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ABSTRACT 

The continuous global demand for infrastructure due to persistent increase in population 

growth implies that more aggregate and cement would be required in concrete 

production. This would eventually lead to more extraction and depletion of natural 

resources and increased carbon emission. The aim of this research work was to develop 

high performance concrete using recycled coarse aggregate, microsilica, and synthetic 

macro fibre with the object to boost higher use of recycled coarse aggregate in the 

construction industry.  

Concrete was designed for 28-day compressive cube strength of 50MPa, high 

workability (60-180mm) and a constant water-cement ratio of 0.39. Microsilica was 

incorporated up to 20% of cement content at 5% intervals, while the natural coarse 

aggregate substitution by recycled coarse aggregate ranges between 0 - 100% at 25% 

interval. Workability, compressive cube strength, tensile splitting strength, flexural 

strength, static elastic modulus, and water permeability tests including fatigue 

assessment were conducted respectively.  

Results confirmed that, the incorporation of 15% microsilica with 50% recycled coarse 

aggregate fraction produced 28-day compressive cube strength which exceeds the  

characteristics and target mean compressive cube strength of the control mix which are 

50MPa and 63.1MPa respectively. The result suggests that there is a potential to 

increase the optimum fraction of recycled aggregate from 30-50% in concrete. 
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1 INTRODUCTION  

 

1.1 Background 

The increasing demand for infrastructure due to continuous rise in population growth, 

and high rate of urban drift as a result of industrialisation and urbanisation has led to 

more consumption of concrete which is the second most widely consumed resource in 

the world after water (Ecocem, 2011) and also the most widely used construction 

material (Crow, 2008) in the last few decades. The continuous global demand for 

concrete implies that more aggregate and cement would be required in the production of 

concrete thereby leading to more extraction, depletion of deposits of natural gravel, 

limestone, and increased CO2 emission from quarrying activities and production of 

cement. Cement is a very significant source of global carbondioxide (CO2) emissions, 

contributing approximately 5% of global anthropogenic CO2 emissions Worrell et al. 

(2001).  

 

Generally, aggregates account for a huge proportion (60-75%) of the overall volume of 

concrete (Mummaneni, 2011), which implies that partial substitution of natural 

aggregate with recycled aggregate would lead to reduction in construction cost and 

carbon footprints of the construction industry.  Although, concrete is characterised by 

very advantageous features ranging from cost effectiveness, durability, outstanding 

compressive strength, and availability, the continuous use of conventional concrete, 

(that is concrete produced with virgin aggregates and ordinary Portland cement) has 

proved to be very unfriendly to the environment as a result of depletion of the natural 

resources, growing disposal problems and huge energy consumption in quarrying 
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activities. With reference to this ongoing trend and in order to achieve sustainable 

development goal of environmental preservation in the construction industry, better 

initiative to mitigate the associated problems emanating from the use of virgin 

aggregate and Portland cement should be considered. These initiatives which include 

the use of mineral admixtures like microsilica and debris from construction and 

demolition waste generally known as recycled aggregate should be widely encouraged. 

“This represents the most desirable method of ensuring a closed life cycle for concrete 

as a construction material” (Barra and Vazquez, 1998), thus leading to maximization of 

both economic and environmental benefits. The associated benefits from these 

initiatives would therefore enable the present generation to leave a sustainable legacy 

behind for the future generations.  

 

The concept of using recycled coarse aggregate as partial substitute for virgin coarse 

aggregate in concrete is not new to the construction industry and significant progress 

has been made over the past years since recycled aggregate properties were first 

investigated by Gluzhge in 1946 due to modern sustainable concrete technology. This 

eventually led to the current use of recycled coarse aggregate for non-structural concrete 

applications such as embankment fills, low-grade concrete production, coarse materials 

for road sub-base, paving blocks, drainage etc. In spite of many research studies and 

findings, there is urgent need to improve the engineering properties of recycled coarse 

aggregate concrete and this would help to reduce the current high level of uncertainty 

associated with the structural use of the material in concrete production.   
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The use of synthetic macro fibre and mineral admixture (i.e. microsilica) could enhance 

the physical and engineering properties of recycled aggregate concrete. These 

interactions would be investigated with a view to evaluate the potential to increase the 

optimum fraction of recycled coarse aggregate in concrete from the currently 

recommended 30% level of replacement (BS 8500-2) without any cause for concern.. 

There is a clear distinction between the conventional concrete (Natural aggregate & 

Portland cement) and concrete incorporating mineral additive, and chemical admixture 

otherwise called High Performance Concrete. By definition, High performance concrete 

(HPC) denotes concrete that is capable of satisfying special performance conditions 

which cannot be achieved with conventional concrete. According to Holland (1993), 

“high performance concrete possesses high strength, high durability, increased 

workability, high modulus of elasticity, and low permeability”. These characteristics are 

derived from the benefits of using mineral admixtures in combination with chemical 

admixtures.  

 

The clear distinction between high performance concrete and conventional concrete are 

not restricted only to strength increase, but also include the full relationship between 

stress and strain. The benefits of high performance concrete will be highlighted and an 

attempt will be made to investigate whether performance issues such as porosity, poor 

workability, and low strength associated with recycled coarse aggregate can be 

mitigated by incorporating microsilica and fibre in recycled aggregate concrete. 

Microsilica contributes both physically and chemically in concrete mix. The physical 

contribution occurrs through its action as nucleation sites which reduces the average 

size of pores present in cement paste thereby enhancing concrete properties while the 



4 

 

chemical contribution takes place mainly by acting as an efficient pozzolanic material 

which enables even distribution and higher volume of hydration products. 

 

Although the initial cost of high performance concrete is higher than the cost of 

conventional concrete, the long term cost-benefits outweight higher cost at initial 

procurement. Concrete is a heterogeneous material comprising fine aggregate, coarse 

aggregate, potable water, and the binder known as cement), and the presence of coarse 

aggregates contributes more to the heterogeneity. The interface between the surfaces of 

aggregate and cement is weak and this is responsible for the low concrete strength. The 

incorporation of micro silica in concrete mix tends to shift the heterogeneity of concrete 

from full heterogeneity to more homogeneity with a very significant improvement in 

terms of durability and strength. Godman and Bentur (1989), and Song et al. (2007) 

suggested that porosity of the interfacial transition zone between aggregate and cement 

matrix in fresh concrete could be lowered with the incorporation of micro silica, and 

this is responsible for the provision of the required microstructure for a strong 

Interfacial Transition Zone (Pauw and Lauritzen, 1994). 

 

Most researchers incorporated micro silica as partial replacement for cement in concrete 

mix while this research work incorporates micro silica as an addition with the intent to 

evaluate the optimum required addition that would produce the best significant result in 

terms of strength, durability, and workability.. 
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1.2 Research aim and objectives 

1.2.1 Aim 

The major aim of this research is to develop a High Performance Concrete (HPC) using 

recycled coarse aggregates as substitute for natural coarse aggregate, synthetic macro 

fibre, and mineral admixture (micro silica) in order to improve the engineering 

properties of recycled aggregate concrete with an additional goal to boost the potential 

of increasing its uses from the recommended 30% level by BS 8500-2 and some past 

researchers. Adequate factual scientific information are thereby required to establish the 

mechanical and physical characteristics of high performance concrete incorporating 

these aforementioned materials.  

 

1.2.2 Objectives 

The objectives are to; 

1) determine fresh and hardened properties of concrete incorporating various 

percentage of recycled coarse aggregate content; 

2) assess the impact of 54mm Forta-Ferro synthetic macro fibre dosage on the physical 

and mechanical properties of concrete produced in (1) above; 

3) evaluate the effect of addition of mineral admixture (microsilica) and chemical 

admixture (superplasticiser) on concrete produced in (2) above; 

4) determine the optimal use of microsilica required to achieve higher performance in 

concrete produced in (3) above; 

5) assess the durability of concrete produced from in (2) and (3) above in terms of 

water permeability; 
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6) evaluate the flexural fatigue performance of fibre reinforced concrete incorporating 

microsilica which produced the optimal effect in (BS-EN-12390-4) above.   

The outcome of this research will provide better understanding about the properties of 

recycled aggregate concrete produced from the aforementioned materials and contribute 

greatly in ensuring that the construction sector increase the use of recycled coarse 

aggregate beyond the current recommendation. This research is also limited to the use 

of recycled coarse aggregate as a replacement for natural coarse aggregate, synthetic 

macro fibre and microsilica as an addition to cement respectively. 

 

1.3 Significance of Research  

The following listed are potential benefits from this research work to the construction 

industry and the environment. These are; 

1) Reduction of pressure on landfills from construction and demolition debris; 

2) Potential to increase the use of recycled coarse aggregate beyond the maximum 

recommended 30% (BS 8500-2);  

3) Conservation of natural resources through reduction in the use of natural coarse 

aggregate for concrete work;   

4) Mitigation of performance issues like high porosity, poor workability, low strength, 

and high water absorption associated with recycled aggregate by incorporating 

microsilica (mineral admixtures) in the concrete mix; 

5) Potential application of recycled coarse aggregate in structural concrete. 
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1.4 Thesis Structure 

This thesis consists of eight chapters as itemised in the table of contents in line with the 

objectives of the research mentioned earlier. 

Chapter 1 is the introductory chapter which provides full background to the research 

problems that necessitated this research work. The aim and objectives of the research 

are discussed with the potential benefits of the findings to the construction industry and 

the environment. The structure of the thesis and list of publications by the author are 

reported under this chapter. 

Chapter 2 reviews past related research findings in the use of recycled coarse aggregate 

(as a partial and full substitute for natural coarse aggregate in concrete), microsilica and 

synthetic macro fibre. Their respective impact on the physical and engineering 

characteristics of concrete are discussed in detail. Various types of rail track concrete 

system which is the intended application for this research were discussed and the 

existing development and identified knowledge gap were reported. 

Chapter 3 provides the exact methodology employed in order to achieve the set aim and 

objectives of the research mentioned in the introductory chapter. 

Chapter 4 describes the details of the experimental work on the effect of synthetic 

macro fibre inclusion on recycled aggregate concrete. The results, discussion and 

summary of findings are also presented.  

Chapter 5 presents the outcome of the assessment of the impact of microsilica addition 

in enhancing the performance of fibre reinforced recycled aggregate concrete produced 

in chapter 4. Detailed results, discussions and summary of findings are given under this 

chapter. 
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Chapter 6 reports the results, discussions and summary of findings on the optimised use 

of microsilica in fibre reinforced recycled aggregate concrete produced in chapter 5. 

Chapter 7 discussed the flexural fatigue assessment of high performance concrete 

incorporating recycled coarse aggregate and synthetic macro fibre under cyclic loading. 

Chapter 8 summarises all the major conclusions from the research findings and 

recommends areas that require further investigation in the future. 

 

1.5 List of Publications 

As a direct outcome from this research, the following publications were produced. 

TIJANI, A., YANG, J. & DIRAR, S. 2015. Enhancing the Performance of Recycled 

Aggregate Concrete with Microsilica. International Journal of Structural and Civil 

Engineering Research, 4, 347-353. 

 

TIJANI, A., YANG, J. & DIRAR, S. 2015. Optimum use of microsilica in high 

performance Concrete with Microsilica. International Journal of Civil and Structural  

Engineering, 2, 297-301. 

 

TIJANI, A., YANG, J. & DIRAR, S. 2014. High performance concrete using recycled 

aggregate, Microsilica and synthetic macro fibre. Proceedings of the International 

Conference on Advances in Civil, Structural and Mechanical Engineering, 231-234. 
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2 LITERATURE REVIEW 

 

2.1 Introduction 

The review of past related studies is presented and discussed in  this chapter with the  

focus lying on the effect of recycled coarse aggregate, synthetic macro fibre, and micro 

silica on fresh and hardened concrete properties. Although research has been undertaken 

to assess the suitability of recycled coarse aggregate (RCA) as a substitute for virgin 

coarse aggregate in concrete, few attempts have only been made to investigate the 

synergy between microsilica and synthetic macro fibre addition in recycled aggregate 

concrete for high strength structural concrete application. Most of the researchers 

incorporated microsilica as a partial substitute for cement in the concrete mix while few 

researchers considered addition of microsilica.  This investigation will examine the 

contribution of synthetic macro fibre together with the incorporation of microsilica 

which has been reported by some researchers to have the tendency to improve the 

engineering properties of concrete. Various findings and contributions by previous 

researchers are reviewed with a view to summarise the latest development and identify 

the knowledge gap.  

 

2.2 Physical Properties of Aggregate and Concrete 

 

2.2.1 Density and Water Absorption 

Recycled coarse aggregate posseses low density, high porosity and high water 

absorption (Poon et al. (2007). This drawbacks lead to low a utilization of recycled 

coarse aggregates in structural concrete.  Rao et al. (2011) investigated the behaviour of 

recycled aggregate concrete under drop weight impact load and reported that the density 
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and specific weight of recycled coarse aggregate decreases as the  recycled coarse 

aggregate content in the concrete mix increases. This effect was linked to the light 

weight & porous mortar attached to the parent aggregates. Similarly, Sagoe-Crentsil and 

Brown (1998) reported that the density of recycled aggregate concrete is lower 

compared with the density of the conventional concrete due to the porous nature and 

less dense residual mortar lumps adhered to the surfaces of the recycled aggregate. An 

assessment of the performance of recycled aggregate concrete revealed that the density 

was about 3 - 10% less than the conventional concrete while the water absorption was 

about 3 - 5 times more than the corresponding virgin aggregate (Limbachiya et al., 

2004). This observation was associated with the attached cement paste on the recycled 

coarse aggregate.  

 

Hurley and Bush (2007) reported that the water absorption of recycled aggregate was 

about 6 - 12 times higher compared with natural aggregate due to the presence of 

residue mortar adhered to original aggregate. Recycled aggregate has about 4 - 5 times 

higher water absorption rate than the virgin coarse aggregate (Kikuchi et al., 1993). 

These results were corroborated by the findings by Forster et al. (1994), Parekh and 

Modhera (2011), and Wang et al. (2011) respectively. Morel et al. (1994) reported high 

water absorption rate between 5.5% - 7% for recycled aggregates recovered from 

demolished structures which contains brick, stone, concrete and ceramic. Similar 

findings were reported by Rashwan and AbouRizk (1997) with recycled coarse 

aggregate having higher water absorption rate between 4 - 7% than conventional coarse 

aggregate and this was more pronounced in older parent concrete.  
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Chan (1998) investigated the use of recycled aggregate in shortcrete and concrete with a 

conclusion that the water absorption for recycled aggregate concrete exceeds that of 

natural aggregate due to presence of attached mortar. An investigation into durability of 

recycled aggregate concrete conducted by Levy and Helene (2004) revealed that 

recycled aggregate concrete had about 6 – 10% more water absorption rate than virgin 

aggregate as the percentage content of recycled coarse aggregate increases in the mix, 

while Corinaldesi et al. (2001) recorded about 8% (four times) more water absorption 

rate in recycled aggregate  recovered from concrete rubble than natural aggregate. 

Although irrespective of the high water absorption, the performance of recycled coarse 

aggregate was similar to natural aggregate.  

 

Salem and Burdette (1998) investigated the use of crushed old laboratory concrete 

samples as recycled coarse aggregate to substitute natural coarse aggregate. The water 

absorption rate for the recycled coarse aggregate was about 4.7% more than the natural 

coarse aggregate. This result was attributed to low density of recycled aggregate. 

Recycled aggregate concrete has a higher water absorption rate than natural aggregate 

concrete due to porosity which increases with increasing recycled aggregate content 

(Zaidi, 2009). Zhang and Ingham (2010) also recorded lower dry density and higher 

water absorption rate in recycled aggregate concrete with reference to the conventional 

concrete.  
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2.2.2 Workability 

2.2.2.1   Effect of recycled coarse aggregate  

Recycled coarse aggregate concrete have lower workability than concrete made from 

conventional coarse aggregate (Limbachiya et al., 2004; Topcu and Şengel, 2004). This 

observation confirmed the results obtained by (Fraaij et al., 2002; Kenai et al., 2002; 

Poon et al., 2004a). Etxeberria et al. (2007b) studied the effect of recycled coarse 

aggregates production process and quality on the properties of recycled aggregate 

concrete. Result findings showed that the workability of recycled aggregate concrete is 

lower than natural aggregate concrete as a result of the absorption capacity of the 

recycled aggregate.  

 

Patil et al. (2013) evaluated the physical properties of concrete produced from recycled 

coarse aggregate. Results indicate higher workability for virgin aggregate concrete as 

against concrete incorporating 100% recycled aggregate. The low workability recorded 

was attributed to high rate of water absorption associated with recycled coarse 

aggregates, and this observation was corroborated by findings from Zaidi (2009), that 

workability of recycled aggregate concrete reduced in comparison to virgin aggregate 

concrete due to higher absorption rate of the former. Yang et al. (2010) investigated the 

use of recycled concrete aggregate and crushed clay bricks as a replacement for natural 

aggregate in  concrete. The findings showed that workability decreased with increasing 

recycled aggregate and crushed clay brick contents in the concrete mix. The result was 

attributed to the porous texture of the aggregate material and attached concrete mortar. 

Adnan et al. (2007) investigated the effects of different percentage substitution of 

natural aggregate by recycled aggregate on concrete and reported that, the higher the 
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recycled aggregate content in the concrete mixes, the lower the workability (slump) of 

the concrete due to high water absorption of the recycled aggregate. A detrimental effect 

on concrete workability was reported by Hurley and Bush (2007) from the investigation 

of the impact of additional water demand by recycled coarse aggregate. This occurred as 

the percentage substitution of virgin coarse aggregate by recycled aggregate increased.  

 

Akbari et al. (2011) researched the effect of recycled aggregate on properties of 

recycled aggregate concrete compared with natural aggregate concrete. The results 

revealed that workability reduced with higher content of recycled aggregate. Adnan et 

al. (2011), investigated the use of recycled aggregate as replacement for coarse 

aggregate in concrete mixes. The results showed reduction in slump due to high water 

absorption associated with recycled aggregate. Similar findings were reported by Peng 

et al. (2003) and Sivakumar et al. (2014). However, the workability was improved with 

the incorporation of 10 - 20% fly ash.  

 

Ravindrarajah et al. (1987), assessed fresh properties of recycled aggregate concrete and 

reported no significant effect on workability of the concrete mix with the incorporation 

of coarse aggregate and /or fine aggregate. This observation agreed with the findings by  

Hansen and Narud (1983). Manzi et al. (2013), investigated the short and long-term 

behaviour of structural concrete with recycled concrete aggregate and reported a 

considerable reduction in workability of recycled aggregate concrete at 100% recycled 

aggregate content. Similar trend was reported by Lima et al. (2013) form the 

investigation of the physical properties and mechanical behaviour of concrete 

incorporating recycled aggregates and fly ash. 
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2.2.2.2   Effect of fibre  

Ramakrishnan et al. (1989b) conducted research on flexural behaviour and toughness of 

fibre reinforced concrete and concluded that, the workability at higher dosage of fibre 

(i.e. 2.0%) by volume of concrete yielded the least workability. This was attributed to 

entrapped air in the concrete mix. A satisfactory result was later achieved with the 

incorporation of adequate measure of high-range water reducer (Superplasticiser). 

Hassan et al. (2011) agreed that high concentration of synthetic macro fibres causes 

reduction in slump and thus recommend the use of superplasticiser for adequate 

adjustment of workability. The use of fibres in controlling cracks in concrete was 

studied by Balik (2011). The result identified the reduction in workability of the 

concrete with higher dosage of synthetic macro fibres. This effect was attributed to large 

surface area of the fibre which consumes some fractional amount of the mortar. 

Tattersall and Banfill (1983), investigated the rheology of fresh concrete incorporating 

fibre and reported a considerable reduction in workability caused by interconnection of 

fibres and twisting around the aggregate particles.  

 

2.2.2.3   Effect of microsilica  

Mazloom et al. (2004) investigated the effect of silica fume on mechanical properties of 

high-strength concrete. Results indicate reduction in workability of concrete with 

increasing microsilica content. Tijani et al. (2015a) conducted research on how to 

enhance the performance of recycled aggregate concrete using microsilica and reported 

reduction in concrete incorporating microsilica due to the large surface area of the 

microsilica particles. Similarly, Deshini (2007) reported that the incorporation of micro 

silica as an admixture in concrete reduced the workability of the fresh concrete. 
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However these reductions in fresh concrete workability were mitigated by the addition 

of superplasticiser in order to meet the specified requirements. These findings 

corroborated with the results reported by  Rao.Hunchate et al. (2014)  

 

2.3 Mechanical Properties of Hardened Concrete 

 

2.3.1 Compressive Strength   

2.3.1.1   Effect of recycled coarse aggregate  

Poon et al. (2007) investigated the effect of recycled aggregate on workability and 

bleeding of fresh concrete. Results suggested that compressive strength reduces with 

increasing recycled aggregate content in the mix. A reduction of about 24% at 100% 

recycled aggregate content with reference to control concrete was reported.  Sivakumar 

et al. (2014), reported a reduction in compressive strength as the substitution of natural 

coarse aggregate by recycled coarse aggregate increases. However, an increase in 

strength was recorded with a little reduction in water/cement ratio. Also by reducing the 

water cement ratio and incorporating admixture, a  target compressive strength of 

40MPa was achieved with about 30-40% recycled coarse aggregate content in the 

concrete mix.  

 

Rahal (2007) investigated the difference between the mechanical properties of recycled 

coarse aggregate concrete and natural aggregate concrete. The results shows that the 

average cube and cylinder compressive strength of recycled aggregate concrete were 

88.4% and 92.2% respectively of the normal aggregate concrete. This implied about 

10% reduction in compressive strength occurred in recycled aggregate concrete and this 

result was corroborated by Ravindrarajah et al. (2000). 
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 Katz (2003) investigated the properties of concrete incorporating recycled aggregate 

recovered from partially hydrated old concrete. The results revealed that, the use of 

recycled aggregate led to reduction in the compressive strength of the concrete due to 

lower strength compared to strength of the virgin aggregate.  Yamato et al. (1998) 

reported compressive strength reductions of about 20%, 30% & 45% respectively in 

concrete mixes corresponding to 30%, 50%, and 100% recycled aggregate content 

respectively in the mix.  

 

 Peng et al. (2003) conducted an experiment on the impact of recycled coarse aggregate 

strength upon the workability and strength of recycled aggregate concrete. The result 

indicated that recycled aggregate concrete produced less compressive strength than 

natural aggregate concrete. However, with the incorporation of about 10 - 20% fly ash, 

the compressive strength of recycled aggregate concrete increased more than the 

corresponding conventional concrete at 28-day curing age and beyond. 

 

 Parekh and Modhera (2011), assessed the use of recycled aggregate concrete and 

reported a strength loss of about 40% with increasing content of recycled aggregate in 

the concrete mix, whereas no loses was recorded below 30% substitution of natural 

aggregate by recycled aggregate. Similar reduction in compressive strength as recycled 

aggregare content increases was reported by Kumutha and Vijai (2010). At 100% 

recycled aggregate content, about 28% reduction in compressive strength with reference 

to the control concrete mix was observed. Yang et al. (2010) corroborate these findings. 

Schoppe (2011) findings on shrinkage and modulus of elasticity in recycled aggregate 

concrete indicated reduction in compressive strength of recycled coarse aggregate 
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concrete (saturated & dried samples) with increasing content of recycled coarse 

aggregate in the concrete mix and water-cement ratio respectively.  

 

However, contrary to the findings by previous researchers, higher compressive strength 

was reported at 100% recycled coarse aggregate content while lower results was 

recorded at 50% content. The lower result at 50% recycled aggregate content was 

attributed to heterogeneity resulting from variation in physical characteristics between 

50% natural & recycled coarse aggregates respectively, while at 100% recycled 

aggregate content, an apparent homogenous development & improved bonding of the 

recycled coarse aggregate occurred (Schoppe, 2011).  

 

Many researchers (Mandal et al. (2002); Limbachiya (2003); Estefano de Oliveira et al. 

(2008); Akbari et al. (2011); Abd Elhakam et al. (2012); Thomas et al. (2013); Vyas and 

Bhatt (2013); and Sivakumar et al. (2014)), agreed that below 30% replacement of 

natural coarse aggregate by recycled aggregate in the concrete mix, no significant 

reduction in compressive strength was observed whereas above this limit the strength 

decreases.  

 

2.3.1.2   Effect of fibre  

Ahmad et al. (1988) measured the properties of fibre reinforced concrete and reported 

that the effect of fibres on compressive strength of concrete was  insignificant.  Zollo 

(1984), investigated the use of collated fibrillated polypropylene fibers (CFP) at low 

fiber volumes in fibre reinforced concrete. The result indicated that the incorporation of 

0-3% polypropylene fibres to concrete mix produced a negative impact on the 
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compressive strength and the strength decreases with higher dosage of fibres. This 

outcome was corroborated by the findings by Hughes and Fattuhi (1976).  

 

Several researchers (Guirguis and Potter (1985); Malisch (1986); Ramakrishnan et al. 

(1987); Nagabhushanam et al. (1989); Ramakrishnan et al. (1989b); Vondran et al. 

(1989) ) reported no significant effect of fibre on compressive strength of concrete with 

increasing dosage of fibres from 0.1-2%. Although slight variations were identified 

from their reports which could be attributed to experimental errors and different source 

of concrete materials. On a contrary, Mindess and Vondran (1988) investigation on 

properties of concrete reinforced with fibrillated polypropylene fibres under impact 

loading recorded about 25% increase in compressive strength with the incorporation of 

0.5% polypropylene fibres 

 

2.3.1.3   Effect of Microsilica  

Verma et al. (2012) studied the impact of micro silica on the strength of Ordinary 

Portland Cement concrete. The result showed about 25% increase in compressive 

strength with incorporation of microsilica. This increase was attributed to the reaction 

between the fine particles of microsilica and the lime content in cement which led to 

reduction in voids in the concrete. The replacement of cement by 15% microsilica in the 

concrete mix effectively increased the compressive strength while higher replacement 

reduced the trend (Rao.Hunchate et al., 2014).  

 

Annadurai and Ravichandran (2014) developed a mix design for high strength concrete 

incorporating admixtures. Results suggests compressive strength increase betwwen 50 – 
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70Mpa at 15% substitution of cement by microsilica. Tijani et al. (2015a) also identified 

significant increase in compressive strength of concrete incorpating 5% microsilica and 

attributed this result to the densifying properties and pozzolanic action of microsilica 

which had smaller particle size than cement particles. The incorporation of micro silica 

increases the compressive strength of concrete due to the development of strong matrix 

arising from the combination of both pozzolanic and micro-filler effect attributes of 

microsilica (Malhotra and Mehta, 1996). 

 

2.3.2 Tensile Splitting Strength 

2.3.2.1   Effect of recycled coarse aggregate  

Rao et al. (2011) investigated the behaviour of recycled aggregate concrete under drop 

weight impact load. The results revealed reduction in indirect tensile strength with 

increasing percentage of recycled aggregate. Akbari et al. (2011), studied the impact of 

recycled aggregate on behaviour of normal strength concrete. The findings showed 

about 26% reduction in tensile splitting strength with higher substitution of natural 

aggregate by recycled aggregate. These findings were corroborated by Li (2008), and 

Xiao and Lan (2006).  

 

Kumutha and Vijai (2008), investigated the effect of recycled coarse aggregates on 

properties of concrete and discovered that the tensile splitting strength decreases 

gradually as recycled coarse aggregate content in the concrete mix increases. About 

36% reduction in tensile strength was recorded at 100% recycled aggregate content 

while Serifou et al. (2013) recorded about 18% reduction . Similar trend of reduction in 

tensile strength with increasing amount of recycled coarse aggregate were also reported 

by Xiao and Lan (2006); Li (2008); Lima et al. (2013); Sivakumar et al. (2014). 
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 Abd Elhakam et al. (2012), researched the properties of recycled aggregate concrete 

and mentioned that the tensile strength decreases as percentage content of recycled 

coarse aggregate increases. Thomas et al. (2013) studied the physical and engineering 

durability properties of recycled aggregate concrete and reported that at 20%, 50%, and 

100% recycled aggregate content in the concrete mix, the corresponding tensile strength 

were 90%, 85%, and 80% respectively of the control concrete mix. Most of these 

findings attributed the reduction in tensile splitting strength to the porous structure of 

the recycled aggregate. 

 

2.3.2.2   Effect of Fibre  

Bagherzadeh et al. (2012a) investigated the impact of incorporating polypropylene 

fibres in reinforced lightweight cement composites. The results indicated higher tensile 

strength in concrete mix incorporated with fibre as the dosage increases compared with 

the control concrete mix without any fibre dosage. Farjadmand and Safi (2012) reported 

about 35% increase in tensile strength as the dosage of synthetic macro fibre in concrete 

mix increased compared to control plain concrete. Hassan et al. (2011) conducted a 

research on mechanical behaviour of synthetic macro fibre reinforced concrete and 

reported an increase in indirect tensile strength of about 15% with reference to the 

control concrete. However, higher fibre dosage produced a slight reduction of about 1% 

due to poor workability resulting from higher volume of fibres. 
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2.3.2.3   Effect of Microsilica  

Bhanja and Sengupta (2005) investigated the influence of silica fume on the tensile 

strength of concrete and discovered that, the strength increases as substitution of cement 

by microsilica increases up till 15% replacement beyond which the result becomes less 

significant. Baid and Bhole (2013) researched the effect of microsilica on mechanical 

properties of concrete and reported that, the incorporation of microsilica slightly 

increases the tensile splitting strength to about 17% with about 9% microsilica content.  

 

2.3.3 Flexural Strength 

2.3.3.1   Effect of recycled coarse aggregate  

Akbari et al. (2011) investigated the effect of recycled aggregate on behaviour of 

normal strength concrete and reported about 23% reduction in flexural strength with 

increasing recycled aggregate content. Kumutha and Vijai (2008), conducted a research 

on the impact of recycled coarse aggregates on properties of concrete and identified 

gradual reduction in strength as the percentage substitution of natural aggregate by 

recycled coarse aggregate increases. A reduction of about 50% in strength was reported 

at 100% recycled aggregate content. Similar gradual reduction trend was reported by 

Serifou et al. (2013) and about 18% reduction in flexural strength was recorded at 100% 

recycled coarse aggregate content.  

 

2.3.3.2   Effect of Fibre  

The increase in fibre dosage in the concrete mix enhances the flexural strength 

performance of concrete incorporating fibres compared with the control concrete 

without fibre. The reason being the positive contribution of higher dosage of fibres to 
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tensile load before failure of the specimen occurred (Bagherzadeh et al., 2012a). 

