encodes p16. The first 50 amino acids of p15 and p16 have 44% 

sequence homology and the following 81 amino acids have 97% sequence identity(357) after 

which the sequences diverge.  Both p15 and p16 inhibit cyclin dependent kinases cdk4 and 

cdk6. p15 and p16 cause a G1 cell cycle arrest by inhibiting pRb phosphorylation (358).  

However, CDKN2A has the ability to produce alternative transcripts, the smaller transcript 

p14ARF can also cause G2/M cell cycle arrest by inhibiting the destruction of p53(358).  In 

addition to their physical proximity, and similar function, the frequent deletion of the 9p21 

has been observed in numerous human cancers(359), thus genetic variation in both genes was 

evaluated to determine co-segregation. Sanger sequencing was used to evaluate WGA for 

mutations in CDKN2A.  DNA from the familial RCC cohort described in section 2.2.1 was 

used to examine all three exons that coded for CDKN2A protein.  Briefly, these patients had 

been diagnosed as having an inherited RCC and had no known RCC associated gene 

mutation.  They also had either a family history of RCC or multiple RCC.   DNA was 

assessed for known mutations as described in CDKN2A as described on the COSMIC 

database or truncating mutations.  Any missense variants would be evaluated using in silico 

tools to determine whether the corresponding amino acid change was conserved.  Missense 

variants would also be assessed for their frequency in the general population.  Any missense 

variants with a frequency of <1% were believed to be significant.  Mutational screening was 

performed in forward and reverse for all three exons of the gene in the 97 germline samples.  

Readable sequence was obtained for all three exons, however no variants were detected in the 

samples evaluated. 
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4.8.5 Screening of CDKN2B mutations in familial phaeochromocytoma 

As discussed previously RCC and phaeochromocytoma share common susceptibility genes 

e.g. VHL and SDHB (104).  SDHB mutations were initially described in familial 

phaeochromocytoma/paraganglioma (132, 360) and later observed in familial RCC (133).  

The role of CDKN2B variants was investigated in familial phaeochromocytoma.  A total of 52 

germline DNA samples from individuals with phaeochromocytoma and a family history of 

malignancy were analyzed for variants in CDKN2B, one variant was identified.  This was 

confirmed in both directions and in the stock DNA. The alteration was c.116 G>A, p D39N, 

this was predicted to be benign by PolyPhen(90) and tolerated by SIFT(91) (figure 4.8.5).  

Clinical records were retrieved for this patient to determine whether there were any 

distinguishing clinical features.  The patient had a benign extra-adrenal para-aortic 

paraganglioma aged 52. He had no syndromic features on clinical evaluation by both clinical 

endocrinologists and clinical geneticists.  Both his mother and sister had previously had breast 

cancer but no DNA was available from them as they were both deceased and thus segregation 

analysis was not performed. 

4.8.6 Screening of CDKN2B mutations in sporadic RCC 

Clinically significant genes in sporadic RCC have been identified by studies in familial RCC 

for example VHL.  It has been estimated that 40% of mutations of CPG identified in germline 

DNA also occur in somatic tumours (325).  Given the overlap between somatic and germline 

mutations, variations in CDKN2B were investigated in a panel of sporadic RCC derived from 

the UK population from individuals with a sporadic, single RCC with no family history of 

cancer and single solitary RCC was analyzed.   The plan was to determine whether any of 

these individuals had a truncating mutation in CDKN2B or a known mutation in the gene.  If 

any missense variants were identified, their effect on protein function would be ascertained.  

If the change was non-synonymous, the frequency of the change in the general population 
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would be determined and identified as possibly significant if its frequency was <1%.  In silico 

tools would be used to determine whether the alteration was in a conserved amino acid. A 

total of 52 DNA samples from sporadic tumours were screened for variations in CDKN2B 

using Sanger sequencing.  Sequencing was performed in both directions on both exons from 

gel extracted samples.  Readable sequence was obtained from all samples in both directions 

for both exons, however no variants in the gene were identified. 

4.8.7 Investigation of CDKN2B and CDKN2A mutations and expression of CDKN2A and 

CDKN2B in cell line DNA 

The COSMIC database (319) was interrogated for the presence of any known variants in 

CDKN2B. Six mutations were recorded however these mutations were confined to lung, large 

intestinal and oesophageal cancers, recent data from the TCGA (figure 4.8.7.1) confirms that 

CDKN2B is infrequently mutated.  Our group had access to additional RCC derived cell lines 

and therefore, further evaluation of CDKN2B was performed in 12 renal cell lines.  DNA from 

the following cell lines was evaluated: SKRC 45, SKRC54, RCC4, 796-P, KTCL-26, KTCL-

140, UMRC2, UMRC3, RCC1, RCC12, RCC11, SKRC47.  No candidate mutations were 

identified by sequencing the gene.  We also investigated whether CDKN2B expression was 

altered for example by epigenetic changes in a number of RCC lines.  Immunoblotting was 

performed on protein lysates from the following cell lines: Caki I, RCC 4, KTCL-26, 

SKRC47, RCC11, SKRC39, ACHN (figure 4.8.7.2). CDKN2B expression was seen in all cell 

lines.   
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Figure 4.8.5.  Variant identified in familial phaeochromocytoma patient.  An 

electropherogram showing a variant identified in a familial phaeochromocytoma patient (c 

.116 G>A, p D39N).  In silico analysis was equivocal with the variant being benign by 

PolyPhen (score 0.00) and tolerated by SIFT (score 0.19).  

Figure 4.8.7.1.  The frequency of genetic alterations in CDKN2B. Figure taken from 

cBioPortal (361) accessed on 19/8/2016 (http://www.cbioportal.org). Deletions are more 

common (blue) compared with amplification (red) and mutation (green).  Mutation frequency 

is <5% in the samples studied.  
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Figure 4.8.7.2 CDKN2B expression (15kDa) in renal cell carcinoma cell lines by 

immunoblotting (overnight incubation with primary antibody concentration 1:1000 at 4o, 

1:10,000 secondary antibody).  Cell lines tested were: Caki I, RCC 4, KTCL-26, SKRC47, 

RCC11, SKRC39, ACHN from left to right.  

 

Figure 

4.8.8. Electropherograms from two sporadic phaeochromocytoma patients.  These variants 

were (A) c.T80>C, pV27A and (B). c.A40>G, pS14G.  These were predicted to be tolerated 

by both predictive algorithms (C).  Sanger sequencing was performed in forward and reverse 

in both directions on stock DNA. 

 

15kDa p15 (CDKN2B) 

50 kDa α tubulin 

15kDa p15 (CDKN2B) 

50 kDa α tubulin 
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4.8.8 Screening of CDKN2B mutations in sporadic phaeochromocytoma 

CDKN2B was sequenced in 21 DNA samples derived from sporadic phaeochromocytoma.  

Two variants were identified: c.T80>C, pV27A and cA40>G, pS14G, these were predicted to 

be tolerated by the SIFT algorithm(91) and benign by Polyphen(90) (Figure 4.8.8). 

4.8.9 Investigation of inactivation of CDKN2B by copy number abnormalities 

Data from a 250k SNP array (362) indicated that of 90 sporadic RCC samples evaluated, 7 

had deletion in the region of chromosome 9p.   The only genes present in the area of deletion 

were CDKN2B and CDKN2A indicating deletion maybe responsible for CDKN2B inactivation 

in a proportion of RCC.  A further 250k SNP array study(323) also suggested deletion of 

chromosome 9p albeit failing to reach statistical significance.  Deletion of one allele may be 

‘missed’ by sequencing analysis due to amplification of the genomic sequence of the other 

allele.  WES can also fail to identify small indel (insertions and deletions), large deletions and 

duplications.   Thus, inactivation of CDKN2B may occur by these mechanisms. In order to 

investigate this further, MLPA analysis was performed which included all genes on the 9p 

chromosomal area including CDKN2A and CDKN2B. Resources allowed for 7 paired tumour: 

normal sporadic RCC samples and 15 sporadic RCC samples to be analysed.  In each MLPA 

run there were five normal controls.   7 sporadic phaeochromocytoma samples were also 

analysed.  No large deletions were identified in either the RCC or phaeochromocytoma 

samples.   

 

4.8.10 Investigation of the functional effect of detected variants. 

In order to determine the functional significance of the CDKN2B variants in vitro studies were 

used to determine growth suppression function.  The pVHL null cell line KTCL-26 and 

expressing cell line SKRC-47 were chosen for study.  These cell lines were transfected with 

either empty vector (EV) or wild type CDKN2B (WT).  Colony formation assays performed 
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demonstrated that cell lines transfected with empty vector had statistically more colonies than 

those transfected with wild type CDKN2B (figure 4.8.10.1 A and B).  This is suggestive of 

CDKN2B having TSG activity in RCC as super-expression of wild type CDKN2B decreases 

tumour cell growth.    

 

SKRC47 and KTCL26 cells were transfected with CDKN2B plasmid containing the following 

variants: p Glu.35 Stop variant in CDKN2B (pE35X), pAla23Glu variant in CDKN2B 

(pA23E), pPro40Thy variant in CDKN2B (pP40T), pAsp86AsN variant in CDKN2B (D86N).  

These were compared to cells transfected with EV.  The number of colonies produced by cells 

transfected with the variants noted in RCC were not significantly different to those produced 

by cells transfected with EV suggesting the variants led to a loss of CDKN2B associated 

tumour suppressor activity.  CDKN2B expression was equivalent in the plasmids containing 

CDKN2B other than a decrease in the truncated protein, possibly due to decreased protein 

stability (Figure 4.8.10.2).  Each experiment was repeated three times on three different 

occasions. 
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Figure 4.8.10.1   Colony formation assays using cells transfected with different CDKN2B 

vectors.  Representative colony formation assay plates stained using crystal violet from 

colonies derived from the pVHL null renal cancer cell line KTCL-26(A) and pVHL positive 

cell line SKRC-47 (B).  Cells were transfected with empty vector (EV), wild type CDKN2B 

(WT), vector containing the following variants: p Glu.35 Stop variant in CDKN2B (pE35X), 

pAla23Glu variant in CDKN2B (pA23E), pPro40Thy variant in CDKN2B (pP40T), 

pAsp86AsN variant in CDKN2B (D86N).  The experiment was performed three times on 

three different occasions (n=3) 
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Figure 4.8.10.2  Functional Evaluation of CDKN2B variants using Colony Formation Assays 

Comparison of empty vector (EV) and wild type CDKN2B expression in KTCL26 (A) and 

SKRC47 (B) RCC cell lines. Transfection with wild-type CDKN2B significantly reduced the 
number of colonies formed (t=3.936, df = 6 P=0.007 and t=18.2 P=0.0002 respectively).(C). 

Comparison of growth suppression (by colony formation assay) of empty vector, wild type 
CDKN2B and three candidate missense mutations (p.Pro40Thr (pP40T), pAla23Glu (pA23E) 
and pAsp86Asn (pD86N)) in KTCL26 RCC (VHL null) and SKRC47 (VHL positive) cell 

line. There were no statistically significant differences (P>0.4 for KTCL-26 and P>0.1 for 
SKRC47) between the number of colonies in cell lines transfected with empty vector 

compared to those transfected with mutants containing variants (CDKN2B expression levels 
for the three missense mutations were +10% of wild-type expression level). (D) 
Representative CDKN2B expression levels for colony formation assays.  Expression levels 

for missense mutations were comparable to that of wild type protein (data represents mean of 
three experiments (n=3), (error bars represent standard error).   
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4.8.11 Investigation of downstream effects of CDKN2B over-expression 

CDKN2B binds to and inhibits the D type cyclin dependent kinases(363) thus we investigated 

whether super-expression of CDKN2B altered the expression of cyclin D1.  Cyclin D1 is an 

important regulator of the cell cycle (250),  and is overexpressed in over 70% of RCC 

suggesting its importance in the condition.(364)  CDKN2B was overexpressed in SKRC47 

RCC cell lines and KTCL-26 RCC cell lines by stable transfection.  Protein lysates were 

analyzed for differential expression of cyclin D1 protein, no difference was seen (figure 

4.8.11 A). Clear cell RCC has a long latency and variable penetrance amongst individuals 

with von Hippel Lindau disease suggesting VHL inactivation alone is insufficient for RCC 

development.  This indicates that other alterations are required for tumour development, 

alterations in CDKN2B may represent one of these changes.  HIF2α is believed to be more 

important than HIF1α in RCC oncogenesis for a number of reasons including the fact that 

HIF2α is noted in pre-malignant tumours (365), VHL null tumours produce HIF1α and HIF2α 

or just HIF2α alone (366) and thirdly HIF2α elimination can suppress tumour growth in 

pVHL null models (367).  Thus, the effect of CDKN2B overexpression on HIF2α levels was 

studied and no difference in protein expression demonstrated (figure 4.8.11 B).  

 

4.8.12 Depletion of p15 in the HK-2 cell line did not lead to alteration in cyclin D1 and 

HIF2α protein levels 

The HK-2 cell line is a proximal tubular cell line derived from normal adult tubular epithelial 

cells.(368) The cell line is phenotypically similar to differentiated proximal tubular cells and 

thus is a model for a ‘normal’ kidney cell.  HK-2 cells were transiently transfected with either 

scrambled siRNA or siRNA against p15 to determine whether depletion of p15 altered protein 

expression of cyclin D1 or HIF2α.  The transfection was performed three times. There was no 

obvious alteration of either cyclin D1 or HIF2α   
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(A)                                                                               (B) 

 

 

 

 

 

 

 

Figure 4.8.11 The influence of CDKN2B over-expression (WT) compared to endogenous 

expression (EV) on (A) cyclin D1 and (B) HIF-2α in SKRC-47 and KTCL-26 cell lines. 

These are representative blots from three separate experiments (n=3). Overexpression of 

CDKN2B was not associated with differences in cyclinD1 or HIF2-α expression. 

(A)                                                                 (B) 

            +         -                   +     - 

 

Figure 4.8.12 The influence of CDKN2B depletion in HK-2 cells on (A) HIF2-α and (B) 

Cyclin D1. The blots above are representative of three separate experiments (n=3).  Depletion 

of CDKN2B was not associated with differences in cyclinD1 or HIF2-α expression. + 

represents HK-2 cells transfected with scrambled siRNA (i.e control), - represents HK-2 cells 

transfected with siRNA targeting p15.  
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Discussion 

4.9.1 The role of PTEN in familial RCC 

Evaluation of the role of PTEN in familial RCC was carried out in section 4.7 in probands 

with predominantly clear cell RCC.  Subsequent to this work, Eng’s group found there was an 

increased risk of RCC, particularly papillary and chromophobe RCC amongst individuals 

with Cowden syndrome.(369)  Kidney cancers associated with Cowden syndrome included 

papillary (72.7%), chromophobe (18.2%) and clear cell.(346) (9%).  Given the relative rarity 

of RCC it was not surprising that the association with RCC and these genetic alterations has 

only recently been identified.  The failure to identify a PTEN mutation in described in section 

4.7 may have been due to a number of possible reasons. As described previously the 

commonest type of renal cancer is clear cell RCC. It is likely that most of the individuals 

involved our cohort had this type of cancer.  Thus, as was subsequently determined by Eng’s 

and Linehan’s group PTEN mutations in the context of Cowden syndrome were most likely to 

be associated with papillary and chromophobe tumours.  Thus, our sample was inadvertently 

depleted of individuals with possible PTEN mutations.  Furthermore, even in individuals with 

Cowden Syndrome the lifetime risk of developing renal carcinoma is relatively low (33.6% 

(10.4-56.9%).  Thus, it may only take place when other features associated with a germline 

PTEN mutation such as hamartoma are present.  This would make it even less likely that a 

PTEN mutation would have been identified in the individuals evaluated in this thesis as none 

of the patients in the study had any discernible clinical features of Cowden syndrome.  To 

date, no germline PTEN mutations have been identified in individuals without a cluster of 

symptoms associated with a syndrome.  

 

Somatic PTEN mutations have been demonstrated in 30 different tumour types(345).  These 

include cancers not associated with Cowden syndrome such as prostate cancer, lung cancer 
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and pancreatic cancer.(345) There are >1600 recorded mutations in the gene.  There are 

mutational hot spots within the gene, however, these are not associated with a specific tumour 

type (figure 4.9.1).(345)  Furthermore, recent data from COSMIC (319) indicates that PTEN  

is mutated in 2% of sporadic kidney cancers.  Thus, although its role in inherited RCC may be 

limited to syndromic disease it is becoming an increasingly important gene in sporadic 

cancers. Biallelic PTEN loss is a poor prognostic factor in RCC (370), is associated with high 

grade tumours and invasive phenotype.  Furthermore, loss of PTEN is associated with 

increased Akt/PI3K signaling which amongst other functions activates the mTOR pathway 

(371). 

 

 

 

 

 

 

 

 

Figure 4.9.1.  Mutations in the PTEN gene. A schematic diagram showing the mutational 

hotspots of PTEN in both the lipid binding and phosphatase domain (taken from COSMIC 

accessed on 19/3/14, when there were 1668 mutations on the database). 

Lipid phosphatase Domain Lipid Binding Domain 
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4.9.2 CDKN2B as a kidney cancer associated gene 

4.9.2.1 CDKN2B structure and function 

The CDKN2B gene is found on chromosome 9p21 where it is co-localised with CDKN2A. 

This region of the genome is known to be subject to genomic rearrangements such as 

translocation, inversions and deletions (372, 373). CDKN2A and CDKN2B are found together 

with a third gene ARF.  ARF is derived from a unique exon (1β) spliced to part of the second 

exon of CDKN2A.  The gene is transcribed at an alternative reading frame (ARF) and thus the 

subsequent protein has no homology to CDKN2A (374) interestingly the biological activity of 

the ARF is derived from the amino acids encoded in exon 1β. The arrangement of these three 

genes is conserved within mammals and is unique (Figure 4.9.2.1).   These genes play an 

important role in cell cycle control (see later) by regulating the key orchestrators of cell cycle 

progression; pRb (CDKN2A and B) and p53 (ARF). CDKN2A and CDKN2B together with 

CDKN2C and CDKN2D encode the INK4 family of proteins (375) which contain numerous 

ankyrin repeats which are responsible for the complex three dimensional structure of the 

proteins. In the case of p15 (encoded by CDKN2B) this consists of four helix turn helix 

repeats which are held in position by hydrophobic bonds.(376)  The conformation of these 

proteins allows them to bind to cdk4 and cdk6 inhibiting their interaction with cyclin D. This 

allows them to manipulate pRb mediated cell cycle control.(375, 377)     

 

4.9.2.2 Evolution of the CDKN2B gene 

The CDKN2B and CDKN2A are closely related and are believed to be derived from a 

common precursor (374, 377).   Two separate genes appear to be conserved in most 

mammalian species however, in fish there is one single gene which is believed be derived 

from a common ancestral gene (374).  The ankyrin residues seem to be particularly conserved 

between species, however upstream of these residues there is significant variation. (377) The 
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proposed theory regarding the development of two separate genes is outlined below in figure 

4.9.2.  The presence of two genes in mammals enables more complex tissue specific 

regulation of the cell cycle and sensitivity to growth factors.(377)  This has led CDKN2B and 

CDKN2A to have different cancer associations. 

 

Figure 4.9.2.1 The position of CDKN2A and CDKN2B on chromosome 9p 

4.9.3 CDKN2A and CDKN2B and the regulation of the cell cycle 

CDKN2A encodes p16 and partly transcribes ARF.   p16 causes cell cycle arrest by binding to 

cyclin dependent kinases (CDK)  4 and 6. These inhibit the phosphosphorylation of pRb 

causing cell cycle arrest in G1 as cells do not enter the S phase (378).  CDKN2A is frequently 

inactivated by deletions and inactivating mutations, cells with this alteration have a selective 

advantage and thus can go on to become tumour cells (378).   Variations in the sequence of 

CDKN2A which are shared with ARF do not lead to cell cycle arrest.(378)  CDKN2B encodes 

the p15 protein which binds to and inhibits CDK4 and CDK6 (363).  CDK4 and 6 usually 

phosphorylate pRb causing it not to bind to E2F allowing cell growth.  Super-expression of 

p15 causes cell cycle arrest in G1 phase in a pRb dependent fashion by inhibiting CDK4 and 6 

mediated inactivation of pRB.   Overexpression of p15 leads to redistribution of CDK4 from 

cyclinD-CDK4 complexes to CDK- p15 complexes, this leads to unbound cyclin D to be 

rapidly degraded by a ubiquitin dependent proteasome degradation pathway.(363)  
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Figure 4.9.2.2 The evolution of CDKN2A and B as distinct genes in mammals.  A single 
precursor CDKN2A/B gene is found as precursor in fish.  This ancestral gene is on a different 

chromosome to the pre-ARF gene (A). Genomic rearrangement places the pre-ARF gene with 
its transcriptional regulator 3’ of the ancestral CDKN2A/B gene (B).  Gene duplication results 
in another CDKN2A/B gene upstream of the ancestral gene and includes the 1β exon from 

pre-ARF which lies between the two genes. (C)  The duplicated genes then diverged with 
CDKN2A  gaining an extra exon and the pre-ARF sequences were lost.  The splice donor of 

1β splices to the closest acceptor splice site in the second exon of CDKN2A (dashed line) to 
produce the ARF in mammals. Adapted from Gilley and Fried(374) 
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p15 is an effector of TGF-β (357).  TGF-β has two roles in cancer development.  Initially, 

TGF-β signalling inhibits cell growth via p15 inhibiting CDK4 and CDK6, causing G1 phase 

arrest.(357) However, in later stages of cancer development, the signalling pathway is 

associated with cell proliferation, cell invasion, EMT and poor prognosis.(379)  These 

changes are associated with an alteration in gene expression which is partially reversed by 

addition of functional pVHL in RCC cell lines (379).  

4.9.4 The association of CDKN2B and malignancy. 

CDKN2B has previously been demonstrated to be a TSG in a number of human cancers.(380, 

381)  Germline variants causing truncated CDKN2B have recently been associated with 

ovarian carcinoma.(382)  Furthermore, a SNP in CDKN2B has been associated with poor 

prognosis in glioma.(383)  Copy number data has previously suggested that genes encoded on 

chromosome 9p are important in RCC. Work presented in this thesis has demonstrated that 

CDKN2B to be inactivated by mutation in a proportion of familial RCC.   

4.9.4.1 Inactivation of CDKN2B by deletion 

CDKN2B inactivation is commonly achieved by deletion rather than mutation in sporadic 

tumours.  Owing to the close proximity of CDKN2A to CDKN2B, inactivation of one gene by 

deletion in cancer is also associated with inactivation of the other gene.  This is seen in some 

cancers for example in diffuse large B cell and cutaneous T cell lymphoma deletion of 

CDKN2A and CDKN2B can occur, this inactivation is associated with a poor prognosis.(384)  

Co-deletion also occurs in another rare brain tumour.(385)  In other cancers such as acute 

lymphoblastic leukaemia CDKN2B is selectively deleted(386). Deletion of CDKN2B is 

associated with poor prognosis in squamous cell carcinoma of the lung.(387) We did not find 

this in sporadic RCC however a relatively small number of samples were analysed. 
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4.9.4.2 Inactivation of CDKN2B by epigenetic inactivation.  

CDKN2B is also inactivated by epigenetic silencing in the form of methylation. The most 

commonly described cancers which are associated with CDKN2B methylation are leukaemias 

in particular those of the myeloid lineage.(388) One method by which silencing can occur is 

that the anti-sense RNA to p15 can bind to DNA and this can lead to gene silencing.  This has 

been demonstrated in leukaemia and has been thought to be a possible trigger to 

hypermethylation.(389) 46% of paediatric lymphoblastic leukaemia are associated with 

methylation as assessed by MS-MLPA.(390)  Solid tumours are also associated with 

methylation of CDKN2B. Lindberg et al,(391)  found 2/18 pancreatic neuroendocrine tumours 

tumours had over 50% of their CPG islands methylated.  Methylation was associated with 

decreased p15 expression.  Over 20% of epithelial ovarian cancers contained methylated 

CDKN2B(392).  CDKN2B was also methylated in 28% of laryngeal squamous cell carcinoma 

cases (393) this mechanism could potentially be important in RCC. 

4.10 Possible mechanisms of CDKN2B alterations causing renal cancer 

Inactivation of VHL in cell line models is associated with increased levels of cyclin D1 

mRNA via a pseudo-hypoxic pathway induced mechanism (250, 251, 394).  It maybe 

postulated that by overcoming p15INK induced inhibition of cyclin D1, there may be loss of 

pRb induced cell cycle arrest in some kidney tissues leading to increased cell growth.  

Interestingly, 54 of 66 non-papillary RCC (presumably the majority of these were clear cell 

carcinoma) displayed overexpression of cyclin D1 emphasizing the potential importance of 

cyclin D1 in RCC oncogenesis(395).  Thus, inactivation of CDKN2B by mutation or 

methylation may be a significant oncogenic event in a small but significant proportion of both 

familial and sporadic renal cancers.  Immunoblotting from CDKN2B over-expressing models 

did not demonstrate lower cyclin D levels in cell lines with excessive wild type CDKN2B 

however, this may be due to differences being obscured by the presence of endogenous 
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CDKN2B in those cells transfected with empty vector.  Similarly, the absence of a difference 

in HIF2α protein levels could also be explained by this. A more sensitive assay than western 

blotting may demonstrate the influence of p15 depletion on HIF2α and cyclin D1, furthermore 

other genetic aberrations associated with cell lines may influence the expression of these 

proteins. 

CDKN2B may also play a key role in RCC development by influencing TGFβ activity.   As 

the CDKN2B variants were identified in familial germline DNA, this suggests that CDKN2B 

inactivation may influence the TGF pathway in early tumours.  TGFβ has been shown to 

upregulate p15INK levels(357), and subsequently in individuals with inactivated/mutated 

CDKN2B abnormal p15 is produced and growth arrest will not take place.     

Another putative mechanism for CDKN2B mediated RCC oncogenesis is that CDKN2B has 

an important gatekeeper effect through its involvement in pRb mediated cell cycle arrest.  pRb 

causes growth inhibition predominantly in response to extracellular stimuli (24).  If CDKN2B 

is inactivated, cell cycle arrest cannot take place and thus cells continue to divide in adverse 

situations potentially allowing more genetic alterations to accumulate including some with the 

ability to drive tumour growth.  Cells with inactivated CDKN2B may lack an effective 

gatekeeper function and thus gain an evolutionary advantage by increasing genomic variation 

which allows them to evade normal cell cycle control activities.   Supporting evidence for this 

hypothesis comes from murine models produced by Latres et al (396), as cultured mice 

embryonic fibroblasts from p15 null mice had a proliferative advantage that enabled them to 

be more susceptible to transformation by H-ras. 

The D86N alteration in CDKN2B identified in RCC has been described sporadic parathyroid 

carcinoma (1/85 patients). Costa-Guda et al demonstrated that p15 protein containing the 
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D86N alteration had impaired binding to CDK6(381).  This supports the hypothesis that this 

variant is pathogenic as impaired CDK6 binding would allow ongoing phosphorylation of 

pRb and thus its activation.  Therefore, cellular proliferation would be increased providing 

cells with the alteration a selective advantage. Further evidence for the pathogenic nature of 

this mutation was the loss of heterozygosity seen in the tumour. 

Recently, CDKN2B has been demonstrated to be down-regulated in hypoxia(397) as cells 

cultured in hypoxic conditions had decreased CDKN2B mRNA and protein.  Potentially, in 

pseudohypoxia as seen in RCC, CDKN2B can be downregulated promoting growth.  This 

may be achieved by transcriptional repression, as in normoxic conditions siRNA directed 

against myc, HIF1α and ARNT led to decreased transcription of CDKN2B(397).  Thus, 

inactivation of CDKN2B may mimic some of the changes seen in the pseudo-hypoxic 

situation promoting cellular growth. 

4.11 Limitations of this study 

4.11.1 Limitations of the exome sequencing approach 

The ability of exome sequencing libraries to capture the exome has improved since this study 

was performed.  A recent publication compared different exome capture platforms, and  

suggested mutations failed to be identified due to incomplete coverage of a gene of interest 

(204).   For example, the Agilent Sure Select captured 90% of most genes but missed a 

significant proportion of other important phaeochromocytoma associated genes (SDHD, 

SDHC and SDHA genes had 32%, 60% and 49% coverage respectively).  Newer exome 

capture systems e.g. the Illumina Nextera Rapid Capture Exome had improved coverage of 

100% for all phaeochromocytoma genes investigated but did not cover 5’UTR which the 

Agilent Sure Select system did.(204)  WES does not accurately identify structural variants 

and therefore MLPA is recommended.  Although, MLPA for CDKN2B loss was performed in 
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sporadic samples, due to cost factors it was not performed in the familial cohort and therefore 

some cases of deletion could have been missed.   

 

As with all exome sequencing approaches, this study may have missed alterations in the non-

coding regions e.g. gene promoter regions which were not sequenced. The role of the non-

coding region in disease has not been fully evaluated and represents an area for future study 

for genomic researchers.  These areas may have hitherto undefined roles as GWAS have 

identified >90% of risk variants reside in non-coding regions.(67) The ENCODE project(40) 

identified that 8.5% of the genome was associated with specific protein DNA binding and 

approximately 80% of DNA participates in at least one biochemical or RNA event in one type 

of human cell.  This suggests that more of the genome is associated with gene regulation and 

therefore alteration in the intronic sequences may have a biological significance.  

Furthermore, clinically significant rearrangements such as the ALK fusion may be missed as 

re-arrangements can take place in intronic regions.(398) It is likely that as the costs associated 

with NGS fall, WGS will replace WES allowing better characterization of non-coding 

sequences and thus rearrangements and other variants maybe identified.     

 

The bioinformatics pipeline used in this study may have led to some bias against the detection 

of potential genes associated with cancer.  Firstly, alterations in genes which were already 

detailed on dbSNP were excluded from study.  This included rare variants and the dbSNP 

database does include known potential mutations such as the D68N alteration in CDKN2B.  

More sophisticated data-analysis pathways now available include minor allele frequencies 

which help quantify rare alterations.  Such pathways can also differentiate between different 
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types of variants within dbSNP e.g. only filter out variants with a minor allele frequency of 

greater than 1%.(399) 

 

The methods used to choose genes for further study were biased.  Firstly, known genes were 

preferentially identified for study, this was because there would not be sufficient time and 

resources available to characterize an entirely new gene.  Furthermore, as there were multiple 

genes with variants it was important to focus limited resources on those most likely to be 

significant (e.g. known TSG).  This could have led to important CPG not being characterized 

as mutations in these genes may not fit the prevailing paradigm and they are not thought to be 

‘candidate genes’.  An example of this is IDH1 mutations occurring in glioblastoma 

multiforme (GBM) which were identified using integrative genomic analysis (400) and were 

hitherto not known to be associated with the condition.  This gene is now well characterized 

in GBM and other gliomas and associated with a good prognosis (401) and is used to make 

clinical decisions (402). 

Furthermore, the gene selection method used in this study was crude and lacked pathway 

analysis.  This was partly because the analysis was manual and required inputting data 

regarding variants in webtools such as Ensembl (87), NCBI(89) and SIFT (91).  This was 

time consuming and laborious, newer bioinformatics tools have now made this type of 

analysis much quicker and easier (44).  The genetics of kidney cancer has previously been 

identified to involve a number of important signaling pathways for example; the 

pseudohypoxia, mTOR and wnt pathways.  Some of the key publications regarding NGS have 

confirmed the significance of key signaling pathways in cancer, for example in pancreatic 

cancer there are alterations in 12 core signaling pathways (403) and in prostate cancer the 
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importance of the PTEN and wnt pathways was highlighted as many mutations occurred in 

genes within these pathways.(404) Therefore, the importance of signaling pathways may have 

been underestimated, for example other genes in the TGF-β pathway may have been altered.  

However, given relatively small number of samples which underwent exome sequencing in 

this study, this effect is likely to be reduced. 

 

4.11.2 Assessment of the significance of CDKN2B variants in RCC  

One criticism of this work is the relative infrequency of CDKN2B variants in RCC.  In her 

critique of CPG, Rahman argues that CPG should increase the relative risk of cancer 2-3 fold 

and 5% of individuals with the alteration should develop a cancer.(325)  Variants of CDKN2B 

described on dbSNP and on the exome variant server are infrequent suggesting there is not a 

significant proportion of individuals with the mutation with a ‘normal’ phenotype, suggesting 

the gene is important and alterations in the gene are functionally significant. Some authors 

argue that rare variants identified in exome/genome sequencing projects are not causative as 

they can occur in ‘normal’ individuals and that because a variant is not seen in controls does 

not mean it is causative (325).  Furthermore, variants which are truncating or non-sense may 

not necessarily be pathogenic as they occur in normal individuals.  This can be the case in 

some genes, however given that CDKN2B is a known TSG, suggests that the presence of the 

variants identified in this study is significant. 

