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ABSTRACT 

 

This work focuses on the improvements of the Bees Algorithm in order to enhance the 

algorithm’s performance especially in terms of convergence rate. For the first enhancement, a 

pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of 

previous and current bees so that the best bees in each patch are appropriately guided towards 

a better search direction after each consecutive cycle. This method eliminates the need to 

differentiate the objective function which is unlike the typical gradient search method. The 

improved algorithm is subjected to several numerical benchmark test functions as well as the 

training of neural network. The results from the experiments are then compared to the standard 

variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis 

generally confirmed that the PG-BA is effective at speeding up the convergence time to 

optimum. 

 

Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap 

Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area 

especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) 

with the POA-BA forbids the exact exploitation of previously visited solutions along with their 

corresponding neighbourhood. Patches are not allowed to intersect not just in the next 

generation but also in the current cycle. This reduces the number of patches materialise in the 

same peak (maximisation) or valley (minimisation) which ensures a thorough search of the 



ii 
 

problem landscape as bees are distributed around the scaled down area. The same benchmark 

problems as PG-BA were applied against this modified strategy to a reasonable success. 

Finally, the Bees Algorithm is revised to have the capability of locating all of the global 

optimum as well as the substantial local peaks in a single run. These multi-solutions of 

comparable fitness offers some alternatives for the decision makers to choose from. The patches 

are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism 

in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified 

solutions throughout the search process in addition to minimising the chances of getting trap. 

This version is proven beneficial when tested with numerous multimodal optimisation 

problems. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

In today’s agile manufacturing environment, industry needs to be able to cope with rapidly 

changing markets. Optimised manufacturing systems and processes can help satisfy customers’ 

demands of low price, high quality, and customised products. In the manufacturing sector, 

optimisation problems abound in areas such as job scheduling, process planning, machine cell 

formation, and assembly line balancing. They can be categorised as discrete or combinatorial 

optimisation problems that are NP (non-deterministic polynomial-time) complete, where 

computational times would increase exponentially as the size of the problem increases. 

Decision variables in this type of instances are from a set of finite or countable infinite elements. 

Others such as optimal machining parameters, component dimensions design, and controller 

parameters, are classified in the continuous domain due to their real-number nature.  

 

For both groups, traditional optimisation methods such as Linear or Integer Programming are 

no longer sufficient in providing swift optimum results due to the complexity of problems that 

involve many dimensions, high degrees of non-linearity and severe constraints. Thus, in order 

to compete in a volatile and global world, companies have turned to Artificial Intelligence (AI) 

techniques in their decision making. One of the subsets of techniques in AI, Swarm Intelligence 

(SI), has garnered much interest in the past two decades. The success of SI can be attributed to 
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its population-based feature that imitates nature and leads to an emergent behaviour through the 

collective actions of individual agents in the swarm (Bonabeau et al., 1999). 

 

Examples of SI algorithms are the Ant Colony Optimisation (ACO) algorithm which mimics 

the food foraging behaviour of ants, Particle Swarm Optimisation (PSO) algorithm which uses 

the analogy of birds flocking, and Artificial Bee Colony (ABC) algorithm emulating the 

foraging behaviour of honeybees while searching for nectar. Another algorithm that captures 

the essence of honeybees searching for food is the Bees Algorithm.  

 

 

1.2 Motivations 

 

The Bees Algorithm was developed in 2005 by a team of researchers from Cardiff University 

(Pham et al., 2005). The algorithm combines random global search led by scout bees, and 

exploitative neighbourhood search by recruited bees. Furthermore, it has seven parameters that 

are number of random scouts, number of elite bees, number of best bees, number of foragers in 

elite sites, number of foragers in best sites, size of neighbourhood, and stagnation limit. Users 

must configure the parameters beforehand. In each iteration of the algorithm, selected random 

scouts of higher fitness (i.e. elite bees and best bees) recruit forager bees to start searching 

around the neighbourhood of the higher fitness point. In nature, this neighbourhood is 

analogous to flower patch or site. Meanwhile, unselected scouts will execute random search 

again. Bee with the most profitable fitness in each patch become scout in the next generation 

and performs bees’ recruitment. If no improvement of fitness occurs in the next cycle, the 

neighbourhood size is shrinked. The flower site is abandoned if there is still no yield in the 
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solution quality once the stagnation limit is reached. Scout bee from the abandoned patch is 

sent for random scouting. These steps are repeated until a stopping criterion is met which can 

be the maximum number of generations reached or a satisfactory solution has been found.  

 

The Bees Algorithm has been used to solve various optimisation problems such as design of 

mechanical structures, training of Artificial Neural Networks (ANNs) for pattern recognition, 

tuning of fuzzy logic controllers, insertion sequence planning in PCB assembly, and machine 

scheduling (Pham and Castellani, 2015). These attainments can be credited to the algorithm’s 

excellent behaviour in exploring landscapes with multiple hills and valleys (multimodal) as 

observed by Pham and Castellani (2009), and Tsai (2014b). Thus, it can be beneficial for 

industry to implement the Bees Algorithm as the search space of many complex real-world 

problems with continuous variables has multimodal characteristics. 

 

Considering that the algorithm is a relatively recent introduction to the optimisation area, there 

are many opportunities for further development. Although the “No Free Lunch Theorem” 

clearly indicates that that no algorithm performs better than any other when their performance 

is averaged uniformly over all possible problems (Wolpert and Macready, 1997), progress in 

this field can bring about a method that, although perhaps not the best for all applications, is 

good enough for a reasonable range of problems.  

 

The main goal of improvement is a better convergence speed. Many stochastic population-

based techniques, including the Bees Algorithm, require a long computation time when in the 

region of the global optimum due to the random search direction. Specifically, in the case of 

the Bees Algorithm, this randomness manifests itself in the arbitrary positioning of bees within 
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their neighbourhood during each cycle. Thus, one way to enhance the search rate is through 

hybridisation with gradient-based algorithms (e.g. Gradient Descent, Newton Search) which 

can discover an excellent direction by quickly following the gradient line. However, a 

disadvantage of gradient search is that the objective function needs to be differentiable (Kaveh 

and Talatahari, 2010; Geem et al., 2001). Meanwhile, integration with other meta-heuristics can 

provide some relief but it will require users to set extra control parameters too.  

 

Several studies have been carried out to automatically tune parameters of the Bees Algorithm. 

Nevertheless, most applications so far have typically adopted an exclusive parameter setting for 

each particular problem. To encourage the use of the algorithm by new and inexperienced 

persons, having a single parameter configuration that works across a range of problems would 

be desirable. In fact, an investigation performed by Crossley et al. (2013) suggested that there 

is only a slight improvement between untuned and tuned Bees Algorithm. The study 

recommended tuning the neighbourhood size if the problem space or dimensionality is large. 

However, it did not take into account the neighbourhood shrinking strategy. Besides, the 

algorithm do not memorise previous visited solutions. This contributes to the creation of patches 

at unprofitable site. Besides, if position of high quality bees is close to each other, overlapping 

patches can occur. This is a waste of resources since the bees on those patches can be redirected 

to other search area. Thus, a more effective neighbourhood search technique with the help of 

memory can enhance the algorithm’s performance. 

 

In addition, for a multimodal landscape where there exists more than one definite optimum, 

locating additional solutions can be advantageous because they can serve as alternatives if the 

others are no longer feasible to be implemented. In particular, in engineering design involving 
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shape or structural optimisation, some physical constraints such as reliability, ease of 

manufacture, and ease of maintenance are difficult to formulate in objective functions (Saveni 

et al., 1998; Qing et al., 2005; Dilettoso and Salerno, 2006). Having options enables engineers 

to select the most suitable solution based on their experiences as well as giving them a better 

understanding of the problem’s search space. Multiple solutions are also useful, for example, 

in digital image analysis where many objects need to be detected at once (Yao et al., 2005; 

Cuevas et al., 2013), in seismology where multiple fault lines have to be detected (Koper et al., 

1999), and in power distribution system where all possible leaking points need to be found 

(Delvecchio et al., 2005). Nonetheless, the standard Bees Algorithm, just like any other global 

optimisers, only converges to a single global optimum. In order to solve multimodal 

optimisation (MMO) problems, the algorithm needs to have a mechanism able to retain multiple 

solutions over generations. 

 

 

1.3 Aim and Objectives 

 

The general aim of this research is to further improve the Bees Algorithm’s ability to handle 

continuous optimisation problems. For each new strategy introduced, no additional parameter is 

needed beside the current ones, with the improvements made mainly focussed on the neighbourhood 

search.  

 

To achieve the aforementioned aim, the following objectives were set: 

i. Develop an improved Bees Algorithm with the aid of a gradient-like method to provide 

search direction for the algorithm in order to achieve faster convergence. 
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ii. Develop a strategy to avoid the formation of overlapping patches in the Bees Algorithm so 

that recruited bees are managed and distributed more efficiently. 

iii. Develop a version of the Bees Algorithm that has the ability to detect multiple global optimal 

solutions in multimodal optimisation problems. 

 

 

1.4 Research Methods 

 

The research methodology consists of: 

i. Reviewing biologically-inspired population-based optimisation algorithms with particular 

attention to swarm intelligence, and behaviour of honeybees, to identify current trends, 

research gaps, and potential solutions. 

ii. Developing the proposed algorithms using MATLAB, a readily available tool that is widely 

adopted for creating and executing software for mathematical problem solving. 

iii. Evaluating the developed algorithms on continuous mathematical benchmark problems 

encompassing various landscapes, and on the problem of training Artificial Neural Network, 

as well as comparing the results with other swarm algorithms to verify and validate the 

effectiveness of the proposed methods. For multimodal algorithms, only multimodal 

numerical functions were used for test purposes. 

iv. Analysing the statistical significance of the results using the Student’s t-test, a well-known 

tool for statistical significance testing. 
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1.5 Thesis Outline 

 

The remainder of this thesis is organised as follows: 

Chapter 2 reviews the definition of optimisation along with conventional methods used to 

solve optimisation problems. It also highlights current population-based algorithms inspired by 

the field of biology. A taxonomy to classify the algorithms is given based on the subject of the 

inspiration. Specifically, this chapter deals with swarm-based algorithms and focusses more on 

those algorithms emulating the foraging behaviour of bees. The Bees Algorithm’s operation, its 

applications, and variants are surveyed in detail.  

 

Chapter 3 presents the pseudo-gradient method and the way it is implemented in the Bees 

Algorithm. Four versions of the Pseudo-Gradient Bees Algorithms are introduced, each 

differing in terms of the relationship between the neighbourhood and the pseudo-gradient 

direction as well as the distribution of recruited bees. The modified algorithms were tested on 

several numerical benchmark functions and their convergence speeds were compared with the 

Standard Bees Algorithm. Comparisons were also made with other swarm-based algorithms. In 

addition, the best version of the Pseudo-Gradient Bees Algorithm was utilised in the training of 

an Artificial Neural Network for modelling an Exclusive-OR gate. Statistical testing was carried 

out on the results obtained. 

 

Chapter 4 introduces a strategy to avoid the formation of overlapping patches. Two versions 

of the Patch Overlap Avoidance Bees Algorithm were developed: (1) the Bees Algorithm with 

standalone Patch Overlap Avoidance strategy, (2) the Bees Algorithm with the Patch Overlap 

Avoidance and Pseudo-Gradient strategies. The performances were evaluated against the best 
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version of Pseudo-Gradient Bees Algorithm, and the same swarm-based algorithms used in the 

previous chapter. Applications to the training of Artificial Neural Networks were also 

implemented together with statistical analysis of each experiment. 

 

Chapter 5 proposes the use of the Hill-valley mechanism originally developed by Ursem 

(1999) to the Bees Algorithm. By doing so, the Bees Algorithm’s ability is extended to locate 

multiple optimum solutions without the need for niching parameters. This Extended Bees 

Algorithm was also equipped with the Pseudo-gradient procedure. Another variant of the Bees 

Algorithm for multimodal application modified how the Patch Overlap Avoidance strategy is 

instigated in the Extended Bees Algorithm as a way to reduce the number of function 

evaluations. All variants were tested on continuous multimodal functions, and compared to 

other multimodal swarm-inspired algorithms that also do not have any niching parameters.  

 

Chapter 6 summarises the contributions and conclusions of this research. Suggestions for 

further investigations are provided in the Chapter. 
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CHAPTER 2 

SWARM INTELLIGENCE IN OPTIMISATION 

 

 

2.1 Preliminaries 

 

This chapter reviews the literature in the area of intelligent optimisation, focusing on 

optimisation methods based on swarm intelligence, in particular, the Bees Algorithm and its 

applications. 

 

 

2.2 Optimisation 

 

Optimisation can be defined as a process of searching for the best possible solution to a 

problem. Mathematically, it is a technique for finding a combination of parameters to minimise 

or maximise objective functions, i.e., a quantitative measure of a system’s performance, subject 

to some constraints on the variables ranges: 

  min(ormax)
𝒙∈𝑹𝑁

 𝑓(𝒙), 𝒙 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁),                         (2.1) 

where  

f = the objective or cost function(s), 

x = the parameters to be optimised called design or decision variables, can be continuous, 

discrete or a mixture of both, 
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RN = the design/search/solution space in real value, 

N = number of decision variables. 

 

Today, optimisation can be found in various disciplines ranging from mathematics, 

engineering, computer science, and finance. Real-life problems spawned from these areas are 

complex due to characteristics such as nonlinear objective function, large solution space size, 

multimodal, non-convex surface, high dimensional data, and noise. The theory of 

computational complexity categorises these problems as NP-hard or NP-complete (Consoli, 

2006; Abidin et al., 2011) because computational times increase exponentially as the size of the 

problem increases, thereby limiting the capacity of the computer’s memory (Bianchi et al., 

2009; Alia and Mandava, 2011; Brownlee, 2011; Sadiq and Hamad, 2012). 

 

Conventional optimisation algorithms such as Gradient Descent and Conjugate Gradient rely 

on derivative information for fast convergence to the global optimum and high accuracy 

solutions. Thus, objectives and constraint functions need to be differentiable to search the 

solution space near an initial starting point. Beside, they also require a good initial value, as 

well as continuous variables, and objective functions instead of discrete variables or a mix of 

continuous and discrete variables (Kaveh and Talatahari, 2010; Geem et al., 2001). 

 

Complex optimisation problems are not easily differentiated thereby necessitating the use of 

assumptions and/or modifications optimisation models of its parameter by variables rounding 

or constraints softening. However, these will affect the quality of the solution as the model is 

not easily validated in real situations, but without them the algorithm will fail and be trapped in 

the local optima. Moreover, fast convergence using conventional methods can increase the 
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probability of missing important points due to minimum number of calculations. Overall, 

classic optimisation algorithms are incapable to adapt flexibly and efficiently to the solution 

procedure of complex optimisation problems because there is no universal solution approach 

that can be applied to problem design (Alatas, 2010). 

 

Consequently, heuristics were developed as basic approximate techniques that search the 

solution space to find good and feasible solutions (near optimal) within a reasonable 

computational time and with reasonable use of memory without any loss of subtle nonlinear 

characteristics of the problem’s model and without any requirement of complex derivatives or 

careful choices of initial values. The term comes from the Greek verb to find. Discovering the 

optimum solution using these methods is usually by trial and error which uses a probabilistic 

rule instead of deterministic (Consoli, 2006; Bianchi et al., 2009). Greedy-based search is a 

type of heuristic (Blum et al., 2011; Brownlee, 2011). These algorithms work most but not all 

the time and there is no guarantee that a heuristic that works on one problem can work on 

another. However, this can be improved by adding structural information such as nearest 

neighbours and/or ordered graphs. In general, these techniques are suitable when it is not 

necessary to find the best solutions and finding good solutions that are easily reachable suffices 

(Bang et al., 2010; Yang, 2011).  
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Heuristics can be categorised into two types depending on how solutions are built. They are 

(Consoli, 2006; Shah-Hosseini, 2008; Bianchi et al. 2009): 

i. Constructive 

This type of heuristic builds solutions from scratch by gradually joining together solutions’ 

components/pieces to the initially empty solutions after the other solution is completed. 

However, the solution quality tends to be low. 

ii. Local 

This heuristic starts from a complete, pre-existent/current solution and tries to improve it 

over time by modifying some of its component. It is slower than constructive heuristics. 

 

 

2.3 Metaheuristics 

 

In 1986, Glover coined the term ‘Metaheuristics’ which includes the Greek prefix “meta” 

meaning beyond or in an upper level to refer to heuristics that are general purpose in nature 

(Glover, 1986). These methods combine one or more heuristics (maybe high or low level 

procedures such as random or local search) in a higher level with strategies for exploring search 

space efficiently and effectively to provide balance between exploitation of the accumulated 

search experience (intensification) and the exploration of search space (diversification). The 

region with high quality solution can then be quickly identified and time is not wasted searching 

already explored regions of those that do not have high quality solution. It performs better than 

heuristics as it can avoid premature convergence and stagnation at suboptimal points. 
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Previously known as modern heuristics (Consoli, 2006), today the term heuristics and 

metaheuristics are sometime used interchangeably (Yang, 2011). Due to its flexibility and 

adaptability, this technique can be applied to different optimisation problems with few 

modifications to suit specific problems. It refrains from making any assumptions or simplifying 

the original form of the optimisation problem. Most of these methods also employ some form 

of memory (long term or short term) based on its search experience to guide future searches 

(Consoli, 2006; Alia and Mandava, 2011; Brownlee, 2011). Overall, metaheuristics is the 

concept applied where a good (but not necessary optimal), fast, and cheap solution is sought. 

 

As mentioned earlier, a balance between exploration and exploitation is an important concept 

in metaheuristics (Consoli, 2006; Bianchi et al., 2009; Akbari et al., 2010; Yang, 2011): 

i. Diversification/exploration (global search) 

It generates diverse solutions to explore the search space on the global scale. It will avoid 

trapping in the local optima while increasing the solutions’ diversity. When the search 

process starts, it needs to compute the value of every different point in the search domain in 

order to find the promising areas. 

ii. Intensification/exploitation (local search) 

It focuses on the search in a local region (neighbourhood) by exploiting information from 

the current good solution found in this region. The algorithm then needs to investigate 

promising zones to find the local optimum. 
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In addition of the above components, an appropriate selection mechanism is needed to choose 

the best solution to ensure convergence and speed up the process. With these steps, the best 

local optimums found in the different areas are the candidate solutions hoping to be as near as 

possible to the global optimum (Yang, 2011). 

 

Moreover, typical in all metaheuristics algorithms are parameters that need to be tuned in order 

for the algorithm to achieve a good optimum solution. This can be accomplished by trial and 

error as well as depending on the user’s skill. However, metaheuristics with fewer adjustable 

parameters are normally favoured (Abu-Mouti and El-Hawary, 2012). 

 

Despite their advantages, metaheuristics suffer from slower convergence if compared to 

classical optimisation techniques due to huge iterations as a result of lack of derivative 

information used. Therefore, there is a need for a faster algorithm which leads to the 

hybridisation of metaheuristics with local search techniques. 

 

More advanced metaheuristics is called hyper-heuristics. This strategy can modify their 

parameters online or offline to improve the efficacy of the solution or efficiency of the 

computation. They can employ machine learning method and adapt their search behaviour by 

modifying the application of the sub-procedures or the procedures used when operating on the 

space of heuristics which in turn operate within the problem domain (Brownlee, 2011). 
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Subsequently, metaheuristics can be categorised into two solution types to proceed at each 

iteration or searches (Consoli, 2006; Shah-Hosseini, 2008; Alia and Mandava, 2011; Brownlee, 

2011; Yang, 2011; Binitha and Sathya, 2012): 

i. Single-point/trajectory-based 

It generates single solution; at each time-step, describing a curve (trajectory) in the search 

space during the progress of the search. Example: Simulated Annealing (SA); 

ii. Population-based 

It works with a set of solution and trying to improve them; compute simultaneously a set of 

points at each time-step of the search process, describing the evolution of an entire 

population in the search domain, while providing a natural and intrinsic way for the 

exploration of search space. However, it depends on how the population is manipulated such 

as the Genetic Algorithm (GA). 

 

 

2.4 Biologically-inspired Population-based Metaheuristics 

 

Between the two types of metaheuristics, population-based methods have generated more 

interest in the field of optimisation and a lot of attention has been given to nature-inspired 

algorithms, especially ones based on biology. Figure 2.1 illustrates the taxonomy of nature-

inspired population-based metaheuristics. Biologically-inspired population-based algorithms 

can be categorised according to evolution-based, water-based, ecologically-based, 

immunologically-based, and swarm-based. Henceforth, this taxonomy can serve as a guideline 

to group similar algorithms in the future. A brief description on the algorithms is provided but 

more emphasis is given on the bee-based algorithms because the current trend seems to be in 
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this area. Nonetheless, there are nature-based algorithms inspired by physics and those based 

on human behaviours such as their sociology and/or pschology. Table 2.1 lists the algorithms 

based on this taxonomy. This list is not exhaustive as more and more algorithms are being 

developed in this area. 
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 Figure 2.1: Taxonomy of nature-inspired population-based metaheuristics 
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Table 2.1: List of nature-inspired population-based metaheuristics 

 

SOURCE OF INSPIRATION ALGORITHM  
ORIGINAL 

AUTHOR(S) 

Physics-based 

 

Big Bang-Big Crunch 
Erol and Eksin 

(2006) 

Central Force Optimisation Formato (2007) 

Gravitational Search  
Rashedi et al. 

(2009) 

Charge System Search 
Kaveh and 

Talatahari (2010) 

Based on Human Activities 

 

Harmony Search Geem et al. (2001) 

Imperialist Competitive 

Algorithm 

Atashpaz-Gargari 

and Lucas (2007) 

Teaching-Learning Based 

Optimisation 
Rao et al. (2011) 

Brain Storm Optimisation Shi (2011) 

Bio-inspired 

Evolutionary Algorithms 

Genetic Algorithm Holland (1975) 

Genetic Programming Koza (1992) 

Differential Evolution 
Storn and Price 

(1995) 

Ecology 

Geography 
Biogeography-based 

Optimisation 
Simon (2008) 

Plant 
Invasive Weed Optimisation 

Mehrabian and 

Lucas (2006) 

Paddy Field Algorithm Kong et al. (2012) 

Algae Artificial Algae Algorithm Uymaz et al. (2015) 

Artificial Immune Systems 

Negative Selection Algorithm Forrest et al. (1994) 

Clonal Selection Algorithm 
De Castro and Von 

Zuben (2000) 

Artificial Immune Network 
De Castro and Von 

Zuben (2001) 

Dendritic Cells Algorithm  
Greensmith et al. 

(2005) 
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Table 2.1: List of nature-inspired population-based metaheuristics (continued) 

 

 

 

 

 

 

 

 

 

SOURCE OF INSPIRATION ALGORITHM  ORIGINAL AUTHOR(S) 

Bio-inspired 

Swarm 

Intelligence 

Insect 

Ant 

Ant System Dorigo et al. (1991) 

Ant Colony System 
Dorigo and Gambardella 

(1997) 

Ant Colony Optimisation Dorigo et al. (1999) 

Bees 

Foraging 

Bee Colony Optimisation 
Teodorović and Dell’Orco 

(2005) 

Artificial Bee Colony Karaboga (2005) 

Bees Algorithm Pham et al. (2005) 

Bee Swarm Optimisation Akbari et al. (2010) 

Mating 
Marriage Bees Optimisation Abbass (2001) 

Honey Bee Mating Optimisation Haddad et al. (2005) 

Nest 

Selection 
Bee Nest-Site Optimisation Diwold (2011b) 

Family of 

Lampyridae 

Glow-worm Swarm Optimisation 
Krishnanand and Ghose 

(2005) 

Firefly Algorithm Yang (2010a) 

Bird 
Particle Swarm Optimisation 

Eberhart and Kennedy 

(1995) 

Cuckoo Search Yang and Deb (2009) 

Bacteria Bacteria Foraging Optimisation Passion (2002) 

Fish 
Fish Swarm Algorithm Li et al. (2012) 

Great Salmon Run Mozaffari et al. (2012) 
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2.4.1 Evolutionary algorithms (EAs) 

One of the earliest population-based optimisation algorithms inspired by biology is a group of 

algorithms dubbed Evolutionary Algorithms (EAs) due to their emulation of the Darwin’s 

Theory of Evolution. The main algorithm process consists of iterative evolution through 

selection, reproduction, and survival of the fittest as the following steps: 

1. Initialise population of candidate solutions 

2. Evaluate individuals in population 

3. While (stopping criterion is not met) 

4. Select parents to generate offspring 

5. Reproduction of offspring through genetic operators (i.e. crossover, mutation) 

6. Evaluate new individuals 

7. Select new generation based on fitness 

8. End while 

 

Typically, algorithms of this class will differ in terms of their variables’ representation (i.e. real, 

binary), the use of the genetic operators, and the type of selection mechanism. In chronological 

order, the following are the algorithms belonging to this group (Bӓck and Schwefel, 1993; 

Downing, 2010; Das and Suganthan, 2011; Binitha and Sathya, 2012): 

1962 - Evolutionary Programming (EP) 

1965 - Evolutionary Strategy (ES) 

1975 - Genetic Algorithm (GA) 

1992 - Genetic Programming (GP) 

1995 - Differential Evolution (DE) 
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Among the algorithms, GA is the most popular due to its broad range of applications especially 

in combinatiorial problems such as job shop scheduling, and process planning (Krishnanand et 

al., 2009; Raudenská, 2009; Zang et al. 2010). In GA, variables are represented in binary string 

called chromosome. The main parameters in GA are size of population, number of generations, 

crossover (sometimes called recombination) rate, and mutation rate. However, randomness in 

the algorithm leads to long computation time, and the parameters need to be tuned to each 

specific problem in order to obtain feasible solutions (Krishnanand et al., 2009; Zang et al. 

2010). 

 

Hence, recent development in EAs is DE as a faster algorithm has simpler and straightforward 

coding, less number of parameters, and low space complexity (ideal for large scale problems) 

(Das and Suganthan, 2011). They found that DE is an actively researched algorithm producing 

variants based on trigonometric mutation, arithmetic recombination, DE/rand/1/Either-Or, and 

opposition-based learning. In comparison with GA, DE uses real numbers, vector-based 

mutation, single vector trial creation through crossover, and equal chances for all individuals in 

the selection scheme. According to them, current studies in the algorithm involve self-adaptive 

parameters and convergence analysis. 

 

As earlier mentioned, conventional optimisation techniques including heuristics and 

metaheuristics have inherent disadvantages. These can be rectified by hybridising some of these 

forms together to solve optimisation problems. GA has been integrated with other methods like 

the hill-climber, SA, and Tabu Search (TS) to solve various real world optimisation problems 

(Talbi, 2002). Other than merging with gradient-based methods to speed up the search process, 

some researchers developed a gradient-like procedure to be used together with EAs so that there 
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is no need to differentiate the objective function. Pham and Jin (1995) devised a gradient-like 

reproduction operator to be incorporated with the conventional GA, and found that a feasible 

optimum solution can be discovered in less generation than the common GA. In their method, 

the best individual information with some test candidates gauged the direction that eventually 

led to the global gradient. This strategy has a slight similarity with PSO that uses its best particle 

to guide its search. 

 

In contrast, Solomon (1998) utilised a weighted sum based on the difference between the test 

and the current position pointing towards the direction of the approximate global gradient. 

Together with the adaptive step size version of EP, it reduced the number of generations taken 

to reach the optimal solution. However, this procedure is unsuitable for large scale problems 

since all offspring are consumed in the calculation of the estimated gradient. This will 

ultimately increase the number of function evaluations if it is used as the measure of time 

instead of the number of generations. 

Abbas et al. (2003) conceived a fairly similar approach known as discrete gradient where 

approximated sub-gradient (discrete gradient) was the difference between fitness values of the 

current and the previous position. It was mixed with ES, but here the discrete gradient was 

applied to all individuals in the population only at the initial generation. Afterwards, it was 

applied to the best so far solution. 

 

Moreover, Lin et al. (2006) developed a rather similar strategy in an application of multi-

objectives robust active suspension design of light rail devices. The estimated gradient direction 

was computed by dividing the difference between objective function of the current position and 

the previous position with their related position for each dimension. 
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In addition, Hewlett et al. (2007) subtracted the positions of the superior solution from the 

present and past population which resulted in individual errors. Newly generated population are 

located near the point of minimum of these errors which was the estimated gradient line. The 

author claimed that this feedforward system did not reach the solution asymptotically, unlike 

ordinary gradient-based technique. 

 

EAs especially GA also pioneered the use of several niching techniques for diversity 

maintenance to arm the algorithm with the capacity to find multiple extremum in multimodal 

optimisation (MMO) problems. As regular optimisation algorithms only detect the global 

optimum, the ability to locate more than one distinct optimum solution is helpful as a back-up 

if the other solution is no longer feasible to implement in real world situations. Example of the 

niching methods are crowding (Thomsen, 2004; Qing et al., 2008), fitness sharing (Beasley et 

al., 1993; Miller and Shaw, 1995), and speciation (Li et al., 2010; Stoean et al., 2010; Shen and 

Xia, 2012). 

 

2.4.2 Ecology-based algorithms 

Ecology-based algorithms are centred on the natural ecosystem with the interaction of organism 

and the environment. One of such interaction is cooperation between species. In Biogeography-

based Optimisation (BBO) algorithms (Simon, 2008), which are based on the immigration and 

emigration of species between habitats, information is shared between potential solutions. Each 

solution is an island with suitability index variables (SIV) that characterise their habitability. 