Altoubat et al. (2006) researched the effect of synthetic fibres on structural behaviour of 

concrete slabs-on-ground and found that the incorporation of structural synthetic fibres 

in the concrete mix increased the flexural strength even at a very low dosage and at 

about 0.32 – 0.48% addition, an increase of between 25-54% in flexural strength was 

recorded, thus corroborating the findings that the flexural strength increases as dosage 

of synthetic fibre increases. However, only a slight increase in flexural strength was 

reported by Zollo (1984) at 0.1% dosage of collated fibrillated polypropylene fibres in 

FRC. Beyond this dosage precisely 0.2 - 0.3%, a slight reduction in flexural strength 

was recorded. 

 

 Jiabiao et al. (2004) reported that the resistance of fibre reinforced concrete after the 

first crack appeared to a ratio of maximum load under bending increased with more 

dosage of synthetic macro fibre. This efficiency in delay of micro cracks growth is a 

function of the increasing dosage rate of fibre (James et al., 2002).  Contrary to the 

above views, Alhozaimy et al. (1996) reported from the study of mechanical properties 

of polypropylene fibre reinforced concrete that polypropylene fibre dosage in the 

concrete mix has no significant effect on the flexural strength of concrete incorporated 

with 0.05% - 0.30% volume fraction of fibres. However, there was no general 

consensus views among many published literatures with respect to the impact of 

polypropylene fibres on concrete. 
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2.3.3.3   Effect of Microsilica  

Baid and Bhole (2013) studied the effect of microsilica on mechanical properties of 

concrete and reported that, the inclusion of microsilica as a replacement of cement 

shows slight increase in 28 days flexural strength. About 27% increase in flexural 

strength which represent maximum increase in characteristic strength was recorded at 

15% microsilica content. The addition of microsilica to concrete mix significantly 

enhanced the flexural strength with reference to the control mix and this was attributed 

to the ability of microsilica to improve the microstructure of the interfacial transition 

zone (Pauw and Lauritzen, 1994). Bhanja and Sengupta (2005) also reckoned that the 

flexural strength increased significantly with higher substitution of cement with micro 

silica while the optimal results occurred at 15% microsilica replacement for cement. 

 

2.3.4 Static Modulus of Elasticity 

2.3.4.1   Effect of recycled coarse aggregate  

Rao et al. (2011) investigated the behaviour of recycled aggregate concrete under drop 

weight impact load and found that the modulus of elasticity decreases with increase in 

recycled coarse aggregate content in the concrete mix. Many researchers (Hansen 

(1992), Nojiri (1994), Ahmad et al. (1996), Merlet and Pimienta (1993), Topçu and 

Günçan (1995), Sivakumar et al. (2014)) studied high strength concrete using recycled 

coarse aggregate and reported reduction in modulus of elasticity with increasing 

replacement of  natural aggregate by recycled coarse aggregate.  

 

Frondistou-Yannas (1977) researched the use of waste concrete as aggregate for new 

concrete and discovered that the static elastic modulus of recycled coarse aggregate 
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concrete was about 60 - 100% of the virgin coarse aggregate concrete due to lower 

modulus of elasticitiy associated with recycled coarse aggregate compared to  natural 

aggregate. This corroborates the findings by Ong and Ravindrarajah Sri (1987) that the 

static elastic modulus of recycled coarse aggregate was about 60% less than the results 

obtained with conventional concrete when both recycled and fine aggregate are used. 

Xiao et al. (2005a) investigated the mechanical characteristics of recycled aggregate 

under uniaxial loading and discovered that the elastic modulus reduces as the percentage 

content of recycled aggregate increases. About 45% reduction was recorded at 100% 

recycled coarse aggregate content. Gerardu and Hendriks (1985),  reported about 15% 

reduction in modulus of elasticity of recycled aggregate concrete while about 40% 

reduction at a relatively high water-cement ratio of 0.75 was reported by Frondistou-

Yannas (1977) without any significance at a lower water-cement  ratio of 0.55.   

 

Hansen and Boegh (1985a) investigated the elasticity and drying shrinkage of recycled 

aggregate concrete and found that both static and dynamic modulus of elasticity of 

recycled aggregate concrete were between 15 to 30% less than the corresponding 

moduli of the parent concrete. Ravindrarajah et al. (1987), also reported about 14% 

reduction in static elastic modulus of recycled aggregate concrete compared with virgin 

coarse aggregate concrete. However, Estefano de Oliveira et al. (2008) revealed that, the 

modulus of elasticity of concrete produced from recycled aggregate remain relatively 

similar to normal concrete, when the percentage content of the recycled coarse 

aggregate is below 40%. Above this optimum 40% the modulus of elasticity decline 

faster due to the rate of water absorption of recycled aggregate.  
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In a study by Eguchi et al. (2007) on the use of recycled aggregate as mixture in 

concrete construction, a decreasing trend in modulus of elasticity occured as the 

recycled  aggregate concent increased. Schoppe (2011) investigated the shrinkage and 

elastic modulus of concrete incorporating recycled aggregate, and concluded that the 

modulus of elasticity of recycled concrete reduced between 0 – 20%, when compared to 

the reference concrete. The elastic modulus of recycled aggregate concrete was about 

55–100% of that of conventional aggregate concrete (Frondistou-Yannas, 1977; Nixon, 

1978; Hansen and Boegh, 1985b; Hansen, 1986; Katz, 2003; Xiao et al., 2005a; 

Rakshvir and Barai, 2006; Domingo-Cabo et al., 2009; and Rao et al., 2011b). This 

result was due to the lower modulus of elasticity of recycled coarse aggregate 

(Frondistou-Yannas, 1977; Xiao et al., 2005a; and Rao et al., 2011b). 

 

 Generally, the modulus of elasticity reduces with more recycled coarse aggregate 

content in the concrete mix. However, Limbachiya et al. (2000) reported a contrary 

observation from findings by some researchers (Frondistou-Yannas, 1977; Hansen and 

Boegh, 1985b; and Ong and Ravindrarajah Sri, 1987) that the elastic modulus of natural 

aggregate concrete and high strength recycled coarse aggregate concrete are very 

similar. 

 

2.3.4.2   Effect of Fibre  

Hassan et al. (2011) investigated the mechanical behaviour of synthetic macro fibre 

reinforced concrete and discovered a significant impact due to fibre addition with the 

relationship between stress and strain of fibre reinforced concrete. It was observed that 

the strain values of the fibre reinforced concrete increased by about 50-60% with 

increasing amount of synthetic macro fibres between 0.33-0.51% respectively. The 
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modulus of elasticity of the concrete decreased due to inverse relationship between the 

modulus of elasticity and strain since no positive impact was observed on the ultimate 

stress. This findings corroborate the observations reported by Schoppe (2011) and 

Farjadmand and Safi (2012) that there is a decreasing trend in modulus of elasticity as 

the recycled coarse aggregate content increases in concrete mix. The incorporation of 

microsilica reduces porosity of the interfacial transition zone between cement paste and 

the aggregate, thus enabling the stiffness of the aggregate to contribute more to the 

general stiffness of the concrete (Helland et al., 1988). 

 

2.3.4.3   Effect of Microsilica  

Xiao et al. (2005b) conducted research on mechanical properties of recycled aggregate 

concrete under uniaxial loading. Result showed higher elastic moduli with concrete 

incorporating 15% replacement of cement by microsilica. This findings was 

corroborated by Burg and Ost, 1992; Xiao et al. (2005b); and Seitl et al., 2010.  

 

2.3.5 Permeability  

2.3.5.1   Effect of recycled coarse aggregate  

Deterioration in reinforced concrete is majorly caused by corrosion of the steel 

reinforcing bars which are prone to corrosion due to the presence of aggressive liquids 

and/or gases in the concrete through permeation. This eventually affects the concrete 

durability as the permeability increases. Wainwright et al. (1993) investigated the 

performance of concrete incorporated with fine and coarse recycled concrete aggregate. 

Result indicate higher porosity and permeability when coarse recycled aggregate 
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replaced natural aggregates and more significant result was recorded with the 

replacement of natural fines by recycled fines. 

 

 Gómez Soberón et al. (2001) investigated the effect of recycled concrete aggregate on 

the permeability of concrete and found that permeability increases considerably with 

more recycled concrete aggregate content compared to control concrete due to the 

porous nature of recycled concrete aggregate. In the study conducted by Wainwright et 

al. (1993), it was reported that the permeability of recycled concrete was twice that of 

conventional concrete. Hansen and Boegh (1985b) also studied the elasticity and drying 

shrinkage of recycled concrete aggregate and explained that the permeability increases 

up to 2 – 5 times the value for control concrete mix. This finding was attributed to high 

porosity associated with recycled concrete aggregate 

 

2.3.5.2   Effect of fibre  

Singh and Singhal (2011) assessed the influence of fibre parameters on the permeability 

of steel fibre reinforced concrete and reported significant reduction in permeability as 

the steel fibre dosage increases. No significant impact was reported on the coefficient of 

water permeability.  

 

2.3.5.3   Effect of Microsilica  

The inclusion of mineral admixtures or supplementary cementitious materials in 

concrete reduces the permeability and thus protect the concrete from aggressive 

chemicals by providing resistance against deterioration. The incorporation of 

microsilica in concrete exposed to aggressive environment produce low permeability 
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due to its high pozzolanic character and extreme finess. Khan and Lynsdale (2002) 

investigated the strength, permeability and carbonation of high-performance concrete. 

The results showed that the optimum permeability and strength were achieved with the 

incorporation of 8-12% microsilica as replacement for the ordinary Portland cement. 

Addition of microsilica significantly reduced permeability as the microsilica content 

increases due to its densifying effect on microstructure which eventually result into 

reduction in porosity and  subsequently produced denser concrete (Tijani et al., 2015a).   

 

2.3.6 Flexural Fatigue Assessment 

2.3.6.1   Effect of recycled coarse aggregate  

Fatigue is a process of progressive and permanent material damage under repeated 

(cyclic) loading. The failure takes place under repetitive or cyclic load influence. The 

peak values are considerably smaller than safe loads estimated on the basis of static load 

test (Ong and Ravindrarajah Sri, 1987). Xiao et al. (2013) investigated the fatigue 

behavior of recycled aggregate concrete under compression and bending cyclic 

loadings. Results showed reduction in the fatigue life behaviour of recycled aggregate 

concrete at 100% recycled coarse aggregate content under cyclic bending loading for 

similar stress level. Ong and Ravindrarajah Sri (1987) studied mechanical properties 

and fracture energy of recycled aggregate concretes and reported reduction in the no of 

cycles (fatigue life) of recycled aggregate concrete as the percentage substitution of 

natural aggregate by recycled aggregate increases at all stress levels.  

 

Thomas et al. (2014a) investigated the fatigue limit of recycled aggregate concrete and 

reported more loss of stiffnes in recycled aggregate concrete than in the reference 
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(natural aggregate) concrete. No significant difference in fatigue life of concrete was 

reported by y Certificación (2009) as recycled coarse aggregate increased from 50% to 

100%. However, there was reduction in the fatigue life of recycled coarse aggregate 

concrete when compared with natural aggregate concrete. Different results were 

however observed by Xiao et al. (2013) under uniaxial compression fatigue test. Results 

indicate that recycled aggregate concrete has more fatigue life than natural aggregate 

concrete at 100% recycled coarse aggregate content.  

 

2.3.6.2   Effect of fibre  

Thomas et al. (2014b) evaluated the fatigue behaviour of recycled aggregate concrete 

incorporated with steel fibre. Result indicate that the fatigue life of recycled aggregate 

concrete increased as the substitution of natural aggregate by recycled aggregate 

increased in comparison with the control concrete. Reduction in fatigue stress as the 

stress level increases was also reported. The study conducted by Schoppe (2011) on 

shrinkage and modulus of elasticity in concrete with recycled aggregates showed that 

the incorporation of steel fibres have positive impact on the fatigue performance of 

concrete under flexural fatigue loading. This result was attributed to the fibres ability to 

bridge cracks and subsequently prolong the fatigue life. However, Schoppe (2011) 

reported no significant impact on the fatigue life of concrete incorporating steel fibres 

under compressive fatigue loading due to differences in failure pattern between  

compressive and flexural loading respectively.  

 

Most researchers agree that, fibre reinforced concrete posses better fatigue behaviour 

than plain concrete. Domingo-Cabo et al. (2009) explained that the efficiency of fibres 
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in improving the fatigue life of concrete is a function of fibre distribution which could 

have detrimental impact on the fatigue life of concrete. Fibres also tend to dissipate less 

energy at higher stress levels than at lower stress levels (Rakshvir and Barai, 2006).  

Singh and Singhal (2011) investigated the influence of fibre parameters on the 

permeability of steel fibre reinforced concrete. Report showed that the incorporation of 

fibres in the concrete could have detrimental effect on the fatigue life of concrete unless 

the fibres are adequately and evenly distributed in the concrete mix. 

 

2.4 Summary of Existing development  

There is consensus among researchers with respect to low workability of recycled 

aggregate concrete with increasing amount of recycled coarse aggregate, fibre dosages, 

and mineral admixture (Microsilica) in the concrete mix. However, there are contrary 

reports on the impact of fibre, microsilica and higher content of recycled aggregate in 

concrete incorporating fibre and microsilica. Some researchers held that compressive 

strength, tensile splitting strength, flexural strength, and elastic modulus reduces as the 

aforementioned materials increases in concrete mix while other researchers reported 

increase in mechanical properties and insignificant effect respectively.  

 

The majority of researchers reported increasing permeability with increasing recycled 

coarse aggregate content and decreasing permeability with inclusion of fibre and 

microsilica. A general  consensus on the effect of increasing the content of recycled 

coarse aggregate  on the fatigue life of recycled coarse aggregate concrete was that the 

fatigue life reduces whereas opinions differ on the effect of fibre and microsilica. While 

some researchers reported positive impact with increase in fatigue life, others suggested 
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an insignificant impact. The difference in views could be linked to different sources of 

materials, experimental errors, and methods employed by individual researchers. 

 

2.5 Knowledge gap 

From several research findings reviewed under this chapter, the influence of the 

combination of microsilica, synthetic macro fibre, and recycled aggregate concrete is 

yet to be investigated. The contributions of microsilica as an addition to cement in 

concrete has not been widely investigated as only few researchers had studied the 

benefits of using microsilica in recycled aggregate concrete as a percentage addition 

rather than replacement but at a higher water-cement ratio. However, the majority of the 

researchers, conducted research on recycled aggregate concrete without incorporating 

microsilica.  This research work aims to investigate the effect of incorporating 

microsilica as a percentage addition to recycled coarse aggregate concrete rather than as 

partial replacement for cement.  

 

Most researchers in a similar way to the British Standard (BS8500-2, 2006) suggests the 

use of about 30% recycled coarse aggregate as a replacement for conventional coarse 

aggregate in concrete because findings have shown that there is no significant effect at 

such percentage replacement. However, it is one of the objectives of this research work 

to assess the potential of raising this recommended percentage utilization of recycled 

coarse aggregate in concrete mix beyond 30%. This research work would leverage on 

the properties of synthetic macro fibre and micro silica and synergise these properties in 

order to achieve the set target thereby reducing the consumption of natural coarse 

aggregate which is about 60-75% in concrete mix.  
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3 RESEARCH METHODOLOGY 

The methodology employed in order to achieve the set objectives is described under this 

chapter.  

 

3.1 Experimental Work 

The experimental work is at the core of the research work. In order to evaluate the 

physical and mechanical characteristics of the concrete produced from the 

aforementioned materials under theoretical work, some laboratory work is required. The 

percentage of natural coarse aggregate replacement by recycled coarse aggregate  was 

chosen as 0%, 25%, 50%, 75%, and 100% by weight of coarse aggregate respectively 

with 0% taken as the control or reference concrete. 54mm forta-ferro synthetic macro 

fibre was also incorporated at different dosages of 0%, 0.11%, and 0.5% for different 

batches of concrete.  

 

Laboratory testing was also performed on fresh and hardened concrete samples in order 

to determine their workability, compressive strength, tensile splitting strength, flexural 

strength, modulus of elasticity, water permeability (Autoclam), and fatigue performance 

respectively in accordance to British Standards and Eurocodes. The impact of recycled 

coarse aggregate, synthetic macro fibre, and microsilica on the properties of concrete 

were also investigated from the results of tests carried out which enabled comparison to 

be made with control experiment. The fatigue performance obtained from the combined 

use of these materials under investigation would be assessed under cyclic loadings. 
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3.1.1 Concrete materials 

The essential concrete materials used in the experimental work are shown in Table 1 

below. 

Table 1: Concrete materials 

 

Materials Description 

Cement CEM II/B-V 32,5N (Portland – pulverised fly ash 

cement) 

Synthetic macro 

fibre  

54mm Forta- Ferro. Virgin copolymer / polypropylene, 

Specific gravity of 0.91, and tensile strength from 570-

660 MPa. Non-corrosive, non-magnetic and are 100% 

alkali resistance. 

Microsilica Elkem Microsilica Grade 940-U 

Natural coarse 

aggregate 

Crushed gravel with nominal maximum size of 10mm. 

Recycled coarse 

aggregate 

Maximum size of 10mm  supplied by Coleman and 

company, Birmingham, UK 

Natural fine 

aggregate 

River sand with maximum particle size of 5mm. 

Superplasticiser 

(Alphaflow 420) 

Modified synthetic Carboxylated polymer 

 

 

 

3.1.1.1  Cement 

The cement used in this research was Portland-pulverised fly ash cement shown in 

Figure 1 which has design strength of 32,5N/mm² (CEM II/B-V 32,5N) and also 

conforms to BS EN 197-1:2011. The Pulverished Fly Ash (PFA) incorporated was 

approximately 30%, and this was considered during the concrete mix design. These 

cement were stored within the laboratory, numbered with dates and used according to 

date of delivery. 
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Figure 1: Portland-pulverised fly ash Cement [CEM II/B-V 32,5N] 

 

 

3.1.1.2   Microsilica  

The Grade 940-U microsilica used in the laboratory as shown in figure 7 was obtained 

from Elkem microsilica company.  

 
 

Figure 2: Grade 940-U Microsilica Supplied by Elkem  
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Typical properties of Grade 940-U microsilica is given in Table 2.  

Table 2: Typical properties of Grade 940-U microsilica (Courtesy:Elkem mocrosilica) 
 

 

 

There are 2 distinct ways in which microsilica enhances concrete strength and durability 

These are; 

1. By acting as a filler to reduce the average size of pores present in cement paste and; 

2. By providing more even distribution and higher volume of hydration products while 

acting as a pozzolan.  

 

 

3.1.1.3  Natural Coarse Aggregate (Crushed gravel)  

Crushed gravel with nominal maximum size of 10mm and relative density of 2.7 was 

used as natural coarse aggregate in the research work. The materials were stored outside 

the laboratory at a designated area. The water absorption and particle density were  

evaluated as 1.44% and 2505kg/m³ respectively at saturated surface dry (SSD) 

Form: Ultrafine amorphous powder (respirable dust). 

Dust forms agglomerates. 

Colour: Grey, off-white 

Odour Odourless 

Melting Point (°C) 1550-1570 

Solubility (Water): Insoluble/Slightly soluble 

Solubility (Organic solvents): Insoluble/Slightly soluble 

Specific Gravity (water=1) 2.2-2.3 

Bulk density (U) (kg/m3) 200-350 

Specific surface (m²/g): 15-30 

Particle size, mean (μm): ~ 0.15 (< 0.1 % of primary particles > 45 μm) 

Silicon (SiO2) Minimum 90% 

Loss of Ignition Maximum 3% 

Coarse particle >45 μm Maximum 1.5% 
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condition. Figure 8 shows the sample of the crushed gravel used for concrete work in 

the laboratory. 

 
 

 

Figure 3: Natural coarse aggregate (Crushed gravel with maximum size 10mm) 

 

 

 

 

3.1.1.4 Natural Fine Aggregates (Sand) 

River sand with water absorption and relative density of 1.67% and 2245kg/m³ 

respectively at saturated surface dry (SSD) condition were used as natural fine 

aggregate in the research. Figure 9 shows the river sand sample used for concrete work 

and was stored outside the laboratory. 
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Figure 4: Natural fine aggregate (River sand) 

 

 

3.1.1.5  Recycled Coarse Aggregates  

Recycled aggregates are mainly crushed concrete and brick masonry obtained from 

materials that were previously used in construction activities and recovered from 

demolition debris (Nelson, 2004). They may be grouped as either recycled concrete 

aggregate (RCA) when the components are largely from crushed concrete or generally 

referred to as recycled aggregates (RA) when they are made up of substantial amounts 

other than crushed concrete. The major difference between recycled coarse aggregate 

and natural coarse aggregate is that the former consists of two separate materials; 

natural aggregate and attached or adhered cement mortar. BRE (1998), classified 

recycled aggregates into three types. These are; RCA [I], RCA [II], RCA [III] as 

indicated in Table 3.  
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Table 3: Classification of recycled aggregates (BRE (1998) 

Class 
Origin 

(normal circumstances) 
Brick content 

by weight 

RCA(I) Brickwork 0-100% 

RCA(II) Concrete 0-10% 

RCA(III) Concrete and brick 0-50% 

 
 

The recycled coarse aggregate used for the research has a nominal maximum single-size 

of 10mm and was obtained from Coleman & company recycling plant in Birmingham. 

The water absorption and particle density were evaluated as 7.65% and 2323kg/m³ 

respectively at saturated surface dry (SSD) condition. Figure 10 shows the sample of 

recycled coarse aggregate used for concrete work in the laboratory.  

 

 
Figure 5: Recycled coarse aggregate (Supplied by Coleman & co. maximum size 10mm) 
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There were about 5.2% impurities (see figure 25 and table 17) in the recycled coarse 

aggregate used for the experimental work. However, these impurities were not removed 

in order to use the recycled aggregate in its original packaged state and also to identify 

any effect on the concrete produced. 

 

3.1.1.6   Synthetic Macro Fibre   

Synthetic macro fibre is a flexible, macroscopically homogenous body, with a high 

aspect ratio and a small cross-section (Zheng and Feldman, 1995). Macro fibres are very 

efficient and effective in enhancing various materials properties which includes; flexural 

toughness, impact resistance, and resistance to fatigue respectively. They provide 

concrete with early tensile strength to a very good extent required for prevention and 

control of crack initiation. Figure 11 shows the sample of synthetic macro fibre 

incorporated in the concrete mix. 

  

Figure 6: 54mm Forta-Ferro synthetic macro fibre  
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Macro fibre also provides internal support to concrete through restraints against the 

formation of plastic shrinkage. Since shrinkage of concrete is not preventable, macro 

fibre function as the crack control against drying shrinkage by intersecting cracks 

formed in the concrete, and this subsequently distribute the shrinkage stresses evenly 

thereby minimising the problems associated with cracks. 

The synthetic macro fibre implored was produced by Forta-Ferro Inc. from 100% virgin 

copolymer/polypropylene material with a nominal length of 54mm and an aspect ratio 

of 79.5. It is a twisted bundle monofilament/fibrillated form fibre system grey in colour 

with specific gravity of 0.91, tensile strength between 570-660MPa, and conforms to 

A.S.T.M. C-1116.. The major benefit of the twisting nature of the fibre was to  ensure 

thorough  and even mix of the fibre throughout the concrete matrix. The synthetic 

macro fibre also prevent brittle failure caused by high load impact through energy 

absorption mechanism without breakage based on  its design to retain its cross sectional 

shape. 

 

3.1.1.7  Water 

The reaction between the mixture of water and cement results in hardening of concrete 

through the process known as hydration. In order to prevent any deleterious substance 

from interfering with the process of hydration, water for concreting is recommended to 

be from a potable source. This is because the role of water in water to cement ratio is 

the most critical factor in concrete. Excess water reduces the strength of concrete while 

inadequate water make concrete less workable. Due to desire to ensure concrete 

workability and of required strength, it is necessary to balance the water to cement ratio 

in concrete mix. In view of this, potable drinking water from the laboratory was used for 
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concrete mixing in order to enhance hydration of cement and mineral admixture, and 

enable proper binding effect. The source of water is free from any form of 

contamination otherwise, it would affect the physical and mechanical characteristics of 

concrete. 

 

3.1.1.8   Superplasticizer 

Superplasticizer is an extra-effective water-reducing admixture with a very great 

plasticizing effect on concrete (BCA, 1991). Superplasticiser permits a reduction in the 

water content of a concrete mix without affecting its consistency. It is widely used to 

increase the fluidity of concrete to give a mix with higher workability thereby leading to 

easier placing and compaction. Oscrete Alphaflow 420 shown in figure 12 was used as 

chemical admixture for the concrete.  

 

 
 

Figure 7: Alphaflow 420 Superplasticizer (Supplied by Oscrete) 
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The advantage of the plasticising effect can be explored in reducing of free-

water/cement ratio of the mix and increasing strength while maintaining the same 

workability.  Superplasticizer also improves durability, quality, consistency of concrete 

and savings in cost in terms of economical mix design, and speeding the process of 

construction (J P Ridal et al., 2000). Oscrete Alphaflow 420 shown in figure 12 was 

used as chemical admixture for the concrete. It is a “new generation High Range 

Superplasticiser based on a modified synthetic carboxylated polymer” as mentioned by 

the manufacturer Oscrete Construction. Oscrete Alphaflow 420 was incorporated into 

concrete mixes in order to maintain same level of consistency between 60-180mm 

throughout the laboratory work as recommended from the concrete mix design 

calculations. The properties of Oscrete Alphaflow 420 are given in Table 4. 

 

Table 4: Properties of Alphaflow 420 Superplasticiser (Oscrete Construction Products) 

 

Nature Liquid 

Colour Amber 

Specific Gravity 1.06g/cm³ 

pH 6.5 

Chloride Content <0.10% 

Na2O equivalent <1.00% 
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3.1.1.9   Concrete Moulds 

The dimension and types of concrete moulds used in the laboratory work are indicated 

in Table 5 and Figure 13 respectively. 

Table 5: Concrete moulds conforming to BS EN 12390-1. 

 

Mould type Dimension             

(mm) 

Volume         (m³) 

 

Cube 

 

100x100x100 

 

0.009 

 

Prism 

 

100x100x500 

 

0.018 

 

Cylinder 

 

100Øx200 

 

0.045 

 

 

 

 

 
 

Figure 8: A Concrete moulds conforming to (BS-EN-12390-1, 2012) 

 



44 

 

3.2 Concrete mix design and sequence 

This is an important stage in concrete production since it includes the determination of 

the relative quantities of the materials that constitute concrete with the object of 

producing an economical concrete as possible which satisfy certain minimum properties 

or characteristics such as strength, durability and required consistency. 

  

3.2.1 Concrete mix design considerations  

The Building Research Establishment (BRE) guidelines for design of normal concrete 

mixes were employed. With due consideration of the requirements of the BRE 

guidelines, it became imperative to make some necessary adjustments in order to 

comply with the criteria required for the use of the guidelines and thus select the 

appropriate quantity of materials required. The Building Research Establishment (BRE) 

guidelines used the saturated surface dry (SSD) condition for normal concrete mixes 

which in practice does not represent the natural true state of the aggregates used in the 

course of the laboratory work. Therefore it became very important to check the rate of 

water absorption of each aggregate in order to compensate for it during addition of the 

free water while mixing. The adjustments were conducted in compliance to (BS-EN-

1097-6, 2013). Wire Basket method was employed to determine the particle density and 

water absorption rate of both natural coarse and recycled coarse aggregates while 

Pyknometer method was used for fine aggregate (sand).  

 

The cement strength class given in table 2 of the Building Research Establishment 

(BRE) guidelines for the design of normal concrete mixes were 42.5 and 52.5 

respectively whereas the actual cement strength class supplied by Rugby cement for the 
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laboratory work was 32.5 (Portland-pulverised fly ash cement CEM II B/V 32,5N). 

Therefore, it was important to interpolate and work out the approximate compressive 

strength of this cement in order to obtain the required free-water/cement ratio. 

 

 

3.2.1.1   Concrete mix design (Phase One) 

Three Series of concrete mixes were designed in accordance to the conventional UK 

mix design method, that is, Building Research Establishment (BRE) design of normal 

concrete mix manual. Series 1 represents the control experiment without synthetic 

macro fibre addition. Series 2 consists of 0.5% (4.45kg/m³) synthetic macro fibre 

dosage while Series 3 incorporates 0.11% (1kg/m³) addition of synthetic macro fibre by 

volume of concrete respectively. The concrete mixes were designed for characteristics 

compressive cube strength of 50MPa at 28-day curing age, free-water/cement ratio 

(w/c) of 0.39, and high workability (60-180mm) as illustrated in Table 66.  A total of 

four hundred and fifty (450) concrete samples were produced and investigated from 

three different mixes shown in Tables 6, 7, and 8 at saturated surface dried (SSD) state 

respectively. These consist of 9 standard cubes of 100x100x100mm, 12 cylinders of 

100mm diameter and 200mm high, and 9 standard prisms of 100x100x500mm for each 

concrete batch per Series. The aim of the experiment was to assess the impact of 

inclusion of 54mm forta-ferro synthetic macro fibre on the physical and mechanical 

characteristics of recycled coarse aggregate concrete. 
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Table 6: Concrete mix details – Series 1 (0% F, 0% M) 

 

Recycle Aggregate by weight 

of coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³) 583 583 583 583 583 

Sand (kg/m³) 603 603 603 603 603 

Gravel (kg/m³) 904 678 452 226 0 

RCA. (kg/m³) 0 226 452 678 904 

Free-water (kg/m³) 230 230 230 230 230 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

 

 

 

Table 7: Concrete mix details – Series 2 (0.5% F, 0% M) 

 

Recycle Aggregate by weight 

of coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³) 583 583 583 583 583 

Sand (kg/m³) 603 603 603 603 603 

Gravel (kg/m³) 904 678 452 226 0 

RCA. (kg/m³) 0 226 452 678 904 

Free-water (kg/m³) 230 230 230 230 230 

Synthetic Macro Fibre - 0.5% 

by volume of concrete (kg/m³) 
4.5 4.5 4.5 4.5 4.5 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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Table 8: Concrete mix details – Series 3 (0.11% F, 0% M)  
 

Recycle Aggregate by weight 

of coarse aggregate. (%)         
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Free-water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete  (kg/m³)      
1 1 1 1 1 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

3.2.1.2   Concrete mix design (Phase Two) 

  Sequel to phase one experiment, phase two concrete mix design also followed the 

conventional UK mix design method (BRE, 1997), ‘design of normal concrete mix 

manual’. It consists of five concrete mixes incorporating 5% microsilica as an addition 

to cement and 1kg/m³ synthetic macro fibre dosage as shown in Table 9. In order to 

maintain similar consistency level as specified in the design mix, a High Range 

Superplasticiser (Alphaflow 420) based on a modified synthetic carboxylated polymer 

was used as chemical admixture at varying dosage by volume of cement respectively. 

