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Abstract 

This Thesis presents a model-based interpretation of images that can vary greatly in appearance. 

Rather than seek characteristic landmarks to model objects we sample points at regular intervals 

on the boundary to model objects with a smooth boundary. A statistical model of form in the 

exponent domain of an extended superellipse is created using sampled points and appearance by 

sampling inside objects. 

 

A colour Maximum Likelihood Ratio criterion (MLR) was used to detect cues to the location of 

potential pedestrians. The adaptability and specificity of this cue detector was evaluated using 

over 700 images. A True Positive Rate (TPR) of 0.95 and a False Positive Rate (FPR) of 0.20 

were obtained. To detect objects with axes at various orientations a variant method using an in-

terpolated colour MLR has been developed. This had a TPR of 0.94 and an FPR of 0.21 when 

tested over 700 images of pedestrians. 

 

Interpretation was evaluated using over 220 video sequences (640 x 480 pixels per frame) and 

1000 images of people alone and people associated with other objects. The objective was not so 

much to evaluate pedestrian detection but the precision and reliability of object delineation. 

More than 94% of pedestrians were correctly interpreted. 
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Chapter 1 INTRODUCTION  

1.1 The Importance of Image Interpretation 

Images are important in image interpretation and understanding of the world. The interpretation 

of images helps to locate and recognise objects and people. To interpret an image that is a 2D 

projection of a 3D scene either assumptions must be made about the projection or a 3D calibra-

tion is needed. Non-model-based methods of image interpretation involve a series of steps: pre-

processing, segmentation, feature extraction and classification. These approaches lead to a fast 

and reliable processing scheme when the image structure is simple, and the result of each step is 

distinct. However, such a sequential set of operations cannot be guaranteed to produce the desired 

result when the image structure is not well-defined. The simple sequential set of operations is 

fragile because it works as an open - loop system with no checks or corrections to the outcome of 

each step. Each program in a procedural method must be designed with care, and cannot readily 

be adapted from one application to another. It is not currently possible to accommodate, within 

one procedure, the ability to identify objects that vary greatly in appearance. 

 

Traditional non-model-based approaches to image interpretation fail with modest changes in 

scene content and illumination. This was addressed in part, in early model-based methods where 

models were used to define the geometry and topology of the objects considered. Previous re-

search has shown that model-based methods offer a great improvement in reliability over non-

model-based methods [AIX03]. Early model-based methods were used to recognise pedestrians 

and a wide range of objects using models that often had to be customised to each object such as a 

model reported by Baumberg [BAU95] for pedestrian detection. 
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Moses and Ullman [MOS92] argued that non-model-based vision systems cannot correctly rec-

ognize objects in a consistent manner and constructed a mathematical proof of this based on a 

definition of consistent recognition functions invariant to viewing position and illumination con-

ditions. The essential premise is that because different objects can produce similar looking im-

ages or image features, it is not possible to distinguish these objects without prior knowledge of 

how the images were formed. For example, to recognize an object of several views, a non-model-

based system should be trained on all possible perspective views. On the other hand, a model-

based system would not have to be trained on all possible view orientations. A model-based 

system might reasonably adapt to accomodate differents projections into 2D of a 3D object. 

 

A model-based method was well-established as a powerful approach to recognising examples of 

known objects in new images in the presence of clutter, noise and occlusion. It is problematic to 

apply model-based methods to images of objects whose appearance can vary greatly. Often the 

structures to be located can vary in shape, either because they are flexible, articulated or because 

natural variation is present. A problem with existing methods is that they sacrifice model 

specificity in order to accommodate variability, thereby compromising robustness during image 

interpretation. A model-based system can learn patterns of considerable variability from a suita-

bly annotated training set of typical images and should only be able to deform in ways 

characteristic of the class of objects it represents. In many practical situations objects of the same 

class might exhibit variation in shape. In such cases flexible models which allow for some degree 

of variability in the shapes of imaged objects, are often appropriate. Many applications of image 

interpretation typically require an automated system to understand the images with which it is 

presented. These images may provide noisy and typically deal with complex and variable struc-
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ture. This necessarily involves the use of models which describe the expected structure of the im-

ages. Model-based methods offer potential solutions to these difficulties and they provide a com-

pact representation of allowable variation, but are specific enough not to allow arbitrary variation 

different from that seen in the training set. 

 

There are three key issues to be addressed in the design of models for image interpretation: gen-

erality, specificity and compactness. Generality concerns the ability of a model to accommodate 

variations in appearance of an object. Specificity concerns the ability to differentiate between ob-

jects and compactness is concerned with the use of the smallest number of parameters necessary. 

 

1.2 Limitations of Non-Model-Based Methods 

Many non-model based methods of image interpretation are ad hoc solutions to well-defined ap-

plications [CAN86a] [WON89]. Such non-model based methods have limited flexibility and rely 

on a pre-defined representation of the form of the object to be identified. Also, it is assumed that 

the objects appear the same always and that they are always in a similar context. These methods 

are fragile and involve a series of steps as described above. If any one step fails then those the 

whole process fails. Each class of object to be identified requires a customised interpretation pro-

gramme. 

 

1.3 Model Objectives 

To extend model-based image interpretation an approach is needed that will accommodate varia-

tions in pose, illumination and topology of the objects. There is a need for a single model that can 

be used to represent a wide range of objects. There is a need to be able to identify many different 
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objects in a scene and to reason about which model should be used to identify each object. This 

requires a method with a great level of flexibility and an ability to differentiate between objects. 

 

The effectiveness with which an object is represented can be illustrated when the mean model 

and its variations are replayed to synthesise images that can be seen to be representative of the 

class of objects modelled. This was demonstrated for the geometry and appearance of constrained 

models with early and more recent methods of model-based interpretation [COO92] [COO98]. 

 

Having a flexible method of interpretation with one model or the ability to select and apply 

multiple models means that it might be possible to reason about strategies for interpreting com-

plex scenes and more readily adapt interpretation strategies to new contexts. However, the model 

presented in this thesis does not describe a method that works with multiple models for general 

scene interpretation. 

 
1.4 The Approach Taken 

In this Thesis we are concerned with a model-based method of flexible and adaptable 2D image 

interpretation that can adapt to variations of pose. To achieve greater flexibility and adaptability 

the model is formed in the exponential domain of an Extended SuperEllipse (ESE) to model ob-

ject form. Using this representation sampled key points can be used rather than landmark points 

which are required to mark the same features at the same positions from all views of the object, 

as in the geometric domain of a PDM or AAM. The use of key points and an ESE to model a 

curve distinguishes the approach presented here from that in PDM and AAM methods that use 

landmarks. 
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A model-based system requires a user to be able to mark landmarks on each of a set of training 

images in such a way that each landmark represents a distinguishable point present on every ex-

ample image. Landmarks are not a problem if the shape of objects is highly variable. Landmarks 

are a problem if the same point cannot be identified as a landmark in each form taken by an ob-

ject. This is a particular problem for the creation of a model for images of pedestrians in various 

poses and contexts. Interpretation of images of pedestrians demands a degree of flexibility be-

yond that which is possible with current model-based methods of image interpretation [COO92] 

[COO92a]. Here this issue is addressed with key points, which are required only to sample the 

shape of the object being modelled. This allows points sampled at regular intervals around an ob-

ject to be used to create a model. To achieve a model representation with substantial adaptability, 

the model is formed in the parametric domain of an ESE. Here we introduce the Extended Super-

ellipse Appearance Model (ESAM), a statistical model that uses key points to represent a shape. 

The ESAM using key points in the exponent space has the potential to create a representation for 

a large range of shapes. 

 

To determine where model interpretation may be applied a reliable method for detecting the loca-

tion of all instances of the object sought in each image is required. These locations are 

customarily referred to as cues and the process as cue detection. A cue detection method based on 

regional symmetry is presented. A variant method of cue detection is presented to identify the 

principal component axes for complex and articulated objects by identifying the major compo-

nent axes at any orientation and linking them together. 
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Cue points or axis points are used as the basis for a search for edge points. A selected set of well-

defined search paths are used to generate the edge points sampled at regular intervals along the 

boundary of an object. In this Thesis an edge detector is presented to detect the edge points on 

systematically defined paths generated around cue reference points or perpendicular to axis 

points. These edge points along the boundary of an object are the key points that are the basis for 

the geometric representation of the model. 

 

1.5 Challenges in Pedestrian Detection 

The main difficulties that are presented to pedestrian detection systems are: 

 

(1) Variability in the appearance of pedestrians 

 People are non-rigid objects with a variety of gaits. 

 People are individually clothed and often carry, wear or use accessories such as bags, hats, 

sticks and umbrellas. They may also be pushing a pushchair, pushing or riding a bicycle. 

 People vary in size, ranging from children to adults and vary with distance from the camera. 

 People may be viewed in a range of poses, such as, standing, walking and running. 

 People can be viewed from many possible angles and are often occluded in varying degrees 

when they pass behind one another or other objects. 

 

(2) Environmental variability 

 The environments in which pedestrian images are captured vary significantly from natural 

scenes with trees, bushes to man-made scenes with roads and street furniture (such as traffic 
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signs and lampposts), billboards, walls, buildings and vehicles present. It can be difficult to 

distinguish pedestrians from scene clutter, such as trees and posts with pedestrians. 

 There are two situations where lighting may impair the acquisition of a satisfactory image: 

 Over exposure: Resulting in saturation and loss of image content. 

 Under exposure: Resulting in insufficient signal to detect any image content. 

 

(3) Camera movement 

Movement of the camera during image capture further compromises pedestrian detection. Whilst 

it is necessary to be able to obtain a good quality image from a vehicle moving at speed and on an 

uneven surface these issues are beyond the scope of this study and methods that deal with these 

issues already exist [GAV00] [GAV07] [TUO11]. 

 

1.6 A Hierarchy of the Proposed Model  

Where complex objects or a combination of objects with an obvious structure are concerned, a 

model and an interpretation scheme are formulated by identifying the component parts, each of 

which is a simple object. The ESAM presented here models and interprets simple objects or 

complex objects that are composed of simple objects such as the pedestrians which vary in form 

as the walk and, push pushchairs and push or ride bicycles. A filter at a variety of angles is used 

to identify primary and component axes of a combination of objects. In interpreting a complex 

object composed of simple object components, the parameters of each sub-model are matched to 

the extracted parameters of each respective object component of the complex object. In this The-
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sis it is shown that simple objects, such as people alone and vehicles can be interpreted with a 

non-hierarchal image interpretation scheme. 

 

1.7 Overview of the Thesis 

In this chapter issues related to the research presented in this Thesis have been introduced. 

 

Chapter 2 provides a review of cue detection to determine the location of the object sought and 

where model interpretation may be applied in an image. An overview is also given for pedestrian 

detection, important pedestrian detection systems and methods of image interpretation. The key 

methods of image interpretation reviewed are co-occurrence matrices, symmetry and axis of 

symmetry detection, alternative methods of object detection and recognition. The use of an axis 

detector to identify the major component axes for articulated objects is described. The concept of 

edge detection, which is important to sample boundary points and form a geometric model is de-

scribed using two edge detection methods; the difference of Gaussians and the maximum likeli-

hood ratio. The mathematical representation for each method is introduced and statistical model-

based image interpretation schemes based on geometry and appearance, such as the point distri-

bution model, active appearance model and the Eigenface method are introduced. Parametric 

curve representation methods such as the B-Spline, superellipse, superquadrics, extended superel-

lipse and the extended superquadric are reviewed. A set of applications that illustrates the 

strengths and weakness of these methods is reviewed. 

 

In Chapter 3 a cue detection method for locating potential cue points is described. This method is 

based on a method for edge detection that is used to locate boundary key points. The geometry of 
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the cue detector mask, the search strategy, the method of applying a threshold to identify poten-

tial axis cues is described. The method by which potential axis cues are clustered and selected to 

form the required axis cues is described. A variant approach to identify augmented cues for vehi-

cles is also presented. A key point detection method using an edge detector method to locate po-

tential boundary points along the boundary of the objects for forming a model and interpreting an 

image is also presented. 

 

In Chapter 4, a brief review of the steerable filter transform is introduced. A description is given 

of how the maximum-likelihood edge detection method described in chapter 3 is adapted to make 

use of concepts used with steerable filters. A detailed description of an axis detection method for 

locating component axes of local symmetry as a basis for detecting pedestrians alone and associ-

ated with pushchairs or bicycles is presented. A set of procedures for locating and refining local 

points of symmetry along the major component axes is described. The augmentation of the de-

tected cues to characterise the objects detected is also described. A key point selection algorithm 

is then introduced to identify the key points which sample the boundary of the objects and on 

which the formulation of a model and its interpretation are based. 

 

Chapter 5 describes an adaptable model based on an extended superellipse representation, derived 

from boundary key points. The Extended Superellipse Geometric Model (ESGM) based on a pa-

rametric extended superellipse integrated with a distribution representation for the representation 

of the boundary shape of objects is introduced. This chapter further describes how the geometric 

and textural representations are combined to form a single appearance model. A way to identify 
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the most appropriate models for a given object or variation of an object is described. A limited 

description of log likelihood function and naive Bayesian classifier are given in this chapter.  

 

In Chapter 6, the interpretation methods for the geometric and appearance models are presented 

along with an elaboration of how to train and match the geometric and appearance models to un-

familiar images. How the model parameters guide the interpretation process using a Jacobian 

matrix of the residual vector between the texture of the current image and the texture of the syn-

thetic image is described. 

 

Chapter 7 describes the experiments conducted on cue detection, local axis of symmetry detec-

tion, the creation and application of geometric and appearance models. The results obtained are 

presented, interpreted and evaluated. The training and test datasets, described in this chapter, are 

each contains images representing pedestrians, pushchairs, bicycles and vehicles; people are 

alone and in groups, pushchairs are being pushed, bicycles are being ridden or pushed. Experi-

mental settings, cue detector results and the performance metrics for the cue detectors are pre-

sented in this chapter. The cue detection results for vehicles and the axes detection results for pe-

destrians alone and pedestrians associated with pushchairs and bicycles are presented and evalu-

ated. The results of interpretation, the evaluation criteria for the geometric and appearance mod-

els and also a set of modes of failure for the appearance model are presented and interpreted. 

 

Finally, in Chapter 8, conclusions and some further suggestions for further research are 

presented, including the further investigation for pedestrian cue detection, axis detection to help 
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locate pedestrians with pushchairs and bicycles, key point detection and an extended superellipse 

appearance model representation. 

 

Fig. 1.1 shows a summary of key point selection algorithm which is used to identify the key 

points which sample the boundary of images of pedestrians. Pedestrian cue detector is used to 

identify a single reference point for each pedestrian sought in an image of pedestrians. These key 

points are used to create a model on which image interpretation is based. Detailed descriptions of 

these issues are given in Sections 3.3 and 3.5. 

 

Fig. 1.2 shows a summary of how to generate and select the key points along the boundary of an 

image of vehicles. Vehicle cue detector is a variant to the pedestrian cue detection algorithm 

which is used to determine the locations of the vehicles sought in an image of vehicles. The key 

points which sample the boundary of vehicles are required to create a model for vehicles and per-

form an interpretation. Detailed descriptions of these issues are given in Sections 3.4 and 3.5. 

Pedestrian 
detector 

 

Radial and perpen-
dicular paths 

 

Key point generation 
and selection 

Model formulation, 
(See Fig. 1.4) 

Input 
image 

Fig. 1.1. A summary of key point detection algorithm on a pedestrian to construct a model. 
Fig. 1. 1 
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Fig. 1.3 presents a diagram showing an overview of axis detection method for generating the axes 

as a basis to characterise the objects to help locate pedestrians alone and pedestrians associated 

with pushchairs or bicycles. Further, this diagram shows the value of using component axes to 

identify key points on the boundary for pedestrians alone and associated with a pushchair or a 

bicycle on which the creation of a model and image interpretation using that model are based. 

Detailed descriptions of these issues are introduced in Sections 3.3 to 3.6. 

 

Fig. 1.4 presents a diagram which shows an overview of the main procedures adopted for the 

proposed model-based system, including creation of geometric and texture models and how the 

geometric and textural representations are combined to form the appearance model. A key point 

selection algorithm to identify the key points along the boundary of the objects and on which the 

creation of a model is based is described in Figs. 1.1, 1.2 and 1.3 for pedestrians not associated 

with pushchairs or bicycles, vehicles,.and pedestrians associated with pushchairs or bicycles, re-

spectively. The model representation is described in detail in Sections 5.4 to 5.6. 

Vehicle 
detector 

Radial 
paths 

Key point generation 
and selection 

Model construction, 
(See Fig. 1.4) 

Input 
image 

Fig. 1.2. A summary of key point detection algorithm on a vehicle to construct a model. 
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Axes 
detector 
 

Key point generation 
and selection 

Model formulation, 
(See Fig. 1.4) 

Input 
image 

Fig. 1.3. A diagram showing an overview of detection of component axes and 
key point on a pedestrian pushing a pushchair. 

Local axis 
points 

 

Object discrimination 
using random forests 

 

Pedestrians, push-
chairs, bicycles 

 

Component 
axes 

Selected axes 
points 

 

Perpendicular 
search paths 

 

ESGM, 
Section 5.4  

 

Colour 
texture 

ESAM building, 
Section 5.6 

 

ESGM pa-
rameters 

Exponent functions 
      and       

 

Texture model build-
ing, Section 5.5 

Texture model  
parameters 

(ESAM) 
parameters 

Selected 
key points 
 

Image 
set 

Fig. 1.4. An overview of the proposed model-based system. 
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Fig. 1.5 shows the key point detection method using the extended superellipse geometric model-

based interpretation. A detailed description of the key point matching method is described in sub-

section 6.2.2. 

 

A diagram showing a summary of image interpretation using extended superellipse appearance 

model-based image interpretation is presented in Fig. 1.6. A detailed description of ESAM inter-

pretation method is described in subsection 6.3.3. 

 

 

Fig. 1.5 Extended superellipse geometric model – based image interpretation. 

Target exponent vectors 

ESGM-based interpretation, 
Section 6.2.2 

Boundary points along an 
image of pedestrian 

Video image 

Cue reference point 

Exponent functions 
of the new image 

Key points 

Search paths 

Exponential models  
(ESGM parameters) 
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Fig. 1.6 Extended superellipse appearance model – based image interpretation. 

Synthetic image 

ESAM-based image inter-
pretation, Section 6.3.3 

Video image 

Cue point 

Texture vector of 
the new image  

Key points 

Search paths 

ESAM parameters 
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Chapter 2 LITERATURE REVIEW 

2.1  Introduction 

Model-based image interpretation methods are commonly used to interpret image scenes where 

objects vary in appearance objects [COO01a]. A model is used to improve the reliability of inter-

pretation [AIX03], over that provided by non-model-based [MCI96]. Specifically, model-based 

schemes have helped to identify objects and their boundaries with greater precision than was pre-

viously possible [TIL00]. A model-based method of image interpretation can be used as a mean 

of dealing with the intrinsic complexity in the appearance of objects and can accommodate a fair 

degree of flexibility. Model-based methods have been valuable in medical image interpretation 

[COO01a], in industrial inspection [AIX03] and in security surveillance [DEM05]. 

 

2.1.1 Model-based Image Interpretation 

Statistical model-based image interpretation schemes commonly use multivariate statistics to 

summarise the patterns in images that are characteristic of the objects being modelled. Model-

based methods may use statistical scene descriptions or mathematical models to represent the pat-

terns of the shape and appearance of objects in images [COO98]. Point Distribution Model 

(PDM) and Active Appearance Model (AAM) are customised to an object by selecting character-

istic points and, in the case of the AAM, image values associated with each landmark. The aver-

age values of landmark points represent the mean shape and appearance of the training set. The 

variability of the shape and appearance about the mean is parameterised by computing the eigen-

vectors of the covariance matrix of landmark coordinates and appearance values. Interpretation is 

performed by varying the model until a variation that is a good match to the features in an image 
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is found. New cue detection, model and interpretation strategies are often required for each appli-

cation domain or if the variation in appearance within the domain is substantial. 

 

2.2 Scope of the Literature Review 

Although much research has been conducted into image interpretation, most results of signifi-

cance have been reported using methods tailored for specific applications. There remains a need 

to develop methods of image interpretation that can be used with complex images and which can 

be adapted to new contexts. There is a need to find a way to obtain a precise, reliable and compu-

tationally efficient method of interpretation. Further, there is a need to develop adaptable methods 

that can be used for a wide range of applications. 

 

This chapter introduces a review of: 1) cue and pedestrian detection, 2) axes symmetry detection, 

3) edge detection, 4) a statistical PDM that models geometry [COO92], the AAM that models 

geometry and appearance [COO98] and the Eigenface method that models facial appearance 

[TUR91], 5) parametric representation methods such as the SuperEllipse (SE) that models sym-

metric shapes, the Extended SuperEllipse (ESE) that models shapes, which are not necessarily 

symmetric and the B-spline that models the curved outline of objects. 

 

Cue, symmetry axis and edge detection methods are reviewed in Sections 2.3, 2.4, and 2.5, re-

spectively. Cue and symmetry axis detection methods are necessary to determine where an object 

is likely to be and where it is appropriate to try to fit a model in an image. Edge detection is im-

portant to find the edge points on the boundary of the object being the. Point distribution, active 

appearance and Eigenface representation methods are reviewed in Sections 2.6, 2.7 and 2.8 re-
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spectively. The B-spline, superellipse and extended superellipse curve representation methods are 

reviewed in Sections 2.9, 2.10 and 2.11, respectively. The Eigenface method is reviewed as an 

appearance method and the B-spline, superellipse and extended superellipse representations are 

reviewed as flexible methods for modelling form. A cue point or a series of points forming axes 

are used to guide the search for object boundaries, the creation of a model and image interpreta-

tion using that model. Finally we finished with a summary in Section 2.12. 

 

2.3 Cue Detection 

A cue is a point that determines where model interpretation may be applied. A cue can be a single 

point or a series of points forming an axis. Where complex objects are concerned cues might be 

required for each component so that each component and their articulation can be modelled. In 

model-based interpretation a cue detector is required to be fast and reliable, should not require 

arbitrary critical parameters to be set and should be largely invariant to changes in illumination 

and variations of target object scale. A cue detector should generate cues for a wide range of ob-

jects, identifying each object of interest and a small number of cues not related to objects of in-

terest. It is that cues for all objects of interest are detected. The expectation is that model fitting 

will eliminate from further consideration detected points not associated with objects of interest. 

Therefore, the detection of cues that are not required reduces efficiency. 

 

Cue detection is an ill-posed problem because it is impossible to fully define what should and 

should not be detected. 
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2.3.1 Pedestrian Detection 

Pedestrian detection plays an important part in driver assistance [NAN02], monitoring human 

activity in indoor and outdoor scenes [VIO05], such as at a bus stop [MOH0] and monitoring 

footfall in shopping malls [SCH09]. 

 

2.3.1.1 A Review of Selected Pedestrian Detection Systems 

It is not practical to review all reported pedestrian detection systems and it is difficult to quantita-

tively compare results between different pedestrian detectors because the degree of variation in 

pose, camera position and the motion of the camera often vary and often are not quantified. Be-

low is a review of selected popular pedestrian detection systems. 

 

Mohan et al. [MOH01] investigated a component-based recognition system for pedestrian detec-

tion in cluttered static images. A Haar wavelet transform was used to represent the head, legs and 

arms as components of the human body. A Support Vector Machine (SVM) was employed to 

classify the components of the body. These components were combined by another SVM to iden-

tify the full body of the person. The system was able to detect a person, even if one of its trained 

components was not detected or occluded. However, the features used were sensitive to changes 

in appearance and illumination. The positive examples of the training dataset were taken from a 

database captured in Boston and Cambridge, Massachusetts with different cameras, lighting and 

weather conditions. The negative examples were images of building and scenery including lamp 

posts and trees. The system was run over 123 images of people to determine the positive detec-

tion rate. The false alarm rate was obtained by running the system over a set of 50 images of 
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scenery and buildings. The system offered a positive detection rate of 67.3% and a false detection 

rate per frame of 4.6%. 

 

Nanda and Davis [NAN02] presented a real time pedestrian detection system for operation in 

cluttered scenes, which works on low quality infrared videos, viewed from a moving platform. 

They developed a Bayesian probabilistic template matching scheme that operated at 3 scales us-

ing infrared images. The template was matched at all locations in an image by searching from 

coarse to fine resolution to increase the speed of operation. Pedestrian detection was performed at 

a low resolution with a relatively low threshold. The pixels that belong to objects that do not emit 

heat were given the value 0 and the pixels that correspond to objects emitting heat such as lamps, 

cars and humans were given the value 1. Only the regions that passed the threshold at a lower 

resolution level were passed to the next finer level of resolution for recognition. Three probability 

maps were created and then thresholded using a Bayesian classification of the probability maps 

as defined by Nanda and Davis [NAN02]. Local maximas were found on each probability map 

and declared to be pedestrians. The system ran at 11 frames per sec (fps) on 320 x 240 pixel im-

ages and at 3 fps on 640 x 480 pixel images. The images of people might also contain street 

lamps and cars. The system was resilient to noise and a good degree of occlusion. The true detec-

tion rate ranged from 75% to 90% on a dataset of 6 videos with one false positive per frame on an 

average. 

 

The Histograms of Oriented Gradients (HOG) method is based on evaluating normalized local 

HOG in a dense overlapping descriptor [DAL05]. The image window was divided into a grid of 

“cells”. The detector window was tiled with a grid of blocks in which HOG feature vectors were 
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extracted. For each cell a local histogram of edge orientations from the cell was accumulated. The 

local histograms for block of cells “a group of neighbouring cells” were accumulated and each 

cell histograms normalized. The presence of people was detected using the HOG feature vectors 

and a linear SVM. The detection window was scanned across the image at all positions and scales 

and non-maximum suppression was applied to the pyramid output to detect pedestrians. Each de-

tection window needs a large number of pixels so that each cell can have sufficient pixels to a 

significant sample and so that a block of cells can be formed. This method required a high resolu-

tion image. They considered the impact of each step of the computation of the detector and found 

that a large bin size was required to detect pedestrians well. They evaluated the method on the 

MIT pedestrian dataset [MOH01] which contains 509 training and 200 test images of pedestrians 

with a relatively limited range of poses and the INRIA [DAL05] data set which contains 1805 

human images with size 64×128 cropped from a diverse set of photographs of people. The per-

formance of the pedestrian detector on MIT and INRIA pedestrian datasets was evaluated by 

plotting the miss rate, defined as the proportion of negative tests among people present in a scene, 

against the False Positive Per Window (FPPW) rate. In this plot, curves that lie lower on the fig-

ure represent better performance (because they have a lower miss rate for a given FPPW rate). 

Overall system performance depends on how many windows are presented to the detector in an 

average image. The FPPW statistic is attractive for evaluating the behaviour of the classifiers, but 

less useful for evaluating the whole systems. A higher FPPW rate may be tolerable at fewer win-

dows, though looking at fewer windows might affect the detect rate.  Dalal and Triggs [DAL05] 

demonstrated that the HOG performs better than other methods based on predefined feature 

measurements for person detection. The method gave an impressive detection rate of 89% with 4-

10 FPPW. The overall image resolution was not given. 
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Viola et al. [VIO05] reported a pedestrian detection system using a series of Haar-like edge de-

tection masks and an AdaBoost classifier. The AdaBoost classifier selected a set of features and 

formed a classification tree. In each round the learning algorithm chose from a heterogeneous set 

of filters, including motion direction, motion shear, motion magnitude and appearance filters. The 

AdaBoost algorithm picked the optimal threshold for each feature. With AdaBoost the features 

with the lowest weighted error on the training examples was selected at each stage. The authors 

created eight video sequences of pedestrians in street scenes. Six video sequences were used to 

create a training set for both a dynamic and a static pedestrian detector. The remaining two se-

quences were used for evaluation. The dynamic and static detectors were trained on consecutive 

frame pairs and static patterns, respectively. Each classifier in the cascade was trained using 

2,250 positive and 2,250 negative samples. This system operated at about 4 fps to detect pedestri-

ans at very low resolution (20 x 15 pixels). The detection rate for both dynamic and static pedes-

trian image sequences was 80% and the False Positive Rate (FPR) was 1/400,000 which corre-

sponds to 1 FPR every 2 frames for image frames of 360 x 240 pixels. On another evaluation test, 

the detection rate was 80% for moving pedestrians with an FPR of 1/400,000. For static pedes-

trian images the detection rate was 80% with an FPR of 1/15,000. The method was not effective 

for partially occluded pedestrians or pedestrians in crowded scenes. A large training dataset 

(2,250 images) was needed for reliable operation because of the large number of features and the 

nature of the classifier. The pedestrian detection system scaled the training image set to a resolu-

tion of 20 x 15 pixels and worked well with images taken in snow and rain. The method was ro-

bust and computationally efficient making it suitable for real time operation. 
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Schwartz et al. [SCH09] sought to improve on the method of [DAL05] by using the partial least 

square analysis to model the features extracted using HOG [DAL05] and co-occurrence matrices 

created at 18 × 36 pixels resolutions using the DaimlerChrysler dataset [MUN06]. A SVM was 

used to identify pedestrians. This method was invariant to small changes of rotation and scale and 

was able to detect isolated pedestrians of varied size in real time. A close inspection of the results 

shows that at low light levels, and in crowded scenes the false positive and false negative rates 

were higher. The method was able to process 2,929 detection windows per second. This method 

was tested on grey-level 64 x 128 pixel INRIA person set [DAL05], the DaimlerChrysler person 

set with images of 18 x 36 pixel resolutions [MUN06] and the ETHZ crowded pedestrian video 

scenes of 640 x 480 pixels at 15 fps [ESS07]. On the INRIA person set the recall rate was about 

60% and a miss rate of 5.8% was reported at 10-5 FPPW and 7.9% at 10-6 FPPW. The detection 

rate on the DaimlerChrysler pedestrian dataset was approximately 85% with a false positive rate 

of 0.15 per image. The false positive rate measures the proportion of negatives that are incor-

rectly identified. On the ETHZ dataset, the method was evaluated on three test sequences of 64 x 

128 pixels at 15 fps where Schwartz et al. used the False Positives Per Image (FPPI) [DOL09] as 

the evaluation metric, in which the miss rate was plotted against the FPPI. On the first sequence, 

the recall rate was about 70% with 4.5 FPPI. On the second sequence, the recall rate was about 

60% with 2.5 FPPI and on the third test sequence the recall rate was 78% with 2.3 FPPI. The rec-

ognition rates on the INRIA person dataset and the three test sequences of the ETHZ dataset are 

low compared to other methods. FPPI is a measure that takes into account the number of win-

dows presented to the classifier. Curves that lie lower are better. Dollar et al. [DOL09] have con-

ducted FPPI as a systematic evaluation of pedestrian detectors on a large dataset built for that 

purpose. However, the ranking of pedestrian detection methods changes depending on whether 
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one plots FPPW or FPPI; generally, FPPI is expected to be more predictive of performance of 

pedestrian detection approaches than the FPPW. Table 2.1 shows a comparison of pedestrian de-

tection performance of [SCH09] for different datasets in terms of the image size, frame rate, 

recognition rate and the evaluation measures of FPPW, FPR and FPPI. 

 
Table 2.1. A comparison of detection performance of the pedestrian detection method [SCH09] 

with different data sets over different evaluation measures. 

 

Tang et al. [TAN12] combined a Random Forest (RF) classifier and Dominant Orientation Tem-

plates (DOT) for pedestrian detection. The DOT was a binary feature version of the HOG adopt-

ed to improve the speed of computation by down-sampling the search space. The detection 

method was represented in a 2-level cascade architecture. First, a holistic RF detector was trained 

to identify the interest points and classify the patches centred at those points to identify potential 

regions. A patch-based RF with a Hough-based Forest (HF) [GAL13] was performed on the iden-

tified regions to accelerate the detection of pedestrians. HF exploited all the feature vectors ex-

tracted from the training data for registering a vote during testing. HF was performed to identify 

possible object centres. This system operated at 5 fps for 24 scales on images of 640 x 480 pixels 

at the base level. This system was able to detect pedestrians in the foreground and background. 

This was probably due to the use of 24 scale images. The detection rate was 90%. However, the 

system is computationally complex. 

Data set Image size Frame rate Recognition 
rate 

Evaluation measure 

INRIA 64 x 128 Not given 60% 5.8% miss rate at 10-5 FPPW 
7.9% miss rate at 10-6 FPPW 

DaimlerChrysler 18 x 36 Not given 85% 85% detection rate at 0.15 FPR 
ETHZ 640 x 480 15 fps 70% 

60% 
78% 

  70% recall rate at 4.5 FPPI (dataset 1) 
60% recall rate at 2.5 FPPI (dataset 2) 
78% recall rate at 2.3 FPPI (dataset 3) 
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A joint deep model was formulated for pedestrian detection, with a combined Convolutional 

Neural Network (CNN) architecture with a Deformable Part-based Model (DPM) [OUY13]. Four 

processes (feature extraction, component deformation, occlusion and classification) operate in 

cooperation in a learning model for pedestrian detection. A learning process maximizes the 

strength of each process. The feature values that describe body parts of a pedestrian, their 

visibility and occlusion are learnt. The component parts of a pedestrian body are the head, torso, 

shoulder, hands and the legs. The deep model organized these components into layers and jointly 

optimized them through Back-Propagation (BP). The filters in the second convolutional layer 

were designed with variable sizes since the parts of pedestrians have different sizes. In this model 

filtered data maps were obtained from the first convolutional layer. Pixel values at each resolu-

tion and edge values were input to the first convolutional layer. This layer convolved the 3-

channel YUV input image data with 9 × 9 × 3 filters and outputs 64 maps. Feature maps were 

obtained by averaging the 64 filtered data maps using 4 × 4 boxcar filters with a 4 × 4 sub-

sampling. Part detection maps were obtained from the second convolutional layer. This layer was 

formed by convolving the feature maps with 20 part filters of different sizes producing 20 part 

detection maps. A deformation handling layer generates 20 part scores from the 20 part detection 

maps. The visibility reasoning model was used to label each window that encloses a pedestrian. 

The detection windows were extracted into images with height of 84 and width of 28, in which 

pedestrians have height 60 and width 20. The interaction between deformation, visibility, and 

feature learning improved the detection ability of the model. It was assumed that a pedestrian 

only has one instance of a body part. A good performance was achieved on the Caltech dataset. 

However, the deep convolutional learning classifiers [TAN12] [OUY13] have not achieved im-

pressive results for pedestrian detection. The log-average miss rate computed by averaging the 
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miss rate at nine FPPI rates on the Caltech pedestrian test was used to summarize the perform-

ance of the pedestrian detection deep convolutional learning model. FPPI rates were evenly 

spaced in the log-space in the range from 10-2 to 1. An average miss rate of 39%, a false positive 

per image of 0.01 and a detection rate of 92% were achieved. At the testing stage, the execution 

time required by the pedestrian detector model was less than 10% of the whole time. 

 

Lim et al. [LIM13] proposed mid-level features to both feature learning and detecting local edge 

structures. The features, called sketch tokens, were learned using supervised mid-level infor-

mation in the form of hand drawn contours. The supervised mid-level information was obtained 

from human labelled edges in natural images [ARB11]. A set of sketch token classes representing 

a wide variety of local edge structures in an image was defined. These classes include structure 

shapes such as straight lines, junctions, corners, curves and parallel lines. A set of images with 

corresponding binary images representing the hand drawn contours were generated. Patches of 

human centred on contours were extracted from the hand drawn sketches and clustered to form 

token classes. The sketches were generated by dividing each image into pieces, where each piece 

represents a shape in the image. The sketch patches were clustered using the K-means algorithm 

and only the patches that contain a labelled contour at the centre pixel were used. A data driven 

approach inspired by Dollar et al. [DOL09] was presented to classify each image patch with a 

token label using a set of low-level features such as oriented gradient channels, colour image 

channels and self-similarity features [SHE07]. The colour channels were computed using the 

CIE-LUV colour space that composed of three colour channels, eight oriented gradient infor-

mation and three gradient magnitude channels. The self-similarity features captured the image 

patches that contain similar textures based on gradient information. The ground truth class labels 
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were obtained from the token classes produced from clustering the patches of hand drawn con-

tours. Random decision forests [BRI01] were employed to predict the probability that an image 

patch belongs to each token class. The pixels token labelling of low-level contours was computed 

in less than 1 second per an image of 480 x 320 pixel resolution. Contour detection results were 

explored on the Berkeley segmentation dataset [ARB11] and achieved a detection rate of 95%. 

The approach was also explored on the INRIA person [DAL05] and PASCAL 2007 object 

recognition datasets [EVE10]. The approach achieved log-average miss rates of 19.5% using 150 

sketch tokens and 14.7% when token features were combined with 10 low-level features. 

 

Tian et al. [TIA15] proposed a deep model for pedestrian detection that learns high level features 

from multiple tasks and multiple data sources. Tian et al. jointly optimized pedestrian detection 

with auxiliary semantic tasks to eliminate the hard negative proposals in the background. These 

semantic tasks include pedestrians with backpacks, bags and hats and background instances such 

as vehicles, trees and lamp posts. The pedestrians and background instances were jointly learnt 

using a single Task-Assistant-CNN (TA-CNN). Tian et al. used a binary label to indicate whether 

an image patch contained a pedestrian or not. The TA-CNN labelled an input image patch as con-

taining a pedestrian, or not, by stacking four convolutional layers, four max-pooling layers, and 

two fully-connected layers. This structure was inspired by the AlexNet [KRI12] for large-scale 

general object categorization. The training set was constructed by combining patches cropped 

from both image regions containing pedestrians and not. Image patches containing pedestrians 

with backpacks, bags or hats were manually labelled. The existing background image patches 

were transferred to the pedestrian dataset without annotating them manually when the number of 

negatives is significantly larger than the number of positives. Image patches with trees or other 
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non-pedestrian objects and image patches with such objects were separately analysed. The former 

one facilitated the learning of shared representation among backgrounds, whilst the latter one in-

creased diversities of semantic tasks. The TA-CNN was trained and evaluated on the Caltech 

[DOL12] and ETH train and test person datasets [ESS07]. The log-average miss rate over nine 

points was ranged from 10-2 to 1 FPPI on Caltech and ETH test datasets. The TA-CNN achieved 

a 25.64% average miss rate, 0.001 false positive per image and a detection rate of 93% on the 

Caltech test and 91% on ETH test person datasets. Additional datasets for training and additional 

labels for pedestrians in the Caltech dataset were used. The relatively high detection rate depends 

primarily on the choice of dataset as a qualification of confidence in the qualitative estimates of 

performance. Also, they generally ignored the critical issue caused by various scales of pedestri-

ans in an image which is considerably affecting the performance of pedestrian detection. 

 

A Markov Random Field (MRF)-poselet model [NGU15] constructed from poselets, a notion of 

parts, which represent the appearance and the structure or pose of the human body parts was pro-

posed. MRF was presented for modelling the spatial and structural relationship of the human 

body structure. There is a high degree of articulation of people as pose and viewpoint is varied. 

