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Thesis Abstract

This thesis consists of two projects which are seeminglyaffinected, yet closely related. The first part explores
the effects of Bose-Einstein condensation at temperattiosg to, but slightly above, criticality. Following

a general introduction into bosonic condensation we jstifiy a phenomenological theory, similar to the
Ginzburg-Landau theory for fermions, holds for weakly matging Bose gases. From this theory we predict
the divergence of certain observables, in particular thesgmagnetic susceptibility, and discuss the effects of
a trapping potential.

The divergence of the magnetic susceptibility motivatesititroduction of an original scheme in order to
measure it, published iRhys. Rev. A 93, 041602(R)he scheme uses modulated laser fields to create well-
controlled gradients of artificial magnetic fields. In adztitwe discuss how rotational schemes might be helpful
in detecting different quantum phases by exploiting défersignatures in their moments of inertia.

The second part investigates binary mixtures in one dinsan$Ve show that in certain limits such systems
behave like two simply coupled Luttinger liquids, whichesffively describe polaronic modes. We study and
calculate explicitly how an impurity immersed in the one dimsional system creates two depletion clouds and
a phase drop in each of the liquids. After arguing that théseds and phase drops necessitate a coupling of
the impurity to the low-lying excitation modes of the Lutier liquids, we derive the edge-state singularities of

the bosonic and fermionic dynamical structure factors widiepend on the coupling between the liquids.



Acknowledgements

First and foremost | want to thank my supervisors Prof. Igok&fner and Dr. Dimitri M. Gangardt for their
constant and unconditional support. We had many enjoyatddraitful discussions in which | learned very
much about physics and the world in general. | want to thaok Rdike Gunn, Dr. Martin Long, Prof. Nicola
Wilkin, Dr. Benjamin Beri, Prof. Andy Schofield, Dr. Rob Simiand Prof. Raymund Jones for all the help
along the way.

I met certainly some great people over the years in Birmingh&irst and foremost | have to thank my
friends Dr. Filippo Bovo and Dr. Max Arzamasovs for all thédresting and fun times we have had, in physics
but also outside of it. Then there are in no particular ordaxNones, Matt Robson, Matt Hunt, Dr. Fu Liu, Dr.
Amy Briffa, Dr. Richard Mason, Dr. Andy Cave, Greg Oliver, éylLatief, Austin Tomlinson, Dr. Jon Watkins,
Dr. Dave Simpson and Dr. Kevin Ralley.

I have to thank the University of Birmingham for its hospitaland the city of Birmingham for all the
little lovelinesses it offerred. A special thank goes to naygmts, who supported me for almost thirty years in
everything | was doing. It is safe to say | would not be whermgithout them. This thesis is dedicated to my

grandfather, who was the first to get me interested in sciandealways was a great role-model.



This thesis is dedicated to my parents and my grandfather.



Publications

(&) A.Kingl, D. M. Gangardt, and I.V. Lerner. Fluctuatiorsseptibility of ultracold bosons
in the vicinity of condensation in the presence of an artfionagnetic field.Phys. Rev.

A 93, 041602(R)



Contents

1 Overview

2 An Introduction to Bose-Einstein Condensation
2.1 Bosonicfields . . . . . . . . e
2.2 Bosecondensation . . . . . . . ... e e
2.3 Second quantization . . . . .. .. L e e

2.4 Properties of Bose-Einsteincondensates . . . . . ... ..o oo oL

3 Bosonic fluctuations close to criticality

3.1 General bosonic fluctuations close to criticality . . . ... ... .. .. ... ........
3.2 The Ginzburg-Landaufunctional . . . . . . .. .. .. . .. . . . e
3.3 Trapspecific properties . . . . . . . . e
3.3.1 Comparison with fermionic superconductors . . . . . ...... . . ... ...

3.4 Rotation and artificial magneticfields . . . . .. ... .. . . ... . . ..
3.5 Calculation of the magnetic susceptibility . . . . . .. .. ... ... ... ...
3.5.1 Observation of the susceptibility . . . . . . ... .. . ... .
3.5.1.1 Review of quantum electrodynamics . . . .. ... ... ... ... ..

3.5.1.2 The\ setup and its generalization . . . . ... ... ... ........

3.5.2 Artificial magneticfields . . . . . . . . ..
3.5.3 Observation of the susceptibility . . . . . . ... .. . . ... .

10
14
21



CONTENTS

3.6 Outlook . . . . . e e 101
3.7 Summary of Results for Bosonic Fluctuations . . . . . .. ...... . .. .. ... ...... 107
Binary one-dimensional mixtures 109
4.1 Introduction to One-Dimensional Systems . . . . . . . . . ... o oL 109
4.2 One-dimensionalMiXtUres . . . . . . . . . . . i e e 114
4.2.1 Description ofthe impurities . . . . . . . . ... L oo 118
4.2.2 The coupling of the impuritytophonons. . . . . . .. .. . ... ... ....... 124
4.2.3 The Dynamical Structure Factor . . . . . . . . . . . . . . .. e 127
4.2.4 Summaryof ResultsforID mixtures . . . . . . . . . . .. .. . .o 133
Appendix 134
5.1 Bosonic GaussianIntegrals . . . . . . . .. e e 134
5.2 Summation over Matsubara frequencies . . . . . . .. ... oL oo 135
5.3 Estimation of relaxationtimes . . . . . . . . . ... 138
5.4 Discussion of the Polylogarithmat=2 . . . . ... ... ... ... ... ... ....... 141
5.5 Shortintroductionto Grassmannfields . . . . . . .. ... o oL 142
5.6 Diagonalization of two interacting Luttinger liquids. .. . . . . . . .. ... ... L. 144

5.7 Solitonic dispersionrelation . . . . .. .. L 147



List of Figures

2.1

3.1
3.2

3.3

The inverse polylog Lit(1). It shows that fod; = 1, the critical temperature vanishes. . . . .

The heat capacity of the zero-dimensional system ingd@fm= ST.d 2\6—5 ...........

A cartoon that visualizes the relationship between trehic and fermionic fluctuations close
to criticality. On the left hand side the attraction betwelea fermions is only weak and the
Fermi surface is intact. Close to criticality Cooper resm®ascattering becomes significant
and couples fermions of opposite spin close to the Fermi.e@mow T, the Cooper pairs
condense and form a macroscopic condensate, though masbiferare still part of the Fermi
sea. On the right hand side the fermions have been strongpl@dto create bosons consisting
of fermions of opposite spin. It is known how the bosons betahove and belowW.. To find
the relevant fluctuational contributions there are two wiayapproach the problem (arrows),
starting directly from the bosonic picture or transitiogiinom the fermionic fluctuational terms
over to the strongly coupled bosonic side. We show that bpgiaaches give the same result
and the interacting Bose gas close to criticality can be @tkas a dilute system in which bosons
form spontaneously unstable condensate droplets thatitiager range coherences. Beldw
the bosons form the well-known long-range condensate. . . ... ... .. ... ... ..
The Dyson equation for the Cooper pair. The wavy lineésGboper pair propagator, the solid
lines belong to the single particle fermions. For each beitid fermions have to have opposite
spins, otherwise the interaction vertex (dot) would be z#ris this propagator that causes the

leading order fluctuational corrections in the BCS limit amthe strongly coupling limit. . . . .

61

64



LIST OF FIGURES 1

3.4

3.5

3.6

3.7

3.8

3.9

3.10

51

5.2

The leading order contribution when the bosonic profmaga the polarisation bubble is re-
placed by the fluctuation propagator. Due to the internalspf the constituting electrons, the

diagram has a degeneracy factor of 4. The bubbles with ther [Etsymbolize the bosonic

couplingto externalfields. . . . . . . . . . . . .. ... .. 66
Subleading fluctuation diagrams. a) The Maki-Thompdém)(term and b) the DOS term.

Both contain only one fluctuational propagator. . . . . ... ... ... ... ... ....... 67
The normal scheme of two ground statés ), |gz) which are coupled to an excited staée

with the Rabi field€Q; andQ, respectively. . . . . . . . . . .. . oo 82
The generalized scheme. The second ground state is coupled to the excitedvssatwo
detuned lasers, each with its distinct Rabi fi@lgls. . . .. ................... 83
The artificial magnetic field for different values of tsf@rred momentunt,= 2 in red,/ = 3 in
blueandd =4ingreen. . . . . . . . . 94
The gradient of the artificial magnetic fiel@/dd in units ofQ for different detuning®, — oa =

& of the field beams with¢ = 2. The upper (blue) line is for an initial detuningd®f— da ~ 2Q,

the lowest (green) fody ~ 2.8Q. The red line in the middle is tuned such that the two curvature
cancel and a plateau of width Q is formed fordy =~ 2.5Q. In that region a linear gradient of a

real magnetic field translates into a linear gradient of the ardifimagnetic field. . . . . .. .. 98
A cartoon of the scheme for the observation of fluctuatieffects. The different layers of the

cloud gather different angular momenta, dependent on plosition in the generalizetl scheme. 99

The contour stretches to infinity to enclose the wholemlermplane, but without the poles on
theimaginary axisthe. . . . . . . . . . e e 136
The contour now not only excludes the poles, but also thedh cut (dark bar) and could in

principle be distorted to exclude the branchonly. . . . . . ...... ... ... L. 137



Chapter 1

Overview

Condensation of quantum particles is hardly a new concepeady in 1925, after having been inspired by
Bose’s ideas [1] about the importance of quantum statigtiegsics and its deviation from classical statistical
physics, Einstein predicted the possibility of the condgins of matter below a critical temperature [2].

Though a simple and very elegant concept, direct expermhertification of bosonic condensation re-
mained elusive for almost seventy years. However, the qrafebosonic condensation has been used with
varying degrees of success to explain interesting expatmhéacts. Superconductivity, which has been ob-
served only fourteen years earlier by Kamerlingh Onnes e puercury at a temperature of 4.2 K, seemed to
share some of the properties expected in a Bose-Einstaiuddésate (BEC), for instance the low but finite crit-
ical temperature. Though Fritz London [3] tried to explaiperconductivity as well as the recently discovered
superfluidity of helium-4 [4, 5] in terms of BECs, doubts abtie exact nature of these condensates remained.
Conventional superconductivity was later explained witkaliernative microscopic theory in which electrons of
opposite spin couple to form states that can be interpratedmmposite bosons in 1957 [6]. Superfluid helium-4
on the other hand shows some characteristics that were peted from Einstein’s theory, such as the fact that
only a fraction of particles show superfluid behaviour, estabsolute zero.

The final experimental verification came only in 1995 whend&&instein-Condensation in cold gases was
achieved and tell-take BEC signatures were found [7, 8lalRirscientists have the means to clearly distinguish

bosonic and fermionic superfluidity, which opens up a whae field of investigation, as properties that are
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found in superconducting fermionic systems, for instanegmetic flux quantisation [9], can be observed in
purely bosonic condensates as well [10].

A large and interesting class of such fermionic phenomea#lactuational effects, where superconducting
signatures can be observed slightly above the critical &zatpre as well as significant fluctuational corrections
to condensates below the critical temperature. The firshatibn of such effects were done by Ginzburg [11]
and he deemed them unlikely ever to be observed. Howevethshtterwards, in 1967, Glover found strange
signatures in the resistivity of amorphous bismuth filmg[3}2ry quickly it was realized that the fluctuational
contributions that according to Ginzburg were supposecetarball could become quite considerable in size
if the geometry of the system changes, for instance in thiesyior the systems themselves are disordered
[13, 14, 15]. These new theories fit the experiments very.well

The next logical step was to ask the question, whether orumdt behaviour persists in bosonic systems
and how it can be addressed experimentally. Not only wasntiuivated by pure academic curiosity, but
recent experimental innovations allow for a careful exaation of close-to-criticality behaviour [16]. This is
where this thesis starts. In chapter 2 we describe a gemamgivork to describe weakly interacting bosonic
systems in equilibrium and some aspects of out-of-eqitilibbehaviour. We proceed in chapter 3 to apply this
framework to the question of close-to-criticality fluctioets. We show that they exist and that their magnitude
should be larger than in conventional superconductingesyst Also we show that the trap that holds the
cold atoms is instrumental in determining the actual proggiof the fluctuational observables and therefore
cannot be neglected. Further we establish an equivaleragée bosonic and fermionic fluctuational effects
by exploiting the BCS-BEC crossover. However, we were umaviaat such a connection has been made
before us [17]. We still went a little further and considetamv trap rotations can be used to explicitly find
fluctuational observables. We constructed a scheme thatesrgradients in artificial magnetic fields using
space-dependent angular momentum imprintment. Such ssheam also be used for purposes other than the
detection of fluctuational properties. We also suggest logational schemes might be used to find other, even
more elusive transitions, such as the superfluid-Bose @lassition. Possibly helpful in characterizing the
different phases will be the quantum version of Steineeotlm in classical mechanics, which we derived at
the end of chapter 3.

The study of the relationship between bosons and fermiahaali always proceed along the lines of con-
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densates though. It turns out that in the system where nonimsondensation is possible, namely in one
dimension, spin-free fermions and interacting bosons eaetigally identical, at least at low energies. The first
half of this insight came first from Tomanaga [18] and lateteipendently from Luttinger [19]. They found
that the excitations of interacting fermions can be mappd non-interacting phononic excitations. This also
means that in one dimension, even interacting fermionitesys can be solved exactly. At about the same time
Lieb and Liniger showed that also interacting one-dimemsi®ose systems can be solved using a Bethe-like
ansatz [20]. In the limit of very strong repulsive bosongitisolution mimicked the non-interacting fermion
physics. It still took a couple of years until these two ide&se formally combined by Haldane into the frame-
work of Luttinger liquids [21]. In the same article he alsgaed that the low energy boson theory and the low
energy fermion theory obey the same universal action.

This formal equivalence of the two systems, as well as thmiilar mathematical make-up, invites the
study of their mixtures in one dimension. It was soon fourat there exist regions in parameter space where
such mixtures are stable [22] and can be described as méxtiirpolaronic modes [23]. This motivated us
to study effects where remnants of the somewhat contrary@atf bosons and fermions persist even in one
dimension, the edge-state singularities [24, 25]. In olafotur we first rederive the effective Hamiltonian of
the mixture. Because we want to study some higher-energgtsffit becomes necessary to study the mobile
impurities that are created with higher energies than tHarpnic modes that couple with them. Because
these impurities are coupled to two Luttinger liquids, theermodynamic characteristics are slightly altered,
which we calculate explicitly. Afterwards we show that unfiérly general conditions the intrinsic differences
between the bosonic and fermionic nature leads to a suppnaxfthe edge-state singularities, for fermionically
as well as bosonically excited systems. Quite generallyrbst stable (long-range) modes of the respective
unperturbed Luttinger liquids couple to unstable modef@dpposite liquid if interactions are turned on. We
then draw parallels to the X-ray absorption edge singylamitransition metals that help build a more intuitive

understanding of these effects.



Chapter 2

An Introduction to Bose-Einstein

Condensation

2.1 Bosonic fields

This thesis focusses on properties of bosons close to oeindhdensed phase. We think it is in order to give a
general introduction to bosonic condensation for wealdgrcting dilute bosonic gases.

There are many different ways of defining Bose condensatibether it is via a macroscopic occupation
of a state or long range coherences [2, 26, 27]. We focus firse field theoretic description by Popov [28]
and others [29, 30, 31, 32, 26, 33, 34] that leads up to theerdional properties. Only after having identified
the bosonic condensation as a significant effect, we wikrss the direction and start from an operator picture
that leads us, via the introduction of coherent states,amtiginal bosonic field representation and closes the
circle.

In this description the many-particle system, here a dilotieracting gas of bosonic particles with integer
spin [35, 36], is described by complex fielggx, T) in imaginary timet that exist on some spatial support
x € V ¢ RY in d-dimensional space, which for the most part of the thesis lvélthree-dimensional. The

imaginary time 0< 1 < % = B is used to describe the effects of temperature. This of eomsans that
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the fields are believed to be equilibrated to temperaluréNow and later, unless stated otherwise, we set
ks = h = 1. However we will often reintroduch, as it is useful to understand the size of quantities necgssa
for experimental observation.

For now we are only interested in the uniform three-dimemasicystem, so we specify the gas to be in
a cube of volume&/ = L2. Under periodic boundary conditions, which in the thermuatyic limit and the
systems we study does not affect the bulk properties of thgetlya fields are described in terms of their Fourier

coefficientsa(k, w) ,a* (k, w)

Px,T) = \/EF kz (@ (k) (2.1)
G, 1) = 1 3 el Hg k@),

ﬁ

L3 K,w

The arguments of the Fourier coefficients are quantizeshas 2rmT andk , = 2rm/L, wherei = x,y,zand
then are integers. The quantization of the imaginary time in suelay follows from the bosonic requirement

thaty(x, ) = Y(x, 7+ B). The thermal action that contains an (imaginary) time evoiuis introduced as

B 3 B
S:/O dr/dxw(x,r)drw(x,r)—/o H(1)dr. (2.2)

The functionaH is the integral over the Hamiltonian density. For the systawish to describe, it contains the
kinetic energy, a term that controls the number of partiglaghe chemical potential, and a pair interaction

potentialu(x), which describes a general instantaneous interaction leettveo particles

H :/dx <%nD47(x,r)DLp(x,r)—utﬁ(x,r)tp(x,r)) (2.3)
+ [ axdyux -y Fx DB OPE. D@ T).

This action can be partially diagonalized by transformimginteraction potential, alongside the operators, into

Fourier space

u(x):ége”‘xﬁ(k).
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Then the action becomes a sum of two terBs, S + S, the first of which is

2

So:(gk (iwh—lz(—m+u) a* (k, wn)a(k, an)

and diagonal; the second one is a momentum conserving term

T

S=a. 3
A k1+ko=kz+kg

[G (ke —ks) +0(ka—ka)]a" (k1)@ (kz)a(ks)a(ks).

To make physical predictions, one has to find quantitiesdhatdirectly related to physical observables, like

densities of states or absorbtion properties. In our caseviti be the one-particle Green’s functions [28]
G(x,T;X, 7)== (Y, 1)P((X,1)).

The averagé. .. ) is the functional average weighted by the exponential ofitt®n

M / e , m /’ DD
W F.r)) =L o) B DYDY,

whereDyD is the functional integration measure. Of course, the iratidgn measure can instead be taken over
the Fourier coefficients (they are technically coherertestepresentations). Because of Plancherel’s theorem
we have thaDyD( = Mpda“ (p)da(p), wherepis a composite variable containikgandw.

Technically one has to introduce cutofks, wy, as the physical system is naturally bound by a lower length
scale. The particle motion can not happen on a subatomie,doalvever we do not need to specify the exact
cutoff length other than by saying it is some large numbercaBse the Green’s function is defined for a non-
driven, uniform system, we can deduce that it is translaitiwariantG(x, 7;X’, 7’') = G(x+ R, T+ To; X' + R, T/ +

Tp). This of course implies that the Fourier basis as definedeabsoa good basis as well and that the Green'’s
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function itself can best be described by its Fourier tramsfo

J [P Mpda (p)da(p)| a(p)a (p)
[P Npa (pda(p)]

We note that{es(p) Mpda* (p)da(p)} is the measure, by which each instamds weighted.

It is quite instructive to find the behaviour of the free theavhereu(k) = 0. To do this we calculate the
generating functionaly (n,n*) of the free theory, from which we infer the correlat@®g(p). At this point we
need Gaussian integrals, of which a short summary can belfioithe appendix 5.1.

The full generator after integration is thus given by

2m

2 -1
Zo([n,n"]) = exp[— > n(p) (iw— < +u) n(p)] :
P
Using that gives

(PP =5 :
an(pan () o P S

Go(p,p) = — m
T 2m

Taking higher derivatives allows us to get all higher morsafitthe theory

n n e B ont+n .
<ﬂa(p')ﬂa (pj)>o_ Mcan(po o (py) o PP

The result is the famous Wick’s theorem, which states thad fguadratic theory the higher moment average is
just the sum over all possible decompositions of the/iggf into pairs(a(p)a*(p)). In order for the average

not to vanishn = n'. As a simple example one can take the four point average

(a(p1)a(pz)a’(ps)a“(pa))o = (a(p1)a“(ps))o (a(P2)a* (pa))o + (a(p1)a*(pa))o (a(p2)a* (ps)) -

We want to see how the particle density and the occupatiotteeahdividualk modes depend on tempera-
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ture. Using again the property of translation invariance have that for the total particle numbsér

N_</dx1ﬁ(x,r)w(x,r)>_L3 lim (px, 1)@ (X, 7).