The object of phase two experiment was to compare the results obtained in phase two 

against the results recorded in phase one in order to assess the effect of microsilica on 

fibre reinforced concrete with partial and full substitution of natural coarse aggregate by 

recycled coarse aggregate. 
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Table 9: Concrete mix details – Series 4 (0.11% F, 5% M) 

 

Recycle Aggregate by weight of 

coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³) 583 583 583 583 583 

Sand (kg/m³) 603 603 603 603 603 

Gravel (kg/m³) 904 678 452 226 0 

RCA. (kg/m³) 0 226 452 678 904 

Free-water (kg/m³) 230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 
1 1 1 1 1 

Microsilica (kg/m³) - 5% by 

weight of cement 
29.2 29.2 29.2 29.2 29.2 

Superplasticiser by weight of 

cement (kg/m³) 
2.33 2.33 2.33 3.50 3.50 

       RCA ---- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

The concrete characteristics cube strength, water-cement ratio, and workability remain 

the same as in design mix in phase 1. A total of one hundred and sixty five (165) 

concrete samples were investigated respectively and these consists of 12 standard cubes 

of 100x100x100mm, 12 cylinders of 100mm diameter and 200mm high, and 9 standard 

prisms of 100x100x500mm for each concrete batch in a Series 4. 

 

3.2.1.3   Concrete mix design (Phase Three) 

Sequel to phase two experiment, phase three investigated the optimised use of 

microsilica as an addition to cement in fibre reinforced recycled aggregate concrete 

produced from phase two. A total of nine hundred and sixty (960) concrete samples 

were produced and tested from four concrete mixes shown in Tables 10-13. The design 

mix was done in accordance to the conventional UK mix design method, (BRE, 1997) 
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at saturated surface dried (SSD) state respectively. Each concrete batch consists of 12 

standard cubes of 100x100x100mm, 12 standard cylinders of 100mm diameter by 

200mm high, and 24 standard prisms of 100x100x500mm. Concrete mixes in Series 4-7 

incorporates same dosage of synthetic macro fibre of 1kg/m³ by weight of concrete and 

various microsilica addition of 5%, 10%, 15% and 20% respectively.  

 

A High Range Superplasticiser (Alphaflow 420) was used as chemical admixture at 

varying dosages in order to maintain the designed workability. The dosage used was not 

excessive in order to prevent weakening of the concrete cohesion. The characteristics 

cube strength, free-water/cement ratio (w/c) and specified slump remain the same as in 

phase 1.  

 

Table 10: Concrete mix details – Series 4 (0% F, 5% M) 

 

Recycle Aggregate by weight 

of coarse aggregate. (%)         
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Free-water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³)          
1 1 1 1 1 

Microsilica - 5% by weight of 

cement (kg/m³)                           
29.2 29.2 29.2 29.2 29.2 

Superplasticiser by weight of 

cement (kg/m³)     
2.33 2.33 2.33 3.5 3.5 

      RCA ---- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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Table 11: Concrete mix details – Series 5 (0% F, 10% M) 

 

Recycle Aggregate by weight 

of coarse aggregate. (%)         
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Free-water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³)          
1 1 1 1 1 

Microsilica - 10% by weight of 

cement (kg/m³)                           
58.4 58.4 58.4 58.4 58.4 

Superplasticiser by weight of 

cement (kg/m³)     
3.50 3.50 3.50 4.66 4.66 

      RCA ---- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

 

 

Table 12: Concrete mix details – Series 6 (0.11% F, 15% M) 

 

Recycle Aggregate by weight 

of coarse aggregate. (%)         
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Free-water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³)          
1 1 1 1 1 

Microsilica - 15% by weight of 

cement (kg/m³)                           
87.6 87.6 87.6 87.6 87.6 

Superplasticiser by weight of 

cement (kg/m³)     
4.66 4.66 4.66 5.83 5.83 

      RCA ---- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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Table 13: Concrete mix details – Series 7 (0.11% F, 20% M) 

 

Recycle Aggregate by weight of 

coarse aggregate. (%)         
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Free-water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³)          
1 1 1 1 1 

Microsilica - 20% by weight of 

cement (kg/m³)                           
116.8 116.8 116.8 116.8 116.8 

Superplasticiser by weight of 

cement (kg/m³)     
6.41 6.41 6.41 7.00 7.00 

     RCA ---- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

 

3.3 Concrete mixing and placing  

Winget Croker Cumflow RP50XD Rotating Pan mixer was used for the concrete 

mixing. The fine aggregate was divided into two halves. The first half was placed at the 

bottom of the concrete mixer pan followed by addition of calculated amount of 

cementitious materials from mix design and this was subsequently covered with 

remaining half measured quantity of fine aggregate (sand). The cementitious materials 

was thoroughly and evenly dispersed in the mix and these combinations was dry mix for 

about 60s. Thereafter, the entire measured quantity of natural and recycled coarse 

aggregate were poured into the concrete mixer simultaneously and thoroughly dry mix 

for another 60s in order to ensure the concrete materials are well-blended together. 

Synthetic macro fibres were dispersed into the mixer and equally dry mixed together for 

about 60s in order to ensure uniform dispersion of fibres in the mix. Thereafter, free-
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water incorporating superplasticizer was gradually added to the concrete materials in the 

mixer and the constituents in the mixer were further mixed for about 120s.  

After a clear assessment of the consistency and slump test, concrete was portioned in 

various designated lubricated moulds (cubes, cylinders, prisms) shown in table 5 in two 

layers with each layers compacted using the vibrating table in order to expel any 

entrapped air. The surface was gradually levelled with steel hand trowel and covered 

with polyethylene bag for 24hrs to prevent early loss of moisture. The concrete samples 

were thereafter de-moulded and cured in the water tank at about 20°C. 

 

3.3.1 Sequence of laboratory work 

a. Determination of saturated surface dry (ssd) density of natural fine aggregate, natural  

 coarse aggregate, & recycled coarse aggregate; 

b. Comparison of water absorption in each of the aggregates; 

c. Adjustment of concrete mix design with the results obtained in (a) above; 

d. Concrete batching; 

e. Fresh concrete testing (Slump test);  

f. Filling of steel moulds (cube, prism, and cylinder) and compaction using vibrating  

 table; 

g. Covering fresh concrete filled moulds with polyethylene bag to prevent loss of 

moisture due to evaporation; 

h. De-moulding of concrete samples after 24hours; 

i. Storage of hardened concrete samples in the curing tank at about 20ºC for maximum 

28 days; 

j.  Testing of hardened concrete at 1, 7, and 28-day curing age respectively. 
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3.3.2 Testing of Aggregates and Concrete  

Tests were performed on aggregates (natural fine, natural coarse and recycled coarse) in 

order to determine their particle density and water absorption respectively. Similarly, 

testing of the concrete samples in both fresh and hardened state were conducted in 

accordance to relevant standards. The object of the testing was to determine the 

workability (slump), compressive (cube) strength, flexural strength, tensile splitting 

strength, modulus of elasticity, water permeability (Autoclam), and fatigue performance 

for the purpose of evaluating the properties of concrete. Details of these tests are given 

below. 

 

3.3.2.1   Particle Density and Water Absorption  

The test procedure to determine the particle densities and water absorption capacity of 

fine aggregate, natural and recycled coarse aggregate was conducted in accordance to 

BS-EN-1097-6 (2013). The aim of the test was to determine the weight and volume of 

the aggregate and also the quantity of water that would be absorbed by the fine and 

coarse aggregate in the mixture in order to adjust the amount of free-water required to 

aid workability during mixing. Figure 14 displayed the particle density apparatus set-up 

(wire basket and pyknometer method) used for recycled coarse aggregate, natural coarse 

aggregate, and natural fine aggregate shown in Figure 15 respectively at saturated 

surface dry (ssd) condition. 
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                                                 (a)                                                           (b) 
 

Figure 9: Particle density apparatus – (a) wire basket method   (b)pyknometer method  
         

 

 
 

  
 

                    (a)                                        (b)                                          (c) 
 

Figure 10: Aggregate at Saturated Surface Dry (SSD) condition – (a) Recycled aggregate, 

(b) Crushed Gravel, and (c) Sand. 
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3.3.2.2   Particle Size Distribution – Sieving method 

Sieve analysis was conducted in conformity with BS-EN-933-1 (2012). The aim was to 

establish the particle grading and description of properties of fine and coarse aggregates 

used for concrete in order to ensure they are acceptable for concrete work and prevent 

any influence on fresh or hardened state characteristics of the concrete produced. A 

nested column of standard sieves were fitted and arranged together in order of 

decreasing aperture sizes. This arrangement comprises of sieve  sizes 14mm to 2.36mm 

for coarse aggregate, while sieves with aperture between 5mm to 0.15mm were used for 

fine aggregate. 2kg of oven dry samples of natural and recycled coarse aggregate were 

poured into separate sieve columns arrangement respectively while the quantity of oven 

dry fine aggregate used for the test was 1kg. The sieves were shaken mechanically using 

the sieve shaker as shown in figure 16.   

 

 
 

 

Figure 11: Set of sieves on sieve shaker  
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The retained materials in each sieve was weighed and recorded as a percentage of the 

initial oven dry mass while cumulative percentage retained and percentage passing were 

also calculated. The graphical representation of percentage passing against sieve 

apertures was plotted in logarithmic scale and analysed to determine the particle size 

distribution of these materials. 

 

3.3.2.3   Slump test  

Slump refers to the measure or an indicator of workability of concrete. It is the most 

widely known test to evaluate the workability of fresh concrete which is inexpensive 

and simple to perform. The workability of the fresh concrete was measured in 

accordance to BS-EN-12350-2 (2009) using the standard apparatus for each mix in all 

the series in order to show the concrete consistency. The apparatus includes slump cone 

mould, flat non-absorbent horizontal base plate, and steel tamping rod. The internal 

surface of the conical mould was dampened, thoroughly cleaned and lubricated with oil. 

The mould thereafter was placed on the non-absorbent horizontal base plate and filled in 

three layers with freshly mixed concrete from Winget Croker rotating pan mixer. Each 

of these layers received 25 blows using tamping rod. The vertical difference between 

the highest point at the centre of the subsided (slumped) concrete and the top of the 

mould was recorded as slump value as illustrated in figure 17. 

 illustrated in figure 17. 
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Figure 12: Slump measurement (True slump) 
 

 

3.3.2.4   Compressive Strength Test  

This is usually carried out with the ultimate aim of determining the compressive 

strength of hardened concrete at 28-day curing age and it remains the only engineering 

property of concrete that is usually specified. The compressive strength has a 

relationship with most other mechanical properties of hardened concrete and it also 

provides the basis for their estimation. This test is referred to as the greatest resistance 

of concrete cube to applied axial loading from the compression machine. Compressive 

strength test was conducted to determine the greatest resistance at failure of concrete 

cube samples to applied axial loading. Three standard 100x100x100mm cube samples 

were prepared per mix in each series for phases 1, 2, and 3 respectively. These samples 

were tested to failure using digital Avery-Denison compression testing machine shown 

in figure 18 at a constant loading rate of 3.2kN/s.  

Steel tamping 

rod 

Slump cone 

mould 

Non-absorbent 

horizontal base plate 
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Figure 13: Schematic illustration of Compressive strength test    

 

The test was performed on three concrete cube samples in accordance to BS-EN-12390-

4-2009 at 1, 7, and 28-day curing age respectively. The average compressive strength of 

these cubes was obtained by using the relationship between the maximum load at failure 

and the cross sectional area of the concrete cubes as expressed by the equation fc = F/A. 

[Where fc represents the compressive strength, F represent the maximum load at failure 

(N), and A stands for the cross sectional area of the concrete cube sample (mm²)].  

 

3.3.2.5   Flexural Strength Test 

Flexural strength test is an indirect method often used to determine the tensile strength 

of concrete. It is often expressed as concrete modulus of rupture. Three 

100x100x500mm hardened concrete prism samples were cured in water at 20ºC and 

tested to failure using Denison testing machine shown in figure 19 at 1, 7, and 28-day 

curing age respectively.  
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Figure 14: Schematic illustration of flexural strength test  (two-point loading) set-up 

after BS-EN-12390-5-2009  

 

The test was conducted in accordance to BS-EN-12390-5-2009 using two-point loading 

arrangement and the maximum load at failure was recorded. The flexural strength was 

calculated from the mean of the three recorded results using the equation fcf = (FxI) / 

(d1xd2) [Where fcf represent the flexural strength, F stands for  the maximum load at 

failure (N), I is the distance between the supporting rollers (Farjadmand and Safi), and 

d1 & d2 are lateral dimensions of the sample (Farjadmand and Safi)]. The load was 

gradually applied at intial stage and subsequently increased until the loading blocks 

were brought into contact with the upper surface of the prism. It was ensured that all 

loading and supporting rollers were resting evenly against the concrete sample with the 

reference direction of loading perpendicular to the direction of casting of the prism 

samples.  
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3.3.2.6  Tensile Splitting Strength Test  

Tensile splitting strength is one of the significant properties of concrete. It was 

performed in order to determine the tensile resistance of concrete rather than direct 

tensile strength test due to ease of testing. It is mostly performed on cylindrical concrete 

samples of 150mm diameter and 300mm long. Three hardened cylindrical concrete 

samples of 100mm Ø and 200mm high were prepared per mix in each series for phases 

1, 2, and 3 respectively. The Concrete samples were tested to failure using Denison 

testing machine shown in figure 20 at 1, 7, and 28-day curing age respectively in 

accordance to BS-EN12390-6-2010.  

 
 

Figure 15: Schematic illustration of Tensile splitting strength test set-up  

after BS-EN-12390-6-2009  

 

 

The Denison testing machine was lowered until the platen came into contact with the 

top surface of the concrete sample. Loading was gradually applied at initial stage and 

thereafter increased continuously until failure occurred. The maximum load at failure 

was recorded and the mean tensile splitting strength was calculated from the equation    
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fct = (2xF)/(πxLxd) [Where fct represent the tensile splitting strength, F is the maximum 

average load at failure (N), L stands for the length of line of contact of sample, and d is 

the designated cross sectional dimension]. 

 

3.3.2.7   Static Modulus of Elasticity 

Static Modulus of Elasticity was carried out on three hardened cylindrical concrete 

samples of 100mm Ø and 200mm high prepared per concrete mix in each series for 

phases 1, 2 and 3, respectively. These samples were cured in water at 20ºC for 28-day 

curing age and tested to failure using Denison compression testing machine and strain 

measuring apparatus (CT534 - Compressometer) shown in figure 21. The test complied 

with BS-1881-121-1983 

 

 
 

Figure 16: Static modulus of elasticity test set-up 

 

. 
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3.3.2.8   Water Permeability Test  

This is measured as inflow of water under a reducing or constant pressure gradient 

(Beushausen and Luco, 2015). Sorptivity test was carried out in order to determine the 

cumulative inflow of water permeability index of the hardened concrete cube samples as 

a measure of assessing the surface characteristics of concrete which influence durability 

and performance. Three standard 100x100x100mm concrete cube samples were 

prepared per concrete mix in each concrete Series in Phase 2 and Phase 3 respectively 

and were tested using the Autoclam permeability system. Figure 22 displays the 

connection between concrete sample and autoclam equipment used for the test.  

 

 

 

Figure 17: Autoclam  permeability test set-up 

 

 

The concrete cube samples were kept on the laboratory table for a week after removal 

from curing tank in order to ensure samples are sufficiently air dried before conducting 

the test. The test complied with the operating manual of the Autoclam system developed 

Electronic controller 

Autoclam 

Concrete cube 
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at Queen’s University Belfast. A metallic base ring, 50mm internal diameter was 

bonded to the test surface (one side of the cube) using adhesive.  

The autoclam body which contains the pressure transducer that records the test pressure 

is bolted to the base ring with an O-ring thus providing the seal between the ring and the 

body during the test in order to ensure there is tightness between the concrete suface and 

auntoclam chamber. The transparent plastic reservoir is filled with potable water and 

thereafter when the Autoclam has been fully attached to the base ring as indicated by 

the prompt on the electronic controller panel the pressure increased to 2kPa (0.02 bar). 

The Autoclam system automatically began to allow water inflow into the concrete 

samples at a constant pressure of 2kPa (0.02 bar) while the pressure inside the autoclam 

chamber was also kept constant at 50kPa (0.5 bar) respectively.  

 

The test was conducted for 15 minutes and the cumulative volume of water penetrated 

into the concrete was automatically recorded and stored by the electronic controller. The 

average cumulative volume of water inflow into the three concrete cubes  at different 

pressure was plotted against the square root of time between 5th-15th minutes as 

recommended by the operating manual. The graph shows a linear correlation, while the  

gradient obtained from the equation of the regression line was taken as the sorptivity 

index expressed in m³/min
0.5

. 

 

3.3.2.9   Flexural Fatigue Assessment   

Flexural fatigue performance was conducted to determine the fatigue behaviour of high 

performance recycled aggregate concrete incorporating synthetic macro fibre under 

cyclic loading. The aim was to determine the fatigue parameters from the number of 
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cycles at a given fluctuating stress and strain that the samples can sustain before failure 

occurs. The test involved application of load on concrete prism samples at pre-

determined stress level and in this case four levels of maximum stress (0.95, 0.85, 0.75 

& 0.65) respectively. The stress levels were based on ultimate static strength recorded 

before the fatigue testing commenced. Fifteen hardened concrete prism of dimension 

100x100x500 mm were prepared for each mix in series 6 (i.e. 75 samples in total). 

These samples were subjected to three-point flexural test under static and fatigue 

loading using a 50kN servo-hydraulic digital control actuator shown in figures 23 and 

24 respectively. The target fatigue cycle is 100,000 due the time consuming nature of 

the test while frequency is 3Hz. The test was conducted on the non-trowel side of the 

concrete prism. 

 

 
 

Figure 18: Fatigue test set-up 
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Figure 19: Servocon hydraulic control for fatigue test 

 

 

The test was repeatedly done with three identical samples at different fluctuating loads 

per mix design. The mean load & amplitude defines the cyclic application of the load 

between upper and lower load. The cycles were loaded at a standard rate of 0.5mm/min 

and frequency of 3Hz. The stress levels were plotted against the average number of 

cycles obtained from the testing in order to determine the Smax-Nf relationship and 

fatigue life.  
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4 FRESH AND HARDENED PROPERTIES OF RECYCLED  AGGREGATE 

CONCRETE WITH SYNTHETIC MACRO FIBRE 

 

4.1 Introduction 

This chapter describes details of one of the objectives of this research work, to assess 

the effect of incorporating 54mm Forta-Ferro synthetic macro fibre on the physical and 

mechanical characteristics of concrete produced with partial and full replacement of 

natural coarse aggregate by recycled coarse aggregate. Chapter 3 provide details of all 

conducted tests under this chapter. The percentage substitution of  natural coarse 

aggregate by recycled coarse aggregate in the concrete mix are 0%, 25%, 50%, 75%, 

and 100% by weigth of coarse aggregate respectively. The concrete mix also 

incorporates 4.5kg/m³ (0.5%) and 1kg/m³ (0.11%) synthetic macro fibre by volume of 

concrete. The design concrete mix had 28-day characteristic cube strength of 50MPa 

with a target mean compressive strength of 63.1MPa and high workability of 60-180mm 

at free-water/cement ratio of 0.39 as shown in Table 66. The results, discussion and 

summary of findings obtained from aggregates testing, (particle density and water 

absorption test), fresh concrete sample testing (slump) and hardened concrete specimens 

testing (compressive strength test, flexural strength test, tensile splitting strength test, 

and static modulus of elasticity) are all described respectively in this chapter. 

 

About four hundred and fifty (450) concrete specimens, comprising 135 cubes, 135 

prisms, and 180 cylinders respectively were tested. Tables 6-8 in Chapter 3 show the 

concrete mix details. Series 1 represent the control experiment and does not have any 

fibre addition while Series 2 and 3 consists of 4.5kg/m³ and 1kg/m³ synthetic macro 

fibre respectively. The author anticipated that the inclusion of synthetic macro fibre in 
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the concrete mix would improve the compressive cube strength of the concrete sample 

in Series 2 and 3 respectively. The manufacturer (Forta-Ferro Corporation) 

recommended a dosage rate of 1kg/m³ while the author chose a higher dosage rate of 

4.5kg/m³ in order to carry out an assessment of the impact of both low and higher 

dosage rate of the fibre on fresh and hardened concrete properties.  

 

4.2 Impurities in Recycled Coarse Aggregate  

The performance of recycled coarse aggregate can be reduced due to the presence of 

impurities, which emanated from demolition process including porous mortar and 

cement paste attached to the parent aggregate. The effect could also lead to general 

reduction in physical and mechanical characteristics of recycled aggregate concrete. 

Figure 20 shows some of the impurities identified through visual inspection from the 

recycled coarse aggregate supplied by Coleman and Co. Birmingham. The average mass 

and equivalent percentage of impurities found in three separate 100g recycled coarse 

aggregate visually inspected are displayed in Table 14.  

 
 

Figure 20: Some impurities found in recycled coarse aggregate  
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Table 14: Average percentage impurities   
 

Type of Impurity Average percentage (%) 

Glass 1.1 

Metal 1.0 

Wood 0.4 

Ceramic 1.5 

Others 1.2 

Total 5.2 

 

The average percentage impurities present in the recycled coarse aggregate amounted to 

about 5% of the total mass of the sample. Although there is visual evidence to show the 

presence of adhered mortar on the parent material, it was practically impossible to 

estimate their percentage. However, the adhered mortar does not seems to be of 

significant quantity but its impact on the physical and mechanical characteristics of 

recycled coarse aggregate concrete cannot be neglected.  

 

4.3 Particle Density and Water Absorption of Aggregates 

The results of particle density and water absorption for natural and recycled coarse 

aggregates are given in Table 18. The particle density of recycled coarse aggregate 

under saturated surface dry (ssd) and oven dried conditions were 2323kg/m³ and 

2158kg/m³ respectively, which represents 7% and 13% reduction in particle density 

results for natural coarse aggregate which are 2505kg/m³and 2470kg/m³ respectively, 

under same conditions. The low-density nature of adhered mortar on recycled aggregate 
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from the parent concrete materials was responsible for these differences. Similar 

observation was suggested by Rao et al. (2011) and Yang et al. (2011). These occurred 

due to the lower density, lightness, and porous nature of the attached mortar to parent 

aggregates. The water absorption for both recycled coarse aggregate and natural coarse 

aggregate were 7.65% and 1.44% respectively. This implies that, the water absorption 

of recycled aggregate was about five (5) times higher than the corresponding natural 

gravel. 

Table 15: Result of particle density and water absorption  

 

Aggregate 
Natural 

Coarse 

(Gravel) 

Natural 

Fine  

(Sand) 

Recycled 

Coarse 

Particle density (Oven dry) 

(kg/m³) 2470 2208 2158 

Particle density (SSD) 

(kg/m³) 2505 2445 2323 

Water absorption (%) 1.44 1.67 7.65 

 

 

This result was due to the presence of larger pores in recycled coarse aggregate. 

Limbachiya et al. (2004) and Kikuchi et al. (1993) reported that water absorption of 

recycled coarse aggregate was between 3–5 times more than natural coarse aggregate, a 

result which was attributed to attached cement paste on recycled concrete aggregate. 

Natural sand had particle density of 2445kg/m³ and 2408kg/m³ at saturated surface dry 

(ssd) and oven dry state respectively with a water absorption of 1.67. 
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4.4 Particle size distribution (PSD) – Sieve Analysis 

4.4.1 Natural coarse aggregate 

The percentage passing of natural coarse aggregate through the standard sieve apertures 

(10mm and 5mm) was 87.4% and 13.9% respectively as shown in Table 16.  

According to BS-EN-12620 (2013) the coarse aggregate lies within the single-sized 

aggregate grading limits for 10mm. About 212.8g was retained in the sieve aperture 

2.36mm, which represent about 10.6% of the overall mass of the oven dry natural 

coarse aggregate sample used for the sieve analysis.  

 

Table 16: Sieve analysis for natural coarse aggregate   

 

Sieve size 

(mm) 

Mass 

Retained (g) 

Percentage 

retained (%) 

Percentage 

passing (%) 

Single-sized 

aggregate limits 

for 10mm 

14.00 0.00 0.00 100.0 100 

10.00 252.60 12.63 87.37 85-100 

5.00 1469.00 73.45 13.92 0-25 

2.36 212.80 10.64 3.28 0-5 

<2.36 65.60 3.28 0.00 
 

Total 2000 100 
  

 

The effective sizes (D10, D30, & D60), coefficient of gradation (Cc) and uniformity 

coefficient (Cu) were all determined from the particle-size distribution curve presented 

in figure 26. 
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Figure 21: Grading curve of natural coarse aggregate (Crushed gravel) 

 

 

From Figure 21, the effective sizes corresponding to 10%, 30%, and 60% percentage 

finer are D10 = 4.8mm, D30 = 6mm, D60 = 7.9mm respectively. The calculation of 

coefficient of gradation (Cc) and uniformity coefficient (Cu) are shown below using the 

values obtained from the effective sizes. 

i. Uniformity coefficient - CU = D60/D10 =  7.9/4.8 = 1.65 

ii.  Coefficient of gradation - CC = D30
2
/(D10xD60) =  6²/(4.8x7.9) = 0.95 

According to BS-EN-12620 (2013), the value of 1.65 obtained from the uniformity 

coefficient indicates that the natural coarse aggregate used for concrete work is well 

graded. 

 

4.4.2 Natural fine aggregate 

Table 20 reveals the result of sieve analysis conducted on fine aggregate. About 369g 

was retained in the 0.15mm sieve which represents about 36.9% of the total mass of the 
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oven dry sample used. Approximately, 74% of the  fine aggregate passed through the 

0.6mm sieve aperture. This value of percentage passing 0.6mm sieve aperture was used 

as the value for grading of fine aggregate in the concrete mix design in order to 

determine the proportion of fine aggregate content required in the concrete mix. 

According to BS-EN-12620 (2013), the fine aggregate used is acceptable for concrete 

because it is within the medium grading limits for 10mm. 

 
Table 17: Sieve analysis for fine aggregate 

 

Sieve size 

(mm) 

Mass 

Retained (g) 

Percentage 

retained (%) 

Percentage 

passing (%) 

Medium 

grading limits 

for 10mm 

5.00 35.20 3.52 96.48  

2.36 152.60 15.26 81.22 65-100 

1.18 45.00 4.50 76.72 45-90 

0.60 27.50 2.75 73.97 25-80 

0.30 270.00 27.00 46.97 5-48 

0.15 368.50 36.85 10.12 
 

<0.15 101.20 10.12 0.00  

Total 1000 100   

 

 

The effective sizes (D10, D30, & D60), coefficient of gradation (Cc) and uniformity 

coefficient (Cu) were all determined from the particle-size distribution curve presented 

in figure 27. 
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Figure 22. Grading curve of fine aggregate (sand) 

 

 

From figure 27, the effective sizes corresponding to 10%, 30%, and 60% percentage 

finer are D10 = 0.15mm, D30 = 0.22mm, D60 = 0.4mm respectively. The coefficient of 

gradation (Cc) and uniformity coefficient (Cu) are calculated using the values obtained 

from the effective sizes. 

i. Uniformity coefficient - CU = D60/D10 =  0.4/0.15 = 2.67 

ii.  Coefficient of gradation - CC = D30
2
/(D60xD10) =  0.22²/(0.15x0.4) = 0.81 

 

4.4.3 Recycled coarse aggregate 

The percentage of recycled aggregate passing through the standard sieve sizes (10mm, 

5mm, and 2.36mm) were 90.4%, 24.2% and 4.15% respectively as indicated in Table 

18.  This shows that the recycled coarse aggregate lies within the specified range of 

single-sized aggregate grading limits for 10mm in BS-EN-12620. Sieve size 5mm 
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retained the largest portion of the oven dry sample of about 1325g, which represents 

66.3% of the total mass of sieved recycled coarse aggregate sample. A comparison with 

the natural coarse aggregate indicate that the percentage retained in sieve sizes 10mm 

and 5mm were more in natural aggregate than recycled aggregate.  

 
Table 18: Result of sieve analysis for recycled coarse aggregate 

 

Sieve size 

(mm) 

 

Mass of Soil 

Retained (g) 

Percentage 

retained (%) 

Percentage 

passing (%) 

Single-sized 

agg. limits for 

10mm 

14.00 0.0 0.00 100.00 100.0 

10.00 192.00 9.60 90.40 85-100 

5.00 1325.00 66.25 24.15 0-25 

2.36 400.00 20.00 4.15 0-5 

<2.36 83.00 4.15 0.00 
 

Total 2000 100 
  

 
 

The effective sizes (D10, D30, & D60), coefficient of gradation (Cc) and uniformity 

coefficient (Cu) were all determined from the particle-size distribution curve presented 

in figure 23.  
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Figure 23. Grading curve of recycled coarse aggregate   
 

 

 

The effective sizes corresponding to 10%, 30%, and 60% percentage finer are D10 = 

3.3mm, D30 = 5.5mm, D60 = 7.5mm respectively. The calculations coefficient of 

gradation (Cc) and uniformity coefficient (Cu) are shown below using the values 

obtained from the effective sizes. 

 

i. Uniformity coefficient - CU = D60/D10 =  7.5/3.3 = 2.30 

ii. Coefficient of gradation - CC = D30
2
/(D10xD60) =  5.5²/(3.3x7.5) = 1.22 

The value of 2.3 obtained from the uniformity coefficient indicates that recycled coarse 

aggregate is well graded and even more than the natural coarse aggregate. 
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4.5 Slump test   

The results of workability test for each of the concrete mix incorporating 0%, 25%, 

50%, 75%, and 100% recycle coarse aggregate respectively are given in Table 22 with 

graphical representation in figure 29.  

 
Table 19: Result of slump test for Series 1-3 concrete mix 

 

RCA (%) 
Series 1                    

(0% F, 0% M) (mm) 
Series 2                  

(0.5% F, 0% M) (mm) 
Series 3                   

(0.11% F, 0% M) (mm) 

0 115 102 112 

25 95 78 91 

50 80 65 76 

75 75 61 71 

100 69 58 66 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

Result in series 1 (control mix) indicated that the highest slump value of 115mm was 

achieved at 0% recycled coarse aggregate content while the least slump of 69mm which 

represents 40% reduction was recorded at 100% recycled coarse aggregate content. 

Results from Series 2 and 3 follows similar trend recorded in Series 1. The effect of 

higher water absorption associated with recycled coarse aggregate was responsible for 

the outcome. Similar observations were also reported by Topcu and Şengel (2004) and 

Etxeberria et al. (2007a). However, results from Series 1-3 lies within the design mix 

slump specification of 60-180mm with the exception of Series 2 at 100% recycled  

coarse aggregate content.  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 24. Effect of recycled coarse aggregate on workability of concrete for different fibre 

contents 

 

A close comparison of the results across all the Series shows that workability decreases 

with increasing percentage content of recycled coarse aggregate in the concrete mix due 

to high rate of water absorption associated with recycled aggregate. This view was also 

corroborated by Zaidi (2009), Etxeberria et al. (2007a), and Patil et al. (2013). Figure 24 

illustrates the decreasing trend in workability in Series 1-3 with increasing recycled 

aggregate content. The slump value of concrete mix in Series 2 decreased because of 

higher fibre dosage (0.5%) which rendered the concrete mix less workable. This was 

due to the large surface area of synthetic macro fibre, which consumed certain 

percentage of mortar and twisted around the particles of aggregates. Ramakrishnan et al. 