The observation nodes in the MRF- model were the detected poselets and hence, for each poselet 

type such as head, torso or legs, more than one poselet instance can be detected in an object hy-

pothesis. A poselet was defined to represent the pose using an appearance model and a set of key 

points which captures the structure of the poselet was used to represent the boundary of the parts 

of the pedestrian such as for the body joints, eyes, ears, and nose. The appearance of poselets was 

represented by features determined by HOG [DAL05]. Person detection was formulated as a 

Maximum A Posteriori (MAP) estimation in the MRF model. This was efficiently solved using 
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variational mean field inference. Detecting poselets in an image was performed by scanning the 

image at various scales and locations with each poselet detector using deep neural networks as 

part detectors. For each candidate poselet the features were extracted and classified against a 

threshold. Non-maximal suppression was used to merge nearby poselet candidates of the same 

poselet type to form a set of poselet detections. The MRF-poselet model was shown to be flexible 

and robust to a wide range of deformation modes of deformation of the human body, provided a 

sufficient number of poselet types was defined. Poselets were not required for all body compo-

nents such as the head, arms and legs to be represented; the number of detected parts was not 

fixed enabling the model to deal with occlusion. The MRF-poselet model was evaluated on torso 

detection, person detection and key point prediction using the H3D [BOU09] and PASCAL VOC 

2007-2009 [EVE10] datasets. Key points were predicted as follows: For each human hypothesis, 

an MRF-poselets model was constructed and the inference algorithm was applied. Then, each key 

point in the human object could be predicted by more than one poselet detection and only the 

poselet detection with the maximum of the variational distributions was used to compute the key 

points. The detection performance was measured using Precision-Recall (PR) and Average Preci-

sion (AP) metrics. True detections and false alarms were determined using the PASCAL VOC 

criterion [EVE10]. The MRF-poselet model significantly outperformed the original work of pose-

lets [BOU10] [BOU09] and increased the AP approximately by 4% compared with that reported 

in [BOU10], by 9% compared with that reported in [BOU09], and by 12% with that reported for 

the DPM in [FEL08]. On the PASCAL VOC 2009 dataset, this model achieved a performance 

4% higher than with the AP model presented in [GKI14]. The person detection rates for the H3D 

dataset are 94% and 93% on the PASCAL VOC 2007 with a false alarm of 0.0001 per window 
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on PASCAL VOC 2007 dataset. The MRF-poselets model processed an image for human detec-

tion in the PASCAL VOC 2007 dataset in about 15 seconds. 

 

Table 2.2 summarises pedestrian detection performance in terms of the detection rate, false detec-

tion rate, processing rate and resolution. 

 
Table 2.2. Performance comparison for selected pedestrian detection methods using the dataset 

presented by each detector unless otherwise stated. 
 

 Detection 
rate (%) 

Log-average 
miss rate 

Frame rate   
(frames per sec.) 

Pixel           
resolution 

Mohan et al. [MOH01] 67.3 96% 0.2 128 x 64  
Nanda and Davis [NAN02] 75-90 86% 0.33 640 x 480 
Dalal and Triggs [DAL05] 89 68% 1 64 x 128 
Viola et al. [VIO05] 80 95% 0.25 64×128  
Schwartz et al. [SCH09], INRIA set 92.1-94.2 62% 0.77 64 x 128 
Tang et al. [TAN12] 90 57% 5 640 x 480 
Lim et al. [LIM13] 95 14.7% 1 480 x 320 
Ouyang and Wang [OUY13] 92 39% 0.025 640 x 480 
Tian et al. [TIA15] 93 25.6% 30 640 x 480 
Nguyen et al. [NGU15] 94 67% 1 frame per 15 sec. 1024 x 768 

 
The state of the art in pedestrian detectors is advancing and considerable progress has been made 

in recent investigations. Each of the reviewed pedestrian detection methods performed well in the 

situations considered and each fell short of what was required in one aspect or other, such as re-

silience to variation in illumination, pose and severe occlusion. They each have limited adaptabil-

ity with cluttered scenes. A need remains for further improvement on pedestrian detection, espe-

cially where people are clustered together, spread across a complex scene, occluded at a high 

level and present in both the foreground and background. 
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Dollar et al. [DOL12] evaluated the state of art of pedestrian detection in a unified framework. In 

this paper the authors: 1) integrated a large, well-annotated, monocular person dataset and exam-

ined performance as a function of scale, location and occlusion, 2) reported a new refined per-

frame evaluation method to analyse detection rates under diverse levels of occlusion and scale, 

localization accuracy and execution speed and 3) investigated the performance of 16 pedestrian 

detectors on 6 datasets. The pedestrian detectors reported in [DOL12] typically follow a sliding 

window pattern which involves feature extraction, classification, and a multi-scale scanning of 

detection windows followed by a non-maximum suppression scheme. The statistical importance 

of the results was assessed leading to the suggestion that pedestrian detection requires further im-

provement, particularly to deal with occlusion, small scale and motion. 

 

Table 2.3 shows a summary of the different pedestrian datasets described in [DOL12]. The data 

presented in Table 2.3 covers the use of photographs [DAL05], surveillance video [WUB05] and 

images captured from a mobile recorder [ESS07] [WOJ09] [ENZ09]. The number and type of 

data in each dataset is categorized by: 1) the number of pedestrian windows, 2) the number of 

images without pedestrians, and 3) the number of un-cropped images with at least one pedestrian 

present. The 10th percentile, median and 90th percentile pedestrian pixel heights are also listed. 
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Table 2.3. Pedestrian detection datasets [DOL12]. 
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CVC                   [GER05]   
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36 

72 
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84 

97 

 
The INRIA pedestrian dataset [DAL05] is widely used, having featured in the evaluation of re-

cent advances in pedestrian detection. It contains relatively high resolution pedestrian images as 

indicated (but was not specified). The TUD-Brussels [WOJ09] and Daimler-DB [ENZ09] data-

sets were captured in urban contexts using a camera mounted on a vehicle, whilst the ETH data-

set [ESS07] was captured in urban settings using a camera mounted on a pedestrian. The Caltech 

dataset [DOL09] consists of video sequences with occlusion that is only concerned with the detail 

of the pedestrian, pedestrians with a wide range of scales and a high degree of scene variation. 
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Dollar et al. demonstrated that the detection of pedestrians in images must often be performed 

using low resolution images and partial occlusion. They have commented that this was likely to 

be a reason for the failure to detect pedestrians. 

 

2.3.1.2 Co-occurrence Matrices 

The Grey-Level Co-occurrence Matrix (GLCM) [HAR73] is a square matrix whose elements cor-

responding to the relative frequency of occurrence of the pairs of grey-level of image pixels sepa-

rated by a certain distance in a given direction [ELE11]. The GLCM, initially proposed by 

Haralick et al. [HAR73], estimates texture feature properties of an image related to second-order 

texture classification method. The GLCM represents the distributions of the intensities and the 

information about relative positions of neighbouring pixels combination in an image. 

 

Haralick et al. [HAR73] proposed fourteen statistical features extracted from the GLCMs. These 

features characterized the spatial relationship between the grey-levels of pixels in a neighbour-

hood. The features were defined at orientations between neighbour pixels of             

and      and averaged across the four orientations. The co-occurrence matrices were computed 

for all the images in the normalized database. This is to overcome the effects of monotonic trans-

formations of the true image grey-levels caused by variations of lightning. To normalize GLCM, 

its values are divided by the total number of increments. The elements of a grey-level co-

occurrence matrix, P, were defined as [ELE11]: 
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Where: 

      : denotes an image of    pixels in the horizontal and vertical directions, respectively. 

i and j: denote the horizontal and vertical co-ordinates of the image, respectively. 

        : is the distance between the pixel-of-interest and its neighbour. 

 

       is a normalized entry of the co-occurrence matrices. That is                , where   is 

a normalizing constant, refers to the total number of pixel pairs      . Each entry       in        

corresponds to the number of occurrences of the pair of grey-levels i and j which are at a dis-

placement distance         apart in the original image. The marginal probabilities matrices were 

defined as [ELE11]: 

                                                                            

  

   

                                                                            

                                                                           

  

   

                                                                             

Where: 

     : is the     entry in the probability matrix obtained by summing the rows of           

     : is the     entry in the marginal matrix obtained by summing the columns of           

 

The fourteen texture features extracted from the GLCMs were presented below [HAR73]: 

(1) Angular second moment:                     
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Angular second moment or Energy is a measure of textural uniformity of an image, which is a 

measure of the homogeneity of an image. 

(2) Contrast:                                              
      

        

  
      

  
   

                                  
    

    

Contrast measures the local grey-level variations in the GLCM of an image. 

 

(3) Correlation:                            
             

    
                                                              

  
   

  
   

 

Correlation is a measure of grey-level linear dependencies in the image that represents the corre-

lation of a reference pixel to its neighbour over an image. 

 

Where:   ,   ,    and    are the means and standard deviations of    and   , respectively. They 

were defined as [HAR73]: 

                                                                                                                                                          

  

   

 

                                                                                                                                                          

  

   

 

                                                                            

  

   

      
  

 
 

                                                      

                                                                            

  

   

      
 
 

 
 

                                                    

(4) Sum of squares: variance:                                                                        
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(5) Inverse difference moment:             
 

        
                                                 

  
   

  
   

 

 

Inverse difference moment measures the local homogeneity of grey-levels in the spatial distribu-

tion of an image. 

 

(6) Sum average:                            
   
                                                                   

Where: 

                                                                                                         
  

   
      

  

   
 

(7) Sum variance:                                              
   
                                                         

(8) Sum entropy:                                                     
   
                                               

(9) Entropy:                                                                                                    
  
   

  
   

 

 

Entropy represents the randomness or disorder of grey-level distribution of an image and it 

achieves its largest value when all elements in        are equal [ELE11]. 

 

(10) Difference variance:                          
    

    
     

                                           

Where: 

                                                       
  

   

        

  

   
                                           

(11) Difference entropy:                                    
    

                                              
(12) Information measure of correlation 1:                                            

(13) Information measure of correlation 2:                           
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Where: 

                                                                                                                                      
  

   
 

                                                                                                                                    
  

   
 

                                                                                                                
  

   

  

   
 

                                                                       
  

   

  

   
                                      

Where:    and    are the entropies of    and   , respectively. 

(14) Maximal correlation coefficient:                                          
 

              

Where: 

                                                    
            

          
                                                                      

  

   
 

2.4 Symmetry 

Symmetry is a common feature of natural shapes and man-made objects which can, therefore be 

effective for object detection and recognition. Symmetry is a complex property used by many 

species in visual interpretation [PAR08]. The nature of symmetry used in these cases is often im-

perfect. Symmetry detection can be considered to be a task of global optimization concerned with 

the determination of location, scale and orientation, determined from edges, contours or sets of 

points [FAR10] [MAS93]. 
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2.4.1 Axes of Symmetry Analysis 

An axis of symmetry is a line about which one side of an object is a reflection of the other side. 

Symmetry can also be found about a point. Detecting an axis of symmetry for an object is a com-

plex task that can be simplified if prior knowledge of image structure is known. The ideal of ob-

ject symmetry may be compromised due to imperfect illumination, image noise and occlusion 

making it difficult to observe perfect symmetry is natural images. Humans have an innate capa-

bility to recognize image symmetry. The symmetry recognised by people is often that of a com-

ponent and imperfect. 

 

The medial axis was first proposed by Blum [BLU67] to capture the global shape properties of an 

object. It is the locus of centres of the maximal disks that fit within an object. However, a single 

scale definition of the medial axis is sensitive to minor variations in the boundary of an object. 

 

Gauch and Pizer proposed the Intensity Axis of Symmetry (IAS) method for describing the shape 

of structures in grey-level images [GAU93]. This method identified figural symmetry which de-

scribes the spatial and intensity variations of an image. Detecting points and axes of symmetry in 

an image can help to identify an object in an image. The IAS was derived by accumulating the 

points that belong to the medial axis representation of each level curve of an image having a level 

curve of the image as a boundary. The curvature extremes of level curves form connected curves 

in the image. The method depended on minimizing an active surface model to calculate the 

Symmetry Axis Transform (SAT) also known as the Medial Axis Transform (MAT). They de-

veloped active surface models to express changes in shape topology and axis segments across 

scales. This method was applied to shape-based image segmentation where it was possible to 
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identify parts of the object corresponding to individual components of the IAS. This method has 

contributed to the identification of axes of pedestrians and applied axes of symmetry detection to 

object detection and recognition. The method is computationally costly. It is also not obvious 

how this method can cope with the positions where symmetry surfaces cross over each other. 

 

The interpretation of fine-scale detail was detached from the interpretation of larger-scale shape 

properties. Xu and Pycock [XUM98] presented a Concordance-based MAT (CMAT) which was 

a refinement of the Multi-scale Medial Axis (MMA) transform that used the symmetry of both 

boundary position and strength to avoid false medial responses, provide improved localisation of 

the medial responses and better identify the scale of symmetry. A key property of MMA compu-

tation is that it treats scale as a metric property such as the work of Gauch and Pizer [GAU93]. 

The MMA is important in that any object can be detected at a blurring scale proportional to the 

size of the object. The CMAT medialness responses were illustrated using a radiograph of a hand. 

 

An appearance-based method for tracking human body parts was presented by Farenzena et al. 

[FAR10]. A set of local features that model three forms of appearance were extracted: the chro-

matic content, the nature of recurrent informative patches and the spatial arrangement of the col-

oured regions. The salient parts of the body were selected based on the localization of perceptual 

relevant human body parts using symmetry and perceptual principles. The horizontal axes that 

separate the torso, head and legs regions were identified and the vertical axis of symmetry esti-

mated. The complementary aspects of the human body appearance were identified on each part 

that highlighting: the chromatic content, the region colour displacement and the presence of the 

structured patches. Performance was evaluated on ViPER [GRA07] and ETHZ [ESS07] data-
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bases that have aspects of occlusions and illumination changes. Robustness to occlusion, pose, 

low resolution and illumination variation were verified to a number of single images and bunch 

of frames for individuals that varied continuously. The method was functioning in both single 

images of people and video sequence images. The evaluation rates and the computational cost 

were not given. The ability to detect axes of symmetry for other objects was not reported. 

 

Edge features, contours and boundary points can be derived to represent sets of points or lines of 

symmetry in an image. Masuda et al. [MAS93] adopted an image similarity measure based on a 

directional correlation of edge features. They detected rotational and reflectional symmetry in an 

image using a search for rotation, translation and reflection transformations to identify the trans-

formations to which parts of the image were nearly invariant to some congruent transformation 

which consists of translation, reflection and rotation. The symmetry of edges is difficult to be dis-

tinguished when the objects are small or the background is complex. 

 

An effective approach to improve the identification of symmetry for component parts of an object 

in an image when the background is complex or the image has a high level of noise was proposed 

by Hu et al. [HUW06]. In this approach a composite view is constructed to identify the axes of 

symmetry for people in multiple camera views to improve the speed of computation. This method 

reflects the importance of axes of symmetry in detecting the major components of a person. The 

axes of symmetry were constructed as a result of matching the detected edges. Matching corre-

spondence between multiple cameras was based on minimising the sum of distances between the 

detected ground-points of a principal axis of people in a view and the intersection of the principal 

axis of a person in another view. Detecting the axes of symmetry for people in each single cam-



Chapter 2: LITERATURE REVIEW 

41 
 

era view was correctly detected even when the people are under a degree of occlusion. The 

method was evaluated effectively on a number of video sequences of people from the PETS 2001 

and NLPR datasets [HUW06]. People standing close together were often identified as a single 

person. The computational cost of the axes of symmetry computation is complex. The method 

had a limited ability to identify the axes of symmetry for people and was not shown to adapt to 

other objects. The computational cost for the axis of symmetry computation in the above studies 

was not stated. Also, each reported method had a limited ability to identify the axes of symmetry 

for people and was not shown to adapt to other objects. The principal axis-based method 

[HUW06] matched people across multiple cameras based on principal axes of people while the 

CMAT [XUM98] considered the symmetry of both boundary position and strength and accu-

rately estimated the position of the medial axis across scale. The CMAT provided a clearer de-

scription of shapes than the results of the method reported by Hu et al. [HUW06]. Moreover, the 

CMAT has a better estimate of medial axis position than the detection of principal axes of people 

using the principal axis-based method [HUW06]. 

 

It is concluded that the identification of axes of symmetry can form a part of a process for 

identifying composite axes. Further, the axis of symmetry detection has a role in the identifica-

tion and recognition of people and other objects but symmetry detection for people was not 

shown to adapt to other objects. The method adopted in this thesis is able to identify the axes for 

people and readily adapt to other objects, with relatively low computational cost. 
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2.5 Edge Detection 

Edge detection is the process by which the discontinuities between homogenous regions in an 

image are detected. These discontinuities may be due to changes in image intensity, colour or tex-

ture from one region to another. To follow image edges accurately an edge detector must be pre-

cise, respond to true edges only and be relatively insensitive to noise and artefacts. To be effec-

tive it must be reliable and computationally efficient. 

 

The performance of an edge detector is assessed in terms of sensitivity, accuracy and precision of 

edge localization [PRA91] [PYC01]. 

 

Sensitivity: is a measure of the ability of an operator to detect an edge. It may be as-

sessed as the ratio of the difference between the magnitude of the response at 

the detected edge and the average background response to the standard de-

viation of the background response of the image. 

Accuracy: is the correctness of the detected edge position. It may be assessed as the 

mean of the absolute Euclidean distance between the detected and true edge 

position. 

Precision: is the repeatability with which an edge position is detected. It may be as-

sessed as the standard deviation of the absolute Euclidean distance between 

the detected and true edge position. 

 

The above criteria are fundamental and well accepted criteria for assessing edge detection meth-

ods. The accuracy of any new edge detector is often assessed by comparison with the edge loca-
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tions detected by the Canny edge detector [CAN86], described below, and by comparison with 

other edge detectors. 

 

The Canny algorithm [CAN86] overcomes noise sensitivity by taking the difference between re-

gions and processing across scale, identifying the steepest slope of an edge and using a threshold 

with hysteresis to track the boundary. The Canny operator adapts the size of support regions to 

the scale and structure of the object considered. However, Canny edges are often unsuitable in 

aesthetic appeal for stylistic depiction applications without further processing because edges rep-

resenting traces or outlines are commonly expected to exhibit a certain amount of width and 

width-variability. In comparison, the Difference of Gaussian (DoG) [WIN11] operator, intro-

duced in subsection 2.5.1, provides a good compromise between computational efficiency and 

stylistic versatility and achieves aesthetically pleasing edge lines without post-processing, par-

ticularly when synthesizing line drawings [KYP08]. 

 

The Maximum Likelihood Ratio (MLR) [ZHO97] criterion, introduced in subsection 2.5.2, was 

adopted to detect the boundary edge points of epithelial cells of a wide range of appearance in 

grey-level images. Zhou and Pycock [ZHO97] demonstrated that the MLR has high potentiality 

in extracting weak edges, high resilience and relatively low computational cost. Further, it was 

shown that the MLR has good localisation. A large support may limit resolution but it will en-

hance localisation. The effectiveness of the MLR edge detector was evaluated on synthetic im-

ages with defined levels of Signal to Noise Ratio (SNR). The performance of the MLR was 

evaluated in terms of sensitivity, accuracy of edge localization and precision of edge localization 

as shown in Table 2.4 [ZHO97]. 
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Table 2.4. Evaluation of edge detection results using the MLR edge detector [ZHO97]. 
Criteria SNR 

0.2 1.0 
Sensitivity 300 - 
Accuracy 6 0 
Precision 10 0 

 

Table 2.4 presents a high selectivity for the MLR operator. It presents that the selectivity is pre-

served at all SNRs and shows that the MLR has a high sensitivity, whilst keeping a high degree 

of accuracy and precision. 

 

Edge detection is normally based on a computation with scalar values. Colour is a vector quantity 

but edge detection in colour is normally defined in terms of scalar quatities. This ignores 

differences in the direction of a colour vector. Edge detection in colour images is more challeng-

ing than in grey-level images, given that colour is triple of values that might be represented as a 

vector. Colour edge detection methods have the potential to detect discontinuities that would not 

be apparent in a grey-level image. Novak and Shafer [NOV87] found that approximately 90% of 

edges in a colour image can be identified in the equivalent grey-level image, although the precise 

location of the edges may vary. They also commented that 10% of the remaining undetected 

edges might be important for certain applications. 

 

Dutta and Chaudhuri [DUT09] reduced the influence of noise on colour edge detection by using 

an adaptive median filter. The average of the maximum colour difference at orientations of, 0o, 

45o, 90o and 135o was computed by summing the RGB values at each pixel. A single automati-

cally computed threshold was applied to generate an edge map in which the location, direction 
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and strength of the edge was recorded. However, some edges were absent from the output edge 

map. Masks oriented with the x- and y-axes were applied to create thin edge responses. The per-

formance of this scheme was demonstrated by comparing results with Canny and Sobel edge de-

tection methods for the location of edges using synthetic and natural images. The complexity of 

this algorithm is similar to the complexity of Canny and Sobel operators [DUT09]. The average 

execution time for processing a set of ten images of 816 x 616 pixels on a Dual core CPU of 1.73 

GHz was 9.3 mS using this method [DUT09] compared to 3.2 and 5.3 mS for the Canny and So-

bel operators, respectively. This algorithm [DUT09] was not appropriate for video sequences. 

Further the processing of colour images as three channel scalar images can lead to the generation 

of false colours and false edge responses. 

 

Evans and Liu [EVA06] computed the Colour Morphological Gradient (CMG) as the difference 

between the dilation and erosion of the image. To reduce noise sensitivity a robust version of this 

algorithm (RCMG) was developed. RCMG employed a pair-wise pixel rejection scheme to pro-

vide a better estimate of the true gradient in the presence of noise. An estimate of the edge direc-

tion was used to enable non-maximal suppression in the CMG operator. Different parameter val-

ues on the RCMG behaviour in the vicinity of step edges were considered. The RCMG technique 

was evaluated both quantitatively and qualitatively. The quantitative evaluation of the RCMG 

edge detector was assessed using Pratt’s Figure Of Merit (FOM) [ABD79] on synthetic and natu-

ral images using different levels of noise. It was shown to have good localization, noise immunity 

properties and low computational cost. Examination of the FOM figures for both independent and 

correlated Gaussian noise with a correlation factor of 0.5 presented that the FOM result was more 

than 92% for noise levels between 6 and 8. The FOM results for impulsive noise provided a simi-
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lar result for both independent and correlated noise with a FOM of more than 95% for noise lev-

els between 6 and 8. The performance of RCMG edge detector was compared with the Minimum 

Vector Dispersion (MVD) [TRA96] and compass edge detector [RUZ01] on a simulated colour 

image. This was illustrated by the edge detection results with a correlated factor of 0.5. The FOM 

for the MVD was 78%, reflecting that many true edge points were not detected. The RCMG re-

ported a FOM result of 98%, while the compass edge detector produced a 97% which presented 

more noise responses than that of the RCMG. The performance of the RCMG is better than the 

performance of MVD edge detector and comparable to the compass edge detector. However, the 

RCMG is computationally complex and restricted to certain applications. 

 

Edge detection is often used as an early step in a bottom up interpretation strategy. In model-

based interpretation it can be used to find the edge points that sample the boundary of the objects 

for forming a model and interpreting an image. The edge points are often required to represent 

the cues in a model-based interpretation as the basis of a geometric model. 

 

2.5.1 The Difference of Gaussians 

The DoG was introduced by Rodieck [ROD65] to describe the spatial sensitivity of a dot of light 

of retinal ganglion cells. The DoG operator was used to detect edges of an input image without 

being affected by noise [DAV06]. The DoG function was obtained by talking the difference of 

two Gaussian functions with different spatial constants. When luminance values of pixels in an 

input image are given to the DoG filter, the edged image is obtained by convoluting input images 

over all pixels with the DoG function. That is, the edged images are produced by taking the dif-

ference between two Gaussian-smoothed images of the input image. Noise in the image can be 
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eliminated by selecting an appropriate value of the standard deviation of the first Gaussian func-

tion,   , while the standard deviation of the second function,   , determines the spatial resolving 

power in detecting the positions of edges with respect to the luminance values of    and   . The 

luminance values of the edges become small and the resultant edged image becomes noisy. In 

contrast, when large    and    are used, the luminance values of the edges become large and 

noises will be attenuated. The edged image becomes blurry and it would be difficult to determine 

the position of the edges [DAV06]. The DoG can be used to increase the visibility of edges and 

other details present in an image [SAT08]. It involves the subtraction of a blurred version of an 

original grey-level image from a less blurred version of the image. The blurred images are ob-

tained by convolving the original images with Gaussian kernels having varied standard devia-

tions. The final image is calculated by replacing each pixel with the difference between the two 

blurred images and detecting when the values cross zero. The resulting zero crossings focuses at 

edges or areas of pixels that have some variation in their surrounding neighbourhood. 

 

The Gaussian function in one dimension is the probability density function of the normal distri-

bution, defined as [AME14]: 

                                                         
 

    
   

                                                                                  

Where: x is a parameter of the Gaussian function and   is the standard deviation of the distribu-

tion. 

 

The two–dimensional Gaussian function is as follows [AME14]: 
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Where:        is a two-valued coordinates of the Gaussian function. 

 

The mask elements of the Gaussian filter can be calculated from the following formula [ALH91]: 

                                                    
 

 
          

        
                                                                   

Where:       is a two-valued coordinates of the central mask element and         is the centre 

coordinates of the central mask. 

 

The standard deviation   controls the width of the function in the mask. If   is varied in pixels 

and two Gaussian functions with two different values of   are subtracted, the features whose 

scales between the two   values are enhanced. 

 

The DoG filter was constructed from the difference of two Gaussian functions as shown in Equa-

tion 2.32 [WAN12]: 

                                         

                                                          
            

      
            

                                       

Where:  x and y are the coordinates of a pixel in an image,    and    are the height factors of the 

Gaussian functions and    and     are the standard deviations of the two Gaussian filters. 

 

The two smoothening Gaussian filters of the DoG must have different variances. The DoG 

functions were designed to allow some low spatial frequencies to pass, while attenuating high 
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spatial frequencies that often include random noise and further to obtain an image with only the 

desired frequency range. This is to facilitate the interpretation of the filtered images. The DoG of 

an image   is a function obtained by subtracting the image   convolved with the Gaussian of vari-

ance     from the image   convolved with a Gaussian of narrower variance    , with      . In 

one dimension, DoG was defined as [WAN12]: 

                                                      
 

     
    

       
     

 

     
    

       
                      

The DOG filter of 2-dimensional Gaussian function was defined as [WAN12]: 

                                              
 

     
    

          
   

 

     
    

          
                         

 

2.5.2 Maximum Likelihood Ratio 

The maximum likelihood principle [DUD12] can be used to estimate the likelihood that data val-

ues are derived from a particular distribution. The theoretical basis for the MLR formulation is 

drawn from a statistical analysis to determine that two data samples are drawn from similar or 

dissimilar populations. This criterion assumes a Gaussian distribution. This might not be valid in 

all situations but the normalising effect of taking the ratio of the likelihood between one sub 

population and a common population reduces the impact of any deviation from a Gaussian distri-

bution. Assuming that both populations have a Gaussian Probability Density Function (PDF), as 

defined in [DUD12]: 

                            
 

          
 
 

   
 

 
                                                                                     

Where: 

    : is the PDF of drawing a particular value for a data vector, x. 
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d: is the dimension of the data vectors. 

 :  is a sample d-component column vector from which a particular value is drawn. 

 : is the computed d-component mean vector of the population. 

 : is d-by-d covariance matrix of the population. 

   : is the determinant of the covariance matrix  . 

   : is the inverse of the covariance matrix  . 

      : is the transpose of      . 

 

The likelihood    that a data sample can be split into two sub-populations, A and B of a region 

under investigation is evaluated as: 

                                                    

  

   

          

  

   

                                          

Where: 

   and   : denote the size of regions A and B, respectively. 

   and   : are two sample vectors from the populations A and B, respectively. 

A and B:  are the two sub-populations of regions A and B, respectively. 

   and   : are two data values drawn from the populations A and B, respectively. 

        : is the PDF for the sample vector,   , that parameterise the populations of A. 

        : is the PDF for the sample vector,   , that parameterise the populations of B. 

 

The likelihood    that a certain value drawn from AB, the combined populations, is defined as: 
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Where: 

   : denotes the size of the combined region, AB. 

  : is the     sample of    . 

   : is the grey-level sample vector derived from the population, AB. 

  : is the parameter for the grey-level sample of the combined populations A and B. 

          : is the PDF of the grey-level sample vector,    , parameterized by AB. 

Take the ratio of likelihoods    
  
  and substituting the likelihood estimates of Equation 2.35 in  

Equations 2.36 and 2.37, gives the Likelihood Ratio (LR) as [DUD12]: 

 

                            
           

          
 
          

      
                                                                 

Where: 
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In Equation 2.38,  

  
   
  
    

 

  
   
  
    and  

   
   
   
    are sufficient for   ,    and    ; re-

spectively, in particular the sample vector means: 

                     
 

  
                 

 

  
                   

 

   
   

   

   

  

   

  

   

                                    

are also sufficient for   ,    and    , respectively. Using these statistics: 

   

           
  

  
  

 
  

 
      

   

    
   
     

  
 

           
  

  
  

 
          

  

    
   
     

  
 

   
          

 

 

 
   
   

 
  

                
    
      

   
 

                       

   ,     and      are the maximum likelihood estimates for   ,    and    , respectively. The 

maximum likelihood estimate for   ,    and     must satisfy: 
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That is, the maximum likelihood estimates for the unknown population means are just the arith-

metic average of the sample means,    ,     and     . Thus, Equation 2.43 reduces to: 

              

 
 

    
   
     

  
 

 

    
   
     

  
 

 

    
    
      

   
 

 

 

            
   
 

           
  
            

  
 

                            

The larger the sample regions of the LR operator the greater is the confidence in the likelihood 

estimates and the risk that detailed changes will be lost. Therefore, a balance is required between 

having a statistically adequate number of samples and suitable region sizes to resolve detailed 

structure. Assuming in Equation 2.45 that the size of regions       
   

 
 to simplify the 

computation of the likelihood ratio; then the ratio of MLR becomes: 

                                                  
                                                                                

Where:    ,    and     are the estimated covariance between the colour components of the re-

spective regions A, B and AB, the combined region. 

 

For a univariate distribution equation 2.46 simplifies to: 

                                               
                                                                                        

Where:                are the standard deviations of the respective regions A, B and AB. 
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The MLR operator was used in a resilient manner to detect weak edges in images [ZHO97], as 

described in Section 2.5, and segments in signal interpretation [PYC01]. In that work [PYC01] a 

model-based scheme for feature extraction and signal identification which uses MLR criteria for 

edge detection, in a sensitive and resilient manner, has been described and evaluated in [PYC01]. 

Signal models presume a parametric pattern for the underlying representation. New unseen sig-

nals can be classified by comparing the parameters extracted from the signals with the parameters 

of the signal model derived from a representative set of signals [PYC01]. It is difficult to derive a 

representative model and therefore to reliably interpret signals that vary greatly in form. Likeli-

hood measures from the feature identification process were shown to provide a well behaved 

measure of signal interpretation confidence. It had been shown that complex, transient signals, 

from one of six classes, can reliably be identified at signal to noise ratio of two and that signal 

identification does not fail until the signal to noise ratio has reached one [PYC01]. The evaluation 

results presented that the loss in identification performance was produced from the use of a heu-

ristic, rather than an exhaustive, search strategy is minimal. 

 

2.6 Point Distribution Model 

A PDM [COO92a] is a linear statistical representation of the geometric form of an object. An ob-

ject in PDM is defined in terms of landmarks positioned on various object features, and at regular 

intervals in between. The PDM has been used to represent a wide range of objects including the 

shape of a resistor and of a hand, see Fig. 2.1. The primary landmarks are at the points of high 

boundary curvatures as highlighted by red dots. Those in between are secondary landmarks. 
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The PDM models object shape statistically by training with example shapes. The characterization 

of this model relies on the ability to label a consistent set of landmarks representing the shape of 

the object in an image. 

 

2.6.1 Construction of PDM 

The landmark points are the data from which the PDM is created. The landmarks are described 

by an ordered vector list of x and y coordinates. The ith shape of an object in 2D is a vector of K 

landmark coordinates expressed as                                      
 . A list of coordi-

nates is collected for a number of objects and the coordinates for the training set registered to 

eliminate systematic variations in rotation, translation and scale prior to statistical characteriza-

tion [COO92]. Variation is modelled by generating a covariance matrix of the aligned shapes and 

performing a Principal Component Analysis (PCA) to identify the principal eigenvectors and ei-

genvalues. The covariance matrix S of the training data is defined as: 

                                                         
 

 
                                                                                  
 

   

 

Where: N is a set of shape vectors,    is the mean shape vector and    is an example shape vector. 

The shapes represented by the model are obtained by a linear combination of the mean shape and 

the basis vectors [COO92]: 

                                                                                                                                      (2.49) 

                        (a)                                                                       (b) 

 

 

Fig. 2.1. A contour with possible landmarks representing: (a) a resistor, (b) a hand [COO92a]. 
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Where:    is a matrix whose columns are the eigenvectors for the first v modes of variation found 

in the training set and    is a vector of weights that controls the modes of shape variation. 

 

The model is the mean and variance of the parameters. Each eigenvector describes a mode of 

variation of the PDM. The v unit principle vectors are used to vary the model through ±3 standard 

deviations of the mean and match it to landmarks in an unfamiliar image. The v unit principle 

vectors with the largest eigenvalues are used to represent the variation of the model [COO92]: 

                                                                      

 

   

    

  

   

                                                                        

Where:    is the kth largest eigenvalue corresponding to the kth eigenvector,    
  
    the total vari-

ance of the training set and    is the fractional variation expressed by the first v unit eigenvectors. 

 

Vary the model projection to obtain the best match of the model to the object in the image being 

interpreted. A variant shape vector of the model,   , can be constructed by finding the weighting 

parameter,    such that: 

                                                               
-                                                                          (2.51) 

An instance of a model is described by the parameter vector,   , combined with the transforma-

tion from the model coordinate to the image coordinate. This can be a similarity transformation 

function identifying the position,          scale, s, and rotation,  , of the model in the image. The 

locations of the model points in image,    , are described by: 

                                                                                                                                       (2.52) 

Where:            denotes a translation by        , a scaling by s and a rotation by  . 
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2.6.2 Non-Linearity in the PDM  

The PDM is based on linear statistics; for any particular mode of variation, such that the pattern 

of variation is linear as opposed to quadratic. The problem with the linear model matching is that 

the best match for the model may be at local optima that lie at some distance from the true opti-

mal match. It was shown that by using alternative metrics for matching local optima can be 

avoided [HEA96]. Heap and Hogg [HEA96] presented a classification method which discovered 

the pivotal deformation present via statistical analysis of the training data, and automatically used 

pivot points on training data when required. The method was tested on natural and synthetic data. 

 

The initial selection of landmarks may require manual intervention to identify suitable landmarks 

for each shape in the training set. The PDM is effective when a shape is well-defined with reli-

able landmark points at homologous positions on each shape [KOT97]. The process of landmark 

detection may presume the topology of the shape characterized [KOT97]. This is a significant 

limitation requiring programme changes for each family of objects. Landmark points must be se-

lected with care to minimize non-linearity in the shape space. Landmarks were selected for inclu-

sion manually and are a property of the object [KOT97]. To automatic the model construction 

they defined a non-linear objective function in terms of shape symmetries that handle the model 

construction as an optimisation problem. This objective function was defined to measure the 

properties of pose and parameterization of each shape to produce a compact and a specific model. 

The objective was constrained to be linear and optimised using a genetic algorithm [KOT97]. The 

generated models were better than hand built models but the computational cost was high. 
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Representing variations in shape that are represented by non-linear patterns in shape space the 

PDM provides a non-ideal representation [HEA97]. With polynomial regression the PDM 

[SOZ94] allows landmarks to move along combinations of polynomial paths varying shape pa-

rameters and capturing non-linearity in the model space. Although this compensates for some of 

the curvature represented within the training set, it does not adequately compensate for high order 

non-linearity. The fitting process is time consuming. 

 

A Cartesian-Polar Hybrid PDM [HEA96] was used to model human hands because the standard 

PDM was not suitable for modelling the non-linearity presents when, for example, fingers were 

bent. This allows a non-linear training set to be projected into a linear space where PCA was used 

to represent the deformation. The landmarks had to be identified by hand and classified as either 

Cartesian or polar. The polar points required a pivot and axis reference which was chosen manu-

ally. Landmark points that do not rotate about a pivot point between examples were modelled in 

Cartesian coordinates. Experiments were conducted on natural and synthetic data from a simple 

jointed object. The specificity of the Cartesian-Polar Hybrid PDM was better than that of the 

PDM for objects with significant bending. It was commented [HEA96] that specificity and com-

pactness of the PDM can be improved by performing a non-linear mapping of the shape space 

reducing  the number of modes of variation needed and leading to a more compact model. Bre-

gler and Omohundro [BRE94] suggested modelling the non-linear datasets of human lips using a 

shape space constraint surface for improving the specificity of the PDM. Surface constraints were 

introduced to the model by separating the space surface into linear patches using cluster analysis. 

However the dimensionality of these lip shape spaces is low and had low non-linearity. 
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Baumberg [BAU95] solved non-linearity in deformable models using a cubic B-spline represen-

tation. The control points of the B-spline represented as a PDM [COO92] were used to model the 

person’s outline. More details about this method are presented in Section 2.9. 

 

These methods improve the ability of the PDM to model shapes, but the use of a linearising pro-

jection of the shape space might not always be appropriate, as when the distribution of shapes 

forms a hollow region in the new space [HEA96] and therefore does not provide a solution for 

the heavier non-linearity. The method in [SOZ94] models a limited selection of non-linear de-

formations. The performance of the method [BRE94] is poor in situations where there is more 

than one degree of deformation. 

 

A more generic solution to model non-linear representation is needed, but with the simplicity and 

speed of the linear model. 

 

2.6.3 A Review of Selected Applications of PDM 

Despite the limitations cited above the PDM has proven its usefulness in medical image analysis 

for locating the outline of the abdomen [COO94], in identifying bones in X-ray images [ZHE06], 

in industrial inspection [AIX03], tracking automobile trajectories [DEM05] and characterising 

the form of fish [TIL00]. 

 

Cootes et al. [COO94] applied the PDM to identify the outline of the abdomen and the prostate in 

Magnetic Resonance (MR) images and the left ventricle (LV) of the heart in echocardiogram im-

ages. In each case the model consists of a shape template describing how the points of each ob-
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ject can vary within a valid configuration. To extract the LV from echocardiograms, they chose 

points around the ventricle boundary, the nearby edge of the right ventricle, and the top of the left 

atrium. The PDM was matched to the image by examining a region around each model point to 

calculate the displacement required to move it towards the boundary. These displacements were 

used to update the shape parameter weights. The shape model allows for considerable variability, 

but is specific to the class of structures it represents. The limitations of the approach are its inabil-

ity to handle large changes of scale and orientation and sensitivity to partial occlusion. 

