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ABSTRACT 

In this thesis a technique to estimate the risk of Colles’ fracture using ordinary radiographs, 

instead of performing expensive DXA scans is described.  The risk of fracture was estimated 

by maximum stress of the bone which was modelled as a parallel sided tube. 

Grey-level profiles across the radius bone were sectioned into seven line-piece segments to 

create a model.  The collected profiles were used to construct gender specific models from 68 

male subjects and 48 female subjects.  These models were used to interpret unseen images 

and locate the internal and external radius of the radius bone. 

The internal and external radius were measured using the model-based interpretation.  The 

error of the detection compared to manual measurements was less than 2%.  The stress on the 

radius bone was derived, and used as a measure for the risk of fracture.  Results showed a 

bivariate distribution of values between fractured and non-fractured subjects with 92% 

confidence in population different. 

With further development this technique could be used to screen those at high-risk of a 

Colles’ fracture by gauging the thickness of the wall of the radius bone using model-based 

image interpretation. 

Keywords: Colles’ fracture, risk of fracture estimation, distal radius bone, model-based 
interpretation. 
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1 0BINTRODUCTION 

1.1 7BColles’ fracture 

A distal fracture of the radius bone is a break of the forearm that is known as a Colles’ 

fracture.  It was defined in 1814 by an Irish surgeon and anatomist, Abraham Colles.  This is a 

common fracture that can arise from a forward fall where the natural response is to reach out 

to break the fall.  The Colles’ fracture is also a common sporting injury.  There are around 

100,000 fractures amongst snowboarders each year in the UK (Hopson 2000; Hoynak 2000).  

Moreover, Colles’ fracture is widespread amongst patients with osteoporosis (bone mineral 

loss state). 

1.2 8BColles’ fracture treatment and recovery 

Treatment of Colles’s fracture is normally uncomplicated, simply requiring stabilization by a 

fitting device, such as a plaster cast, whilst the bone heals (Hoynak 2000).  Occasionally 

surgery is needed to fit an internal traction device (Nelson 2005; Preston 2007). 

Although the treatment is straightforward a Colles’ fracture can be slow to heal.  Initial 

healing can take six weeks and a further six to eighteen months may be needed for recovery 

(Hopson 2000).  Discomfort is common throughout this time. 

Most patients are able to resume light activities, such as swimming or exercising of the lower 

body, within two months of the plaster cast being removed or after surgical wounds have 

healed.  Energetic physical activities such as skiing or football may not be possible for six 

months or longer (Hopson 2000).  Unfortunately, normal muscle tone is never fully 

recovered. 
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1.3 9BBone Mineral Density assessment 

Bone mineral density (BMD) refers to the mineral content per cubic centimetre of the bone.  It 

is used to diagnose osteoporosis and thereby predict the risk of bone fracture. The National 

Osteoporosis Foundation (NOF) recommends dual energy X-ray absorptiometry (DXA), 

which is a quick painless non-invasive method, to measure BMD. 

Specific bones are scanned to measure the mineral density.  The density is then compared to 

an average index based on age, sex and size of the bone.  Data obtained from these 

comparisons are used to estimate the risk of fracture and the stage of osteoporosis.  In general, 

a patient can expect to pay approximately £200 (in 2008) for a scan in private care. 

Peripheral dual energy X-ray absorptiometry (pDXA), quantitative ultrasound (QUS), 

quantitative computed tomography (QCT)  and peripheral quantitative computed tomography 

(pQCT) are alternative methods used to measure the bone density that predicts the risk of 

bone fracture.  However, the results from these methods are less accurate compared to DXA. 
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1.4 10BStatement of problem 

Since a Colles’ fracture is common and the recovery period is extensive, it would be valuable 

if people at high risk of fracture could be identified and preventative measures taken. 

However as DXA scans are very costly, the prospect of a screening for the high risk of 

fracture is difficult.   

Moreover, DXA does not assess structural factors related to the risk of a fracture and 

consequently cannot provide a reliable assessment of the risk of fracture.  There may be other 

alternative methods to DXA which can give an estimate of risk fracture at a low cost of 

operation and can estimate the risk of fracture based on structural factors of the radius bone. 

It is possible to measure the structural factors of the radius bone using a plain radiograph.  

The benefit of using a plain radiograph is the lower cost of operation.  A plain radiograph is 

much cheaper than a DXA, which makes the prospect of a screening for the high risk of 

fracture possible.   

It would be very beneficial if the risk of a Colles’ fracture could be estimated by using 

radiographs.  This would mean that existing X-ray systems with additional software would be 

sufficient to perform the procedure.  

 3
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1.5 11BAims 

1. To investigate methods for estimating the internal and external diameter of the radius 

bone. 

2. To investigate models to describe the grey-level profile of X-ray attenuation across the 

radius bone. 

3. To evaluate an estimate of the stress that the radius bone can sustain and the risk of 

fracture. 



2 1BLITERATURE REVIEW 

In this chapter the structure of the radius bone is described and the use of BMD to estimate 

the risk of a Colles’ fracture was reviewed.  The use of image processing to assess the risk of 

a Colles’ fracture from CT X-ray images was reviewed.  This dissertation considered the use 

of a simple mechanical model of the radius and the use of a model-based image analysis to 

estimate the risk of a Colles’ fracture.  Therefore the basis of the mechanical model and 

model-based dimensional gauging was also reviewed. 

2.1 12BThe structure of the radius bone 

The radius bone can be considered as a parallel sided cylindrical tube.  Whilst the radius bone 

is not circular in a cross section but flattened on one side and not parallel sided this 

assumption has been considered appropriate by Langton (Langton 1996). 

The radius bone contains two important components - the dense cortical surface layers and the 

trebecular central core.  The cortical bone is a high density wall, contributing 80% of the 

weight of the bone (Roylance 2000; Nelson 2005).  The trabecular region of the bone is low 

density osseous tissue.  The densities of these layers contribute to the mechanical properties of 

the radius bone. 

A model of the hollow tube with an internal radius (ri) and an external radius (ro) is shown in 

Figure 2.1.  The issues that need to be investigated are the appropriateness and the accuracy of 

the mechanical model.  We also need techniques that can measure the internal and external 

radius in order to estimate the stress that can be born. 
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Figure 2.1  Mechanical model of radius bone, taken from Langton (Langton 1996). 

2.2 13BBone strength estimation 

Bone strength can be estimated by measuring the bone mineral density (BMD), commonly 

reported as an average density (g/cm²) and evaluated as the population T- and Z-score.  T-

score indicates the deviation of BMD from the mean bone density of a healthy 30-year-old 

adult.  The Z-score is a measure of the deviation of BMD from the age dependent population 

average.  Figure 2.2 shows the T-score (strong line) and Z-score from age 20 to 100 years. 

The bold band in Figure 2.2 is the ±1 SD limit about the population average.  For example a 

subject at age 60 (shown as a dot in Figure 2.2) has T-score = -2.0 and Z-score = -0.5.  This 

means the subject has a much lower BMD compared to a 30-year-old but the BMD is close to 

the age related average, with a Z-score of 0.5. 
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Figure 2.2  The assesment of BMD by T-score and Z-score. 

An estimation of BMD is widely used to measure the bone content in a particular site of the 

body.  The risk of a bone fracture is estimated on the basis that the strength of the bone is 

related to the mineral density in the bone (Hopson 2000).  Table 2-1 shows BMD categories 

of assessment for postmenopausal women and men aged 50 or over. 

Table 2-1  T-score scores and BMD category 

T-Score BMD category Treatment 
≥ -1 Normal BMD Medication not normally required 

-1 to -2.5 Low BMD (Osteopenia) 
May need to take osteoporosis 
medication 

≤ -2.5 Osteoporosis Should take osteoporosis medication 

BMD measurements require a careful calibration the object size, geometry and the 

distribution of X-ray densities in an object can affect the BMD values, caused by beam 

hardening and Sigmoid surface density gradient (Hopson 2000).   

Several works (Lee et al. 2007; Gordony et al. 1998) have estimated the risk of Colle’ 

fracture using image processing methods, rather than measuring BMD.  Lee (Lee et al. 2007) 

proposed a measurement called Trabecular Bone Filling Factor (TBFF), representing the 

volume of a trabecular bone. 
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In their experiment, radiographic system of DXA was calibrated using an aluminium step-

wedge.  BMD was measured by a radiographic attenuation with a fixed exposure of 51kVp at 

5mA. 

 

Figure 2.3  Grey-level profile across the radius and interpolated curve E and S3, taken from Lee’s 
result (Lee et al. 2007). 

An X-ray attenuation profile across the radius taken from Lee’s experiment (Lee et al. 2007) 

is illustrated in Figure 2.3.  The attenuation profile is modified by subtracting density values 

extrapolated across the bone.  The dotted curve, E, is an extrapolation of the attenuation due 

to the cortical bone and S3 is an interpolation of the attenuation due to soft tissue (S1 and S2). 

Lee estimated the TBFF by using a ratio between trabecular bone content and full-filled bone 

density.  The trabecular bone content was estimated as the difference between the area under 

curve E and curve S3.  The full-filled bone content was calculated as the difference between 

the area under curve D and curve S3.  Results showed a linear correlation between the TBFF 

and BMD of 0.87 and a tentative estimate of reproducibility error of 3%.   

An estimation of bone loss which is provided by the density of trabecular bone can indicate 

bone content density (Hopson 2000), however, a theoretical link between TBFF and BMD 

cannot be found in Lee’s work. 
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Gordony (Gordony et al. 1998) proposed other measures to estimate the structural strength of 

the radius bone, called Connectivity Index (CI) and Hole Area (HA).  Gordony used high-

resolution computed tomographic (CT) images to analyse the micro-structure of the radius 

bone. 

