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Abstract  

The urban heat island (UHI) effect is an inadvertent modification of climate which leads 

to increased temperatures in urban areas.  This in turn increases localised demand for air 

conditioning and refrigeration which can be a significant drain on energy resources.  At 

a time of increasing economic, political and environmental concerns with respect to 

energy policy, security, efficiency and climate change, there is a need to focus efforts to 

understand energy usage in cities for current and future climates.  Using data from an 

Urban Meteorological Network (UMN) along with a critiqued degree days 

methodology, this thesis analyses the UHI and estimate current and future cooling 

demand in Birmingham-UK.  From the results it was possible to identify that currently 

the main factor in energy consumption is income, however when isolating income 

influence through normalization process it is possible to identify the impact of the UHI.  

A significant finding was that the distribution of the surface UHI appears to be clearly 

linked to landuse, whereas for canopy UHI, advective processes appear to play an 

important role. Analysing Tair data available from the UMN the cooling demand for 

summer 2013 and future climate scenarios were calculated and demonstrated the 

importance of high resolution air temperature measurements in estimating electricity 

demand within urban areas.  
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Chapter  1  

 

Introduction 

 

1.1. Energy demand 

 

 Cities are concentrations of population and infrastructure, both of which demand 

high levels of energy usage.  Energy demand in the world is broadly expected to 

increase in line with population growth (Pérez-Lombard et al., 2008; Pasten and 

Santamarina, 2012; Vassileva et al., 2012), leading to a time of increasing economic, 

political and environmental concerns with respect to energy policy, security and 

efficiency.  

 The weather impacts virtually every segment of the energy sector (e.g., 

infrastructure: McEvoy et al., 2012; Vine, 2012; Ward, 2013; demand: Papakostas et 

al., 2010; Golombek et al., 2012; Vine, 2012; Savić et al., 2014; Zhang et al., 2014b; 

Jovanović et al., 2015; generation: Golombek et al., 2012; McEvoy et al., 2012; Vine, 

2012).  However, of particular relevance with respect to climate change are the 

projected increases in air temperature (Tair) which could lead to significant changes in 
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energy consumption.  The annual relationship between energy demand and Tair is well 

established (Hekkenberg et al., 2009), with peaks in energy demand occurring over both 

summer and winter, explained by the increased use of cooling appliances and space 

heating, respectively.  Hence, it is expected that higher temperatures, caused by climate 

change, will decrease energy demand over winter but increase demand over summer 

(Papakostas et al., 2010; Golombek et al., 2012; Jovanović et al., 2015).  For example, 

in California, USA, there is already a demonstrable increase in demand for air 

conditioning as a result of increasing temperatures, and with more frequent and severe 

heatwaves there is a possibility that the increased cooling demand in summer may 

outweigh heating reductions (Vine, 2012).   

 The International Panel on Climate Change (IPCC) has highlighted some of the 

major climate events to be observed in the future, which will at some level impact 

directly on the energy sector, such as the decrease in number of cold days and increase 

in number of warm days and heatwave events over Europe (Stocker et al., 2013).  

 

1.2. The urban heat island 

 

 The Urban Heat Island (UHI) is a widely researched phenomenon concerning 

the difference in temperature between an urban area and the rural surroundings of a 

conurbation.   

A range of factors contribute to the occurrence of the UHI; increased emissions 

of anthropogenic heat flux, changes to urban geometry and the replacement of 

vegetation cover by construction material (e.g., asphalt and concrete) - all of which 
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directly change surface albedo, emissivity and evapotranspiration (Oke, 1987), altering 

the energy balance in urban areas. 

Energy balance is determined by solar gains (absorbed and transformed into 

sensible heat) and heat loss (emitted via longwave radiation).  In urban areas the urban 

geometry relates to the availability of sunlight (solar energy gains) on building facades.  

The incident solar energy on urban structures (wall, ground and roofs) is absorbed and 

transformed into sensible heat resulting in surface temperatures several degrees higher 

than the air temperature.  The urban structure emits long wave radiation to the sky after 

sunset; as the heat absorbed during the day is released, air temperature increases.  The 

heat loss is slower in urban areas due to its different properties (asphalt, concrete, 

replacement of vegetation cover, and others as mentioned above) compared to rural 

areas (usually very vegetated), the net balance is positive when compared to the 

surrounding rural area, resulting in elevated air temperatures after sunset. 

The overall result is that cities are generally warmer than their rural 

surroundings, being common to find urban–rural temperature differences in excess of 5-

10 °C under ‗ideal‘ conditions (e.g., clear skies and light winds) for large conurbations 

as London, UK, and Paris, France (Chandler, 1965; Wilby, 2003; Bohnenstengel et al., 

2011; Lac et al., 2013), and 1 °C for small conurbations as Ljutomer, Slovenia (Ivajnšič 

et al., 2014).   

 Studies into the UHI can be largely subdivided into three different types: the 

surface UHI (UHIsurface), the canopy UHI (UHIcanopy) and the boundary layer UHI 

(UHIboundary) (Oke, 1995; Arnfield, 2003).  The urban canopy is the thin layer of the 

atmosphere between ground level and roof top height and is strongly influenced by 

urban geometry and microscale energy exchange.  The layer is just beneath the urban 
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boundary layer (Oke, 1995) located above roof level and whose characteristics are 

affected by both mesoscale processes (i.e., prevailing wind) and the microscale 

processes below (Oke, 1987).  Tair is the key parameter to measure for UHIcanopy and 

UHIboundary whereas land surface temperature (LST: often derived from satellites) is the 

parameter reported for UHIsurface.  LST modulates the air temperature of lower layers, 

impacting on energy exchanges between the surface and air and therefore influences 

thermal comfort in the canopy layer as well as the internal climate of buildings (Voogt 

and Oke, 2003). 

 The UHIcanopy is usually measured by station pairs (e.g., Wilby, 2003) or the use 

of transects (e.g., Smith et al., 2011).  Techniques for measuring the UHIboundary include 

the use of tethered balloons, radiosondes or ground based remote sensing techniques 

(Barlow, 2014).  Thermal remote sensing is the traditional way to measure LST 

(Dousset, 1989; Roth et al., 1989; Weng et al., 2004; Yuan and Bauer, 2007; Dousset et 

al., 2011a; Keramitsoglou et al., 2011; Schwarz et al., 2011; Smith et al., 2011; 

Tomlinson et al., 2012a).  A range of models can also be applied to estimate 

temperature variations in an urban area, such as the Weather Research and Forecasting 

model (WRF) (Heaviside et al., 2015), Joint UK Land Environment Simulator (JULES) 

(Bassett et al., 2015), and the Met Office Reading Urban Surface Exchange Scheme 

(MORUSES) (Bohnenstengel et al., 2011).  

 The UHI can impact many aspects of everyday life, such as critical 

infrastructure, health (Tomlinson et al., 2011) and energy consumption (Santamouris et 

al., 2001), with impacts becoming exacerbated under heat wave events.  The study of 

the 2003 heatwave in Paris indicated that, at night-time, a surface temperature increase 

of ~ 0.5 °C could double the risk of elderly mortality (Dousset et al., 2011b).  Such 
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events provide an indication of the increased impacts of the UHI in the increasingly 

warming climate projected to be experienced over the next few decades.  Furthermore, 

the ever-increasing number of people in urban areas will not only further contribute to 

the exacerbation of the UHI effect, but will also increase the number of people exposed 

to its potential risks (Smith et al., 2011). 

 The UHI has a direct impact on energy consumption, particularly in the warmer 

core of the city (Taha et al., 1988; Hassid et al., 2000; Akbari et al., 2001; Kolokotroni 

et al., 2010).  For example, in centrally located buildings in Athens, Greece, where the 

average UHI can exceed 10 °C, cooling loads can double in summer, whereas winter 

period heating loads can decrease by 30% (Santamouris et al., 2001).  By not 

considering the UHI, energy consumption and peak power could be significantly 

underestimated (Hassid et al., 2000); and under climate change scenarios energy 

consumption due to the UHI effect could increase even more. 

It is very common the use of vegetation and light coloured materials in 

mitigation and adaptation strategies to decrease urban temperatures.  

Urban vegetation (trees and green spaces) influences directly and indirectly the 

local temperature by evapotranspiration and shadowing, and therefore may contribute to 

important energy savings (Santamouris, 2001). 

Use of high albedo material (light coloured and white coated) reduces the 

amount of solar radiation absorbed by the buildings envelope (due to its high 

reflectivity) and keeps their surfaces cooler (Santamouris, 2001).  By increasing albedo 

surface temperature decreases and so does the air temperature as the heat convection 

intensity from a cooler surface is lower (Syneffa et al., 2008).  



6 

 

 

UHI studies evaluating its temporal variations and magnitude show that the 

implementation of high albedo strategies decreases the UHI intensity by 1–2 °C on 

average, indicating that adopting large-scale high albedo measures by using building 

materials with high solar reflectance can significantly reduce ambient temperatures 

(Syneffa et al., 2008).  Such temperatures reductions can have significant impacts on 

consumption of cooling energy in urban areas (Santamouris, 2001).   

 

1.3. Income 

 

Residential energy demand is not only dependent on climatic factors.  There is a 

close relationship between energy consumption and economic development (i.e., the 

improvement of living conditions in emerging regions, Lombard-Perez et al., 2008).  

Households in developed countries use more energy than those in emerging economies 

and it is expected to continue growing due to the proliferation of new appliances and air 

conditioning (Lombard-Perez et al., 2008).  Indeed, air conditioning is now common in 

many developed countries but remains rare in most of the developing world where 

penetration is limited by both the cost of appliances and energy (Sivak, 2009).  

However, the proliferation of air conditioning is becoming a major concern in the 

residential sector of developing countries, as income increases so does the potential to 

buy air conditioning (Ghisi et al., 2007).  In general, increasing levels of income will 

lead to larger numbers of new appliances and not only air conditioning and fans (e.g., 

television equipment and set-top boxes, personal computing equipment and related 

peripherals, proliferating charging devices) (Hojjati et al., 2012; Vassileva et al., 2012). 
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Allied to increase in income residential energy demand in the world is broadly 

expected to increase in line with population growth (Lombard-Perez et al., 2008; Pasten 

et al., 2012; Vassileva et al., 2012), which will bring to an increasing demand for 

buildings services (Lombard-Perez et al., 2008), improved thermal comfort levels 

(Lombard-Perez et al., 2008; Vassileva et al., 2012), once again further penetration of 

air conditioning, advances in electric heat pump technology (Hojjati et al., 2012) and 

other devices.  

There are health threats related to the lack of access to affordable energy, by 

inadequate supply of energy for other basic domestic needs (food storage and cooking, 

maintenance of personal and domestic hygiene, and artificial lighting) (Ormandy et al., 

2012).  Another issue that relates income and energy access is the fuel poverty issue.  

Fuel poverty is defined as when a family needs to expend more than 10% of its income 

to maintain adequate heating, and it is a result of low income, high fuel prices and poor 

energy efficiency.  Some studies have attributed poor health and excess mortality to low 

standards of energy efficiency (Santamouris et al., 2007).  

 

1.4. Research hypothesis  

 

 As pointed out the weather impacts on every segment of the energy sector.  The 

UHI impacts on many aspects of everyday life such as energy consumption, and 

therefore should be carefully analysed and investigated when energy demand in cities is 

being discussed.  
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 This thesis working hypothesis is that there is already an impact on electricity 

consumption in Birmingham due to the UHI effect and such impact will increase in face 

of climate change scenarios.   

 The working hypothesis of the second Chapter is that there is already an impact 

on electricity consumption due to the UHI, however there are other variables that reflect 

on consumption such as vegetation and income, and therefore these need to be analysed 

as well, in a preliminary investigation, to identify which variable is most relevant. 

The working hypothesis of the third Chapter is based on investigating the 

differences between the surface UHI and canopy UHI in Birmingham.  The working 

hypothesis of the fourth Chapter is based on investigating the most common method to 

estimate energy demand based on air temperature.  

Finally the working hypothesis of the fifth Chapter is that in face of climate 

change scenarios the impact on electricity consumption in Birmingham will increase 

even more, and possibly the current impact observed in the city core due to the UHI, 

will be observed in the entire city, and in the city core will increase even more.  

This thesis uses Birmingham the second largest city in the UK, as a case study.  

It has an estimated population of over 1 million people (BCC, 2014), and is located in 

the West Midlands county (Figure 1.1.).  The reason for choosing Birmingham is 

related to the fact that it has a high resolution Urban Meteorological Network (UMN).  

Such networks enable atmospheric parameters to be observed at both high temporal and 

spatial resolutions (Chapman et al., 2014).  Variables monitored by UMNs can include 

wind speed and direction, humidity, Tair and others, depending on the network objective 

(Muller et al., 2013a; b).  Since this network provides high resolution spatial and 
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temporal data, it is possible to quantify the Birmingham UHI at an unprecedented 

spatial scale, and investigate the UHI influence on energy consumption. 

 

Figure 1.1. Location of Birmingham, UK. 

 

1.5. Aim and objectives 

 

 Based on the working hypothesis the overall aim of this thesis is to investigate 

the impact of the UHI on current and future cooling demand, using high resolution data 

from an UMN and climate change scenarios.  

 

 The thesis is divided into several specific objectives to achieve its overall aim.  

 

 Assess the relationship between income, UHIsurface, vegetation and residential 

electricity consumption in Birmingham for 2006, a year that was warmer than 
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average, identifying which currently is the most relevant variable and the present 

influence of the UHI on residential electricity consumption. 

 Using data from a high resolution UMN, quantify and compare the spatial 

pattern of the daytime and night-time UHI, under a range of stability classes, for 

both UHIsurface and UHIcanopy. 

 Review and critique existing energy consumption methodologies for producing 

city scale estimates. 

 Using Tair data available from an UMN estimate current and future variations of 

cooling demand at the neighbourhood scale.   

 

1.6. Thesis structure 

 

 This Chapter has given an overview of the topics covered in this thesis, and its 

general aim and objectives.  Each Chapter will cover one of the specific objectives 

(Chapters 2-5).  Due to the range of methods used, this thesis does not have traditional 

Literature Review and Methodology Chapters, but has instead included relevant 

Literature and Methodology within each of the main Chapters (Chapter 2-5).  Chapter 6 

concludes the thesis highlighting the contributions made in each chapter and how it 

fulfils the thesis objectives; it also provides the critique of the thesis.  Figure 1.2. 

provides a framework for this thesis.  
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Figure 1.2. Thesis framework divided in Chapters. 

 

 

 

 

Chapter 1 

 

Background, aim and specific objectives, and thesis structure 

Chapter 2 – Objective 1 

 

Investigation of datasets available 

 

Chapter 3 – Objective 2 

 

Quantify and compare the spatial 

pattern of the daytime and night-

time UHI, under a range of stability 

classes for JJA 2013 

Chapter 5 – Objective 4  

 

Estimate energy demand based on CDD and UMN data, across 

Birmingham, UK, for the 2013 JJA period, and future weather scenarios 

Chapter 4 – Objective 3 

 

Degree days methodology: applicability  

 

Chapter 6 

 

Fulfilment of thesis aims and critique of the thesis 

MODIS LST and NDVI 

2006 

Income MSOA 2006 

(ONS) 

Energy Consumption 

MSOA 2006 (DECC) 

UMN Tair 2013 MODIS LST 2013 

MIDAS Tair data 

2006-2013 (UKMO) 

Electricity Consumption 

2006-2013(DECC) 

UMN Tair JJA 2013 CDD JJA 2013 UKCP09 Projections  
CDD JJA 2020‘s, 

2050‘s and 2080‘s  
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Chapter  2  

 

Urban heat  and res ident ial  

e lectr ic i ty  consumption:  A 

prel iminary study  

2.1. Introduction 

 

 Energy demand in urban areas is an important facet of energy supply planning.  

In particular, increasing energy consumption by the residential sector is an issue that 

could endanger broader economic development since in itself it does not generate 

wealth and could limit the amount of energy available for other productive sectors 

(Pereira and Assis, 2013).  The electricity consumption by sectors in the UK can be 

observed in Figure 2.1., which shows that domestic consumption has maintained itself 

as the larger consuming sector almost throughout the whole period from 1965 to 2013. 
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Figure 2.1. Total electricity consumption in the UK by sector and year (1965-2013). 

Others: Public administration, transport, agricultural and commercial sectors (DECC, 

2014). 

 

 Residential electricity consumption is a complex social and technical issue 

determined by a combination of physical, demographical and behavioural characteristics 

of the household inhabitants (Kelly, 2011).  Household size, income, building design 

characteristics and local climatic conditions are all key factors in determining residential 

energy consumption (Santamouris et al., 2007), as well as, number of occupants, floor 

area and household efficiency (Kelly, 2011).  Generally, small households need less 

energy due to a reduced transfer area, but they also have lower occupancy, and 

therefore, fewer appliances when compared with larger households (Pérez-Lombard et 

al., 2008).  Similarly, household income is an important factor, with a strong correlation 

evident between daily electricity consumption and earnings (Ghisi et al., 2007).  This 

pattern is evident spatially, where areas with higher average per capita income consume 
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considerably more energy; a direct result of the relationship between energy 

consumption and the purchasing power of families (Pereira and Assis, 2013).  With 

increasing levels of income it is expected an increase in ownership of appliances 

(Hojjati and Wade, 2012; Vassileva et al., 2012), as well as for the fact that items, such 

as air conditioning, are no longer being seen as a luxury item (De Cian et al., 2012).   

 With respect to climatic factors, the UHI is a potentially important localised 

phenomenon to take into account when assessing consumption in cities.  As described 

in Chapter 1, the UHI is described as the difference in temperature between an urban 

area and the surrounding rural area of the conurbation; mainly caused by anthropogenic 

changes to the environment with a range of factors contributing such as urban geometry, 

density / population of a conurbation, replacement of vegetation cover by construction 

material (e.g., asphalt and concrete), changing surface‘s albedo and emissivity thus 

reducing evapotranspiration and increased emissions of anthropogenic heat (Oke, 1987).  