 

The potential of the PDM was also demonstrated for building a model to reconstruct 2D and 3D 

representations of bones in X-ray images of the surface of the proximal femurs [ZHE06]. The 

model was established by an iterated image-to-model correspondence between the X-ray image 

and instances of the PDM model. The matching process identified a fraction of the best matching 

2D point pairs between features identified from fluoroscopic images and those extracted from the 

3D model. Eleven images of each bone were used to show the accuracy of this method. The im-

ages were from cadavers is matter for the application but is not of major importance. A mean re-

construction error of 1.2 mm was obtained when two fluoroscopic images of the same bone in the 

same body were used. It dropped to 1.0 mm when three fluoroscopic images were employed. 

Two or three images are insufficient to reach a conclusion regarding precision. The image-to-

model correspondence and the reconstruction algorithm were computationally complex. The con-

vergence of the 2D/3D reconstruction method depended on the initialization of pose and scale of 

the mean surface model. 
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In a system for classifying crystal stones according to their shape in the manufacture of chain 

[AIX03] the PDM was extended by defining a set of acceptable deformations and adding a con-

straint to the amount of deformation permitted by the PDM to improve the model. This constraint 

was based on statistical control with Hotelling’s T2 chart [JOO05] as used in industrial inspection 

to reject outliers. Thus, PDM accepts some deformation on the contour of the shape. The results 

have shown that different objects can be matched independently of their orientation, location and 

size. The results on new images were judged visually. 

 

A PDM was employed to track automobile trajectories in closed circuit TV images [DEM05]. 

The models created represented object paths as an average trajectory and a set of deformation 

modes. Evaluation was performed on motion data extracted from a vision system that tracked ra-

dio-guided cars running inside a circuit. The deformation coefficients were adjusted to detect out-

lier trajectories and large deformations were controlled using Hotelling's T2 statistic [JOO05]. 

The deformation modes were each normalized to unit variance. The results show that PDM was 

able to interpret trajectories, by considering them to be a complex shape. 

 

A 3D PDM was developed to estimate the dimensions of Atlantic salmon from stereoscopic im-

ages [TIL00]. The model was matched to stereo images of a fish by minimizing an energy func-

tion based on probability distributions of shape, grey level, direction, distance and the magnitude. 

This function was implemented in an iterated method in which edges were selected by magni-

tude, direction, and proximity to the model. The selection of edge points to be matched to the 

model was based on a combination of edge strength, at the position of the model landmark, and 

distance from the model. The model was tested on two image sets. The training images were tak-
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en from image set 1. This set was divided into 18 images for training and 18 images for an inde-

pendent test set. In the first set of 18 images of 26 fish 73% of the fish were correctly identified in 

the presence of shadows. The modes of variation suggested that the most significant mode was 

due to the swimming motion of the fish. The key points were identified manually on the fish. 

This is not an ideal solution. In the second set of 11 images the average error in length estimation 

was 5%, with a standard deviation of ±2.8%. Some of failures were caused by large variations in 

scale and rotation and the overlapping of fish. The size of training and test sets were inadequate 

to draw a strong conclusion. Model matching failed to converge correctly in few cases. This 

might be because the orientation of the fish in the test image was very different from the initial. 

 

The above applications were reviewed to show the potential effectiveness and efficiency of the 

PDM for a wide range of applications. The methods presented in [TIL00] and [ZHE06] demon-

strate the potential of the PDM to model different objects in 3D with potentially small errors. 

 

2.7 Active Appearance Model 

The AAM, first proposed by Cootes et al. [COO98], is a statistical deformable method that com-

bines both object shape and appearance. 

 

2.7.1  AAM Shape of Form 

A list of coordinates is collected for a number of objects, and the coordinates aligned to a com-

mon mean coordinate structure to normalise variations in translation, scale and rotation. A co-

variance matrix is computed, and PCA performed to identify the principal eigenvectors and ei-

genvalues as described in subsection 2.6.1. 
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2.7.2 AAM Texture Model 

The notion of texture refers to the grey-level or colour pattern of pixel values. The sample of 

pixel values used to represent texture vector is denoted by: 

                                                                       
                                                         (2.53) 

Where: M denotes the number of pixel samples over the object surface. 

 

To obtain consistent pixel values, images must be warped and interpolated within regions, as de-

termined by the placement of landmarks points, in the mean model and between landmarks. 

 

2.7.2.1 Image Warping 

Image warping [COO04] was used to collect the texture values between the landmarks. The tex-

ture warping was performed by partitioning the mean model using a piece-wise affine warp based 

on the Delaunay triangulation [COO04]. This algorithm was employed to warp the key points and 

intermediate points by connecting three key points as a triangle. The pixels within each triangle 

were warped to correspond to define values for equivalent pixels in the geometric reference im-

age. An affine transformation is computed between the control points in the image and the verti-

ces of the triangulation in the mean geometric model. Each pixel in each image inside a particular 

triangle was mapped to a point inside the corresponding triangle in the geometrical reference im-

age using the barycentric coordinate criteria and bilinear interpolation correction [MAR08]. 
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2.7.2.2 Photometric Normalization 

A photometric normalization was proposed by Cootes et al. [COO98] to reduce the impact of 

global illuminations amongst the colour training images for the AAM. Each vector,   , is itera-

tively aligned to the mean vector by adjusting the scale    and offset   : 

                                                                                                                               (2.54) 

Where:     denotes the actual vector pixel values sampled in the image and   is a vector of ones 

with the same length as    . 

 

The values of    and    were selected to best match the vector to the normalised mean; that to 

obtain zero mean and unit variance. The values    and    were calculated using: 

                                                                                                                                           (2.55) 

                                                                                                         (2.56) 

Where:    is the mean texture vector. 

 

The texture vectors are aligned to the mean texture vector which is recalculated inside each itera-

tion loop until convergence. The search for convergence is stopped when the maximum number 

of iterations was reached or the newly estimated mean has converged, as defined by a threshold 

on the difference between the newly estimated mean vector at each iteration and the mean of all 

the aligned texture vectors. 

 



Chapter 2: LITERATURE REVIEW 

65 
 

2.7.2.3 Modelling Texture Variation 

PCA was performed on the normalised textures to obtain a compact linear statistical model of 

texture [COO98]: 

                                                                                                                                     (2.57) 

Where:   is the synthesised texture,    is the mean texture vector,    is a set of orthogonal modes 

of texture variations of the covariance matrix that contains the eigenvectors corresponding to the 

largest eigenvalues and    are the texture deformation parameters. 

 

The texture parameters for a given sample image can be retrieved using [COO98]: 

                                                              
                                                                      (2.58) 

Where:     is a texture instance from the model. 

 

2.7.3 Combined Model of Shape and Texture 

The shape and texture of any example were described by the vectors,    and   , respectively. 

These vectors were concatenated so that any correlation between shape and texture variations can 

be considered using a common parameter vector. The property of correlation was used to build a 

combined statistical appearance model. A concatenated vector, b, was generated for each exam-

ple image in the training set as [COO98]: 

                                              
      

  
   

    
       

         
                                                         

Where:    is a diagonal matrix of weights between shape and texture vectors, which measures 

the unit difference between the texture and shape parameters. 
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PCA was applied to these vectors giving the further model: 

                                                                                                                                          (2.60) 

Where: c is a common parameter vector that controls both shape and texture information, Q iden-

tifies the eigenvectors of b and b denotes a vector of appearance parameters. 

 

The linearity of the model allows the shape and texture to be defined using the combined model: 

                                                                 
                                                         (2.61) 

                                                                                                                                    (2.62) 

Where:    and    are matrices describing the variation modes of shape and texture, respectively. 

 

2.7.4 Interpretation with the AAM 

AAM interpretation procedures were treated as an optimisation problem in which the texture re-

sidual vector was minimized by updating the model parameters [COO98] [COO01b]. To find the 

best match between a model and an image, it is important to minimise the magnitude of the dif-

ference vector between the previously unseen image and one synthesized from the appearance 

model. The AAM search algorithm varies model parameters to minimise the difference between a 

previously unseen image and the model instance in order to generate a synthetic image that 

matches as close as possible to the unseen image. The AAM search algorithm proposed by 

Cootes et al. [COO98] was executed iteratively and the quality of fit optimized using least 

squares criteria. Cootes et al. [COO98] described an AAM matching algorithm that alternates be-

tween matching shape and appearance. This approach demonstrated a rapid convergence. The 
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mapping from error images to AAM parameters was modelled by linear regression. A good 

match to an unseen image was rapidly achieved, even when the starting position was poor. 

 

In a later approach [COO01b] the regression estimates were replaced by a simplified Gauss-

Newton procedure, where a Jacobian matrix was evaluated from the training data. The error sur-

face for both approaches was approximated by a quadratic function. This has the advantage that, 

during training, not all difference images need be held in memory. 

 

Despite the great success of AAMs in many domains, there are some limitations; it is impossible 

to capture a complex non-linear shape and appearance variations for a large image set with a sin-

gle PCA. Also it is assumed that the appearance and shape parameters are linearly related around 

the optimum match between the image and the model. 

 

2.7.5 AAM Enhancement 

The basic application of the AAM [COO98] does not demonstrate the full flexibility of a statisti-

cal appearance model; this is better demonstrated by [BAT05] where the Jacobian matrix was 

linearly adjusted according to the texture configuration of the target image, in the generalised 

AAM [SAU11] which uses non-linear regression models and in the work of [GAL06] where dis-

tance maps were used in the place of texture pixels to adjust the texture vectors. 

 

Batur and Hayes [BAT05] proposed an Adapted AAM (AAM), in which the gradient matrix was 

adapted linearly at each iteration. The contributions of the texture eigenvectors to the gradient 

matrix were added to the fixed gradient matrix according to the composition of the target image. 
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A high degree of flexibility in the texture component of the model was demonstrated in the rec-

ognition of facial expressions under large texture and lighting variations. They examined the 

AAM and AAAM on four subsets of test images of faces with varying lighting angles, shadows 

and illumination. They concluded that using the median values of the shape and texture error dis-

tributions that the AAAM performed better than the AAM in all the situations considered. They 

presented the percentages of the runs for the AAM and AAAM with five forced iterations for 

each subset of the test images. The final shape mean error of AAM was 0.30 pixels. There were 

few cases where the AAM failed to converge, with no such cases for the AAAM. This is proba-

bly due to the greater reliability of the AAAM. They also demonstrated that with AAAM the av-

erage shape and texture errors were reduced when the number of modes was increased. AAAM 

provided a great performance increase over the fixed gradient matrix approach in the expense of 

an increase in computational cost. 

 

Generalisation within the AAM framework was addressed by Sauer et al. [SAU11] using two 

non-linear regression models: boosting [FRI00] and Random Forest (RF) [BRE01]. Each stage in 

the sequence consisted of a shape model and a corresponding regression model. The trees of the 

RF in 1D regression were built recursively and at each node the training data was split by select-

ing a threshold on a feature variable selected randomly from a subset of all features to decrease 

the  of sum of squared errors. The trees were constructed until each node contained a single sam-

ple. The Boosting method additively combined a set of weak learners into a strong regression 

function. A Haar-like feature [VIO01] was computed on the pixel sample vectors to update the 

model parameters. The Haar-like features provided a superior generalisation performance and a 

lighting-insensitive feature for capturing facial features. The Boosting and RF algorithms were 
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also combined with Haar-like features [VIO01] and illumination-independent features derived 

from an integral image [CAL10] to handle a large degree of variation in lighting and appearance. 

The relative difference between pixels values across images were captured by these features, 

making them invariant to monotonic transformations. The RF and Boosting algorithms were as-

sessed on the XM2VTS [MES99] and BioID [JES01] face datasets by cross-comparing the per-

formance of the resulting algorithms. Both datasets consists of frontal face images. The XM2VTS 

dataset contains a little pose and lighting variation between instances in high-resolution images. 

The BioID dataset contains a large proportion of low quality images of faces with a significant 

degree of variation in pose and illumination. The results demonstrated that the RF generalises 

well. This was confirmed by the percentage of successfully converged images particularly when 

training on the XM2VTS dataset. However, this method has a high computational complexity. 

 

The Random Forest (RF) [BRE01] [BRE07] is a collection of decision trees that vote on the cor-

rect classification of the input data. Each decision tree is trained on a subset of data. Each deci-

sion tree is used individually to vote for one class using its features and the RF predicts the class 

that has the most of votes. Each tree is grown with a randomized subset of predictors. In con-

structing each tree of a RF, a bagged training sample is selected by drawing a random subset of n 

instances from the n-member training set, with replacement from the data that replaces missing 

data using the median of the non-missing data. The same number of vectors as in the original set 

are randomly selected. When vectors are chosen by replacement that some vectors will be re-

peated and some will be absent. At each node of each trained tree a new random subset of pa-

rameters are created and used. The size of each node and tree is fixed. In bagging, multiple train-

ing sets are selected with replacement trees fit to these samples [BRE07]. Bagging improves 
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model stability, avoiding overfitting. At each splitting node in a classification tree, a random sub-

set of predictor variables is used to define the best split. A random number of predictor variables 

are used at each node. The RF can rank predictor variables by importance so that the less impor-

tant can be pruned. 

 

Modelling high resolution 2D and 3D images in AAM is relatively slow due to the high storage 

and computational demands. Gallou et al. [GAL06] used maps of distance from the boundary in-

stead of texture pixels in the basic AAM to improve matching to facial features in images with 

variable illumination. The method was evaluated on several images of faces from the Carnegie 

Mellon University Pose, Illumination, and Expression (CMU PIE) database [SIM02]. This ap-

proach demonstrated less sensitivity to illumination change. The basic AAM and the AAM with 

distance maps were compared over two sets of face images under the same lighting variations. 

Errors were expressed as a percentage of the distance between the ground truth points and model 

points. The mean error for the two sets of face images using AAM with distance maps were 0.1 

compared to mean errors of 0.2 and 0.3 using the basic AAM showing that  the use of distance 

maps enhances robustness against lighting variations. 

 

There is scope to improve on the basic AAM to better accommodate the variations in appearance 

for complex situations where objects and lighting vary greatly. 

 

2.8 Eigenface Method 

The Eigenface method for facial representation and recognition [TUR91] is based on a Karhunen-

Loeve Transform (KLT) [KIR90]. In the Eigenface method the KLT approximates a set of im-
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ages by a low dimensionality subspace from which features are extracted and the Mean Square 

Error (MSE) between the model and the feature vectors on the subspace used to reduce the com-

putational cost of matching. The Eigenface method [TUR91] used a nearest mean classifier on a 

dataset of 2,500 face images of 16 people, digitized at 3 head orientations, with 3 head sizes and 

3 lighting conditions. The system was invariant to changes in illumination, but performance de-

graded with changes in head size, head orientation and scale. Faces that varied in scale by more 

than those in the original dataset were not readily recognized. The authors suggested a multi-

resolution method to overcome this problem. Performance decreased when the face orientation 

was not fixed. 

 

The benefits of the Eigenface method are that it is simple, computationally efficient, uses raw im-

age data, has a modest memory requirement and does not require prior knowledge about the ge-

ometry of faces. However, the method is sensitive to changes of scale. Further, changes in ap-

pearance such as created by the wearing of spectacles, pose, illumination, occlusion, and facial 

expression reduce the rate of correct classification. Enhancements made to overcome such limita-

tions are described by Pentland [PEN94] and Murase [MUR95]. 

 

In [PEN94] a view-based eigenspace method and extension to 3D with greater resilience to 

changes of pose and illumination was reported. The recognition of human faces was tested under 

unconstrained viewing conditions, using multiple sets of eigenvectors, one for each face orienta-

tion. The residual error for each view space was calculated to identify the orientation of the test 

face and to select the eigenspace that best described the input image. Whilst the view-based 
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method gave a more accurate representation of faces, it was more computationally intensive than 

the standard Eigenface method [TUR91]. 

 

Object learning requires the acquisition of large image sets and a computationally complex proc-

ess to generate eigenvectors. A compact Eigenspace representation parameterised by pose and 

illumination was reported by [MUR95]. This approach allows the 3D appearance of objects to be 

learnt from 2D images. Each object was represented as a parametric manifold in two eigenspaces; 

the universal eigenspace and the object’s eigenspace. The eigenspace for the image set was con-

structed by computing the most prominent eigenvectors of the set based on the KLT. The eigen-

vectors (individual images) were projected to the eigenspace to obtain a set of points parameter-

ised by pose and illumination. A set of experiments were conducted using objects with complex 

appearance characteristics. The recognition and pose estimation were studied using over a thou-

sand input images of sample objects. The images were automatically normalized in scale and 

brightness. Each normalized image was 128 x 128 pixels in size. For each object they used 5 dif-

ferent light source directions and 90 poses for each direction. The reported results suggest that 

real-time appearance recognition would be possible. This approach requires a re-computation of 

the entire eigenspace to add new objects incurring a high computational cost. Appearance repre-

sentation for the objects in eigenspaces with 20 dimensions produced precise recognition results 

with an average pose estimation error of 1.0 degree. The recognition rate was not specified. The 

computational cost increases with image resolution and the number of images in the training set. 

  

The papers reviewed show that the Eigenface method is a reliable method for face recognition. 
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2.9 B-Spline Curve Modelling 

The B-spline curve representation is a piece-wise approximate model, with an individual curve 

for each segment constructed between points and defined about separate control points. The con-

trol points determine the path and the shape of the curve. The generation of a B-spline curve is 

started by creating the parameters of the data points, generating a knot vector and finished by 

solving a system of parametric B-spline functions for curves as defined in [WAN90]: 

                                                                                                                                                    

 

   

 

Where:    are the control polygon vertices,       are the normalised B-spline basis functions de-

fined on the knot sequence for the curve, n is the number of data points. The position of the curve 

s(q, h) in a surface with parameters q and h can be defined as [WAN90]: 

                                                                     

 

   

 

   

                                                                 

Where:      is the control polyhdren,       and       are the B-spline basis functions in q and h 

directions on the surface, n and m represent the size of data in directions q and h, respectively. 

 

A B-spline approximation is generated from the control polygon vertices. The B-spline curve 

does not generally pass through all the control points. For the B-spline pass through all the con-

trol points, a careful selection control points and of linear equations is necessary, as defined in 

Equation 2.64 [WAN90]. 

 

The parameterization of the B-spline leads to a representation for a wide range of shapes from a 

small set of sampled points, where the knot vector specifies the parameter interval for the seg-



Chapter 2: LITERATURE REVIEW 

74 
 

ments that make up the B-spline. Closed curves are formed by connecting the first and last points 

of the B-spline, although continuity will not be maintained automatically. 

 

Methods for B-spline matching are based on: 1) minimising the MSE from the data curve to find 

the best number of points for the B-spline [COH94] or 2) minimizing the MSE for coarse-

matching at the corners of object boundaries [GUY00]. These methods have a low computational 

cost but are sensitive to noise and do not benefit from the continuity of B-spline curve because 

the MSE method does not protect against outliers. 

 

Notable B-spline methods include curve matching for deformable shapes using sparse spline 2D 

knot points [LEE03] as applied to object detection and the use of a cubic B-spline for pedestrian 

tracking [BAU95]. These methods are discussed below. 

 

Lee et al. [LEE03] reported a B-spline curve matching method for deformable shapes. The strain 

differences of the spline approximations and the deformation energy of thin plate spline mapping 

were calculated between knot points and normalized local curvature to derive the mapping pa-

rameters between two sets of corresponding points. Point-correspondence for sparse knot points 

was achieved by matrix matching. An example image of blobs with different shapes was used to 

test shape detection. Each blob in the input image was extracted and its boundary was approxi-

mated with a spline curve. The cost of matching was low. They showed examples of spline curve 

fitting where a few knot points in the matching process, allows the splines to approximate object 

boundaries. Only a few knot points were used in the matching process. Therefore, the algorithm 

was fast and applicable to real-time tasks such as industrial robot vision and target detection. 
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Baumberg [BAU95] used the control points of a cubic B-spline representation in a PDM 

[COO92] to model the outline of a pedestrian. The curvature of the B-spline took on some of the 

non-linearity of the model and therefore reduced the problems presented with using a linear PDM 

to represent non-linear models. The B-spline training shapes were aligned by scaling and transla-

tion, and eigenvectors computed for the covariance matrix of the B-spline control points. The 

model was composed of a mean shape and an orthogonal basis extracted by analyzing the vari-

ances of the shapes. The initial shape estimate was provided by the trained mean pedestrian 

shape. The shape was parameterized from one fixed point and the length around the contour. The 

fixed point used was the upper most point at which the principal axis crossed the object 

boundary. The current position and shape estimates were adjusted in response to measurements 

made on the image. A point by point difference between the current image and its pre-computed 

background was applied. The contour of the person was found by the measurements being made 

at various points around the current shape. The search was carried out along lines aligned with 

the Mahalanobis distance measure. In this fitting process, the system allows for a certain percent-

age of the control points not to be matched in the current image. This improves tracking when 

parts of the person are occluded. The PCA parameters and the position of the person in the image 

were used to aid tracking. A Kalman filter was used to model the speed of movement and to pre-

dict position in the current frame. The initial positional estimates and the current shape parame-

ters were used as a starting point for model fitting. Repeated measurements made along the Ma-

halanobis search direction at the control points of the B-spline were used to find the new position 

and the person’s outline in the current image. This is a complex system for tracking a pedestrian 

alone and often fails if the people are not amongst the objects modelled. It is effective if the pe-

destrians are well separated and can support a good degree of occlusion for images of high con-
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trast. The results were good, suggesting that the parameterization process was consistent. This 

method has been applied to real-time interpretation. 

 

The above studies illustrates that the B-spline was used to generate a curve that is flexible and 

controllable when applied to interpret deformable shapes [LEE03] such as the outline of a pedes-

trian [BAU95]. However, some curves generated with B-spline might be difficult to control and 

can be unstable. The reviewed previous research shows that the B-spline method is a flexible 

method for modelling form. 

 

2.10 Superellipses 

A SuperEllipse (SE) is a closed curve that may be represented in a canonical implicit form by the 

contour surface, in a generalisation of an ellipsoid as [DUR08]: 

                                                                   
 

 
 

 

 
  

 

 
 

 

 
                                             (2.65) 

Where: a and b define the size of the SE along the major and minor axes, respectively and  , the 

shape coefficient of the SE, is the angle of orientation in the x - y plane, expressed in the object 

centred coordinate frame. They are each non-zero positive real values. 

 

An SE can represent a wide range of shapes from a circle to a rectangle to star like shape with the 

adjustment of a small number of parameters. The parametric form of SE defines real values that 

can be plotted as  is varied. The implicit equation of SE was popularized by Piet Hein [GAR65] 

who described shapes in terms of the relative distance from a given 2D point to a SE surface. The 

solution of Equation 2.65, in parametric (explicit) form is: 
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    calculates an absolute value. 
sign returns 1 if input is positive, -1 if it is negative and 0 if it is 0 
a and b are scale parameters that define the size of the SE in the x and y-axes. 
  the exponent coefficient of the SE in the x - y plane. 
  an independent angular parameter of the SE in the range  –      . 
x and y are 2D spatial coordinate points 

1. Read   
2. Set the values of a and b 
3. For   –  to   :      

3.1                                     
3.2                                

   End For 

Fig. 2.2. A pseudo-code description of the superellipse to compute the coordinate parame-
ters x and y. 

                                                          
                      

                      
                                             (2.66) 

Where: the exponent,  , is called the squareness parameter of the SE that defines the angle of 

orientation in the x - y plane and   is an independent parameter in the parametric form of the SE 

in the range  –      , which is used along other parameters to allow the parametric equations to 

generate the SE shapes. 

 

Fig. 2.2 shows the pseudo-code for computing the spatial coordinate parameters x and y in the x - 

y plane using the SE in parametric form, given the scaling and exponent parameters. The angular 

parameter takes the values in the range of –   to  . 

 

 

 

 

 

 

  

 

 

 

The SE curve in Equations 2.65 and 2.66 can represent a wide range of symmetrical shapes such 

as rectangle, circle and an ellipse by varying the scales and angular parameters of the SE. For ex-

ample, with   = 0, the curve takes a form of rectangle (a ≠ b) or square (a=b). As   increases but 
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is still less than 1 a series of rectangular shapes with rounded corners are generated until an el-

lipse or circle is obtained when    . A diamond shape is obtained when    2 and a pinched 

shape when   > 2, see Fig. 2.3. 

 
The intrinsic symmetry of the SE arises because the exponents are the same for x and y-axis 

terms and constant. The compact SE is a compact representation. 

 

SuperQuadrics (SQs) are defined as the spherical product of two 2-D superellipses [BAR81]; SQs 

form a family of parametric surfaces in three dimensions which can model a wide variety of ob-

jects. 

 

2.10.1 Superquadrics Literature Survey 

SQs were widely adopted in a wide range of applications because their mathematical representa-

tion is simple and they use a relatively small number of parameters. Barr [BAR81] introduced the 

SQ representation to computer graphics and formulated the deformation of SQs for linear axial 

twisting, tapering and bending. SQs were introduced to computer vision by [PEN86]. He used 

SQs with parameterised global deformations as a model for object recovery. The use of the pa-

Fig. 2.3. The SE shapes generated for constant values of a and b and as   is var-
ied, the shape progression is: (a) square; (b) square with rounded corners; (c) 

circle; (d) flat bevelled and (e) pinched. 

(a)                              (b)                          (c)                         (d)                          (e) 
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rameterised implicit function of an SQ simplifies the optimization involved in curve fitting. Pent-

land argued that SQs represent natural objects better than simple primitive shapes such as circles. 

His initial formulation of the SQ to recover object form proved unstable and computationally 

complex. He later developed a stable method for both segmentation and fitting deformable SQs 

using the minimum description length in a segment-and-fit paradigm [PEN87]. He recovered SQ 

models by searching over the entire SQ space and integrated segmentation with the SQ model. 

An exhaustive search was used to allocate the best initial values for the model. The computa-

tional burden of this process was high. Pentland [PEN90] later proposed a segmentation method 

which matched 2D projections of 3D SQs of different shapes, orientations and scales to the im-

age. After this segmentation, 3D SQ models were fit to range points for individual components. 

 

A deformable SQ model incorporating both global and local deformations in a physics-based rep-

resentation was developed by Metaxas and Terzopoulos [MET91]. Global deformations captured 

the salient structure of object components and local deformations structural detail. Local and 

global deformations were induced by converting data into forces. The physically based models 

were controlled by equations of motion to adjust the rotational, translational and deformational 

degrees of freedom of the models. The equations allowed the deformable SQs to react to exter-

nally applied forces drawn from image to range data so that the model could be adapted to match 

the visual data. The model was helpful in reconstructing 3D objects and extracting global shape 

features. These techniques provided a robust framework for fitting, and presented the possibility 

for a natural extension to dynamic scenes. These models have the benefit of modelling non-

symmetric objects and simultaneously satisfying the requirements of shape reconstruction and 

recognition. However, the transition between local and global shape deformation was not smooth. 
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SQs have been used to identify shape primitives or “geons” in single view range images [RAJ92]. 

Geons were classified on the basis of axis shape, cross-section shape, cross-section edges and 

cross-section symmetry. The SQ was applied to determine the principal axis of the geon and 

shape discrimination. The deformation parameters of a SQ were determined for synthetic and 

natural range images, acquired from a number of perspectives, of models belonging to 12 shape 

classes corresponding to a set of 36 different geons. Five features were derived from the esti-

mated SQ parameters to differentiate between these 12 shape classes. They investigated the rec-

ognition of geons from SQs fitted to range data, but not the identification of objects composed of 

assembled geons. Classification error rates were estimated for binary tree and k-nearest-

neighbour classifiers. The results indicated that the shape attributes can reliably be inferred from 

SQ parameters, with a simple choice of features. The qualitative shape properties were about 

80% reliable for range images of objects with smooth surfaces using the features derived from the 

estimated parameters of SQ and a binary tree classifier. 

 

Park et al. [PAR94] proposed the use of SQs to represent local and global shape deformation. The 

object’s shape detail was represented by the local deformation parameters. The global parameter 

functions improved the accuracy of representation of an object’s shape for the investigated appli-

cations in terms of a few intuitive parameters such as functional twisting and bending, where 

their values varied across the primitive’s shape. The diversified global parameters were inde-

pendent of the underlying shape. The global parameter functions made it easy to find a compact 

representation for complex shapes, which would support shape reconstruction and recognition. 

Evaluation was performed on MR images of the LV of the heart for normal and abnormal heart 

movement during systole. The root mean square error between the interpretation and the manu-
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ally defined boundary was low at less than 5%. The model was applied to abnormal and normal 

hearts to consider how well it could interpret what is normal LV motion and in particular the ef-

fects to the LV motion of the various LV diseases. 

 

SQs were used in a Context-Based Image Transmission (CBIT) scheme to optimise bandwidth 

utilisation when large volumes of medical image data are transmitted, especially over low-

bandwidth channels [SAL99]. This was achieved by providing a context for the transmission 

process and a mechanism to update key image regions. An approximate iconic image was used to 

identify the gross structure. The iconic image was constructed using a combination of shape-tree 

and SQ representation [SAL99]. A wide range of complex shapes were represented compactly 

with a small set of parameters. 

 

A model in which a complex shape is decomposed into simpler components, each of which is 

then modelled by a SQ was presented by Krivic and Solina [KRI04]. They described a SQ model 

which represented articulated objects by their parts. The system was based on a tree representa-

tion that modelled the flexible articulated objects of a human figurine. A symmetric shape was 

easily constructed by a SQ and modified by the addition of sub-regions to form an asymmetric 

shape. A recognition system of articulated objects was used to search for matches between parts 

and their rough shape in a scene and parts of the modelled objects using interpretation trees. They 

argued that the configuration of simple sub-parts and their rough shape should provide sufficient 

constraints for successful matching. The object shapes were constructed from range images using 

their recover-and select Segmentor program. The representation with the recover-and select Seg-
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mentor program is more compact if regions are added and the objects are represented clearly by 

the SQ. However, this system was computational costly and unstable on some shapes. 

 

An SQ alone was shown to model a wide range of symmetric shapes [PAR94] [MET91]. An SQ 

model with a shape tree has been shown to be effective for representing a wide range of asym-

metric shapes [KRI04] [SAL99]. However, the precision of object shape representation using an 

SQ is limited and the interpretation is largely procedural refining the interpretation until the error 

is sufficiently low. For a SQ model to be applied to model a wide range of objects in images this 

model needs adapting to a model-based strategy. 

 

2.10.2 Superquadrics and Superellipses Curve Fitting 

SQ curve fitting is commonly performed by a least square minimization to match points on the 

SQ to point in an image, as the SQ parameters are varied. SQs have been applied to segment 

range images with a non-linear least squares minimization method [GRO88]. A Euclidean Error 

Of Fit (EOF) function was suggested by Gross [GRO88] but it introduced a high-curvature bias 

that produced counter-intuitive results. Rosin and West [ROS95] presented the use of Powell’s 

optimization technique to fit the superellipses to minimize an error metric based on Euclidean 

distance by segmenting curves into a series of super elliptical arcs. The various shapes in the im-

ages were well represented by the superellipses. 

 

Pilu [PIL99] investigated an approach for fitting an SE curve with a statistical PDM. A SE model 

was used to generate a large random synthetic set of deformable SE shapes in order to train a 

PDM, from which linear deformable SEs were be generated. Pilu commented that the SE mathe-
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matical model could be substituted with other representations to generate more appropriate 

shapes. The fitting was carried out as in [COO92] and a PDM initialized by fitting ellipses to pix-

els belonging to a small set of seed points as described in [PIL97]. The PDM was used to repre-

sent the variability of the SE model in terms of size, bending, tapering and squareness. They ob-

served that a PDM initialized using ellipses with geometric parameters [PIL97] geometric param-

eters [PIL99] were able to similarly represent shapes. This algorithm [PIL99] is versatile, effi-

ciently and can readily be adapted to new applications. It converged well and did not require a 

good initial set of parameter values. 

 

Fitting an SQ to partial data is difficult because reliable parameter estimates cannot be made with 

partial data. Iterative methods can sometimes minimise predefined objective functions [ZHA03]. 

Fitting an SQ to partial data using a conventional algebraic distance did not provide a sufficiently 

dense distance map to guide the optimisation process because it generates a series of discrete dis-

tance values [ZHA03]. The approach described by Zhang and Rosin [ZHA03a] improved the fit-

ting process to partial data by augmenting the algebraic distance with gradient and curvature in-

formation. An SQ was fit by finding a set of model parameters that minimised the sum of the 

squares of the distances between the model curve and a given set of pixel data [ZHA03]. To find 

the Euclidean distance between the data and the SQ curve a quadratic equation must be solved.  

 

An iterative gradient descent method to recover deformed SQ models from range data, by a least-

squares minimization was introduced by Solina and Bajcsy [SOL90]. An SQ was fit to range im-

ages to enable a robot to grasp and manipulate objects [CIP03]. In their Simultaneous Segmenta-

tion and Superquadric Fitting (S3F) method range data was matched to an intrinsic model. They 
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proposed a solution for self-occlusion and reported numerical experiments on 2D and 3D data 

that improved the fit of SQs to laser-range data collected from moving ground-robotic platforms. 

SQs provided a well-developed mathematical foundation for the recovery of surfaces from range 

data and for a concise shape description. However, they reported that recovering a SQ from range 

data is sensitive to noise and outliers, and that stability is difficult to achieve. 

 

Selecting an appropriate objective function for SQ fitting was addressed in [GRO88] [ZHA03]. 

Experiments were performed to characterize the behaviour of objective functions used to fit 3D 

SQs with curves [GRO88] [ZHA03]. Dense synthetic range data was considered in [GRO88] and 

natural data in [ZHA03]. The concavity of the objective function towards the minimum and the 

accuracy of the recovered parameters were analyzed. Points from complete and partial laser scans 

were fit. The analysis presented in [GRO88] showed that a radial objective function outper-

formed other objective functions in terms of precision and sensitivity to parameter changes. The 

method of fitting accommodated points occluded from the view of the laser scanner. They con-

cluded that objective functions based solely on distance and volume performed well in fitting an 

SQ to scanned points with one self-occluded side along a segment. 

 

A Euclidean objective error function [GRO88] was employed to fit the SQ by minimizing the dis-

tance between the data points on the shadow contour and the SQ. Further, metrics similar to those 

used for the ellipse fitting [ROS93] and polynomial fitting [TAU91] were investigated with an 

algebraic distance measure, defined in Equation 2.65. They chose to minimize the Euclidean dis-
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tance    from a point         on the contour to the point         on the SQ along the line that 

passes through         and the centre of the SQ: 

                                                                   
 
        

 
                                       (2.67) 

Where:                                         

                                                       
 

           
 

   

 

 

                                                

                                                                                                                                            

To allow a rotation   and translation of the centre of the SQ to a point        , Equation 2.65 was 

modified to: 

        
                     

 
 

 
 

  
                     

 
 

 
 

           

Results showed that there is a high curvature bias in which the algebraic distance from a point to 

the SQ is underestimated [DUR08]. 

 

2.11 Extended Superellipse Modelling 

The Extended SuperEllipse (ESE) is formed by expressing the exponent of the SE as a function 

of angular orientation [ZHO99] so that a wide range of shapes, which are not necessarily sym-

metric, can be represented. The implicit form of a 2D ESE is defined as: 

                                                           
 
 

 

       
 

 
 

 

                                                            (2.71) 

Where: a and b are scale parameters that define the size of the ESE in the x and y directions, re-

spectively, x and y are two dimensional points sampled on the ESE surface,       and       are 
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relative shape exponent functions in the x - y plane that vary with the angle of orientation   to 

control the shape of the ESE and   is the angular index parameter of the exponent functions. 

 

2.11.1 Extended Superquadrics in Graphics and Image Interpretation 

The Extended SuperQuadrics (ESQs) in 3D have exponents changing according to the latitude 

and longitude angles respectively in the object centered spherical coordinate system. ESQs were 

adopted in several applications for modelling natural objects. Zhou and Kambhamettu [ZH099] 

sought to create a deformable model that is better able to model the variability of data with a 

small number of parameters. They demonstrated that the ESQ is a powerful method for describ-

ing quasi-algebraic surfaces in 3D using range data. They presented experiments on both the ESQ 

fitting and realistic modelling which showed that the ESQ generated good 3D representations in 

computer graphics and that the ESQ is a promising approach for object recovery and interpreta-

tion of range data in computer vision. They used Bezier curve functions for the exponent of an 

SQ to create the ESQ that was able to model complex non-symmetric shapes determined by ad-

justing control points that are inputs to the ESQ. They observed that it is not necessary for the 

control points to be evenly distributed, that the number of control points required depends on the 

detail to be represented. The ESQ representation is both compact and rich. Zhou and Kamb-

hamettu demonstrated the generation of non-symmetric objects such as a spoon and a duck from 

3D data. However, this process was computationally expensive. In [ZHO00] they utilized the 

ESQ in visualization and motion analysis. They modelled human faces with a hierarchy of geo-

metric ESQ models which integrated both local patch analysis and global shape descriptions to 

recover the structure and non-rigid motion. The non-rigid object in a 2D monocular image was 
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segmented into many small areas and local analysis performed to recover the detail for each small 

area. A recursive algorithm and a global shape model were used to guide the local analysis. The 

results indicated that this method was effective in capturing both the global and local deforma-

tions of flexible objects. Later, Zhou and Kambhamettu [ZHO02] related all the thirty six geon 

models with an ESQ surface model. Thirty six geons were represented and recognised using the 

ESQ. They performed a set of experiments on both hand-carved and simulated geon models. The 

results indicated that the parameters of the ESQ contain enough information to identify each geon 

model. Thirteen features were derived from the ESQ parameters to distinguish each geon class. 

The fitting process was tested on 3D simulated and natural geons. 

 

The Nearest Neighbour (NN) and Back-Propagation Neural Network (BPNN) classifiers were 

employed for objects’ classification. The classification error rates for objects with uneven sur-

faces in hand-carved models created from soap and a radish were 25% using NN classifier and 

8.3% using BPNN classifier. An error measure of 8.3% between the interpreted surface and the 

ground truth of the object shape is relatively small demonstrating that an accurate detailed repre-

sentation was achieved. However, no attempt was made to realize a smooth and even surface for 

the natural geon models. Top and side views of natural geon models were not recognized by SQs 

due to their asymmetric cross-sections. The classification error rates for noise-free simulated and 

natural geon models were 2.8% and 8.3%, respectively when using a BPNN. The classification 

error rates when adding  zero-mean additive Gaussian noise with a standard deviation of 1.0 and 

of 2.0 to 3D data of the simulated geon models were respectively 6.9% and 16.7% using the NN 

classifier and 4.2% and 7.8% using the BPNN classifier showing a good level of accuracy. The 

high error rates for the simulated data with high noise might result from the ESQ fitting to the 
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noise in the surface data points. Using the ESQ fitted parameters as input to the BPNN, the output 

class shape may be incorrect, thus increasing the classification error rate. 