(1989a), Tattersall and Banfill (1983) also observed that concrete mix with higher 

dosage of fibre  produced low workability due to interlocking of fibre and entrapped air.  
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Grace (2011), reported that synthetic macro fibres would consume some percentage of 

mortar due to the surface area and thus caused reduction in workability and creaminess 

of the concrete mix. The reduction in workability and dryness of recycled coarse 

aggregate, led to difficulty in compaction and surface finish of the concrete. The graph 

shows a wide gap between Series 1 and 2 due to the effect of more dosage rate of fibre 

with increasing percentage recycled aggregate content while the disparity between 

Series 1 and 3 is not much due to low fibre dosage rate. This confirms that the higher 

the fibre dosage the lower the workability and vice-versa. 

 

4.6 Density of concrete 

The results of fresh concrete density and 28 days hardened concrete cubes densities for 

each of the concrete mix incorporating 0%, 25%, 50%, 75%, and 100% recycled coarse 

aggregate respectively are given in Tables 20 and 21 while the variations with 

increasing recycled aggregate content in different concrete mixes are illustrated in 

Figures 25 and 26 respectively.  

 

Table 20: Fresh concrete density  

 

RCA (%) 
Series 1                    

(0% F, 0% M) (kg/m³) 
Series 2                  

(0.5% F, 0% M) (kg/m³) 
Series 3                   

(0.11% F, 0% M) (kg/m³) 

 

0 

 

2350 

 

2335 

 

2342 

 

25 

 

2327 

 

2303 

 

2318 

 

50 

 

2301 

 

2268 

 

2280 

 

75 

 

2285 

 

2241 

 

2268 

 

100 

 

2261 

 

2220 

 

2245 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 25: Variation in fresh concrete density with recycled coarse aggregate  

 

The graph indicates that the density of concrete decreases with increase in recycled 

coarse aggregate content. This is due to the porous and light weight nature of recycled 

coarse aggregate. Rao et.al., (2011) also reported similar trend in reduction of density 

with increase in recycled aggregate content in concrete mix and attributed the 

observation to light weight and porous nature of old cement adhered  to the recycled 

aggregate. Series 1 concrete mix without recycled aggregate produced the highest 

density while concrete mix in Series 2 with 0.5% synthetic macro fibre had the least 

fresh density. This could be attributed to the ability of fibre to entrain small amount of 

air due to the surface treatment in the cause of manufacturing.  
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Table 21: Density of hardened concrete cubes at 28-days 

 

RCA (%) 
Series 1                    

(0% F, 0% M) (kg/m³) 

Series 2                  

(0.5% F, 0% M) (kg/m³) 

Series 3                   

(0.11% F, 0% M) (kg/m³) 

0 
2396 2285 2310 

25 
2368 2267 2278 

50 
2342 2249 2260 

75 
2325 2218 2242 

100 
2301 2205 2223 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 26: Variation in 28-days hardened concrete cube density with recycled 

coarse aggregate 
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Similar to results of fresh density shown in Figure 25, the density of hardened concrete 

cube specimen decreases with increase in recycled coarse aggregate content. This 

observation is due to the porous and light weight of recycled coarse aggregate. Series 1 

concrete mix without recycled aggregate produced the highest density while concrete 

mix in Series 2 with 0.5% synthetic macro fibre had the least density. This could be 

attributed to the ability of fibre to entrain small amount of air due to the surface 

treatment in the cause of manufacturing. 

 

4.7 Compressive cube strength test 

Figures 27-31 illustrate the compressive cube strength results of each concrete mix in 

Series 1-3 at 1, 7, and 28-day curing age respectively at different recycled coarse 

aggregate content.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 
Figure 27.  Compressive cube strength at 0% recycled coarse aggregate content 
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Results from Series 1-3 illustrated in figure 28 produced the highest compressive cube 

strengths of about 54MPa, 50MPa, and 52MPa in series 1, 2, and 3 at 28-day curing age 

respectively. Although, the strength gained at 28-day curing age for concrete mix in 

Series 1-3 at 0% recycled coarse aggregate content exceeded the specified 28-day 

characteristic cube strength of 50MPa, none of these strength reached the target 

compressive cube strength of 63MPa. The results in Series 1 imply that concrete mix 

with no recycled coarse aggregate and synthetic macro fibre produced better results than 

Series 2 and 3 which incorporate recycled coarse aggregate and synthetic macro fibres 

respectively.  

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 28.  Compressive cube strength at 25%recycled coarse aggregate content 

 

 

This implies that the incorporation of 54mm Forta-Ferro synthetic macro fibre does not 

have any significant impact on the compressive cube strength of concrete owing to the 

fact that the 28-day compressive strength in Series 2 and 3 produced relative strength 
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reduction of about 7% and 3% respectively with reference to Series 1 concrete mix 

(control mix). Past researchers (Ramakrishnan et al. (1987); Surendra et al. (1978); 

Zollo (1984)) also corroborate this findings.  

 

The results of the impact of replacing natural coarse aggregate with 25% recycled 

coarse aggregate is illustrated in figure 28. The results indicated a less significant 

reduction in strength for Series 1, 2, and 3 respectively in comparison with results 

obtained with 0% recycled coarse aggregate content. However, when the natural coarse 

aggregate was replaced by 100% recycled coarse aggregate, results illustrated in figure 

34 shows that the strength reduction with reference to control concrete in Series 1, 2, 

and 3 concrete mix were 25.7%, 23.8%, and 24.2% respectively. 

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 29.  Compressive cube strength at 50% recycled coarse aggregate content 
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Figures 32 and 33 illustrate the results of compressive cube strength for concrete mixes 

in Series 1-3 at 50% and 75% recycled coarse aggregate content respectively. The 

reduction in compressive cube strength of concrete mixes incorporating 50% recycled 

coarse aggregate with reference to control mixes were 10.4%, 7.9%, and 4.6% 

respectively for Series 1, 2, and 3 respectively, while the corresponding reduction at 

75% recycled coarse aggregate content were 17.3%, 15.1%, and 16% respectively.  

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 30.  Compressive cube strength at 75% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 31.  Compressive cube strength at 100% recycled coarse aggregate content 

 

Overall, the compressive strength decreases with increasing recycled coarse aggregate 

(RCA) content in the concrete mix. This is evident in all the concrete mix incorporating 

recycled coarse aggregate as a substitute for conventional coarse aggregate. Similar 

observation were reported by several researchers (Frondistou-Yannas, 1977; Hansen, 

1986; Hansen and Boegh, 1985; Katz, 2003; Rakshvir and Barai, 2006; Eguchi et al., 

2007; Etxeberria, 2007; Domingo-Cabo et al., 2009; Marinković, 2010). Corinaldesi 

and Moriconi (2009) associated the reduction in compressive strength as recycled 

coarse aggregate content increased to the presence of weaker aggregate caused by 

higher porosity of recycled coarse aggregate than conventional coarse aggregate.  

 

Poon et al. (2004), identified about 24% reduction in compressive cube strength of 

concrete incorporating 100% recycled aggregate. Similar findings were reported by 
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Adnan et al. (2011) while Kumutha and Vijai (2008) explained that concrete with 

higher recycled coarse aggregate produced lower compressive strengths when compared 

with concrete containing less quantity of recycled aggregate. Figures 32 – 36 show 

various failure patterns of concrete cubes observed during compressive cube strength 

test.  

 

                                  
 

(a) Series 1 (0% F, 0% M)                                              (b) Series 2 (0.5% F, 0% M) 

 

 

 

 

 
 

(c) Series 3 (0.11% F, 0% M) 

 

 

 

 

Figure 32.  Failure patterns of cube specimens at 28-day compression test (0% RCA)  
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(a) Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 

 

 

 

 

 

 

 

 

 

 
 

(c) Series 3 (0.11% F, 0% M) 
 
 

 

 
 

 

 
 

 

 

 
Figure 33.  Failure patterns of cube specimens at 28-day compression test (25% RCA) 
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(a) Series 1 (0% F, 0% M)                                       (b) Series 2 (0.5% F, 0% M) 

 
 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
(c) Series 3 (0.11% F, 0% M) 

 

 

 

 

 

 
Figure 34.  Failure patterns of cube specimens at 28-day compression test (50% RCA) 
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(a) Series 1 (0% F, 0% M)                                      (b) Series 2 (0.5% F, 0% M) 

 
 

 

 
 

 

 
 

 
 

 

 
 

(c) Series 3 (0.11% F, 0% M) 

 

 

 

 

 

 

 

 
Figure 35.  Failure patterns of cube specimens at 28-day compression test (75% RCA) 
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(a) Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

(d)  Series 3 (0.11% F, 0% M) 

 

 

 

 

 

 

 

Figure 36.  Failure patterns of cube specimens at 28-days compression test (100% RCA) 
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4.8 Flexural strength test  

The flexural strength of concrete mixes in Series 1-3 at 1, 7, and 28-day curing age are 

illustrated in figures 37 - 41 respectively.  

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 
Figure 37.  Flexural strength at 0% recycled coarse aggregate content 

 

 

 

The flexural strength results of concrete mixes in Series 1 (control) illustrated in figure 

50 without any fibre dosage reduced considerably when compared with the 

corresponding mixes in Series 2 and 3 respectively. Concrete mixes in Series 3 with 

higher dosage rate of synthetic macro fibre produced better result than concrete mixes in 

Series 2 with lower fibre dosage rate. However, with reference to the control mix in 

Series 1, concrete mixes in Series 2 and 3 improved the flexural strength more due to 

the bridging capability and ductile behaviour of synthetic macro fibre which minimised 

the process of initiating cracks prior to failure.  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 38.  Flexural strength at 25% recycled coarse aggregate content 

 
 

The effect of substitution of natural coarse aggregate with 25% recycled coarse 

aggregate illustrated in figure 51 above indicate less significant reduction in strength at 

28-day curing age with reference to control mix. However, results of flexural strength at 

100% recycled coarse aggregate substitution, produced significant reduction of about 

51% and 54% at 28-day curing age in Series 2 and 3 respectively. This observation 

agreed with the findings by Kumutha and Vijai (2008).  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 39.  Flexural strength at 50% recycled coarse aggregate content 

 

 

Similar trend in flexural strength reduction occurred at 50% (figure 39) and 75% (figure 

40) recycled aggregate content in concrete mixes in Series 1, 2, and 3 respectively. The 

relative flexural strength reduction at 50% recycled coarse aggregate content in 

comparison with the corresponding mixes in Series 1, 2, and 3 (control mix) were 

64.2%, 56.8%, and 63.6% respectively while these reductions at 75% substitution were 

71.7%, 57.4%, and 70% respectively. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 40.  Flexural strength at 75% recycled coarse aggregate content 

 

 

     
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

Figure 41.  Flexural strength at 100% recycled coarse aggregate content 
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    Bagherzadeh et al. (2012b), recorded significant increase in flexural strength of 

concrete incorporating fibre and attributed the result to the ability of fibre to 

accommodate ductility on the specimen before failure occurred. Generally, the flexural 

strength shows a reduction with increasing percentage content of recycled coarse 

aggregate. Various patterns of failure of concrete prisms identified during flexural 

strength test are shown in figures 42.  

 

 
      

(a) Series 1 (0% F, 0% M)           
 

 

(b)  Series 2 (0.5% F, 0% M) 
 

 

 
 

(c) Series 2 (0.5% F, 0% M) 

 
Figure 42.  Failure patterns of prism specimens at 28-days flexural test (100% RCA) 
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4.9 Correlations between Flexural strength and compressive strength 

The comparison of actual results of compressive and flexural strength obtained from the 

experiment against the empirical values obtained from predictive equations given in  

EC-2 and ACI-318M are given in Table 22 and Figure 43 respectively. 

Table 22: Experimental and predictive flexural strength -Series 1 (0% F, 0% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength (MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 53.86 43.09 6.50 4.07 7.10 

25 50.06 40.05 6.19 3.92 5.80 

50 47.26 37.81 5.96 3.81 4.55 

75 44.53 35.62 5.73 3.70 4.00 

100 41.00 32.80 5.42 3.55 3.12 

 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 43.  Relationship between Flexural strength and compressive strength 
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It was observed that EC-2 slightly underestimate the flexural strength of concrete mix 

without recycled coarse aggregate, fibre and microsilica. However, a slight over-

estimation was recorded for the mix incorporating 25%, 50%, 75%, and 100% recycled 

coarse aggregate respectively. On the other hand, ACI slightly underestimate the 

flexural strength of all the concrete mixes with the exception of the mix incorporating 

100% recycled coarse aggregate. The relationship between flexural strength and 

compressive strength was assessed in order to ascertain the nature of their correlation. 

Initial assessment indicate that a linear relationship exists between flexural and 

compressive strength, whereas a close examination indicated an exponential relationship 

fct,fl = 0.22e
0.06fck  

with a correlation coefficient R² = 0.99. Table 23 show the result of 

comparison of compressive and flexural strength obtained from the experiment against 

the empirical values obtained from predictive equations given in  EC-2 and ACI-318M, 

while Figure 46 depicts the relationship between flexural and compressive strength as 

exponential fct,fl = 0.85e
0.04fck  

with a correlation coefficient R² = 0.98. 

 
Table 23: Experimental and predictive flexural strength-Series 2 (0.5% F, 0% M) 

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 51.53 41.22 6.31 3.98 8.70 

25 48.13 38.50 6.03 3.85 7.10 

50 44.10 35.28 5.69 3.68 5.84 

75 40.20 32.16 5.35 3.52 4.91 

100 36.10 28.88 4.97 3.33 4.40 
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F --- Fibre, M --- Microsilica 

 

Figure 44.  Relationship between Flexural strength and compressive strength  

 

It was observed that EC-2 underestimate the flexural strength of concrete mix with 0%, 

25%, and 50%  recycled coarse aggregate respectively while concrete mix with 75% 

and 100% recycled aggregate content were overestimated respectively. ACI 

significantly underestimate all the flexural strength of concrete mixes in Series 2. 

 

Results from Table 23 show that, the experimental flexural strength of concrete mixes 

with 0% and 25% recycled aggregate are higher than the predictive value obtained from 

EC-2 while the flexural strength of mixes with 50%, 75%, and 100% recycled aggregate 

were overestimated by EC-2 respectively. Predictive equation from ACI significantly 

underestimate the flexural strength of all the mixes in Series 3. The relationship 

between flexural and compressive strength assume an exponential relationship fct,fl = 

0.42e
0.06fck  

with a correlation coefficient R² = 0.97. 
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Table 24: Experimental and predictive flexural strength-Series 3 (0.11% F, 0% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 52.40 41.92 6.39 4.01 7.63 

25 48.90 39.12 6.10 3.88 6.35 

50 45.80 36.64 5.83 3.75 4.81 

75 43.00 34.40 5.59 3.64 4.38 

100 38.70 30.96 5.21 3.45 3.66 

 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 45.  Relationship between Flexural strength and compressive strength 
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4.10 Tensile splitting strength test 

Results of average indirect tensile splitting strength at 1, 7, and 28-day curing age for 

Series 1, 2, and 3 concrete mixes are illustrated in figures 46-50 respectively.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 46.  Tensile splitting strength at 0% recycled coarse aggregate content 

 
 

Results of tensile splitting strength from figure 58 above indicate that concrete mixes in 

Series 2 with higher synthetic macro fibre dosage produced better results than concrete 

mixes in Series 1 and 3 respectively. The 28-day relative strength of Series 2 concrete 

mix were 15.9% and 20.8% of the corresponding mixes in Series 1 and 3 respectively. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 47.  Tensile splitting strength at 25% recycled coarse aggregate content 

 

 

Figure 47 illustrates the tensile spliting strength results of concrete mix in Series 1,2, 

and 3 respectively  with 25% recycled coarse aggregate content. The plots shows that 

Series 2 concrete mix at 28-day curing age had tensile splitting strength of about 31.5% 

and 24.4% more than the corresponding mix in Series 1 and 3 respectively. However, 

the Series 2 concrete mix which incorporates lower dosage of synthetic macro fibre, 

gained about 5.7% more tensile splitting strength than Series 1 mix at 28-day uring age . 

This was due to the incorporation of smaller volume of fibre in the concrete mix 

compared with Series 3 concrete mix.   
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 48.  Tensile splitting strength at 50% recycled coarse aggregate content 

 

 

 

Results of tensile splitting strength of concrete mix incorporating 50% recycled 

aggregate content is illustrated in figure 48. It was observed that Series 2 concrete mix 

produced tensile strength result of about 48% and 35% higher than the corresponding 

mixes in Series 1 and 3 respectively at 28-day curing age, while Series 3 had about 

9.4% more tensile strength than Series 1 mix. These results imply that the effect of 

increasing recycled coarse aggregate content is obvious compared with relative strength 

difference in figure 53. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 49.  Tensile splitting strength at 75% recycled coarse aggregate content 

 
 

Figure 49 illustrates the results of tensile spliting strength for concrete mix in Series 1,2, 

and 3 respectively  with 75% recycled coarse aggregate content. Series 2 concrete mix 

at 28-day curing age had tensile splitting strength of about 84.5% and 62% more than 

the corresponding mix in Series 1 and 3 respectively. The results reflects the impact of 

increasing recycled coarse aggregate in the concrete mix and the influence of synthetic 

macro fibre addition.    
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 50.  Tensile splitting strength at 100% recycled coarse aggregate content 

 

 

The tensile splitting strength results for concrete mix in Series 1, 2, and 3 at 1, 7, and 

28-day curing age is illustrated in figure 50 above. The relative increase in tensile 

splitting strength in Series 2 compared to corresponding concrete mix in Series 1 and 3 

respectively at 28-day were 86.1% and 69.8% respectively. This indicate a wide 

disparity at 100% recycled coarse aggregate content.  

Generally, the results show that tensile splitting strength decreased with increase in 

percentage content of recycle aggregate. This observation corroborates the strength 

reduction pattern  reported by Evangelista and De Brito (2007) which was attributed to 

the porous nature of the recycled aggregate. The incorporation of higher dosage of 

synthetic macro fibre improved the 28-day tensile splitting strength of concrete mixes in 

Series 2 at different percentage substitution of recycled coarse aggregate with reference 

to the corresponding concrete mix in Series 1. This increase in Series 2 concrete mixes 

was due to the bridging capability of fibre in absorbing energy in the concrete thereby 
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reducing the tendency of early cracks initiation. The disparity between Series 2 and 

other Series was significant under tensile splitting strength test compared with flexural 

strength test. This trend agreed with reported findings by Bagherzadeh et al. (2012b). 

Various failure patterns of concrete cylinders obtained from tensile splitting test are 

displayed in figures 63-66. 

                    

 
(a) Series 1 (0% F, 0% M)                                                   (b)  Series 2 (0.5% F, 0% M)    

 
 

 

 

 

(c)  Series 3 (0% F, 0% M)    

 

Figure 51.    Failure patterns of cylinder specimens at 28-days flexural test (0% RCA) 



106 

 

4.11 Correlations between Tensile splitting strength and compressive strength 

The comparison of actual results of compressive and tensile splitting strength obtained 

from the experiment against the empirical values obtained from predictive equations 

given in  EC-2 and ACI-318M are given in Table 25 and figure 52 respectively. 

Table 25: : Experimental and predictive tensile splitting strength -Series 1 (0% F, 0% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting 

strength  

Experimental  

Tensile 

splitting 

strength (MPa) fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.30fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.56√fck’} 

 

0 53.86 43.09 4.34 3.68 3.32 

25 50.06 40.05 4.13 3.54 2.98 

50 47.26 37.81 3.97 3.44 2.54 

75 44.53 35.62 3.82 3.34 2.21 

100 41.00 32.80 3.61 3.21 1.87 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 52.  Relationship between Tensile splitting strength and compressive strength  
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It was observed that EC-2 and ACI slighty overestimate the flexural strength of all the 

concrete mixes in Series 1 without fibre and microsilica. An exponential relationship 

fct,sp = 0.29e
0.05fck  

with a correlation coefficient R² = 0.99 exists between tensile 

splitting strength and compressive strength. 

 

Table 26 show the result of comparison of compressive and tensile splitting strength 

obtained from the experiment against the empirical values obtained from predictive 

equations given in  EC-2 and ACI-318M, while Figure 53 depicts the relationship as 

exponential fct,sp = 2.46e
0.01fck  

with a correlation coefficient R² = 0.94 

 

Table 26: Experimental and predictive tensile splitting strength -Series 2(0.5% F, 0% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting   

strength 

Experimental  

Tensile splitting 

strength (MPa) 
fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,sp = 

0.45fck
(2/3)

} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 51.53 41.22 4.21 3.60 4.01 

25 48.13 38.50 4.02 3.47 3.92 

50 44.10 35.28 3.79 3.33 3.76 

75 40.20 32.16 3.56 3.18 3.71 

100 36.10 28.88 3.32 3.01 3.42 
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F --- Fibre, M --- Microsilica 

 

Figure 53.  Relationship between Tensile splitting strength and compressive strength  

 

EC-2 overestimate the tensile splitting strength of concrete mixes in Series 2 with 0%, 

25%, and 50% recycled coarse aggregate content respectively while mixes with 75% 

and 100% recycled aggregate content were underestimared. On the other hand, ACI 

underestimate the tensile splitting strength of all the concrete mixes in Series 2. 

 

Table 27 show the result of comparison of compressive and tensile splitting strength 

obtained from the experiment against the empirical values obtained from predictive 

equations given in  EC-2 and ACI-318M, while Figure 54 depicts the relationship as 

exponential fct,sp = 0.35e
0.04fck  

with a correlation coefficient R² = 0.98. It was observed 

that both EC-2 and ACI overestimate the flexural strength of all the concrete mixes in Series 3. 
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Table 27: Experimental and predictive tensile splitting strength-Series 3(0.11% F, 0% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 52.40 41.92 4.26 3.63 3.46 

25 48.90 39.12 4.06 3.50 3.15 

50 45.80 36.64 3.89 3.39 2.58 

75 43.00 34.40 3.73 3.28 2.25 

100 38.70 30.96 3.47 3.12 1.95 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 54.  Relationship between Tensile splitting strength and compressive strength 
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4.12 Static Modulus of Elasticity  

Results of 28-day static modulus of elasticity for concrete mixes in Series 1-3 are given 

in Table 28 and are illustrated in Figure 65 respectively.   

Table 28: Result of 28-day static modulus of elasticity 
 

RCA 

(%) 

Series 1  (0% Fibre, 

0% Micro silica) 

Series 2  (0.5% Fibre, 

0% Micro silica) 

Series 3  (0.11% Fibre, 

0% Micro silica) 

0 20.35 22.79 21.27 

25 13.66 16.91 15.13 

50 13.10 15.25 14.51 

75 12.43 14.38 13.37 

100 10.33 12.74 11.39 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

  
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 55.  28-day static modulus of elasticity 
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Results in Series 2 and 3 respectively, which incorporate synthetic macro fibre, indicate 

more improvement in elastic modulus of concrete compared with corresponding mix in 

Series 1 at various recycled coarse aggregate content. This implies that synthetic macro 

fibre played a very important role in enhancing the concrete to absorb more energy 

which subsequently result in reduction of strain during loading and unloading of the 

concrete cylinders.  Series 2 concrete mix also produced higher results of about  12% 

and 7.1% more than the corresponding mixes in Series 1 and 3 respectively at 0% 

recycled coarse aggregate content. 

 

The relative increase in modulus of elasticity of Series 2 concrete mix at 25% recycled 

coarse aggregate content  with reference to Series 1 and 3 were 23.8% and 11.8% 

respectively. Similarly, the elastic modulus of Series 2 concrete mix at 50% recycled 

coarse aggregate content relative to Series 1 and 3 concrete mix were 16.4% and 5.1% 

respectively, while 75% recycled coarse aggregate substitution in Series 2 concrete mix 

produced 15.7% and 7.8% increase in static modulus of elasticity in comparison with 

Series 1 and 3 respectively. Elastic modulus of concrete mix in Series 2 were 23.3% and 

11.9% more than the elastic modulus recorded for concrete mix in Series 1 and 3 

respectively. The overall modulus of elasticity results indicate a decreasing pattern of 

modulus of elasticity when the recycled coarse aggregate content increased, and this 

was attributed to the lower modulus of elasticity of recycled coarse aggregate compared 

to natural coarse aggregate. The elastic modulus of concrete mix containing 100% 

recycled coarse aggregate reduced significantly with respect to the control concrete mix 

and these relative reductions were 49.2%, 44.1%, and 46.4% respectively corresponding 

to Series 1, 2, and 3 respectively. Berndt (2009b), identified a reduction in elastic 
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modulus with increasing replacement of natural coarse aggregate by recycled coarse 

aggregate. Xiao et al. (2005b) reported reduction of about 45%, while Frondistou-

Yannas (1977) suggested approximately 40% decrease in elastic modulus with 100% 

recycled coarse aggregate content.  

 

4.13 Correlations between static elastic modulus and compressive strength 

The comparison of actual results of compressive strength and elastic modulus obtained 

from the experiment against the empirical values obtained from predictive equations 

given in  EC-2 and ACI-318M are given in Tables 29,  30, and 31,  and figures 56, 57, 

and 58 for Series 1, 2, and 3 conrete mixes respectively. 

 
Table 29: Experimental and predictive modulus of elasticity- Series 1 (0% F, 0% M) 

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22[fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 0.5
} 

0 53.86 43.09 36.46 30.85 17.25 

25 50.06 40.05 35.67 29.74 13.66 

50 47.26 37.81 35.06 28.90 13.10 

75 44.53 35.62 34.44 28.05 12.43 

100 41.00 32.80 33.59 26.92 10.33 
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F --- Fibre, M --- Microsilica 

 

Figure 56.  Relationship between elastic modulus and compressive strength 

 

Table 30: Experimental and predictive modulus of elasticity -Series 2 (0.5% F, 0% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 0.5
} 

0 51.53 41.22 35.98 30.18 22.79 

25 48.13 38.50 35.25 29.16 16.91 

50 44.10 35.28 34.34 27.92 15.25 

75 40.20 32.16 33.40 26.65 14.38 

100 36.10 28.88 32.34 25.26 12.74 
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F --- Fibre, M --- Microsilica 

 

Figure 57.  Relationship between elastic modulus and compressive strength 

 

Table 31: Experimental and predictive modulus of elasticity-Series 3 (0.11% F, 0% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{Ec =4.7(fc’)

 0.5
} 

0 52.40 41.92 36.16 30.43 21.27 

25 48.90 39.12 35.42 29.40 15.13 

50 45.80 36.64 34.73 28.45 14.51 

75 43.00 34.40 34.08 27.57 13.37 

100 38.70 30.96 33.02 26.15 11.39 
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F --- Fibre, M --- Microsilica 

 

Figure 58.  Flexural strength at 75% recycled coarse aggregate content 

 

It was observed that the results obtained from the experiment were lower than the values 

obtained from the empirical equations. EC-2 and ACI significantly overestimate the 

modulus of elasticity of all the concrete mixes in Series 1and these values doubles the 

actual values obtained experimentally. These differences can be linked to the empirical 

nature of the predictive equations. The equations were based on normal strength 

concrete without recycled aggregate and fibre inclusion and therefore it is very unlikely 

that the predictions will be suitable for recycled aggregate concrete incorporating fibre 

and microsilica. Since the elastic modulus of concrete is a function of the aggregate, 

cement paste and other constituents, it is expected that the substitution of natural coarse 

aggregate with recycled coarse aggregate will have impact on the elastic modulus of 

concrete made from such composition. 
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The relationship between modulus of elasticity and compressive strength followed a 

power regression equation as shown in figures 56, 57, and 58.  

The following equations obtained from the regression analysis and their respective 

coefficient of correlation can be used to predict elastic modulus of concrete for Series1, 

2, and 3 concrete mixes respectively. 

Ec = 0.02fck
1.7

    (R² = 0.94)   ------------------ Series 1 (0% Fibre, 0% Microsilica) 

Ec = 0.07fck
1.4

     (R² = 0.86)   ----------------- Series 2 (0.5% Fibre, 0% Microsilica) 

Ec = 0.01fck
1.8

     (R² = 0.88)   ----------------- Series 3 (0.11% Fibre, 0% Microsilica) 

 

4.14 Summary of findings 

The conclusions from this experimental work are; 

1) Recycled coarse aggregate has higher water absorption rate and lower particle 

density than natural coarse aggregate; 

2) Results from the particle size distribution (Sieving method) show that natural fine 

aggregate, natural coarse aggregate and recycled coarse aggregate used in this 

research work are within the acceptable limits for concrete according to BS-EN-

12620:2013. 

3) There were significant reductions in physical and mechanical characteristics of fibre 

reinforced recycled aggregate concrete as percentage content of recycled coarse 

aggregate increased; 

4) The incorporation of synthetic macro fibre had little or no significant impact on 

compressive strength of recycled aggregate concrete in all the mixes in Series 1-3 

but led to a marked increase flexural strength, tensile splitting strength and static 

modulus of elasticity respectively; 
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5) The modulus of elasticity of the mixes in Series 1-3 fall below the theoretical value 

of 35 GPa given in Table 3.1 of BS-EN 1992-1-1:2004 for 28-day characterstics 

compressive cube strength of 50MPa  . 
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5 EFFECT OF MICROSILICA AND SYNTHETIC MACRO FIBRE ON 

RECYCLED AGGREGATE CONCRETE 

5.1 Introduction 

This chapter describes details of another objective of this research work which is to 

evaluate the effect of addition of mineral admixture (microsilica) on both physical and 

engineering properties of fibre reinforced concrete produced in Phase one of the 

laboratory experiments already discussed in chapter four. After Phase one experiments, 

Phase two concrete mix design also followed the conventional UK mix design method 

(BRE, 1997), ‘design of normal concrete mix manual’. It consists of five concrete 

batches incorporating 5% microsilica as an addition to cement and due to the 

observation from Phase one with respect to the insignificant impact of 54mm synthetic 

macro fibre dosage on compressive strength, the mix under Phase two only incorporates 

1kg/m³ (0.11%) synthetic macro fibre as shown in Table 32.  