Marrow pore size can be assessed using a binary image of a CT X-ray, as shown in Figure 2.4 

(a).  A 8-connected region growing algorithm was used to grow each pore to find the average 

area of the marrow pore size – Hole Area (HA).  CI can be assessed by using a skeleton image 

as shown in Figure 2.4(b) as the micro-structure strength can be considered by assessing 

network connectivity of the trabecular layer (Cann and Genant 1980).   

CI was proposed to represent network connectivity as: 

100



Nl

IpFeNd
CI  

Nd the junction between three or more structs (an element in a skeletal 

image) is defined as a node 

Fe A struct that is connected at one end and is free at the other end 

Ip isolated points 

Nl network length 

  
        (a)         (b) 

Figure 2.4  (a) the binary image of the marrow pore and (b) skeleton image of a cross-section of a 
bone, taken from Gordony’s result (Gordony et al. 1998). 
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The results showed that there was a strong linear correlation between BMD and CI (r > 0.9) 

and a moderate correlation between BMD and HA (r ~ 0.77).  The measurements were shown 

to be reproducible, changing within 1% when the region of trabecular bone changed by 20%.  

However, the dependence on CT imaging to analyse micro-structure makes this a high cost 

procedure. 

Muller (Muller et al. 2008) studied the mechanical properties of the distal radius bone to find 

a relationship between failure load and cortical thickness.  The mechanical properties of 

thirty-two human radius bones were assessed using different techniques.  For example, 

cortical thickness was measured by peripheral quantitative computed tomography (pQCT) in 

single slice scan (thickness of 1mm is equivalent to pixel size of 0.2mm).  Failure load was 

assessed using a mechanical testing machine; the specimens were subjected to quasi-static 

compressive mechanical stress until the sample failed.  The best correlation to failure load 

was provided by cortical thickness, predicting 52% of the failure load variability. 

Another approach to estimating the risk of structural failure from a mechanical model is 

provided by Xue (Xue et al. 2002).  They studied the deformation of a long cylindrical shell 

subjected to external pressure.  A hollow cylinder was applied to boundary condition of Euler-

Bernoulli beam equation using finite element analysis to observe the deformations of material 

shape, stress obtained and the load failure.  The study showed that a 2% change of shell 

thickness can sustain a 33% increasing of the external pressure. 

A mechanical model to estimate the risk of fracture can be derived from Euler-Bernoulli beam 

equation.  However, the issues that need to be investigated are the adequacy of the mechanical 

model and the accuracy of dimensional gauging in the plain radiographs. 
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2.3 14BLocating boundaries between the radius bone margins 

An accurate estimate of the internal and external radius is necessary to measure the risk of 

fracture.  The edge at the internal margin is not well defined because the grey level profile is a 

ramp and has no discontinuity to indicate a position of the edge.  Therefore a novel strategy is 

needed to locate the position of the edge.  

Peter (Peter et al. 2008) proposed a watershed algorithm to cluster the pores in high resolution 

CT images of a trabecular bone so as to measure the thickness of the pore regions.  Region 

growing was used to separate the pores from each other.  Neighbouring pixels of the pores 

were merged together if their grey-levels were similar. 

Figure 2.5(a) shows the segmentation result.  Blurred boundaries between pores can be 

separated using a distance map.  Non-critical threshold was used to bisection between pores 

and the trabecular region.  This is possible as the difference of grey-level profile between the 

trabecular region and the pore area is almost 100 levels as seen in figure 2.5(b), which is 

sufficient to differentiate between the two. 

 
         (a)        (b) 

Figure 2.5  (a) the region thickness of the pores (b) a histogram of CT-image showed grey-level 
difference between pores(the first peak) and trabecular region(the second peak), taken from Peter’s 
work. 

Saparin (Saparin et al. 2006) studied a segmentation technique to identify the boundary 

between the cortical and trabecular layers in pQCT images.  They used a band threshold, 
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which relied on the mean and the standard deviation of the pixel values inside a pre-defined 

trabecular region, to identify the boundary. 

    

Figure 2.6  the trabecular-cortical bone is separated by band thresholding, taken from Saparin (Saparin 
et al. 2006). 

The difference between the pQCT values of the cortical and trabecular bone is shown in 

Figure 2.6. The gap between these regions is wide; therefore, a band threshold is adequate to 

separate these regions from each other.  

The two studies sought to segment the regions in a high resolution image with a substantial 

grey-level difference.  However, the grey-level difference between the cortical and trabecular 

region in a radiograph is not well defined.  The boundaries are weak and difficult to detect by 

region growing, grey-level threshold and common edge detection algorithms. 

Graham et al. (Graham et al. 2000) studied a statistical edge detection to locate weak 

boundaries in the radiographs.  They examined the use of different statistical measures 

applied using a sliding dipole.  They undertook a systematic test of operator responses to a 

step edge in noise, varying the step size, noise level and size of the dipole sample region. 

 12



They compared the performance of the operators with the Canny operator (Canny 1983) on 

both synthetic and natural images - radiographs of replacement hip joints.  The result showed 

that statistical edge operators detected or performed well compared to the Canny operator, 

producing a promising response on the natural images where the Canny operator had failed.  

The best response was given by the standard deviation difference (ESD), which is computed 

by: 

ESD = 2 σAB – (σA + σB) 

Where σ is the standard deviation of population 

This was derived by replacing entropy terms with the difference in the standard deviation 

between two populations, A and B.  The advantages of ESD as a detector of weak boundaries 

are that it is sensitive to weak edges, noise resilient and has a low computational cost (Graham 

et al. 2000).  Nevertheless, there is no theoretical basis for replacing entropy with standard 

deviation in this formulation. 

There have been several studies (Azzopardi et al. 1996; Pitas and Venetsanopoilos 1986; 

Chalana et al.1997) for the use of maximum likelihood as an edge detector.  The theoretical 

basis for the maximum likelihood formulation of edge detection is derived from the analysis 

of the likelihood that two samples are taken from similar or dissimilar populations as 

summarised in the following. 

Assuming that two populations have a Gaussian probability distribution, i.e.: 

 

   











XX

d

t

exP 2

1

2

1

22

1
)(  

Where: P(x) is the probability of drawing a particular value for sample x from the 

population. 
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 is the mean of the population 

 is the covariance of the population 

X is the sample vector from which x is drawn. 

d is the sample size 

This is the description of multivariate Gaussian probability distribution.  The likelihood ratio 

between two populations A and B is: 

        
21 n Bn ABA XPXPxLR   

The likelihood that a particular value of x is drawn from the population of AB is: 

      
3n ABAB XPxLR   

Where n1, n2 and n3 are the population sizes of A, B and AB. 

When the two populations A and B are the same with Gaussian distributions then the 

population AB will also be Gaussian distributed.  If the populations A and B are Gaussian 

distributed but from different populations then the distribution for AB will not be Gaussian 

distributed.  The ratio of likelihood ratios provides a normalising factor and is: 

 
 

   
 



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

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




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


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


 

 

Substituting for n = n1 = n2 = ½n3, the ratio of likelihood ratios becomes: 

BA

ABmlr





2

 

For a univariate distribution this reduces to: 
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BA

ABmlr


 2

      (2.1) 

The maximum likelihood ratio (mlr) can be used to identify the points that divide statistically 

distinct populations.  However, the unbounded nature of the ratio of likelihood ratios makes it 

difficult to ascertain when a significant change occurs.  This problem is avoided if the inverse 

of the ratio of likelihood ratios is used.  This measure varies between zero when the samples 

come from different populations and 1 when the populations are the same.  The inverse 

maximum likelihood ratio is: 

2
AB

BAimlr



  

As the variance of AB increases with respect to that for A and for B, the imlr value decreases, 

signifying the presence of an edge.  If the distributions are non Gaussian, the same changes 

will take place although the measure of likelihood might be inaccuracy.  Therefore, the 

requirement for a Gaussian distribution is not strict, given that it is the change in imlr value is 

important. 

The size of the operator was able to affect to the boundary of maximum likelihood profile.  

There is a balance required between having a statistically adequate number of samples and 

suitable sizes to localise edges precisely which can be found experimentally. 
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Figure 2.7  (a) maximum likelihood ratio response when the size of the neighbourhood is changed (b) 
the shape of maximum likelihood ratio when the region width is changed (windows size = 16), taken 
from Pycock’s study (Pycock et al. 2000). 

Pycock’s study (Pycock et al. 2000) showed a relationship between the window width and 

operator response.  Maximum likelihood ratio showed a marked variability in the response 

away from the edge when a small window was used.  The response was smoother when a 

larger window size was used, as shown in Figure 2.7(a).  A good response was obtained with 

a window width greater than 16 samples. 

Figure 2.7(b) shows the effect of pulse width on the mlr response.  The operator could not 

detect the edges of a pulse that was much smaller than the width of the operator window.  The 

results also showed a local minimum when the pulse width was half the window size.  The 

operator was able to respond efficiently to edges when the pulse width was greater than 75% 

of windows size.  

Edge uniformity should also be considered.  If edge is perpendicular to the scan line, square 

windows (n x n) as shown in Figure 2.8 (a) can create a good response.  When the boundary is 

curved with a radius that is small compared to the region size then the edge position is likely 
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to be displaced from the position of the edge along the centre line of the operator; the shaded 

and non-shaded regions would not be separated ideally as shown in Figure 2.8(b).  In this 

circumstance a narrower rectangular, window (w x h) as in Figure 2.8 (c), could be used to 

improve the result of edge detection (Graham et al. 2000). 