 As highlighted in Chapter 1, thermal remote sensing is one of the most popular 

techniques used for the evaluation of UHI (Dousset, 1989; Roth et al., 1989; Weng et 

al., 2004; Yuan and Bauer, 2007; Dousset et al., 2011a; Keramitsoglou et al., 2011; 

Schwarz et al., 2011; Smith et al., 2011; Tomlinson et al., 2012a).  The main advantage 

is that remote sensing provides a consistent, repeatable methodology for the end-user, 

wide spatial coverage and data availability (Tomlinson et al., 2011).  However, thermal 

remote sensing observes LST which restricts studies to the UHIsurface.  Although LST 

plays a major role in urban climatological processes, it can only provide an indication of 

air temperatures.  Furthermore, remote sensing is not ideal to evaluate the UHI in small 

cities, since the spatial resolution of the sensor can often be coarse (Ivajnšič et al., 

2014).  
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 Green spaces are a widely adopted strategy to mitigate UHI intensity (Lambert-

Habib et al., 2013) since they reduce urban temperatures thorough evapotranspiration 

and shadowing.  In modelling experiments carried out for Manchester, UK, it was found 

that a 5% increase in mature deciduous trees can reduce average hourly surface 

temperatures by 1 °C during summer (Skelhorn et al., 2014).  For example, the highest 

cooling loads in Athens are seen in the western area of the city where there is limited 

green space (Santamouris et al., 2001).  In Manchester, it is proposed that if all 

vegetation was replaced with asphalt, then air temperature would increase by up to 3.2 

°C (Skelhorn et al., 2014).  Similarly, it was found in the USA that for an increase of 

25% of tree cover in urban areas can result in a 40% annual residential cooling energy 

savings in Sacramento and 25% in Phoenix and Lake Charles (Huang et al., 1987). 

 Vegetation abundance is an influential factor in the UHI (Weng et al., 2004) and 

the Normalized Differenced Vegetation Index (NDVI) is often used to approximate 

vegetation abundance.  The connection between NDVI and LST has been well 

established in studies, and a negative relationship between NDVI and LST has been 

shown and proven to be seasonally variable (e.g., Yuan and Bauer, 2007).  Other studies 

have included energy consumption data in the analysis (Akbari et al., 2001; Huang et 

al., 1987), but no study has yet investigated all these factors along with income and 

socioeconomic data at the same temporal and spatial resolution.   

This Chapter aims to assess the relationship between income, UHIsurface, 

vegetation and residential electricity consumption in Birmingham for 2006, a year that 

was warmer than average, identifying which currently is the most relevant variable and 

the present influence of the UHI on residential electricity consumption.  It focuses on 

simple and repeatable steps, based on freely available datasets, so that the methodology 
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can be reproduced for other years and regions in the UK.  The results could be used to 

inform current residential electricity consumption modelling due to the impact of the 

UHI effect, vegetation and income. 

 

2.2. Methodology, datasets and analysis 

 

2.2.1. Study area 

 

 Birmingham is a post-industrial city with distinct range of land use (e.g., the 

central business district, eastern industrial areas with the majority of residential areas 

straddling this belt of commerce and industry to the north and south) (Figure 2.2.).  

Some large parks can be found closer to the higher income neighbourhoods (Figure 

2.3.).  Altitude varies less than 100 m across the urban area.  The Lickey Hills, in the 

southwest corner of the city (Figure 2.3.), provides the local highpoint and is the only 

notable topographical feature (297 m), which could exert a noticeable climate influence 

with respect to surface temperature lapse rates (Minder et al., 2010). 
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Figure 2.2. Land use classes in Birmingham (EEA, 2010). 
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Figure 2.3. Birmingham locations mentioned in the text. 

  

A number of studies have previously investigated the Birmingham UHI.  Using 

night-time MODIS imagery for the summer of 2003-2009, it was identified that in 

periods of high atmospheric stability, the intensity of UHIsurface in Birmingham can 

reach up to 5 °C (Tomlinson et al., 2012a).  The cooling effect of green areas in 

Birmingham was also evident in this study, with notable cold spots in Sutton Park, 

Woodgate Valley and the Lickey Hills (Figure 2.3.).  A significant LST gradient was 
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observed extending northwards from the city centre to Sutton Park (~ distance of 10 

km) where temperatures can be 7-8 °C cooler than the urban core under heatwave 

conditions (Tomlinson et al., 2013).  A further study investigated both the UHIcanopy (via 

station pairs) and MODIS UHIsurface of Birmingham in relation to Lamb Weather Types 

and identified that the strongest mean and maximum UHIcanopy and UHIsurface were 

during ‗ideal‘ anticyclonic conditions, reaching 7 °C and 4 °C, respectively (Zhang et 

al., 2014a).  Modelling approaches have also been used in the city with JULES showing 

a UHIcanopy of 4 °C under stable conditions (Bassett et al., 2015) whereas the higher 

resolution WRF model, complete with an urban canopy scheme, highlighted a 

maximum intensity of 5.6 °C (Heaviside et al., 2015). 

Using the baseline of 1961-1990 (Table 2.1), the year of 2006 was in general dry 

and warm.  January was the driest January since 1997; February and March had mean 

temperature below average; from the last week of March temperatures and sunshine 

were above average; June was dry and had temperatures 1-2 ºC above average, followed 

by an exceptionally warm July (warmest July since 1914 using areal series), sunshine 

was also above average.  August, September, October and November were as well 

exceptionally warm and with sunshine above average, which characterized the year of 

2006 by having the warmest summer since the heat wave of 2003 and the warmest 

autumn (using 1914 areal series) with the sunniest November in history, followed by a 

December with above average temperatures, rainfall and sunshine, which confirmed 

2006 as the warmest year on record for most of the UK using 1914 areal series.  
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 *Regional values use the latest available data from the UK climate network observing stations 

Table 2.1.  2006 Summary - Regional values compared with 1961 to 1990 averages * (UKMO, 2006) 

(Act=Actual, Anom=Anomaly) 

Region Max temp Min temp Mean temp Sunshine Rainfall 
Days rain Days 

≥1 mm air frost 

 

Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom 

°C °C °C °C °C °C hours % mm % days days days days 

UK 13.38 1.53 6.11 1.3 9.73 1.41 1495.6 112 1179.2 107 155.3 1.3 47.8 -13 

England 14.42 1.62 6.81 1.45 10.61 1.54 1626 113 846.7 102 132.3 0.6 43.4 -11.7 

Midlands 14.42 1.71 6.68 1.54 10.55 1.63 1579.9 114 795.7 103 132.1 1.4 45 -13.2 
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2.2.2. Electricity consumption and income data 

 

 Ordinary residential electricity consumption data and income model based 

estimates are available from the UK Department of Energy and Climate Change 

(DECC) and the UK Office for National Statistics (ONS), respectively.  Both datasets 

are aggregated into Super Output Areas (SOAs), a standard unit used in the UK to 

report areal statistics (although any areal statistic unit is viable to reproduce the work 

elsewhere).  SOAs do not have consistent physical size, but are instead based on 

established ranges of population and households for Census purposes (Table 2.2 – ONS, 

2011a).  Income data are not available for the Lower Level (LSOA), hence Middle 

Level (MSOA) is the universal unit considered for this study. In 2006 there were 131 

MSOAs in Birmingham, in 2011 this number increased to 132, due to number of people 

and households increasing over the established ranges.  

 

 The fact that SOAs do not have a consistent physical size can raise questions 

regarding the stability of the estimates.  Indeed, the spatial aggregation processing of 

geographical units has been extensively reviewed, and a number of different techniques 

are available to overcome bias (Jacobs-Crisioni et al., 2014).  For example, Bayes 

adjustment (Assunção et al., 2005) is a possible means to overcome the problems 

related to the demographic data, however the approach would not be applicable to the 

Table 2.2. Ranges of lower and middle Super Output Areas (ONS, 2011a) 

Geography 
Minimum 

population 

Maximum 

population 

Minimum number 

of households 

Maximum number 

of households 

LSOA 1,000 3,000 400 1,200 

MSOA 5,000 15,000 2,000 6,000 
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other data used in this study.  Furthermore, the stability of the unit areas from one 

Census to the next is a known problem when using Census units (Fotheringham and 

Wong, 1991).  Despite these concerns, such units continue to be used in scientific 

studies and remain effective for spatial risk assessments being applicable to both the 

scale and preliminary focus of the research (Tomlinson et al., 2011; Pereira and Assis, 

2013). 

 Three types of electricity data are available from DECC (DECC, 2013) recorded 

as total consumed over a year; Economy 7, Ordinary electricity consumption and Total 

electricity consumption (Figure 2.4.).  Economy 7 is a cheaper tariff (NB: this tariff is 

unique to the UK, other countries might or might not have similar alternatives), which 

offers the opportunity for users to concentrate their usage during a 7 hour period at night 

(for example, the charging of night storage heaters) 22% of domestic electricity 

consumption is consumed under this tariff, where as ordinary consumption is the 

reminder of other tariffs and refers to 78% of domestic consumption.  Total electricity 

consumption is simply the combination of the two.  This Chapter considers only 

ordinary energy consumption data as Economy 7 has a tendency to be used 

independently of weather as it lacks the ‗controllability‘ of other tariffs – i.e., a ‗set 

point‘ where users turn on heating and cooling systems.   
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Figure 2.4. 2006 Domestic electricity consumption in Birmingham, divided by 

Economy 7 (22%) and Ordinary (78%) (remaining tariffs), Total consumption is the 

added up total of both (DECC, 2006). 

 

For the analysis, MSOA consumption data for 2006 were used normalized by 

the number of households.  Firstly, a simple normalization through division was 

performed indicating the average consumption (the total ordinary consumption by 

MSOA) by household (number of households by MSOA).  Secondly, MSOA 

consumption by household was normalized by the household income. 

 With respect to income data, the ONS income estimate model has a 95% 

confidence level and estimates households average weekly income.  Model based 

income estimates per MSOA for 2007/2008 were used (the closest to 2006 - other 

releases are 2001/2002, 2004/2005, and 2011/2012) (ONS, 2011b). 
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2.2.3. LST data 

 

 Satellite data, from 2006, were aggregated to produce an annual summary.  

LSTs were analysed for both daytime and night-time for cloudless conditions to 

evaluate general UHI pattern for the year.  Absolute temperatures values were used and 

considered to be more appropriate than residual temperatures for the analyses in this 

Chapter.   

 LST data were acquired from MODIS, which is deployed on board both the 

Terra and Aqua satellites. Birmingham overpass times for Terra are ~ 10:30 and ~ 22:30 

whereas Aqua is between ~ 13:30 and ~ 01:30.  During the British summer, sunset is 

between 20:00 and 22:00, with the maximum UHI being present ~ 3–5 h after sunset 

(Oke, 1987), making Aqua the ideal choice for analysis.  Likewise, with respect to 

daytime observations, the Aqua satellite overpass at 13:30 should also provide a good 

reference since solar irradiance at the time is high (although it is accepted that this is not 

the time of maximum LST).  MODIS was selected over other platforms for its temporal 

resolution, which greatly increases image availability for the analyses.  Landsat TM 

offers a higher spatial resolution (Landsat 7 thermal band is collected at 60 m but 

resampled to 30 m) (USGS, 2010), but the 16 days temporal resolution is prohibitive. 

 The freely available product MYD11A1 (V5)-MODIS/Aqua Land Surface 

Temperature and Emissivity Daily L3 1km Grid SIN (USGS, 2013) was used.  This 

product uses split window algorithms to correct for atmospheric effects for water 

vapour (gaseous absorption) and aerosols effects (aerosol scattering) (LPDAAC, 2015a; 

detailed algorithm can be found in Vermote et al., 1997) and surface emissivity 

(Tomlinson et al., 2012a).  Such data have been used in previous studies in Birmingham 
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(Tomlinson et al., 2012a).  However, care needs to be taken during interpretation due to 

the split window technique that works well over homogeneous surfaces, but is not 

applicable to spatially variable urban surfaces. 

 The MODIS Reprojection Tool (MRT) (LPDAAC, 2014) was used to convert 

images to GeoTIFF format at UTM (Universal Transverse Mercator), and subsequently 

converted to British National Grid (BNG) in ArcGIS (MODIS products are released in 

Sinusoidal Projection).  For the night-time analysis, 45 cloud free images were available 

and for daytime, 27 images were retained (Tables 2.3 and 2.4).  In both cases the largest 

amount of images available were during summer and autumn, where for night-time 

there was 8 winter images, 8 spring images, 17 summer images and 12 autumn images; 

and for daytime there was 1 winter image, 3 spring images,16 summer images and 7 

autumn images.  This is because of the more stable weather conditions on those seasons 

with decreasing cloud clover.  Data averaging and quality control was then conducted in 

ArcGIS, where the final 100% cloud free images were selected, before being converted 

from Kelvin to Celsius, and clipped to the study area.  The result was one averaged 

image for daytime LST (Figure 2.5.a) and one for night-time LST (Figure 2.5.b). 

 

Table 2.3. Forty five available night-time MODIS images for LST, Maximum, 

Minimum and Mean Pixel Temperature Value for Birmingham  

Date 
Julian 

Date 

Maximum Pixel 

Value (ºC) 

Minimum Pixel 

Value (ºC) 

Mean Pixel 

Value (ºC) 

21 January 2006 21 3.61 0.85 2.53 

22 January 2006 22 -0.69 -2.97 -2.0 

26 January 2006 26 1.05 -1.67 -0.11 

10 February 2006 41 -2.01 -4.77 -2.96 

19 February 2006 50 0.31 -2.27 -0.95 

1 March 2006 60 -2.11 -5.07 -3.34 

4 March 2006 63 -3.59 -5.83 -4.44 

5 April 2006 95 -1.23 -3.67 -2.41 
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10 April 2006 100 -0.11 -2.89 -0.94 

26 April 2006 116 6.93 4.31 5.90 

10 May 2006 130 9.25 7.23 8.39 

11 May 2006 131 8.75 4.47 7.55 

12 May 2006 132 9.99 7.05 8.71 

2 June 2006 153 9.57 6.61 8.76 

3 June 2006 154 10.61 6.57 9.24 

5 June 2006 156 11.61 7.77 10.51 

9 June 2006 160 14.43 8.93 11.90 

10 June 2006 161 14.79 10.33 13.35 

13 June 2006 164 11.97 5.67 10.20 

16 June 2006 167 12.65 4.85 10.91 

10 July 2006 191 13.11 10.05 12.25 

12 July 2006 193 13.31 6.51 11.16 

14 July 2006 195 12.49 6.69 10.63 

17 July 2006 198 15.29 10.49 13.11 

18 July 2006 199 18.15 11.11 15.63 

19 July 2006 200 18.35 12.57 16.73 

24 July 2006 205 14.63 9.83 12.71 

28 July 2006 209 16.65 12.19 15.20 

25 August 2006 237 9.65 6.01 8.34 

30 August 2006 242 10.51 8.57 9.80 

8 September 2006 251 9.65 4.99 7.90 

9 September 2006 252 11.23 5.03 9.17 

10 September 2006 253 10.29 6.79 8.69 

11 September 2006 254 15.07 10.19 13.75 

19 September 2006 262 11.47 9.41 10.93 

30 September 2006 273 11.23 8.17 10.03 

4 October 2006 277 9.67 6.03 8.35 

12 October 2006 285 8.75 5.83 7.56 

1 November 2006 305 3.95 0.79 2.36 

9 November 2006 313 4.63 0.11 3.15 

18 November 2006 322 3.23 0.51 2.59 

29 November 2006 333 4.95 2.11 3.48 

4 December 2006 338 5.03 2.21 3.79 

12 December 2006 346 3.95 0.41 1.94 

17 December 2006 351 2.29 -0.39 1.10 
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Table 2.4. Twenty seven available MODIS daytime images for LST, Maximum, 

Minimum and Mean Pixel Temperature Value for Birmingham 

Date 
Julian 

Date 

Maximum Pixel 

Value (ºC) 

Minimum Pixel 

Value (ºC) 

Mean Pixel 

Value (ºC) 

9 February 2006 40 7.17 4.23 6.06 

5 May 2006 125 33.67 23.37 29.29 

10 May 2006 130 31.71 22.15 28.36 

11 May 2006 131 31.69 22.53 27.78 

3 June 2006 154 32.43 22.49 28.07 

5 June 2006 156 27.15 14.03 22.91 

9 June 2006 160 39.79 27.57 35.06 

10 June 2006 161 37.11 28.49 33.35 

12 July 2006 193 34.87 26.69 31.59 

13 July 2006 194 40.79 28.55 36.17 

14 July 2006 195 32.25 25.47 29.28 

15 July 2006 196 39.87 29.25 36.17 

17 July 2006 198 44.19 33.93 40.45 

18 July 2006 199 46.57 36.99 42.75 

19 July 2006 200 42.43 35.31 39.85 

24 July 2006 205 41.29 29.81 37.27 

25 July 2006 206 35.67 30.77 33.67 

28 July 2006 209 39.95 31.25 36.42 

3 August 2006 215 35.23 26.87 32.29 

5 August 2006 217 24.41 23.93 24.10 

8 September 2006 251 29.51 21.93 26.74 

21 September 2006 264 29.33 24.47 27.54 

29 October 2006 302 17.57 8.41 14.79 

1 November 2006 305 11.25 8.49 9.95 

2 November 2006 306 11.73 8.09 10.13 

4 November 2006 308 13.41 10.67 12.24 

6 November 2006 310 13.73 10.31 12.62 
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2.2.4. NDVI dataset 

 

 The NDVI data were also obtained from Aqua MODIS products, MYD13Q1 

(V5) – MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m Grid SIN (LPDAAC, 

2015b), available in Sinusoidal Projection, every 16 days at 250 m resolution.  The 

product is the difference between pigment absorption features in bands 1 (red 

reflectance) and 2 (near infrared).  It is atmosphere-corrected and quality controlled, 

based on a 16 day composite (LPDAAC, 2015b).  Two vegetation indices are available 

for each product NDVI and EVI (Enhanced Vegetation Index).  EVI was not used in 

this study since it is more applicable to monitor changes in canopy structure and leaf 

area, whereas NDVI is used to verify vegetation density and is the index most 

frequently used by urban climate studies (Weng et al., 2004; Yuan and Bauer, 2007).  