 

The notion is that the Extended SuperEllipse (ESE) is a parametric representation of a curve in 

the same way that the Hough Transform (HT) is a parametric model of a shape such as a line, cir-

cle or ellipse [BAL81] and which can be generalized to any parametric shape. The ESE does not 

lead to the plotting of parameters to create a model. In the Hough transform the parametric form 

leads to a representation in a different space that allows the parameters of the line, circle or el-

lipse to be determined [BAL81]. Therefore it is acceptable to suppose that the ESE could be used 

as a flexible model to represent objects. As 2D spline curves were employed to construct a flexi-

ble model describing the outline of a person [BAU95] it is therefore reasonable to suppose that 

the ESE parametric curve could be structured as a flexible model to represent objects in an image 

with curves. The ESE representation can define curves and geometric shapes and, further, has the 

potential to form a suitable model. 

 

2.12 Chapter Summary 

From this literature review we draw the following requirements: 

1) A new cue detection approach that will allow figural axes to be computed for a low com-

putational cost as a cue detector. 

2) A method of object identification that is adaptable to a wide range of objects and which 

can deal with changes in pose and variations of form. 

3) A model that is able to identify many different objects in a scene and to reason about 

which model should be used to identify each object. 
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To realise these key ideas is to develop an improved model-based method for image interpreta-

tion that can identify a greater range of objects. The development of a parametric representation 

for the ESE combined with a statistical model will be described in the following chapters. This 

approach seeks to build on the strengths of the ESE and statistical modelling of form and appear-

ance using points sampled at regular intervals. The first process is to identify cues to determine 

where it would be appropriate to try to fit a model in an image. This process is described in the 

next chapter. A variant method of cue detection to identify the axes of local symmetry for articu-

lated objects is described after the following chapter and in the following chapters the ESE will 

be established to create a model and perform image interpretation using that model. 
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Chapter 3 CUE AND EDGE DETECTION 

3.1  Introduction 

In model-based interpretation it is necessary to determine where it is appropriate to try to fit a 

model at the appropriate place in the image. The model is fit to points that represent the potential 

boundary of the object to verify that the object represented by the model is present. One approach 

is to search from cue points to locate key features such as edges that sample the boundary of an 

object. However, edges are often not good model key points, because they do not provide good 

localisation; they do not uniquely identify a point as a corner does. There are also many edges in 

an image that will not be part of the object sought; edges are less specific than corners. 

 

Here the cue detection method uses the Maximum Likelihood Ratio (MLR) criteria [ZHO97] to 

identify object cues based on regional symmetry. The MLR can also be formulated to identify 

edge points on the potential boundary of the objects. The edge points are sought on a systemati-

cally selected set of search paths around the cue point or axis. The MLR is used to detect edge 

points using a pair of regions that straddle the edge sought. The direction of search for edges is 

chosen so that the search path is close to perpendicular to the boundary. Therefore a pair of re-

gions considered for edge detection may be extended along the search path. 

 

The RGB colour space is used in the MLR for cue detection. The chief justification for the use of 

RGB is speed of computation to avoid the need to perform a colour space conversion. In addition 

cue detection seeks to locate major changes and they are apparent in all colour spaces. A percep-

tually uniform colour space is not required because major differences are sought; the sacrifice of 
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using RGB not being a perceptually uniform colour space is small, especially given the high level 

of redundancy in colour. 

 

3.2 Maximum Likelihood Ratio in Grey-Level Images 

The maximum likelihood ratio was reviewed in subsection 2.5.2. Edge detection in grey-level 

images can be performed by identifying regions where the population of grey-level values differ. 

The unbounded upper range of LR value makes it difficult to determine when a significant 

change arises. This issue can be resolved if the inverse of LRs is employed because the inverse of 

the LR is self-normalising over the range [0, 1]. The MLR in grey-level was given by Zhou and 

Pycock [ZHO97] as defined in Equation 2.47. Fig. 3.1 shows the MLR operator windows A, B 

and AB, the combined window, where the number of pixels in regions A and B are denoted by    

and   , respectively. 

 

If the sub-populations of regions A and B are Gaussian distributed and from the same distribution 

then the combined population AB will also be Gaussian distributed. However, if the populations 

of regions A and B are Gaussian distributed but from different populations, then the distributions 

of the region AB will not be Gaussian distributed. That is, the likelihood that a particular value of 

Fig. 3.1. MLR regions, A, B and the whole region, AB. 

Likelihood ratio position 
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x drawn from the total population of AB will be inaccurate, but still a systematic characterisation 

of the population reduces as the differentiation of the populations increases. Furthermore, the 

likelihood estimate for the joint population will be reduced for values drawn from either popula-

tion A or population B, decreasing the MLR value and emphasising the difference. Thus any de-

viation of population A or B and AB from Gaussian distributions is unlikely to have a marked im-

pact on the computed MLR value. Deviation from Gaussian distributions will increase the likeli-

hood of falsely detecting a difference and is therefore any error is in the direction of a preferred 

or safe outcome. Therefore, any deviation from Gaussian in the population being analysed has a 

small impact because it is the change in likelihood ratio that is important, not the absolute value. 

 

The full expression for multi-channel data was given in Equations 2.38, 2.42 and 2.45. A simple 

way to extend the MLR in Equation 2.46 to colour is to assume that each colour channel of an 

RGB image is independent. This would give an expression in which the MLR responses for each 

colour channel are multiplied together. The colour MLR in this case is defined as: 

     
      

        
        

 

                                          
                          

 

Where:         ,   ,         ,    ,     ,      and      are the computed covari-

ance of each population in windows A, B and AB, for the R, G and B channels respectively. 

 

A simplification of Equation 3.1 results if it is assumed that the colour channels of an image in 

RGB colour space are highly correlated [TSA05]. The MLR is then given by: 
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Where:    
      

 ,    
 ,    

      
 ,    

 ,     
 ,     

 and     
  represent the variance of each popula-

tion in windows A, B and AB, for the R, G and B channels respectively. 

 

3.3 MLR Cue Detection  

Cue detection is based on the colour version of the MLR criteria. The goal is to identify a single 

cue for each object. 

 

3.3.1 Design of Cue Detector Mask 

The geometry of the MLR cue detector, shown in Fig. 3.2, was designed to accommodate the 

symmetry in the appearances of a variety of objects. The detector looks for pedestrians of differ-

ent sizes within the image. Recall that distance to the pedestrian determines the size of the pedes-

trian in the image: pedestrians that are farther away appear smaller in the image; while closer pe-

destrians appear bigger. The detection system searches the image at set of scales and because the 

pedestrians are bound to the ground, this can be used to limit the search range. To detect a pedes-

trian it must accommodate a pedestrian in various poses, and be sufficiently specific to avoid 

identifying other objects. The mask is designed to detect image regions with a central patch of 

pixel values that differ from two regions alongside that have a similar distribution of pixel values. 

The vertical extent of the central region is substantially greater than that of the flanking regions 

and responses in the vertical axis are accumulated to allow the mask to detect pedestrians of vary-

ing heights. The width of the central region has been selected to be narrower than the average 

target region to accommodate pedestrians of different widths. The size of the central region and 
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the two flanking regions is a compromise. Small regions provide a localised estimate of response 

but are more prone to the limitations of a small population size and variability of the likelihood 

estimates. Larger regions can lead to small structures being missed and take longer to compute. 

The computation is simplified if the number of pixels in the central region is the same as the 

number of pixels in the combined flanking regions. A mask with the flanking regions spaced 

apart from the central region, as shown Fig. 3.2 (a), offers the potential of accommodating more 

variation in the form of the objects detected. The alternative mask as shown in Fig. 3.2 (b) is also 

considered. 

 

 

 

 

 

In Fig. 3.2 (a) and (b),   ,   ,    and    denote the width and height, respectively,  of regions A 

and B. The heights    and     are related such that        . The gap between windows A and 

B for mask 1 is     .  The masks presume that the pedestrian is upright. 

 

3.3.2 Search Strategy 

A search for object cues is performed at four scales to accommodate changes in the size of ob-

jects with distance and natural variation in their size. The mask pattern is moved along a selected 

sparse set of columns in the image. The sparse sampling of columns is sufficiently dense to detect 

pedestrians such that the separation between columns was selected to be 1/3 rd of the width of the 

    

       

Fig. 3.2. Alternative mask patterns (a) with a gap and (b) no gap 
between the central and flanking regions. 

    

(a)              (b) 

 A 

   
 

  
B A A    

         

    

     

         A

A 

 

B 



Chapter 3: CUE AND EDGE DETECTION 

95 
 

central region B of the mask, the smallest width of a pedestrian. This distance between sampling 

columns was selected so that at least one column will be located close to the centre of any pedes-

trian in the image. The step size along columns (between the rows) is the same as the height of 

region A. As the mask is moved along a vertical path of the image in turn, MLR response is com-

puted at each position and associated with the centre point of region B (see Fig. 3.2). When mov-

ing to a new column position the operation required to re-compute the MLR response is the same 

for a large or a single pixel step. The flanking regions do not overlap and only half the pixels 

overlap from the central region during the movement along columns. With movement along col-

umns it would take as long to update the statistics for the central region as to re-compute for the 

whole region. The operator is applied across scale and the responses at each scale were combined 

at the position of the response in the finest scale image. The responses were combined across 

scale after the hysteresis threshold is applied. This combination of responses helps to identify the 

target object from other background objects. At each change of scale the operator size is reduced 

by a factor of 2. The cue detection algorithm is summarised in Fig. 3.3. 

 

 

 

 

 

 

 

The search path of the cue detection algorithm is shown in Fig. 3.4 (a) and a mask of central and 

flanking regions is shown in Fig. 3.4 (b). 

Fig. 3.3. Cue detection summary. 

  : The width of region A,             : The height of region A 
i: denotes the rows of the image,  j: denotes the columns of the image 

1. For each of four scales from fine to coarse 
1.1 For each i = 0 to end of row by    

1.1.1 For each j = 0 to end of column by    
1.1.1.1 Compute MLR using Equation 3.2 

1.1.2 Apply Hysteresis Threshold 
             End 

1.2 Combine all detected responses at each scale 
 End 
2. Select a cue that best identifies a pedestrian. 
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Fig. 3.4 (a) shows the path and the positions of the mask at an image column. The widths of the 

central region and the flanking regions are    and   , respectively and the heights of the central 

region and the flanking regions are   . The blue flanking regions on the left and the right are 

spaced from the grey central region by a gap of width     . The stack of blue and grey coloured 

regions shows the mask and the movement of the mask down a column with vertical distance 

equal to the height of the flanking regions. This scanning process is shown by a black arrow 

where the large gray dot shows the centre of a central region to which a response obtained is as-

sociated. The distance between columns was selected to be      so that at least one column will 

be located near to the centre of a pedestrian in the image. 

 

 

 

 

 

 

 

 

 

3.3.3 Hysteresis Threshold  

Thresholding with hysteresis is applied to the generated likelihood responses to select bands of 

peak MLR responses for each column before combining the responses across scale. Detection is 

initiated when the high threshold is exceeded and continues until the response falls below the low 

                        (a)                                                                    (b) 

Fig. 3.4. Cue detection search path. 
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threshold. The response at the middle of this range is reported as the response of the operator. 

Hysteresis thresholding tracks along the detected responses to remove weak responses and main-

tain connected strong responses. 

 

3.3.4 Clustering of Responses and Selection of Cues 

Given the MLR responses detected by the cue detector; a clustering method of three successive 

phases was applied to identify the positions of potential pedestrians. The generated MLR re-

sponses were scanned to identify a local peak of MLR response. A distance of    pixels of one 

another of MLR responses were identified into a group. The distance    is the same as the width 

of the central region of the mask. That this distance is chosen to associate points across the width 

of a pedestrian together without incorporating to many points that do not correspond to a 

pedestrian. The validity of this assumption is evaluated in subsections 7.3.2 and 7.3.3. 

 

In the scanning and clustering procedures the class of each set of points can be described as: 1) 

clustered points at the centre of the pedestrian, 2) clustered points not centred on the pedestrian 

and 3) single points. These classes and clusters of MLR responses along with the cluster points 

are illustrated, by a set of experimental examples, in Section 7.3. 

 

A single point closest to the centre of each cluster of responses is computed. This was performed 

using a weighted squared mean distance, defined as: 
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Where: 

  : is the total number of responses in the kth cluster. 

K: is the number of clusters. 

  : is a cluster k. 

   : is a weight that defines the appropriateness that the ith response,   , is close to the centre 

of the kth cluster. The value of     was defined to be 1 or 0. 

  : is a response in cluster k at index i, defined by its spatial position,           . 

   : is the centre of cluster k,   , defined by              . 

        : is the Euclidean distance between    and    . 

The cluster centre identified by the mean position of the points in cluster    was computed as: 

                                                                  
 

  
   

  

   

                                                                                

A weight to define a point and the distance from that point to each cue point were used to 

determine which points are included in the cluster. This process was recalculated until each 

cluster reduced to a single point. The process is stopped when each cluster reduced to a single 

point or a threshold defined by the distance between the centres of the clusters is less than   . 

 

All clusters with the cue points were scanned using a similarity measure [SHA95] [WAN02] to 

determine if the candidate cue points belonging to the same object or not. This measure was 

computed between each pair of clusters of cues. The cue points for the same object were com-

bined. A measure of similarity using the MLR response values for clusters of cues was defined 

between two clusters, as defined by [SHA95] [WAN02]: 
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Where: SIM defines a measure of similarity between a pair of clusters R and S,    and    are the 

mean of the response values in cluster sets R and S, respectively,    and    are the ith and jth MLR 

response values in clusters R and S, respectively where i and j represent the indexes of the re-

sponses in clusters R and S, respectively. 

 

All combinations of the points of the clusters are considered to measure the similarity between 

the clusters. This formula of similarity does not consider corresponding points between the 

clusters but all combination of the responses. Equation 3.5 measures the product of the sum of the 

differences between the value of each MLR response and the mean value for a pair of clusters 

divided by the square root of the sum of the squared difference between the values of MLR 

responses and the value of the mean for a pair of clusters. Thus, this formula measures the corre-

lation between clusters R and S with respect to all response values [WAN02]. The correlation 

measure defines the coherence between the clusters of cues as evaluated by Wang et al. 

[WAN02] and Shardanand and Maes [SHA95]. A large positive value signifies a strong correla-

tion and a large negative value signifies a lack of correlation. Two clusters belong to an object if 

they exhibit a large coherent value. A threshold was applied to the similarity value to determine if 

the responses in a cluster belong to a single object so that it is appropriate to combine the cues of 

those clusters. An appropriate threshold was experimentally determined have a value of 3. The 

choice of value was shown in Section 7.3 not to be critical. The experimental settings and per-

formance of this clustering method along with the MLR profile responses on a set of experiments 
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are presented in Section 7.3. The response of a rubbish bin or a tree to the pedestrian detector is 

illustrated in subsection 7.3.3. 

 

A Support Vector Machine (SVM) classifier, as an alternative method to the similarity and selec-

tion of cues criteria, was combined with the clustering procedure to identify pedestrians. Here the 

feature set produced by the MLR criteria and a new feature set of co-occurrence matrices were 

combined with the SVM classifier to detect pedestrians. The cue detector algorithm based on 

MLR was trained to identify the interest points and classify the patches centred at those points to 

identify the potential regions of interest using the clustering method. The SVM [SCH09] classi-

fier introduced in subsection 2.3.1.1 was trained on those potential regions of responses for pe-

destrians and non-pedestrians. The SVM classifier used the set of features of MLR and a set of 

features extracted using the co-occurrence matrices as described in [HAR73] and [SCH09]. For 

each cluster and detection window in the image, texture features extracted using co-occurrence 

matrices were concatenated with the MLR feature set and classified by the SVM classifier as a 

pedestrian or non- pedestrian. A set of five descriptors was used: the entropy, angular second-

moment, sum of squares, contrast and inverse difference moment of the co-occurrence matrix 

[HAR73] SCH09]. Co-occurrence features were functional in pedestrian detection since they 

provide information regarding homogeneity and directionality of patches. Block sizes of     × 

     with shifts of      pixels were used for feature set computed by co-occurrence matrices. 

The RGB colour space was used and each colour channel was quantized into 16 bins. The fea-

tures of the co-occurrence matrices and their descriptions and mathematical calculations were 

introduced in the literature review in subsection 2.3.1.2. The SVM used here is implemented in 
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OpenCV based on the library LibSVM [CHA11]. Details of the configuration of the SVM are 

introduced in the experimental subsection 7.3.3. The clustering procedure of the proposed cue 

detector follows the sequence of steps summarized in Fig.3.5. 

  

 

 

 

 

 

 

 

 

 

3.3.5 Computational Complexity 

The MLR values were computed using the sum of values and sum of squares for computational 

efficiency in a single pass of the image data at each position of the mask. Processing the cluster 

responses requires each cue to be visited and the points are re-examined for each cluster. There-

fore, the method has a complexity of O(nmp2) where n is the number of points in the image at 

which the mask is applied, m is the number of points in the detector mask and p is the number of 

candidate cue points. The width of the mask is about twice the width of the pedestrian and the 

height of the mask is about the same height of the pedestrian. However, the width of the image is 

several times that of the pedestrian and the height of the image several times that of the pedes-

trian. Therefore, the number of points in the mask is less than the number of points in the image 

1. For each MLR response 
1.1 Cluster all responses within a distance of    pixels. 

2. For each cluster of responses 
2.1 Identify a single candidate cue point closest to the centre of each cluster using 

the formulas defined in Equations 3.3 and 3.4. 
2.2 Repeat with a new weight until each cluster is reduced to a single point. 

3. Scan through the identified clusters of the candidate cue points 
3.1 Combine cues that share a degree of similarity between their clusters of re-
sponses using the measure of similarity criterion defined in Equation 3.5. 

4. Use the MLR feature set and a set of measured features using the co-occurrence ma-
trices to train the SVM to the responses of pedestrians and non-pedestrians. 

5. Repeat steps 1 to 3 and use the feature sets of MLR and co-occurrence matrices to 
evaluate the SVM and the clustering procedure of the cue detector method to iden-
tify the pedestrians. 

 Fig. 3.5. A summary of clustering and selection of cues procedure. 
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but the number of points in the image that lay under the mask is the same as the number of points 

in the image. The order of the complexity issue of MLR computation is similar to the order of 

image size. The factor m is similar in magnitude to n and p does form an important factor of the 

complexity assessment. Then, the complexity can be reduced to        . 

 

3.4 Variations of MLR Cue Detector 

A variant to the pedestrian cue detection algorithm for detecting vehicles is described here. The 

hysteresis threshold and the clustering methods were not changed. The geometry of the mask to 

detect pedestrians, shown in Fig. 3.2, was modified to detect vehicles by changing the width and 

height of the regions of the mask. This is a minor adaptation. The search strategy to detect vehi-

cles scanned first along horizontal paths. The values used for the width,   , height,    and the 

gap between the two regions for vehicle detection, at the first scale, are shown in Table 3.1. 

 
Vehicles do not respond to a pedestrian detector because the dimensions of vehicles are very dif-

ferent to those for pedestrian detection. Therefore, the dimensions of the vehicle detector mask 

are very different to those of the pedestrian detection mask and, therefore, it is unlikely that a pe-

destrian would be detected using the vehicle mask. To detect both pedestrians and vehicles in one 

image each detector must be applied in turn. The responses of vehicles to the pedestrian detector 

and of pedestrians to the vehicle detector are illustrated in subsection 7.3.5. 

 
Table 3.1. Parameter values used for the masks of the pedestrian and vehicle detectors. 

 
 

 

Detector Mask dimension (pixel) 
      gap 

Pedestrian 48 72 16 
Vehicle 108 54 - 
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The adopted cues are points at which it is appropriate to try to fit a model. That model fitting 

process, as described here requires “key points” that identify potential object boundary points. 

 

3.5 Key Point Generation 

Sampled points on the boundary of the object, key points, are required to build a model and to 

interpret an image. A set of systematic search paths are used to generate the key points (edge re-

sponses) sampled at regular intervals around an object. They are detected using a variant of the 

MLR operator with a pair of regions A and B, as shown in Fig. 3.1, designed to identify edge dis-

continuities as they are moved along each search path. 

 

3.5.1 Search Paths 

To identify the key points we first search on radial paths from a cue point or perpendicular to an 

axis. This form of search strategy is used to increase the likelihood that the search path crosses 

the boundary at angle close to 90 degrees and thereby improve the edge response. When a radial 

path is close to parallel with the boundary then a secondary path, perpendicular to the initial 

search path is adopted. For vehicles it is only necessary to search along paths that are radial to the 

cue points. The initial search path is radial from the object location cue, as shown in Fig. 3.6 (a) - 

(b). If the initial search path is not close to perpendicular to the boundary a series of secondary 

search paths are constructed perpendicular to the chord between adjacent radial paths, as shown 

in Fig. 3.6 (c) – (d). The key point detection process is described in subsection 3.5.2, and Fig. 3.7. 
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3.5.2 Edge Detection 

The windows A and B of the MLR edge detector of Fig. 3.1 were each set to a size of 7 7 pixels. 

The generation of edge points on both radial and perpendicular search paths to form a set of can-

didate boundary edge points is described in Fig. 3.7. The need for a secondary search path was 

               (a)                (b) 

                                 (c)                                     (d)                         

Fig. 3.6. Key point search paths: (a) Initial radial search path (b) initial radial search 
paths on an image of a pedestrian, (c) Secondary search path perpendicular to initial 
radial search path and (d) secondary search paths on an image of a pedestrian.  

 

1. For angular increments in orientation of the radial search path from     to     
1.1 Generate a radial line. 
1.2 From start to end of radial line 

1.2.1 Compute MLR edge response 
1.2.2 Select N strongest responses as potential key points. 

2. For each radial line i = 0 to last but one 
2.1 For key point j =1 to N 

2.1.1 Compute distance,   , from start of radial line to key point j 
2.1.1.1 If                                  Then 

For line from key point N on radial line i to key point N on radial 
line i+1. 
2.1.1.1.1 Search perpendicular to line for key points. 
2.1.1.1.2 Add point with largest edge point to selected point set. 

Fig. 3.7. Key point detection algorithm. 
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identified from the ratio of the distance of the key points from start of radial line to the key points 

on successive radial search paths. The radial distance to the corresponding first and third points 

on successive radial lines was compared to establish a secondary search path. Pairs of points were 

taken in sequence on each search path such as the ith point on one radial line was selected to cor-

respond to the ith point on the next radial line. The criterion for determining when a secondary 

search path was required was determined empirically. 

 

A set of values in the range of 0.1-1.0 and 1.7-3.5 pixels were applied to the distances between 

the key points on consecutive radial lines. How the ratio of the distance between the key points 

on successive radial search paths was calculated to determine the need for a secondary search 

path is described in subsection 7.4.6. The strategy can be observed in Fig. 3.8 with two different 

set of values used to determine when a secondary search path should be used. 

 

The blue search paths in Fig. 3.8 were identified using the distances of 0.9 and 2.5 while the red 

search paths were identified using the distances of 0.5 and 2.0. These distances evaluated to cor-

rect results in key point selection algorithm. 

Fig. 3.8. Secondary search paths using two sets of distances. 

file:///C:/Users/Ayman/Desktop/ThesisRevise%201-6-2015/Thesis18.docx%23_Toc429506612
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The edge responses detected on the radial and secondary search paths were analysed using the 

peak detector, described below, to locate the key points required to form a model. 

 

3.5.2.1 Peak Detector 

Peak detection with hysteresis is applied to the MLR edge responses to detect the position of the 

key points required to create a model and perform an interpretation. This is to ensure that only 

significant peaks and valleys are detected and to avoid the use of smoothing which can distort 

edge position. The parameters width, w, and height, h, of the candidate peaks (valleys) define the 

peak (valley) response, as shown in Fig. 3.9. To be a peak (valley) the value at point, X, must be 

greater (less) than the value at positions Y and Z by at least h. Peak detection with hysteresis is 

fast and avoids local minima, which would arise at weak boundaries between regions. 

 

Peak width and peak height for peak and valley detection were determined as described in Sec-

tion 7.4.6. This is illustrated in Fig. 3.10. Only the five most significant edge responses identified 

by light blue dots were selected along each search path. This was to constrain the search space for 

the model whilst ensuring that the correct edge position was preserved for model interpretation. 

 

 
Fig. 3.9. Peak and valley detection: peak width (w) and peak height (h). 

 

 h 

 w/2 
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 Global 
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3.5.2.2 Key Point Selection 

One boundary key point was selected along each search path. The key points on the boundary of 

an object were selected so that a well-defined model can be created. A set number of potential 

key points per search path should suffice to represent a shape. Key points are important for fitting 

an ESE curve to represent a variety of poses with one model. The key point selection process is 

illustrated in Fig. 3.10 with selected frames from a sequence of frames showing a pedestrian in 

slightly different poses. In each frame 43 key points were identified to form the boundary. The 

contour and the radial lines are shown in red. The perpendicular lines are shown in green and the 

key points used to form a model are shown as blue dots and the other detected key points are 

shown by light blue dots, which in some cases hide the selected key points. 

 

Initially key points were manually selected from the identified edge responses along each search 

path to collect the data and form a model. The radial search paths are spaced at equal angles. The 

spacing of key points varies when a secondary search path is used. The perpendicular, secondary 

search paths are introduced as necessary when a radial path is close to parallel with the boundary 

Fig. 3.10. A human in different poses with radial, red, and perpendicular, green, search 
lines: three contour examples with key points identified with blue dots. 
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as explained in subsections 3.5.1 and 3.5.2. It is observed from Fig. 3.10 that the points sampled 

are not all at equal angles given the nature of the sampling interval with the secondary search 

path; they are mainly equally spaced and in places approximately equally spaced. The total num-

ber of radial and perpendicular search paths is the same regardless of the pose to simplify model 

generation and matching, as illustrated in Fig. 3.10. 

 

Many edge detection methods were reviewed in Section 2.5. These edge operators are not appro-

priate to find the edge points along the search paths described in subsection 3.5.1 because these 

edge detection methods are sensitive to noisy images, since both the noise and the edges contain 

high frequency content and there are problems of false edge detection and missing true edges in 

these previously reported edge detection methods. Also, the edges produced by these methods do 

not identify well defined edge points. Here the MLR has a relatively high computational burden 

and the positions of edge points were used to create a model rather than to define the boundary of 

an object as in [YEN03]. Here, a peak hysteresis algorithm was employed to find the most sig-

nificant edge points “peaks” on the search paths that can sample the boundary of an object. 

 

3.6 Summary 

A generic cue detector based on MLR computation that can be used to detect cues for a wide 

range of objects has been described. How this cue could be used as a basis for detecting edge re-

sponses, again using an MLR edge detection operator was also described. In addition a process 

for selecting the boundary key points has been described. 
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Chapter 4 COMPONENT AXES DETECTION 

4.1 Introduction 

This chapter introduces the development of an axis detector at various orientations to identify 

axes as cues for complex and articulated objects. These axes are used to guide the search for ob-

ject boundaries, the creation of a model and image interpretation using that model. Any axis de-

tector must be able to identify axes in a variety of contexts to provide effective cues for model 

creation and image interpretation. It is difficult to define an axis detector that is effective and ro-

bust in all situations. 

 

Computing two orthogonal Maximum Likelihood Ratio (MLR) operations allows the response 

for a filter at a variety of orientations to be synthesised. The initial cues are generated and aug-

mented with features to identify the objects for which they are most likely to be a cue. The axial 

cues are linked to form a single composite axial cue. Search paths analogous to the radial paths in 

subsection 3.5.1 are constructed perpendicular to the axes. The edge detection procedure de-

scribed earlier in subsection 3.5.2 is used to search for the points on the potential boundary of the 

object. Edge points around the object boundary are selected as potential key points to form a 

model. 

 

4.2 Steerable Filter Transform 

The steerable filter was introduced by Freeman and Adelson [FRE91] to provide a linear analysis 

across scale and resolution. The filter is steered by rotation and translated. The filter was formu-

lated for a continuous range of orientations and scales, and can be synthesized with a linear com-
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bination of the result of applying a set of basis filters at fixed orientations. The basis filters can be 

applied to an image and the responses interpolated. A traditional steerable and scalable filter is 

performed in three phases: 

1. Decomposition: to produce a set of steerable and scalable kernels. 

2. Convolution: to produce a set of basis responses of an input image with the kernels. 

3. Reconstruction: to combine the basis responses with appropriate weights to produce the re-

sponses for a particular orientation band and scale. 

The basis filters, at each orientation, provide discrete responses that are interpolated. The result is 

a filter f(x, y) at orientation   defined as [FRE91]: 

                                                        
                                                                

 

   

 

Where:         is the effective filter at angle  ,          is the basis filter at q and   ,       

are the interpolation functions for the qth basis filter and Q is the number of basis functions re-

quired to steer        . 

 

4.3 Axis Point Detection 

4.3.1 Interpolated Function of the MLR  

The MLR steerable (interpolated) function,      , for an input image (I) of an arbitrary orienta-

tion,    and scale, n, is given by: 
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Where:      
  is the effective filter at angle,    and scale  ,       is the interpolation weight for 

the qth basis filter,      
   is the basis function at n and q and 2 is the number of basis functions. 

 

With the colour MLR of Equation 3.2 as the basis function in Equation 4.2, the axes at a range of 

orientations can be identified using: 

                                        
                 

                
                                           

Where:        and        are the weights of the function. 

 

It is not appropriate to linearly synthesize the MLR responses because the MLR operation is not 

linear. Therefore, the standard deviation of two adjacent 7 x 7 regions was considered. Also, the 

standard deviation of the joint 14 x 7 region is not the linear combination of the standard devia-

tion of the two regions. Therefore, the standard deviation of each region is squared, added to-

gether and then the square root taken. It is not possible to synthesise the output of the MLR filter 

at various orientations but to approximate the output response of the filter at various orientations 

by interpolation. This process encompasses a class of filters at a set of predefined orientation with 

interpolation to synthesise response at other orientations. This interpolates the filter using many 

versions of the same filter, each different from the others by an orientational angle. The output 

responses were identified at any orientation with the correct filter set, correct interpolation rule 

and the number of versions of the filter equal to the number of angles. 

 

A set of experiments, to approximate the output responses of the MLR operator, was applied, by 

interpolation, at various orientations to identify axis points for pedestrians alone or pedestrians 
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associated with a pushchair or a bicycle. These axis points were defined by the symmetry of the 

objects and their component parts in order to determine the major component axes. 

 

To show the validity of interpolation and to assess the appropriateness of interpolation to identify 

the axes points, a set of experiments are presented in subsection 7.4.4 to see the difference 

between the result of interpolation and the result of the actual MLR operator at various 

orientations. Further experiments of interpolating the outputs of MLR filter oriented in the correct 

direction, are illustrated in the results subsection 7.4.4. 

 

Illustrative results of interpolation to identify the axes points are shown in Figs. 4.5 and 4.7. Fig. 

4.5 shows the detected axis point locations for two pedestrians in two difference images with red 

crosses mark axis points. Fig. 4.7 shows the axis point locations for a pedestrian pushing a push-

chair. The red bullets mark axis points. A set of subsequent procedures were used after the inter-

polation process to refine the output responses to identify the component axes. 

 

4.3.2 Detection of Initial Local Axes Points 

The interpolated MLR operator was scanned across the image, a hysteresis threshold and cluster-

ing procedures similar to those described for the non-interpolated filter (see subsections 3.3.2 - 

3.3.4). The difference is that here the MLR response is interpolated at a variety of orientation an-

gles and a range of scales to generate local axis points on an object by superposition. The colour 

MLR values were computed using the square root of the squared variance of the combined region 

divided by the squared variances of the flanking regions. The local axes points, defined by local 

patterns of symmetry, were refined on the components of an object as described in the following 
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sections. These axes points were linked to identify the axes for the components of an object as 

described in Section 4.5. These component axes show the local symmetry on the objects. These 

axes were based on the symmetry of the objects and their component parts. The use of these axes 

to define models and interpret complex objects and combination of objects in a variety of poses 

as in images of people with pushchairs or bicycles is also described in Section 4.5. The detected 

component axes form a set of starting points from which to search for the potential boundary 

“key points”, as described in Section 4.6. The initial local axial responses were generated at a 

range of orientations as summarised in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

4.3.3 Clustering and Selection of Cue Responses 

A clustering procedure similar in some aspects to that described in subsection 3.3.4 was applied 

to the initial local axis points to refine the detected responses on the objects of interest and to 

guide the detection of these objects with the procedures described below. The responses and the 

initial candidate cue points detected within a distance of 5wA/2 of one another were combined and 

the centre of each cluster of responses returned as a single response. These procedures are de-

I is the input image, n is the scales,                
1. For each of four scales from fine to coarse 

1.1 For each i = 0 to end of column by      
1.1.1 For each j = 0 to end of row by    

1.1.1.1 Compute       
  

    and       
   

    as shown in Equations 3.2 and 4.2. 
1.1.1.2 For each orientation    

1.1.1.2.1 Compute       
  

 using Equations 4.1 and 4.2 
1.1.1.2.2 Assign the axes points to the centre point of region B. 
End 

End 
End 

1.2 Apply hysteresis thresholding. 
1.3 Combine all detected responses at each scale. 
End 

   Fig. 4.1. Algorithm summary for finding the initial local axes responses. 
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scribed in Equations 3.3 and 3.4 to find the closest points at the mean positions of the cluster of 

points and (3.5) to measure the similarity of responses between the cluster sets. A SVM imple-

mented in OpenCV based on LibSVM [CHA11] was used as an alternative method to the selec-

tion of cues to identify pedestrians which vary in form as the walk, push pushchairs and push or 

ride bicycles. The SVM classifier used the features introduced in subsection 3.3.4 and described 

in detail in subsection 2.3.1.Details of the configuration of the SVM classifier are introduced in 

the experimental subsection 7.4.2. The SVM was trained and evaluated on the the same training 

and evaluation datasets as those used with the FT classifier as described in Section 4.4. This 

SVM was trained and evaluated on pedestrians alone, pedestrians associated with pushchairs and 

bicycles and non-pedestrians objects. 

 

Every pair-wise combination of candidate local axis points was checked to identify single axes. 

The points were then checked by the proximity of the neighbours. In particular, the magnitude of 

the responses and the distance between the local axes points were used as: 

                                                                                                          (4.4) 

Given that           represents the distance between the position of responses                 

and                , defined as: 

                                           
 
        

 
;                                                    

Where:         and         are local axes responses at positions i and j, respectively. 
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The criterion                    in Equation 4.4 is the product of the moment of the responses 

   and    by which points are selected. The nature of the distance      in Equation 4.5 between 

each two neighbour axes responses was restricted to be between    and    , which is propor-

tional to width of the operator used. This is to limit the influence of neighbouring response to the 

scale of the object mask. This is a basis by which a single point is retained for each of two 

neighbouring responses if                    is greater than the multiplication of    and    . 

This process requires a small number of comparisons because the responses were initially clus-

tered and axes points within a distance of 5wA/2 of one another were combined and the centre of 

each cluster returned before the hysteresis threshold. Finally, the axis cues that result from the 

clustering procedure and the strategies described above were combined to form a composite cue 

and to identify the objects for which they are most likely to be a cue, as described in Sections 4.4 

and 4.5. These axes were used to locate the boundary points of objects as shown in Section 4.6. 

 

4.4 Object Identification 

In the images considered here the objects of interest, people, pushchairs and bicycles appear 

separately, together and in groups. The determination of object type from the output of the cue 

detector is important because it allows an appropriate interpretation model to be selected. Energy 

and entropy attributes were computed for the local axes points identified to identify the extent of 

object and the type of the object and a model for each cue. The data for the energy and entropy 

measures was normalised by dividing each element of the data by sum of all the elements in the 

data. The energy attribute is the sum of the squared normalised frequencies of occurrence, com-
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puted as defined in Equation 2.4 [HAR73]. The entropy for the normalised frequencies of occur-

rence was computed as defined in Equation 2.17 [HAR73]. 

 

A Random Forest (RF) [BRE01] was used to identify the object type using the measures of en-

ergy and entropy applied to cue responses. The effectiveness of classification depends on the 

features and the relationship between the classes. The RF classifier introduced in subsection 2.7.5 

is used for identifying the type of each cue. RF classifier offers high classification accuracy 

[WAT08], an ability to identify which feature measurements should be used [WIL08], an ability 

to form complex decision surfaces [BOS07], an ability to accommodate missing values and avoid 

over fitting decision surfaces to data [BRE01]. 

 

Four classes of objects are considered; a pedestrian alone, a pedestrian pushing a pushchair, a pe-

destrian pushing a bicycle and a person riding a bicycle. The training data of the FT classifier 

consists of the entropy and the energy values of 800 sample images of different types of objects. 

The evaluation data consists of the entropy and the energy measures of 600 images of different 

cue classes. The degree of freedom for cue identification is identified by the number of object 

types plus the number of feature measurements, assuming that the parameters are independent. 

Four classes and two feature measurements give 8 degrees of freedom. Classification criteria are 

derived from the confusion matrix of the RF classifier, as presented in subsection 7.4.2.1. 

 

An alternative SVM classifier based on LibSVM [CHA11] was also used to identify the object 

type using the measures described above and the same training and test datasets of the FT classi-

fier. The parameter listing of the SVM is described in subsection 7.3.4. 
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Here what has been done is a simple approach designed to see if it might be possible to identify 

objects in this way. 

 

4.5 Axis Generation 

A least square linear regression is used to form an axis from selected cues. [DAV09]. The regres-

sion line which best fits the axes points was calculated such that the sum of squares of the y-axis 

variables is as small as possible from each axis point to the regression line. The sum of squares of 

the residuals allows the residuals to be treated as a continuous differentiable quantity. The least 

squares regression used to fit to a set of paired axes points to a line is given by: 

                                                                                                                                        (4.6) 

Where: 

b:  is the slope, computed by:          

a:  is the intercept  

r:  is the correlation coefficient 

  :  is the standard deviation of x 

  :  is the standard deviation of y 

   : is the mean value of x 

   : is the mean value of y 

   : is the predicted value and y is the true observed value 

 

The least squares line minimises the sum of the squares of the residuals as: 
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Where: h is the number of points. The x-axis represents the estimates and the y-axis is the defined 

axes points. 

 

The component axes are joined to the closest axis end point to form a composite axis. Here the 

axes detection is considered for people, pushchairs and bicycles. Fig. 4.2 shows a pose independ-

ent way to identify cues for a person. Fig. 4.2 shows a limited set of stylised poses for a person 

such that this diagram identifies a set of posterior, side and frontal poses. Fig. 4.2 (a) – (e) identi-

fies a set of stylised posterior and frontal poses and Fig. 4.2 (f) – (j) identifies a set of stylised 

side poses. There are a differences between Fig. 4.2 (f) – (j) due changes in the positions of the 

arms and legs. Variations of the appearance of the pedestrians also arise when they carry accesso-

ries that present a minor change to the form of the axes. The major component axes for a standing 

person are the head, torso, arms and legs [WUB06]. Sub-regions were formed around cue points 

to represent the various components of a person as shown in Fig. 4.2. The w and h parameters 

stated on all figures in Fig. 4.2 were used to identify the regions and are the same regardless of 

the pose. The dimensions were evaluated and confirmed such that they were not pose dependent 

[WUB06], and the values used were recommended by Wu and Nevatia [WUB06]. These sub-

regions are independent from each other such that if the head or any component is occluded this 

process will not fail. The head axis point is defined as the centre point for the axis points that are 

in the top region of the person, in a height range of 0 to 0.3h. The axis for the torso is identified 

from a single vertical axis in the region of 0.48 of the height to 0.73 of the height, as shown in 

Fig. 4.2 (c). The leg axes are identified in the lower half of the person as shown in Fig. 4.2 (d), 
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specifically, 0.5 of the height from the lower half of the person. The arms as axes are identified in 

the top half of the person and within 30% of each edge of the person, as shown in Fig. 4.2 (e). 