 

Genomic studies of cancer have suggested that there are a few cancer genes mutated in a high 

proportion of cancers evaluated (typically one to three genes in >20% of tumours), several 

genes mutated in 10-20% of cases (the shoulder) and many more mutated at lower 

frequencies, these make up ‘the long tail’(42). Some genes mutated in low frequencies in 
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some cancers are mutated in higher frequencies in other tumours e.g. KRAS  is infrequently 

mutated in breast cancer but more commonly mutated in colon cancer(41).  Thus, the 

frequency of mutation prevalence does not mean that the gene is unimportant.  Furthermore, 

currently not all the genes associated with ‘the long tail’ have been evaluated because most 

studies have not had the correct amount of power to detect low level changes due to sample 

size and stromal contamination in sporadic studies may have meant there was insufficient 

depth to identify mutations.(41)  This problem is likely to be overcome in the next few years 

as more large scale sequencing projects are being performed.  In this study Sanger sequencing 

was used to evaluate sporadic tumour DNA for mutations, as a ‘normal’ allele is preferentially 

amplified during a PCR reaction it may be difficult to identify heterozygous changes.  Newer 

NGS techniques including those which enable sequencing of a single DNA molecule may 

increase the likelihood of somatic changes being identified.  Although it should be noted that 

some key publications in sporadic tumour mutation have used Sanger sequencing to identify 

novel mutations.(311, 403) 

 

CDKN2B mutations may represent a CPG which is part of the “long tail”.  These CPG are 

believed to be important in the understanding of cancer biology(42) as they can provide 

insights in to particular signaling pathways for example KRAS mutations can lead to failure of 

EGFR inhibition in colon cancer.  Redundant mutation in cancer pathways is increasingly 

seen, they may help classify tumours and help tailor treatments.(42)  Genes mutated less 

commonly i.e. those within the long tail may also combine into common pathways and thus 

highlight their role in cancer development i.e. RNA binding proteins were found to be 

mutated in lung cancer and CML suggesting RNA processing pathways may play a role in 

cancer development (42).  The evaluation of family studies is important in the determination 
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of high risk CPG.  This is the approach that was taken in this study, however for genes with 

modest effects on cancer risk, population based studies such as GWAS play a role in 

identifying such genes, such studies have identified a 500bp area in chromosome 9p which is 

important in multiple cancers (including breast, melanoma, glioma and leukaemia) as well as 

type II diabetes and myocardial infarction.  This area contains CDKN2B and CDKN2A 

suggesting that they have an important role in cancer and this may be achieved by altering 

cancer metabolism.(41)  

 

Evaluation of the importance of missense variants is not clearly defined however, 

conventionally the functional significance of missense variants can be determined by the 

assessment of the variant on protein structure and on function.  In the case of TSG, the effect 

of missense mutations on function can be attributed to the influence of these alterations on 

characteristics typical of cancer cells.  Classically, this can involve loss of inhibition of cell 

growth demonstrated by colony formation assays, loss of anchorage dependent growth 

demonstrated by soft-agar assays and increased cellular migration (i.e. that seen in metastasis 

and cell invasion) demonstrated using the monolayer wound healing assay or transwell 

invasion assay.(405)  In this study, colony formation assays were used, however it would 

have been advantageous to utilize another in vitro assay to demonstrate pathogenicity and 

other members of the group are continuing this work.  

 

The importance of missense mutations is also determined by whether amino acids affected by 

the alteration are evolutionarily conserved as protein function is strongly associated with well 

conserved amino acids (406).  In this study, missense variants were associated with well 
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conserved amino acid changes.  Furthermore the amino acid change associated with protein 

function e.g. catalytic sites or sites where protein-protein interactions take place are more 

likely to be associated with a mutation.  We used two previously cited and peer-reviewed in 

silico prediction tools, SIFT and Polyphen-2 in order to determine whether these changes 

were functionally significant.(90, 91).  SIFT uses evolutionary conservation to determine the 

probability that the change is tolerated.(406)  These tools appear to be the most commonly 

used to evaluate missense variants.(407)  Furthermore, one variant (D86N) has been 

demonstrated independently to alter protein-protein interactions.(381) Although these are 

commonly used, other prediction tools are available investigating protein functions e.g. SNAP 

(406) and mutation assessor (407, 408) look at conservation, other tools look at amino acid 

change and protein stability (409).  Given the quantity of data recently available from NGS 

technologies, bioinformatics approaches to assign significance to mutations require further 

development and assessment.   

 

Professor Sir Tom Blundell’s group worked in collaboration with us and carried out computer 

modelling on the effect of protein alterations on CDKN2B in complex with CDK4 or CDK6 

based on the X-ray crystal structure of CDK6 in complex with p19.  They found that the 

variants caused an alteration in amino acid at different positions in the protein. pAsp86 and 

pAla23 are close to the surface along the interface with CDK4 and CDK6, pPro40 is buried 

distal to the interaction surface.  pAsp86 makes strong intermolecular bonds with CDK4 and 

CDK6, if it is replaced with an asparagine these interactions are weakened and therefore 

binding affinity is reduced.  pAla23 is on the α helix where it makes strong inter and 

intramolecular bonds with CDK 4 and 6, if it is replaced by glutamate there is reduced affinity 

for CDK4 and 6.  pPro40 is located on a hydrogen bonded turn allowing interactions with the 
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first and second ankyrin repeats within the protein which enable interaction with CDK4 and 6.  

Substitution of the proline relaxes the loop decreasing the stability of the protein. Altered 

interaction of mutated CDKN2B with CDK4/6 may enable individuals with CDKN2B 

alterations to be amenable to treatment with CDK4/6 inhibitors which have demonstrated 

promising in vitro results in cell lines with aberrations in mTOR and P13K signaling(410).  

These pathways are both commonly altered in RCC. Thus use of CDK4/6 inhibitors in RCC 

cell models, particularly in the setting of p15 depletion would be a fascinating extension to 

this work. 

4.13 Conclusion - The putative role of CDKN2B in RCC. 

This study represents a significant development in the understanding of the molecular 

pathology of RCC.  This is partly due to the study design focusing on familial RCC.  Familial 

RCC represents a small proportion of RCC in total (2-3%) (246) but studies of these 

conditions have enabled seminal insights in to the pathophysiology of sporadic RCC.  Despite 

intensive research in the field, only two genes VHL and PBRM1 have been associated with 

>30% of kidney cancers. Studies of non-syndromic familial RCC patients have indicated that 

the pattern of inheritance is most likely to be autosomal dominant (246), suggesting hitherto 

unknown TSG are responsible for a significant proportion of familial RCC. Furthermore, as 

has occurred in phaeochromocytoma, as further research is carried out on RCC genetics, an 

increased proportion of cases may be attributable to genetic predisposition. As CDKN2B is a 

known TSG(351) (356, 380, 411), the mutations described are likely to represent ‘driver’ 

mutations in RCC.  This work demonstrated CDKN2B is associated with familial RCC in 4% 

of cases investigated.  This is a clinically significant proportion and is similar to the 

proportion of individuals with non-syndromic RCC with mutations in the BHD predisposition 

gene FLCN (4.3%).  Though somatic CDKN2B mutations appear to be rare in sporadic RCC, 
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previous studies using copy number analysis have shown a loss of gene expression in the 9p 

area.(323, 362) .  CDKN2B involvement in familial RCC is a novel and important finding in 

the field.  In the future, as costs of NGS decrease patients’ tumours may be sequenced using 

WGS at diagnosis, or CDKN2B should be incorporated in the cancer gene panel testing.  

Further evaluation of CDKN2B and its associated pathways in RCC may enable better 

understanding of the molecular pathogenesis of the condition and may aid the development of 

personalized therapies such as the use of CDK4 and 6 inhibitors.   
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CHAPTER 5.  INVESTIGATING NOVEL TREATMENTS IN RCC  – 

EXPLOITING SYNTHETIC LETHALITY 

 

5.1 Development of therapies for RCC – targeting known and unknown pathways in 

RCC - ‘Synthetic Lethality’ 

As described in chapter 4, there have been considerable developments in the treatment of 

RCC due to improved understanding of some of the key pathways associated with RCC.  

Most notably, TKI were developed as a result of improved understanding of the downstream 

consequences of inactivating the VHL TSG.  However, there is a widely held view that on the 

whole, despite better understanding regarding which mutations drive cancer progression this 

has not always been translated into the development of agents which directly target cancer 

cells (412).   

Cancer cells accumulate numerous genetic alterations over time.  The cancer phenotype 

occurs due a loss of TSG function and the products of activated oncogenes (413).  Although 

cancer cells may contain only a few ‘driver’ mutations these are usually part of a small 

number of well conserved key pathways (403) such as; cell cycle control, DNA damage 

response, integrin mediated cell adhesion, apoptosis and TGF-β signalling(413).  Driver 

mutations include commonly mutated genes such as TP53, BRCA1, BRCA2, NF1, and 

RB1.(414)  These pathways have been intensively investigated for possible therapeutic uses.  

Cancer cells cannot survive without some of the products of oncogenes due to their 

intrinsically abnormal physiology.  This process is called ‘oncogene addiction’.  Normal 

healthy cells are not dependent on these gene products.  Therefore, this ‘addiction’ can be 

exploited to identify possible new therapeutic targets.  The key aim of this strategy is to 

identify ‘critical functional nodes in the oncogene network’(415), once these are inhibited 

there is a presumption that the oncogenic system will collapse and the cancer cell will die, 

apoptose, differentiate or go into senescence.(25)  The advantage of the principle of synthetic 
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lethality is that even ‘passenger mutations’ can be interactors resulting in potentially novel 

treatments.(412) 

This difference in cellular physiology between normal and cancer cells due to oncogene 

addiction is utilised in strategies using the concept of synthetic lethality (figure 5.1).  Two 

genes are synthetically lethal if a mutation in either gene alone is not lethal but mutations of 

both cause cell death.  In addition, interactions can be synthetically ‘sick’ when mutations of 

one gene cause no change in cellular wellbeing but simultaneous mutations are deleterious to 

cell health.(413) Synthetic lethality is a particularly important concept in cancer medicine as 

TSG are crucial to cancer cell function. Over 80% of mutations seen in cancers are in TSG 

(416).   In vitro studies and murine models have demonstrated that reactivation of TSG can 

cause widespread apoptosis or senescence of tumours dependent on the tissue being 

investigated.(413)  However, in humans it is usually not possible to re-activate a TSG (unless 

the TSG is epigenetically inactivated) however the ‘undruggable’ TSG can become druggable 

if one of its synthetic lethal interactors can be targeted (413).  

Synthetic lethal interactions can also provide important insights into genetic interactions 

within the cell.  Furthermore, many genes within the genome have not had their function 

characterised, in 2012 only ~2% of genes had a defined function (414).  Within the cell there 

are numerous genes with similar functions, so that key characteristics such as mitosis are not 

vulnerable to the loss of one gene (so called ‘buffering’). (417)  By considering their 

interactions, the functional annotation of unassigned genes can be performed.(417) 
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Figure 5.1 The concept of synthetic lethality.   

Two genes are defined as having a synthetically lethal interaction if inactivation of one gene 

does not adversely influence cellular growth but simultaneous inactivation of both genes leads 

to cell death.  This concept can also include ‘sickness’ of the cell with two inactivated genes. 
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5.2 BRCA associated cancer- the exemplar of the therapeutic role of synthetic lethality 

The most clinically relevant use of synthetic lethality is the use of Polyadenosine diphosphate 

[ADP] ribose polymerase 1 (PARP1) inhibitors in BRCA-1 and BRCA-2 mutation positive 

breast and ovarian cancers.  PARP1 activity is essential in DNA damage repair as it is 

required for base excision repair.  Base excision repair is important for errors in a single DNA 

strand.  The proteins encoded by the BRCA1 and BRCA2 genes are essential for error free 

homologous recombination repair (HR).  HR is required when there are double stranded 

breaks in DNA.  Double stranded break repairs are the most serious type of DNA damage 

which, when unrepaired, can trigger apoptosis.(418) Cells which have BRCA1 or BRCA2 

deficiency have to repair double strand breaks using alternative, more error prone, 

mechanisms such as non-homologous end joining or single strand annealing.  These methods 

are less accurate than HR (418) and can lead to increased genomic instability (413).  

Inhibition of the PARP pathway in vitro results in DNA damage that must be repaired by the 

homologous repair pathway. Thus, when cells deficient in BRCA1 and BRCA2 are treated 

with PARP inhibitors they are unable to repair DNA and subsequent DNA damage causes cell 

death due to chromosomal instability. Cells without BRCA1 or BRCA2 inactivation are less 

sensitive to the inhibitors.(419)  Fong et al (420) have shown that PARP inhibitors cause 

tumour stabilisation/regression only in those individuals with BRCA mutations.  PARP 

inhibitors are currently being further evaluated in a series of phase III clinical trials in BRCA-

associated breast and ovarian cancer.(421)  

 

5.3 Combining synthetic lethality with chemotherapy or radiotherapy 

Alkylating agents such as doxorubicin and DNA adduct forming drugs like cisplatin 

(described in section 1.1.3) cause DNA damage and corresponding cellular stress.  When 

cancer cells which have lost both copies of a particular TSG are exposed to external cellular 
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stress such as chemotherapy there could be an effect on cell death.  However, if another 

synthetic lethal interactor of the TSG is also inhibited pharmacologically this may increase the 

effect of the chemotherapy on cell death.(413)  This interaction has been utilised in a mouse 

model of p53 deficient tumours.  When murine p53 deficient cancer cells were treated with a 

MK 2 inhibitor (inhibitor of a cell cycle checkpoint pathway) there was mitotic catastrophe 

associated with regression of tumours if the cells were also treated with cisplatin or 

doxorubicin.(422)  In another study, when p53 deficient cells were exposed to ionising 

radiation there was increased expression of PLK1.  These p53 deficient cells were also 

exposed to PLK1 inhibitors and this inhibition was associated with cell death (418). 

5.4 Using synthetic lethal interactions to overcome chemo-resistance 

The RAS proto-oncogene is mutated in a large number of cancers including 25% of lung 

adenocarcinomas.(423)  90% of these mutations are within KRAS, and individuals with KRAS 

mutations have a worse prognosis, resistance to EGFR inhibitors and have less benefit from 

chemotherapy.(423)  Although, KRAS mutations have been well characterised in lung cancer 

there are no effective targeted agents directed against mutated K-RAS.  Thus, downstream 

effectors of the RAS could be inhibited to decrease RAS activity.  One downstream activator 

associated with RAS is MEK, selumetinib is a MEK inhibitor.  Selumetinib was given with 

docetaxel in patients with KRAS mutations in a phase II randomised trial and compared to 

docetaxel alone.  This trial indicated that dual therapy was associated with better PFS and 

response rates, suggesting a potential clinical improvement associated with using an 

interpretation of a synthetic lethal approach, however further evaluation of this strategy is 

required.(423) 
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5.5  Synthetic lethality screens 

Synthetic lethality interactions are being evaluated on a large scale using synthetic lethality 

screens utilising the principle of RNA interference (RNAi). The principle of RNA 

interference is that double stranded RNA causes sequence specific degradation of 

complementary mRNA, thus decreasing protein expression.(424)  Double stranded short 

interfering RNA (siRNA) molecules are 21-23 nucleotides long with a 2 nucleotide overhang 

on their 3’ end.  They can be synthetic siRNA molecules which typically form part of library 

assays or short-hairpin RNA (shRNA).  shRNA can be constitutively expressed using RNA 

polymerase and are then cleaved intra-cellularly to form short siRNA effectors(424).  

Synthetic siRNA are transported into cells using transfection reagents so that they are not 

damaged by nucleases in the extra-cellular media.  The intracellular half-life of synthetic 

siRNA is approximately 24 hours, however the duration of gene silencing in rapidly growing 

cells achieved by siRNA is usually a week.(424)  Knockdown lasts longer in non-dividing 

cells as it is believed the length of knockdown is due to ‘dilution’ of siRNA as cells increase 

in number. The consequent duration of protein knockdown is dependent on the half-life of the 

protein but typically occurs within a week.  Synthetic lethality screens allow multiple 

potential targets and gene interactions to be investigated simultaneously.  They provide a 

functional, systems biology approach to identify cancer cell vulnerabilities (25).  Most 

synthetic lethality interactions identified in mammalian systems have been derived from 

large-scale RNAi libraries which have a high throughput and each gene is interrogated in at 

least a single well.(416)  Many siRNA library studies have identified non-oncogenes that are 

synthetically lethal to cancer cells suggesting that they can also act as cancer targets.(34)   
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In order to study more long term gene depletion, pooled shRNA assays have been used by 

Elledge’s group (415). Isogenic cell lines were infected with pooled shRNA by viral vectors.  

Each shRNA contained a unique barcode of 60 nucleotides.    After the cells were cultured in 

selective culture medium, the genomic DNA containing integrated shRNA was isolated.  The 

DNA underwent PCR amplification and DNA microarray analysis to consider differential 

expression of genes (416), the amount of each barcode reflects the abundance of each shRNA 

evaluated. Lou et al performed parallel screening of >30,000 shRNA in isogenic colorectal 

cancer cell lines which contained either wild type RAS or mutant RAS. 26% of transcripts 

showed differential expression and RAS mutant cells were particularly sensitive to loss of 

PLK1. This suggested that cells with mutated RAS were dependent on PLK1 for cell cycle 

progression (415) and a synthetic lethal interaction between mutated RAS and PLK1. Bommi-

Reddy and co-workers (425)  used shRNA vectors to identify genes which may be 

synthetically lethal with VHL, these results are discussed in section 5.9.6.      

 

5.6 Aims  

As discussed in previous chapters, the application of genomics has greatly facilitated the 

diagnosis of genetic diseases and the discovery of novel genes.  One of the biggest criticisms 

of the genomics revolution is the lag between gene discovery and tangible clinical treatments.  

In this chapter, a functional genomics approach is taken in order to highlight potential 

pathways of importance in RCC which may be useful therapeutically.  The aim of work in 

this chapter is to use synthetic lethality screens to identify potential synthetic lethal interactors 

with VHL in a RCC model.   
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5.7 Methods 

5.7.1 The methodology of the synthetic lethality screen 

In vitro studies have utilised synthetic lethality with two aims: (i) to identify new genes and 

pathways associated with cancer and (ii) to find new therapeutic targets.  Despite the 

importance of VHL in RCC, synthetic lethal interactions with VHL have not been extensively 

evaluated.  In this study, the SKRC-39 cell line was used as the parental line for the isogenic 

lines because though a VHL mutation has not been identified, it is known to be deficient for 

pVHL expression.  SKRC-39 had been previously transfected within our group to stably 

express either wild type VHL or an empty vector.  The paired isogenic lines were thus further 

named SKRC39ev or SKRC39wt.  The expression of pVHL was confirmed using 

immunoblotting (Figure 5.7.1).  Introduction of VHL into the cell lines did not influence their 

ability to proliferate in standard in vitro conditions. 

 

RNAi libraries have been used to conduct loss of function screens in human mammalian cell 

systems and their methodology is summarised in figure 5.7.2.  As described previously, 

dysregulation of the HIF pathway (described in section 4.3) leads to upregulation of a number 

of protein kinases associated with cell growth.  Protein kinase inhibitors have been previously 

shown to be effective in the treatment of RCC (30, 334).  They are logical targets for 

investigation as they are eminently ‘druggable’.  Therefore, the isogenic renal cell lines 

expressing VHL or not expressing VHL were interrogated for synthetic lethal interactions 

with human kinases. 

The Silencer Select human siRNA library was used in this study and the methodology used is 

described in section 2.1.2.  The library contains 2130 unique siRNA targeting a total of 710 

human kinase genes which have been validated (99).  Previous work within our group has 
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demonstrated that SKRC-39 cells are transfected easily with the INTERFIRin transfection 

agent.  In this experimental model, SKRC-39 which stably expressed wild type VHL were 

compared with those which expressed an empty vector (PC DNA 3.1).  These cells are 

denoted SKRC39ev and SKRC39wt respectively.   

RCC cells were assayed for viability using the cell titre blue assay.  This assay quantifies 

living cells by looking at their ability to convert resazurin into a fluorescent end product 

(resorufin) which is measured using a plate-reading fluorometer.  Non-viable cells are unable 

to perform this conversion as they have lost metabolic activity and thus the read-out 

represents living cells (426).  Fluorescence levels were determined for each well treated with 

an oligonucleotide.  Each kinase gene was evaluated in three wells each containing a different 

oligonucleotide.  The influence of the oligonucleotide on cell viability was established using 

the following calculations:  

(i) Normalised value = fluorimeter reading in well treated with oligonucleotide /mean 

fluorimeter reading in cells from the same cell line treated with siRNA against luciferase 

(ii) Comparison was made to identify those oligonucleotides causing a selective decrease 

in viability amongst cancer cells by dividing the normalised SKRC39wt value (calculated 

above) by the normalised SKRC39ev value for each individual oligonucleotide.    

 

Therefore, siRNA causing a selective decrease in the viability of RCC cells had a normalised 

SKRC39wt/SKRC39ev value of >1.  Those genes which caused fold changes ≥1.2 were 

selected for further investigation. 
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Figure 5.7.1 A representatative immunoblot from 3 experiments demonstrating absence of 

pVHL expression in SKRC39ev and presence of pVHL in SKRC39wt cell lines.    

 

Figure 5.7.2. A schematic diagram explaining the process of evaluating interactions using a 

siRNA library  

SKRC39 

EV  WT 
VHL  - 24kDa 

Tubulin-50 kDa 
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5.7.2 Determination of the depletion of STK10 and PLK1 on global protein expression of 

SKRC39ev and SKRC39wt cells using the Kinexus KAM-850 protein array. 

 

As described in section 2.18, the Kinexus Microarray was used to determine changes in global protein 

expression in SKRC39ev and SKRC39wt cells after treatment with Dharmacon smartpool siRNA 

directed against STK10 and PLK1.  Kinexus was provided with cell pellets from cells treated with 

siRNA and then labelled protein lysates were applied to the KAM-850 Antibody Microarray chip. 

The array contained includes 517 pan-specific antibodies for protein expression and 337 

phosphosite-specific antibodies. Analysis of the data derived from the array was performed by 

Kinexus (see section 2.18 for a more detailed explanation).  In brief, the protein targets included in 

the array were: proteins involved in apoptosis, cell proliferation, stress and kinases.  Kinexus 

processed fluorescence data and used their standard algorithm to analyse the data.  A 

fluorescence signal from each protein was measured in duplicate and the average figure taken.  

The average percent change from the control sample was expressed as a Z-ratio. Kinexus 

provided a shortlist of genes in which protein expression was altered significantly (Z-ratio of +/- 1.2-

1.5) after depletion of either STK10 or PLK1.   Antibodies included in the array have a degree 

of cross reactivity and therefore proteins identified by the array to be overexpressed may not 

actually be over-expressed.  Furthermore, antibodies within the array may not bind 

sufficiently well to proteins resulting in false negatives. Therefore, immunoblotting must be 

performed to confirm results(100).  In this study, the Kinetworks multi- immunoblotting 

analysis was performed by Kinexus and utilised to validate the findings of the array.  This 

was performed as it was cost-effective and time efficient as Kinexus had access to the 

appropriate antibodies and also optimised the conditions for blotting.  This system allowed for 

the analysis of 18 antibodies only. 
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5.8 Results 

5.8.1 siRNA library identifies potential synthetic lethal interactors with VHL 

The results of the kinase library were analysed within Excel spreadsheets.  As described in 

section 5.7.1, fluorescence data derived after incubation with cell titre blue was converted into 

a ratio representing a change in viability of SKRC39wt:SKC39ev cells after treatment with 

specific oligonucleotides.  Further analysis of this data was performed as summarised in 

figure 5.8.1.1 in order to identify genes for further study.  Those genes with at least two fold 

change ratios of >1.2 seen with 2 oligonucleotides were defined as genes of interest.  This 

proportion was similar to that seen in other studies.(425)  At least two oligonucleotides were 

stipulated to reduce the chance of false positives and this figure has been recommended by 

some key authors in the field.(427) A shortlist of genes was made in order to the prioritise 

genes of interest.  From 710 genes, a total of 19 genes met these criteria.  This was a larger 

number than some other studies which chose to investigate fewer genes in the initial setting 

(e.g. eight). Further transfection experiments were carried out to confirm whether inhibiting 

these nineteen genes was associated with a decrease in cell viability in SKRC39ev (Figure 

5.8.1.2).    The 19 genes (PIP5K1A, RYK, STK10, EIF2AK3, PLXNA3, CDC2L6, CDC42SE2, 

SGK269, GRIP2, NUAK2, DCLK3, SLAMF6, AK7, SIK1, NADK, WNK2, CLK4, PFTK2, 

LOC375133) identified from the first round screen were then re-examined by a further set of 

replication experiments. In these experiments, depletion using all three oligonucleotides was 

carried out in the 96 well setting three times.  16 of the 19 genes (PIP5K1A, RYK, STK10, 

EIF2AK3, PLXNA3, CDC2L6, CDC42SE2, SGK269, GRIP2, NUAK2, DCLK3, SLAMF6, 

AK7, SIK1, WNK2, CLK4) demonstrated a consistent preferential reduction in cell viability 

(measured by cell titre blue assay), at a threshold fold-change of 1.2, for the same minimum 

of two of three siRNA oligonucleotides identified through the original screening (Figure 
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5.8.1.2). The false positive rate may have been due to a degree of experimental error due to 

the small volumes of reagents  

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
Figure 5.8.1.1. A summary of the process used to select genes from the siRNA screening  

library for further evaluation. 

710 kinase 
genes 

Filter 1 

Select those genes within the screen which lead to a change in viability of 
SKRC39ev cells: SKRC39wt cells of ≥ 1.2 in 2 of the 3 oligonucleotides for 
this gene (19 genes) 
PIP5K1A, RYK, STK10, EIF2AK3, PLXNA3, CDC2L6, CDC42SE2, SGK269, GRIP2, 
NUAK2, DCLK3, SLAMF6, AK7, SIK1, NADK, WNK2, CLK4, PFTK2, LOC375133  

Filter 2 

Select those genes which lead to a change in viability of SKRC39ev cells: 
SKRC39wt cells of ≥ 1.2 in 3 experiments in the same 2 of the 3 

oligonucleotides identified in filter 1. (16 genes) 
PIP5K1A, RYK, STK10, EIF2AK3, PLXNA3, CDC2L6, CDC42SE2, SGK269, GRIP2, 
NUAK2, DCLK3, SLAMF6, AK7, SIK1, WNK2, CLK4  

Filter 3 

Select 10 genes with the greatest change in viability of SKRC39ev cells: 
SKRC39wt cells of ≥ 1.2 in 2 of the 3 oligonucleotides for this gene (10 
genes). 
SLAMF6, PIP5K1A, SGK269, SIK1, GRIP2, DCLK3, STK10, RYK, CDC2L6, PLXNA3  

Filter 4 

Determine whether expressed in renal tissue using  in silico tools. (4 genes) 
RYK, STK10, CDC2L6 and CDC42se2  

Filter 5 

Determine whether any role in cancer or core processes associated with 
cancer 

Choice of: 

 STK10 and RYK for further 
study 
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 involved.  The decision to select genes on the basis of their relative effect (i.e. fold change) 

rather than statistical analysis was made during the experiment.  This methodology had been 

adopted by others within in the group and the rationale behind it was because of the small 

numbers involved, statistical analysis may not be reliable and false negatives/positives could 

occur.  Retrospective analysis using t-tests failed to demonstrate statistically significant 

changes. 

 

Figure 5.8.1.2 Confirmation of the kinase screen results.   

Viability of SKRC39wt cells compared to SKRC39ev as assessed by the cell titre blue assay.  

The graph depicts the mean results of three experiments using three different oligonucleotides 

for each gene tested, error bars represent standard deviation.  A ratio of the viability of 

SKRC39wt: SKRC39ev of ≥ 1.2 was classed as significant. 19 genes identified from the first 

round of siRNA screen were reassessed. 16 of these genes demonstrated a consistent 

preferential reduction in cell viability (measured by cell titre blue assay) at a threshold fold 

change of 1.2.  Three genes did not show consistent results with the initial screen and were 

thus excluded.   
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5.8.2 Synthetic lethal interaction leads to activation of the caspase 3/7 pathway in RCC 

In order to further focus the screen, 10 genes which had the highest ratio of decreased 

viability in SKRC39ev compared to SKRC39wt were shortlisted.  These genes were: 

SLAMF6, PIP5K1A, SGK269, SIK1, GRIP2, DCLK3, STK10, RYK, CDC2L6, PLXNA3.  An 

apoptosis assay using the caspase 3 reagent was performed in cells treated with siRNA 

directed against 10 shortlisted genes in order to further confirm their significance (figure 

5.8.2).  Caspase 3 is the key effector of apoptosis in response to a number of pro-apoptotic 

signals.  This assay measured caspase 3-7 activities by combining a pro-luminescent caspase 

3/7, DEVD-aminoluciferin substrate and a luciferase enzyme.  The mixture was added to 

cells.  The cells underwent lysis and then caspase 3 lysed the substrate, resulting in free 

aminoluciferin which was used by luciferase.  Thus, the luminescent signal was proportional 

to the caspase activity and apoptosis.  The hypothesis being tested is that if two genes have a 

synthetically lethal interaction, the cell machinery would initiate apoptosis so that cells would 

die in an organised manner.  Thus, genes which were synthetically lethal and caused apoptosis 

would have a greater fold change in luminescence signal.  This methodology has been used by 

other researchers using siRNA screening libraries.(428, 429) Data was displayed as fold 

change in apoptosis of VHL null cells to VHL positive cells (i.e. SKRC39ev:SKRC39wt).  

Figure 5.8.2 shows that there was a consistent level of apoptosis (a greater than 1.2 fold 

change using 5nM siRNA) amongst the shortlisted genes across three experiments.  This 

confirmed the cell viability data and suggested that the observed changes in viability may be 

mediated by apoptosis being preferentially induced in VHL null cells.  As in section 5.8.1, 

statistical analysis was not performed on this data, as it was felt that with the small numbers 

involved, this method of analysis may not be reliable. 
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Figure 5.8.2. Depletion using siRNA directed towards ten shortlisted genes is associated with 

apoptosis.  

The ten genes which were associated with the largest fold change in viable SKRC39wt 

compared to SKRC39ev cells was assessed using cell titre blue were selected for further 

study.  The caspase 3 detection assay was used to determine whether siRNA mediated 

depletion induced apoptosis.  The graph shows that the mean fold change in apoptosis of 

SKRC39ev compared with SKRC39wt cells over three experiments was greater than 1.2.  The 

error bars represent standard deviation.   These data indicate depletion of these ten genes 

using siRNA leads to increased apoptosis in VHL null cells compared to VHL positive cells 

i.e. SKRC39ev compared to SKTC39wt. 
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Prior to carrying out further investigations into genes of interest, it was important to 

determine whether these genes were expressed in normal kidney tissue and cancer cells.  In 

silico analysis was carried out to determine whether these genes were expressed in renal 

tissues using Oncomine and Genecards.  Oncomine (www.oncomine.org) is a compendium of 

data from sources including TCGA, array data, gene copy number data which can be 

interrogated to assess whether genes of interest are expressed in a wide range of tissues. 

Genecards (http://www.genecards.org/) is a database that considers transcriptomic, genetic, 

proteomic and functional data.  Of the 10 shortlisted genes, four were shown to be expressed 

in normal kidney cells or RCC: RYK, STK10, CDC2L6 and CDC42se2.  Two were chosen for 

further study: STK10 and RYK.   

5.8.3 Confirmation of differential growth and depletion of protein expression 

In order to increase the scale of experiments, higher volumes of oligonucleotide were 

required.  After shortlisting the genes of interest, in order to carry out further experiments, 

single oligonucleotides were used to inhibit each kinase gene.  The choice was based on 

which siRNA within the library gave the most consistent results.  Differences in cell viability 

induced by depletion of STK10 and RYK were evaluated using oligonucleotides corresponding 

to those in the siRNA library (ASO0DLJS and ASO0DLK).  Cell titre blue assays were 

repeated in SKRC39ev and SKRC39wt cell lines. These experiments using 5nM siRNA 

confirmed a fluorescence ratio in SKRC39wt: SKRC39ev of greater than/equal to 1.2 (figure 

5.8.3.1 a).  Immunoblotting confirmed that RYK and STK-10 protein levels were reduced in 

cells treated with specific siRNA compared to siRNA targeting luciferase (figure 5.8.3b).   

  

http://www.oncomine.org/
http://www.genecards.org/
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Figure  5.8.3.1 (a)   The effect of siRNA directed against STK-10 and RYK on SKRC39ev and 

SKRC39wt cells. The change in viability of SKRC39ev cells compared to SKRC39wt cells as 

assessed by cell titre blue.  Depletion of RYK and STK10 both demonstrate a fold change in 

viability of ≥1.2 in VHL expressing cells compared to those with absent VHL.  The graphs 

represent the mean of at least 3 experiments, the error bars represent standard deviation.  

 

 

 

 

 

Figure 5.8.3.1 (b) Immunoblotting demonstrating decreased RYK and STK-10 protein levels in 

cells treated with siRNA directed against RYK and STK-10 compared to controls.  The blots 

are representatative taken from a mean of three experiments. (Abbreviations L=protein 

derived from luciferase siRNA treated cells, R= protein derived from RYK siRNA treated 

cells, S= protein derived from STK-10 treated cells)  
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Differences in cell viability were also demonstrated by transfecting cells in six well plates 

with either luciferase (control) STK10 or RYK siRNA, this experiment was performed three 

times and the average number of cells determined from in 4 fields per well (figure 5.8.3 A and 

B).  Photographs of representative fields were taken at 24 and 48 hours.  These photographs 

show fewer cells in the SKRC39wt cells demonstrating the general influence of VHL on cell 

viability.  Furthermore, there are fewer cells in the STK-10 and RYK depleted cells compared 

to those cells transfected with luciferase siRNA corroborating previous assay results.  The 

effect was more marked at 48 hours.  The mean number of cells in each well treated with 

siRNA was only statistically significantly different for SKRC39ev cells at 48 hours when 

those treated with control (LUC) were compared to STK10 or RYK directed oligonucleotide. 
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Figure 5.8.3.2. The influence of siRNA on cell numbers in SKRC39ev and SKRC39wt cells 

at 24 and 48 hours. (A) and (B), the mean number of viable cells/field (at x10 magnification) 

in SKRC39ev and SKRC39wt cells treated with control siRNA (LUC), or siRNA directed 

towards STK-10 or RYK for 3 experiments (error bars represent standard deviation).   There 

significantly fewer (p=<0.05) cells in SKRC39ev cells treated with siRNA against STK-10 

and RYK compared to control at 48 hours. There are also fewer SKRC29wt cells however the 

difference does not reach statistical significance. 