 
        (a)     (b)       (c) 

Figure 2.8  (a) uniform boundary with square window (b) non uniform boundary with square window 
(c) non uniform boundary with rectangular window 

The issues that need to be examined are: 

1.  Does the maximum likelihood ratio detect the true edge position? 

2.  Is the maximum likelihood ratio effective at detecting low contrast edges? 

3. What is the shape of maximum likelihood ratio response for a grey-level profile 

across the radius? 

2.4 15BThe uses of model interpretation 

To measure the bone thickness using a model requires a reliable and repeatable technique.  

We also need an algorithm that is fast and robust to radiographs from routine collections. 

The point distribution model (PDM) is a statistical representation of a shape.  The model is 

obtained from a training set of labelled images.  Principal component analysis (PCA) is used 

to determine the mean object shape, and modes of shape variation. 
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To train the model landmarks, several images are adjusted to the same orientation and scale 

since the order of landmarks need to be the same as that of the model.  As the manual 

indication of landmarks is a time consuming and tiresome task, most researchers have 

developed an automatic tool to assist in this procedure.  Figure 2.9 shows a sample of PDM 

with 32 landmarks. 

 

Figure 2.9  A resistor PDM has 32 landmarks, taken from Cootes (Cootes et al. 1993). 

It is important to have a statistically significant number of samples to define a stable model 

that captures the range of variation in the form of the object; for example Cootes (Cootes et 

al. 1993) used a training set of 300 labelled samples in face recognition. 

The mean PDM model must be scaled, rotated and translated to fit the pose of the landmarks 

of an unfamiliar image; otherwise the model cannot match efficiently (Cootes et al. 1993).  

PDMs cannot support a large degree of bending as it showed a distorted shape matching result 

(Lanitis 1993; Cootes 1993).  This can be a problem where medical images are concerned 

because there is considerable scope for biological variation and this can include bending 

which cannot be modelled in a PDM scheme. 

The Active Shape Model (ASM) exploits the use of PDM landmarks.  In ASM the mean 

shape is transformed by translation, rotation and scaling of landmarks.  The shape is adjusted 

iteratively to fit the model.  To locate a new landmark a search is performed to find the 

strongest edge along the normal to the initial boundary path, shown in Figure 2.10(a). 
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      (a)          (b) 
Figure 2.10  (a) Normal to the initial boundary (b) A search along sampled profile to find best fit to the 
grey-level model 

The Manhalanobis distance is used to find the best fit of the model to the revised landmarks 

that are on either side of the model point.   

Shape deformation is only allowed in a perpendicular direction to the shape.  This can be a 

problem if there are, for instance, few normal lines in a particular direction (Cootes et al. 

1993).  The deformation will have difficulties in moving in the direction and the problem is 

worsened if the boundary is not well defined at the edge of a profile. 

An ASM needs a closed boundary representation (Cootes and Klim 1995) otherwise the 

deformation direction of the model might be misinterpreted.  Where this investigation is 

concerned a radiograph of the radius will not provide a closed boundary. 

Pycock (Pycock et al. 2000) studied the use of a model-based profile interpretation in order to 

identify 6 different classes of radar signal.  They used a piece-wise model to describe the 

signal by breaking the signal into several segments as shown in Figure 2.11.  Breakpoints of 

the signal profiles were detected by an edge detection algorithm.  To train a profile model, 

these breakpoints were chosen to be the division points between segments in the profiles and 

the segment width and average amplitude were used as segment parameters. 
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Figure 2.11  Piece-wise segment model 

A model is described by the mean and standard deviation of the segment parameters. A low 

standard deviation for the parameters of a model indicates that a good match to these 

parameters is required.  A probabilistic metric was used to identify how well the interpretation 

matched the model. 

The metric was used was: 

 
   
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



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 

  

Where x is the vector of segment parameter values, m is the vector of model parameters 

values and S is the model covariance matrix. 

An exhaustive search is a primary search technique that was used to find a solution in the 

probabilistic metric.  An exhaustive search selects all possible combinations to consider the 

best match to the model.  Some of these combinations can be eliminated at an early stage 

because they do not provide a sufficiently close match, at an early stage of the interpretation 

to be plausible.  When the number of possible candidate segments increases, the combinations 

and the cost of evaluating all options is prohibitive and increases exponentially. 

In dynamic programming only the best matches at an early stage are pursued.  This 

dramatically reduces the number of combinations that must be considered.  The only 

requirement is that an initial decision on the best match does not depend on later decisions.  A 
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heuristic criteria is required that will provide a measure of the goodness of the match.  

Heuristic criteria can be used to prune the search space of dynamic programming so that a 

polynomial dependence on the number of candidates operates. 

Pycock (Pycock et al. 2000) used a heuristic search to merge candidate points of a amplitude 

profile of radar signal to fit the model.  The candidate points are merged together if they give 

a better match than not being merged; comparisons are made by determining the probabilistic 

metric.  The breakpoints that have been merged will never be used again since it is impossible 

that one breakpoint can be a part of two segments. 

The largest danger is that this approach might lead to a locally optimal solution that is not 

close to the globally optimal solution being sought.  To reduce the possibility of a local 

minimum being found care is needed in the design of cue generation so that a sufficient 

number, but not too many cues are generated. 

Modelling a bone profile is possible and this requires only one dimensional data, a grey-level 

profile, not two dimensional data as for the ASM.  However, it is important for consistency in 

the training sample and between the training and interpretation that profiles are taken from the 

same position on the radius bone; for example Muller (Muller et al. 2008) used a position at 

one-third of the length of the radius bone for making measurements in their experiments.   

2.5 16BCue generator 

A cue generator is the process of finding clues to represent an image, or a profile.  For model-

based interpretation these clues should be landmarks, which can be located by a peak 

detection algorithm. 
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A common problem in peak detection is the over generation of peaks caused by local minima.  

A smoothing technique can be used to reduce the number of local minima by applying an 

average mask to the original profile.  However, the profile can be changed by smoothing and 

the peak of the profile can be shifted from P to P’ as shown in Figure 2.12. 

 

Figure 2.12  Peak shifting caused by smoothing from P to P’. 

Curve fitting can be used to locate the actual peaks and avoid the local minima.  The 

equations such as polynomials can be applied to fit a profile.  If the curve is of an appropriate 

order, the peak from this technique must be accurate because it is the best match between the 

profile and the equation.  However, the difficulty of curve fitting is finding the suitable 

equations which might be variable or cannot be found.  The candidate equations normally are 

2nd, 3rd or more order of polynomials and to fit these equations is a time consuming task for 

the peak detection algorithm. 

Morphology operator can be also used to avoid the local minima.  Top-hat transform is a 

morphologic operator developed by Meyer (Meyer 1979) to extract the detail that differs from 

the background.  The transform is given by the subtraction of opening of an image (or profile) 

from the image (or profile) as expressed here: 

  bfffTw   

Where f is image function, b is structure element, o is opening operator and Tw is top-hat 

transform function. 
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The size of the structuring element is important.  If it is too small, background removal is 

affected by a presence of random noise; if it is too large, it cannot reproduce the small scale 

variations of the features sought, therefore, a good compromise has to be found.  The top-hat 

transform is capable of extracting strong peaks.  The structure element opened the profile, in 

which local minima were simultaneously erased if they are smaller than the size of the 

structure element as shown in Figure 2.13.  

 
           (a)        (b)       (c) 
Figure 2.13  (a) original profile (b) opened profile (c) top-hat transform 

An alternative technique to reduce the number of local minima is non-maxima suppression.  

Non-maxima suppression considers the profile along the gradient direction.  Pixels that are 

not at the peak (non-maxima), are deleted.  Therefore, the real peaks in profiles are shown in 

non-maxima suppression.  Thresholding may be applied in order to locate the positions of the 

peaks. 

A hysteresis system has been introduced to solve the peak detection problem.  To detect the 

peaks, positions with the amplitude higher than peak high (h) are candidates.  However, the 

position will be selected as a peak only if it has the highest amplitude within a range of peak-

width (w). 

Peak detection with hysteresis can avoid local minima. It is also a rapid process compared to 

top-hat transform or non-maxima suppression and the profiles are not changed by the 

algorithm.  The detection is also flexible to the peak width and peak height, only defining 

parameters w and h to the algorithm is necessary.  To uses the hysteresis system to detect peak 
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in the grey-level profiles of the radius bone, we have to consider the parameters (w and h) to 

guarantee their as many potential peaks can be detected as possible. 

2.6 17BTheoretical basis of bone fracture 

The distal radius bone is broken by the impulse force which arises from a change of 

momentum.  The impact of this force can be analysed to estimate the risk of fracture as 

following. 

Bone fracture can be analysed by a failure of the beam buckling.  The parameters used in the 

analysis were the inner radius (ri), the outer radius (ro) and the length of the bone (L).  The  

momentum changed, depending on the external force P is shown in Figure 2.14.   

 
Figure 2.14  (a) beam buckling (b) a beam mechanical model 

With the first mode of buckling, the critical force before the beam loses stability (PCrit) is 
given by: 

 

2

2

L

EI
PCrit


 

Where 

E   Modulus of elasticity  

L   Length 
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I moment of inertia 

Moment of inertia of a hollow cylinder in the x-axis and y-axis is:   

  2223
12

1
LrrmII oiyx   

The force to the distal radius is correlated to body mass (W).  The bone will be broken when: 

W >Pcr 

The estimation requires ri, ro, L, W and E in order to determine the risk of fracture.  It is 

possible to measure E by the change of velocity of ultrasound in the bone (Greenfield et al. 