X=X, 11

We can express the average by the free Green’s functions

2

-1
(W, )P (X, 1)) = —% kzw (iw— LS + Il) do(T-1")+ik(x—x)

2m

In order to obtain the correct average, one has to demand'that, which can be interpreted as that the particle
density is first created and then annihilated. So we intredhie infinitesimak, such that’ + € = 1, which we

later let go to zero. Evaluating the single particle Gre&n'stion atx = X we can perform the summation over
the Matsubara frequencies. A short summary of the technigioeind in the appendix. Applying the case of a

single pole, we find
1 gwe _ eg(%f“) N ;
B%um—é%+u Fln) _ B g

Or, for the total particle number,

N:ZW:Z@@%WT?

wheree(k) = |k|? /2mis the free particle energy dispersion relation.
Retracing the calculation it is clear that the exact refabetween energg andk did not matter. For any
bosonic system that can be diagonalized for some sfatgsone finds that the density of particles in the state

Alis
and the total particle number to be

The functionn, is the Bose function and it is responsible for a whole pledhafrinteresting properties starting

with condensation.
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2.2 Bose condensation

Now that we know how the particles occupy the energy eigéesia thermodynamic equilibrium, it is worth-

while to study those occupations a little further. The deimator in the Bose function

can in principle become arbitrarily small due to th&. This should be compared to the Fermi distribution

1

fr=gew T

where the occupation is limited to a number between 0 and 1.

In order to avoid an ill defined Bose function, the chemicakptial u must be smaller than the smallest
energyeg. However one can see that the Bose nature allows for mutiggapations of the lowest energy state,
in fact, favors it for low temperatures. A natural questiorask is whether the occupation of a single or a few
states can be so large compared to the others, that the phlysttaviour is dominated by one state, or a small
set of neighboring states.

To answer this, let us isolate that single state and obsemweth occupancy compares with the rest of the
particles. We assume a system with a finite number of pastitlewever, all states besides the ground state are
supposed to be continuously distributed. Rather than tapét a specific system, we characterize a system by

the way its density of statgs(e) changes when the energy is varied. We define the energetandiond; as

It should be noted, that the energetic dimension does nat twabe integer. In fact, it allows us to compare
harmonically trapped systems (generally intedggrand uniform systems (generallly is a multiple of%) and

their combinations in the same picture. The prefactor caddiermined by a specific case and generalized.
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Take the three-dimensional harmonic oscillator with

&= hay [(nx+ny+nz) +3/2].

The number of stated(E) with an energy less thah can be found as

1 E E—Ex E—Ex—Ey E3
Z(E) = —— / dE / d / dE, — .
(E) (Rawo)®Jo —  Jo %, * 6(Rw)’

(It follows from the quantization of the spectrum that aestassentially occupies the volur(ﬁoo):‘;).

This generalizes for higher dimensions (real ones) to

Ed
Z(E) = d
d! (how)
For the density of states this gives
dz(E Ed-1
p(E) = 225 _ -
dE  (d—1)! ()

Note that even in the uniform case, one can find the equivafeht oscillator strengtiihcy = 2nﬁ2/ml_)2(,y!z) .
If the system consists &€ different frequenciesy, thenwy will be the geometric mean of the constituent
fregenciesgyp = ([ @)Y, On the other hand th@ — 1)! can be extended to the Gamma functiof; — 1),

which is also defined for non-integer arguments (it is onlg-defined for negative integers)

F(z):/ X le~™Xdx.
0

Let us decompose the total number of particles into the gietate number of particléd and the thermal

componeniNy

N = No + Nep.

Given a particle number, we have to ask how many particles fité thermal states. If all do, then the ground
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state occupation will necessarily be small. If however aificant fraction of particles were forced into the
ground state because the number of particles in the thetatabsvas bounded, condensation would occur. The
chemical potential would in that case be close to the grotatd gnergy. The number of thermal particles can

be calculated as (energies are measured from the grous)l stat

® 1 @ gle-1 T \%
Nth:/o p(&) fB(S)de:dE!(ﬁwo)df A eﬁf—ldg_(m) Lig, (1).

The function
1 [ el

a2 =7y ), d2=1

dt

is the polylogarithm. The overall behaviour is interestiag it tells us that the number of particles at a given
temperature in the thermal states can be limited for diffevalues ofd;. This in turn means that if the total
particle number is larger than the numt(q%)dg Lig. (1), any excess particles occupy the ground state. On
the same basis, if the temperature is lowered until the numbeccupied states is much smaller than the total
particle number, condensation into the ground state oc&ggerally one speaks of a macroscopic occupation
if in the thermodynamic limit a finite fraction of the par&d occupy that state. The resultant condensate is
the so called Bose-Einstein condensate (BEC). The cripicat at which this happens is wh&h= N, which

gives a useful criterion for the critical temperature

Nl/dg

TC - ﬁ%i
(Lig, (2))"%

The function L, (1) equals{ (dg), the Riemann-Zeta functiofi(s) = S, n~ 5. The equation fully highlights
the impact of the bosonic statistics. Because the numbeartitfes can be very large, the critical temperature
can be several orders of magnitude larger than the definiegygrscalency, which would be the order of the
temperature were condensation-like effects were to occaBoltzmann gas. Another way of looking at Bose

condensation is to use the de Broglie relation to see thedl/piave-length a particle has at temperaflire

o\ 1/2
2o— (22)
mT
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Figure 2.1: The inverse polylog ;[;?(1). It shows that fod; = 1, the critical temperature vanishes.

and compare it to the interparticle distamdé”. If they are of the same order, then, so the heuristic expilamat
goes, the particles cannot be distinguished from each ati@éform one coherent unit. For a harmonic trap
this applies for the de-Broglie wavelength at the centehefttap and inversion foF. indeed returns the same
scaling. Such condensates have been observed experitpEntal.

Because Li(1) = =, this equations tells us that the critical temperaturedfor 1 is zero (see figure 2.1).

This means that a one dimensional harmonically trapped gasweo dimensional uniform Bose gas could
not truly condense at finite temperature and resembles tlgm&vaviermin theorem [37, 38], which states that
no continuous symmetry can be spontaneously broken in amumifystem at finite temperature fdr< 2
because long-range fluctuations that can destroy such @&n dodnot cost much energy. At this point it has
to be mentioned that lower dimensional phase transitionsti happen, just that they do not exhibit a phase
that has a true long range order. In two dimensions thessiti@ms are called Berezinskii-Kosterlitz-Thouless
(BKT) transitions [39, 40], where the correlation lengthitslves from polynomial to exponential fall-off at
a finite temperature and which have been predicted and adzbémva range of systems, such as Josephson
junction arrays and granular superconducting systemsif2,143, 44, 45].

We can estimate the number of condensed particles close teatisition. We find that

T\%
NC_N—Nm_Nll— (ﬁ) 1 (2.4)

where we used that by substitution fbr< Tg, Ny, = N (T/Tc)dg .

Here we want to point out that a macroscopic number of pesi@ in one particular state, so it seems
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sensible that they share the same phase. It is this obsenaftimany particles sharing all properties of that

state, including the wave function of that state, that ctterizes the Bose condensate. Though the wave
function itself is not observable, it clearly leads to olabte effects, most importantly that it has a phase,
whose change over spatial distance costs distortion erfph@se stiffness) that is responsible for many of the

phenomena associated with superfluidity.

2.3 Second quantization

We started first with a complex field in an action and derivedltbsonic occupation statistics. Here we want to
go the reverse way and start with an operator formalism ¢tzatd to the same occupation statistics and introduce
the idea of coherent states. This is useful as it exemplifiesonnection between particle number and phase,
which is crucial in understanding condensed systems. Wa twantroduce the famous Bose-Hubbard model
and discuss why also this case can be described in the cofigiterepresentation provided earlier. In the next
section we return to the non-lattice case and describe sbthe superfluid properties of bosonic condensates.
The ideas in this section follow some of the standard refereifd6, 47, 26, 45].

One starts with a single lattice site with no further intéstaucture in which a boson may sit. Such a site
can be occupied by any number of non-interacting bosonkjditgy zero bosons. The Hilbert space of that

single site is thus spanned by the orthonormal set
0),[1),12)...

which extend to infinity. To transition from one state to drestone which differs only by one boson, we can

define the bosonic creation and annihilation operaibentd such that

a'n) =vn+1jn+1),
ajn) =/nin—1).
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One can clearly see that &nda"do not commute

[4,a"] |n) = aa'|n) —a'a|n)
=vn+14n+1)—/na"|n—1)

= (n+1)[n) —nin) =[n),

which means[é, éT] = 1. If we extend the number of lattice sites, then the creatiumifdlation operators only

do not commute on the same site, i.e.
A A At At A at
[&, 4] = [ -,a,-] =0, [aa, ,} = §j.

During the extension we also expanded the orthonormal lodsisr Hilbert space to include all states with

integer number of bosons on each site

{ni}) =[] 1m)-

It is common to call the “empty” stat®.0,...) the vacuumvag . To obtain a state with arbitrary occupation,

we can apply the appropriate number of creation operatdhetgaccum

(&)

[vag .

b =]
|
A useful operator to determine the number of particles od Isdiice sitei is fi = &'4 since

ﬁ|ni) =N |ni).

So far we considered only states with a well-defined humbgadiicles, so-called Fock states. However,
because these states are part of a Hilbert space, supampesit Fock-states are allowed physical states. Since
we look at material systems in which the number of partidies; 3; nj, is generally conserved, we need to take
into account a reservoir (as we implicitly did above to defime chemical potentigk), or we have to couple

different sites so that the overall number of bosons is amesewhile the number of bosons on each site may
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be allowed to fluctuate.

The simplest case considers two coupled sites,1,2, about whichN particles are distributed. Since
the number of particles is conserved, we can label the Fatkssby the difference in their occupation=
N/2+4 AN andn; = N/2 — AN, where for evelN, AN can take the valuesN/2,—-N/2+1,...,N/2—1,N/2

and the Fock state simply becomes

1
(N/2+BN)! (N/2—AN)!

|AN) = (éT)N/MN (a;) e

[vag .

To better describe such a state, it is convenient to definegbeator that measures the difference in occupation

between both sites

t t4

AN:ﬁl—ﬁZZél él—éz ap,

for which the difference state is an eigenstate

AN |AN) = AN|AN) .

Whereas in this state really all particle numbers are wéihéd, one can imagine the opposite case, where each
particle itself is in a superposition of both lattice sitesgpectively with probabilityp; andp, = 1— p;, and an

additional phase differend&9, so the total state is

. . N
(\/melAG/ZéI_i_ \/EeflAﬂ/Zég)
VNI

|AB, p1, p2) = lvag .

Since the Fock basis is complete, the stA®) can be expanded in said basis

p(NfAN)/4p(N+AN) /4 .
AB) = L 2 dZ2|AN) .
£/ (N/2+AN) (N/2—AN)!

This state is called a relative phase eigenstate, as eatitigpaas a relative phase difference. The occurrence
of the term &3'4¢ already hints at that the states with well defined phaserdifige are complementary to the

states with well defined difference in particle numbers. sTikinot quite exact, aN and therefore the sum
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is finite. However when the number of particles is lariye> 1, then it becomes possible to define a phase

difference operator [48]
ajé
V(IN/2-AN) (N/2—AN) |

AB = —iarg

which in the limit of largeN approximately satisfies a Heisenberg relation as typicatdajugate variables
[AN, 28] = —2i.

This has important consequences. Because the commutatunsled, but the amplitude of the many-particle
wave function can become macroscopia/N, quantum effects which are of the order of the commutator are
negligible with respect the the mean field effectd\as/2, which justifies the commonly used approximation
of replacing the quantum state by a purely classical fielqd p09.

The Fock states can be decomposed into a superpositiontes$ &8, p; = p, = 1/2). However, instead
of describing the states in terms of phase differencesyitlig convenient to define states with a well defined
phase on siteand average occupatidhp — N;, so called coherent states or Glauber steesl) [51, 52, 53].
The definition of(8;, 6,| A8 |61, 6,) = (61 — 6,) suggests that the coherent state should be an eigenstate of t
annihilation operator

and hence that

(8,N|&" = v/Ne 19 (g,N].

To find the representation in terms of the single site Fodiestave use

(n—1]4|6,N) = /n(n|8) = vVN€e® (n—1/6,N).
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This can be solved iteratively and after normalization ondsfi

fN/Z \/_ée

% v "
:eNﬂ<Z£l;¥§l>hm©

n

16,N) =

— g N/2g/Ne’a a0 (2.5)
Clearly the number of particles is not well defined. Instahd,probability to findn particles is Poisson dis-

tributed like

For the Poisson distribution we do know that the mean eghalsdriance, i.e. there is always a spread in the

number of particles on the site
The state$6,N) are not orthonormal to each other. Instead
. -
(61, Ny |8, Np) |2 = e~ [VNi€ - V/ze 2|
and the identity can be decomposed as

= [ dRep)d(imy) ) (w1 (2.6)

wherey = +/N€?, a precursor of the complex Bose field (2.1) but which alsoshittthe condensate fiettl
which will occur when the Hamiltonian is at a minimum for a eoént state (or set of coherent states, after all
we usually have many sites and a global phase shift leavds$ahsltonian invariant).

To complete the circle back to the field representation, weduce a Hamiltonian to the system. A popular
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choice with many practical applications is the Bose-Hulbb#amiltonian

=

U R
5 (R -1). (2.7)

2
|
Clearly this Hamiltonian conserves total particle numilet 3 n; sinceN = ¥ifi commutes with the Hamilto-
nian [N, I:|HB] = 0. Each of the terms in the Hamiltonian has an interpretatidre first term destroys a particle
on one site and creates another one on a neighboring siehdhice a hopping term which leads to a delocaliza-
tion of particles. The second term controls the particle benvia an external reservoir that fixes the chemical
potentialu, whereas the last term which acts on a single site only reptesd onsite pairwise interaction of a

particle on sité with then; — 1 other particles on the same site.

To as before see the thermodynamics of the system, we hatartavih the partition function
Z="Tre PH.

In order to find an appropriate description in terms of comfikdds, it is useful to introduce a time slicing that
equates the finite temperatufeto an evolution in imaginary time from t = 0 to T = 3. The safe procedure
is to start with a discrete slicing which then is extendeditfinite case in a well defined limiting procedure.

We define the limit

N A
Z="Tr [ lim rle“i”] ,
Naooi:

with |A1i| = B/N. Next we connect the slices of time by inserting the idenf@tg) written as

1
| = I—T/dLIJr, |LI-’Ti><LI"Ti|

at each intersection. Because the time slices are smallawejgproximate the overlap between neighboring
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times as

(W le ™ W cae ) = (W |1 - ATA| W o)
d o
~ 1—AT<1,Uri Id—n|wri> NI

d
~ eXp|:—AT <LIJT||d_TI|LIJT|> —AtH (‘-I-’a‘-l-’*)] ’

where in the last approximation we used that within the Hemian all instances of creation and annihilation
operators are replaced by the fields due to the defining pisopéthe coherent states (this is also the reason
why we usually insist on normal ordering of the Hamiltoniafipe trace operation itself can be understood as

an integral over the states

1
Tox = [ 40 (Yr-olX|to).

As the trace connects the last time slice at 3 = 1/T, we automatically obtain the bosonic conditigni0) =
Y(B), which in our first formulation was taken as an axiom via thestbn of Matsubara frequencies. There
remains a subtlety that neighboring slices can have arijtdifferent values, but a more careful analysis shows
that it is usually well behaved [54, 55] and one can use theermibstitution of the operatods, L[IT with the
fieldsy, g*

d 2 «g d At d
— ol Yra Yra —
(o) =e 9 (vaeh) & e vac) = i S

If we now take the limit of the time slicindt — 0 and denote by = lim []; dy;, we obtain the functional

integral representation with the action given in (2.2)

z:/ Dyee Jo aTlvr durhw v
Yo=up

To describe the full Bose-Hubbard model one has to extenfiglieintegration over all lattice sitds

z:/HDwie*S[{‘!’ivwi*}],
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It is also fascinating to see how the Bose-Hubbard model ear kimilarities to the continuous model when
the lattice spacing is taken to the limit of a continuousribstion and under the assumption that contributions
other thanyi e, ~ Y + Axedy; are strongly suppressed, such that in an expansion to secdada term of

the form of the kinetic energy in the continuous model appelarcases where higher orders can be neglected,
this means that also lattice models can be often describtednirs of continuous models with local interactions.
This is generally true when the single particle states ekbmyond many lattice sites, as is common at second

order phase transitions where the coherence length diserge

2.4 Properties of Bose-Einstein condensates

We want to present a small selection of a wide range of phenartteat accompany Bose gases. The con-
tents of this section are based on the expositions of Pd8nakh [34], Stringari/Pitaevskii [50] and Grif-
fin/Nikuni/Zaremba (ZNG) [31, 56]. In particular we focus ditute gases with short range s-wave interactions
such thau (x —y) — g = 4mah?/md (x — y), wherea is the scattering length which can be tuned in many cold
atom situations.

In fact, to obtain a systematic expansion, let us start vaghunderlying quantum field operators that set the
effective fields in equation (2.1). One can alternativedytstlirectly with the fields and a decomposition into
slow and fast moving components and finding the saddle-ppiptoximation of the action (see [28]), however
this decomposition is not exact and a rather inconvenient @faobtaining a set of effective equations that
allows the determination of the defining properties of dilBose gases. Another alternative is to start from
the coherent state picture and use a Hubbard-Stratona@nbkformation to find the appropriate mean-field
theory. As we are also interested in the behaviour of thethecomponent, the approach we choose is most
convenient.

In the quantum field operator approach, the condensate wanidn is simply defined as the part of the
operator that is not vanishing under a simple average (tefeebroken symmetry), whereas the operator that
does vanish is considered thermal. This reflects the fattlieacondensate is a coherent state without a well
defined particle number, as the particle number of the gretatd is only an order of magnitude estimation, but

with a well defined phase and the quantum corrections of tldtdire small. We revert to a real time description,



CHAPTER 2. AN INTRODUCTION TO BOSE-EINSTEIN CONDENSATION 22

as we are interested in the dynamic properties of the coatieasd assume all thermal information is in the
states themselves. A large part of the discussion will béifem = 0 case, as there the condensate properties
are at their purest and the thermal component is negligible.

We start by writing the Hamiltonian (2.3) in the form
2
A= [ ot (- gt V00 o+ [ dxdyad () 8001 )BIBO

where we suppressed the real time intlard added the trapping potend&a(x). In addition we limit ourselves
to the casg > 0, i.e. the repulsive case, as there are stability issues hatlatiractive case ([57, 58]).

The dynamics of the field operator are described by the Heeygrequation of motion

Mg P (x,t) = — A, P (x)]

R?02
- [—— +V(x)} B+ 9@ (P 1) P(x,b). (2.8)

2m

In case of a broken symmetry, a macroscopically occupie@restt state occurs and, similar to the coherent

state representation,

<$(X,t)> = (D(th) :

This calls for the following decomposition
Bx,t) =0l +,
wherel is the identity operator angl the part of quantum operator for which
(¢)=0. (2.9)

If we average over equation (2.8) we obtain an equation ofananh terms of the condensate fiekland the

different averages of the moments of the quantum operatdthis is convenient, as we returned to a picture
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with no explicit operators, yet the operator nature can kertanto account in the averaging procedure. In

addition it is a good starting point to discuss possible apipnations. The averaging procedure of (2.8) yields

ihg® = [—% +V(x)] d(x,2)

+g(0TPP) (x1).
The remaining operator can be decomposed even further
PP = |0 0+ 2|0 o+ 029" + & 9p+ 200" 9+ ¢'9p.