The fitness is called habitat suitability index (HIS). By sharing of SIV, High-HIS solutions will 

emigrate and the Low-HIS will immigrate. This will improve the solutions and facilitate the 

evolution process. Two main operators of this algorithm are migration and mutation, with the 
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latter the means to provide exploration. Compared to other algorithms, BBO does not kill the 

old population but is modified through migration. 

 

Another popular algorithm under this classification is Invasive Weed Colony Optimisation 

(IWO) proposed by Mehrabian and Lucas (2006). Through adaption with the environments, 

weeds invade the areas deserted due to inappropriate ploughing after the ground was filled with 

other vegetation. Changes in behaviour occur as the space becomes thick when the colony 

grows which makes the condition disadvantageous for unfit individuals. The algorithm begins 

with the initialisation of the population with random position. Then, fitness of each individual 

in the population is evaluated before being ranked according to their corresponding fitness. 

Weeds are allowed to produce seeds based on its fitness, and the highest and lowest fitness of 

the colony. The generated seeds are then placed randomly in the search space but with reduced 

standard deviation of the random function compared to the initial value. The maximum numbers 

of plants from the best plants reproduced are selected (Krishnanand et al., 2009). As surveyed 

by Binitha and Sathya (2012), IWO has been utilised in solving synthesis of linear antenna 

array, tuning of Proportional-Integral-Derivative (PID) controller, and tuning of Artificial 

Neural Networks (ANNs) to name a few. Additionally, IWO also has a variant that deals with 

MMO which uses the crowding strategy (Majumdar et al., 2012). 

 

 

2.4.3 Immunology-based algorithms 

Artificial Immune Systems (AIS) are algorithms based on immunology or stemmed from 

adaptive vertebrate immune system in order to protect itself from the invasion of pathogens. 

Two types of cells associated with this fighting mechanism are T-cells and B-cell with their 
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place of maturation in the thymus and bone marrow, respectively. The four types of immune 

system models typical in developing an optimisation algorithm are clonal selection, immune 

network, negative selection, and danger theory (Timmis et al., 2008a; Timmis et al., 2008b). 

 

The Clonal Selection Algorithm (CLONALG) is based on the cloning process in the human 

immune system that has the following characteristics: immune recognition, reinforcement 

learning, feature extraction, immune memory, diversity, and robustness. The only operator is 

mutation; thus it is the deciding factor of the algorithm’s efficiency. The algorithm starts with 

the initialisation of antibodies with antigens representing the value of objective function to be 

optimised. Then, fitness evaluation is done with the best antibodies cloned. Hyper-mutation is 

employed to clones in inverse to their fitness where the best will be less mutated and the worst 

are mutated the most. The new and old clones are evaluated again with the best surviving to the 

next generation (De Castro and Von Zuben, 2000; 2002). 

 

On the other hand, aiNet (artificial immune network) is an algorithm founded on the theory of 

immune network proposed by De Castro and Von Zuben (2001) for data mining before 

extending to MMO (De Castro and Timmis, 2002). This algorithm considers the analogy of the 

B-cells that is not only suppressed by non-self-antigens but also by other interacted B-cells thus 

creating two subpopulations. The first is to create initial immune network while the second is 

trained by non-self-antigens. Each cell in the search space is separated by affinity which is the 

Euclidean distance between two cells. After cloning, just like the process in CLONALG, elitist 

selection mechanism is enforced. Then, network suppression eliminates similar cells to avoid 

redundancy. With that, a number of random cells are generated to the current population. 

Termination criterion is determined by the population’s size of memory. This algorithm can be 
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run using a small number of population compared to CLONALG, and is more adaptive to the 

changing environment. 

 

Nevertheless, through the incorporation of niching-like parameters such as affinity and 

suppression threshold aiNet is able to solve MMO problems due to the algorithm being devised 

as a clustering algorithm early in its development. This variant of aiNet is called opt-aiNet. 

Coelho and Von Zuben (2010), de Franca et al. (2010), Woldemariam and Yen (2010) tested 

opt-aiNet with slight modifications to further enhance its performance in several multimodal 

numerical benchmark functions. It has also been utilised to find alternative designs of 

electromagnetic devices (Campelo et al. 2006). 

 

In contrast, algorithms based on negative selection model simulate the generation of T-cells 

where the receptors are made through a pseudo-random genetic rearrangement process. Then, 

the cells will undergo censoring (negative selection) in the thymus where cells that react 

towards self-protein are destroyed. Only cells that bind with self-protein are allowed to leave 

the thymus and circulate throughout the body. Henceforth, Forrest et al. (1994) developed an 

algorithm based on this self/non-self-discrimination as change detection method where in the 

generation process, candidates of detectors are generated randomly and censored by trying to 

match self-samples. Candidates that match are eliminated and the rest are kept. The set of 

detectors kept are then checked for whether an incoming data instance is self or non-self. Data 

that matches any detector are considered non-self and treated as an anomaly. 

 

Conversely, danger theory offers an alternative to negative selection in which antigen 

presenting cells are activated by an alarm signal (danger signal) emitted by ordinary cells 
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injured due to pathogens attack. This signal is necessary as a co-stimulator to T-cells reaction. 

This means that the adaptive immune response is controlled by the action of innate immune 

cells called dendritic cells. Greensmith et al. (2005) exploited this analogy in the context of a 

data signal at any time in computer system. 

 

Overall, AIS-based algorithms are mainly applied in data mining, automation and design, 

bioinformatics, text processing, pattern recognition, clustering, and classification problems. 

Hybrids of these algorithms with Fuzzy System (FS), ANNs and EAs have also been done (De 

Castro and Timmis, 2003; Dasgupta et al., 2011; Mohamed Elsayed et al., 2012). In addition, 

Zhang and Yen (2013) modified the classic gradient-based mechanism into a quasi-gradient 

method to be used with the AIS optimisation process. The estimated gradient is the direction 

pointing from the worst clone to the best which will guide the antibody to the optimal rapidly. 

However, it was noted that the direction vector will not converge to zero thus requiring 

additional stopping criterion for the algorithm. 

 

 

2.4.4 Swarm-based algorithms 

Swarm refers to the collective behaviour of organisms such as social insects (ants, bees), school 

of fish, flock of birds, and bacteria. Complex tasks are performed through decentralised control 

and self-organising that lead to the emerging behaviour (Bonabeau et al., 1999). The 

intelligence of the swarm due to the interactions between individuals/agents inspired a lot of 

optimisation metaheuristics. Among the most prominent approaches are Ant Colony 

Optimisation (ACO) which is based on the food foraging behaviour of ants and Particle Swarm 

Optimisation (PSO) that imitates the flocking of birds searching for food. A few other 



28 
 

algorithms in this class surfaced recently such as Bacterial Foraging Optimisation (BFO), 

Firefly Algorithm (FA), and Fish Search Algorithm (FSA). Inspired by the success of ACO, 

bee-based algorithms are one of the most researched topics as a solution to find optimal value 

in complex problems. The following provides descriptions of the mentioned algorithms. 

 

 

2.4.4.1 Ant Colony Optimisation (ACO) 

The core of the Ant Colony Optimisation (ACO) algorithm lies in the indirect communication 

based on the trail leaved by pheromone-laying ants which is call stigmergy that enables them 

to find the shortest path from nest to the food source. Thus, the original ACO, Ant System (AS) 

developed for combinatorial problem, specifically the Travelling Salesman Problem (TSP), 

attempted to exploit this pattern (Dorigo et al., 1991). However, it was less superior than 

algorithms for solving TSP at that time hence motivating research on creating better variants of 

the algorithm such as Elitist AS, Ant Colony System (ACS), Max-Min AS, Ranked-based AS, 

and Hyper-cube AS (Blum, 2005; Dorigo et al., 2006; Dorigo and Stützle, 2010). In 1999, 

Dorigo and colleagues formalised the ACO framework. Thus, any variants that used this 

structure belong to the group of ACO. As a whole, the steps in the algorithm are the iterative 

process of: 

i. Constructing the candidate solutions via pheromone model which is a parameterised 

probability distribution; 

ii. Modification of pheromone values by the candidate solutions with bias future sampling 

towards high quality solutions. 
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Since many practical optimisation problems can be formulated as continuous optimisation 

problems and the original works are in discrete domain, it sparks an interest in developing ACO 

for continuous optimisation with the best being ACOR (ACO for real-valued continuous 

optimisation) which utilises a continuous probability density function (Socha and Dorigo, 

2008). This density function is produced for each solution construction from a population of 

solutions that the algorithm keeps at all times. Before starting the algorithm, the archive size or 

the population of k is filled with random solutions. Then, at each iteration the set of generated 

solutions is added to the population and the same number of the worst solutions are removed 

from it with the aim is to bias the search process towards the best solutions found during the 

search (Blum, 2005; El-Abd, 2012). 

 

Like previous metaheuristics, besides the usual research on applications, the trend is towards 

hybridisation with either local searches or other classical AI or Operation Research (OR) 

methods. The success in hybridising an ACO is due to the constructive nature of the algorithm 

with, for example, incorporating Beam Search and/or Constraint Programming in ACO. Other 

studies on this algorithm include the definition of solution components and pheromone trails, 

and balancing the exploration and exploitation. With the advances in parallel computing 

hardware, investigation has already been conducted in implementing ACO in that subject. 

 

Additionally, Angus (2006) implemented the niching methods of fitness sharing and crowding 

techniques separately with ACO to test numerical function and Travelling Salesman Problem 

modelled as MMO. He found that ACO with crowding performed better than ACO with fitness 

sharing. According to Dorigo and Stützle (2010), some researchers are working on other ant-
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based algorithms inspired by ant’s foraging and path marking, as well as other ant behaviour 

such as brood sorting, division of labour, and cooperative transport. 

 

2.4.4.2 Particle Swarm Optimisation (PSO) 

Eberhart and Kennedy (1995) simulated the social behaviour of bird flocks by initiating the 

Particle Swarm Optimisation (PSO). Each bird is a volume-less particle representing the 

potential solution determines by its position and the corresponding objective function value. 

This particle flies through a hyper-dimensional search space with dynamically adjusted velocity 

based on its own flying experiences and its members of the swarm. Unlike EAs, PSO does not 

use any selection operators which mean it does not apply the survival of the fittest concept (Shi 

and Eberhart, 1999). Instead, all the particles are kept throughout the algorithm’s run with the 

updating of velocity which consists of three terms. They are the previous particle’s velocity, 

cognition component, which is the particle’s best position so far, and social component 

determined by the swarm’s best position. The updated velocity revises the position of the 

particles which is akin to mutation operator in EAs. Fast convergence can occur as the particles 

can only fly in a limited number of directions towards an expected good area. However, this 

can also cause the algorithm to experience premature convergence at the local optima, and raise 

the issue of stability if the particles fly out of the solution space. 

 

A lot of PSO variants have been developed to improve the performance of the algorithm. Inertia 

weight was first added to balance the exploration and exploitation phase. By linearly decreasing 

the value from large to small towards the end of the run, the algorithm will perform 

diversification earlier and intensification later. This method resembles the temperature 

parameter in SA or in the step size in EAs. It has also been found that without the first term of 
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the velocity update equation, the algorithm will act as a local search, and with it, more global 

(Banks et al., 2007). Next, velocity clamping is added to avoid instability. There is also a variant 

with constriction similar to inertia weight but by using this, velocity clamping is no longer 

necessary. Other researchers also attempted to modify other parameters of PSO by making them 

more adaptive as well as increasing the population’s diversity. Another active area of research 

in PSO is developing new topology which will affect the way particles interact with their 

neighbours. Hybridisations of PSO with other approaches are also a popular topic in the current 

research but most are done to suit a specific problem. PSO has been applied to many 

optimisation domains such as combinatorial, multi-objective, and dynamics. There is also PSO 

variant for parallel computing. Among the applications in real-parameter problems are 

electronics, training of ANNs, medicine, and system identification (Song and Gu, 2004; Eslami 

et al., 2012). 

There are currently three versions of Standard Particle Swarm Optimisation (SPSO) used as a 

guideline for further improvements of the algorithm (Clerc, 2012). In SPSO2006, the swarm 

size is calculated based on the problem’s dimensions. Meanwhile, the velocity updating is 

performed dimension by dimension in SPSO2007 as well as taking on an adaptive random 

topology. SPSO2011 ensures that the particles are bounded, i.e. not flying out of the search 

space. The update equation for velocity is also modified so as not to have any biases on the 

system of coordinates (Clerc, 2012; Zambrano-Bigiarini et al., 2013). A more through study on 

the stability, convergence and rotation invariance of SPSO2011 was performed by Bonyadi and 

Michalewicz (2014), and it was then applied to source seeking tasks for mobile robot (Zou et 

al., 2015). 
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Besides EAs, PSO is another algorithm actively involved in solving MMO problems where 

multi-solutions are sought. For this purpose, niching is commonly needed which requires extra 

parameters (i.e. niche radius) to be tuned. Nonetheless, most PSO variants that deal with this 

kind of problem do so by making it adaptive (Nickabadi et al., 2008) or not adding any niche 

parameter (Li, 2007; Liu et al., 2011). Li (2010) applied PSO with ring topology to MMO 

without the need to specify any niche parameters by employing the individual particles’ local 

memory to form a stable network, retaining the best solutions found so far while these particles 

explore the search space more vastly. Other PSO-based niching algorithms are devised by 

techniques used to solve different domains of optimisation problems such as by using k-means 

clustering algorithm to create sub-swarm as cited by Liu et al. (2011) and fuzzy clustering as 

cited by Das et al. (2011). 

 

2.4.4.3 Bacterial Foraging Optimisation (BFO) 

In 2002, Passino developed a novel optimisation algorithm based on the movements of E. coli 

bacteria towards a higher concentration nutrients area to maximise energy obtained per unit 

time. The algorithm consists of four phases namely chemotaxis, swarming, reproduction, and 

elimination-dispersal. Chemotaxis describes the way bacteria moves by tumbling (random 

movement), and swimming (continuous movement in single direction) with both of these 

movements alternating throughout the bacteria life cycle. In this algorithm, swimming is only 

maintained if the solution keeps on improving. After chemotaxis, cell-to-cell communication 

between bacteria occurs in the presence of chemical attractant and repellent to form swarm. 

Next, in the reproduction phase, only half of the swarm with the best fitness are reproduced by 

splitting them into two to form new population. Finally, parts of the population are randomly 
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selected to be diminished and dispersed into random positions in the environment, and the 

search space is re-initialised with low probability. Chemotaxis and reproduction are considered 

in the exploitation phase of the algorithm, while elimination-dispersal is the exploration phase 

as a way to increase diversity to prevent trapping, and improve the algorithm’s global search 

capability (Parpinelli and Lopes, 2011; El-Abd, 2012). 

 

Similar to other algorithms, researches in BFO focus on the performance improvement to get 

rid of the algorithm’s drawback as much as it can especially in high dimensional and 

multimodal search space. One way to do this is through hybridisation with other population-

based algorithms. Others have tried to make the step size more adaptive by using a large value 

at the beginning and small value at the end. This is a proven method that can balance exploration 

and exploitation of the algorithm as cited by Agrawal et al. (2011) in their review on BFO. 

Besides that, new phase and control parameters were inserted to the algorithm such as method 

based on quorum sensing; a regulating division mechanism in bacteria to improve 

communication and cooperation (Tang et al., 2007; Chen et al., 2009; Cho et al., 2009). 

 

 

2.4.4.4 Algorithm based on family of insects, Lampyridae 

A family of insects called Lampyridae is a group of insects able to emit natural light 

(bioluminescence) normally used to entice mates and prey. The light produced is due to a 

pigment called luciferin. More pigment means a brighter light (Parpinelli and Lopes, 2011). 

Two common types of insects in this family are fireflies and glow-worms, and both have 

attracted the attention of researchers to model optimisation algorithms based on them. 
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The Firefly Algorithm (FA) is a multi-agent algorithm developed by Yang (2010a) with three 

rules: 

i. All fireflies are unisex. Thus, attraction between fireflies occurs regardless of sex. 

This is to make the exploitation phase more efficient. 

ii. Attractiveness is proportional to brightness, which is inversely proportional to 

distance. 

iii. Brightness correspond to the fitness of the objective function 

 

By dynamically adjusting the algorithm’s parameters, the position update equation of the 

algorithm is somewhere between the behaviour of total random search and PSO search. To 

ensure convergence, distance between fireflies is decreasing functionally. Later, Yang (2010b) 

combined FA with the Lévy flight concept, one of the earliest to do so in nature-inspired 

optimisation algorithms, to make the algorithm converge more rapidly, and provide a more 

natural way of doing global search. Instead of uniform or Gaussian distribution used in random 

search, a power-law distributed step length with a heavy-tail is used. Biologists have observed 

the behaviour of animals using the Lévy flight pattern for quite some time especially in animal 

food foraging behaviour in a large space. The success of this method has inspired other 

researcher to use the concept in their animal-based algorithm such as PSO (Gang et al., 2011). 

 

On the other hand, Krishnanand and Ghose (2005) developed the Glow-worm Swarm 

Optimisation (GSO) to be used in collective robotics applications. It shares a few common 

behaviours of ACO and PSO especially in terms of position updating of the glow-worm. 

Probabilistic mechanism is used to select a neighbour that has higher luciferin value than itself 

and moves towards it. One attractive feature of this algorithm is the ability to divide swarm to 
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disjointed subgroups which increases the chance of convergence to multiple optima in a 

multimodal domain. Subsequently, Krishnanand and Ghose (2009) integrated into GSO the 

variable neighbourhood radius to detect the presence of multiple peaks in MMO. 

 

 

2.4.4.5 Fish Swarm Algorithm (FSA) 

The Fish Swarm Algorithm (FSA) is based on the natural schooling behaviour of fish developed 

by Li et al. (2002). Five fish behaviours associated with this algorithm are: 

i. Random – fish look for food and other members of the swarm randomly 

ii. Searching – fish discover region with more food will go directly to it quickly 

iii. Swarming – fish swim in swarm to avoid danger 

iv. Chasing – when a fish in the swarm find food, others will find the food and chase 

after it 

v. Leaping – when a region stagnated, fish leaps to look for food in other regions 

The algorithm has three parameters to be set by the user. They are visual scope which defines 

the distance between two fishes, maximum step length the fish take, and crowd factor which 

determines the number of fish in an area. The algorithm’s performance is said to be sensitive to 

the first two parameters. 

 

The algorithm has been utilised in the following applications: 

i. Training of feedforward neural network (FNN) (Wang et al., 2005) 

ii. Optimal multi-user detection (Jiang et al., 2007) 

iii. Image segmentation (Jiang et al., 2009) 

iv. Bounded constrained problem (Fernandes et al., 2009) 
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2.4.5 Bee-based algorithms 

Bees are social insects that live as colonies consist of queen, drones, and workers. They are able 

to dynamically allocate tasks between for example, tending of brood, and foraging of nectar, 

pollen, and water, while keeping track of the environmental change. All of these are performed 

with no centralised control. 

 

The only function of the queen is to reproduce. The queen will perform mating flight, and mate 

with multiple drones before the sperms are stored in a spermathecal of the queen for brood 

production. Unfertilised eggs will become drones while fertilised eggs will become workers 

and queen (Abbas, 2001). 

 

Workers do most of the tasks in a bee colony with the primary job being food foraging. Bees 

fly from the colony to more than 10 km to search for potential food sources. When they arrive 

back to the hive, they will start a ritual called “waggle dance”. In the waggle dance, the quality, 

direction, and distance of the site are broadcasted to attract more bees to forage them. The more 

profitable the site, the livelier and longer the dance will be (Seeley, 1995). 

 

When a young queen is being reared, the old queen together with a third of the workers’ colony 

will leave the hive, and swarming into a cluster at a nearby temporary site, usually a tree branch. 

Several hundred scout bees will search for potential nest-site normally in the form of tree 

cavities or crevices in a building. Again, the waggle dance is performed to let other bees assess 

the potential site. However, after dancing scouts return to the site for re-evaluation, they fly 

back to the cluster to dance again. Each time the scout returns, dance circuit decays to 

approximately 15 dance circuits until the bee ceases dancing. A more profitable site will take 
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longer to decay since the number of dance circuits is high at the beginning. Hence, more bees 

are recruited for a high quality site. A scout bee will estimate the number of bees found at the 

site, and if it exceeds a certain threshold, it will return to the swarm and begin making piping 

signals to prepare the swarm for lift-off to the new site (Passino and Seeley, 2006). 

The three behaviours conferred above namely, mating, foraging, and nest selection have 

inspired a number of optimisation algorithms as will be discussed in the next sections. 

 

 

2.4.5.1 Algorithms based on the mating behaviour of bees 

Abbass (2001a) wrote the first paper that used bees’ reproduction behaviour as an analogy in 

optimisation algorithm called the Marriage in Honey Bees Optimisation (MBO). The algorithm 

has four parameters that need to be set, namely number of queens, size of queen’s spermathecal, 

number of broods, and number of workers. The mating flight starts with random initialisation 

of workers, drones, speed, energy, position, as well as genotype for the queens. Then, each 

queen flies in the space, and probabilistically mates with the drone met based on her speed. At 

the beginning when the queen’s speed is high, it makes large steps in space thus increasing the 

probability of mating. However, this speed reduces after each transition due to the decrease in 

the neighbourhood covered by the queen, just like the annealing process in SA. For mating to 

be successful, the drone has to pass the probabilistic rule before its sperm is stored to the list of 

partial solutions inside the spermathecal. Breeding starts as soon as the mating flight is over 

with the production of broods by using crossover and mutation operator between the queen’s 

genome, and the randomly selected sperm stored. After that, workers improve the broods by 

applying a set of different heuristics or local search. This is where the algorithm differs from 

the popular evolution method, GA. By using the local search method iteratively, the solution’s 
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improvement does not solely depend on crossover and mutation operators. Replacement 

happens when there are fitter broods than the queens. Broods that are not replaced with the 

queens are all killed, and a new mating flight begins. 

 

The algorithm was first tested on propositional satisfiability (SAT) problems (Abbass, 2001a), 

with further improvements on the annealing function from the same author (Abbass, 2001b), 

and for 3-SAT (Abbass and Teo, 2001). Later, Haddad and Afshar (2004) applied the algorithm 

in discrete domain reservoir operation as well as benchmark mathematical test functions 

(Haddad et al., 2005) when they renamed the algorithm to the Honey Bees Mating Optimisation 

(HBMO) algorithm with both names used interchangeably ever since. Various improvements 

and applications soon followed with reservoir operation optimisation in continuous space by 

Afshar et al. (2007), and hybridisation with clustering algorithm k-means done by Fathian et al. 

(2007). Meanwhile, Yang et al. (2007a, b, and c) applied different local searches such as Nelder-

Mead, and Wolf Pack Search and reduced the algorithm parameters. They also performed 

convergence analysis of the algorithm using Markov Chain. Marinakis et al. (2008) solved the 

location routing problem by using the algorithm with the Multiple Phase Neighbourhood 

Search-Greedy Randomised Search Procedure in the initialisation phase instead of random 

initialisation. They also used adaptive memory as the crossover operator, and the Expanding 

Neighbourhood Search in the local search phase. Next, they applied the same method on 

variants of TSP (Marinakis et al., 2009a and 2011), and vehicle routing problem (VRP) 

(Marinakis et al. 2010). 

 

Other applications include forecasting (Pai et al., 2009), electrical power systems (Arefi et al., 

2009), image processing (Horng, 2010), and feature selection (Marinakis et al., 2010). Vakil-
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Baghmisheh and Salim (2010) developed a different selection method through the postponing 

of broods’ replacement with the queen towards the end of the reproduction process while 

Bahamish et al. (2010) exercised the Metropolis selection criteria instead of the Greedy 

selection for predicting protein tertiary structure. Niknam (2011) tackled the multi-objective 

optimisation problem by using fuzzy logic to handle the conflicting objectives and the Chaotic 

Search for the workers’ heuristics. Bernardino et al. (2010) used a single queen bee instead of 

multiple numbers for their application on communication network, and Poolsamran and 

Thammano (2011) modified the crossover and mutation operators together with the local search 

to suit application using the real string instead of binary numbers. The latest uses of the 

algorithm are on scheduling (Palominos et al., 2012; Yin et al., 2012). 

 

Interestingly, another family of bees in the genus Bombidae, the bumblebees has also attracted 

the attention of optimisation researchers. Most algorithms discussed earlier are inspired by the 

European honeybee species, Apis Mellifera. The main difference between them is in terms of 

their colony size, where the bumblebees’ population is smaller. Also, the bumblebees’ queen is 

the only one that survives over winter.  

 

Marinakis et al. (2009b) proposed the bumblebee algorithm which starts with random 

initialisation of the bee population. Then, the bees’ fitness is evaluated and the best bees are 

selected as queens with the rest as drones. Next, drones’ fitness is ranked to be mated with the 

queens. As the result, the sperms are stored in the queens’ spermathecal just like MBO and 

HBMO. Reproduction of broods is through the crossover operator with their fitness later ranked 

with the fittest selected as the new queens, and the rest as workers. The new queens’ genotypes 

are further improved through mutation of the old queens’ genotype, and the fittest workers’ 
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genotype in the local search with momentum-like equation. The new drones are also generated 

with the old queens’ genotype, and the fittest workers’ genotype through random mutation. 

Drones then fly away from the nest to perform some kind of exploratory search to prevent 

suboptimal before their fitness being ranked to be mated with the new queens as previously 

explained. Only the queen with the best solution survives to the next generation while the rest 

of the population dies. Compared to MBO, workers in this algorithm are the solutions instead 

of a set of heuristics. While in both algorithms the fittest are the queens but in this method the 

rest are workers in contrast with MBO where the rest are drones.  

To prove the efficiency of the algorithm, it was applied in clustering problems through 

hybridisation with Greedy Randomised Search Procedure (GRASP). Other applications also 

include unconstrained mathematical benchmark test functions (Marinakis et al., 2010), and 

VRP (Marinakis et al., 2011). 

 

 

2.4.5.2 Algorithms based on the nest-site selection in bees 

Much like foraging, communication between bees during hunting for their new nest-site is 

through waggle dance. However, in the nest-site selection there is dance attrition where scout 

bees reduce their dance strength over multiple visits to the prospective site. As mentioned in 

the earlier section, 15 waggle runs were reduced each time a scout bee returned to the swarm 

cluster thus increasing the rate of consensus building by hindering the broadcasting of less in 

quality sites (Passino and Seeley, 2006). In addition, there is the need to balance between speed 

and accuracy during site selection process due to the fact that bees that are looking for a new 

nest are hanging on a tree branch exposed to the environment. Hence, detection of quorum 

builds at the best site by scout bees launches the preparation of lift-off by the swarm to the new 
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nest. Through some experiments, the same authors predicted the size of the quorum to be in the 

range of 15 to 20 bees which is in accordance with nature as witnessed by other researchers.  

 

This decision-making process in honeybees is also perfect to model into an optimisation 

algorithm. Diwold et al. (2010) performed a biological simulation based on this behaviour in 

dynamic and noisy conditions, and the results are promising. They further investigated o 

function optimisation but instead of the typical Apis Mellifera behaviour, Apis Florea (Asian 

dwarf honeybees) are used because iteration process in optimisation are more suited to this 

open-nesting species where the choice of nest are abundant compared to the restricted 

requirements of the earlier mentioned species. Relocation is possible in Apis Florea if the initial 

solution was suboptimal. Later, the same authors formulated a scheme based on this paradigm 

with the bees’ population placed at a random point in space at initialisation. Then, a fraction of 

bees that contains the scouts fly randomly to a certain distance from the home point before 

performing the local search to improve solution. Sites with the best fitness will have higher 

recruitment with the recruiters move to a random position with a predefined maximum distance 

from the scout’s location. The recruiters will also perform the local search in that area for 

solution improvement. If there is no improvement, the site is abandoned and recruiters will 

become scouts. When the best solution is obtained, and there are a number of scouts that exceed 

the threshold value at that location, the whole swarm will lift-off to the current best solution 

from their home site otherwise the swarm is randomly placed at a new home point or at its 

current home. The process is repeated until a feasible solution is located (Diwold et al., 2011a). 

 

In the same year, Diwold et al. (2011b) predicted the protein molecular docking using the 

scheme they proposed earlier with some modifications. They named the algorithm the Bee Nest-
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Site Optimisation (BNSO) algorithm. In this problem, the distance between the scout’s potential 

site and the home site, or the newly found point by recruiter and the scout’s location is not fixed 

but there is a range factor that will reduce the distance over time to stimulate the intensification 

in the local search using the simple random walk. Moreover, a standard roulette wheel selection 

based on the fitness probability is employed in the recruitment process, and the site 

abandonment is induced once no improvement took place after a certain number of iteration. 

Even though the result is quite promising, it was inferior to PSO in terms of performance thus 

suggesting future hybridisation. 