 

It is not necessary to determine the pose of the pedestrian because the axes are identified from the 

axis points for each sub-region. The number of major axes depends on the positions of the axes 

points detected. Axes can be identified with non-optimal values for w and h but the resulting axes 

may not reflect the symmetry of the shape concerned when the axes are axes of symmetry for 

parts of the object. The position of the component axes might be changed from the centre line due 

to that the shape they present is not symmetric. The analysis of the figures in Fig. 4.2 defines a 

strategy for identifying important sub-regions for a variety of pedestrian poses and a change of 

appearance. The results shown in subsections 7.4.3 and 7.4.4 present a wide variation of appear-

        (a)                            (b)                            (c)                           (d)                           (e) 

      (f)                            (g)                          (h)                          (i)                             (j)   
Fig. 4.2. Identification of sub-regions for a standing person in posterior, side and frontal 

poses: region of whole person,(b) region for posterior and frontal head, (c) region for pos-
terior and frontal torso, (d) posterior and frontal legs, (e) posterior and frontal arms, (f) 

three regions of a side pose,(g) four regions of a side pose, (h) five regions of a side pose, 
(i) five regions of a side pose and (k) six regions of a side pose. 
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ances for generation cues and component axes. The evaluation issues for generating cues and 

axes for objects with a good degree of appearance and pose are shown in subsections 7.4.5-7.4.6. 

 

The principal axes for a pushchair might differ in number and form depending on the structure 

and pose of the pushchair. Axes are sought as a first step towards locating the boundary of the 

pushchair. The axis points detected for a pushchair identify the regions that must be found to 

identify the component axes. A linear axis was derived by linear regression from the axis cue 

points [DAV09]. A consistent number of key points to satisfactorily represent a pushchair are 

needed regardless of the pose or the axes generated. The distance from the axis to the boundary 

of the pushchair varies, such that the axes might not represent the symmetry of a pushchair if the 

pushchair is not symmetric, it just can show the axes of symmetry for parts of the object. These 

axes were used to identify the points along the boundary of a pushchair as described in Section 

4.6. The key points along the boundary of a pushchair were used to form a model and to interpret 

images containing pushchairs. 

 

The axes for the bicycle represent the key components of a bicycle. The components of the bicy-

cle, as shown in Fig. 4.3, are: the cross bar, the fork, the seat stay, the seat post, the down tube, 

the chain stay, the wheels, the saddle and the handlebar. The frame elements of the bicycle define 

the regions that must be found to identify each component axis. An axis will be generated for the 

points detected for each key component of a bicycle. The axes for the rims of the bicycle wheels 

are be fit to circles using RANdom SAmple Consensus (RANSAC) circle fitting [FIS81]. The 

axes for the bicycle wheels were first identified and the axes for the other frame elements were 

identified using the regions of the structure of the bicycle as shown in Fig. 4.3. 
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RANSAC circle fitting [FIS81] is a robust fitting method and appropriate for a dataset containing 

outliers. This process starts with a small of initial dataset that is progressively enlarged to im-

prove the fitting of a circle by minimizing the sum of the squared distances of the contour points 

to the circle using the error measure: 

                                                                       
 

 

   

                                                 

Where:         represents the coordinates of the axes points,         represents the coordinates 

of the centre of the circle, m is the number of points and r is the radius. 

 

The data is to be classified into inliers and outliers and the circle formed is subject to the condi-

tion that no points incorporated into the least squares circle fitting deviates from the fit circle by 

more than a distance t, such that t can be chosen so that probability for inliers is for example 0.95. 

 

To fit a circle to a set of points, in the RANSAC circle fitting process three points are selected at 

random to form a circle. The support for the circle was measured by the number of points that lie 

within t. This process of selection was repeated until a large set of consensus points compared to 

Wheel Wheel 

Saddle Handlebar 

Down tube Chain stay 

 

Seat post  

Cross bar 

Seat stay 

Fig. 4.3. Basic parts of bicycle. 
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the total number of points is found and the circle with most support is the best fit. The points 

within distance t are the inliers that constitute the consensus set. The centre and the radius of the 

circumscribed circle to the triangle formed by the three points were allocated as shown in Fig. 4.4 

(a). The distance from all the other points to the circle, the inliers, the outliers and the size of the 

consensus set were determined as shown in Fig. 4.4 (b). The largest consensus set and the best 

model was selected after a number of trials. 

 

The key points were identified on the component axes as described in Section 4.6. 

 

4.6 Key Point Generation 

The points on the component axes are used as starting points from which to search for “key 

points” that sample the boundary and on which the formulation of a model and its interpretation 

is based. 

 

 

         

         

Outliers  

         

         

         

         

Fig. 4.4. RANSAC circle fitting: (a) circumcircle of the triangle, (b) the 
inliers and outliers. 

 

  

                                (a)                                                     (b) 
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4.6.1 Search Paths and Edge Responses Detection 

To identify the key points along the boundary of an object we search along a set of paths that are 

constructed perpendicular to selected points from the component axes. The number of axes that 

are identified depends on the object and is not pre-determined and might vary according to the 

pose of an object and the presence of occlusion. The total number of points selected on the 

detected axes is the same for any one class of object. The search path, shown in Fig. 4.5, is con-

structed perpendicular to the axis to increase the likelihood that the search path will crosses the 

boundary at angle close to 90 degrees. In Fig. 4.5 the red junctions are points on the component 

axes and the blue lines the search paths. 

 

The detection of edge responses along the boundary search paths formed on the axes was per-

formed using the MLR computation for a pair of regions as described in Fig. 4.6 that are arranged 

to straddle the perpendicular paths. Therefore the regions considered for edge detection were ex-

tended beyond the likely extent of any object present. The regions A and B of the MLR edge de-

tection mask shown in Fig. 4.6 were each set to a size of 7 7 pixels. 

Fig. 4.5. A set of key point search paths (blue lines) from points on axes (red junctions). 
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4.6.2 Key Point Selection  

The selection of key points through the perpendicular paths on the axes is similar to that de-

scribed in subsection 3.5.2 where the cue is a single axis. A peak hysteresis detector as described 

in subsection 3.5.2.1 was used to obtain the position of the peak of edge “key points” in the MLR 

response. One key point on any perpendicular search path was selected to identify a boundary 

point. This selection process of key points over the complete set of perpendicular paths forms a 

representative set of key points. A sufficient number of key points on the boundary of each object 

were selected to represent the form of an object. The greater the number of key points the greater 

the potential accuracy of the model and interpretation. Initially key points were selected manu-

ally. As a model was established it was used to suggest key points and key points were selected 

from these prompts. The key points were selected along the search paths to identify the boundary 

of an object that can generate ESE curves with good generality. The density of search paths re-

lates to the quality of the ESE model and computational burden. The key point selection process 

is illustrated in Fig. 4.7 for objects that vary in structure. In Fig. 4.7 the red points mark points on 

axes, the blue lines represent the perpendicular search paths, the yellow dots the central cue 

points for each identified object and the green dots the boundary key points. 

 

AB 

A B 

      

        

    

  

Fig. 4.6. The edge detection mask: MLR regions, 
A, B and the whole region, AB. 
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The boundary of the pedestrian in Fig. 4.7 (a) is identified by 43 key points; one key point on 

each search path. Fig. 4.7 (b) shows a pedestrian pushing a pushchair with the boundary of the 

person identified by 43 key points. The boundary of the pushchair is identified by 28 key points, 

one on each search path. It is observed from Fig. 4.7 (a) and (b) that the number of search paths 

and the number of key points along the boundary of people are the same for the same type of ob-

ject regardless of the pose of the pedestrian. The initial cue points and the boundary key points on 

each object are spatial coordinates that enable the sampling angle of the exponential function of 

an ESE to be estimated. The boundary key points that do belong to the object of interest are iden-

tified as not fitting the model and set aside. The applications of the reviewed edge methods in 

Section 2.5 are limited and not appropriate to find the edges along the search paths identified as 

described at the end of subsection 3.5.2.2. 

 

4.7 Summary 

This chapter has described an approach for generating axes for complex objects, identifying the 

type of object to which they relate and how to identify the boundary key points. 

Fig. 4.7. Identified boundary points for: (a) a pedestrian, (b) a pedestrian with a pushchair. 
        (a)                                                                     (b) 
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Chapter 5 GEOMETRY AND APPEARANCE MODELLING 

5.1 Introduction 

This chapter introduces the geometry and appearance models for the representation and interpre-

tation of objects. This representation is based on a parametric Extended SuperEllipse (ESE) inte-

grated with a statistical distribution representation is used to model the boundary shape of an ob-

ject and referred to as an Extended Superellipse Geometry Model (ESGM). The texture appear-

ance captured from images is modelled and combined with the ESGM to create the Extended Su-

perellipse Appearance Model (ESAM). 

 

The ESAM uses key points to represent a shape in the exponent space of the ESE function. In 

training to create a model similar representative objects are selected. The degree of similarity that 

is appropriate depends on the context and the degree of specificity required. The objective is to 

design a colour appearance model (that incorporates a geometric model), is flexible and reliable 

in representing a wide range of objects such as pedestrians, pushchairs, bicycles and vehicles. 

 

5.2 Outline of the Model-Based Approach 

In the development of ESAM the following issues were considered: 

Cue detection: how to locate a single point or axis points for an object. 

Edge detection: how to identify the key points along the boundary of an object. 

Geometric modelling: how to create the exponent models for an ESE. 

Appearance modelling: how to combine the ESGM with the colour intensity of the images to 

form the ESAM 
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5.3 ESE Modelling 

The implicit form of a 2D ESE is defined as [ZH099]: 

                                                           
 
 

 

       
 

 
 

 

                                                              (5.1) 

Where: a and b are scale parameters that define the size of the ESE in the x – y plane,   is the an-

gular index parameter of the exponent functions in the x – y plane,       and       are the rela-

tive shape exponent functions that vary with angle of orientation,  , which control the shape of 

ESE surface and x and y are two dimensional points sampled on the ESE surface. 

 

The ESE can be expressed in parametric form, in terms of x and y coordinates as: 

                                                  

                             

                             

         
 

 
 

                                            (5.2) 

Where:   is an angular parameter in the parametric representation of the ESE that is used for two 

purposes: as the argument of        and        and as the parameter of       and      . 

 

5.3.1 Representation of Exponent Functions of the ESE 

Modelling in the exponent space is achieved by a re-parameterization of spatial coordinates to 

provide the exponent functions       and       as: 

 

                                                                                                           (5.3) 

                                                                                                           (5.4) 
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    denotes an absolute value. 
sign returns 1 if input is positive, -1 if it is negative and 0 if it is 0 
K Number of key points. 
a and b are scale parameters that define the size of the ESE in the x and y axes. 
        and         are a pair of exponent function points at angle   . 
   the angular parameter of the exponent functions in the x – y plane. 
   and    are two 2D spatial coordinate points sampled at index i. 

1. Read K 
2. Set the values of a and b 
3. The exponent key function points         and         and the angular index  
        parameter    are given in Equations 5.5, 5.6 and 5.7, respectively. 
4. For i= 1 to K 

4.1                              
              

4.2                              
        

   End For 

 Fig. 5.1. A pseudo-code description of the extended superellipse. 

The 2D coordinates point    and    at index i can be represented by two respective exponent val-

ues     and     at angle    as: 

                                                                                                                   

                                                                                                                     

                                                                                        
  
  
                                                               

Where:                   is defined as a pair of exponent function values at angle   . 

 

Fig. 5.1 shows the pseudo-code for computing the spatial coordinate parameters    and    at in-

dex i using the ESE in parametric form, given the exponent points of the exponential functions 

      and        of the ESE curve. 

         

 

  

 

 

 

 

 

 

 

The exponent values for all key points of an example shape were used to construct the full curves 

of an ESE. To avoid computing log (0) zero was approximated as 10-12. 
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The pairs of key point exponent vectors of an ESE for all example shapes of a set can be de-

scribed as: 

                                                                        
                                       (5.8) 

                                                                        
                                       (5.9) 

 

Where:       and       is the training set of ordered exponent vectors,        and        is pair 

of exponent vectors at index i and N is the number of exponent vectors. 

 

The exponent vectors        and        can be combined to form       , expressed as: 

                                                                              
 

                         (5.10) 

Where: e denotes one of the pair of exponent vectors. Here e = 1 denotes the first exponent vector 

and e = 2 the second exponent vector, K is the number of points considered for each shape and 

          is the     value of the exponent vectors          and          at angle,    . 

 

Each shape vector        can be represented by a list of exponent values of a pair of two expo-

nent vectors,                    as: 

                                                                            
 
           (5.11) 

Where:           and           represent the key point exponent values for the shape at angle,    . 

The pair of exponent vectors       and       can be combined to form      , expressed as: 

                                                                     
                                           (5.12) 
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The ESE is a parameterised representation of a curve, where fitting a dataset to an ESE model is a 

curve approximation process. Therefore, the curve of the best model interpretation is not a piece-

wise linear curve passing through each key point but a smooth curve passing close to each point. 

Each full curve of an ESE constructed from a pair of exponent vectors can represent an example 

shape sampled with a set of key points and each shape key point can be constructed from the ex-

ponent values of an ESE curve. 

 

5.4 ESGM Building 

Using an ESE the key exponent points define a curve (or a surface), that is modelled in the expo-

nent domain. In order to describe an object, both the exponent vectors representing the shape and 

the parameters representing the colour texture of the object are needed. The ESGM is built as de-

scribed, in outline, in Fig. 5.2. 

 

 

 

 

 

 

 

 

Initially key points were manually selected from the edge responses generated along each search 

path as described in Sections 3.5 and 4.6 to generate an initial model. This initial model is used to 

guide the selection of subsequent key points and reduce manual interaction in model building. 

1.  For the first U images generate candidate boundary key points. 
1.1 Select key points manually. 
1.2 Build statistical models,       and       of an ESE as described in Fig 5.2 and 

Section 5.4.2. 
2. Repeat for each successive image: 

2.1 Find candidate boundary key points and transform to exponent values as described 
in Equations 5.5 and 5.6. 

2.2 Match instances of the exponent models,       and      , to the exponent vectors 
of each successive image using the matching procedure described in Fig. 6.2. 

2.3 Select boundary key points for each previously unseen image using the model. 
2.4 Update the statistical models,       and      . 

Until no more images 

Fig. 5.2. Overview of initial model building algorithm. 
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Matching a model instance to an unseen image to create the key points for the new images is de-

scribed in Chapter 6. A model is created by first registering the key point exponent vectors with 

the first vector. Then, each vector is re-registered with the average of the key point vector. Statis-

tical models of exponent variation were generated as described in Fig. 5.3. 

 

 

 

 

 

 

 

5.4.1 ESGM Registration Process 

The ESGM registration process is performed in the exponent domain because the model is 

formed in that domain and it is necessary to remove systematic variation in that domain to opti-

mise the statistical model. The exponent vectors in the training set represent images in a range of 

scales and at varied locations. Therefore, the correlation between both the translation and scale 

aspects and the exponent vectors is necessary to align the exponent vectors to remove any arbi-

trary variations before statistical analysis is performed. 

 

Translation in the exponent domain corresponds to object rotation. Translation of magnitude is 

scale in the geometric domain. Changes in scale in the exponent domain are also a mixed 

influence of a similar nature. There is no great value to rotate the exponent values of the ESE 

curves in the exponent domain. Rotation is a curious change of orientation in the exponential 

 

Fig. 5.3. ESGM Building algorithm. 

      and       are the pairs of ordered exponent vectors training set. 
N is the number of pairs of the exponent vectors. 

1. For each exponent vector in       and       from 2 to N 
1.1 Register to vector 1 as described in Section 5.4.1. 

1.1.1 Compute the average exponent vectors,        and       . 
1.2 For each exponent vector in       and       from 1 to N 

1.2.1 Register each exponent vector in       and       to the respective average 
exponent vectors,        and       . 

2. Compute the covariance across the registered exponent vectors. 
3. Compute the eigenvectors and eigenvalues of the vectors as described in Section 5.4.2. 
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domain. Therefore, translation and scale aspects only are necessary and valid operations to 

register the points in the exponent domain. 

 

The ESE curves were aligned to a common reference vector to allow the corresponding points to 

compare in different exponent vectors so that the exponent vectors correspond as closely as pos-

sible. There was a constraint placed on the registration method to ensure that the exponent vec-

tors well-defined. The vectors were initially translated in such a way such that the exponent 

shapes are centred at the origin (centre of gravity). 

 

A transformation matrix obtained in scale and translation was used to transform a new set of key 

points to the model set. The key point coordinates, transformed to the exponent domain of the 

ESE as defined in Equations 5.5 and 5.6 were aligned by minimising the sum of differences, as 

defined in Equation 5.13, between the points of the exponent vectors and the points of the mean 

vector. This places a new instance at an appropriate initial position with respect to the mean 

model. Therefore, each exponent vector has a scale similar to that of the mean vector. 

 

At first glance, it seems more theoretically sound to register the key points in the spatial domain 

and then finding the ESE curves in the exponent domain, however, to register the points of the 

shapes in the spatial domain and then perform the ESE parameterization by transforming the 

aligned shapes to exponent vectors increases the computational burden during an image interpre-

tation. Also, it is computationally more efficient to register the key points in the exponent domain 

because both the model and the statistical analysis are formed in that domain. Therefore, there is 
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no need to register the points in the spatial domain and then computing the ESE vectors and 

hence the registration process in the exponent space supports this as being expedient. 

 

To illustrate how to align two exponent vectors of g and j with each other; assume that        is 

an exponent vector of K points which represents the gth shape is to be aligned to        which 

represents the jth shape. These exponent vectors can be defined as shown in Equation 5.10. 

 

Initially the exponent vectors        and        were centred at the origin; then the scale and 

translation parameters are calculated to minimise the distance between the points of        and 

the equivalent points of the scaled and translated version of        . This distance function was 

defined as given by Sabri et al. [SAB12]: 

                                                                     
 

                                            (5.13) 

Where:        is a pair of exponent vectors        and       ,        is a pair of exponent vec-

tors        and        and    is a transformation matrix of scale and translation parameters as de-

fined below [COO95] [SAB12]: 

                                                              
                 
                 

   
   
   
                                                       (5. 4 )  

Where:      is a scale parameter for       ,     is a scale parameter for       ,      is a translation 

parameter for        and     is a translation parameter for       . 

 

The aim is to minimise    such that        best maps to       : 

                                                                                                                                   (5.15) 
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Applying    to the exponent vector        yields [COO95] [SAB12]: 

                                                   
   
   
   

                 
                 

                                                                

Equations 5.13 and 5.16 are inspired from aligning the shapes in the spatial domain so that the 

distances of each shape to the mean is minimised [SAB12]. The solution of Equation 5.16 pro-

vides a set of linear equations that lead to the scale and translation parameters. This can be ex-

pressed as in the following matrix form [SAB12]: 

                                                  

                        
                          
                           
                     

  

  
  
  
  

  

  
  
  
  

                                                                 

The values of scale and translation parameters and the variables defined in (5.17) are given in 

Tables 5.1 and 5.2, respectively. 

Table 5.1. Scale and translation parameters. 
Parameter             
Value                           

 

Table 5.2. The values of the variables of Equation 5.17. 
   

     

   

   

      
   

     

   

   

      

   
     

   

   

      
   

     

   

   

      

d 
             

 

            
 

 

   

   

 
   

                                        

   

   

 

   
                                        

   

   

 

 



Chapter 5: GEOMETRY AND APPEARANCE MODELLING 

135 
 

The exponent vectors were aligned with the same number of points with one-to-one point corre-

spondences, which is sufficient for the model formulation. This registration procedure makes the 

geometric model independent of the size and position of the objects and is described in Fig. 5.4. 

 

 

 

 

 

 

 

 

 

The exponent vectors were aligned to the mean exponent vector which is recalculated inside each 

iteration loop until convergence. The search for convergence is stopped when the maximum 

number of iterations was reached or the newly estimated mean vector has converged, as defined 

by a threshold on the difference between the points of the newly estimated mean vector at each 

iteration and the points of the mean of all the aligned exponent vectors. 

 

A set of experiments was performed to test the appropriateness of registration in the exponent 

domain and to justify the use of scale and translation to register the points in the exponent 

domain. Fig. 5.5 (a) and (b) show the key point vectors in exponent space and Fig. 5.5 (e) the key 

point cloud in the coordinate space, before registration. These are shown after registration in the 

exponent domain in Fig. 5.5 (c), (d) and (f), respectively. 

  Initially set iter=0,        , the maximum number of iterations, N is the number of 
vectors,        and        are the mean vectors of the training set,                .  

1. The mean vectors are scaled to a unit and translated to centre of gravity. 
2. Define        and        as constant means to        and       , respectively. 
3. Repeat 

3.1 Define        and        as last mean estimates to                  , respectively. 
3.2 For         

3.2.1 Align each         and         to        and       , respectively. 
3.3 Compute the new mean vectors,        and        
3.4 Align        and        to        and       , respectively. 

3.5 Compute error term                      
 

                    
3.6 iter++ 

 Until                      
 

Fig. 5.4. The alignment procedure of the exponent vectors of ESGM. 
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The red dots in Fig. 5.5 (a) to (d) identify the exponent points for the two exponent vectors in 

terms of  , while the blue regions are the piece-wise linear exponent vectors that identify the 

segments of the curves. The red dots in Fig. 5.5 (e) to (f) identify the spatial coordinates of the 

key points, while the blue lines in Fig. 5.5 (e) identify the contours of the pedestrian shapes and 

  (e)                                                                        (f)         

       (c)                                                          (d)    

          (a)                                                              (b)    

Fig. 5.5. Alignment of key point training data (a) unaligned exponent data       in red  with 
connecting lines in blue, (b) unaligned exponent data       in red and connecting lines in 

blue, (c) aligned data       in red, connecting lines in blue and the mean curve in cyan, (d) 
aligned exponent data       in red, with connecting lines in blue and the mean curve in cyan, 
(e) unaligned key point data in red and connecting lines in blue and (f) corresponding aligned 

key point data in red with the mean model as a blue line connecting yellow points. 
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the blue line in Fig. 5.5 (f) identifies the mean model. In Fig. 5.5 (c) and (d) the mean exponent 

models are highlighted in cyan and the yellow dots identify the mean exponent values. Fig. 5.5 

(a) and Fig. 5.5 (b) show plots for 180 exponent vectors which represent a set of 90 pedestrians of 

different sizes and locations. These pedestrians were taken from a training set of 90 images, each 

contains one pedestrian. It is observed from the plots in Fig. 5.5 (c) and (d) that the registration 

procedure does not alter the shape of the vectors but rather only find the best fit through scaling 

and translation. The satisfactory results in Fig. 5.5 (c), (d) and (e) confirm the appropriateness of 

registration in the exponent domain. This implies the importance of such transformations to sig-

nificant aspects of each appearance of pedestrian pose and variation. 

 

5.4.2 Modelling the ESGM 

The registered set of exponent vectors       is modelled by generating a covariance matrix and 

performing eigenanalysis on that matrix. The mean exponent points and the associated covariance 

matrix are a model of the shape geometry. The variability of an object captured by this covari-

ance matrix    is defined as: 

                                                       
 

 
                 

 
 

   

                                                               

Where:     is the average vector of the ordered pairs of exponent vectors. 

 

The eigenvectors selected to represent the (geometry) model are the first    with the largest ei-

genvalues, i.e. the sets of the first,    and    eigenvectors, which contribute in a major way to 

geometric model and its instances. The ESGM (in exponent space) is expressed as: 
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                                                                                                                             (5.19) 

Where:                        represents the respective matrices whose columns are unit 

eigenvectors for the two geometry exponent models with the selected eigenvectors and     

              
 
 are the vectors that control the variation of each mode for each model. 

 

5.4.3 Modes of Variation of ESGM 

Matching the variations of the ESGM to an image can be considered as selecting the best projec-

tion of ESGM, which is an exponent model, onto the exponent vectors. Rearranging Equation 

5.19 to represent the geometric models of the training data: 

                                                                   
                                                                (5.20) 

Equation 5.20 embodies the exponent models of the ESGM. The eigenvectors,    , and the asso-

ciated eigenvalues are ordered such that          ; where:     is the     largest eigenvalues. 

 

The limits of variation for     were selected so that the degree of variation is within the range of 

the variation of the data used to form the ESGM, i.e.            , for          , that repre-

sents the indices of the elements of     and   . The    largest eigenvalues were chosen such that: 

                                                                         

  

   

  

   

                                                                           

Where: p defines a fraction of eigenvectors selected to represent the first    of the total variation 

and     
  
    defines the total variance in the training set. 
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5.5 Augmentation with Texture Model 

To model and identify objects in colour the colour texture was incorporated into the model and 

the interpretation process as described in Fig. 5.6. 

 

The colour texture vector,  , is represented by: 

                                                                               
                                                (5.22) 

Where: M denotes the number of pixels in the texture vector of the object. 

 

Building a statistical model of texture variation requires the pixel values of each training image to 

be warped to the geometrical mean of the geometry model using a triangulation based on the lo-

cations of the key points as described in subsections 5.5.1 and 5.5.2, below. 

 

5.5.1 Warping the Images 

Image warping [COO04] was used to sample the image patch values at the key points, identified 

on the boundary of each object of interest, as shown in Fig. 5.7. These patches were extracted 

from the original images at the key points locations which were used to sample the shape of the 

object being modelled. The image pixel values were computed at positions within regions as de-

termined by the position of points in the mean geometry model. This is to obtain a reference im-

age, which is a geometric normalisation of the image texture values to the mean geometric model. 

 1. For each key point warp the image values around that point. 
1.1 Normalise the image values to remove the global variations between images. 
1.2 Compute the mean and covariance of the warped image values. 
1.3 Compute the eigenvectors and eigenvalues of the warped image values. 

2. Form the combined model by combining the ESGMs and appearance models. 

Fig. 5.6. Adding a model of colour appearance to an ESGM. 
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A triangulation technique, as described below, was used to divide each training image into a 

triangular tessleation based on the key points, whereas the tesellation covers a part of an image as 

shown in Fig. 5.8 (b). Normalised versions of each training image patch, which represents a small 

part of the target image, extracted at key points, were interpolated by relating the pixels of each 

image patch to the corresponding positions in the reference image patch. This is to eliminate arbi-

trary variations of texture values between the training image patches due to variations of geome-

try. These image texture patches cover the regions of objects of interest in the images as shown in 

Fig. 5.8 (c) where the background was eliminated from the image. Further details are presented in 

subsection 7.6.1. For example, consider an image        is to be warped to a new reference im-

age        . That is, the control points of an object in       , with K key points, denoted 

by              are to be interpolated to new positions                 in         in a point-to-

point correspondence strategy as illustrated in Fig. 5.7. Interpolation was calculated by transform-

ing the point position from the destination image        , to sample and interpolate image values 

from the original image       . This is a reverse mapping from     to   ; this is formally ex-

pressed as a continuous valued mapping vector  . That is:          ,           . 

Fig. 5.7. Point to point correspondence, (a) the original image       , (b) the mean 
exponent    , (c) the mean exponent     and (d) the created shape        . 

                (a)                                     (b)                                       (c)                              (d) 
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Texture mapping was performed using a piece-wise affine warp in which the convex hull of 

geometric mean was partitioned into a set of triangles using the Delaunay triangulation algorithm 

[COO04] [MAR08]. An affine transformation was computed between the control points in the 

image and the vertices of the triangulation in the geometric mean. 

 

5.5.2 Delaunay Triangulation 

The triangulation technique was employed to warp the key points and the intermediate points by 

connecting three key points as a triangle. The triangulation of a set of points is a triangle network 

whose vertexes are the points and the triangles were chosen so that they do not intercept each 

other but form a tessellation. The pixels within each triangle were warped to correspond to define 

values for equivalent pixels in the geometric reference image. The triangles follow the Delaunay 

property mesh; in which for each triangle there is no point inside the circle passing through the 

three points of the triangle; the circum circle, see Fig. 5.8 (a). This process was implemented by 

partitioning the convex hull of the mean into a set of triangles. For a set of points with concave 

nature, this kind of triangulation produces triangles outside the shape control points, however, a 

Fig. 5.8. a) A Delaunay triangulation example; b) mean shape Delaunay triangula-
tion and c) an example of warped image. 

  (a)                                      (b)                                     (c) 
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restrict Delaunay triangulation could be used to overcome this problem. Fig. 5.8 (b) shows the 

Delaunay triangulation result on the geometric mean control points. These control points will be 

the reference points since all the texture is processed on this normalised reference frame. Each 

triangle has its own affine warp and the overall collection is a piecewise affine warp. Each pixel 

in each image inside a particular triangle was mapped to a point inside the corresponding triangle 

in the geometrical reference image using barycentric coordinates [MAR08]. Every point inside 

the triangle can be expressed by relative distances from each of the vertices of the triangle. Fig. 

5.9 shows an example of mapping a point   in a triangle defined as a function of corners 

           to a point    in a triangle with corners              . 

 

In Fig. 5.9, the point z in a triangle of vertices            can b defined as: 

                                                                                                                            (5.23) 

Where:  ,   and   are real numbers, named as barycentric coordinates of z in relation to   ,    

and    [MAR08]. 

Fig. 5.9. Mapping a point   in a triangle to point    in another triangle. 
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The barycentric coordinates [MAR08] were employed to determine if a point belongs to a par-

ticular triangle. The point z with the parameters     and   is warped, using the affine transforma-

tion and relative positions to    as: 

                                                                                                                                (5.24) 

 

5.5.3 Modelling Texture Variations 

A photometric colour normalisation was applied to the warped texture vectors as described by 

[COO98]. This colour normalisation process is described in the literature review in subsection 

2.7.2.2. Analogous to the geometric model, PCA is conducted on the warped texture vectors to 

obtain a linear statistical model of texture variation, of the form [COO04]: 

                                                                                                                                     (5.25) 

Where:    is the mean texture vector,    is a set of orthogonal modes of texture variations, which 

contains the    highest texture eigenvectors and    is a set of texture deformation parameters. 

 

The texture parameters for a given sample can be retrieved by: 

                                                                          
                                                          (5.26) 

The texture parameters are changed in           interval. This presents the number of modes 

of variation composing the percentage variation expressed by the total texture in the training set. 

 

5.6 Extended Superellipse Appearance Model 

The ESAM combines both geometric and texture models. The model of texture also embodies 

aspects of geometry as one image is warped to align with another. 
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5.6.1 Building the ESAM 

The ESAM exploits the relationship existing between the geometry and the texture of an object. 

The geometry vector,    , and texture vector,     are concatenated so that benefit can be gained 

from the correlation between the geometry and texture models. For each image, a vector     is 

generated as a combination of geometry and texture vectors [COO04]: 

                                                     
      
  

   
     

         

  
       

                                        (5.27) 

Where:     is a matrix of weights that sorts the difference in units between the parameters of the 

geometry and the texture vectors, such that it was used to make the geometry and texture models 

appropriately correspond when a combined ESAM is created [MAR08]. 

 

5.6.2 Combined Extended Appearance Model 

PCA is further applied to model the combined ESAM: 

                                                                                                                               (5.28) 

Where:     are sets of appearance vectors that control the geometry and texture values of the 

training vectors,     are sets of orthogonal modes of ESAM variation that holds the highest ei-

genvectors and     is a common parameter vector of the appearance that control both the geome-

try and texture models of the ESAM. 

 

The mean appearance vector,      of the ESAM does not appear in Equation 5.28 as both    ,    

and the ESAM have zero means. The linear structure of the geometry and texture models plus 

their linear combination means that the models can be expressed in terms of a single set of com-

bined appearance parameters: 
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                                      (5.29) 

                                                                                                                 (5.30) 

Where:      and     are matrices describing the geometry and texture variation. 

 

5.6.3 An ESAM Instance Example 

A new image can be synthesised based on the statistical ESAM with the appearance vector    . 

The geometry parameters,    , and the parameters of the texture model,   , can be derived from 

the ESAM parameters. The texture of a new image is generated using Equation 5.30 and warped 

to fit the control points of the geometry model given by Equation 5.29. The appearance parame-

ters can be retrieved for the image using: 

                                                                    
                                                                    (5.31) 

The parameters of the ESAM are varied in the range of    . The eigenvectors are chosen to 

compose a fraction of the total model variance. Each eigenvector provides a mode of variation. 

 

An ESAM can be used to represent an object as a single model and to model each object of a set 

of objects. The interpolation axis detection filter introduced in Chapter 4 is able to identify the 

axes for articulated or complex objects such as pedestrians alone or in groups and pedestrians as-

sociated with pushchairs and bicycles at a variety of angles. The components of complex objects 

can be identified by their axes using simple descriptive criteria as introduced in Section 4.4. Thus 

a hierarchy of object components can be created and used to direct further interpretation. 
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5.7 Modelling Objects of Variant Forms 

The variability of some objects necessitates different models to be defined and selected for inter-

pretation. Here, the ESAM was used to represent some objects of variable forms and poses. Con-

fidence in an interpretation can be estimated by distance of the perturbed model to the data using 

log likelihood ratios and standard deviations (SDs) to allow variant models to be selected. The 

log likelihood ratios for the data points that sample the boundary of an object and the pixels val-

ues that represent the object and the SDs that represent the variation between the variant objects 

types were computed for each interpretation and each instance model. These criteria represent the 

variation between the variant models of variant objects based on experimental data that take into 

consideration the distribution of model parameters. The estimation of the log likelihood ratios 

and the data for which the SD of the variation between the models is computed is Gaussian dis-

tributed. The normal (or Gaussian) distribution is a distribution that represents random variation. 

 

To illustrate the potentiality of ESAM to represents the variability of some objects, five vehicle 

types in a variety of structures have been considered. A model is generated for each vehicle type. 

To determine the appropriate model for an object interpretation; the data points that sample the 

boundary of an object and the pixels that represent the object of interest were employed, whereas 

an object is represented by the pixel values that describe the interior and those that describe the 

boundary. Here we consider five vehicle models A, B, C, D and E. The log likelihood ratios and 

the standard deviations are computed for each interpretation and each model of the five models: 
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Where:   ,   ,   ,    and    are the log likelihood value for the interpretation with respect to 

each model, A, B, C, D and E, respectively. 

 

The SD of each interpretation of each variant model is represented by:      ,      ,      ,   

      and      . 

 

Given the five variant models, A, B, C, D and E, there are twenty log likelihood ratios and five 

SDs as described above. These data form a list of twenty five feature vectors. These vectors pro-

vide an indication of confidence in the interpretation of an image and are used to determine if the 

best model has been used and if not to determine what would be a better alternative vehicle 

model. The maximum Likelihood method is introduced below. 

 

5.7.1 Log likelihood Function 

The Maximum Likelihood (ML) estimation method is a standard tool for parameter estimation. 

The ML estimation method is consistent and efficient [EDW74]. A drawback of this method 

arises when applied to non-linear estimation cases, such that the associated likelihood equations 

required for the derivation of the estimator seldom have a closed form solution. This shortcoming 

produces a global optimisation issue whereas solving this issue using numerical methods is com-

putationally complex. A set of observation data and a model that describes the distribution of the 

variables in the data are required in the ML estimation. The aim of the ML is to find the parame-

ters of the model that best explain the data, which produces the largest probability or likelihood 

of explaining the data, whereas an assumption about the distribution of the data is required. 
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Let         be an independent and identically distributed sample with Probability Density 

Function (PDF)           , where           . To estimate the mean and standard deviation 

for a single variable assuming the scores of the variables are normally distributed; the PDF for     

is [KIN89]: 

                                                         
 

    
    

 

 
 
    

 
 
 

                                                      

Where:    denotes the score of the variable for the ith observation and the mean     and the stan-

dard deviation     are the parameters of the Gaussian distribution. 

 

The likelihood of n independent and identically distributed observations is the product of their 

respective individual densities. The joint likelihood function           for a vector   

             of observations is given by [KIN89]: 

                                          

 

   

                              

                          
 

 
 
    

 
 
 

 

   

             

                          
 

   
        
 

   

                   

Where: n denotes the number of observations and y is a vector of n data points. 

 

The log likelihood function        for Gaussian distributed data is [KIN89]: 
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The ML Estimate (MLE) maximises the likelihood in terms of the mean and standard deviation 

[KIN89]. That is to differentiate        with respect to   and  , then set the partials to 0, and 

solve for   and  . The MLE for the log likelihood which can maximise both   and   using the 

derivatives in terms of   and   are identified respectively by       and      . To solve for maxi-

mum  , the first derivative of the log likelihood is set to 0 for any value of  : 

      
       

  
 

           
 

  
  

 

 
              

 

   
        
 

   

  

           
 

  
        
 

   

 

           
 

 
   

 

   

                                                                                    

That is, the maximum likelihood estimate of       is   . 
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To solve for maximum  , set the first derivative of the log likelihood for any value of   to 0: 

      
       

  
 

           
 

  
  

 

 
              

 

   
        
 

   

  

            
 

 
            

 

   

 

            
 

 
         
 

   

                                                                   

ML estimates the model’s parameters for the variant models that produce a distribution that 

makes the observed data the most probable. MLE’s parameters maximise the log likelihood, 

which in turn optimises the fit between the data and the model. The mean and standard deviation 

characterise the Gaussian distribution and can be used to estimate the maximum likelihood. Thus, 

the parameters incorporated into the log likelihood of the model are suitable to be described using 

Gaussian distribution for each interpretation and each instance model. 

 

A naïve Bayesian classifier [FUK90] was used with the log likelihood ratios for the data points 

that sample the boundary of an object and the pixel values that represent the object and the SD 

features that represent the variation between the variant objects types in training and testing to 

determine the confidence of the match to each model from a set of five variant models of an un-

seen image. Here we used a set of variant types of vehicles. A very limited review of the naïve 

Bayesian classifier is introduced below. 
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5.7.2 Naïve Bayesian Classifier 

A naive Bayesian classifier [FUK90] is a probabilistic classifier with strong assumptions of inde-

pendence between parameters. The Bayesian classifier aims to identify a class from features. 

Classes are the categories into which data may be placed. In the Naive Bayesian classifier it is 

assumed that the input features are conditionally independent of each other. The naive Bayesian 

classifier is appropriate for the task of finding the confidence of match to each vehicle model be-

cause it is a simple and a computational efficient algorithm [CHE09], has high classification ac-

curacy and possesses well defined criteria for classification purposes [WAN07a]. The naive 

Bayesian classifier used here is implemented in OpenCV based on [FUK90]. This classifier as-

sumes that the attribute vectors for each class are normally distributed and independent. For more 

details about naive Bayesian see [FUK90]. Details of the configuration of the Bayesian classifier 

are introduced in the experimental method Section 7.5. 