Averaging using 2.9 gives

(QTPP) = ne® + na®* +2nd + (¢ @) ,

where

ne(x,t) = |®(x,t)[>, isthe condensate density;

na(x,t) = (@@(x,1)), is the anomalous density;
(x,t) =( t

@'@(x,t)), is the thermal density.

So far, no approximations have been made, except for theenatuhe two particle interaction. The final

form of the equation of motion is

22

iR D(x,t) = —HZ—E]+V(X)+gnC(x,t)+Zgn(x,t) d(x,t) (2.10)

+ (X, 1) D" (x,) + 9@ @) (x,1).

(Note how the non-condensate density acts twice as strottgeaondensate density, another statistical prop-
erty.)
The simplest approximation is for the case when nearly atigdas are in the condensate and the density is

low enough(na® < 1) such that depletion is not an issue. The resulting equaticalled the Gross-Pitaevskii
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(GP) equation
R2002
iRg D (x,t) = —H—FV(X)—anc(x,t) D(x,t), (2.11)

and has the form of a mean field equation. Becausg f|®| one could view the GP equation as a non-linear
Schrddinger equation.

Other common approximations are:

e Hartree-Fock-Bogoliubov (HFB): All terms are kept excdm((fffq?)é)) term. All other densities have to

be calculated self-consistently and need additional éojusbf motions.
e Dynamic Popov approximation: Involves setti(@é)(f)) andnj, to zero.
e Static Popov approximation: Assumes that the thermal corapim (x,t) — n(x) is time-independent.

For the time being we want to focus on the GP equation as thee§giuof the condensate equations, but we
need the latter approximations to understand the behasfiose to the transition, where the thermal components
cannot be neglected.

As we introduced the amplitude-phase representatioreganle can use it in the GP equation as
® = \/ne(x,1)e 0D, (2.12)

To obtain an interpretation of this energy in equilibriung @onsider an alternative derivation of the GP equation
under the assumption that all atoms are in the stationargemsate state such thaf(x,t) = nc(x), yet are

subject to a particle reservoir. Then the Hamiltonian (288) be written as an energy functional,
E(®) = /dx P 0op v o2+ o
2m 2 ’

which, according to thermodynamics, should be minimizeztjailibrium under the constranint that the average
particle numbeiN; = fdx|<D|2 is given. To do so, one introduces the Lagrange multiglieo minimize the
functionalE — uN under variations of*. The equation fodE — udN in terms of variations ib* gives

ﬁZ

oI +V (X) O+ g[df D = po, (2.13)
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the time-independent GP equation, however with the righttsde described by the thermodynamic chemical

potential. Applying the stationary solution (2.12) whegéx,t) — nc(x) gives

U =iha® = ho ®

5_H
—0=", (2.14)

which is the famous Josephson equation that relates the plyaamics of a condensate to its chemical potential
[59].

To understand better the condensate specific propertiess émnsider the uniform case of (2.13). From the
bulk part of the equation we can see that

To see some behaviour specific to the condensate, let uslirteca box with infinitely high potential walls.
Far away from the walls the condensate density should bé #ftat the value of the condensate densiby|?
correspond to the potential given above, i.@g|2 = u/g. On the other hand close to the wall, the condensate
must vanish. IL is the position of the box wall, thel®(L)|*> = 0. From the GP equation (2.13)

R d?o(x)
2m dx2

= —g(1@0” - [P(|*) ®(x)
we can infer the condensate behaviour close to the wall elasy to verify by substitution that the ansatz

P(x) = dJotanh(%()

solves this equation, wheéeis given by the characteristic length scale of the problem

1]
mneg’

This scale is usually called the healing length, becausestibes how far away from an impurity, in this
case the wall, the condensate looks like an unperturbedscmadke. The healing length is in most experiments

usually much smaller than the trap dimensions.
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When the interaction constant is written in terms of thetscig length, it follows that

1 r
EN NrS _57
\/Nca a

wherers is the average distance between particles. The rgtmis the dimensionless quantity determining the

behaviour of the gas and measures its diluteness. A more oommy of writing is indeed the dimensionless
gas paramete(rna3), which will appear more often throughout the thesis.

In order to understand the superfluid properties of the BEChawe to calculate its excitation spectrum. To
do so we take the time-dependent GP equation (2.11) and aadlaperturbationd®, dd* to the stationary

solution®. The resultant equations describing the perturbations are

2
ihG 6D = —Zﬁ—mmzaq>+v5q>+2g|q>|25q>+gq>25q>*

2
—iRg®* = —Zﬁ—m 250" +VOD* + 29|®|? 5D* + gb*25. (2.16)

From an earlier discussion, see eq. (2.14), we remembethtbatondensate phase evolves in the stationary
case with the chemical potential. So we set the overall pttabe zero at = 0 and choose the uniform wave
function

D (x,t) = /Mg H/M,

For the perturbatiod® we take an ansatz of the form
5b =e MM u(x)e ' —v* (x) ).

Here we separated already the fast condensate dynamijcgh out and left only the slow dynamics with
frequencyw. The superposition of the two frequencie& is necessary, as in equation (2.16) both components,
@ and®* are coupled. The relative phasewdndv* is chosen so that after the analysigndv can be chosen
both to be positive.

Along the same lines of reasoning as above, we can chgasendv(x) to be represented in momentum

form, as the problemis fo¥ (x) = O translational invariant. The normalized ansatz for aipaler component
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gax gax
u(x)= Uay 373 v(X) = Va7

In that basis the perturbation eq. (2.16) becomes

ﬁ2 2
(%+ncg—ﬁw) —ncg W | _,

2~2
—ncg ( P+ neg+ ﬁw) Vq

In order for this equation system to support non-trivialsioins (ug, vq # 0) the determinant of the matrix has

to vanish. This leads to the condition

2R 2
o =+ |&g| = i\/<2—r?1 +ncg) —(neg)® = +4 /€2 (69 +2ncg), (2.17)

whereeg is the free particle excitation spectruio? /2m. One can see that for large momerfia,~ eg +ncg, SO

a highly excited particle behaves like a free, massive glarthat feels a mean field potential by the surrounding

condensate. If however the excitation carries little moten then

Ncg_
hw o hg= chaq.

This is a dispersion of a sound wave that moves with speedwfdso= \/m This indicates that the
excitations are collective in nature, rather than of simggigicle character as for the highly excited particles. It
is indeed this linear low energy spectrum that is respoadin much of the superfluid behaviour of the cloud
of particles. If one estimates the wave-length of the plagifor which the cross-over from collective to free
particle behaviour occurs, one finds the healing lerggth h/,/mneg = h/mc. This is hardly surprising, as
this is the only length scale governing the many-particlebpgm, and it is quite intuitive that a perturbation
smaller than the healing length behaves like a pointlikeuritp, whereas a larger perturbation necessitates a
large modulation. This separation into small and largetlersgale behaviour will be especially useful when
discussing the influence of a one-dimensional condensaieir@ion an impurity.

To complete our picture we want to study the excitations. @3y the positive solutiohw > 0 one finds
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that

__ N9
hw-+ed+ng

Vg
This shows that theg component is strictly smaller than thig (any overall phase can be multiplied out in
equation (2.16), therefore allowing fag andvg to be real quantities). The normalization of the state ssigge
thatug — 1 for large momentg. As bothug andvg grow with low momenta, a normalization that is independent

of momenta can be hypothesized to be

‘UQ‘Z_ ’VQ‘Z =1

which can be verified and is convenient in a microscopic p&twhere the positive and negative frequency
components are described as coupled bosonic particles. nbninalization keeps their commutation relation
normalized. The solutions becomes then

9+n 9+n
SLC TP RS . £ R

&d (e9+2ncg) &9 (9 +2ncg)

which confirms the limiting behaviour as described previypuhe solution just presented goes back to Bogoli-
ubov [60]. Additionally, in the non-uniform system therdsbxcollective excitations of the whole condensate.

Knowing that the system has a linear dispersion, at leagh®olowest lying excitations, we can apply it to
the question of how an impurity dissipates energy and moameni he basic insight here is that both, energy
and momentum, must be conserved, so there must be a trahsigthaquantities into the surrounding liquid.
The liquid must create excitations to accommodate thentowirlg an argument first proposed by Landau [61],
we derive a kinematic condition for the possibility of morten transfer.

Let us take the picture of an impurity moving with velocitin a large but finite liquid (at rest) ™ particles,
each with mass. From standard mechanics we know how the energy of a systémewergye, massM and

momentung changes when observed in a frame moving with velocitglative to the original frame,
102
E(v):E—q-v+§M|v| .

We look at the energy of the liquid in the frame in which the tabke is motionless. Because we start from
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the frame in which the liquid carries no momentuin;= 0, and the mass of the liquid M = Nm, its energy
becomes

1
E(v):Eo+§Nm|v|2,

whereE, is the ground state energy. The moving liquid has to be coetptar a state with an excitation with

momentunp and energ¥, moving relative to a motionless impurity. Said energy is
1 2

The difference in both energies, —p - v is the necessary energy that allows the excitation to hafaideast
in principle, there could still be a kinetic suppressiont tinakes this a very slow process). This energy cannot
come from the impurity though, as it stands still in that pietand we assume there is no internal energy

carrying structure that could be disexcited. Thus only atlaaity v where

can the liquid create excitations. Keeping in mind that thpurity can give off momentum in small units, then

the necessary condition of non-dissipation is that

(&
V<Ve=min( = |,
p p

namely that not a single excitation is possible to absorb erdom of the impurity. The velocity is called the
" . : 2 .

Landau critical velocity To illustrate the concept, let us look at a free gas. Hgre g—m andve =mingq/2m=0,

meaning that there exists an arbitrarily small velocity htal the momentum can be absorbed.

In contrast for the low energy excitations of the GP equatee eq. (2.17), we have that

(&) .1 [P _ /ng
Vc—mc;n<ﬁq)—mqln > 2m+2ncg_ - =C

This means that any excitation moving below the speed ofdouin a uniform system) is forbidden from
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dissipating energy. Along the same line one can say thatdhdemsate moving below that speed will stay
excitationless, unless external energy is pumped into Y or due to trapping other excitations for the
liquid become available. That effect is what is commonlyechbuperfluidity.

Apart from being dissipationless, the superfluid flow ddmealiby the GP equation is still different from
ordinary fluid flow, as described by the Euler equation. Totb&s we have to first identify what the superfluid
velocity vs is. If we multiply the GP equation (2.11) b$* (x,t) and its conjugate witli (x,t) and subtract

them from each other, we find that

3| 1]
0. | — (&* 0 — GO | =0,
ot 0 2mi )

This has the form of a continutity equation

on .
E'FD']—O,

which is further supported by the quantum mechanical inetgpion of® being a classical wave function such
that the condensate densityiigx,t) = |® (x,t)|°. Given that the particle floyis the product of particle density

and superfluid velocity, then the local velocity is

. h (o0 — dOo*)
Vg=—i—————5—~.

2m o
If we rewrite the condensate wavefunction in terms of amgétand phase field, eq. (2.12), then
h
Vs(X,t) = EDG (X,t).

This is a very special flow, a8(x,t) is a scalar phase variable. Gradient flows, i.e. flow profiies follow a

gradient of a scalar term are just a small subset of all ptesBdws. It immediately follows that their vorticity
h
Oxvs=—0x08=0,
m

i.e. the fluid is irrotational. From classical hydrodynagjior example the laminar flow around a rotating body,

it is well known that such a flow can still carry a non-zero alationl” = $vs-dx # 0, but, that there must be
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regions inside the contour in which the fluid is ill-definedieh could be an impurity or simply a “hole” in the
liquid. Here however it comes into play th@tis a phase variable, meaning that it is at each point well ddfin
up to a multiple of 2r. This means that the phase gradient over a contour can oatymase differences2rr,

which means for the circulation that

§1§VS~dx:E§1§D6~dx:2Lﬁn:En.
m m m

This shows that the circulation is quantized in a bosonieHiyd as was first predicted by Onsager [62]. A
flow that is irrotational and carries circulation in a twarginsional plane centered around the z-axis has a
velocity profile

h

Vs = N—
S mp7

wherep is the distance from theaxis. One sees that such a flow is ill-defined at the originthadondensate
density must vanish there to avoid a divergence of the eneBgeh a structure is called a vortex and one
of the most astonishing observations regarding Bose Em&lendensates [10]. Most notably, each particle
participating in the vortex carries the same amount of aargulomentum around the axisn). So rather than
increasing momentum slowly when rotating a condensaté pérticles, momentum is added in multiples of
hNm This also explains why a weakly rotated condensate willaiermotionless unless a critical frequeriay
is applied ([63]) to create one vortex. The vortices themesehlre interesting quantum objects that for example
can form lattices with different quantum phases on top df b, 65].

This concludes our technical overview of Bose Einstein emrsdition and superfluidity closeTo= 0. There
are many interesting phenomena we left out, e.g. the seamdld66] or collective excitations of a trap [67],
which are not part of the analysis that follows. In the nexptier we are going to focus on higher temperatures,

wheren. is small and the thermal components are important.



Chapter 3

Bosonic fluctuations close to criticality

3.1 General bosonic fluctuations close to criticality

In the previous chapter we looked at properties of a purdesiogndensate at very low temperatures. In this
chapter we want to investigate how bosonic gases behaves asitical point is approached from below and
especially what happens just above it.

Close to criticality the non-condensate partiafeare important and motivated from (2.10) it becomes clear
that we have to understand how they evolve in time, espgdiall the averages, and (¢’ @) behave. The
equation of motion for the field can be obtained by subtrgcfrom the exact operator equation (2.8) the
equation for the condensate field (2.10) to obtain

iﬁ‘Z—‘tp = (—% +V +2g [nc+n]) ¢ — 2gn¢-+ gd2g"
+90" (99— 1) + 29 (99— 1) +9 (9" 00— (¢'09))
as is described in [56]. The technique to find approximatetswis to this equation was first introduced by
Kirkpatrick and Dorfman [68].
Instead of describing the evolution of the operators diyewte investigate the unitary operatdisthat are

responsible for the time evolution gf

32
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o(x,t) =U (t,t0) T @ (x,t0) U (t,to0).

Since at = to the original operators have to be recovered, it is naturdétnandJ (t,t) = 1.

The equation of motion for the unitary operator can be founthberting the definition into the Heisenberg

equation

du(t,to)

ih- at

= (Ho+Hnc) U (t,to).

The HamiltoniarHy is the term that drives the principal time evolution thatsenves the number of particles

(Hartree-Fock term)

. h2 .
Hoz/dX(pT [—%D2+V+Zg(nc+n) .

The operatoHAnc is the sum of four contributions,

Hy = / dx [~g (2n® +na®” + (9'0@)) @' +h.c],
~ g A4 A

Hy = E/dx [@%¢'p" +hc],

ngg/dx [@*¢'pp+h.c],

i = gEJ/dx (0'0"pp—4ang'q]

T

labeled by how many thermal fields are involved in the intéoagc the first three do not conserve the number of
thermal particles (and hence the number of condensateleaijti

There is a certain liberty in choosing the specific decontjmosi Here we deliberately chos&, to be the
Hartree-Fock approximation, as it makes the resultingZBadtnn picture clearer. It also has to be kept in mind
that there is an implicit time dependence in all of these atoes.

To capture all correlations and the fact that the problentaina classical statistics, it is convenient to use

a density operator description of the thermal gas. In thiedption the average of an observa(&t) of the
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system is the trace of the original observable multipliedh®/time evolved density matrix(t)

(O(t)) =Tr[p(t)O(to)] =Tr[U (t,t) p (to) U™ (t,t0) O(to)] - (3.1)

One has to remember that the time evolution of the densityadpeis in the reverse order from the time
evolution of ordinary operators. As the definition suggesis density operator also evolves in time as dictated
by the Hamiltonian

dp(t) - -

i g = [Ho(t) + Hnc(t), p(t)] .

Integration gives the formal solutioh-& ht, subsequentlif= 1)

t
()= Uo(t.)p (0] (t0) +1 | 60 () [ec.p (1)) Uo t.).

fo

which has to be solved self-consistentlyds) also appears under the integral sign. The unitary evolution
o t.tg) = Te HodlFo®)

describes the evolution under the Hartree-Fock term ordy.skall times the density matrix has not evolved

that far and in the integrand it can be replaced by the ungestlmatrixp (o)

t
B (t) ~ Uo(t,t0)p(to)Ug (t,to) +i [ dt'U (1.t [ﬁnc,ooa,t(,)ﬁ(to)og (t,to)} Uo (t,1). (3.2)

to
In principle the iteration can be continued to arbitraryesrdHowever, we are interested in a Markov-like de-
scription, i.e. the system dynamics only depends on iteotigtate which is assumed to be in quasi-equilibrium,
that allows us to determine the behaviour of the condensziten an initial state at timg the first order ap-
proximation is good enough for our purposes.

Indeed one can approximate the short-time evolution of &sgvable, by inserting the approximation (3.2)
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into (3.1) to find

(O(t)) = Trp(to) { Go(t)—
t
i [ dvOg (t,t) {Ug(t,t/)O(to)L]o(t,t/), Finc(t/)} Uo (t/,to)} (3.3)
to
This is essentially the Kubo formula, whedg(t) = U/ (t,to)O (to) Uo(t,to) is the ordinarily evolved observable.
Usually a more convenient way of describing the state of lleenbal component other than the density
matrix is the Wigner operator and its average, the (Wign&fridution function. The Wigner operator is

defined as (for instance in [69])
fA(k,X,t)E/dX/eik'X/(bT (x+X'/2,t) @ (x—x/2,t).

The Wigner distribution function is then defined as

f(k,x,t)=Trp(t) f (k,x,tg).

Though it is only a quasi-probability function, meaningtthias normalized but can be negative, it is still very
helpful to get an intuition. The regions in space where inideied negative are small, similar to the size of
quantization in phase space. On the other hand it is the gomgéneralization of the classical distribution
function f (p,x,t) which expresses the likelihood of finding a particle with nesrtump at positionx and time
tis. Classically, such a distribution follows the Boltzmaquation

af p af  [of

where the left hand side describes the evolution of theibligton function via evolution of the space variable
as dictated by momentum and the evolution of the momentadwgjplication of an external forée whereas

the right hand side, the complicated part, describes holisicols change the distribution. It is this part that is
model dependent. To get closer to the classical formulglibs restore thk so that the quantum mechanical

momentum coincides with the classical momenfusa hk.
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One can find a similar equation for the Wigner distributiog.d@lantum mechanics we have that
of 1 - - -
E = ﬁTrp (t) [f (ﬁkaxato) ) Ho(t) + an(t)] ) (34)
which is equivalent with
af i ~ A 1 - -
E + ﬁTrp (t) [f (ﬁk7xat0) ’ Ho(t)} = ﬁTrp (t) [f (ﬁkaxato) ’ an(t)}
af hk OUpyr df  [of
at tm P ek 'W‘<E)m”' (3:5)

The role of the external potential is taken by the effectiati¢e-Fock potential

Unr (X,t) =V (X) +2g[nc (X,t) +n(x,t)].

We return now to the exact equation of motion for the conderfézld (2.10)

22

iha®(x,t) = —HZ—E]+V(X)+gnC(x,t)+Zgn(x,t) d(x,t)

+ (X, 1) D" (x,1) + 9@ @) (x,1).

Apart from the condensate density—= |<D|2, there is the thermal density= <(2)Tqb> and the anomalous density
Ny = <(])qb> As was done for the pure case, it is beneficial to find a detsmniin terms of the amplitude and

phase of the condensate wave function (2.12). Multiplyhmgexact equation b$* and subtracting from the

complex conjugate gives the generalized continuity equati

one g

2 * * /T 22
W"'D(chs):Flm (@) na+ P <¢T<0<o>]-
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Rather than having a conserved condensate density, a ssokderm is present

an,
d_tc +0(nevs) = 0

with o (x,t) = 2Im [(CD*)Zna—i— o <qu,qu>} . The GP equation is indeed recovered by setting: (¢’ pp) =

0.