 

Table 32: Concrete mix details – series 4 (0.11% Fibre, 5% microsilica) 

 

Recycle Aggregate by weight of 

coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³)                              
583 583 583 583 583 

Sand (kg/m³)                                   
603 603 603 603 603 

Gravel (kg/m³)                                
904 678 452 226 0 

RCA. (kg/m³)                                      
0 226 452 678 904 

Water (kg/m³)                                    
230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 
1 1 1 1 1 

Microsilica (kg/m³) - 5% by 

weight of cement 
29.2 29.2 29.2 29.2 29.2 

Superplasticiser by weight of 

cement (kg/m³) 
2.33 2.33 2.33 3.50 3.50 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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The percentage substitution of natural coarse aggregate by recycled coarse aggregate in 

the concrete mix and other specified parameters such as the 28-day characteristics 

compressive cube strength, target mean compressive cube strength, workability and 

free-water/cement ratio remain the same as in Phase one. In order to maintain a similar 

consistency level as specified in the design mix, a high range superplasticiser 

(Alphaflow 420), which is a modified synthetic carboxylated polymer was selected as 

chemical admixture. The superplasticiser was mixed with water at various percentage 

on trial and error basis until two percentages (0.4% and 0.6%) by weight of cement 

were established according to the percentage replacement of natural aggregate by 

recycled coarse aggregate.  

The objective of phase two experiment was to compare the results obtained against the 

results already recorded in chapter 4 in order to evaluate the effect of microsilica 

addition on fibre reinforced concrete with partial and full replacement of natural coarse 

aggregate by recycled coarse aggregate. A total of one hundred and sixty five (165) 

concrete samples were investigated respectively and these consists of 12 standard cubes 

of 100 x 100 x 100 mm, 12 standard cylinders of 100 mm diameter and 200 mm high,  9 

standard prisms of 100 x 100 x 500 mm for each concrete mix in Series 4. The results, 

discussion and summary of findings obtained from fresh concrete sample testing 

(slump) and hardened concrete sample testing (compressive strength test, flexural 

strength test, tensile splitting strength test, static modulus of elasticity, and water 

permeability (Autoclam) are described respectively under this chapter. 

The conclusions from chapter four were; 

1) Significant reductions in physical and mechanical characteristics of fibre reinforced 

recycled aggregate concrete as percentage content of recycled coarse aggregate  
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increased and at higher dosage rate of synthetic macro fibre; 

2) The inclusion of 54mm synthetic macro fibre in all the mixes in Series 1-3 produced 

an insignificant impact on compressive strength of recycled aggregate concrete 

whereas it improves the flexural strength, tensile splitting strength and static 

modulus of elasticity respectively. 

 

5.2 Slump test   

The results of workability test for each of the concrete mix incorporating 0%, 25%, 

50%, 75%, and 100% recycle coarse aggregate respectively is given in Table 33.  

 
Table 33: Result of slump test for Series 1- 4 concrete mix 

 

RCA 

(%) 

Series 1        

(0% F, 0% M) 

(mm) 

Series 2        

(0% F, 0% M) 

(mm) 

Series 3      

(0.11% F, 0% 

M) (mm) 

Series 4      

(0.11% F, 5% M) 

(mm) 

0 115 102 112 108 

25 95 78 91 85 

50 80 65 76 72 

75 75 61 71 67 

100 69 58 66 63 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

Results of Series 1-3 concrete mix have been reported and discussed in chapter 4 and 

the comparison of these results with the concrete mix incorporating 5% microsilica 

addition will be discussed. From the laboratory observation, concrete mixes in Series 4 

prior to addition of superplasticiser had very low workability in comparison with other 
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concrete mix in Series 1-3. This reduction emanated from the increase in water demand 

due to the very large surface area of microsilica particles required to be wetted from the 

free-water. This rendered the concrete less workable while the increasing content of 

recycled coarse aggregate also affected the workability. However, the incorporation of 

superplasticiser mitigated this impediment in order to keep the initial specified 

workability target between 60 and 180 mm and maintaining a constant low water-

cement ratio. Results of various slump tests for concrete mixes in Series 4 lie within the 

target initial workability. The incorporation of microsilica in the mix significantly 

affects the characteristics of fresh concrete due to the strong cohesiveness of the 

concrete mix which result in very little bleeding or absence of bleeding in the concrete 

mix.  

 

The slump results indicate that the maximum value of 108 mm was measured at 0% 

recycled coarse aggregate content while the minimum value of 63 mm, which represents 

about 42% relative reduction from the maximum value in Series 4 was obtained at 

100% recycled coarse aggregate content. Similar results were recorded in Series 1, 2, 

and 3 respectively. Mazloom et al. (2004), reported similar reductions in workability of 

concrete incorporated with microsilica. Results show that Series 4 concrete mixes 

incorporating microsilica required higher dosages of superplasticiser in order to reach 

the initial slump target due to the very fine particle size of micro silica. A careful 

comparison of these results across the concrete mixes indicated that workability 

decreases as the percentage content of recycled coarse aggregate increases due to higher 

rate of water absorption associated with recycled aggregate. This view was shared by 

other researchers (Etxeberria et al. (2007a); Zaidi (2009); Patil et al. (2013)). Figure 59 

illustrates the relationship between concrete workability and recycled coarse aggregate 
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content in the mix showing the decreasing trend in workability from Series 1-4 

respectively.  

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 59. Decreasing pattern in slump with increasing recycled aggregate content 

 

5.3 Density of Concrete 

The results of fresh concrete density and hardened concrete cube density recorded for 

each of the concrete mix incorporating 0%, 25%, 50%, 75%, and 100% recycle coarse 

aggregate respectively in Series 1 - 4 are given in Tables 34 and 35 with graphical 

representation in figures 60 and 61 respectively. Series 4 concrete mixes incorporating 

5% microsilica and 0.11% synthetic macro fibre produced concrete densities which are 

more than densities recorded in Series 1, 2, and 3 respectively. This observation is due 

to the action of microsilica which densified the concrete. This also reduces the effect of 

the fibre compared with Series 3 which has high fibre volume with entrained air, 

thereby preventing full compaction. 
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Table 34: Result of fresh density recorded for Series 1-4 concrete mix 

 
 

RCA 
(%) 

Series 1      
(0% F, 0% M) 

(kg/m³) 

Series 2         
(0.5% F, 0% M) 

(kg/m³) 

Series 3                 
(0.11% F, 0% M) 

(kg/m³) 

 

Series 4        
(0.11% F,  5% M)               

(kg/m³) 

 

0 

 

2350 

 

2335 

 

2342 

 

2363 

 

25 

 

2327 

 

2303 

 

2318 

 

2340 

 

50 

 

2301 

 

2268 

 

2280 

 

2318 

 

75 

 

2285 

 

2241 

 

2268 

 

2301 

 

100 

 

2261 

 

2220 

 

2245 

 

2279 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 
 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 60: Variation in fresh concrete density with recycled coarse aggregate 

contents 
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Table 35: Result of hardened concrete cube density for Series 1-4 concrete mix 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 
 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 61. Variation in 28-days hardened concrete cube density with recycled 

coarse aggregate contents 

 

RCA 
(%) 

Series 1      
(0% F, 0% M) 

(kg/m³) 

Series 2         
(0.5% F, 0% M) 

(kg/m³) 

Series 3                 
(0.11% F, 0% M) 

(kg/m³) 

 

Series 4        
(0.11% F,  5% M)               

(kg/m³) 

 

0 
2325 2285 2310 

2337 

 

25 
2295 2267 2278 2317 

 

50 
2272 2249 2260 2298 

 

75 
2258 2218 2242 2274 

 

100 
2240 2205 2223 2257 
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5.4 Compressive cube strength test 

Figures 62-66 illustrates the compressive cube strength of each concrete mix in Series 

1-4 at 1, 7, and 28-day curing age respectively with various recycled coarse aggregate 

content between 0-100% at 25% interval. Results of Series 1-3 concrete mixes was 

discussed in chapter 4 while further discussion would focus on comparison of results 

obtained from Series 4 and Series 1-3 concrete mixes respectively. 

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 62.  Compressive cube strength at 0% recycled coarse aggregate content 

 
 

Results from Series 1-4 illustrated in figure 62 above produced the highest compressive 

cube strengths of about 54MPa, 50MPa, 52MPa, and 71MPa in series 1, 2, 3 and 4 at 

28-day curing age respectively. The plot shows that only the concrete mix in Series 4 

had 28-day compressive cube strength exceeding the specified 28-day characteristic 

cube strength of 50MPa and target compressive cube strength of 63MPa. The relative 
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compressive cube strength gained by concrete mix in Series 4 with reference to the 

corresponding mixes in Series 1, 2, and 3 were 32.1%, 38.1%, and 35.8% respectively. 

  This implies that Series 4 concrete mix incorporated with microsilica produced the 

best results. The immense contribution of microsilica in strength development of 

concrete mix in Series 4 could be linked with microsilica’s action as a micro filler due 

to the extreme fineness of the particles ( about 100 times smaller than cement particles 

which improved the parking arrangement of the particles and the interfacial zone 

between the aggregate and cement paste. The pozzolanic action of microsilica with 

calcium hydroxide also enhanced the early age strength development of concrete mix in 

Series 4. 

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 63.  Compressive cube strength at 25% recycled coarse aggregate content 

 

 

Figure 63 illustrate the results of  1, 7, and 28-day compressive cube strength of 

concrete mixes in Series 1-4 at 25% recycled coarse aggregate content. The plot shows 
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that Series 4 concrete mix had 28-day compressive cube strength increase of about 

36.6%, 42.1%, and 39.9% respectively which correspond to 28-day compressive cube 

strength of concrete mixes in Series 1, 2 and 3 respectively. The 28-day compressive 

cube strength of Series 4 concrete mix exceed the specified characteristics compressive 

cube strength of 50MPa at 28-day and target mean strength of 63MPa respectively 

whereas Series 1-3 fell below these. This implies that the influence of 25% recycled 

coarse aggregate content has little or no significant on Series 4 mix. 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 64.  Compressive cube strength at 50% recycled coarse aggregate content 

 
 

Figures 64 and 65 illustrate the results of 1, 7, and 28-day compressive cube strength for 

concrete mixes in Series 1-4 at 50% and 75% recycled coarse aggregate content 

respectively. The increase in 28-day compressive cube strength of concrete mixes in 

Series 4 were 34.2%, 43.8%, and 38.4% respectively relative to the 28-day compressive 

cube strength of concrete mixes in Series 1, 2 and 3 respectively. Similar strength 
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increase in Series 4 concrete mixes of about 25.5%, 39.1%, and 30% with reference to 

Series 1, 2, and 3 respectively were recorded at 75% recycled coarse aggregate content.   

The 28-day compressive cube strength of Series 4 concrete mix at 50% recycled coarse 

aggregate content exceeded the specified 28-day characteristics compressive cube 

strength of 50MPa and target mean strength of 63.1MPa while at 75% recycled 

aggregate content, the compressive strength only exceed the 28-day characteristics 

strength but fell below the target mean compressive strength. This implies that the 

 impact of 50%  recycled coarse aggregate was insignificant in Series 4 concrete mix. 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 65.  Compressive cube strength at 75% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 66.  Compressive cube strength at 100% recycled coarse aggregate content 

 

Results of 1, 7, and 28-day compressive cube strength with substitution of natural 

coarse aggregate by 100% recycled coarse aggregate illustrated in figure 66 shows that 

the strength increase in Series 4 concrete mixes with reference to concrete mixes in 

Series 1, 2, and 3 were 31.5%, 49.3%, and 39.3% respectively. The 28-day compressive 

cube strength of Series 4 concrete mix at 100% recycled coarse aggregate content also 

exceed the specified 28-day characteristics compressive cube strength of 50MPa but fell 

below the target mean compressive strength of 63.1MPa. This implies that the impact of 

100% recycled coarse aggregate is slightly significant in Series 4 concrete mix, however 

the result is much better than Series 1-3 concrete mixes. The general implication of 

these results is that for a given recycled coarse aggregate content, the addition of 5% 

microsilica significantly improved the compressive cube strength at 1, 7, and 28-day 

curing age respectively. Verma et al. (2012), reported an increase of more than 25% in 
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compressive strength when microsilica was incorporated into concrete mix. The 

strength increase emanated from the reaction between the fine particles of microsilica 

and the lime content in cement, which led to reduction in voids in the concrete. 

Alhozaimy et al. (1996), mentioned that microsilica increased the compressive strength 

by 17% of the control concrete and 23% of concrete incorporated with fibre. 

 

Although microsilica addition produced higher compressive strength, it is worthwhile to 

mention that there was a general reduction in compressive strength as the recycled 

coarse aggregate content in Series 4 concrete mix increases. Corinaldesi and Moriconi 

(2009), corroborated this findings and both authors attributed the results to higher 

porosity that weakened the recycled coarse aggregate. Poon et al. (2004), identified 

about 24% reduction in compressive cube strength of concrete incorporating 100% 

recycled aggregate as the percentage content increases. Similar findings were reported 

by Adnan et al. (2011) and Kumutha and Vijai (2008) revealed that the higher the 

recycled coarse aggregate content in a concrete mix, the lower the compressive strength 

produced when compared with concrete containing less quantity of recycled aggregate. 

While the percentage recommended use of recycled aggregate in concrete mix stands at 

30% (BSI, 2000), the result of compressive cube strength illustrated in figure 64 at 50% 

recycled coarse aggregate content, suggests that there is a potential to increase the 

optimum fraction of recycled coarse aggregate in concrete production from 30% to 50% 

without any significant cause for concern in terms of strength. Figures 67-71 displayed 

various patterns of failed concrete cubes identified during compressive cube strength  

test. 
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(a) Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 

 

 

 

 

 

                
 

(c) Series 3 (0.11% F, 0% M)                              (b) Series 4 (0.11% F, 5% M) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 67.  Failure patterns of cube specimens at 28-days compression test (0% RCA) 
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(a)    Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 

 

 

 

 

 

 

 

 

                   

 
(c) Series 3 (0.11% F, 0% M)                                   (d) Series 4 (0.11% F, 5% M) 

 
 

 

 

 

 

 

 

 

Figure 68.  Failure patterns of cube specimens at 28-days compression test (25% RCA) 
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(a)    Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 

 
 

 

 

 

 

 

 

                         

 

(c) Series 3 (0.11% F, 0% M)                                   (d) Series 4 (0.11% F, 5% M) 

 

 

 

 

 

 

 

 

 

Figure 69.  Failure patterns of cube specimens at 28-days compression test (50% RCA) 
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(a)    Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 

 

 

 

 

 

 

 

 

 

                     
 

(c) Series 3 (0.11% F, 0% M)                                   (d) Series 4 (0.11% F, 5% M) 

 

 

 

 

 

 

 

 

 

Figure 70.  Failure patterns of cube specimens at 28-days compression test (75% RCA) 
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(a) Series 1 (0% F, 0% M)                                   (b) Series 2 (0.5% F, 0% M) 
 

 
 

 

 
 

 

 
 

 

 

 

                  
 

(c) Series 3 (0.11% F, 0% M)                                   (d) Series 4 (0.11% F, 5% M) 

 

 

 

 

 

 

 

 

 

Figure 71.  Failure patterns of cube specimens at 28-days compression test (100% RCA) 
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5.5 Flexural strength test  

Figures 72-76 illustrates the flexural strength results of concrete mixes in Series 1-4 at 

1, 7, and 28-day curing age respectively. For a given percentage of recycled coarse 

aggregate, the concrete mixes in Series 1 (control) without synthetic macro fibre and 

microsilica addition, had the least flexural strengths as explained under chapter 4. 

However, a comparison between Series 1-3 and Series 4 concrete mixes illustrated in 

figures 72 and 73 respectively, shows that at 0% recycled aggregate content, Series 4 

concrete mixes had flexural strengths that were 28.6%, 4.94%, and 19.7% respectively 

higher than the corresponding mix in Series 1, 2, and 3 while at 25% recycled coarse 

aggregate content, the relative strength gained by Series 4 concrete mixes were 29.3%, 

5.6%, and 18.1% respectively with reference to Series 1, 2, and 3.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 72.  Flexural strength at 0% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 
Figure 73.  Flexural strength at 25% recycled coarse aggregate content 

 
 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 74.  Flexural strength at 50% recycled coarse aggregate content 
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The flexural strength result in Series 4 concrete mix shown in figure 75 were 40.6%, 

9.6%, and 33.1% respectively higher than the corresponding concrete mixes in Series 1, 

2, and 3 at 28-day curing age, while the strength gained at 75% recycled coarse 

aggregate content were 42.5%, 16.1%, and 30.1% respectively. The disparity between 

the concrete mix in Series 1 and 4 increases due to the significant effect of increasing 

percentage substitution of natural coarse aggregate with recycled coarse aggregate. 

However, the disparity between Series 2 and 4 was insignificant due to the 

incorporation of higher fibre dosage. The incorporation of low fibre dosage in Series 3 

also reduced the impact of increase in recycled coarse aggregate content in the mix 

although there is a wide difference when compared with Series 4 concrete mix. 

However the result is not too significant as is the case with Series 1 concrete mix. 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 75.  Flexural strength at 75% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 76.  Flexural strength at 100% recycled coarse aggregate content 

 
 

The flexural strength results of concrete mix at 1, 7, and 28-day curing age in Series 1-4 

with 100% recycled aggregate content is shown in figure 83. The relative flexural 

strength gain in Series 4 at 28-day curing age in comparison to the flexural strength 

results in Series 1, 2, and 3 respectively were 73.1%, 22.7%, and 47.5% respectively. 

These observations were due to the ductile behaviour of the synthetic macro fibre and 

their roles in reducing and bridging cracks before failure occurred. Bagherzadeh et al. 

(2012b), corroborate these explanations. The incorporation of microsilica in Series 4 

concrete mixes significantly improved the flexural strengths compared with other 

corresponding mixes in Series 1-3. Bhanja and Sengupta (2005), corroborated this 

improvement in flexural strengths of concrete mix incorporated with microsilica. The 

general observed trend from Series 1-4 concrete mixes shows that with increasing 

recycled coarse aggregate in the mix, the flexural strength reduces and this reductions 
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were most significant at 100% content and less at 25% content. This observation was 

similar to findings by Kumutha and Vijai (2008). Various failure modes  of concrete 

prisms identified during flexural strength test are displayed in figure 77. 

   
 

(a)    Series 1 (0% F, 0% M)                          (b) Series 4 (0.11% F, 5% M) 

 

Figure 77. Failure patterns of prism specimens at 28-days flexural test (0% RCA) 

 

 

5.6 Tensile splitting strength test 

Results of average indirect tensile splitting strength at 1, 7, and 28-day curing age for 

Series 1, 2, 3, and 4 concrete mixes are illustrated in figures 78 - 82 respectively.  

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 78.  Tensile splitting strength at 0% recycled coarse aggregate content 
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Results of tensile splitting strength from figure 78 indicate that concrete mixes in Series 

2 with higher synthetic macro fibre dosage produced better results than concrete mixes 

in Series 1, 3, and 4 respectively. The 28-day relative strength of Series 2 concrete mix 

were 20.8%, 15.9% and 4.4% higher that the corresponding mixes in Series 1, 3, and 4 

respectively. However, a comparison between Series 1 and 4 concrete mixes illustrated 

in figures 78 and 79 respectively, shows that at 0% and 25% recycled aggregate content; 

Series 4 had tensile splitting strengths that were 15.7% and 11% respectively higher 

than the corresponding mixes in Series 1 at 28-day curing age. 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 79.  Tensile splitting strength at 25% recycled coarse aggregate content 

 

 

Figure 79 illustrates the tensile spliting strength results of concrete mix in Series 1-4 

respectively with 25% recycled coarse aggregate content. The plots shows that Series 2 

concrete mix at 28-day curing age had tensile splitting strength of about 31.5%, 24.4%, 

and 2.9% more than the corresponding mix in Series 1, 3, and 4 respectively. However, 
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Series 3 concrete mix which incorporates lower dosage of synthetic macro fibre, gained 

about 5.7% tensile splitting strength than Series 1 mix at 28-day curing age . This was 

due to the incorporation of smaller volume of fibre in the concrete mix. 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 80.  Tensile splitting strength at 50% recycled coarse aggregate content 

 

 

Results of tensile splitting strength of concrete mix incorporating 50% recycled 

aggregate content is illustrated in figure 80. It was observed that Series 2 concrete mix 

produced tensile strength result of about 84.6%, 62%, and 6% more than the 

corresponding mixes in Series 1, 3, and 4 respectively at 28-day curing age. However,  

Series 4 concrete mixes had about 37% higher tensile splitting strength than 

corresponding concrete mix in Series 1. These results implies that the effect of 

increasing percentage recycled coarse aggregate content is significant.  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 81.  Tensile splitting strength at 75% recycled coarse aggregate content 

 

 

Figure 81 illustrates the results of tensile spliting strength for concrete mix in Series 1-4 

respectively with 75% recycled coarse aggregate content. Series 2 concrete mix at 28-

day curing age had tensile splitting strength of about 84.6%, 62%, and 6% more than 

the corresponding mix in Series 1, 3, and 4 respectively. The results reflects the impact 

of increasing recycled coarse aggregate in the concrete mix and the influence of 

synthetic micro fibre addition.  However, results of Series 4 concrete mix compared 

with Series 1 mix at 28-day curing age indicate a strength gain of 74% for Series 4 mix 

relative to results recorded for Series 1. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 82.  Tensile splitting strength at 100% recycled coarse aggregate content 

 

 

The tensile splitting strength results for concrete mix in Series 1-4 at 1, 7, and 28-day 

curing age is illustrated in figure 82 above. The relative increase in tensile splitting 

strength in Series 2 compared with the corresponding concrete mix in Series 1, 3, and 4 

respectively at 28-day were 86.1%, 74%, and 3.9% respectively. Series 4 concrete mix 

had about 79% 28-day tensile splitting strength more than the corresponding mix in 

Series 1. This indicate a wide disparity at 100% recycled coarse aggregate content 

between Series 1 and 3 and Series 1 and 4 respectively. However, the disparity indicates 

the significance of incorporation of microsilica and synthetic macro fibre in Series 4 

concrete mixes and the addition of higher dosage of synthetic macro fibre in Series 2. 

 

The addition of microsilica in Series 4 concrete mixes enhanced the tensile splitting 

strengths in comparison with corresponding mixes in Series 1-3.  The disparity between 
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concrete mixes in Series 2 and 4 compared to Series 1 and 3 increases with more 

recycled aggregate content in the mix. The overall observation shows that results 

decreased as the recycled aggregate content in all the concrete mixes increases. 

Evangelista and De Brito (2007), agreed with this observation and attributed the 

strength reduction pattern to the porous nature of the recycled aggregate. For a given 

percentage of recycled coarse aggregate, the concrete mixes in Series 1 (control) 

without synthetic macro fibre and microsilica addition, had the least tensile splitting 

strengths as explained under chapter 4.  

 

Kou et al. (2011), associated the tensile splitting strength increase to the improved 

microstructure of the interfacial transition zone and increased bond strength between 

new cement paste and recycled aggregate catalysed by addition of microsilica (Pauw 

and Lauritzen). Bhanja and Sengupta (2005), reported an increase in tensile splitting 

strength of concrete incorporated with microsilica and attributed this to the ability of 

microsilica particles to fill the voids in concrete. Various fractured patterns of concrete 

cylinder observed during the tensile splitting test are shown in figure 83. 

 

                 
 

(b)    Series 1 (0% F, 0% M)                          (b) Series 4 (0.11% F, 5% M) 

 

Figure 83. Failure patterns of prism specimens at 28-days flexural test (0% RCA) 

 

 

 



146 

 

5.7 Static Modulus of Elasticity  

Summary of the results of 28-day static modulus of elasticity for concrete mixes in 

Series 1-4 is given in Table 36 and illustrated in Figure 84 respectively. The results 

indicates that for a given percentage of recycled coarse aggregate, results from Series 4 

concrete mix incorporating synthetic macro fibre and microsilica had the maximum 

elastic modulus while concrete mixes in Series 1 without synthetic macro fibre and 

microsilica addition produced the lower results. 

 

Table 36: Summary of result of 28-day static modulus of elasticity 
 

RCA 
(%) 

Series 1            
(0% F, 0% M) 

(GPa) 

Series 2    (0.5% 

F, 0% M) (GPa) 

Series 3                
(0.11% F, 0% M) 

(GPa) 

Series 4                 
(0.11% F, 5% M) 

(GPa) 

0 20.35 22.79 21.27 28.10 

25 13.66 16.91 15.13 24.60 

50 13.10 15.25 14.51 23.40 

75 12.43 14.38 13.37 22.00 

100 10.33 12.74 11.39 20.6 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 84.  28-day static modulus of elasticity   

 

There were significant relative gains in modulus of elasticity of Series 4 concrete mixes 

compared with Series 1. The relative increase in elastic moduli of concrete mixes in 

Series 4 at 0% and 25% recycled coarse aggregate content were 38.1% and 80%  more 

than the elastic moduli respectively of Series 1 cocnrete mixes. At 50% and 75% 

recycled aggregate content,  the increase in elastic moduli of concrete mix in Series 4 

relative to Series 1 were 78.6% and 77% respectively while 99.4% was recorded at 

100% recycled coarse aggregate content. These observations mostly revealed the impact 

of micro silica addition and synthetic macro fibre in concrete mixes in Series 4. 

However, a general observation shows a decreasing trend of modulus of elasticity as the 

percentage content of recycled coarse aggregate in the concrete mix increased, and this 

was due to the lower modulus of elasticity of recycled coarse aggregate when compared 

to natural coarse aggregate. Similar findings were reported by past studies (Frondistou-
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Yannas (1977); Berndt (2009a);  Xiao et al. (2005a)) and these reductions in elastic 

modulus as percentage recycled coarse aggregate in concrete mix increases was 

associated with the lower modulus of elasticity of recycled coarse aggregate. It is also a 

fact that concrete is a composite material and its modulus of elasticity is influenced by 

the elastic moduli of respective constituents which in this experiment were aggregate 

and the inclusion of synthetic macro fibre.  

 

5.8 Water Permeability Test (Autoclam) 

Table 37 displayed the summary of sorptivity indices from the results of 28-day water 

permeability test conducted on Series 1- 4 concrete mix and these results are graphically 

represented in Figure 85.  

 
Table 37: Summary of sorptivity indices of 28-day permeability test on concrete cubes 

  

RCA 

(%) 

Series 1        

(0% F, 0% M) 

(m³x10⁻⁷/√min) 

Series 2      

(0.5% F, 0% M) 

(m³x10⁻⁷/√min) 

Series 3       

(0.11% F, 0% M) 

(m³x10⁻⁷/√min) 

Series 4     

(0.11% F, 5% M) 

(m³x10⁻⁷/√min) 

0 0.7 0.6 0.6 0.3 

25 1.4 0.8 0.9 0.5 

50 2.3 1.0 1.2 0.6 

75 3.8 1.1 1.4 0.6 

100 4.3 1.4 1.7 0.7 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 85.  28-day water permeability (Autoclam) result   

 

 

The general trend shows that the higher the percentage content of recycled coarse 

aggregate in the concrete mix, the higher the sorptivity index and vice-versa. This was 

due to the porous nature of the recycled coarse aggregate, which tends to increase 

permeability. For a given percentage recycled coarse aggregate content in the concrete 

mix, Series 1 mix (control) produced the maximum value of permeability indices at 

100% recycled aggregate content, which suggests that it is more porous than other 

mixes, while Series 4 mix had the least permeability indices at the same recycled 

aggregate content. Series 3 concrete mix with low synthetic macro fibre dosage had 

higher sorptivity index than concrete mix in Series 2 with higher dosage of synthetic 

macro fibre. This implies that higher fibre dosage rendered the concrete less permeable 

due to their bonding ability thereby reducing water pathway. The synergy between the 
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macro synthetic fibre and micro silica in Series 4 concrete mix greatly influence the 

permeation property of the concrete produced since micro silica is known to have 

outstanding micro filler properties. 

 

Table 38: Protective quality of concrete 

 

Protective quality of concrete  based on Clam 

permeation indices after (Concrete-Society, 2008)  

 

 

Permeation 

Property 

Protective Property 

Very good Good Poor Very poor 

Clam Water 

Permeability           

(m³x10⁻⁷/√min) 

 

≤ 3.70 

 

> 3.70 ≤ 

9.40 

 

> 9.40 ≤ 

13.8 

 

> 13.8 

 

 

According to Table 38, the mixes in Series 2-4 fell under the very good protective 

quality of concrete while the control mixes in Series 1 fell under very good to good 

category. The Sorptivity indices of concrete mix in Series 1 at 75% and 100% recycled 

aggregate content were 3.8 and 4.3×10⁻⁷ m³/√min respectively and these fell under 

good protective quality category. The higher water absorption of the old mortar attached 

to the recycled coarse aggregate could be linked with the high permeability results 

recorded in Series 1. Sagoe-Crentsil et al. (2001), suggested that the residual mortal acts 

like a conduit for water transport.  
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Similar findings were reported by previous researchers (Limbachiya et al. (2000); Yang 

et al. (2011); Pandit and Parameswari (2014)). The concrete mixes in Series 4 had the 

best durability properties due to the dense impermeable microstructure (calcium silica 

hydrate) formed from the reaction between the calcium hydroxide (lime) present in the 

cement and microsilica as a result of its very small fine particles size (Neville, 1995). 

This result in low porosity, capillary and absorption which eventually contributed to 

reduction in permeability and increased tendency of the  the concrete mix in Series 4 to 

provide resistance against ingress of water. Song et al. (2010), reported that addition of 

microsilica reduced permeability due to its densifying effect on microstructure thereby 

reducing porosity which subsequently produce denser concrete. 

 

In general, all the sorptivity indices recorded fell below the 9.4x10⁻⁷m³/√min boundary, 

which represents poor protective quality of concrete as indicated in Table 28. This 

implies that concrete mixes produced from Series 1-4 are satisfactory as durable 

concrete. 

 

5.9 Summary of findings 

The main conclusions from this experimental work are as follows: 

1. The physical and mechanical properties of concrete reduced with increasing 

recycled coarse aggregate content in the concrete mix; 

2. Although the effect of synthetic macro fibre on compressive strength was 

insignificant, it contributed to the durability of concrete in terms of reducing the 

flow path of water into the concrete specimen thereby reducing the rate of 

permeability. 
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3. Addition of 5% microsilica significantly improved the compressive strength, 

splitting tensile strength, flexural strength, static modulus of elasticity, and water 

permeability of concrete mix in Series 4 at any given recycled coarse aggregate 

content in the concrete mix; 

4. The incorporation of 5% microsilica to the concrete mix with 50% recycled 

coarse aggregate content produced 28-day compressive strength, which exceeds 

the 28-day characteristic compressive cube strength of 50 MPa, specified in the 

mix design. This value also exceeded the target mean compressive cube strength 

of 63MPa. 

5. These findings could lead to a step change in the conservation of quarry,  

reduction in cost of construction materials, and reduce pressure on landfills. 

6. The result in (3) above suggests that there is a potential to increase the optimum 

fraction of recycled coarse aggregate in concrete from 30% to 50% in terms of 

strength and durability.  

7. The static modulus of elasticity of concrete mix in Series 4 similar to the 

observation in Series 1-3 concrete mix, fell below the theoretical value of 35 

GPa given in Table 3.1 of BS-EN 1992-1-1:2004. 