Furthermore, Paulovič (2011) specifically designed an algorithm for clustering inspired by 

bees’ nest-site selection. The algorithm consists of four phases: proto-hives initialisation, 

swarming, natural selection, and cluster evaluation. Several hives are inserted in the data space 

during initialisation. Then, scout bees are positioned pseudo-randomly with the centre being 

the parent hive. The exhaustive or greedy search is performed around the area to find candidate 

solutions. Each candidate is ranked-based on the prospective hive fitness using a small radius 

to the fraction of the full hive radius area with the worst position being eliminated. A bigger 

radius is exploited at each iteration, and more of the less fit candidates are rejected to allow for 

the best site to become the new hive. A mechanism called the honey bee drift that occurs in a 

swarm with low probability will direct scouts to the whole data space to focus on the dataset 

elements in order to increase the chances of finding a good nest-site in an otherwise 

undiscovered area. New sites are created in the region of high data density if it was previously 

destroyed through natural selection. A clear distinction between cluster regions will form due 

to the cluster of high data density having a big number of hives, and sharper contours. 
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Kumar et al. (2012) suggested a novel algorithm based on the bees’ decision making during 

house hunting in the multi-objective optimisation of electrical power system using Pareto-

optimal, and multi-agent system. In this algorithm, the search area is divided into different 

fragments with agents sent to search the whole space. Around 30 to 50 agents are usually used 

for exploration to provide speed-accuracy trade-off. Midpoint of the area is selected as an initial 

point for the agents to start searching around the region of the best solution in each fragment 

due to the use of the PSO-like Nelder-Mead method. Every individual’s (agent) best solution 

will be stored in a vector table before comparing them in the end to find the global best. 

 

In general, it is found that algorithms derived from the behaviour of bees during nest selection 

are still scarce compared to mating and foraging behaviour. Thus, further works can be 

developed in this area to produce more efficient optimisation techniques. 

 

 

2.4.5.3 Algorithms based on the foraging behaviour of bees 

The algorithms based on the food foraging behaviour of bees are the most famous compared to 

the other activities of bees. According to Karaboga et al. (2012), three major players in this 

category are the Artificial Bee Colony (ABC) algorithm, the Bees Algorithm, and the Bee 

Colony Optimisation (BCO) algorithm with BCO among the first to use this analogy. 

 

The earlier version of BCO is the Bee System (BS) developed for combinatorial problems by 

Lucic and Teodorović (2001). In this algorithm, scout bees do not have any guidance while 

foraging because the aim is to find all kinds of food. Thus, this approach is associated with low 

search cost and low average quality in food. Later, Lucic and Teodorović (2003) combined FS 
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with this method to handle uncertainty in traffic, and transportation engineering problems as a 

Travel Demand Management system. The artificial bees (agents) in this system employed 

approximate reasoning, and rules of fuzzy logic in their communication, and action. 

 

To combine both of the approaches above, Teodorović and Dell’Orco (2005) generalised the 

concept of BS so that it can be used in deterministic and combinatorial characterised by 

uncertainty. This multi-agent system uses the constructive concept which builds solutions from 

scratch within execution steps unlike the local-based metaheuristics that improves the current 

solution. The agents in this method live in a discrete time environment with each bee generating 

one solution to the problem. There are two phases in the steps of this algorithm; the forward, 

and backward pass. In the first phase, bees that visit solution’s component in a predefined 

number of moves will create the partial solution, and return to the hive to start the second phase. 

Here, bees exchange information on the quality of the partial solution and form two types of 

bees. The first type is recruiters which are bees loyal to the solution while bees of a better 

solution will have a high probability to keep on advertising, and be chosen for further 

exploitation. The second type is called uncommitted bees whose food source has been 

abandoned, and will select one of the advertised bees to exploit. The numbers of both of these 

types of bees will change dynamically throughout the course of the algorithm’s run. Moreover, 

the selection method for both type of bees is based on the probability using the roulette wheel. 

In addition, both of these phases will keep alternating until all solutions are completed with the 

best one to be updated as the global best. This completes one cycle of the algorithm, and the 

algorithm will repeat its cycle until a certain terminating condition is fulfilled. 
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Since then, this algorithm has been put into operation for vast hard combinatorial problems such 

as TSP, VRP, ride matching, optical network’s assignment, constrained portfolio, highways’ 

traffic sensors, optimal placement of distributed generation in electric network, optimal 

facilities location, and scheduling. It has also been hybridised with the rough set approach to 

solve problem in the supply chain management (SCM) (Teodorović et al., 2011). BCO has also 

been used together with the parallel computing to increase computation speed. There is also the 

local-based variant of this algorithm which begins with a complete feasible solution, generated 

randomly by heuristic, and then perturbed to improve it. This variant has been tested to nurse 

rostering problem as cited by Teodorović et al. (2011) in their review on applications of BCO. 

 

Nonetheless, the most active algorithm based on the foraging nature of bees is ABC which was 

introduced by Karaboga (2005). There are three types of bees in this algorithm: 

i. Employed bees, which are associated with the specific food source; 

ii. Onlooker bees, which watch the dance of employed bees at the hive to choose food 

source from; 

iii. Scout bee, which searches for food randomly. 

 

In this algorithm, the position of food source represents solution to the problem, and nectar 

amount of a food source reflects the quality or fitness of the corresponding solution. Moreover, 

the number of food source is equal to the number of employed bees. The algorithm has three 

parameters that need to be set by the user. There are the colony size with 50-50 amount of 

employed bees, and onlooker bees; limit refers to the number of trials taken before a food source 

is abandoned; and maximum number of cycle. Initially, employed bees are placed at random 

food sources in the space. Then, they search the neighbourhood of the food source to try to 
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improve the solution. Next, they return to the hive to exchange information with onlooker bees. 

Using the roulette wheel, food source with high probability proportional to the food source 

fitness is selected for further exploitation by onlooker bees. Once the food source has been 

exhausted and there is no improvement made after predetermined cycles, it is abandoned. The 

employed bee associated with the deserted food source becomes the scout bee, and starts 

searching for a new food source randomly. This abandonment of the food source serves as the 

negative feedback to the positive feedback of recruitment of onlooker bees in order to balance 

the search process. 

 

Originally, ABC was designed to solve unconstrained continuous numerical problems 

consisting of multidimensional unimodal and multimodal functions. It produced better results 

when compared to GA, DE, and PSO. Then, it was extended to handle constrained problem 

with one of the method is by using dynamic control mechanism for equality constraints to 

facilitate the approach to the feasible region of the search space. Other variants of this algorithm 

cover other domains of optimisation problems such as multi-objective, discrete/combinatorial, 

and binary/integers. Among major applications of ABC are in the training of neural networks, 

data mining, wireless sensor network, image processing, variety of engineering problems of 

different fields, as well as in medical applications (Karaboga and Akay, 2009a). ABC has also 

been hybridised with local search methods such as the Nelder-Mead, GRASP, and Hooke-

Jeeves, as well as other metaheuristics such as EAs, ACO, PSO, BFO, and AIS. Researches to 

combine this algorithm with new computing paradigms such as the chaotic, and quantum 

computing have also been conducted. Other modifications or improvements made on the 

algorithm were to prevent the suboptimal, and to increase the convergence speed. Studies have 

also been done on the effect of control parameters as well as on the selection, and position 
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updating strategies. In contrast, one study has even suggested the use of Von Neumann topology 

of PSO in the algorithm. 

 

Recently, the original inventor of ABC developed the quick-ABC (qABC) (Karaboga and 

Gorkemli, 2012). In this variant, a new position update equation for onlooker bees is introduced 

to reflect the nature more accurately which differ from employed bees’ update positioning. 

Additionally, the limit to ascertain when a site needs to be abandoned can now be made 

dependent on the colony size and the problem’s dimension. A new parameter, neighbourhood 

radius is also initiated. These changes were able to improve the local search which made 

convergence faster compared to the basic ABC on continuous benchmark functions. Later, 

Karaboga and Gorkemli (2014) studied the effect of the new added parameter on the algorithm’s 

performance. It was found that tuning of the neighbourhood radius is necessary to obtain a good 

result. Besides continuous optimisation, qABC has also been applied to TSP problem with eight 

different neighbourhood operators borrowed from GA as well as the nearest neighbourhood 

tour constriction heuristic as the initialisation strategy (Gorkemli and Karaboga, 2013). 

 

Likewise, ABC has also ventured into the finding of multiple optimal in MMO (Liu et al., 

2012). As the basic ABC can only locate one global best solution, memorising the fitness of 

abandoned food sources has given ABC the aptitude to obtain all possible global and local 

optima. This multimodal variant of ABC has been applied to detect assortments of conic 

sections of multiple hyperboles, and circles (Cuevas et al., 2012; Rahkar-Farshi et al., 2014). 

Further explanations on other variants and applications of ABC can be found in the 

comprehensive review done by Karaboga et al. (2012). 

 



48 
 

There are several other algorithms based on the food foraging behaviour of bees. One is the 

Virtual Bee Algorithm designed by Yang (2005) to work on numerical function optimisation. 

In this method, a swarm of virtual bees is generated and move randomly in the search space. 

The nectar source corresponds to the encoded values of the function, and the interactions 

between agents begin when bees found the sources. Then, the solution is obtained due to the 

intensity of this interaction. In addition, Drias et al. (2005) developed the Bee Swarm 

Optimisation to work on the Maximum Weighted SAT problem before extending to a parallel 

version of the same problem to increase the computational speed. Meanwhile, Chong et al. 

(2006) used a similar principle to BCO, and solved the job shop scheduling problem, TSP, and 

the training of neural network for feature selection. Furthermore, Lemmens et al. (2008) 

compared the non-pheromone-based navigational of bees with the pheromone-based 

navigational of ants before applying the bee-based approach to mobile robot navigation 

problem. On the other hand, Lu and Zhou (2008) simulated the honeybees collecting pollen 

behaviour as a global optimisation algorithm to solve TSP.  

 

By using movement based on probabilistic approach, Sundareswaran and Sreedevi (2008) 

tested their bee foraging-based algorithm on numerical test functions and compared them to 

ACOR. In their algorithm, random generated worker bees are forced to move in the direction 

of elite bees that represent the best possible solution. Bees’ step distance of flight is made as a 

variable parameter in this method. Another algorithm designed to solve combinatorial problem 

is the Bee Colony-inspired Algorithm by Hӓckel and Dippold (2009) who used VRP as their 

test problem. The algorithm has a likeness to ABC. Moreover, McCaffrey (2009) proposed the 

Simulated Bee Colony to solve a range of combinatorial problems for example, generation of 

pairwise test vectors, extraction of rules set for clustered categorical data, and graph 
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partitioning. Later, Akbari et al. (2010) used different updating equations for different types of 

bees that have a reminiscent of ABC and PSO in their algorithm. The algorithm has been 

extended to cooperative variant, and applied to Dynamic Economic Dispatch problem. While 

not long ago, Bitam (2012) combined food foraging, and mating behaviour of bees, and 

proposed the Bee Life Algorithm to be used in cloud computing. 

 

On the matter of bee-based multimodal algorithms for MMO, two techniques are specifically 

invented for clustering problems. The first is the Bee Nest-site Selection Clustering algorithm 

(Paulovič, 2011) that has been described previously, and the second algorithm is the Flower 

Pollination by Artificial Bees (FPAB) developed by Kazemian et al. (2006). FPAB was used to 

form clusters before serving as the initial cluster centre for another clustering algorithm, the 

fuzzy c-means to reduce any misclassification errors. Just like other clustering algorithms, 

FPAB is easily trapped in the local optima, thus optimisation modules were used to find the 

optimal solutions. For examples, set-covering model has been employed with FPAB in the 

determination of machinable volumes in the production process planning (Houshmand et al., 

2009), while hybridisation with BBO and BFO were used in the satellite image classification 

problem with the former done by Johal and Singh (2010) and the latter by Singh et al. (2011). 

 

In contrast, Rashid et al. (2009) developed an algorithm based on PSO but using the bee’s 

foraging behaviour for its particles. Sub-swarms were created after scouts found niches and 

foraging bees were recruited to exploit the area set by radius-based niching parameter using the 

position update equation of PSO. An overlapping of swarm is prohibited to eliminate 

redundancy by merging the swarm. If there is no improvement in any sub-swarm after several 

iterations, the swarm is considered converged. Then, the result is recorded in a blackboard 
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similar to the method used in TS, and the swarm is disbanded with the scout sent to perform a 

random search. 

 

A novel multimodal algorithm based on the collective decision making by bee colonies called 

OptBee was designed to generate, and maintain population’s diversity in order to obtain 

multiple local optima without losing the ability of global optimisation (Maia et al., 2012). This 

capability is still lacking in many bee-based algorithms. The algorithm has a niche-like 

parameter, i.e. inhibition radius, and used probability for recruitment and scouting. Similar with 

other algorithms based on foraging behaviour of bees, scout bees are involved in random search 

while recruited bees exploited the sites found by scouts. Although the algorithm is suitable for 

multimodal domain, in some problems it is outperformed by concentration-based opt-aiNet. 

 

 

2.5 The Bees Algorithm 

 

As previously discussed, the Bees Algorithm is one of the key player in the foraging bees’ 

algorithm category first developed by Pham et al. (2005). In its basic version, the algorithm 

performs a kind of neighbourhood search combined with random search. A bee in this algorithm 

is a d-dimensional vector containing the problem variables, and represents a feasible solution 

to the problem. Solution is represented by the visited site (food source) with a fitness associated 

with it. The fitness is calculated according to the objective function being optimised. 
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The algorithm requires a number of control parameters need to be determined by the user: 

i. number of scout bees (ns), 

ii. number of best sites (nb) out of sites visited by ns, 

iii. number of elite sites out of nb selected sites (ne), 

iv. number of bees recruited for ne sites (nre), 

v. number of bees recruited for the other nb-ne selected sites (nrb), 

vi. size of neighbourhood (ngh), 

vii. stopping criterion (it can be the maximum function evaluation, the minimum error 

or/and others) 

 

The steps for the Bees Algorithm in its basic form: 

1. Initialise the scout population with random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) //Forming the new population. 

4. Select sites for the neighbourhood search. 

5. Recruit bees for selected sites (more bees for elite sites), and evaluate fitness. 

6. Select the fittest bee from each patch. 

7. Assign remaining bees to search randomly, and evaluate their fitness. 

8. End While. 

 

The algorithm starts with scout bees placed randomly in the search space. Then, the fitness of 

the sites visited by scout bees is evaluated. Bees that have the highest fitness are chosen as 

“selected bees” and sites visited by them are chosen for neighbourhood search. Next, searches 

are made more detailed in the neighbourhood of the selected sites, assigning more bees to search 
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near to the elite sites which represent the area where the promising solution lies. Normally, bees 

are chosen directly according to the fitness associated with the sites they are visiting. 

Subsequently, for each patch only bees with the highest fitness will be selected to form the next 

bee population. However, there is no such restriction in the nature. This restriction is introduced 

to reduce the number of points to be explored. Afterward, the remaining bees in the population 

are assigned randomly around the search space scouting for new potential solutions. These steps 

are repeated until a stopping criterion is met. The stopping criterion can be the maximum 

number of generations reached or a satisfactory solution has been found. At the end of each 

cycle, the colony will have two parts to its new population which are those that were the fittest 

representatives from every patch, and those that have been sent out randomly. Hence, random 

scouting and differential recruitment are the fundamental operations of the Bees Algorithm that 

balances between exploration and exploitation. With this explanation, it is the author’s opinion 

that the Bees Algorithm is the metaheuristics that follows the bees’ foraging nature more 

accurately due to the use of elitism and clear definition of food patches (neighbourhood) to 

translate the waggle dance performed by bees. However, it is done at the expense of using more 

tuneable parameters than others. 

 

From the algorithm’s control parameters, the size of the bees’ population, p can be calculated 

as below: 

   𝑝 = 𝑛𝑠 + 𝑛𝑒 ∙ 𝑛𝑟𝑒 + (𝑛𝑏 − 𝑛𝑒) ∙ 𝑛𝑟𝑏                (2.2) 
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For random scouting in the initialisation phase as well as for the unselected bees, the following 

equation is used: 

   𝑥𝑟𝑎𝑛𝑑 = 𝑥𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∙ (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)                                      (2.3) 

where; 

rand is a random vector element between 0 to 1, 

xmax, xmin are the upper and lower bound to the solution vector respectively. 

 

Meanwhile, in the neighbourhood search, the following equation is used for recruited bees: 

  𝑥𝑖+1 = (𝑥𝑖 − 𝑛𝑔ℎ) + 2 ∙ 𝑛𝑔ℎ ∙ 𝑟𝑎𝑛𝑑𝑖 ∙ (𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑚𝑖𝑛

𝑖 )                                           (2.4) 

 

To avoid misidentification between the Bees Algorithm and ABC, Table 2.2 lists the crucial 

disparities between both of these foraging bee-inspired techniques. 

 

Table 2.2: Differences between the Bees Algorithm and the Artificial Bee Colony 

Criteria Bees Algorithm Artificial Bee Colony 

Position 

update 

In the local search, the recruited bees’ 

position was based on the random 

distribution guided by the selected bee of 

each patch with the patch size predetermined 

by the user. 

The onlookers’ position is based on the mutation 

position between the employed bees and another 

randomly selected employed bees. 

No self-update strategy for the selected bees. The employed bees can self-update their position. 

Updates are done throughout the problem 

dimensions. 

Only update the random index dimensions from 

the overall problem dimensions. 

Selection 

strategy 

The number of recruiters are user-defined for 

each site selected based on its fitness with the 

elite sites receiving more bees. 

Bees are recruited using probabilistic approach 

where the better the solution, the larger the number 

of bees allocated to the site. 

Scout 

bees 

The remaining scout bees that are not selected 

for neighbourhood search, arbitrarily re-

initialised their position independently in the 

global scale.  

Only employed bees whose site is abandoned 

perform random scouting globally. 

The same thing happens to selected bees after 

site abandonment. 
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2.5.1 Variants and applications of the Bees Algorithm 

Since its inception, the Bees Algorithm has gained a lot of interest. Figure 2.2 that shows a 

steady increase of numbers of papers published using the Bees Algorithm each year. Initially, 

the algorithm was tested to various numerical benchmark function up to 10 dimensions (10D), 

and outperformed other optimisation methods such as deterministic simplex, ACO, GA, and 

SA in term of speed and accuracy (Pham et al., 2006). Soon after, Li et al. (2010) tested the 

Bees Algorithm to continuous functions higher than 10D, and compared with the performance 

of ABC and DE. They concluded that the Bees Algorithm is the better algorithm for multimodal 

functions while for unimodal, the superior performance was only achieved for higher dimension 

problems. A similar trait has also been found by Pham and Castellani (2009) and Tsai (2014b). 

 

 

Figure 2.2: Number of papers based on the Bees Algorithm published per year 
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The Bees Algorithm was then extended to other domains such as combinatorial, multi-

objective, and constrained optimisation problems. Typical in combinatorial problems, the Bees 

Algorithm together with new neighbourhood operators perturbed the solution in order to 

improve it. For example, Pham et al. (2007c, 2007e) introduced the 2-opt and insertion in 

scheduling, and sequencing problem respectively. Meanwhile, Ang et al. (2010) manipulated 

the TRIZ-inspired operator in printed circuit board assembly. In addition, Ozbakir et al. (2010) 

used the shift, double shift, and ejection chain in the Generalised Assignment Problem (GAP) 

while Dereli and Das (2011) utilised the 1-flip, swap, and k-flip to solve container loading 

problems. Jana et al. (2015), for their work involving protein structure, also attempted the use 

of some sort of mutation operator called the adaptive polynomial mutation for the scout re-

initialisation after site abandonment. On top of that, most of the combinatorial problems solved 

using the Bees Algorithm employed the probability-selection instead of fitness-based such as 

research performed by Sadeghi et al. (2011) that implemented the selection of recruited bees 

based on the probability of the dancing rate for resource constrained project scheduling 

problem. The work by Bernardino et al. (2011) in load balancing problems in internet traffic 

did not just use the probability-based selection but also employed the deterministic Shortest 

Path algorithm in the initialisation phase. However, Abdullah and Alzaqebah (2013) made use 

of three different selection strategies; disruptive, tournament, and ranking selection besides 

hybridising the Bees Algorithm with SA and Hill Climbing. The application of choice for this 

hybrid algorithm was examination timetabling. 

 

In multi-objective problems, solutions are found by locating the Pareto optimality such as in 

the works done by Anantasate et al. (2010), Anantasate and Bhasaputra (2011), and 

Sumpavakup et al. (2012) in the optimal power flow (OPF) problem; Ang et al. (2009) in motion 
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planning of robotic arm, and Sayadi et al. (2009) in communication network design. 

Meanwhile, the algorithm has also been applied in the Environmental/Economic Dispatch 

(EED) problem by Pham et al. (2008d); Leeprechanon and Polratanasak (2010), as well as by 

Vennila and Prakash (2012). In the multi-objectives domain are studies seeking to solve various 

mechanical designs (Natchi et al, 2011) for the design of car suspension system (Kazemi et al., 

2012), for optimisation in mechanical structures of composite laminates (Poor and Saz, 2012; 

Salamat and Ghanbarzadeh, 2012), in SCM (Mastrocinque et al., 2013), for the design of truss 

structure (Moradi et al. 2015), and in other electrical power applications (Lee and Kim, 2010; 

Rashtchi, 2010). 

 

Some of them also incorporated FS and clustering method to reduce the Pareto front like studies 

performed by Bhasaputra et al. (2011) in solving OPF problem, and Phonrattanasak (2011) as 

well as Phonrattanasak et al. (2013) in the optimal sizing, and placement of wind farm. In the 

fuzzy logic methodology, Tolabi et al. (2013) transformed the multiple objectives functions 

into fuzzy membership functions while the improved analytical method simplified the candidate 

selection. Collectively, these strategies performed well in the distributed generators problem. 

However, not all multi-objective problems are solved through Pareto optimality. Lee and 

Darwish (2008) benefitted from the weighted sum, while Pham et al. (2010) and Marzi et al. 

(2010) exploited the parallel computing in EED problem. 

 

Penalty function is the method normally used to handle constraints in optimisation problems. 

Examples of such researches are by Pham et al. (2009a), Pham et al. (2009b), Aydogdu and 

Akin (2011), Mirzakhani et al. (2011), Xu et al. (2011), and Alfi and Khosravi (2012) with most 

of the works involving the design problems in multiple disciplines. 
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One of the issues in the Bees Algorithm is the number of control parameters that need to be 

tuned by the user. Usually, this is done by conducting a small number of trials. However, Pham 

and Castellani (2009) proved that once a good setting has been found, the algorithm is able to 

consistently solve a large number of problems which eliminate the need to specifically set the 

control parameters for each different problem. Yet, Pham and Darwish (2008) employed the 

use of fuzzy inference system to reduce the number of parameters to be set. In this method, 

there is no need to set the number of selected sites, and the number of bees recruited to that 

sites. Instead, they are determined automatically by what they called the fuzzy greedy selection 

which disregards patches with low fitness or low rank. In addition, Otri (2011) used the Bees 

Algorithm to find the optimal value of the control parameter before using that value in the 

algorithm itself to solve optimisation problems in his PhD thesis. He called this method the 

Meta-Bees Algorithm. Meanwhile, to tune the Bees Algorithm parameters for the transportation 

management problem, Luangpaiboon (2011) tapped a mathematical programming optimisation 

method (weighted centroid modified simplex) together with linear constrained response surface 

whereas Mongkolkosol and Luangpaiboon (2011) employed the Steepest Descent. Other 

researchers also found that there is no need to differentiate between the elite sites, and the 

remaining best sites such as works done in the multi-objective Bees Algorithm (Ang et al., 

2009; Pham et al., 2008d), and the design of antenna array by Guney and Onay (2011). 

 

Beside the basic version of the Bees Algorithm, another variant includes two new procedures 

to further enhance the performance of the algorithm. They are the neighbourhood shrinking and 

the site abandonment (Pham et al., 2008c). In neighbourhood shrinking, the initial size of the 

neighbourhood is set at a very large value. For each site, the size is; 

   𝑠𝑖(𝑡) = 𝑛𝑔ℎ(𝑡) ∙ (𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑚𝑖𝑛

𝑖 )                                                       (2.5) 
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𝑛𝑔ℎ(0) = 1.0                                                           (2.6) 

 

where t is the tth iteration of the algorithm main loop.  

 

The value is kept until no improvement is made on the fitness, then the size will be decreased 

to allow more detailed exploitation with the following formula: 

   𝑛𝑔ℎ(𝑡 + 1) = 0.8 ∙ 𝑛𝑔ℎ(𝑡)                                                                          (2.7) 

 

This procedure has a resonant of annealing temperature of SA. Furthermore, after applying the 

neighbourhood shrinking, and there is no improvement made after a certain duration, then the 

site is considered has converged to the local optima. The patch is abandoned and random 

scouting is re-initialised. With this procedure, a new control parameter is added which is the 

stagnation limit, stlim. Consequently, this modified version of the Bees Algorithm (from here 

onwards shall be called the Standard Bees Algorithm) has been applied successfully to the 

training of ANN (Pham et al., 2008c; Fahmy et al., 2011), numerical benchmark functions 

(Pham and Castellani, 2009; 2014; 2015), design of digital filter (Pham and Koҫ, 2010), service 

robot assignment (Xu et al., 2010 and 2011), software effort estimation (Azzeh, 2011), tuning 

of multi-objectives Proportional-Integral-Derivative (PID) controller (Ercin and Coban, 2011; 

Coban and Ercin, 2012), extraction of fuzzy measures for sample data (Wang et al., 2011), and 

optimal speed parameter of wind turbine generators (Fahmy, 2012). Loo et al. (2014) also 

converted it to be able to work on the parallel computing platform. Whereas Xie et al. (2015) 

applied the Bees Algorithm to the multi-user resource service composition in a cloud 

manufacturing. 
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Many attempts were made to improve the Bees Algorithm normally so that the algorithm 

depicts the bees’ foraging nature more accurately. Muhammad et al. (2011) considered the 

possibilities that recruit bees are lost during flying by implementing the local search 

manoeuvres recruitment factor in the Bees Algorithm. This factor helps the algorithm to extend 

the neighbourhood size in a certain direction as well as mutate a part of the dimension of the 

search space. Accordingly, this enables the algorithm to reduce the number of iteration needed 

to achieve the optimum solution especially in high dimensional numerical problems. 

 

Another variant of the Bees Algorithm introduced the concept of young bees to the most recent 

generated solutions. In order to protect this class of bees from the more evolved individuals, 

they were to compete only among themselves with the surviving individuals were given at least 

one evolution step to improve their solutions. In this version, the selected bees are not a fixed 

number set by the user but instead are a certain fraction of the population. Hence, there is no 

distinction between the best and elite bees as in the original form. There is also no value set for 

recruited bees aimed at the selected sites. In its place, operators such as mutation, creep, 

crossover, interpolation, and extrapolation are used to produce new individuals. Furthermore, a 

statistical-based method facilitated the tuning of the algorithm’s parameters. With that, the 

algorithm has been tested to numerical benchmark test functions, and produced exceptional 

results when compared with EAs and PSO (Pham et al., 2012). Castellani et al. (2012) also 

applied it in dynamic optimal control in chemical engineering. 

 

Hussein et al. (2013) incorporated the Lévy flight method to initialise the bees’ position instead 

of using the uniform random distribution in the Bees Algorithm. Lévy distribution, as has been 

discussed in an earlier section, is a random heavy-tail distribution closer to the flying pattern of 
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bees when foraging in their natural environment. Moreover, the size of the neighbourhood was 

determined by dividing the search space equally with the centre of the landscape as the hive 

location. This research was also applied in continuous numerical functions (Hussein et al., 2013 

and 2014). 

 

Subsequently, Shatnawi et al. (2013b) offered three versions of the memory based Bees 

Algorithm; local memory, global memory, and the combination of both. This approach 

compared the previous position stored in the memory with the new position of the best bee in 

the patch. If the previous position is better, recruited bees shall follow the memorised-position, 

otherwise the random search as in the normal Bees Algorithm is executed. A radius concept 

measured by Euclidean distance was also applied in this study so that different patches do not 

congregate on the same area. 

 

Afterward, Yuce et al. (2013) presented the notion of adaptive neighbourhood search, and site 

abandonment into the Bees Algorithm. Through this strategy, the neighbourhood size can be 

shrunk and enlarged based on the fitness function throughout the search. After a certain limit, 

for each shrinking and enhancing purposes, unproductive sites will then be abandoned just like 

in the Standard Bees Algorithm. With this, two more new parameters are introduced; enhancing 

coefficient, and enhancing limit while another two are renamed as shrinking coefficient and 

shrinking limit. It was then tested against numerical benchmark functions with improved 

performance especially in 10D. Later, the upgraded algorithm was utilised in multi-objective 

SCM optimisation problem (Yuce et al., 2014). 
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A more recent study on the improvement of the Bees Algorithm is from Tsai (2014a) in which 

the neighbourhood size is made adaptive without using any input by the user. Instead it is based 

on the distance between two elite bees. This study verified its findings using the benchmark 

functions. It was also hybridised with ABC for constrained optimisation (Tsai, 2014b). 

 

Another research that involved the adaptiveness of the patch size is by Ahmad et al. (2014). 

The size of the patch is augmented if improvements are made on the fitness value but is kept 

unchanged if there is none until a certain threshold. After this limit, much like the Standard 

Bees Algorithm, the size of the neighbourhood is shrunk. In addition, the neighbourhood size 

depends on the distance between the new best solution of the swarm, and the current best of 

each neighbourhood which make this magnitude bigger if the solution is far from each other. 

This study proved beneficial for mechanical design optimisation problems. 