The phase variable evolves in time with a modified Josephgaat®n that allows to define the chemical
potential and condensate energy. This is possible bechesmhdensate wave function is only slowly depen-
dent on time (slow with respect to the time necessary to geegaantities liken,). Taking the product ofp*

and the GP equation and adding its complex conjugate we find

R202, /g g 2 Y s 1,
ﬁdte_—m+v+gr};+29n+mRe[(<D) Na+ (@ <o<p>}+§mvs
= +1mv2—£
= Hc 5MVs = &

In the last steps we defined the chemical potepiiadf the condensate

P02, /M g 2 oo
o=~ LV g 290+ 2 Re (0 e+ 0 (166)

and use the interpretation ef being the local energy of the condensate. Apart from thesidally expected

termsV + gne + 2gn, one has additionally the quantum pressure term

RO yme
2m,/Ne
which corresponds to the energy necessary to deform thetadgbf the many-body wavefunction. Further
there is a new potential stemming from the anomalous termishwe will show to be small g?). This sort
of equation was first derived in [70, 71].
To decompose further, let us first look at the three-partiekrage using equation (3.3). The equation has

two terms, one is the evolution under the Hartree-Fock Ham#n, the other stems from collisions that do
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not necessarily conserve particle number. Because thevatep’ g by itself does not conserve the particle
number, it is necessary for collision processes to provideravanishing average. If we assume thabato
correlations are present and these are built up over tintethét collisions, we can simplify the term, especially
as these anomalous terms turn out to be small either wayuBeege must have particle number conservation at
alltimes, itis clear that only those parts of the Hamiltargantribute where the sum of creation and annihilation

fields exactly cancels the fields @f ¢. Thus we have

(0" (x.t) p(x,)(x.1))

t
= ~iTtp(to) / dt0 (t'to) [04(t.1)9" 99(x,10)Jo(t,t), Fiy + Fig| Uo (1 to)
|1

0

In this case, the relevant Hamiltonian terms are
Hy=— /dx/g (2n® + na®* + (¢ 99)) @' ~ _Zg/dx’nqnq?;T

and
Fa—g [ (0446

At the same time one has to make the hydrodynamic assumpgaomely that at all points in time the averages
are well defined, which necessitates that the collisiondiare short compared to the time scales over which
averages change and that many collisions are necessamga Bmgnificant effect. Since we study dilute weakly
interacting gases this is indeed a good assumption. Thiasiteat the condensate density, the thermal density
and the local Hartree-Fock potential are well defined. Instime way the condensate phase is assumed to be
well defined over the distances we are observing, as thaitien potential is supposed to be very short-ranged,

at least compared to the average inter-particle distarhi$ end one can expand

0 (X, t')~0(x,t)+46 (t'—t)+06- (X' —X)

=0 (x,t)+&(x,t) (' —t) +mvs(x' —x).
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To evaluate the field terms, it is useful to switch again toRbarier basis as interactions conserve momentum

ik-xs

(xt0) = % et

whereV is a small, yet macroscopic, local volume over which we cograin and assume that the densities
between neighboring volumes vary only little.

Evaluating the first commutator

(046,48 9(x,to)Uo(t, '), i

. 20n(x,t) v/ne(x,t) dO(x) o (s kg ko ka)xgi (o1 —e2-£2) (1)
v klak;&kzl

At 4 At 4
s ks {aklakz@sakzt"‘aklaks@z,kd :

In the above equation thg are the energies of the thermal states in the Hartree-Fgmlogimation. In the
last step, we took advantage that over the integration veltira hydrodynamic variables are well defined. The
resulting form allows us to find a shortcut in generating thghér order terms, namely by substituting in the
Hamiltonian® = \/meie(xv”e*im"sxei&(t*ﬂ) and using the Fourier expansion of the thermal fields plus a
momentum conserving Kronecker delta. Additionally a factiov is created by the real space integration over
x'. That is to some extent the local approximation of the Hamiln, justified by having a local interaction

model. Inserting the commutator expression in the Kube4id¢mula for the three-field average, we obtain

<¢T (th) qb(x,t)(,?)(x,t)>(1)

_ - 29n(%,1) v/Ne (X,1) joxy) (Ve +ky —ko—ka)x
=i v e Z Omvs k, € X
k1,k2,K3,kg

tei(50+51*52’53> (tit/) [<éi<r1ék2 >t’ 6K3,k4 + <é;<r1ék3 >t’ 6k2!k4} ’

fo
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where

<élék/>t/ =Trp(to) U] (t',to) &F 4 Uo (t',to) ~ (&80 (V) <alak> (X,10)
= d(E-a) () 5 f (k.x.to),

and f (k,x,tp) is the distribution function of the particles with momentlnat positionx. This assumes, that
the initial density matrixp(tp) is indeed diagonal in the momentum basis, which is a reas@aabumption, as
decoherence times for the off-diagonal elements are short.

In the next step the time integral is performed. To this emd mtroduces an infinitesimal convergence
factor —n (t —t’) in the exponent. When the difference in time becomes mudheliothan the collision time,
one can formally st to — and the time integral becomes

. t ; - / . 1
lim / d'd(Era—e—eatin(t-t) _jp (—) + 7110 (&4 &1 — £2— £3),
E&té&1—&—¢&3

0 —® to

as the integral is the Fourier transform of the Heavisidefion.
Performing the analogous calculation for the third Hamiiém Hs, part of which cancel actually the contri-

bution of the first Hamiltonian, and adding the two terms tbgegives finally

(0" (x.) @(x,)@(x.1))

.- 9 [ 1
= -2 P(X,t O(ec+&—8&—¢ +_p<—)]
oty 5 [sera-a e (ot

X Omvg+ky kotks [f1 (1+ f2) (14 f3) — (1+ f1) f2f3],

where f; = f (kj,x,t). This term is proportional tq/Nc and vanishes thus when the condensate vanishes.

One can perform an analogous calculation for the anomalamsentn, = <(2)(x,t) q?;(x,t)) and finds

9. i 1
n t__n_q)Z 1+ 14+ ) |d(a1+&—28)+ =P ——— | |
a(Xt) ! Vv & 25‘1”2*2’“"5[ 1+ B |0(a+e ) s (£1+£2—2£c)]
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This is a useful result, as it shows that for= 0 and local thermal equilibrium when tHe are the thermal
Bose functions, the imaginary part vanishes et purely real. This is of course only valid for this partiaul
approximation, and there might be higher orderg that contribute. Needless to say that atg¢x,t) vanishes
when the local condensate vanishes.

Now we can also find the collision term in the quantum Boltzmeaquation (3.5) using the same method.
Inserting the definition of the Wigner operator (3.4) and ifiteraction Hamiltoniart, into the Kubo for-
mula (3.3), it becomes clear that there are two non-vanistdmtributions, namely frorils andH, which by

replacing the condensate terms with the polar representadin be locally approximated as

~ /N ; ; 4 imye.
Hs (x,t) ~ Q_\Nc Zk ety ko ks [eae(x,t)elec(t t )e'mvs Xallakzaks + h.C.}
kikoks

a g
H4 (Xat) v d(1+k2,k3+k4allal2ak3ak4 —4n alak .
Al kikakska

Clearly, the first term does not conserve the thermal pamiainber because the number of creation and annihi-
lation operators is not the same, whereas the second tersn 8oave will associate the first term with collision
processes that involve the condensate, whereas the semromdetids to equilibration within the thermal gas
without a condensate.

The collision term can thus be decomposed into two coniobat

(‘;—I)w" = Co[®, f] +Cinlf].

There is a weak dependence bfon the condensate as well, bitdoes not appear directly in the second
collision term. The first term, using similar proceduresa@slfie calculation o(éﬂé)(ﬁ) as well as those results
for triple averages, is given by
1 - R
Co[®, f] = =Trp (1) [f (Ak,x,t0)  Ha(t)]

2
n
= 47TgV c Zk O(ect+e1—&—&) 5mvs+k17szk3
kikoks

%[Oy k — Okpk — Og k| (14 o) fofa— f1 (1+ f2) (1+ f3)].



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 42

One can see already the strong similarity with the tem«(@*(b@, as these terms really describe the same

collisions. For completeness we shall state the @ymf]

2
Cin[f] = E; Z O(&1+ & — €3— &4) Oy 4kp—ka—ka
kikzkzky

X [aKl,k + 6K2,k — 5&3,k — 643,k] [fl fo (1—|— fg) (1—!— f4) — (1+ fl) (1—|— fz) f3 f4] . (3.6)

As this term describes the collisions between particlestaowd they can change the occupations of said
states, one would have to assume that in equilibrium, anteifsyystem is unperturbed, the te@p [f] = O,
which means that as many particles are scattered into @plartstate as are scattered out of it. The distribution
function for which this is true should be thermal, as this satwstatistical physics predict. Indeed, as the Bose

function fg (x) = 1/ (exp[x] — 1) fulfills the equation

14+ f(x) = —f(—x),

the thermal Bose function makes the collision term disapprd confirms again that the Bose distribution is
the correct equilibrium description of the gas. This meduas the collision term really is only relevant when
the particles are perturbed away from an equilibrium distion.

We can use these results to find the growth rates of the coatterisrst we can reduce to good approxima-
tion o to

o 2—ﬁg|m @ (5'60)],
just because to this order gthe anomalous density, is purely real.

It is this term that changes the number of condensate pestitlecause the number of thermal creation
operators is not equal to the thermal annihilation opesatand must thus be a collision term. As such it
depends on the state of the condensate and the occupatloerofa states.

Further we see that there is only a small offset of the Hafmexk potential, which is either way dominated
by the term @n close to transition. The effective source term can be inm@ted into equation (2.10) to have

an approximation for the growth dynamics of the condensHie. resulting equation is called the generalized
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Gross-Pitaevskii equation (GGP)

22

: h°0 :
ihgi® = —W'i‘gnc'i‘ 2gn—iR| @

where

g

R = -5 (x,t)

Im [®" (x,t) (¢ 9@) (x,1)]
An important insight is, thaR(x,t) does not depend on the mean condensate demsity

2
R(x,t) = 271\% Z O (& — €1 — €2 — €3) Onvsrky ko+k
k1,k2,ks

x [f1(1+ f2) (1+ f3) — (1+ 1) fofg].

This suggests that this quantity is well-defined even at @atpres above criticality, when the system is in
equilibrium andmw = 0. Let us assume in an ansatz, that even above the criticgleteture we do have a
fluctuation of the form

o=@ M (k).

Then, following the generalized GP equation, ab@ve

. R?k? .
—hw—hri = ~om +2gn—Ri

or
the collision termR controls the lifetime of fluctuations. Next we want to argbattsuch an equation can be

generalized to a Ginzburg-Landau functional that can ersaktsome of the time-dependent behaviour of the

order parameter of this specific transition.
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3.2 The Ginzburg-Landau functional

We want to obtain an effective equation describing the flatbtuns close to equilibrium, as part of a generalized
Ginzburg-Landau functional. We then have to show that flatdtuns can become significant close to equilibrium,
so that their effects have to be estimated to get a full playsliscription of the system.

The Ginzburg-Landak [®] functional describes the effective fluctuations of the roacopic parametep
and can formally be derived by the integration of the nondwmmsate fluctuations. For the partition function we

know that

z= / dodd*dede* e — / doda*e BIFI@ ol

We know already that the generalized GP and the generaliattdrBann equation is a good approximation to
the action (at least to first order @), so we can use this information to find a good estimatE (@], which
then is used to find the magnitude of the fluctuations by usiegtiermal properties.

The equilibrium actior8[®] is a sum over Matsubara frequencies. We can consider ttenantierms of

the original Bose fieldgs = ®g + @ in the complex field representation

/ dodd*dpdg ed®? = / dodd*dedg’el 1% -He
:/dedCD*d(pd(p*ef'dT[‘Pé(idr*H)(PB+<H>w*<H>w]

%/qudCD*e*foB<H>(p/d(pd(p*efdms (3.7)

where(H), = [dx [ﬁz‘zun?‘z —u |CD|2} is the GP Hamiltonian and we used that, as the fielis only slowly

evolving, the sum of the Matsurbara frequencies can be €td obntain only the lowest Matsubara component
n= 0, as it dominates the statistical behaviour. This appraxion of the Bose field as a purely classical one
is certainly only true for interacting bosons which are iniffedent universality class that the non-interacting

bosons [72]. We showed previously that perturbationé—tia(p are small~ g?. Thus the effective Ginzburg-

B 2 2
BFGL[(D] :/0 <H>(pdT :B/dx (ﬁ |qu)| —[J|(D|2> ’

whereas the remaining action is that of the thermal gas,nikpe for largeT only weakly on®. From that

Landau functional is
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action one can see, that the differ&r@omponents of the slow condensate field have non-vaniskjpepgation
values even if no condensate exists. These fluctuationssaadly strongly suppressed, however as we will see
shortly, close to criticality they are very soft and can breeoquite large. Indeed, because of the non-linear
form of the GP equationy( contains the condensate field gi& = g|<D|2), the free energy functional can be
approximated as

ﬁZ
(o) = [ ox [%|D¢|2+A[r]|q>|2+g|q>|4 , (3.8)
whereA is a function of the temperature in terms of the parameter

T-T
T

A functional of that form was first phenomenologically irdueced for conventional superconductors [73]. In
statistical mechanics non-trivial solutiofiigq to the saddlepoint equati(%q@ = L[®] =0 determine whether a
condensate exists, which in the uniform case must ke-afd. As the free energy functional depends necessarily

on powers of®|? one can find for the condensate density

dF -

S, 1
d|®|? i

“A

e =[O * = 5

This means that below the transitioh< 0 so that non-trivial solutions exist, and above the traomsi& > 0.
Very close to the transitioA becomes small, and the specific behaviour depends on thesuoagpics of the

system

A~ f(1).

In the following we will denote thé without index as a small parameter depending on

5=1f(1).



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 46

Next we use the free energy (3.8) to find the fluctuations obtder parameter

2 2mT

(k) = e % (3.9)

We have to keep in mind, that although abdye(®) = 0, <d>2> can become significantly large. In reality the
finite size of the system would limit the extent of the divarge. One also has to keep in mind that, close to
criticality where the fluctuations become large, inter@tsi among them cannot be neglected and one needs
renormalization techniques to find the exact limiting exgatrof divergence [74].

For some applications, like finding dynamic properties sasla quasi-conductivity, it is useful to extend
the time-independent Ginzburg-Landau equations to cotitaie-like effects.

We want to show that the statistical fluctuations can be apprated by a dynamic Ginzburg-Landau equa-
tion that drives large fluctuations of the order parametekla its equilibrium value, because this means that
we have a stable system. The form of such an equation would be

D (x,t)  OF
ot oo

(x,t) +(x,t). (3.10)

The left hand side of the equation is the time dependencdaxation processes and depends on the parameter
y, which we have to infer from our microscopic observationgdiionally on the right-hand side we added a
noise term{ (x,t), which is necessary to allow for non-zero averaégak|2>. Such a term can be derived in
the Keldysh formalism [32] and stems from the collisions ohfthermal particles that spontaneously create a
condensate droplet. Such a derivation is fairly elaboratednes not add much physical insight, as the size of
the fluctuations predicted by equilibrium statistical plhgg3.7) must be the same as the size predicted by the
stochastic equation (3.10). This is a special case of artdiinelation, that relates dynamical properties with
equilibrium statistical properties.

To better motivate the equation, we have to look at the Batamequation, especially the collision terms.
We know that the collision integral (3.6) for the collisiobstween thermal particle€, vanishes when the
particles are distributed according to the Bose distriyutiAssuming that the thermal cloud is indeed thermal

with a Bose distribution governed by the Hartree-Fock piidén
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1

0 _
Pkx) = B[22/ 2mUne —p] _ 1

lets us approximate the cloud-condensate collision term as

2
R— (23)25 / dk1dk o0k (Mvs+ K, k2 + ka)

x & (& — &1 — & — &) (1+ 1) 121§

X [eﬁ(&’m - 1} .

We see that the last term vanishesgit= u. So to approximate the collision term we write

where

0

1 g? /
— ~ ——— [ dkidkodk3d (mvs+ kg, ko +k
0 2nfh 10dk2dk3d (mvs+ K1, k2 +K3)

x & (& — &1 — & — &) (1+ f7) 1215
Especially close to equilibrium we expect tlgatis close tou which allows us to approximate even further
h
R~ ph [&c— H].
To
Now quite generally the time evolution of the order parameda be written as
Edttb =—-06+ ic?tlo n
o) = 5 gne.
We can recursively approximate the solution to the GP egndty using the Josephson relatién:= U,inR

A1
Re 0 (a0 4]
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and using this expression in the GP equation with the sulesgqatationd® — e ¥t to obtain

S R?[2 SF
iA+iyad = —W-l-UHF_“ (D_W’

wherey = h3/21p. A similar equation was first derived by Gardiner and Zolles][7If we now project this
equation onto its real part we indeed obtain the time depgn@ezburg-Landau equation where the time
constant is microscopically identified. This also showsdlose relationship between the GP description and
the more phenomenological Ginzburg-Landau approach.

We have to question though, how reliable the equation isec{bat not too close) to the transition. We
have to confirm that the dynamics are not anomalous, i.e thlegtdo not freeze out at the transition and that
y becomes not too small. This calculation is done in the apgeardl confirms the validity of the generalized
Ginzburg-Landau functional, which shows that fluctuatians not as long lived and relaxation processes are
actually quite fast due to an enhancement of the collisitegiral because of the bosonic nature of the particles.
Importantly, no kinetic hindrance due to the thermal bossmexpected.

We can use the specific model (3.8) to get a better undersigwoiihe fluctuations. For the time being we
know thatA at criticality is small. It also has the units of an energy.v@osetA = T.d, whereT, is again the
critical temperature and a good reference energyaisda small dimensionless parameter that depends on
As we will show later, the actual function depends on the aVérapping. Rewriting the stochastic equation

leaves us with

d 0
—yg@0c0 = (T8 5 ) @+ (00,

2
{vaw(w—zm—m)]qa:z

_1 1 2M2 -

wherety = y/T¢ is the time scale of the problem, wheregss the typical lengthscale. In this context when
using the critical temperature dependence of the uniforspggebecomes the healing length of the condensate,
or in a trap the healing length of the condensate in the cetide trap (apart from a numerical factor and of

course the additional dependence on the trapping pot&htig)).
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Taking the Fourier transform
1 1 -1
o (k,w) = ; (iw+r— (5+ Eozkz)) Z(k,w),
0

where we assumed that a noise spectrum exists. This eqaditars us to relate the spectrum of the order pa-
rameter fluctuations to the spectrum of the semi-classidait¢) noise term (which has no correlations between

the differentk andw components)

Bk O <|Z (k,w)|2>

) e s ergge) P

On the other hand we know by observation of the equilibriuze nergy (3.8) that

1 1
o) = = [ dw(|®(k,w)[*) = —5
() = 57 [ do (@ k. @) = 5
from which the spectrum aof can be inferred (Einstein relation) to be
(12 (x @) =2Ty,

and that
(0col) = (100) ok

wherety = 1o/ (8 + ¢k?) . Using the Wiener-Khintchine theorem [76, 77], which retatee spectrum of a

function to its autocorrelation, it follows that the spafiactuations decay with & dependent life time
(® (0) @i (1)) = (|} &7/

As one would expect, fluctuations with large spatial vapiatiave not only a smaller amplitude, they also decay
faster. Because&y becomes rather small (see appendix), it is really only th&csproperties that should be

experimentally accessible.
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3.3 Trap specific properties

Whereas uniform systems are perhaps the easiest to calevitat in reality almost all cold gas experiments
involve some form of trapping. It is thus important to stuadythe traps might alter the physical observables.
As mentioned earlier, close to criticality thfeterm in the Gibzburg-Landau equation becomes small as
A~ Tc0 where
o="f(1).

At this point we want to understand hdf 1) behaves for different scenarios above the critical tenipega

The 1 behavior of the ternA is dominated by the dependence of the chemical potentiakdiw criticality.
Even though the chemical potential at condensation is gdpearot zero when interactions are present, the
behaviour of the chemical potential close to transition lbarapproximated by the free case. That is because
thermodynamic quantities must converge when the intenastjo to zero. Thé term is independent of the
overall offset of the chemical potential and for weak intdians the quasiparticles are well described by almost
free bosons.