 

5.8 Summary 

An ESGM that represents a combination of a statistical model with the ESE representation was 

described and used to model the boundary shape of an abject. A representation of ESAM that 

combines the ESGM and the texture appearance captured from images has been described and 

used to model the appearance and geometry of objects. The computational cost of the ESAM de-

pends on the parameters of the coupling of geometry and texture models. How to identify the 

most appropriate models for each interpretation of an object of variable forms such as vehicles 

was described. 

 

The next chapter will introduce model training and interpretation. 
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Chapter 6 MODEL TRAINING AND INTERPRETATION 

6.1 Introduction 

This chapter introduces two main issues: 

 How to train and match the ESGM to unfamiliar images. 

 How to train and match the ESAM to a previously unseen image. 

 

6.2 Training and Fitting of the ESGM 

6.2.1 ESGM–Based Training 

The parameters generated in the training process of the ESGM are: the average exponent vectors 

       and       , the eigenvectors,     and    , that are corresponding to the    and    of the re-

spective largest eigenvalues, the vectors     and     that control the variation of each mode of 

the ESGM, the transformation matrix,   , of scale and translation parameters. The parameters 

generated from the ESGM-based training process are used for matching an instance of the ESGM 

to interpret an unseen image by generating the exponent vectors that model the boundary shape of 

an object in an unseen image. The ESGM search algorithm was used to locate points in an unseen 

image with constraints applied to the parameters of the ESGM, where the limits of variation for 

    are within the range             , where      is the     element of the vector     that con-

trols the variation of a mode for the model and     is the     largest eigenvalue of the model. 

Matching the ESGM to a previously unseen image is described in subsection 6.2.2, below. 
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6.2.2 ESGM-Based Interpretation 

Model matching was designed to find the correspondence between the model and an image. For 

an unseen image to be interpreted twelve potential key points were identified along each search 

path by the edge detection method described in subsection 3.5.2.1. Twelve points were selected 

to offer a good likelihood that the correct boundary was identified and the number of points on 

each search path is a balance between speed and robustness; the number of points on each search 

path is not critical. The points identify a set of boundary contours of an object. Fig. 6.1 shows a 

selection of key points along a selected few radial search paths. The exponent vectors for an un-

seen image were computed using the selected twelve key points on the identified search paths. 

 

The exponent vectors of a previously unseen image were initially registered to the mean exponent 

vectors of the ESGM by scaling and translation such that: 

                                                                                                                                             

                                                                                                                           (6.2) 

Fig. 6.1. Set of search paths, shown in red, radiating from the central cue point 
with a set of key points on few search paths, shown in blue, on each search line. 
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Where:        and        are a pair of exponent vectors of an unseen image,   ,   ,    and    are 

the scale and the translation parameters of the respective exponent vectors. 

 

The ESE vectors are varied around the mean to find the best match between a variant of the 

model and the image characteristation. In interpretation the aim is to match the ESE vectors with 

those in the mean model. The scene exponent values were registered to the mean model to reduce 

the variations between the ESE curve of the exponent vectors of an unseen object and the full 

ESE curves of the exponent vectors. The model is varied during model matching and it was ex-

plained in subsection 5.4.1 that scaling and translation factors are appropriate actions to align the 

exponent vectors of the unseen image to the model. The matrix   , defined in Equation 5.14, was 

applied to the exponent vectors of a new image at registering the exponent values to the model. 

 

To search for new positions of the key points of a previously unseen image, the vector     in 

Equation 5.20 was varied to identify an instance of the ESGM that best matched the estimated 

exponent vectors     of the unseen image. The model matching algorithm determines the curve 

representing the object. The match criterion was the sum of the absolute norm distance between 

the points of the exponent vectors,     of an unseen image and an instance of the model,   : 

                                                                                 

 

   

                                                                  

Where: K is the number of key points, j is the index of the key point     denotes the points of the 

exponent vectors of the potential interpretations for the unseen image and     identifies the points 

of an instance of the geometric model as described in subsection 5.4.2. 
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c1 Iteration counter. 
Miter Maximum number of iterations. 
K Number of key points. 
d A distance threshold. 
   An instance of the model. 
    Average pair of the exponent vectors of the training set. 
    A pair of exponent vectors for a previously unseen image. 
    A new estimation vectors of the updated model. 
   The error between a pair of exponent vectors of an image and the model. 
t A vector of scale and translation parameters              . 
   The transformation matrix. 

Set Miter=25, dist=5,        . 
1. Initialise the ESGM parameters,           to zero. 
2. While (    < Miter AND   < d) do 

2.1 For each exponent function of 12 key points on each search path 
2.1.1 Generate a model instance               
2.1.2 Search for t which best map    to     as described in subsection 5.4.1. 

The first and third points on successive search paths were considered for each 
modified    .  

2.1.3 Invert the parameters of    and project     into the model,       
        

2.1.4 Find the vector     of the ESGM that fit to    ,        
           

2.1.5 Apply the limits of variation for     as described in subsection 6.2.1. 
2.1.6 Test the error term in Equation 6.4 to terminate an iteration 

 End For 

 End While 

        

Fig. 6.2. Identification of the key points in an unseen image using the ESGM. 

In the iterative selection and matching of key points, the key point’s indexes were considered in 

turn. All the first key points and third key points on successive search paths were considered for 

the exponent vectors of the previously unseen image when matched to an instance of the model. 

This can be described as rotating and translating to register the exponents in the image to the 

model instances. The iterative matching procedure of ESGM is summarised in Fig. 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The selection and matching of key points in Fig. 6.2 is iterated until (i) a maximum number of 

iterations (Miter) is exceeded or (ii) the distance between the model and the interpretation as 
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measured by   , falls below a defined value, d. This results in a pair of exponent vectors,     

and    , that determines the ESE curve representing the boundary of the object. The complexity of 

ESGM search is        ; where    is the number of data points and    is the number of model 

points, however, since    is constant the search process can be considered linear. 

 

6.3 Training and Fitting of ESAM 

6.3.1 ESAM Training 

The ESAM is trained for the interpretation process and then refined to generate a set of parame-

ters that are required for matching an instance of the model to a previously unseen image. The 

ESAM training process captures the mean geometry and appearance properties and their variation 

for the selected images that can be used to constrain the search to identify similar objects in pre-

viously unseen images. In the ESAM training process, the vector,    , characterises the variabil-

ity of the geometry and appearance, as described in Equations 5.29 and 5.30, respectively. The 

set of appearance parameters     are perturbed to create a sequence of model instances. A Jaco-

bian matrix, estimated from the training set, as discussed below, describes how the model pa-

rameters guide the interpretation process. The parameters of the ESAM result in the generation of 

a series of synthetic images,     The difference between the texture of the image    and the tex-

ture that being interpreted    is defined as a vector of residual differences: 

                                                                                                                                 (6.4) 

Where: z denotes a vector of geometry, texture and appearance parameters of the model,      is 

the vector of residuals,    is the texture of the current image and    denotes the texture in the 

warped regions of the synthetic image. 
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Equation 6.4 defines an error term that can be minimised by adjusting the model parameters, 

given by concatenating the geometry, texture and appearance parameters. The matching algo-

rithm of ESAM searches to minimise the residuals      between a model instance and the object 

of interest in a new image. Each image patch is warped from the current position to the reference 

mean position. The model       is derived from the appearance coefficients,    , and modified 

by the intensity parameters as described in subsection 5.5.3. During matching the pixels of the 

new image are sampled and projected into the texture model. The current texture model is given 

in Equation 5.30. The textures of image patches synthesised from the model can be represented 

as: 

                                                                                                                                         (6.5) 

Where:    is the mean texture,    is a set of orthogonal modes of texture variations,     is a matrix 

that describes the texture variation and     controls both the geometry and texture models. 

 

The residuals model was learnt during the training process, which generates a matrix of residuals 

and a matrix of model perturbations. These matrices were used to estimate the Jacobian matrix. 

The ESAM uses Jacobian matrix, as described below, with      and the corresponding perturba-

tions    in model matching. The aim is to find a matrix, R, satisfying the relation: 

                                                                                                                                                             

Where:    are the perturbations and      are the corresponding texture residuals of the model. 

 

The matrix R was used with model parameters and texture residuals in all searches to visualise 

the effects of perturbation and updating the parameters of the model. The correlation of texture 
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residuals and model parameters was assumed to be linear. Solving Equation 6.6 involves doing a 

set of s experiences to construct the matrices    and      as previously described [MAR08]. Dur-

ing training, the parameters of the vector z are displaced from its optimal value as suggested by 

Cootes and Taylor [COO04], and used in all the s experiences to compute the matrix R. The dis-

placement of each parameter of the model is performed in a way to approximate the gradient of 

the Jacobian. The degree of displacement in percentage values for scale and translation are linked 

to the size of the reference means. Table 6.1 describes the model perturbation scheme. 

 

Table 6.1. Perturbation scheme. 
 

 

 

 

Where:     and     are vectors of appearance that control both the geometry and texture coeffi-

cients of the ESAM,   ,  ,    and    are the scale and translation parameters of the ESGM. 

 

6.3.2 Jacobian 

The squares of the residual vector, r, was minimised to find a match as: 

                                                                                                                           (6.7) 

Equation 6.4 is approximated using the first-order Taylor series expansion of r at z [COO01a]: 

                                                                                                                            (6.8) 

Where:   is the Jacobian gradient matrix as previously defined [COO01a] [MAR08]. 

 

Parameter  Perturbation 
        ±.025  , ±0.5   

      90%, 110% of the reference scale 

      ±7%, ±12% 
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Substituting Equation 6.8 into Equation 6.7 and taking the derivative of         with respect 

to z and setting it to zero we obtain [MAR08]: 

                                                                            (6.9) 

Where: R is the pseudo-inverse of the Jacobian matrix. 

 

The Jacobian matrix was fixed and pre-computed over the training set [COO01a]. Its pseudo-

inverse regression matrix R is estimated once during the training phase to improve numerical sta-

bility and speed and used in all subsequent searches with the model. The geometry and texture 

parameters along with the Jacobian, model perturbations and residuals matrices are used to fit an 

ESAM instance to an unseen image as described in subsection 6.3.3. 

 

6.3.3 ESAM-Based Image Interpretation 

The pixel values from the patches of an unseen image are registered to the model pixel values, 

with warping, to provide an accurate instantiation. The ESAM interpretation matches the image 

pixel values more closely by considering variations of the appearance model as expressed by a 

reconstruction of a model instance, varied to minimize the texture residual between the model 

instance and the unseen image. The search to align the deformable object uses the Gauss-Newton 

optimization method and a pre-computed Jacobian matrix [COO01a] [COO01b] for efficiency. 

The matrix, R, was estimated in order to correct the model parameters with the texture errors. The 

Jacobian matrix updates the parameters of the model, during the search progress, by exploiting 

the relationship between the residual differences and the parameter displacements. The model 

parameters are updated with a damped Gauss-Newton steepest descent method: 
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Where:   is the Jacobian matrix,   is a damping factor,    is the residual texture vector,    is the 

current estimate appearance vector and      is the next appearance vector at index k. 

 

In the absence of a better initialisation the process can start with    set to zero, where    defines 

the initial estimate parameters vector of ESAM. The model is initialised with the mean ESAM 

instance at the position defined by the cue detector. First the locations of the initial key points are 

identified and an ESAM instance is built with the current estimate of the model parameters,   . 

The vector,     , and the initial error,                
  were evaluated. The model parameters 

are updated using Equations 6.9 and 6.10. Fitting algorithm of ESAM is summarised in Fig. 6.3. 

 

The procedure in Fig. 6.3 is iterated until a maximum number of iterations        is reached or 

the improvement in the residual measure is small. 

 

The complexity of the fitting process in Fig. 6.3 is                         at a given level. 

       ,        and         are the number of pixels, number of modes and number of points that 

represent each model. Each iteration involves sampling         points from the image, thus acqui-

sition by sampling         and multiplying by a                matrix.  

 

Separate models for geometry and appearance are defined to reduce the search space for model 

matching and allowing matching to alternate between geometry and appearance. This also means 

that geometric matching can be considered first, independent of appearance. The geometry model 
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z The parameter vector of the ESAM. 
   The texture of the current image. 
   The texture of the synthetic image. 
      The texture differences between    and   . 
R The pseudo-inverse of the Jacobian matrix. 
                                

 , is the initial error. 
     The maximum number of iterations. 
s The current iteration (counter) 
  0.5 
Set             ,             

1. Do 
1.1 Sample the texture of an image to get,    
1.2 Build an ESAM instance and compute    
1.3 Compute the residual texture vector,              
1.4 Evaluate the error,              

 . 
1.5 Predict model displacements,            
1.6 Set  =1.0 
1.7 Update model parameters,             
1.8 Calculate the new model texture,      , with the new model parameters 
1.9 Update points from the model and resample the texture of the image at the 

new points to get,       at iteration s. 
1.10 Compute the new residual texture vector,                       
1.11 Evaluate the error at the new iteration,                      ,  
1.12 if (     ) 

1.12.1 Accept the model parameters,      and the new points 
1.12.2 Update the current error,       
1.12.3 else try other values for   such as                  . 

1.13 s=s+1 
1.14 Until                   

Fig. 6.3. Summary of algorithm for matching the ESAM to a new 
image. 

is first used to select key points and the ESAM to select the appearance interpretation based on 

pre-computed geometric constraints. This reduces the computational burden of interpretation. 

The computational cost of the algorithm in Fig. 6.3 depends on the parameters of both the geome-

try and texture models. This algorithm is an improvement over the algorithm in Fig. 6.2 since it 

considers both the positions of key points and the appearance of an object. It is important to 

search for key point locations as shown in Fig. 6.2 to evaluate the geometric model. This requires 

fewer computations than matching both the key point locations and the appearance of the objects. 
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6.3.4 Pyramid Search Approach 

Video sequences have to deal with a wide range of input object sizes, which might result in a 

poor match of the initial model with an actual input shape. Therefore, a pyramid of up to 3 levels 

method was used for interpretation. In the construction of the pyramid the resolution in x and y is 

reduced by a factor of two in each axis from the previous level by averaging pixel values in non-

overlapping 2x2 regions. The level L0 image has been reduced by a factor of two from the origi-

nal source image. Fig. 6.4 shows an image pyramid with three resolution levels (L0, L1 and L2). 

Model fitting is performed from level L2 to level L0 with the model fit at each level used as the 

starting point for the model fitting at the next. 

 

6.4 Summary 

The training and interpretation algorithms of ESGM and ESAM have been described. Using a 

fixed Jacobian matrix over the training data avoids the need to store all variations of the images 

generated by the model. 

 

The next chapter will introduce the experimental results and discussions. 

                (a)                                     (b)                        (c) 

Fig. 6.4. Image at 3 levels of resolution: (a) L0, (b) L1 and (c) L2. 
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Chapter 7 EXPERIMENTAL RESULTS AND DISCUSSION 

7.1 Introduction 

This chapter describes the experiments conducted on the detection of cues, axes, geometric 

(ESGM) and appearance (ESAM) models. Section 7.2 introduces the dataset for training and test-

ing. The results for non-interpolated and interpolated cue detectors are presented in Sections 7.3 

and 7.4, respectively. Section 7.3 also presents the cue detection results for vehicles. The cue de-

tectors are evaluated in terms of true positive and false positive rates. Axes detection results are 

also presented in Section 7.4. The results for the ESGM and the ESAM are presented in Sections 

7.5 and 7.6 respectively. The results of interpretation for ESGM and ESAM are for people alone, 

people combined with other objects and vehicles with a brief summary presented in Section 7.7. 

 

7.2 Training and Test Datasets 

The dataset consists of 640 x 480 pixel images gathered from a variety of mainly outdoor con-

texts from the University of Birmingham and from sites on the Internet. The training and test 

datasets each contain images representing pedestrians, pushchairs, bicycles and vehicles; people 

are alone and in groups, carrying bags in their hands or over the shoulder, pushchairs are being 

pushed, bicycles are being ridden or pushed. The chief reason for collecting a new data set is the 

varied weather conditions and using a high degree of variability in appearance of pedestrians who 

are individually clothed and having a variety of pose and scale. Moreover, some collected images 

of pedestrians contain people that may be pushing a pushchair, pushing or riding a bicycle. The 

environments in which video scenes of pedestrian were captured vary from natural scenes with 

trees to man-made scenes with roads. As we will demonstrate, the new collected dataset is suit-
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able for use with the established methodology of pedestrian detection. However, existing pedes-

trian datasets often contain a limited range of scale, occlusion and pose variation, making it diffi-

cult to assess real world performance. For example, the images of pedestrians collected by Viola 

et al. [VIO05] are varied in body pose and clothing and the resolution of the images is very low; 

they were captured in snow and rain conditions. A publicly available INRIA person dataset 

[DAL05] which has been contributed to spurring progress in the pedestrian detection has fairly 

high-resolution pedestrians. Further details on Viola et al. [VIO05] and INRIA person datasets 

[DAL05] and other publicly available datasets were provided in Table 2.3. 

 

The datasets downloaded from the Internet are the Penn-Fudan person database [WAN07], the 

INRIA person set [DAL05], the ETHZ vehicle database [LEI04] and the TU-Darmstadt vehicle 

set [EVE06]. The training and test data images are independent and that objects that feature in the 

training set are not represented in the test set. The images of pedestrians from the University of 

Birmingham are drawn from more than 220 video sequences and there are more than 3000 im-

ages collected from the Internet. The pedestrians are in various poses where they vary in size, 

scale, level of occlusion and context. There are more than 1500 images representing pedestrians 

in a range pose and scale in the training sets and more than 1000 in the test sets that were gath-

ered from the University of Birmingham. The images collected from sites on the Internet 

[DOL12] include a huge number of images with pedestrians at various scales. They also included 

images with no pedestrians. Finally, there are more than 2500 images in the vehicle image data-

set, for a variety of models and body shapes such as: hatchback cars (model A), minivans (model 

B), compact cars (model C), city cars (model D) and vans (model E). The number of images for 

training and test datasets are shown in Table 7.1. 
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Table 7.1. Dataset for training and testing. 
 

 

 

 

 

 

Fig. 7.1 shows sample images of pedestrians captured from the University of Birmingham. 

 

7.3 Non-Interpolated Cue Detector 

7.3.1 Experimental Settings of Non-Interpolated Cue Detector 

The cue detection mask was processed at a series of scales from 1 to 4. For pedestrian detection 

cue detector the mask width and height and separation were set to             and 16 pix-

els, respectively for the first scale. These values were arrived at by evaluating performance for 

values of    varied from 48 to 6, of    from 72 to 9 and a gap of from 2 to 16 pixels. The high 

and low hysteresis thresholds for response selection were set to 40 and 25, respectively. The pe-

destrian detection requirement was for the detected cue point to be within a 5 pixel wide by 10 

pixel high box at the centre of the pedestrian’s body, as judged visually. This is a demanding cri-

Images set Number of images 
 Training sets Test sets 
Pedestrians (Birmingham University) 

 

1500 1000 
Pedestrians (Internet) 2000 1000 
Pedestrians pushing pushchairs 500 300 
Pedestrians pushing bicycles 500 300 
persons riding pushchairs 500 300 
Vehicles 1250 1000 

Fig. 7.1. Selected images captured from outdoor scenes at the University of Birmingham. 
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terion. These experimental conditions were employed for the results reported for the pedestrian 

cue detector in the following subsections. 

 

7.3.2 Pedestrian Cues for Various Combinations of Region Sizes 

Results of pedestrian cue detection for variations in the size of the central region B and the two 

flanking regions A were based on the mask shown in Fig. 3.2 (a) and (b). This parameters were 

also considered at a series of scales.  A set of experiments on a dataset containing a variety of pe-

destrian images representing a range of scenarios was performed. There is at least one pedestrian 

in each image and all pedestrians are standing upright. The mean height of the pedestrians cap-

tured from the University of Birmingham are between 90 and 210 pixels and the mean height of 

the pedestrians downloaded from the Internet fall between 180 and 390 pixels. There are 700 col-

our images representing 3098 pedestrians alone, in groups and carrying bags in good weather 

with pedestrians of various sizes with simple and complex backgrounds. The number of images 

and the number of pedestrians in each set of images used for pedestrian cue detection is listed in 

Table 7.2. 

Table 7.2. Number of images and number of pedestrians in each image. 

 

The mask of the pedestrian detector was designed to match to pedestrians and not other objects. 

However, the cue detector might respond to trees but this should be a rare event as evaluated be-

low. Four sets of responses detected by the pedestrian detector using the MLR criteria, corre-

sponding to the annotated columns in the image of Fig. 7.2 (a) are shown in Fig. 7.2 (b). 

No. of images  150 10

5 

84 68 62 55 44 40 33 27 13 11 8 
No. of persons 
in each image 

1 2 3 4 5 6 7 8 9 10 11 12 13 
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It is observed from Fig. 7.2 (b) that there is a high response for a pedestrian and tree trunks in 

Fig. 7.2 (a). These regions are distinct from their surroundings and extend vertically. In addition 

to the pedestrian only the tree trunk laying beneath the blue line is detected. The responses for 

other instances such as small trees, road and grass are weaker than those for pedestrians. This il-

lustration is representative of the results obtained when selecting a cue detection threshold. The 

threshold selected from a large number of evaluations was the same. Fig.7.2 illustrates the good 

localisation of the MLR cue detection method. The MLR response on each vertical line in (a) is 

plotted in (b) in the corresponding colour. The profile plot from left to right corresponds to a tra-

versal of the corresponding line in (a) from bottom to top. Further evaluation is presented below. 

 

The Precision (P), Recall (R) and F-score (F) metrics were considered to evaluate the perfor-

mance of the cue detector. These measures were defined as shown in Equations 7.1, 7.2 and 7.3: 

                                                                           
  

       
                                                                         

(a)                                                                        (b)                              

Fig. 7.2. (a) MLR responses and annotated columns, (b) The MLR profile along the 
lines shown in (a). The lower (L) and upper (U) detection thresholds are shown. 
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The precision and recall metrics are defined in terms of the following parameters: 

 

   (true positive): is the number of correct detections that occur when a pedestrian has been 

detected. 

   (false positive): is the number of wrong detections obtained that arise when the cue detector 

detects some part of an image that is not a pedestrian. 

   (false negative): is the number of pedestrians present in a scene that are not detected. 

 

The precision metric shows the proportion of true positives with respect to all positive responses. 

Recall relates to the proportion of true responses. Recall rate is a popular detection criterion that 

can be used to evaluate most practical pedestrian detection applications. F-score is a weighted 

geometric average of precision and recall, which provides an overall measure of performance. 

 

A Receiver Operating Characteristic (ROC) curve was used to illustrate the performance of pe-

destrian detection systems. The ROC was originally defined as True Positive Rate (TPR) against 

the False Positive Rate (FPR) as y and x-axes respectively at various threshold values. The TPR 

is also known as sensitivity and the FPR can be calculated as (1 – specificity). The TPR (sensitiv-

ity) defines the proportion of positives that are correctly identified as the persons present in a 

scene among all persons available during the evaluation. The FPR (specificity) measures the pro-
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portion of negatives that are correctly identified. A test result is negative when the person is not 

present during the evaluation. The TPR or sensitivity, specificity and FPR were defined as: 

                                                                                                                               (7.4) 

                                                                                                                              (7.5) 

Where:    defines the objects that are not persons and the test is negative. 

                                                                                                                                      

Where: FPR is the proportion of false positives (  ) with respect to false positive count (  ) and 

true negative count (  ). 

 

Dollar et al. [DOL12] defined a hit or a miss rate to illustrate the performance of seven pedestrian 

detectors. They plotted miss rate or False Negative Rate (FNR) versus False Positives Per Image 

(FPPI) on a log-log scale and used log-average miss rate at 1 FPPI as a common reference point 

to summarize the performance of the pedestrian detectors as threshold values were varied. The 

Miss rate (FNR) was defined as the proportion of negative tests among people present in a scene 

and hit rate refers to true detection rate. Dollar et al. [DOL12] claimed that log-log plot is pre-

ferred to precision - recall curves for tasks such as automotive and pedestrian detection since 

there is an upper limit on the FPPI rate. 

 

7.3.3 Pedestrian Cue Detection 

The parameter values and the results for a series of experiments to evaluate cue detection on the 

dataset shown in Table 7.2 are shown in Table 7.3. The experimental conditions are described in 

Section 7.3.1 and the results given in terms of the Precision (P), Recall (R) and F-score (F) rates. 
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Table 7.3. Cue detection rates. 

 

It can be seen from Table 7.3 that there is a gradual improvement in the detection rate as the gap 

and region size increase together. Further, there is a small increase in the detection rate as the re-

gion size increases with a given gap size. The difference in recall rate between a mask with a gap 

and a mask without a gap for the different mask dimensions is less than 4 on average which is a 

small and not statistically significant. The results demonstrate that the size of the central, B, and 

flanking regions, A, over the range considered is not critical to detection performance. The appli-

cation of the smaller mask will be more rapid. There is a factor of approximately 300 in mask 

area between the smallest and largest mask. This is a major difference in computational burden. It 

is also observed that the best cue detection results were obtained using the masks with the largest 

size of regions, as shown in the last row of the table. A relatively high recall rate of 94.8% for 

mask 1 which is slightly better than the recall rate of 93.7% as achieved for mask 2 for masks of 

the same area. This difference of 1.1 between the two masks is not significant. The dimensions of 

mask 1 appearing in the last row of Table 7.3 were used with the interpretation systems presented 

in Sections 7.5 and 7.6. The pedestrian detection rate of 94.8% for mask 1 and 93.7% for mask 2 

were due to a failure to accurately detect a few people as shown by an example in Fig. 7.5 where 

Mask dimensions Mask1(gap) Mask 2 (no gap) 
A        B        gap P % R % F % P % R % F % 
(12,12) (12,24) 4 78.7 80.2 79.5 72.4 76.3 74.4 
(24,12) (24,24) 4 79.2 81.2 80.2 72.6 77.9 75.3 
(24,12) (24,24) 8 82.1 84.2 83.2 78.4 80.6 79.5 
(36,24) (36,48) 8 85.3 86.8 86 82 83 82.5 
(36,24) (36,48) 12 85.8 88.2 87 82.6 84.4 83.5 
(48,36) (48,72) 16 92.8 94.8 93.8 89.8 93.7 91.8 
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mask 1 The false detection of a tree using mask 2 is illustrated in Fig. 7.6 (b). The cases where 

cue detection fails, as illustrated in Fig. 7.5, are discussed. 

 

Masks with the largest size of regions, as described in the last row of Table 7.3, are used 

throughout for the results reported in Figs. 7.3 to 7.6. The experimental conditions and the dataset 

are described in subsections 7.3.1 and 7.3.2, respectively. It is important that the cue detector lo-

cates pedestrians correctly to strengthen the effectiveness of the interpretation system, even if 

there is a high degree of occlusion. The results of cue detection for selected images are marked 

by red dots in Figs. 7.3, 7.5 and 7.6 and by a blue dot for the person on the right in Fig. 7.5 (d), to 

differentiate it from the red bag on the pedestrian’s back. The black dots were used to obscure the 

facial features of the pedestrians as agreed in the consent form signed by the participant pedestri-

ans. 

 

Each image in Fig. 7.3 (a) – (c) shows a single pedestrian, in each case with lower level of light-

ing, more than occurs in normal variation of light level and with a moderately complex back-

ground. Fig. 7.3 (d), Fig. 7.3 (e) and Fig.7.3 (f) show groups of two pedestrians with various lev-

els of crowding and complexity of foreground and backgrounds composition. Fig. 7.3 (d) shows 

two separate pedestrians, Fig. 7.3 (e) a group of two pedestrians that are relatively close and Fig. 

7.3 (f) a group of two pedestrians where one pedestrian is partially occluded by the other. Each 

image in Fig. 7.3 (g) – (i) shows a group of three pedestrians with varying degrees of separation 

and background complexity. Fig. 7.3 (g) and (i) show a group of three pedestrians in similar 

poses, one walking in a different direction. Fig. 7.3 (j) shows a group of four pedestrians with 

relatively different poses and Fig. 7.3 (k) shows four pedestrians with similar poses. Fig. 7.3 (l) 
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shows five pedestrians, with two isolated pedestrians and a group of three pedestrians with one 

pedestrian partially occluding the group of three in the middle of the image. 

                    (d)                                              (e)                                                (f)                

                    (a)                                             (b)                                                (c)                   

                   (g)                                              (h)                                                (i)                   

               (j)                                              (k)                                                 (l)                    

Fig. 7.3. Cue detection for pedestrians with various degrees of crowding and in various 
poses: (a), (b) and (c) pedestrians alone; (d) two pedestrians at a distance; (e) two relatively 

close pedestrians; (f) partial occlusion between two pedestrians; (g), (h) and (i) show 
groups of three pedestrians; (j) and (k) a group of four well spaced pedestrians and (l) a 

group of five pedestrians in a crowded scene with partial occlusion. 
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Fig. 7.3 (a) – (l) shows correct detection in each case with no false positive or false negative er-

ror. In each case a pedestrian is detected once only. The clustered MLR profile responses and se-

lection of cues for the images shown in Fig. 7.3 (c) and (e) and their clustered cue reference 

points are shown in red after Thresholding in Fig. 7.4. 

 

 

 

 

 

 

 

 

The MRL profile responses and the cue points shown in Fig. 7.4 justify that the cue detection al-

gorithm and the clustering process were appropriate to identify the pedestrian cues. Complex 

situations where the cue detection using mask 1 does fail are shown in Fig. 7.5. 

          (c)                                                     (d) 

              (a)                                                     (b)                             

Fig. 7.5. Failure conditions of cue detection using mask 1 (a) waste bin detected,(b) 
tree detected, (c) and (d) almost completely occluded pedestrian not detected. 
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Fig. 7.4. The final MLR profile responses and selection of cues using pedestrian de-

tector along the vertical paths of the images shown in Fig. 7.3 (c) and (e), with plots in 
red and blue, respectively. The cue points are shown by red dots. 
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In Fig. 7.5 (a) a rubbish bin with dimensions similar to the body of a child is detected. A pedes-

trian detector might respond to a tree object which is a false positive that can usually be 

eliminated in the interpretation phase. In Fig. 7.5 (b), a tree is detected. A tree is occasionally de-

tected because its dimensions satisfy the requirements of the pedestrian cue detector. The detec-

tion of the tree in Fig. 7.5 (b) is a significant false positive. The detection of the pedestrians that 

are substantially occluded in Fig. 7.5 (c) is good and that in Fig. 7.5 (d) is especially good. In Fig. 

7.5 (c) an almost completely occluded pedestrian in the background is not detected and in Fig. 7.5 

(d) a highly occluded person in the foreground in a group of three pedestrians with only a head 

visible is not detected. It is considered unreasonable to expect to detect either of these pedestrians 

and these cases are not considered serious failings. Further, Fig. 7.5 (d) shows the correct detec-

tion of one pedestrian who is largely occluded by two neighbouring pedestrians. 

 

Fig. 7.6 shows cue detection results for two pedestrians using mask 1 in (a) and mask 2 in (b). 

 

The benefit of using mask 1 is that there is no false positive result for the tree in the image. Fig 

7.6 (b) shows an incorrect detection of a tree. The importance in this figure is to identify all pe-

destrians sought in the image without losing any pedestrian. 

Fig. 7.6. Cue detection results using: (a) mask 1 and (b) mask 2. 
                  (a)                                                    (b)                             
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7.3.4 Cue Detection Rate 

The dataset used to assess cue detection rate are described in subsection 7.3.2 and the experimen-

tal conditions are described in subsection 7.3.1. The experimental results of cue detection using 

the masks defined in the last row of Table 7.3 are summarised in Fig. 7.7, using the ROC curves, 

which show the true positive rate (sensitivity) on the y-axis plotted against the false positive rate 

(1 – specificity) on the x-axis at various threshold values. Each point on the ROC curve repre-

sents a pair of (sensitivity, 1-specificity) or (TPR, FPR) corresponding to a particular threshold 

value. Sensitivity is inversely related with specificity in the sense that sensitivity increases as 

specificity decreases across various threshold values. A test with 100% sensitivity correctly iden-

tifies all persons present in a scene. A test with 80% sensitivity detects 80% of persons present 

(  ) but 20% of persons are undetected (  ). On the other hand, a test with 100% specificity cor-

rectly identifies all the non-person objects. A test with 80% specificity accurately reports 80% of 

non-persons as a negative result (  ) but 20% non-persons are falsely identified as a positive re-

sult (  ). The error bars in Fig. 7.7 are shown for 1 standard error of the mean. The threshold val-

ues were selected experimentally as justified in Fig. 7.2. The low hysteresis threshold was varied 

on detection confidence from 5 to 40 and high hysteresis thresholds from 25 to 60, in steps of 5, 

in each case, to generate the ROC curves. 

 

The two ROC curves are best partially separable at unit standard error of the mean which is 

nearly about 56% confidence level but not at higher levels of confidence; the difference between 

the two curves of the masks with a gap and without a gap is not significant. There is a small pref-
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erence for the mask with a gap which is used in the interpretation system. The cue detector using 

a mask with a gap has more accuracy than the cue detector using a mask without a gap. 

 

 

 

 

 

 

 

 

 

There is a trade-off between True Positive Rate (TPR) and False Positive Rate (FPR): to achieve 

a higher pedestrian detection rate will usually incur a higher false positive rate as a side effect. A 

threshold is selected to balance TPR (sensitivity) and FPR (1 – specificity). This balance was 

controlled through selecting appropriate threshold values where any increase in sensitivity will be 

accompanied by a decrease in specificity. 

 

The cue detection results shown in Fig. 7.7 show that the cue detector using the mask with a gap 

presents a true positive rate of 0.95 with a false positive rate of 0.20 per image, while the cue de-

tector using the mask without a gap presents a true positive rate of 0.92 with a false positive rate 

of 0.22 per image. 
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Fig. 7.7. ROC curve for pedestrian detection on the test sequences collected at 
the University of Birmingham. The vertical error bars represent one standard 

error of the mean of a set of measurements. 
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The ROC curves in Fig. 7.7 display all possible operating points, where it is possible to identify 

an optimal threshold value for correctly identifying pedestrians. For optimum operating condi-

tions, it is important to maintain a high true positive rate. The point nearest to the upper left cor-

ner of the ROC curve is the optimal location which indicates to a high TPR value and a low FPR 

value. The optimal threshold point, on the ROC curve, shows an appropriate balance between the 

maximum TPR and the minimum FPR. Fig. 7.7 shows that the optimal operating point for cue 

detection using the mask with a gap occurs at a TPR of 0.82 with a FPR of 0.05. An appropriate 

balance for cue detection using the mask without a gap is likely to be found with a FPR of about 

0.06 and a TPR count of about 0.8 or less. 

 

It is important that the number of false positive detections is not large otherwise efficiency of tar-

get identification will be impaired. It is more important to maximize TPR (minimise false nega-

tives) than to maximize specificity (minimise false positives). This condition is required because 

it is important to detect all pedestrians sought in an image without losing any pedestrian.  If ob-

jects that are not pedestrians are detected then they can be eliminated during interpretation, there-

fore a slightly heightened false positive rate is not a serious problem, where there is a priority that 

true positive rate should be high. Overall, the cue detector approach of both masks results in high 

true positive rates. 

 

The cue detector method was also demonstrated for the detection of humans at very high resolu-

tion (1920×1080 pixels) using full-length outdoor town centre sequence [BEN11]. In this se-

quence the majority of pedestrians are walking and looking in their direction of travel. This town 

centre sequence has 473412 images. This cue detector was applied every one hundredth image in 
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the sequence, a total of 4300 frames. Using the evaluation procedure described in [ESS07], the 

results of the cue detector using the town centre sequence with the masks defined in the last row 

of Table 7.3 are presented in Fig. 7.8, using the rate of recall on the y-axis plotted against the 

FPPI on the x-axis. FPPI evaluation metric is appropriate for evaluating the performance on full 

images [TRA08]. 

 

 

 

 

 

 

 

 

 

 

The detection results shown in Fig. 7.8 support that the cue detector achieved a high significant 

performance of pedestrian detection on a high resolution dataset, demonstrating its good general-

ization capabilities. Table 7.4 shows a comparison of the results of the pedestrian detector report-

ed here with the results of other pedestrian detection approaches using data sets of other works of 

pedestrian approaches. 

 

The configuration parameters of the SVM classifier implemented in OpenCV [CHA11] used to 

identify the pedestrian cues are as follows: The number of training images of pedestrians was 
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Fig. 7.8. False positives per image as the evaluation metric for pedestrian de-
tection on a town centre sequence for the first 4300 frames. The vertical error 

bars represent one standard error of the mean of a set of measurements. 
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700. The number of test image size was 300. The dataset was divided into ten subsets; nine sub-

sets were used for training the model and one subset was used for testing, so, the SVM was exe-

cuted 10 times to allocate the best parameters over the subsets of training samples. The learned 

parameters considered the best if the test error of the testing model is minimal. The stopping cri-

teria were the number of iterations, 150, or the tolerance error of 0.001. The recall rate of correct 

identification of pedestrian cues using this SVM classifier was 88%. 

 

A review of the work reported by Dollar et al. [DOL12] is presented in the literature review at the 

end of subsection 2.3.1.1. There is an extensive evaluation and a comparison of a diverse set of 

16 pedestrian detectors under various scenarios and for multiple datasets. These pedestrian detec-

tion approaches are each representative of various lines of research and favorable in terms of re-

ported performance. Dollar et al. further described a set of evaluation measures that deal with ex-

treme cases such as severe occlusion and poor illumination. Further, there is a statistical analysis 

of the significance of the results, where the detection rates were explored under varying levels of 

scale and occlusion and on clearly visible pedestrians. Dollar et al. [DOL12] adopted a log-log 

curve that plotted the miss rate against FFPI to illustrate performance of pedestrian detectors. The 

justification is to focus on the very low values of miss and false positive rates which would not be 

easy to visualize in a standard ROC curve. In the experiments reported in [DOL12], the perfor-

mance was evaluated on publicly available datasets. The datasets consist of pedestrians who are 

between 90 and 210 pixels, 180 and 390 pixels and between 96 and100 pixels in height. 

 

The performance of the pedestrian cue detector reported in this Thesis is compared against results 

of most recent promising pedestrian detection approaches in the literature which have best report-
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ed performance. These reported ppedestrian detection approaches are fully reviewed in the litera-

ture review at the end of subsection 2.3.1.1. These previously pedestrian detectors were reported 

by Viola and Jones [VIO04], Dalal and Triggs [DAL05], Schwartz et al. [SCH09], Tang et al. 

[TAN12], Lim et al. [LIM13], Ouyang and Wang [OUY13], Tian et al. [TIA15] and Nguyen et 

al. [NGU15]. Another pedestrian detector presented here for the comparison is the work reported 

by Wang et al. [WAN07]. A promising pedestrian detection approach reviewed in subsection 

2.3.1.1 is the work reported by Lim et al. [LIM13]. The results reported by Lim et al. are com-

pared against recent set of results as presented in Table 2.2. Recall rate is a measurement com-

monly used for evaluating the performance of pedestrian detection. The ideas of Dollar et al. for 

presenting the results of pedestrian detectors was used to evaluate the pedestrian detectors by us-

ing the FPPI metric; where FPPI measure takes into account the number of windows presented to 

the classifier. The log-average miss rate at false positives per window was used to evaluate the 

performance of the pedestrian detectors which was computed by averaging the miss rate at nine 

FPPI rates that are evenly spaced in the log-space [DOL12]. 