NDVI ranges from -1 to 1, being positive values increasing amount of vegetation in a 

pixel (Yuan and Bauer, 2007), while 0 and negative values indicate rock, asphalt, 

clouds, snow, ice and water.  

 As per the LST product, the NDVI product was downloaded and converted in 

MRT to GeoTIFF format at UTM, and subsequently to BNG in ArcGIS.  All NDVI 

images available for 2006 were used, resulting in 23 images for the study period (one 

every 16 days – Table 2.5).  ArcGIS was then used to apply a scale factor (as indicated 

in reference material – LPDAAC, 2015b) to adjust the range from -1 to 1. Finally, the 

23 images were averaged into a single image for the year and clipped to the 

Birmingham area (Figure 2.5.c). 
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Table 2.5. Twenty three available MODIS images for NDVI 

Date Julian Date 

9 January 2006 9 

25 January 2006 25 

10 February 2006 41 

26 February 2006 57 

14 March 2006 73 

30 March 2006 89 

15 April 2006 105 

1 May 2006 121 

17 May 2006 137 

2 June 2006 153 

18 June 2006 169 

4 July 2006 185 

20 July 2006 201 

5 August 2006 217 

21 August 2006 233 

6 September 2006 249 

22 September 2006 265 

8 October 2006 281 

24 October 2006 297 

9 November 2006 313 

25 November 2006 329 

11 December 2006 345 

27 December 2006 361 



30 

 

 

 

Figure 2.5. a) Averaged daytime LST, b) Averaged night-time LST and c) Averaged NDVI for Birmingham in 2006.

a) b) c) 
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2.2.5. Data aggregation and analysis  

 

 As income and residential electricity consumption data are available by MSOA, 

for analysis purposes, there was a need to average and aggregate LST and NDVI into 

MSOAs (Figure 2.6.).  The processed LST and NDVI raster images were simply 

summed and then averaged by the number of images used before being converted into a 

point dataset.  All points located within each MSOA were then averaged, resulting in a 

unique LST or NDVI value by MSOA.  Correlations between the variables were then 

calculated by using Spearman Rank correlation coefficients (Table 2.6).  Due to the fact 

that income does not have a normal distribution, parametric statistics would not be 

appropriate and therefore non-parametric statistics was applied.  This was carried to 

analyse the impact of LST, NDVI and income (independent variables) on electricity 

consumption (dependent variable).  Spearman correlation was also carried between the 

MSOA consumption by household normalized by the income data and the aggregated 

LST and NDVI by MSOAs (Table 2.7).  This was carried to analyse the impact of LST 

and NDVI (independent variables) on income normalized electricity consumption 

(dependent variable).  P-values lower than 0.01 were found for all correlations; 

considering a standard α = 0.05 cut off, all analyses are significant at a 95% confidence 

interval.  Scatter plot diagrams with intercept, slope and R
2
 are shown in Figure 2.7.  
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Table 2.6. Spearman Rank Correlation between datasets 

 
Income 

MODIS night-

time LST 

MODIS daytime 

LST 

MODIS 

NDVI 

Ordinary 

Electricity/ 

Household 

0.58 -0.39 -0.40 0.36 

 

Table 2.7. Spearman Rank Correlation between datasets and normalized 

electricity consumption 

 

MODIS night-

time LST 

MODIS 

daytime LST 

MODIS 

NDVI 

Ordinary 

Electricity/Household - 

Normalized by Income 

0.45 0.55 -0.50 
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Figure 2.6 part 1. Aggregated data to MSOA for a) 2006 average day UHI, b) 2006 average night UHI, c) 2006 average NDVI.

a) b) c) 
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Figure 2.6 part 2. Aggregated data to MSOA for d) 2007/2008 Income, e) Ordinary Residential Electricity Consumption and f) Income 

Normalized Ordinary Residential Electricity Consumption.

d) e) f) 
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Figure 2.7 part 1. Scatter plot diagrams with slope, intercept and R
2
 a) Consumption by Income, b) Consumption by Night-time LST, c) 

Consumption by Daytime LST, d) Consumption by NDVI, e) Income Normalized Consumption by Night-time LST and f) Income 

Normalized Consumption by Daytime LST.  

 

 

 

d) e) f) 

a) b) c) 
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Figure 2.7 part 2. Scatter plot diagrams with slope, intercept and R
2
 g) Income Normalized Consumption by NDVI. 

 

g) 
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2.3. Discussion 

 

2.3.1. Data quality 

 

 All MODIS products used in these analyses were obtained for free online 

(USGS, 2013) and are available since 2002 with worldwide coverage.  The advantage of 

using the MODIS Aqua dataset is that is well-suited to non-specialists due to the fact 

that it is atmospheric corrected with NDVI already calculated.  Add to this, the fact that 

is free and available either twice a day for the LST, or in a 16 days composite for NDVI, 

it allows the user to determine the temporal scale of the study being carried, for yearly 

period, seasonally, monthly or daily.  Census data are usually available in most 

countries and free, which provides demographic investigation data and areal units.  

Other variables, sophisticated datasets, and areal units can be used for the analyses, 

depending on the scope and aim of the study and availability. 

 Although the UK electricity data have good spatial resolution, data are only 

available as an annual summary per MSOA and therefore do not allow seasonal 

interpretation.  Indeed, this can be seen as a problem, since the correlation between 

climate and electricity consumption has different patterns during summer and winter, 

and so does the UHI pattern and vegetation.  However, for preliminary investigation 

focusing on freely available datasets at the same spatial and temporal resolution to 

provide results for spatial risk assessment it can still be used, and it is simple and 

repeatable.  
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2.3.2. Analysis Part 1 

 

The year of 2006 was chosen for investigation due to the data availability and to 

the fact that it was an anomalous year, with warm summer and autumn, and therefore it 

is expected that there would be an increase in the electricity consumption.  Indeed when 

looking at total residential electricity consumption from 2005-2013 (Figure 2.8.), 2006 

was the year with highest consumption.  Since temperature is expected to increase in 

future climate scenarios, due to climate change, 2006 works as a temporal analogue of 

how consumption may look in the future.    

 

 

Figure 2.8. Variations in total ordinary electricity consumption (kWh) with respect to 

yearly average temperatures (ºC) in Birmingham from 2005-2013.
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As per Tomlinson et al. (2011), a clear UHI is evident in the averaged LST data 

with temperatures peaking in the city centre and significantly lower LST in the urban 

green space (Figures 2.5.a and 2.5.b).  The range of LST evident during the day is 

higher than during the night, a consequence of differential solar heating of surfaces with 

different thermal properties during the daytime.  After sunset surfaces start releasing 

energy absorbed during the day, cooling down.  In the second case, air temperature is 

usually higher than LST.  

 The averaged NDVI distribution for Birmingham (Figure 2.5.c) was also as 

expected ranging from 0.2 in the city centre to 0.7 in the larger urban green spaces.  As 

demonstrated in previous studies (Weng et al., 2004; Yuan and Bauer, 2007). 

It is hypothesised in this chapter that there is already an impact on electricity 

consumption due to the UHI, however other variables have also been investigated as 

they are known to have impact in electricity consumption as well.  In this first part of 

the analysis the strongest relationship found with electricity consumption was with 

income (r = 0.58), highlighting that although low income groups have a greater need for 

heating (less well insulated housing stock) and air conditioning (increased exposure to 

UHI), the main driver for consumption is purchasing power (Table 2.6 and 2.8).  It is 

primarily for this reason why correlations with LST are negative (daytime r = -0.40; 

night-time r = -0.39) meaning that there is an inverse correlation between LST and 

electricity consumption (high consumption, low LST).  It was hypothesised that higher 

temperatures due to the UHI effect in the city would result in increases electricity 

consumption by the use of air conditioners and fans, however that was not identified in 

the first part of the analysis (Table 2.6). 
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Table 2.8. Average electricity consumption by household income, England 2005 to 2011 (kWh)  

  <£15,000 

£15,000 

- 

£19,999 

£20,000 

- 

£29,999 

£30,000 

- 

£39,999 

£40,000 

- 

£49,999 

£50,000 

- 

£59,999 

£60,000 

- 

£69,999 

£70,000 

- 

£99,999 

£100,000 

- 

£149,999 

£150,000 

and over 
Unknown Total 

2005 3,900 4,200 4,400 4,700 4,900 5,100 5,200 5,500 6,200 6,700 5,000 4,600 

2006 3,800 4,000 4,200 4,600 4,800 5,000 5,200 5,400 6,100 6,800 4,900 4,500 

2007 3,700 4,000 4,200 4,500 4,800 4,900 5,100 5,400 6,100 6,700 4,900 4,500 

2008 3,500 3,800 4,000 4,300 4,600 4,700 4,900 5,200 5,900 6,600 4,700 4,300 

2009 3,500 3,700 3,900 4,300 4,500 4,700 4,900 5,200 5,900 6,600 4,700 4,200 

2010 3,500 3,700 3,900 4,300 4,500 4,700 4,900 5,200 6,000 6,700 4,700 4,200 

2011 3,400 3,700 3,800 4,200 4,500 4,700 4,900 5,200 5,900 6,700 4,600 4,200 
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2.3.3. Analysis Part 2 

 

 As a second part of the analysis, electricity consumption data were normalized 

by income to isolate income influence (the main factor in energy consumption 

according to the literature and first part of the analysis).  Applying normalization in the 

electricity consumption data a positive correlation between LST and consumption was 

observed.  The correlation with the income normalized consumption was higher for 

daytime UHI (daytime r = 0.55; night-time r = 0.45).  The positive correlation expected 

in the hypothesis was achieved when isolating the impact of income, and therefore the 

higher the LST, the higher the consumption.  A negative correlation with NDVI was 

observed (r = -0.50), this is also expected from the hypothesis, as areas with less 

vegetation, have higher LST and therefore more consumption.  In this second part of the 

analysis, all correlations marginally improved, but are still limited, and the correlation 

between income and electricity consumption remains the strongest.  

In the first part of the analysis a strong positive correlation between income and 

NDVI (r = 0.61) was observed which is explained by increased real estate values 

surrounding parks and green space (Lambert-Habib et al., 2013).  It is evident that 

wealthier families and individuals usually live in more vegetated areas (e.g., Sutton 

Coldfield in Birmingham); whereas lower income groups live in flats in cheaper areas 

(Santamouris et al., 2007), often close to the city centre (e.g., Ladywood in 

Birmingham).  In Birmingham, it is not uncommon to find low-income groups living in 

areas where the UHI reaches its maximum, which when factored with the poor housing 

stock found in such areas (i.e., less efficient construction/insulation), has implications 

for not only energy consumption but the general wellbeing and health of the population 
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in these areas (Tomlinson et al., 2012a).  The same was found for Athens (Santamouris 

et al., 2007), however such statement should be analysed individually depending on the 

city studied, due to differences in culture, urban form and development of cities across 

the world.  Income is an indirect factor of household size, meaning higher income, 

larger houses, and higher electricity consumption, being another factor that explains 

why the highest correlations were found with income, however such analyses are 

beyond the scope of this study.  

The resolution and aggregation level of the variables may have influenced in the 

results found here.  There is a clear need for other variables and data with higher spatial 

and temporal resolution to be taken into account in future and more detailed research.  

However, despite these limitations, it is evident that income is the most influential 

factor in electricity consumption.  The UHI appears to play a role, but these results are 

presently tempered and even with the presence of a strong UHI, high temperatures are 

still not an issue in Birmingham, therefore there is actually no significant need for 

cooling appliances at the moment.   

 

2.4. Conclusions  

 

 Despite electricity consumption data not being available at the desired temporal 

scale, it was possible to assess residential electricity consumption distribution and its 

correlation with income, NDVI and LST for yearly aggregated data, at a preliminary 

stage.  Large differences are evident in the distribution of urban heat and vegetation 

across Birmingham, but the results show that the dominant factor that influences 
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residential electricity consumption at these scales is not climate but income.  Whether 

this is true at other scales is difficult to assess given the present spatial and temporal 

limitations of the available data.  From this Chapter, it would be reasonable to conclude 

that electricity consumption due to increasing temperatures does not appear to be a 

current or urgent issue in temperate countries, however considering climate change 

scenarios, an increasing frequency of heatwaves and energy security concerns, 

overlooking behavioural changes of the millions of people who live in mid-latitude 

cities would be an oversight.  In face of climate change scenarios in Birmingham, 

temperatures will increase, exacerbating the UHI effect and impacts on electricity 

consumption.  Furthermore, the increasing number of people in urban areas will not 

only contribute to the exacerbation of the UHI effect but will also increase the number 

of people exposed to its potential risks (Smith et al., 2011), therefore, overlooking 

increasingly important climate drivers would be foolhardy. 

 

2.5. Chapter Summary  

 

 This Chapter has encountered a major limitation related to the energy 

consumption data available by MSOA.  Although it is a major advance to have the data 

aggregated at an intra-urban level, freely available to anyone, divided by both domestic 

and industrial consumers, the major problem relies on the fact that it is aggregated by 

year, and energy consumption fluctuates with temperature and meteorological seasons. 

Therefore, it would be more or less impossible to identify large climate impact, unless 

there are extreme circumstances such as a heatwave. 
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 Still on the energy data, the gas consumption data are weather corrected before 

being released, meaning the data are already isolated from climate impacts. 

Considering that consumption for space heating is possibly more important than 

consumption for cooling in the UK due to its mild weather, it is a big limitation to not 

be able to analyse such impact. 

 Remote sensing data provide good spatial scale for a city with the size of 

Birmingham.  They also provide more or less a good temporal scale, but in certain 

seasons the availability can be compromised by cloudiness.  However, the key limitation 

still relies on the fact that it is representative of LST and not Tair.  The two parameters, 

although related, are clearly different and hence there is a need to better understand the 

relationship between the two in Birmingham before any more detailed analyses are 

possible and this is explored next in this thesis. 
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Chapter  3  

 

Quanti fying the  dayt ime and 

night- t ime Urban Heat  Is land:  A 

comparison of  satel l i te  derived 

land surface  temperature and 

high resolution air  temperature 

observations  

3.1. Introduction 

 

 Traditional ways in which UHIcanopy are measured include station pairs (e.g., 

Wilby, 2003) or the use of transects (e.g., Smith et al., 2011).  Given the paucity of 

traditional Tair observations, and their limited spatial resolution (Smith et al., 2011; 

Muller et al., 2013b), there has been an ongoing challenge to quantify the intensity and 

spatial extent of the UHIcanopy.  A compromise is nearly always needed, whether it be 

temporal (i.e., the transect approach) or spatial (i.e., the station pair approach).  
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 It is for these reasons that numerical modelling techniques have proven to be so 

popular in urban climatology (Grimmond et al., 2010).  As mentioned in Chapter 1, a 

range of models can be applied to estimate temperature variations in an urban area, such 

as WRF, JULES, and MORUSES.  WRF is a mesoscale numerical weather prediction 

model, with incorporated urban schemes and used operationally for forecasting and 

research.  JULES and MORUSES are land surface models that effectively provide 

information of land conditions (e.g., surface energy balance), which is subsequently 

passed on to atmospheric models, such as the Met Office Unified Model.  Although 

modelling has brought tremendous advances in our understanding of urban atmospheric 

processes, models need observation data for initialisation and verification meaning that 

a wider number of urban measurements, other than data from one or two weather 

stations, would help to evaluate models‘ output. 

 To this end, there has been a recent increase in interest in the deployment of high 

resolution UMNs (Muller et al., 2013a), driven by advances in technology, 

communications and the ever-increasing miniaturisation of low cost electronics (Muller 

et al., 2013b).  Such networks enable atmospheric processes to be observed at both high 

temporal and spatial resolutions, which is especially important when considering the 

heterogeneous nature of urban areas (Chapman et al., 2014).  Variables monitored by 

UMNs can include wind speed and direction, humidity, Tair and others.  These data can 

be incorporated into microclimate models that can be further integrated into planning 

tools and other industrial applications to inform policy and decision-making.  Despite 

the advantages, the logistics of operating high resolution networks means that the 

number of fully working UMNs across the world is limited (Muller et al., 2013b).  
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However, new approaches (e.g., crowdsourcing Muller et al., 2015) may help to 

improve this over time. 

 There are numerous studies in the literature that have quantified the UHIsurface 

using remote sensing techniques (Dousset, 1989; Roth et al., 1989; Weng et al., 2004; 

Yuan and Bauer, 2007; Dousset et al., 2011a; Dousset, et al., 2011b; Keramitsoglou et 

al., 2011; Schwarz et al., 2011; Smith et al., 2011; Tomlinson et al., 2012a).  The key 

advantages are that regardless of the scale of study, remote sensing provides a 

consistent, repeatable and relatively cheap methodology for the end-user (Tomlinson et 

al., 2011).  Although the initial cost of remote sensing platforms remains high, the data 

availability and temporal and spatial coverage available of LST measurements and other 

co-located variables (e.g., cloud, vegetation, surface emissivity) are important for 

UHIsurface measurements and spatial risk mapping (Dousset et al., 2011a; Dousset et al., 

2011b; Tomlinson et al., 2011). 