The condensation condition was such that at the transitierexcited states are completely filled with all

available particles in such a way, that any additional plrtivould occupy the ground state. Thus

| T \%
- = de— [ i u
N_C/O eG<su)d£_<h_ab) L, (eﬁ )

whereC is a normalization constant and the energetic dimension as discussed previously.
The critical point is determined by &i(1). If the temperature is increased, then the chemical potentiat

change, as still the same total number of particles is inXiogexl states, as the ground state occupation can be
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safely neglected. Thus

AN =N(Te) = N(Te(1+1)) =

)" (Ua - @r0¥tie ()

> L|d£ 1) — (1+dg1) Lide (1+9))

%

(
(
~(

Ek*?k*?b

) le‘g (1) — Lid‘g (1+5)—d5TLid€ (1))

Thus
1 L|d£ (1+9)— Lidg (1)
dg L|d£ (1) '

The expansion of the polylogarithm depends on the dimerdion
In general the polylogarithm can be expanded as [78]

L@=k) 4

Lia () =F(1-a) (X 1+ § ==

k=0

Slightly nontrivial is the case = integer, as here theand{ function diverge, the divergences however cancel

and
_— oo xn xm—1
Liq () = n;)( (m—n) T =11 [W(m) — (1) —log(—x)]
oo’ Xn Xa 1 [a-14q
— nZOZ(m— n)— v z h —log(—
where the priméin the sum indicates that the term= a — 1 is omited. The digamma functiap = d'ogg(z) is

the derivative of the logarithm of the gamma function.
For us of special interest is the cagse= d; = 2, as this is the only case where the logarithmic correction

really is relevant. For the direct calculation of the= 2 case we refer to the appendix. For the trapped gas in
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e
~
Energetic dimensiod, | Critical Temperaturd:/hwy %
1/2 n.a n.a.
1 0 -
3/2 7-2/3(3/2)N?3 1 (36(3/2))2T2
T 4
2 v6/TINY/2 ~1/logt
- 5¢(5/2)
5/2 {~?/5(5/2) N/ _igz(ss(zﬂ
3 {3(3)N/3 ~%8r

Table 3.1: The most common trapping scenarios and the bmlravf the chemical potential close to criticality.
three dimensiona = d; = 3 and the chemical potential behaves as

6—“:6:

T~ —-2.2T.
Te {(2)

For the uniform gasr = d; = 3/2 and the highest order term in the expansion of the polyltgaiis the square

root. Then

Te m

U _5__1 (35(3/Z)>2r2 ~ 1272
4

One can see that both situations have a very different betiafor the chemical potential, which might seem
on first sight counter-intuitive, as locally in the trap aarthe system looks similar to the uniform system. But,
because these are thermodynamic quantities that samplehtbie system and equilibration to temperature
Te(1+ 1) has to be achieved among all parts of the system, this is rmtaadiction. We have seen earlier that
the order parameter fluctuations growd@s', which suggests that the temperature dependence in batmsys
is in fact different.

We have to mention the cadg=5/2, which corresponds to a three-dimensional system tharmbnically

trapped in two dimensions and free to move in the third direen@ike a cylindrical potential, however the trap

strengths do not have to be equal). Expansion leads agaiimeea behavior

5¢(5/2)

24(3/2)

o _

= T~ —1.28r.
Te

It is convenient to tabulate these findings 3.1.
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How reliable are these models? Certainly the Ginzburg-eandodel only holds when fluctuations are
a sufficiently small perturbations to the system as a wholee Aecessary condition is better known as the
Ginzburg-Levanyuk criterion [11, 79]. It is equivalent tating that the overall effect of the Ginzburg-Landau

action

1 R2|O®|? g
S[o] = = /dx <% —ou D+ > |q>|4>

is only a small perturbation with respect to the total actidrihe system. This action is indeed the zeroth
Matsubara frequency component. As discussed earlier amefldérence [72] it is only this term that contributes
to the singularr behaviour close to transition, so this semiclassical agpration is justified for a weakly
interacting dilute bosonic gas, but not for an ideal Bose gas

As the fluctuation contribution is of the order¥!, it is convenient to cast the action into the form
S=xS
with dimensionless action

S [ay (jow - W+ )

and the prefactor

. 2,/54] (ﬁZ >3/2

gl \2m

If x = 1, the fluctuations are relatively small. If we substitute thlues ofl; anddu for the different scenarios

we can find the Ginzburg number .Qihis gives for the uniform three dimensional case

:L
X_Gi7

Gi ~ 20an*/3,
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for the three dimensional harmonic trap and

()"

Gi ~ 30an*/3

for the uniform gas.

It is not surprising that the unitless Ginzburg number dejseam the dimensionless gas paramatéts in
both cases, as this is the defining dimensionless paranfetfee gystem. However it is very remarkable that
the prefactor to the small gas parameter is so large. It mbanfluctuations are much stronger in the bosonic
system than in conventional superconductors, where Gipigayly of the order of G 10712+ 10714 [11],
which renders the superconducting fluctuation observatiactically impossible (other fluctuation mechanisms
are observable though). On the other hand for the typicatelBose gas witm ~ 102 10'%cm=3 [11] and
the scattering length ~ 10°nm, the Ginzburg number is generally larger than 1. Luckilynany experimental
Bose systems the interactions can be finetuned via a Festdsaariance (e.g. in [16]) such thelbecomes very
small indeed and the perturbative behaviour becomes cdislerv

Fluctuations tend to be more important in lower dimensi@yatems. Heuristically one can explain this
with the fact that the fluctuations have less freedom and aemedimore likely to add up to produce significant
effects on observables. It is thus experimentally even rimbeeesting to look at an anisotropically layered trap
where the particles are either harmonically trapped orvvitlein a layer and can tunnel between the different
layers, as this system has a 2d-3d crossover. The modehdotithis system could be well approximated by a

bosonic Lawrence-Doniach model [80]
S[®] = /dX2 E\D ¢|\2—5H|¢||2+9|¢||4+J|¢| 11—
Z 2m !l 2 * ’

wherel is the index of the layer andlis the tunneling term. If one zooms out of the system, thenbasécally
recovers an anisotropic system. As the different layersaupled and large differences in neighboring layers

are energetically prohibited, one can in the limit of smaditahces and strong coupling between the layers
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replace the absolute difference by a derivative alongtisas of the coarse grained system,
J|® —d3|2x‘]|€0¢|2:i2|0¢|2
1+1— Py 2P = o, 1920

where/ is the distance between layers and

ﬁ2

M= 23

is the quasi mass in tredirection, which grows as the coupling between the layecsbes weaker.

Using that analogy, the critical temperature in the unifease can be directly generalized

I 2T R2n2/3 _qi (m) 1/3
(2(3/2)%2 Ymem,  \m)
where the index denotes the isotropic case.

As expected, weaker coupling between the planes lowersritieat temperature up to the point where
no Bose condensation is expected (we avoid a discussionaskeptnansitions of the Kosterlitz-Thouless type,
which could still happen in the resulting two dimensionateyn. This means we keep the couplihgtrictly
larger than zero).

We can next also find the Ginzburg-Levanyuk criterion whickgindeed as

) 1/6 o\ 1/6
GizGi'(%) z22<%) .

This estimation will prove valuable in the estimation ofgsover effects.

3.3.1 Comparison with fermionic superconductors

We would like to understand how the bosonic fluctuationgediatheir fermionic counterparts. As the fluctua-
tional contribution tends to be generally impossible ta@oklte exactly very close to the transition where inter-
actions between fluctuations cannot be neglected and ortlyrpative solutions like the expansion (see [29])

exist, we want to focus on the one case that can be exactlylatdd, namely the so-called zero-dimensional



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 56

grain. If the size of the graié on which the condensate sits is much smaller than the cotetengthé of
the fluctuations, then within the system variations of theeoparameter do not matter and the action can be
approximated as

=B (-Ted|0f+ 2 joi).

whereV is the volume of the grain anf} ~ R?N%/3/2m¢2. The partition function becomes

2= [doeseln | " d|[2e BTslol B0l
0

2 [ e B
9B Jo
2 00 2
- ﬂe(ﬁm ) / e7<x+BTC5 )
9B 0
vV (BTCrS L)Z \Y;
—e 298 l—erf| BTo | =— ,
\/ 298 PTe1/ 2g8

where erfx) = nge*tzdt/\/ﬁis the gaussian error function.

Naturally, we do not expect a real transition because théuttions smear out the transition at such low
dimension, however we do expect a crossover between thé $maald the highl case. Such a crossover can
be expected in observables, like the heat capacity. Foll &ragaition the heat capacity has a jump or at least a
discontinuity. This can be explained by observing that ettie thermal density barely changes, the condensate
density varies sharply at the transition (2.4). The heaaciypper particle changes only slowly for the thermal
phase, whereas particles in the condensate do not comtrisithe condensate occupies a single state which
according to Nernst's theorem has no entropy and can thusamtibute to the heat capacity. The change in
heat capacity thus comes directly from taking excitableiglas and dropping them into the condensate. From

a thermodynamical point of view, it is the discontinuityrat the transition that is responsible. Since

JE JE
- (39,735,

and the first term is smooth, whereas the second term jumpgag Gs= (JE/JT)y, it is clear that the jump
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Figure 3.1: The heat capacity of the zero-dimensional aysteerms ofx = 1.0 2\5—3.

across the transition is

- (3), (), (). (). - (), (%

sinceu = const forT < T, at least in the non-interacting case, but changes only w@&akhe interacting case

3

Te+

(2.15). This behaviour is generally shared by the fermiaoicdensation, which is why here a comparison is
reasonable.
Returning to the zero dimensional system, we can numeyiddferentiate the partition function to find the

heat capactitf ~ T2 (9%Z/dB?) which is plotted in figure 3.1.

v
29B

in this particular case the Ginzburg-Levanyuk criterion ba approximated fg8 ~ T, *

Eint 55’
5”\/?0\/;

whereé; is the zero temperature healing length &qd = gnc the condensate energy. This approximation can

T\ |&
&~ (g) \g

Here it becomes clearer why for comparable systems the osase has much stronger fluctuations, namely be-

The transitional behaviour approximately happens in therial —1 < BT.0 < 1, which means that

be compared to the fermionic case [81]

cause the relevant energy scale in the system is much loaririlihe Fermi case, whefe/er ~10712...10714,
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There, fluctuations are just a small effect on top of a largeniFsea, whereas in the bosonic system all the en-
ergy scales are easily of comparable size and the fluctisaienome dominant, especially since the healing
length is independent of the critical temperature. Thatdgpeaid, the Fermi systems usually studied are metal-
lic electron systems, with very high Fermi energies. On theichand, in a dilute cold gas context one can easily
imagine conventional attractive fermionic systems thatshlso relatively large fluctuations, as the densities
and therefore the Fermi energy is stronger decreased tbamitital temperature .

We can investigate how the fluctuational corrections belraxeal space. For instance, when we look at the

correlation function in the GL approach (3.8)

(0009 00) = 3 & (104?)

efik-x

It becomes clear that for smaller and smabletthek = 0 contribution becomes more and more important. If
one turns the sum over theinto an integral and extends to the complex plane, then hésapproach of the
poles of(k2 + 50’26)71 towards the real axis that gives the large contribution. diieome of the correlation
function depends on the dimension (again Mermin-Wagnei)irbthree dimensions the above summation can

be approximated to
d3k e ikx ef\x\ﬁ/fo

T ~
<q0(0)q0 (X)> N/(Z]T)3 (k2+5625) o 47T|X0| .

So the closer to transition, the longer theorrelations become, though they are not yet truly longyeaiwe

want to identify which quantity in a fermionic supercondurds responsible for these long range correlations,
so that we can better see where similarities and differeliee#\s we previously observed, dilute fermionic
gases have fluctuations of the same order of magnitude ass$lomis systems. It is not unreasonable to assume
at this point that the fermionic and bosonic fluctuationsloamelated to each other in weakly dilute systems.
By looking at how fermions create the fluctuations we cannledrout their potential relation to bosonic
fluctuations. Fermions are principally different from bospnamely that, depending on our starting point,
either their annihilation and creation operators anticcutm{éi,éj} = {é?,é}r} =0, {éi,é}r} = §j, or that

their field representation is done via Grassmann fields rali@ complex fields (see appendix for a short
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introduction).
In the fermionic action with short range attractive intei@ts, one has to introduce a spin index="1, |

(since otherwise a direct contact interaction is impossitie toy (x)2 =0)
_ B _ 02 _
Sy, y :/0 dT/dX {4’0 <l3r “om Il) Yo —gVirY P g |

This is the celebrated BCS action [6]. In normal BCS supedoetors, the attractive interaction exists only in
a band of widthap, the Debye frequency, around the Fermi level which is dud¢omechanism of phonon
assisted attraction [82]. However, in a non-electroni¢eaysthe attractive interaction can be different and an
effective cut-off in momentum space does appear if the &ctdwn is equipped with a finite range.

Itis quite common that the fermions are charged and are eduplan electromagnetic field. This coupling
is generally very interesting, as it introduces a theorjhwatal gauge invariance. But, as we are interested in
the principal importance of the fluctuations, we skip thiscdssion. Furthermore, for experimental systems,
neutral fermions that do not couple to the electromagnetid fire available, liké°K.

To deal with the quartic interaction one can introduce a demfield ® (®(0,x) = P (,x)) by way of a

Hubbard-Stratonovich transformation

)

g 9/ draxd gy iy :/Dq;oqp*e*f‘“dx[givq’*q’*(q’*%‘#'ﬁq"ﬁr@)}

which decouples the interaction term and leaves an actainiglguadratic in the fermionic fieldg; ;. Here
we already chose tentatively the Cooper channel via the delghling®y ;. Recollecting the terms in the

exponential into a matrix form for the so-called Nambu spiio= (l,U¢, @)T leads to the partition function

z_/anom*DwD@exp{—/dr/dx {givqn*qn—qjelwn (3.11)
with
2
g1 | TotmtH CDZ )
o —0r — ZD_m —H

which is also called the Gorkov Green’s function. Integrgtover the Grassmann fields using (5.1) for the
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discretized paths of the Grassmann fields and reexporiagttht determinant using the identity
IndetG™*=TrinG™?!

gives the purely bosonic problem
* 1 * -1
Z= [ DODP* exp v drdx®*d+TrinG™ | .

This effective bosonic action can now be used to obtain a rfiekhsolution ford = ®dy = const., including
Gaussian fluctuations that will mirror the bosonic Ginzbuegndau equation for small amplitudes (3.8), and is
in fact the original Ginzburg-Landau equation. To get there@want to first take the saddle-point approximation

by varying the action with respect tb. Using that

iTrlnG*1 =Tr <Gisl>

o o
we find that
5 -1
o+ ® 0 1
oy = gV Tr Tt )
o* —Or— 5= — 00
CD*
=gVTr 0 5
07 + (—=007/2m— )" + |®g|

> >
o @R+ (k2/2m— p)* + | o[

Clearly®y = 0 is a valid solution, however, non trivial solutions are gibke for small enough temperatures.
One can find the temperature by performing the summationtbees, as described in the appendix. Directly at
the transition the order parameter is very small, so |lth@jl2 can be set to zero and one obtains the saddle-point

equation
1-2ne (&) tanh(é)

129; 28k :gg 28

whereé, = k?/2m— u. This saddle point approximation is clearly a functioruodndT. and one can find both
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Figure 3.2: A cartoon that visualizes the relationship leemthe bosonic and fermionic fluctuations close to
criticality. On the left hand side the attraction betweea tarmions is only weak and the Fermi surface is
intact. Close to criticality Cooper resonance scatteriagames significant and couples fermions of opposite
spin close to the Fermi edge. Beldwthe Cooper pairs condense and form a macroscopic condetisaigh
most fermions are still part of the Fermi sea. On the righthside the fermions have been strongly coupled to
create bosons consisting of fermions of opposite spin.Kh@vn how the bosons behave above and bdlaw
To find the relevant fluctuational contributions there are tways to approach the problem (arrows), starting
directly from the bosonic picture or transitioning from tfegmionic fluctuational terms over to the strongly
coupled bosonic side. We show that both approaches givaathe gesult and the interacting Bose gas close to
criticality can be viewed as a dilute system in which bosammfspontaneously unstable condensate droplets
that have longer range coherences. Belgthe bosons form the well-known long-range condensate.

in appropriate limits.

The importantinsight that helps us to understand bosoratuétion, is that very strongly attractive fermions
become bound state bosons and that this transition is &@lyThis is the famous BCS-BEC theory [83, 84],
which also has been observed experimentally [85]. In oné live have a purely fermionic gas with Fermi
energysg = (3n2np)2/3/2m: k,2:/2m and a weak effective coupling that destabilizes the Fermiasa only
close toee. In the opposite limit the pairs are strongly coupled anthaifermions are transformed into strongly
bound composite bosons (see cartoon figure 3.2).

At each point the transition temperature is an analytic fiencof the effective scattering lengththat is
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related in three dimensions (e.g. [86]) to the bare intéagiarameteg as

47'ra g Z Zek

wheregg measures the energy above the chemical potential. Ingehiiminto the saddle-point equation allows

us to derive the saddle-point condition including the tueglarametea

tanh( Ek/ZTC)] . (3.12)

47ra Z {2&( ka
Now we can take the limits. For very weak but attractive iatdions,a < 0 and|kea| < 1, we know that the
energy scale of the chemical potential is close to the Femaigy u =~ &= and the critical temperature for a
BCS system is recovered

m 1 tanh[(e—¢&r) /2T mke 8yer
Ha—/d”“)[z‘ 2 —zr) ]__ﬁln(nezTc)’

with v (¢) = m¥/2,/e/+/2 andy is the Euler constant. The critical temperature then besome

8
Te= @yepe*"/z‘kFa‘.

We have to keep in mind that the systems we are talking abeuwteay dilute, so thatr is considerable
smaller than in the usual metallic systems, where the dvarale of the critical temperature is instead given by
wp.

Now we want to expand the term Ti®@1 ! for small ®, so we can get a picture of the system close to

criticality. If we denote byGg the® = 0 limit of G, then we can decompose
TrinG ™1 =Trin [Gy* (1+GoZ)]

where
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0O o
o 0

Since def is small the expansion goes as

Trin [Gy (1+GoZ)] = TrinGy + Trin (1 + GoZ)

=TrinGyt - Z —Tr (GoZ)?

where the trace operation keeps only the even terms. Thnsign was pioneered by Gorkov [87]. The first
term is merely a constant and keeps the normalization and@ dionstant, in the free energy. The quadratic

term of the Hubbard-Stratonovich transformation can belined with the second order term of (3.11)
1Tr(G Z)? = 1Tr(G DG 2P*) = LS FeNe @* (q) P (q)
5 0Z)" = 5Tr(Go11PGo22®") = %VZ kKGk+q®* (@) P(0),

whereG,, are the single particle fermionic Green'’s functidhgk) = (ioun —k?/2m+ u)fl to give

% <giV - Z\I/GkGHq) PP (q).

Again, for the case of fermions where all the action is cotreged around the Fermi level we substitute the

relationship (3.12). It can be expandedjito give
[AT+Cf] | (q)[?

whereA=v (&) andC = v (&) Zéa(nZ) (£ ) The higher order terms of the expansion are well behaved and

n
goasv(e)T (‘QT’—‘;) . So in this way one indeed recovers the Ginzburg-Landau equaith a well-defined

transition. But more importantly we can get an understamdirwhat is happening on the microscopic level as

the sum
1

g_V_\_/ZGkG k+q



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 64

= X K
><>><><+...

e O

Figure 3.3: The Dyson equation for the Cooper pair. The wiangyit the Cooper pair propagator, the solid lines
belong to the single particle fermions. For each bubble énmions have to have opposite spins, otherwise the
interaction vertex (dot) would be zero. Itis this propagé#tat causes the leading order fluctuational corrections
in the BCS limit and in the strongly coupling limit.

has a well-defined meaning in the electron picture. Its swer

Fo— v
4 1-9gT 5k GrygGk

diverges at the critical temperature and it is the Coopeexdunction describing the correlation function

1
q,7) = \/_ Z l»Uk+qT ‘1U ki( )WK’+Q-¢(O)‘1U7K/,¢(0)>
kK"

which signals the creation of new quasi-particles (see &iGus) .