 

In addition, some of the Bees Algorithm enhancements were tailor-made to a specific 

application. For image classification purposes, Bradford Jr. and Hung (2012) modelled a pollen-

based Bees Algorithm to include the environment interactions, and season changes to the 

foraging bees’ behaviour. This version of clustering Bees Algorithm only used two parameters 

which are the pollen depletion rate, and the number of clusters that determine the value for other 

control parameters in the algorithm. Moreover, a bee in this variant is not the whole solution, 

but only a part of it, and the neighbourhood search was done in reverse where the size was set 

smaller initially then became bigger as it progressed. Later on, Leeprechanon and 

Phonrattanasak (2013) developed a two hives model of the Bees Algorithm where two 

populations of bees targeted different search spaces. They also utilised the Newton power flow 

to initialise the bees. Together this method was exploited in the OPF problem. 
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Another example is the study by Li et al. (2011) which engaged the use of controlled 

randomisation, and frequency memory based on polar coordinate in the initialisation phase of 

the algorithm to solve the circles packing problem. In the neighbourhood search, they divided 

the circles into three groups based on their radius. On the other hand, Bernardino et al. (2012) 

applied different local operators in the neighbourhood search of the Bees Algorithm that 

encompassed the exchange of one or two customers in the combinatorial problem of 

communication network design. Other researchers such as Guney and Onay (2013) also 

changed the way the neighbourhood search operates by using adaptive neighbourhood 

production mechanism in the linear antenna array application. 

 

The trend in enhancing the capabilities of the Bees Algorithm usually involves the mechanism 

in the neighbourhood search as discussed in the previous paragraphs. One example of such an 

endeavour is the investigation by Ebrahimzadeh et al. (2013) where the neighbourhood size 

was not defined by the user but was based on the fitness value which means that each patch size 

differs with one another. It can be noted here that in the Standard Bees Algorithm the patch size 

will only vary once there is no yield whereas in here it changes throughout the search evolution. 

A new patch shrinking equation was also introduced based on the elite bees’ fitness. Control 

chart pattern recognition was where this technique was justified. Next, it was also engaged in 

the classification of accuracy measurement of Global Positioning System (Azarbad et al., 2014). 

 

The fittest bee of the swarm in the study from Masajed et al. (2013) influenced the scout bees’ 

position after site abandonment. This is to ensure the bees do not fall on the unfruitful site, and 

are able to compete with the other bees much like the concept introduced by Pham et al. (2012). 

In this version, the algorithm was able to produce an optimised path plan for robot manipulator. 
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Whereas, Rambad and Rezaeian (2014) formulated probabilities of selecting and rejecting 

recruited bees based on the normalised fitness value. Two different parameter settings of the 

Bees Algorithm were then used in a machine scheduling application. 

 

One of the latest undertakings of the Bees Algorithm is the work by Zhou et al. (2015) that 

manipulated the algorithm to enable the finding of multiple optimal solutions in MMO domain. 

By means of the radius estimation, variable colony size as well as the Hill-Valley mechanism, 

each patch converged to different peaks. The patch can also merge and split depending on their 

distance to each other. To speed up the local search, a balance technique guided the bees 

towards a better direction. Through this, the multiple optimums obtained can serve as an 

alternative especially if the fitness landscape has more than one global optimum. 

 

Other variants of the algorithm include the hybrid versions with local search/ heuristics, or other 

metaheuristics. Most of these hybridised versions increase the performance of the Bees 

Algorithm in a specific application compared if just by using the basic form. Table A.1 in 

Appendix A lists the hybrid approaches used with the Bees Algorithm and their applications. 

Some even combined multiple methods such as Shafia et al. (2011) who used the Bees 

Algorithm together with GA and TS in the clustering problem. It was also merged with other 

metaheuristics as the local procedure to improve the algorithms such as in Gao et al. (2012, 

2015) for the enhancement of the Harmony Search (HS), and Sagheer et al. (2012) to aid the 

Scatter Search. 

 

Nonetheless, other approaches are not considered hybrid but rather inspired by some other 

optimisation technique. Pham et al. (2009b), motivated by PSO, updated the position of bees 
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after the neighbourhood search towards the direction of the global best. Meanwhile, 

Packianather et al. (2009) eliminated the need to differentiate between best sites, and selected 

sites by using the Pheromone-based Bees Algorithm motivated by ACO. Long (2015) also 

developed his version of the Bees Algorithm with the update pheromone level equation for the 

design of hybrid vehicles. Besides using pheromone as the platform for information sharing 

between bees, Akpinar and Baykasoğlu (2014a) also manipulated multiple colonies of bees to 

explore different divisions of the search landscape. This variant was put into operation in the 

line balancing problem (Akpinar and Baykasoğlu, 2014a) as well as optimisation of numerical 

functions (Akpinar and Baykasoğlu, 2014b). Moreover, inspired by ABC, Alzaqebah et al. 

(2011) used probability-based selection in the application of examination timetabling. 

 

One of the most popular usages of the Bees Algorithm from the literatures is in the field of 

machine learning, and data mining especially in pattern recognition purposes where the 

algorithm was applied to optimise various types of ANNs or a kernel-based method support 

vector machines (SVM). Multi-layer perceptron (MLP), a type of feedforward neural network 

has been used in wood defects identification (Pham et al., 2006b; Ghanbarzadeh, 2010), 

modelling of inverse kinematics for robot manipulators (Pham et al., 2008c; Fahmy et al., 

2012), communication signal recognition (Sherme, 2011), breast cancer detection (Khosravi et 

al., 2011), fluid flow in porous media (Biglari et al., 2013), and recognition of communication 

modulation (Yang et al., 2015a, b). On the other hand, Pham and Darwish (2010) applied radial 

basis function network (RBF) in wood defects classification, Attaran et al. (2012) in machine 

fault diagnosis, Attaran and Ghanbarzadeh (2014) for fault detection in rotating machines, 

Ebrahimzadeh et al. (2014) for recognition of electrocardiogram signal, and Khajehzadeh 

(2015) for control chart pattern recognition. Conversely, Nebti and Boukerram (2010, 2012) 
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utilised both MLP, and RBF in their effort to automatically detect Arabic numeral digits. 

Kalami (2014) also attempted the same strategy of using two different ANNs for fault 

recognition in electric power cable. Meanwhile, Pham et al. (2006c) used the learning vector 

quantisation network (LVQ) in control chart applications and Akkar (2010) used cellular neural 

network in opto-electronic circuit design. 

 

In contrast, SVM was exploited in the breast cancer recognition problem (Addeh and 

Ebrahimzadeh, 2012), network anomaly detection (Alomari and Othman, 2012), image radar 

classification (Samadzadegan and Ferdosi, 2012), automatic modulation recognition (Sherme, 

2012), and again in the wood defects identification (Pham et al., 2007d). Chen et al. (2014) to 

classify defects in welding process and implemented the combination of the Bees Algorithm 

and SVM. 

 

 ANNs alongside the Bees Algorithm are common for forecasting or prediction purposes. 

Khanmirzaei and Teshnehlab (2010) used recurrent neural network and the Bees Algorithm in 

weather forecasting while Şenyiğit et al. (2012) and Keskin et al. (2015) relied on the algorithm 

and MLP combo in lot size prediction, and the prediction of water pollution consecutively. 

Additionally, Azzeh (2011) estimated the software effort with the help of a regression based-

model tree in conjunction with the Bees Algorithm, while Zarei et al. (2013) utilised a different 

combination involving the adaptive neuro-fuzzy inference system (ANFIS) which is another 

type of ANNs to predict heat from combustion of organic compounds. Using the same 

arrangement, they then abled to predict the removal rate of toxic material for treating waste 

water. In contrast, Ghaeni et al. (2015) employed a statistic-based response surface 

methodology with the Bees Algorithm for waste water treatment. Moreover, applying the linear 
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regression model in cooperation with the Bees Algorithm helped Malekian et al. (2015) predict 

the energy consumption of a household. 

 

In feature selection applications, Sadiq et al. (2012) engaged the Bees Algorithm together with 

the rough set theory for incomplete data problem. Rufai et al. (2014) that combined SVM with 

the Bees Algorithm for intrusion detection in cyber security, and Eesa et al. (2015) merged the 

algorithm with ID3; a decision tree learning algorithm for the same application. To boot, 

Packianather and Kapoor (2015) exploited a wrapper-based method for wood defect 

identification using the Bees Algorithm and the minimum distance classifier. 

 

Another machine learning and data mining application that used the Bees Algorithm is 

clustering, where the algorithm optimises clustering algorithms such as fuzzy c-means (Pham 

et al., 2008a), and k-means (Pham et al., 2011; AbdelHamid et al., 2013). Saini and Kaur (2014) 

also incorporated k-means and Wards’s clustering algorithm with the Bees Algorithm in the 

dataset of air pollution while Kataria and Rupal (2014) also employed the same combination 

for the typical benchmark clustering problems. Also using k-means but this time along with HS 

is the study from Bonab and Hashim (2014). Dhote et al. (2013) also applied a hybrid of the 

Bees Algorithm with PSO in benchmark clustering problems. Whereas Ananthara et al. (2013) 

modelled the Bees Algorithm as a clustering method for agricultural datasets, and Anaraki and 

Sadeghi (2015) for diseases data. In addition, Nebti (2013) exploited the Bees Algorithm for 

unsupervised image classification. 

 

Figure 2.3 represents the percentage of researches using the Bees Algorithm according to the 

area of application. Based on the figure, applications in computer science and engineering 



67 
 

constitute almost a quarter of the researches followed by electrical and electronics engineering. 

Other major areas include mathematics, mechanical engineering, and industrial engineering. A 

list of applications of the Bees Algorithm found through search engines IEEExplore, 

ScienceDirect, SpringerLink, and Google Scholar can be found in Appendix B. However, this 

list is not exhaustive as it does not include papers written in authors’ native languages as well 

as papers that are behind pay-walls. 

 

 

Figure 2.3 Percentages of applications using the Bees Algorithm per specialised area 

 

 

2.6 Conclusions 

 

This chapter has reviewed the area of intelligent optimisation and has focussed on techniques 

utilising metaheuristics inspired by the behaviours of swarms of animals. In particular, the 

chapter has examined the Bees Algorithm, the operation of which mimics the foraging 
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behaviour of honey bees. Different variants of the algorithms are described together with their 

applications in various branches of engineering and science. From the review, there are still 

much can be done in improving the performance of the Bees Algorithm especially in term of 

its convergence speed. Thus, in the subsequent chapters this thesis introduces several 

improvements made to the algorithm in order to achieve faster convergence.  
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CHAPTER 3 

A PSEUDO-GRADIENT BEES ALGORITHM (PG-BA) 

 

3.1 Preliminaries 

 

Most population-based schemes suffer from long computational time due to their stochastic 

nature as discussed in Chapter 2. Search directions are randomly selected which slow down the 

convergence to the global optimum especially in difficult problems. Literature shows that the 

Bees Algorithm also experiences similar problem (Khanmirzaei and Teshnehlab, 2010; Alfi 

and Khosravi, 2012; Pham and Darwish, 2010; Anantasate et al., 2010; Yuce et al., 2015). The 

convergence speed of the algorithm gradually decreases as it moves closer to the global optimal 

solution which is due to the random mutation operation in the neighbourhood search. A survey 

performed in Chapter 2 shows that the algorithm has been hybridised with many gradient-based 

techniques to rectify the problem. Using deterministic procedure, gradient-based optimisers are 

able to reach the optimal solution quickly with high accuracy by following the gradient direction 

obtained through differentiation of objectives function. 

 

Nevertheless, without prior knowledge, derivative information in many real world problems is 

hard to get. Moreover, hybridisation with these gradient-based algorithms will also bring along 

additional parameters that need to be set. 
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Several researchers have entertained the idea of a gradient-like strategy to acquire gradient 

approximation, especially to work with Evolutionary Algorithms (EAs) (Pham and Jin, 1995; 

Solomon, 1998; Abbas et al., 2003; Lin et al., 2006; Hewlett et al., 2007). A quasi-gradient 

mechanism has also been employed in Artificial Immune Systems (AIS) (Zhang and Yen, 

2013). Hence, this chapter investigates the use of gradient-like Bees Algorithm in improving 

the convergence speed when tested against selected numerical functions compared to the stand-

alone version of the algorithm. 

 

 

3.2 Pseudo-gradient Bees Algorithm (PG-BA) 

 

During the waggle dance performed by returning bees, three types of information are conveyed: 

1) quality, 2) distance and 3) direction. The recruiter bees know the direction of the site 

(deterministic) but their movement i.e., size of the step calculated is still a bit random (Soós, 

2013). In nature, when bees find flowers packed with nectar, they will fly a short distance to 

the next flower in an attempt to find a better quality site but the direction of the flight is always 

maintained to avoid revisiting a depleted site. If the quality is poor, its trajectory is extended by 

increasing its rotation angle to move away from that area. However, this response is not 

immediate because it relates to the number of unrewarding visits made due to the variety of 

floral distribution. However, since rapid response is needed in this research, this fact will be 

neglected. Nonetheless, it is found that this is an effective strategy in a high density flora with 

clumped nectar distribution as studied by Banks et al. (2009). 
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On the other hand, the Standard Bees Algorithm can be grouped as a guided search. This is 

because the follower bees are positioned around the best bee, but the search direction is random. 

Randomness helps a system find new solutions especially in complex problems. However, this 

has also made the convergence process slower when it is nearing the optimal solution. 

Therefore, by employing the pseudo-gradient method in the neighbourhood search, it can also 

guide the follower bees towards a better direction in discovering new potential solution. 

 

 

3.2.1 Pseudo-gradient method 

The inspiration behind the pseudo-gradient method introduced by Wen et al. (2003) was based 

on the concept of use and disuse in the evolutionary field. This idea reflects a human organ in 

which the more it is used the stronger it will become; whereas organs that are not frequently 

used tend to be weaker. Contrary to other approaches, this technique compares fitness and its 

equivalent position of prior and current points in the solution space. If there is an improvement 

in the fitness, the pseudo-gradient is not equal to zero. Thus, a better fitness can be found in the 

next generation by following this pseudo-gradient direction. If there is no gain in fitness, the 

next search direction is according to random distribution. This procedure can be applied to any 

population-based algorithms to suit problem even with higher dimensions owing to its simple 

mechanism. In fact, it has been hybridised together with EP to solve a mixed optimisation 

problem where the objective functions are both continuous and discrete (Wen et al., 2004). Li 

et al. (2010) undertook a similar approach in Paired Bacteria Optimisation (PBO) to solve the 

optimal power flow problem. Additionally, a variant of PSO has been merged with the pseudo-

gradient procedure for an application in economic dispatch with valve point loading effect 

(Dieu et al., 2011). 
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In contrast to the original method of Wen et al. (2003) where the pseudo-gradient is applied to 

the entire population, this research only applies this mechanism in each patch (subpopulation) 

that is bounded by the neighbourhood size. This means that the new points cannot lie outside 

this patch. Assume that the position of the scout bee is 𝑥𝑘 = 𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑛 and the forager’s 

position is xl, then pseudo-gradient is; 

 𝑔𝑝(𝑥𝑙) = [𝑑𝑖𝑟(𝑥𝑙1), 𝑑𝑖𝑟(𝑥𝑙2),… , 𝑑𝑖𝑟(𝑥𝑙𝑛)]
𝑇                                                                       (3.1) 

i. if -f(xl) < -f(xk), xk is moving in the right direction where 𝑔𝑝(𝑥𝑙) ≠ 0 then, 

 𝑑𝑖𝑟(𝑥𝑙) = {

1, 𝑖𝑓 𝑥𝑙 > 𝑥𝑘
0, 𝑖𝑓𝑥𝑙 = 𝑥𝑘 
−1, 𝑖𝑓 𝑥𝑙 < 𝑥𝑘

                                                                                (3.2) 

ii. if -f(xl) ≥ -f(xk), xk is moving in the wrong direction then, 

 𝑔𝑝(𝑥𝑙) = 0                                                                                                          (3.3) 

 

Similar to the gradient-based method, this approach can provide strong evidence of search 

direction based on the latest two points in the search space. From the equations, it indicates that 

if pseudo-gradient is not equal to 0, then a better solution will be found in the next. Otherwise, 

the direction should be changed. Thus, the neighbourhood search formula in Equation 2.4 is 

updated as follows: 

𝑥𝑙 = {
(𝑥𝑘 − 𝑛𝑔ℎ) + 𝑔𝑝(𝑥𝑙)|2 ∙ 𝑛𝑔ℎ ∙ 𝑟𝑎𝑛𝑑𝑖 ∙ (𝑥𝑚𝑎𝑥

𝑖 − 𝑥𝑚𝑖𝑛
𝑖 )|, 𝑔𝑝(𝑥𝑙) ≠ 0

(𝑥𝑘 − 𝑛𝑔ℎ) + 2 ∙ 𝑛𝑔ℎ ∙ 𝑟𝑎𝑛𝑑𝑖 ∙ (𝑥𝑚𝑎𝑥
𝑖 − 𝑥𝑚𝑖𝑛

𝑖 ), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                       (3.4) 

 

It means that the placement of the forager bees depends on the scout bee of the past generation 

and the current. This can also be seen as cooperation between bees (share information), and the 

bees’ memory (knowledge from previous experience). 
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Since the new position guided by the pseudo-gradient is limited by the boundaries of each patch 

(neighbourhood), a few other strategies are tested to determine the impact of this element. 

Figure 3.1 illustrates the position of the scout and followers inside the neighbourhood for each 

case. The square is the scout bee while circles are follower bees. Meanwhile, Figure 3.2 shows 

an example of the position of scout and the neighbourhood in 1 dimension problem. Blue square 

denotes PG-BA1 neighbourhood, red square denotes PG-BA2 neighbourhood, and green square 

denotes PG-BA3 and PG-BA4 neighbourhood. Each variant is described as follows: 

i. PG-BA1 

This is the simplest form of PG-BA where the scout bee’s position in the patch is 

the same as the Standard Bees Algorithm, which is at the centre of the 

neighbourhood. This give a fair chance to the follower bees to discover a new area 

initially as the size of the patch is set to a large value before shrinking if no 

improvement is found. Recruiters follow the direction of the pseudo-gradient set by 

the scout bees. 

ii. PG-BA2 

As the neighbourhood size is the same for all functions, one way to intensify the 

local search is by shifting the position of the scout bees in the neighbourhood. In 

PG-BA2, the neighbourhood is totally shifted (100%) towards the direction of the 

pseudo-gradient thus making the position of the scout bee at the lower limit of the 

patch. 
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iii. PG-BA3 

PG-BA2 can be regarded as a highly exploitative version of PG-BA. Thus, PG-BA3 

tries to minimise the effect if any by slightly shifting (50%) the patch towards the 

direction of the pseudo-gradient. This means that the location of the scout bee is 

halfway between the centre of the patch and the lower limit. 

iv. PG-BA4 

The position of the scout bee in this version is the same as PG-BA3. However, in 

order to increase the chance of finding new promising location at the beginning of 

the optimisation process, only 90% of foragers inside each patch are placed in the 

direction of the gradient while the other 10% are at random. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Position of bees in neighbourhood; i) PG-BA1, ii) PG-BA2, iii) PG-BA3, and iv) PG-BA4 
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Figure 3.2: Example of PG-BA variants neighbourhood in 1D problem 

 

 

3.3 Experimental Set-up 

 

In manufacturing, optimisation problems can be modelled into numerical functions such as in 

manufacturing process where the optimiser is used to find the suitable values of global features 

such as cutting/milling speed, and feed rate. Another example is in finite element analysis for 

the product design process where the decision variable is the product’s length or size, and the 

objectives are maximising the loads in relation to stress and strain or/and minimising 

consumption of material. These involve certain characteristics such as large solution boundary 

range, wide or narrow feasible solution regions, variables with high dimensionality, and 

multimodal exterior (Tao et al., 2015). Thus, benchmark test functions of varying topological 

search space may represent some of the key aspects of real world problems that are useful in 
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the evaluation of optimisation techniques. The performance is then validated by comparing with 

other methods using the same test problems. Through this, the strengths and weaknesses of an 

algorithm can be identified so that further improvements can be made. 

 

Fifteen continuous functions were selected to be implemented in this chapter. The full equation 

for each function can be found in Table C.1 from Appendix C as compiled by Jamil and Yang 

(2013). These test functions are chosen because they display different topological search 

surface. Some are unimodal which mean there is only one global optimum, and some are 

multimodal where there exists multiple global and local optima. They also come with different 

complexity in term of their regularity separability, and dimensionality. A regular function is 

differentiable (analytical) at each point of its domain (Simon, 2008). Separability refers to the 

relationship between variables in the function. Separable functions are easier to solve than non-

separable functions because their variables are independent of each other (Mesa et al., 2011; 

Jamil and Yang, 2013). Meanwhile, dimensionality reflects the number of parameters to be 

optimised. Normally, functions with high dimensions are more difficult to solve than functions 

with low dimensions (Ali et al., 2005; Dietrich and Hartke, 2012). 

 

Sphere function also known as De Jong’s function 1 is a harmonic, convex, nonlinear, and 

symmetrical function. This unimodal function has smooth objective function and usually used 

to demonstrate general efficiency of any algorithm. As cited by Imanguliyev (2013), this 

function can be used to represent cost curve in engineering economy. Meanwhile, Axis Parallel 

Hyper-ellipsoid is an extension of Sphere function with weighted model. Just like its 

predecessor, it has a convex and unimodal surface. On the other hand, Moved Axis Parallel 

Hyper-ellipsoid is more elliptic than Axis Parallel Hyper-ellipsoid but it still has the same 
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general convexity and singular modality. Another derivation from Axis Parallel Hyper-ellipsoid 

is Schwefel 1.2 or sometimes known as Rotated Hyper-ellipsoid or Sum Squares or Double 

Sum. It is also a convex and unimodal function. These extended functions are good to 

investigate whether certain algorithms have any biases towards for example global optimum 

lying in the centre of the search range or local optima lying along the coordinate axes (Liang et 

al., 2005). 

 

Schwefel 2.21 is also a unimodal function similarly called MaxMod. Other classic example of 

unimodal function commonly used to test optimiser’s capability is Sum of Different Power. Trid 

or otherwise named Neumaier’s function 3 is convex, quadratic, and unimodal. The boundary 

constraint of this function can be scaled to dimension which is important in testing the 

efficiency of an algorithm to locate the optimum once the basin of attraction has been identified. 

Due to its strong separability, this function can be difficult to some algorithm. Another 

unimodal function is Powell. It is convex and nonlinear. The region where the global optimum 

lies is smaller than the rest of the search landscape which can also prove hard to solve to some 

optimisation algorithm. In contrast, even though Quartic or Modified 4th De Jong function has 

an overall unimodal surface but it is padded with Gaussian noise. Thus, no similar point can 

have the same value. If an algorithm fails to tackle this function, it will not perform well in real 

world problems with noisy data. 

 

Conversely, Ackley is a multimodal function that has multiple local minima covering its solution 

space due to the use of exponential term (Akay and Karaboga, 2012). According to Imanguliyev 

(2013), this function can be used to characterise the material surface of atomic and molecular 

level. Griewank also is a multimodal function with the location of the numerous optimum 
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regularly distributed across the search domain. Six Hump Camel Back has two global optima 

and four local optima. Shekel has O optimum, with O can be 5, 7, or 10. Another example of 

multimodal function is Schwefel 2.22. In the meantime, Alpine is an asymmetrical multimodal 

function. Algorithms that do not have a good balance between exploration and exploitation can 

easily become trapped in these multimodal functions. 

 

Table 3.1 summarises the characteristics of the above mentioned functions. It can be seen that 

slightly more unimodal functions are used. Previous researchs have shown that the Bees 

Algorithm is good in handling multimodal problems but quite slow to converge in unimodal 

such as the one found by Pham et al (2009). Thus, this thesis investigates whether the proposed 

algorithm displays similar trait. To the author’s knowledge, besides Sphere, Ackley and 

Griewank, the rest of the functions have never even been tested with any variant of the Bees 

Algorithm. In fact, in this research some of the functions were tested to up to 50 dimensions. 

 

Success rate was used to demonstrate efficiency and trustworthiness of the proposed method as 

one of the performance indicators. In addition, as one the objective of this research is to speed 

up the convergence of the Bees Algorithm, another performance measure is by using time 

complexity. For that reason, number of function evaluations (NFE) was used instead of central 

processing unit (CPU) time or number of generation. This will provide a fair comparison if 

there are differences in terms of the language code, compiler, and computer’s processor. The 

function evaluations in this research also took into account the additional evaluations performed 

every time a scout is re-initialised as consequences of site abandonment procedure. 
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Table 3.1: Summary characteristics of test functions used 

 

Functions Differentiability Separability Scalability Modality 

f1, Six Hump Camel 

Back  
Yes Yes No Multimodal 

f2, Shekel Yes Yes No Multimodal 

f3, Trid Yes Yes No Unimodal 

f4, Moved Axis 

Parallel Hyper-

ellipsoid 

Yes Yes Yes Unimodal 

f5, Schwefel 1.2 Yes Yes Yes Unimodal 

f6, Powell Yes Yes Yes Unimodal 

f7, Sum of Different 

Power 
Yes No Yes Unimodal 

f8, Sphere  Yes No Yes Unimodal 

f9, Griewank  Yes Yes Yes Multimodal 

f10, Axis Parallel 

Hyper-ellipsoid  
Yes Yes Yes Unimodal 

f11, Ackley  Yes Yes Yes Multimodal 

f12, Schwefel 2.21  No Yes Yes Unimodal 

f13, Schwefel 2.22  No Yes Yes Multimodal 

f14, Quartic  Yes No Yes Unimodal with noise 

f15, Alpine No No Yes Multimodal 

 

 

One of the main elements of this thesis is to investigate whether the same parameter setting of 

the Bees Algorithm can be used for all test functions to achieve acceptable results within the 

required tolerance without careful tuning. A rule of thumb can serve as a guide in selecting a 

feasible value for the parameters of this algorithm. 

i. The number of selected bees must be less than or equal to the number of initial scout 

bees but more than 0 

ii. The number of recruiters for elite sites must be more than the number of recruiters for 

the other selected sites 



80 
 

iii. The number of elite sites can be less or equal to the number of the other selected sites 

iv. The neighbourhood size can be set at a large value in the beginning because by using 

the neighbourhood shrinking, this value will get smaller to adapt to the search so that 

more exploitation can be made 

v. For the stagnation limit, it should not be too high so as to increase the function 

evaluations and not too low to allow the algorithm some time to achieve a better result. 

From review done by Pham and Castellani (2014), the typical value is between 5 and 

10. 

 

All the methods in this research shall use the same control parameters depicted in Table 3.2. 

Parameters selected in this research can be described as a balance between depth and breadth 

search. In the first category, the length of the evolution period is seen as the key to the success 

of the optimisation process. In the latter, the main search property is the population size that 

support explorative strategy especially in handling multimodal functions (Pham and Castellani, 

2013). The parameters were selected so that the bees’ population size is 100. As none of the 

algorithm’s control parameter is finely tuned to each problem, the default size of neighbourhood 

is the search range of each function divided by two. The values of the parameters are also chosen 

by considering the typical values used by other researchers using the Bees Algorithm. 

 

As for the stopping criterion, the optimisation process stopped when it has achieved a 

reasonable sensitivity value of 0.0001 to the optimal solution or the maximum NFE has reached 

1,000,000 for all test functions except for Alpine and Quartic. These functions are considered 

problematic by many optimisation algorithms, thus the precision to the optimum for both 

functions was set at 0.1 which provides for a feasible solution to be obtained within the specified 
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maximum NFE. Furthermore, to take into account the randomness of the algorithm, all methods 

were executed and averaged for 100 independent runs. 

 

Table 3.2: Parameter setting for all Bees Algorithm’s variants 

Parameters Value 

Number of elite sites 2 

Number of recruiters on elite site 29 

Number of best sites 6 

Number of recruiters on remaining best sites 9 

Number of random scouts 6 

Stagnation limit 10 

Neighbourhood size (Search range)/2 

 

 

3.4 Results and Discussion 

 

Table 3.3 shows the success rate achieved by each algorithm. Only PG-BA1 obtained a 100% 

success in all functions with PG-BA2 having the least number of success rate. The rest of 

methods including the standard BA managed to accomplish 100% success rate in the same 

seven functions out of 15. It appears that PG-BA1 can solve different types of problem 

landscape, whereas PG-BA2 can only solve unimodal functions and multimodal functions in 

low dimensions. On the other hand, PG-BA3, PG-BA4 and the Standard Bees Algorithm are 

adept at fairly all unimodal as well as simple multimodal in high dimensions (i.e. Griewank). 
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Table 3.3 Success rate over 100 runs for PG-BA experiment 

Function Standard BA (%) PG-BA1 (%) PG-BA2 (%) PG-BA3 (%) PG-BA4 (%) 

f1 100 100 100 100 100 

f2 97 100 96 97 97 

f3 100 100 100 100 100 

f4 100 100 100 100 100 

f5 100 100 0 100 100 

f6 1 100 0 1 0 

f7 100 100 100 100 100 

f8 100 100 100 100 100 

f9 100 100 0 100 100 

f10 100 100 0 100 100 

f11 31 100 0 0 0 

f12 0 100 0 0 0 

f13 0 100 0 0 0 

f14 1 100 0 0 0 

f15 0 100 0 0 0 

 

Table 3.4 displays the means and standard deviation of NFE generated by each algorithm after 

100 runs. The bold values show the best performance for each function. Meanwhile, Table 3.5 

depicts the percentage of improvements in term of reducing NFE when comparing with the 

Standard Bees Algorithm. The null value is due to no yield being realised. Both tables show 

that the better performance in term of speed was achieved by PG-BA1 and PG-BA3. Even 

though PG-BA2 and PG-BA4 achieved 100% success rate in some functions, their NFE was 

not lower than the Standard Bees Algorithm. PG-BA3 was capable to reduce NFE in three out 

of 15 functions. The functions were Six Hump Camel Back and Trid that are of low dimensions, 

as well as Schwefel 1.2. In the meantime, PG-BA1 excelled in the rest of the test functions. 