 Despite the advantages, there are complexities in the retrieval of urban LST 

including satellite viewing geometry, atmospheric attenuation of IR radiation, urban 

surface emissivity and sub-pixel variations of land cover and heat balance.  As a result, 

thermal remote sensing studies in urban areas had been slow on developing results 

beyond qualitative descriptions of thermal patterns and simple correlations between 

LST and Tair (Voogt and Oke, 2003).  However, over the last decade, satellite derived 

LST were progressively integrated into climate models (De Ridder et al., 2012; Wouters 

et al., 2013) and used to retrieve Tair (Keramitsoglou et al., 2012).  To this end, the 

increasing availability of UMNs, of unprecedented resolution, have an important role to 

play.  High resolution Tair datasets are not only providing new information on UHIcanopy 

but also provide an opportunity to further evaluate the relationship between Tair and 
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LST using datasets of comparable spatial resolution.  Furthermore, given the paucity of 

UMNs, this relationship is potentially useful allowing LST to be used in a wider range 

of applications that presently depend on Tair measurements (e.g., seasonal estimation of 

energy use, and electricity transformer ageing, Tomlinson et al., 2013).  To begin to 

meet this need, this Chapter uses a high resolution UMN (the Birmingham Urban 

Climate Laboratory: BUCL), to quantify and compare the spatial pattern of the daytime 

and night-time UHI in Birmingham, under a range of stability classes, for both UHIsurface 

and UHIcanopy. 

 

3.2. Methodology and datasets 

 

3.2.1. Birmingham Urban Climate Laboratory (BUCL) 

 

 Figure 3.1. shows BUCL: a near real time, high-resolution urban meteorological 

network of automatic weather stations and low-cost non-standard Wi-Fi air temperature 

sensors (Aginova Sentinel Micro) (Chapman et al., 2014).  Data availability peaked in 

summer 2013, when the network consisted of: 82 low-cost, Wi-Fi air temperature 

sensors with bespoke radiation shields located in schools and on lampposts, 3 m from 

the ground (see Chapman et al., 2014 and Young et al., 2014 for more details); and 25 

automatic weather stations (Vaisala WXT520) measuring temperature, precipitation, 

relative humidity, wind speed and direction, pressure, and solar radiation.  Both 

temperature sensors and weather stations provide minute data.  The weather stations 

provide accuracies of: air temperature ±0.3 °C (20 °C) (Scientific, 2006), whereas the 
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low cost sensors provide good accuracy in laboratory testing with mean errors of < 

±0.22 °C (between -25 and 30 °C), subsequent field tests presented an accuracy (in the 

bespoke shield) of root-mean square error of 0.13 °C over a range of meteorological 

conditions relative to a traceable operational UK Met Office platinum resistance 

thermometer (Young et al., 2014).  To ensure and improve data quality, a metadata 

protocol for UMNs was proposed and followed during implementation, maintenance 

and data acquisition.  Juliana Antunes Azevedo attended as well the installation and 

maintenance visits, from November 2012 to April 2013 to learn the installation process 

and to certify that metadata protocol was being followed; after the visitations the 

metadata was uploaded into the database, and later there would be constant follow up 

checking the database to guarantee that data was being received with no faults, to make 

sure that data would be available and trustworthy for this research to be carried.  

Furthermore, strict calibration procedures were rigorously followed (for detailed 

information see Muller et al., 2013a), and this process was also learned by Juliana 

Antunes Azevedo.  The network ensures that Birmingham is one of the most densely-

instrumented urban areas for meteorological studies and offers high quality data at an 

unprecedented resolution for a city of its size. 

 Finally, Coleshill (~ 4.5 km east of the outer edge of Birmingham), is the station 

in the national network frequently used as the rural reference site for UHI studies in 

Birmingham (Tomlinson et al., 2012a; Zhang et al., 2014a) and is considered an 

―agricultural, semi-natural and wetland‖ area in land use classifications (EEA, 2010) 

(Figure 2.2. – Chapter 2). 
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Figure 3.1. BUCL network, Coleshill location and Birmingham MSOAs. 

 

The meteorological statistics for 2013 were near average (Table 3.1).  However 

it had a late start to winter and exceptionally cold spring (with late snowfalls).  March 

was the second coldest March for the UK on record, after 1962.  The annual rainfall was 

drier than average but not exceptionally. May, October and December were the only 

months to record above average rainfall for the UK.   

The year 2013 had the warmest summer in the UK since 2006, with a prolonged 

heat wave from 3 to 22 July, when high pressure was established across the UK.  It was 
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a drier than average (ending a period of 6 consecutive wet summers 2007-2012), also 

having the sunniest summer since 2006, being the sunniest July since 2006 and the third 

sunniest July in the series from 1929 (Table 3.2). 

 



52 

 

 

 

 

 

 

 

Table 3.1. 2013 - Regional values compared with 1961 to 1990 averages (UKMO, 2013) 

(Act=Actual, Anom=Anomaly) 

Region Max temp Min temp Mean temp Sunshine Rainfall Days rain Days 

≥1 mm air frost 

 Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom 

°C °C °C °C °C °C hours % mm % days days days days 

UK 12.4 0.5 5.2 0.4 8.8 0.5 1421.1 106 1091 99 150.2 -3.9 66.2 5.3 

England 13.2 0.4 5.7 0.3 9.5 0.4 1539.1 107 813.9 98 128.1 -3.6 60.9 5.8 

Midlands 13.2 0.5 5.5 0.3 9.3 0.4 1512.7 110 758.7 98 125.1 -5.6 66.6 8.4 

 

Table 3.2. Summer (JJA) 2013 - Regional values compared with 1961 to 1990 averages (UKMO, 2013) 

(Act=Actual, Anom=Anomaly) 

Region Max temp Min temp Mean temp Sunshine Rainfall Days rain Days 

≥1 mm air frost 

 Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom Act Anom 

°C °C °C °C °C °C hours % mm % days days days days 

UK 19.7 1.7 10.7 1.1 15.2 1.4 577.7 115 186.8 79 28.5 -4.8 0.1 -0.1 

England 21.1 1.7 11.3 1 16.2 1.3 642.4 118 149.7 78 23.2 -5 0 -0.1 

Midlands 21.2 1.8 11.2 1 16.2 1.4 626.5 119 156.5 84 23 -5.3 0 -0.1 
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3.2.2. Tair data acquisition and processing 

 

 Tair data for June, July and August (JJA) 2013 were obtained from BUCL 

(Warren et al., 2016) and Coleshill weather station.  Twice daily meteorological 

averages were calculated for each sensor and weather station for daytime (06:00–17:59) 

and night-time (18:00–05:59 following day).  Then, using ArcGIS, the data were 

interpolated by the kriging before being averaged and trimmed to the study area, 

resulting in a daytime (representative of data averaged from 06:00 to 17:59) and night-

time (18:00–05:59 the following day) interpolation for each day of the study period.  

Average temperature values were used due to the rapidly changing nature of the UK 

climate.  Although skies were clear during the time of the satellite passes used in this 

study, the proceeding weather conditions will potentially have a large impact.  The use 

of averaging helps to overcome this limitation.  During British summer time sunrise and 

sunset can be quite variable, therefore 18:00-05:59 was chosen for the night period, 

because of  the large time variation of sunset during summer (from 18:00 to 22:00) and 

to maintain a consistency of 12 hours of ‗night‘ and 12 hours of ‗day‘, although it is 

considered early for the start of the night period.   

Kriging is a common spatial interpolation method applied to Tair (Chapman and 

Thornes, 2003; Ustrnul and Czekierda, 2005).  Spatial interpolation methods are divided 

in deterministic and stochastic.  Deterministic methods are conceptual and use physical 

models to explain spatial phenomena, whereas stochastic methods apply probability 

theory and the concept of randomness (Ustrnul and Czekierda, 2005).  Kriging is a 

stochastic method.  Examples of deterministic methods are Inverse Distance Weighted 

(IDW), Natural Neighbour and Spline.   
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Spatial interpolation methods must be chosen carefully as a bad choice of 

methodology can result in errors and maps that inaccurate (Ustrnul and Czekierda, 

2005); for instance, kriging is usually not appropriate for area with complex topography 

and highly varying densities and elevation distribution of climate (e.g., British 

Columbia, Canada influence of lapse rates), in these cases usually IDW is used and 

performs better (Stahl et al., 2006).  

There are several kigring methods which can be applied such as ordinary 

kriging, cokriging, universal kriging and residual kriging; and several geographical 

parameters (elevation, latitude, longitude, and distance to the coast) are usually used as 

predictor variables.  For this study ordinary kriging with Gaussian semivariogram, and 

default parameters.  With any interpolation method, there is the possibility of bias, 

however, the larger the sample, the smaller the possible bias, therefore larger samples of 

data provide better results (Stahl et al., 2006); therefore, BUCL provides an 

improvement on estimations carried by having a wider sample of data.  

It is possible that some stations might give anomalous readings, data from the 

network is carefully quality controlled by the technician enabling a reliable dataset for 

subsequent analysis (Chapman et al., 2014).  A total of 82 sensors and 25 weather 

stations were used, which were functioning and reliable during the study period 

(including the sites outside the Birmingham urban area).  The UHIcanopy intensity (Turban-

Trural: in this case the difference between the interpolated Tair for the urban area and Tair 

in Coleshill) was then calculated.  Finally, the daytime and night-time datasets were 

averaged according to Pasquill-Gifford stability classes (Table 3.3). 
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Table 3.3. Pasquill-Gifford Class Names 

Class Definition Period of the day 

A Extremely Unstable Day 

B Moderately Unstable Day 

C Slightly Unstable Day 

D Neutral Day/Night 

E Slightly Stable Night 

F Moderately Stable Night 

G Extremely stable Night 

 

 

3.2.3. Pasquill-Gifford stability classes 

 

 Coleshill is the closest station in the national network (Met Office MIDAS WH 

hourly: UKMO, 2013) to Birmingham City Centre in which cloud observations are 

frequently made, crucial to enabling subsequent datasets to be classified into Pasquill-

Gifford stability classes (Pasquill and Smith, 1983).  Daytime classes are calculated 

based on wind speed and levels of insolation (determined by cloud cover and solar 

elevation - Table 3.5), whereas night-time classes are calculated based on wind speed 

and cloud cover Table 3.4.  Meteorological data used to assign stability classes is from 

the rural reference site at Coleshill and, whilst it is assumed to be representative of 

regional conditions, there is a need to acknowledge atmospheric stability in the urban 

area could be different to that calculated. 
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Table 3.4. Pasquill-Gifford Stability Classes Parameters 

 

 

Surface wind speed (m·s 
-
¹) 

Night Day with insolation 

Cloud Cover Insolation* 

≥4/8 

Oktas 

<4/8 

Oktas 
Strong Moderate Slight 

<2 G G A A-B B 

2-3 E F A-B B C 

3-5 D E B B-C C 

5-6 D D C C-D D 

>6 D D C D D 

* Refer to Table 3.5. for the understanding of how insolation categories are determined 

for Pasquill-Gifford Stability Classes.  

 

Table 3.5. Insolation Categories for Pasquill-Gifford Day Stability Classes  

Sky cover 
Solar elevation 

Angle > 60° 35° > Angle < 60° 15° > Angle < 35° 

≤4/8 or any amount of high 

thin clouds Strong Moderate Slight 

>4/8 middle clouds (700 foot - 

16000 foot base) Moderate Slight Slight 

>4/8 low clouds (less than 

7000 foot base) Slight Slight Slight 

 

 

3.2.4. LST data acquisition and processing 

 

 As Chapter 2, MYD11A1 (V5)-MODIS/Aqua Land Surface Temperature and 

Emissivity Daily L3 1km Grid SIN (USGS, 2013) product was used.  Data were 

obtained for JJA 2013 and were reprojected using MRT (LPDAAC, 2014) to convert 

images to GeoTIFF format at UTM, and subsequently converted to BNG in ArcGIS.  

Quality control of the images was achieved in ArcGIS selecting only images that were 

100% cloud free (i.e., whenever the image had a pixel with no value, the image was 

rejected), before converting LST from Kelvin to degree Celsius and trimming the 
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images to the study area.  Cloudiness is a recurrent problem in the UK, which 

significantly reduces data availability, which can sometimes be overcome by masking 

cloud on partially clear images.  However, due to the spatial resolution of MODIS (1 

km) and following an inspection of the nature of rejected images, the scientific gain of 

this additional processing was considered to be of limited value in this study, given the 

small increase in data such a step would provide. 

 The UHIsurface intensity (Turban-Trural: i.e., the pixel containing the Coleshill rural 

reference site) was then calculated.  From each daytime and night-time image, the pixel 

LST converted to degree Celsius was extracted at the location of the sensor sites and 

weather stations (Figure 3.1.) for later comparison analyses between pixel extracted 

LST and sensor/weather station Tair.  Finally, the images were averaged resulting in one 

daytime (at ~ 13:30) and one night-time (at ~ 01:30) image for each Pasquill-Gifford 

stability class. 

 

3.3. Results 

 

3.3.1. Stability classification 

 

 Table 3.6 summarises the total number of images for daytime and night-time 

with respect to atmospheric stability.  The difficulties in obtaining cloud free imagery in 

the study area becomes apparent with only 11 images for daytime and 13 images for 

night-time available for analysis during the study period.  The image availability tends 
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to increase with atmospheric stability for the night pass, whereas for daytime conditions 

the majority of imagery was available for the moderately unstable classes. 

 

Table 3.6. Pasquill-Gifford Classification Results 

LST = 11 daytime 

images 

Tair = 87 days 

analysed 

Pasquill-Gifford 

class 
Description 

0 12 A and A-B Extremely Unstable 

8 22 B and B-C Moderately Unstable 

2 50 C and C-D Slightly Unstable 

1 3 D Neutral 

LST = 13 night-

time images 

Tair = 86 days 

analysed 

Pasquill-Gifford 

class 
Description 

0 23 D Neutral 

0 19 E Slightly Stable 

3 13 F Moderately Stable 

10 31 G Extremely stable 

 

 The Tair data were also classified using the same approach.  By using this more 

extensive dataset, it can be seen that despite the settled climate experienced by the UK 

during the summer of 2013 (characterized by a mild heat wave and warmest 

temperatures since 2006), the most frequent stability classes encountered during the 

study period for the daytime were slightly unstable and moderately unstable.  However, 

as per the LST data, more stable conditions were present during the night. 

 

3.3.2. Daytime UHIsurface 

 

 The averaged LST images for each stability class with sufficient LST imagery 

available are shown in Figure 3.2., accompanied with an average image representing the 

overall averaged dataset for the period, independently of stability class.  A clear 
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UHIsurface is evident across all stability classes, with LST in the city centre being several 

degrees warmer than Coleshill.  The maximum difference recorded during this study 

was 9 °C (class B) and is comparable in magnitude to the 10 °C recorded in a study in 

Manchester, a similar sized conurbation in the north of the UK (Smith et al., 2011).  

The clear spatial pattern found in all stability classes has peak LST in the land use 

classes for industrial, commercial and continuous urban fabric. 

 Significant cold spots are evident in city parks.  LSTs recorded in Sutton Park to 

the north of the city are 9 °C lower than the city centre (~ distance of 10 km) in class B, 

and 7-8 °C lower than the city centre in classes C and D, respectively.  In class B, 

Sutton Park was 1 °C lower than Coleshill (~ distance of 15 km), and similar in classes 

C and D.  In the southwest and northeast corners of the city, lower temperatures were 

also found and correspond to semi-rural areas with agricultural, semi-natural and 

wetland land use.  These differences are particularly noticeable in the southwest border 

where the slightly increased altitude has a discernable effect especially in Class B.  

Indeed, it is under these moderately unstable conditions that the maximum daytime 

UHIsurface is present.  This finding is not unique to this study, with a maximum daytime 

temperature difference of 8.9 °C also occurring during partially cloudy periods in 

London, UK (Kolokotroni and Giridharan, 2008). 

 Overall, the results show a strong daytime UHIsurface, with peak temperatures 

corresponding to high urban density and lower temperatures in green areas across all 

stability classes.  This outcome is to be expected due to the fact that LST maximum 

occurs in hours of maximum solar irradiance.  Differences in the spatial pattern across 

the stability classes are attributed to wind speed and cloud cover (as used for the 

stability class classification). 
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Figure 3.2. Daytime UHIsurface intensity, for Pasquill-Gifford Stability Classes B, C 

and D, and Average for June, July, August 2013 and prevailing wind direction for the 

period. Based on MODIS Aqua LST product. 

 

3.3.3. Daytime UHIcanopy 

 

 As with the UHIsurface during the day, the UHIcanopy is also more evident under 

unstable conditions (Figure 3.3.).  However, it is identified that with the exception of 

the city centre core in classes A (~ 0.3 °C) and D (~ 1.8 °C), Tair during the day is lower 

than the rural reference site (and up to ~ −1.8 °C lower in green areas and southwest, 

north and northeast semi-rural areas).  Furthermore, in contrast to the UHIsurface, the 
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intensity of the UHIcanopy spatial pattern is much smaller (between 1.7 °C and −1.8 °C), 

a result in line with other studies (e.g., Roth et al., 1989). 

 The spatial distribution of Tair during the period shows some similarities with 

LST with the highest temperatures in the city centre and cooler temperatures in urban 

parks (Sutton Park and southwest corner).  However, there is a marked difference with 

respect to the spatial distribution of urban heat on the Tair dataset with the thermal core 

extending to the east of the city.  In contrast, the thermal core extends to the west for the 

LST dataset.  Whilst this pattern could be explained by land use for LST (Figure 2.2., 

Chapter 2), as the Tair pattern extending to east becomes more evident as the atmosphere 

becomes more stable (A to D), it is hypothesised that advection may play a more 

significant role in the spatial pattern of UHIcanopy.  In WRF model simulations for 

August 2003, temperature variations in Birmingham were attributed to the influence of 

a particular wind direction in which areas downwind became warmer (up to 2.5 °C) than 

those upwind (Heaviside et al., 2015).  Hence, this temperature pattern can be explained 

by the prevailing wind for the region which is south-westerly (UKMO, 2015).  Similar 

results regarding advection have also been found for other cities.  In London, the peak 

UHI intensity was found to be located northeast of the city centre, possibly explained by 

the prevailing south-westerly winds (Chandler, 1965) and in Hungary, the spatial UHI 

pattern in both Szeged and Debrecen, was determined by the prevailing wind direction 

(Unger et al., 2010a).  Rural weather stations in the Netherlands were also found to be 

approximately 1 °C warmer when the wind passed across nearby towns (Brandsma et 

al., 2003).  Overall, it appears advection plays an important role in investigating the 

pattern of UHIcanopy in the city, but this is beyond the scope of the present study. 
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Figure 3.3. Daytime UHIcanopy intensity, for Pasquill-Gifford Stability Classes A, 

B, C and D, and Average for June, July, August 2013 and prevailing wind direction 

for the period. Based on the BUCL dataset. 
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3.3.4. Night-time UHIsurface 

 

 Previous work in Birmingham identified an increase in the UHIsurface intensity 

with respect to atmospheric stability (Tomlinson et al., 2012a).  That study used a larger 

dataset (2003–2009) than that used in this Chapter (i.e., summer 2013), yet the spatial 

pattern remains broadly comparable.  The range for class F is from −1 to 2.5 °C, and 

class G from −1.6 to 3.0 °C; whereas for this study the ranges for class F are −0.25 to 

2.75 °C, and class G from −1 to 3 °C (Figure 3.4.).  During a heatwave event (class G), 

which occurred on 18
th

 of July 2006, the UHIsurface peaked >4.5 °C.  Unfortunately, 

given the smaller time period of this study, insufficient data are available in this analysis 

to assess the decline in UHIsurface intensity for classes E and D. 