At the transition this correlation function diverges, damiy to the bosonic correlation function, as the
result of an infinite sum of resonant scatterings close td-treni surface [88].

The two fermions with opposite spins weakly couple to fornasjtparticles, the so-called Cooper pairs,
and it is those contributions that are mainly responsibidlémtuational corrections abovig. Because of the
BEC-BCS analyticity we thus can find the bosonic fluctuatiopeeplacing any Cooper vertices in the diagrams
responsible for the fluctuational contributions by the dtad bosonic propagator, for the boson is made up of
the two fermions, as the Hubbard-Stratonovich transfoionauggests.

We want to study the full propagator in three dimensions

1
(q Wh) = gV V] ZGkJqu k

_ m [ dk tanh(§(k)/2Tc) +tanh(§(k —q)/2Tc) m 313)
“am ) 2mP 2K+ (k—a)— i) L :
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whereq = (g, an) andaw, is bosonic, because it is the difference of two fermionicddatra Green’s functions
and as usuaf (k) = k?/2m— u. Equation (3.13) can be evaluated in the strong coupling (ian< 0) where
the two fermions bind into one boson with binding eneEgy= 1/m&. The chemical potential approaches
u — —Eg/2, the binding energy per fermion, and for large binding giesrwe take the limit where the binding

energy strongly exceeds the temperatyurél — —o) and in the limit the vertex becomes

mta (i&h—%+(2H+EB))

M (d,on) =—— ;
4t i 2 -
Eg—w NMPA [ q?
~ - (lwn 4m+ (2u+EB))

which is exactly the inverse of a bosonic propagator for diglarof mass £, indicating a composite of two
fermions, and an effective chemical potential that doesconatain the binding energy anymore but is instead
the weakly interacting boson chemical potential (the eiffecscattering length between the bosons is small in
that limit ae¢t ~ |a| [89, 90]). This limiting propagator was first described irstbontext in [90].

This first of all shows, that the fluctuational corrections pveviously expected are just continuations of
the fermionic theory of Aslamazov-Larkin (AL) type contuiions [13] and therefore hardly surprising, the
Ginzburg-Landau theory should be sufficient to describé #féects. On the other hand it can also be used
to justify why other diagrams that are responsible for arlomscontributions of observables in disordered
superconductors, for instance the Maki-Thomson coninbutl4, 15] in the case of conductivity, will not
appear in the bosonic case, since those diagrams cannattraated into bosonic diagrams, as they rely on the
temporary splitting of Cooper pairs.

We are left to check that the leading order corrections ateéd as expected and that the subleading order
corrections are suppressed. To generate the boson respemsre to start from the current response function
[33] where some couplings of the bosons to the external fleddle been defined. The couplings themselves are
not as interesting (we are looking for applications of ntiarged bosons), but we can generate the correspond-
ing fermionic response by replacing the boson propagatithstie fluctuation propagator and connecting the
free ends in all possible ways so that the number of inteerahions and spin are conserved. For the leading

contribution there is one diagram (depicted in figure 3.4} tontributes with fourfold degeneracy.
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S D

Figure 3.4: The leading order contribution when the bospropagator in the polarisation bubble is replaced by
the fluctuation propagator. Due to the internal spins of thestituting electrons, the diagram has a degeneracy
factor of 4. The bubbles with the letter E symbolize the basoaupling to external fields.

One of the fluctuation propagators carries the four-monmatuhe other the four momentugi Q, where
Q is the externally transmitted momentum. Apart from the flatibnal propagators, there are two triangular

Fermi structure that are contracted into a point for the posonic case, with each giving the same contribution

G(-KG(k+a)G(k+q+Q)

dk 2 k+q +Q
=73 [ s

q+QC(q Q).

The factorC(q, Q) vanishes quickly a&g grows and leads to leading order in the limitT — —o to

m¥/? 1
167 (/2]

The prefactors of the strongly bound bosons contribute @s 2, whereas the two triangles go asu 1

C(0,0) = —

Egl ~ mé&, so the resulting diagram returns the bosonic response gpintim the bosonic Ginzburg-Landau
action without any remnants of the underlying fermionicisture.

On the other hand one should check that the terms that areagliby but important in the fermionic case
(see figure 3.5) vanish in the strong coupling limit. Thesegeonly contain one fluctuation propagator and
hence no bosonic counterpart exists.

Interestingly, these terms do not vanish in the stronglyndolimit. However, their contributions- n/m
exactly cancel each other in the clean system [91, 17]. Farifmic disordered systems these terms generally
do not cancel though [92, 93]. The effects rely on the Coopér temporarily dissociating and the single
fermions staying close enough to each other to interferagd¢he dependence on the disorder). We cannot

expect effects like that for purely bosonic systems, asetdedack the internal structure for such processes.
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Figure 3.5: Subleading fluctuation diagrams. a) The Makafpson (MT) term and b) the DOS term. Both
contain only one fluctuational propagator.

We can thus conclude that the close to criticality theonyiritgracting bosons is generally simpler than for
fermions because fewer diagrams have to be taken into acc®tis can be specifically applied to the case
of conductivity where anomalous corrections to the bosoaitductivity can be expected, but they are merely
of the simpler Aslamasov-Larkin type. It should also be ddteat the transport measurements neccessary to
observe such contributions are very difficult, which is whg sather focus on the observation of the magnetic

susceptibility in the next part.

3.4 Rotation and artificial magnetic fields

In the history of the research of superconducting fluctuationagnetic properties were the observable of choice,
mostly because SQUID techniques allow for a very precisesorement of small quantities, like the fluctua-
tional susceptibility (e.g. [94]).

Similar measurements will most likely be the forefront okbaic fluctuational measurements as well, for
flow and current transport measurements are currently liffto control and as we will see, (quasi) mag-
netic/rotational measurements should be easier to impleme

To clarify the connection between magnetic and rotatiomaperties we will essentially follow the argu-

ment in Leggett’s book [26]. We will look at a uniformly rotiaty bosonic system and find its description in the
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rotating frame. The resulting Hamiltonian will in generahtain extra terms that depend on the angular rota-
tional frequencyw|. The derivation of the susceptibility is a generalizatibthe superconducting fluctuational
response [95, 81].

Since we need the result later, we will consider here a géraedion that is not around the trap center, but
rather the whole trap rotates around a point that is not theecef its coordinate system.

Let R be the position of the rotating center of the trap potentidhie coordinate system (centered around
that rotational point) in the frame that is at rest. Let usrfow focus on a single particle. The velocity of that

particle can be decomposed into the velocity of the moviratian centeR and the remainder
v=V+R.

We will perform two transformations. The first is the tratisia into the frame moving with velocitR that
leads to the Lagrangian

2

mv ..
L=—-mR—-V
2 b)

where the prime on thewas omitted.
The next step is to transform into a frame that rotates arthumdenter of the trap. This time the velocity is
split according to the prescription

vV =v+wxr,

with r being the position from the trap center.

The Lagrangian in the rotating frame becomes

2

L:W7+rn\/-oo><r+n£(w><r)2—m|§r—v.

As we are in a rotational frame, the vecB®is rotating. If we let the operator of rotation Bg then

Rt =RRo
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and because it is a rotation

R=wx (wxR)=—-w?R.

In the rotating framef — Rir. This then also means that the scalar prodRiet is time independent. The

rotating potential in the rest frame has the form
V() =Vo(R*(r—Ry)

which after the two transformations is also time-independgr) = Vo (r).

To obtain the proper prescription for the Hamiltonian we tiecanonical momentum

oL _ =m(V+wxr)
v P~
Y

=V=——WXT.
m
The full Hamiltonian is then

H :Vp_L(V[pvr]vr)

2
= g—m— w(r x p)—mw?Ror +V (r).

This can be put into the form of an effective vector potential

(p—m(wxr))? m

H= o szrz—mw2R0r+V(r).

We see that the potential the particle feels is weakened é)yeurnn—%wzrz, which is the equivalent of the
centrifugal force that distorts the trap. The third ternt ghifts the center of the trap slightly.

Of prime interest for us is the artificial gauge potential

(Bxr),

NI =

mwxr)=A(r)=
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where the last equivalence is merely a convenient choicawdge@. This leads to the correspondence
B =2mw.

Interestingly, the cyclotron frequency of the magnetiafi@k = B/mis twice the rotation frequency
wB = 2w,

something not immediately obvious.

The generalization to the multi-particle interacting Hhamiian is straightforward

/ 2 1
H[{ri,pi}]:z(pi—m(wxpi)) /2m+ %y Vi(ri) 52 (Jri—rj]),
i I 1]

where theV; are the weakened and shifted potentials, @nid the interaction term, which is invariant under
rotations.

This shows us that a rotation can simulate a magnetic fieldd@m overall potential, that can be counter-
acted by fine tuning the trap). In the next step we calculaarthgnetic susceptibility of the fluctuations and

find a suitable interpretation.

3.5 Calculation of the magnetic susceptibility

We first start with the case of the magnetic susceptibilitthmanisotropic case. The susceptibility per particle

is defined as
. 10%Fy 1 0%y 1 |
XM="Nowg ~ aNd? aN'"

whereFy is the fluctuational contribution to the free energythe equivalent rotational frequency, ahgdis

the moment of inertia in the rotating frame. We thus are IngKor corrections to the moment of inertia of the
bosonic system. Namely a superfluid resists an externdlontand the contribution we are about to calculate,
Xs1 is the fluctuational precursor of the Hess-Fairbanks effeleich is the equivalent of the Meissner effect in

superconducting systems.



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 71

We want to look at a system that is layered in one directioncamdinuous in the other two directions. Such
a system in of great interest, as it is experimentally fdasiind, as we show later, lets us explore different
dimensionalities. To obtain the fluctuational free enewg,diagonalize the Lawrence-Doniach action with

magnetic field applied along the z-directiBe, = [0 x A

ﬁZ
s0)- 5 [0¢ (|0 -0l -+ o a0 -0F) @19

and then integrate out the various modes. The wave functlatsdiagonalize the uniform systerd{ =
—c,Te12) with an applied uniform magnetic field are the well known tan functions [96]. Per definition the
magnetic field is applied perpendicular to the layers of {fstesn, that is along the- axis. Because the system
is periodic along the-direction, thek; are good quantum numbers as well. We thus expand the ordenptar

/ wave function as

®(x) = % P, th () €, (3.15)

whereg, is the wave function of thath Landau level ang is the position vector within the layer. The are
restricted to the first Brillouin zone. Substituting (3.18%0 (3.14), the energy of each state in terms of the
quantum numbers is

Enk, = —OH + has (n+1/2) + 2Jcos(ky!)

with ws being the cyclotron frequency in terms of the artificial megmfield. As the action is quadratic, we

may use that

7 — 7Ff|/Tc:/Dq)Dq)*ef¢*G¢’

=detG !

so that the fluctuation free energy of the independent fltictial modes becomes

BA e
Fs = —T, lo s
" @ an 9 1+ R (N1 1/2) 1 4Jsir? (Kol 2)

whereA is the effective surface of the layers that are probed by &ie fas the free energy is extensive and we
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probe just a small part of the bulk system, we do not care almuidary effects) antdy = 2rthis the elementary
flux known from standard quantum mechanics [96]. As the saaifits divergent, one has to introduce a cut-
off level n¢c ~ Tc/hws ~ 1/h, which corresponds roughly to the highest states that areiderably occupied at

temperaturdc. Herehis the reduced magnetic field

hB
mTecy’

wherec; is the proportionality factor between the chemical potretnd the small parametef close to transi-

tion. We can use thgtlog(...) =log[](...). As the formulas become more involved, we introduce for shor

hand
K=T12+ % (1— cos(kst))
with
N
ns = TG

is an anisotropy parameter which is small for a very two-digi@nal system.
Next one uses the identity [78]

ne!nz-1

= e+ D+ 2. =D

to obtain the following approximation for the free energy

BA s 1 kK K/4h—1/2
~— g — |+ e ! .
= OTC Z {nc log [4h02] log {F (2 4h) log {nc nc H}

Because we are only interested in the magnetic contributistmot so much in the overall offset, so it is useful

to expand in terms of the reduced magnetic fleld

CANTe [ udk b2 ANTR? (TdO  , 2 -1
F (0 -F(O) =" /n/eﬁﬁ_ o /4510 + 2 (1—cos(6))) .

where we have again a lengthscale of the fluctuatfrgns h?/2mgT. andN, is the number of layers that are
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probed. The remaining integral can be evaluated [78]
"do 5, N2 o2 ~1/2
/0 E_{(r +7(1—cos(6))) =[r?(r°+n)] 7"

Thus we can see that

AN, Tch? 1
F(h)—F(0) = 5 ———
3nés \/12(12+1n2)
2
Ly 1 0°F _ 2ATc 1 (3.16)

NeoR3mE /2 11p)

This is indeed very interesting. Not only is the fluctuati@miibution to an actual observable divergent (one
has to keep in mind that in order to apply the GL theory one basate thatr > Gi), it also diverges in a
different power law compared to the superconducting caderevit goes as- [T (T + 17)]*1/2. We observe
that the dimensionality of the trap is important. RSr> n,, the system is essentially two-dimensional and
X ~1/12, whereas forr < n, the coherence along tizairection is increasing and extends beyond the layers,
therefore making the system more three-dimensional yith1/7. This comes along with another important
observation, namely that the powerlaw exponent in higheredision tend to be smaller and in general there
will be a dimension for which the fluctuations will not divexghe upper critical dimension [11].

Next we look at the case of a two-dimensionally trapped systérst we have to diagonalize the action

si0] = [ ¢ (%(D—Awf—émmﬁ) ,

whereu ~ t/logt for small 7. We do know already from the previous observations, thasttuation is very
similar to a two dimensionally trapped system with an agpii@ation. Thus the diagonalization of the action

is equivalent to diagonalizing the two dimension harmosiciltator Hyg with applied rotation

H = Haq — wl,

RZ R X2 Y2
2 2 2 2)

1 mawg
HZd:%(p§+p§)+T%(x2+y2):ﬁwo(—+—+—+—

Lz =Xpy —YPx:
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where the coordinates and momenta are quantum operatoréyt = ih and for convenience we shifted to
the dimensionless spatial operat¥sY = mT“*J x/y and the dimensionless momeiRgy = ﬁ Pyyy- Itis
useful to introduce the creation and annihilation opesatioat diagonalize the harmonic action by defining the

creation and annihilation operators of an harmonic exoitéah x/y direction

7X—|—iPX TﬁX—iF’x
ax = \/z y 8y = \/z )
_YHIR YRy

AR NG

These operators fulfill the relatio[a, aT] = 1 while at the same time
Hag = Py (ajax + alay + 1)
In that same basis, the angular momentum operator becomes

Lz =xpy—ypc=h(XR - YR)
=if(alax—alay).

One sees that the angular momentum mixesxtaedy components. We introduce the mixed creation and

annihilation operators

_ actiay T:a;ﬁiia;

ar \/z 5 aj: \/E )

for which

L= h_(aiajL — afa,) ,

while leaving the principal form of the harmonic oscillatotact

Hog = hay (a1a+ +a'a + 1)
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These diagonalize the Hamiltoni&h

H = Hag — wl,

=h(w+w)a' a +h(a - ) a1a+ + ha.

We thus have the degeneracy of the two levels of the Hamdtolifited by an application of a magnetic field, as

w = wa/2. We apply this diagonalization to the free energy (switehihdicest for better intuition)

Tl
wo+ w)ny + N (wo — w)n- +hap — p(1)”

F[1,B] :Tczlogﬁ(

It is useful to change to the new quantum numbetsn,; +n_ andm= n; —n_ where for eachm the allowed

myvalues aren€ {—n,—n+2,...,n—2,n}, so there area+ 1 terms. Then

T
hapn + hasm+ hoy — p(T)

F[1,B| =T log
Cn,zm
1
=Ty log—"7——=
n.Zm YAt Mm+C’

whereA = hay/Te, M = how/iiTe andC = (hay — )/ 1T

The susceptibility can thus be expressed as

O
X=lelomt) 982, ,

(Y m?
-\ 2mmT anAn—l—Mm+C'

The sum over thenterms can be performed by noticing that

3 P = (=244 (= (N=2)*+ (=2 + ...
n/2 "2 1
=23 (2n)" = §n(n+1)(n+2),

n/

independent of whetheris even or odd.
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The remaining sum overcan be approximated by the integral

_ T/ R 2/”cdnn(n+ 1)(n+2)
T 3\2mTe 0 (An+C)2
where we reintroduced the cutoff ~ T./ho.
The question is now, of whether one could observe a significamtribution from ther dependence. For
smallt (and hence smaf) and fixedn, the integral is not vanishing. Noticing thas ~ A~1 we can easily see

that the norC dependent contribution
Nc n2 1
2 (An+C7?  A¥

n

whereas the most divergent @) term goes as

e 2 2 [t dy 2 (Y dx 1

RS Y A i Ml
This means that the relative importance between the fluonaltpart and the ordinary oscillator part goes as
A? ~ (ﬁT—‘*C*J)Z — 0, which goes to zero in the thermodynamic limit. The therymaamic limit is defined as
N — oo anday ~ N~Y/2 andT. = const Thus in the thermodynamic limit the fluctuation contributicanishes
which shows that for the harmonic oscillatdr= 2 is the upper critical dimension! Ad = 1 is the lower
critical dimension for harmonic oscillators, these systeame technically never strongly fluctuating. This seems
at first sight maybe counterintuitive, as the center of a figb tan be approximated by a uniform system.
However, the fluctuations will be cutoff at the point where tlkarmonic potential becomes sufficiently strong
and, as we just showed, the majority of the contribution dmase from the rest of the trap. In hindsight it
is not surprising at all though. We know that a uniform systeams an upper critical dimensiah= 4, and as
each harmonic confinement adds one degree of freedom to tindtbtdian, so that the effective Hamiltonian
degrees of freedom arel2Thus a critical dimension of 4 in the uniform system exactisresponds to a critical
dimension of 2 for the trapped system.

This however does not rule out that critical fluctuationsresrbe observed, rather that the trap has to be

selectively probed in the center where the system is quasim, instead of probing the total susceptibility of

the trap. For the case of the system that is harmonicallyp&dpn two dimensions while being in a layered
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configuration as in the Lawrence-Doniach model, the sugtibfyt density becomes, provided it is applied to

the center region of the stack where the uniformity assungtblds,

_ 2ANTcH? 1
& Jt(t+n)

where&® = h?/2me T, with ¢ = 57 (5/2) /2 (3/2) ~ 1.284 andA is the area over which the system is probed.

(3.17)

One should of course keep in mind that all calculations osteeeptibility were done in the rotated frame.
That means that in the original lab frame, the fluctuatiomeltgbution obtains an additional overall minus
sign. This means that the system will react less drastitalthe influence of the rotation. One can interpret
these observations as an extension of the Hess-Fairbdieks t&f the high temperature side of the transition,
i.e. the superfluid part of the system resists an externatioot. This effect is certainly linked to the Meissner-
Ochsenfeld effect and its fluctuational extension, wherexd@rnal magnetic field induces a counter current that
weakens the field inside the superconductor, an effect thatdak fields becomes perfect for large conductors

below the critical temperature.

3.5.1 Observation of the susceptibility

Now that we have shown that suitable observables exist,netessary to specify how these can be probed.
The invention of a scheme that is capable of doing exactlyitha large part of this thesis. Before we start
getting into the scheme itself, it is necessary to give a kim@bduction to some key results from quantum

electrodynamics and laser physics, as these build the foed&ls on which the scheme rests.

3.5.1.1 Review of quantum electrodynamics

Many of the contents and reasoning inside this section dmentérom the introductory books by Cohen-
Tannoud;ji et al. [97, 46]. A good overview over the basic ons of artificial gauge fields is provided by
the review of Dalibard et al. [98].