1981). ri and ro can be measured from radiographs but L may be unavailable from a routine 

scan. 

The risk fracture can also be estimated by a failure of beam bending, using the maximum 

bending stress in a tube.  The Euler-Bernoulli equation is given by: 

I

Mromax  

where      
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r0  the external radius 

ri   the internal radius 

  the maximum stress 

 
The risk of fracture is proportional to:  
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The risk of fracture (δ) depends on: 

 
rr

rr
o

o 


2

1
,       (2.2) 

where Δr = ro - ri 

The function for estimating the risk of fracture depends on the inner and outer radius of the 

tube.  The derivation function as in the following equation showed that the risk of fracture 

estimation depends on the inverse square of the outer radius of the tube.  This was fully 

analysed in Appendix A.3. 
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     (2.3) 

Risk estimation using the bending approach has been adopted as it was able to apply on a 

fewer parameters than the buckling approach.  Only ri and ro are needed to be measured in 

order to estimate the risk.  However, the derivative function showed that the risk of fracture 

by bending is very sensitive to the change of ro and Δr therefore we need to ensure that this 

risk estimation has potential to differentiate the high risk samples from the low risk ones in 

order to show the reliability of the measurement. 

Lee (Lee et al. 2007) showed the reliability of their measurement by assessing r-square 

between the TBFF value and BMD, which is costly, from the same position of the bone 

samples.  Gordony (Gordony et al. 1998) studied the micro-structure parameters (CI and HA) 

and showed the reliability of their parameters by showing the gap of assessed values between 

fractured subjects and non-fractured subjects.  Figure 2.16 showed the gap difference of CI.  

The graph showed that a line -2 SD from the mean values of non-fractured subject has a 

potential to differentiate subjects with a high risk of fracture from those with a low risk 

without BMD assessment. 
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Figure 2.15  A bivariate display of connectivity index assessment between non-fractured and fractured 
sample. 

The line ±2sd is a good criterion if the data distribution is Gaussian as 95% of population is 

covered within ±2SD from the mean of data.  An issue that need to be investigated is the 

efficiency of the separation line ±2SD in this project or which criteria can be used to 

distinguish the high risk samples from the low-risk ones. 

2.7 18BSummary 

The trabecular filling factor (Lee et al. 2007) used an interpolation of the grey-level profile 

across the radius to estimate the mass of trabecular bone.  CI and HA (Gordon et al. 1998) 

used image processing to analyse the internal parameters of the trabecular bone which 

provides an estimation of bone strength.  These parameters showed a strong correlation to 

BMD (Lee et al. 2007; Gordon et al. 1998); however, there are few evidences that showed 

that how these parameters are involved theoretically with the risk of fracture. 

An estimation of the risk of fracture using a mechanical model is possible.  The well known 

Euler-Bernoulli beam equation can be applied to estimate the risk, however, the issues that 

need to be investigated are the adequacy and the accuracy of the mechanical model. 
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An estimation of the bone thickness is another aspect to be calculated in order to obtain an 

accurate mechanical model.  The questions that need to be answered are which ranges of the 

grey-level profile of the bone can be measured as the thickness of the bone and as the 

boundaries between the cortical and trabecular layers are weak, how to measure the thickness 

of the bone from a plain radiograph with accuracy.   

Many techniques were reviewed to detect the boundaries between cortical and trabecular 

layers in the radiographs.  Basic segmentation techniques such as region growing, 

thresholding or watershed-segmentation have difficulty in locating the weak boundaries of the 

radius margin.   Statistical edge detection such as Esd and mlr showed a promising result in 

indicating the weak boundaries in medical images.  We need to study whether the mlr is 

suitable for edge detection and whether it has potential to identify the weak boundaries in the 

grey-level profile across the radius bone. 

ASM is a powerful technique used for highly variable completed shapes but in this case it is 

difficult to get a full-length image of the radius bones since the scan was performed partially.  

This means that the model will lack stability and will too readily permit an inappropriate 

interpretation. 

However, it is possible to model a grey-level profile across the radius instead of the bone 

shape.  The important issues that need to be investigated are: 

1. How to describe a grey-level profile across the radius with a model? 

2. Where the profiles on the radius should be collected? 

3. How to determine which parameters are suitable for interpreting the profiles? 

A review of cue generation showed that smoothing can reduce a number of unnecessary 

candidates by removing the local minimum from the profile; however, this process caused the 
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position of the peak to change.  A curve fitting can also be used to detect the peaks but it is a 

slow and computationally intensive algorithm. 

Top-hat transform and non-maxima suppression are less complicated than curve fitting.  They 

also have a potential to decrease the number of local minimum, however, these methods 

require some techniques to locate the position of peaks. 

Peak detection with hysteresis can avoid local minima, run fast and locate the peaks without 

the profile changed.  The detection is also flexible to the peak width and peak height.  

However, we have to examine the parameters (w and h) to ensure that they would match the 

peaks of the grey-level profile across the radius bone. 

A deformation of the bone to determine the risk of fracture can be analysed by two 

approaches, buckling and bending.  In this circumstance, the buckling approach cannot be 

carried out because of the unavailability of the data and facility limitations. 

It was shown that equations used in the bending approach are sensitive to the change of bone 

thickness.  However, this can be resolved by an appropriate design of measurements of the 

bone thickness.  Experiments that evaluate the measurements are needed.  Moreover, the risk 

of fracture from the bending approach needs to be examined to ensure that it is sufficient to 

differentiate between the high risk and the low risk of fracture samples. 



3 2BMETHODOLOGY 

The risk of fracture estimation was derived by using a bending moment equation based on a 

hollow cylindrical model.  The internal and external radius of the trained model was measured 

in order to estimate the risk. 

This chapter shows radiographs, categorised for training and testing, and the details of the 

methods and strategy of training and interpretation of bone profiles and also the 

implementations of experiments.  
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3.1 19BMaterials 

3.1.1 30BRadiographs 
A hundred 16-bit radiographs, collected from a routine procedure, were categorised for 

training and testing.  Patient identifications were removed from the radiographs.  The 

radiographs had varying levels of opacity as shown in Figure 3.1.  The X-ray exposure, 

energy and geometry were not available to be controlled, nor was it possible to perform 

calibration measurements.  

 

Figure 3.1  An illustration of the variance in the opacity of the radiographs used in this project. 

3.1.2 31BSoftware in experiments 
Training and interpretation programs were written in Java language using Netbeans IDE 6.1 

with Java development kit 1.6.0.  Experimental data was recorded and analysed by functions 
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within Microsoft Excel 2003 and MATLAB 6.5.  ImageJ 1.40g was used to observe and 

manipulate the radiographs.  

3.1.3 32BBone Profiles 
Grey-level profiles and maximum likelihood ratio of the profiles were collected from the 

radiographs and saved as ASCII files with filename extension “.pro” and “.mlr” respectively.  

Approximately 100 grey-level profiles were taken at a fixed position on the radius bone, as 

shown in Appendix A.1.  Each profile consisted of roughly 150-200 integer data values. 

Of the radiographs not showing a fracture 68 were analysed separately from male subjects and 

48 from female patients.  Figure 3.2(a) showed the grey-level profiles from 25 male and 25 

female subjects; these profiles were used to train the bone profile model for each gender.  

Figure 3.2(b) shows grey-level profiles taken from the radiographs of 43 male and 23 female 

subjects to form the test data. 

Grey-level profiles taken from radiographs of 9 male and 8 female subjects who had 

experienced a wrist fracture were also categorised to assess the risk of fracture. 

 

   (a)              (b) 
Figure 3.2  Grey-level profiles (a) training set (b) test set.   
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3.2 20BMethods of model-based interpretation 

3.2.1 33BThe scheme of model interpretation 

 

Figure 3.3  Schematic diagram of training, interpretation and risk estimation 

1) Training   the phase in which a model is trained by selecting a series of 

landmarks on profiles (from candidate breakpoints). 

2) Interpretation the phase in which the statistical model of the training data is 

used to interpret unseen data.  The outcomes of the 

interpretation are the internal radius (ri) and the external radius 

(ro) of the radius bone. 

3) Risk estimation  the process of evaluation of model-based interpretation using 

bone thickness to assess the risk of fracture (δ).   
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Candidate breakpoints were extracted using a cue generation algorithm that provided a choice 

of landmarks for both training and interpretation phases. 

3.2.2 34BThe description of piece-wise model and parameters 
Grey-level profiles across the radius bone were extracted from the radiographs as shown in 

Figure 3.4(a).  The extracted grey-level profile and a piece-wise linear model are shown in 

Figures 3.4(b) and (c), respectively. 

 
(a)        (b)            (c) 

Figure 3.4  (a) radiograph of radius bone, (b) grey-level profile across the radius bone and (c) piece-
wise linear model of the grey-level profile. 

 

Figure 3.5  Seven-segment model with 6 landmarks to model a grey-level profile across the radius 
bone. 

Figure 3.5 shows the piece-wise linear model to describe the profile across the radius bone.  

The model features 7 segments with 6 landmarks which were selected from edges, peaks and 

based points on the profiles.  
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Each segment was described by 4 parameters, the mean of the grey-level profile (µ), the 

standard deviation of the grey-level profile (σ) , the length of segment (l) and the slope of 

segment (η) as shown in the matrix below. 
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Where xs  is the metric of parameters in a single profile 

µi is the mean of grey-level profile in segment i 

σi  is the standard deviation of grey-level profile in segment i 

li  is the length of segment i 

ηi  is the slope of segment i 

The matrix described a piece-wise linear model by segments in rows and parameters in 

columns.  As the model has 7 segments; each segment is described by 4 parameters, therefore, 

the matrix xs has a dimension of 7x4. 