Based on these results, PG-BA1 is the most efficient procedures in the overall benchmark suite 

tested. If NFE of all the functions were totalled, PG-BA1 is capable to minimise the total NFE 

to 63.2% compared to the Standard Bees Algorithm. 
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Table 3.4 Mean and standard deviation of function evaluations over 100 runs for PG-BA experiment 

Func. 
Standard BA PG-BA1 PG-BA2 PG-BA3 PG-BA4 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

f1 7,969.6 3,741.5 6,700.4 2,956.7 2,753.4 438.5 2,693.6 426.5 2,736.6 380.1 

f2 36,720.9 2,925.2 5,389.6 1,529.0 45,888.5 194,909.7 35,597.2 169,686.9 35,628.4 169,686.4 

f3 6,527.0 348.5 6,431.0 332.8 7,637.1 8,106.0 6,347.0 395.8 6,398.0 348.1 

f4 8,557.0 463.3 7,242.0 325.1 10,822.0 3,164.3 8,442.0 529.1 9,217.0 1,005.6 

f5 48,364.2 3,547.9 41,069.8 4,012.2 1,000,000.0 0.0 35,887.0 2,832.7 110,411.0 17,137.9 

f6 998,884.0 11,223.5 48,042.5 76,482.9 1,000,000.0 0.0 989,821.0 30,900.9 1,000,000.0 0.0 

f7 3,286.3 454.8 1,982.7 228.3 3,772.0 721.2 3,413.0 437.6 2,967.0 544.1 

f8 14,460.4 628.2 7,419.3 272.6 58,488.0 18,952.0 15,871.0 670.8 20,515.0 1,456.1 

f9 28,085.7 11,878.6 11,252.5 365.2 1,000,000.0 0.0 38,006.5 24,775.9 115,320.7 105,426.4 

f10 43,797.6 9,749.4 9,316.5 404.6 1,000,000.0 0.0 50,982.0 13,387.6 347,848.0 163,998.6 

f11 822,726.9 326,531.3 13,778.2 351.6 1,000,000.0 0.0 1,000,000.0 0.0 1,000,000.0 0.0 

f12 1,000,000.0 0.0 14,197.5 474.7 1,000,000.0 0.0 1,000,000.0 0.0 1,000,000.0 0.0 

f13 1,000,000.0 0.0 16,031.1 5,523.4 1,000,000.0 0.0 1,000,000.0 0.0 1,000,000.0 0.0 

f14 292,293.1 452,737.3 2,106.0 259.5 1,000,000.0 0.0 1,000,000.0 0.0 1,000,000.0 0.0 

f15 1,000,000.0 0.0 22,933.2 42,985.1 1,000,000.0 0.0 1,000,000.0 0.0 1,000,000.0 0.0 

Total 

Eval. 
5,311,672.7  213,892.4  9,129,361.0  6,187,060.2  6,651,041.7  
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Table 3.5: Percentage of improvements of PG-BA compared to the Standard Bees Algorithm 

Function PG-BA1 (%) PG-BA2 (%) PG-BA3 (%) PG-BA4 (%) 

f1 15.9 65.5 66.2 65.7 

f2 85.3 - 3.1 3.0 

f3 1.5 - 2.8 2.0 

f4 15.4 - 1.3 - 

f5 15.1 - 25.8 - 

f6 95.2 - 0.9 - 

f7 39.7 - - 9.7 

f8 48.7 - - - 

f9 59.9 - - - 

f10 78.7 - - - 

f11 98.3 - - - 

f12 98.6 - - - 

f13 98.4 - - - 

f14 99.3 - - - 

f15 97.7 - - - 

 

A paired t-test was also performed to determine whether the difference between the results of 

two algorithms does not happen by chance. Table 3.6 shows the significant different between 

the variants of PG-BA and Standard Bees Algorithm with a confidence level of 95% (α = 0.05). 

The p-values less than the significance level signal that the superior results accomplished by 

the top algorithm in each case are statistically significant and non-random. These findings 

demonstrate that the entire enhancement attained by PG-BA1 is statistically significant 

compared with only a few in the other variants. Despite the fact that PG-BA1 did not achieve 

the highest percentage of improvement in Six Hump Camel Back and Trid, the p-value of 0.0084 

and 0.0477 correspondingly were still below the acceptance value of 0.05 that render these 

results significant. Even though PG-BA3 and PG-BA4 were able to slightly reduce the 

convergence speed of Shekel 10 function by 3.1% and 3.0% respectively, the p-value showed 

that the result is not significant. Similar trait can be observed in function Moved Axis Parallel 
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Hyper-ellipsoid with PG-BA3. The minor reduction of 1.3% accomplished was also considered 

insignificant. This further supports that PG-BA1 is the preferred strategy in speeding up the 

optimisation process for all the benchmarks problems used. 

 

Table 3.6: p-values using t-test (α = 0.05) comparing PG-BA with the Standard Bees Algorithm 

Function PG-BA1 PG-BA2 PG-BA3 PG-BA4 

f1 0.0084 0.0001 0.0001 0.0001 

f2 0.0001 - 0.9631 0.9641 

f3 0.0477 - 0.0008 0.0095 

f4 0.0001 - 0.1036 - 

f5 0.0001 - 0.0001 - 

f6 0.0001 - 0.0064 - 

f7 0.0001 - - 0.0001 

f8 0.0001 - - - 

f9 0.0001 - - - 

f10 0.0001 - - - 

f11 0.0001 - - - 

f12 0.0001 - - - 

f13 0.0001 - - - 

f14 0.0001 - - - 

f15 0.0001 - - - 

 

 

Based on the findings, all PG-BA variants are able to outperform the Standard Bees Algorithm 

in the Six Hump Camel Back function. Even though this is a multimodal function, the low 

dimensionality could help the new variants to attain excellent results. In fact, the Bees 

Algorithm is initially well-known in solving multimodal functions (Pham and Castellani, 2009). 

On the other hand, all of the PG-BA variants except PG-BA2 had only minor improvements in 

the Trid function if compared with other functions. Jamil and Yang (2013) observed that this 

function has many orders of magnitude different between domain and the function hyper-
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surface which could prove difficult to handle by these variants. For the rest of the functions, the 

other variants except for PG-BA1 performed poorly on highly multimodal functions in high 

dimensions. This could be due to the location of the scout bee which is not at the centre of the 

neighbourhood i.e., shifting to the direction of the pseudo-gradient. This implies that fully 

investing at the best so far solution can make the algorithm over exploitative. Reducing the 

number of foragers and shorter stagnation limit can help in reducing the convergence speed of 

these algorithms by allowing the site to become abandon quickly. In contrast, directed search 

with some randomness in PG-BA1 using the scout bee at the centre of the patch is a better 

strategy that balances between exploitation, and exploration phase of the Bees Algorithm. This 

eventually makes the algorithm faster. Based on the different variants used in the 

experimentation, the neighbourhood size is the most likely parameter that can affect the 

optimisation result. A proper tuning of this parameter could result in a better performance. 

Crossley et al. (2013) confirmed these findings. Nonetheless, PG-BA1 proves that by using a 

single parameter set for all functions, it is able to achieve successful results. 

 

Additionally, investigating the ability of PG-BA1 to scaling was conducted to ascertain the 

reaction of the algorithm towards functions with scalable dimension. PG-BA1 was selected for 

extra study because it is the clear winner in this research. Figure 3.3 exhibits that in general PG-

BA1 has almost similar performance across the dimension. As a comparison, scalability test is 

also performed on the Standard Bees Algorithm with the result shown in Figure 3.4. In PG-

BA1, the effect of higher dimensionality only slightly increases NFE. However, the Standard 

Bees Algorithm displays tremendous different in function evaluation in most of the scaling 

functions. This shows that PG-BA1 has the potential to be applied in large scale problem maybe 

even up to 1000D. This is with the exception of function Schwefel 1.2 and Schwefel 2.22 where 
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NFE rise tremendously as the dimension increases. Meanwhile, Griewank shows a unique 

behaviour that uses a high NFE at a lower dimension but decrease and stabilise and higher 

dimensions. 

 

 

Figure 3.3: Scalability test of PG-BA1 

 

 

Figure 3.4: Scalability test of the Standard Bees Algorithm 
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3.4.1 Comparison of PG-BA with other swarm optimisers 

To further validate the efficiency of PG-BA in achieving faster convergence rate, it is compared 

with other well-known swarm optimisers. The chosen algorithms are the Quick Artificial Bee 

Colony (qABC) and the Stardard Particle Swarm Optimisation 2011 (SPSO2011). qABC was 

chosen because it is also based on the food foraging behaviour of bees and one of the latest 

variant of ABC co-developed by the original inventor (Karaboga and Gorkemli, 2012 and 

2014). PSO is one of the earliest and most popular algorithm based on the swarm principle. 

SPSO2011 is the state-of-the-art standard variant of PSO (Clerc, 2012, Zambrano-Bigiarini et 

al., 2013). The operation for both algorithms have been summarised in Chapter 2. Table 3.7 

lists the parameter setting for both algorithms as suggested by their authors and are matched as 

close as possible with PG-BA parameters in term of population size for fair assessment. 

 

Table 3.7: qABC and SPSO2011 parameter setting 

qABC SPSO2011 

Colony size, CS = 100 
Onlooker bees = 50, 

Employed bees = 50 
Swarm size, S = 100 

Neighbourhood radius, r = 3 
Cognitive coefficient, c1 = 0.5 + ln(2) 

Social coefficient, c2 = 0.5 + ln(2) 

Limit for abandonment, l = 100 

Inertia weight, w = 1/(2*ln(2)) 

Number of informants, K = 3 

Velocity clamping = [−�⃗�𝑚𝑎𝑥 , �⃗�𝑚𝑎𝑥] 

 

 

For this experiment, other settings such as stopping criterion and accuracy to achieve follow 

the previous values used to compare PG-BA variants with the Standard Bees Algorithm. Only 

PG-BA1 is used as comparison as it is the most efficient version of PG-BA. From this point 

onwards, PG-BA1 shall be called just as PG-BA. 
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Table 3.8 presents the mean and standard deviation of function evaluations for PG-BA, qABC, 

and SPSO2011. The p-value comparing PG-BA with either qABC or SPSO2011 for each 

function is also shown. The confidence interval used is the same as previous experiment, which 

is 95%. 

 

Table 3.8: Performance comparison between PG-BA with qABC and SPSO2011 

Functions 

PG-BA qABC SPSO2011 

Mean 
Std. 

Dev. 
Mean Std. Dev. p-value Mean Std. Dev. p-value 

f1 6,700.4 2,956.7 704.1 885.8 0.0000 3,397.0 918.1 0.0000 

f2 5,389.6 1,529.0 45,888.5 194,909.7 0.0390 27,016.0 139,013.1 0.1214 

f3 6,431.0 332.8 529,982.7 142,468.2 0.0000 9,609.0 504.0 0.0000 

f4 7,242.0 325.1 32,673.9 10,321.5 0.0000 11,822.0 509.2 0.0000 

f5 41,069.8 4,012.2 1,000,000.0 0.0 0.0000 72,838.0 4,652.8 0.0000 

f6 48,042.5 76,482.9 1,000,000.0 0.0 0.0000 562,361.0 50,380.6 0.0000 

f7 1,982.7 228.3 73,234.6 31,258.2 0.0000 2,666.0 473.8 0.0000 

f8 7,419.3 272.6 230,306.1 26,437.1 0.0000 17,043.0 489.1 0.0000 

f9 11,252.5 365.2 764,340.0 299,686.8 0.0000 381,521.0 463,935.7 0.0000 

f10 9,316.5 404.6 220,787.1 36,420.0 0.0000 64,521.0 12,180.4 0.0000 

f11 13,778.2 351.6 1,000,000.0 0.0 0.0000 102,831.0 246,180.4 0.0004 

f12 14,197.5 474.7 1,000,000.0 0.0 0.0000 424,432.0 266,159.8 0.0000 

f13 16,031.1 5,523.4 1,000,000.0 0.0 0.0000 1,000,000.0 0.0 0.0000 

f14 2,106.0 259.5 60,088.3 14,282.8 0.0000 231,947.0 419,823.4 0.0000 

f15 22,933.2 42,985.1 178,373.6 23,584.0 0.0000 11,035.0 1,321.4 0.0062 

 

 

For function 1, Six Hump Camel Back, PG-BA did not perform as fast as qABC or SPSO2011. 

This function is of low dimension (i.e. 2D). This could be due to random exploration since the 

pseudo-gradient calculation is only performed on the local search. PG-BA also performed 

moderately on function 15, Alpine which is an asymmetrical function. It shows that even though 

no direct gradient is computed, this method still inherits a slight behaviour of its gradient-based 
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counterparts. This means that a good starting point will certainly benefits this algorithm. 

Nonetheless, this effect is balance out by the multiple patches build across the solution 

landscape. For the rest of the functions, PG-BA performed considerably well with most of the 

p-values less than 0.05 when compared to qABC and SPSO2011 which demonstrates the 

significance of the result. A lower number of evaluations of PG-BA exhibits a substantial good 

speed of search much so on multivariate unimodal functions where previous variant of the Bees 

Algorithm is lacking. PG-BA is also efficient in handling noise functions such as Quartic. The 

performance of PG-BA on symmetrical multimodal function of high dimensionality is also 

excellent. Statistically insignificant results especially when compared with SPSO2011 in 

function 2, Shekel and function 15, Alpine indicates that the two algorithms performed the same. 

qABC did not perform so well on multiple functions and this could be attributed to the 

neighbourhood radius as well as the recommendation value for limit of abandonment. Fine 

tuning for both parameters could potentially lead to a better result. Furthermore, the position of 

bees in qABC only takes into account the random index dimensions instead of the overall 

problem dimensions, which proved problematic for this algorithm in handling large scale 

problems. 

 

Figures 3.5 until Figure 3.19 display the convergence curve for each function between PG-BA, 

qABC, and SPSO2011. Since qABC took quite a high number of function evaluations, these 

figures are scaled down so that the behaviour for each optimiser can be clearly observed. These 

figures show that qABC is quite fast in the beginning of the search but spends a lot of evaluation 

when nearing the optima. This is the exact behaviour of the Standard Bees Algorithm that 

prompted this research on PG-BA. PG-BA even though it starts at a low quality fitness, the 

pseudo-gradient direction clearly helps the algorithm progresses quickly. The same can be said 
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of SPSO2011 when its added rotational invariance and velocity constraints that enable the 

algorithm to achieve a modest convergence rate. 

 

 

Figure 3.5: Convergence curve between PG-BA, qABC, and SPSO2011 for f1 

 

 

 

Figure 3.6: Convergence curve between PG-BA, qABC, and SPSO2011 for f2 
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Figure 3.7: Convergence curve between PG-BA, qABC, and SPSO2011 for f3 

 

 

 

Figure 3.8: Convergence curve between PG-BA, qABC, and SPSO2011 for f4 
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Figure 3.9: Convergence curve between PG-BA, qABC, and SPSO2011 for f5 

 

 

 

Figure 3.10: Convergence curve between PG-BA, qABC, and SPSO2011 for f6 
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Figure 3.11: Convergence curve between PG-BA, qABC, and SPSO2011 for f7 

 

 

 

Figure 3.12: Convergence curve between PG-BA, qABC, and SPSO2011 for f8 
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Figure 3.13: Convergence curve between PG-BA, qABC, and SPSO2011 for f9 

 

 

 

Figure 3.14: Convergence curve between PG-BA, qABC, and SPSO2011 for f10 
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Figure 3.15: Convergence curve between PG-BA, qABC, and SPSO2011 for f11 

 

 

 

Figure 3.16: Convergence curve between PG-BA, qABC, and SPSO2011 for f12 
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Figure 3.17: Convergence curve between PG-BA, qABC, and SPSO2011 for f13 

 

 

 

Figure 3.18: Convergence curve between PG-BA, qABC, and SPSO2011 for f14 
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Figure 3.19: Convergence curve between PG-BA, qABC, and SPSO2011 for f15 
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There are many types of ANN but the most widely used is the feedforward neural network 

(FNN). FNN with multiple hidden (perceptron) layers is called Multi-Layer Perceptron (MLP). 

General structure of FNN is as illustrated in Figure 3.20 with n number of input nodes, h number 

of hidden nodes, o number of output nodes. 

 

Assume that hidden transfer function is sigmoid function, and output transfer function is linear 

activation function, output at each hidden nodes is; 

𝑓(𝐻𝑗) = 1/(1 + exp (−(∑ 𝑊𝑖𝑗 ∙ 𝑋𝑖 − 𝜃𝑗))), 𝑗 =
𝑛
𝑖=1 1,2, … , ℎ,  (3.5) 

where; 

Wij = connection weight from the ith node in the input layer to the jth node in the hidden layer, 

θj = bias of the jth hidden node, 

Xi = the ith input. 

 

 

 

 

 

 

 

 

Figure 3.20: General structure of FNN 
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Thus, final output is; 

𝑌𝑘 = ∑ 𝑊𝑘𝑗 ∙ 𝑓(𝑆𝑗) − 𝜃𝑘 , 𝑘 = 1, 2, … , 𝑜ℎ
𝑗=1                                        (3.6) 

where; 

Wkj = connection weight from jth hidden node to the kth output node, 

θk = bias of the kth output node. 

 

Therefore, learning error is; 

𝐸 = ∑ (∑ (𝑌𝑖
𝑘 − 𝐷𝑖

𝑘)
2𝑜

𝑖=1 )/𝑞𝑞
𝑘=1                                                (3.7) 

where; 

q = number of training samples, 

𝐷𝑖
𝑘 = desired output of the ith input unit when the kth training sample is used, 

𝑌𝑖
𝑘 = the actual output of the ith input unit when the kth training sample is used. 

 

The success of FNN generally depends on its learning algorithm and network’s structure. For 

many applications, the network’s size is fixed, i.e. the number of hidden layers and their 

corresponding nodes is predetermined. Thus, a learning/training algorithm is used to find the 

optimum value of weights and biases (thresholds) that can produce minimum error. 

Traditionally, FNN training was done using the back-propagation (BP) algorithm. BP is a 

gradient-based technique; therefore, it also experiences common problems related to gradient-

based methods. These problems are such easily getting trapped in the local minima especially 

for those non-linearly separable pattern classification problems, and dependency on the choices 

of its initial values of the network connection weights as well as the parameters in the algorithm 

such as learning rate, and momentum coefficient (Zhang et al., 2007; Mirjalili et al., 2012). 
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In the literature, many population-based optimisation algorithms have been used instead to train 

FNN. In fact, for the Bees Algorithm, the majority of its application is through the use of ANN 

as reviewed in Chapter 2. Hence, PG-BA is applied as a learning algorithm for FNN in this 

research for benchmark problem of Exclusive-OR. 

 

 

3.5.1 Experimental set-up for FNN training 

Exclusive-OR (XOR) is a classification benchmark problem where in this research FNN is used 

to recognise the number ‘1’ in the input vector. If the input vector contains an odd number of 

‘1’, then the output is ‘1’. If the input vector has an even number of ‘1’ or none at all, then the 

output is ‘0’. Table 3.9 shows the inputs and desirable outputs for this two bits problem. 

 

Table 3.9: Exclusive-OR problem 

Input Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

 

This problem has a nonlinear separable pattern which required the use of hidden layers. This 

experiment also used biases to move the threshold of transfer functions. As it has two inputs 

and one output, the structure of FNN for this research is 2-H-1 where H is the number of hidden 

nodes. Figure 3.21 is an example of 2-2-1 network. In this research, H = 2 until 15, 20, 25, 30 

so that the performance of the algorithm can be compared when subjected to a high number of 
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hidden nodes. As the number of hidden nodes increase, the dimensionality of the problem also 

escalates. 

 

In general, the number of weights and biases to be optimised by FNN is calculated as; 

Number of weights and biases (Problem dimension) = (𝑛 ∗ ℎ) + (ℎ ∗ 𝑜) + ℎ + 𝑜 (3.8) 

 

 

 

 

 

 

 

 

Figure 3.21: FNN with 2-2-1 structure 

 

 

The range of the problem is set at [-10, 10]. Meanwhile, the same parameter setting as previous 

experiment is used for all algorithms. The performance measure is in term of mean square error 

(MSE) as well as the number of evaluation. The fitness function for this problem is derived 

from Equation 3.7; 

Fitness (Xi) = E(Xi)                                                   (3.9) 

 

All algorithms shall terminate when MSE<0.001 or when it reached 1000 epochs (cycles). 

Average performance is taken for 25 algorithms. 
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3.5.2 Results and discussion for FNN training 

Tables 3.10 and 3.11 compare performance of FNN training for XOR problem between PG-

BA, Standard Bees Algorithm, qABC, and SPSO2011. All algorithms were able to recognise 

the XOR pattern below the allowable MSE. As the number of hidden nodes increase, the 

accuracy of recognition also improves (Figure 3.22). Even though the number of variables (i.e. 

weights and biases) to be optimised soared, the number of function evaluation (NFE) for all 

algorithms decreased (Figure 3.23). It means for this particular problem; scalability is not an 

issue for all algorithms involved. 

 

The performance for PG-BA and Standard Bees Algorithm is almost the same when H = 3 until 

30, for MSE. While for NFE, PG-BA’s improvement is not that much with the exception for H 

= 2. Statistics analysis using t-test (p < 0.05) shows that for XOR problem, there no significance 

difference between PG-BA and the Standard Bees Algorithm for most cases. From the result, 

it can be deduced that the suitable number of hidden nodes is equal or more than 13 as MSE is 

nearly stagnant at this point until H = 30. 

 

Both variants of the Bees Algorithm converge faster than SPSO2011 and qABC with qABC 

has the highest NFE. MSE remains stable from H = 14 for SPSO2011 where for qABC the 

smallest value of MSE attained is when H = 30. In term of MSE, from statistically point of 

view, all algorithms’ performance except qABC can be considered the same for most of the 

number of hidden nodes when compared to PG-BA. In contrast, the faster convergence due to 

low NFE for PG-BA is statistically significant compared to qABC and SPSO2011. This echoes 

the performance in previous experiments of numerical functions. 
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Table 3.10: MSE comparison of PG-BA, Standard Bees Algorithm, qABC, and SPSO2011 for XOR problem 

H Dim. 

Standard Bees Algorithm PG-BA qABC SPSO2011 

Success 

rate (%) 

MSE Success 

rate (%) 

MSE Success 

rate (%) 

MSE Success 

rate (%) 

MSE 

Mean Std. Dev p-value Mean Std. Dev Mean Std. Dev p-value Mean Std. Dev p-value 

2 9 96 0.0008 0.0002 0.0835 100 0.0007 0.0002 68 0.0265 0.0499 0.0128 100 0.0008 0.0002 0.0835 

3 13 100 0.0007 0.0002 - 100 0.0007 0.0002 68 0.0098 0.0268 0.0960 100 0.0006 0.0003 0.1719 

4 17 100 0.0007 0.0002 - 100 0.0007 0.0002 92 0.0060 0.0250 0.2945 100 0.0007 0.0002 - 

5 21 100 0.0006 0.0003 1.0000 100 0.0006 0.0002 92 0.0009 0.0007 0.0448 100 0.0008 0.0001 0.0000 

6 25 100 0.0005 0.0002 0.0835 100 0.0006 0.0002 96 0.0007 0.0003 0.1719 100 0.0006 0.0003 1.0000 

7 29 100 0.0006 0.0003 - 100 0.0006 0.0003 92 0.0009 0.0007 0.0547 100 0.0007 0.0003 0.2444 

8 33 100 0.0005 0.0003 1.0000 100 0.0005 0.0002 96 0.0006 0.0004 0.2691 100 0.0006 0.0003 0.1719 

9 37 100 0.0005 0.0003 - 100 0.0005 0.0003 100 0.0007 0.0002 0.0079 100 0.0005 0.0003 - 

10 41 100 0.0004 0.0003 0.1719 100 0.0005 0.0002 92 0.0011 0.0015 0.0532 100 0.0005 0.0003 1.0000 

11 45 100 0.0005 0.0003 0.2444 100 0.0006 0.0003 96 0.0007 0.0003 0.2444 100 0.0005 0.0003 0.2444 

12 49 100 0.0005 0.0003 0.2444 100 0.0004 0.0003 100 0.0006 0.0003 0.0225 100 0.0004 0.0003 - 

13 53 100 0.0004 0.0003 - 100 0.0004 0.0003 100 0.0008 0.0002 0.0000 100 0.0005 0.0003 0.2444 

14 57 100 0.0004 0.0003 - 100 0.0004 0.0003 100 0.0006 0.0003 0.0225 100 0.0004 0.0003 - 

15 61 100 0.0004 0.0003 0.1719 100 0.0003 0.0002 100 0.0007 0.0003 0.0000 100 0.0004 0.0003 0.1719 

20 81 100 0.0004 0.0003 - 100 0.0004 0.0003 100 0.0006 0.0003 0.0225 100 0.0003 0.0003 0.2444 

25 101 100 0.0003 0.0003 0.1719 100 0.0002 0.0002 100 0.0005 0.0003 0.0000 100 0.0004 0.0003 0.0079 

30 121 100 0.0003 0.0003 0.1719 100 0.0002 0.0002 100 0.0004 0.0003 0.0079 100 0.0003 0.0003 0.1719 
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Table 3.11: NFE comparison of PG-BA, Standard Bees Algorithm, qABC, and SPSO2011 for XOR problem 

H Dim. 

Standard Bees Algorithm PG-BA qABC SPSO2011 

Evaluation Evaluation Evaluation Evaluation 

Mean Std. Dev p-value Mean Std. Dev % Improv. Mean Std. Dev p-value Mean Std. Dev p-value 

2 9 7,928.24 22,446.88 0.4500 4,506.28 9,291.27 43.16 62,949.80 32,724.17 0.0000 5,816.00 2,667.99 0.5014 

3 13 2,230.00 1,439.17 0.0289 1,568.04 294.08 29.68 61,305.32 35,577.97 0.0000 4,628.00 2,008.29 0.0000 

4 17 1,758.00 529.09 0.0109 1,440.00 283.58 18.09 55,925.60 30,331.83 0.0000 4,264.00 2,021.07 0.0000 

5 21 1,517.00 308.18 0.0627 1,344.04 333.15 11.40 44,378.20 27,275.18 0.0000 3,500.00 1,517.89 0.0000 

6 25 1,430.00 312.41 0.0320 1,252.00 254.56 12.45 40,299.72 31,511.42 0.0000 2,920.00 1,233.21 0.0000 

7 29 1,482.00 408.63 0.0051 1,200.00 251.90 19.03 31,539.88 30,306.12 0.0000 2,760.00 1,705.99 0.0000 

8 33 1,264.00 269.99 0.5648 1,210.00 379.47 4.27 28,600.00 32,437.25 0.0000 2,416.00 1,476.94 0.0003 

9 37 1,114.00 274.05 0.8153 1,096.00 267.85 1.62 30,021.44 21,110.29 0.0000 1,920.00 794.98 0.0000 

10 41 1,146.00 289.11 0.5341 1,096.00 275.22 4.36 22,256.48 26,053.59 0.0002 1,660.00 1,141.23 0.0202 

11 45 1,106.00 321.35 0.1795 996.00 244.43 9.95 24,123.28 23,121.98 0.0000 1,424.00 840.13 0.0182 

12 49 1,214.04 347.46 0.0054 948.00 295.13 21.91 19,819.24 22,093.00 0.0000 1,592.00 758.38 0.0002 

13 53 1,246.00 457.37 0.0075 972.00 176.64 21.99 23,866.12 22,380.14 0.0000 1,520.00 656.05 0.0002 

14 57 1,040.00 287.78 0.0273 842.00 326.09 19.04 20,579.56 21,023.73 0.0000 1,420.00 809.44 0.0018 

15 61 1,126.04 228.62 0.0000 860.00 213.77 23.63 12,402.20 11,687.24 0.0000 1,384.00 791.29 0.0025 

20 81 918.00 234.47 0.2378 832.00 272.76 9.37 18,928.48 17,054.82 0.0000 1,012.00 503.05 0.1223 

25 101 860.00 256.31 0.0784 714.00 314.81 16.98 12,723.00 14,484.31 0.0000 1,036.00 616.36 0.0243 

30 121 798.00 348.85 0.7305 768.00 256.25 3.76 12,480.12 15,929.33 0.0006 616.00 371.68 0.0988 
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Figure 3.22: Effect of number of hidden nodes to MSE for PG-BA, Standard Bees Algorithm, qABC, and 

SPSO2011 

 

 

 

Figure 3.23: Effect of number of hidden nodes to NFE for PG-BA, Standard Bees Algorithm, qABC, and 

SPSO2011 
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3.6 Conclusions 

 

This chapter introduced four new variants of hybrid Bees Algorithm with the pseudo-gradient 

method. Each variant differs in term of the position of the scout bee inside of the 

neighbourhood. It is aimed at enhancing the convergence speed of the algorithm by providing 

better directed guidance towards the optimal solution without the need for the objective function 

to be differentiable. Experimental results demonstrated that PG-BA1, which is the simplest 

form of them all, significantly outperforms the Standard Bees Algorithm on various numerical 

benchmark functions. This is because the other variants made the optimisation process too 

exploitative which could backfire in complex search space. 