The main idea in quantum electrodynamics is that not onlytlaeeatomic parts of a system quantized,
but also the electromagnetic fields that make up said systédrase fields can be generally decomposed into

harmonic modes with integer occupation states. These gudrexcitation are generally known as photons.
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The state space is thus a tensor product of the mechanital|ateand the Fock state of the occupation of
the different modefny, ny,...) or superpositions thereof, just as for the material bosbhs.coupling between
matter and the photons comes via the minimal substitutitve. Hamiltonian can be so chosen as to only contain
a transverse vector field = A |, which means that the Fourier transform of the field sati¥ie& , (k) = 0.
This particular gauge wheré- A = 0 is called the Coulomb gauge and we shall use it in the foligwiThe
Coulomb interaction term caused by the exchange of lonigilighhotons, is calle¥cqy and its exact form
depends on the potential environment of the atom. The Hanidh describing the interaction of an electron in
an atom with a laser light field becomes

(p—eA,)?

H:
2m

+VCouI+ HR7

whereHp is the Hamiltonian of the radiation field, which for our puges consists of a finite collection of
harmonic oscillatorddr = 3 w (aiTa; + %) where thea; are the same modes that appear in the transverse

vector potential with wave vectds

h ik ki
AL(x)= IZH 280wl? {aifielk' Xtalge ki r} )

where theg; are polarization vectors with - kj = 0.

In addition we neglected the term coupling the spin of theteda to the magnetic field created by the laser,
because its effects tend to be an order of magnitude lowartt®adipole interaction we want to describe.

We assume that the size of the atom is much smaller than tiardglwave lengtih of the laser. Because
the laser is assumed to be of high quality, we can reduce sermnie of field modes to the one of the laser,

as all other effects are supposed to be weaker. We use the gangformation

—Lex-A | (0 a—n*al
T = 1&ALO0) — gna-na’,

where
ie

= ————£-X,
d v/ 2g0hwl3
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and evaluate the electric field operator only at the origin,the expansion of the transformation matrix only to
first order. Higher orders would give electric quadrupold higher interactions, which are interesting per se,
but also considerably weaker than the dipole interaction.

The transformation acts on the system such that

TXTT =x — TVeouT = Veou,
TpT =p+eA (0)
TaT' =a+n

TaTh=a'+n*.

The new Hamiltonian is

2
THT' = §—m+v(;ou|+ Hr — ex-

(iag —ia'e) + e ex|?.

1
2ey (21)° 2¢,L3

Here the first two terms are just the atomic system withott ligteraction. The fourth term is equivalent to the
product of the dipole operatex and the transverse electric field operator
h . .
El=,/——(iae—ia'e),
2¢g9 (27'[)
of that laser mode. The last term is finally a dipole inte@cterm, which is in this approximation a constant.
We can now decompose the Hamiltonian into the relevant atstates (the ones that are close enough in

energy to couple to each other, or where the difference inggrie close enough to the photon energy of the

laser). Assuming we have only two relevant states, we cate wri

2

2 Veou=&1|1) (1] + £212) (21,

In the same basis, the dipole operambecomes the off-diagonal matrix

ex- & — di2|1) (2| +d1p[2) (1],
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whered;,> = (1|ex|2) and symmetry demands th@gx|i) = 0. Note that the dipole moments can still be zero if
certain selection rules are not complied with. If the lasedmis strongly occupied> 1, the field essentially

becomes a coherent state) of photons, i.e.
a(t)|a) = €a(0) |a) = éaa),

such that the average
gt gt

(a|E|a) =Ey 5

=Egsin(wt),

becomes a classic electromagnetic wave with field ampligleThe resulting Hamiltonian is that of a two-
level system with a periodically time-dependent coupliegieen the states.
Now we want to investigate what happens when the pertumaiits weakly on the atomic system. Our

atomic state can then be decomposed into a superpositibe /b eigenstates of the unperturbed system

[¥) =c1(t) 1) +c2(t) 2).

Naturally the overlap of the perturbation will be in termsloé overlap elements

(1|exEgsin(wt) |2) = d12Eg,sin(wt).
The Schrddinger equation leads to
d .
|ﬁ£ = £1€1 + d12E, Sin(wt) ¢,
iﬁ% = &Cy + th1Ey sin(wt) c1

dt

The explicit term~ &¢; can be eliminated by defining(t) = by(t)e '&t . The resulting system of equations is
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then

iﬁ% = hQj,sin(wt) €€/,

iﬁ% = hQj,sin(wt) éE~&t/fp,

whereQi, = di2E /h'is the Rabi frequency of the transition, which is evidentintrolled by the laser intensity.

One can see that the Bohr frequendies= (& — ;) /h naturally appear. A common approximation is the
rotating wave approximation, which is based on the fact thatsine has two frequency components, one
rotating with and one rotating against the Bohr frequencythfe anti resonance term is very quickly oscillating,
it essentially cancels over the time scale in which the rastterm acts on the system. Itis a good simplification

to take into account only the slowly evolving terms

| =

sin(wt) Wit =

dl@j+o)t _ d(wj-w)t
( )

-N

j(aj 7w)t'

We will use this approximation and its generalization infibllowing, thereby discarding processes that change
the overall manifold of the atom-lightfield dressed state kad to decoherence . It has to be mentioned, that
these equations are approximations, which need clearittoassand very long life-times of the excited state,
which in practice can be a limitation. The extension of tlyistsm to a decaying system would mean going into
a system of density matrices and master equations. TheingsBloch equations describe the system more
exactly. In the following we are mainly interested in thefaial magnetic fields which are already visible in

our simplified system, so we will content ourselves with gimpler description.

3.5.1.2 TheA setup and its generalization

As mentioned earlier, we want to use artificial magnetic fiétdprobe the fluctuational susceptibility of bosonic
systems. To this end we want to describe a setup that is abledte gradients of artificial magnetic fields, as
these allow for a more precise measurement of these sufatasefin theh setup the atomic system consists of

three states, two ground states that are almost degenathtsma excited state (see figure 3.6).
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Figure 3.6: The normak scheme of two ground statég ) ,|g2) which are coupled to an excited stade with
the Rabi field€)1 andQ, respectively.

Let us describe the amplitude of the two ground states lithwhereas we call the amplitude of the excited
statebe. Apart from the small difference in energy between the grastates, the system consists of two natural

energies, namely the excitation (Bohr) energies

R g1/2 = € — €1/2,

where theg; are the energies of the respective internal states of time.ato

The point of our new scheme is to couple all three states th etiwer via three applied laser fields, each
with frequencyw and Rabi frequenc®;. One couples the excited state to the first ground state,aabehe
other two both couple the excited state to the second graatel See figure 3.7).

As described in the previous section this leads, in theirgavave approximation, to a time dependent

system of equations of the form

(bt Q1 et

gt T 2 ¢ be(t)

Ay Q2 w23 (e wot

I dt < 2i e 2i e De(t)

dbe  Qf —i (e~ )t Q2 iwp—aan)t | 23 iws—caolt
5= %€ by (t) 5 € + 5 € by (t).

At this point it is convenient to assume that the first lasém tsine with the first Bohr frequency, i.en = ww.
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—. le)

= |g1)

Figure 3.7: The generalizedischeme. The second ground state is coupled to the excitedvséawo detuned
lasers, each with its distinct Rabi fiefdh 3.

If we for a moment assume th&; = 0, then the system can always be brought into a time-indepénden

form by rotating the amplitudes around the chosen deturdngs

bi(t):eiatﬁi
db ist (x> d~
—>E—e' (ldb|+ab|).

For the simplified case with only two applied lasers, setiang 0 andd, = w, — we Will do the trick, however,
at the cost of introducing diagonal factors in the previgyslrely off-diagonal system.
Returning to the more general case with three applied lagerintroduction of thé; gives (leaving out the

tildes)

db1 . Ql .

R o
dbz . Qz Qg i(Op—Ba)t .

T __(7+7e be —i (0 — a) b,

dbe ~ Q; Q5 | Q3 __i5y-st :
dt—2b1+(2+2e bo — 1 3ube,
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whered; = w; — we anddp = w3 — . In addition we made the somewhat arbitrary chalge- &, = — s,
which only matters for how the detunings are distributedugtibe rows. The important and intuitive thing
to notice is that no matter which transformation is used, alm&ys keeps a time dependence of frequency
wa — W = Wy — w3, the beating frequency between the lasers, in the systenturdllgg whenw, = w3, the
situation is the same as having only a single laser with aog#iQ, + Q3 interacting with the system.

Let us investigate that particular case of only two appliettl§ further. Without detuning we can write the

Hamiltonian governing the previously derived time evalatin the form

0 Q O
h
H=3| o o o |- (3.19)
0 Q O
The Hamiltonian has three eigenstates,

1 T

D) == (-Q5,0,Q
D) = g (—92,0,Q1)",

the so-called dark state with eigeneneggy= 0 and the two so-called bright states

B) = % (Q1,40,0,)",
with energysg: = +hQ, whereQ = 4/ |Ql|2 + |Qz|2. The dark state is aptly named, as the eigenvalue suggests
that atoms in that state do not directly couple to the lightfend in addition also contain no excited state,
which makes them very robust in experiments, as the exditte gsually has a finite lifetime [99, 100]. These
states are obviously not purely atomic in nature, but exigtsto the interaction of light and atoms and they are
commonly referred to as dressed states. Now cleb€ly is the level splitting and sets an energy scale that can

be compared td = d, — da. To do this, let us add a time-dependent perturbation of tha fo

AH = RQze% |e) (2| + A3 |2) (g
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Thus the coupling between neighboring states has magnitude

Q103 ;5
V = (D|AH|B,) = +h———=2¢°t
(D|AH[BL.) /30

According to standard perturbation theory [96] the prolitgiid transition from one state into the other for

transversing a region whe€g; is very slowly turned on and off is given by

/ J(E+aint
0

So one should expect that f6f /Q? < 1, the description of the system in terms of the eigenstatesead t= 0

1

“dV oty
R2Q2 @t

Lo dt

2: 52|Q1Q3/?

Q4 ~

@ .

Prans~

case is adequate. This is generally expected when the tvecstiales making up a process are widely different.

We will now use a more systematic method of finding a good appration of the system whedi is large,
which is a common situation in laser physics. To do this wé exipand our time dependent states in a Floquet
basis and then use a transformation similar to the famousedfen-Wolff transformation [101] to find a good
effective description.

The use of the Floquet basis is easily motivated. The Hamdtoand the equations of motion (3.18) are
beating with the frequenadd. For easier use we choose to have all the diagonal terms totheld, evolution
with detuningd,. Now because the system is periodic, its eigenstates hdwve periodic as well, essentially
Floquet’s theorem, which is very similar to Bloch’s theoreatrscribing solutions in periodic potentials. The

most general ansatz for such a periodic system is accordiRlpguet’'s theorem
bi(t) =€y ot
Z |

where the! are complex coefficients.

Using that
d /. . . .
d (gt c-“én&):éﬂ( (&4 c-“e'”‘“)

one finds via substitution into (3.18) and the overall futiiéint of time-independence of those states the follow-
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ing set of equations for all integer

(e+nd)c] = Qico
(€+n8)Ch = )+ QoCh + Qach

(£+nd)ch = Qjc] + Q3ch + Q35

The equations can be ordered into blocks with the sartteat are coupled via the termsQ3. So whenQz — 0,
the proper time-independent scenario is recovered. Algocan see from the general structure, that solutions

iterated from then = O block have a larga behaviour of the form

Q ..
"~ n—gc”*l for npositive

Q .
"~ ﬁc"“ for nnegative

Looking at it closer, each block has essentially the matirf

no Qq 0
Ho"=h| Qi ns 5 |
0 Q nd

whereas the elements coupling the different blocks are

00 0
VM =Rl 0 0 Q3 |.
00 0
0 0 0
V=Rl 0 0 o0

It is convenient to denote thith eigenvector of the block" as|n,i), where the index can taket1 or 0.
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The eigenvalues in that system are

Ho"'[n,+£1) = hn(d £ Q)

Hg"[n,0) = hnd,

which shows that the energetic distance between neighiporanifolds is of orded, which is per assumption
our largest energy scale. Our goal is to find an effective Htaman for the states that evolve from the= 0,
block, as these are the ones that are naturally populatedischeme, and only upon increasifg will the
n= +1 part of the state space be occupied. We thus assume théatislrs +1/0) are still good descriptions
aslong af2z <« 9.

First we define the projector into tith manifold as

P”:Z|n,i><n,i|.

For the effective Hamiltoniakl’ we have to demand that

a) H’ is hermitian.
b) H’ has the same eigenvalues as the original Hamiltonian arghthe degeneracies
c) H’ will have no matrix elements between theperturbednanifolds.

The transformation should be of the foffn= €S, whereSis hermitian,S= S'. The new Hamiltonian is then

H’ = THT'. The last of the demands can be expressed as
P'"H'P" =0, forn+n'.
The effective Hamiltonian can then be decomposed into theafiHamiltonians for each manifold
H =S P™H/.
; n

As the three requirements do not determine the transfoom&tompletely, one can choose the simplifying
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condition that the transformation only acts in between fiodais, i.e. thatP"SP' = 0. The perturbation is then

AV, whereA is a small parameter. The transformation itself can be edg@am this small parameter
S=AS + A%+ +A"'S+ ...

Naturally the zeroth order should be zero, because to tlar tihe Hamiltonian is already diagonal. Next one
expands

H = THGT" = Ho + (IS, Ho] + . [, iS. Holl + - [S: S, iS,Hl ] +

At the same time this means that because the small parametemnly present irg, the effective Hamiltonian
can be expanded as well

H =Ho+AHi+A%Ho+....

It is useful to define the level shift operator
W=H —Ho=AH1+A%Ho+....

Expanding the transformation with respecfto

W = A [iSy,Ho] + AV
[|/\ $2,Ho| + [iS1,AV]
1
+ 5 181, [1ASy, Hol +

+[IA"Sh, Ho] + [i)\nflsn—la)\v} +
+% [IA"1S, 1, [iS1, Ho]| +

i % [iAS,[iASL, ... [iA St Holll +
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Because thath order of this equation only depends &nand theS, ., one can solve iteratively starting with
the first order by demanding

AHi=A ([iSl, Ho] +V)
while additionally demanding that cross manifold termszme, i.e.
(nifiASN, i) (&5 — & ) — (nilAVI', ) =o.

This gives alongside the previously mentioned zero intoglotoupling a way to construct the matrix elements

of §
(A, j) = LIAVIN, D)
(n,iliASy|n, j) =0.
We want to approximate the effective Hamiltonian to secam#oin A | i.e. find the matrix elements
(W) = (IAV +iA[SLV] + 2 [IASs [ASs, Holl )
Because the nondiagonal terms of the perturbation we have

[i)\ S, Ho] +AV =0.

The last term is reduced te [iAS;,AV] /2 and the approximation of the shift operator projectioroahien

manifold is reduced to

HrI - PnAV Pn + %Pn [|A S]_,AV] Pn.

The matrix elements of the commutator can be evaluated

<i|%Pn[i)\Sl,/\V]Pn|j>— )3 <n,i|/\V|n’,k><n/,k|,\v|n,j>( _ r 1 )

n n n
k, %N o — ok €0,j ok
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Because the perturbation only couples neighboring matsfale pick up only terms from = n4 1. Indeed,

we can write the perturbation as
AV = ZQ3|n72> <n_ 1,9|+Q§|n,e> <n+132|a
n

which can be decomposed into the eigenstates oktbetup. Because of the coupling of neighboring manifolds

we have that
1 n 1 B FO+ 28+ &+ €
g —gt gt (Fo+eta)(Fo+eta)

where theg; are just the eigen energies of thescheme. Of course, the denominators could become 0 when
J = g, but then the perturbation theory breaks down anyway andehigider terms including the coupling to
higher order manifolds cannot be neglected anymore. Howivéhe regime were the perturbation theory is
valid |3| > |& |, the term essentially reduces+td./d.

We can use these results to find the shifted energies aof th@ states. However, more interesting is the
perturbation of the actual states, which we will need laddfirtd the artificial magnetic fields. To lowest order

the shifted states are given by

(Yo,plAV|Won

|ll’n>:|4’o>+§ >\wp>+o(/\2). (3.20)
p#n

&.n— €o,p

A lengthy calculation using the previously defined statesghthat the perturbation of the dark state is given

by
—Q [oH
1 Q3
Ds)=g| O |0>—m 5Q; | I-1)-
Q; Q1Q

The coupling mixes some manifolds and the perturbed stdtieénoa small beating frequency. In the next
section we are going to introduce the concept of artificialggafields and how the perturbed states we just

described can be used to create tunable artificial magneltis i
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3.5.2 Artificial magnetic fields

We showed in the previous part that one can create state® @tttms, dressed states, which are explicitly
dependent 012, the Rabi frequency. We also argued that, because of theampaof energy scales, to a
very good approximation the particles stay in their drestate and follow it adiabatically if the perturbative
potential acting on the system changes slowly in time. NagtletsQ vary spatially, i.e Q — Q(x). This can
create interesting effects, specifically artificial gaugls may appear [102, 103, 104].

The atom-light system is still formally in a superpositidrifte orthonormalized dressed states, i.e.

W) = Wil (x))

= Yo |Po(x)) + z Wi (i)
iZo

where|y)p) is the state which we want to adiabatically occupy for theetivhthe experiment, and thieare alll

the states that are not this state. In addition at each poisppace we have the decomposition of the identity
I(X) =il (X)) (¢ (x)|. Because the overlap of the orthonormal states does not etzsngne moves in real
space, the equation

O(wily;) =0=(Ogi|y;) + (Wi Oy;),

wjere|dy) = O|yY) is a vector in the state space that constitues the atomieray$tolds. Thus when the full

momentum operator is applied to the state for which algx) # O, one finds

Ply) = —ihU (¢o| o))
= —ih(O4o) [¢o) — ihgo | Do)
= (PYo) |Yo) — ihtho |Ogo) -

However, the behaviour is dictated by the functifan Since the system is always locally in that state, one can

take the quantum mechanical average dygtx)) and finds the local formula for the (wavefunction) momen-
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tum

P = (p —ih(Yo|Oyo)) Yo
=(p—A)Yo.

One has thus introduced a vector potenfiak ih (p|Oyp) , which, due to the orthonormality ap is real
and the operatop acts only on the wavefunction, which means it represent®thigal angular momentum
rather than the whole momentum. Likewise, the whole Hamiito containing the external potentl&(x) as
well as the light-atom interaction can be projected ontaostiage| (X)) to give the effective Hamiltonian that

determines the dynamics of the wave-functimnas

A2
Ho = m) +&+U+W,

wherewW = i/ Zﬁ_an (W |Ouo)|? is an effective potential created by the non-zero overlawéen(l | ) with the
other states during the introduction of the identity. In tbkowing we should not worry too much about this,
as it can always be absorbed itdoand in the cases we consider it can in fact be tuned away bytaujl
accordingly.

The potentials introduced are geometric potentials, iiferént paths in space acquire a phase dependent
on the direction travelled. Physically this means that digdarmoving along a certain path is more likely to
absorb a photon from the laser beam when it moves along arceitaction to the beam. It is this velocity
dependent absorption that simulates an effective magfietionvithout actually being one, which is why it can
be used to simulate situations that one would not observealby, like magnetic monopoles [104, 105].

We want to focus for now on configurations that are to give astam magnetic field. If we keep in mind the
equivalence of rotation and a magnetic field, as well as denshe laser fiel@2 as a stirring device, it seems
natural to investigate the scenario with non-trivial phagelution in the plane of rotation. An important class
of light fields that have such properties and also can be im@hted in a lab are the Gauss-Laguerre beams.
With the aid of holographic masks, almost arbitrary phadtepas can be imprinted onto a lightfield (see e.g.