 Overall, the spatial pattern of the UHIsurface at night-time is very similar to 

daytime. LST in the city centre is higher (~ 3 °C) than Coleshill and in parks and 

southwest and northeast borders it is lower (up to −1 °C).  As expected, UHI intensity 

during night-time is lower (−1 °C to 3 °C) than daytime during the times of maximum 

solar irradiance (−1 °C to 8.7 °C). 
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Figure 3.4. Night-time UHIsurface intensity, for Pasquill-Gifford Stability Classes F 

and G, and Average for June, July, August 2013 and prevailing wind direction for 

the period. Based on MODIS Aqua LST product. 

 

3.3.5. Night-time UHIcanopy 

 

 As with night UHIsurface, UHIcanopy is most evident under stable conditions, with 

the greatest intensity and a particularly well developed urban core in class G 

(Tomlinson et al., 2012a).  The spatial distribution of Tair during night-time (Figure 3.5.) 

is also very similar to that highlighted during the daytime, with the core of urban heat 
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becoming less defined and spreading eastwards across the city, again highlighting the 

potential role of advection in the structure of the UHIcanopy.  For example, an 

investigation of the London UHI using MORUSES examined the factors shaping the 

spatial and temporal structure of the London‘s atmospheric boundary layer.  It was 

found that whilst land use is the dominant factor, even weak advection is sufficient to 

increase nocturnal temperatures downwind of built up areas (Bohnenstengel et al., 

2011).  

 

Figure 3.5. Night-time UHIcanopy intensity, for Pasquill-Gifford Stability Classes D, 

E, F and G, and Average for June, July, August 2013 and prevailing wind direction 

for the period. Based on the BUCL dataset. 
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3.4. Comparisons between Land Surface and Air Temperatures 

 

 Using the datasets presented in this Chapter, direct temperature differences 

(LST-Tair) and R
2
 (coefficient of determination) were calculated between LST and Tair 

for each sensor site and weather station (neighbourhood scale) and later combined to 

investigate the relationship at the city scale.  Note that Tair and LST are intrinsically 

different measurements (Dousset et al., 2011b).  Tair represents the ambient temperature 

at 2 m above the surface and LST represents the surface radiant temperature averaged 

over a 1 km horizontal surface (including different levels within the canopy layer).  The 

time lag between maximum LST and Tair depends mainly upon the physical 

characteristics of the surface and the convection.  Although a strong correlation between 

the datasets is not expected, general patterns are helpful to retrieve Tair from LST (De 

Ridder et al., 2012). 

 

3.4.1. Daytime 

 

 Figure 3.6.a shows large differences between LST and Tair data collected at the 

time of the satellite overpass.  These differences vary with land use (Table 3.7) and 

range from around 3 °C in suburban areas, to over 13 °C directly adjacent to the thermal 

core, further highlighting the significance of the different processes contributing to 

UHIsurface and UHIcanopy in these areas.  For comparison, an intensive study of Los 

Angeles, USA, using 44 meteorological stations and seven AVHRR images during three 
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days in August 1984, indicates a 5.4 °C difference between radiant surface and air 

temperatures in the afternoon (standard deviation of 2.3 °C) (Dousset, 1989). 

 

 

Figure 3.6. LST and Tair daytime comparison at 13:30. a) LST-Tair difference 

(MODIS-BUCL), b) R
2
 values at sensors and weather stations location and c) R

2
 

values for city scale (all sensors and weather stations). 

 

a) b) 

c) 
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Table 3.7. Temperature difference (LST - Tair) at 13:30 and Land use (EEA, 2010) 

Temperature 

difference (C) 
Land use 

10.9 – 13.3 Industrial and commercial 

9.5 – 10.9 Continuous urban fabric; and discontinuous dense urban fabric 

8.7 – 9.5 Discontinuous low density urban fabric 

6.8 – 8.7 Discontinuous low density urban fabric 

3.1 – 6.8 Discontinuous low density urban fabric and green urban area 

 

 The result is that up to 91% of the variation in Tair at sites across Birmingham 

can be explained by LST (Figure 3.6.b).  With a couple of outliers as exceptions (e.g., 

one sensor site with a R
2
 of 0.5), this relationship is consistent across the city at the 

neighbourhood scale.  However, when the analysis is extended to cover all sites at the 

city scale, the results and relationship are not consistent, and highlights the challenges in 

producing a simple relationship between Tair and LST (Figure 3.6.c). 

As correlations found were consistent, slope was also applied to the analyses for 

verification.  Slope indicates gradient of a line, describing its direction and steepness.  

Slope results can either indicate a line that is increasing (m > 0), decreasing (m < 0), or 

neutral (m = 0).  During daytime slope varied from 0.70 to 1.31.  During the day 6 

sensors had slope varying from 0.96 to 0.99 and only 1 at 0.70 (same sensor that had 

anomalous R
2
 value).  All the others (88 sensors) had increasing values.  These results 

are in line and consistent with results found for R
2
. 

 

3.4.2. Night-time 

 

 Direct comparisons between Tair and LST at night, show that Tair is consistently 

higher than LST across the city, ranging from 0.7 to 3.2 °C (Figure 3.7.a).  Temperature 
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differences again vary with land use (Table 3.8) with the lowest temperatures 

differences between LST and Tair in the city centre, likely because of the increased 

thermal capacity of urbanised surfaces.  In contrast, the largest differences are in areas 

with more vegetation (i.e., Sutton Park and Woodgate Valley Country Park). 

As per Chapter 1, the energy balance is determined by solar gains (absorbed and 

transformed into sensible heat) and heat loss (emitted via longwave radiation).  In the 

urban areas the urban geometry plays an import role in this process as it relates to the 

availability of sunlight (solar energy gains) on building facades.  Later the urban 

structure emits long wave radiation to the sky after sunset, once again this is related to 

the urban geometry.  The openness of an area is important while absorbing and emitting 

energy.  

Intensity of the emitted radiation depends on the view factor of the surface 

regarding the sky, known as the Sky View Factor (SVF).  The higher the SVF (closer or 

equal 1 or 100%) the more radiation emitted, the lower the SVF (closer or equal to 0) 

the lower the long wave radiation emitted.  Higher values of SVF are found in rural 

areas decreasing towards suburbs and city centre, since urban canyons usually become 

more enclosed towards the city centre (Bradley et al., 2002).   

Vegetated areas and parks tend to have higher SVF, as it is usually more ‗open‘, 

therefore the SVF of Sutton Park might be an important reason for identifying such high 

difference in temperature between surface and air during night-time (Figure 3.7.a). 

 Site specific R
2
 values are consistently high between the two datasets (R

2
 = 0.8-

1) with less outliers than during the daytime (Figure 3.7.b); 8 sensors ranged between 

0.8 and 0.9, and 90 sensors between 0.9 and 1.  Furthermore, the relationship at the city 

scale is improved at night (Figure 3.7.c) and is to be expected given the less complex 
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radiation processes operating after sunset.  These results are greatly improved from a 

previous pilot study in Birmingham that compared 13 MODIS night-time summer LST 

images with 28 low-cost, unshielded, iButton loggers.  In this study, R
2
 values were not 

as consistently high (R
2
 = 0.5-0.9) and no clear spatial pattern in the results was found 

(Tomlinson et al., 2012b).  Similarly, they show improvement on transect studies in 

Szeged which yielded correlations in the range of 0.6-0.7 depending on the size of the 

sample radius (Unger et al., 2010b).   

During night-time slope was also applied due to the admittedly high correlation 

values.  These varied from 0.88 to 1.11.  During the night 66 sensors were above 1 

indicating increasing values, and 32 below 0 indicating decreasing values.  Again the 

results were in line with results found for R
2
. 

The improved results in this study in comparison to the previous one in 

Birmingham (Tomlinson et al., 2012) and Szeged (Unger et al., 2010b) are attributed to 

the improved quality controlled/assured Tair dataset derived from BUCL (Chapman et 

al., 2014).  Therefore, it highlights the importance of metadata and specific protocols 

when deploying sensors.  Furthermore, correlations in all of these studies could have 

been different if correction of vertical surfaces were included.  However, the aim was to 

observe direct correlations between the values. 
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Figure 3.7. LST and Tair night-time comparison at 1:30. a) LST-Tair difference 

(MODIS-BUCL), b) R
2
 values at sensors and weather stations location and c) R

2
 

values for city scale (all sensors and weather stations). 

 

 

 

a) b) 

c) 
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Table 3.8. Temperature difference (LST - Tair) at 1:30 and Land use (EEA, 2010) 

Temperature difference 

(C) 
Land use 

-0.7 – -1.2 
Industrial and commercial; continuous urban fabric; discontinuous 

dense urban fabric  

-1.2 – -1.7 
Industrial and commercial; continuous urban fabric; discontinuous 

dense urban fabric 

-1.7 – -2.2 

Discontinuous low density urban fabric; continuous and 

discontinuous urban fabric; and small proportion of industrial and 

commercial 

-2.2 – -2.7 Discontinuous low density urban fabric and green urban area 

-2.7 – -3.2 Green urban area 

 

 

3.5. Conclusions 

 

 This Chapter has compared the UHIsurface and UHIcanopy in Birmingham using 

MODIS LST and a unique, high resolution, Tair dataset.  The UHI is clearly present in 

both datasets, both day and night, and over a range of atmospheric stability classes.  

During the day, LSTs in the city can be up to several degrees warmer than the rural 

reference, with the greatest variations occurring in class B (moderately unstable) 

reinforcing the findings of other similar studies (e.g., Kolokotroni and Giridharan, 

2008).  During the night, UHI intensity increases in line with atmospheric stability and 

is greatest in class G.  During both the day and night, the UHIsurface was greater than 

UHIcanopy. 

 A key finding of this Chapter is the differences in the spatial patterns for 

UHIsurface and UHIcanopy.  With respect to UHIcanopy, there is a tendency for a larger core 

of urban heat to spread to the east of the city, which is hypothesised to be a result of 

advective processes, in line with other published results (Heaviside et al., 2015).  In 



 

73 

 

 

contrast, UHIsurface extends more to the west of the city, suggesting that the UHIsurface 

pattern is more clearly linked with land use, and that advection does not play a 

significant role.  This difference is particularly distinct at night, and underlines the need 

to use high resolution datasets to further investigate advective process in the urban 

canopy.  To this end, the 25 BUCL weather stations equipped for measuring wind speed 

and direction provide data for future investigation of advection, including its pattern and 

intensity. 

 Although strong relationships were found between Tair and LST during both the 

day and night at a neighbourhood scale, it is clear that, even with higher resolution 

datasets such as BUCL, it is presently unlikely that a simple statistical model could be 

obtained between LST and Tair at the city scale.  However, quality controlled higher 

spatial and temporal resolution Tair datasets remain an important way in evaluating and 

validating Tair physically derived from LST. 

 To conclude, it is clear that the use of high resolution data from UMNs greatly 

facilitates work of this nature, and given extended periods of study, then general 

relationships and physical process-based numerical models could become more realistic.  

Indeed, the greatest potential in this area perhaps comes from co-located IR surface 

temperature monitoring devices at BUCL sites.  These will enable surface temperature 

to be measured in the same vertical profile as air temperature and will potentially enable 

unprecedented direct ground truthing of LST datasets.  If used in sufficient numbers per 

pixel (i.e., 1 km), this approach will provide high quality data for comparison studies 

simplifying the complexities of the wider environment/variable Tair source areas 

contained within a pixel.  Overall, as this Chapter has shown, improvements in 
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measuring Tair across the urban environment are beneficial to not only understanding 

UHIcanopy, but also UHIsurface. 

 

3.6. Chapter Summary 

 

 A significant finding of this chapter is that it demonstrates that the distribution 

of the surface UHI appears to be clearly linked to land use, whereas for canopy UHI, 

advective processes appear to play an increasingly important role.  Since energy 

consumption is linked to Tair and not LST, the consumption pattern could be wrongly 

estimated if assumptions are made using LST patterns.  Indeed the advective process 

seems to play a very important role in the Birmingham UHI, however that was beyond 

the scope of this research and advective processes will not be investigated.  

 BUCL data is ideal for energy consumption estimations at intra-urban level, due 

to its temporal and spatial resolution.  It is important to highlight that energy 

consumption does not occur only on ideal circumstances, but every minute of the day, 

every day, therefore, the analyses for each stability class will not be addressed further 

in this research as well, although the results can be used to estimate consumption in 

ideal scenarios or spatial risk assessments.  However, given this new unprecedented 

high resolution dataset, there is a need to see how this can be utilized to explore 

consumption using established techniques.  This thesis will now explore and critique the 

standard approaches used. 
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Chapter  4  

 

Crit ique and suggested 

modif icat ions  on the  degree days  

methodology to enable  long -term 

electr ic i ty  consumption 

assessments  

4.1. Introduction 

 

 The onset of climate change will lead to increasingly elevated temperatures over 

large regions of the world.  Higher outdoor ambient temperatures will significantly 

influence energy consumption by increasing demand for refrigeration and air 

conditioning (Papakostas et al., 2010).  For example, in the United States it has been 

shown that increases in air temperature can explain 5-10% of urban peak electric 

demand, with a typical rise of 2-4% for every 1 °C rise in daily maximum temperature 

over 15-20 °C (Akbari, 2005).  Air conditioning usage is expected to increase 
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significantly in the short term (de Munck et al., 2013), not only because of the increased 

cooling required by a warming climate, but due to such goods no longer being seen as a 

luxury item (De Cian et al., 2012).   

 In temperate climates, an increase in energy consumption for cooling in summer 

will potentially be offset with reduced energy use for winter heating (McGilligan et al., 

2011; De Cian et al., 2012; Golombek et al., 2012; Santamouris, 2013).  Although 

regional climatology will be a key driver in energy use, subtle variations in 

consumption will also be apparent dependent on energy efficiency measures (Li et al., 

2012), availability of passive cooling, building construction (Semmler et al., 2010; 

Kolokotroni et al., 2012) as well as changes in social attitudes (Semmler et al., 2010).  

The associated switch of energy requirements from heating to cooling could also be 

problematic.  Oil and gas are traditionally used for heating, whereas electricity is more 

commonly used for cooling.  As electricity has a tendency to be less efficient, and 

therefore more expensive, current estimates indicate additional expenditure of energy on 

cooling in summer will probably outweigh winter energy savings (McGilligan et al., 

2011).  Furthermore, electricity also has higher CO2 emissions per unit of consumption, 

meaning that the switch from heating to cooling, could potentially further exacerbate 

climate change and global warming (De Cian et al., 2012; Li et al., 2012).  Overall, the 

result will be increasing pressure on electricity networks during times of peak demand, 

which has the potential to be a bigger problem in the longer term if part of the future 

energy mix is provided by renewables, such as hydropower, which are also vulnerable 

to climate change (Vine, 2012).  

 

 



 

77 

 

 

4.1.2. Background to Degree Days  

 

 Degree days are a climate statistic originally developed by US utility companies 

in the 1930‘s for estimating demand for coal and gas based upon typical energy usage.  

There have been efforts to improve the precision of the technique (e.g., degree hours, 

used by Tselepidaki et al., 1994; Satman and Yalcinkaya, 1999; Kolokotroni et al., 

2010; Dimoudi et al., 2013), however the original methodology remains the most 

common approach used in scientific studies.  By definition, degree days are based on 

the principle that energy balance is achieved when heat inputs in a building are equal to 

overall heat loss, resulting in no latent load (McGilligan et al., 2011).  Hence, a Balance 

Point Temperature (BPT) exists where the outdoor ambient temperature is sufficiently 

high (or low) enough to ensure that there will be no need for additional heating (or 

cooling).  It is this BPT that is used to define the base temperature which is integral to 

the degree days methodology (ASHRAE, 2001).   

 Two indices are frequently used; Heating Degree Days (HDD), which 

approximate space heating demand, and Cooling Degree Days (CDD) which 

approximate demand for refrigeration and air conditioning.  HDD are calculated by 

subtracting the mean daily temperature from a pre-determined base temperature and 

summing up any positive values over a set time period (1).  Similarly, CDD are 

calculated by subtracting the base temperature from the mean daily temperature and 

summing up only positive values over a determined time period (2) (Thom, 1952; 

1954).   
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(1) 

 

 

 

 

 

(2) 

 

 Sailor and Pavlova (2003) used CDD to demonstrate that a 1 °C increment in 

temperature corresponded to an average increase in energy consumption of 8% (with air 

conditioning being the primary cause of this increase).  Other studies have attempted to 

use the approach to assess the impact of a changing climate on the energy industry.  For 

example, a decreasing trend in HDD and a subsequent rise in CDD across Spain was 

observed over the period of 1983-1998 (Valor et al., 2001).  Similar results were found 

in Greece for HDD and CDD between 2 time periods; 1993–2002 and 1983–1992 

(Papakostas et al., 2010).  Examples of longer term studies include Christenson et al. 