 

It should also be noted that when the scalability test was performed, it showed that the 

performance of PG-BA is almost the same across the dimension. Still, NFE reached more than 

40,000 in function Schwefel 1.2 and Schwefel 2.22 at higher dimensions. Therefore, in the 

future, an advanced strategy is needed to reduce the rate of convergence even more especially 

when dealing with large scale problems of those particular functions. 

 

In addition, PG-BA were utilised in the training of Artificial Neural Network for recognition of 

Exclusive-OR logic for successful results. A statistical test was also carried out on the results 

obtained. 



108 
 

CHAPTER 4 

A PATCH OVERLAP AVOIDANCE BEES ALGORITHM 

(POA-BA) 

 

4.1 Preliminaries 

 

Through the use of global random search, there are likelihoods that scout bees in the Bees 

Algorithm will land on the exact or in the surrounding of previously visited area or abandoned 

sites. If they were chosen for further exploitation in the neighbourhood search, it will cause a 

wastage of resources (recruiters) to forage what should have been known as unpromising 

patches. In return, a higher number of function evaluations are incurred. 

 

Therefore, this research strives to implement a temporary memory to the Bees Algorithm. The 

memory records previously visited positions, along with the fitness and patch boundary to avoid 

overlapping patches from forming in the current and subsequent iterations. 

 

 

4.2 Patch Overlap Avoidance Bees Algorithm (POA-BA) 

 

A sophisticated algorithm normally employs memory, whether it is a short term or long term, 

to guide the search into new promising area (Consoli, 2006; Alia and Mandava, 2011; 

Brownlee, 2011). One of the most well-known memory-embedded algorithms is Tabu Search 
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(TS) invented by Glover (1986). By using tabu or forbidden lists, earlier visited solutions or a 

set of rules determined by the user are memorised. If the new solution violates a rule or falls on 

the previously visited solution, it is stored in the tabu list. Thus in TS, there is no possibility of 

repeated solutions. 

 

The Bees Algorithm has been integrated with TS as in Shafia et al. (2011) and in the doctoral 

thesis of Imanguliyev (2013) but with different rules on the condition of entering and exiting 

the tabu list. In this project, a short term memory akin to tabu list, archives previously visited 

solutions (including abandoned sites), their fitness, and corresponding neighbourhood to reduce 

the number of overlapping patches subjected to neighbourhood search. The fixed-length short 

term memory updated every generation is chosen so as not to put too much burden on the 

computing cost. Besides lessening redundant search of unprofitable area, it also minimises the 

number of patches founded in the same region of attraction. This is to ensure thorough search 

of the fitness landscape as recruiters are well disseminated and are not wasted on an already 

foraged zone. However, different patches can still exist on similar hills (for maximisation 

problem) or valleys (for minimisation problem) if they do not overlap each other. The idea is 

by decreasing the number of repeated site shrinks the search area which in turn lowering the 

number of function evaluation needed to achieve optima solution. In addition, flower patches 

are not allowed to intersect, not just in the next generation but also in the current cycle except 

on certain conditions which will be described in the next few paragraphs. Figure 4.1 illustrates 

the operation of the Bees Algorithm integrated with such memory dubbed as the Patch Overlap 

Avoidance Bees Algorithm (POA-BA). 
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Figure 4.1: Flow chart of POA-BA 
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The proposed algorithm starts by placing ns number of scout bees randomly in the search space. 

Then, the fitness of scout bees is evaluated and sorts accordingly. The patch boundary for each 

scout which involved their position and initial neighbourhood size (Equation 4.1 and 4.2) is set 

and recorded in a short term memory along with their corresponding fitness. 

Minimum boundary = scout position + neighbourhood size,            (4.1) 

Maximum boundary = scout position – neighbourhood size.             (4.2) 

 

The size of the memory is equal to ns. Scouts are checked if their patch limits overlap each 

other using the following rules; 

If scout position (2) > scout position (1) 

If minimum boundary.scout position (1) > maximum boundary.scout position (2) 

Flag=overlap 

Elseif minimum boundary.scout position (2) > maximum boundary.scout 

position (1) 

Flag=overlap 

End 

End 

 

nb number of scout bees of non-overlapping patch with highest fitness recruits more bees in the 

neighbourhood search. However, if the number of non-overlapping scouts is less than the value 

of nb, then the fittest bees of overlapping boundary will fill this gap. Neighbourhood search is 

performed as in the Standard Bees Algorithm or the pseudo-gradient method. More bees are 

recruited for ne sites. The remaining unselected bees are sent arbitrarily for global search and 

their fitness is evaluated. 
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In the next cycle, the fittest bees from each patch are discovered during neighbourhood search 

and the global scouts, form the new scout bees’ population. Again, the boundary of the new 

population of scout bees is set, but here the neighbourhood size might change if neighbourhood 

shrinking is applied during neighbourhood search. Neighbourhood shrinking is initialised if 

there is no improvement made on the fitness. The boundary of the current scouts is checked 

against each other as well as the ones in the memory. If the number of nb required is more than 

the available non-overlapping scouts, and if any members of the memory have higher fitness 

than the current overlap scouts, memory’s member(s) of higher fitness will trade places with 

the current overlap scout(s) of low fitness to satisfy the nb value. This is how the temporary 

memory list is updated and the size remains fixed throughout the evolution process. The 

memory always stored the patch boundary information and fitness of low promising area. 

 

Another way of freeing and entering the memory is when site abandonment occurs. If no yield 

is found after stlim of stagnation limit, the site is abandoned as it is deemed stuck in the local 

optima. The patch boundary and fitness of abandoned site are recorded and members inside the 

memory with higher fitness are discarded. Furthermore, if local and global basin of attraction 

are close to each other and hence overlap, the region where the local optimum lies might be 

selected for further exploitation if the fitness found at that time is higher. Hence, allowing stored 

memory of higher fitness to be reconsidered in the search area can improve odds of finding the 

missing point. The rest of the search process follows the previously explained steps until a 

stopping criterion is met. 
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4.3 Numerical Functions Experiment on POA-BA 

 

Two version of POA-BA are introduced. In the first version, standard neighbourhood search is 

implemented while the other employs the use of pseudo-gradient. The latter will be called POA-

PG-BA. Both versions are tested using the same benchmark functions as described in Chapter 

3. This experiment also used the same control parameters, as well as stopping criterion i.e. 

accuracy to achieved and maximum evaluation. Similar performance measures are utilised 

which is the average number of function evaluations (NFE) of 100 runs. Statistical t-test is also 

performed on results obtained. Outcomes of the experiment are compared to results of the 

Standard Bees Algorithm, Pseudo-Gradient Bees Algorithm (PG-BA), Quick Artificial Bee 

Colony (qABC), and Standard Particle Swarm Optimisation 2011 (SPSO2011) as in Chapter 3. 

 

 

4.3.1 Results and discussion 

Table 4.1 shows the performance of POA-BA and POA-PG-BA in terms of NFE in mean and 

standard deviation taken for 100 runs. Overall, POA-BA and POA-PG-BA are able to reach the 

global optimum solution in fewer function evaluations compared to the Standard Bees 

Algorithm, PG-BA, as well as qABC, and SPSO2011. The percentage reduction of NFE for 

POA-BA compared to the Standard Bees Algorithm and PG-BA is 81.48% and 46.93% 

respectively as shown in Table 4.2. This demonstrates the efficiency of using memory to avoid 

site repetition. 
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Table 4.1 Mean and standard deviation of function evaluations over 100 runs for POA-BA experiment 
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Table 4.2: Percentage of improvements of POA-BA and POA-PG-BA in comparison to the Standard Bees 

Algorithm, PG-BA, and each other 

Func. 

POA-BA POA-PG-BA 

Standard 

BA 
PG-BA 

Standard 

BA 
PG-BA POA-BA 

f1 93.78 92.60 94.14 93.03 5.76 

f2 95.68 70.56 96.01 72.84 7.73 

f3 47.84 47.06 54.57 53.89 12.91 

f4 42.37 31.90 49.48 40.31 12.35 

f5 50.54 41.76 59.73 52.58 18.58 

f6 98.18 62.07 98.63 71.46 24.76 

f7 61.04 35.42 65.99 43.62 12.70 

f8 69.13 39.83 76.31 53.83 23.27 

f9 78.18 45.54 82.75 56.93 20.92 

f10 90.19 53.87 91.19 58.59 10.24 

f11 99.12 47.47 99.22 53.62 11.71 

f12 99.08 35.05 99.26 47.66 19.42 

f13 98.57 10.78 98.64 14.88 4.60 

f14 99.55 37.60 99.58 41.92 7.14 

f15 98.91 52.38 98.98 55.70 6.97 

Avg. 

Improv. 
81.48 46.93 84.30 54.06 13.27 
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The performance of POA-PG-BA is slightly better than POA-BA due to the use of pseudo-

gradient method in the neighbourhood search. On average, the percentage of improvement for 

POA-PG-BA compared to POA-BA is 13.27. Despite that, statistical analysis (Table 4.3) shows 

that the performances of both POA-BA variants are significantly the same for function f1 Six 

Hump Camel Back, f2 Shekel, and f13 Schwefel 2.22. f1 and f2 are multimodal functions of low 

dimensions while f13 is a 30D complex multimodal function. The same can be said for POA-

BA and qABC execution on f1, both POA-BA version and SPSO 2011 on f2, and POA-BA 

with SPSO2011 on asymmetrical f15 Alpine. For the rest of the functions, all improvements 

made are statistically justified. 

 

Figures 4.2 until 4.16 display the convergence curve for all the Bees Algorithm variants for 

global optimisation developed in this research as well as the standard version. All figures clearly 

show the faster rate of convergence for both POA-BA variants compared to the Standard Bees 

Algorithm and PG-BA. This further validates the effectiveness of using memory to reduce the 

occurrences of overlapping patches in maximising the speed of search compared to the non-

memory versions. 
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Table 4.3: p-values using t-test (p = 0.05) comparing POA-BA and POA-PG-BA with the Standard Bees Algorithm, PG-BA, qABC, SPSO2011, and each other 

Func. 
POA-PG-

BA 
Standard BA PG-BA qABC SPSO2011 

  POA-BA POA-BA POA-PG-BA POA-BA POA-PG-BA POA-BA POA-PG-BA POA-BA POA-PG-BA 

f1 0.7408 0.0000 0.0000 0.0000 0.0000 0.0560 0.0276 0.0000 0.0000 

f2 0.1882 0.0000 0.0000 0.0000 0.0000 0.0241 0.0237 0.0689 0.0675 

f3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f6 0.0101 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 

f7 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f13 0.2442 0.0000 0.0000 0.0108 0.0000 0.0000 0.0000 0.0000 0.0000 

f14 0.0159 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

f15 0.0002 0.0000 0.0000 0.0057 0.0033 0.0000 0.0000 0.5517 0.0000 
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Figure 4.2: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f1 

 

 

 

Figure 4.3: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f2 
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Figure 4.4: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f3 

 

 

 

Figure 4.5: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f4 
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Figure 4.6: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f5 

 

 

 

Figure 4.7: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f6 
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Figure 4.8: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f7 

 

 

 

Figure 4.9: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f8 
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Figure 4.10: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f9 

 

 

 

Figure 4.11: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f10 
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Figure 4.12: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f11 

 

 

 

Figure 4.13: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f12 
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Figure 4.14: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f13 

 

 

 

Figure 4.15: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f14 
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Figure 4.16: Convergence curve between POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for f15 
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Figure 4.17: Scalability test of POA-BA 

 

 

 

Figure 4.18: Scalability test of POA-PG-BA 
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4.4 Training of Feedforward Neural Network Using POA-BA 

 

POA-BA and POA-PG-BA are also applied in the training of feedforward neural network 

(FNN). The same problem in Chapter 3 is used which is to find feasible weights in order to 

achieve minimum error in recognising pattern of Exclusive-OR (XOR) logic. Results in 

previous chapter show that the performance of PG-BA is nearly similar to the Standard Bees 

Algorithm. This experiment is performed to investigate whether comparable behaviour is 

displayed by both POA-BA variants. 

 

Table 4.4 states the percentage of success out of 25 runs for POA-BA, POA-PG-BA, the 

Standard Bees Algorithm, and PG-BA. Both versions of POA-BA attain 100% success of 

finding mean squared error (MSE) less than 0.001 in all runs. Generally, all the Bees Algorithm 

variants achieved similar MSE as listed in Table 4.5. Hence, no statistic test is performed on 

this result. However, Table 4.6 shows that there are reductions on the number of evaluation 

taken to obtain this MSE for POA-BA and POA-PG-BA in comparison to the Standard Bees 

Algorithm and PG-BA due to the patch overlap avoidance mechanism. 
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Table 4.4: Success rate (%) comparison between POA-BA, POA-PG-BA, the Standard Bees Algorithm, and 

PG-BA for XOR problem 

H Dim. 

Standard 

Bees 

Algorithm 

PG-BA POA-BA 
POA-PG-

BA 

2 9 96 100 100 100 

3 13 100 100 100 100 

4 17 100 100 100 100 

5 21 100 100 100 100 

6 25 100 100 100 100 

7 29 100 100 100 100 

8 33 100 100 100 100 

9 37 100 100 100 100 

10 41 100 100 100 100 

11 45 100 100 100 100 

12 49 100 100 100 100 

13 53 100 100 100 100 

14 57 100 100 100 100 

15 61 100 100 100 100 

20 81 100 100 100 100 

25 101 100 100 100 100 

30 121 100 100 100 100 
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Table 4.5: MSE comparison of POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for XOR problem 

H Dim. 

Standard Bees 

Algorithm 
PG-BA POA-BA POA-PG-BA 

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev 

2 9 0.0008 0.0002 0.0007 0.0002 0.0007 0.0003 0.0007 0.0002 

3 13 0.0007 0.0002 0.0007 0.0002 0.0007 0.0002 0.0007 0.0002 

4 17 0.0007 0.0002 0.0007 0.0002 0.0006 0.0003 0.0006 0.0003 

5 21 0.0006 0.0003 0.0006 0.0002 0.0006 0.0002 0.0006 0.0002 

6 25 0.0005 0.0002 0.0006 0.0002 0.0006 0.0002 0.0006 0.0002 

7 29 0.0006 0.0003 0.0006 0.0003 0.0006 0.0002 0.0006 0.0002 

8 33 0.0005 0.0003 0.0005 0.0002 0.0005 0.0003 0.0005 0.0003 

9 37 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 0.0005 0.0003 

10 41 0.0004 0.0003 0.0005 0.0002 0.0005 0.0002 0.0005 0.0002 

11 45 0.0005 0.0003 0.0006 0.0003 0.0005 0.0003 0.0005 0.0002 

12 49 0.0005 0.0003 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 

13 53 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 0.0004 0.0002 

14 57 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 0.0004 0.0003 

15 61 0.0004 0.0003 0.0003 0.0002 0.0003 0.0002 0.0004 0.0002 

20 81 0.0004 0.0003 0.0004 0.0003 0.0004 0.0002 0.0003 0.0003 

25 101 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 

30 121 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 
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Table 4.6: NFE comparison of POA-BA, POA-PG-BA, Standard Bees Algorithm, and PG-BA for XOR problem 

 

 

POA-BA POA-PG-BA POA-BA POA-PG-BA POA-PG-BA

p -value p -value p -value p -value p -value

2 9 7,928.2 22,446.9 0.4350 0.3651 4,506.3 9,291.3 0.9132 0.7143 4,261.6 6,189.7 0.7304 3,794.5 2,659.6

3 13 2,230.0 1,439.2 0.0178 0.0045 1,568.0 294.1 0.4804 0.0192 1,505.3 328.3 0.1049 1,347.3 347.4

4 17 1,758.0 529.1 0.0004 0.0000 1,440.0 283.6 0.0785 0.0031 1,292.4 296.7 0.1919 1,178.9 309.5

5 21 1,517.0 308.2 0.0025 0.0000 1,344.0 333.2 0.3297 0.0111 1,261.2 256.4 0.0613 1,123.5 251.6

6 25 1,430.0 312.4 0.0000 0.0000 1,252.0 254.6 0.0213 0.0093 1,089.1 228.6 0.5414 1,043.9 287.6

7 29 1,482.0 408.6 0.0002 0.0000 1,200.0 251.9 0.1256 0.0014 1,086.2 264.2 0.1093 974.8 216.2

8 33 1,264.0 270.0 0.0000 0.0000 1,210.0 379.5 0.0033 0.0008 921.3 272.3 0.4086 849.2 335.9

9 37 1,114.0 274.1 0.0013 0.0026 1,096.0 267.9 0.0023 0.0043 873.9 218.1 0.6769 840.6 331.9

10 41 1,146.0 289.1 0.0013 0.0000 1,096.0 275.2 0.0058 0.0006 866.0 288.4 0.3436 783.2 322.7

11 45 1,106.0 321.4 0.0034 0.0002 996.0 244.4 0.0514 0.0031 860.8 233.9 0.2482 782.6 239.1

12 49 1,214.0 347.5 0.0000 0.0000 948.0 295.1 0.1845 0.0110 842.5 257.7 0.1512 729.5 289.2

13 53 1,246.0 457.4 0.0000 0.0000 972.0 176.6 0.0030 0.0000 760.8 287.4 0.3300 691.5 203.4

14 57 1,040.0 287.8 0.0000 0.0000 842.0 326.1 0.1401 0.0605 720.9 237.8 0.5741 680.7 263.8

15 61 1,126.0 228.6 0.0000 0.0000 860.0 213.8 0.0029 0.0005 656.6 243.6 0.5430 614.1 246.9

20 81 918.0 234.5 0.0005 0.0000 832.0 272.8 0.0194 0.0012 638.4 292.6 0.5069 589.1 224.2

25 101 860.0 256.3 0.0027 0.0002 714.0 314.8 0.3405 0.0916 637.8 239.8 0.3889 580.4 226.8

30 121 798.0 348.9 0.0450 0.0055 768.0 256.3 0.0502 0.0037 602.1 323.7 0.4875 543.7 263.4

Mean Std. Dev Mean Std. Dev Mean Std. Dev

Standard Bees Algorithm PG-BA POA-BA POA-PG-BA

Mean Std. Dev

H Dim.
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As in the previous experiment, POA-PG-BA has fewer NFE compared to POA-BA. However, 

the percentage difference of NFE between the algorithms is on average a mere 8.59%. Table 

4.7 show the percentage of NFE reduction for all number of hidden nodes considered. T-test 

also shows that POA-BA and POA-PG-BA perform statistically the same for this experiment. 

In comparison to PG-BA, the performance of POA-BA is only statistically different mostly on 

H=8 and beyond. Whereas performance comparison of POA-PG-BA is more consistently 

significant. 

 

Table 4.7: Percentage improvement of mean evaluation for POA-BA and POA-PG-BA for XOR problem 

H Dim. 
POA-BA POA-PG-BA 

Standard BA PG-BA Standard BA PG-BA POA-BA 

2 9 46.25 5.43 52.14 15.79 10.96 

3 13 32.50 4.00 39.58 14.08 10.50 

4 17 26.48 10.25 32.94 18.13 8.78 

5 21 16.86 6.16 25.94 16.41 10.92 

6 25 23.84 13.01 27.00 16.62 10.50 

7 29 26.70 9.48 34.23 18.77 3.90 

8 33 27.11 23.86 32.82 29.82 14.99 

9 37 21.56 20.27 24.54 23.31 3.81 

10 41 24.44 20.99 31.66 28.54 1.94 

11 45 22.17 13.57 29.24 21.42 9.08 

12 49 30.60 11.13 39.91 23.05 13.41 

13 53 38.94 21.73 44.50 28.86 10.53 

14 57 30.68 14.38 34.55 19.16 4.08 

15 61 41.69 23.65 45.47 28.60 6.48 

20 81 30.46 23.27 35.83 29.20 7.72 

25 101 25.83 10.67 32.52 18.72 14.75 

30 121 24.55 21.60 31.86 29.20 3.61 
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Figures 4.19 and 4.20 illustrate the relationship between the number of hidden nodes with MSE 

and NFE. For MSE, the value is linearly declining at approximately H=12 before stabilising. 

In the meantime, at H=3 NFE is slowly decreasing before almost plateauing at H=15. 

 

 

 

Figure 4.19: Effect of number of hidden nodes to MSE for POA-BA and POA-PG-BA 
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Figure 4.20: Effect of number of hidden nodes to NFE for POA-BA and POA-PG-BA 
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Two versions of the Patch Overlap Avoidance Bees Algorithms were developed each with a 

different neighbourhood search strategy. POA-BA used standard neighbourhood search of the 

Bees Algorithm, while POA-PG-BA utilised the pseudo-gradient method. Their performances 

were evaluated against the Standard Bees Algorithm, PG-BA, and the same swarm-based 

algorithms used in previous chapter of similar benchmark functions. Results show that both 

variants of POA-BA boosted the global search as the next scout bees cannot inhibit the same 

spot despite the idea behind this scheme is initially to reduce the chances of repeated 

exploitation at the neighbourhood level, thus improving performance especially on the low 

dimension. Exclusive-OR pattern recognition using feedforward neural network trained by the 

modified algorithm were also executed together with statistical analysis on each experiment. 
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CHAPTER 5 

AN EXTENDED BEES ALGORITHM (EBA) TO FIND 

MULTIPLE OPTIMAL SOLUTIONS 

 

 

5.1 Preliminaries 

 

There is a growing trend for optimisation algorithms that are able to detect multiple global 

solutions as well as a number of useful local extremum in one run. Most population-based 

optimisers use niching techniques for diversity maintenance of feasible solutions in order to 

identify the entire optima. These methods introduce a niching parameter that need to be tuned 

alongside the algorithms’ own parameters. 

 

The development of POA-BA in the previous chapter has prompted the researcher to investigate 

a new strategy that only allows the formation of a single patch for every peak in the search 

landscape. With this extension, the Bees Algorithm will be able to maintain a set of diverse and 

multiple optimal throughout the optimising process which counteract the pressure of global 

selection scheme (i.e. the algorithm can only converge to one global optimum) without 

additional niching parameter. 

 

This chapter introduces the Hill-Valley mechanism (Ursem, 1999) and how incorporating this 

approach has changed the way the Standard Bees Algorithm operates. Experimentation takes 

place to investigate whether this variant for Multimodal Optimisation (MMO), the Extended 
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Bees Algorithm (EBA) is capable to locate multiple peaks in multimodal numerical functions. 

Before that, definition of niching and its various techniques shall be presented. 

 

 

5.2 Niching: Definition and Techniques 

 

The idea of creating niches or species (these terms are used interchangeably) in optimisation 

algorithms stems from the field of ecology. In the natural ecosystem, distinct species exist with 

different roles that share and compete for the same resources (Thomsen, 2004; Brits et al., 2007; 

Engelbrecht, 2007; Li, 2007; Qing et al., 2008; Liang and Leung, 2011). Analogous to 

optimisation problem, niche refers to the location of each optimum in the search space while 

resources of the niche correspond to the fitness function. Niching can also be used to find Pareto 

optimality in multi-objective problem, and tracking changes in dynamic optimisation. 

 

Niching-based algorithms can be classified depending on how the solutions are attained: 

i) Sequential/iterative/temporal 

The same algorithm is run several times avoiding the area where convergence has 

occurred until the satisfied number of optimal has been achieved. 

ii) Parallel/spatial 

Multiple solutions can be found in a single run as the population is divided into 

subpopulations that evolve in parallel and search different regions of the solution 

space. 
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Since sequential-type algorithms consume more time and have relatively limited performance, 

most algorithms that attempt to find multiple optimal points used the latter (Li et al., 2010). 

Several niching techniques were formulated primarily for Evolutionary Algorithms (EAs) 

especially Genetic Algorithm (GA) since interest in this research area grew. The earliest and 

simplest being crowding where a fixed percentage of the population, defined by niche 

parameter, crowding factor, CF is reproduced and killed each generation to replace the most 

similar individuals (the same niche). This is based on Hamming distance if binary numbers are 

used or Euclidean distance for real value. CF needs to be tuned to achieve a desirable result, 

and Thomsen (2004) said that by using CF equal to the size of the population has eliminated 

selection error associated with this technique. Nevertheless, Qing et al. (2008) found that 

genetic drifts still exist which reduce the chance of finding all optima. It is worth mentioning 

that there are two types of crowding; deterministic and probabilistic based on the selection rule 

used (Das et al. 2011; Liang and Leung, 2011). 

 

Another popular niching method is fitness sharing in which sharing function adjusts the fitness 

of individuals in the same subpopulation. It degrades an individual’s objective function due to 

the presence of nearby similar individuals. This technique is better at diversity preservation than 

crowding but due to sharing scheme enforcement, good solutions can be lost as individuals 

move away from peaks thus reducing the chances of local convergence (Thomsen, 2004; Liang 

and Leung, 2011). This technique can also be applied to iterative-based multimodal algorithms 

in which the stretching of fitness can prevent individuals from exploring the area where 

solutions have already been found (Beasley et al., 1993). 
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Both techniques reduce the effect of elitism employed in EAs in favour of diversity 

maintenance. Even so, elitism is needed in order to find the global optima quickly. One niching 

method that tried to balance between elitist strategy and preservation of diversity is clearing. 

Unlike sharing, resources are shared between highly fit individuals of each subpopulation while 

the other individuals’ fitness is set to 0 thus reducing the computational complexity. Still, 

dissimilarity threshold based on distance need to be tuned by the user (Singh and Deb, 2006; 

Das et al., 2011; Liu et al., 2011). 

 

In addition, recently developed species conservation used dominant individuals as species seed, 

and species containing similar individuals is built within the user-defined radius with species 

seed at the centre. Species seeds found in the current generation are conserved by moving them 

to the next generation enabling their survival after reproduction took place (Singh and Deb, 

2006; Li et al. 2010; Das et al., 2011; Liang and Leung, 2011; Liu et al., 2011). 

 

Nonetheless, all these methods need some niche parameters to be set by the user thus reducing 

the robustness of the algorithms especially in higher dimension problems. Few authors 

attempted to make the niche parameters adaptive such as efforts by Miller and Shaw (1995), 

Nickabadi et al. (2008), and Shir et al. (2010). By making certain parameters adaptive or more 

dynamic, a few less-sensitive parameters are introduced. 

 

State-of-the-art niching methods avoid the utilisation of any niche parameters. By adapting the 

Fitness-distance-Ratio based Particle Swarm Optimisation (PSO), Li (2007) used the Fitness 

Euclidean-distance Ratio to create distinctive niches. On the other hand, Liu et al. (2011) 

engaged the near-neighbour effect as attractor and repellent to pull and push particles into 
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locating multiple optima rapidly and accurately. They based their work on the Force-imitated 

PSO variant. Other methods used different PSO’s topologies to create niche without extra 

parameters such as work by Li (2010) that employed ring topology. 

 

Additionally, there are also algorithms devised by techniques to solve different domain of 

optimisation problems. Deb and Saha (2010) converted single objective multimodal into a bi-

objective optimisation problem so that all optimal solutions became members of the resulting 

non-dominant Pareto-optimal set. They were the first to attempt constrained multimodal 

problem. Clustering algorithms have also been employed to solve MMO (Liu et al., 2011; Das 

et al., 2011). 

 

Moreover, just like hybridisation between two or more algorithms was done to take each 

algorithm advantages for improving their performance, hybridisation can also occur between 

niching techniques. One example is Qing et al. (2008) which employed the hybrid of clustering 

technique to eliminate genetic drift in GA with crowding to form multiple niches. Meanwhile, 

Yu and Suganthan (2010) used an ensemble niching consist of clearing and the special-version 

of crowding, restricted tournament selection. 

 

 

5.3 The Hill-Valley Mechanism 

 

Ursem (1999) is one of the earliest MMO algorithms that did not implement any niche 

parameter. Instead he used topology-based scheme to divide population into species. He named 

the method Hill-Valley detection mechanism. This mechanism works by generating a line 



140 
 

between two points (let’s say xp and xq) that needs to be compared. A number of points are 

chosen in between these two points, and their fitness is calculated. The samples points used in 

this method are {0.25, 0.5, 0.75}. The first interpolated point is one quarter of the way along 

the line bisecting xp and xq, and so on. If any of the sample points has a fitness value smaller 

than the minimum of two compared points, thus there exists a valley between the two tested 

points (different peaks). Otherwise, they belong to the same hill (peak). The following is the 

steps for the mechanism: 

1. i = 1; 

2. found = FALSE; 

3. while i < samples.length and not found do 

4. for j = 1 to d do 

5. xinterior[j] = xp + (xq. xp). sample[j]; 

6. end for 

7. if f(xinterior) < min{f(xp), f(xq)} then 

8. found = TRUE; 

9. end if 

10. i = i + 1; 

11. end while 

12. return found; 

 

Figure 5.1 explains this operation by an example of a one-dimensional space. Between positions 

b1 and b2, sample points i1 until i3 all have greater fitness than the fitness of the comparing 

points. Thus inferring that b1 and b2 belong to the same peak. In contrast, a sample point i6 in 

between b3 and b4 has the smallest fitness value in comparison which surmising the existence 

of a valley somewhere in the middle of these locations. Hence, b3 and b4 are located at different 

hill. 
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Figure 5.1: Example of Hill-Valley detection in 1D 

 

This approach eliminates the redundancy between individuals approaching the same peak. The 

initial study the involved simulation process of migration between nations in multinational EAs 

is done by using this mechanism in MMO. Even though the original author suggested that three 

sample points are already adequate to successfully differentiate between peaks and valleys, 

users can increase these numbers to maximise the potential of locating more peaks but it is at 

the cause of increasing the number of function evaluations. 