 

 



153 

 

6 OPTIMISED USE OF MICROSILICA IN FIBRE REINFORCED 

AGGREGATE CONCRETE  

 

6.1 Introduction 

The results of the evaluation of optimum addition of microsilica required to achieve 

better performance in fibre reinforced recycled coarse aggregate concrete produced in 

phase 2 experiment incorporating 54mm forta-ferro synthetic macro fibre and 

microsilica are discussed under this chapter. The main goal was to determine the 

percentage content at which the efficiency and effectiveness of microsilica in concrete 

mix would yield optimum benefit after which further addition would cause decline in 

engineering properties of the concrete produced. 

 

 Sequel to phase 3 experiments, the observations from phase 2 experimental work are; 

1. Incorporation of 5% mineral admixture (microsilica) greatly improved the 

compressive strength, tensile splitting strength, flexural strength, protective quality 

in terms of water permeability, and elastic modulus of all the concrete mix in Series 

4 experimental work irrespective of the percentage recycled coarse aggregates 

content  in the mix; 

2.  Addition of 5% microsilica to concrete mixes in Series 4 at 50% recycled aggregate 

content produced 28-day compressive cube strength, which exceeds the 28-day 

characteristic compressive cube strength of 50MPa and target mean compressive 

cube strength of 63.1MPa respectively. This suggests that there is a potential to 

boost the use of recycled coarse aggregate from 30-50%;  

3. The static elastic modulus of concrete mix in Series 1-4 fell below the theoretical 

result of 35GPa given in table 3.1 of BS EN 1992-1-1:2004.  
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The third phase of the concrete mix design complied with the conventional UK mix 

design method (BRE, 1997), ‘design of normal concrete mix manual’. Eight hundred 

and eighty five (885) hardened concrete samples produced were subjected to various 

tests as discussed under chapter 3 from four different concrete mixes shown in tables 

26-29 respectively. Each concrete batch consists of 12 standard cubes of 100x100x100 

mm, 12 standard cylinders of 100mm diameter by 200mm high, and 15 standard prisms 

of 100x100x500 mm. Concrete mixes in Series 4–7 incorporates same dosage of 

synthetic macro fibre of 1kg/m³ by weight of concrete and microsilica addition at 5%, 

10%, 15% and 20% respectively. A High Range Superplasticiser (Alphaflow 420) was 

used as chemical admixture at varying dosages in order to maintain the initial specified 

workability. The 28-day characteristics compressive cube strength; target mean 

compressive cube strength, free-water/cement ratio (w/c) and initial specified slump 

remained the same as in Phase 1 concrete mix. Tables 39-42 displayed details of the 

concrete mixes used in Series 4-7 respectively. 

 
Table 39: Concrete mix details – Series 4 (0% F, 5% M) 

 

Recycle Aggregate by weight of 

coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 
1 1 1 1 1 

Microsilica (kg/m³) - 5% by 

weight of cement 
29.2 29.2 29.2 29.2 29.2 

Superplasticiser by weight of 

cement (kg/m³) 
2.33 2.33 2.33 3.50 3.50 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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Table 40: Concrete mix details – Series 5 (0% F, 10% M) 

 
Recycle Aggregate by weight of 

coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 
1 1 1 1 1 

Microsilica (kg/m³) - 10% by 

weight of cement 
58.4 58.4 58.4 58.4 58.4 

Superplasticiser by weight of 

cement (kg/m³) 
3.50 3.50 3.50 4.66 4.66 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

Table 41: Concrete mix details – Series 6 (0% F, 15% M) 
 

Recycle Aggregate by weight of 

coarse aggregate. (%) 
0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 
1 1 1 1 1 

Microsilica (kg/m³) - 15% by 

weight of cement 
87.6 87.6 87.6 87.6 87.6 

Superplasticiser by weight of 

cement (kg/m³) 
4.66 4.66 4.66 5.83 5.83 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 



156 

 

Table 42: Concrete mix details – Series 7 (0% F, 20% M) 

 
Recycle Aggregate by weight of 

coarse aggregate. (%) 

0 25 50 75 100 

Cement (kg/m³)                              583 583 583 583 583 

Sand (kg/m³)                                   603 603 603 603 603 

Gravel (kg/m³)                                904 678 452 226 0 

RCA. (kg/m³)                                      0 226 452 678 904 

Water (kg/m³)                                    230 230 230 230 230 

Synthetic Macro Fibre - 0.11% 

by volume of concrete (kg/m³) 

1 1 1 1 1 

Microsilica (kg/m³) - 20% by 

weight of cement 

116.8 116.8 116.8 116.8 116.8 

Superplasticiser by weight of 

cement (kg/m³) 

6.41 6.41 6.41 7.00 7.00 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

 

6.2 Slump test    

Table 43 displayed the results of workability test for each of the concrete mix 

incorporating 0, 5, 10, 15, and 20% mineral admixture (microsilica) respectively. A 

general pattern in reduction was observed as the percentage substitution of natural 

coarse aggregate by recycled coarse aggregate increased. Workability reduced below 

the initial specified slump value in Series 4-7 concrete mixes as the percentage addition 

of microsilica increased. The reduction in workability was as a result of more water 

demand attributed to the large surface area of microsilica fine particles which required 

wetting from the free-water (Neville, 1995). This significantly affects the workability of 

the concrete owing to the strong cohesiveness of the concrete mix resulting in little 

bleeding. However, these reductions in workability were mitigated through the use of 

Alphaflow 420 superplasticiser in order to maintain the initial specified slump within 

the range of 60-180mm.  
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Table 43: Result of slump test for Series 1, 4, 5, 6, & 7 concrete mix 

 

RCA 
(%) 

Series 1        
(0%F, 

0%M)  (mm) 

Series 4      
(0.11%F, 5%M) 

(mm) 

Series 5              
(0.11%F, 10% M) 

(mm) 

Series 6 
(0.11%F,  5% M) 

(mm) 

Series 7 
(0.11%F,  20% M) 

(mm) 

0 115 108 105 102 97 

25 95 90 86 80 74 

50 80 79 76 70 67 

75 75 74 69 66 63 

100 69 66 65 63 60 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 86.  Influence of microsilica on workability of recycled aggregate concrete 
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Figure 86 illustrates the declining trend in workability as the percentage content of 

recycled coarse aggregate and micro silica increases respectively. It was observed that 

higher dosages of Alphaflow 420 superplasticer were required as the percentage 

addition of microsilica increases from 0%-20% in the concrete mix in order to achieve 

the specified slump. Results of reduction in slump with higher incorporation of 

microsilica in the concrete mix was corroborated by Mazloom et al. (2004) and 

Rao.Hunchate et al. (2014) respectively. The higher water absorption rate associated 

with recycled coarse aggregate due to adhered mortar and synthetic macro fibre, were 

also catalysts for these reductions in workability. Previous researchers (Topcu and 

Şengel (2004); Etxeberria et al. (2007a); Zaidi (2009); Patil et al. (2013)) reported 

similar findings.  

 

6.3 Density of Concrete 

Figures 87 and 88 illustrates the results of fresh concrete density and hardened concrete 

cube density recorded for each of the concrete mix incorporating 0%, 25%, 50%, 75%, 

and 100% recycle coarse aggregate respectively in Series 1 - 7.  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 87: Variation in fresh concrete density with recycled coarse aggregate 

contents 

 

Figures 87 and 88 indicates that the density of concrete decreases with increasing 

content of recycled coarse aggregate in all the mixes. The reason for this observation is 

due to the light weight and porous nature of recycled coarse aggregate as reported by . 

Rao et.al., (2011). Series 6 concrete mix with 0.11% fibre and 15% microsilica 

produced the highest densities in both cases, while concrete mix in Series 2 with 0.5% 

synthetic macro fibre had the least densities. The densifying effect of microsilica is 

responsible for this observation.  
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 88: Variation in hardened concrete cube density with recycled coarse 

aggregate contents 
 

 

6.4 Compressive strength test 

Figures 89 - 93 presents 1, 7, and 28-day compressive cube strength results of concrete 

mixes in Series 1, 4, 5, 6, and 7 respectively at various percentage replacement of 

natural coarse aggregate by recycled coarse aggregate. The compressive strengths of 

concrete mix in Series 6, which incorporates 15% microsilica, had the highest result of 

compressive cube strength relative to other corresponding concrete mixes in Series 1, 4, 

5 and 7 respectively. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 89.  Compressive cube strength at 0% recycled coarse aggregate content 

 
 

Figure 89 present the results of compressive cube strength for concrete mixes in Series 

1, 4, 5, 6, and 7 at 0% recycled coarse aggregate content in the mix. The plot shows that 

at 28-day curing age, the corresponding compressive cube strengths for Series 1, 4, 5, 6 

and 7 concrete mixes were 53.9MPa, 71.2MPa, 84.8MPa, 86.5MPa, and 85.82MPa 

respectively. With the exception of concrete mix in Series 1 (control), all the concrete 

mix in Series 4-7 had 28-day compressive cube strength which exceeds the design mix 

28-day characteristic cube strength of 50MPa and target compressive cube strength of 

63.1MPa. The relative compressive cube strength gained by concrete mix in Series 4-7 

with reference to the corresponding mixes in Series 1 were 32.1%, 57.5%, 60.5% and 

59.3% respectively.  This implies that Series 4-7 concrete mixes incorporated with 

microsilica produced better results than Series 1.  
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The immense contribution of microsilica in strength development of concrete mix in 

Series 4-7 could be traced to microsilica’s action as a micro filler due to the extreme 

fineness of the particles (about 100 times smaller than particle size of cement). This 

improved the parking arrangement of the particles and the interfacial zone between the 

aggregate and cement paste. The pozzolanic action of microsilica with calcium 

hydroxide also enhanced the early age strength development of concrete mix in Series 

4-7. Series 7 with 20% micro silica addition had relative strength reduction of about 

0.74% compared with concrete mix in Series 6 which incorporates 15% micro silica 

content.  

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 90.  Compressive cube strength at 25% recycled coarse aggregate content  

 

Figure 90 illustrate the results of  1, 7, and 28-day compressive cube strength of 

concrete mixes in Series 1, 4, 5, 6, and 7 respectively at 25% recycled coarse aggregate 

content. The plot shows that the 28-day compressive cube strength of concrete mix in 
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all the Series were 50.1MPa, 68.4MPa, 71MPa, 77.9MPa, and 75.9MPa respectively. 

The relative compressive cube strength increase in Series 4, 5, 6, and 7 concrete mix 

relative to Series 1 at 28-day curing age were 36.6%, 41.8%, 55.5%, and 51.6% 

respectively. The relative compressive cube strength reduction in Series 7 relative to 

Series 6 at 28-day curing age was 2.49%. Excluding concrete mix in Series 1 (control), 

all other concrete mix in Series 4-7 produced 28-day compressive cube strength which 

exceeds the design mix 28-day characteristic cube strength of 50MPa and target 

compressive cube strength of 63.1MPa.  

 

  
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 91.  Compressive cube strength at 50% recycled coarse aggregate content 

 

Figures 91 and 92 illustrate the results of 1, 7, and 28-day compressive cube strength for 

concrete mixes in Series 1, 4, 5, 6, and 7 at 50% and 75% recycled coarse aggregate 

content respectively. The increase in 28-day compressive cube strength of concrete 

mixes in Series 4-7 were 34.2%, 38%, 60.3%, and 52.1% respectively, relative to the 
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28-day compressive cube strength of concrete mixes in Series 1. Similar strength 

increase of about 25.5%, 43.7%, 67.4%, and 56.5% respectively were recorded in Series 

4-7 relative to Series 1 at 75% recycled coarse aggregate content. The relative 

compressive cube strength reduction in Series 7 concrete mix with 50% and 75% 

recycled coarse aggregate content relative to Series 6 at 28-day were 5.37% and 6.96% 

respectively. The 28-day compressive cube strength of Series 4-7 concrete mix at 50% 

recycled coarse aggregate content exceeded the design mix 28-day characteristics 

compressive cube strength of 50MPa and target mean strength of 63.1MPa compared 

with Series 1 mix. This implies that the substitution of 50% natural coarse aggregate 

with recycled coarse  aggregate does not adversely affect the strength of the concrete.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 92.  Compressive cube strength at 75% recycled coarse aggregate content 

 

 

At 75% recycled aggregate content, Series 5-7 exceeded the 28-day characteristics 

compressive cube strength and target mean compressive cube strength of 50MPa and 
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63.1MPa respectively while Series 4 mix only exceeds the 28-day characteristics 

strength but fell below the target mean compressive strength. This implies that 75% 

recycled coarse aggregate had little or no significant on Series 5-7 concrete mix. 

 

   
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 93.  Compressive cube strength at 100% recycled coarse aggregate content 
 

 
 

Figure 93 depict results of 1, 7, and 28-day compressive cube strength of concrete mixes 

in Series 1, 4, 5, 6, and 7 respectively at 100% substitution of natural coarse aggregate 

by recycled coarse aggregate. The chart shows that relative to Series 1 concrete mix, the 

strength gain by Series 4-7 concrete mixes were 31.5%, 44.6%, 67.8% and 59.9% 

respectively. Series 6 and 7 which incorporates 15% and 20% recycled coarse aggregate 

respectively exceeded both 28-day design mix characteristics compressive cube strength 

of 50MPa and target mean compressive cube strength of 63.1MPa respectively. Series 4 

and 5 also exceeded the 28-day characteristics design mix compressive cube strength 

but fell below the target mean compressive strength. The implication is that the 
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replacement of natural coarse aggregate by recycled coarse aggregate has no 

significance on concrete mixes in Series 6 and 7 while the impact on Series 4 and 5 is 

low compared with Series 1 concrete mix. Series 7 concrete mix at 28-day compressive 

cube strength had relative reduction of about 4.94% compared with Series 6 concrete 

mix.  

 

The significant results in Series 4-7 concrete mixes which incorporates microsilica attest 

to the appreciative pozzolanic efficiency of microsilica through its densifying action. 

The incorporation of 15% microsilica in Series 6 concrete mix produced the best 

strength improvement compared to other mixes, while further addition result in  strength 

reduction as indicated in compressive strength of concrete mixes in series 7 

incorporating 20% microsilica addition. The compressive cube strength was influenced 

by both pozzolanic and micro filler effect of microsilica in conjunction with the 

synergies between aggregate and cement matrix thereby leading to the creation of less 

porous and better interlocking between them.  

 

The reduction in compressive cube strength of concrete mix in Series 7 with higher 

microsilica content occurred due to the excess amount of small sized microsilica 

particles. These drifts the cement grains to one side and caused unpacking of the entire 

system and eventually lead to significant reduction in the strength of the concrete 

(Neville, 1995). Rao.Hunchate et al. (2014), revealed that increasing micro silica 

content in a concrete mix up to 15% effectively increased the compressive strength 

while further addition reduced the strength. Yogendran et al. (1987) and Annadurai and 

Ravichandran (2014) reported that 28-day compressive cube strength increased between 
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50-70 MPa with the addition of microsilica, and the optimal benefits was derived at 

15% micro silica content. Generally, the compressive strength decreases with increase 

in recycled coarse aggregate content in the mix although this effect was minimised by 

micro silica. The results from Series 4-7 shows that contrary to the recommended use of 

recycled aggregate in concrete mix at 30% (BSI, 2000), there is a great potential to 

increase the use of recycled coarse aggregate from 30% to 50% by incorporating 5-15% 

micro silica in the concrete mix with the best results achieved with 15% addition. 

Figures 94 – 98 displayed various failure patterns of concrete cubes identified during 

compressive cube strength test. 
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(a) Series 2 (0.5% F, 0% M)                                   (b) Series 3 (0.11% F, 0% M) 
 

                
 

(c)  Series 4 (0.11% F, 5% M)                                (d) Series 5 (0.11% F, 10% M) 
 
 

                                   
 

(e)  Series 6 (0.11% F, 5% M)                                (f) Series 7 (0.11% F, 10% M) 

 
 
 

Figure 94.  Failure patterns of cube specimens at 28-days compression test (0% RCA) 
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(a) Series 2 (0.5% F, 0% M)                                   (b) Series 3 (0.11% F, 0% M) 
 
 

                           
 

(c)  Series 4 (0.11% F, 5% M)                                (d) Series 5 (0.11% F, 10% M) 
 
 

 

 

                 
 

(e)  Series 6 (0.11% F, 15% M)                                (f) Series 7 (0.11% F, 20% M) 

 
 

 

Figure 95.  Failure patterns of cube specimens at 28-days compression test (25% RCA) 
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(a) Series 2 (0.5% F, 0% M)                                   (b) Series 3 (0.11% F, 0% M) 
 

 

                     
  

(c)  Series 4 (0.11% F, 5% M)                                (d) Series 5 (0.11% F, 10% M) 
 
 

                     
 

  (e)  Series 6 (0.11% F, 15% M)                                (f) Series 7 (0.11% F, 20% M) 

 
 

 

Figure 96.  Failure patterns of cube specimens at 28-days compression test (50% RCA) 
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(a) Series 2 (0.5% F, 0% M)                                   (b) Series 3 (0.11% F, 0% M) 
 

                   
                  

(c)  Series 4 (0.11% F, 5% M)                                (d) Series 5 (0.11% F, 10% M) 
 
 

                 
 

 (e)   Series 6 (0.11% F, 15% M)                                (f) Series 7 (0.11% F, 20% M) 

 
 
 

Figure 97.  Failure patterns of cube specimens at 28-days compression test (75% RCA) 
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(a) Series 2 (0.5% F, 0% M)                                   (b) Series 3 (0.11% F, 0% M) 

 

 

              

    

(c)  Series 4 (0.11% F, 5% M)                                              (d) Series 5 (0.11% F, 10% M) 

 

              
 

 (e)  Series 6 (0.11% F, 15% M)                                (f) Series 7 (0.11% F, 20% M) 

 

 

Figure 98.  Failure patterns of cube specimens at 28-days compression test (100% RCA) 
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6.5 Flexural strength test  

 

Figures 99 -103 illustrates 1, 7, and 28-day flexural strength of all the concrete mixes 

for Series 1, 4, 5, 6 and 7 respectively. The flexural strength of concrete mixes in Series 

4-7 had higher flexural strength results than the corresponding control concrete mix in 

Series 1. The maximum relative strength increase occurred in Series 6, which 

incorporates 15% microsilica addition. This was due to the improved microstructure of 

the interfacial transition zone as a result of the connection between recycled coarse 

aggregate, natural coarse aggregate and the new cement matrix influenced by 

microsilica.  

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 99.  Flexural strength at 0% recycled coarse aggregate content 
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Figure 99 illustrate results of flexural strength for concrete mixes in Series 1, 4, 5, 6, 

and 7 at 0% recycled coarse aggregate content in the mix. The plot shows that at 28-day 

curing age, the corresponding flexural strengths for Series 1, 4, 5, 6 and 7 concrete 

mixes were 7.10MPa, 9.13MPa, 9.40MPa, 9.85MPa, and 10.30MPa respectively. The 

relative flexural strength gained by concrete mix in Series 6 with reference to the 

corresponding mixes in Series 1, 4, 5, and 7 were 45.1%, 12.8%, 9.57% and 4.57% 

respectively. This implies that Series 6 concrete mixes incorporated with microsilica 

produced better results than any other mix.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 100.  Flexural strength at 25% recycled coarse aggregate content 

 

 

Figure 100 depict the results of  1, 7, and 28-day flexural strength of concrete mixes in 

Series 1, 4, 5, 6, and 7 respectively at 25% recycled coarse aggregate content. The plot 
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shows that the 28-day flexural strength of concrete mix in all the Series were 5.80MPa, 

7.50MPa, 7.92MPa, 8.30MPa, and 9.00MPa respectively. The relative flexural strength 

increase in Series 6 concrete mix relative to Series 1, 4, 5 and 7 at 28-day curing age 

were 55.2%, 20%, 13.6%, and 8.4% respectively. The relative compressive cube 

strength reduction in Series 7 relative to Series 6 at 28-day curing age was 2.49%. 

Excluding concrete mix in Series 1 (control), all other concrete mix in Series 4-7 

produced 28-day compressive cube strength which exceeds the design mix 28-day 

characteristic cube strength of 50MPa and target compressive cube strength of 

63.1MPa. 

 

  

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 101.  Flexural strength at 50% recycled coarse aggregate content 
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Figures 101 and 102 represent results of 1, 7, and 28-day flexural strength for concrete 

mixes in Series 1, 4, 5, 6, and 7 at 50% and 75% recycled coarse aggregate content 

respectively. The increase in 28-day flexural strength of concrete mixes at 50% recycled 

coarse aggregate content in Series 6 relative to the corresponding mixes in Series 1, 4, 5, 

and 7 respectively were 80.2%, 28.1%, 20.6%, and 5.81% respectively. Similar strength 

increase of about 87.5%, 31.6%, 25.0%, and 9.0% respectively were recorded in Series 

6 concrete mix relative to Series 1, 4, 5, and 7 respectively at 75% recycled coarse 

aggregate content.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 102.  Flexural strength at 75% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 103.  Flexural strength at 100% recycled coarse aggregate content 

 

 

Figure 103 expressed the results of 1, 7, and 28-day flexural strength of concrete mixes 

in Series 1, 4, 5, 6, and 7 respectively at 100% substitution of natural coarse aggregate 

by recycled coarse aggregate. The graph shows that relative to Series 6 concrete mixes, 

the flexural strength reduction of concrete mixes in Series 1, 4, 5, and 7 respectively 

were 45%, 22.2%, 20.5%, and 13.5% respectively. There were large variance between 

flexural strength results obtained from concrete mix in Series 1 and Series 4-7 

respectivley at any given recycled coarse aggregate content. These observations attest to 

the effectiveness and efficiency of microsilica to enhance the performance of the 

concrete. The impact of microsilica in Series 6 concrete mixes was very significant 

compared with the flexural strength obtained in series 1, 4, 5, and 7 respectively. Bhanja 

and Sengupta (2005), reported significant improvement in flexural strengths of concrete 

mixes incorporating micro silica, and also noted that the optimum improvement 
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occurred in concrete mix with 15% microsilica addition. Figure 104 shows various 

failure modes observed from flexural strength test. 

                                    
 

(a) Series 4 (0.11% F, 5% M) 
 

                                     
 

 

(b) Series 5 (0.11% F, 10% M)                                 
           

                                         
 

(c)  Series 6 (0.11% F, 15% M)          
                        

                                       
 

(d) Series 7 (0.11% F, 10% M) 

 

Figure 104.  Failure patterns of cube specimens at 28-days compression test (100% RCA) 
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6.6 Correlation between Flexural strength and compressive strength 

The comparison of actual results of compressive and flexural strength obtained from the 

experiment against the empirical values from predictive equations given in  EC-2 and 

ACI-318M are given in Table 44 and Figure 105 respectively 

 
Table 44: Experimental and predictive flexural strength- Series 4 (0.11% F, 5% M) 

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 71.15 56.92 7.84 4.68 9.13 

25 68.40 54.72 7.63 4.59 7.50 

50 63.40 50.72 7.25 4.42 6.40 

75 55.90 44.72 6.67 4.15 5.70 

100 53.90 43.12 6.51 4.07 5.40 

 

It was observed that EC-2 slightly underestimate the flexural strength of concrete mix 

without recycled coarse aggregate, fibre and microsilica. However, EC-2 slightly over-

estimated the flexural strength of concrete mixes incorporating 25%, 50%, 75%, and 

100% recycled coarse aggregate respectively. On the other hand, ACI significantly 

underestimate the flexural strength of all the concrete mixes. The relationship between 

flexural strength and compressive strength was assessed in order to ascertain the nature 

of their correlation. The regression analysis indicate that an exponential relationship 

exists between flexural and compressive strength as fct,fl = 1.21e
0.03fck  

with a correlation 

coefficient R² = 0.93. 
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F --- Fibre, M --- Microsilica 

Figure 105.  Relationship between Flexural strength and compressive strength 

 

Results from Table 45 indicate that, the experimental flexural strength of concrete 

mixes with 0% and 25% recycled aggregate are higher than the predictive values 

obtained from EC-2 while the flexural strength of mixes with 50%, 75%, and 100% 

recycled aggregate were slightly overestimated by EC-2. Predictive equation from ACI 

significantly underestimate the flexural strength of all the mixes in Series 5. The 

relationship between flexural and compressive strength assume an exponential 

relationship fct,fl = 1.66e
0.02fck  

with a correlation coefficient R² = 0.92. 

 

 

 

 

 



181 

 

Table 45: Experimental and predictive flexural strength Series 5 (0.11% F, 10% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 84.84 67.87 8.82 5.11 9.40 

25 71.00 56.80 7.83 4.67 7.92 

50 65.20 52.16 7.39 4.48 6.80 

75 63.98 51.18 7.30 4.44 6.00 

100 59.30 47.44 6.94 4.27 5.52 

 

 
 F --- Fibre, M --- Microsilica 

Figure 106.  Relationship between Flexural strength and compressive strength 
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Table 46: Experimental and predictive flexural strength Series 6 (0.11% F, 15% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 86.46 69.17 8.93 5.16 10.30 

25 77.85 62.28 8.32 4.89 9.00 

50 75.74 60.59 8.17 4.83 8.20 

75 74.53 59.62 8.08 4.79 7.50 

100 68.78 55.02 7.66 4.60 6.94 

 

Table 46 show the results of comparison of compressive and flexural strength obtained 

from the experiment against the empirical values calculated from predictive equations  

in  EC-2 and ACI-318M, while Figure 107 depicts the exponential relationship between 

flexural and compressive strength as fct,fl = 1.39e
0.02fck  

with a correlation coefficient R² 

= 0.94. For concrete mixes in Series 6 with 0%, 25%, and 50% recycled aggregate 

content, EC-2 underestimate the flexural strength. However, the flexural strength of 

mixes incorporating 75% and 00% recycled aggregate were over estimated by EC-2. 

The predictive equation by ACI significantly underestimated the flexural strength of all 

the mixes in Series 6. 
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 F --- Fibre, M --- Microsilica 

Figure 107.  Relationship between Flexural strength and compressive strength 

 

It was observed from Table 47 that, EC-2 underestimate the flexural strength of 

concrete mixes with 0% and 25% recycled aggregate respectively while the values of 

concrete mixes with 50% and 100% recycled aggregates were overestimated slightly. 

On the other hand, ACI completely underestimated the flexural strength of all the mixes 

in Series 7. The correlation between the flexural and compressive strength from the 

regression analysis illustrated in Figure 109, produced an exponential relationship of 

fct,fl = 1.33e
0.02fck  

with a correlation coefficient R² = 0.95. 
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Table 47: Experimental and predictive flexural strength  Series 7 (0.11% F, 20% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Flexural  strength Experimental  

Flexural 

strength 
(MPa) fck, cube 

(MPa) 
fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,fl = 0.45fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.62√fck’} 

 

0 85.82 68.66 8.89 5.14 9.85 

25 75.91 60.73 8.18 4.83 8.30 

50 71.88 57.50 7.89 4.70 7.75 

75 69.68 55.74 7.73 4.63 6.88 

100 65.54 52.43 7.42 4.49 6.00 

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

Figure 108.  Relationship between Flexural strength and compressive strength 
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6.7 Tensile splitting strength test 

Results of average indirect tensile splitting strength at 1,7 and 28-day curing age for 

Series 1, 4, 5, 6, and 7 concrete mixes respectively are illustrated in figures 109 -113. 

The tensile splitting strength decreased with increase in percentage substitution of 

recycle aggregate in all the concrete mixes.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 109.  Tensile splitting strength at 0% recycled coarse aggregate content  

 

 

 

Figure 109 illustrates results of 1, 7, and 28-day tensile splitting strength for cocnrete 

mixes in Series 1, 4, 5, 6 and 7 respectively at 0% recycled coarse aggregate content. 

The plots indicate that concrete mixes in Series 6 which incorporates 15% micro silica 

content produced results better than concrete mixes in Series 1, 4, 5, and 7 respectively. 

The 28-day relative tensile splitting strength gained by Series 6 concrete mix relative to 
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 Series 1, 4, 5, and 7 concrete mixes were 73.5%, 50%, 4.35%, and 1.05% respectively. 

Series 5, 6, and 7 indicate wide disparity in comparison with Series 1 and 4 concrete 

mix. This implies that tensile splitting strength increases with increasing micro silica 

content in the mix up till 15% addition beyond which the strength decline. 

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 110.  Tensile splitting strength at 25% recycled coarse aggregate content  

 

 

 

Figure 110 illustrates 1, 7, and 28-day tensile spliting strength results of concrete mix in 

Series 1, 4, 5, 6, and 7 respectively with 25% recycled coarse aggregate content. The 

plots shows that Series 6 concrete mix at 28-day curing age had tensile splitting strength 

of about 62.4%, 27%, 16.1% and 8.3% more than the corresponding mix in Series 1, 4, 

5, and 7 respectively. The plots indicate a clear disparity between Series 6 and other 

Series unlike in figure 112. This implies that the replacement of 25% natural coarse 

aggregate by recycled coarse aggregate had impacted the tensile splitting strength 
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development. This observation agreed with the strength reduction pattern reported by 

Evangelista and De Brito (2007) which was attributed to the porous nature of the 

recycled aggregate. However, concrete mixes in series 4–7 incorporating microsilica 

produced significant relative strength gains due to improved microstructure of the 

interfacial transition zone and increased bond strength between the new cement paste 

and recycled coarse aggregate catalysed by addition of microsilica (Kou et al., 2011). 

Bhanja and Sengupta (2005), also corroborates this findings.  

 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 111. Tensile splitting strength at 50% recycled coarse aggregate content  

 

 

 Results of 1, 7, and 28-day tensile splitting strength for concrete mix in Series 1, 4, 5, 6, 

and 7 respectively at 50% recycled coarse aggregate content is illustrated in figure 111. 

The tensile splitting strength gained by Series 6 concrete mix relative to the 

corresponding results from Series 1, 4, 5, and 7 concrete mixes were 85.4%, 35.3%, 
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18.6%, and 7.5% respectively. These results implies that the effect of increasing 

recycled coarse aggregate content in concrete mix is significant.  