  



222 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.3.2. The influence of siRNA on cell numbers in SKRC39ev and SKRC39wt cells 

at 24 and 48 hours. (C) Representative photographs from three experiments showing the 

numbers of SKRC39ev and SKRC39wt cells remaining after treatment with oligonucleotide 

directed against STK-10 and RYK compared to luciferase at 24 and 48 hours. 

5.8.4. Depletion of STK-10 and RYK using different oligonucleotide doses 

Differences in cell viability due to STK-10 and RYK depletion using siRNA were also 

evaluated in SKRC39ev and SKRC39wt cells using different concentrations of siRNA (1nM, 

2.5nM, 5nM and 10nM).  VHL null cells were preferentially influenced by 2.5nM, 5nM and 

10nM of siRNA against the the two candidate genes compared to SKRC39wt cells reflected 

by an increased fold change in viability in the SKRC39ev:SKRC39wt cells (using cell titre 

blue) greater than 1.2.   Increasing the concentration of siRNA did not decrease cell viability 

suggesting a maximal effect occurs at 2.5-5nM. There was no significant difference in the 

fold change values of cells treated with the standard experimental dose of 5nM and 2.5nM or 

10nM.  However, a significant difference in the viability of SKRC39wt/SKRC39ev cells 

C 
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occurred with both oligonucleotides when 5nM of siRNA was used compared to 1nM.  

Depletion using oligonucleotide directed towards STK10 led to a greater decrease in viability 

than depletion of RYK (figure 5.8.4a).  Depletion of STK-10 and RYK were shown to  

decrease viability of cell lines by inducing apoptosis (figure 5.8.4b).  There was some 

variability between different experiments however there was always more apoptosis in VHL 

null cells compared to VHL containing cells.  This variability may have been due to the 

sensitivity of the test. 
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Figure 5.8.4 (a)  Dose dependent responses for candidate synthetic lethality targets.  Change 

in cell viability of SKRC39wt compared to SKC39ev cells was assessed using the cell 

viability blue assay for three experiments. Data represents the mean fold change of the 

normalised fluorescence value of SKRC39wt/SKRC39ev over three experiments, the error 

bars represent standard deviation.  STK-10 and RYK siRNAs led to decreased viability of 

SKRC39ev more than SKRC39wt cells (denoted by a fold change >1), there was no 

significant change in viability at higher doses of oligonucleotide.  T-tests showed the only 

significant difference in viability at doses other than 5nM (the standard dose used in the 

experiments) was at 1nM for both STK-10 and PLK-1 where viability changes appeared to be 

less influenced by depletion. 
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.  

Figure 5.8.4. (b) Depletion of RCC cells with oligonucleotide directed against RYK and STK-

10  leads to apoptosis of cells.  The ratio of fluorescence measured after addition of the 

caspase 3 reagent in SKRC39ev cells compared to SKRC39wt cells.  Data represents the 

mean and standard deviations of three experiments.  There is increased fluorescence in 

SKRC39ev cells indicated by ratios over 1 compared to SKRC39wt cells.  This suggests 

apoptosis is more common in VHL null cells.  This data reflects viability data derived using 

cell titre blue, suggesting that the change in viability seen when SKRC39ev cells are treated 

with STK10 or RYK directed oligonucleotides may be due to increased apoptosis. 

 

5.8.5 Depletion of STK-10 and RYK in different cell lines  

To investigate the potential wider applicability of these findings, cell titre blue assays were 

performed after siRNA knockdown of STK10 and RYK in three further VHL-inactivated RCC 

cell lines (KTCL-26, RCC-4 and 786-O). Knockdown of STK10 significantly reduced the 

viability of KTCL-26 and 786-O cells (ratio control/ treated mean (+standard deviation): 

1.27(+0.08) (t=3.85 P=0.03) and 1.12 (+0.02) (t=6.32 P=0.02) respectively) but no significant 

differences were detected for RYK siRNA knockdown (Figure 5.8 5a). Western analysis 
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demonstrated that both STK-10 and RYK were expressed in all three cell lines so that the 

observed variability in response to siRNA knockdown of did not result from lack of STK-10 

and RYK protein expression (data not shown). This data did use a single oligonucleotide and 

thus is limited by the possible influence of off-target effects and also possible poor depletion 

in specific cell lines. 

5.8.6. STK-10 is depleted by siRNA oligonucleotide. 

In order to determine the level of knockdown achieved using siRNA, real time experiments 

comparing cDNA levels in SKRC39ev and SKRC39wt cells treated with siRNA against 

luciferase and STK-10.  STK-10 was chosen because the degree of knockdown seen on 

western blotting was more pronounced than for RYK and STK-10 appeared to be of more 

general relevance than RYK.  Thus, it seemed to be a better ‘candidate’ for synthetic lethal 

interaction.  RNA was extracted and then converted into cDNA, and the experiment 

conducted as described in section 2.16.  STK-10 siRNA did produce down regulation of the 

STK-10 gene in both SKRC-39ev and SKRC-39wt cells (Figure 5.8 6).  The level of 

inactivation did not differ significantly between SKRC-39ev and SKRC-39wt cells.  

Furthermore, there was not a significant dose response for siRNA concentrations of 5nM 

compared to 10nM.  This reflected the cell viability data for siRNA concentrations of 1, 2.5, 5 

and 10 nM (Figure 5.8.2) suggesting that maximal knockdown occurs at 5nM concentrations.  
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Figure 5.8.5. The effect of siRNA oligonucleotides directed against STK-10 and RYK on RCC 

cell lines.  The graphs show the mean ratios (± standard deviation) of cell viability of KTCL-

26, RCC-4 and 786-O cell lines treated with siRNA oligonucleotides directed against STK-10 

and RYK compared to luciferase controls in three different experiments.  One oligonucleotide 

was used against STK-10 and RYK (chosen as described in section 5.8.3).  A statistically 

significant (p<0.05) decline in viability (denoted by *) of the 786-O and KTCL-26 cell line 

was seen when STK10 was depleted but not RYK. 
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Figure 5.8.6. The percentage depletion of STK-10 in SKRC39ev and SKRC39wt cells. The 

percentage depletion of STK-10 RNA after treatment of SKRC39ev and SKRC39wt (denoted 

as EV and WT in the graph) with either control (LUC) or STK10 specific oligonucleotide  

seen in: (i) SKRC-39ev cells treated with 5nM STK-10 siRNA compared with 5nM LUC 

siRNA (ii) SKRC-39ev cells treated with 10nM  STK-10 siRNA compared with 10nM LUC 

siRNA (iii) SKRC-39wt cells treated with 5nM STK-10 siRNA compared with 5nM LUC 

siRNA (iv) SKRC-39wt cells treated with 10nM STK-10 siRNA compared with10nM LUC 

siRNA.  The graph represents the mean change in DNA for three experiments. 

 

5.8.7 Treatment of SKRC39 cells with an inhibitor of STK-10 

As STK-10 had a greater influence on cell viability than RYK it was evaluated in further detail.  

STK-10 is a Serine/threonine kinase.  Kapra et al, have described serine/threonine kinases as 

essential in cellular signalling and homeostasis.  These functions are achieved through 

phosphorylation of transcription factors, cell cycle regulators, cytoplasmic and nuclear 

effectors. (430).  Erlotonib is a orally available EGFR inhibitor licenced for the treatment of 

lung and pancreatic cancer.  Erlotonib can inhibit STK-10 at clinically significant levels (431) 
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leading to increased T cell migration and IL-2 secretion.  RCC is particularly susceptible to 

immunological therapies and in fact, high dose IL-2 treatment is associated with prolonged 

remission in a small number of individuals with metastatic RCC.(432)  Inhibition of STK-10 

may have further anticancer effects to those described above by increased production of anti-

cancer cytokines in vivo by circulating lymphocytes.  The SWOG S0317 trial evaluated the 

use of erlotonib in patients with papillary RCC providing some in vivo evidence for STK-10 

inhibition in RCC and corroborates our data as the SKRC-39 cell line is derived from 

papillary RCC.(433).  However unlike SKRC-39 cells, the majority of individuals with 

papillary RCC do not have VHL inactivation (434)  Individuals in this phase II clinical trial 

were treatment naive.  Only two patients had a mutation in VHL (silencing by epigenetic 

inactivation was not assessed).  These two patients had disease stabilisation as best clinical 

response.  At the time of the trial activating mutations in EGFR were not discovered, thus 

only EGFR expression was discussed, furthermore the influence of erlotonib on STK-10 was 

not known and therefore all responses were attributed to the influence of erlotonib on the 

EGFR pathway.  The trial demonstrated an 11% response rate and 64% disease control rate.  

The median OS in this cohort was 27 months, in the metastatic setting this survival is 

impressive and suggests that erlotonib has some impact on RCC progression.  Some of this 

response maybe contributed to by STK-10 inhibition.  

The influence of erlotonib on isogenic SKRC-39 cell lines was evaluated in order to see 

whether the effects are similar to those seen with STK10 knockdown by siRNA.  A cell 

inhibition assay was performed using increasing concentrations of erlotonib.  The GI50 

evaluates the growth inhibitory effect of the erlotonib on SKRC-39 cells.  There was no 

significant difference between the GI50 value of erlotonib in SKRC39ev and SKRC39 wt 

cells as shown in figure 5.8.7.  There was no difference between in cell viability except at 
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high concentrations where the drug was likely to be toxic to cells.  These results may be 

because erlotonib is not a ‘pure’ STK-10 inhibitor and there maybe some impact on EGFR 

inhibition on cell growth.  EGFR is believed to be important in RCC, it is upregulated by 

TGF-β(435) and has been demonstrated to be over expressed in RCC.  Furthermore, EGFR 

over-expression is associated with higher tumour grade in clear cell carcinoma (436).  Thus, it 

is potentially the case that the influence of EGFR inhibition which was equivalent in both cell 

lines overwhelmed the influence of STK-10 inhibition. Cell lines often contain multiple 

genetic aberrations and it maybe that another genetic alteration can lead to resistance to 

erlotonib. 

 

Figure 5.8.7.  The influence of increasing doses of erlotonib on cell viability of SKRC39ev 

(blue) and SKRC39wt cells (red).  These data represent the mean data and standard deviations 

(error bars) of three experiments performed, each containing five replicates representing cells 

treated with five different doses of erlotonib (0, 10nM, 100nM, 1000nM, 10000nM and 

100,000nM).  There were no significant differences in cell viability between VHL containing 

and null cells except at high doses of erlotinib which are likely to be secondary to a direct 

toxic effect.  
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5.8.8. Depletion of STK-10 or PLK leads to decreased RCC viability and selective loss of 

VHL inactivated cells  

In view of the potential relevance of STK-10 as a synthetic lethal interactor with VHL it was 

further evaluated.  Other researchers had identified that siRNA induced knockdown of PLK1, 

a reported downstream target of STK-10, induced synthetic lethality in pVHL deficient RCC 

cell lines (437).  STK-10 is known to phosphorylate PLK1 and inactivating mutations of STK-

10 can lead to decreased phosphorylation of PLK1.(438) Review of the Silencer Select human 

siRNA library screening in SKRC39ev and SKRC39wt revealed PLK1 had not been 

shortlisted as only 1 of the 3 oligonucleotides directed against the gene altered cell viability 

above the threshold for selection.  Thus, it may have been a false negative.  Therefore, we 

investigated whether siRNA-induced knockdown of PLK1 might enhance or substitute for 

STK10 inactivation. The effect of depletion of one or both of these genes was evaluated in 

five RCC cell lines (SKRC39ev, SKRC39wt, RCC-4, KTCL-26, 786-O) using the 

Dharmacon SMARTPOOL on Target Plus system (which contains four pooled 

oligonucleotides against each target).  Pooled oligonucleotides were used because of the lack 

of sensitivity to PLK1 previously encountered using single siRNA and this technique was 

being used to deplete PLK1 successfully by other colleagues.  Depletion of STK10 and PLK1 

using 5nM siRNA in 3 separate experiments led to a significant decrease in cell viability of all 

RCC cell lines (p=<0.05).  Moreover, in the SKRC39ev and SKRC39wt cell lines there was 

also a selective decrease in cell viability of VHL null cells compared to VHL positive cells 

when treated with STK10 (mean 67%), PLK1 (mean 62%) and both STK-10 and PLK (mean 

58% (Figure  5.8.8a).  Similarly depletion of STK-10 decreased cell viability in KTCL-26, 

RCC-4 and 786-O cells (mean 30.6%, 47% and respectively) and depletion of PLK1 also 

decreased cell viability of KTCL-26, RCC-4 and 786-O cells (mean 35%, 46% and 40% 
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respectively) (Figure 5.8.8b). These differences were statistically significant (p<0.05).  

Simultaneous depletion of both STK-10 and PLK1 did not have a more profound effect than 

targeting each gene individually (Figure 5.8.8). 

 

Figure 5.8.8 Depletion of RCC cell lines with pooled siRNA. (a) Comparison of mean (±SE) 

percentage decrease in the cell viability of VHL null cells (SKRC39ev)  relative to RCC cells 

containing VHL (SKRC39wt) when treated with pooled siRNA oligonucleotides directed 

against STK-10, PLK1, or both (compared with those treated with luciferase siRNA)(b) 

Comparison of mean (± SE) percentage decrease in cell viability of KTCL-26, RCC-4 and 

786-O RCC cell lines when treated with pooled siRNA oligonucleotides directed against STK-

10, PLK1 or both (compared with those treated with luciferase siRNA). (* represents p<0.05 

by t-test).  Data represents the mean results of 3 experiments.  



233 
 

5.8.9 The global effect of STK-10 and PLK1 depletion on protein expression in 

SKRC39ev and SKRC39wt cells 

In order to evaluate the influence of depletion of STK-10 and PLK1 on SKRC39ev and 

SKRC39wt cells, protein lysates from cells treated with siRNA directed against STK10, PLK1 

and control were evaluated using a commercial protein microarray   There are two main types 

of protein microarray, reviewed by Zhang (439) Forward phase arrays use antibodies 

immobilised on a slide and incubate the slide with labelled protein lysate.  The slide is washed 

and the captured fluorescent protein is then quantified.   The second method, ‘reverse lysate’ 

technology uses immobilises protein lysates which are incubated with primary antibodies of 

interest.  These are washed and then incubated with secondary antibodies.  Forward phase 

technologies i.e. those with immobilised antibody are better established and were more 

popular at the time of this research, recently reverse lysate technologies are being utilised.   

Traditional means of evaluating protein expression e.g. immunoblotting can be time 

consuming, costly, and require considerable quantities of protein.  Microarrays have the 

advantage that they enable interrogation of hundreds of proteins using relatively small 

quantities of protein. The utility of microarrays is limited by the specificity of antibodies 

towards individual proteins and thus they require validation of their results.  Antibody arrays 

are also less successful at identifying changes in intracellular proteins which are typically 

expressed at lower levels than structural proteins.(439)  Their main use is as a screening 

technology to highlight potential proteins of interest, the Kinexus microarray was utilised 

because it had previously been successfully used by our research group. (440)  

5.8.9.1 Global changes in protein expression in cells with STK-10 and PLK-1 depletion 

using the Kinex Antibody Microarray 

The Kinex Antibody Microarray data underwent initial quality control and filtering by 

Kinexus.  This involved determining the z-ratio for each antibody, percentage error range, 
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flag and median normalised signal intensity.  The z-ratio was determined as described in 

section 5.7.2, the globalised signal intensity normalises the net signal of a comparison to that 

of all the signal values in a sample, the percentage error range is a measure of how close the 

normalised percentage error of adjacent spots for each protein are, flag indicates the 

morphology and background of each spot.   On this basis, proteins were identified as being of 

potential interest by the company.  The company defined a z ratio of at least ±1.2-1.5 as being 

significant. Further analysis then took place in order to determine the significance of the 

change in protein expression described by the shortlists of z ratios (see figure 5.8.9.1.1).  

When protein expression in SKRC39ev cells treated with STK-10 siRNA was compared with 

those treated with control oligonucleotide, 22 antibody signals were higher and 19 were 

reduced compared to controls. In SKRC39ev cells treated with PLK1 oligonucleotides 

compared with control; 12 antibody signals were higher and 19 were lower than controls. In 

SKRC39wt cells treated with PLK1 oligonucleotides compared with control; 13 antibody 

signals were higher and 20 lower than controls.   Arrays derived from SKRC39wt cells treated 

with STK10 oligonucleotides compared with control contained 13 antibody signals which 

were higher and 21 lower than controls.   In order to determine which differences in protein 

expression may be of significance, a number of processes were applied to evaluate the list.  

These processes are summarised in figure 5.8.9.1.1.  

The similarities and differences between cells depleted of STK-10 and PLK1 were analysed 

by individually interrogating each protein shortlisted, looking for proteins altered in both 

PLK1 and STK10 depleted cells..  In SKRC39ev cells there were four proteins which featured 

in both shortlists for cells depleted with STK-10 and PLK1, no proteins featured in the 

shortlists for SKRC39wt cells.   
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Figure 5.8.9.1.1 Analysis of the data provided from the Kinexus protein microarray.  The 

initial two filters were carried out by Kinexus.  Further analysis took place using those 

proteins identified by filter 2 in order to identify which proteins could be chosen to validate 

the array.  
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Pathway analysis using STRING 9.1 (http://string-db.org/) and The Database for Annotation, 

Visualisation and Integrated Discovery (DAVID) version 6.7 (http://david.abcc.ncifcrf.gov/) 

was utilised to identify any pathways altered by STK-10 and PLK1 depletion. Specifically 

pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) were analysed. 

Pathway analysis failed to indicate changes to specific pathways when SRC39ev or 

SKRC39wt cells were depleted of STK-10 or PLK1. For example; in SKC39ev cells treated 

with STK-10 siRNA there was upregulation of proteins involved in the MAPK pathway and 

downregulation of the ‘pathways in cancer pathway’, whereas those treated with PLK1 siRNA 

demonstrated upregulation of no specific pathway and down regulation of ‘cell cycle 

proteins’.  Similarly, in the SKRC39wt model treated with STK-10 siRNA; the ‘TGF 

signalling’ was upregulated and ‘pancreatic cancer pathway’ downregulated.  The SKRC39wt 

cells treated with PLK1 siRNA demonstrated increase in ‘the p53 pathway’ and ‘pathways 

associated with cancer’ and a concomitant decrease in the latter pathway also. 

As no clear pathways or proteins appeared to be common to depletion of STK-10 and PLK1 

cells, correlation analysis (figures 5.8.9.1.2 and 5.8.9.1.3) was performed using SPSS.  All 

proteins in the shortlist were included and their corresponding z value was extracted from the 

raw data provided by Kinexus.  This revealed similar proteins were up/down regulated in 

SKRC39wt cells (figure 5.8.9.1.2) however there was little correlation between proteins 

altered by STK-10 or PLK1 deletion in SKRC39ev cells (figure 5.8.9.1.3).  This suggested in 

VHL inactivated cells PLK1 and STK-10 may have different mechanisms of action.  Eighteen 

proteins were chosen for further validation studies as there is an associated false positive rate 

with the protein microarray technique(440).    Eighteen proteins were chosen because this 

represented the number which were evaluable via the Kinetworks custom KCPS 1.0 screen.  

In order to validate the pattern of protein changes identified by the screen, proteins with z 

http://string-db.org/
http://david.abcc.ncifcrf.gov/
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values that lay clearly within all four quadrants of graph 5.8.9.1.2 were identified.  Of these 

proteins, those proteins which represented important biologically or cancer associated 

functions were chosen for validation.  Protein function was determined by performing 

PubMed searches. The proteins suggested for further screening were: eiF4G, ErbB3, 

HistoneH3, Cdk1C, Chk1, CDK5, CDK6, Hsp60, HDAC4/5/6, HistoneH3, IkBb, 

MEK1(MAP2K1), MEK2 (MAP2K2),   STAT1a, STAT1b, NFκBp50 (two antibodies), 

Smad2, p18INK4c, PP2A/Ca, PP2B/Cb, RSK1. 

 

Figure 5.8.9.1.2 A scatterplot demonstrating which proteins were up or down regulated by 

PLK1 depletion (x axis) and STK-10 depletion (y axis) in VHL positive cells.  There was a 

correlation between proteins altered by depletion of STK-10 or PLK1 (Pearson’s correlation 

0.786 p<0.01).   
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Figure 5.8.9.1.3  A scatterplot demonstrating which proteins were up or down regulated by 

PLK1 depletion (x axis) and STK-10 depletion (y axis) in VHL negative cells.  There was no 

clear correlation between proteins altered by depletion of STK-10 or PLK1 (Pearson’s 

correlation 0.254 p=0.03). STK-10 depletion was associated with increased MAPK kinase 

signalling, and decreased pathways in cancer. PLK1 depletion was associated with decreased 

cell cycle proteins. 

 5.8.9.2 Validation of microarray results 

The Kinetworks Custom Protein Screen was utilised to validate the results of the initial 

protein microarray.  This screen confirms the results of the array using immunoblotting. The 

initial protein lysates and the same antibodies as were present on the array were used in this 
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assayl.  Pooled protein from three experiments was used in the assay however, the assay was 

only performed once as per Kinexus’ standard protocol and no statistical analysis performed.  

Resources allowed for analysis of eighteen proteins. Proteins were chosen for validation on 

the basis of their position in the scattergraph i.e. representing large changes in expression 

and/or potential functional relevance.  The final list was collated after discussion with 

Kinexus to identify candidates for which their assays were most accurate.  The custom protein 

screen quantified the chemiluminesence signals of eighteen antibodies on a western blot.  The 

chemiluminesence signal of experimental arms were compared to control i.e. the percentage 

change in chemiluminesence of each protein in STK10 or PLK1 depleted cells compared to 

controls.  Figure 5.8.9.3 depicts the information derived from the screen. With regard to the 

SKRC39wt cells, the changes in z score from the screening data correlated with the same 

changes in chemiluminescence signal as compared to controls.  The change in 

chemiluminescence signal for the eighteen proteins were similar in SKRC39wt cells depleted 

of either STK10 or PLK1 suggesting STK-10 and PLK1 work in similar pathways. However, 

in SKRC39ev cells the protein screen results appeared to be unreliable with comparatively 

low chemiluminesence counts (see Figure 5.8.9.2C) possibly due to increased cell death in 

this group. This may also have been due to technical problems with the immunoblot as it 

appears that even in the control cells, protein signals were very low as in those cells depleted 

of STK10.  Thus, there may have been a problem with the concentration of the protein in the 

immunoblot or the technical process.  Further information regarding the technical process was 

sought from Kinexus but not received.  It was not possible to infer anything regarding protein 

expression  due to STK-10 or PLK1 depletion in VHL null cells due to the quality of the data.  

However, in cells with intact VHL, overall depletion of STK-10 and PLK1 in cells had 

similar effects on protein expression. 
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Figure 5.8.9.2.  Chemiluminescence data obtained on 18 antibodies chosen for validation in 5.8.9.1 

 Quantitative chemiluminescence signals for antibodies directed against 18 proteins on the vertical 

axis: (A) Signals from lysates from SKRC39wt cells transfected with control, PLK1 siRNA and 

STK10 siRNA, (B) Signals from lysates from SKRC39ev cells transfected with control and PLK1 

siRNA, (C) Signals from lysates from SKRC39ev cells transfected with control and PLK1 siRNA. 

Data was analysed and provided by Kinexus and represents data from one immunoblot derived from 

proteins derived from three experiments using pooled siRNA described in (2.1.8).  
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5.9 Discussion 

Elucidation of the genetic characteristics of familial RCC syndromes in particular VHL 

disease, has led to improved understanding of the biology of RCC.  RCC is a disease entity 

characterised by aberations in a number of key cellular pathways; such as the HIF and mTOR 

pathways.  Inactivation of the VHL gene is implicated in over 70% of clear cell RCC and thus 

VHL was investigated as a key member of synthetic lethal interactions with RCC cells.  

Kinase genes were chosen for investigation as constitutive activation of receptor tyrosine 

kinases is a common mechanism in human cancers.(441)  Activation can occur directly e.g. 

by mutation or indirectly e.g. by genetic amplification, autocrine growth factor stimulation, 

dysregulation of receptor trafficking pathways, or crosstalk with other kinase signaling 

cascades.  Activation can occur at multiple levels increasing signaling, (442)  Thus, a 

functional genomics approach was used to better understand the vulnerabilities of RCC cells 

by evaluating over 700 kinase  genes.  A screening protocol, identified two potential targets: 

STK-10 and RYK.  These genes were confirmed to decrease cell viability in paired isogenic 

cell lines in a robust manner.  Both RYK and STK-10 were present in SKRC-39 isogenic cell 

lines at a protein level.  Depletion of STK-10 and RYK in the presence of inactivation of VHL 

led to increased apoptosis in this cell line model using the caspase glo assay.  This provided a 

mechanistic explanation for the decreased viability, i.e. inhibition of both genes leads to 

increased apoptosis.   

5.9.1 RYK as a possible synthetic interactor 

RYK was identified as a possible synthetic lethal interactor with VHL.  It was not investigated 

as intensively as STK-10 as the latter appeared to be a stronger candidate.  RYK is an atypical 

growth factor receptor that has 2 transmembrane domains and one catalytic domain.  It is not 

believed to be regulated by phosphorylation at its activation site. Its biological activity is 

likely to be determined by recruitment of a signalling component.  RYK has been implicated 
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in atypical chronic myeloid leukaemia, where a translocation led to production of truncated 

RYK (443) which was thought to be leukaemiogenic.  Furthermore, it has been shown to 

overexpressed in ovarian cancer cells (444), and mouse fibroblasts over-expressing Ryk 

developed into tumours when inocculated in Nu/Nu mice (444) mRNA for RYK has been 

localised to human kidney, brain, lung and colon tissue.(445)  In mice, Ryk protein expression 

has been demonstrated in the tubular epithelium of the kidney (445), indicating it plays a role 

in kidney cellular physiology.  However, this role is poorly defined and may represent a 

housekeeping function, or a widely transcriptionally active promoter whose activity is 

important in only a subset of expressing tissues. 

 

RYK is required for both canonical (CTNNB1) and non-canonical wnt signalling.  The 

ultimate effector of the wnt pathway is β-catenin, the non-canonical pathway does not utilise 

β catenin.  The wnt pathway is responsible for a number of important cellular differentiation 

mechanisms in development and in adults is associated with tissue homeostasis, regeneration 

and stem/progenitor cell function (figure 5.9.1).(446).  RYK has been demonstrated to interact 

with an E3 ubiquitin ligase MINDBOMB1 to activate the wnt signalling pathway.  

MINDBOMB1 also ubiquitinises RYK, one hypothesis suggested by Berndt et al, is that by 

ubiquitinising RYK, MINDBOMB1 causes the endocytosis of multimeric RYK which as in 

the case of other proteins (i.e. Frizzled and LRP6) is required for efficient wnt signalling 

(446).  In recent years, the wnt signalling complex has been increasingly recognised in the 

aetiology of RCC. Wnt activates β-catenin which together with other transcription factors 

upregulates target genes such as the oncogene c-myc (MYC) which is increased in copy 

number in papillary RCC and a subset of primary RCCs.  β -catenin is degraded by the VHL 

E3 ligase, thus in VHL inactivated RCC β-catenin function is increased.(447)  Wnt also 
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activates the mTOR pathway.  The mTOR pathway has established importance in RCC and 

mTOR inhibitors are clinically used in RCC(448).  In RCC, autocrine secretion of VEGF and 

PDGF leads to these growth factors binding to their receptors causing activation of PI3K and 

then producing PIP3 which recruits Akt to the cell membrane.  Akt is then activated by 

mTOR and PDK1.   Akt promotes cell growth by inhibiting  apoptosis and GSK3 whose 

function is to degrade cell cycle proteins. MTOR is also believed to increase HIF1 

levels.(448)  Wnt activates the mTOR pathway by inhibiting GSK3.  Thus, RYK inhibition in 

the context of VHL underactivity may be synthetically lethal because it decreases both wnt 

and mTOR signalling required for cell growth.  This is however a speculative argument as 

currently there is little direct evidence for RYK playing a role in kidney cancer.  Most work on 

RYK has involved its role in the wnt signalling pathway in neuronal cells.  Recently it has 

been proposed that RYK may play a key role in cancer invasiveness in human glioma cells 

(449), thus its role in cancer may yet be revealed. 

 

5.9.2 STK-10 as a synthetic interactor and potential mechanisms of its action 

STK-10 is a serine/threonine kinase, this class of kinases play an essential role in cell 

signalling and homeostasis by phosphorylation of transcription factors, cell cycle regulators, 

cytoplasmic and nuclear effectors as defined by Kapra et al,(430).  STK-10 is an activator of 

PLK1 which is implicated in a large number of human cancers.  PLK1 is a component of 

multiple checkpoints which are required for normal cell division (450).  STK-10 has been 

demonstrated by Walter et al(450), to be expressed in a wide range of human tissues 

including kidney, to be present in the ACHN kidney cancer cell line and throughout the cell 

cycle.  Furthermore, NIH-3T3 transfected with kinase dead STK-10 grow more slowly than 
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Figure 5.9.1  The RYK protein signalling network identified using affinity purified mass 

spectrometry taken from Berndt et al, 2011.(446) 

 

Figure 5.9.3 The function of PLK1 in mitosis.  PLK1 expression is associated with 

progression through the cell cycle.  It begins to accumulate during S phase, peaking at the G2-

M transition, plateaus through mitosis and has a sharp reduction upon mitotic exit. Taken 

from (451).  

 

Figure 5.9.3 The function of PLK1 in mitosis.  PLK1 expression is associated with 

progression through the cell cycle.  It begins to accumulate during S phase, peaks at the G2-

M transition, plateaus throughout mitosis and has a sharp reduction upon mitotic exit.  Taken 

from Barr et al.(59)
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those transfected with wild-type, this corroborates our finding that knocking down the gene 

decreases cell viability.  In NIH-3T3 STK-10 null cells, abnormal nuclei were seen indicating 

abnormal cell cycle progression and cytokinesis.  It is hypothesized that STK-10 activates 

PLK1 and knockdown leads to partial inhibition of the gene, leading to abnormal cell division 

contributing to the clonal evolution and proliferation seen in cancer.  PLK1 also activates 

APC (the proteosome) which is responsible for destroying mitotic proteins.  This may provide 

a mechanism of interaction as inactivation of VHL leads to decreased ubiquitinisation of 

proteins and thus increased protein levels, decreased proteosomal degradation may further 

increase the life span of proteins important in cell division. 

 

Another possible mechanism of interaction between STK-10 and VHL is through an effect on 

cyclin dependent kinase cdc2-cyclin B1.  This protein is important in the G2/M transition of 

the cell cycle.  Kim and colleagues transfected cells with an adenovirus containing VHL in 

order to determine the function of pVHL.  In these cells, pVHL was shown induce cyclin-

dependent kinase inhibitor (CDKI) p27Kip1and inhibit CDK2 and cyclinB1-dependent cdc2 

activities.  Re-expression of wild-type VHL was associated with reduced cell growth (452).  

Thus, in VHL null cells, cyclin B1 dependent-cdc2 activity would be increased.  Ellinger-

Ziegelbauer and colleagues studied the function of STK-10 and postulated that it activated 

PLK1 which caused activation of cdc2-cyclin B.(453)  Thus, if STK-10 is knocked down as in 

our cell model, there would be less active PLK1 and thus less active cyclin B1-cdc2 activity 

resulting in abrogation of some of tumorigenic function of mutant pVHL.   TCGA data (454)  

shows that in most tumours STK-10 can be altered by mutation, deletion and amplification, 

however in RCC it is only amplified.  It may be postulated that as most RCC contain 

inactivated VHL, such tumours may experience selective pressure so that cells which do not 
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contain an inactivation of STK-10 are more likely to be present.  STK-10 has itself been 

implicated in cancer, Arora and colleagues found siRNA mediated STK-10 depletion was 

associated with decreased cell growth of Ewing’s sarcoma cell lines.(99).  STK-10 is also 

mutated in a small proportion of testicular cancer cells (455), breast, lung, ovary and 

pancreatic tumours.(456).    

 

5.9.3 PLK1 as a cancer target 

STK-10 has been reported to activate PLK1 which has been implicated in a large number of 

human cancers including RCC(437). PLK1 is a serine-threonine kinase, with a kinase at the N 

terminus and 2 or more polo-domains involved in phosphopeptide binding at the C terminal 

(457).  These functions enable PLK1 to be involved in every step of mitosis (figure 5.9.3).  It 

is a component of multiple checkpoints which are required for normal cell division (450).  In 

addition to its role in mitosis, PLK1 is involved with p27, regulatory loops with transcription 

factors, interplay with cdk1, phosphorylation of p53 family members; p63 and p73.(458)  In 

cancer cells, PLK1 localises to the nucleus earlier in the cell cycle suggesting the protein has 

some cancer specific functions.  Overexpression of PLK1 is associated with higher grade 

more aggressive tumours and correlated with poorer survival compared to tumours with 

normal PLK1 expression (437).   Overexpression of PLK1 can cause transformation and 

anchorage independence of NIH3T3 cells and tumour formation in mice.(459)  Silencing of 

PLK1 is associated with a G2/M cell cycle arrest and inhibition of tumour cell 

proliferation.(458, 459) 

 

PLK1 interacts with a number of key cancer proteins including: PTEN, p53, pRb, BRCA2, 

Akt, myc and β-catenin.(458)  Furthermore, PLK1 interacts with the 12 core signalling 
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pathways required for the three core cellular processes described by Vogelstein and 

colleagues (cell fate, genome maintenance and cell survival).(47)  Ding et al (437) reported 

that PLK1 decreased proliferation in RCC, although STK-10 was not demonstrated to be 

associated with synthetic lethality interactions in the setting of VHL inactivation. Sustained 

inhibition of PLK1 using an inhibitor decreased RCC growth in a murine model, indicating 

that Plk1 may play a role in RCC growth. Although, the screen described in this chapter did 

not prioritise PLK1 for further investigation after the first stage screening experiments, 

retrospective inspection of the results revealed that two of the three PLK1 siRNA 

oligonucleotides preferentially reduced cell numbers in the SKRC39ev cells compared to 

SKRCwt cells (but only one of the siRNAs exceeded the threshold of a ratio of >1.2).   