(2006) who noted a significant reduction in HDD, and subsequent increase in CDD, in a 

number of central European cities over the 20
th

 century and Castañeda and Claus (2013) 

who observed local trends in HDD across Argentina over an extended time period of 

108 years.   
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4.1.3. Critique to the use of Degree Days  

 

 There are three main criticisms that should be highlighted with the use of CDD 

and HDD.  These are the input data that uses outdoors temperatures in the calculations, 

the selection of base temperatures and finally the applicability of the methodology over 

longer time scales. 

 

4.1.3.1. Input data: the use of outdoor air temperatures in calculations 

 

 Arguably the biggest limitation of the degree days methodology is the use of 

outdoor ambient temperatures in the calculations.  The 'set point' temperature is defined 

as a comfortable indoor temperature - i.e., the temperature at which air conditioning and 

space heating are typically switched on by users.  Unfortunately, widespread 

measurements of 'set-point' temperature have not been historically available and as such 

outdoor air temperatures have to be used instead.  McGilligan et al. (2011) argued that 

the way the degree days methodology is calculated, it assumes steady state conditions, 

where each degree rise would result in an equal indoor temperature rise.  Clearly, 

outdoor ambient temperatures will be quite different from comfort levels experienced in 

buildings, each with varying levels of insulation and heating/cooling technologies 

(Kadioğlu et al., 2001).  This limitation can only realistically be overcome by obtaining 

detailed indoor temperature data across a large sample of the housing stock.  
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4.1.3.2. Parameterisation: selection of base temperatures 

 

 Base temperature is presently the only parameter in the degree days 

methodology, which can be varied to take into account local conditions.  Base 

temperatures are based on BPT and take into account building size, building 

configuration and available technology for a specific geographical region (Kadioğlu et 

al., 2001).  Hence, in order to compensate for the use of outdoor temperature data in the 

analysis, base temperatures are often several degrees lower than expected 'set points'.  

For example, the first adopted base temperature was 18.3 °C (Thom, 1952).  This was 

calculated based on the assumption that 21.1 °C was a typical indoor comfort 

temperature, of which 2.8 °C could be attributed to solar heat gain, occupants and other 

internal processes.  

 The base temperatures used for HDD are frequently different from those used 

for CDD, as it can be assumed that a range of comfortable temperatures exist between 

the two (De Cian et al., 2012).  For example, for uninsulated buildings in the USA, 

HDD and CDD have traditionally been calculated using a base temperature of 18 °C 

and 22 °C, respectively, thus indicating a non-sensitive 'comfort zone' temperature 

interval of 4 °C (Valor et al., 2001).  However, base temperatures can often be varied 

due to both personal preferences (Sailor and Pavlova, 2003) and the specific building 

characteristics controlling BPT.  This lack of objectivity means that it is not surprising 

to find a wide range of base temperatures evident in the literature (Table 4.1).  The 

result is that standardisation often is not evident even when the technique is applied in 

the same country.  Whilst this may be appropriate in large countries (e.g., USA), a lack 

of standardisation in smaller territories (e.g., Greece) is questionable.  Overall, the 
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choice of base value (i.e., based on an outline of building standards) is rarely justified in 

the literature, and highlights a need for improved rigour in the general application of the 

methodology.   

 

Table 4.1. Summary table of base temperatures used in the literature for the degree days 

methodology 

Country and City 
Base Temperature Justification for Base 

Temperature 
Reference 

HDD CDD 

Argentina 18.3 °C - Thom (1954) 
Castañeda and 

Claus (2013) 

Australia 18 °C - - 
Badescu and 

Zamfir (1999) 

China 18 °C 26 °C - 
Xiao et al. 

(2012) 

Greece (Athens 

and Thessaloniki) 
15 °C 24 °C 

―These temperatures 

are the most common 

balance temperatures 

of normally insulated 

buildings without 

especially large heat 

gains from internal 

heat sources and solar 

radiation.‖ 

Papakostas et 

al. (2010) 

Greece (Athens) - 
25 °C and 

28 °C 
- 

Tselepidaki et 

al. (1994) 

Greece (Penteli, 

Ilioupolis, 

Aigaleo, Athens) 

- 23.7 °C - 
Hassid et al. 

(2000) 

Greece 14 °C - 

―With experimental 

and empirical methods 

of trial and error, a 

value of 14 °C was 

fixed as the basic 

temperature Tb‖ 

Matzarakis and 

Balafoutis 

(2004)  

Ireland 18 °C 18 °C Thom (1954) 
Semmler et al. 

(2010) 

Israel 10 °C 25 °C - 
Beenstock et 

al. (1999)  

Jordan 15.5 °C - - 

Kodah and El-

Shaarawi 

(1990) and El-

Shaarawi and 
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Al-Masri 

(1996) 

Macedonia 20 °C 20 °C - 
Taseska et al. 

(2012) 

Netherlands 18 °C 18 °C - 
Hekkenberg et 

al. (2009) 

New Zealand 
15.6 °C 

and 16 °C 
- - 

Badescu and 

Zamfir (1999) 

Romania 18 °C - - 
Badescu and 

Zamfir (1999) 

Saudi Arabia 
17.8 °C, 

21.1 °C 
- - 

El-Shaarawi 

and Al-Masri 

(1996)  

Saudi Arabia 
18 °C and 

21 °C 

23 °C and 

25.5 °C 

used for 

buildings 

without 

insulation; 

and   

25.5 °C 

and 27.8 

°C was 

used for 

well-

insulated 

buildings 

- Said (1992)  

Spain 15 °C 21 °C 

Within these two limits 

a comfort zone was 

established and no 

heating or cooling is 

required 

Valor et al. 

(2001) 

Spain 18 °C 18 °C 

―Standard reference 

commonly used to 

calculate heating and 

cooling degree-days, 

especially in the 

analysis of the impact 

of weather on energy 

consumption‖ 

Valor et al. 

(2001) 

Switzerland 

(Lugano) 

8 °C, 10 

°C and 12 

°C 

18.3 °C, 

20 °C and 

22 °C 

―Outdoor air 

temperature (for a 

specified internal 

temperature) at which 

the total heat loss is 

equal to the internal 

Christenson et 

al. (2006) 
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and solar heat gains‖ 

Turkey 

14 °C, 16 

°C, 18 

°C, 20 °C 

and 22 °C  

18 °C, 20 

°C, 22 °C, 

24 °C, 26 

°C and 28 

°C 

- 
Büyükalaca et 

al. (2001)  

Turkey 15 °C 24 °C - 
Kadioğlu et al. 

(2001) 

Turkey 15 °C - - 
Kadıoğlu et al. 

(1999) 

UK 
15.6 °C 

and 16 °C 
- - 

Badescu and 

Zamfir (1999) 

UK (Edinburgh, 

Manchester and 

London) 

20 °C 26 °C - 
McGilligan et 

al. (2011) 

UK(London) 15.5 °C - - 

Kolokotroni et 

al. (2009) and 

Kolokotroni et 

al. (2010) 

UK 15.5 °C 22 °C - UKMO (2009) 

USA (California) 18 °C 18 °C - 
Xu et al. 

(2012) 

USA (39 cities) 18.3 °C 18.3 °C 

―Base temperature was 

selected after an 

optimization study 

revealed that 

alternative definitions 

would not improve 

upon the models in a 

statistically significant 

way‖ 

Sailor and 

Pavlova (2003) 

USA 18 °C 18 °C 

―18°C is due to the 

additional heat 

generated by 

occupants and their 

activities, resulting in 

an average indoor 

temperature of 21°C‖ 

Sivak (2008) 

USA (Los 

Angeles, 

Washington, St 

Louis, New York, 

Baltimore, Seattle, 

Detroit, Chicago 

and Denver) 

18.3 °C 18.3 °C - Taha (1997) 

USA 18.3 °C - - Badescu and 
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Zamfir (1999) 

USA 18.3 °C - - 

Thom (1952) 

and Thom 

(1954) 

USA (Ohio, 

Louisiana and 

Washington) 

18.3 °C 18.3 °C - 
Sailor and 

Muñoz (1997) 

USA (Florida) 21 °C 21 °C - 
Sailor and 

Muñoz (1997) 

Western Europe 18 °C 22 °C - 
Golombek et 

al. (2012) 

 

4.1.3.3. Acclimatisation: applicability over longer timescales 

 

 The simplicity of the degree days methodology remains a key advantage of the 

approach.  However the technique relies on generalised assumptions to approximate 

BPT as well as uniform perceptions of thermal comfort independent of age, health and 

activity levels (Ormandy and Ezratty, 2012).  For this reason, it is inappropriate to 

assume that these factors will remain constant over an extended study period.  As the 

impacts of climate change begin to manifest, local temperatures will change and as 

such, the local population will begin to acclimatise and adapt (Sailor and Pavlova, 

2003).  In a warming climate, people's perception of comfort will change and 

subsequently so will 'set point' temperatures.  As such, when dealing with long-term 

datasets (especially over large geographical regions, e.g., the USA), there is a need to 

carefully consider how methodologies can evolve to account for such adaptation.  

Whilst detailed computer simulations are capable of this at the building scale (e.g., 

DOE-2: Akbari, 2005), larger scale studies are still reliant on the degree day 

methodology. 
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 This Chapter now aims to highlight how these limitations can be overcome by 

conducting a study into electricity consumption patterns over a 9 year period in 

Birmingham.  

 

4.2. Methodology 

 

4.2.1. Energy data  

 

 Ordinary domestic electricity data were obtained from DECC (DECC, 2013), for 

the city over the time period 2005-2013 (Table 4.2). 
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Table 4.2. Variation in annual and seasonal temperatures, and ordinary domestic electricity consumption 

Year Annual December, January and February June, July and August Ordinary 

Domestic 

Electricity 

Consumption 

(kWh) 

 

Average 

Temperature 

(ºC) 

Average 

Maximum 

Temperature 

(ºC) 

Average 

Minimum 

Temperature 

(ºC) 

Average 

Temperature 

(ºC) 

Average 

Maximum 

Temperature 

(ºC) 

Average 

Minimum 

Temperature 

(ºC) 

Average 

Temperature 

(ºC) 

Average 

Maximum 

Temperature 

(ºC) 

Average 

Minimum 

Temperature 

(ºC) 

2005 10.34 13.97 6.65 5.18 7.90 2.64 16.17 20.80 11.53 1,362,304,701.30 

2006 10.79 14.40 7.24 4.08 6.43 1.72 17.49 22.46 12.52 1,400,455,171.50 

2007 10.38 14.00 6.78 6.36 8.93 3.80 15.20 19.24 11.15 1,391,909,032.00 

2008 9.87 13.30 6.35 5.54 8.61 2.47 15.57 19.57 11.57 1,346,568,783.00 

2009 9.94 13.54 6.30 3.62 6.17 1.07 15.63 19.95 11.31 1,350,824,020.90 

2010 8.76 12.51 5.02 2.21 4.64 -0.23 15.97 20.54 11.41 1,367,259,041.30 

2011 10.73 14.72 6.75 3.03 5.64 0.41 15.14 19.92 10.36 1,361,442,469.30 

2012 9.25 12.93 5.58 4.35 7.29 1.42 14.83 18.78 10.88 1,339,389,853.00 

2013 9.21 12.79 5.63 4.12 6.57 1.68 15.59 20.23 10.94 1,347,649,532.00 
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4.2.2. Base temperature  

 

 In order to demonstrate the methodological sensitivity of the choice of base 

temperature in the degree day methodology, CDD and HDD were calculated from 

Equations 1 and 2 for each year of the study period.  Hourly temperature data from 

Coleshill weather station were used (located ~ 10 km to the east of Birmingham city 

centre) (UKMO, 2013).  A range of values between 8-24 °C were then used to test the 

sensitivity of the technique to a range of base temperatures proposed for the UK in the 

literature (Table 4.1).  Finally, Spearman Rank correlation coefficients were calculated 

between degree days and energy consumption for each of the base temperatures used 

(Figure 4.1.).   

 

Figure 4.1. Spearman Rank Correlation between CDD and HDD and ordinary 

electricity consumption, for different base values, for the studied time series (2005-

2013). 
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4.3. Results and discussion 

 

 Figure 4.1. shows that regardless of the choice of base temperature, a positive 

correlation is evident between electricity consumption and CDD in Birmingham.  This 

confirms (as expected) that more electricity is used at higher temperatures due to 

refrigeration and air conditioning.  Subtle differences are apparent in the strength of the 

relationship at various base temperature values which indicates that some values are 

perhaps more appropriate than others.  UKCP09 uses a base temperature of 22 °C for 

CDD (Table 4.1) and based upon this analysis, this choice appears to be acceptable, 

since it results in strong correlation.  However, higher correlations were obtained using 

a much lower base temperatures with the strongest relationship between CDD and 

electricity consumption occurring at 8.5 °C and 10 °C.  Interestingly, the choice of  8.5 

°C and 10 °C base is close to the average annual temperature of Birmingham which is 

9.95 °C (using 1981-2010 as a baseline at Coleshill Weather Station). 

 Conversely, the relationships between electricity consumption and HDD show a 

negative correlation indicative of reduced electricity use for air conditioning and 

refrigeration during colder periods.  Again, the strength of the relationship varies 

depending on the base temperature value used, but the UK base value of 15.5 °C (Table 

4.1: Kolokotroni et al., 2010) together with base values equal to or greater than 21.5 °C 

outperform all other base temperatures with respect to the strength of the correlation 

with electricity consumption.   

 Given the strength of the correlations obtained, it confirms that for simple 

studies, the use of a wide range of base temperatures is equally acceptable.  However, 
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there remains scope to improve the approach by using a base value which also reflects 

adaptation and acclimatisation of the population to a changing climate.  As Table 4.3 

shows, whilst the existing values of 22 °C and 15.5 °C for CDD and HDD, respectively, 

are acceptable for use in the present UK climate, these are likely to change in due 

course as the impacts of climate change become increasingly apparent.  Hence, given 

the results in Figure 4.1., it is proposed that the use of universal base temperature values 

which directly reflect (or are related to) the baseline average temperature experienced in 

a region could be a significant improvement on the degree days methodology when 

dealing with extended time periods.  By maintaining this link, it becomes possible to 

take into account adaptation by society in a changing climate.  This would then enable 

the incorporation of the degree day methodology into climate change risk assessments 

via the use of weather generators and temporal analogues. 
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Table 4.3. UKCP09 projections showing a) Annual average temperature from Birmingham for the 

50th percentile, b) Summer average temperature and c) Winter average temperature 

 

2020s 

(2010-

2039) 

2030s 

(2020-

2049) 

2040s 

(2030-

2059) 

2050s 

(2040-

2069) 

2060s 

(2050-

2079) 

2070s 

(2060-

2089) 

2080s 

(2070-

2099) 

a) Average annual 

temperature (°C)     

   

Low emission scenario 10.6 10.9 11.2 11.3 11.6 11.8 11.9 

Medium emission scenario 10.6 10.9 11.3 11.7 12.0 12.3 12.6 

High emission scenario 10.6 11.0 11.4 11.9 12.4 13.0 13.5 

b) Summer average 

temperature (°C)     

  
 

Low emission scenario 16.8 17.1 17.4 17.6 17.8 17.9 18.0 

Medium emission scenario 16.7 17.1 17.4 17.8 18.3 18.6 19.0 

High emission scenario 16.6 17.1 17.5 18.2 18.7 19.3 20.0 

c) Winter average 

temperature (°C)     

  
 

Low emission scenario 4.9 5.2 5.4 5.5 5.7 5.9 6.2 

Medium emission scenario 5.0 5.2 5.5 5.8 6.1 6.3 6.6 

High emission scenario 4.9 5.2 5.6 6.0 6.4 6.7 7.1 

 

4.4. A future perspective 

 

 The year 2006 was the warmest year in the study period characterised by a 

heatwave event which, whilst not as severe or prolonged as the much documented 2003 

event, extensively covered much of northern Europe.  In the UK, the heatwave peaked 

in July 2006, breaking the previous July temperature record, but falling several degrees 

short of the of the all-time temperature record attained during the 2003 event (see 

Rebetez et al., 2008 for a fuller quantification of the two events in Europe). 

 In this section, a temporal analogue approach is used to set this year in the 

context of a future climate and to provide a perspective for how the impact of a 

changing climate can be incorporated into the degree days methodology.  The temporal 

analogue approach is a useful method to identify the possible future impacts of climate 

change, based on the impacts of real events that have already happened (Giles and 
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Perry, 1998).  The method assumes that a past event is an indicative scenario of the 

future, and that the probability of an event reoccurring in the future can then be 

determined by using climate change scenario data and a weather generator (e.g., 

UKCP09).  The relative simplicity and versatility of the technique remains a key 

strength of the approach (Wilby et al., 2004) and as such it has been extensively used in 

a range of different UK applications including tourism (Giles and Perry, 1998), road 

accidents (Andersson and Chapman, 2011) and economic uncertainties (Hallegatte et 

al., 2007).  However, it has not been used in the energy sector to date. 

 Using UKCP09 Weather Generator projections (UKMO, 2009) were derived 

annually for average temperature,  summer (JJA) and winter (DJF), for three different 

emission scenarios (A1F1: High, A1B: Medium & B1: Low), detailed information on 

how this data is derived can be found in Chapter 5, section 5.2.3.  All projections are 

relative to the 1961-1990 baseline and were calculated for seven decadal time slices 

(Table 4.3).  Although the output is probabilistic, the 50th percentile was used in this 

analysis.  Upon inspection of the output, it can be determined that average temperatures 

of the magnitude experienced in 2006 will become typical by the 2020‘s (under all 

emission scenarios).  However, the heat waves experienced in the summer of 2006 will 

be typical of average conditions that will be experienced in 2040 under the high 

scenario and 2050 under medium and low scenarios.  In contrast, winter average 

temperatures were representative of current conditions. 