3.2.3 35BCue generation 
Cue generation is the process by which candidate breakpoints are generated in order to 

identify the segment divisions for building a model and for characterising an unseen grey-

level profile.  These breakpoints were generated using the detection of edges on the grey-level 

profile. 

The maximum likelihood ratio was used to identify the edges.  A pair of windows was moved 

along the path across the radius bone, as shown in Figure 3.6.  The computation of likelihood 
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requires a statistically valid sample.  The windows need to be small and to contain at least 16 

samples (Pycock et al. 2000). 

 
Figure 3.6 Two regions (A and B) were used to identify the bone edge using maximum likelihood 
ratio. 

A pair of 5x5 windows was proposed as shown in Figure 3.6.  The maximum likelihood ratio 

of the two populations, A and B is computed by  

BA

ABmlr


 2

  

Where σ is the standard deviation of the considering region 

Peak detection was used to detect candidate breakpoints from the maximum likelihood ratio 

profile.  The peaks were located using the peak detection with hysteresis algorithm, which has 

the potential to extract the weak boundaries between cortical and trabecular layers. 

Figure 3.7 showed the pseudo code of the peak detection with hysteresis.  The algorithm 

needed the peak height, h, and the peak width, w to be specified in order to locate the position 

of the peak.  The peaks in a grey-level profile were located as points in the response with 

values greater (by h) than the values at points within the range of w/2 pixels.
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Let p be an array p representing a profile indexed from start to end and 
 p[i] be the value at position i in that profile. 
 width  be width used to identify a peak 
 peak be the maximum value of profile 
 Indexofpeak be the index at which the maximum peak is observed 
 
For i=start to end-width 
 If ( (p[i + width/2 -1] –p[i]) > height-1) 
  If ( (p[i + width/2 -1] – p[i + width - 1]) > height -1) 
   If (p[I + width/2 -1] > peak) 
    Then peak = p[i + width/2 -1] 
     Indexofpeak = i + width/2 -1 
 
For information the following is what was intended: 

m=0 
max =0 

 
For i = start to end-width 
 If ( (p[i + width/2 -1] – p[i]) > (height -1) ) 

then begpeak = TRUE 
   down = FALSE 

start = i 
   posspeak = i + width/2 -1 
   then for (k = posspeak to posspeak + width -1) 
     If ( (p[posspeak] - p[k]) > height)  

then down = TRUE 
 If ( (begpeak AND down) EQ TRUE)         then        if (p[posspeak] > max)  

                     then    max = p[posspeak] 
      maxindex = posspeak 

 If ( (begpeak EQ TRUE) AND (down EQ FALSE) ) then     peaklist[m]=posspeak  
m = m + 1    
begpeak = FALSE 

Figure 3.7  The description of peak detection with hysteresis. 

Large changes in grey-level, and strong edges, are readily detected because they produce large 

changes in maximum likelihood ratio.  The weak boundaries between cortical and trabecular 

bone can also be detected because the edge produces a change of population between the two 

5x5 pixel windows.  A range of values for peak width and peak height was able to ensure that 

the required candidate breakpoints could be elected by the peak detection algorithm.  Peak 

widths of 5, 10 and 15 pixels were used together with peak heights of 50 and 70 pixels. 
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The point at which the maximum likelihood ratio rises towards a peak can be detected with 

the aid of a simple transformation, which allows peak detection to be used.  This 

transformation projects the response magnitude onto a line from the closest peak to the point 

and the base on the other side as shown as line AB in Figure 3.8. 

 
Figure 3.8  Transformation of point at which the response starts to rise to a peak with line AB. 

For each point along the profile, a perpendicular line toward line AB is computed.  The point 

of rising (P2) is determined as the maximum response magnitude to line AB.  Analytically this 

response magnitude is given by: 

   



cos

sin
xf

xxFpend   

Where  

l

h1tan   

   is  the angle of inclination of the base line for the projection 

Only the candidate breakpoint that is most distant from the line AB is required to complete 

the cue generation. 
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3.2.4 36BTraining method 
A series of grey-level profiles across the radius bone were used in training a model.  

Landmarks were selected manually to create the best representation of segment divisions.  

These landmarks were used to calculate the piece-wise liner model of the grey-level profiles 

across the radius bone. 

Training matrix (T) is: 

   

   








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




 

n  is  the number of segments in a model 

N  is  the number of profiles for training 

i  is  1,2,3 ...n 

j is  1,2,3 ...N 

µi,j  is  the mean of grey-level amplitude in segment i of profile j 

σi,j  is  the standard deviation of grey-level amplitude in segment i of 

profile j 

li,j  is  the length of segment i of profile j 

ηi,j  is  the slope of segment i of profile j 

The mean of the parameter matrix ( ̂ ) is: 
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j,i  is  the value in column j row i for parameter t, t = (µ, σ, l, η) 

The variance of parameter (V ) is  
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Thus, the standard deviation of the parameter matrix (̂ ) is 
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k  is  the number of  parameters used (the number of columns in xs )   

This project used 4 types of parameters (k = 4) based on the 7-segment model (n = 7) to train 

with 25 samples (N = 25).  The influence of gender could be considered by training male and 

female samples separately.  The matrices T, ̂  and ̂  are used to create a flexible model used 

to guide the process of interpretation.   
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3.2.5 37BInterpretation Process 
The methods to match unseen profiles to the model are described.  The model parameters 

were used to the compare the closeness between the model and the profile.  The model 

parameters are weighted with respect to one another using mean ( ̂ ) and standard deviation 

(̂ ) of the parameters. 

The normalised parameter matrix ( ) is 'ˆsx
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'ˆsx        is  the matrix of normalised parameters with n segments in (rows) and k  

parameters (columns). 

An interpretation of various parameters requires an appropriate weight.  The parameters 

weight was defined by population variance for each parameter.  To compare between a model 

and profile, standard deviation was used to normalize the matching and weight model 

parameters according to their degree of variation. 

For example; xs1,1 is the mean amplitude of segment 1 of the unseen profile, 1,1̂  is the mean 

amplitude of segment 1 of the model and 1,1̂  is the standard deviation of amplitude of 

segment 1 of the model.  The column of the matrix represents the parameters; mean of 

amplitude, standard deviation of amplitude, segment slope and segment length, respectively 

for columns 1 to 4. 
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The normalised parameter matrix was a measure of the similarity between the profile and the 

model.  If the parameter of the profile is close to the model, the similarity measurement will 

be close to zero. 

Table 3-1 shows the model parameters of the bone profile model by segment.  For instance; 

segment 1 is described only by the standard deviation of the profile amplitude.  Segment 2 is 

described by the segment length, the standard deviation of the profile amplitude, the 

amplitude and the segment slope.  

Mask A is used to indicate which parameters are used.  This simplifies changes to the model 

representation; 0 is used to signify not-selected and a 1 to signify selected as shown in the 

following matrix.  The columns represent the parameter, in order µ, σ, l and η.  The rows 

represent the segments.   

Table 3-1  Parameters of the model. 

Segment Parameter 
1 Standard deviation of segment amplitude 
2 Mean segment length 

Standard deviation of segment amplitude 
Segment slope 

3 Mean length 
Standard deviation of segment amplitude 

4 No important parameters 
5 Mean length 

Standard deviation of segment amplitude 
6 Mean length  

Standard deviation of segment amplitude 
Segment slope 

7 Standard deviation of segment amplitude 
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Mask A is used to calculate the difference between a profile and a model (Pmatch), computed as 

the sum of the squared difference, i.e.:  
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i

jisjimatch xAP
1 1

2'ˆ  

A small value of Pmatch indicates that the unseen profile is a close match to the model.  The 

search process uses dynamic programming to find the best match for each segment in turn, 

from the remaining segments in the profile as described in Figure 3.9.  Segments 1 to k are 

selected and matched one-by-one to segments in the model.  Segments are merged as 

appropriate to obtain the best match.   

1. For each segment in a model  
1.1 For each candidate breakpoint in a profile  

1.1.1 Compute matching criteria of candidate current segment with a model 
1.1.2 If matching criteria at segment k+1 > segment k 

Merge candidate segment k and k+1 
else (when the best match found) 
 Stop merging  
Progress to the next segment 

Figure 3.9  Description of search strategy. 

The interpretation was used to construct the model from unseen profiles in order to measure 

the bone thickness.  43 male samples and 23 female samples were used to interpret the results 

and measure the bone thickness 
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3.3 21BImplementations 

3.3.1 38BA simulation of a grey-level profile from an X-ray of the radius 

A synthetic grey-level profile was created by a simulation of the X-ray radiographic process 

in order to help to: 

 define landmarks on the grey-level profile 

 design a suitable model for the grey-level profile 

 locate the position of internal and external radius on the grey-level profile 

Another purpose of this experiment was to investigate the shape of the maximum likelihood 

ratio which responds to the bone profile.  This investigation helps to: 

 show that mlr operator can be used in the synthetic profile 

 consider positions on mlr profile that respond to the feature points of the synthetic 

profile 

A narrow beam of mono-energetic photons with incident intensity Io, penetrating a layer of 

material with mass thickness x and attenuation coefficient ρ, emerges with intensity I given by 

the exponential attenuation law:  

xeII  0       (3.1) 

Table 3-2 showed the attenuation coefficients for each component of the forearm.  The tissue 

and the trabecular layer have a lower coefficient than the cortical bone, which provide a lower 

attenuation level of the X-ray. 