 

PLK1 has previously been noted as a commonly identified gene interaction described by 

synthetic lethality screens using siRNA (it is seen in 33% of genome wide and 26% of 

focused lists).(460)   Depletion of PLK1, in the experimental model described above produced 

a similar effect on cell viability as the depletion of STK-10 indicating that the two genes may 

influence renal cell viability using a similar pathway.  The effect was not additive suggesting 

that depletion of either gene produced the maximal biological effect on this pathway.   

 

5.9.4   STK-10, PLK1 and VHL expression in primary clear cell RCC 

In order to investigate the potential role of STK-10 or PLK1 inhibition in primary clear cell 

RCC, RNAseq data from the TCGA portal for sporadic clear cell RCC (n=69) for which 

normalised data for both tumour and matched normal renal tissue was available was evaluated 

by a bioinformatician  (Alexey Larinov, University of Cambridge). It was determined whether 

VHL, PLK1 and STK-10 mRNA levels varied in tumour tissues compared to normal tissues.  
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The relationship between the three genes was also determined.   Most sporadic RCC 

demonstrated increased STK-10 transcript levels in tumour compared to normal renal tissue 

(paired t-test p<0.001; 84% showed a >1.5-fold increase and 68% showed a >2-fold increase) 

(Figure 5.8.10).  Similarly, most tumours demonstrated increased PLK1 transcript levels 

compared to matched normal renal tissue (paired t-test p<0.001; 88% showed a >1.5-fold 

increase and 87% showed a >2-fold increase).  Overall 91.3% (63/69) of clear cell RCC 

demonstrated >2-fold increased expression of PLK1 or STK-10 (relative to matched normal 

tissue).   Though most (65%, 45/69) tumours showed a >1.5 fold reduction in VHL expression 

there was no correlation between normalised mRNA expression in tumour and matched 

normal tissue for STK-10 and VHL (Spearman rank correlation coefficient (rho) =0.053 

P=0.67) nor PLK1 and VHL expression (rho = -0.085 P=0.49); however there was a 

significant correlation between PLK1 and STK-10 relative expression (rho=0.455 P=0.0001). 

Of the 69 cases with paired tumour-normal RNAseq profiling, 60 cases also had the somatic 

mutation data.  This allowed sub-analyses within VHL- mutated and non-mutated sub-groups.  

The tumour-normal differences in VHL, STK-10 and PLK1 mRNA expressions, and the 

correlation between PLK1 and STK-10 expression, were present in both sub-groups – 

suggesting that changes in STK-10 and PLK1 expression in RCC are not a consequence of 

VHL gene mutations.  
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Figure 5.9.4.  Expression of VHL, STK-10 and PLK1 transcripts in renal tissue compared to 

normal tissue using TCGA RNA-seq data).  Renal tumours had decreased expression of VHL 

and increased expression of STK-10 and PLK1. (Analysis and graph produced by Alexey 

Larimov, University of Cambridge)  

 

5.9.5 PLK inhibitors in cancer 

The role of PLK1 in cancers is some what controversial. PLK1 is over-expressed in cancer 

cells and TCGA data suggests a genetic alteration of PLK1 occurs in numerous cancers 

including colorectal, stomach and renal cancer (454) however these changes are not 

commonly thought to be causal.  PLK1,  plays a key role in cycle regulation and is closely 

related to p53 and p21.  It is expressed at a specific time in the cell cycle, mainly during the M 

phase and therefore only tends to be present in rapidly dividing cells(461).  Although some 

-3

-2

-1

0

1

2

3

4

5

6

7

lo
g
2
 r

e
la

ti
v
e
 e

x
p
re

s
s
io

n
 t

u
m

o
u
r:

n
o
rm

a
l 

VHL STK10 PLK1



250 
 

believe its overexpression is a consequence of excessive cellular proliferation associated with 

cancers.  Initial evidence against PLK1 being a cancer associated gene was the lack of point 

mutations or deletions in human cancers (458), however, more recently, this observation has 

been superceeded by data from the TCGA which has demonstrated PLK1 mutations in a 

number of cancers (e.g.colorectal, peripheral nerve sheath tumours, stomach and B-cell 

lymphoma) (454).  PLK1 expression may be reduced by other genes associated with cancer 

for example key interactors.  Therefore, its role in key signalling pathways including the p53 

pathway have made it a potential therapeutic target and thus PLK1 inhibitors are being 

evaluated clinically(458). 

 PLK inhibitors function by inhibiting the production of the mitotic spindle and therefore 

causing cell cycle arrest mid-mitosis (461)  However, mitotic arrest induced by PLK1 

inhibitors is short-lived lasting only 2-3 days.  Thus, there is concern regarding their 

effectiveness in patients with solid tumours whose cells divide less rapidly and thus will have 

fewer cells in M phase.  Consequently, fewer cells within a tumour would be susceptible to 

their action.(461) PLK1  has been used in phase I clinical trials with limited results.(459, 462)  

In one trial, PLK1 inhibitors were associated with a risk of thromboembolism and the best 

response noted was stable disease. 

Given the current lack of clinical utility seen with PLK1 inhibitors, the protein microarray 

study described in 5.8.9, was concieved to determine whether STK-10 depletion had a similar 

effect on protein expression as PLK1 depletion.  The study did demonstrate that pathways 

were similar in cells with VHL intact, however the study was inconclusive for VHL null cells.  

This was likely to be secondary to increased cell death in these cells contributing to lower 

protein concentrations or a technical issue.  Other protein analysis techniques which could 

have been utilised instead include: Enzyme Linked Immunosorbent Assay, immunoblotting 
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and mass spectrometry based techniques.  The latter two are also limited by the protein 

concentrations required, the time and cost of interogating large numbers of protein (463).  

Mass spectometry requires complex protein preparation which would have been practically 

difficult. (464)  Mass spectroscopy combined with liquid chromatography in recent years has 

become the most popular methodology for evaluating large numbers of proteins and was 

instrumental in the production of the first draft version of the human proteome.(465) A further 

advantage of these techniques is that they facilitate understanding of protein-protein 

interactions and signalling pathways compared to a more static readout from microarrays. 

 

5.9.6 A comparison of results from this synthetic lethality screen to data published from 

other screening libraries 

The targets identified by this study are different to those identified by Bommi-Reddy and 

coworkers (425).  There are two possible reasons for this: (i) Bommi-Reddy et al, used a 

different kinase library and methodology.  Bommi-Reddy and co-workers  used a high-

throughput lentiviral screen using 100 lentiviruses studying  88 kinases from figure 2 in their 

paper it appears  that they did not include STK-10, RYK or CDC2L6 in their study.  (ii) The 

library also used different cell line models (786-O and RCC-4). 

 

A limitation of the siRNA screening method is that the gene depletion has differing effects in 

different cell lines.  For example in the paper by Bommi-Reddy et al, only four genes (CDK4, 

HER4, MET and IRR)  preferentially decreased cell viability in VHL null 786-0 and RCC-4 

cell lines.  In our screen no significant effects of knockdown of CDK6, HER4, MET, IRR were 

detected. This may reflect less efficient knockdown or SKRC39 being less susceptible to the 

influence of depletion of these genes to differing genotypic features.  Though  STK10 was not 

included in the siRNA screen performed by Bommi-Reddy et al, (425) they found that 
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knockdown of PLK1 reduced cell viability in RCC-4 but not 786-O cells. We found that 

STK10 knockdown using a single siRNA reduced cell viability in pVHL deficient SKRC-39, 

KTCL-26 and 786-O cells suggesting that STK10 inhibition selectively affects VHL-deficient 

RCC. It is however interesting to note that knocking down of PLK1 in RCC-4 cells caused a 

decrease in viability, this may support our hypothesis that STK-10 inhibition is important in 

RCC cell viability in the absence of VHL as PLK1 is activated by STK-10.   

 

Ding and colleagues used both gene expression arrays and siRNA screening to identify 

possible new interactors with VHL (437).  Gene expression data was derived from 90 clear 

cell RCC tumours revealed  PLK1 was associated with aggressiveness of RCC.  This gene 

expression data was correlated with data from an in vitro siRNA screen of the whole kinome 

and phosphatome using 786-O isogenic cell lines. The library used contained four unique 

siRNA duplexes targeting each gene.   The group did not identify any novel synthetic lethal 

interactions and therefore chose to evaluate which genes influenced cell proliferation the 

most.  They identified 35 genes that influenced cellular proliferation and then filtered them 

according to function.  They then chose a panel of genes to evaluate in other parental kidney 

cell lines.  Regardless of VHL status they identified depletion of seven genes including PLK1 

was associated decreased cell growth of panel of RCC cell lines studied.   They validated this 

using colony formation assays and real-time PCR. They then chose PLK1 for further study.  

PLK1 was inhibited using a commercially available inhibitor and was associated with 

decreased cancer cell growth both in vitro and in a mouse model. 

Taken together with the previously reported potential functional relationship between STK-10 

and PLK1 and the finding that STK10 and PLK1 expression is increased in most sporadic 
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RCC, there is a strong case for further investigation of targeting the STK-10/PLK1 pathway 

as a potential synthetic lethal approach to the treatment of pVHL-deficient RCC. 

 

5.10 Limitations 

5.10.1. Limitations and controversies regarding synthetic lethality as a means of 

identifying potential candidate genes 

Synthetic lethality aims to identify key genes which are necessary for cancer cells continued 

survival and growth.  The attractiveness of this approach is its relative selectivity towards 

cancer cells.  However, such targeted treatments can have their efficacy reduced due to the 

drug resistance caused by further genetic alterations. For example resistance to EGFR 

inhibitors occurs via numerous mechanisms including; the T790M mutation which attenuates 

inhibitor binding, amplification of the resistant allele and activating mutations in downstream 

kinases.(466) There is little understanding of how epigenetics, systemic signals and the local 

microenvironment influence synthetic lethal interactions.(412) Within cancers cells, signaling 

pathways are complex and intertwined.  Inhibition of one component of a pathway can affect 

the activity of other pathways other its ‘key’ pathway.(414)  This can lead to unintended 

consequences in cancer physiology.  

A number of synthetic lethal interactions involve DNA repair pathways, inhibition of which 

in normal tissues might result in secondary malignancies (418)  An increased risk of 

malignancy has been associated with several types anticancer therapies.  When BRAF 

inhibitors were used in melanoma, there was an increased incidence of squamous cell 

carcinoma.  Squamous cell carcinomas in BRAF inhibitor treated patients were due to 

‘paradoxical MAPK activation’ by the inhibitor.  In cells with wild type BRAF, treatment 

with an inhibitor causes dimerization of RAF that can cause MAPK hyperactivation through 
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increased signaling through RAF.  Skin cells can harbour HRAS mutations caused by UV 

exposure.  Thus skin cells with a HRAS mutation developed into squamous cell carcinomas 

due to the MAPK hyperactivation.(467)  This effect was reduced by adding a MAPK (MEK) 

inhibitor to a BRAF inhibitor

5.10.2 Limitations and controversies regarding synthetic lethality screening using RNAi 

Although there are difficulties with the generalisability of the principle of synthetic lethality 

to cancers on the whole due to the dynamic genetic nature of cancers, RNAi screening 

libraries have been widely used as a means of identifying cancer genes.  Despite this, there are 

a number of limitations of this stategy and its applicability to more advanced pre-clinical and 

clinical models.(427)  RNAi screening libraries usually utilize isogenic cell lines as a means 

of identifying synthetic lethal interactions.  However isogenic cell lines do not strictly reflect 

a ‘normal’ cancer cell, for example they may contain specific mutations leading to the 

identification of synthetic interactors specific to that cell line only.  Furthermore, some cell 

lines have been found to be different to their tissue of origin (468, 469).  Thus, synthetic lethal 

interactions identified in cell models may not necessarily be seen in primary cancer cells that 

harbor the genetic defect.(417)  In retrospect, it would have been helpful to investigate 

multiple isogenic cell lines (if sufficient time had been available) as it is possible that with 

only one isogenic cell line model,  there may be a characteristic unique to this cell line that led 

STK-10 to be a synthetic lethal interactor, but that other kidney cancer cells may, not 

harbouring this change, be resistant to STK-10 inhibition (however subsequently additional 

RCC cell lines were shown to be sensitive to STK-10 depletion). 

Furthermore, different isogenic cell lines are cultured separately, potentially there can be 

subtle differences in their growth environment causing the apparent synthetic lethal effect.  

This can be overcome by applying fluorescent labels to the different cells so they can be co-
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cultured (416)  Furthermore, intra-tumoural heterogeneity(470) means that even if a gene is a 

synthetic interactor with a TSG, some areas of a tumour may not contain the mutation in the 

synthetic lethal interactor and will have a survival advantage compared to cells with both 

mutations.  This clone will not be susceptible to the ‘synthetic lethal interactor’ and can then 

go on to become the dominant clone as it will have a survival advantage.  Intra-tumoural 

heterogeneity may partially explain why so few agents derived from synthetic lethal 

interactions are used clinically, as the dynamic tumour in humans is so much more 

complicated than in vitro models.  In this study, the VHL gene was studied as this is a key 

driver mutation and thus less likely to be susceptible to genetic heterogeneity associated 

‘resistance’ as a ‘truncal’ mutation it should be present in all subclones.  Nevertheless, the 

principle of intra-tumoural heterogeneity has led to some authors suggesting that differential 

gene expression in human tumour cells rather than isogenic cell lines should be studied to 

identify synthetic lethal interactions.(412)  Interestingly, Ding et al,(437) found no new 

synthetic lethal interactors in their VHL isogenic cell line, however used data from a gene 

expression array to determine which proliferation affecting gene to evaluate further (PLK1).  

Furthermore, cancer cells in vitro and tumours in pre-clinical animal models divide at a much 

faster rate than in vivo (some radiological studies have identified tumour doubling times to be 

~100 days in some tumours), therefore some genes identified by screens may not be as 

important in vivo as the tumours do not divide as rapidly(461). 

Another criticism of RNAi screening is that results derived from different screens can be 

variable, for example overlaps in RAS synthetic lethality screens are ~75%.(417)  This is 

partly because there is an inherent variability in knockdown efficiency with rates being 

between 70-90%.(417)  There is also the possibility of a a false positive rate with siRNA 

depletion due to off-target effects(417), however results from the screen performed in the 
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study described in this chapter did account for off-target effects.  There is some controversy 

regarding the best mechanism for in vitro post-transcriptional silencing.  The screening library 

used a single oligonucleotide to knockdown genes, whereas subsequent experiments used 

pooled siRNA due to the lack of sensitivity of the PLK1 oligonucleotides in the screening 

library.  The advantage of using pooled oligonucleotides is that by using three or four siRNA 

there is a higher percentage of silencing. The siRNA in the pool target multiple areas on the 

target mRNA, thus there is less of a chance of missing a target due to poor annealing 

secondary to differences in sequence due to mutations, polymorphisms and splice 

variants.(471)  Pooled treatments are believed by some to have decreased off-target effects as 

less toxicity is seen when using individual siRNAs as off-target effects are believed to be 

concentration dependent.(471)  Although others believe that off-target effects are greater in 

pooled systems compared to single systems.(471)  Use of single siRNA in the library was the 

correct choice as each gene was interrogated by three siRNA reducing the chance of having 

too many false positive results. A possible criticism of this study is that for many of the 

studies, as with many other studies of this type, was that on one oligonucleotide was used. In 

part this was because of resource issues and also the desire to utilize the best oligonucleotide 

detected from the screening data.  In addition, it can be argued that using a single 

oligonucleotide would be associated with fewer off target effects.  Nevertheless, this is a 

limitation of this work, as this oligonucleotide may not have recognized STK-10 and RYK in 

all settings and some synthetic lethal interactions may have been missed.  However, in an 

analysis of data published from siRNA libraries, Bhinder and Djaballah indicated that pooled 

siRNA libraries may be less reliable than single siRNA well experiments because 80% of the 

‘hits’ described by these libraries were only seen in pooled libraries suggesting some of the 

effects may be due to off-target effects, or multiple integrations per cell.(460) 



257 
 

At the time of this study, the siRNA library approach was the most commonly used method 

available for post transcriptional gene silencing.  However, newer methods of genome editing 

are being more established in the last few years.  They include CRISPR-Cas and TALENS 

which enable (472) genome editing by directing oligonucleotides to the gene of interest and 

splicing in an altered nucleotide.  Although these techniques could not be used in high 

throughput screening method, they could be used to examine synthetic interactions in cancer 

cell models with the gene knocked down.  CRISPR enables multiple genes to be silenced in 

the same cell and thus could be a very useful tool in modelling lethal interactions.  

Furthermore, it can facilitate in vivo research for example making it much quicker and easier 

to make knockout mice.(472). 

 

Other potential criticisms leveled at synthetic lethality screens is that they are frequently 

poorly reproducible, even when the same library is used on the same model (460).  This can 

be due to differences in technique due to small volumes involved.  There are also differences 

in the screening techniques used in different studies with different thresholds deemed as 

significant.  At the time the screen was performed there was no gold standard regarding the 

best filtering method.  Most published studies used a similar method to ours involving 

evaluation of fold changes in viability.  A decision was made to select candidates from the 

screen used in this thesis using the relative effect on fold change.  This was due to concerns 

that a statistical analysis based approach at the preliminary stage might lead to a high number 

of false negatives and thus potential candidates would be overlooked.  For example STK-10 

which was identified as a candidate using fold change criteria and then validated by 

demonstrating statistically significant changes.  Nevertheless, in retrospect, it would have 

been interesting to compare the results of candidate selection using fold-change to those using 
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a statistical analysis based approach. This would have been best achieved using an automated, 

high throughput system, this would have enabled large numbers of replicates to be undertaken 

and allowed more robust statistical analysis. 

 This methodology may have meant ‘good’ candidates were overlooked and weaker genes 

could be chosen.  This is exemplified by the fact that PLK1 was not the gene associated with 

the ‘best effect’ on cell proliferation in the lethality assay performed by Ding and colleagues, 

but was chosen for study due to corroborative data from gene expression arrays (437).  Thus, 

in order to avoid ‘missing’ candidate genes it may have been better use an integrated approach 

including other available data to identify genes of interest.  There are also differences in the 

‘hit rate’ dependent on whether screens are genome wide or focused on specific genes of 

interest.  The study described in this chapter used a targeted screen evaluating kinases.  

Targeted screens are more commonly used and were chosen in this study because of the desire 

to identify ‘druggable’ targets.  A criticism of this approach is that in an analysis of published 

results, more hits are derived from focused screens indicating weaker hits may be 

highlighted.(460) 

 

Another difficulty with using an siRNA approach is that it is difficult to block genes using 

siRNA in vivo as intracellular delivery of siRNA is difficult, requiring conjugation of the 

siRNA with a nanoparticle or liposome.(34)  Although nanoparticle delivery vehicles for 

siRNA are being investigated in murine models(473) this technique has inherent difficulties.  

Thus, siRNA may be best used as a screen and once a lethal interactor is identified, 

translational studies could involve requiring mechanisms of inhibition such as small molecule 

inhibitors.(418)  However, as described in 5.8.7 small molecule inhibitors can have multiple 
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targets leading to different results to siRNA knockdown.  Defining inhibitors can be difficult; 

for example, iniparib was used in clinical trials as a PARP inhibitor but was later found to be 

a very weak inhibitor of PARP.(474)  Furthermore, it has been noted that ‘targets’ identified 

by academic institutions do not necessarily correlate with results achieved when the same 

target is knocked down by using inhibitors in industry.(427)  In order to verify targets better 

perhaps more functional work should routinely be performed for example by re-introducing 

the gene identified by the screen or to produce RCC by injecting cell lines into nude mice and 

evaluating the tumour growth in the presence of siRNA against the gene of interest compared 

to a control.  These techniques though commendable are time-consuming and are not feasible 

for most targets identified.(427) 

 

5.11 Conclusion 

The functional genomics approach utilized in this chapter was used to identify possible 

synthetic lethal interactors with pVHL.  Although there are limitations to the technique of 

synthetic lethality, it still plays a role in candidate gene identification and determining 

pathways involved in cancer.   The main novel candidate that was established by this study 

was STK-10.  This gene was also identified by a siRNA screening library evaluating Ewing’s 

Sarcoma.  It interacts with the PLK1 gene which is a key gene in the control of mitosis.  PLK1 

was identified by another screening library using a different methodology to have an 

important effect on kidney cancer growth.(437)  Thus, this work supports the currently 

available data that suggests the STK-10/PLK1 pathway is a key pathway in RCC.  This 

indicates further work should be performed to evaluate this pathway in RCC in order to study 

novel therapeutic strategies.   

  



260 
 

CHAPTER 6. DISCUSSION 

 

6.1 A summary of the work presented in this thesis 

There is no doubt that cancer genomics is the future of cancer management; influencing 

diagnosis, treatment and monitoring of disease.  Developments in cancer genomics have been 

rapid with many changes in the field and key developments occurring during the period of this 

research.   

At the time the work in chapter three of this thesis was performed, most clinical genetic 

testing took place using Sanger sequencing.  Each gene was tested sequentially which was 

both costly and time consuming.  Therefore, it was important to identify whom to test for 

genetic predispositions due to resource implications and in order to manage patient 

expectations.  Given the time taken and the costs involved to sequence a gene for mutations it 

is important to identify which genes to investigate.  This thesis described the mutation 

prevalence of SDHB, SDHD and VHL in phaeochromocytoma/paraganglioma/HNPGL within 

a UK-based referral cohort with for the first time. Thirty-one percent of the cohort with PPGL 

had a mutation in one of these genes.  The likelihood for testing positive for a genetic 

mutation was increased by having a positive family history, multiple tumours, or extra-

adrenal paraganglioma.  Amongst those with HNPGL, sixty-three percent had a mutation in 

these genes, this proportion was higher in those with a positive family history and multi-

centric tumours.  However, 28% of those with a single sporadic phaeochromocytoma had a 

mutation in SDHB, SDHD or VHL and 34% with a single, sporadic HNPGL had a mutation. 

This suggested a relatively high mutation rate in individuals with low clinical risk factors for 

genetic predisposition.  ROC analysis evaluated different age cut offs for testing in those with 

single, sporadic phaeochromocytoma, and found that even when evaluating all of those aged 



261 
 

under 60 years of age, 23% of mutations would be missed.  This suggested that more 

comprehensive cheaper testing strategies should be utilised.  This includes use of NGS to 

evaluate multiple phaeochromocytoma associated genes simultaneously either by using a 

multiplex testing or WES.  Both of these techniques are being evaluated in the diagnostic 

setting (205, 206).  At present universal testing of all individuals with phaeochromocytoma is 

not the standard of care in the UK, however as the price of genetic evaluation and time taken 

for analysis fall this may well change. 

 

The next theme studied in this thesis evaluated the identification of new CPG in familial 

RCC.  Studies of familial kidney cancer are the exemplar of how studies in rare diseases such 

as VHL can lead to improvements in the understanding of cancer biology and consequently in 

the treatment of sporadic kidney cancer.  Thus, two different approaches were used to 

evaluate new familial RCC associated genes.  In a hypothesis driven approach, the gene 

PTEN was evaluated in familial RCC cases.  This gene is known to be associated with 

Cowden syndrome which is associated with benign hamartoma, breast cancer, endometrial 

cancer and uterine cancer.  PTEN  has also been found to be mutated in 3% sporadic RCC 

(319, 475).  In the cohort of individuals with a family history of RCC, no germline mutations 

were identified in this gene.  Recent developments in this field have led to the identification of 

PTEN mutations in individuals with papillary RCC associated with Cowden syndrome.(346, 

369).  This suggests that PTEN mutations are associated with RCC in individuals with some 

syndromic features of Cowden syndrome.  The second approach used in this study was to use 

a hypothesis generating approach by performing an unbiased evaluation of WES in familial 

RCC patients.  For the first time, a truncating mutation in the known tumour suppressor 

CDKN2B was identified in a patient with familial RCC.  The mutation segregated between 
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family members with RCC.  Three further missense alterations were identified in the gene and 

they were predicted to influence protein function using in silico tools and computer based 

NMR modelling.  The tumourigenic potential of these missense variants was confirmed by 

performing colony formation assays.  This work suggests that CDKN2B mutations may be 

significant driver mutations in a subset of familial RCC patients.  CDKN2B mutations in this 

population require further evaluation in a larger cohort of patients (for example using NGS) to 

determine their prevalence. Furthermore, phenotype-genotype correlations and supporting 

data from other genomic studies may enable CDKN2B associated tumours to be further 

characterised.  Potentially, this may lead to different treatment strategies directed towards 

CDKN2B associated tumours such as has been proposed for SDHB associated malignant 

phaeochromocytoma. In particular it might be predicted that CDK4 inhibitors such as 

palbociclib(476) might be appropriate for CDKN2B mutation carriers with advanced RCC as  

CDKN2B (p15) is an inhibitor of CDK4(477). 

 

The final theme of this thesis was to identify potential novel therapeutic approaches for RCC 

using a functional genomics approach.  A synthetic lethality screen was used to evaluate 

VHL+/- isogenic cell lines.  This screen identified three targets of which one was chosen for 

further evaluation.  This study demonstrated that STK-10 depletion was associated with 

decreased viability of VHL inactivated cells.  STK-10 depletion has also decreased the 

viability of Ewing’s sarcoma cell lines.(99) The STK-10 protein has been reported to be 

associated with PLK1 and this protein has previously been identified as being associated with 

RCC in other screens (437).  The effect of STK-10 depletion seemed equivalent to PLK1 

depletion in this experimental model.  Data from a protein expression array suggested that 

depletion of PLK1 and STK10 in VHL positive cells had a similar mechanism of action, 
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whereas the pathway may be different in VHL inactivated cells.  PLK1 and STK10 represent 

novel therapeutic targets in RCC, in fact early clinical studies are currently underway using 

PLK1 inhibitors (478), although the efficacy of PLK1 inhibitors as single agents may be 

limited.(479)  Work in this thesis suggests that there is a strong case for further investigation 

of targeting the STK10/PLK1 pathway as a potential synthetic lethal approach to the treatment 

of pVHL-deficient RCC. 

 

6.2 Stratified medicine in the era of genomics 

The management of cancer is undergoing a paradigm shift, diagnosis and treatment are 

moving away from being based on phenotype and are increasingly being determined on  

genotype.  This change from phenotype to genotype is being incorporated into stratified 

medicine which is defined as a process where interventions either pharmacological or non-

pharmacological are targeted to a subgroup of patients according to biological or risk 

characteristics.(480)  The basis of ‘stratified medicine’ is to identify individuals in whom 

treatment will provide the most benefit and/or least harm.(480) 

The simplest model of this is that described in chapter three of this thesis, where individuals 

with known genetic propensity to a condition are diagnosed with a genetic aberration.  They 

then undergo a specific screening regimen and treatment for the associated condition.  In 

sporadic cancers one of the challenges to personalised medicine is the tumour heterogeneity.  

Within in any tumour there are subclones with different genetic mutations, this can lead to 

differential responses to treatment and resistance occurring(56).   
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6.2.1 Intratumoural heterogeneity 

In this thesis, the research performed focused mainly on the investigation of familial RCC.  In 

familial cases, the genetic aberration is ‘pure’: the germline mutation is present in normal 

cells and (for TSGs) inactivation of the wild-type allele (by mutation, loss of heterozygosity, 

etc.) initiates carcinogenesis. Subsequently other mutations are acquired and these may be 

present in all tumour cells or only some (depending when in tumour evolution the mutation 

occurred). However, the majority of cancers are sporadic and in these cases even if a TSG is 

found to be inactivated it may be unclear whether or not it the initiating event (and so will be 

present in all tumour cells) or occurred later in tumour evolution. There is increasing evidence 

that for most cancers there is extreme complexity in the genetic picture (481)  TCGA 

Research Network’s integrative analysis into different renal cancers suggested that the tumour 

landscape is complex with a high level of heterogeneity between tumours.(312) 

Driver cancer mutations were found in only a subset of cells within a RCC tumour.  It is 

believed that mutations form a ‘trunk and branch’ pattern analogous to a phylogenetic tree 

(307, 470).  In a study of sporadic renal tumours from ten individuals, nine clear cell 

carcinomas had VHL inactivation by mutation and one had inactivation by methylation(307).  

VHL was suggested to be the key truncal mutation, but overall 67% of mutations were not 

present in all areas of the tumour and there was heterogeneity even in tumour samples from 

patients who were treatment naïve.  This suggests that during the evolution of the cancer, 

some cells gain different mutations and therefore are separated in both time and space.  In 

order to explain this phenomenon easily, some have proposed a ‘mountain and hills’ analogy.  

Mountains represent mutations present in most cells of a tumours whereas hills are mutated in 

only a few cancer cells.  The mountain mutations are similar to truncal mutations and, when 

selecting genetically-guided therapies, these should therefore be focused upon.(482) 
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After VHL, PBRM1 was the second most common ‘truncal’ mutation identified.  Of the six 

tumours with a PBRM1 mutation, the mutation was ‘truncal’ in three cases.  This indicated 

that in some tumours PBRM1 mutation is an early event.(307)  Other mutations in ‘driver’ 

genes were seen in subclones, for example TP53 and BAP1 mutations(307).  Within tumour 

subclones, parallel evolution occurs with different genetic mutations.  However, within the 

evolution of tumour subclones, there are some gene types which are preferentially mutated 

notably alterations in genes involving the SWI/SNF chromatin remodelling complex (SETD2, 

BAP1, PBRM1, ARID1A and SMARCA4).(307)  Another gene AHNAK is believed to be 

involved in chromatin remodelling and was found to be a key mutation by another group 

investigating RCC.(482)  The convergence on this gene set indicates the importance of this 

process in RCC development.  Interestingly, the mutations seen in the CpG islands were more 

commonly C>T transitions and the branch mutations had fewer A>G mutations compared to 

truncal mutations. Xu et al, confirmed C>T transitions were commonly seen in RCC, 

particularly in driver and rare mutations (482).  Interestingly, common mutation sites had 

increased transversion mutations.   Gerlinger et al, suggested that this may mean that a 

specific process leads to these mutations taking place.  Such processes may be particular to 

renal cancer as in breast cancer CpG islands in fact have lower C>T transitions.(307)  

 

As VHL represents a ‘trunk’ mutation being present in most cancer cells and therefore it 

seems appropriate that current therapies are directed towards these truncal mutations e.g. 

targeted treatments associated with increased survival in RCC are directed towards VHL 

(multi-targeted tyrosine kinases and bevacizumab).     As chromatin remodelling is suspected 

of importance in RCC oncogenesis, this pathway represents a good target for further drug 

development.  Despite most available evidence indicating the key roles of VHL and PBRM1 in 
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RCC development, single cell exome sequencing (482) has revealed that some tumours lack 

these mutations (although VHL inactivation by methylation was not studied in this patient).  

To further complicate matters, it has been hypothesized that some ‘truncal’ mutations may not 

always remain truncal as after treatment some subclones may not be dependent on the 

‘truncal’ mutation i.e. resistance occurs.(483)  In colorectal cancers, there is intra-tumoural 

heterogeneity within driver genes (KRAS, BRAF, and PIK3CA) in at least 1-8% of cases 

suggesting heterogeneity even in some early ‘truncal’ mutations(484).  Owing to this 

diversity, cancer treatment may require multiple agents to target different pathways as has 

been exemplified in melanoma (see section 6.2.3).(66) 

 

6.2.2 Technical issues regarding sequencing of tumours 

As analysis of cancer genomes becomes routine clinical practice there are some technical 

aspects of NGS to consider.  Currently, the systems in place for sequencing mean that the 

turnaround time for genomic analysis from sample taking to result is four to eight weeks, this 

is too long for a patient to wait before starting treatment.(483)  It is hoped that this will be 

improved to a more acceptable two weeks.  As analysis becomes standard of care, clear 

standards are required regarding the depth of sequencing so that the number of false positives 

(usually associated with limited depth) and false negatives (associated with poor sensitivity) 

are minimised(483).  In addition, sensitive and cost effective methods for detecting copy 

number abnormalities require development. There may also be a need for a change in methods 

used for the pathological evaluation of surgical specimens. Most samples are fixed in formalin 

and paraffin embedded. DNA and RNA from formalin fixed specimens are of a poorer quality 

than that derived from fresh (or fresh frozen) tissue.  Furthermore, tumour samples are 

frequently ‘contaminated’ with normal tissue, this makes it harder to determine heterozygous 
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changes which may represent only 25% of a sequencing bandwidth rather than 50% in a 

germline sample as normal tissue contaminating the tumour contains two normal alleles with 

the tumour containing 1 normal allele and one mutated allele.(483)  Although laser 

microdissection can reduce contamination, it is time consuming, can damage nucleic acids 

and yield low levels of DNA, thus further work is needed to improve this technique or better 

bioinformatics support may reduce the chances of changes being ‘missed’.  It is likely that if 

sequencing of solid tumours is going to become the norm, in order to account for 

intratumoural heterogeneity, deep sequencing of driver genes associated with the hallmarks of 

cancer will be required to detect changes in key genes. 