 The climate change scenario data used in this approach can then be linked to the 

degree days methodology to help include acclimatisation in the analysis.  It is at this 

point that the advantage of using a standardised base value based on mean temperatures 

becomes apparent (Figure 4.1.).  As the population acclimatises to a warmer climate, it 
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can be assumed that the 'set point' temperature will increase in line with average 

temperatures and hence, the base temperature used in analyses will also need to increase 

accordingly.  Therefore, in studies over an extended period of time, acclimatisation can 

now be incorporated into the study by using a base temperature calculated using a 

moving average of air temperature.  This adjustment, when used with a weather 

generator then becomes a suitable means to approximate electricity consumption at any 

point in the future. 

 

4.5. Conclusions 

 

 Following a critical review of the degree days methodology, a number of areas 

for improvement that could potentially be made to the approach have been identified.  

Fundamentally, there appears to be a need to further standardise the method so that it 

can be used by policy makers and the energy industry to plan and project energy 

requirements during a changing climate.  

 As this Chapter has shown, the calculation of CDD and HDD is sensitive to the 

choice of base temperature which underlines the caution with which the base must be 

chosen and justified (Büyükalaca et al., 2001) as well as the manner in which results are 

interpreted.  Currently, it is the difficulty in assessing building standards which leads to 

most of the subjectivity and this is the cause of substantial inaccuracies (Xu et al., 

2012).  Hence, there is a strong argument to standardise the approach based purely on 

climate.  Although, there is some evidence of previous attempts for standardisation in 

the literature, with a consensus on the use of 18 °C as the base temperature for CDD and 
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HDD (as first identified in Thom, 1952), the appropriateness of this value has been 

frequently challenged.  For example, Hekkenberg et al. (2009) highlights that for the 

Netherlands, the daily temperature rarely rises above 18 °C making the use of that value 

as a base quite limited.  This further reinforces the argument made in this Chapter that 

the base ideally needs to be linked to localised mean temperatures.   

 It is accepted that adopting this approach may be too simplistic for all climates, 

particularly those with a large range in annual temperatures, but the improved 

objectivity is a considerable benefit.  A further advantage is the option to easily adjust 

the base value when performing comparative studies across different regions or over 

extended time periods in order to account for acclimatisation as part of a climate change 

risk assessment.  However, as with all long term studies of this nature, the biggest 

difficulties are caused due to confounding factors other than temperature such as energy 

prices, socioeconomic development and adaptation (Kyselý and Plavcová, 2011).  In a 

pertinent recent example, Santamouris et al. (2013) investigated the relation between 

economic crisis and energy consumption in Greece which resulted in a 37 % reduction 

in consumption than expected.   

 

4.6. Summary 

 

 This Chapter has explained the degree day method and carried a critical review 

of studies in the scientific literature that have used the degree days method and 

highlighted its limitations.  The limitations regarding the use of external temperatures 

are particularly pertinent for this thesis, as newly available UMN data can be used.  



 

94 

 

 

 The base values were questioned and possibly it is a good alternative to use 

average temperature as a universal base temperature, however for the remainder of this 

thesis, the 18 °C base value will be used, as it has been well accepted across literature.  

 It is important to focus on the fact that the results of the methodology (or the 

amount of degree days) do not necessarily correlate to the overall consumption, since a 

range of factors can impact on consumption, although several studies have identified 

good correlation.  The degree days indicate exclusively the demand related to Tair, 

therefore estimates the demand in consumption related to climate.  This thesis will now 

investigate the application of the degree days methodology at the neighbourhood scale. 
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Chapter  5  

 

Est imating current  and future 

energy demand with an Urban 

Meteorological  Network  

5.1. Introduction 

 

 As shown in Chapter 4, the degree days methodology is a simple approach used 

to relate outdoor temperatures and energy demand.  Two indices are frequently used: 

HDD to approximate space heating demand, and CDD to approximate cooling demand 

(e.g., by the use of air conditioning and others).  Using CDD it has been demonstrated 

that a 1 °C increment in temperature corresponds to an average increase in energy 

consumption of 8% (with air conditioning being the primary cause of this increase) 

(Sailor and Pavlova, 2003).  Other studies have also investigated the impact of climate 

change on degree days and consumption (Valor et al., 2001; Christenson et al., 2006; 
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Papakostas et al., 2010; Castañeda and Claus, 2013) showing general decreases in HDD 

and/or increases in CDD. 

 The methodology is dependent on the selection of a base value which is used as 

a threshold in calculations.  The most widely used value is 18 °C, which considers that 

for an 18 °C Tair, the indoor temperature would be approximately a ‗comfortable‘ 21 °C 

due to the additional heat generated by occupants and insulation.  However, there is a 

lack of consensus on what base value should actually be used.  In the previous Chapter, 

the sensitivity of the choice of base value was tested, and highlighted that the strongest 

correlations between CDD and consumption data were when a base value of around 10 

°C was used – very close to the average annual temperature for the city of 9.95 °C.  This 

lack of standardisation is one of several limitations of the degree days methodology 

(other limitations include: not considering other weather parameters, energy efficiency 

of buildings, insulation patterns), however it still provides a useful first order indicator 

for differences in energy demand regarding cooling and heating (Sivak, 2008).  

Furthermore, the simplicity and convenience of the approach remains a key advantage 

(Cox et al., 2015). 

 As illustrated in Chapter 3, given the wide variation in Tair across a city, there is 

a need to consider the UHI in energy demand estimates.  However, studies which use 

the degree days methodology do not currently take into account the UHI effect, since 

they are frequently based on data taken from a single weather station (often located at a 

nearby airport or rural area) which are then incorrectly considered to be representative 

of the city as whole.  There is no scientific reason why the degree days approach cannot 

be scaled up to include UHI, but a significant barrier to doing so previously has been the 

paucity of high resolution Tair data across the city.  Fortunately, as shown in Chapter 3, 



 

97 

 

 

the ever decreasing costs of weather monitoring equipment, data from a new generation 

of dense UMN (Muller et al., 2013b) are now becoming available.  Whilst city wide 

deployments are still quite rare, these have the potential to provide Tair data across a city 

at a high spatial and temporal resolution providing an unprecedented quantification of 

the UHI and therefore providing consistent real measured data to address current and 

future energy demand in cities.  This Chapter will analyse Tair data available from 

BUCL to estimate energy demand based on CDD across Birmingham.  This will enable 

city scale variations in energy demand to be objectively quantified for use in current and 

future climate scenarios.  Kolokotroni et al. (2009) developed a model which generates 

site specific air temperature for the Greater London Area, and from the model calculated 

monthly and annual HDD and cooling degree hours (CDH); the difference is that in this 

research, current CDD across Birmingham will be calculated based on observed 

temperatures.  

 

5.2. Methods and datasets 

 

5.2.1. Tair data acquisition and processing for UHI analyses 

 

 This Chapter used the same Tair data as Chapter 3 (detailed information on the 

climate summary for 2013 can be found in Chapter 3, section 3.2.1).  It was the warmest 

summer in the UK since 2006, with a heat wave from 3 to 22 July.  It was also a dry and 

sunny summer.  
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For the UHI analyses, twice daily meteorological averages were calculated for 

each site in the network and for Coleshill (Figure 3.1. – Chapter 3), daytime (06:00–

17:59) and night-time (18:00–05:59 following day).  Using ArcGIS, the data were 

interpolated for the network, by the Kriging Gaussian method before being averaged 

and trimmed to the study area, resulting in a daytime (representative of data averaged 

from 06:00 to 17:59) and night-time (18:00–05:59 the following day) interpolation for 

each day of the study period.  The UHI intensity (Turban - Trural) was then calculated.   

 

5.2.2. Tair data acquisition and processing for CDD  

 

 For the CDD analyses, a similar procedure regarding the processing of Tair was 

applied.  Again Tair data from BUCL of the meteorological summer of 2013 was used 

(Chapman et al., 2014).  A single meteorological average was then calculated (00:00–

23:59) before the data were interpolated in ArcGIS, again by the Kriging Gaussian 

method, before being averaged and trimmed to the study area resulting in one day 

average interpolation for each day of the study period.  

 Interpolations were then averaged for the MSOA area resulting into a unique 

temperature value per MSOA (details on this geographical unit has been covered on 

Chapter 2).  Finally, CDD was calculated by subtracting the base value (18 °C) from the 

average day temperature and summing up the positive values (Thom, 1952; 1954).  
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5.2.3. UKCP09 and weather generator  

 

 UKCP09 are the current probabilistic climate change projections used in the UK 

(UKMO, 2009) and are based upon three IPCC CO2 emission scenarios.  It is based on a 

Global Climate Model (GCM), which is a mathematical model of the general circulation 

of the atmosphere or oceans.  The GCM used is the HadCM3 developed by the Met 

Office Hadley Centre and includes ocean and atmosphere processes.  

The UKCP09 allows projections either through the Weather Generator or the 

Met Office Regional Climate Model.  The Weather Generator is a stochastic and 

statistical downscaling of the UKCP09 projections relative to the baseline from 1961-

1990 and are available on seven decadal time slices for all emission scenarios, A1FI 

(High), A1B (Medium) and B1 (Low).  The Met Office Regional Climate Model 

(HadRM3) is a dynamical downscaling model, it downscales GCM projections to a 25 

km resolution overland, producing 11 runs of regional climate projections at the 

medium emission scenarios (A1B) on a daily time scale, however it is not available for 

user interface.  One significant drawback of the use of UKCP09 in this work is that the 

projections do not include urban-surface schemes, which can underestimate impacts in 

urban areas.   

The Weather Generator is useful for general assessment as it is indicative of 

more general temperature changes in the region.  Based on this assumption, the Weather 

Generator was used to estimate average JJA temperature for Birmingham for a number 

of future scenarios.  For simplicity, just the 50th percentile was used in this analysis 

with the results simply added to the averages found for summer 2013 from the network, 

to create the future weather files considering the UHI. 



 

100 

 

 

 

5.3. Results 

 

5.3.1. 2013 Summer urban heat island and CDD 

 

 Figure 5.1. shows the average summer magnitude of the UHI in Birmingham.  

During the daytime, urban temperatures are typically lower than the rural reference, up 

to -1.6 °C in the suburban limits of the conurbation.  In the city centre, temperatures are 

closer to the rural reference, but still colder by -0.75 °C.  In contrast, for the night-time 

period, it is found that temperatures are always higher than the rural reference, being on 

average, 1.2 °C degrees higher in the city centre.  These results are in agreement with a 

large number of studies that have previously investigated the Birmingham UHI 

(Tomlinson et al., 2012a; Tomlinson et al., 2013; Zhang et al., 2014a; Bassett et al., 

2015; Heaviside et al., 2015) and further highlights that a single measurement from a 

rural reference for a city, which is traditionally done to estimate degree days, is 

inappropriate and underestimates energy demand in the city. 
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Figure 5.1. UHI intensity: a) Daytime UHI (based on average daytime temperature), b) 

Night-time UHI (based on average night-time temperature) and c) Daily UHI (based on 

average day temperature 00:00-23:59). 

 

 Using averaged data such as that shown in Figure 5.1., significantly reduces the 

variance and magnitude of the UHI, which are essential to quantify in energy demand 

studies.  Whilst the average UHI gives an indication of where the impact will be most 



 

102 

 

 

strongly located, there is a need to investigate the UHI on a daily basis to actually 

quantify the impact.  To this end, the daily average temperature across the city (see 

example in Figure 5.2.a) was used to calculate the CDD for the base value of 18 °C for 

each day (see example in Figure 5.2.b), and then summed for the meteorological 

summer 2013 (Figure 5.2.c).  The 19
th

 of July 2013 was used as an example, since it 

was the warmest day on that summer, and the period involved a prolonged heatwave 

from July 3
rd

 to 22
nd

.  Note that the slightly different pattern in the UHI is a result of the 

high atmospheric stability on that day (prevailing winds have a tendency in less stable 

conditions to advect the UHI eastwards), with temperature differences reaching 2.5 °C 

in the city core.  The resulting range from 45-72 degree days (Figure 5.2.c), does not 

lead to severe concern with cooling demand at the present time, even in a case which 

involved a heatwave.  Kolokotroni et al. (2009) in similar research found that HDD 

increases and CDH decreases with distance from the urban heat island centre.  

Therefore, the findings highlight the need to incorporate the UHI in energy demand 

estimates, since the variation of the CDD is clearly correlated with the UHI pattern.    
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Figure 5.2. a) Average temperatures by MSOA in 19
th

 July 2013, b) CDD for 19
th

 July 2013 by MSOA, based on average temperatures for 

that day and base value of 18 ºC and c) Total CDD for Summer  (JJA) 2013 by MSOA, based on daily average temperatures and 18 ºC base 

value. 

a) b) c) 
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5.3.2. Future scenarios 

 

 The UKCP09 climate change projections indicate that annual average 

temperature will rise by around 1-4 °C degrees by the 2080‘s, with temperatures in 

summer rising up to 5 °C in Birmingham (Table 5.1).  When comparing to the 2013 

averages it is possible to see that current summer averages are comparable to the 

expected for the 2020‘s decadal slice.   

 

Table 5.1. Coleshill 2013 averages and UKCP09 projections for Birmingham using the 

50th percentile: a) Annual average temperature, b) Summer average temperature and c) 

Winter average temperature 

 
2013     

2020‘s         

(2010-

2039) 

2050‘s    

(2040-

2069) 

2080‘s      

(2070-

2099) 

a) Average annual temperature (°C) 9.3 
   

Low emission scenario 
 

10.6 11.3 11.9 

Medium emission scenario 
 

10.6 11.7 12.6 

High emission scenario 
 

10.6 11.9 13.5 

b) Summer average temperature (°C) 16.4 
   

Low emission scenario 
 

16.8 17.6 18.0 

Medium emission scenario 
 

16.7 17.8 19.0 

High emission scenario 
 

16.6 18.2 20.0 

c) Winter average temperature (°C) 4.1 
   

Low emission scenario 
 

4.9 5.5 6.2 

Medium emission scenario 
 

5.0 5.8 6.6 

High emission scenario 
 

4.9 6.0 7.1 

 

 Adding these expected increases in summer average temperature for 

Birmingham to the BUCL data results in 9 possible scenarios (Figure 5.3.).  However, 

since UKCP09 does not directly include urban effects, it has to be assumed that the UHI 

intensity will not change over the course of the century.  The results show that by the 

2050‘s (even in the low emission scenario) the ranges of CDD in the cooler suburban 
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areas of Birmingham will be as high as those observed in the core of the UHI in 2013.  

Given these results, whilst this analysis has focussed on just the summer months (JJA), 

there is potential that the cooling season will also be extended to include a much wider 

period from March to October. 

The quality of the data investigated from UKCP09 Weather Generator should 

here be commented, in the 2020‘s, the probabilist results are very close, being different 

only by decimals, the low scenarios presents higher average temperature than medium 

and high emissions scenario.  When calculating the CDD, the results are more or less 

close, not causing serious concern, however it is important to acknowledge such fact, 

and keep in mind that these should be used for risk assessment and are subject to 

uncertainty.   
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Figure 5.3. CDD for future weather scenarios in Birmingham, using UKCP09 Weather 

Generator results added to the current UHI effect observed in the summer of 2013, for 

Birmingham. 
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5.4. Discussion 

 

 The results clearly affirm the need to include the UHI when considering the 

energy demand for a city.  Traditional UHI measurements have previously made this 

impossible, but the importance of quantifying temperature at a high resolution has been 

highlighted in this Chapter.  Indeed, the UHI also needs be considered when looking at 

the energy infrastructure within the city.  Electricity transformers are one of the most 

expensive assets in a distribution network, and unplanned replacement or maintenance 

is expensive (Tomlinson et al., 2013).  Assets in the UK have an approximate 40 year 

life, and can cope with internal temperatures of 98 °C; however increasing Tair can 

accelerate ageing and efficiency, therefore temperature increases due to the UHI will 

impact life expectancy.  Transformer loadings due to demand are also an important 

factor and therefore increasing loadings due to increased cooling needs  is another 

consequence of higher temperatures.  In effect, the resilience of urban energy 

infrastructure faces a double threat from increasing temperatures (Tomlinson et al., 

2013). 

 This Chapter also highlights the increase in cooling demand over the coming 

decades, however the changes in the winter averages from UKCP09 are greater than that 

predicted for summer and annual averages (Table 5.1).  This indicates that HDD will 

decrease more rapidly than CDD increases in Birmingham and will therefore lead to 

decreasing energy demand for heating, helping to alleviate fuel poverty (households 

whose fuel expenditure on all energy services exceeds 10% of their income: Boardman, 
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1991).  However the change from heating to cooling demand will potentially have an 

impact on the fuel supply (i.e., a switch to electricity from gas) and energy prices in the 

country.  

 More generally, in a changing climate, there is a need to further discuss the 

notion of ‗set points‘.  The set point changes considerably between countries and 

regions due to different general climate characteristics as well as demographic and 

socio-economic structures.   

As introduced in Chapter 4, as the impacts of climate change begin to manifest, 

local temperatures will change and population will begin to acclimatize due to 

physiological adaptation, planned adaptation (mitigation and adaptation of housing) and 

spontaneous behaviour, altering temperature thresholds (Hajat et al., 2014).  If such 

acclimatization takes place, the impacts of temperature projections could potentially be 

overestimating the increases in cooling demand and decreases in heating demand.   

For instance there are two known energy consumption scenarios, the current 

scenario that considers the relationship between energy demand and Tair with peaks in 

energy demand occurring over both summer and winter, explained by the increased use 

of cooling appliances and space heating, respectively (Hekkenberg et al., 2009 – Figure 

5.4.a).  The second known scenario in which higher temperatures, caused by climate 

change, will decrease energy demand over winter but increase demand over summer 

(Papakostas et al., 2010; Golombek et al., 2012; Jovanović et al., 2015 – Figure 5.4.b).  

Both of these known consumption scenarios do not consider acclimatization effects, 

therefore the third possible scenario here proposed, considers that if acclimatization 

takes place, in an average scenario of more or less 2 °C in the next decades, it is 

possible that no changes in energy demand regarding only outdoor temperatures will 
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take place (Figure 5.4.c).  However, unfortunately there is currently no standard way 

(method or approach) to account for acclimatization effects (physiological and 

environmental), which lowers the confidence not of the climate scenarios but of the 

applicability of their results to energy demand scenarios.  