Table 3-2 X-ray mass attenuation coefficient of materials at an initial energy of 1MeV 
Material Coefficient (ρ) (g/cm3) 
Tissue 0.9 
Cortical bone 2.0 
Trabecular bone 1.4 
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Figure 4.1 (b) shows the simplified cross-section structure of the radius bone.  The X-ray 

attenuation equation was used to simulate a grey-level profile across the radius in the scale of 

0-255. 

 

Figure 3.10 An illustration of X-ray energy at position A and B of the radius bone 

X-ray energy at position A is 

1
0

xc
A eII

  

Where ρc is attenuation coefficient of cortical layer; x1 is shown in Figure 3.10. 

X-ray energy at position B is 

3)42(

0

xtxxc
B eII

   

Where ρt is attenuation coefficient of trabecular layer; x2, x3 and x4 are shown in Figure 3.10. 

Computation of the maximum likelihood ratio involved the standard deviation of small 

samples from the image.  For the simulated grey-level profile, in the absence of detection 

noise the standard deviation was sometimes zero, or close to zero.  Dividing by zero or a 
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value close to zero can result in over estimation of maximum likelihood ratio.  To avoid 

exceeding such errors a very small value of Gaussian distributed noise was added to the 

profile, equivalent to a SNR = 46dB. 

A program to generate of the X-ray attenuation was developed as shown in Figure 3.11.  The 

bone dimensions and X-ray attenuation coefficients are displayed but cannot be edited.  The 

thickness (Δr) of 20 pixels, and radius (ro) of 150 pixels were set in this experiment to 

simulate the mean dimension of the radius bone.  The X-ray energy at 1 MeV was initiated to 

run the simulation to observe the result. 

 

Figure 3.11 The interface for the program used to create the synthetic radiograph and grey-level 
profile.   

 

3.3.2 39BTraining and interpretation of the grey-level profile 

This experiment performed the training and the interpretation process in order to:  

 observe the variations of the model parameters 
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 use the model to interpret unseen profiles and measure the bone thickness 

 calculate the margin of error when measuring the bone thickness. 

Six landmarks were selected manually from candidates, generated as described in section 

3.2.3, in order to train a model as in section 3.2.4 on 25 instances of grey-level profiles.  

Landmarks were used to divide the grey-level profile into several segments and calculate 

segment parameters.  The parameters and their variations were observed by plotting graphs of 

their mean and standard deviation shown by parameter type, segment and gender. 

The users select/deselect breakpoints to form a model by clicking inside the relevant box of 

breakpoints.  When the breakpoints have been selected, the user may request to compute the 

model.  Figure 3.12 shows the grey-level profile used in training.  The dots showed the 

position of candidate breakpoints.  The filled dots are the breakpoints which were selected as 

the landmarks of the model. 

 

Figure 3.12 Candidate breakpoint and selected landmarks identified in the training phase. 
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Figure 3.13 the interpretation dialog 

Figure 3.13 shows the interpretation dialog which was used to control the interpretation of an 

unseen grey-level profile.  Firstly, users have to select the model and the gender of the 

subjects.  The user may also set parameters in the interpretation process, including Peak-

width, Peak-height, range minimum and maximum.  Changing these parameters will alter the 

number of breakpoints generated.  The floor index and look-ahead parameters are the 

parameters for the floor detection algorithm.  The user can set parameters for merging 

segments to control the dynamic programme search using the optimization.  This panel 

showed the error between the profile and the model with the configuration of breakpoints.  

Users can run dynamic programming matching with one-long-step or step-by-step in order to 

observe the segment matching and stop the interpretation process whenever they wish to 

observe the current configuration of breakpoints.  The output panel is used to select the 

information to be output, such as, the radius (ri and ro), model data and to be able to save any 

of these outputs as a text file. 
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The matched model provides an estimate of bone thickness.  A basic evaluation of the 

interpretation was performed by comparing automated and manual estimates of bone 

thickness for 36 male and 34 female samples as described in section 3.2.5.  The difference of 

the inner and outer bone radius between the manual and automated estimates of bone 

thickness is shown in Figure 3.14, as Δri and Δro respectively. 

Δri is the difference between the manual and automated of inner radius. 

Δro is the difference between the manually and automated of outer radius. 

 

Figure 3.14  Definition of radius error. 

The error was computed as a percentage of the corresponding radius. 

% error of Δri  =   
boneradiusofdiameter

ri  

% error of Δro  =   
boneradiusofdiameter

ro  

 

3.3.3 40BRisk of fracture evaluation 

It was hypothesised that there is a strong dependence between bone thickness and the risk of a 

fracture.  Whilst it is clear that errors in estimating the thickness of cortical bone will give rise 

to errors in estimating the risk of fracture.  It is not clear how critical such errors will be 
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without knowing how the computed parameters differ for those at risk of a fracture and those 

who are not. 

The objectives of this experiment were to:    

 assess the risk of fracture of the samples in the project and to identify those with 

high risk of fracture 

 evaluate the criteria used to separate between the high risk and low risk subjects. 

 calculate student’s T-test between the high risk and low risk subjects 

It is also difficult to formulate a test which requires knowledge of a fracture in order to assess 

the reliability of the risk of fracture estimation.  The time constraints on this project and the 

availability of the data mean that a follow up study is not possible as part of the present 

evaluation.  Instead the X-ray images for those who, following a trauma, have and have not 

suffered a Colles’ fracture will be analysed.  Radiographs with fracture subjects and non 

fracture subjects were matched with a model and measured the thickness of the radius bone.  

17 cases of fractured samples (9 male and 8 female) and 66 cases of non-fractured samples 

(43 male and 23 female) were available for study. 

 

Figure 3.15  Fractured and non-fracture subjects and the criterion value to detect high risk of fracture 
subjects. 
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It was assumed that the distributions of fractured and non-fractured subject was Gaussian, as 

illustrated in Figure 3.15.  We used the criterion value in Figure 3.15 to separate between 

those who had previously experienced a fracture and those who had not. 

The criteria proposed in this experiment are: 

μnf   the mean of the risk of fracture of non-fracture subjects 

μf   the mean of the risk of fracture of fracture subjects 

MEAN   the mean of the risk of fracture of all subjects 

± n SD   the standard deviation of the risk of fracture, n = 1,2 and 3 

±5%   ±5% of the MEAN. 

The subjects with risk estimation less than the criterion value can be detected to have a low 

risk of fracture, those with more to have a high risk of fracture.  Criterion value is based on 

the average values and standard deviation of risk estimation. 

The evaluation of criteria can be assessed by the following parameters: 

False negative (FN): the number of fracture subjects which were detected to 

have a low risk of fracture 

False positive (FP): the number of non-fracture subjects which were detected 

to have a high risk of fracture 

True negative (TN):  the number of non-fracture subjects which were detected 

to have a low risk of fracture 

True positive (TP):  the number of fracture subjects which were detected to 

have a high risk of fracture 
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Student’s T-test was used to calculate the risk estimation difference between fractured and 

non-fractured samples.  Unequal sample sizes and unequal variance in populations were 

assumed as the distribution shown in Figure 3.15.  Therefore, the t-test of the two groups 

(high and low risk) was calculated by 
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  μf  the mean of risk estimation of fractured samples. 

  μnf  the mean of risk estimation of non-fractured samples. 

  σ2
f  the variance of risk estimation of fractured samples. 

  σ2
nf  the variance of risk estimation of non-fractured samples. 

  Nf  the number of fractured samples. 

  Nnf  the number of non-fractured samples. 
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4 3BRESULTS 
A synthetic profile and maximum likelihood ratio was shown in order to observe the shape of 

the bone profile.  The parameters of the bone profile model were observed by training a series 

of grey-level profiles across the radius bone.  The model interpretation and the accuracy of 

measuring the internal and external radius were assessed by comparing between automated 

and manual estimations.  Finally, the risk of fracture was evaluated by showing a scatter graph 

between fractured and non-fractured samples. 
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4.1 22BSynthesis of the bone profile 

Figure 4.1 (a) shows the synthetic profile across a radius bone (solid line).  The results  

simulated an X-ray with the outer radius of 65 pixels and the internal radius of 50 pixels. 

 
    (a)      (b) 

Figure 4.1  (a) landmarks of the inner and outer edge of the simulated cortical bone and (b) simulated 
grey-level profile (top) and mlr response. 

The amplitude at the beginning of the profile is low and steady and then it is rapidly raised.  

In the middle of the profile the amplitude seems steady again but the mean of grey-level 

amplitude is higher than the mean at the beginning.  The mean of the grey-level amplitude at 

the beginning represents the attenuation of the soft tissue layer.  In the middle section the 

mean represents the attenuation of the central bone core in the simulation. 

The outer edge of the bone fits the point where the simulated grey-level profile begins to rise, 

corresponding to points A and D, and the peak of the grey-level profile fits the inner edge of 
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the cortical bone, corresponding to points B and C.  These are the landmarks with which the 

internal and external radius can be computed.  

Figure 4.1 (b) shows the mlr response for the simulated grey-level of the synthetic profile. 

Maximum likelihood ratio of the synthetic profile (with SNR=46dB), is shown in the profile 

as a dotted rectangular box in Figure 4.1 (a).  Figure 4.1 (b) shows that there are two peaks in 

the mlr profile. 

The first peak of the mlr profile corresponds to the position of the outer wall of the cortical 

bone.  The second peak corresponds to the position within the bone where attenuation seems 

to be steady.  The first peak is higher and wider than the second.  Position A, to measure the 

outer radius, responds to the dip of mlr operator aligns with the first peak.  Position B to 

measure the inner radius responds to the local minimum of mlr profile. 