 

Table 7.4 shows the recall and log-average miss rates for the cue detector presented in this Thesis 

compared to other pedestrian detectors, which are reviewed in subsection 2.3.1.1. The detection 

and log-average miss rates for the existing pedestrian approaches were reported by the authors, as 

reported in subsection 2.3.1.1. The pedestrian detection values reported for [WAN07] and 

[DAL05] have been estimated form images in those papers as they are not reported by the au-

thors. This is a crude process and may be inaccurate. 
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The TUD person set was used as a benchmark for the pedestrian detection approach in [WAN07] 

and [TAN12], H3D [BOU09] and PASCAL VOC 2007-2009 [EVE10] was used as a benchmark 

for the pedestrian detection approach in [NGU15] and the INRIA person dataset was used as a 

benchmark for the other pedestrian detection approaches in Table 7.4. Subsection 2.3.1.1 and Ta-

ble 2.3 in the literature review provides further details about the training and test datasets for each 

previously pedestrian detection method reported in Table 7.4. The work reported by Wang et al. 

[WAN07] used the TUD person dataset. The results of the pedestrian detection method presented 

in this Thesis in Table 7.4 used the datasets of reported works of Dalal and Triggs [DAL05] and 

Wang et al. [WAN07]. This reported pedestrian cue detector used a set of 320 images of pedes-

trians from the TUD person dataset [WAN07] and a set of 510 images of pedestrians from the 

INRIA person dataset [DAL05], as described in the last two rows of Table 7.4. 

 
Table 7.4. A comparison between the proposed pedestrian cue detector and other pedestrian de-

tection approaches. 

 

Pedestrian detection method Training data 
Performance metrics 
Recall 

    rate (%) 
Log-average  

miss rate 
Lim et al. [LIM13] INRIA dataset and PASCAL 2007 95 15% 
Nguyen et al. [NGU15] PASCAL VOC 2007-2009 95 67% 
Tian et al. [TIA15] INRIA person dataset 93 26% 
Ouyang and Wang [OUY13] INRIA person dataset 92 39% 
Proposed pedestrian detector  TUD person dataset 92 43% 
Schwartz et al. [SCH09] INRIA person dataset 92 62% 
Proposed pedestrian detector  INRIA dataset 91 44% 
Tang et al. [TAN12] TUD  person dataset 90 57% 
Dalal and Triggs [DAL05] INRIA person dataset 89 68% 
Wang et al. [WAN07] TUD person dataset 87 65% 
Viola and Jones [VIO04] INRIA person dataset 80 95% 
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Table 7.4 compares the evaluation strategy and performance of the pedestrian cue detector pre-

sented in this Thesis to nine pedestrian detection methods described in the literature review. It is 

clear that the cue detector reported here performs considerably better than some state-of-the-art 

detectors such as Viola and Jones [VIO04], Dalal and Triggs [DAL05], Wang et al. [WAN07] 

and Schwartz et al. [SCH09] and achieved similar recall rates to the methods reported by Tang et 

al. [TAN12]. Further, the pedestrian cue detector reported a detection rate that is comparable to 

the detection rate reported by Ouyang and Wang [OUY13]. However, the pedestrian cue detector 

reported here did not perform as well as that reported by Lim et al. [LIM13], Nguyen et al. 

[NGU15] and Tian et al. [TIA15]. The difference is relatively small compared to Tian et al. 

[TIA15] for recall rate and significantly less than the recall rates reported by Lim et al. [LIM13] 

and Nguyen et al. [NGU15]. Further, the pedestrian cue detector reported here achieved miss rate 

that is significantly less than the miss rates reported by Viola and Jones [VIO04], Dalal and 

Triggs [DAL05], Wang et al. [WAN07] and Schwartz et al. [SCH09]. The difference in miss rate 

is relatively small compared to that reported by Ouyang and Wang [OUY13]. However, the pe-

destrian cue detector here reported a miss rate that is significantly larger than the miss rates re-

ported by Lim et al. [LIM13] and Tian et al. [TIA15]. 

 
7.3.5 Vehicle Cue Detection 

An adaptation of the pedestrian cue detector to detect vehicles was made by modifying the di-

mension of the operator mask and way of scanning images. The search strategy and the mask 

shape changes are explained in subsections 3.3.2 and 3.4, respectively. The dimensions of the 

mask, shown in Fig. 3.2 (b) for vehicle detection were set to as width,       , width,    

   , height,      , and height,   =27. The low and high hysteresis thresholds were not 
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changed. This cue detector was applied to detect vehicles. The dataset employed to evaluate the 

vehicle detector includes 1000 images with a variety of vehicle body shapes such as: hatchback 

cars, minivans, compact cars, city cars and vans. The results of cue detection on images contain-

ing vehicles and a pedestrian are shown in Fig. 7.9 with their detected cues shown by small red 

dots. Their MLR profile responses are shown in Fig. 7.10. 

 

Fig. 7.9 illustrates that a change in the geometry of the mask and the way that it was scanned 

across the image allow the cue detector to detect cue points within typical images of vehicles and 

to distinguish these potential targets from other objects in the background and foreground. To de-

tect vehicles, the image was scanned row first. Fig. 7.9 shows also both horizontal and vertical 

scans using vehicle and pedestrian detectors respectively as shown in Fig. 7.10 by the MLR pro-

files for vehicle and pedestrian detectors. 

 

 

             (a)                                                           (b) 

Fig. 7.9. Cue detection results for vehicle images on which vehicle detector is 
considered, the annotated rows and columns corresponding to the MLR profile 

responses for vehicle and pedestrian detectors as shown in Fig. 7.10. 
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The blue and red lines in Fig. 7.10 show the responses, detected by the vehicle detector, corre-

sponding to the annotated blue and red rows in Fig. 7.9 (a) and (b). It can be seen from Fig. 7.10 

that the response to the relevant detectors is larger than that for detectors designed for different 

objects. 

 

The dataset used to evaluate the vehicle detector is described in the previous paragraph. The de-

tection results for vehicle detector in terms of Precision (P), Recall (R) and F-score (F) rates are 

reported in Table 7.5. 

Table 7.5. Vehicle cue detection rates. 
 

 

Target Mask dimension (pixel) Detection (%) 
wA hA wB hB P % R % F % 

Vehicle 108 27 108 54 90.6 91.6 91.1 
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Fig. 7.10. MLR responses using the vehicle and pedestrian detectors for the images in 

Fig. 7.9 (a) and (b): the blue and red responses correspond to the annotated blue and red 
rows in Fig. 7.9 (a) and (b) using the vehicle detector, the green line shows the profile 

responses for the pedestrian in Fig. 7.9 (b) using the vehicle detector and the purple and 
light blue lines show the profile responses for the purple and light green lines for a bus 

and the left car in Fig. 7.9 (a) using the pedestrian detector. 
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7.4 Component Axes Detection 

The detection of multiple and composite axes that represent complex objects or a combination of 

objects is presented in this section. The composite axes were formed by linking axis component. 

The number of images representing different object types used to evaluate the detection of com-

plex axes is shown in Table 7.6. The pedestrians can be alone and in groups with various degrees 

of occlusion with pedestrians of various sizes with simple and complex backgrounds. 

Table 7.6. Number of images containing different object types. 
Image Pedestrians 

alone 
Pedestrians pushing 

pushchairs 
Pedestrians 

pushing bicycles 
Persons riding 

bicycles 
Number of images 700 200 200 200 

 
 

The axis detection for isolated pedestrians and for pedestrians with a pushchair or a bicycle was 

investigated to generate the boundary points on these objects on which image interpretation is 

based while the key point generation method of pedestrian cue detector was employed to identify 

the key points around the pedestrians alone. 

 

7.4.1 Experimental Settings for the Axes Detection 

The regions A and B of the interpolated filter mask, shown in Fig. 3.2 (a), were defined to have a 

width,       and height,       pixels, for the first scale. Twelve local responses using the 

interpolated cue detector were computed at angular intervals of     about the horizontal and ver-

tical at each of 4 levels of resolution by combining the responses for the detector when aligned 

with the y-axis and the x-axis. The high and low thresholds were set to 40 and 25, respectively. 
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7.4.2 Determination of an Object Type 

In Section 4.4 a way to determine object type for complex objects or a combination of objects 

detected by the axis cue detector was described. Here, four object types are considered: a pedes-

trian alone, a pedestrian pushing a pushchair, a pedestrian pushing a bicycle and a person riding a 

bicycle. Clearly many object types are possible. Experimental results concerned to investigate the 

ability to identify object type are presented. 

 

The data used to identify the nature of the cues is the entropy and the energy of the axes re-

sponses as introduced in Section 4.4. The type of a detected object was identified by forest tree 

classifier. Forest of trees classifier and why this classifier was chosen, as opposed to, for exam-

ple, K-means clustering were explained in Section 4.4. The training and evaluation features used 

with  the forest of trees classifier consists of the entropy and the energy of the axis points for 800 

and 600 images, respectively. The number of each object type present in the images is described 

in Table 7.7. The data considered for this part were gathered from the University of Birmingham 

and from the Internet as described in Section 7.2 and subsection 7.3.2. Some of these images are 

from INRIA and TUD person datasets which used to evaluate previously reported pedestrian 

detection methods of Dalal and Triggs [DAL05] and Wang et al. [WAN07], respectively. 

 

Table 7.7. Dataset for training and evaluating the forest tree classifier. 
Type of objects Pedestrians 

alone 
Pedestrians push-

ing pushchairs 
Pedestrians 

pushing bicycles 
Persons riding 

bicycles 
Training dataset 200 200 200 200 

Evaluation dataset 150 150 150 150 
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7.4.2.1 Parameter Setting for the Forest of Trees Structure 

The highest depth of the random forest of trees classifier is 15. The number of features consid-

ered to identify a split at each tree node is 2, which are equally weighted. The number of trees in 

the forest is 10. The combination of results with this number of trees in the random forest of trees 

classifier of 800 sample images for training and 600 sample images for testing has the potential to 

improve the outcome and therefore might improve performance. The number of degrees of free-

dom for this number of samples is approximately 100 sample images per degree of freedom for 

the training data set and 75 samples per degree of freedom for the test data set. The termination 

criterion is the maximum number of trees permitted. Table 7.8 implicitly contains the perform-

ance of the random forest classifier for detecting pedestrians alone and pedestrians associated 

with pushchairs or bicycles. 

 

The confusion matrix obtained from the forest of trees classifier for the detection of different ob-

ject types is shown in Table. 7.8. The class labels represent persons alone, persons pushing push-

chairs, persons pushing bicycles and persons riding bicycles. The true class labels are listed along 

the x-axis and the forest of trees class predictions are shown along the y-axis. The correct classi-

fications are shown along the first diagonal and all other entries show misclassifications. The bot-

tom right cell shows the overall accuracy. The numbers in brown show the proportion of miss 

classifications with respect to hit and miss responses. The numbers in blue show the proportion of 

hit classifications with respect to hit and miss responses. The percentage numbers in black in the 

main diagonal are the proportion of hit responses with respect to all images and the percentage 

numbers in black in the other cells show the proportion of miss classifications with respect to all 

images. The hit rate seems relatively rather low, perhaps because the images of pedestrians alone 
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and associated with pushchairs or bicycles are highly varied. However, this hit rate is acceptable 

with approximately 100 samples per degree of freedom for the training data set and 75 samples 

per degree of freedom for the evaluation data set. The bold numbers in black in the main diagonal 

show the true classification and the bold numbers in black in the other cells show the number of 

miss responses. 

 
Table 7.8. Confusion matrix for all classes and all attributes. 

 

A SVM based on LibSVM [CHA11] was also used to identify the type of an object using the 

same measures and the data of the FT classifier. The parameters used in the SVM classifier are 

illustrated in subsection 7.3.3. The average rates of correct classification using the FT and SVM 

classifiers for all cue types were respectively 83.4% and 85.6% for the augmented cue matrix 

having 800 samples in the training set and 600 samples in the test set. This is approximately 100 
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171 
21.4% 

14 
1.7% 

11 
1.3% 

10 
1.2% 

83% 
17.5% 

 
Pedestrians pushing pushchairs 

10 
1.2% 

168 
21% 

11 
1.3% 

14 
1.75% 

82% 
17% 

 
Pedestrians pushing bicycles 

11 
1.3% 

9 
1.1% 

166 
20.8% 

13 
1.6% 

83.4% 
16.5% 

 
        Pedestrians riding bicycles 

8 
1% 

9 
1.1% 

12 
1.5% 

163 
20.4% 

85% 
14.5% 

 85.5% 
14.5% 

84% 
16% 

83% 
17% 

81.5% 
18.5% 

83.4% 
16.4% 
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images per degree of freedom for the training data set and 75 images per degree of freedom for 

the set data set, which is a relatively good sample size, given that the degree of freedom for cue 

identification is identified by the number of object types plus parameters assuming that the pa-

rameters are independent [PAN08]. 

 

7.4.3 Interpolated Cue Detection Results 

The interpolated cue detector was used to identify the cue points within pedestrians alone and a 

combination of pedestrians with pushchairs or bicycles, whereas the non-interpolated cue detec-

tor was used to identify the cue points within pedestrians alone. The data used to establish the 

performance of cue identification for the interpolated cue detection results are described in Sec-

tion 7.4 and the experimental parameter values of the interpolated mask are described in subsec-

tion 7.4.1. 

 

Examples of cue detection and identifying the identified cue object type using the interpolated 

cue detector for non-crowded scenes for people in different contexts are shown in Fig. 7.11 (a) – 

(c) and for people combined with other objects in Fig. 7.11 (d) – (f). The detected cue points are 

shown in red in each case in Fig. 7.11 (a) – (e) and in blue in Fig. 7.11 (f) to distinguish it from 

the colour of the pushchair. 
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In Fig. 7.11 (a) there is a significant variation in lighting with two pedestrians present but the pe-

destrians are in low contrast to the background. Fig. 7.11 (b) shows an image of two pedestrians 

with a number of trees present in the background. Fig. 7.11 (c) shows a group of four pedestrians 

and the area around the pedestrians has a relatively low illumination. The group of four pedestri-

ans in Fig. 7.11 (c) can be considered as people alone because they are gaps around a large part of 

their outline. Fig. 7.11 (d) – (f) show a variety of scenes for pedestrians combined with a variety 

of other objects with good, uniform lighting in each case. 

 

The cue detection results for the images in Fig. 7.11 are based on the interpolated cue detector 

and the cue detection results reported in Fig. 7.3 were based on the non-interpolated cue detector. 

The detection results of the interpolated cue and pedestrian cue detectors might differ in some 

cases because the interpolated cue detector used an extension strategy to pedestrian cue detector 

                     (a)                                              (b)                                              (c) 

                 (d)                                   (e)                                              (f) 

  
Fig. 7.11. Correctly detected pedestrian cues: (a) two partially occluded pedestrians; 
(b) two pedestrians; (c) four pedestrians separated by a small distance; (d) pedestrian 
pushing a bicycle; (e) person riding a bicycle and (f) pedestrian pushing a pushchair. 
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as described in Chapter 4. A comparison of performance of the detection rates between the axis 

detector and pedestrian cue detector on the same set of pedestrian images is shown in Table 7.9. 

 

Two situations where the interpolated cue detector failed are shown in Fig. 7.12. 

 

In Fig. 7.12 (a), the two pedestrians in the foreground each almost completely occlude a person in 

the background who is not detected. This is considered reasonable given the severe degree of oc-

clusion. In Fig. 7.12 (b) a tree with dimensions similar to a pedestrian is detected. This is a rare 

event but a significant false positive. 

 

7.4.4 Results of Axes Detection 

The value of using component axes to identify key points on the object boundary for pedestrians 

alone and pedestrians with a pushchair or a bicycle was introduced in Section 4.6. 

 

       (a)                                                  (b) 

Fig. 7.12. Failure of cue detection: (a) two almost completely occluded pedestrians 
out of four are not detected and (b) a tree is incorrectly detected. 

(a)                                                                    (b)   
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Fig. 7.13 (a), (b) and (c) show the major visible component axes for pedestrians, as a solid blue 

line, as defined by the symmetry of the objects and their component parts. The red crosses mark 

axis points. Fig. 7.13 (d), (e) and (f) show the corresponding composite axes to Fig. 7.13 (a), (b) 

and (c), respectively. 

 

The component axes in the bottom row of Fig. 7.13 are joined end to end to the closest axes of 

the pedestrian axes to form a composite axis. The composite axis representation was designed to 

                  (d)                                           (e)                                                (f)                

                    (a)                                             (b)                                               (c)                   

Fig. 7.13 Detected axes for pedestrians: (a), (b) and (c) for each component and (d), (e) 
and (f) composite axes for the pedestrians shown in (a), (b) and (c), respectively. 
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provide a good representation of the visible component axes for pedestrians joined together. The 

difference between the images in Fig. 7.13 (a) - (c) and the respective images in Fig. 7.13 (d) - (c) 

in respect to the length position and structure of the axes is small because the sub-axes of the pe-

destrian are very close to each other. It is observed from Fig. 7.13 that the local axes show local 

symmetry of the pedestrian images. Fig. 7.13 (a), Fig. 7.13 (b) and Fig. 17.3 (c) show that the 

number of major axes detected depends on the pose of each pedestrian. 

 

Fig. 7.14 (a) – (d) show the major visible component axes for pedestrians, as a solid blue line 

with red crosses mark axis points. In Fig. 7.14 (a) and (b) the interpolation process was used to 

find the output responses of the MLR filter at various orientations, whilst in Fig. 7.14 (c) and (d) 

the result of the actual MLR filter was synthesised by a linear combination of the output 

responses at various orientations. The interpolation process was introduced in Section 4.3. 

 

It is observed that the difference between the locations of the component axes identified on the 

pedestrian shown in Fig. 7.14 (a) and (c) and that shown in Fig. 7.14 (b) and (d) is small as visu-

ally judged and not statistically significant. This is in turn means that the difference between the 

result of interpolation and the result of the actual MLR operator at various orientations is not sig-

nificant. Fig. 7.14 (a) and (b) confirm the validity and the appropriateness of interepolation to 

identify the axis points on the major component axes of pedestrians. 

 

 



Chapter 7: EXPERIMENTAL RESULTS AND DISCUSSION 

194 
 

 

Fig. 7.15 (a) - (c) show the major component axes for pedestrians pushing pushchairs. 

                            (a)                                                 (b)                                               (c) 

Fig. 7.15. Detected component axes for pedestrians pushing pushchairs. 

                     (c)                                                                                (d)                            

                        (a)                                                                                 (b)                           

Fig. 7.14. Detected axes for pedestrians: (a) and (b) using interpolation to approximate the 
MLR filter at various orientations; (c) and (d) synthesising the output of the MLR filter at 

various orientations. 
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The pushchairs vary in form and are not always symmetric, therefore, the detected axes of the 

pushchairs in Fig. 7.15 (a) – (c) are less than symmetric but they reflect the local axes of symme-

try. 

 

Fig. 7.16 (a) and (b) show the major axes for persons riding and pushing bicycles, respectively. 

 

Variation in the number of axes as for different pushchair poses is shown in Fig.7.17 for pedestri-

ans with pushchairs. This shows that the number of axes varies and in this case the process for 

locating key points, as described in Chapter 4, was used. In that chapter it was discussed that a 

variable number of axes does not matter as the axes serve only to help locate the boundary key 

points around the objects. For example, in Fig. 7.17 (a) the legs of the person are hidden beyond 

the pushchair and hence their axes are not detected. It is considered inappropriate to expect to de-

tect the axes for occluded legs. The two arms of the pedestrian are completely occluded and 

hence their axes are not identified. It is not difficult to define a match when sometimes one arm 

and sometimes two arms are detected, as the main aim is to identify the key points along the 

boundary of the objects on which the matching algorithm is based. The strategy described in Sec-

                  (a)                                                                 (b)              
Fig. 7.16. Detected axes: (a) a person riding a bicycle and (b) a pedes-

trian pushing a bicycle. 
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tion 4.6 presented the importance of detecting the component axes of the objects to identify the 

key points along the boundary of these objects. 

 

The object model relates to the ESE and the key points identified along the axes that represent the 

object and were incorporated into this model. The method for key point detection and selection to 

form a model was introduced in subsections 4.6.2 and 6.3. A similar number of local axis points 

were selected along the axes detected for objects of the same type. The identified points of an ob-

ject should be sufficient to describe the object even if some axes are or are not detected. For ex-

ample, a pedestrian pushing a pushchair detected as a body with one or two arms, and axes for 

the pushchair is very different to a pedestrian detected as one body axis, no arms and axes for the 

pushchair has a different set of axes. Here the axis representation is different for different object 

types, but the same methodology was used to identify the axes for the different objects type. 

Also, the same methodology was used to identify the key points for the different objects types; 

with a consistent number of axis points selected on the axes of each object type regardless of the 

occlusion of some object axes. The axis representation and key point detection used the same 

methodology for pedestrians alone, pedestrians pushing pushchairs, pedestrians pushing bicycles 

and persons riding bicycles and they were cues for the same interpretation process. 

                               (a)                                                      (b)                              
Fig. 7.17. Variation of the number of component axes with pose. 
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The interpolated axes and cues for a combination of objects is fully evaluated in terms of the 

standard ROC curve and the metric measures of precision, recall and F- rates as shown below. 

 

7.4.5 ROC Curves of Interpolated Cue Detector 

This section evaluates the ability of the interpolated cue detector to identify cues for pedestrians 

alone and for pedestrians associated with pushchairs or bicycles. The dataset used is introduced in 

Table 7.6 and the nature of the pedestrian images is described in subsection 7.3.2. The mask and 

the experimental conditions are described in subsection 7.4.1. The ROC curves of Fig. 7.18 

summarise the results for identifying pedestrians alone and pedestrians associated with push-

chairs and bicycles using the interpolated cue detector. The results are presented as a plot of the 

TPR against the FPR with error bars for 1 standard error of the mean. The ROC curves were gen-

erated by varying the low and high hysteresis thresholds, from 5 to 40 and from 25 to 60 respec-

tively and in steps of 5. 
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Fig. 7.18. ROC curves for pedestrian, pushchair and bicycle detection. The vertical 
error bars represent one standard error of the mean of a set of measurements. 
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The cue detection results shown in Fig. 7.18 show that the interpolated cue detector achieved a 

TPR of 0.94 with a FPR of 0.21 per image for detecting pedestrians alone and a TPR of 0.90 with 

a FPR of 0.23 per image for detecting pedestrians associated with pushchairs and a TPR of 0.89 

with a FPR of 0.25 per image for detecting pedestrians associated with bicycles. Based on the cue 

detection results of Fig. 7.18, a true positive rate of 0.80 with a false positive rate of 0.06 for pe-

destrian detection are likely to represent an optimum operating point. The true positive rates of 

0.78 and 0.76 and false positive rates of 0.07 and 0.08 are the optimum operating points for pe-

destrians associated with pushchairs and bicycles, respectively. These reported false positive rates 

for detecting pedestrians alone and pedestrians associated with pushchairs and bicycles at the 

optimal operating points are appropriate. At the optimum operating points a lower false positive 

rate was realised by the forest of trees classifier. If objects that are not the target objects are de-

tected then they can be eliminated during the fitting process, therefore a slightly heightened false 

positive rate is not a serious problem. However, it is not desirable to have a large number of false 

positives since this takes time during the interpretation process. 

 

7.4.6 Evaluation of Cue and Composite Axes Detector  

The cue detection results and the performance for detecting composite axes for pedestrians alone 

and pedestrians combined with pushchairs and bicycles using the interpolated composite detector 

were evaluated in terms of precision (P), recall (R) and F- rates as shown in Table 7.9. 
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Table 7.9. P, R and F rates for detecting cues and axes for pedestrians alone and pedestrians as-
sociated with pushchairs and bicycles. 

 

Table 7.9 shows that the interpolated cue detector reported recall rates for pedestrian and axes 

detection of 94.2% and 94%, respectively, and the recall rates for detecting cues and axes for pe-

destrians with a pushchair are 91.8% and 90.6%, respectively. Also, Table 7.9 shows that the re-

call rates for detecting cues and axes for pedestrians with a bicycle are 90.0% and 88.1%, respec-

tively. Table 7.9 demonstrates that the detection of pedestrians alone and pedestrians associated 

with pushchairs and bicycles and their composite axes is good and reasonable. Table 7.3 reported 

an optimal recall rate of 94.8% for a set of 700 images representing 3098 persons, using the non-

interpolated cue detector, compared to the recall rate of 94.2%, for pedestrian’s detection, using 

the interpolated cue detector as shown in Table 7.9. These detection rates were reported for 1 

standard error of the mean, making a difference in detection rate of 0.9 a small and not signifi-

cant. This quantifies 68.27% of the values that lie within one standard error of the mean. 

 

The axis detection results reported in Table 7.9 show that the axis detection method is appropriate 

for identifying the composite objects and the axes for people combined with other objects. A sec-

ondary goal of the axis detector was to identify the key points along the boundary of pedestrians 

with pushchairs and bicycles as described in Section 4.6. 

 

Criterion Pedestrians alone Pedestrians with pushchairs Pedestrians with bicycles 
Cues Axes Cues Axes Cues Axes 

P (%) 93.6 92 90.1 90 88.2 86.2 
R (%) 94.2 94 91.8 90.6 90.0 88.1 
F (%) 93.9 93 91.0 90.3 89.1 87.2 
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Further, a secondary goal of the cue detector was to identify the key points along the boundary of 

the pedestrians. In subsection 3.5.2, where the generation of edge points on both radial and per-

pendicular search paths is described; the ratio of radial distance of the corresponding first and 

third key points from start of radial line to the key points on successive radial search paths was 

used to establish the need for a secondary search path. A set of values in the range of 0.1-1.0 and 

1.7-3.5 pixels was applied to this ratio to identify the proper values for this ratio. Experimentally 

it was found that this ratio from each observation is nearly identical from the images of pedestri-

ans considered and the choice of ratios of 0.5 and 2 were appropriate, although they were not 

critical. Further details on generating perpendicular search paths on an image of pedestrians with 

different values of ratios are described in subsections 3.5.1 and 3.5.2. In the peak detector strat-

egy described in subsection 3.5.2.1 peak widths of 7 and 18 and peak heights of 23 and 70 pixels 

were evaluated by the peak detection algorithm. Typical values for w and h for the key point de-

tection method introduced in subsections 3.5.2 and 4.6 were set to 7 and 23, respectively. The 

necessary or relevant peaks and valleys were detected by peak and valley hysteresis detectors as 

presented in subsection 3.5.2.2. 

 

7.5 Fitting Results for the ESGM 

Images with a complex background and foreground along with cases of people in isolation, in 

groups and in combination with other objects and vehicles are used in Fig 7.19 to 7.23 to illus-

trate the effectiveness of the ESGM. The ESGMs interpretations were created for pedestrians 

alone, pedestrians combined with other objects and five types of vehicles. The ESGM was pro-

duced as described in Section 5.4. The training and interpretation methods of the ESGM are de-

scribed in Section 6.2. There are 18 modes in the models and the ESGM in all experiments ex-
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plains 97.5% of the total variance. An ESGM for pedestrian interpretation was trained on a data-

set of more than 200 images of pedestrians of various poses, sizes, with and without bags. The 

ESGM was evaluated on an independent set of 150 images. This ESGM was used in all the re-

sults reported in Figs. 7.19 – 7.21. 

 

Fig. 7.19 shows the ESGM interpretation at the 6th and 18th iteration for a pedestrian in different 

poses. The key points are shown in green and blue at iterations 6 and 18 in Fig. 7.19 (a) and (b) 

respectively and the ESE curves are shown by a black line. 

 

Fig. 7.19 (b) shows that a very small improvement is obtained after 18 iterations (shown in blue). 

 

                                                             (a)                                               
 

Fig. 7.19. Detection of points shown in (a) green at 6 iterations and (b) blue at 18 iterations. 
 

                                                         (b)                                               
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Fig. 7.20 illustrates the potential flexibility of ESGM in detecting points that locate the boundary 

of a pedestrian in three frames. The points are identified by blue colour after 18 iterations and the 

ESE curves are shown by a black line. 

 

The interpretions in Figs. 7.19 and 7.20 demonstrate that good stability and consistent results are 

repeatedly obtained when the pose changes by a modest amount. Figs. 7.19 and 7.20 also support 

that the transformation aspects of the registration process are important so that the ESE curve of a 

new object in a new image corresponds as much as possible to the contour paths of the images in 

the training set. 

 

Fig. 7.20. Identifying the boundary of a pedestrian at various poses after18 iterations. 
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Any dependence between the parameters of the ESGM would imply nonlinear relations between 

the original positions of points and would result in some combinations of parameters leading to 

inappropriate shapes. By varying the first three modes of variation of the ESGM a very large set 

of example shapes with large variability in pose are generated; a small set of example shapes 

bounded with an ESE curve red line, together with the points in blue identified on each example 

is shown in Fig. 7.21. These examples show the effect of varying the first three parameters of     

of the ESGM interpretation, as identified from the training set, through ±3 standard deviations, 

where     is the vector that controls the variation of each mode of the ESGM. The first parameter 

corresponds to the largest eigenvalue which gives its variance across the training set. 

Mode 1 (     varies ±3 s.d.s) 

 

Mode 2 (     varies ±3 s.d.s) 

 

Mode 3 (     varies ±3 s.d.s) 

 Fig. 7.21. A small set of generated shapes showing the effect of varying the 
first three modes of ESGM parameters through ±3 s.d.s from the mean. 
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To illustrate the potential of the ESGM to represent the variability of vehicles, an ESGM was 

created for five types of vehicle image. Variant models of ESGM were generated for each vehicle 

type. To determine the appropriate model for a vehicle interpretation; confidence in an interpreta-

tion of a vehicle was estimated using the log likelihood ratios and standard deviations (SDs) to 

allow variant models to be selected. These criteria represent the variation between the alternative 

vehicle models that take into consideration the distribution of model parameters. The estimation 

of the log likelihood ratios and the data for which the SD of the variation between the models is 

computed is Gaussian distributed. The likelihood ratios for the data points that sample the bound-

ary of an object and the pixel values that represent the object and the SDs that represent the varia-

tion between the vehicle types were computed for each interpretation and each instance model as 

explained in subsections 5.7.1 and 5.7.2. A naïve Bayesian classifier used the log likelihood ra-

tios and SD features in training and testing to determine the confidence of match to each vehicle 

type as described in subsection 5.7.3. The vehicle types are: hatchback cars, minivans, compact 

cars, city cars and vans. In training the naïve Bayesian classifier, the feature values of the log 

likelihood ratios and SDs for each vehicle model were collected in a list of twenty five feature 

vectors. In evaluation a Bayesian classifier, the log likelihood ratios and SDs were computed for 

the interpretation to identify the most appropriate model. There are twenty log likelihood ratios, 

five SDs and five classes of vehicle types. 

 

The detection of cue points within the body of each vehicle and the key points required to form 

an ESGM for vehicle interpretation, the modelling and the interpretation algorithms are described 

in Sections 3.4, 3.5 and subsection 6.2.2, respectively. Given the five variant vehicle models, A, 

B, C, D and E, there are twenty log likelihood ratios and five SD features that represent the varia-



Chapter 7: EXPERIMENTAL RESULTS AND DISCUSSION 

205 
 

tion between the variant vehicle types. These data form a list of twenty five feature vectors that 

were used to train the naïve Bayesian classifier. In testing, the feature vectors of log likelihood 

ratios and SDs was computed for each interpretation and the classifier used these vectors to iden-

tify if the best vehicle model has been used and if not to identify what would be a better alterna-

tive vehicle model for a previously unseen vehicle. The number of images for training and test 

datasets of the naïve Bayesian classifier for each vehicle type is 200 and 150, respectively. This 

gives 100 degrees of freedom and 10 samples per degree of freedom for the training set and 7 to 8 

samples per degree of freedom for the test data set [PAN08]. 

 

The classifier gave a rate of classification of 84.2% for 1000 training and 750 evaluation vehicle 

images. The identification of key points around the boundary of vehicles of different poses and 

structures using the ESGM interpretation of vehicle images in interpretation at iteration 15 is 

shown in blue in Fig. 7.22 and the ESE boundary curves are shown by a black line. 

 

The interpretion in Fig. 7.22 demonstrates that the ESGM of vehicles can identify the boundary 

of vehicle types. 

Fig. 7.22. Illustration of key points selected after 15 iterations and shown in blue, for ve-
hicle images joined by a black line. 
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An ESGM with the same methodology as the ESGM for modelling and interpreting pedestrians 

alone was trained on a dataset of pedestrians alone and pedestrians associated with pushchairs 

and bicycles. This ESGM was evaluated on an independent set of images. The number of images 

for training and test datasets of the ESGM for modelling and interpreting people combined other 

objects, for each object type, is 200 and 150, respectively. There is 1 sample per degree of 

freedom for the training data set and less than 1 sample per degree of freedom for the test set 

[PAN08]. These images are used throughout the results reported in Figs. 7.23 and 7.25. The iden-

tification of key points around the boundary of a combination of objects using the ESGM inter-

pretation for people combined with other objects at iteration 15 is shown in blue in Fig. 7.23 and 

the ESE curves are shown by a black line. 

 

Fig. 7.23 (a) shows the boundary points from an ESGM for a person pushing a pushchair in (a), 

(b) a person pushing a bicycle and (c) a person riding a bicycle. The same model representation 

and interpretation strategy is used in these cases as for a pedestrian alone. 

Fig. 7.23. Illustration of key points selected after 15 iterations and shown in blue: (a) a pedes-
trian pushing a pushchair, (b) a pedestrian pushing a bicycle and (c) a person riding a bicycle. 

(a)                                                 (b)                                            (c) 
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The interpretation illustrated in Figs. 7.19 to 7.23 shows the potential of the ESGM to identify the 

points that sample the boundary of objects of very different structures. 

 

7.5.1 Evaluation of ESGM-Based Interpretation 

The ESGM-based interpretation was evaluated in terms of the closeness of the interpretation to 

the best manually identified ground truth points along the boundary. The square root of the mean 

of the sum of the squared errors, i.e. the RMS value in the geometric domain was computed as: 

                                                             
 

 
         

 
         

 
 

   

                                            

Where: K represents the number of key points,           represents the nearest single shape key 

point created by the interpretation that is re-sampled from a respective pair of exponent points 

and         is a single boundary ground truth point. 

 

Equation 7.7 is a measure of the precision of the match between the image and its interpretation. 

The accuracy of model interpretation was calculated by the square root of the mean of the sum of 

the squared differences between the ground truth points and model points. 

 

7.5.2 Convergence Curve of ESGM-Based Interpretation  

Six sets of pedestrian images for training and an independent set for testing were selected to 

evaluate the ESGM interpretation for pedestrian images interpretation. The training sets were: set 

A of 30, set B of 40, set C of 50, set D of 70, set E of 90 and set F of 120 images. The test data 

set for all training datasets consisted of 80 previously unseen images of pedestrians. The images 
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used in the interpretation were distinct from the training data set. The performance of ESGM in-

terpretation for the six sets of images of pedestrians is shown for up to 25 iterations in Fig. 7.24. 

These convergence curves represent the square root of the mean of the sum of the squared errors 

per pixel between the points created by the ESGM interpretation for images of pedestrian’s inter-

pretation and the true manually defined key points. This RMS metric measure is defined in Equa-

tion 7.7. The vertical error bars in Figs. 7.24 to 7.28 represent unit standard error of the mean of 

the data presented in the curves. The standard error of the mean and its mathematical representa-

tion are described below. The data in Figs. 7.24 to 7.27 represents the square root of the mean of 

the sum of the squared differences (using Equation 7.7) between the points created by the ESGM 

interpretation and the best manually identified ground truth key points along the boundary for the 

same image as used for the interpretation and not in training. 

 

The curves in Fig. 7.24 show that a small “square root of the mean of the sum of the squared dis-

tances” was achieved after  8 iterations. There is a further small reduction in this value after 20 

iterations. Fig. 7.24 also shows that the model created with 120 images is a slightly better repre-

 
Fig. 7.24. Key point position estimation “error” for pedestrian data sets. The vertical 

error bars represent one standard error of the mean. 
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sentation than the one created with 90 images and suggests that a large training set is basically to 

improve the interpretation process significantly [COO01a] [GAO10]. However, the model cre-

ated with 120 images has much less than the standard error on the error measure. The reduction 

in the error with increase in size of training data set has at this stage become extremely small in 

proportion to the increase in size of training data set. Any further improvement in error is likely 

to need a very large increase in training data set size. It is possible that a large increase in the size 

of training data set will significantly further reduce the error measure. The error for some data 

sets continues to reduce a little with further iterations. The error measure may reduce further with 

more than 25 iterations with a data set of 120 images. There is a significant difference between 

the curves and indicates that the models created with 120 images and 90 images achieved a better 

interpretation than the other models. There is a consistent difference between the curves of 1 SD 

which suggests that the significance is greater than the 63% suggested by the error bars for each 

point on the curve. The error bars for adjacent curves of the models created with 40 and 50 im-

ages and 70 and 90 images do not overlap; this means that it would take an extreme deviation that 

occurs 66% in the data for both points for the curves to coincide at that point. This means that the 

joint likelihood of these curves are distinct is of the order of 85% meaning that they are very 

clearly separated. Therefore, there is a very high confidence that the difference is significant be-

cause this degree of separation exists at several points along the curves. 

 

To calculate the standard error of the mean for a set of data measurements: 

1) Calculate the mean (  ) of the data, as defined by: 
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Where:    represents the     value of the data and n represents the total number of data values. 

 

2) Calculate the standard deviation ( ) of the data using: 

                                                                             
        

   

 

   

                                                                

3) Calculate the standard error (SE) of the mean: 

                                                                        
 

  
                                                                                    

The error bars of the standard error of the mean can be used to describe the uncertainty in data 

measurements. Standard Error of the mean is a statistical measure used to determine whether the 

vartiability and the difference between the means of two sets of measurements are statistically 

significant. When standard error bars between the possible ranges of two means do not overlap, 

then it can be concluded that the difference is statistically significant while the difference is 

probably not significant in a statistical sense when standard error bars overlap. 

 

The performance of ESGM interpretation using images of pedestrians with puschairs or bicycles 

is shown for up to 25 iterations in Fig. 7.25. These convergence curves represent the square root 

of the mean of the sum of the squared errors per pixel between the best interpretation-based 

ESGM and the best manually identified ground truth boundary points. This RMS evaluation 

measure is defined in Equation 7.7. An independent set of 150 previously unseen pedestrains 

with objects of each type was used. The training and test datasets for the pedestrians associated 

with other objects for the results reported in Fig. 7.25 are described in Section 7.5. The vertical 
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error bars represent unit standard error of the mean of the data presented in the curves. The stan-

dard error is defined in Equation 7.10. The data of the curves represents the RMS errors (using 

Equation 7.7) between the points created by the ESGM interpretation and the best manually 

ground truth points. 