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 112.  Tensile splitting strength a 75% recycled coarse aggregate content  

 

 
 

Figure 112 illustrates the results of 1, 7, and 28-day tensile splitting strength for 

concrete mixes in Series 1, 4, 5, 6, and 7 respectively with 75% recycled coarse 

aggregate content. The relative reductions in 28-day tensile splitting strength for 

concrete mix in Series 1, 4, 5, and 7 respectively relative to Series 6 concrete mix were 

55.3%, 22.2%, 19.1%, and 5.6% respectively. The results reflects the impact of 

increasing recycled coarse aggregate in the concrete mix and the influence of synthetic 

micro fibre addition.   
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 113.  Tensile splitting strength at 100% recycled coarse aggregate content 

 

 

The tensile splitting strength results for concrete mix in Series 1, 4, 5, 6 and 7 at 1, 7, 

and 28-day curing age is illustrated in figure 113. The relative reduction in 28-day 

tensile splitting strength in Series 1, 4, 5, and 7 relative to the corresponding concrete 

mix in Series 6 were 56.9%, 22.8%, 8.89%, and 3.92% respectively. Tensile splitting 

strength of concrete mixes in Series 4, 5, and 7 respectively exceeded that of the 

corresponding control concrete Similar to Series 6 concrete mix irrespective of the 

percentage recycled coarse aggregate substitution. Figure 114 shows various patterns of 

failure identified from the concrete cylinder during tensile splitting strength test. 
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        (a) Series 4 (0.11% F, 5% M) 

 

                                            
 

(b) Series 5 (0.11% F, 10% M) 
 

                                           
 

(c) Series 6 (0.11% F, 15% M) 

                                           
         

(e) Series 7 (0.11% F, 10% M) 

 

Figure 114.  Failure patterns of cylinder specimens at 28-days compression test (0% RCA) 
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6.8 Correlations between Tensile splitting strength and compressive strength 

Results of the comparison of compressive and tensile splitting strength obtained from 

the experiment and predictive equations given in  EC-2 and ACI-318M are given in 

Table 48. EC-2 overestimated the tensile splitting strength of all the concrete mixes. 

However, ACI code overestimated concrete mixes with 0%, 25%, and 50% recycled 

aggregate  while concrete mixes with 75% and 100% recycled aggregate were 

underestimated respectively. The relationship between the flexural and compressive 

strength is given by the exponential equation fctm,sp = 1.43e
0.02fck  

with a correlation 

coefficient R² = 0.91. 

 

Table 48: Experimental and predictive tensile splitting strength-Series 4 (0.11% F, 5% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting 

strength  

Experimental  

Tensile splitting 

strength (MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,sp = 0.30fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.56√fck’} 

 

0 71.15 56.92 5.22 4.22 3.84 

25 68.40 54.72 5.09 4.14 3.81 

50 63.40 50.72 4.84 3.99 3.58 

75 55.90 44.72 4.45 3.74 3.50 

100 53.90 43.12 4.34 3.68 3.35 
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F --- Fibre, M --- Microsilica 

 

Figure 115.  Relationship between Tensile splitting strength and compressive strength  

 
Table 49: Experimental and predictive tensile splitting strength-Series 5(0.11% F, 10% M) 

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting 

strength  

Experimental  

Tensile splitting 

strength (MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,sp = 0.30fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.56√fck’} 

 

0 84.84 67.87 5.88 4.61 5.52 

25 71.00 56.80 5.22 4.22 4.17 

50 65.20 52.16 4.93 4.04 3.97 

75 63.98 51.18 4.87 4.01 3.64 

100 59.30 47.44 4.62 3.86 3.52 

 

Table 49 show the results of comparison between the experimental values and 

theoretical calculated values of flexural strength of concrete mixes in Series 5. It was 

identified that EC-2 overestimated flexural strength of all the concrete mixes in Series 5. 
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However, ACI also overestimate the flexural strength with the exception of the mix 

without recycled aggregate. The relationship obtained from Figure 116 indicate that an 

exponential trend exists between the flexural strength and compressive strength. This is 

given as fctm,sp = 1.2e
0.01fck  

with a correlation coefficient R² = 0.98 

 
F --- Fibre, M --- Microsilica 

 
Figure 116.  Relationship between Tensile splitting strength and compressive strength  

 

Table 50 and Figure 117 indicate that the predictive equation given in EC-2 

overestimate the flexural strength of all the concrete mixes in Series 6, whereas ACI 

code underestimate the flexural strength. Similarly like the previous observation, the 

correlation between flexural strength and compressive strength remain exponential and 

it is given by the equation  fctm,sp = 1.34e
0.02fck  

with a correlation coefficient R² = 0.95 
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Table 50: Experimental and predictive tensile splitting strength-Series 6(0.11% F, 15% M) 

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting 

strength  

Experimental  

Tensile splitting 

strength (MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,sp = 0.30fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.56√fck’} 

 

0 86.46 69.17 5.95 4.66 5.76 

25 77.85 62.28 5.55 4.42 4.84 

50 75.74 60.59 5.45 4.36 4.71 

75 74.53 59.62 5.39 4.32 4.50 

100 68.78 55.02 5.11 4.15 4.34 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 117.  Relationship between Tensile splitting strength and compressive strength  
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The comparison of actual results of compressive and tensile splitting strength obtained 

from the experiment against the empirical values obtained from predictive equations 

given in  EC-2 and ACI-318M are given in Table 51 and figure 118 respectively. 

EC-2 slightly overestimated the tensile splitting strength of all the concrete mixes while 

ACI overestimated mixes with 0%, 25%, and 50% recycled coarse aggregate 

respectively but underestimate mixes with 75% and 100% recycled aggregate content. 

The correlation between tensile splitting strength and compressive strength is given by 

the equation  fctm,sp = 1.43e
0.02fck  

with a correlation coefficient R² = 0.91. 

 
Table 51: Experimental and predictive tensile splitting strength-Series 7(0.11% F, 20% M)  

 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted Tensile splitting 

strength  

Experimental  

Tensile splitting 

strength (MPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (MPa) 
{fct,sp = 0.30fck

(2/3)
} 

 

ACI (MPa) 
{fr = 0.56√fck’} 

 

0 85.82 68.66 5.92 4.64 5.70 

25 75.91 60.73 5.46 4.36 4.47 

50 71.88 57.50 5.26 4.25 4.38 

75 69.68 55.74 5.15 4.18 4.25 

100 65.54 52.43 4.95 4.05 4.17 
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F --- Fibre, M --- Microsilica 

 

Figure 118.  Relationship between Tensile splitting strength and compressive strength  

 

6.9 Static Modulus of Elasticity  

 

Summary of the mean results of 28-day static modulus of elasticity recorded during the 

test for concrete mixes in Series 1, 4, 5, 6, and 7 respectively are given in table 34 and  

graphical representation of the variation of results illustrated in figure 119. The results 

shows reducing trend of elastic modulus with increasing percentage of recycled coarse 

aggregate in the concrete mix. For a given percentage of recycled coarse aggregate, 

results from Series 6 concrete mix incorporating 15% microsilica had the maximum 

static elastic modulus while concrete mixes in Series 1 without synthetic macro fibre 

and microsilica addition produced the least results. 
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Table 52: Summary of result of 28-day static modulus of elasticity 
 

 

RCA 

(%) 

Series 1    

(0% F, 0% 

M) 

Series 4 

(0.11% F, 

5% M) 

Series 5 

(0.11% F, 

10% M) 

Series 6 

(0.11% F, 

15% M) 

Series 7 

(0.11% F, 

20% M) 

0 20.35 28.10 29.10 40.10 37.30 

25 13.66 24.60 28.30 36.70 33.20 

50 13.10 23.40 25.90 32.00 28.70 

75 12.43 22.00 23.80 28.00 24.20 

100 10.33 20.60 22.30 25.90 23.70 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
 

Figure 119.  28-day static modulus of elasticity 

 



198 

 

 

There were significant differences of about 49.9%, 53.7%, 60.1%, and 56.4% 

respectively in elastic moduli results between concrete mixes in Series 1 (control) at 

100% recycled coarse aggregate content and corresponding mixes incorporating 5%, 

10%, 15%, and 20% microsilica respectively. The maximum results occurred in 

concrete mixes in Series 6, which incorporates 15% microsilica addition. The general 

results indicate an increasing modulus of elasticity with increase in percentage content 

of microsilica up to 15% addition while further addition result in reduction. Therefore it 

could be concluded from the observation that the incorporation of microsilica and 

synthetic macro fibre have greater positive impact on modulus of elasticity. Burg and 

Ost (1992), recorded higher elastic moduli with concrete mix incorporating 15% 

microsilica addition compared with the reference concrete without any addition.   

Similarly, a decreasing pattern of modulus of elasticity with increasing recycled coarse 

aggregate content occured and this was due to the lower modulus of elasticity associated 

with recycled coarse aggregate compared to the virgin coarse aggregate. Berndt 

(2009b), reported similar reduction as the recycled coarse aggregate content increased in 

the concrete mix.  Xiao et al. (2005b) observed reduction of about 45% while 

Frondistou-Yannas (1977) suggested 40% reduction in elastic modulus at 100% 

recycled coarse aggregate content. The comparative stress-strain relationship for Series 

1, 4, 5, 6 and 7 concrete mixes at various recycled coarse aggregate content are 

illustrated in Figures 120 - 124 respectively. It was generally observed across all the 

charts that the gradient of the stress-strain curve decreases with increasing recycled 

coarse aggregate content in the concrete mixes. The maximum gradient occurred at 0% 

recycled coarse aggregate content while the least gradient occurred at concrete mix with 

100% recycled coarse aggregate content. 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 120.  Stress-strain relationship for 0% recycled coarse aggregate content 

 
 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 121.  Stress-strain relationship for 25% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 122.  Stress-strain relationship for 50% recycled coarse aggregate content 

 
 

 
RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 123.  Stress-strain relationship for 75% recycled coarse aggregate content 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 124.  Stress-strain relationship for 100% recycled coarse aggregate content 

 

 

6.10 Correlation between static elastic modulus and compressive strength 

 

The relationship between static modulus of elasticity and compressive strength obtained 

experimentally and empirically from EC-2 and ACI-318M-14 are given in Tables 53 - 

56 and illustrated in Figures 125 - 128 respectively. The results indicate that, the static 

modulus of elasticity increases with increasing compressive strength and vice-versa in 

Series 4, 5, 6, and 7 respectively. It was observed that the experimental results of 

modulus of elasticity are lower than the theoretical results. Table 53 -56 shows that both 

EC-2 and ACI overestimated the modulus of elasticity for the concrete mixes in Series 

4, 5, 6, and 7 respectively with an exemption to the concrete mix in Series 6 at 0% 

recycled aggregate content. 
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Table 53: Experimental and predictive modulus of elasticity-Series 4 (0.11% F, 5% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 0.5
} 

0 71.15 56.92 39.63 35.46 28.10 

25 68.40 54.72 39.17 34.77 24.60 

50 63.40 50.72 38.29 33.47 23.40 

75 55.90 44.72 36.87 31.43 22.00 

100 53.90 43.12 36.47 30.86 20.60 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 125.  Relationship between elastic modulus and compressive strength 
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Table 54: Experimental and predictive modulus of elasticity - Series 5 (0.11% F, 10% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm= 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 

0.5
} 

0 84.84 67.87 41.78 38.72 29.10 

25 71.00 56.80 39.61 35.42 28.30 

50 65.20 52.16 38.61 33.94 25.90 

75 63.98 51.18 38.39 33.63 23.80 

100 59.30 47.44 37.53 32.37 22.30 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 126.  Relationship between elastic modulus and compressive strength 
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Table 55: Experimental and predictive modulus of elasticity - Series 6 (0.11% F, 15% M)  
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 0.5
} 

0 86.46 69.17 42.02 39.09 40.10 

25 77.85 62.28 40.72 37.09 36.70 

50 75.74 60.59 40.39 36.59 32.00 

75 74.53 59.62 40.19 36.29 28.00 

100 68.78 55.02 39.23 34.86 25.90 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 127.  Relationship between elastic modulus and compressive strength 
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Table 56: Experimental and predictive modulus of elasticity - Series 7 (0.11% F, 20% M) 
 

RCA 
(%) 

Experimental 

Compressive strength 

Predicted elastic modulus Experimental  

elastic modulus  
(GPa) 

fck, cube 
(MPa) 

fck, cyl. 
(MPa) 

EC 2 (GPa) 
{Ecm = 22 [fcm/10]

0.3}
 

 

ACI (GPa) 
{ Ec =4.7(fc’)

 0.5
} 

0 85.82 68.66 41.93 38.94 37.30 

25 75.91 60.73 40.41 36.63 33.20 

50 71.88 57.50 39.76 35.64 28.70 

75 69.68 55.74 39.39 35.09 24.20 

100 65.54 52.43 38.67 34.03 23.70 

 

 
F --- Fibre, M --- Microsilica 

 

Figure 128.  Relationship between elastic modulus and compressive strength 

 

The relationship between modulus of elasticity and compressive strength followed a 

power regression equation as shown in figures 125 – 128. Based on the regression 
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analysis of the experimentally obtained test results, the correlations between the static 

modulus of elasticity and compressive strength of concrete investigated in Series 4, 5, 6, 

and 7 respectively are given below with their coefficient of corelation: 

Ecm = 0.54fck
0.91

    (R² = 0.89)   -----------------Series 4 (0.11% F, 5% M) 

Ecm = 1.13fck
0.74

     (R² = 0.81)   ---------------- Series 5 (0.11% F, 10% M) 

Ecm = 0.005fck
2.04

     (R² = 0.87)   ---------------Series 6 (0.11% F, 15% M) 

Ecm = 0.01fck
1.84

     (R² = 0.91)   ---------------Series 6 (0.11% F, 15% M) 

 

6.11 Water Permeability Test (Autoclam) 

Figures 129 -132 illustrates the relationship between the average cumulative volume of 

water inflow into the concrete cubes and the square root of time. The graphs indicate 

that a linear relationship exist as shown in line equation displayed in tables 35-39 

obtained from the regression line from which the gradient of the trendlines representing 

the sorptivity indices shown in the tables were derived.  
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Figure 129. Graph of cumulative water volume & square root of time  

(Series 4 - 0.11% F, 5% M) 

 

Table 57: Parameters from cumulative water volume-square root of time graph  

(Series 4- 0.11% F, 5% M) 
 

Mix ID Line Equation 
Sorptivity  

Index (x 10
-7

) 
R² 

RCA-0% 3E-08x + 7E-09 0.3 0.9984 

RCA-25% 
5E-08x + 8E-08 0.5 0.9587 

RCA-50% 6E-08x + 9E-08 0.6 0.9799 

RCA-75% 
6E-08x + 1E-07 0.6 0.97 

RCA-100% 7E-08x + 4E-07 0.7 0.9959 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 130.  Graph of cumulative water volume & square root of time  

(Series 5 - 0.11% F, 10% M) 

 

 

Table 58: Parameters from cumulative water volume-square root of time graph  

(Series 5 - 0.11% F, 10% M) 
 

Mix ID Line Equation 
Sorptivity 

Index (x 10
-7

) 
R² 

RCA-0% 
3E-08x + 3E-09 0.3 0.997 

RCA-25% 
4E-08x + 9E-08 0.4 0.9888 

RCA-50% 
4E-08x + 1E-07 0.4 0.9987 

RCA-75% 
6E-08x + 1E-07 0.6 0.9376 

RCA-100% 
6E-08x + 3E-07 0.6 0.9885 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 131.  Graph of cumulative water volume & square root of time  

(Series 6 - 0.11% F, 15% M) 

 

 

Table 59: Parameters from cumulative water volume-square root of time graph  

(Series 6 - 0.11% F, 15% M) 
 

Mix ID Line Equation 
Sorptivity 

Index (x 10
-7

) 
R² 

RCA-0% 
3E-08x + 4E-08 0.3 0.989 

RCA-25% 
3E-08x + 2E-08 0.3 0.9886 

RCA-50% 
4E-08x + 3E-08 0.4 0.9877 

RCA-75% 
5E-08x + 6E-09 0.5 0.9846 

RCA-100% 
6E-08x + 1E-08 0.6 0.9789 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 132.  Graph of cumulative water volume & square root of time  

(Series 7 - 0.11% F, 20% M) 

 
 

Table 60: Parameters from cumulative water volume-square root of time graph  

(Series 7 - 0.11% F, 20% M) 
 

Mix ID Line Equation 
Sorptivity  

Index (x 10
-7

) 
R² 

RCA-0% 3E-08x + 8E-09 0.3 0.9972 

RCA-25% 
3E-08x + 2E-08 0.3 0.9951 

RCA-50% 
4E-08x + 7E-09 0.4 0.999 

RCA-75% 5E-08x + 2E-08 0.5 0.9916 

RCA-100% 
6E-08x + 4E-08 0.6 0.9769 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 



211 

 

Table 61 displayed the summary of sorptivity indices from the results of 28-day water 

permeability test conducted on Series 1, 4, 5, 6 and 7 concrete mixes respectively, while 

the graphical illustration showing the increase in permeability with increasing recycled 

coarse aggregate content in each of the mix is given in Figure 133. For a given recycled 

coarse aggregate content, the control mix in Series 1 had the maximum permeability 

indices compared to Series 4-7 which incorporates micro silica and low volume of 

synthetic macro fibre.  

 
Table 61: Summary of sorptivity indices of 28-day permeability test on concrete cubes 

 

RCA 
(%) 

Series 1 
(0% F, 0% 

M)                

(x 10⁻7) 

Series 4 
(0.11% F, 5% 

M)                             

(x 10⁻7) 

Series 5 
(0.11% F, 

10% M)           

(x 10⁻7) 

Series 6 
(0.11% F, 

15% M)            

(x 10⁻7) 

Series 7 
(0.11% F, 

20% M)          

(x 10⁻7) 

0 0.7 0.3 0.3 0.3 0.3 

25 1.4 0.5 0.4 0.3 0.3 

50 2.3 0.6 0.4 0.4 0.4 

75 3.8 0.6 0.6 0.5 0.5 

100 4.3 0.7 0.6 0.6 0.6 

RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 
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RCA --- Recycled Coarse Aggregate, F --- Fibre, M --- Microsilica 

 

Figure 133. 28-day water permeability (Autoclam) results 

 

 

Table 62:. Protective quality of concrete    

 

Protective quality of concrete  based on Clam 

permeation indices after (Concrete-Society, 2008) 

 

 

Permeation 

Property 

Protective Property 

Very 

good 
Good Poor Very poor 

Clam Water 

Permeability           

(m³×E-7/√min) 

 

≤ 3.70 

 

> 3.70 ≤ 

9.40 

 

> 9.40 ≤ 13.8 

 

> 13.8 

 

 Generally, the results indicate that sorptivity indices reduces with increasing content of 

microsilica until the optimum addition was reached while increase in recycled coarse 
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aggregate content increases permeability and vice-versa.  Concrete mixes in series 4-7, 

which incorporates microsilica respectively, produced the least permeability indices 

compared to the reference mix with the most improved mix being Series 6 and 7 

respectively. According to Table 62, Concrete in Series 4–7 fell under the very good 

protective quality of concrete from 0-100% recycled coarse aggregate content while the 

control concrete in Series 1 fell under very good to good.  

 

Overall, the concrete produced from this experimental work are adjudged durable 

concrete and the improved durability performance of concrete mixes incorporating 

microsilica was due to the microfiller impact that alters the microstructure of the 

concrete. Song et al. (2010), mentioned that the addition of microsilica reduced 

permeability due to its densifying effect on microstructure which subsequently lead to 

reduction in porosity and emergence of denser concrete. Mangat and Azari (1984) 

linked the reduction in permeability due to incorporation of fibre to the tendency of 

fibres to reduce cracks emanating from shrinkage. It was further suggested that 

discontinuity of pores and inter-connectivity of porous links could be responsible for for 

this effect.  The substitution by 75% and 100% recycled coarse aggregate in Series 1 

increased the permeability to about 3.8 and 4.3 x10⁻⁷m³/√min respectively, although the 

effect was insignificant to the entire durability property. The higher permeability 

observed was due to the adhered mortar on recycled coarse aggregate. Yang et al. 

(2011) also reported that concrete mix with 100% recycled coarse aggregate was more 

permeable (about 21%) than the control mix with 0% recycled coarse aggregate. This 

was attributed this to the presence of more proportion of attached mortar on recycled 

coarse aggregate.  Limbachiya et al. (2000) and Pandit and Parameswari (2014) also 
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agreed that more recycled coarse aggregate content in concrete mix increased the 

permeability. 

 

6.12 Summary of findings 

The main conclusions from this experimental work are as follows: 

1) Incorporation of 5, 10, 15, and 20% mineral admixture (microsilica) greatly 

improved the compressive strength, tensile splitting strength, flexural strength, static 

modulus of elasticity and reduced water permeability respectively; 

2) The density of concrete in fresh and hardened state decreases with increasing 

recycled aggregate content in the concrete mix. 

3) Fresh and hardened state densities of concrete with high dosage of fibre is lower 

than the density of concrete without fibre. 

4) The fresh and hardened state densities of concrete incorporating microsilica 

produced higher results than others due to microsilica’s ability to effect 

densification in concrete. 

5) The engineering properties of concrete mix incorporating 15% microsilica in Series 

6 were greatly improved with reference to the strength gained and durability 

compared to others mixes; 

6) The modulus of elasticity of concrete mix with 15% microsilica exceeds the 

theoretical value of 35 GPa given in Table 3.1 of BS-EN 1992-1-1:2004 by 14.6% 

and 4.9% respectively at 0% and 25% recycled coarse aggregate content while the 

mixes incorporating 50%, 75%, and 100% recycled coarse aggregate content fell 

below the theoretical value by 8.6%, 20%, and 26% respectively. 
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7 FATIGUE ASSESSMENT OF RECYCLED AGGREGATE CONCRETE 

INCORPRATING MICRO SILICA AND FIBRE   

 

7.1 Introduction 

The results of the investigation on flexural fatigue performance of concrete mixes under 

cyclic (repetitive) loading using three-point bending tests is discussed in this chapter. 

The concrete mixes in chapter 6 which incorporate microsilica at 15% by weight of 

cement, recycled aggregate, and 0.11% synthetic macro fibre are the focus of the 

investigation. Many researchers have studied and reported various findings on fatigue 

behaviour of conventional plain concrete and steel fibre reinforced concrete as well as 

concrete incorporating microsilica. However, to the best knowledge of the researcher, 

no one has carried out or reported any investigation involving recycled coarse aggregate 

concrete incorporated with microsilica and synthtetic macro fibre. The aim of this study 

therefore, was to assess the impact of recycled coarse aggregate, microsilica and 

synthetic macro fibre on concrete subjected to test under static and cyclic (fatigue) 

loading respectively. Comparison will be made with the results obtained from normal 

(plain) concrete.  

Detailed information will be provided with vital findings such as the fatigue life. A total 

of seventy five (75) prismatic concrete specimens were investigated under both static 

and cyclic loading respectively. The concrete mix consist of five batches and each batch  

is made up of fifteen (15) standard concrete prisms of dimensions 100 x 100 x 500 mm. 

Static loading was carried out in order to determine the maximum flexural strength of 

the concrete prisms using three-point bending tests which was adopted for the cyclic 

loading. The reason was to assess the differences between the flexural strength results 
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obtained from three-point bending test and four-point bending test reported in chapter 6.  

The tests were conducted at various stress levels of 65%, 75%, 85% and 95% of static 

capacity respectively at a loading frequency of 3Hz and high-cycle fatigue loading of 

100,000 cycles. The flexural fatigue loading was discontinued once the concrete prism 

specimen failed or when the target cycles were reached depending on whichever 

occurred first. The fatigue analysis followed a sinusoidal wave pattern and the result of 

the relationship between various stress levels (S) and corresponding number of cycles 

(N) is represented by a widely accepted empirically derived S-N curve diagram known 

as Wohler curves. This was derived from the experimental data during the analysis.   

7.2 Flexural fatigue life 

Table 63 displays the results of four-point and three-point bending test from the Avery-

Denison machine used for flexural strength test, and servo-hydraulic digital controlled 

actuator machine used for fatigue loading respectively.  

 
Table 63: Comparison of 4-point bending and 3-point bending flexural strength test  

 

4-point bending test  (MPa) 3-point bending test (MPa) 

RCA 

(%) 

Concrete 

without 

microsilica 

Concrete with 

15% microsilica 

Concrete without 

microsilica 

Concrete with  

15% microsilica 

0 8.40 9.17 4.20 4.94 

25 6.00 7.50 3.30 4.50 

50 4.74 6.40 2.75 4.17 

75 4.08 5.70 2.40 3.73 

100 3.82 5.40 2.27 3.44 

RCA ---- Recycled Coarse Aggregate 
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The results of fatigue analysis on high performance recycled aggregate concrete 

incorporating synthetic macro fibre are presented in table 42.  

 
Table 64: Result of flexural fatigue assessment  

 

Stress 

Level  

(S) 

Fatigue Life N (Cycles) 

Series 1 

100%NA-

0%RCA 

Series 6 (with 15% microsilica) 

100%NA-

0%RCA 

75%NA-

25%RCA 

50%NA-

50%RCA 

25%NA-

75%RCA 

0%NA-

100%RCA 

95 1400 25400 17000 13000 8000 4000 

85 5800 48200 37000 26400 19600 12400 

75 11000 70200 55800 42600 30000 21000 

65 17000 84800 69200 50200 36400 26800 

NA---Natural coarse aggregate, RCA----Recycled coarse aggregate 

 

The relationship between the stress levels (S) and number of cycle (N) widely referred 

to as Wohler curves or S-N curves is represented by the linear regression line with 

constant slope in Figure 134. The response of the concrete prism specimens to cyclic 

loading was represented by the S-N curves, which shows graphical relationship between 

different stress levels and the number of cycles sustained by the concrete prism before 

failure occurred for each applied stress levels. The relationship observed between the 

two parameters is linear and of the form ax + b. This was obtained through the equation 

of linear regression and these parameters are given in Table 65. 
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RCA --- Recycled Coarse Aggregate 

 
Figure 134. 28-day S-N curves of concrete prisms with 15% micro silica content (Series 6) 

 

The coefficient of regression R² is significantly close to unity in all the trendlines for 

each of the concrete mix as indicated in Table 65. Seitl et al. (2010) also reported higher 

coefficient of regression for concrete mix incorporated with microsilica compared to 

concrete mix without microsilica addition. The test results indicate that all the concrete 

mixes followed a similar trend as the fatigue life under the same stress level decreases 

with increasing recycled aggregate content,  while the fatigue life increases as the stress 

level decreases and vice-versa. Concrete incorporated with microsilica and synthetic 

macro fibre sustained more cyclic loading than the conventional plain concrete samples 

in Series 1 without microsilica addition. This implies that high performance concrete 

incorporating recycled coarse aggregate and synthetic macro fibre are less brittle than 

conventional plain concrete under repetitive loading.  
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Table 65: Parameters obtained from S-N curve for Series 6 concrete mix. 

 

 

 

Parameters 

 

Type of concrete mix 

Series 1 

(without

micro-

silica) 

Series 6  

(with 15% microsilica) 

0% 

RCA 

0% 

RCA 

25% 

RCA 

50% 

RCA 

75% 

RCA 

100% 

RCA 

a -0.0019 -0.0005 -0.0006 -0.0008 -0.001 -0.0013 

b 96.84 108.28 105.32 105.4 104.2 100.69 

R² 0.9953 0.9906 0.9924 0.9821 0.9846 0.9928 

RCA --- Recycled Coarse Aggregate 

 

Where ‘a’ represent slope, ‘b’ is the intercept from the chart, ‘R²’ stands for the 

coefficient of correlation and RCA denotes Recycled coarse aggregate. 

  

 

The test results indicates that all the concrete mix followed similar trend as the fatigue 

life under the same stress level decreases with increasing recycled aggregate content,  

while the fatigue life increases as the stress level decreases and vice-versa.  

The incorporation of synthetic macro fibre impacted on the behaviour of the concrete 

due to its ability to bridge microcracks and reduce crack growth which subsequently 

contribute to the improvement of the performance of the concrete under cyclic loading 

and thus further prolong the fatigue life of the concrete prism samples. It was intended 

to carry out comparisons of the results obtained from this research work with other 

studies where a combination of synthetic macro fibre, microsilica, and recycled coarse 
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aggregate were used in concrete mix. However, due to little or no available research 

literature on the  performance of these materials incorporated together in concrete mix 

under flexural fatigue loading, their separate influence on fatigue behaviour of concrete 

would be examined against their respective contributions rather than collective 

contributions. 

 

Most research findings dealt with these materials as a separate entity in concrete. 

Thomas et al. (2014a), reported reduction in fatigue life of concrete incorporated with 

recycled aggregate compared to normal aggregate concrete. This was linked to the low 

strength of recycled coarse aggregate leading to loss of stiffness. However, recycled 

aggregate content at about 20% substitution for natural coarse aggregate was not 

affected. The S-N curve under flexural cyclic loading indicate a linear relationship from 

the trendlines as illustrated in Figure 134. However, the significant influence of 

microsilica and synthetic macro fibre were observed in concrete mixes incorporated 

with microsilica and synthetic micro fibre respectively, compared with the plain 

concrete without microsilica and fibre addition in Series 1.  

 

 

7.3 Summary of findings 

The main conclusions from this experimental work are as follows: 

1) A linear relationship exist between the stress levels and fatigue life of recycled 

aggregate concrete incorporating micro silica and synthetic macro fibre. 

2) Fatigue life decreases with increasing recycled coarse aggregate content in the 

concrete mix. 



221 

 

3) The stress level reduces with increase in recycled coarse aggregate content in the 

concrete mix and vice-versa.  

4) Concrete incorporated with microsilica and synthetic macro fibre sustained more 

cyclic loading than normal concrete without micro silica and synthetic macro 

fibre addition.  
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8 CONCLUSIONS AND RECOMMENDATIONS  

 

8.1 Conclusions 

The conclusion of all the major findings from phases one, two and three of the research 

work is presented under this chapter for clarity of purpose. The researcher, in line with 

the aim and objectives of the study have identified four key areas involving major 

experimental work. These areas are; 

1) Assessment of the impact of incorporating synthetic macro fibre and microsilica on 

the physical and mechanical properties of recycled coarse aggregate concrete; 

2) Assessment of the durability of the concrete produced from these materials; 

3) Determination of the optimaum ratio of microsilica to enhance the performance of 

the concrete; and  

4) Evaluation of the response and performance of the fibre reinforced concrete to 

fatigue loading. 

The conclusions from this experimental work are; 

1) The water absorption of recycled coarse aggregate is about five times the absorption 

for natural coarse aggregate 

2) Higher recycled coarse aggregate fraction in concrete mix results in a significant 

reduction in physical and mechanical properties of concrete. 

3) The incorporation of synthetic macro fibre to concrete mix, had little or no 

significant effect on the compressive strength of concrete. 

4) The incorporation of higher fraction of microsilica, significantly improved the 

engineering properties of recycled aggregate concrete up to 15% addition, beyond 

which the engineering properties decline. 
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5) Addition of synthetic macro fibre and microsilica increased the fatigue life of 

recycled aggregate concrete ans also reduced the permeability. 

6) The theoretical modulus of elasticity of concrete predicted by EC-2 and ACI 

overestimate the experimental value of modulus of elasticity. 

7) The impact of incorporating fibre in the concrete mixes was significant on flexural 

strength, tensile splitting strength and static modulus of elasticity respectively. 

8) The outcome of this research suggests a strong potential to increase the current 

recommended fraction of recycled coarse aggregate in concrete from 30% to 50% in 

terms of strength.  

9) Application of research results will boost the confidence in the use of recycled 

aggregate, help in conservation of the natural resources (quarry) and increase the 

sustainability credentials of the construction sector. 