Considering projected increases in the number of people living in cities and 

socioeconomic changes, exposing more people to climate change and increasing 

purchasing power of developed and developing countries, other issues should also be 

kept in mind as part of the larger scenarios of electricity demand in the future, which 

does not only include climate and acclimatization and adaptation to climate.
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Figure 5.4. a) Energy consumption dependence to temperature – U shape pattern (Hekkenberg et al., 2009), b) Energy consumption with 

climate change (Papakostas et al., 2010; Golombek et al., 2012; Jovanović et al., 2015) and c) Energy consumption with climate change 

and possible effect of acclimatization. Figures a and b were derived based on literature findings; Figure c was derived based on the 

interpretation from the possible impact of acclimatization. 

a) b) 

c) 
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5.5. Conclusion 

 

 This Chapter has focused on using Tair measurements from an UMN and 

UKCP09 climate change scenarios to address the impact of the UHI in energy demand 

over summer, through the degree days method, in current and future scenarios.  Despite 

the limitations of the degree days method, especially uncertainties regarding the 

‗correct‘ base value, it remains a simple way to address the temperatures changes 

impact on energy demand, since it looks at the most important weather parameter 

regarding consumption and has been correlated with energy consumption data in other 

studies here mentioned.   

 Tair is the most influential weather parameter in energy demand and therefore it 

is essential for UHI measurements to be incorporated into energy demand estimates 

across a city.  A non-traditional measurement of the UHI, as the one here presented 

(every day average Tair across the city measured from 00:00–23:59) is an ideal 

measurement to be used to estimate energy demand to consider the UHI impact.  

However, more robust analyses of the UHI in specific times of day and weather 

conditions should be considered as well.  There is also possibility of using the analyses 

to address UHI impact on urban energy infrastructure.  

 The demand for relevant weather data and information, in both quantity and 

complexity, in all times and scales possible, provided with quality control flags and 

uncertainty measurements, delivered, available and accessible in a user friendly manner 

(Troccoli et al., 2013) has been pointed out as crucial to produce effective energy 

demand estimations, and to avoid overload in the electrical power system (Jovanović et 
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al., 2015).  Addressing future energy demand is important for the purpose of future 

energy supply planning and economic assessments (Hekkenberg et al., 2009), however 

for such, it is as well necessary future weather files in high temporal resolution (hourly), 

which are constructed from hourly real, measured data (Cox et al., 2015).  Ideally, the 

data should be provided from UMN‘s, however in the absence of these other sources of 

high resolution measurements of Tair are becoming increasingly available (i.e., 

crowdsourcing: Muller et al., 2015).  Such data can further also be applied to calculate 

other important variables in energy demand, such as Physiologically Equivalent 

Temperature (PET), which is a measure of thermal comfort, and analyse wind effect, as 

it is an important parameter in urban thermal comfort (van Hove et al., 2015).  

 The results from the future scenarios demonstrate large changes to CDD across 

the city, with the current temperatures observed in the city core being common in the 

suburbs of the city in the future, highlighting an increase in cooling demand for the 

whole city, as well as possibly extending the cooling period.  A decrease in heating 

demand will also be observed, however it should be taken with caution since it may 

impact of fuel prices and availability.  It is important to acknowledge that UKCP09 

projections do not incorporate urban schemes (Jenkins and Projections, 2009) and more 

consideration is needed for the application of urban schemes models such as JULES 

(Bassett et al., 2015) and MORUSES (Bohnenstengel et al., 2011) to be incorporated in 

the analyses.  However, regardless of model limitations for future scenarios, the key 

problem remains in the fact that there is no established way to account for human 

acclimatisation, which could lead to several changes in applicability of the results 

derived from climate change scenarios. 
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5.6. Chapter Summary 

 

 The current climate projections indicate a general increase in air temperatures 

resulting in more frequent and intense heatwaves as well as the possible exacerbation of 

the UHI effect (Chapter 1 and details on UHI on Chapter 3).  The degree days method 

has been reviewed in Chapter 4 and applied to city aggregated data.  This traditional 

application of the method has always resulted in a unique value for the city, however 

this Chapter has shown, that due to the UHI effect, temperature varies across the city 

and so does the energy demand estimations.  

 Overall the Chapter demonstrated the importance of high resolution Tair 

measurements in estimating electricity demand within urban areas and highlights the 

need to incorporate the UHI in energy demand estimations and other energy issues such 

as energy infrastructure.  It also identified the need to gain a better understanding of 

the role of human acclimatisation to a changing climate.  Through applying the degree 

day method across the city it has enabled energy demand to be objectively quantified 

for use in current and future climate scenarios considering the UHI.  
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Chapter  6  

 

Conclusions  

 

6.1. Fulfilment of thesis aims 

 

 This thesis had 4 specific objectives. These are summarized below. 

 

1. Assess the relationship between income, UHIsurface, vegetation and 

residential electricity consumption in Birmingham for 2006, a year that 

was warmer than average, identifying which currently is the most 

relevant variable and the present influence of the UHI on residential 

electricity consumption. 

 

 Using a combination of Geographical Information System techniques and 

Remote Sensing data (MODIS LST and NDVI), a preliminary investigation was carried 
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to assess the spatial relationship between UHI, urban green space, household income 

and electricity consumption in Birmingham.  It provided simple and repeatable steps, 

based on freely available datasets, for urban planners, industry, human and physical 

geographers, and non-specialists to reproduce the analyses.   

 The results showed that, the present impact of the UHI is limited and instead 

highlighted the dominance of household income over local climate in explaining 

consumption patterns across Birmingham.  By isolating income influence through 

normalization, it was possible to identify the impact of the UHI, however currently a 

tempered impact.   

 It is important to acknowledge that although by normalization it is possible to 

remove the influence of income to understand only the impact of the UHI, none of the 

variables are mutually exclusive, and should be analysed integrally.  Since the overall 

aim of this thesis was not to analyse all of the variables but the UHI effect on 

consumption, in the following Chapters a method that only accesses demand based on 

temperature was used.  

 The Chapter also highlighted the limitations regarding data available for 

research, but still provided basic analyses to inform the current residential electricity 

consumption due to the UHI effect.  There is much potential available for such type of 

analyses to be used by urban planning mapping and spatial risk assessments. 

 

2. Using data from a high resolution UMN, quantify and compare the 

spatial pattern of the daytime and night-time UHI, under a range of 

stability classes, for both UHIsurface and UHIcanopy. 
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 The UHI has been well discussed in the thesis and indeed is the most 

documented phenomena in urban climatology.  Although a range of measurements and 

modelling techniques are used to assess the UHI, the paucity of traditional 

meteorological observations in urban areas is still an ongoing limitation for studies, in 

spite of all the contributions made.  The availability of remote sensing data has helped 

to fill a scientific need by providing high resolution temperature data of our cities, 

however, satellite-mounted sensors measure LST and not Tair.  Fortunately, Tair data 

are becoming increasingly available via UMNs, providing opportunities to quantify 

and compare surface and canopy UHI on unprecedented scale.  

 Therefore, using BUCL a dense UMN and MODIS LST the spatial pattern of 

the daytime and night-time UHI was quantified and identified in Birmingham.  The 

analysis was performed under a range of atmospheric stability classes and investigated 

the relationship between surface and canopy UHI in the city.  

 A significant finding was that the distribution of the surface UHI appears to be 

clearly linked to landuse, whereas for canopy UHI, advective processes appear to play 

an increasingly important role.  Strong relationships were found between air 

temperatures and LST during both the day and night at a neighbourhood scale, but 

even with the use of higher resolution urban meteorological datasets, relationships at 

the city scale are still limited.  

 

3. Review and critique existing energy consumption methodologies for 

producing city scale estimates 
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 Energy consumption and Tair are inherently related.  Low temperatures increase 

consumption via space heating, whereas high temperatures result in increased demand 

for refrigeration and air conditioning.  The common approach used for investigating this 

relationship in detail is via the calculation of Degree Days.   

 Starting with a critical review of studies in the scientific literature that have used 

this technique, this Chapter highlighted a range of limitations with the methodology, 

particularly with respect to standardisation which potentially hinders the utility of the 

technique in climate change risk assessments.   

 Using an analysis of electricity consumption in Birmingham as an example, the 

Chapter identified a need for a standardisation of the approach via the use of a universal 

base temperature calculated using average Tair.  The adoption of the measure will not 

only enable meaningful comparisons to be made across regions, but it will also permit a 

more robust means to account for acclimatisation in longer term analyses such as that 

required by climate change risk assessments.  

 

4. Using Tair data available from an UMN estimate current and future 

variations of cooling demand at the neighbourhood scale.   

 

 Current climate projections indicate a general increase in air temperatures 

resulting in more frequent and intense heat waves as well as the possible exacerbation of 

the UHI effect.   

 Degree days are an established methodology used to estimate energy demand, 

comparing ambient temperatures with a base value considered representative of the city 

being analysed, and frequently, a single base value is used for the entire city; however, 
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due to the UHI effect, temperatures vary considerably across a city, and therefore so 

does energy demand.  Hence, for degree days (and energy demand) to be estimated 

across an urban area, highly spatially resolved measurements of Tair are required. 

 Analysing Tair data available from BUCL – UMN the cooling demand for JJA 

2013 and future climate scenarios were calculated across Birmingham.  The results 

demonstrated the importance of high resolution air temperature measurements in 

estimating electricity demand within urban areas and highlighted the need to incorporate 

the UHI in energy demand estimations and other energy issues, such as energy 

infrastructure.  It also identified the need to gain a better understanding of the role of 

human acclimatisation to a changing climate.  This step then enables energy demand to 

be objectively quantified for use in current and future climate scenarios.  

 

6.2. Critique of the thesis 

 

 Overall, this thesis analysed the UHI and estimated current and future cooling 

demand in Birmingham, using data from an UMN.  Many limitations regarding data 

were found, but it was still possible to address the aim and objectives.  However, what 

also became clear during the period of the research were the enormous opportunities 

about to become available to overcome data limitations in the near future.  Climate and 

energy are main drivers of concerns in political and environmental discussions, and they 

both need to be constantly addressed.  Intra-urban consumption by the residential sector 

is very important as it relates to people‘s vulnerabilities and city management, however 

data for both climate and energy consumption are rarely available at this scale. 
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 The following are often barriers in the energy data: 

1. Data are in general not available by the Government due to security aspects; 

2. Energy companies not being able to provide data again due to security issues; 

3. Data are available but not at the required temporal or spatial scale; for instance 

the electricity consumption data analysed in Chapter 2, is only aggregated for a 

the year period; 

4. Data are manipulated to eliminate interference of certain variables, which might 

actually be the focus of the research; for example, in the gas consumption data 

available from DECC at MSOA, is weather corrected. 

 Due to these limitations, energy consumption modelling techniques are frequent 

alternatives to overcome the issues, however they rely on ‗ideal‘ cases, and are usually 

applied to building scale (micro-scale) or city scale (does not observed the intra-urban 

patterns).  

 The process in which public organizations (usually governmental) release some 

of their internal data in open format (Open governments, open data) is a ‗top-down‘ 

process (Arribas-Bel, 2014).  In this process public organizations generate, manage, 

update and distribute information in accordance to established rules and procedures 

ensuring reliability and trustworthiness (Spinsanti and Ostermann, 2013). 

 The main energy consumption dataset available in the UK at an intra-urban level 

has the advantage of being available for SOAs, and can therefore be compared to other 

datasets linked to energy that are reported in the same standard unit, such as income, 

demonstrated in Chapter 2.  The sizes of the units also consist of an advantage, since 

most countries do not report energy data at an intra-urban level.  
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 Electricity consumption estimates data from DECC are available since 2004 for 

MSOA, and since 2008 for LSOA, divided into domestic and non-domestic users 

(DECC, 2013).  They are divided in Total Consumption, Ordinary Consumption and 

Economy 7, as explained in Chapter 2.  Gas consumption estimates are also available 

since 2005, at the same level and segmentation as the electricity data, however these are 

weather corrected and therefore, cannot be used in research that address climate.  

 Recently another dataset has been made available, Postcode level electricity 

estimates (DECC, 2015), which at the moment is experimental and only available for 

2013.  This data will provide even better spatial resolution than the SOA‘s estimates, 

however in spite of the good spatial scale of the data and free access to the data, the 

major problem with this dataset still is the temporal resolution.  This dataset is 

aggregated as well for a yearly period not providing hourly, monthly or seasonal 

variability of consumption, which are important for several types of energy 

consumption research. 

There is an increasing amount of data emerging through the Internet of Things 

(IoT); these can be referred to as accidental data, and are collected from internet 

connected devices and are becoming available as a side effect, since they were created 

for different purposes but they have become interesting alternative for researchers.  For 

the case of energy data, ‗smart meters‘ are part of this IoT generation and have the 

potential to revolutionise the data that are available for research. 

The smart meters were announced in 2006 outlined as part of the UK 

Government Energy Review, in which UK energy consumers would soon be able to 

check their electricity consumption from a device installed in their kitchen, in order to 

view how much energy they were using and its cost, enabling informed choices, as well 

https://www.gov.uk/government/statistics/lower-and-middle-super-output-areas-electricity-consumption
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as putting an end to estimated bills, enhancing customer service by utility companies, 

and energy savings potential from the consumers (Venables, 2007).  From monitoring 

energy usage characteristics and collection of energy consumption data from all 

customers on regular basis utility companies can advise customers on efficient ways to 

consume energy (Depuru et al., 2011).  All over the world the deployment of smart 

meters have been mostly encouraged focusing on energy savings target (Benzi et al., 

2011).  Therefore from the utility companies point view the smart meter is the ideal 

solution and playing an important role in reducing energy consumption. 

 Smart meters are advanced energy meters that reads real-time energy 

consumption information and securely communicates the data in a bidirectional level 

(Depuru et al., 2011).  The smart meter system includes a smart meter, 

communicational infrastructure and control devices, being its communication 

infrastructure the most import set of the idea.  Due to large amount of data being 

transferred between utility company and smart meter, communication standards are 

formulated to ensure security (Depuru et al., 2011). 

 There has been an increase in the number of smart meters installed in the UK 

(Figure 6.1.).  As well as, the UK Data Service (ESRC) is recently encouraging 

researches through events to discuss alternatives to use obtain and use these in a secure 

manner (Making smarter use of household energy data: opportunities and challenges for 

scaling up research). 
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Figure 6.1. Number of domestic smart meters installed by large suppliers from the third 

quarter of 2012 to fourth quarter of 2015 (DECC, 2016). 

 

 Based on this proliferation, it is very likely that smart meter data will be 

available sometime soon at some level for research, but it is hard to precisely know at 

what temporal and spatial scale they will be made available.  

 From a scientific point of view, this large quantity of real time data will be one 

of the main advances in energy consumption research.  However, the availability of the 

data may still be a barrier and there may be a need to add further complexity to obtain 

the dataset.  It is here where crowdsourcing may play an increasing role. 

 Crowdsourcing is defined as obtaining data or information from a large number 

of people, however due to recent innovations and the emergence of these accidental data 

it can be extended to include data from a range of sensors transmitted via Internet (i.e., 

sources such as smart phones) (Muller et al., 2015).  It has potential to provide real time 

data and information of high temporal and spatial resolution (Muller et al., 2015), and 

information that was impossible or impractical to obtain (Foody et al., 2013), through 
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active or passive initiatives.  Active crowdsourcing involves citizens in processing the 

unit that outputs the data to a website, smart apps or web 2.0 platforms (Kamel Boulos 

et al., 2011), and passive crowdsourcing when citizens are only the keeper of their 

individual sensor and ensures the data are continuously being collected.  Volunteered 

Geographic Information (VGI) is another term being used to reference the acquisition of 

these accidental data, by citizens collecting and editing spatial data and information 

(Basiouka and Potsiou, 2012).  This approach has been used for crisis events (Spinsanti 

and Ostermann, 2013) and cadastral mapping (Basiouka and Potsiou, 2012).   

 With the use of smart phones connected to the internet citizens are freely sharing 

images, videos, maps, opinions and events, therefore providing environmental 

information (Spinsanti and Ostermann, 2013).  The increasing amount of environmental 

and human life aspects that are becoming available, when aggregated can revel 

emerging patterns, redefining the data landscape available to urban researchers 

(Arribas-Bel, 2014).  To this end, there is potential to use smart meters through 

crowdsourcing and VGI, in which citizens can be actively involved by adding their 

reading into a web 2.0. platform, or passively by owning the smart meter and keeping 

the data and releasing them to research if they think it is suitable.  

 This potential for vast high resolution datasets can also be extended into the 

collection of climatic data, for cases where an UMN is not available, and therefore this 

thesis would not be applicable.  Indeed, crowdsourcing potential has been highlighted 

for atmospheric sciences (Muller et al., 2015).   

 Although such datasets may provide the high resolution datasets needed by 

science, there also needs to be an awareness of their limitations.  Unlike data from 

census or economic survey that are created with specific a purpose, these data were not 
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intended for research.  Hence, the challenge with any of these data is quality assurance 

and control (Kamel Boulos et al., 2011; Foody et al., 2013; Arribas-Bel, 2014; Muller et 

al., 2015).  As well as, the need to maintaining privacy and security of the systems that 

store these (Depuru et al., 2011; Kamel Boulos et al., 2011; Foody et al., 2013; Arribas-

Bel, 2014; Muller et al., 2015).  However the fact that the smart meters are continuously 

functioning on households, and quality and assurance are already provided by the utility 

company, and there is high reliability on what is been measured, problems with quality 

are very low.  

 Therefore there is an incredible amount of data emerging, basically from 

everywhere, as well as new internet connected devices.  These provide potential for 

future research that was unthinkable at the start of this project.  Smart meters and high 

resolution crowdsourced climate data have the potential for the first time to provide 

good quality data for research in the desired temporal and spatial scale.  
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