4.2 23BBone profile variations 
The following bar graphs shows the results of training.  Each bar graph shows the mean 

magnitude of a model parameter with error bars, representing the standard deviation of the 

model parameter.  Male and female results are shown in Figure 4.2 and 4.3 respectively. 

Figure 4.2 (a) and 4.3 (b) shows the segment length of the profile.  The fourth segment seems 

to be the longest and has a large standard deviation.  The segment amplitude is very variable 

as shown in Figures 4.2 (b) and 4.3 (b).  Figures 4.2 (c) and 4.3 (c) shows the standard 

deviation of the segment amplitude.  These standard deviations are very large in the second 

and the fourth segment and small in other cases.  Figures 4.2 (d) and 4.3 (d) shows the 

segment slope which becomes positive when it is rising to the peaks and negative when it 

goes in the opposite direction.  The slope magnitude of the second and the sixth segment is 

high whilst the slope magnitude of the third and the fifth segments is small. 
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(a) (b) 

  
(c) (d) 

Figure 4.2  The training results of grey-level profiles of the male radius bones; the bars are the average 
of each parameter over those indicated segment and the error bars are the standard deviation of the 
relevant parameters.  The parameters represented are: (a) segment length, (b) segment amplitude, (c) 
standard deviation of segment amplitude and (d) segment slope. 
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(a) (b) 

  
(c) (d) 

Figure 4.3  The training results of grey-level profiles of the female radius bones; the bars are the 
average of each parameter over the indicated segment and the error bars are the standard deviation of 
the relevant parameters.  The parameters represented are: (a) segment length, (b) segment amplitude, 
(c) standard deviation of segment amplitude and (d) segment slope. 
 

4.3 24BThe error of bone thickness measurement 
Figure 4.4 (a) and 4.4 (b) shows the percentage error of bone thickness measurement of male 

and female subjects respectively.  The graphs illustrate the percentage of error in the x-axis 

against the number of samples (frequency) in the y-axis.  A negative value of error means the 

measured radius is less than actual value, whilst, a positive value of error means the measured 
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radius is overestimated.  The histogram shows most of the samples produce a small error, less 

than ±2%.  Only 2 samples produced a large error of ±5%. 

The long dashed line represents the internal radius error and short dashed line represents the 

external.  The results show that the variation of error in the internal radius is less than that of 

the external.  Table 4-1 shows that the standard deviation of internal radius measurement is 

smaller than that of external radius.  The standard deviation of errors also showed that the 

radius measurement in female subjects shows smaller variation than that in male subjects. 

 

(a)         (b) 
Figure 4.4 Histograms of percentage of error in the internal and external radius measures (a) male 
samples (b) female samples 

Table 4-1 Standard deviation of radius error by gender 

 Samples SD of %Δri SD of %Δro 
Male 36 1.1 1.6 
Female 38 0.7 1.2 

 

Table 4-2 Margin of error in the bone thickness measurement 

Margin of error with 
90% confidence 

Margin of error with 
95% confidence 

Margin of error with 
99% confidence 

 

%Δri %Δ ro %Δri %Δro %Δri %Δro 
Male 0.3 0.4 0.4 0.5 0.5 0.7 
Female 0.2 0.3 0.2 0.4 0.3 0.5 
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Table 4-2 shows the small margin of error, computed by the standard deviation of radius 

error, with 90%, 95% and 99% confidence in order to show the reliability of the bone profile 

model interpretation.  The margin of error is less than 1% in both male and female subjects - 

male subjects have 0.1 – 0.2 % higher than the female. 

4.4 25BThe risk of fracture estimation 
The risk of fracture for subjects with a fracture (shown as ×) and without (shown as +) were 

assessed.  The risk of fracture estimates were plotted on a log scale as shown in Figure 4.5.  

The domain unit of risk of fracture is within 10-2 to 10-5.  The means of the risk of fracture of 

non-fractured subjects (μnf) and fracture subjects (μf) were shown by dashed lines in Figure 

4.5. 

 

Figure 4.5  Log scale of risk estimation for subjects having experienced and not experienced a 
fracture. 

Non-fracture subjects showed a low variation of estimated risk while fracture subjects showed 

a wide-range of variation in the risk.  Figure 4.5 also shows evidence of a bimodal split 

between the values from those who have had a fracture and those who have had not. 
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Figure 4.6 is a scatter diagram representing the risk of fracture.  The x-axis represents the 

external radius in the domain 0-4 mm and the y-axis represents bone wall thickness in the 

domain of 0-18 mm. 

Values to the right represent a low risk of fracture and those to the left a high risk of fracture.  

Curves in Figure 4.6 represent the possible boundaries for determining those with a high risk 

for a fracture.  The lines are the population mean risk of fracture estimates and contours at ± 1 

SD, ± 2SD and ± 5% of the population mean of risk of fracture estimates which represents the 

influence of the uncertainty in the estimation of the risk. 

 

Figure 4.6  A scatter graph of subjects having had and not had a fracture in the domain of the external 
radius (y-axis) and the cortical bone thickness (x-axis). 

The possible boundaries separate the samples into two groups (high and low risk of fracture).  

Non-fractured subjects should be detected as the low risk of fracture; whilst, fracture subject 

should be detected as high.  We counted the number of samples which were on the wrong side 

of the boundaries to evaluate the number of false negative (fractured subjects detected as low 

risk) and the number of false positive (non-fractured subjects detected as high risk). 
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Figure 4.7 shows the percentage of false negatives on the y-axis and false positives on the x-

axis. When the boundary was at +5%, it showed a 20% false negative and 0% false positive.  

The most compromised boundary is the MEAN shows 0% of  false negative and less than 5% 

(one case) of false positive. 

Table 4-3 shows the number of samples, mean and standard deviation of risk estimation of 

fractured and non-fracture subjects used to calculate student’s t-test which showed a 

confidence of 92% in population difference.  The data is unequal sample sizes and unequal 

variance in populations as the number of samples and standard deviation shown in Table 4-3. 

 

Figure 4.7  False negative and false positive error rates of the risk estimation. 

Table 4-3 Number, mean and standard deviation of risk estimation of fractured and non-fracture 
subjects.  
 Samples Mean of risk estimation SD of risk estimation 
Fracture subject 17 3.72 x 10-4 

 
7.03 x 10-4 

 
Non-fracture subject 66 1.95 x 10-5 

 
7.14 x 10-6 

 

 61



5 4BDISCUSSIONS 

5.1 26BThe shape of the synthetic bone profile and mlr response 
The synthetic profile showed the locations corresponding to the boundary in the bone profile 

model.  The outer edge of the bone appears to correspond to the point where the simulated 

grey-level profile has risen a little above the tissue level.  It was surprising that the peak in the 

synthetic bone profile corresponded to the inner edge of the cortical bone.   

Maximum likelihood ratio responded to ramp edges of the synthetic profile.  Figure 5.1 shows 

that the grey-level population in a pair of windows differ most at the point where the ramp 

edge begins to rise (between A and B). 

 

Figure 5.1  Regions A, B and C representing window on synthetic bone profile 

A local minimum of mlr operator responded to the peak of the bone profile.  At this position 

(beyond C), the slope of the magnitude is changing from positive to negative but the standard 

deviation on the two sides of the peak are almost the same giving a minimal of mlr response. 

The inner and outer radius of the radius bone can be identified from a grey-level profile across 

the radius bone.  The study of maximum likelihood ratio of synthetic profile helps to define a 

suitable model and also to design a model interpretation strategy. 

 62



5.2 27BModel parameters 
The results showed that there are potential parameters that can be used as signatures of a bone 

profile model as discussed below. 

Segments 1 and 7:  These segments are the beginning and the end of the attenuation of the 

bone profile.  These segments were expected to have a low degree of amplitude variation 

because it showed the attenuation of the tissue layer and a high degree of segment length 

variation because it is a one-end opened segment.  Therefore, these parameters were not 

suitable for use as signature parameters.  The standard deviation of the segment amplitude 

was the only parameter used in these segments. 

Segments 2 and 6:  These segments revealed the profile shape with 2 peaks.  The standard 

deviation of the profile amplitude is relatively big compared to the other segments because 

segments 2 and 6 covered a range of changing grey-level amplitude as X-ray penetrates the 

tissue through the bone.  Clearly the amplitude is not a suitable parameter with which to 

model this segment, but the distinctively large standard deviation on these segments can be 

useful.  The standard deviation of grey-level amplitude, segment slope and length were the 

model parameters used. 

Segments 3 and 5:  These segments covered the transition from cortical to trabecular bone 

and therefore the grey-level profile is likely to vary from one case to another and it is difficult 

to identify suitable model parameters.  However, the standard deviation of segment-amplitude 

and segment length has a low degree of variation were therefore selected as model 

parameters. 

Segment 4: All the parameters of this segment have a high degree of variation and it is 

difficult to identify any suitable model parameters.  This is attributed to the variable nature of 
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the trabecular bone that forms a significant part of the X-ray path length for this segment.  

Therefore, no appropriate model parameters could be identified for this segment. 

Slope and standard deviation have the potential to be feature parameters of the model because 

of their low degree of variation.  Segment length is useful to limit the boundary of 

interpretation in segment 2, 3, 5 and 6. 

The results of training between male and female samples did not show a difference, therefore, 

the models can be similar and replaceable between the two.  However, the variation of 

segment amplitude of female subjects is little higher than that of male. 

Since the proposed model is a common structure of the bone, this training result might help 

represent other bones in the body.  However, the model parameters need to be tuned. 