6.2.3 Sampling of tumours to determine mutational complement 

Even though stratified medicine is currently in its infancy, there are indications that treatment 

with targeted agents may prove to be more complicated than initially believed.  BRAF was the 

first oncogene identified by the human genome project in melanoma.(64)  Treatment of 

melanoma patients with the BRAF  inhibitor vemurafenib in  BRAF mutation positive patients  

has been associated with resistance in 20%.(466)  Multiple mechanisms are responsible for 

this such as amplification of mutant BRAF, expression of truncated BRAF, mutations in MEK 

and RAS, loss of PTEN and hyperactivation of  the PI3 kinase pathway.(466)  Thus, as 

tumours may develop further mutations and there is significant tumour heterogeneity.  

Archival tissue specimens may not provide the most appropriate source of genetic information 

for evaluation.  In leukaemia, cancer cells are easily obtainable; however in solid tumours 

repeat biopsies may not be feasible or accepted by patients. Given the increasing number of 

treatment lines available to patients there may be a need to analyse the genomics of a patient’s 

cancer on numerous occasions. Furthermore, there may be a need for multiple biopsies at the 
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same time as different metastases may represent different tumour clones.  One possible 

method to overcome this complication is the possibility of a ‘liquid biopsy’. 

 

One possible form of a ‘liquid biopsy’ is using circulating tumour cells (CTC).  These are 

tumour cells that circulate freely in the blood of patients, these can be derived from primary 

tumours, metastases or recurrences.  They can be shed from small localised tumours and can 

be associated with a poor prognosis.(485)  These can now be efficiently captured using high 

throughput systems based on the expression of a marker on their cell surface for example 

epithelial cell adhesion molecule.  One such system the Cellsearch, has been approved by the 

FDA to allow monitoring of CTC in metastatic breast and prostate cancers.(486)  CTC from 

treatment naïve small cell lung cancer patients can be placed into immunodeficient mice and 

produce tumours typical of the small cell lung cancer in the patient.  The tumours in mice 

were also treated with chemotherapy and had a similar response to that seen in the patients 

from whom they were derived.  Thus, CTC represent a potential new model for drug 

discovery as CTC explants can be treated with a variety of agents to determine new more 

effective treatments. 

 

Another form of liquid biopsy is the use of circulating tumour DNA.  This DNA can be 

derived from cancer cells that die in situ or as part of a dissemination cascade.(484)  Analysis 

of plasma free DNA is particularly attractive as it represents the entire tumour genome mixing 

together variants originating from multiple independent tumours obviating the effects of 

tumour heterogeneity.(487) Sequencing of free plasma DNA could be used to diagnose cancer 

therefore reducing the risks of surgical biopsy.(488) In individuals with a high tumour load, 
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i.e. advanced metastatic disease, deep sequencing of plasma free DNA may allow assessment 

of clonal heterogeneity and drug selection (487).  Free DNA could be sequenced to identify 

any resistance associated mutations, potentially this could aid treatment decisions as if a 

mutation is detected that confers sensitivity to another agent, the alternative agent could be 

substituted into treatment regimes.  Furthermore it could be used to detect disease recurrence. 

 

6.3 A potential model for personalised medicine and stratified medicine in oncology 

Personalised medicine in oncology is increasing, the “Mainstreaming cancer genetics 

programme” is currently piloting ways in which inherited cancer genetic testing can be 

expanded to many more cancer patients and is using an assay that analyses simultaneously 94  

inherited cancer genes (‘Illumina TruSight Inherited Cancer Gene Panel’)(489).  The future 

plan is to roll out genetic testing in all cancer patients.  Conceivably, oncology may represent 

the first model of personalised genomic medicine with genomics being involved in cancer 

screening, prevention (including chemoprevention e.g. aspirin use in colorectal cancer 

patients) and treatment(67).  It is highly probable that NGS technologies will enable a 

transition from morphology based taxonomy to a genetics based taxonomy of cancer.(490)  

One possible model is that a familial genetic mutation could be identified from NGS of a 

primary tumour and paired germline DNA. Members of the proband’s family could then be 

screened for the genetic aberration.  If prophylactic treatment is possible for example risk-

reducing oophorectomy or mastectomy in BRCA mutation carriers, this could be offered to 

relatives who are found to be mutation carriers and the proband would receive treatment 

targeted to his/her cancer mutation taking into account the patient’s pharmacogenomic profile. 

Subsequently, the patient could receive further tailored treatment in the case of relapse after 
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genomic reassessment of the relapsed cancer. Similarly, as described in chapter three of this 

thesis, molecular taxonomy of a tumour e.g. phaeochromocytoma can direct treatment.  

 

Precision oncology (described in figure 6.3) is where treatment decisions are based on the 

genetic characteristics of a tumour.(491)  The principles behind precision oncology have 

already been evaluated in the research setting(487). Plasma DNA has been sequenced from 

patients with breast cancer and activating mutations had been identified in PIK3CA which was 

associated with resistance to paclitaxel.  Another patient was found to have a nonsense 

mutation in MED1 which was associated with tamoxifen resistance, the patient was then 

switched to capecitabine and lapatanib.  The patient then went on to have a splicing mutation 

in GA56 which was associated with lapatinib resistance.  Thus, there is proof of principle that 

serial sequencing of plasma DNA can determine the aetiology of chemoresistance, potentially 

this can lead to more timely alteration of treatments thus reducing morbidity.  Similarly, 

personalised medicine could be used to identify which patients would benefit from which type 

of adjuvant therapy.  Currently, only a minority of patients benefit from adjuvant therapy (i.e. 

4% of lung cancer patients) and thus the majority receive treatment with associated toxicities 

for no benefit.  NGS technology may be able to predict which patients would benefit from 

treatment, thus maximising gain and reducing harm.(488)  Currently plasma free DNA 

represents a promising method of identifying genetic markers associated with disease 

recurrence or potentially progression. The proof of principle of this technique has been 

achieved in genetic screening for aneuploidy, where NGS has been performed on foetal DNA 

present in the maternal bloodstream(492). The potential benefits of using plasma free ctDNA 

have been described above. 
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Figure 6.3.  A model for genomics driven oncology.  Fresh tumour tissue from individuals 

with newly diagnosed cancer is evaluated using NGS technology in order to determine the 

tumour’s molecular taxonomy and actionable targets.  Appropriate targeted treatment is 

instigated based on genomic data.  Treatment response is determined using iterative processes 

such as analysis of plasma DNA in addition to use of clinical and radiological parameters.  

Upon relapse or disease progression, further genetic analysis is performed and new treatment 

decisions instigated.  Then treatment response and genetic re-evaluation is required. (Adapted 

from Garraway.)(491)  
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6.4 The future of personalised cancer treatment 

It is likely that genomic analysis in cancer will become the norm in the ensuing decades.  The 

precise technology used may well differ from the NGS technologies used in this study, as 

further technological advances may well enable quicker more portable testing using “bench 

top” NGS analysers (e.g. Oxford Nanopore) as described in section 4.7.2.  However, once an 

individual’s cancer genome is characterised, annotation is required in order to enable 

treatment choices to be made. The simplest method is to categorise cancers in to subtypes 

based on tumour characteristics.   Different subtypes will require different treatments.  In 

clinical practice, chemotherapy and targeted treatments are subject to vigorous investigation 

and testing prior to being instituted routinely into patient care.  The same prospective 

evaluation should be pursued with regards to genetic testing. The organisation of cancer 

research within the National Cancer Research Network has enabled evaluation of genetic 

testing to take place under the auspices of the CRUK Stratified Medicine Pilot(493).  This is 

collecting clinical data in addition to looking at the efficacy and cost-effectiveness of 

molecular evaluation of cancers.  As a follow on from this study, in the phase II prospective 

National Lung Matrix trial, compounds in Astra Zeneca and Pfizer’s targeted treatments 

library will be evaluated in individuals based on the molecular characteristics of their lung 

cancers.  These types of trial, so called ‘basket trials’ enable simultaneous evaluation of 

multiple drug combinations in different patients based on specific genetic profiles in their 

tumours.   They have an adaptive design which should help provide new targeted treatments 

to patients and should further improve disease outcomes.(41) 

 

Recently, metastatic lung adenocarcinoma specimens were genotyped for oncogenic drivers.  

This revealed 64% of patients had a mutation in an oncogenic driver and survival was 
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statistically longer for those who received treatment directed towards the driver compared to 

those who did not (HR 0.69 (95%CI 0.53-0.9).(494)  Disease causing genetic mutations may 

only occur at a low frequency making it difficult to perform randomised controlled trials in 

this setting. Therefore, it is key to establish integrated clinical and research networks which 

will enable patients to be recruited to appropriate clinical studies.  Similarly, particularly in 

the drug discovery phase different trial endpoints such as impact on a cancer pathway should 

be considered instead of or in addition to traditional markers of efficacy such as PFS and 

OS.(483) 

 

Personalised medicine may also have a role to play in the early diagnosis of cancers.  Early 

diagnosis leads to cancers being detected at an earlier stage and thus being more amenable to 

curative treatment potentially improving survival (495). Thus, DNA testing may be able to 

detect early disease. DNA testing has already been successfully performed on faecal DNA for 

colorectal cancer associated genes.  It was found to be more sensitive than conventional faecal 

occult blood testing.(496)  A similar technique could utilise cells found in urine, providing a 

non-invasive monitoring mechanism for RCC focusing on renal associated genes facilitating 

early diagnosis.    Furthermore, improvements in DNA testing technology may be able to 

determine recurrence in the case of patients treated with partial nephrectomy.   

 

6.5 Ethical considerations in genome testing 

If population based genomic screening strategies do become the norm in the future, which 

groups such as the UK Mainstreaming Cancer Genetics Programme 

(www.mcgprogramme.com) aim to facilitate, there are number of themes regarding genome 
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testing which require consideration.  Firstly, as more CPG are identified it is likely that an 

increased proportion of the population may harbour a germline mutation in a CPG.  To date, 

there is limited evaluation of testing strategies which in addition to an inherent cost as 

discussed in chapter three also have further costs in terms of screening strategies associated 

with their detection.  Rahman noted that CPG are frequently not robustly evaluated and can be 

involved with over-diagnosis, misdiagnosis and a lack of efficacy.(325)  Furthermore there 

are additional ‘costs’ to the individual with the variant who is ‘medicalized’ and has to invest 

emotional and financial resources into the surveillance process.  Diagnosing a new variant in a 

proband also results in a cost to family members who may require screening and clinical 

management. 

 

Currently, there are no clear guidelines regarding whom to test in the UK, there is also no 

definitive advice regarding what to do in the case of incidental findings or with variants of 

unknown significance.  In a exome sequencing study of individuals with ‘benign’ conditions 

(largely neurodevelopmental phenotypes), 25% of those investigated obtained a new 

molecular diagnosis.(497).  However, 30 of 250 patients had an actionable mutation in an 

incidental gene.   The American College of Medical Genetics (ACMG) has prepared a list of 

fifty-six genes which should be reported to patients if a known pathogenic or potentially 

pathogenic mutation is detected.(498)  This list includes twenty six CPG (499).  The ACMG 

has also provided a list of gene variants which should not be disclosed.  The main types of 

variants which should be disclosed are those which are accurate, actionable and 

pathological(500).  However, some genetic variants cause different phenotypes (this 

phenomenon is called pleiotropy) some of which are actionable whilst others less so, for 

example, alterations in APOE influence cardiovascular risk (an actionable risk) and also 
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Alzhiemer’s disease (unactionable) (500).  At least 17% of variants display a degree of 

pleiotropy(500).  Management of the pleiotropy in genetic variants is yet another aspect of 

genetic testing which will need to be clarified in the era of NGS.  

 

Due to the amount of data available from NGS, the consent process individuals undergo for 

testing must also change.  Currently individuals participating in the UK 100K genomes 

project only have genetic changes associated with their ‘reason for testing’ reported back to 

them.  However, this maybe ethically difficult and in the US model patients undergoing 

testing for cancer genes using NGS may also find out about other inherited conditions  (unless 

the patient opts out) and therefore this should be explicitly mentioned in the consent 

process.(67)   Furthermore, although this is perhaps less relevant in the cancer setting, 

children may be informed of adult-onset conditions if it is deemed that the variant may impact 

on the child’s or parents best interests unless parents have opted out.  This differs from the 

current doctrine of clinical genetics where traditionally children are not tested for adult onset 

disorders.(501)  Furthermore, patients will need to consent to being contacted in the future if 

further genetic discoveries identify new ‘actionable’ genes. 

 

There is also no current clear methodology for the evaluation of variants of uncertain 

biological significance, i.e. non hot spot mutations where it may be difficult to determine 

whether an alteration is associated with a functional change, this means that these changes 

may not be used to make clinical decisions.  As NGS becomes more common there may be 

more such variants identified in cancer genes and this increases uncertainty for clinicians and 

patients alike.  Strategies to aid with this uncertainty include The NIH ClinGen project which 
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is published on the ClinVar website(502), this is beginning to document the clinical 

significance of genetic variants and the Precision Medicine Initiative aims to develop a 1 

million person cohort which may help clarify the significance of some variants(503).   

 

As genetic screening in cancers becomes more ‘mainstream’ most testing models currently 

being evaluated involve oncologists counselling patients for genetic testing and patients 

seeing genetic counsellors and/or clinical geneticists only if they have a positive test.  Thus, 

far this model has been successful in two large UK cancer centres (Edinburgh and the Royal 

Marsden)(203), however it is not clear how some individuals and their families will cope 

when they are found to harbour CPG.  Furthermore, if cancers are sequenced, the associated 

germline DNA should also be sequenced.  This may result in the identification of more 

incidental findings which may not be related to cancer.  Thus, unexpected results could cause 

further distress to patients and their families.(499) Potentially, unexpected genetic results can 

impact on life and income insurance applications.(504) Proponents of genomic medicine 

suggest it will lead to cost savings as treatments will be bettered tailored however there are 

some upfront economic costs such as data-storage and other infrastructure costs(505).   

 

Furthermore, the genomics revolution has identified that alterations in genes due to mutation 

alone are not pathogenic.  Increasingly, the role of copy number changes and epigenetic 

silencing play important roles in cancer development.  Thus, cancer genome sequencing and 

germline DNA sequencing may lead to false reassurance regarding the risk of cancer 

development.  It may well be that a more complex functional genomics approach will be 

required in the evaluation of both inherited and acquired malignancy.  Given that even with 
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the current amounts of data available from sequencing projects, bioinformatics support is 

limited, if more comprehensive genomic evaluation is performed a considerable investment 

must be made in order to ensure data can be appropriately interpreted. Furthermore, data 

storage is an issue with the quantities of data involved meaning that investment in secure 

storage including cloud storage is required.(506)  

 

In the UK in 2011 there were 209 consultant clinical geneticists (507) therefore is not feasible 

that each cancer patient is seen by the genetics service.  Thus, clear guidelines and 

interpretation tools are required so that clinicians can guide patients regarding risk and 

treatment options.  Tools for management of adjuvant treatments already exist, for example 

the Oncotype Dx gene expression array has been approved by the National Institute for 

Clinical Excellence in the evaluation of whether individuals with ER positive, Her-2 negative 

and lymph node negative breast cancer should receive adjuvant chemotherapy.(508).    Some 

databases have been developed by academic centres in the US in order to facilitate clinical 

decision making for example My Cancer Genome(509), other centres have developed 

‘Sequencing Tumour Boards’ where individuals with expertise of cancer genomics, 

bioinformatics, pathology, clinical genetics, bioethics, clinical oncology and molecular 

therapeutics discuss cases and triage patients for entrance onto clinical trials.(483) 

 

6.6 The challenges of personalised medicine 

In the foreseeable future most experts believe that the multinational effort to sequence cancer 

samples will lead to the production of a comprehensive list of cancer causing mutations.(490)  

The challenges to overcome before this achieved include two main themes: (i) how to analyse 

the data (i.e. bioinformatics) (ii) how to validate the findings (i.e. functional annotation).   
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Bioinformatic analysis requires a combination of mathematical, computational and biological 

expertise (490).  This requires a financial and time investment in order to make cancer 

genomic information accessible.  Currently, cancer genomic information is utilised by 

researchers and cancer geneticists.  However, genomic information will need to be accessible 

to individuals with less genomics training for example oncologists, other clinical specialists 

and pharmacists.  ‘Translation’ of scientific data into ‘user-friendly’ data will require 

commercial input to improve interfaces so that accessing genomic data will become an easy 

routine means of making clinical decisions such as that seen with OncotypeDx. 

 

The bigger challenge facing genomic medicine is to determine the functional effect of each 

variant.  There are numerous functional assays some of which have been described in chapters 

four and five of this thesis.  These are limited in their ability to evaluate a single cancer 

associated feature and although in vitro assays tend to be more predictive than in silico 

methods, such assays are time consuming, laborious and costly(490).  An investment in 

resources from the major funding bodies is required to help improve systems available for 

functional annotation so that the functional effect of genetic variants can be determined in a 

timely, consistent and accurate manner.   Similarly, determination of the mechanism of action 

a cancer causing mutation is essential in order to derive some therapeutic benefit from its 

discovery.  The influence of a mutation on cellular function is even more complicated than 

determining functional significance of variants.  The translation of recently identified 

mutations such as V600E BRAF into clinical treatments has been based on years of basic 

science research on the RAS signalling pathway.  Therefore, although there has been a 

commendable and understandable drive towards translational biological research, in order to 

understand the significance of genetic mutations basic scientific research into how these key 
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genes ‘fit in’ to complex intracellular signalling networks is essential.  Historically, 

determination of the function of genes has been non-directed, slow and scattered in time and 

place.  The success of the human genome project and subsequent projects such as 1000 

genomes, TCGA and COSMIC has been based on a coordinated, multicentre, 

multidisciplinary approach.  In order to harness the findings of cancer genomic projects to 

improve clinical care, a similar approach needs to be adopted regarding functional annotation 

and elucidation of the mechanism of action. 

 

Understandably, the era of genomic oncology is associated with a significant degree of 

optimism in clinicians, patients and even governments.  However, as cancer is described as 

being ‘endlessly complex’(510) even when data regarding which actionable targets are 

available results can be disappointing.  For example the MOSCATO-01 trial  which used 

WGS and comparative genomic hybridization data to identify targeted treatments in 

metastatic cancer, targeted agents were associated with a 20% partial response rate and a 56% 

stable disease rate.(511)  These results exemplify the complexity of cancer management.  It is 

likely that only time, experience and better understanding of cancer genomics will lead to 

better outcomes.  Some have argued that this may be achieved by analysing bigger data sets 

and basing clinical decision making on practice based data rather than idealised trial or 

‘evidence based data’.  However, this would require a significant investment in integrated IT 

facilities.  Furthermore, there may need to be a re-evaluation of trial design from the 

traditional gold standard of a randomised controlled trial.  These types of trial require a large 

investment in time and money and in one analysis 62.5% of all trials between 2005 and 2009 

were negative.(512)  Therefore, proof of concept studies may be more useful.  These are 

based on precise biological understanding of a pathology, e.g. EML4-ALK fusion in advanced 
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lung cancer and appropriate targeted drugs being used in this setting e.g. crizotinib.  Clinical 

efficacy can be determined as can the influence on the target cells, if a suitable response 

occurs further drug development can take place, i.e. such trials provide “go/no-go” 

decisions.(512)  

 

6.7 Concluding remarks 

The cancer genomics revolution chronicled in part by this thesis commenced with the 

sequencing of the human genome sequence by a concerted international collaboration.  The 

early success of cancer genomics has been achieved by building on basic scientific knowledge 

for example on the cell signalling pathways achieved by over decades e.g. funding derived 

from ‘Nixon’s war on cancer’(510).  This has revolutionised the clinical management of many 

patients with cancer for whom previously there was no effective treatment.  In the next decade 

or so it is likely that cancer genomics will alter the way cancer is described, treated and 

managed.  It is likely that this era will herald new drugs and treatments.  However, cancer is 

not one disease, and the heterogeneity of cancer cells within and between individuals mean 

that the identification of new cancer associated genes and consequent associated treatments 

may not be easy.  As with the sequencing of the genome, a collaborative approach in basic 

science, pre-clinical trials, clinical trial development and clinical practice is required.  This 

will enable a pooling of knowledge and resources in order to interrogate data which is likely 

to be increasingly complex. Furthermore, improvements in data-analysis, data storage and 

interdisciplinary working are required.   Such a concerted action may allow cancer to become 

a controllable chronic disease rather than a terminal condition, only time will tell whether this 

is achieved.   
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Appendix 1: Constituents of buffers/reagents used in this thesis 

 

PBS:  1 tablet of PBS (Gibco) added 100ml of ddH20.  To sterilise autoclave. 

1x TE buffer: 10ml of 1M Tris HCl pH8, 2ml of 0.5M EDTA pH8, 988ml ddH20 

(Final Concentration Tris HCl 10mM, and EDTA 1mM)  

Loading Dye: 45ml glycerol, 34ml H2O, 1ml of 0.5M EDTA, 0.125g orange G  

Precipitation Buffer:  1:1 mixture of 3M sodium acetate and 0.5M EDTA pH 8LB Broth: 1l 

of ddH2O was added to  200g of LB broth powder (Sigma) this was gently agitated and then 

autoclaved prior to useLB Agar: LB Agar was produced by adding 16g of LB Agar  powder 

(Sigma) to 400ml of ddH2O.  This was mixed by gentle agitation and then 

autoclaved.Kanamycin: Kanamycin (Sigma, Poole, UK) was prepared in a fume cupboard at 

a stock concentration of 50mg/ml, aliquotted into 1ml eppendorfs and stored at -20oC.   

RIPA Buffer:  5ml 1M Tris pH8, 5ml 3M NaCl, 1 ml 10%SDS, 200µl 0.5M EDTA 5ml 10% 

deoxycholate,  10ml Igepal, 73.8ml of ddH2O.  For every 10 ml of RIPA buffer, one protease 

and phosphatase inhibitor tablet was added (Roche Applied Biosciences).  The buffer was 

then aliquoted in 1ml eppendorfs and stored at -20o. 

Protein Loading Buffer:  940l of 10% SDS, 470l 1M Tris-HCl pH 7.5, 95l 100nM 

DTA, 2.45l glycerol, 545l ddH2O, 205l mercaptoethanol and 0.001g of bromophenol 

blue.  The mixture was filtered and aliquotted prior to use.  Loading buffer was stored at -20o. 

PBS-Tween: 10 PBS tablets (Oxoid Limited), 10 ml of Tween (Sigma) in 10l of ddH2O  
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Appendix 2:Primers used in this thesis 

 

Gene Exon Forward Primer Reverse Primer 

CDKN2B 1 AAGAGTGTCGTTAAGTTTA
CG 

ACATCGGCGATCTAGGTTC
CA 

 2 TGAGTATAACCTGAAGGT
GGGGTGG 

CTTACCCAATTTCCCACCC 

PTEN 1 AGAGCCATTTCCATCCTGC
AGA 

ACGTTCTAAGAGAGTGACA
GAAAGGT 

 2 TAGTGGGGAAAA/TCTTTC
TTTTCATAACTA 

ATCTTTTTCTGTGGCTTAGA
AATCTTTTC 

 3 CCATAGAAGGGGTATTTGT

TGG 

ACTCTACCTCACTCTAACA

AGCA 

 4 ATTCAGGCAATGTTTGTTA
GTAT 

TACAGTCTATCGGGTTTAA
GTTATACAA 

 5 ACCCAGTTACCATAGCAAT

TTA 

AGAAAACTGTTCCAATACA

TGGAAGGAT 

 6 TGACAGTTAAAGGCATTTC
CTG 

TAGCTTTTAATCTGTCCTTA
TTTTGGATATTT 

 7 GCAACAGATAACTCAGAT

TGCC 

CATACATACAAGTCAACAA

CCCC 

 8 GAGGGTCATTTAAAAGGC
CTCT 

TCATGGTGTTTTATCCCTCT
TGA 

CDKN2A 1 GGGTGCCACATTCGCTAA

GT 

CTTTTTCCGGAGAATCGAA

GC 

 2 ACACAAGCTTCCTTTCCGT
CA 

GGCTGAACTTTCTGTGCTG
GA 

 3 TGTGCCACACATCTTTGAC

CTC 

TCCATGCGATGAAATTGTT

GTAA 

 

Table 2.7.2.2 Primer Sets Used in this Project for sequencing.  Annealing temperatures used 

for PCR reactions were calculated using the following calculation: 64.9 + 0.41(5GC)-

600/length.   
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Appendix 3: PCR conditions used to amplify CDKN2B and CDKN2A 

(a) 

 Step Temperature o Time (s) 

1. Initial Denaturation Step 95 300 

2. Denaturation 95 45 

3. Annealing                          58 
Step-down  decrease by 1o every cycle 

45 
 

4. Extension 72 45 

5. Cycle to 2 for 4 more times  

6. Denaturation 95 45 

7. Annealing 54 45 

8. Extension 72 45 

9. Cycle to 6 for 40 times  

10. Final Extension 72 300 

11. End Reaction 10 Indefinitely 

 

(b) 

 Step Temperature o Time (s) 

1. Initial Denaturation Step 95 300 

2. Denaturation 95 45 

3. Annealing                          62 
Step-down  decrease by 1o every cycle 

45 
 

4. Extension 72 45 

5. Cycle to 2 for 4 more times  

6. Denaturation 95 45 

7. Annealing 58 45 

8. Extension 72 45 

9. Cycle to 6 for 40 times  

10. Final Extension 72 300 

11. End Reaction 10 Indefinitely 

(b) 

Table 2.7.2.3 PCR Conditions for amplification of (a) CDKN2B exon 1 and (b) CDKN2B 

exon 2.  Extension time was based on the size of the PCR product. 
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Appendix 4 Primers used in site directed mutagenesis 

2.10.3.2 Primer pairs. 

Variant Forward Primer 

(5’ to 3’) 

Reverse Primer 

(5’ to 3’) 

E90X CGACAGCTCCTGTAAGCCGGCG

CGG 

CCGCGCCGGCTTACAGGAGCTGT

CG 

A23E GAAGCCGGCGCGGATACCAAC

GGAGTCAAC 

GTTGACTCCGTTGGTATCCGCGCC

GGCTTC 

D86N CGACCGGTGCATAATGCTGCCC

GGG 

CCCGGGCAGCATTATGCACCGGT

CG 

P40T CCAGCGCCGCGGAGCGGGGAC

TAGTG 

CACTAGTCCCCGCTCCGCGGCGCT

GG 

D39N GAAGCCGGCGCGAATCCCAAC

GGAG 

CTCCGTTGGGATTCGCGCCGGCTT

C 

V27A CAGTGGGGGCGGCGGCGATGA

GGGTCTG 

CAGACCCTCATCGCCGCCGCCCC

CCATCG 

S14G GGGGGCGGCGGCGATGAGGG CCCTCATCGCCGCCGCCCCC 
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Appendix 5 PCR conditions used 

 

Step Temperature 

(oC) 

Time  

(s) 

1 95 600 

2 95 45 

3 62                                              45 

Decrease by 1 degree every cycle 

4 72 45 

5 Cycle to step 2 four more times 

6 95 45 

7 58 45 

8 72 45 

9 Cycle to step 6 for 40 cycles 

10 72 forever 

 

Figure 2.9.8.2 The PCR products included negative control  and positive control. gel.  30µl of 

product was mixed with 5µl of 6x loading buffer and ran out on a 3% agarose gel.  The gel 

was then visualised using Gene SNAP vs 4 software (Synoptics Limited). 
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Appendix 6 Antibodies used in this thesis 

 

 Figure 2.15.6 Antibodies directed towards different proteins used in this thesis.  The 

concentration of the antibiotic used are described. 

 

Protein Company Immunoglobulin Source Dilution 

VHL Cell signaling 

27385 

 Rabbit 1:1000 

CDKN2B Cell signaling 

48225 

 Rabbit 1:2000 

HIF-2α Abcam 

8365 

 Mouse 1:500 

HIF-1α Novus 

Biologicals 

NB100-105 

 Mouse 1:500 

Cyclin D3 Abcam 

2936 

 Mouse 1:500 

Tubulin Abcam  Rabbit 1:1000 

RYK Abcam 

5518 

 Rabbit 1:500 

STK-10 Abcam 

70484 

 

 

Rabbit 1:1000 

Cyclin D1 Cell Signalling  

2926 

 Mouse 1:1000 



288 
 

 

CHAPTER 8. REFERENCES 

 

 

1. The World Health Organisation. WHO Health Topics: Cancer  [cited 2014 15/4/14]. 
WHO Health Topics: Cancer]. Available from: http://www.who.int/topics/cancer/en/. 
2. McDermott U, Downing JR, Stratton MR. Genomics and the Continuum of Cancer 

Care. New England Journal of Medicine. 2011;364(4):340-50. 
3. Frei E. Curative Cancer Chemotherapy. Cancer research. 1985;45(12 Part 1):6523-37. 

4. Jerusalem G, Rorive A, Collignon J. Chemotherapy options for patients suffering from 
heavily pretreated metastatic breast cancer. Future Oncol. 2015;11(12):1775-89. 
5. Lander ES. Initial impact of the sequencing of the human genome. Nature. 

2011;470(7333):187-97. 
6. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AMK, et al. 

Cancer Genomics: Technology, Discovery, and Translation. Journal of Clinical Oncology. 
2012;30(6):647-60. 
7. Pienta KJ, Robertson BA, Coffey DS, Taichman RS. The Cancer Diaspora: Metastasis 

beyond the Seed and Soil Hypothesis. American Association for Cancer Research. 
2013;19(21):5849-55. 

8. Glynne-Jones R, Mathur P, Elton C, Train ML. Multimodal treatment of rectal cancer. 
Best Practice & Research Clinical Gastroenterology. 2007;21(6):1049-70. 
9. Yeo B, Turner NC, Jones A. An update on the medical management of breast cancer. 

Bmj. 2014;348. 
10. DeVita VT, Chu E. A History of Cancer Chemotherapy. Cancer research. 

2008;68(21):8643-53. 
11. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. 
Oncogene. 2003;22(47):7265-79. 

12. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, et al. Synthetic 
lethal interaction between oncogenic KRAS dependency and STK33 suppression in human 
cancer cells. Cell. 2009;137(5):821-34. 

13. Lawrie TA, Winter-Roach BA, Heus P, Kitchener HC. Adjuvant (post-surgery) 
chemotherapy for early stage epithelial ovarian cancer. Cochrane Database Syst Rev. 

2015(12). 
14. Fennell DA, Summers Y, Cadranel J, Benepal T, Christoph DC, Lal R, et al. Cisplatin 
in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. 

Cancer treatment reviews. 2016;44:42-50. 
15. Sikov WM. Assessing the Role of Platinum Agents in Aggressive Breast Cancers. 

Current Oncology Reports. 2015;17(2):1-10. 
16. Wilson PM, Danenberg PV, Johnston PG, Lenz H-J, Ladner RD. Standing the test of 
time: targeting thymidylate biosynthesis in cancer therapy. Nature reviews Clinical oncology. 

2014;11(5):282-98. 
17. Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells? Journal of cell 

science. 2009;122(Pt 15):2579-85. 

http://www.who.int/topics/cancer/en/


289 
 

18. Nabholtz J-M, Vannetzel J-M, Llory J-F, Bouffette P. Advances in the Use of Taxanes 

in the Adjuvant Therapy of Breast Cancer. Clinical Breast Cancer. 2003;4(3):187-92. 
19. Chu Q, Vincent M, Logan D, Mackay JA, Evans WK. Taxanes as first-line therapy for 

advanced non-small cell lung cancer: a systematic review and practice guideline. Lung 
Cancer. 2005;50(3):355-74. 
20. Wagner AD, Unverzagt S, Grothe W, Kleber G, Grothey A, Haerting J, et al. 

Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2010(3):Cd004064. 
21. Rowinsky E. The Vinca Alkaloids. http://www.ncbi.nlm.nih.gov/books/NBK12718/: 

BC Decker; 2003. 
22. Caley A, Jones R. The principles of cancer treatment by chemotherapy. Surgery 
(Oxford). 2012;30(4):186-90. 

23. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. 
24. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 

2011;144(5):646-74. 
25. Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-
oncogene addiction. Cell. 2009;136(5):823-37. 

26. Goodrich DW. The retinoblastoma tumor-suppressor gene, the exception that proves 
the rule. Oncogene. 2000;25(38):5233-43. 

27. Renan M. How many mutations are required for tumorigenesis? Implications from 
human cancer data. Mol Carcinog. 1993;7(3):139-46. 
28. Brenner H, Kloor M, Pox CP. Colorectal cancer. The Lancet.383(9927):1490-502. 

29. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the 
tumor microenvironment. Cancer cell. 2012;21(3):309-22. 

30. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, et al. 
Overall Survival and Updated Results for Sunitinib Compared With Interferon Alfa in 
Patients With Metastatic Renal Cell Carcinoma. Journal of Clinical Oncology. 

2009;27(22):3584-90. 
31. Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A, et al. Targeting 

GLUT1 and the Warburg Effect in Renal Cell Carcinoma by Chemical Synthetic Lethality. 
Science translational medicine. 2011;3(94):94ra70. 
32. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic 

web. Nature reviews Cancer. 2011;11(11):761-74. 
33. Bos JL. ras Oncogenes in Human Cancer: A Review. Cancer research. 