 

8.2 Recommendations 

Although the study have shown the limits to which microsilica addition is optimal in 

concrete, the appreciable benefits and efficiency of microsilica have also been reported 

with a major finding that, there is a potential to increase the use of recycled coarse 

aggregate from recommended 30% to 50% with the incorporation of microsilica without 

any cause for alarm.  The underlisted are recommended for further studies in order to 

boost the use of recycled coarse aggregate in concrete by incorporating microsilica in 

the mix. 

 

1) The recycled aggregate used in the study was obtained from one source. However 

the impurities from construction and demolition debris varies from a source to the 
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other and it is suggested that further research should be conducted to assess the 

effect(s) of these impurities from various sources on the engineering properties of 

recycled aggregate concrete; 

2) The engineering properties of the concrete produced were investigated up till 28 

days. However, further research should be carried out at a later curing age in order 

to understand the behaviour of these materials more with time than the reported 

curing age; 

3) The use of Scanning Electron Microscope (SEM) to identify and provide evidence 

of the effect of microsilica addition in interaction with the pore structure and 

hydrated cement of recycled aggregate concrete;  

4) It will be useful to carry out some numerical analysis to model the behaviour of the 

fibre reinforced prism to cyclic loadings. 

5) The combination of these materials should be used in concrete for structural 

application that requires high strength and high durability. Although care should be 

taken if required in applications where creep is a governing factor or consideration 

to design. 

6) The use of recycled fines should also be considered as a partial replacement for 

natural fine aggregate in concrete. 



225 

 

APPENDICES 

Appendix 1: Sample calculations of design mix 

Table 66: Sample calculation of concrete design mix – Series 1 (Reference) 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/Cement ratio Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3
(see pfa sheet) table 

9B
Wwater= 230 kg/㎥

3 3.1 Cement content                           C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

4 4.1 Relative Density of aggregate (SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content  C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

6

Natural    

100%

Recycled      

0%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that of 

Oven Dry)

583.0 230.0 602.8 904.2 0.0

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%  @ (SSD)
1.67 1.44

6.2 Per ㎥ (based on Oven dry) 583.0 252.7 592.9 891.4

Absorption of Aggregate (variable)  fine; 

3.22%, natural coarse; 6.0%  @ (Air dry)

3.22 6.00

583.0 176.1 612.6 948.3 0.0

6.4 Per volume of 0.072㎥ required 42.0 12.7 44.1 68.3 0.0 

Cement Water

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

Fine Aggregate

Design mix of concrete {100% N.A - 0% R.C.A } control

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Values

Coarse Aggregate   (10mm)

Quantities(kg)
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Table 67: Sample calculation of concrete design mix – Series 1 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content            C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4
4.1 Relative Density of 

      aggregate (SSD)
2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine 

      Aggregate
Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content  C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

Natural      75%
Recycled       

25%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.0 230.0 602.8 678.15 226.05

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%, recycled 

coarse agg; 7.65 @ (SSD)

1.67 1.44 7.65

6.2 Per ㎥ (based on Oven dry) 583.0 249.5 592.9 668.5 210.0

Absorption of Aggregate (variable)  fine; 

13.3%, natural coarse; 5.2 % , recycled 

coarse agg; 6.9% @ (Air dry)

13.30 5.20 6.90

583.0 106.3 683.9 705.2 225.5

6.4 Per volume of 0.072㎥ required 42.0 7.7 49.2 50.8 16.2 

Quantities(kg) Cement Fine AggregateWater6

Design mix of concrete  {75%N.A - 25%R.C.A}

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Coarse Aggregate   (10mm)

Values

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)
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Table 68: Sample calculation of concrete design mix – Series 2 (Reference) 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/Cement ratio Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3
(see pfa sheet) table 

9B
Wwater= 230 kg/㎥

3 3.1 Cement content                           C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

4 4.1 Relative Density of aggregate (SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content  C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

6

Natural    

100%

Recycled      

0%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that of 

Oven Dry)

583.0 230.0 602.8 904.2 0.0 4.45

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%  @ (SSD)
1.67 1.44

6.2 Per ㎥ (based on Oven dry) 583.0 252.7 592.9 891.4

Absorption of Aggregate (variable)  fine; 

7.8%, natural coarse; 5.9%  @ (Air dry)
7.80 5.90

583.0 146.7 643.1 947.3 0.0 4.45

6.4 Per volume of 0.072㎥ required 42.0 10.6 46.3 68.2 0.0 0.32 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Crushed(100%)＋Uncrushed(0%)

Quantities(kg) Cement Water Fine Aggregate

Coarse Aggregate   (10mm)
Synthetic 

Macro Fibre 

Design mix of concrete  {100% N.A - 0% R.C.A - 4.45kg/m³ Fibre}

Values

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value
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Table 69: Sample calculation of concrete design mix – Series 2 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/Cement ratio Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3
3.1 Cement content                                 

C3
583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/cement ratio kg/㎥

4 4.1 Relative Density of aggregate (SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content  C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural    50% Recycled     50% 

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.0 230.0 602.8 452.1 452.10 4.45

Absorption of Aggregate (constant)  

fine; 1.67%, natural coarse; 1.44% , 

recycled coarse: 7.65 @ (SSD)

1.67 1.44 7.65

6.2 Per ㎥ (based on Oven dry) 583.0 246.3 592.9 445.7 420.0

Absorption of Aggregate (variable)  fine; 

7.8%, natural coarse; 5.9 % , recycled 

coarse 8% @ (Air dry)

7.80 5.90 8.00

583.0 131.7 643.1 473.6 456.5

6.4 Per volume of 0.072㎥ required 42.0 9.5 46.3 34.1 32.9 0.32 

Values

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Quantities(kg) Cement Water

C= Free-water contenet/free-water/cement ratio  

Fine Aggregate
Synthetic Macro 

Fibre 

Design mix of concrete  {50%N.A - 50%R.C.A - 4.45kg/m³ Fibre}

Coarse Aggegate

Crushed(100%)＋Uncrushed(0%)

Coarse Aggregate   (10mm)

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Quantities(kg) Cement Water Fine Aggregate
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Table 70: Sample calculation of concrete design mix – Series 3 (Reference) 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/Cement ratio Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 (see pfa sheet) table 9B Wwater= 230 kg/㎥

3 3.1 Cement content                           C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

4 4.1 Relative Density of aggregate (SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content  C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

6

Natural    

100%

Recycled      

0%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that of 

Oven Dry)

583.0 230.0 602.8 904.2 0.0 1.00

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%  @ (SSD)
1.67 1.44

6.2 Per ㎥ (based on Oven dry) 583.0 252.7 592.9 891.4

Absorption of Aggregate (variable)  fine; 

7.0%, natural coarse; 4.8%  @ (Air dry)
7.00 4.80

583.0 163.2 637.5 936.3 0.0 1.00

6.4 Per volume of 0.072㎥ required 42.0 11.7 45.9 67.4 0.0 0.07 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Crushed(100%)＋Uncrushed(0%)

Quantities(kg) Cement Water Fine Aggregate

Coarse Aggregate   (10mm)
Synthetic 

Macro Fibre 

Design mix of concrete  {100% N.A - 0% R.C.A - 4.45kg/m³ Fibre}

Values

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value
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Table 71: Sample calculation of concrete design mix – Series 3 

 

Stage Item 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content                      C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4 4.1 Relative Density of aggregate(SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content             C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural              

0%

Recycled                  

100%

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44% , recycled 

agg. 7.65  @ (SSD)

1.67 0.00 7.65

6.2 Per ㎥ (based on Oven dry) 583.0 304.2 592.9 0.0 839.9

6.2..1 Per volume of 0.072㎥ required 39.7 20.7 40.4 0.0 57.2 

Absorption of Aggregate (variable)  fine; 

5.2%, natural coarse; 0.0 % , recycled 

coarse 8.4 @ (Air dry)

5.20 0.00 8.40

583.0 194.6 625.4 0.0 917.0

6.4 Per volume of 0.072㎥ required 39.7 13.3 42.6 0.0 62.5 0.07 

0.0

Cement Water Fine Aggregate
Coarse Aggegate

Values

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.00 230.00 602.80

Quantities(kg)

904.20

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

1.00

Design mix of concrete  {0%N.A - 100%R.C.A - 1kg/m³F}

Quantities(kg) Cement Water Fine Aggregate

Coarse Aggregate   (10mm) Synthetic 

Macro Fibre 

kg/m³
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Table 72: Sample calculation of concrete design mix – Series 4 (Reference) 

 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content                      C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4 4.1 Relative Density of aggregate(SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content             C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural 100%
Recycled                     

0%

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%,  @ 

(SSD)

1.67 1.44 0

6.2 Per ㎥ (based on SSD) 583.0 252.7 592.9 891.4 0.0

Absorption of Aggregate (variable)  fine; 

1.03%, natural coarse;1.2 %  @ (Air 

dry)

1.03 1.20 0.00

583.0 235.7 599.1 902.2 0.0 1.00 29.20 2.33

6.4 Per volume of 0.072㎥ required 42.0 17.0 43.1 65.0 0.0 0.07 2.10 0.17

Water Fine Aggregate

Coarse Aggregate   (10mm)

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

Design mix of concrete {100% N.A - 0% RCA - 1kg/m³Fibre - 5%M - 0.4% SP}

904.2 0.00 1.00

Quantities(kg) Cement Water Fine Aggregate
Coarse Aggegate

Quantities(kg) Cement

2.33

Microsilica 

5%

29.20

Synthetic 

Macro Fibre 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Super-

plasticizer       

0.4%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.00 230.00 602.80
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Table 73: Sample calculation of concrete design mix – Series 5 (Reference 

 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content                      C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4 4.1 Relative Density of aggregate(SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content             C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural 100%
Recycled                     

0%

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%,  @ 

(SSD)

1.67 1.44 0

6.2 Per ㎥ (based on SSD) 583.0 252.7 592.9 891.4 0.0

Absorption of Aggregate (variable)  fine; 

1.03%, natural coarse;1.2 %  @ (Air 

dry)

1.03 1.20 0.00

583.0 235.7 599.1 902.2 0.0 1.00 58.40 3.50

6.4 Per volume of 0.072㎥ required 42.0 17.0 43.1 65.0 0.0 0.07 4.20 0.25

Water Fine Aggregate

Coarse Aggregate   (10mm)

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

Design mix of concrete {100% N.A - 0% RCA - 1kg/m³Fibre - 10%M - 0.6% SP}

904.2 0.00 1.00

Quantities(kg) Cement Water Fine Aggregate
Coarse Aggegate

Quantities(kg) Cement

3.50

Microsilica 

10%

58.40

Synthetic 

Macro Fibre 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Super-

plasticizer       

0.6%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.00 230.00 602.80
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Table 74: Sample calculation of concrete design mix – Series 6 (Reference) 

 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content                      C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4 4.1 Relative Density of aggregate(SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content             C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural 100%
Recycled                     

0%

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%,  @ 

(SSD)

1.67 1.44 0

6.2 Per ㎥ (based on SSD) 583.0 252.7 592.9 891.4 0.0

Absorption of Aggregate (variable)  fine; 

1.03%, natural coarse;1.2 %  @ (Air 

dry)

1.03 1.20 0.00

583.0 235.7 599.1 902.2 0.0 1.00 87.60 4.66

6.4 Per volume of 0.072㎥ required 42.0 17.0 43.1 65.0 0.0 0.07 6.31 0.34

Water Fine Aggregate

Coarse Aggregate   (10mm)

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

Design mix of concrete {100% N.A - 0% RCA - 1kg/m³Fibre - 15%M - 0.8% SP}

904.2 0.00 1.00

Quantities(kg) Cement Water Fine Aggregate
Coarse Aggegate

Quantities(kg) Cement

4.66

Microsilica 

15%

87.60

Synthetic 

Macro Fibre 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Super-

plasticizer       

0.8%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.00 230.00 602.80
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Table 75: Sample calculation of concrete design mix – Series 7 (Reference) 

 

1 1.1 Characteristic Strength Specified N/㎟ 50 at 28days

Proportion Defective 5 %

1.2 Standard Deviation Fig 3 Less than 20 results  s= 8 N/㎟

5% defective                          k (Sec 4.4 p12)= 1.64

1.3 Margin                            CI M=k*s 13.1 N/㎟

or specified N/㎟

1.4 Target Mean strength C2 fm=fc+M 63.1 N/㎟

1.5 Cement Type Specified Ordinary Portant Cement

1.6 aggregate Type: Coarse

                          : Fine
N/㎟

1.7 Free-water/Cement ratio Table2, Fig 4 0.37

1.8 Maximum Free-Water/

      Cement ratio
Specified 0.5 0.37

2 2.1 Slump or Vebe time Specified Slump 60~180mm Vebe time 0-3 s

2.2 Maximum Aggregate Size Specified 10 mm mm

2.3 Free-water Content Table3 Wwater= 230 kg/㎥

3 3.1 Cement content                      C3 C= Free-water contenet/free-water/cement ratio  583 kg/㎥

3.2 Maximum Cement content Specified kg/㎥

3.3 Minimum Cement content Specified kg/㎥

use3.1 if〉3.2

use3.3 if〉3.1 kg/㎥

3.4 Modified free-water/

      cement ratio
kg/㎥

4 4.1 Relative Density of aggregate(SSD) 2.6

4.2 Concrete Density Fig 5 D= 2320 kg/㎥

4.3 Total Aggregate content C4 Aggregate=D-C-W 1507.0 kg/㎥

5 5.1 Grading of Fine Aggregate See table 20 of thesis Percentage Passing 600㎛ sieve= 74 %(calculated)

5.2 Proportion of Fine Aggregate Fig 6 40 %

5.3 Fine Aggregate content Fine=Total aggregate*Proportion of fine= 602.8 kg/㎥

5.4 coarse Aggregate content             C5 Total aggregate-Fine aggregate= 904.2 kg/㎥

10 mm

583.0 230.0 602.8 904.2

6

Natural 100%
Recycled                     

0%

Absorption of Aggregate (constant)  fine; 

1.67%, natural coarse; 1.44%,  @ 

(SSD)

1.67 1.44 0

6.2 Per ㎥ (based on SSD) 583.0 252.7 592.9 891.4 0.0

Absorption of Aggregate (variable)  fine; 

1.03%, natural coarse;1.2 %  @ (Air 

dry)

1.03 1.20 0.00

583.0 235.7 599.1 902.2 0.0 1.00 116.80 6.41

6.4 Per volume of 0.072㎥ required 42.0 17.0 43.1 65.0 0.0 0.07 8.41 0.46

Water Fine Aggregate

Coarse Aggregate   (10mm)

Crushed(100%)＋Uncrushed(0%)    

Use the lower

Value

Crushed(100%)＋Uncrushed(0%)

Design mix of concrete {100% N.A - 0% RCA - 1kg/m³Fibre - 20%M - 1.1% SP}

904.2 0.00 1.00

Quantities(kg) Cement Water Fine Aggregate
Coarse Aggegate

Quantities(kg) Cement

6.41

Microsilica 

20%

116.80

Synthetic 

Macro Fibre 

6.3 per ㎥(based on Air dry : moisture content of Air Dry was compared with that of Oven dry)

Super-

plasticizer       

1.1%

6.1 Per ㎥ (based on SSD, Moisture 

content of SSD was compared with that 

of Oven Dry)

583.00 230.00 602.80
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Appendix 2: Particle Density and Water Absorption  

1) Natural Fine Aggregate (Sand)  -- Pyknometer method  

  

 

 

 

2) Natural Coarse Aggregate (Gravel) – Wire basket method 

 
 

 

3) Natural Fine Aggregate (Sand) – Wire basket method  

  

 

A B C D E F G H

(M1)               

Weight of SSD 

Aggregate in 

air  (g)

(M2)                      

Apparent weight of 

Pyknometer + wet 

sample (g)

(M3)               

Apparent weight 

of Pyknometer + 

water (g)

(M4)                

Weight of oven-

dried sample in 

air (g)

ρa (kg/m³)        

Apparent 

particle 

density 

ρrd (kg/m³)                 

Particle density 

on an oven-dried 

basis

ρssd  (kg/m³)              

Particle 

density on a 

SSD basis

Water 

Absorption 

(%)

1806.8 2654.1 1652.2 1777.2 2292.27 2207.98 2445.00 1.67

A B C D E F G H

(M1)               

Weight of SSD 

Aggregate in 

air  (g)

(M2)                      

Apparent weight of 

basket in water + 

SSD sample (g)

(M3)               

Apparent weight 

of empty basket 

in water (g)

(M4)                

Weight of oven-

dried sample in 

air (g)

ρa (kg/m³)        

Apparent 

particle 

density 

ρrd (kg/m³)                 

Particle density 

on an oven-dried 

basis

ρssd  (kg/m³)              

Particle 

density on a 

SSD basis

Water 

Absorption 

(%)

1522 2566.7 1652.2 1500.4 2560.85 2469.79 2505.35 1.44

A B C D E F G H

(M1)               

Weight of SSD 

Aggregate in 

air  (g)

(M2)                      

Apparent weight of 

basket in water + 

SSD sample (g)

(M3)               

Apparent weight 

of empty basket 

in water (g)

(M4)                

Weight of oven-

dried sample in 

air (g)

ρa (kg/m³)        

Apparent 

particle 

density 

ρrd (kg/m³)                 

Particle density 

on an oven-dried 

basis

ρssd  (kg/m³)              

Particle 

density on a 

SSD basis

Water 

Absorption 

(%)

1340.7 2415.7 1652.2 1245.4 2584.35 2157.66 2322.77 7.65
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Appendix 3: Strength tests results on hardened concrete 

 

Compressive Strength Test 
 

Table 76: Result of Compressive strength test at 0% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Compressive strength (MPa) 

Series 1 24.20 43.50 53.86 

Series 2 22.10 40.90 51.53 

Series 3 23.40 42.50 52.40 

Series 4 36.80 54.30 71.15 

Series 5 38.70 57.20 84.84 

Series 6 42.60 62.60 86.46 

Series 7 40.20 60.20 85.82 

 

Table 77: Result of Compressive strength test at 25% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Compressive strength (MPa) 

Series 1 22.80 40.55 50.06 

Series 2 20.00 37.44 48.13 

Series 3 21.70 38.90 48.90 

Series 4 30.50 53.60 68.40 

Series 5 33.10 55.40 71.00 

Series 6 38.40 58.70 77.85 

Series 7 35.70 57.60 75.91 
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Table 78: Result of Compressive strength test at 50% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Compressive strength (MPa) 

Series 1 20.28 37.18 47.26 

Series 2 17.73 32.92 44.10 

Series 3 19.10 35.10 45.80 

Series 4 24.70 50.20 63.40 

Series 5 28.80 53.10 65.20 

Series 6 33.00 56.40 75.74 

Series 7 30.80 54.00 71.88 

 

Table 79: Result of Compressive strength test at 75% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Compressive strength (MPa) 

Series 1 17.03 29.02 44.53 

Series 2 13.31 25.61 40.20 

Series 3 15.90 27.20 43.00 

Series 4 22.80 47.20 55.90 

Series 5 25.50 49.20 63.98 

Series 6 30.10 53.10 74.53 

Series 7 28.40 51.90 69.68 
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Table 80: Result of Compressive strength test at 100% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Compressive strength (MPa) 

Series 1 13.10 28.42 41.00 

Series 2 10.16 22.23 36.10 

Series 3 12.20 25.60 38.70 

Series 4 22.60 44.90 53.90 

Series 5 24.10 46.30 59.30 

Series 6 27.30 50.20 68.78 

Series 7 25.60 48.50 65.54 

 

 

Tensile Splitting Strength Test 

Table 81: Result of Tensile Splitting strength test at 0% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Tensile splitting strength (MPa) 

Series 1 2.29 2.76 3.32 

Series 2 3.33 3.70 4.01 

Series 3 2.51 2.90 3.46 

Series 4 3.00 3.45 3.84 

Series 5 3.35 3.80 5.52 

Series 6 3.44 3.95 5.76 

Series 7 3.40 3.86 5.70 
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Table 82: Result of Tensile Splitting strength test at 25% recycled coarse aggregate 

content  

Concrete series type. 

Days 

1 7 28 

Tensile splitting strength (MPa) 

Series 1 1.89 2.50 2.98 

Series 2 3.25 3.55 3.92 

Series 3 2.05 2.59 3.15 

Series 4 2.85 3.38 3.81 

Series 5 3.11 3.65 4.17 

Series 6 3.41 3.84 4.84 

Series 7 3.37 3.76 4.47 

 

Table 83: Result of Tensile Splitting strength test at 50% recycled coarse aggregate 

content  

Concrete series type. 

Days 

1 7 28 

Tensile splitting strength (MPa) 

Series 1 1.38 1.90 2.54 

Series 2 2.85 3.46 3.76 

Series 3 1.61 2.20 2.78 

Series 4 2.42 3.18 3.48 

Series 5 3.02 3.53 3.97 

Series 6 3.21 3.70 4.71 

Series 7 3.10 3.61 4.38 
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Table 84: Result of Tensile Splitting strength test at 75% recycled coarse aggregate 

content  

Concrete series type. 

Days 

1 7 28 

Tensile splitting strength (MPa) 

Series 1 1.16 1.48 2.01 

Series 2 2.36 3.29 3.71 

Series 3 1.40 1.80 2.29 

Series 4 2.10 3.14 3.50 

Series 5 2.36 3.25 3.64 

Series 6 2.66 3.63 4.50 

Series 7 2.47 3.47 4.25 

 

Table 85: Result of Tensile Splitting strength test at 100% recycled coarse aggregate 

content  

Concrete series type. 

Days 

1 7 28 

Tensile splitting strength (MPa) 

Series 1 0.70 1.23 1.87 

Series 2 1.95 3.17 3.48 

Series 3 0.88 1.41 2.00 

Series 4 1.73 2.98 3.35 

Series 5 1.86 3.13 3.52 

Series 6 2.32 3.41 4.34 

Series 7 2.18 3.30 4.17 
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Flexural Strength Test 

Table 86: Result of Flexural strength test at 0% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Flexural strength (MPa) 

Series 1 3.55 5.00 7.10 

Series 2 4.30 6.27 8.70 

Series 3 3.80 5.39 7.63 

Series 4 4.50 7.00 9.13 

Series 5 5.13 7.30 9.40 

Series 6 5.86 8.00 10.30 

Series 7 5.60 7.60 9.85 

 

Table 87: Result of Flexural strength test at 25% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Flexural strength (MPa) 

Series 1 3.00 4.30 5.80 

Series 2 3.92 5.29 7.10 

Series 3 3.30 4.67 6.35 

Series 4 4.16 5.89 7.50 

Series 5 4.61 6.30 7.92 

Series 6 5.50 7.20 9.00 

Series 7 4.97 6.94 8.30 
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Table 88: Result of Flexural strength test at 50% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Flexural strength (MPa) 

Series 1 2.33 3.67 4.55 

Series 2 3.18 4.55 5.84 

Series 3 2.85 4.00 4.81 

Series 4 3.75 5.06 6.40 

Series 5 4.00 5.53 6.80 

Series 6 5.00 6.60 8.20 

Series 7 4.45 5.85 7.75 

 

Table 89: Result of Flexural strength test at 75% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Flexural strength (MPa) 

Series 1 1.87 2.93 4.00 

Series 2 2.77 4.00 4.91 

Series 3 2.38 3.20 4.38 

Series 4 3.20 4.75 5.70 

Series 5 3.66 5.00 6.00 

Series 6 4.35 6.00 7.50 

Series 7 3.98 5.57 6.88 
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Table 90: Result of Flexural strength test at 100% recycled coarse aggregate content  

Concrete series type. 

Days 

1 7 28 

Flexural strength (MPa) 

Series 1 1.24 2.17 3.12 

Series 2 2.32 3.40 4.40 

Series 3 1.70 2.77 3.66 

Series 4 2.88 3.90 5.40 

Series 5 3.05 4.10 5.52 

Series 6 3.97 5.40 6.94 

Series 7 3.42 4.85 6.00 
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APPENDIX 4: Durability performance of concrete  
 

Table 91: Water permeability test result at 5% Microsilica  

√Time 

(Minutes 
½ 

) 

Volume of flow (m³) 

RCA-0% RCA-25% RCA-50% RCA-75% RCA-100% 

0.00 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 

1.00 5.00E-08 8.50E-08 1.26E-07 1.43E-07 3.75E-07 

1.41 5.60E-08 1.20E-07 1.59E-07 1.89E-07 4.61E-07 

1.73 6.00E-08 1.46E-07 1.71E-07 2.23E-07 5.32E-07 

2.00 6.40E-08 1.69E-07 1.82E-07 2.50E-07 5.63E-07 

2.24 6.90E-08 1.80E-07 2.15E-07 2.65E-07 5.87E-07 

2.45 7.60E-08 1.94E-07 2.30E-07 2.80E-07 6.04E-07 

2.65 8.10E-08 2.10E-07 2.45E-07 3.00E-07 6.17E-07 

2.83 8.60E-08 2.25E-07 2.60E-07 3.15E-07 6.32E-07 

3.00 9.00E-08 2.30E-07 2.72E-07 3.26E-07 6.43E-07 

3.16 9.50E-08 2.36E-07 2.80E-07 3.35E-07 6.54E-07 

3.32 1.01E-07 2.40E-07 2.89E-07 3.43E-07 6.64E-07 

3.46 1.04E-07 2.45E-07 2.95E-07 3.50E-07 6.73E-07 

3.61 1.08E-07 2.51E-07 3.01E-07 3.56E-07 6.80E-07 

3.74 1.11E-07 2.55E-07 3.07E-07 3.60E-07 6.88E-07 

3.87 1.15E-07 2.60E-07 3.10E-07 3.64E-07 6.95E-07 

 

Table 92: Water permeability test result at 10% Microsilica  

√Time 

(Minutes 
½ 

) 

Volume of flow (m³) 

RCA-0% RCA-25% RCA-50% RCA-75% RCA-100% 

0.00 1.00E-09 1.00E-09 1.00E-09 1.00E-09 1.00E-09 

1.00 4.00E-08 9.60E-08 8.90E-08 7.40E-08 1.75E-07 

1.41 4.60E-08 1.22E-07 1.15E-07 9.80E-08 3.00E-07 

1.73 5.00E-08 1.39E-07 1.30E-07 1.15E-07 3.70E-07 

2.00 5.40E-08 1.50E-07 1.55E-07 1.28E-07 4.00E-07 

2.24 5.90E-08 1.67E-07 1.98E-07 2.25E-07 4.20E-07 

2.45 6.40E-08 1.76E-07 2.06E-07 2.50E-07 4.35E-07 

2.65 6.80E-08 1.85E-07 2.12E-07 2.75E-07 4.48E-07 

2.83 7.60E-08 1.92E-07 2.18E-07 2.87E-07 4.57E-07 

3.00 8.00E-08 1.99E-07 2.25E-07 2.98E-07 4.70E-07 

3.16 8.40E-08 2.06E-07 2.30E-07 3.08E-07 4.82E-07 

3.32 8.70E-08 2.10E-07 2.37E-07 3.14E-07 4.90E-07 

3.46 9.20E-08 2.15E-07 2.42E-07 3.20E-07 4.97E-07 

3.61 9.60E-08 2.19E-07 2.48E-07 3.26E-07 5.04E-07 

3.74 1.00E-07 2.22E-07 2.53E-07 3.30E-07 5.08E-07 

3.87 1.03E-07 2.25E-07 2.58E-07 3.33E-07 5.12E-07 
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Table 93: Water permeability test result at 15% Microsilica  

√Time 

(Minutes 
½ 

) 

Volume of flow (m³) 

RCA-0% RCA-25% RCA-50% RCA-75% RCA-100% 

0.00 1.00E-09 3.00E-09 1.00E-09 1.00E-09 1.00E-09 

1.00 2.70E-08 3.10E-08 4.20E-08 4.80E-08 9.10E-08 

1.41 3.00E-08 3.30E-08 4.80E-08 6.10E-08 1.19E-07 

1.73 3.20E-08 3.50E-08 5.00E-08 6.80E-08 1.33E-07 

2.00 3.50E-08 4.20E-08 5.30E-08 7.40E-08 1.43E-07 

2.24 4.00E-08 5.50E-08 6.40E-08 9.20E-08 1.52E-07 

2.45 4.60E-08 5.90E-08 7.20E-08 1.07E-07 1.67E-07 

2.65 5.10E-08 6.20E-08 8.80E-08 1.18E-07 1.80E-07 

2.83 5.50E-08 6.90E-08 9.60E-08 1.27E-07 2.00E-07 

3.00 6.00E-08 7.30E-08 1.04E-07 1.38E-07 2.12E-07 

3.16 6.60E-08 7.70E-08 1.10E-07 1.44E-07 2.20E-07 

3.32 7.10E-08 8.50E-08 1.16E-07 1.50E-07 2.31E-07 

3.46 7.70E-08 9.00E-08 1.23E-07 1.56E-07 2.40E-07 

3.61 8.30E-08 9.40E-08 1.27E-07 1.61E-07 2.46E-07 

3.74 8.90E-08 9.80E-08 1.32E-07 1.65E-07 2.50E-07 

3.87 9.30E-08 1.02E-07 1.37E-07 1.70E-07 2.53E-07 

 

Table 94: Water permeability test result at 20% Microsilica  

√Time 

(Minutes 
½ 

) 

Volume of flow (m³) 

RCA-0% RCA-25% RCA-50% RCA-75% RCA-100% 

0.00 1.00E-09 3.00E-09 1.00E-09 1.00E-09 3.00E-09 

1.00 3.20E-08 3.70E-08 5.00E-08 7.60E-08 9.40E-08 

1.41 3.70E-08 4.20E-08 6.10E-08 9.40E-08 1.17E-07 

1.73 4.30E-08 4.60E-08 6.60E-08 1.11E-07 1.45E-07 

2.00 4.80E-08 5.00E-08 7.20E-08 1.20E-07 1.45E-07 

2.24 5.30E-08 5.60E-08 7.40E-08 1.01E-07 1.86E-07 

2.45 5.70E-08 6.00E-08 8.00E-08 1.15E-07 1.99E-07 

2.65 6.20E-08 6.80E-08 8.80E-08 1.26E-07 2.10E-07 

2.83 6.60E-08 7.20E-08 9.40E-08 1.35E-07 2.23E-07 

3.00 7.10E-08 7.70E-08 1.00E-07 1.47E-07 2.40E-07 

3.16 7.60E-08 8.40E-08 1.06E-07 1.56E-07 2.57E-07 

3.32 8.00E-08 9.00E-08 1.13E-07 1.65E-07 2.64E-07 

3.46 8.40E-08 9.60E-08 1.18E-07 1.72E-07 2.72E-07 

3.61 8.80E-08 1.00E-07 1.22E-07 1.78E-07 2.77E-07 

3.74 9.20E-08 1.04E-07 1.27E-07 1.83E-07 2.81E-07 

3.87 9.60E-08 1.08E-07 1.32E-07 1.86E-07 2.85E-07 
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