5.3 28BEvaluations of the model interpretation 
The grey-level profiles from the X-ray images of the forearm were successfully matched by 

the interpretation algorithm.  It is shown that the percentage of error is very small, ±2% in the 

radius estimation.  For example; the radius bone with radii of 30mm produces ±0.48mm of 

dimensional error.  The distribution of the percentage of error is hypothesised to be Gaussian 

with zero-mean, but the number of evaluated samples is too small to conclude this. 

The results of the interpretation showed that the internal radius can be measured with greater 

consistency than the external radius.  Uncertainty in measuring the external radius is an 

important factor in the risk estimation function.  As a result of the interpretation, the 

maximum error of the external radius is less than 1.6% and less than 1.1% of the internal, 

which caused a 5% change of risk estimation function (see Appendix A.4). 

With 99% confidence, the margin of error is less than 1% in the radius thickness (both 

internal and external).  The margin of error in measuring the radius thickness in female 
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subjects showed a very narrow gap of 0.5% in 95% confidence.  This is helps to indicate a 

high risk of fracture in female subjects with accuracy since female have the higher risk of 

fracture than male due to menopause (Pande et al. 2004). 

There is evidence to show that model-based interpretation is effective as in each case a valid 

interpretation was produced and evaluated. 

5.4 29BEvaluations of the risk of fracture 
A logarithmic scale was used to estimate the risk of fracture estimation because the range of 

values was large.  The data showed a bimodal distribution between subjects who had 

experienced a fracture and those who had not, which supported the Connectivity Index and 

Hole Area (Gordony 1998). 

Using the mean of the risk of a fracture showed a promising result for differentiating those at 

a high risk of a fracture with a 0% of false negative and less than 5% false positive error rate.  

However, the risk estimate has a maximum error at 5% caused by an interpretation process.  

This implies that samples between ±5% of the estimation cannot be determined by this 

method because it is where false positives and false negatives can occur.   

Student T-score showed that the risk estimations between fractured and non-fractured subjects 

are different with 92% confidence.  This might be unacceptable for scientific determination 

which requires at least 95% confidence.  However, this value may be closer to the standard 

95% if more samples are to be tested.



6 5BCONCLUSIONS 

We have shown an alternative technique to the BMD method for estimating the risk of a 

Colles’ fracture.  This technique used a plain radiograph of the forearm to assess the risk of 

fracture by measuring the internal and external radius of the radius bone, which were used in 

turn to estimate the stress on the bone.  Model-based interpretation, in which a model 

consisted of 7 segments of X-ray attenuation profile across the radius bone, was used to 

estimate the internal and external radius. 

An interpretation of unseen grey-level profile matching with the model showed to be reliable, 

contributing less than 1% of the margin of error (both internal and external radius estimates) 

with 99% confidence.  The analysis of the risk of a bone fracture assessment indicates that the 

method developed has the potential to provide a reliable estimation of the risk of fracture.  

The error rates indicate that the uncertainty in estimation of the inner and outer radius of the 

bone was shown to have an impact on the accuracy of risk estimation increasing the error 

rates to almost 5%.  The risk estimation of fractured and non-fracture subjects showed a 

bivariate distribution, confirmed by Student’s t-test of 92% in population difference. 

This project showed that it is possible to screen for an increased risk sample of a Colles’ 

fracture using a development of the model-based interpretation of grey-level profiles across 

the radius bone from an ordinary X-ray image of the forearm. 
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A 41BAPPENDIX 

A.1 42BConsiderations of the position of measurement  
A hollow cylinder is valid to model the radius bone if the inner and outer radius of the 

cylinder can be measured.  Figure A 1.1 illustrated the radius bone regions where the bone 

profile can be taken as the following descriptions. 

     

Figure A 1.1 Valid and invalid positions for measuring the thickness of cortical bone determined by 
the clarity of the contrast at the bone wall. 

Invalid area the area that bone contents are dense and the wall of cortical bone is not 

obviously noticed.  The cortical thickness cannot be measured within 

this area as the shape is more complex in the vicinity of the joints.  

Consequently the cylindrical model of the radius would not be 

appropriate. 

Valid area the area that cylindrical model considered appropriate.  The bone edge 

of this area is apparent and the radius width is not change rapidly.  This 

area is suitable for measuring the bone thickness to determine the risk 

of fracture. 

Valid position  the positions that the both side of the bone walls began to be parallel 

and the bone thickness is apparent as seen in Figure A 1.1 as a dash-

line.  This line can be determined without expert knowledge of wrist 

radiograph. 
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We evaluate the valid position by defining two parameters which were: 

L          is the length from the head of the radius bone to the profile, along 
the mid line of the bone 

D is  the width of the bone at the measured position. 

A line was drawn along the axis of the radius and the diameter estimated at various points 

along this line.  The point at which the rate of change of the diameter is small can be 

identified.  20 images (10 male and 10 female subjects) were measured the diameter at 

various distances from the head of the radius bone. 

Figure A 1.2 showed the relationship between L and D, which fitted to the polynomial order 2 

with R2=0.9831, computed by least squares regression on vertical offsets. 

 

Figure A 1.2 Variation in diameter (D) with distance from the head (L) of the radius bone. 

As shown in Figure A.13, a position that the measurement should be taken appear to be the 

position that radius thickness becomes unchanged (Xn).  This can be done by determining the 

derivative function of the radius thickness (X1...Xn) 
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Figure A 1.3 The change of cortical bone thickness along the radius bone. 

Time did not permit the method to standardise the measurement position to be evaluated.  We 

assumed that radiographs used in this experiment are the representative of the entire groups 

because they were selected randomly with bone size difference.  To ensure that profiles are 

always collected that locations beyond the valid position, we can simply use the maximum 

length as shown in Figure A 1.4. 

  

Figure A 1.4  Using maximum length as fixed length criteria to collect a profile within valid area 

In this project we used the fixed-length criteria, which are thereby the maxima of L, to collect 

the bone profiles.  The fixed-length criteria are: 
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 Lmale = 170 px (25.5 mm), Lfemale = 162 px (24.4 mm) 

The position of measurement from these fixed-length criteria may be not close to the optimal 

measured position but it can be guaranteed that the profile of this position is valid to measure 

the bone thickness.   

 

Figure A 1.5 User interface of profile collection program 

Figure A 1.5 showed the user interface of the profile collection program.  First of all, users 

need to load the radiographs from local files in JPG or PNG format into the program to 

extract the profiles.  The profiles can be collected according to the scan lines which are 

located by the user.  The line along in which the grey-level profile is to be sampled can be 

dragged to the desired position.  The profiles and likelihood ratio are computed and are 

available in the profiles collection dialog. 
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The profile data and the likelihood ratios are saved as ASCII with suffixes of “.pro” and 

“.mlr”, respectively.  The position of the markers (A, B, C and D) can also be set, as shown in 

the Figure A 1.5 in order to create the region of interest of profile collection.  Position E is the 

location in where the head of the radius bone was located. 
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A.2 43BAlternative bone profile model 
This project proposed a 7-segment piece-wise model for the grey-level profile of the radius 

bone X-ray.  The results of interpretation showed that measuring of the radius bone thinner 

and outer radius was subject to an uncertainty of less than 2%.  The variability of the profile 

across the centre of the bone makes matching to this region problematic 

In an alternative model of the grey-level pattern of an X-ray across the forearm the piece-wise 

linear model could be replaced by polynomial curves (P1 and P2) and a logarithmic curve (L1) 

as shown in Figure A 2.1; this notion is inspired by Lee’s study (Lee 2008). 

Unfortunately, this project did not cover the other models of the bone profile as the time 

constrain.  This model needs to be investigated if there is a basis that it can provide a better 

result of matching. 

 

Figure A 2.1 An alternative model for the grey-level profile from an X-ray of the forearm, using a 
polynomial functions. 
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A.3 44BRisk fracture estimation and sensitivity analysis 

Function for describing the risk of a fracture 
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The function for estimating the risk of a fracture is plotted in Figure A 3.1 and showed that 

the risk increases significantly when ro and Δr are small.  It also showed that the major 

parameter in the increasing of the risk factor is the external diameter of the bone, ro. 

The sensitivity analysis of the function for assessing the risk of fracture is plotted in Figure 

A.9, and showed that the variation in risk is small when Δr is low.  Again the sensitivity of the 

risk estimation using this function is more critical with respect to the estimation of the 

external radius. 
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This interpretation of the function for estimating the risk of a fracture gives reason to believe 

that the estimation of the external radius is the most critical parameter. 

 

Figure A 3.1 Plot of fracture risk function. 

 

Figure A 3.2 Plot of derivative of the fracture risk function. 

74 



A.4 45BMaximum error of risk estimation 
Let the risk estimation function is 
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As a result of interpretation program, the maximum error of ro is less than 1.6% and the 
maximum error of ri is less than 1.1%. 

Let substitute parameters with 1.016ro and 1.011ri to find the maximum error of the risk 
estimation function using upper bound as the following expression 
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Let substitute risk estimation function with δ(ro, Δr) 

0.9503 δ(ro, Δr) 

Therefore, the expression showed that with 1.6% external radius error and 1.1% internal error 
from the interpretation process caused at most 4.97% of risk estimation.   

75 



A.5 46BUML design of software interpretation 
 

 

Figure A 5.1 Class diagram of model package 
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Figure A 5.2 Class diagram of collection package 
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Figure A 5.3 Class diagram of main program 
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Figure A 5.4 Class diagram of utility package (1) 
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Figure A 5.5 Class diagram of utility package (2) 
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