 

 

 

 

 

 

 

 

 

The curves in Fig. 7.25 show a measure of the accuracy of the match between the image and its 

interpretation. There is a small difference between curves of 1 SD which suggests that the signifi-

cance is less than the 63% suggested by the error bars for each point on the curve. The degree of 

separation between the curves exists only at very few points along the curves. The error bars for 

the curves of the models created for pedestrians pushing bicycles and pedestrians pushing push-

chairs and also for pedestrians alone and pedestrians pushing pushchairs overlap which means 

that the difference is not significant in a statistical sense. This means that it would not take an ex-

treme deviation that occurs 66% in the data for both points for the curves. 
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Fig. 7.25. Key point position estimation “error” for data sets of pedestrians 
and other objects. The vertical error bars represent one standard error of the 

mean of the data. 
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The ability of the ESGM method to interpret unseen vehicle images was assessed for five variant 

vehicle body shapes. The training and independent test datasets consisted of 200 and 150 images 

of each vehicle body shape as described above. There is 1 sample per degree of freedom for the 

training data set and less than 1 sample per degree of freedom for the test data set [PAN08]. The 

convergence curves, of the performance of ESGM interpretation, for the boundary error for each 

vehicle type are presented for up to 25 iterations in Fig. 7.26. The boundary error was defined by 

the square root of the mean of the sum of the squared errors per pixel between the points created 

by the ESGM interpretation of vehicles and the equivalent manually ground truth points. The cri-

terion measure of boundary error is defined in Equation 7.7. The error bars represent unit stan-

dard error of the mean of the data presented in the curves. The mean, standard deviation and 

standard error criteria are defined in Equations 7.8, 7.9 and 7.10, respectively. The data of the 

plots in Fig.7 26 represents the square root of the mean of the sum of the squared differences 

between the points created by the ESGM interpretation and the best ground truth key points along 

the boundary for the same image as used for the interpretation and not in training. 
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Fig. 7.26. The mean of the square root of the sum of the squared distances 
between the generated points of ESGM interpretation and the ground truth 

points for unseen vehicles. The vertical error bars represent one standard er-
ror of the mean of a set of measurements. 
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In Fig. 7.26, the smallest RMS distance between the ground truth and model boundary for each 

vehicle type is approximately 4 pixels. There is a significant difference between curves of 1 SD 

which suggests that the significance is greater than the 63% suggested by the error bars for each 

point on the curve. The error bars for adjacent curves of the models created for vans and city cars 

and the adjacent curves of the models created for vans and minivans do not overlap; this means 

that it would take an extreme deviation that occurs 66% in the data for both points for the curves 

to coincide at that point. Therefore, there is a high confidence that the difference is significant 

because this degree of separation exists at several points along the curves. 

 

The error in Fig. 7.24 is very small, approximately 1.5 pixels and that in Figs. 7.25 and 7.26 is 

similar at approximately 4 pixels. It is the stability of model-based image interpretation with vari-

ant object types that is much more important than the steady improvement with increasing data 

set size and iterations. This is shown by smooth curves and consistent way in which model stabil-

ity and interpretation accuracy improves with increased training data set size and number of itera-

tions. The consistency with object types being within the standard error for Figs. 7.24 and 7.25. 

That the curves in Figs. 7.23 - 7.25 are similar show steady improvement that shows a similar 

pattern within the standard error. The convergence curves show that the ESGM provides a stable 

estimate of the boundary for a range of objects that differ in structure with large and small sizes 

of image datasets. 

 

7.5.3 A Comparison Between PDM and ESGM 

The dataset used to illustrate the behaviour of the ESGM against the PDM is described in Section 

7.5. The range of pedestrian’s heights is [85-190]. The boundary of each pedestrian is identified 
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by 43 key points. The images are of varying complexity of backgrounds and foregrounds along 

with a degree of variation in the form of the objects of interest, which are pedestrians. There are 

simple cases of people in isolation and in groups. Further, the images in the training set involve 

pedestrians with a large variation of pose. The models used in these experiments hold 97.5% of 

the total variance with 12 modes of variation. The mean width and height of the ESGM are re-

spectively 52.3 and 137.6 pixels. The convergence curves of the boundary estimation using the 

ESGM and the PDM for the interpretation of images of pedestrians of an independent test set of 

80 previously unseen images are presented for up to 25 iterations in Fig. 7.27. The boundary es-

timation was computed using the measure of Equation 7.7 which defines the RMS value in pixel 

between the points created by the model instances of images of pedestrians and the equivalent 

manually ground truth key points. The vertical error bars represent unit standard error of the 

mean of the measurements across the experiments conducted; this measure is defined in Equation 

7.10. The data of the curves represents the RMS values (using Equation 7.7) between the points 

created by the ESGM and PDM interpretation and the best manually ground truth boundary 

points for the same image as used for the interpretation and not in training. 
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Fig. 7.27. Convergence curves of point position estimation using the mean of the square 
root of the sum of the squared distances between the ground truth and model points of pe-
destrian image interpretation for the ESGM and the PDM. The vertical error bars repre-

sent one standard error of the mean of a set of measurements. 



Chapter 7: EXPERIMENTAL RESULTS AND DISCUSSION 

215 
 

The curves show a measure of the accuracy of the match between the image and its interpretation. 

The accuracy of ESGM and PDM interpretation was calculated by the mean of signed differences 

between the ground truth points and the model points.The two curves are just separable at around 

one standard error of the mean. This is a significant difference between the two curves and indi-

cates that the EGSM can achieve a better interpretation with objects that vary in form. The sig-

nificant difference between the two curves of 1 SD suggests that the significance is greater than 

the 63% suggested by the error bars for each point on the curve. The error bars of the curves for 

the models of ESGM and PDM do not overlap; this means that it would take an extreme devia-

tion that occurs 66% in the data for both points for the curves to coincide at that point. This 

means that the joint likelihood of these two curves are distinct is of the order of 85% meaning 

that they are very clearly separated and because this degree of separation exists at several points 

along the curves there is a very high confidence that the difference is significant. 

 

The eigenvalues in a model provide a measure of the amount of variance captured by each mode 

of variation. The sum of magnitudes of all eigenvalues gives a measure of the total variance pre-

sent in the model. This property is better described as specificity where the compactness of a 

model is concerned with the number of parameters in the model. A large or a small variance can 

both be argued to be positive indicators. The contribution in percentage of the first set of modes 

to the overall variance of the training set is given by: 

                                                       

  

   

                                                                

Where:    is the eigenvalue at index i and     is the total variance of the training set. 
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Fig. 7.28 shows a statistical comparison between the ESGM and the PDM using the first twelve 

modes of variation. The graph shows in percentage, for each model, the cumulative distribution 

of the total variance reported with respect to the number of modes of variation used. 

 

 

 

 

 

 

 

 

 

 

The error bars in Fig. 7.28 are shown for one standard error of the mean of the measurements of 

the cumulative distribution across the experiments conducted; this measure is defined in Equation 

7.11. It is observed that the behaviour of the ESGM and PDM is different with the same image 

dataset. There is a significant difference between the two curves of 1 SD which suggests that the 

significance is greater than the 63% suggested by the error bars for each point on the curve. The 

two sets of error bars do not overlap in Fig. 7.28. There is therefore a significant difference be-

tween the two curves which means that it would take a high degree of deviation that occurs 66% 

in the data for both points for the two curves to coincide at that point. The two curves are clearly 

separated at many points along the curves which indicate that there is a high confidence that the 

difference between the ESGM and PDM using the cumulative distribution of variance is signifi-
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Fig. 7.28. The cumulative distribution of variance in the ESGM and PDM. The ver-
tical error bars represent one standard error of the mean of the data. 
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cant. Each eigenvalue of the ESGM is the variance of the corresponding mode of variation over 

the training set. The ESGM and PDM were generated with the same range of the respective vec-

tors that control the variation of each mode for each model given within ±3 of the square root of 

the corresponding eigenvalue. It can be observed from Fig.7.28 that most of the variation in the 

ESGM is covered by the first few modes. There is still a fair amount of variation in the forth 

mode of the ESGM. 

 

After 6 or 7 modes 95% of the variation has been explained by the ESGM. Each mode of 

variation plotted for ESGM contains significant information but that after 6 or 7 modes, the 

information is not significant. The PDM explains a slightly lower level of variance within the 

first 11 modes of variation. As can be seen, statistically, the PDM is little less compact than the 

ESGM, as the variance captured as the number of modes of variance incorporated is, in each 

case, a little lower. As a consequence, ESGM is more compact, has a smaller search space and 

specific at all modes because it needs fewer modes of variation to explain a high level of varia-

tion in the model. 

 

The results are encouraging and suggest that the ESGM is a good model representation. An im-

portant property of the ESGM is that the parameterisation process provides a compact and com-

plete model (with 6 or 7 modes). Cootes and Taylor [COO04] described a statistical model-based 

approach to the interpretation of images of faces using a shape model of 36 modes of variation, 

which explained 98% of the variance in the landmark positions in a training set of 300 faces. The 

PDM commonly used a total of 19 modes of variation for a data set of more than 200 images to 

hold 95% of the total variance of shape data [MAR08]. Here, the evaluation measures of the 
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ESGM using the metrics of statistical difference, cumulative distribution and the accuracy of 

model interpretation demonstrate a possible slight improvement of ESGM over the PDM. 

 

7.6 Fitting Results of ESAM 

Images with simple and complex cases of people alone, in groups and in combination with other 

objects and vehicles were used to illustrate the effectiveness of the ESAM, see examples and 

evaluation below. The ESAM allows the shape to be distorted slightly and in some situations sig-

nificantly in positions where an object can be occluded and still be recognized. ESAMs were cre-

ated for pedestrians alone, pedestrians combined with other object and five types of vehicles. The 

ESAM was produced as described in Section 5.6. The interpretation is performed by describing 

the ESAM instance by a set of parameters using an appearance vector. The training and interpre-

tation methods of the ESAM are described in Section 6.3. The number of modes was 18 and the 

ESAM in all the experiments conducted explained 97.5% of the total variance. 

 

7.6.1 Results of ESAM Image Interpretation 

The ESAM for pedestrian image interpretation was trained on a dataset of more than 200 images 

of pedestrians of various poses, clothes and sizes, carrying bags with simple and complex fore-

grounds and backgrounds. The ESAM was evaluated on an independent set of 150 images of pe-

destrians. Some distortions are significant but most are small. The ESAM was trained by system-

atically displacing the model parameters of the training set as described in Table 6.1. The model-

ling was performed using an appearance vector as described in subsection 6.3.2. The ESAM in-

terpretation algorithm in Fig. 6.3 by which the model is varied and matched was applied to fit an 

instance of ESAM in an unseen image. 
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The texture model of the ESAM modelled the colour variation of an image over the regions sam-

pled by the reference mean and the texture component. Image warping was used to sample the 

image values between the key points, and the pixel values were computed at positions within re-

gions as determined by the position of points in the mean model. This was to obtain a reference 

texture image. The triangulation technique described in subsection 5.5.1 was employed to warp 

the key points and the intermediate points. The ESAM interpretation minimises the texture dif-

ference between an ESAM instance and the part of the target image it represents. The interpreta-

tion was applied to the content extracted from the image by fitting an ESAM instance to a previ-

ously unseen image as described in subsection 6.3.3. The objects of interest were identified by 

key points which located along the boundary of the objects. Therefore, the background was 

eliminated from the model instances and the difference images, as shown in the ESAM interpre-

tation examples in Figs. 7.29 to 7.31. The source images, model instances and the difference be-

tween each re-constructed image and the previously unseen images are at similar sizes in all in-

terpretation examples as shown in Figs. 7.29 to 7.31. Some pedestrians in some test images might 

have poses and clothes similar to some pedestrians in the training images. 

 

Fig. 7.29 shows interpretation results with the ESAM for pedestrians using 18 modes at the 6th, 

10th and 18th iteration for three snapshots of a pedestrian from three sequences, each with a mod-

est variation of pose, for pedestrians walking in different directions and in different scenes. 

 

 

 

 



Chapter 7: EXPERIMENTAL RESULTS AND DISCUSSION 

220 
 

 

The pedestrians in the images of Fig.7.29 (a) to (c) seems similar in size to those in the synthe-

sised images of Fig 7.29. In Fig. 7.29, the previously unseen images are shown in the first row. 

 

 (p)    (q)             (r)                             (s)             (t)        (u) 

       (d)            (e)         (f)                                 (g)         (h)    (i) 

     (j)        (k)        (l)                               (m)                (n)             (o) 

   

Fig. 7.29. Interpretation results: (a), (b) and (c) are the original source images, (d), (j) and (p) 
are the images reconstructed from the ESAM after 6 iterations, (e), (k) and (q) after 

10 iterations and (f), (l) and (r) after 18 iterations; (g), (h) and (i) are the differences between 
the respective images in (d), (e) and (f) and the image in (a); (m), (n) and (o) represent the dif-
ferences between the respective images in (j), (k) and (l) and the images in (b); (s), (t) and (u) 
represent the differences between the respective images in (p), (q), (r) and the image in (c). 

                    (a)                                        (b)                                         (c)  
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Rows 2 to 4 in columns 1 to 3 show the reconstructed images of pedestrians at iterations of 6, 10 

and 18, respectively, rows 2, 3 and 4 for columns 4, 5 and 6 show the difference between each re-

constructed image that best matches the previously unseen image. The results in this figure dem-

onstrate a level of modelling and reconstruction that is good after 6 iterations and very good after 

18 iterations. The error for the reconstructed images is visually judged to be small because the 

reconstruction process approximates the colour patches of the unseen images by a linear combi-

nation of the eigenvectors of the ESAM. 

  

An instance of the ESAM for pedestrian images interpretation, after iteration 25, was fit to un-

seen images of pedestrians in different contexts and poses, as shown in Fig. 7.30. A very good 

match, as visually judged, was realised between the previously unseen source images of pedestri-

ans and the model instances in Fig. 7.30. 

 

The ESAM interpretation for pedestrian image interpretation captures the variation that arises as 

the pose, size and shape of a pedestrian changes, where     is a parameter vector of appearance 

that controls the mode of variation of the ESAM. Fig. 7.31 shows a small set of mode variations 

for the model to demonstrate the effects of varying the first three parameters of the ESAM, which 

represents the shape and the texture parameters, through ±3 standard deviations, with respect to 

the mean model. The first parameter varies the width and appearance of the object. The second 

and third parameters vary the shape of the body. Fig. 7.40 shows how the ESAM performs in 

comparison with the AAM. 
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                                                                  (c)                                       

                                               (a)                                                         

(b)                             (c)                                       

(a)                                              (b)                                                 (c) 

Fig. 7.30. Illustration of the interpretation after 25 iterations: (a) the source images, (b) the 
model instance and (c) the difference between the model instance and each source image. 

                                                        (a) 

                                                        (b) 

Mode 3 (     varies ±3 s.d.s) 

 
Fig. 7.31. A small set of reconstructed images showing the effect of varying 
the first three modes of variation of ESAM,    , by ±3 s.d.s from the mean. 

Mode 1 (     varies ±3 s.d.s) 

 

Mode 2 (     varies ±3 s.d.s) 
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An ESAM was created on a dataset of images for pedestrians alone and with pushchairs and bi-

cycles. This ESAM was evaluated on an independent set of unseen images for pedestrians com-

bined with pushchairs and bicycles. The number of images for training and test datasets for each 

object type of this ESAM was 200 and 150, respectively as introduced in Section 7.5. There is 1 

sample per degree of freedom for the training data set and less than 1 sample per degree of 

freedom for the test data set [PAN08]. The results for the interpretation of pedestrians combined 

with other objects in images using ESAM are shown, after iteration 25, in Fig. 7.32. The previ-

ously unseen images, model instances and the corresponding difference images are shown in Fig. 

7.32, parts (a), (b) and (c), respectively. 

                                            (c) 

 

                                          (a) 

                                      (b) 

 

Fig. 7.32. Illustration of the interpretation for a combination of people with other objects: 
(a) the previously unseen source images (b) the model instances and (c) the difference be-

tween the model instances and each source image. 
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An ESAM was created to model and interpret images of five types of vehicle and evaluated on 

previously unseen sets of vehicle images. The number of images for the training and test sets of 

the ESAM for each vehicle type is 150 and 100, respectively. The number of degrees of freedom 

is 100 with 10 samples per degree of freedom for the training set and 7 to 8 samples per degree of 

freedom for the test data set [PAN08]. The vehicle images vary in structure and form as described 

in Section 7.5. The previously unseen vehicle images, ESAM instances for vehicle interpretation 

and the corresponding difference images at iteration 25 are shown in Fig. 7.33 (a), (b) and (c), 

respectively. 

                                                 (c) 
Fig. 7.33. Illustration of the interpretation for vehicle images: (a) the 
previously unseen source images (b) the model instances and (c) the 

difference between the model instances and the corresponding source images. 

                                              (a)          

                                            (b)          
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The results shown in Fig. 7.33 demonstrate that the ESAM interpretation of vehicle images inter-

pretation is potentially reliable. 

 

The reconstruction examples of objects of interest in Figs. 7.29 - 7.30 and. 7.32 - 7.33 look par-

ticularly good and there appear to be very small errors as visually judged by the difference be-

tween the previously unseen objects of interest and the model instances. This result is specifically 

good given a model with relatively large training data set and large number of images per degree 

of freedom. The interpretation results indicate that the ESAM has the potential flexibility to rep-

resent and interpret a wide variety of objects and accommodate a good range of configuration and 

pose variation. 

 

Situations in which an ESAM-based interpretation for people combined with other objects is con-

sidered unsuccessful are shown for persons alone in Fig. 7.34 (a) and (b) and for a person riding a 

bicycle in Fig. 7.34 (c). 

 

Fig. 7.34 shows situations in which the error rate for an ESAM interpretation of persons alone 

and a person riding a bicycle was visually judged to be large. These examples failed to converge 

to a satisfactory result. The ESAM interpretation in Fig. 7.34 might have failed because the rele-

vant or a similar pose to the test images was not present in the training dataset. The training data-

set is large enough but the image data set might not explore all the variations. The nature of errors 

in Fig. 7.34 (a) and (b) were related to a change in appearance and that the pose was not well de-

tected such that the model instance in Fig. 7.34 (h) carry a bag on shoulder while the original 
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source image in Fig. 7.34 (b) does not carry a bag. The nature of errors in Fig. 7.34 (i) was related 

to a change in appearance. 

 

7.6.2 Evaluation of ESAM-Based Interpretation 

The performance of the ESAM was evaluated using the square root of the mean of the sum of the 

squared differences (RMS value) between the target image pixel values and the final model in-

stance using: 

           (d)      (e)            (f) 

 

Fig. 7.34. Examples of failed interpretation where the error is related to a change in ap-
pearance such that the pose is not well detected: (a), (b) and (c) the source images; (d), (e) 

and (f) the model instances; (g), (h) and (i) the differences between the model instances 
and the corresponding source images in (a), (b) and (c). 

 

                 (a)                                             (b)                                               (c)       

       (g)                (h)        (i) 
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Where: M is the number of colour values across all three channels of either the image or the 

model.,                    
     

 and     
 are the respective colour pixel values for each channel 

of the source image,   , and the final model instance,   , respectively, at position        . 

 

The ESAM fitting algorithm in Fig. 6.3 decreases the texture error vector and adjusts the shape if 

that leads to an overall improvement in the texture match. The interpretation error using images 

of pedestrians is shown for up to 25 iterations in Fig. 7.35. The convergence curves in Fig. 7.35 

represent the square root of the mean of the sum of the squared errors between the ESAM in-

stances of pedestrians and 80 previously unseen pedestrians. The vertical error bars represent unit 

standard error of the mean of the measurements across the experiments conducted in Figs. 7.35 to 

7.40. The data in Figs. 7.35 to 7.40 represents the square root of the mean of the sum of the 

squared differences (using Equation 7.12) between the pixel values of the re-constructed images 

created by the ESAM interpretation and the image pixel values of the previously unseen images 

for the same images as used for the interpretation and not in training. The mean, standard devia-

tion and standard error criteria are defined in Equations 7.8, 7.9 and 7.10, respectively. 
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The search converges to a smaller residual error for training set sizes of 90 and 120 training im-

ages. The ESAM interpretation again reaches a small error after 20 iterations and improves a lit-

tle after 20 iterations. The difference between the model instances and the previously unseen im-

ages with training sets of 120 and 90 images is not significant after the first 15 iterations. There-

fore, it seems unlikely any further increase in the size of the image training set beyond 120 would 

reduce the convergence error significantly. There is a significant difference between the curves 

and indicates that the models created with 120 images and 90 images achieved better interpreta-

tion than the other models. Further, there is a consistent difference between curves of 1 SD which 

suggests that the significance is greater than the 63% suggested by the error bars for each point 

on the curve. The error bars for adjacent curves of the models created with 40 and 50 images and 

adjacent curves of the models created with 70 and 90 images do not overlap; this means that it 

would take a very great deviation that occurs 66% in the data for both points for the curves to co-

incide at that point. This means that the joint likelihood of these curves are distinct is of the order 

of 85% meaning that they are very clearly separated. Therefore, there is a very high confidence 

 
Fig. 7.35. The differences in pixels between the model instances and the corresponding un-
seen images of pedestrians as a function of training set size and iterations in ESAM inter-

pretation. The vertical error bars represent one standard error of the mean. 
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that the difference is significant because this degree of separation exists at several points along 

the curves. The RMS error measures are sensitive to outliers [CHA14] [GUP10]. This means that 

the impact errors that are outliers may be well represented in this measure. This is in turn means 

that there might still be some value in a large training and test datasets. An ESAM for images of 

pedestrian’s interpretation was compared to the evaluation of AAM with a large data set as de-

scribed below in Fig. 7.40. 

 

The performance of ESAM interpretation for a training set of 120 images of pedestrians taken 

from the TUD person dataset [WAN07] and an evaluation dataset of 80 previously unseen 

pedestrians is shown in blue plot for up to 25 iterations in Fig. 7.36. The image dataset used to 

generate the results in red plot is an image dataset collected at the University of Birmingham. In 

the results shown in red line the ESAM was trained on 120 images of pedestrians and evaluated 

on 80 previously unseen images of pedestrians. These convergence curves represent the RMS 

error in pixels, as defined in Equation 7.12, between the ESAM instances of images of pedes-

trian’s interpretation and previously unseen images of pedestrians. This metric measure is defined 

in Equation 7.12 by the square root of the mean of the sum of the squared errors. The vertical er-

ror bars represent unit standard error of the mean of the measurements across the experiments 

conducted; this measure is defined in Equation 7.10. The data of the curves represents the square 

root of the mean of the sum of the squared differences between the pixel values of the images 

created by the ESAM interpretation and the pixel values of the previously unseen images for the 

same images as used for the interpretation. 
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The images selected from the TUD person data set cover a range of configurations, views and 

pose variation. The images of pedestrians gathered at the University of Birmingham accommo-

date a range of contexts, poses and a greater degree of variation than the images of pedestrians 

selected from the TUD data set and further it provides a grearter variation in weather and lighting 

condition. The red plot in Fig. 7.36 converges to a slightly smaller residual error than the search 

shown in blue plot. This suggests that the TUD person dataset [WAN07] is more demanding and 

might indicate to that the training dataset not properly covers all the variation between people. 

There is a significant difference between the two curves of 1 SD which suggests that the signifi-

cance is greater than the 63% suggested by the error bars for each point on the curve. The error 

bars for the curves of the models generated for the TUD person dataset and the dataset collected 

at the University of Birmingham do not overlap at large part; this means that it would take an ex-

treme deviation that occurs in the data for both points for the curves to coincide at that point. The 

 

Fig. 7.36. The differences in pixels between the model instances and the corresponding 
previously unseen images of pedestrians; the blue plot shows the results generated for 

the TUD person dataset and the red plot shows the results generated for the images col-
lected at the University of Birmingham. The vertical error bars represent one standard 

error of the mean of a set of measurements. 
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curves are very clearly separated and because this degree of separation exists at several points 

along the curves there is a very high confidence that the difference is significant. 

 
An evaluation of the ESAM for pedestrian image interpretation was performed with a further 6 

sets of pedestrian training images, separate to those introduced in subsection 7.5.2. There are 

three sets of 90 training images and three sets of 120 training images in each set. The images in 

each set are different. An independent set of 80 unseen images of pedestrians was used to test the 

generated models of the 6 sets of pedestrians. The performance of ESAM interpretation for the 6 

sets of pedestrians is shown for up to 35 iterations in Fig. 7.37. These convergence curves repre-

sent the difference in pixels between the ESAM instances of images of pedestrian’s interpretation 

and previously unseen images of pedestrians. This difference metric criterion is defined in Equa-

tion 7.12 by the square root of the mean of the sum of the squared errors. The vertical error bars 

represent unit standard error of the mean of the measurements across the experiments conducted; 

this measure is defined in Equation 7.10. The data of the plots in Fig. 7.37 represents the square 

root of the mean of the sum of the squared differences between the pixel values of the images 

created by the ESAM interpretation and the pixel values of the previously unseen images for the 

same images as used for the interpretation and not in training. 

 

It is observed from the curves in Fig. 7.37 that the optimum residual error rate for Set 3 of 90 im-

ages, as highlighted by the light green line (largely hidden behind the light orange line), is similar 

to that for Set 6 of 120 images (light orange line). This suggests that the difference in the number 

of training images is less important than the choice of images used. Each curve converges to a 

similar error rate after 25 iterations. The difference between the errors on each curve is less than 
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the standard deviation for each curve meaning that the differences are not significant. There is a 

very small difference between the curves of 1 SD which suggests that the significance is lesser 

than the 63% suggested by the error bars for each point on the curve. The error bars for the mod-

els created for the different six sets of pedestrian images overlap at all points; this means that 

there is no deviation in the data for both points for the curves. 

 

 

 

 

 

 

 

 

 

The interpretation error using images of pedestrians with puschairs or bicycles is shown in Fig. 

7.38. The RMS error, as defined in Equation 7.12, is shown for up to 25 iterations for each curve 

for 150 previously unseen pedestrains with objects of each type. Each curve converges to a simi-

lar error rate after 25 iterations. The difference between the errors on each curve is less than the 

standard deviation of the results generated for each curve. The vertical error bars represent unit 

standard error of the mean of the data across the experiments conducted; this measure is defined 

in Equation 7.10. The data represents the RMS value computed using Equation 7.12 between the 

pixel values of the images created by the ESAM interpretation and the image pixel values of the 

previously unseen images. 
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Fig. 7.37. The differences in pixels between the reconstructed model instances and 
the corresponding previously unseen images of pedestrians as a function of training 
dataset size and iterations in ESAM interpretation. The vertical error bars represent 

one standard error of the mean of a set of measurements. 
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Fig. 7.38 indicates that the models of objects that vary in form achieved a good degree of inter-

pretation. There is a small difference between the curves of 1 SD which suggest that the signifi-

cance is less than the 63% suggested by the error bars for each point on the curve. The error bars 

of the adjacent curves for the models created for pedestrians alone and pedestrians pushing push-

chairs do not overlap at set of points which means that the difference is possibly significant. On 

the other hand, there is an overlap between the error bars of the adjacent curves for the models 

created for pedestrians pushing pushchairs, pedestrians pushing bicycles and persons riding bicy-

cles, which means that the difference is possibly not significant. Therefore, there is no deviation 

that occurs in the data for both points for the curves to coincide at that point. The curves are not 

clearly separated and the overlapping exists at several points along the curves and so the differ-

ence is not significant. 

 

 

Fig. 7.38. The pixel-to-pixel differences between the reconstructed instances and the 
 corresponding previously unseen images of people combined with other objects as a 
function of training dataset size and iterations in ESAM interpretation. The vertical 

error bars represent one standard error of the mean of a set of measurements. 
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The RMS error convergence curves for up to 25 iterations of ESAM interpretation of vehicle im-

ages using the datasets introduced in Section 7.5 are shown in Fig. 7.39. The RMS error between 

the ESAM interpretation of vehicle images and the previously unseen vehicle images is computed 

in pixels as defined in Equation 7.12. The error bars show unit standard error of the mean of the 

data across the experiments conducted; this measure is defined in Equation 7.10. The data in Fig. 

7.39 represents the square root of the mean of the sum of the squared differences between the 

pixel values of the images created by the ESAM interpretation and the pixel values of the previ-

ously unseen images for the same images as used for the interpretation and not in training. 

 

 

 

 

 

 

 

 

 

 

There is a small difference as visually judged between the interpretation RMS errors of the vari-

ous vehicle types considered after 25 iterations. In Fig. 7.39, the smallest RMS value between the 

image pixel values of the vehicles created by the ESAM interpretation of vehicles and the pixel 

values of the previously unseen images of vehicles is approximately 5 pixels. There is a small 

difference between the curves of 1 SD which suggests that the difference is not significant and 
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Fig. 7.39. The pixel to pixel differences values between the reconstructed ESAM 
instances of vehicles and the corresponding unseen vehicle images as a function 
of training dataset size and iterations in ESAM interpretation. The vertical error 

bars represent one standard error of the mean of the data. 
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less than the 63% suggested by the error bars for each point on the curve. There is a significant 

overlap between the error bars of the curves created for the models of vehicles types which 

means that there is no significant deviation in the data for both points of the curves and because 

this degree of overlapping exists along the curves the difference is not significant 

 

The curves in Figs. 7.35 to 7.39 show that the ESAM converges to a relatively small RMS error 

rates after 15 iterations, that the ESAM is able to represent and interpret images of objects with a 

wide variety of appearances. 

 

To obtain a quantitative evaluation of the performance of the ESAM compared to AAM, we 

trained a model on 120 pedestrian images and tested it on a different set of 80 images. An AAM 

and an ESAM were created to identify pedestrians. The dataset used to train and evaluate these 

models is described in Section 7.5. The images are of varying complexity of foregrounds and 

backgrounds along with pedestrians exhibiting a degree of variation in pose. The models used in 

these experiments hold 97.5% of the total variance with 18 modes of variation. The ESAM and 

AAM interpretation errors using images of pedestrians is presented for up to 30 iterations in Fig. 

7.40. These convergence curves represent the RMS error, defined in Equation 7.12, which 

computes the difference of pixel values between the model instances of a model trained on 120 

pedestrian images and evaluated on a set of 80 previously pedestrians. The vertical error bars in 

Fig. 7.40 show one standard error of the mean of the measurements across the experiments con-

ducted; this measure is defined in Equation 7.10. The data of the curves represents the square root 

of the mean of the sum of the squared errors between the pixel values of the re-constructed im-

ages created by the ESAM and AAM interpretation and the pixel values of the unseen images. 
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There is a small difference between the two curves of 1 SD which suggests that the significance 

is lesser than the 63% suggested by the error bars for each point on the curve. The error bars for 

the curves of ESAM and AAM overlap at several points and the degree of separation only exists 

at few points along the curves. Thus, there is no extreme deviation that occurs in the data for both 

points for the curves to coincide at that point. The curves show that both methods achieve a simi-

lar degree of the accuracy of the fit between the image and its interpretation. The difference be-

tween the two curves of ESAM and AAM interpretations is of low significance. However, for a 

small part of the curve this difference is significant and indicates that the ESAM can achieve a 

better interpretation with images of pedestrians. Also, the ESAM converges more rapidly than the 

AAM at the first five iterations. 

 

The number of points sampling the boundary of objects has an effect on the speed with which a 

model can be built and an image interpreted. The model building process requires the identifica-

tion of three parameters: 1) the number of model points, 2) the number of modes and 3) the num-
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Fig. 7.40. Convergence curves of the mean of square root of the sum of the squared 
difference between the source image pixels and the final model instance of pedes-
trian image interpretation for the ESAM and the AAM. The vertical error bars rep-

resent one standard error of the mean of a set of measurements. 
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ber of pixels used to represent the texture. The search time for generating and matching a se-

quence of ESAM instances to an unseen image increases linearly with the number of key points. 

The number of key points needed to satisfactorily represent the boundary of an object depends on 

the complexity of the object. The number and position of the key points should be adequate to 

fully describe the object modelled and changes in pose. Too few points can lead to an inadequate 

representation due to under sampling the shape. Too many points will increase the computational 

cost. The number of modes should be chosen carefully such that a sufficient amount of object 

variation is captured, as described in subsection 5.6.4. The number of pixels representing each 

model relies on the boundary structure. The complexity of ESGM and ESAM search processes 

are presented in subsections 6.2.2 and 6.3.3, respectively. 

 

The training algorithm of the ESAM from large datasets requires a large amount of training time. 

The texture represented by the pixel intensity contributes significantly to the discrimination of the 

fitting results. The computation time per iteration level of the ESAM interpretation algorithm in 

Fig. 6.3 is 26 milliseconds. This value was measured on several different images and the mean 

value taken. The tests were performed on an Intel core i3-2310M™ CPU running at 2.10GHz. 

 

7.7 Summary 

The non-interpolated and interpolated cue detectors have presented a high potential for identify-

ing cue points within images of pedestrians. The ESGM interpretation method of the ESE curve 

has provided a high precision representation and been shown to be effective in identifying the 

points along the boundary of objects. The ESAM has achieved a similar degree of interpretations 

accuracy as the AAM. 
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Chapter 8 CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

In this Thesis, the development of a generic model-based approach with a single interpretation 

scheme has been presented as it was evolved from being based on a single axis to composite 

axes. The interpretation scheme has been applied to a range of objects that vary in structure and 

configuration. A set of adaptable strategies have been investigated in the proposed model-based 

interpretation. These strategies are: 

1. A fixed orientation cue detector for generating cues as a basis for pedestrian detection and 

a variant to the pedestrian cue detector for generating cues for vehicle images, 

2. An interpolated axis detector for generating composite axes as a basis for detecting pedes-

trians with pushchairs and bicycles, 

3. A method for key point generation, 

4. An extended superellipse appearance model representation. 

 

The interpolated cue detector for generating composite axes and guiding the interpretation of 

complex objects has been shown to be appropriate for interpreting images of pedestrians not as-

sociated with pushchairs or bicycles. Specific conclusions related to each of the above strategies 

are detailed below. 

 

8.1.1 Cue Detector 

The Maximum Likelihood Ratio (MLR) criteria was shown to be reliable at detecting cues for 

pedestrians alone and in small groups with various degrees of occlusion, with simple and com-
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plex backgrounds. The precision and recall rates for cue detection show a high degree of sensitiv-

ity and specificity and only a small number of false alarms are generated. A pedestrian detection 

rate of 0.95 and a false positive rate of 0.20 at an optimal operating point were reported on an 

evaluation test set of over 700 images. 

 

A change of geometry in the mask for pedestrian cue detection and a simple change to the search 

strategy were shown to be effective in distinguishing vehicles in images. The number of missed 

images and the number of false detections were in single figures. 

 

8.1.2 Axis Detector 

A variant method of cue detection using an interpolated MLR detector to generate composite 

axes was presented. The effective detection of cues using this interpolated MLR operator was 

demonstrated on pedestrians stood alone or in a group, walking, pushing pushchairs or bicycles 

and people riding bicycles. The precision and recall rates for the detection of composite axes 

show a high degree of sensitivity and specificity. From a test set of over 700 images of people a 

true positive rate of 0.94 and a false positive rate of 0.21 at an optimal operating point were re-

ported by this Omni directional axis detector. The false positive and false negative error rates are 

as low as those for the fixed orientation detector when used for pedestrian detection. 

 

Identification of the axis was very sensitive to the position and width of the component an object. 

Variation of the form of a pedestrian was handled such that the position of the axis was changed 

from the centre line due to the position of the accessories. 

 



Chapter8: CONCLUSIONS AND FUTURE WORK 

240 
 

8.1.3 Key Point Detector 

The formulation of MLR criteria as an edge detector was effective in locating edge points on a 

selected set of search paths so that the key points were appropriately identified on the potential 

boundary of objects, such as pedestrians, that do not possess reliable landmarks. This simplifies 

the detection of model points over the demands for detecting landmark points as required in other 

model-based schemes of image interpretation. 

 

8.1.4 Extended Superellipse Appearance Model 

The Extended Superellipse Appearance Model (ESAM) was able to represent a large degree of 

variation in the objects in the training set using an ESE and proved to be an effective representa-

tion for the interpretation system. It is also demonstrated that it is not necessary to detect land-

marks to model an object and that boundary sampling produces a reliable representation of an 

object that can be applied to a broad range of objects without changing the processing strategy. 

 

The concepts developed have been shown to be effective in identifying pedestrians in video se-

quences without a need to track the movement of the pedestrian. The method developed is able to 

process video images of 640 x 480 pixels at better than video rate on a modest specification com-

puter such as Intel core i3-2310M™ CPU running at 2.10GHz. The convergence curves for the 

interpretation systems of the geometric and appearance models show that high levels of reliability 

and specificity were achieved with low error rates in each case. 

 

The ability to select between variant models for a pedestrian, a pedestrian pushing a pushchair 

and a pedestrian pushing or riding a bicycle demonstrates the potential to select models in a wider 
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context and to reason about interpretation strategies. In the wider context there will be a much 

larger set of alternative models and this will present a serious challenge to model selection. 

 

The versatility of the modelling and interpretation methods presented is demonstrated by the way 

that it could be adapted to vehicle interpretation using a limited number of different vehicle body 

shapes to identify each vehicle reliably. With all five of the vehicles modelled the ability to relia-

bly select the most appropriate model with a simple Bayesian classifier and log likelihood esti-

mates on Gaussian distributed data was demonstrated. It might not be a simple matter to extend 

this strategy to a larger range of vehicle types although a reasonable range of body types were 

considered. 

 

This approach has potential for widespread application in pedestrian monitoring for safety secu-

rity surveillance, industrial inspection and could potentially be extended to create 3D avatars 

without the need for markers. 

 

8.2 Future Work 

Further works related to each of the above strategies are introduced below. 

 

8.2.1 Cue Detection 

The generalisation of the cue augmentation to a wider range of objects, where the selection crite-

ria could be learnt and form a part of a model would significantly extend the application of 

model-based image interpretation. A particular challenge would be to make this aspect model-

based. 
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8.2.2 Axes Detection  

Further work is needed to learn the appropriate geometric design of the mask to avoid the need 

for prior knowledge. Further work is needed to automate how to search for the appropriate num-

ber of local axes points from the composite axes. This search process might form a part of a 

model that is likely better to reduce the search space and would be possible lead to a more robust 

and efficient model. In the future work there is a need for models to identify different objects 

cues that might be a way to avoid many of the ad hoc operations such as response clustering that 

are a feature of the cue detection process. 

 

8.2.3 Key Point Detection 

The ability to automate the selection of an appropriate number of key points for each model 

would reduce the size of models and make interpretation more efficient. This might involve in-

creasing the number of search paths for some cases to determine if the additional search paths 

improve the representation of the shape. 

 

8.2.4 Geometric and Appearance Models 

Further study is needed to better distinguish between pedestrians and trees. The extension of the 

ESAM algorithm to 3D images would be valuable. For vehicle interpretation it might possible to 

extend the application to learn any vehicle body shape. 
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