 

Inspired by this, other researchers used the Hill-Valley detection mechanism instead of 

distance-based niche parameters with crowding (Thomsen, 2004), and species conservation 

(Stoean et al., 2010; Shen and Xia, 2012). In a paper co-written by the author of this thesis, the 

Bees Algorithm also attempted to deploy this scheme in MMO so that each patch converged to 
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different peaks (Zhou et al., 2015). Still, adaptive field radius, a niche parameter is used to 

merge and split patches depending on their distance with each other. 

 

 

5.4 Extended Bees Algorithm (EBA) 

 

Intrinsic mechanism in the Bees Algorithm when forming several patches can be exploited to 

locate multiple global and local optimal in a single run. This work seeks to extend the algorithm 

capability in terms of preservation mechanism so that the found solutions over generations can 

be maintained until the algorithm terminates. This is done without the need to apply any niche 

parameter. 

 

In this work, there will be no distinction assumed between elite and best sites. Thus, the 

population of bees and the number of selected sites will be made adaptive. Therefore, the 

remaining parameters need to be tuned by the users are as follows: 

i. Initial number of scout bees, ins 

ii. Number of recruited bees for selected sites, nr 

iii. Initial size of neighbourhood, ngh 

iv. Stagnation limit, stlim 

v. Termination criteria 

 

The proposed algorithm starts with initial ins scout bees placed randomly in the search space 

as shows in Figure 5.2. Assuming maximisation problem, bees are ranked in decreasing order 

according to their fitness after evaluation. The site corresponding to the bee with the highest 
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fitness is automatically selected as one of the selected sites. The rest of the selected sites will 

be determined by using the Hill-Valley detection mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Flow chart of the main phase of EBA 
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Using this technique, the highest fitness point is compared one by one with the rest of the points 

found by scout bees to evade any points that are in the same peak. Next, it will be marked in 

the memory as evaluated to avoid being evaluated again. Then, the next highest surviving point 

is compared with the rest of the outstanding points again to avoid similarity. The process 

continues until all remaining points have been tested. Sites of the survivors are then selected 

and thus form patches (niches) by recruiting bees to their site for further exploitation. Initially, 

two versions of EBA are developed with each one different in terms of the neighbourhood 

strategy employed. EBA uses the standard neighbourhood search while EBA-PG utilises the 

pseudo-gradient neighbourhood search. This is done to investigate whether the Bees Algorithm 

with the Hill-Valley is able to stand on its own or needing help in the neighbourhood search. In 

general, the algorithm only allows the survival of the fittest in each peak with non-overlapping 

patches following different peaks. This will ensure global and local convergence in multiple 

peaks in a case where the numbers of peaks are not known a priori. 

 

After that, each patch is evaluated and the bees are sorted according to their fitness as shows in 

Figure 5.3. Then, the Hill-Valley detection mechanism is re-initialised for every patch to 

determine whether there are bees on different peaks. This is important if the peaks are closed 

to each other in the search landscape. Bees with the highest fitness of each peak then will be 

conserved to the next generation. Meanwhile, bees that are not previously chosen as selected 

bees are assigned random positions to scout for potential new solutions. 
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Figure 5.3: Flow chart of the neighbourhood search in EBA 
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In addition, the size of the neighbourhood will be shrunk if no further improvements are found. 

Later, after stlim and still no improvement, the site is considered to have converged to the local 

optima. The site will be abandoned and recruited bees of that patch disbanded but the bee with 

the highest fitness in that patch will retain its position as an inspector bee to monitor any changes 

to the site. This phenomenon is in accordance with nature where bees that have retired from 

foraging at a food source will make occasional visits to that site as observed by Granovsky et 

al. (2012). Foraging can be resumed if its quality improved. With this, the maintenance of the 

local solutions found so far is ensured until the algorithm’s termination without the need to 

maintain them in a separate list (population). Furthermore, in case of dynamic optimisation 

problems, these bees can detect any changes. When this happens, inferior bees of the same peak 

are no longer sent for global scouting as in the earlier progress of the algorithm. Instead, they 

are killed in order to control the population size from growing out of proportion. 

 

For the next iteration, the new generation of bees will again be subjected to Hill-Valley 

detection mechanism before selection begins. These plus the role of inspector bees are how the 

bee population and the number of selected sites can change according to solution landscape. 

The aforementioned steps are repeated until terminating condition is met.  
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5.5 Experimental Set-up 

 

Ten commonly used multimodal functions as reviewed by Das et al. (2011) were selected to 

demonstrate the ability of EBA and its counterpart EBA-PG in finding multiple optimum. These 

functions have different characteristics such as deceptiveness, equal spread of optima and vice 

versa, and the existence of multiple local optima among multiple global optima. Table 5.1 lists 

the dimensionality and the number of both global and local peaks for each function while 

Figures 5.4 until 5.6 show the surface of this test suite. Complete functions’ equation can be 

refered in Appendix D. 

 

Table 5.1: Multimodal benchmark functions with their corresponding dimensions and number of peaks 

Name of functions Dimensions Number of peaks [Global (Local)] 

f1 Two peaks trap 1 1 (1) 

f2 Central two peaks trap 1 1 (1) 

f3 Five uneven peaks trap 1 2 (3) 

f4 Equal maxima 1 5 (-) 

f5 Decreasing maxima 1 1 (4) 

f6 Uneven maxima 1 5 (-) 

f7 Uneven decreasing maxima 1 1 (4) 

f8 Himmelblau 2 4 (-) 

f9 Camelback 2 2 (2) 

f10 Shekel’s foxholes 2 1 (24) 
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(a)                 (b) 

 

 

 
 (c) 

 

Figure 5.4: Surface of one dimension deceptive functions: (a) f1 Two peaks trap; (b) f2 Central two peaks trap; (c) 

f3 Five uneven peaks trap 
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(a)                                                                                     (b) 

 

 

 
    (c)                                                                               (d) 

 

 

Figure 5.5: Surface of one dimension multimodal functions: (a) f4 Equal maxima; (b) f5 Decreasing maxima; (c) 

f6 Uneven maxima; (d) f7 Uneven decreasing maxima 
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(a)            (b) 

 

 

 
(c) 

 

 

Figure 5.6: Surface of two dimensions multimodal functions: (a) f8 Himmelblau; (b) f9 Camelback; (c) f10 Shekel’s 

foxholes 

 

 

Functions f1 until f3 are deceptive functions because the area of the local peak(s) is wider than 

the global optimum, more individuals from the population can be misguided towards this 

region. These functions are good to evaluate the performance of an algorithm in tackling 

deceptiveness. Even though, functions f4 and f5 are evenly distributed functions but peaks in f5 

decrease exponentially leaving it with only one global optima. The peaks in f6 and f7 are 

irregularly spaced with the peaks in f7 declining like in f5. Functions f4 until f7 are useful to test 
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optimiser ability to form multiple niches either globally or locally. Meanwhile, f8 until f10 are 2-

dimensional multimodal functions. f8 has no local optima with four global solutions. The 

surface almost likes a plateau with two peaks that are closer to each other than the other two. f9 

has two global optima as well as two local optima that are distinguishingly apart. f10 has 25 

peaks with one of them is the global optimum. This function can be challenging if the aim is to 

locate not only the global peak but all the local ones as well. 

 

Multimodal Artificial Bee Colony (ABC-M) and four different variants of local best PSO with 

ring topology (r2pso, r3pso, r2pso-lhc and, r3pso-lhc) are employed for benchmarking since 

these swarm optimisers are known multimodal algorithms that do not require the use of niching 

parameters. ABC-M memorised all the abandoned solutions since an abandoned food source is 

considered has reach the optimum. At the end of the algorithm’s run, the memorised set is 

retrieved together with the best global solution to reveal the multiple global and local optimal 

(Liu et al., 2012). Meanwhile, each member in r2pso only interacts with the member of its 

immediate right whereas members in r3pso communicate with its right and left members. The 

same mechanism of r2pso is applied in r2pso-lhc, but it has no overlapping neighbourhood thus 

acts more like multiple local hill climbers (i.e. multiple PSO search in parallel). The same 

applies to r3pso-lhc (Li, 2010). 

 

To determine whether a peak has been located, a measure of accuracy ɛ is utilised. If the distance 

between the found solution with the known optimum is below ɛ, then the optimiser has 

successfully found the peak. The number of evaluations needed to locate all the peaks is 

recorded for comparison. All experiments were run 50 times and the average is taken. Success 
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rate which is the percentage of runs where all peaks are located is also used as a performance 

criterion. 

 

From their respective papers, both ABC-M and all variants of PSO employed the population 

size of 50. However, since population size of EBA and EBA-PG varies, the parameter setting 

for both follows closely the parameters set in the previous chapter as shown in Table 5.2. This 

table shows that only three parameters need to be set by the user while the initial neighbourhood 

size depends on the initial number of scouts. However, so that a fair comparison is made, the 

stopping criterion is the same for all optimisers as suggested by Li (2010) and Liu et al. (2012) 

for when all peaks are found or 100,000 evaluations for all functions. 

 

Table 5.2: Parameter setting for EBA and EBA-PG 

Parameters Value 

Initial number of scout bees, ins 6 

Number of recruiters on selected sites, nr 9 

Stagnation limit, stlim 10 

Initial neighbourhood size, ngh Search range/ins 

 

 

5.6 Results and Discussion 

 

The success rate obtained by EBA, EBA-PG, and benchmarked algorithms are presented in 

Table 5.3. All results for ABC-M and variants of PSO are extracted from Liu et al. (2012). This 

table also shows the level of accuracy used to detect the present of peak, ɛ for each functions. 
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Table 5.3: Comparison of success rate (%) for f1-f10 between EBA and EBA-PG with other multimodal swarm 

optimisers 

Functions ɛ EBA EBA-PG ABC-M r2pso r3pso r2pso-

lhc 

r3pso-

lhc 

f1 0.1 100 100 100 98 100 94 78 

f2 0.1 100 100 100 100 96 98 88 

f3 5 100 100 100 100 96 96 96 

f4 0.01 100 100 100 100 100 100 100 

f5 0.01 100 100 100 98 100 100 100 

f6 0.01 100 100 100 98 98 100 100 

f7 0.01 100 100 100 100 100 100 100 

f8 0.1 80 98 100 92 74 100 98 

f9 0.01 100 100 100 100 100 100 100 

f10 0.01 98 100 100 100 100 72 78 

 

 

From this table, EBA was able to achieve 100% success in all functions except for f8 and f10. In 

f8 the almost indistinguishable peaks due to the quite flat terrain made it harder for the Hill-

Valley in EBA to differentiate between two summits. Increasing the number of sample points 

taken between hills can rectify the situation but at the risk of increasing the number of 

evaluation as well. EBA-PG also only managed to achieve 98% of success rate in f8. The 

increase in percentage is due to the faster neighbourhood search which allows the algorithm to 

discover more peaks before reaching the maximum evaluation. As there are 25 peaks in f10, 

more peaks are being selected for neighbourhood search after Hill-Valley. This also reduces 

the chance for the algorithm to reach near each optimal before the allowable number of 

evaluation as overall number of recruiters linearly rise with the number of selected sites. Again, 

the pseudo-gradient helps in EBA-PG because it manages to attain the 100% success rate in f10. 

Nevertheless, both EBA and EBA-PG are capable to handle deceptive functions f1-f3 compared 

to some of the PSO variants. The same applies for functions that are evenly or irregularly spaced 
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whether in one or two dimensions. This demonstrates that the Hill-Valley mechanism in EBA 

and EBA-PG is effective at creating multiple niches across the search landscape. The result also 

shows that only ABC-M managed to obtain 100% success rate for all functions which suggests 

that a separate memory to maintain candidate solutions is the better option in tackling MMO. 

 

Tables 5.4 and 5.5 exhibit the number of evaluations taken for all optimisers to locate the 

multiple optima with bold typeface is the best result. Even though EBA and EBA-PG are 

capable to identify all the substantial peaks, they require a higher number of evaluations. For f8 

and f10, EBA reached on average the maximum allowable evaluation. The pseudo-gradient in 

EBA-PG improved EBA’s results but still some of the other optimisers performed better. The 

higher evaluation is attributed to the extra evaluation of the three sample points needed to 

distinguish between all feasible solutions whether they belong to the same peak. Although, with 

modern high speed CPU this can be made negligible. 
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Table 5.4: Comparison of mean, standard deviation, and standard error of number of evaluations over 50 runs 

for f1-f5 between EBA and EBA-PG with other multimodal swarm optimisers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functions f1 f2 f3 f4 f5 

EBA 

Mean 3,350.00 3,330.00 3,490.00 53,000.00 13,000.00 

Std. 

Dev. 
13,827.72 13,827.53 902.24 37,338.42 31,220.78 

Std. 

Error 
1,955.53 1,955.51 127.60 5,280.45 4,415.29 

EBA-

PG 

Mean 1,360.00 1,370.00 1,380.00 1,520.00 1,710.00 

Std. 

Dev. 
463.82 541.18 548.58 232.05 264.30 

Std. 

Error 
65.60 76.54 77.58 32.82 37.38 

ABC-

M 

Mean 76.70 78.30 80.00 719.00 197.00 

Std. 

Dev. 
63.50 88.18 139.94 7,755.55 947.31 

Std. 

Error 
8.98 12.47 19.79 1,096.80 133.97 

r2pso 

Mean 3,460.00 2,960.00 978.00 376.00 2,120.00 

Std. 

Dev. 
13,965.01 10,748.45 1,319.81 216.02 14,138.81 

Std. 

Error 
1,974.95 1,520.06 186.65 30.55 

 

1,999.53 

r3pso 

Mean 2,620.00 5,340.00 4,650.00 443.00 141.00 

Std. 

Dev. 
6,180.61 19,549.59 19,687.34 366.28 79.34 

Std. 

Error 
874.07 2,764.73 2,784.21 51.80 11.22 

r2pso-

lhc 

Mean 7,390.00 4,340.00 4,710.00 396.00 143.00 

Std. 

Dev. 
23,674.29 15,765.94 19,681.68 360.70 103.52 

Std. 

Error 
3,348.05 2,229.64 2,783.41 51.01 14.64 

r3pso-

lhc 

Mean 23,200.00 13,100.00 6,730.00 447.00 144.00 

Std. 

Dev. 
41,257.28 32,448.00 21,835.53 373.00 96.73 

Std. 

Error 
5,834.66 4,588.84 3,088.01 52.75 13.68 
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Table 5.5: Comparison of mean, standard deviation, and standard error of number of evaluations over 50 runs 

for f6-f10 between EBA and EBA-PG with other swarm optimisers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functions f6 f7 f8 f9 f10 

EBA 

Mean 60,600.00 5,700.00 100,000 24,100.00 100,000 

Std. 

Dev. 
38,760.14 19,701.06 60,011.49 40,310.34 13.49 

Std. 

Error 
5,481.51 2,786.15 8,486.91 5,700.74 1.91 

EBA-

PG 

Mean 2,050.00 1,560.00 11,700.00 1,180.00 51,000.00 

Std. 

Dev. 
357.01 318.11 3,129.77 631.85 11,653.77 

Std. 

Error 
50.49 45.00 442.62 89.36 1,648.09 

ABC-

M 

Mean 2,340.00 223.00 1,340.00 360.00 1,130.00 

Std. 

Dev. 
22,785.10 1,461.94 13,657.06 909.00 4,013.61 

Std. 

Error 
3,222.30 206.75 1,931.40 128.55 567.61 

r2pso 

Mean 2,400.00 175.00 7,870.00 619.00 4,360.00 

Std. 

Dev. 
14,101.34 126.64 20,447.34 170.48 3,959.66 

Std. 

Error 
1,994.23 17.91 2,891.69 24.11 559.98 

r3pso 

Mean 2,440.00 160.00 21,400.00 684.00 3,510.00 

Std. 

Dev. 
14,104.87 142.84 38,658.87 212.27 3,207.08 

Std. 

Error 
1,994.73 20.20 5,467.19 30.02 453.55 

r2pso-

lhc 

Mean 456.00 178.00 1,490.00 680.00 29,700.00 

Std. 

Dev. 
238.51 128.27 978.07 213.97 44,385.59 

Std. 

Error 
33.73 18.14 138.32 30.26 6,277.07 

r3pso-

lhc 

Mean 623.00 162.00 7,380.00 650.00 24,800.00 

Std. 

Dev. 
1,931.32 119.36 23,667.78 177.00 40,576.97 

Std. 

Error 
273.13 16.88 3,347.13 25.03 5,738.45 
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Table 5.6 displays the percentage of improvement in term of mean evaluation between EBA 

and EBA-PG. On average, EBA-PG improves by 76.43% which is fairly consistent with the 

results obtained in Chapter 3. However, based on previous tables, a better strategy in forming 

niches is still required so as not to consume a lot of function evaluation. 

 

Table 5.6: Percentage improvement for mean evaluation between EBA-PG and EBA 

Functions f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

% improvement of 

mean evaluation 

59.4 58.9 60.5 97.1 86.8 96.6 72.6 88.3 95.1 49.0 

Average 76.43% 

 

 

Nonetheless, statistical analysis performed based on the average evaluation indicates that 

though EBA and EBA-PG have moderately higher evaluation than the other algorithms, they 

are not statistically significant in some cases. The p-value by using t-test with 95% confidence 

interval is shown in Table 5.7. Boldface indicates p-value lower than 0.05 meaning the result is 

statistically significant. For cases where it is not statistically distinguishable, the algorithms are 

considered to perform statistically the same. 
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Table 5.7: Comparison of p-value using t-test (p < 0.05) between EBA and EBA-PG with other multimodal swarm optimisers 

 

Func. EBA-PG ABC-M r2pso r3pso r2pso-lhc r3pso-lhc 

EBA EBA EBA-PG EBA EBA-PG EBA EBA-PG EBA EBA-PG EBA EBA-PG 

f1 + 0.3116 + 0.0973 + 0.0000 - 0.9685 - 0.2905 + 0.7340 - 0.1538 - 0.3000 - 0.0748 - 0.0017 - 0.0003 

f2 + 0.3190 + 0.0995 + 0.0000 + 0.9628 - 0.2987 - 0.5542 - 0.1544 - 0.7342 - 0.1862 - 0.0530 - 0.0003 

f3 + 0.0000 + 0.0000 + 0.0000 + 0.0617 + 0.0000 - 0.2404 - 0.2432 - 0.2318 - 0.2346 - 0.0853 - 0.0864 

f4 + 0.0000 + 0.0000 + 0.1900 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 

f5 + 0.0121 + 0.0446 + 0.0000 + 0.0270 - 0.8380 + 0.0044 + 0.0000 + 0.0044 + 0.0000 + 0.0045 + 0.0000 

f6 + 0.0000 + 0.0000 - 0.9285 + 0.0000 - 0.8611 + 0.0000 - 0.8454 + 0.0000 + 0.0000 + 0.0000 + 0.0000 

f7 + 0.1406 + 0.0528 + 0.0000 + 0.0502 + 0.0000 + 0.0496 + 0.0000 + 0.0503 + 0.0000 + 0.0496 + 0.0000 

f8 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.1935 + 0.0000 - 0.0801 + 0.0000 + 0.0000 + 0.0000 + 0.2037 

f9 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 

f10 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0000 + 0.0014 + 0.0000 + 0.0000 

Note: (+ signifies the upper column optimiser as the better performer in mean evaluation) 
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5.6.1 Modification to EBA-PG 

Results attained in the previous section clearly show that even though EBA and EBA-PG are 

able to identify all the necessary peaks, however the function evaluations taken are quite large 

compare to the other multimodal swarm optimisers. Thus, there is the need for a different 

method able to create niche and at the same time require a smaller number of function 

evaluation. Earlier in this chapter, the idea to use the Hill-Valley to form patches stemmed from 

the Patch Overlap Avoidance (POA) strategy in Chapter 4. To recall, POA is able to build patch 

with minimum chances of overlapping with others by using short term memory but two or more 

patches can still be formed in the same peak. Initially, this method was thought not suitable to 

be applied as a multimodal algorithm because recruiters of more than one patches competing 

on the same peak might be useful if distributed to a different hill. However, since this strategy 

also avoids the positioning of bees on otherwise visited locations in subsequent cycles, adapting 

POA in EBA-PG could reduce the occurrence of the same point to be evaluated by the Hill-

Valley. 

 

This variant dubbed as EBA-PG-POA works as the steps follows: 

1. Initialise the position of initial number of scout bees and set their corresponding 

boundary 

2. Evaluate the fitness and sort 

3. Select non-overlap scout bees of high fitness to be evaluated by Hill-Valley 

4. Perform neighbourhood search for selected sites after Hill-Valley 

5. Recruit bees for selected sites by using pseudo-gradient and evaluate fitness 

6. Select the fittest bee from each patch 
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7. Assign unselected scout bees to search randomly avoiding boundary set by the fittest 

bees and previous memory, and evaluate their fitness 

8. Stop algorithm when stopping criterion is fulfilled. 

 

In EBA-PG-POA, Hill-Valley is still utilised but only on scout bees with non-overlapping 

corresponding boundary. This is to avoid non-overlapping patch of the same peak to be formed 

especially in the case of a peak in an almost plateau surface. Recruiters are positioned inside 

the selected sites after Hill-Valley using the pseudo-gradient method. No Hill-Valley is 

performed in the neighbourhood search. In EBA, Hill-Valley is re-initialised in neighbourhood 

search to detect a presence of new peak if they are quite close to each other. Here, there is no 

need for that since it is assumed that if they are near then they will overlap. The remaining scout 

bees re-assigned randomly just like the ones from the POA procedure. Unselected scouts after 

Hill-Valley are killed instead. The rest of the algorithm functions just like EBA with the 

deployment of inspector bees to maintain the multiple optimums found. 

 

Table 5.8 presents the result of EBA-PG-POA as well as the percentage of improvement and p-

value for mean evaluation in comparison to EBA-PG. EBA-PG-POA able to attain 100% 

success rate for all functions. The percentage of improvement for mean evaluation on average 

is 68.09% across all functions. The improve performance is due to the small number of points 

need to be evaluated by the Hill-Valley. The population size is also controls early on with the 

unselected bees after Hill-Valley are killed instead after site abandonment occurs. The p-value 

shows that these results are statistically significant. However, the number of evaluation is still 

slightly higher than the best performer of each function from Tables 5.4 and 5.5. Yet this does 
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not undermine the ability of this variant to locate all the substantial peaks. Tuning the number 

of recruiters or stagnation limit could potentially lead to a better performance. 

 

Figures 5.7 until 5.16 depict the convergence curve of all three variants of EBA. These figures 

prove the faster rate of EBA-PG-POA in detecting multiple peaks. 
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Table 5.8: Average evaluation of EBA-PG-POA and performance comparison with EBA-PG 

 

 

 

 

 

 

 

Functions f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 

Success rate (%) 100 100 100 100 100 100 100 100 100 100 

Mean 405.00 570.00 581.00 432.00 730.00 545.00 737.00 2,030.00 478.00 1,450.00 

Std. Dev. 184.41 201.81 195.48 295.35 190.19 248.29 190.47 801.40 137.23 994.95 

Std. Error 26.08 28.54 27.65 41.77 26.90 35.11 26.94 113.34 19.41 140.71 

% improvement  70.22 58.39 57.90 71.58 57.31 73.41 52.76 82.65 59.49 97.16 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 5.7: Convergence curve for f1 

 

 

 

Figure 5.8: Convergence curve for f2 
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Figure 5.9: Convergence curve for f3 

 

 

 

Figure 5.10: Convergence curve for f4 
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Figure 5.11: Convergence curve for f5 

 

 

 

 Figure 5.12: Convergence curve for f6 
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 Figure 5.13: Convergence curve for f7 

 

 

 

 Figure 5.14: Convergence curve for f8 
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Figure 5.15: Convergence curve for f9 

 

 

 

 Figure 5.16: Convergence curve for f10 
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5.6.2 Effect of varying number of initial scout bees 

The population size of this variant of Bees Algorithm is not constant as explained in the 

previous section. In order to exhibit the robustness of this algorithm, a simple experiment is 

done using the one-dimensional f7 to get a faster result and this is the most difficult 1D problem. 

Two-dimension problems were not chosen because it will consume a high computational cost 

for a simple test. Figure 5.17 shows the effect of varying the value of initial number scouts (ins) 

which is one of the algorithm’s parameter. Similar control parameters were used for this test 

except for the ins value which is in the range of 5, 10, 15, 20, 25. Only EBA is employed for 

this test without the influence of PG and POA methods. Although a different initial number of 

scouts were used, the number of mean optima found remained constant which means that the 

dynamically changing bees population do not affect the ability of the proposed algorithm to 

uncovered all peaks. As suspected, the number of function evaluation increases with the 

increase of initial number scouts but this is still within the allowable maximum evaluation. This 

also shows that even with small initial number of scout bees, EBA is still an effective 

multimodal algorithm. 
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Figure 5.17: Effect of varying initial scout population 
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Pseudo-gradient (PG) method is also employed to increase the speed of neighbourhood search. 

Faster neighbourhood search cause faster abandonment which means an optimum has been 

discovered. Thus, fewer points are subjected to Hill-Valley in the next cycle and the killing of 

bees to control the population size also starts sooner. However, there are still chances the 

remaining bees will fall on discovered solutions. Hence, Patch Overlap Avoidance (POA) is 

utilised which further reduces the number of evaluations taken. 

 

Results show that all EBA variants have the capability to locate multiple optima albeit they are 

not the best performer for each function used in benchmarking. However, this study is not 

concerned with proving the superiority of any algorithm but to investigate the ability of the 

Bees Algorithm extended with the use of Hill-Valley to tackle multimodal optimisation 

problems. Furthermore, if the Hill-Valley is to be applied in global optimisation, it could reduce 

the chances of getting trapped, because by locating local optimal points, the odd of finding the 

global peaks increases. 
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CHAPTER 6 

CONCLUSIONS 

 

This chapter summarises the the conclusions reached in this study and the contributions made. 

It also provides suggestions for future work. 

 

 

6.1 Conclusions 

Three objectives have been set for this research. There are to; (i) develop an improved Bees 

Algorithm with the aid of a gradient-like method to provide search direction for the algorithm 

in order to achieve faster convergence, (ii) develop a strategy to avoid the formation of 

overlapping patches in the Bees Algorithm so that recruited bees are managed and distributed 

more efficiently, and (iii) develop a version of the Bees Algorithm that has the ability to detect 

multiple global optimal solutions in multimodal optimisation problems. Based on the findings 

of this study, those objectives have all been realised. 

 

This thesis has presented three modifications to the Bees Algorithm in order to improve its 

performance, especially in terms of convergence speed in handling continuous optimisation 

problems. The first improvement made to the algorithm is by integrating the pseudo-gradient 

method into the neighbourhood search. This procedure is able to provide a good search direction 

to the best bee of each patch by contrasting the fitness of the current point with the previous 

point. Hence, no differentiation of the objective function is required. The pseudo-direction 
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ultimately speeds up the search process compared to the Standard Bees Algorithm based on the 

reduction in the number of function evaluations ranging from 2.8% to 99.3% with various test 

functions as shown in Chapter 3. Evaluation against other swam-inspired algorithms also 

suggests the effectiveness of this method except on the low dimension problem (i.e. 2D) which 

could be due to random exploration since the pseudo-gradient calculation is only performed on 

the local scale. The Pseudo-gradient Bees Algorithm (PG-BA) also performed moderately on 

asymmetrical function which shows that, even though no direct gradient is computed, this 

method still inherits some behaviour of its gradient-based counterparts. This means that a good 

starting point will certainly benefit the algorithm. Nonetheless, the multiple patches built across 

the problem landscape balance this effect out. The algorithm also demonstrates that it is able to 

train Feedforward Neural Networks to a satisfactory result. Thus, the development of PG-BA 

has fulfilled Objective 1. 

 

The second enhancement was an approach to reduce the creation of overlapping patches. The 

Patch Overlap Avoidance Bees Algorithm (POA-BA) avoids redundancy in the search area by 

forbidding the exact intensification of previously visited solutions along with their 

corresponding neighbourhood using a short-term memory. With this strategy, the bees are no 

longer allowed to land on abandoned sites or near other scout bees. This results in the 

minimisation of the number of patches formed on an identical hill or basin. The scaled down 

region ensures a thorough search of the problem landscape as resources (bees) are well 

disseminated and are not wasted on an already foraged area. The same benchmark problems as 

PG-BA were solved using this modified strategy. Overall, POA-BA enhances the global search 

as the next scout bees cannot inhabit the same spot despite the idea behind this scheme being 
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initially to reduce the chances of repeated exploitation at the neighbourhood level. Thus, 

performance on low dimension problems also improves. As a result, Objective 2 has been met. 

 

Finally, as there is a demand for obtaining multiple optimal solutions, the competency of the 

Bees Algorithm is extended to preserve diverse solutions during the evolution process. This 

warrants distinct multi-solutions to be located in one execution runtime. Since the Bees 

Algorithm is a population-type optimiser, there are already a population of candidate solutions. 