1989;49(17):4682-9. 
34. Dai B, Fang B, Roth JA. RNAi-induced synthetic lethality in cancer therapy. Cancer 
biology & therapy. 2009;8(23):2314-6. 

35. Croce  CM. Oncogenes and Cancer. New England Journal of Medicine. 
2008;358(5):502-11. 

36. Hoffman B, Liebermann DA. Apoptotic signaling by c-MYC. Oncogene. 
2000;27(50):6462-72. 
37. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations 

in the p53 gene occur in diverse human tumour types. Nature. 1989;342(6250):705-8. 
38. Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S, et al. The tumor suppressor gene 

ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. Journal of 
Clinical Investigation. 2008;118(12):3917-29. 
39. Schroeder RD, Angelo LS, Kurzrock R. NF2/Merlin in hereditary neurofibromatosis 2 

versus cancer: biologic mechanisms and clinical associations. Oncotarget. 2014;5(1):67-77. 

http://www.ncbi.nlm.nih.gov/books/NBK12718/:


290 
 

40. The Encode Project Consortium. An integrated encyclopedia of DNA elements in the 

human genome. Nature. 2012;489(7414):57-74. 
41. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17-37. 

42. Wheeler DA, Wang L. From human genome to cancer genome: the first decade. 
Genome Res. 2013;23(7):1054-62. 
43. Wang E. Understanding genomic alterations in cancer genomes using an integrative 

network approach. Cancer letters. 2013;340(2):261-9. 
44. Cheng WC, Chung IF, Chen CY, Sun HJ, Fen JJ, Tang WC, et al. DriverDB: an 

exome sequencing database for cancer driver gene identification. Nucleic Acids Res. 
2014;42(Database issue):D1048-54. 
45. Hayden EC. Technology: The $1,000 genome. Nature. 2014;507(7492):294-5. 

46. International network of cancer genome projects. Nature. 2010;464(7291):993-8. 
47. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. 

Cancer Genome Landscapes. Science (New York, NY). 2013;339(6127):1546-58. 
48. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering 
signatures of mutational processes operative in human cancer. Cell Rep. 2013;3(1):246-59. 

49. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, Biankin AV, et 
al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-21. 

50. Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE, et al. Tumor 
Suppressor Activity and Epigenetic Inactivation of Hepatocyte Growth Factor Activator 
Inhibitor Type 2/SPINT2 in Papillary and Clear Cell Renal Cell Carcinoma. Cancer research. 

2005;65(11):4598-606. 
51. Wake NC, Ricketts CJ, Morris MR, Prigmore E, Gribble SM, Skytte A-B, et al. 

UBE2QL1 is Disrupted by a Constitutional Translocation Associated with Renal Tumour 
Predisposition and is a Novel Candidate Renal Tumour Suppressor Gene. Human mutation. 
2013:n/a-n/a. 

52. Hortobagyi GN. Trastuzumab in the Treatment of Breast Cancer. New England 
Journal of Medicine. 2005;353(16):1734-6. 

53. Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Davidson NE, et al. 
Trastuzumab plus Adjuvant Chemotherapy for Operable HER2-Positive Breast Cancer. New 
England Journal of Medicine. 2005;353(16):1673-84. 

54. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et 
al. Trastuzumab after Adjuvant Chemotherapy in HER2-Positive Breast Cancer. New 

England Journal of Medicine. 2005;353(16):1659-72. 
55. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of 
Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That 

Overexpresses HER2. New England Journal of Medicine. 2001;344(11):783-92. 
56. Arnedos M, Vielh P, Soria J-C, Andre F. The genetic complexity of common cancers 

and the promise of personalized medicine: is there any hope? The Journal of pathology. 
2014;232(2):274-82. 
57. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, et al. EGFR mutations in 

lung cancer: correlation with clinical response to gefitinib therapy. Science (New York, NY). 
2004;304(5676):1497-500. 

58. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et 
al. Activating Mutations in the Epidermal Growth Factor Receptor Underlying 
Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of 

Medicine. 2004;350(21):2129-39. 



291 
 

59. Cataldo VD, Gibbons DL, Pérez-Soler R, Quintás-Cardama A. Treatment of Non–

Small-Cell Lung Cancer with Erlotinib or Gefitinib. New England Journal of Medicine. 
2011;364(10):947-55. 

60. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib 
or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. New England 
Journal of Medicine. 2010;362(25):2380-8. 

61. Shaw AT, Kim D-W, Nakagawa K, Seto T, Crinó L, Ahn M-J, et al. Crizotinib versus 
Chemotherapy in Advanced ALK-Positive Lung Cancer. New England Journal of Medicine. 

2013;368(25):2385-94. 
62. Kwak EL, Bang Y-J, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic 
Lymphoma Kinase Inhibition in Non–Small-Cell Lung Cancer. New England Journal of 

Medicine. 2010;363(18):1693-703. 
63. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. 

Improved Survival with Vemurafenib in Melanoma with BRAF V600E Mutation. New 
England Journal of Medicine. 2011;364(26):2507-16. 
64. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the 

BRAF gene in human cancer. Nature. 2002;417(6892):949-54. 
65. Ernstoff MS. Been There, Not Done That — Melanoma in the Age of Molecular 

Therapy. New England Journal of Medicine. 2011;364(26):2547-8. 
66. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined 
BRAF and MEK inhibition in melanoma with BRAF V600 mutations. The New England 

journal of medicine. 2012;367(18):1694-703. 
67. Stadler ZK, Schrader KA, Vijai J, Robson ME, Offit K. Cancer genomics and 

inherited risk. Journal of clinical oncology : official journal of the American Society of 
Clinical Oncology. 2014;32(7):687-98. 
68. Douillard J-Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. 

Panitumumab–FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. New England 
Journal of Medicine. 2013;369(11):1023-34. 

69. Van Cutsem E, Köhne C-H, Hitre E, Zaluski J, Chang Chien C-R, Makhson A, et al. 
Cetuximab and Chemotherapy as Initial Treatment for Metastatic Colorectal Cancer. New 
England Journal of Medicine. 2009;360(14):1408-17. 

70. McGuire AL, McCullough LB, Evans JP. THe indispensable role of professional 
judgment in genomic medicine. JAMA : the journal of the American Medical Association. 

2013;309(14):1465-6. 
71. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, et al. The 
EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. European 

journal of cancer (Oxford, England : 1990). 2011;47(18):2742-9. 
72. Tran B, Dancey JE, Kamel-Reid S, McPherson JD, Bedard PL, Brown AM, et al. 

Cancer genomics: technology, discovery, and translation. Journal of clinical oncology : 
official journal of the American Society of Clinical Oncology. 2012;30(6):647-60. 
73. Jafri M, Maher ER. Genetics in endocrinology: The genetics of phaeochromocytoma: 

using clinical features to guide genetic testing. European Journal of Endocrinology. 
2012;166(2):151-8. 

74. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH 
mutations establish a hypermethylator phenotype in paraganglioma. Cancer cell. 
2013;23(6):739-52. 



292 
 

75. Benit P, Letouze E, Rak M, Aubry L, Burnichon N, Favier J, et al. Unsuspected task 

for an old team: Succinate, fumarate and other Krebs cycle acids in metabolic remodeling. 
Biochimica et biophysica acta. 2014. 

76. Maher ER. Genetics of familial renal cancers. Nephron Experimental nephrology. 
2011;118(1):e21-6. 
77. Latif FTK, Gnarra J, Yao M, Duh FM, Orcutt ML, Stackhouse T, Kuzmin I, Modi W, 

Geil L. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 
1993;260(5112):1317-20. 

78. Maher ER. Genomics and epigenomics of renal cell carcinoma. Seminars in Cancer 
Biology. 2012(0). 
79. Ricketts CJ, Forman JR, Rattenberry E, Bradshaw N, Lalloo F, Izatt L, et al. Tumor 

risks and genotype-phenotype-proteotype analysis in 358 patients with germline mutations in 
SDHB and SDHD. Human mutation. 2010;31(1):41-51. 

80. Tse H-F, Ho JCY, Choi S-W, Lee Y-K, Butler AW, Ng K-M, et al. Patient-specific 
induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic 
phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole 

exome sequencing. Human molecular genetics. 2013;22(7):1395-403. 
81. Walsh DM, Shalev SA, Simpson MA, Morgan NV, Gelman-Kohan Z, Chemke J, et 

al. Acrocallosal syndrome: identification of a novel KIF7 mutation and evidence for 
oligogenic inheritance. Eur J Med Genet. 2013;56(1):39-42. 
82. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics. 2010;26(6):841-2. 
83. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 

Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078-9. 
84. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants 
from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. 

85. 1000 genomes. Available from: http://www.1000genomes.org/home. 
86. Bioinformatics UG.  [cited 2012]. Available from: http://genome.ucsc.edu. 

87. e!Ensembl.  [cited 2011]. Available from: www.ensembl.org. 
88. Rozen S SH. Primer 3 on the www for general users and for biologist programmes. In: 
Krawetz S MS, editor. Bioinformatics Methods and Protocols: Methods in Molecular 

Biology: Humana Press; 2012. p. 365-85. 
89. NCBI. NCBI BLAST 2011. Available from: http://blast.ncbi.nlm.nih.gov/Blast.cgi. 

90. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A 
method and server for predicting damaging missense mutations. Nat Meth. 2010;7(4):248-9. 
91. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous 

variants on protein function using the SIFT algorithm. Nat Protocols. 2009;4(8):1073-81. 
92. Project BDG. Splice Site Prediction by Neural Network  [updated 1997; cited 2013 

2013]. NN Splice 0.9:[NN Splice 0.9]. Available from: 
http://www.fruitfly.org/seq_tools/splice.html. 
93. Qiagen. QIAPrep Miniprep Handbook. 2nd ed2006. 

94. Qiagen. EndoFree Plasmid Purification Handbook. 2012. 
95. Technogies A. Quik Change II Site-Directed Mutagenesis Kit, Instruction Manual. 

2012. 
96. Morris MR, Ricketts C, Gentle D, Abdulrahman M, Clarke N, Brown M, et al. 
Identification of candidate tumour suppressor genes frequently methylated in renal cell 

carcinoma. Oncogene. 2010;29(14):2104-17. 

http://www.1000genomes.org/home
http://genome.ucsc.edu/
http://www.ensembl.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.fruitfly.org/seq_tools/splice.html


293 
 

97. Morris MR ME. Epigenetics of renal cell carcinoma: the path towards new diagnostics 

and therapeutics. Genome medicine. 2010;2(9). 
98. Morrissey C, Martinez A, Zatyka M, Agathanggelou A, Honorio S, Astuti D, et al. 

Epigenetic Inactivation of the RASSF1A 3p21.3 Tumor Suppressor Gene in Both Clear Cell 
and Papillary Renal Cell Carcinoma. Cancer research. 2001;61(19):7277-81. 
99. Arora S, Gonzales IM, Hagelstrom RT, Beaudry C, Choudhary A, Sima C, et al. 

RNAi phenotype profiling of kinases identifies potential therapeutic targets in Ewing's 
sarcoma. Molecular cancer. 2010;9:218. 

100. Kinexus. Kinex KAM-880 Antibody Microarray Service- customer information 
package 2014 [cited 2016 27/6/16]. Available from: 
http://www.kinexus.ca/pdf/AntibodyArray_CustInfoPckg.pdf. 

101. Jafri M, Whitworth J, Rattenberry E, Vialard L, Kilby G, Kumar AV, et al. Evaluation 
of SDHB, SDHD and VHL gene susceptibility testing in the assessment of individuals with 

non-syndromic phaeochromocytoma, paraganglioma and head and neck paraganglioma. 
Clinical endocrinology. 2013;78(6):898-906. 
102. Mwenifumbo JC, Marra MA. Cancer genome-sequencing study design. Nature 

reviews Genetics. 2013;14(5):321-32. 
103. Korf BR, Rehm HL. New approaches to molecular diagnosis. JAMA : the journal of 

the American Medical Association. 2013;309(14):1511-21. 
104. Neumann HPH, Bausch B, McWhinney SR, Bender BU, Gimm O, Franke G, et al. 
Germ-Line Mutations in Nonsyndromic Pheochromocytoma. New England Journal of 

Medicine. 2002;346(19):1459-66. 
105. Dahia PLM. Pheochromocytoma and paraganglioma pathogenesis: learning from 

genetic heterogeneity. Nature reviews Cancer. 2014;14(2):108-19. 
106. Gimenez-Roqueplo AP, Lehnert H, Mannelli M, Neumann H, Opocher G, Maher ER, 
et al. Phaeochromocytoma, new genes and screening strategies. Clinical endocrinology. 

2006;65(6):699-705. 
107. Eng C, Crossey PA, Mulligan LM, Healey CS, Houghton C, Prowse A, et al. 

Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor 
gene in sporadic and syndromic phaeochromocytomas. Journal of medical genetics. 
1995;32(12):934-7. 

108. Welander J, Soderkvist P, Gimm O. The NF1 gene: a frequent mutational target in 
sporadic pheochromocytomas and beyond. Endocrine-related cancer. 2013;20(4):C13-7. 

109. Woodward ER, Eng C, McMahon R, Voutilainen R, Affara NA, Ponder BA, et al. 
Genetic predisposition to phaeochromocytoma: analysis of candidate genes GDNF, RET and 
VHL. Human molecular genetics. 1997;6(7):1051-6. 

110. Ong KR, Woodward ER, Killick P, Lim C, Macdonald F, Maher ER. Genotype–
phenotype correlations in von Hippel-Lindau disease. Human mutation. 2007;28(2):143-9. 

111. Maher ER, Kaelin WG, Jr. von Hippel-Lindau disease. Medicine. 1997;76(6):381-91. 
112. Galan SR, Kann PH. Genetics and molecular pathogenesis of pheochromocytoma and 
paraganglioma. Clinical endocrinology. 2013;78(2):165-75. 

113. Maher ER, Yates JR, Harries R, Benjamin C, Harris R, Moore AT, et al. Clinical 
features and natural history of von Hippel-Lindau disease. The Quarterly journal of medicine. 

1990;77(283):1151-63. 
114. Maher ER, Neumann HP, Richard S. von Hippel-Lindau disease: a clinical and 
scientific review. European journal of human genetics : EJHG. 2011;19(6):617-23. 

http://www.kinexus.ca/pdf/AntibodyArray_CustInfoPckg.pdf


294 
 

115. Burnichon N, Vescovo L, Amar L, Libe R, de Reynies A, Venisse A, et al. Integrative 

genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. 
Human molecular genetics. 2011;20(20):3974-85. 

116. Hoffman MA, Ohh M, Yang H, Klco JM, Ivan M, Kaelin WG, Jr. von Hippel-Lindau 
protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. 
Human molecular genetics. 2001;10(10):1019-27. 

117. Zbuk KM, Eng C. Cancer phenomics: RET and PTEN as illustrative models. Nature 
reviews Cancer. 2007;7(1):35-45. 

118. Moline J, Eng C. Multiple endocrine neoplasia type 2: an overview. Genet Med. 
2011;13(9):755-64. 
119. Neumann HP, Vortmeyer A, Schmidt D, Werner M, Erlic Z, Cascon A, et al. 

Evidence of MEN-2 in the original description of classic pheochromocytoma. The New 
England journal of medicine. 2007;357(13):1311-5. 

120. Martins R, Bugalho MJ. Paragangliomas/Pheochromocytomas: Clinically Oriented 
Genetic Testing. Int J Endocrinol. 2014;2014:14. 
121. Opocher G, Schiavi F. Genetics of pheochromocytomas and paragangliomas. Best 

practice & research Clinical endocrinology & metabolism. 2010;24(6):943-56. 
122. Larizza L, Gervasini C, Natacci F, Riva P. Developmental abnormalities and cancer 

predisposition in neurofibromatosis type 1. Current molecular medicine. 2009;9(5):634-53. 
123. Bausch B, Koschker AC, Fassnacht M, Stoevesandt J, Hoffmann MM, Eng C, et al. 
Comprehensive mutation scanning of NF1 in apparently sporadic cases of 

pheochromocytoma. The Journal of clinical endocrinology and metabolism. 2006;91(9):3478-
81. 

124. Jett K, Friedman JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med. 
2010;12(1):1-11. 
125. Lu-Emerson C, Plotkin SR. The Neurofibromatoses. Part 1: NF1. Reviews in 

neurological diseases. 2009;6(2):E47-53. 
126. Bausch B, Borozdin W, Mautner VF, Hoffmann MM, Boehm D, Robledo M, et al. 

Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with 
pheochromocytoma and neurofibromatosis type 1. The Journal of clinical endocrinology and 
metabolism. 2007;92(7):2784-92. 

127. Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, Loriot C, et al. Somatic 
NF1 inactivation is a frequent event in sporadic pheochromocytoma. Human molecular 

genetics. 2012;21(26):5397-405. 
128. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. 
Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug 

resistance. Biochimica et biophysica acta. 2007;1773(8):1263-84. 
129. Vicha A, Taieb D, Pacak K. Current views on cell metabolism in SDHx-related 

pheochromocytoma and paraganglioma. Endocrine-related cancer. 2014;21(3):R261-R77. 
130. Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E, et al. 
SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. The 

lancet oncology. 2010;11(4):366-72. 
131. Jochmanova I, Yang C, Zhuang Z, Pacak K. Hypoxia-inducible factor signaling in 

pheochromocytoma: turning the rudder in the right direction. Journal of the National Cancer 
Institute. 2013;105(17):1270-83. 
132. Astuti D, Latif F, Dallol A, Dahia PLM, Douglas F, George E, et al. Gene Mutations 

in the Succinate Dehydrogenase Subunit SDHB Cause Susceptibility to Familial 



295 
 

Pheochromocytoma and to Familial Paraganglioma. The American Journal of Human 

Genetics. 2001;69(1):49-54. 
133. Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F, et al. Germline 

SDHB mutations and familial renal cell carcinoma. Journal of the National Cancer Institute. 
2008;100(17):1260-2. 
134. Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V, et al. 

Mutations in the SDHB gene are associated with extra-adrenal and/or malignant 
phaeochromocytomas. Cancer research. 2003;63(17):5615-21. 

135. Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O, et al. 
Genetic Testing in Pheochromocytoma or Functional Paraganglioma. Journal of Clinical 
Oncology. 2005;23(34):8812-8. 

136. Schiavi F, Milne RL, Anda E, Blay P, Castellano M, Opocher G, et al. Are we 
overestimating the penetrance of mutations in SDHB? Human mutation. 2010;31(6):761-2. 

137. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine 
tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. Journal of internal 
medicine. 2009;266(1):19-42. 

138. Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P, Gaal J, et al. Defects in succinate 
dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. 

Proceedings of the National Academy of Sciences. 2011;108(1):314-8. 
139. Bardella C, Pollard PJ, Tomlinson I. SDH mutations in cancer. Biochimica et 
Biophysica Acta (BBA) - Bioenergetics. 2011;1807(11):1432-43. 

140. Schodel J, Bardella C, Sciesielski LK, Brown JM, Pugh CW, Buckle V, et al. 
Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of 

HIF to an enhancer of cyclin D1 expression. Nat Genet. 2012;44(4):420-5. 
141. Lopez-Jimenez E, Gomez-Lopez G, Leandro-Garcia LJ, Munoz I, Schiavi F, Montero-
Conde C, et al. Research resource: Transcriptional profiling reveals different pseudohypoxic 

signatures in SDHB and VHL-related pheochromocytomas. Molecular endocrinology 
(Baltimore, Md). 2010;24(12):2382-91. 

142. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A, et 
al. Mutations in SDHD, a Mitochondrial Complex II Gene, in Hereditary Paraganglioma. 
Science (New York, NY). 2000;287(5454):848-51. 

143. Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER, Evans DG, et al. 
Germline SDHD mutation in familial phaeochromocytoma. Lancet. 2001;357(9263):1181-2. 

144. Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M, et 
al. Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD 
gene mutations. JAMA : the journal of the American Medical Association. 2004;292(8):943-

51. 
145. Baysal BE, McKay SE, Kim YJ, Zhang Z, Alila L, Willett-Brozick JE, et al. Genomic 

imprinting at a boundary element flanking the SDHD locus. Human molecular genetics. 
2011;20(22):4452-61. 
146. Peczkowska M, Cascon A, Prejbisz A, Kubaszek A, Cwikla BJ, Furmanek M, et al. 

Extra-adrenal and adrenal pheochromocytomas associated with a germline SDHC mutation. 
Nature clinical practice Endocrinology & metabolism. 2008;4(2):111-5. 

147. Schiavi F, Savvoukidis T, Trabalzini F, Grego F, Piazza M, Amista P, et al. 
Paraganglioma syndrome: SDHB, SDHC, and SDHD mutations in head and neck 
paragangliomas. Annals of the New York Academy of Sciences. 2006;1073:190-7. 

148. Schiavi F, Boedeker CC, Bausch B, Peczkowska M, Gomez CF, Strassburg T, et al. 
Predictors and prevalence of paraganglioma syndrome associated with mutations of the 



296 
 

SDHC gene. JAMA : the journal of the American Medical Association. 2005;294(16):2057-

63. 
149. Timmers HJ, Gimenez-Roqueplo AP, Mannelli M, Pacak K. Clinical aspects of 

SDHx-related pheochromocytoma and paraganglioma. Endocrine-related cancer. 
2009;16(2):391-400. 
150. Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, Darrouzet V, et al. The 

succinate dehydrogenase genetic testing in a large prospective series of patients with 
paragangliomas. The Journal of clinical endocrinology and metabolism. 2009;94(8):2817-27. 

151. Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H, et al. Leigh 
syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase 
(SDHA). J Neurol Neurosurg Psychiatry. 2006;77(1):74-6. 

152. Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot 
E, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial 

respiratory chain deficiency. Nat Genet. 1995;11(2):144-9. 
153. Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F, et al. SDHA is a 
tumor suppressor gene causing paraganglioma. Human molecular genetics. 

2010;19(15):3011-20. 
154. Korpershoek E, Favier J, Gaal J, Burnichon N, van Gessel B, Oudijk L, et al. SDHA 

immunohistochemistry detects germline SDHA gene mutations in apparently sporadic 
paragangliomas and pheochromocytomas. The Journal of clinical endocrinology and 
metabolism. 2011;96(9):E1472-6. 

155. Pantaleo MA, Astolfi A, Indio V, Moore R, Thiessen N, Heinrich MC, et al. SDHA 
loss-of-function mutations in KIT-PDGFRA wild-type gastrointestinal stromal tumors 

identified by massively parallel sequencing. Journal of the National Cancer Institute. 
2011;103(12):983-7. 
156. Kunst HP, Rutten MH, de Monnink JP, Hoefsloot LH, Timmers HJ, Marres HA, et al. 

SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clinical cancer 
research : an official journal of the American Association for Cancer Research. 

2011;17(2):247-54. 
157. Yao L, Barontini M, Niederle B, Jech M, Pfragner R, Dahia PL. Mutations of the 
metabolic genes IDH1, IDH2, and SDHAF2 are not major determinants of the pseudohypoxic 

phenotype of sporadic pheochromocytomas and paragangliomas. The Journal of clinical 
endocrinology and metabolism. 2010;95(3):1469-72. 

158. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, Leton 
R, et al. Exome sequencing identifies MAX mutations as a cause of hereditary 
pheochromocytoma. Nat Genet. 2011;43(7):663-7. 

159. Peczkowska M, Kowalska A, Sygut J, Waligorski D, Malinoc A, Janaszek-Sitkowska 
H, et al. Testing new susceptibility genes in the cohort of apparently sporadic 

phaeochromocytoma/paraganglioma patients with clinical characteristics of hereditary 
syndromes. Clinical endocrinology. 2013;79(6):817-23. 
160. Burnichon N, Cascón A, Schiavi F, Morales NP, Comino-Méndez I, Abermil N, et al. 

MAX Mutations Cause Hereditary and Sporadic Pheochromocytoma and Paraganglioma. 
Clinical Cancer Research. 2012;18(10):2828-37. 

161. Qin Y, Yao L, King EE, Buddavarapu K, Lenci RE, Chocron ES, et al. Germline 
mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat Genet. 
2010;42(3):229-33. 



297 
 

162. Yao L, Schiavi F, Cascon A, Qin Y, Inglada-Perez L, King EE, et al. Spectrum and 

prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas. 
JAMA : the journal of the American Medical Association. 2010;304(23):2611-9. 

163. Abermil N, Guillaud-Bataille M, Burnichon N, Venisse A, Manivet P, Guignat L, et 
al. TMEM127 Screening in a Large Cohort of Patients with Pheochromocytoma and/or 
Paraganglioma. Journal of Clinical Endocrinology & Metabolism. 2012;97(5):E805-E9. 

164. Neumann HP, Sullivan M, Winter A, Malinoc A, Hoffmann MM, Boedeker CC, et al. 
Germline mutations of the TMEM127 gene in patients with paraganglioma of head and neck 

and extraadrenal abdominal sites. The Journal of clinical endocrinology and metabolism. 
2011;96(8):E1279-82. 
165. Yeh IT, Lenci RE, Qin Y, Buddavarapu K, Ligon AH, Leteurtre E, et al. A germline 

mutation of the KIF1B beta gene on 1p36 in a family with neural and nonneural tumors. 
Human genetics. 2008;124(3):279-85. 

166. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C, Galateau-Salle F, et al. 
PHD2 Mutation and Congenital Erythrocytosis with Paraganglioma. New England Journal of 
Medicine. 2008;359(25):2685-92. 

167. Astuti D, Ricketts CJ, Chowdhury R, McDonough MA, Gentle D, Kirby G, et al. 
Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of 

phaeochromocytoma and renal cell carcinoma susceptibility. Endocrine-related cancer. 
2011;18(1):73-83. 
168. Gaal J, Burnichon N, Korpershoek E, Roncelin I, Bertherat J, Plouin PF, et al. 

Isocitrate dehydrogenase mutations are rare in pheochromocytomas and paragangliomas. The 
Journal of clinical endocrinology and metabolism. 2010;95(3):1274-8. 

169. Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M, et al. 
Clinical Predictors and Algorithm for the Genetic Diagnosis of Pheochromocytoma Patients. 
Clinical Cancer Research. 2009;15(20):6378-85. 

170. Bayley J-P, Devilee P, Taschner P. The SDH mutation database: an online resource 
for succinate dehydrogenase sequence variants involved in pheochromocytoma, 

paraganglioma and mitochondrial complex II deficiency. BMC medical genetics. 
2005;6(1):39. 
171. Dwight T, Mann K, Benn DE, Robinson BG, McKelvie P, Gill AJ, et al. Familial 

SDHA mutation associated with pituitary adenoma and pheochromocytoma/paraganglioma. 
The Journal of clinical endocrinology and metabolism. 2013;98(6):E1103-8. 

172. Xekouki P, Pacak K, Almeida M, Wassif CA, Rustin P, Nesterova M, et al. Succinate 
Dehydrogenase (SDH) D Subunit (SDHD) Inactivation in a Growth-Hormone-Producing 
Pituitary Tumor: A New Association for SDH? Journal of Clinical Endocrinology & 

Metabolism. 2012;97(3):E357-E66. 
173. Papathomas TG, Gaal J, Corssmit EP, Oudijk L, Korpershoek E, Heimdal K, et al. 

Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate 
dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. 
European journal of endocrinology / European Federation of Endocrine Societies. 

2014;170(1):1-12. 
174. Miettinen M, Wang ZF, Sarlomo-Rikala M, Osuch C, Rutkowski P, Lasota J. 

Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and 
molecular genetic study of 66 gastric GISTs with predilection to young age. The American 
journal of surgical pathology. 2011;35(11):1712-21. 



298 
 

175. Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, et al. Germline Mutations 

and Variants in the Succinate Dehydrogenase Genes in Cowden and Cowden-like Syndromes. 
The American Journal of Human Genetics. 2008;83(2):261-8. 

176. Henderson A, Douglas F, Perros P, Morgan C, Maher E. SDHB-associated renal 
oncocytoma suggests a broadening of the renal phenotype in hereditary paragangliomatosis. 
Familial cancer. 2009;8(3):257-60. 

177. Hensen EF, van Duinen N, Jansen JC, Corssmit EPM, Tops CMJ, Romijn JA, et al. 
High prevalence of founder mutations of the succinate dehydrogenase genes in the 

Netherlands. Clinical Genetics. 2012;81(3):284-8. 
178. Boedeker CC, Erlic Z, Richard S, Kontny U, Gimenez-Roqueplo AP, Cascon A, et al. 
Head and neck paragangliomas in von Hippel-Lindau disease and multiple endocrine 

neoplasia type 2. The Journal of clinical endocrinology and metabolism. 2009;94(6):1938-44. 
179. Cascón A, Pita G, Burnichon N, Landa I, López-Jiménez E, Montero-Conde C, et al. 

Genetics of Pheochromocytoma and Paraganglioma in Spanish Patients. Journal of Clinical 
Endocrinology & Metabolism. 2009;94(5):1701-5. 
180. Erlic Z, Rybicki L, Peczkowska M, Golcher H, Kann PH, Brauckhoff M, et al. 

Clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. 
Clinical cancer research : an official journal of the American Association for Cancer 

Research. 2009;15(20):6378-85. 
181. Neumann HP, Erlic Z, Boedeker CC, Rybicki LA, Robledo M, Hermsen M, et al. 
Clinical predictors for germline mutations in head and neck paraganglioma patients: cost 

reduction strategy in genetic diagnostic process as fall-out. Cancer research. 2009;69(8):3650-
6. 

182. Niemann S MU. Mutations in SDHC cause autosomal dominant paraganglioma, type 
3. Nat Genet. 2000;26(3):268-70. 
183. Boedeker CC, Neumann HPH, Maier W, Bausch B, Schipper J, Ridder GJ. Malignant 

Head and Neck Paragangliomas in SDHB Mutation Carriers. Otolaryngology -- Head and 
Neck Surgery. 2007;137(1):126-9. 

184. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn 
EMCA, et al. An immunohistochemical procedure to detect patients with paraganglioma and 
phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective 

and prospective analysis. The lancet oncology. 2009;10(8):764-71. 
185. Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, Kelsell D, et al. Germline 

mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and 
papillary renal cell cancer. Nat Genet. 2002;30(4):406-10. 
186. Castro-Vega LJ, Buffet A, De Cubas AA, Cascon A, Menara M, Khalifa E, et al. 

Germline mutations in FH confer predisposition to malignant pheochromocytomas and 
paragangliomas. Human molecular genetics. 2014. 

187. Clark GR, Sciacovelli M, Gaude E, Walsh DM, Kirby G, Simpson MA, et al. 
Germline FH mutations presenting with pheochromocytoma. The Journal of clinical 
endocrinology and metabolism. 2014;99(10):E2046-50. 

188. Zhuang Z, Yang C, Lorenzo F, Merino M, Fojo T, Kebebew E, et al. Somatic HIF2A 
Gain-of-Function Mutations in Paraganglioma with Polycythemia. New England Journal of 

Medicine. 2012;367(10):922-30. 
189. Favier J, Buffet A, Gimenez-Roqueplo AP. HIF2A mutations in paraganglioma with 
polycythemia. The New England journal of medicine. 2012;367(22):2161; author reply -2. 



299 
 

190. Lorenzo FR, Yang C, Ng Tang Fui M, Vankayalapati H, Zhuang Z, Huynh T, et al. A 

novel EPAS1/HIF2A germline mutation in a congenital polycythemia with paraganglioma. 
Journal of molecular medicine (Berlin, Germany). 2013;91(4):507-12. 

191. Comino-Mendez I, de Cubas AA, Bernal C, Alvarez-Escola C, Sanchez-Malo C, 
Ramirez-Tortosa CL, et al. Tumoral EPAS1 (HIF2A) mutations explain sporadic 
pheochromocytoma and paraganglioma in the absence of erythrocytosis. Human molecular 

genetics. 2013;22(11):2169-76. 
192. Toledo RA, Qin Y, Srikantan S, Morales NP, Li Q, Deng Y, et al. In vivo and in vitro 

oncogenic effects of HIF2A mutations in pheochromocytomas and paragangliomas. 
Endocrine-related cancer. 2013;20(3):349-59. 
193. Buffet A, Smati S, Mansuy L, Menara M, Lebras M, Heymann MF, et al. Mosaicism 

in HIF2A-related polycythemia-paraganglioma syndrome. The Journal of clinical 
endocrinology and metabolism. 2014;99(2):E369-73. 

194. Oudijk L, de Krijger RR, Rapa I, Beuschlein F, de Cubas AA, Dei Tos AP, et al. H-
RAS mutations are restricted to sporadic pheochromocytomas lacking specific clinical or 
pathological features: data from a multi- institutional series. The Journal of clinical 

endocrinology and metabolism. 2014:jc20133879. 
195. Crona J, Delgado Verdugo A, Maharjan R, Stalberg P, Granberg D, Hellman P, et al. 

Somatic mutations in H-RAS in sporadic pheochromocytoma and paraganglioma identified 
by exome sequencing. The Journal of clinical endocrinology and metabolism. 
2013;98(7):E1266-71. 

196. Qin N, de Cubas AA, Garcia-Martin R, Richter S, Peitzsch M, Menschikowski M, et 
al. Opposing effects of HIF1alpha and HIF2alpha on chromaffin cell phenotypic features and 

tumor cell proliferation: Insights from MYC-associated factor X. International journal of 
cancer Journal international du cancer. 2014. 
197. Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P, et al. The Warburg 

effect is genetically determined in inherited pheochromocytomas. PloS one. 2009;4(9):e7094. 
198. Cascon A, Robledo M. MAX and MYC: a heritable breakup. Cancer research. 

2012;72(13):3119-24. 
199. Favier J, Igaz P, Burnichon N, Amar L, Libe R, Badoual C, et al. Rationale for anti-
angiogenic therapy in pheochromocytoma and paraganglioma. Endocrine pathology. 