To make sure that all possible optimum points within the fitness landscape are found, a better 

technique than Patch Overlap Avoidance is required. This is because as long as the patches do 

not cross one another, they are permitted to exist at the same peak, which can make the 

algorithm miss a more substantial hill. Therefore, the Extended Bees Algorithm (EBA) uses the 

hill-valley mechanism to select the fittest between two points of indistinguishable summit to 

survive to the next generation. EBA do not utilise any niching parameters unlike other 

multimodal algorithms. In fact it uses fewer control parameters as no discrepancy is made 

between elite and best bees. By doing so, the population size as well as the number of selected 

sites vary to adapt to the number of optima found. Sites that do not improve after a certain cycle, 

are considered to have reached their maximum. An inspector bee is tasked to guard the 

neighbourhood to avoid being revisited by other scout bees. The role of inspector bees reduces 

the dependency on memory which can limit computing resources. At this point, some bees are 

‘killed’ to control the population size. This extended variant is tested against continuous 

multimodal numerical functions and the outcomes are compared with other multimodal Swarm 

Intelligence algorithms that also do not employ niching parameters. Although the new Bees 

Algorithm was able to locate all the significant optima, the number of function evaluations is 

high due to the sampling made by the hill-valley method. The assistance by the pseudo-gradient 
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technique only improves the convergence speed to some extent. It is not until the incorporation 

of Patch Overlap Avoidance before the hill-valley technique is executed that the algorithm 

manages to thrive. Consequently, EBA has satisfied Objective 3. 

 

 

6.2 Contributions 

 

This research introduces new improvements to the Bees Algorithm in solving continuous 

optimisation problems. The specific contributions are as follows: 

 The development of PG-BA provides a guided search direction to the algorithm without 

the need to differentiate the objective functions. This consequently helps the algorithm 

to converge faster to the optimum compared to the standard Bees Algorithm. 

 The development of POA-BA enables the algorithm to reduce the number of patches 

that overlap with others. Dissimilar neighbourhoods can be formed on the same peak 

(for maximisation problems) or valley (for minimisation problems) as long as they do 

not intersect one another. This guarantees a more comprehensive investigation as the 

search range is narrowing and the bees can be redirected to a different area. 

 Both PG-BA and POA-BA are developed without adding any new parameter to the 

already established set of parameters of the Bees Algorithm which makes it attractive 

to users as there are only limited parameters to tune but the performance enhancement 

is still significant. 

 In addition, both of these improved versions are tested using the same value of 

parameters across all the benchmark tests to a degree of success which shows the 

robustness of the algorithm. 
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 Most of the benchmark tests used in this study have never been employed on other 

versions of the Bees Algorithm which proves that the algorithm may not be the best for 

certain functions but it can work relatively well for a wide range of problems. 

 The dimensions of the problems for the mathematical functions are also much higher 

than those used with other variants of the Bees Algorithm in the literature. This indicates 

the potential of the algorithm to be implemented for large scale global optimisation 

problems. 

 The development of EBA extends the ability of the Bees Algorithm to locate multiple 

optima of equal or comparable fitness without the use of any niching parameters. 

 

 

6.3 Future work 

 

There are a number of promising new directions for further research that can enrich the Bees 

Algorithm and expand its prospective applications. 

 Even though all the three improvements made in this thesis require no additional control 

parameters, reducing the current algorithm’s parameters or even making them self-adapting 

will attract more users of the Bees Algorithm.  

 There is potential for the Bees Algorithm to solve optimisation problems of a larger scale 

as the improved algorithms performed well on functions with 50 dimensions. Future 

research should involve scaling the dimensions up to 1000D, for example, in continuous 

numerical benchmark problems. It would be interesting to see the behaviour of the Bees 

Algorithm when dealing with this kind of magnitude. 
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 PG-BA accomplished moderate success on an asymmetrical function. Other functions 

without biases such as rotated or shifted functions should also be considered in the future 

to understand more how the algorithm behaves. 

 Further investigation is also needed to study the possibility to apply all the three new 

variants to other real-world problems especially for finding multiple optimum solutions. 

 Since EBA has the ability to locate multiple solutions, there lay some prospects to expand 

its use to multi-objective or dynamic optimisation problems. 
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APPENDIX A 

LIST OF HYBRID BEES ALGORITHM 

 

Table A.1 Hybrid methods used with the Bees Algorithm and their applications 

 

Hybrid methods Applications 

Heuristic: 

1. Heuristic Filling Procedure 

 

2. Forward-backward 

Interchange Scheduling 

Heuristic 

 

3. Quick-and-Dirty 

 

 

4. Fix-and-Optimise 

 

Supply chain management (Dereli and Das, 2011) 

Resource constrained project scheduling (Ziarati et al. (2011) 

 

 

Sequence-based iteration software testing (Zabil et al. 2012; Zabil 

and Zamli, 2013) 

 

Multi-level capacitated lot sizing (Furlan and Santos, 2015) 

Gradient-based local search: 

1. Gradient Descent 

2. Steepest Descent 

 

3. Kalman Filter 

 

4. Newton Search 

 

5. Hill Climbing 

 

Weather forecasting (Khanmirzaei and Teshnehlab, 2010) 

Constrained nonlinear optimal control (Alfi and Khosravi, 2012) 

Pattern classification (Pham and Darwish, 2010) 

Electricity generation and power systems (Anantasate et al., 2010) 

Numerical benchmark functions and single maschine scheduling 

(Yuce et al., 2015) 

Quasi- or Non-gradient local search: 

1. Nelder-Mead 

 

 

2. Variable Neighbourhood 

Search 

 

 

Numerical benchmark functions (Mahmuddin and Yusof, 2009) 

 

Noisy multi-response surfaces (Aungkulanon and Luangpaiboon 

(2012) 

Meta-heuristics: 

1. Simulated Annealing 

 

 

2. Particle Swarm Optimisation 

 

 

 

 

3. Cultural Algorithm 

 

 

4. Genetic Algorithm 

 

 

5. Harmony Search 

Four Colur Map problem (Sadiq and Hamad, 2010); Substitution 

ciphers (Ali and Mahmod, 2015) 

Antenna design (Guney and Onay, 2007); Design of construction 

layout (Lien and Chen, 2012 and 2014); Numerical benchmark 

functions (Chen and Lien, 2012); Benchmark clustering problems 

(Dhote et al., 2013) 

 

Electricity generation and power systems (Anantasate and 

Bhasaputra, 2011) 

 

University timetabling (Phuc et al., 2011); Process mining (Saleem 

et al., 2013); Single machine scheduling (Packianather et al., 2014) 

 

University timetabling (Nguyen et al., 2012) 
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Table A.1 Continued 

Hybrid methods Applications 

Meta-heuristics (continued): 

6. Firefly Algorithm 

 

 

7. Differential Evolution 

 

8. Artificial Bee Colony 

 

 

Noisy multi-response surfaces (Aungkulanon and 

Luangpaiboon (2012) 

 

Control of biped robot (Massah B. et al., 2013) 

 

Constrained numerical functions (Tsai, 2014a) 

Other algorithms: 

1. RealPaver (interval-based) 

 

 

2. Mixed Integer Programming 

 

 

3. Otsu’s Method 

 

 

4. k-means Clustering Algorithm 

 

 

5. Fuzzy c-means Clustering Algorithm 

 

6. Flux Balance Analysis 

 

7. ID3 (decision tree learning algorithm) 

Software quality assessment (Wang et al. (2011, 2013) 

Capacitated facility location problem (Cabrera G. et al. 

(2012) 

Multilevel image thresholding (Shatnawi et al., 2013a) 

Benchmark clustering problems (Pham et al., 2011); 

Document clustering (AbdelHamid et al., 2013) 

Benchmark clustering problems (Pham et al., 2008a) 

Optimisation of metabolite production (Koo et al., 2014) 

Intrusion detection (Eesa et al., 2015) 

Multiple algorithms: 

1. Genetic Algorithm + Tabu Search 

 

2. Hill Climbing + Flux Balance Analysis 

 

 

3. Hill Climbing + Flux Balance Analysis 

+ OptKnock 

 

4. Hill Climbing + Flux Balance Analysis 

+ OptKnock + Differential Evolution 

 

5. k-means + Ward’s clustering algorithm 

 

6. k-means + Harmony Search 

 

 

7. Differential Evolution + k-means + 

Cluster centre initialisation algorithm 

 

8. Simulated Annealing + Hill Climbing 

Benchmark clustering problems (Shafia et al., 2011) 

Gene knock-out strategy (Choon et al., 2012, 2013b) 

 

Gene knock-out strategy (Choon et al., 2013a, 2014a, 

2015) 

Gene knock-out strategy (Choon et al., 2014b) 

Clustering of data air pollution (Saini and Kaur, 2014); 

Benchmark clustering problems (Kataria and Rupal, 

2014) 

Benchmark clustering problems (Bonab and Hashim, 

2014) 

Benchmark clustering problems (Bonab et al., 2015) 

Examination timetable (Abdullah and Alzaqebah, 2013) 

 

 

 



226 
 

APPENDIX B 
 

LIST OF THE BEES ALGORITHM APPLICATIONS 

 
 

Table B.1 List of the Bees Algorithm applications 

AREAS APPLICATIONS REFERENCES 

Electrical & 

Electronic 

Engineering 

Optimal power flow 

Anantasate & Bhasaputra (2010); Bhasaputra et al. 

(2011); Sumpavakup et al. (2011); Sumpavakup et al. 

(2012); Leeprechanon & Phonrattanasak (2013) 

Placements of FACTS devices 

 Idris et al. (2009a); Idris et al. (2009b); Idris et al. 

(2010a); Idris et al. (2010b); Satheesh & Manigandan 

(2013) 

Power system applications 

Rashtchi et al. (2010); Tudu et al. (2011); Kavousi et 

al. (2012); Lenin et al. (2014); Marghaki & 

Zayandehroodi (2015) 

Controller tuning 

Jones & Bouffe (2008); Ercin & Coban (2011); Fahmy 

et al. (2011); Ghalipour et al. (2012); Coban & Ercin 

(2012); Metni & Lahoud (2013); Amirinejad et al. 

(2014); Farhang & Mazlumi (2014); Hadi et al. 

(2014)Sarailoo et al. (2014); Toloei et al. (2014); 

Arzeha et al. (2015); Assareh & Biglari (2015); Danaei 

& Khajezadeh (2015); Fahmy & Ghany (2015); 

Gholipour et al. (2015); Khalid et al. (2015); Sen & 

Kalyoncu (2015)  

Antenna design 

Guney & Onay (2007); Guney & Onay (2010); Guney 

& Onay (2011); Malekzadeh et al. (2012); Guney & 

Onay (2013); Derakhshan & Shirazi (2014) 

Multi-objectives economic load 

dispatching 

Pham et al. (2008d); Lee & Darwish (2008); 

Leeprechanon & Polratanasak (2010); Marzi et al. 

(2010); Pham et al. 2010); Vennila & Prakash (2012) 

Filter design Pham & Koҫ (2010) 

Biped robot control 
Yazdi et al. (2010); Yazdi et al. (2011); Massah et al. 

(2013) 

Renewable energy system 

Lee & Kim (2010); Phonrattanasak (2011); Fahmy 

(2012); Phonrattanasak et al. (2013); Tolabi et al. 

(2013); Tolabi et al. (2014b); Tudu et al. (2014); Gao 

et al. (2015); Mechter et al. (2015) 

Motion estimation Boumazouza et al. (2013) 

Circuits Design Mollabakhshi & Eshghi (2013); Belaid et al. (2013) 

Motor design 
Keshageh & Gholamian (2013); Braiwish et al. (2014); 

Braiwish et al. (2015); Khazaei et al. (2015) 

Optimal sizing & location Tolabi et al. (2014a); Fathallahnezhad & Eslami (2015) 

Signal processing Ebrahimzadeh & Mavaddati (2014) 

Sensor networking Saad et al. (2008); Moussa & El-Sheimy (2011) 
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Table B.1 Continued 

AREAS APPLICATIONS REFERENCES 

Computer 

Science & 

Engineering 

Image analysis 
Azarbad et al. (2011); Bradford Jr. & Hung (2012); Nebti 

(2013); Shatnawi et al. (2013); Grega et al. (2014) 

Software testing 
Zabil et al. (2012); Wang et al. (2012); Wang et al. (2013); 

Zabil & Zamli (2013) 

Pattern recognition 

Pham et al. (2006b); Pham et al. (2006c); Pham et al. 

(2006d); Pham et al. (2007d); Pham et al. (2008c); Akkar 

(2010); Ghanbarzadeh (2010); Nebti & Boukerram 

(2010); Pham & Darwish (2010); Khosravi et al. (2011); 

Sherme (2011); Addeh & Ebrahimzadeh (2012); Alomari 

& Othman (2012); Attaran et al. (2012); Fahmy et al. 

(2012); Samadzadegan & Ferdosi (2012); Nebti & 

Boukerram (2012); Sherme (2012); Ebrahimzadeh et al. 

(2013); Attaran & Ghanbarzadeh (2014); Azarbad et al. 

(2014); Chen et al. (2014); Ebrahimzadeh et al. (2014); 

Kalami (2014); Khajehzadeh (2015); Marzi & Marzi 

(2015); Yang et al. (2015a); Yang et al. (2015b) 

Design of communication networks 
Dhurandher et al. (2009); Sayadi et al. (2009), Bernardino 

et al. (2012); Taher & Masoudrahmani (2012) 

Internet traffic load balancing Bernardino et al. (2011) 

Spam host detection Sagayam & Akilandeswari (2012) 

Data mining 

AbdelHamid et al. (2013); Ananthara et al. (2013); 

Saleem et al. (2013); Kataria & Rupal (2014); Poonam & 

Dhaiya (2015) 

Feature selection Sadiq et al. (2012); Rufai et al. (2014) 

Forecasting/prediction 
Khanmirzaei and Teshnehlab (2010); Azzeh (2011); 

Şenyiğit et al. (2012) 

Cloud computing Darwish (2013) 

Mechanical 

Engineering 

Mechanical design 

Pham et al. (2009a); Pham et al. (2009b); Mirzakhani et 

al. (2011); Moradi et al. (2011b); Natchi et al. (2011); 

Ahmad et al. (2012); Nafchi et al. (2012); Ahmad et al. 

(2014); Banooni et al. (2014); Zarea et al. (2014); Moradi 

et al. (2015) 

Robotics 

Pham et al. (2007b); Ang et al. (2009); Pham and 

Kalyoncu (2009) Pham et al. (2009); Eldukhri & Pham 

(2010); Eldukhri & Kamil (2013); Masajed et al. (2013) 

Thermo-fluids 

Assareh et al. (2011); MizanAdl and Ardakani (2012); 

Zargartalebi et al. (2012); Bahrainian et al. (2013); Biglari 

et al. (2013) 

Mechanics of structure 

Moradi et al. (2010); Moradi &Alimouri (2012); Salamat 

& Raiesinezhad (2012); Salamat & Ghanbarzadeh (2012), 

Poor & Saz (2012); Moradi & Kargozarfard (2013); 

Moradi & Tavaf (2013); Moradi et al. (2014); Düğenci et 

al. (2015) 

Nano structures Ahangarpour et al. (2012) 

Non-destructive testing Parsa et al. (2013) 

Dynamic systems 

Pham and Darwish (2009); Moradi et al. (2011a); Xu et 

al. (2011); Kazemi et al. (2012); Long (2015); 

Mohammadi & Nasirshoaibi (2015);  
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Table B.1 Continued 

AREAS APPLICATIONS REFERENCES 

Industrial 

Engineering 

 

Production Scheduling 
Pham et al. (2007c); Packianather et al. (2014); Rambod 

& Rezaeian (2014) 

Sequencing Pham et al. (2007e); Ang et al. (2010) 

Facility layout design Fon and Wong (2010) 

Product design & conceptual Pham et al. (2008b); Ang et al. (2013) 

Material handling Sayarshad (2010) 

Supply chain management 

Triwate and Luangpaiboon (2010); Dereli and Das (2011); 

Luangpaiboon (2011); Mongkolkosol & Luangpaiboon 

(2011); Mastrocinque et al. (2013); Teimoeny & Haddad 

(2013); Mayteekrieangkrai & Wongthatsanekorn (2015); 

Wongthatsanekorn & Mayteekrieangkrai (2014); Yuce et 

al. (2014) 

Line balancing 

Ozbakir and Tapkan (2010); Ozbakir and Tapkan (2011); 

Tapkan et al. (2012a); Tapkan et al. (2012b); Akpinar & 

Baykasoglu (2014a) 

Manufacturing cell formation Pham et al. (2007a) 

Hospital service mobile robots 

assignment 
Xu et al. (2010); Xu et al. (2011) 

Project Scheduling 
Sadeghi et al. (2011); Ziarati et al. (2011); Sadeghi & 

Alahyari (2013); Ghasemi et al. (2015) 

Optimum placements of multi-

camera 
Chrysostomou & Gasteratos (2012) 

Lot-sizing Furlan & Santos (2015) 

Manufacturing resource service 

management 
Xu et al. (2012); Xu et al. (2015); Xie et al. (2015) 

Civil 

Engineering 

Construction site layout  
Lien and Chen (2012); Chen & Lien (2012); Lien & Cheng 

(2014) 

Design open canal Aydogdu & Akin (2011) 

Road maintenance Krainyukov et al. (2014) 

Chemical 

Engineering 

Chemical process 
Pham et al. (2008e); Alfi et al. (2011); Castellani et al. 

(2012) 

Organic compounds Zarei et al. (2013) 

Waste water treatment 
Zarei et al. (2014); Ghaedi et al. (2015a); Ghaedi et al. 

(2015b) 

Education 
Timetabling 

Lara et al. (2008); Alzaqebah & Abdullah (2011); Khang 

et al. (2011); Phuc et al. (2011); Nguyen et al. (2012); 

Abdullah & Alzaqebah (2013) 

Test form construction Songmuang & Ueno (2011); Songmuang et al. (2012) 

Biological 

and medical 

Learning gene regulatory network 
Ruz & Goles (2011); Ruz & Goles (2012); Ruz et al. 

(2014) 

Protein structure prediction Bahamish et al. (2008); Jana et al. (2015) 

Metabolic pathway Leong et al. (2015) 

Haplotype reconstruction PourkamaliAnaraki & Sadeghi (2015) 

Identification of gene knockout 

strategies 

Choon et al. (2012); Choon et al. (2013a); Choon et al. 

(2013b); Choon et al. (2013c); Choon et al. (2014a); 

Choon et al. (2014b); Koo et al. (2014); Choon et al. 

(2015) 
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Table B.1 Continued 

AREAS APPLICATIONS REFERENCES 

Mathematics 

Numerical functions 

Pham et al. (2006a); Pham & Darwish (2008); Karaboga 

& Akay (2009b); Mahmuddin & Yusof (2009); 

Packianather et al. (2009); Pham & Castellani (2009); Li 

et al. (2010); Aghazadeh & Meybodi (2011); Muhamad et 

al. (2011); Chen & Lien (2012); Gao et al. (2012); Pham 

et al. (2012); Hussein et al. (2013); Shatnawi et al. (2013); 

Yuce et al. (2013); Akpinar & Baykasoglu (2014b); 

Hussein et al. (2014); Luo et al. (2014); Pham & 

Castellani (2014); Tsai (2014b); Far & Aghazadeh (2015); 

Pham & Castellani (2015); Yuce et al. (2015); Zhou et al 

(2015) 

Clustering 

Pham et al. (2008a); Pham et al. (2011); Dhote et al. 

(2013); Bonab & Hashim (2014); Saini & Kaur (2014); 

Bonab et al. (2015) 

Constrained optimisation Alfi & Khosravi (2012); Tsai (2014a) 

Combinatorial optimisation 

Sadiq & Hamad (2010); Sadiq & Hamad (2012); Cabrera 

G. et al. (2012); Sagheer et al. (2012); Chmiel & Szwed 

(2015) 

Generalised assignment problems Ozbakir et al. (2010); Tapkan et al. (2013) 

Circle packing problem Li et al. (2010) 

Multi-response surface Bera et al. (2011); Aungkulanon & Luangpaiboon (2012) 

Chaotic system Gholipour et al. (2012) 

Noisy functions Chai-ead et al. (2011) 

Others 

Financial Korns (2012) 

Biometric Tran et al. (2011) 

Marketing Dehuri et al. (2008) 

Agricultural Mehdinejadiani et al. (2013) 

Environmental Nademian (2014) 

Cryptanalysis Abdul-Razaq & Ali (2014); Ali & Mahmod (2015) 

Aircraft landing problem Abdul-Razaq & Ali (2015) 

Business management model Paul et al. (2014) 

Astronomy Möller et al. (2013) 
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APPENDIX C 

BENCHMARK TEST FUNCTIONS FOR GLOBAL OPTIMISATION 

 

Table C.1 Benchmark test functions used for Chapter 3 and Chapter 4 

Function Equation Search range Minimum 

Six Hump 

Camel 

Back (2D) 

𝑓1(𝑥) = (4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2   + 𝑥1𝑥2

+ (4𝑥2
2 − 4)𝑥2

2 

−5 ≤ 𝑥𝑖 ≤ 5 𝑥
= (−0.0898,0.7126)
/(0.0898, −0.7126) 
𝑓(𝑥) = −1.0316 

Shekel 10* 

(4D) 𝑓2(𝑥) = −∑
1

∑ (𝑥𝑗 − 𝐴𝑖𝑗)
2 + 𝑐𝑖

4
𝑗=1

10

𝑖=1

 

0 ≤ 𝑥𝑗 ≤ 10 𝑥 = (4,4,4,4) 
𝑓(𝑥) ≈ −10.5319 

Trid (6D) 

𝑓3(𝑥) = ∑(𝑥𝑖 − 1)
2 −∑𝑥𝑖𝑥𝑖−1

6

𝑖=1

6

𝑖=1

 

36 ≤ 𝑥𝑖 ≤ 36 𝑓(𝑥) = −50 

Moved 

Axis 

Parallel 

Hyper-

ellipsoid 

(10D) 

𝑓4(𝑥) =∑5𝑖𝑥𝑖
2

𝐷

𝑖=1

 
−5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑥(𝑖) = 5𝑖 

𝑓(𝑥) = 0 

Schwefel 

1.2 (20D) 𝑓5(𝑥) = ∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝐷

𝑖=1

 

−100 ≤ 𝑥𝑖 ≤ 100 𝑥 = (0,⋯ ,0) 
𝑓(𝑥) = 0 

Powell 

(24D) 𝑓6(𝑥) = ∑(𝑥4𝑖−3 + 10𝑥4𝑖−2)
2

𝐷/4

𝑖=1

+ 5(𝑥4𝑖−1 − 𝑥4𝑖)
2

+ (𝑥4𝑖−2 − 𝑥4𝑖−1)
4

+ 10(𝑥4𝑖−3 − 𝑥4𝑖)
4 

−4 ≤ 𝑥𝑖 ≤ 5 𝑥
= (3, −1,0,1,⋯ ,3, −1,0,1) 

𝑓(𝑥) = 0 

Sum of 

Different 

Power 

(30D) 

𝑓7(𝑥) = ∑|𝑥𝑖|
𝑖+1

𝐷

𝑖=1

 
−1 ≤ 𝑥𝑖 ≤ 1 𝑓(𝑥) = 0 

Sphere 

(30D) 𝑓8(𝑥) = ∑𝑥𝑖
2

𝐷

𝑖=1

 
0 ≤ 𝑥𝑖 ≤ 10 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

Griewank 

(30D) 𝑓9(𝑥) =∑
𝑥𝑖
2

4000
−∏cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 
−100 ≤ 𝑥𝑖 ≤ 100 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

Axis 

Parallel 

Hyper-

ellipsoid 

(30D) 

𝑓10(𝑥) =∑𝑖𝑥𝑖
2

𝐷

𝑖=1

 
−5.12 ≤ 𝑥𝑖 ≤ 5.12 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

Ackley 

(30D) 𝑓11(𝑥) = −20𝑒
−0.02√𝐷

−1∑ 𝑥𝑖
2𝐷

𝑖=1

− 𝑒𝐷
−1∑ cos(2𝜋𝑥𝑖)

𝐷
𝑖=1

+ 20 

−35 ≤ 𝑥𝑖 ≤ 35 𝑥 = (0,⋯ ,0) 
𝑓(𝑥) = 0 

Schwefel 

2.21 (30D) 
𝑓12(𝑥) = max

1≤𝑖≤𝐷
|𝑥𝑖| −100 ≤ 𝑥𝑖 ≤ 100 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 
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Table C.1 Continued 

Function Equation Search range Minimum 

Schwefel 

2.22 (30D) 𝑓13(𝑥) =∑|𝑥𝑖| +∏|𝑥𝑖|

𝑛

𝑖=1

𝐷

𝑖=1

 
−100 ≤ 𝑥𝑖 ≤ 100 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

Quartic 

(30D) 𝑓14(𝑥) =∑𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1)

𝐷

𝑖=1

 
−1.28 ≤ 𝑥𝑖 ≤ 1.28 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

Alpine 

(30D) 𝑓13(𝑥) = ∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷

𝑖=1

 
−10 ≤ 𝑥𝑖 ≤ 10 𝑥 = (0,⋯ ,0) 

𝑓(𝑥) = 0 

*Coefficients 𝐴𝑖𝑗 and 𝑐𝑗 are as defined in Jamil and Yang (2013).                                 

 

` 
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APPENDIX D 

BENCHMARK TEST FUNCTIONS FOR MULTIMODAL OPTIMISATION 

 
Table D.1 Benchmark test functions for Chapter 5 

 

No. 

 

Name 

 

Functions 

 

Range 

1 
Two-peak 

trap 
𝑓(𝑥) = {

160

15
(15 − 𝑥), 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 15

200

5
(𝑥 − 15), 𝑓𝑜𝑟 15 ≤ 𝑥 ≤ 20

 0 ≤ 𝑥 ≤ 20 

2 
Central two-

peak trap 
𝑓(𝑥) =

{
 
 

 
 
160

10
𝑥,              𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 10

160

5
(15 − 𝑥), 𝑓𝑜𝑟 10 ≤ 𝑥 ≤ 15

200

5
(𝑥 − 15), 𝑓𝑜𝑟 15 ≤ 𝑥 ≤ 20

 0 ≤ 𝑥 ≤ 20 

3 
Five-uneven-

peak trap 
𝑓(𝑥) =

{
 
 
 
 

 
 
 
 

80(2.5 − 𝑥),          𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 2.5

64(𝑥 − 2.5),          𝑓𝑜𝑟 2.5 ≤ 𝑥 ≤ 5

64(7.5 − 𝑥),         𝑓𝑜𝑟 5 ≤ 𝑥 ≤ 7.5

28(𝑥 − 7.5),              𝑓𝑜𝑟 7.5 ≤ 𝑥 ≤ 12.5

28(17.5 − 𝑥),              𝑓𝑜𝑟 12.5 ≤ 𝑥 ≤ 17.5

32(𝑥 − 17.5),              𝑓𝑜𝑟 17.5 ≤ 𝑥 ≤ 22.5

32(27.5 − 𝑥),             𝑓𝑜𝑟 22.5 ≤ 𝑥 ≤ 27.5

80(𝑥 − 27.5), 𝑓𝑜𝑟 27.5 ≤ 𝑥 ≤ 30

 0 ≤ 𝑥 ≤ 30 

4 
Equal 

maxima 
𝑓(𝑥) = 𝑠𝑖𝑛6(5𝜋𝑥) 0 ≤ 𝑥 ≤ 1 

5 
Decreasing 

maxima 
𝑓(𝑥) = exp [−2log (2) ∙ (

𝑥 − 0.1

0.8
)2] ∙ 𝑠𝑖𝑛6(5𝜋𝑥) 0 ≤ 𝑥 ≤ 1 

6 
Uneven 

maxima 𝑓(𝑥) = 𝑠𝑖𝑛6(5𝜋(𝑥
3
4 − 0.05)) 0 ≤ 𝑥 ≤ 1 

7 

Uneven 

decreasing 

maxima 

𝑓(𝑥) = exp (−2log (2) ∙ (
𝑥 − 0.08

0.854
)
2

) ∙ 𝑠𝑖𝑛6(5𝜋(𝑥
3
4

− 0.05)) 

0 ≤ 𝑥 ≤ 1 

8 Himmelblau 
𝑓(𝑥1, 𝑥2) = 200 − (𝑥1

2 + 𝑥2 − 11)
2

− (𝑥1 + 𝑥2
2 − 7)2 

−6 ≤ 𝑥1, 𝑥2 ≤ 6 

9 Camel back 

𝑓(𝑥1, 𝑥2) = −4 [(4 − 2.1𝑥1
2 +

𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2

+ (−4 + 4𝑥2
2)𝑥2

2] 

−1.9 ≤ 𝑥1 ≤ 1.9 

−1.1 ≤ 𝑥2 ≤ 1.1 

10 
Shekel’s 

foxholes 

𝑓(𝑥1, 𝑥2)
= 500

−
1

0.002 + ∑
1

1 + 𝑖 + (𝑥1 − 𝑎(𝑖))
6 + (𝑥2 − 𝑏(𝑖))

6
24
𝑖=0

 

where 𝑎(𝑖) = 16((𝑖 𝑚𝑜𝑑 5) − 2), and 𝑏(𝑖) =

16(⌊(
𝑖

5
)⌋ − 2) 

−65.536 ≤ 𝑥1, 𝑥2 ≤ 65.535 

 