2012;23(1):34-42. 
200. Morin A, Letouze E, Gimenez-Roqueplo AP, Favier J. Oncometabolites-driven 

tumorigenesis: From genetics to targeted therapy. International journal of cancer Journal 
international du cancer. 2014;135(10):2237-48. 
201. Fishbein L, Merrill S, Fraker DL, Cohen DL, Nathanson KL. Inherited mutations in 

pheochromocytoma and paraganglioma: why all patients should be offered genetic testing. 
Ann Surg Oncol. 2013;20(5):1444-50. 

202. Fecteau H, Vogel KJ, Hanson K, Morrill-Cornelius S. The Evolution of Cancer Risk 
Assessment in the Era of Next Generation Sequencing. Journal of genetic counseling. 2014. 
203. Arie S. Routine testing for women with ovarian cancer. Bmj. 2014;348. 

204. McInerney-Leo AM, Marshall MS, Gardiner B, Benn DE, McFarlane J, Robinson BG, 
et al. Whole exome sequencing is an efficient and sensitive method for detection of germline 

mutations in patients with phaeochromcytomas and paragangliomas. Clinical endocrinology. 
2014;80(1):25-33. 
205. Rattenberry E, Vialard L, Yeung A, Bair H, McKay K, Jafri M, et al. A 

comprehensive next generation sequencing based genetic testing strategy to improve 



300 
 

diagnosis of inherited pheochromocytoma and paraganglioma. The Journal of clinical 

endocrinology and metabolism. 2013. 
206. Crona J, Verdugo AD, Granberg D, Welin S, Stalberg P, Hellman P, et al. Next-

generation sequencing in the clinical genetic screening of patients with pheochromocytoma 
and paraganglioma. Endocrine connections. 2013;2(2):104-11. 
207. Mauer CB, Pirzadeh-Miller SM, Robinson LD, Euhus DM. The integration of next-

generation sequencing panels in the clinical cancer genetics practice: an institutional 
experience. Genet Med. 2014;16(5):407-12. 

208. Casey R, Garrahy A, Tuthill A, O'Halloran D, Joyce C, Casey MB, et al. Universal 
Genetic Screening Uncovers a Novel Presentation of an SDHAF2 Mutation. The Journal of 
clinical endocrinology and metabolism. 2014:jc20134536. 

209. Welander J, Andreasson A, Juhlin CC, Wiseman RW, Backdahl M, Hoog A, et al. 
Rare germline mutations identified by targeted next-generation sequencing of susceptibility 

genes in pheochromocytoma and paraganglioma. The Journal of clinical endocrinology and 
metabolism. 2014:jc20134375. 
210. Brauch H, Kishida T, Glavac D, Chen F, Pausch F, Höfler H, et al. Von Hippel-

Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: 
evidence for a founder effect. Human genetics. 1995;95(5):551-6. 

211. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM, et 
al. An immunohistochemical procedure to detect patients with paraganglioma and 
phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective 

and prospective analysis. The lancet oncology. 2009;10(8):764-71. 
212. Jafri M, Wake NC, Ascher DB, Pires DEV, Gentle D, Morris MR, et al. Germline 

Mutations in the CDKN2B Tumor Suppressor Gene Predispose to Renal Cell Carcinoma. 
Cancer Discov. 2015;5(7):723-9. 
213. Cancer Research UK.  [cited 2014 3/3/14]. Available from: 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/kidney/incidence/uk-kidney-
cancer-incidence-statistics. 

214. Lopez-Beltran A, Carrasco JC, Cheng L, Scarpelli M, Kirkali Z, Montironi R. 2009 
update on the classification of renal epithelial tumors in adults. International Journal of 
Urology. 2009;16(5):432-43. 

215. Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, et al. The 
International Society of Urological Pathology (ISUP) Vancouver Classification of Renal 

Neoplasia. The American journal of surgical pathology. 2013;37(10):1469-89. 
216. Qayyum T, McArdle P, Orange C, Seywright M, Horgan P, Oades G, et al. 
Reclassification of the Fuhrman grading system in renal cell carcinoma-does it make a 

difference? SpringerPlus. 2013;2:378. 
217. Cancer Research UK. Kidney cancer incidence statistics  [cited 2014 4/3/14]. 

Available from: http://www.cancerresearchuk.org/cancer-
info/cancerstats/types/kidney/incidence/uk-kidney-cancer- incidence-statistics#source1. 
218. Ljungberg B, Campbell SC, Cho HY, Jacqmin D, Lee JE, Weikert S, et al. The 

Epidemiology of Renal Cell Carcinoma. European urology. 2011;60(4):615-21. 
219. Sunela KL, Kataja MJ, Kellokumpu-Lehtinen P-LI. Changes in symptoms of renal cell 

carcinoma over four decades. BJU international. 2010;106(5):649-53. 
220. Moch H, Artibani W, Delahunt B, Ficarra V, Knuechel R, Montorsi F, et al. 
Reassessing the Current UICC/AJCC TNM Staging for Renal Cell Carcinoma. European 

urology. 2009;56(4):636-43. 

http://www.cancerresearchuk.org/cancer-info/cancerstats/types/kidney/incidence/uk-kidney-cancer-incidence-statistics
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/kidney/incidence/uk-kidney-cancer-incidence-statistics
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/kidney/incidence/uk-kidney-cancer-incidence-statistics#source1
http://www.cancerresearchuk.org/cancer-info/cancerstats/types/kidney/incidence/uk-kidney-cancer-incidence-statistics#source1


301 
 

221. Ng CS, Wood CG, Silverman PM, Tannir NM, Tamboli P, Sandler CM. Renal Cell 

Carcinoma: Diagnosis, Staging, and Surveillance. American Journal of Roentgenology. 
2008;191(4):1220-32. 

222. Robson CJ, Churchill BM, Anderson W. The results of radical nephrectomy for renal 
cell carcinoma. The Journal of urology. 1969;101(3):297-301. 
223. Long J-A, Yakoubi R, Lee B, Guillotreau J, Autorino R, Laydner H, et al. Robotic 

Versus Laparoscopic Partial Nephrectomy for Complex Tumors: Comparison of Perioperative 
Outcomes. European urology. 2012;61(6):1257-62. 

224. Lau WKO, Blute ML, Weaver AL, Torres VE, Zincke H. Matched comparison of 
radical nephrectomy vs. nephron-sparing surgery in patients with unilateral renal cell 
carcinoma and a normal contralateral kidney. Urol Oncol. 2002;7(2):86-7. 

225. Tan H, Norton EC, Ye Z, Hafez KS, Gore JL, Miller DC. LOng-term survival 
following partial vs radical nephrectomy among older patients with early-stage kidney cancer. 

JAMA : the journal of the American Medical Association. 2012;307(15):1629-35. 
226. Duffey BG, Choyke PL, Glenn G, Grubb RL, Venzon D, Linehan WM, et al. The 
relationship between renal tumor size and metastases in patients with von hippel-lindau 

disease. The Journal of urology. 2004;172(1):63-5. 
227. Abaza R, Angell J. Robotic partial nephrectomy for renal cell carcinomas with venous 

tumor thrombus. Urology. 2013;81(6):1362-7. 
228. Haber GP, White WM, Crouzet S, White MA, Forest S, Autorino R, et al. Robotic 
versus laparoscopic partial nephrectomy: Single-surgeon matched cohort study of 150 

patients. Urology. 2010;76(3):754-8. 
229. Jawanda GG, Drachenberg D. Spontaneous regression of biopsy proven primary renal 

cell carcinoma: A case study. Canadian Urological Association journal = Journal de 
l'Association des urologues du Canada. 2012;6(5):E203-5. 
230. Flanigan RC, Salmon SE, Blumenstein BA, Bearman SI, Roy V, McGrath PC, et al. 

Nephrectomy Followed by Interferon Alfa-2b Compared with Interferon Alfa-2b Alone for 
Metastatic Renal-Cell Cancer. New England Journal of Medicine. 2001;345(23):1655-9. 

231. Mickisch GHJ, Garin A, van Poppel H, de Prijck L, Sylvester R. Radical nephrectomy 
plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic 
renal-cell carcinoma: a randomised trial. The Lancet. 2001;358(9286):966-70. 

232. Hanna N, Sun M, Meyer CP, Nguyen PL, Pal SK, Chang SL, et al. Survival Analyses 
of Metastatic Renal Cancer Patients Treated With Targeted Therapy With or Without 

Cytoreductive Nephrectomy: A National Cancer Data Base Study. Journal of Clinical 
Oncology. 2016. 
233. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. 

Temsirolimus, Interferon Alfa, or Both for Advanced Renal-Cell Carcinoma. New England 
Journal of Medicine. 2007;356(22):2271-81. 

234. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Phase 3 trial 
of everolimus for metastatic renal cell carcinoma. Cancer. 2010;116(18):4256-65. 
235. Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E, Wagstaff J, et al. Pazopanib in 

Locally Advanced or Metastatic Renal Cell Carcinoma: Results of a Randomized Phase III 
Trial. Journal of Clinical Oncology. 2010;28(6):1061-8. 

236. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative 
effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a 
randomised phase 3 trial. The Lancet.378(9807):1931-9. 



302 
 

237. Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. 

Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. New England Journal 
of Medicine. 2015;373(19):1814-23. 

238. Yao JC, Shah MH, Ito T, Bohas CL, Wolin EM, Van Cutsem E, et al. Everolimus for 
Advanced Pancreatic Neuroendocrine Tumors. New England Journal of Medicine. 
2011;364(6):514-23. 

239. Raymond E, Dahan L, Raoul J-L, Bang Y-J, Borbath I, Lombard-Bohas C, et al. 
Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. New England 

Journal of Medicine. 2011;364(6):501-13. 
240. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in 
Advanced Hepatocellular Carcinoma. New England Journal of Medicine. 2008;359(4):378-

90. 
241. Baselga J, Campone M, Piccart M, Burris HA, Rugo HS, Sahmoud T, et al. 

Everolimus in Postmenopausal Hormone-Receptor–Positive Advanced Breast Cancer. New 
England Journal of Medicine. 2012;366(6):520-9. 
242. Raman R, Vaena D. Immunotherapy in Metastatic Renal Cell Carcinoma: A 

Comprehensive Review. Biomed Res Int. 2015;2015:367354. 
243. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. 

Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. New England Journal of 
Medicine. 2015;373(19):1803-13. 
244. Escudier B, Osanto S, Ljungberg B, Porta C, Wagstaff J, Mulders P, et al. 

Multidisciplinary management of metastatic renal cell carcinoma in the era of targeted 
therapies. Cancer treatment reviews. 2012;38(2):127-32. 

245. Nabi G, Cleves A, Shelley M. Surgical management of localised renal cell carcinoma. 
Cochrane Database Syst Rev. 2010(3):Cd006579. 
246. Woodward ER, Ricketts C, Killick P, Gad S, Morris MR, Kavalier F, et al. Familial 

Non-VHL Clear Cell (Conventional) Renal Cell Carcinoma: Clinical Features, Segregation 
Analysis, and Mutation Analysis of FLCN. Clinical Cancer Research. 2008;14(18):5925-30. 

247. International. VFA. The VHL handbook. 2012. 
248. Li M, Kim WY. Two sides to every story: the HIF-dependent and HIF-independent 
functions of pVHL. J Cell Mol Med. 2011;15(2):187-95. 

249. Kaelin WG. The von Hippel-Lindau Tumor Suppressor Protein and Clear Cell Renal 
Carcinoma. Clinical Cancer Research. 2007;13(2):680s-4s. 

250. Zatyka M, da Silva NF, Clifford SC, Morris MR, Wiesener MS, Eckardt K-U, et al. 
Identification of Cyclin D1 and Other Novel Targets for the von Hippel-Lindau Tumor 
Suppressor Gene by Expression Array Analysis and Investigation of Cyclin D1 Genotype as a 

Modifier in von Hippel-Lindau Disease. Cancer research. 2002;62(13):3803-11. 
251. Raval RR, Lau KW, Tran MGB, Sowter HM, Mandriota SJ, Li J-L, et al. Contrasting 

Properties of Hypoxia-Inducible Factor 1 (HIF-1) and HIF-2 in von Hippel-Lindau-
Associated Renal Cell Carcinoma. Molecular and Cellular Biology. 2005;25(13):5675-86. 
252. Morris MR, Maina E, Morgan NV, Gentle D, Astuti D, Moch H, et al. Molecular 

genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell 
carcinoma. Journal of clinical pathology. 2004;57(7):706-11. 

253. Khan MN, Bhattacharyya T, Andrikopoulos P, Esteban MA, Barod R, Connor T, et al. 
Factor inhibiting HIF (FIH-1) promotes renal cancer cell survival by protecting cells from 
HIF-1alpha-mediated apoptosis. British journal of cancer. 2011;104(7):1151-9. 

254. Kroeze SG, Vermaat JS, van Brussel A, van Melick HH, Voest EE, Jonges TG, et al. 
Expression of nuclear FIH independently predicts overall survival of clear cell renal cell 



303 
 

carcinoma patients. European journal of cancer (Oxford, England : 1990). 2010;46(18):3375-

82. 
255. Menko FH, van Steensel MAM, Giraud S, Friis-Hansen L, Richard S, Ungari S, et al. 

Birt-Hogg-Dubé syndrome: diagnosis and management. The lancet oncology. 
2009;10(12):1199-206. 
256. Schmidt LS NM, Warren MB et al. Germline BHD-mutation spectrum and phenotype 

analysis of a large cohort of families with Birt-Hogg-Dube syndrome. Am J Hum Genet. 
2005;76(6):1023-33. Epub 2005 Apr 25. 

257. Nickerson ML WM, Toro JL, et al. Mutations in a novel gene lead to kidney tumors, 
lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube 
syndrome. Cancer Cell. 2002;2(2):157-64. 

258. Toro JR, Wei M-H, Glenn GM, Weinreich M, Toure O, Vocke C, et al. BHD 
mutations, clinical and molecular genetic investigations of Birt–Hogg–Dubé syndrome: a new 

series of 50 families and a review of published reports. Journal of medical genetics. 
2008;45(6):321-31. 
259. Zbar B, Alvord WG, Glenn G, Turner M, Pavlovich CP, Schmidt L, et al. Risk of 

Renal and Colonic Neoplasms and Spontaneous Pneumothorax in the Birt-Hogg-Dubé 
Syndrome. Cancer Epidemiology Biomarkers & Prevention. 2002;11(4):393-400. 

260. Nahorski MS, Lim DHK, Martin L, Gille JJP, McKay K, Rehal PK, et al. 
Investigation of the Birt–Hogg–Dubé tumour suppressor gene (FLCN) in familial and 
sporadic colorectal cancer. Journal of medical genetics. 2010;47(6):385-90. 

261. Schmidt LS, Warren MB, Nickerson ML, Weirich G, Matrosova V, Toro JR, et al. 
Birt-Hogg-Dubé Syndrome, a Genodermatosis Associated with Spontaneous Pneumothorax 

and Kidney Neoplasia, Maps to Chromosome 17p11.2. The American Journal of Human 
Genetics. 2001;69(4):876-82. 
262. Lim DHK, Rehal PK, Nahorski MS, Macdonald F, Claessens T, Van Geel M, et al. A 

new locus-specific database (LSDB) for mutations in the folliculin (FLCN) gene. Human 
mutation. 2010;31(1):E1043-E51. 

263. Vocke CD, Yang Y, Pavlovich CP, Schmidt LS, Nickerson ML, Torres-Cabala CA, et 
al. High Frequency of Somatic Frameshift BHD Gene Mutations in Birt-Hogg-Dubé–
Associated Renal Tumors. Journal of the National Cancer Institute. 2005;97(12):931-5. 

264. Okimoto K SJ, Kobayashi T,Mitani H, Hirayama Y, Nickerson ML, Warren MB, Zbar 
B, Schmidt LS, Hino O. A germ-line insertion in the Birt-Hogg-Dube (BHD) gene gives rise 

to the Nihon rat model of inherited renal cancer. Proc Natl Acad Sci U S A. 
2004;101(7):2023-7. Epub 04 Feb 9. 
265. Lingaas F, Comstock KE, Kirkness EF, Sørensen A, Aarskaug T, Hitte C, et al. A 

mutation in the canine BHD gene is associated with hereditary multifocal renal 
cystadenocarcinoma and nodular dermatofibrosis in the German Shepherd dog. Human 

molecular genetics. 2003;12(23):3043-53. 
266. Chen J, Futami K, Petillo D, Peng J, Wang P, Knol J, et al. Deficiency of FLCN in 
Mouse Kidney Led to Development of Polycystic Kidneys and Renal Neoplasia. PloS one. 

2008;3(10):e3581. 
267. Hasumi Y, Baba M, Ajima R, Hasumi H, Valera VA, Klein ME, et al. Homozygous 

loss of BHD causes early embryonic lethality and kidney tumor development with activation 
of mTORC1 and mTORC2. Proceedings of the National Academy of Sciences. 
2009;106(44):18722-7. 

268. Baba M, Hong S-B, Sharma N, Warren MB, Nickerson ML, Iwamatsu A, et al. 
Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and 



304 
 

is involved in AMPK and mTOR signaling. Proceedings of the National Academy of 

Sciences. 2006;103(42):15552-7. 
269. Hasumi H, Baba M, Hong S-B, Hasumi Y, Huang Y, Yao M, et al. Identification and 

characterization of a novel folliculin- interacting protein FNIP2. Gene. 2008;415(1–2):60-7. 
270. Takagi Y, Kobayashi T, Shiono M, Wang L, Piao X, Sun G, et al. Interaction of 
folliculin (Birt-Hogg-Dube gene product) with a novel Fnip1-like (FnipL/Fnip2) protein. 

Oncogene. 2008;27(40):5339-47. 
271. Hartman TR, Nicolas E, Klein-Szanto A, Al-Saleem T, Cash TP, Simon MC, et al. 

The role of the Birt-Hogg-Dube protein in mTOR activation and renal tumorigenesis. 
Oncogene. 2009;28(13):1594-604. 
272. Hong S-B, Oh H, Valera V, Stull J, Ngo D-T, Baba M, et al. Tumor suppressor FLCN 

inhibits tumorigenesis of a FLCN-null renal cancer cell line and regulates expression of key 
molecules in TGF-beta signaling. Molecular cancer. 2010;9(1):160. 

273. Klomp J, Petillo D, Niemi N, Dykema K, Chen J, Yang X, et al. Birt-Hogg-Dube renal 
tumors are genetically distinct from other renal neoplasias and are associated with up-
regulation of mitochondrial gene expression. BMC medical genomics. 2010;3(1):59. 

274. Preston RS, Philp A, Claessens T, Gijezen L, Dydensborg AB, Dunlop EA, et al. 
Absence of the Birt-Hogg-Dube gene product is associated with increased hypoxia- inducible 

factor transcriptional activity and a loss of metabolic flexibility. Oncogene. 
2011;30(10):1159-73. 
275. Kiuru M, Lehtonen R, Arola J, Salovaara R,  et al. Few FH mutations in sporadic 

counterparts of tumor types observed in hereditary leiomyomatosis and renal cell cancer 
families. Cancer Res. 2002;62(16):4554-7. 

276. Verine J, Pluvinage A, Bousquet G, Lehmann-Che J, de Bazelaire C, Soufir N, et al. 
Hereditary Renal Cancer Syndromes: An Update of a Systematic Review. European urology. 
2010;58(5):701-10. 

277. Lehtonen HJ , Majinen MJ, Kiuru M, et al. Increased HIF1 alpha in SDH and FH 
deficient tumors does not cause microsatellite instability. Int J Cancer. 2007;121(6):1386-9. 

278. Adams J, Radcliffe PJ, Pollard PJ. Novel insights into FH-associated disease are 
KEAPing the lid on oncogenic HIF signalling. Oncotarget. 2011;2(11):820-1. 
279. Morrison PJ, Donnelly D, Atkinson A, Maxwell AP. Advances in the genetics of 

familial renal cancer. Oncologist. 2010;15(6):532-8. Epub 2010 May 19. 
280. Malinoc A, Sullivan M, Wiech T, Schmid KW, Jilg C, Straeter J, et al. Biallelic 

inactivation of the SDHC gene in renal carcinoma associated with paraganglioma syndrome 
type 3. Endocrine-related cancer. 2012;19(3):283-90. 
281. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peçzkowska M, Morrison CD, et 

al. Early-Onset Renal Cell Carcinoma as a Novel Extraparaganglial Component of SDHB-
Associated Heritable Paraganglioma. The American Journal of Human Genetics. 

2004;74(1):153-9. 
282. Gill AJ, Pachter NS, Chou A, Young B, Clarkson A, Tucker KM, et al. Renal Tumors 
Associated With Germline SDHB Mutation Show Distinctive Morphology. The American 

journal of surgical pathology. 2011;35(10):1578-85 10.097/PAS.0b013e318227e7f4. 
283. Pollard PJ, Brière JJ, Alam NA, Barwell J, Barclay E, Wortham NC, et al. 

Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which 
result from germline FH and SDH mutations. Human molecular genetics. 2005;14(15):2231-
9. 

284. Loriot C, Burnichon N, Gadessaud N, Vescovo L, Amar L, Libe R, et al. Epithelial to 
mesenchymal transition is activated in metastatic pheochromocytomas and paragangliomas 



305 
 

caused by SDHB gene mutations. The Journal of clinical endocrinology and metabolism. 

2012;97(6):E954-62. 
285. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et 

al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl 
hydroxylase. Cancer cell. 2005;7(1):77-85. 
286. Linehan WM, Srinivasan R, Schmidt LS. The genetic basis of kidney cancer: a 

metabolic disease. Nature reviews Urology. 2010;7(5):277-85. 
287. Schmidt L, Dunn FM, Chen F, et al. Germline and somatic mutations in the tyrosine 

kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 
1997;16(1):68-73. 
288. Sweeney P, El-Naggar AK, Lin S-H, Pisters LL. Biological Significance of C-met 

Over Expression in Papillary Renal Cell Carcinoma. The Journal of urology. 2002;168(1):51-
5. 

289. Schmidt L, Junker K, Nakaigawa N, et al. Novel mutations of the MET proto-
oncogene in papillary renal carcinomas. Oncogene. 1999;18(14):2343-50. 
290. Zhuang  Z, Park WS, Park S, et al. Trisomy 7-harbouring non-random duplication of 

the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet. 1998;20(1):66-9. 
291. Morrison PJ, Donnelly DE, Atkinson AB, Maxwell AP. Advances in the Genetics of 

Familial Renal Cancer. The Oncologist. 2010;15(6):532-8. 
292. Ornstein DK, Lubensky IA, Venzon D, Zbar B, Linehan WM, Walther MM. 
Prevalence of microscopic tumors in normal appearing renal parenchyma of patients with 

hereditary papillary renal cancer. The Journal of urology. 2000;163(2):431-3. 
293. Nakaigawa N, Yao M, Baba M, Kato S, Kishida T, Hattori K, et al. Inactivation of 

von Hippel-Lindau Gene Induces Constitutive Phosphorylation of MET Protein in Clear Cell 
Renal Carcinoma. Cancer research. 2006;66(7):3699-705. 
294. Oh RR, Park JY, Lee JH, Shin MS, Kim HS, Lee SK, et al. Expression of HGF/SF and 

Met protein is associated with genetic alterations of VHL gene in primary renal cell 
carcinomas. APMIS. 2002;110(3):229-38. 

295. Horie S, Aruga S, Kawamata H, Okui N, Kakizoe T, Kitamura T. BIOLOGICAL 
ROLE OF HGF/MET PATHWAY IN RENAL CELL CARCINOMA. The Journal of 
urology. 1999;161(3):990-7. 

296. Linehan WM, Ricketts CJ. The metabolic basis of kidney cancer. Semin Cancer Biol. 
2013;23(1):46-55. 

297. Woodward ER, Skytte A-B, Cruger DG, Maher ER. Population-based survey of 
cancer risks in chromosome 3 translocation carriers. Genes, Chromosomes and Cancer. 
2010;49(1):52-8. 

298. Popova T, Hebert L, Jacquemin V, Gad S, Caux-Moncoutier V, Dubois-d’Enghien C, 
et al. Germline BAP1 Mutations Predispose to Renal Cell Carcinomas. The American Journal 

of Human Genetics. 2013;92(6):974-80. 
299. Farley MN, Schmidt LS, Mester JL, Pena-Llopis S, Pavia-Jimenez A, Christie A, et al. 
A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. 

Mol Cancer Res. 2013;11(9):1061-71. 
300. Qin Y, Deng Y, Ricketts CJ, Srikantan S, Wang E, Maher ER, et al. The tumor 

susceptibility gene TMEM127  is mutated in renal cell carcinomas and modulates 
endolysosomal function. Human molecular genetics. 2013. 
301. Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D, et al. Improved 

Identification of von Hippel-Lindau Gene Alterations in Clear Cell Renal Tumors. Clinical 
Cancer Research. 2008;14(15):4726-34. 



306 
 

302. Zbar B, Branch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of 

chromosome 3 in renal cell carcinoma. Nature. 1987;327(6124):721-4. 
303. Maher ER. Genomics and epigenomics of renal cell carcinoma. Seminars in Cancer 

Biology. (23(1)):10-7. 
304. Dreijerink K, Braga E, Kuzmin I, Geil L, Duh F-M, Angeloni D, et al. The candidate 
tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney 

tumorigenesis. Proceedings of the National Academy of Sciences. 2001;98(13):7504-9. 
305. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome sequencing 

identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. 
Nature. 2011;469(7331):539-42. 
306. Beroukhim R, Brunet J-P, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al. Patterns 

of Gene Expression and Copy-Number Alterations in von-Hippel Lindau Disease-Associated 
and Sporadic Clear Cell Carcinoma of the Kidney. Cancer research. 2009;69(11):4674-81. 

307. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic 
architecture and evolution of clear cell renal cell carcinomas defined by multiregion 
sequencing. Nat Genet. 2014;46(3):225-33. 

308. Kim Y-W, Liu TJ, Koul D, Tiao N, Feroze AH, Wang J, et al. Identification of novel 
synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA 

synthetic lethality screening against GBM. Neuro Oncol. 2011;13(4):367-75. 
309. Duns G, Hofstra RM, Sietzema JG, Hollema H, van Duivenbode I, Kuik A, et al. 
Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant 

chromatin regulation as a crucial step in ccRCC development. Human mutation. 2012. 
310. Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. Journal of clinical 

oncology : official journal of the American Society of Clinical Oncology. 2014;32(18):1968-
76. 
311. Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, et al. Systematic 

sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature. 
2010;463(7279):360-3. 

312. The Cancer Genome Atlas Research N. Comprehensive molecular characterization of 
clear cell renal cell carcinoma. Nature. 2013;499(7456):43-9. 
313. Pena-Llopis S, Vega-Rubin-de-Celis S, Liao A, Leng N, Pavia-Jimenez A, Wang S, et 

al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet. 2012;44(7):751-9. 
314. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated 

molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860-7. 
315. Gossage L, Murtaza M, Slatter AF, Lichtenstein CP, Warren A, Haynes B, et al. 
Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in 

clear cell renal cell carcinoma. Genes, chromosomes & cancer. 2014;53(1):38-51. 
316. Hakimi AA, Ostrovnaya I, Reva B, Schultz N, Chen YB, Gonen M, et al. Adverse 

outcomes in clear cell renal cell carcinoma with mutations of 3p21 epigenetic regulators 
BAP1 and SETD2: a report by MSKCC and the KIRC TCGA research network. Clinical 
cancer research : an official journal of the American Association for Cancer Research. 

2013;19(12):3259-67. 
317. Clifford SC, Prowse AH, Affara NA, Buys CHCM, Maher ER. Inactivation of the von 

Hippel–Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in 
primary renal cell carcinoma: Evidence for a VHL-independent pathway in clear cell renal 
tumourigenesis. Genes, Chromosomes and Cancer. 1998;22(3):200-9. 

318. Negrier S, Gravis G, Perol D, Chevreau C, Delva R, Bay JO, et al. Temsirolimus and 
bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced 



307 
 

renal cell carcinoma (TORAVA): a randomised phase 2 trial. The lancet oncology. 

2011;12(7):673-80. 
319. Wellcome Trust Sanger Institute.  [cited 2014 08/08/2014]. Available from: 

http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end
=969&coords=AA:AA. 
320. Morris MR, Hughes DJ, Tian YM, Ricketts CJ, Lau KW, Gentle D, et al. Mutation 

analysis of hypoxia-inducible factors HIF1A and HIF2A in renal cell carcinoma. Anticancer 
Res. 2009;29(11):4337-43. 

321. Qin Y, Deng Y, Ricketts CJ, Srikantan S, Wang E, Maher ER, et al. The tumor 
susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates 
endolysosomal function. Human molecular genetics. 2014;23(9):2428-39. 

322. Pulst SM. Genetic linkage analysis. Arch Neurol. 1999;56(6):667-72. 
323. Shuib S, Wei W, Sur H, Morris MR, McMullan D, Rattenberry E, et al. Copy number 

profiling in von hippel-lindau disease renal cell carcinoma. Genes, Chromosomes and Cancer. 
2011;50(7):479-88. 
324. Ricketts CJ, Morris MR, Gentle D, Brown M, Wake N, Woodward ER, et al. 

Genome-wide CpG island methylation analysis implicates novel genes in the pathogenesis of 
renal cell carcinoma. Epigenetics : official journal of the DNA Methylation Society. 

2012;7(3):278-90. 
325. Rahman N. Realizing the promise of cancer predisposition genes. Nature. 
2014;505(7483):302-8. 

326. Dong H, Wang S. Exploring the cancer genome in the era of next-generation 
sequencing. Front Med. 2012;6(1):48-55. 

327. Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA. DNA Sequencing: Clinical 
Applications of New DNA Sequencing Technologies. Circulation. 2012;125(7):931-44. 
328. Roukos DH, Ku CS. Clinical cancer genome and precision medicine. Ann Surg Oncol. 

2012;19(12):3646-50. 
329. Ku CS, Cooper DN, Iacopetta B, Roukos DH. Integrating next-generation sequencing 

into the diagnostic testing of inherited cancer predisposition. Clinical Genetics. 2013;83(1):2-
6. 
330. Ulahannan D, Kovac MB, Mulholland PJ, Cazier JB, Tomlinson I. Technical and 

implementation issues in using next-generation sequencing of cancers in clinical practice. 
British journal of cancer. 2013;109(4):827-35. 

331. Mardis ER. Next-Generation DNA Sequencing Methods. Annual Review of 
Genomics and Human Genetics. 2008;9(1):387-402. 
332. Hert DG, Fredlake CP, Barron AE. Advantages and limitations of next-generation 

sequencing technologies: a comparison of electrophoresis and non-electrophoresis methods. 
Electrophoresis. 2008;29(23):4618-26. 

333. Voelkerding KV, Dames S, Durtschi JD. Next Generation Sequencing for Clinical 
Diagnostics-Principles and Application to Targeted Resequencing for Hypertrophic 
Cardiomyopathy: A Paper from the 2009 William Beaumont Hospital Symposium on 

Molecular Pathology. J Mol Diagn. 2010;12(5):539-51. 
334. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Staehler M, et al. Sorafenib 

for Treatment of Renal Cell Carcinoma: Final Efficacy and Safety Results of the Phase III 
Treatment Approaches in Renal Cancer Global Evaluation Trial. Journal of Clinical 
Oncology. 2009;27(20):3312-8. 

335. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, et al. 
Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149(5):979-93. 

http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end=969&coords=AA:AA
http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end=969&coords=AA:AA


308 
 

336. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman 

CD, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. 
Nature. 2010;463(7278):191-6. 

337. Rabbani B, Tekin M, Mahdieh N. The promise of whole-exome sequencing in medical 
genetics. Journal of human genetics. 2014;59(1):5-15. 
338. Kiezun A, Garimella K, Do R, Stitziel NO, Neale BM, McLaren PJ, et al. Exome 

sequencing and the genetic basis of complex traits. Nat Genet. 2012;44(6):623-30. 
339. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et al. Targeted 

capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272-
6. 
340. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP, et al. 

Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate 
cancer. Nat Genet. 2012;44(6):685-9. 

341. Brastianos PK, Taylor-Weiner A, Manley PE, Jones RT, Dias-Santagata D, Thorner 
AR, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. 
Nat Genet. 2014;46(2):161-5. 

342. Frith MC, Pheasant M, Mattick JS. The amazing complexity of the human 
transcriptome. European journal of human genetics : EJHG. 2005;13(8):894-7. 

343. Stirzaker C, Taberlay PC, Statham AL, Clark SJ. Mining cancer methylomes: 
prospects and challenges. Trends in genetics : TIG. 2014;30(2):75-84. 
344. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al. Regions 

of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer 
coincide with nuclear laminag-associated domains. Nature Genetics. 2012;44(1):40-6. 

345. Hollander MC, Blumenthal GM, Dennis PA. PTEN loss in the continuum of common 
cancers, rare syndromes and mouse models. Nature reviews Cancer. 2011;11(4):289-301. 
346. Shuch B, Ricketts CJ, Vocke CD, Komiya T, Middelton LA, Kauffman EC, et al. 

Germline PTEN mutation Cowden syndrome: an underappreciated form of hereditary kidney 
cancer. The Journal of urology. 2013;190(6):1990-8. 

347. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, et al. Prognostic 
relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient 
selection for targeted therapy. Cancer. 2007;109(11):2257-67. 

348. Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, et al. Germline mutations of 
the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat 

Genet. 1997;16(1):64-7. 
349. National Cancer Institute.  [cited 2011]. Available from: http://cancergenome.nih.gov/. 
350. (ESP) NGESP. Exome Variant Server Seattle2013 [cited 2011]. Available from: 

http://evs.gs.washington.edu/EVS/. 
351. Krimpenfort P, Ijpenberg A, Song J-Y, van der Valk M, Nawijn M, Zevenhoven J, et 

al. p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature. 
2007;448(7156):943-6. 
352. Veeriah S, Taylor BS, Meng S, Fang F, Yilmaz E, Vivanco I, et al. Somatic mutations 

of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human 
malignancies. Nat Genet. 2010;42(1):77-82. 

353. Ananth S, Knebelmann B, Gruning W, Dhanabal M, Walz G, Stillman IE, et al. 
Transforming Growth Factor {beta}1 Is a Target for the von Hippel-Lindau Tumor 
Suppressor and a Critical Growth Factor for Clear Cell Renal Carcinoma. Cancer research. 

1999;59(9):2210-6. 

http://cancergenome.nih.gov/
http://evs.gs.washington.edu/EVS/


309 
 

354. Shang D, Liu Y, Yang P, Chen Y, Tian Y. TGFBI-promoted Adhesion, Migration and 

Invasion of Human Renal Cell Carcinoma Depends on Inactivation of von Hippel-Lindau 
Tumor Suppressor. Urology. 2012;79(4):966.e1-.e7. 

355. Laharanne E, Chevret E, Idrissi Y, Gentil C, Longy M, Ferrer J, et al. CDKN2A-
CDKN2B deletion defines an aggressive subset of cutaneous T-cell lymphoma. Mod Pathol. 
2010;23(4):547-58. 

356. Zhao Y, Li Y, Lu H, Chen J, Zhang Z, Zhu Z-Z. Association of Copy Number Loss of 
CDKN2B and PTCH1 With Poor Overall Survival in Patients With Pulmonary Squamous 

Cell Carcinoma. Clinical Lung Cancer. 2011;12(5):328-34. 
357. Hannon GJ, Beach D. pl5INK4B is a potentia| effector of TGF-[beta]-induced cell 
cycle arrest. Nature. 1994;371(6494):257-61. 

358. Laud K, Marian C, Avril MF, Barrois M, Chompret A, Goldstein AM, et al. 
Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 

melanoma index cases considered to be at heightened risk of melanoma. Journal of medical 
genetics. 2006;43(1):39-47. 
359. Gu F, Pfeiffer RM, Bhattacharjee S, Han SS, Taylor PR, Berndt S, et al. Common 

genetic variants in the 9p21 region and their associations with multiple tumours. British 
journal of cancer. 2013. 

360. Astuti D, Morris M, Krona C, Abel F, Gentle D, Martinsson T, et al. Investigation of 
the role of SDHB inactivation in sporadic phaeochromocytoma and neuroblastoma. British 
journal of cancer. 2004;91(10):1835-41. 

361. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio 
Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer 

Genomics Data. Cancer Discov. 2012;2(5):401-4. 
362. Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al. Patterns 
of gene expression and copy-number alterations in von-hippel lindau disease-associated and 

sporadic clear cell carcinoma of the kidney. Cancer research. 2009;69(11):4674-81. 
363. Roussel MF. The INK4 family of cell cycle inhibitors in cancer. Oncogene. 

1999;18(38):5311-7. 
364. Stassar MJJG, Devitt G, Brosius M, Rinnab L, Prang J, Schradin T, et al. 
Identification of human renal cell carcinoma associated genes by suppression subtractive 

hybridization. British journal of cancer. 2001;85(9):1372-82. 
365. Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM, et al. HIF 

activation identifies early lesions in VHL kidneys: Evidence for site-specific tumor suppressor 
function in the nephron. Cancer cell. 2002;1(5):459-68. 
366. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. 

The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent 
proteolysis. Nature. 1999;399(6733):271-5. 

367. Kondo K, Kim WY, Lechpammer M, Kaelin WG, Jr. Inhibition of HIF2α Is Sufficient 
to Suppress pVHL-Defective Tumor Growth. PLoS Biol. 2003;1(3):e83. 
368. Ryan MJ, Johnson G, Kirk J, Fuerstenberg SM, Zager RA, Torok-Storb B. HK-2: an 

immortalized proximal tubule epithelial cell line from normal adult human kidney. Kidney 
Int. 1994;45(1):48-57. 

369. Mester JL, Zhou M, Prescott N, Eng C. Papillary renal cell carcinoma is associated 
with PTEN hamartoma tumor syndrome. Urology. 2012;79(5):1187.e1-7. 
370. Lee HJ, Lee HY, Lee JH, Lee H, Kang G, Song JS, et al. Prognostic significance of 

biallelic loss of PTEN in clear cell renal cell carcinoma. The Journal of urology. 
2014;192(3):940-6. 



310 
 

371. Jiang B-H, Liu L-Z. PI3K/PTEN signaling in tumorigenesis and angiogenesis. 

Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 2008;1784(1):150-8. 
372. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the 

cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 
1994;368(6473):753-6. 
373. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A 

cell cycle regulator potentially involved in genesis of many tumor types. Science (New York, 
NY). 1994;264(5157):436-40. 

374. Gilley J, Fried M. One INK4 gene and no ARF at the Fugu equivalent of the human 
INK4A/ARF/INK4B tumour suppressor locus. Oncogene. 2001;20(50):7447-52. 
375. Kazianis S, Khanolkar VA, Nairn RS, Rains JD, Trono D, Garcia R, et al. Structural 

organization, mapping, characterization and evolutionary relationships of CDKN2 gene 
family members in Xiphophorus fishes. Comparative Biochemistry and Physiology Part C: 

Toxicology & Pharmacology. 2004;138(3):291-9. 
376. Yuan C, Li J, Selby TL, Byeon I-JL, Tsai M-D. Tumor suppressor INK4: comparisons 
of conformational properties between p16INK4A and p18INK4C. J Mol Biol. 

1999;294(1):201-11. 
377. Kazianis S, Morizot DC, Coletta LD, Johnston DA, Woolcock B, Vielkind JR, et al. 

Comparative structure and characterization of a CDKN2 gene in a Xiphophorus fish 
melanoma model. Oncogene. 1999;18(36):5088-99. 
378. Quelle DE, Cheng M, Ashmun RA, Sherr CJ. Cancer-associated mutations at the 

INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame 
protein p19ARF. Proceedings of the National Academy of Sciences. 1997;94(2):669-73. 

379. Boström A-K, Lindgren D, Johansson ME, Axelson H. Effects of TGF-β signaling in 
clear cell renal cell carcinoma cells. Biochemical and Biophysical Research Communications. 
2013;435(1):126-33. 

380. Suzuki H, Zhou X, Yin J, Lei J, Jiang HY, Suzuki Y, et al. Intragenic mutations of 
CDKN2B and CDKN2A in primary human esophageal cancers. Human molecular genetics. 

1995;4(10):1883-7. 
381. Costa-Guda J SC, Parekh VI, Agarwal SK. Germline and Somatic Mutations in 
Cyclin-Dependent Kinase Inhibitor Genes CDKN1A, CDKN2B, and CDKN2C in Sporadic 

Parathyroid Adenomas. . Hormones and Cancer. 2013;4(5):301-7. 
382. Kanchi KL, Johnson KJ, Lu C, McLellan MD, Leiserson MDM, Wendl MC, et al. 

Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun. 2014;5. 
383. Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, et al. Variants in the 
CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat 

Genet. 2009;41(8):905-8. 
384. Guney S, Jardin F, Bertrand P, Mareschal S, Parmentier F, Picquenot JM, et al. 

Several mechanisms lead to the inactivation of the CDKN2A (P16), P14ARF, or CDKN2B 
(P15) genes in the GCB and ABC molecular DLBCL subtypes. Genes, chromosomes & 
cancer. 2012;51(9):858-67. 

385. Weber RG, Hoischen A, Ehrler M, Zipper P, Kaulich K, Blaschke B, et al. Frequent 
loss of chromosome 9, homozygous CDKN2A/p14(ARF)/CDKN2B deletion and low TSC1 

mRNA expression in pleomorphic xanthoastrocytomas. Oncogene. 2007;26(7):1088-97. 
386. Heyman M, Rasool O, Brandter L, Liu Y, Grander D, Einhorn S, et al. Exclusive 
p15INK4B gene deletions in acute lymphocytic leukemia include the E1 beta exon of the 

p16INK4 gene [letter]. Blood. 1996;87(4):1657-8. 



311 
 

387. Zhao Y, Li Y, Lu H, Chen J, Zhang Z, Zhu ZZ. Association of copy number loss of 

CDKN2B and PTCH1 with poor overall survival in patients with pulmonary squamous cell 
carcinoma. Clin Lung Cancer. 2011;12(5):328-34. 

388. Humeniuk R, Rosu-Myles M, Fares J, Koller R, Bies J, Wolff L. The role of tumor 
suppressor p15Ink4b in the regulation of hematopoietic progenitor cell fate. Blood Cancer J. 
2013;3(1):e99. 

389. Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, et al. Epigenetic 
silencing of tumour suppressor gene p15 by its antisense RNA. Nature. 2008;451(7175):202-

6. 
390. Gardiner RB, Morash BA, Riddell C, Wang H, Fernandez CV, Yhap M, et al. Using 
MS-MLPA as an efficient screening tool for detecting 9p21 abnormalities in pediatric acute 

lymphoblastic leukemia. Pediatr Blood Cancer. 2012;58(6):852-9. 
391. Lindberg D, Åkerström G, Westin G. Evaluation of CDKN2C/p18, CDKN1B/p27 and 

CDKN2B/p15 mRNA expression, and CpG methylation status in sporadic and MEN1-
associated pancreatic endocrine tumours. Clinical endocrinology. 2008;68(2):271-7. 
392. Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor 

suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092-6. 
393. Lopez F, Sampedro T, Llorente JL, Dominguez F, Hermsen M, Suarez C, et al. Utility 

of MS-MLPA in DNA methylation profiling in primary laryngeal squamous cell carcinoma. 
Oral Oncol. 2014;50(4):291-7. 
394. Bindra RS, Vasselli JR, Stearman R, Linehan WM, Klausner RD. VHL-mediated 

Hypoxia Regulation of Cyclin D1 in Renal Carcinoma Cells. Cancer research. 
2002;62(11):3014-9. 

395. Hedberg Y, Davoodi E, Roos G, Ljungberg B, Landberg G. Cyclin-D1 expression in 
human renal-cell carcinoma. International journal of cancer Journal international du cancer. 
1999;84(3):268-72. 

396. Latres E, Malumbres M, Sotillo R, Martin J, Ortega S, Martin-Caballero J, et al. 
Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation 

and tumorigenesis. Embo J. 2000;19(13):3496-506. 
397. Aesoy R, Gradin K, Aasrud KS, Hoivik EA, Ruas JL, Poellinger L, et al. Regulation 
of CDKN2B expression by interaction of Arnt with Miz-1--a basis for functional integration 

between the HIF and Myc gene regulatory pathways. Molecular cancer. 2014;13:54. 
398. Van Allen EM, Wagle N, Levy MA. Clinical Analysis and Interpretation of Cancer 

Genome Data. Journal of Clinical Oncology. 2013;31(15):1825-33. 
399. Li MX, Gui HS, Kwan JS, Bao SY, Sham PC. A comprehensive framework for 
prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res. 

2012;40(7):e53. 
400. Parsons DW, Jones S, Zhang X, Lin JC-H, Leary RJ, Angenendt P, et al. An 

Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science (New York, NY). 
2008;321(5897):1807-12. 
401. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and 

IDH2 Mutations in Gliomas. New England Journal of Medicine. 2009;360(8):765-73. 
402. Beiko J, Suki D, Hess KR, Fox BD, Cheung V, Cabral M, et al. IDH1 mutant 

malignant astrocytomas are more amenable to surgical resection and have a survival benefit 
associated with maximal surgical resection. Neuro Oncol. 2014;16(1):81-91. 
403. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling 

pathways in human pancreatic cancers revealed by global genomic analyses. Science (New 
York, NY). 2008;321(5897):1801-6. 



312 
 

404. Grasso CS, Wu Y-M, Robinson DR, Cao X, Dhanasekaran SM, Khan AP, et al. The 

mutational landscape of lethal castration-resistant prostate cancer. Nature. 
2012;487(7406):239-43. 

405. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. Cell migration and 
invasion assays. Methods. 2005;37(2):208-15. 
406. Schaefer C, Bromberg Y, Achten D, Rost B. Disease-related mutations predicted to 

impact protein function. BMC Genomics. 2012;13(Suppl 4):S11. 
407. Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N. Improving the prediction of the 

functional impact of cancer mutations by baseline tolerance transformation. Genome 
medicine. 2012;4(11):89. 
408. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: 

application to cancer genomics. Nucleic Acids Res. 2011;39(17):e118. 
409. Topham CM, Srinivasan N,Blundell TL. Prediction of the stability of protein mutants 

based on structural environment-dependent amino acid substitution and propensity tables. 
Protein engineering. 1997;10(1):7-21. 
410. Muranen T, Meric-Bernstam F, Mills Gordon B. Promising Rationally Derived 

Combination Therapy with PI3K and CDK4/6 Inhibitors. Cancer cell. 2014;26(1):7-9. 
411. Wrensch M, Jenkins RB, Chang JS, Yeh R-F, Xiao Y, Decker PA, et al. Variants in 

the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility. Nat 
Genet. 2009;41(8):905-8. 
412. Nijman SM. Synthetic lethality: general principles, utility and detection using genetic 

screens in human cells. FEBS Lett. 2011;585(1):1-6. 
413. Reinhardt HC, Jiang H, Hemann MT, Yaffe MB. Exploiting synthetic lethal 

interactions for targeted cancer therapy. Cell cycle (Georgetown, Tex). 2009;8(19):3112-9. 
414. Sandmann T, Boutros M. Screens, maps & networks: from genome sequences to 
personalized medicine. Current opinion in genetics & development. 2012;22(1):36-44. 

415. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A 
Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras 

Oncogene. Cell. 2009;137(5):835-48. 
416. Mizuarai S, Kotani H. Synthetic lethal interactions for the development of cancer 
therapeutics: biological and methodological advancements. Human genetics. 

2010;128(6):567-75. 
417. Nijman SMB. Synthetic lethality: General principles, utility and detection using 

genetic screens in human cells. FEBS Letters. 2011;585(1):1-6. 
418. Shaheen M, Allen C, Nickoloff JA, Hromas R. Synthetic lethality: exploiting the 
addiction of cancer to DNA repair. Blood. 2011;117(23):6074-82. 

419. Iglehart JD, Silver DP. Synthetic lethality--a new direction in cancer-drug 
development. The New England journal of medicine. 2009;361(2):189-91. 

420. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of 
Poly(ADP-Ribose) Polymerase in Tumors from BRCA Mutation Carriers. New England 
Journal of Medicine. 2009;361(2):123-34. 

421. Garber K. PARP inhibitors bounce back. Nat Rev Drug Discov. 2013;12(10):725-7. 
422. Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB. p53-deficient cells rely on ATM- 

and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival 
after DNA damage. Cancer cell. 2007;11(2):175-89. 
423. de Castro Carpeño J, Belda-Iniesta C. KRAS mutant NSCLC, a new opportunity for 

the synthetic lethality therapeutic approach. Translational Lung Cancer Research. 
2013;2(2):142-51. 



313 
 

424. Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing 

from live-cell and live-animal bioluminescent imaging. Nucleic Acids Res. 2006;34(1):322-
33. 

425. Bommi-Reddy A, Almeciga I, Sawyer J, Geisen C, Li W, Harlow E, et al. Kinase 
requirements in human cells: III. Altered kinase requirements in VHL-/- cancer cells detected 
in a pilot synthetic lethal screen. Proceedings of the National Academy of Sciences of the 

United States of America. 2008;105(43):16484-9. 
426. Voytik-Harbin SL, Brightman AO, Waisner B, Lamar CH, Badylak SF. Application 

and evaluation of the alamarBlue assay for cell growth and survival of fibroblasts. In Vitro 
Cell Dev Biol Anim. 1998;34(3):239-46. 
427. Kaelin WG. Use and Abuse of RNAi to Study Mammalian Gene Function. Science 

(New York, NY). 2012;337(6093):421-2. 
428. Falkenberg KJ, Saunders DN, Simpson KJ. A High-Throughput, Multiplex Cell Death 

Assay Using an RNAi Screening Approach. Cold Spring Harb Protoc. 
2014;2014(6):pdb.prot080267. 
429. Lu X, Boora U, Seabra L, Rabai EM, Fenton J, Reiman A, et al. Knockdown of 

Slingshot 2 (SSH2) serine phosphatase induces Caspase3 activation in human carcinoma cell 
lines with the loss of the Birt-Hogg-Dube tumour suppressor gene (FLCN). Oncogene. 

2014;33(8):956-65. 
430. Capra M, Nuciforo PG, Confalonieri S, Quarto M, Bianchi M, Nebuloni M, et al. 
Frequent Alterations in the Expression of Serine/Threonine Kinases in Human Cancers. 

Cancer research. 2006;66(16):8147-54. 
431. Yamamoto N, Honma M, Suzuki H. Off-Target Serine/Threonine Kinase 10 Inhibition 

by Erlotinib Enhances Lymphocytic Activity Leading to Severe Skin Disorders. Molecular 
Pharmacology. 2011;80(3):466-75. 
432. Gore ME, Griffin CL, Hancock B, Patel PM, Pyle L, Aitchison M, et al. Interferon 

alfa-2a versus combination therapy with interferon alfa-2a, interleukin-2, and fluorouracil in 
patients with untreated metastatic renal cell carcinoma (MRC RE04/EORTC GU 30012): an 

open-label randomised trial. The Lancet.375(9715):641-8. 
433. Gordon MS, Hussey M, Nagle RB, Lara PN, Mack PC, Dutcher J, et al. Phase II 
Study of Erlotinib in Patients With Locally Advanced or Metastatic Papillary Histology Renal 

Cell Cancer: SWOG S0317. Journal of Clinical Oncology. 2009;27(34):5788-93. 
434. Barrisford GW SE, Rosner IL,  Linehan WM,  Bratslavsky G. Familial Renal Cancer: 

Molecular Genetics and Surgical Management. International journal of surgical oncology. 
2011;2011. 
435. An J, Rettig MB. Epidermal growth factor receptor inhibition sensitizes renal cell 

carcinoma cells to the cytotoxic effects of bortezomib. Molecular cancer therapeutics. 
2007;6(1):61-9. 

436. Minner S, Rump D, Tennstedt P, Simon R, Burandt E, Terracciano L, et al. Epidermal 
growth factor receptor protein expression and genomic alterations in renal cell carcinoma. 
Cancer. 2012;118(5):1268-75. 

437. Ding Y, Huang D, Zhang Z, Smith J, Petillo D, Looyenga BD, et al. Combined Gene 
Expression Profiling and RNAi Screening in Clear Cell Renal Cell Carcinoma Identify PLK1 

and Other Therapeutic Kinase Targets. Cancer research. 2011;71(15):5225-34. 
438. Fukumura K, Yamashita Y, Kawazu M, Sai E, Fujiwara S, Nakamura N, et al. STK10 
missense mutations associated with anti-apoptotic function. Oncol Rep. 2013;30(4):1542-8. 

439. Zhang H, Pelech S. Using protein microarrays to study phosphorylation-mediated 
signal transduction. Seminars in Cell & Developmental Biology. 2012;23(8):872-82. 



314 
 

440. Reiman A, Lu X, Seabra L, Boora U, Nahorski MS, Wei W, et al. Gene expression 

and protein array studies of folliculin-regulated pathways. Anticancer Res. 2012;32(11):4663-
70. 

441. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature. 2001;411(6835):355-
65. 
442. Looyenga BD, Furge KA, Dykema KJ, Koeman J, Swiatek PJ, Giordano TJ, et al. 

Chromosomal amplification of leucine-rich repeat kinase-2 (LRRK2) is required for 
oncogenic MET signaling in papillary renal and thyroid carcinomas. Proceedings of the 

National Academy of Sciences. 2011;108(4):1439-44. 
443. Micci F, Panagopoulos I, Haugom L, Andersen HK, Tjønnfjord GE, Beiske K, et al. 
t(3;21)(q22;q22) leading to truncation of the RYK gene in atypical chronic myeloid leukemia. 

Cancer letters. 2009;277(2):205-11. 
444. Katso RMT, Manek S, Ganjavi H, Biddolph S, Charnock MFL, Bradburn M, et al. 

Overexpression of H-Ryk in Epithelial Ovarian Cancer: Prognostic Significance of Receptor 
Expression. Clinical Cancer Research. 2000;6(8):3271-81. 
445. Halford MM, Stacker SA. Revelations of the RYK receptor. BioEssays : news and 

reviews in molecular, cellular and developmental biology. 2001;23(1):34-45. 
446. Berndt JD, Aoyagi A, Yang P, Anastas JN, Tang L, Moon RT. Mindbomb 1, an E3 

ubiquitin ligase, forms a complex with RYK to activate Wnt/β-catenin signaling. The Journal 
of Cell Biology. 2011;194(5):737-50. 
447. Banumathy G, Cairns P. Signaling pathways in renal cell carcinoma. Cancer biology 

& therapy. 2010;10(7):658-64. 
448. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, et al. Efficacy of 

everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled 
phase III trial. The Lancet.372(9637):449-56. 
449. Habu M, Koyama H, Kishida M, Kamino M, Iijima M, Fuchigami T, et al. Ryk is 

essential for Wnt-5a-dependent invasiveness in human glioma. Journal of biochemistry. 2014. 
450. Walter SA, Cutler RE, Martinez R, Gishizky M, Hill RJ. Stk10, a New Member of the 

Polo-like Kinase Kinase Family Highly Expressed in Hematopoietic Tissue. Journal of 
Biological Chemistry. 2003;278(20):18221-8. 
451. Barr FA, Sillje HHW, Nigg EA. Polo-like kinases and the orchestration of cell 

division. Nat Rev Mol Cell Biol. 2004;5(6):429-41. 
452. Kim M, Katayose Y, Li Q, Rakkar ANS, Li Z, Hwang S-G, et al. Recombinant 

Adenovirus Expressing Von Hippel-Lindau-Mediated Cell Cycle Arrest Is Associated with 
the Induction of Cyclin-Dependent Kinase Inhibitor p27Kip1. Biochemical and Biophysical 
Research Communications. 1998;253(3):672-7. 

453. Ellinger-Ziegelbauer H, Karasuyama H, Yamada E, Tsujikawa K, Todokoro K, 
Nishida E. Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the 

G2/M transition in somatic cells. Genes to Cells. 2000;5(6):491-8. 
454. Center MSKC. cBioportal for Cancer Genomics 2015 [cited 2015 6/7/2015]. 
455. Bignell G, Smith R, Hunter C, Stephens P, Davies H, Greenman C, et al. Sequence 

analysis of the protein kinase gene family in human testicular germ-cell tumors of adolescents 
and adults. Genes, Chromosomes and Cancer. 2006;45(1):42-6. 

456. Wellcome Trust Institute. Available from: 
http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end
=969&coords=AA:AA. 

http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end=969&coords=AA:AA
http://www.sanger.ac.uk/perl/genetics/CGP/cosmic?action=bygene&ln=STK10&start=1&end=969&coords=AA:AA


315 
 

457. Degenhardt Y, Lampkin T. Targeting Polo-like kinase in cancer therapy. Clinical 

cancer research : an official journal of the American Association for Cancer Research. 
2010;16(2):384-9. 

458. Cholewa BD, Liu X, Ahmad N. The role of polo-like kinase 1 in carcinogenesis: cause 
or consequence? Cancer research. 2013;73(23):6848-55. 
459. Olmos D, Swanton C, de Bono J. Targeting Polo-Like Kinase: Learning Too Little 

Too Late? Journal of Clinical Oncology. 2008;26(34):5497-9. 
460. Bhinder B, Djaballah H. Systematic analysis of RNAi reports identifies dismal 

commonality at gene-level and reveals an unprecedented enrichment in pooled shRNA 
screens. Combinatorial chemistry & high throughput screening. 2013;16(9):665-81. 
461. Komlodi-Pasztor E, Sackett DL, Fojo AT. Inhibitors Targeting Mitosis: Tales of How 

Great Drugs against a Promising Target Were Brought Down by a Flawed Rationale. Clinical 
Cancer Research. 2012;18(1):51-63. 

462. Olmos D, Barker D, Sharma R, Brunetto AT, Yap TA, Taegtmeyer AB, et al. Phase I 
study of GSK461364, a specific and competitive Polo-like kinase 1 inhibitor, in patients with 
advanced solid malignancies. Clinical cancer research : an official journal of the American 

Association for Cancer Research. 2011;17(10):3420-30. 
463. Boellner S BK-F. Reverse Phase Protein Arrays-Quantitive Assessment of Multiple 

Biomarkers in Biopsies for Clinical Use. Microarrays. 2015;4:9-114. 
464. Larance M, Lamond AI. Multidimensional proteomics for cell biology. Nat Rev Mol 
Cell Biol. 2015;16(5):269-80. 

465. Boersema PJ, Kahraman A, Picotti P. Proteomics beyond large-scale protein 
expression analysis. Current Opinion in Biotechnology. 2015;34(0):162-70. 

466. Workman P, Al-Lazikani B, Clarke PA. Genome-based cancer therapeutics: targets, 
kinase drug resistance and future strategies for precision oncology. Curr Opin Pharmacol. 
2013;13(4):486-96. 

467. Su F, Viros A, Milagre C, Trunzer K, Bollag G, Spleiss O, et al. RAS Mutations in 
Cutaneous Squamous-Cell Carcinomas in Patients Treated with BRAF Inhibitors. New 

England Journal of Medicine. 2012;366(3):207-15. 
468. van Staveren WCG, Solís DYW, Hébrant A, Detours V, Dumont JE, Maenhaut C. 
Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? 

Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2009;1795(2):92-103. 
469. Domcke S, Sinha R, Levine DA, Sander C, Schultz N. Evaluating cell lines as tumour 

models by comparison of genomic profiles. Nat Commun. 2013;4. 
470. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. 
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The 

New England journal of medicine. 2012;366(10):883-92. 
471. Smith C. Sharpening the tools of RNA interference. Nat Methods. 2006;3(6):475-84. 

472. Genome editing for all. Nat Biotech. 2014;32(4):295-. 
473. Malhotra M, Tomaro-Duchesneau C, Saha S, Prakash S. Systemic siRNA Delivery via 
Peptide-Tagged Polymeric Nanoparticles, Targeting PLK1 Gene in a Mouse Xenograft Model 

of Colorectal Cancer. International journal of biomaterials. 2013;2013:252531. 
474. Mateo J, Ong M, Tan DSP, Gonzalez MA, de Bono JS. Appraising iniparib, the PARP 

inhibitor that never was[mdash]what must we learn? Nature reviews Clinical oncology. 
2013;10(12):688-96. 
475. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. 

COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic 
Acids Res. 2015;43(D1):D805-D11. 



316 
 

476. Turner NC, Ro J, André F, Loi S, Verma S, Iwata H, et al. Palbociclib in Hormone-

Receptor–Positive Advanced Breast Cancer. New England Journal of Medicine. 
2015;0(0):null. 

477. Canepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF, et al. 
INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. 
IUBMB life. 2007;59(7):419-26. 

478. Lin CC, Su WC, Yen CJ, Hsu CH, Su WP, Yeh KH, et al. A phase I study of two 
dosing schedules of volasertib (BI 6727), an intravenous polo-like kinase inhibitor, in patients 

with advanced solid malignancies. British journal of cancer. 2014;110(10):2434-40. 
479. Stadler WM, Vaughn DJ, Sonpavde G, Vogelzang NJ, Tagawa ST, Petrylak DP, et al. 
An open-label, single-arm, phase 2 trial of the Polo-like kinase inhibitor volasertib (BI 6727) 

in patients with locally advanced or metastatic urothelial cancer. Cancer. 2014;120(7):976-82. 
480. Hingorani AD, Windt DAvd, Riley RD, Abrams K, Moons KGM, Steyerberg EW, et 

al. Prognosis research strategy (PROGRESS) 4: Stratified medicine research. Bmj. 2013;346. 
481. Ricketts CJ, Linehan WM. Intratumoral heterogeneity in kidney cancer. Nat Genet. 
2014;46(3):214-5. 

482. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing 
reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148(5):886-

95. 
483. Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical 
trials. Nat Rev Drug Discov. 2013;12(5):358-69. 

484. Aparicio S, Caldas C. The Implications of Clonal Genome Evolution for Cancer 
Medicine. New England Journal of Medicine. 2013;368(9):842-51. 

485. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. 
Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. 
Nature medicine. 2014. 

486. Grover PK, Cummins AG, Price TJ, Roberts-Thomson IC, Hardingham JE. 
Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by 

EpCAM-based methodology for basic and clinical cancer research. Annals of Oncology. 
2014. 
487. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-

invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. 
Nature. 2013;497(7447):108-12. 

488. Lee SH, Sim SH, Kim JY, Cha S, Song A. Application of cancer genomics to solve 
unmet clinical needs. Genomics & informatics. 2013;11(4):174-9. 
489. Chinthapalli K. NHS pilots new genetic testing service for cancer patients. Bmj. 

2013;346. 
490. Chin L, Andersen JN, Futreal PA. Cancer genomics: from discovery science to 

personalized medicine. Nature medicine. 2011;17(3):297-303. 
491. Garraway LA. Genomics-Driven Oncology: Framework for an Emerging Paradigm. 
Journal of Clinical Oncology. 2013;31(15):1806-14. 

492. Greene MF, Phimister EG. Screening for Trisomies in Circulating DNA. New 
England Journal of Medicine. 2014;370(9):874-5. 

493. NCRN. CRUK Stratified Medicine Study 2013. Available from: 
http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=10622. 
494. Kris MG, Johnson BE, Berry LD, Kwiatkowski DJ, Iafrate AJ, Wistuba, II, et al. 

Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 
: the journal of the American Medical Association. 2014;311(19):1998-2006. 

http://public.ukcrn.org.uk/Search/StudyDetail.aspx?StudyID=10622


317 
 

495. De Angelis R, Sant M, Coleman MP, Francisci S, Baili P, Pierannunzio D, et al. 

Cancer survival in Europe 1999-2007 by country and age: results of EUROCARE--5-a 
population-based study. The lancet oncology. 2014;15(1):23-34. 

496. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. 
Multitarget Stool DNA Testing for Colorectal-Cancer Screening. New England Journal of 
Medicine. 2014;370(14):1287-97. 

497. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical 
Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders. New England Journal 

of Medicine. 2013;369(16):1502-11. 
498. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG 
recommendations for reporting of incidental findings in clinical exome and genome 

sequencing. Genet Med. 2013;15(7):565-74. 
499. Bombard Y, Robson M, Offit K. Revealing the incidentalome when targeting the 

tumor genome. JAMA : the journal of the American Medical Association. 2013;310(8):795-6. 
500. Kocarnik JM, Fullerton SM. Returning pleiotropic results from genetic testing to 
patients and research participants. JAMA : the journal of the American Medical Association. 

2014;311(8):795-6. 
501. Jarvik GP, Amendola LM, Berg JS, Brothers K, Clayton EW, Chung W, et al. Return 

of Genomic Results to Research Participants: The Floor, the Ceiling, and the Choices In 
Between. Am J Hum Genet. 2014. 
502. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: 

public archive of relationships among sequence variation and human phenotype. Nucleic 
Acids Res. 2014;42(Database issue):D980-5. 

503. Evans BJ, Burke W, Jarvik GP. The FDA and genomic tests--getting regulation right. 
The New England journal of medicine. 2015;372(23):2258-64. 
504. Bauer DC, Gaff C, Dinger ME, Caramins M, Buske FA, Fenech M, et al. Genomics 

and personalised whole-of-life healthcare. Trends in molecular medicine. 2014(0). 
505. Kamalakaran S, Varadan V, Janevski A, Banerjee N, Tuck D, McCombie WR, et al. 

Translating next generation sequencing to practice: Opportunities and necessary steps. 
Molecular oncology. 2013;7(4):743-55. 
506. MacConaill LE. Existing and Emerging Technologies for Tumor Genomic Profiling. 

Journal of Clinical Oncology. 2013;31(15):1815-24. 
507. Physicians RCo. Specialty report: clinical genetics 2011. Available from: 

http://www.rcplondon.ac.uk/sites/default/files/2011_census_-_clinical_genetics_report_0.pdf. 
508. National Centre for Clinical Excellence. Gene expression profiling and expanded 
immunohistochemistry tests for guiding adjuvant chemotherapy decisions in early breast 

cancer management: MammaPrint, Oncotype DX, IHC4 and Mammostrat (DG10) 2013. 
Available from: http://guidance.nice.org.uk/DG10. 

509. Center V-IC. My Cancer Genome. Available from: http://www.mycancergenome.org/. 
510. Weinberg RA. Coming full circle-from endless complexity to simplicity and back 
again. Cell. 2014;157(1):267-71. 

511. Rafii A, Touboul C, Al Thani H, Suhre K, Malek JA. Where cancer genomics should 
go next: a clinician's perspective. Human molecular genetics. 2014. 

512. Buettner R, Wolf J, Thomas RK. Lessons Learned From Lung Cancer Genomics: The 
Emerging Concept of Individualized Diagnostics and Treatment. Journal of Clinical 
Oncology. 2013;31(15):1858-65. 

 

http://www.rcplondon.ac.uk/sites/default/files/2011_census_-_clinical_genetics_report_0.pdf
http://guidance.nice.org.uk/DG10
http://www.mycancergenome.org/


318 
 

  



319 
 

PEER REVIEWED PUBLICATIONS 