[106]). To accommodate the non-zero rotation of the lighdfithe intensity at the origin has to be zero and the
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phase ill-defined. The beams can be parametrized in the form
P\ o p?
Qi(p,p) =Qio (p_) diog P*/e,
0

The radiuspy as well as the waistv generally are set by the beam width and tend to be of a simitiramf

magnitude. For the two-beam standardcheme we can use the prescription
A =ih(D|OD)
and the convenient parametrization of the ground-state

-1
1

D) = —————— 0 5
> 1+ x2(l—12)
x(l1—t2) d(t1—L2)e
with x = p/pp and where it was assumed that the widths of the envelopeg dfghms are equal, i.ey = w»
and an overall phase factor was taken out, so it becomeschbat the result can only depend @n- /5.

The next step is to find the magnetic field
B=0OxA

with
ﬁ(fz - fl) x2(l1—t2)—1
00 11x2h

A = iR(D|0OD) =

whereey is the unit vector in azimuthal direction. The effective matic field becomes then

B=0OxA

190
:E%(pA(p)ez

22 32D
= 8y,
PG (1+x2)?



CHAPTER 3. BOSONIC FLUCTUATIONS CLOSE TO CRITICALITY 94

0.5 1.0 1.5 2.0
Figure 3.8: The artificial magnetic field for different vatuef transferred momenturi,= 2 in red,/ = 3 in
blue andl = 4 in green.

with £ = ¢; — £>. We see that the principal magnitude of the magnetic field\.iergbyﬁéz/pg, i.e. the smaller
the beam waists are, the stronger the field becomes. Soméiélithutions for different are shown in figure
3.8.

For ¢ = 1 the maximum of the magnetic field is in the center of the bfam/, larger than 1 it is slightly

« _pmax_(e—l)l/”
max — 00 - /11 :

shifted to the value

These results for the artificial magnetic field seems sljigbtlunter-intuitive, as the strength of the field
seem not to depend on the magnitude of the Rabi frequencl; 8ioafind an answer, let us introduce a small

detuning to the stationary scheme as a weak(Q) perturbation of the form

-1 0 O
ov=hd| 0 0 O

0 0 +1
Using again the standard expression (similar to eq. (3f2®p perturbed state

e |¢o>+_;w 9,

E— &

where the states over which we sum are unperturbed and neneege with respect to the stégie) .
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Applying this to the dark state we find after normalization

B 1 (QQ3+9Q502) 5, |
98) = g (0 g (84 1B ).

For symmetry reasons the added magnetic field must be zeimb&bomes obvious when one observes that
Jp|B1) =0p|B-)

and both contributions to the vector poten#datancel. The magnetic field is weakened because the new dark
state (though technically not quite dark anymore) has lesigiw on a magnetic contribution and the new

magnetic fieldBs| relates to the unperturbed magnetic fild| as

Bs| = 5 |Bol.-

1
1+ 92/2Q

Now we can understand the importance of the magnitude of #ie fRequency for the amplitude of the arti-
ficial magnetic field. The stronger the Rabi field, the lessiige the magnetic field becomes to very small
fluctuations of the detuning. Thus a very weak Rabi field iskehy to yield a quasi magnetic field, as the level
of fine-tuning that is necessary becomes impossible to eehaalistically.

We should also look at the opposite case of a very large degusuich thad > Q, where we still consider

the standard two-laser scheme as reference. Here we takeefonperturbed state the strong detuning limit

-6 0 O
Ho=h{ 0 0 o0
0 0 +95

and the perturbation is (3.19). The eigenstates of the tumbed Hamiltonian are simply the staté$, |2), |e).

If we start the system in say the excited st@eto lowest order the pertubation becomes
Q Q,
o+ Fiy-212).

1
%) = AT 202/52 <
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Indeed, this state is slightly magnetic since

)

Ol o

(Dles) ~

with field strength

QZ
[Bes| ~ =7 [Bo| <[Bol.
We have thus good reason to postulate

22 x2(-D

Ba = B0l (39/2%) = o e

e f(62/Q%),

wheref is a well behaved analytical function that can in principéefound explicitly, and of which we know

the limits
lim f(x) = #
x—0 o (1+X2/2)
and
)I(m f(x) = 22"

Now we can return to the generalized 3-bearsetup. We found previously that adding a strongly detuned

third laser withd < Q perturbs the dark state (we approximate- Q3 ~ 62)

-9 Q1
1 Q3
|D5>—§ 0 |0>—@ 0Q; |-1).
Q3 Q;Q;

Now even though the added component is oscillating in tibrstili contains spatial information for a geometric
field in Q3. Indeed, because the perturbation is in a different mathiftle effective vector field terms in
A = (Ds|0D) are additive sinc€0| — 1) = 0 and one can consider them as essentially belonging taetiffe
artificial magnetic field schemes that are superposed, dng letune with the atomic frequencies and resultant
magnetic fieldB ~ h(¢, — él)z/pg, the other being far detuned from resonance and with fielditudp B =

h(¢s— él)z/pg and suppressed by the fact@f/52. It is often more convenient and also practically easier to
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leaveQ; with /1 = 0 so that the actual artificial magnetic field stems frrand/s.

How can this be incorporated in a scheme that can actualyeeelinear gradient of the magnetic field? We
know that for all practical purposes the generalizestheme can be viewed as a superposition of two standard
A schemes. The next step is to take the second ground|gtitas Zeeman sensitive (see figure 3.7), which
means it can be shifted by the application akal magnetic field. This real magnetic field can influence the
artificial magnetic field strength exerted by eadcketup by moving the transition closer or further away from
resonance. Assuming one starts with a large enough detbeimgen th&, and Q3 lasers, where the origin
of thez axis the system is in resonance with thesetup of the field2, creating a magnetic field with strength
~ (2. To understand how a linear real field gradient can give a tinetficial field dependence, let us look at
a simplified picture. If the real magnetic field changes liflgalong thez axis, i.e. d ~ z then the magnetic

field loses its strength approximately in a quadratic manner

f% 5 52
B, ~ Bp—=5 ~ Bp/l5 <1— —> .
52 2
1+ﬁ 20

At the same time as the system becomes out of tune with the\fsstup, it gets closer to resonance with the
second\ setup, originally detuned b, with effective field proportional? > ¢3. As it moves closer, the field

effect grows also approximately quadratically

83% Bo

202 Bol2Q? 5\? Byr2Q2 25 &2
el 032 <1+—) %0732<1+—+—2>.
2(&%-9) 288 & 282 Y

Obviously, the field curvatures created by the twechemes have opposite signs. By choosing an appropriate

d, one can make the sum of their artificial magnetic fields cumeafree

d? 227\
1/2
—>60:(@> Q.
b

Of course this is just an approximation and in reality one Maather have a plateau of considerable size in

which a linear real change in magnetic field is turned intmedr gradient in artificial magnetic field, as seen in
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Figure 3.9: The gradient of the artificial magnetic fidl8/dd in units of Q for different detuning®, — oa = &

of the field beams witlh¢ = 2. The upper (blue) line is for an initial detuning & — da =~ 2Q, the lowest
(green) fordy =~ 2.8Q. The red line in the middle is tuned such that the two curvataemcel and a plateau of
width ~ Q is formed fordy =~ 2.5Q. In that region a linear gradient ofraal magnetic field translates into a
linear gradient of the artificial magnetic field.

figure 3.9.

The actual steepness of the field gradient then depends agrabent of the real magnetic field and the
value />/¢3. One might argue that as one gets close to the condition whéfe~: 1, this should not be a
principle problem, as the functioi(62/Q?) is analytic. One can however justify the use of the limitingtbrs
in practice. One has a bit of freedom in choosing the ratioosiverted angular momentum, i.é,/¢3. One
can find the approximate values for which the plateau existghlly asQ/d = 0.7 for A =1,Q/d = 0.4 for
A¢ =2 andQ/d = 0.32 forA¢ = 3. Moreover, the plateau is fairly wide Q, and robust, as small changes in

the detuning), barely effect the overall gradient.

3.5.3 Observation of the susceptibility

It is very difficult to observe the fluctuational suscepttigiusing a constant artificial magnetic field, as small
fluctuations of the field would lead to a direct error in measugnt. Using a gradient however could make a
relative measurement possible, which is in theory much rpogeise, as global fluctuations of any involved
parameter become unimportant.

Let us combine the generalizédsetup with the layered bosonic system that is essentiallyinteracting,

i.e. a=0, in such a way that the laser beam is perpendicular to tredaigee figure 3.10 for a sketch). If
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Angular Momentum Transfer
>

)

Real Magnetic Gradient

>

Figure 3.10: A cartoon of the scheme for the observation atdlational effects. The different layers of the
cloud gather different angular momenta, dependent on plosition in the generalizefl scheme.

the bosonic system has the additional harmonic trappingnpiad inx — y direction, we have to make sure that
Po < ag~ \/H/Two i.e. we want the focus on the region where the energy of tleéufdions is larger than any
trapping potential. On the other hand it is desired to stahéweak field regime where our predictions using
the unrenormalized Ginzburg-Landau model hold, thoughribit strictly necessary. This means thag < T,

or alternativelypon'/3 > 1, wheren is the particle density at the center of the trap. In pradfietranslates
into a beam widttpg of a few microns.

Upon turning on thé\ scheme, the radiated layer of the cloud obtains locally tigrikar velocity

w(z):a%f]z).

It follows that in a short period of time the internal illunaited part rotates and picks up the angular momentum

L =Ny (po) X (po) w(2)

whereN; (p) is the number of particles in a disk of radips
N (p) = rmdp?,

with d being the thickness of a layer of the “stack of pancakes-ittucture. The susceptibility comes from

the addition of two contribution, the “classical” contriimn of a number of thermal particles rotating, and
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a contribution due to the fluctuations that effectively reglthe overall susceptibility, because the superfluid

droplets resist rotation. The classical susceptibilitgasived from the classical free energy of rotation

1
Foi = —ZmpgNH (Po) 6or,

when it is considered thabo: = ws/2 such that the susceptibility per particle becomes

10%F 1,

X = ———=——= = =mpg.
¢ Njdwg 8

This susceptibility can be compared to the fluctuationatspsbility (3.16), (3.17)

Xn 2 ¢y [t (t+ny)) 2, trapped gas

X _3—NH 1/2

2 (12 +n2)]” uniform gas

Their contributions are added

X = Xcl+ X1l

At this point the center of each layer should rotate withrithividual frequency.

A subtle but important point is that the magnetic field impgoaegular velocity, rather than angular momen-
tum, even though angular momentum is naturally transfefn@d the laser beam onto the cloud. In order to
measure the susceptibility, one has to somehow perform aungraent of the momentum. There are certainly
many ways to do just that. One possible way is to ramp up tleantions for a short period of time and let
the angular momentum spread over the whole layer of raRliBecauser > pg the entire layer is essentially

classical with respect to its angular momentum. After elgration and subsequent return to the low-interaction
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regime the angular velocity of the layer becomes

~ Ny (po) X (Po) wa(2)

©2= N RXR 2
_ P Xi | ws(2)
R {1+X0(p0)} 2

Now the gradient can be used to measure a phase differengedyenheighboring layers. First after rotation
the whole cloud can be squeezed such that the cross sectioa dbud becomes elongated (e.g. in [63]). One
can now wait for a certain timeand make a projective measurement alongzthgis. If no time has passed
since the squeeze, the projection should be an oval as walleter with increasing time, this projection will
become round, as the relative phases between the layeveatdlifferent speeds. The estimated time for loss

of contrast will be
21

Dwouter

to ~

whereAwyyter is the difference in angular velocity of the outermost layérhis timetg is measurable and can
be observed at different temperatures in the vicinityfofFor T ~ 1 the fluctuational contribution is totally
negligible and can thus be used as a calibration. Measuandifferentt can show the critical powerlaw

dependence gf;
b(®) ,_ _ xi(0)

to(1) Xcl

~—

Also it is quite useful to note that the method does not dependhether one is in the Ginzburg-Landau regime
during the application of the magnetic field or not. In prpieione can observe the critical exponents very
close to the transition [74]. This method could then be useihterpolate the exact critical temperature by
interpolating the power law. Experiments on the criticalgerties of trapped boson systems have already been

performed [16] and box-like potentials to simulate unif@ystems are available [107].

3.6 Outlook

Observing the fluctuational behaviour close to a regulareBéisistein transition is exciting. As mentioned

in the general introduction, fermionic fluctuational ef'ebave been observed not only in low-dimensional
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systems but also in disordered materials. This begs thdiqneghether disorder can also drive a transition in
bosonic systems and if so, what are the properties of suemaition. The theory for such transition, typically
called the bosonic superfluid-insulator transition (SXists [47], yet so far no direct experimental observation,
especially with cold bosonic gases, has been made.

The model system for the superconducting insulator tramsis a two-dimensional array of traps or pockets
that each contain a condensate with a large number of mahicland a well defined phasg;. Such systems
are believed to appear naturally, as in granulated supdumors or poreous media filled with liquid helium
“He.

A somewhat intuitive picture can be obtained from the Bosélbhrd model (2.7). Let us assume that two
neighboring sited,and j, are strongly coupled to each other. It is intuitively claad a mean-field calculation
can show [108] that the Fock states are not a good descrjgtioparticles are very likely to tunnel in between
the two sites. Instead it is better to describe the statds aaherent semi-classical states (2.5) with ph#&kes
and@;, where we in addition assume that the mean field potentiat®tmsites are similar so the same particle
mean numberBhl is expected. Under these conditions the tunneling elennethiei Bose-Hubbard model takes

the form

(8] -3 (aa +aa) 6) = —an(e(3-9) 4 o0 -9))
= —2JNcos(6 — 6;)

= —Ejcos(8 - 6)),

whereE; is the Josephson energy of a Josephson junction, litergligaion that connects two reservoirs with

well defined phases. Obviously the coupling energy is mingiiwheng, — 6; = 0, (technically 2Zm, where

n is integer, but in a collection of strongly coupled sites pase-difference of 0 is preferred). In particular
one could imagine many of those single sites being stronglipled which then form grains each with well

defined phas®;. This coarse graining procedure provides one with the affegrain Hamiltonian, which is

very similar to the original Bose-Hubbard Hamiltonian. Brping around the mean field and integrating out
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the remaining fluctuations gives for only nearest neighbtaractions [109, 110]

~ U~
Hgr = Z ENiNi — GZ”J” cos(©; —@j).

Naturally these grains are still coupled to their nearegthi®rs. Such graining happens naturally in disordered
Bose-Hubbard models, even at zero temperature, as thadtiters and couplings are tuned and the onsite
chemical potentials are disordergd— ;. In both, ordered or disordered, scenarios one expects & izas
sition. In these transitions one basically transforms fitben state where the particles are localized on their
grains, or in the case of disorder on clusters of couplechgrdd a state where the particles are delocalized
effectively leasing to macroscopic superfluidity [47]. Two@l unnecessary complications resulting from the
Mermin-Wagner theorem and a lengthy discussion of the Beskiz-Kosterlitz-Thouless transition and related
effects [41], let us take the three dimensional case andsl&ak how a rotating trap setup might help to dis-
tinguish between different phases. The main idea is th&tréifit phases have a different moment of inertia.
One could compare the situation with the rotation of a cupn witbes of ice (insulating state), which behave
quite distinctly from a rotating cup filled with liquid (sughiid state). Something similar holds true for quan-
tum states where localized particles behave differentljenmotation than delocalized systems. To be more
specific we prove the almost trivial quantum version of Stggtheorem, namely that the moment of inertia of

non-overlapping system is additive and contains a compamféhe mean angular momentum.

Inset: Steiner’s theorem for quantum mechanical systems
Quite generally, when a physical system consists of sevemaloverlapping, non-entangled subsystems,
i.e. the wave function is vanishing in between the differtisets, then any local operaélaverage can be

decomposed into the average over the subsystems
(0) =3 (00,
|

whereQ; is the operatof projected onto the physical space over whichitthemany-body wave function is
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non-vanishing. Let us call these subsets grains. This afseduwolds true for the angular momentum operator

Let us decompose the position vector of a grain into
f=f+R,

whereR is the classical vector describing the center of mass of thimgndr’ is the position operator in the

center of mass coordinate system of the grain. Thus for desgrgin

For a rotation with angular velocity we know that(p) = ml\er =mNyrw x R.

The angular momentum of a singular grain thus becomes
(L) = (F X P) g+ MN\yR?,

where the(... )., denotes averaging with respect to a coordinate systemreeraeound the center of mass.

The moment of inertia is defined as
| = lim —<L>.
w—0 W

If we define the rest frame moment of inertia of a grain to be

(F X Plem
w—0 w
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then we have that for a grain not rotated around its centerasm
ltot = lgr + MgrR2

whereMy, is the total mass that rotates around the grain.

Especially for a system of non-overlapping grains, each séinter of mass vect®t;, holds

ltot = Z ('gr,i + Mgr,iRiz) )

1
which is the extension of the classical Steiner’s theorehis @llows us to describe the moment of inertia of a
more complicated quantum mechanical system, providedwfedhat its subcomponents are clearly separated

in space.

We estimate now that a granular system can have up to twdfisigmi drops in moment of inertia when
cooled down or the coupling is changed. The first drop appehes the bosons in the grains condense. Let us
assume, that the grains are disks of radug hen the classical moment of inertia, if the disk is in eitpuilim
with the rotating trap, is

MNyisk

2
ol disk = 8 D,

whereNyisk is the number of particles on a grain of disk shape. More gdlyehe classical moment of inertia
is given by
lar = MN(X+y?).

Now when a grain becomes superfluid, its center of mass moafenertia is diminished. Though the
superflow is rotationles§] x vs = 0, it still can carry angular momentum if the trap is anisotopis the system

is not rotation symmetric anymore. For the approximatioaragotropic harmonic traps one has [111]

2
|cond: 0 I(:I,
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where
_ <y2 _ x2>
(y2+x2)
Soin the case of a truly round disk the condensate momentetimmdoes vanish, but anisotropies givesita
residual moment of inertia. Steiner’s theorem then tellhasa system diy4i, identical grains will experience

adrop

Al = MNyrainNdisk (1 - 62) <X2 +y2> :

In the ideal case of round disks the remaining moment ofimmedmes merely from the center of mass motion

lem = z mNjiskRiz-

One can approximate this value for the limit of densely pddyeins. If the total radius of the rotating set of
grains isR, then there ar&®/D layers. Thenth layer has 6 grains and the radius of the distance to the center
of thenth layer isR, = nD giving a total moment of intertia of theth ring to bel, = 6n3mNyiskD?. After the

summation one finds that the the maximum expected drop of
3 R\?
Ay = SmNysR? (5) :

This might look odd at first sight, &/D could become fairly large at constaRthowever for smalD also the
number of particles on a grain become smateiD/R)?.

So one would expect that for perfectly round disks one hasseparate drops of ratio

Ay 1 (D 4 /D\?

Al 12 9"\ R R/’
so the relative effect becomes smaller for larger systemss axpected. Now it should be noted that this
effect might not be as clean in reality. For once one needsa skparation between the transitions, which in

principle should be possible by making the grain potentielsp enough to assure an early condensation there.

Next one would like to look at the disordered case, where lanch neighboring grains might interlock. This
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state would be similar to the Bose-Glass state, where neirgitpstates might, or might not be in resonance.
This however means that upon increasing disorder, one taxpect a clean drop of the moment of inertia.
Instead this will depends highly on the disorder configoratind as we just showed, making the system larger
to have more effective disorder averages would take awagaat lone of the signatures that shows that one
indeed has a superconductor insulator transition. Alsetheght be considerable moment of inertia in the full
superfluid state simply because of the geometric oriematidhe grains, where the holes between the grains
act as effective impurities that distort the superflow. Oehd need alternative ways to access that condensates
appear in the grains.

However this still opens up some exciting new pathways fobjrg small systems. Such systems could
be realized with microchips that carry a condensate thateaslowly rotated. Such chips can have almost

arbitrary potential landscapes and can simulate the grasnsell as disorder up to a certain extent [112].

3.7 Summary of Results for Bosonic Fluctuations

In this part of the thesis we have elucidated the relatignbatween superconducting fluctuations and bosonic
fluctuations and showed that there are strong similaribeshfe most part, but also some differences that can
be observed experimentally. We have argued that a GinzZbamgau like approach is applicable for bosons
as well because even above the critical temperature a deeer&ross-Pitaevskii equation holds. We looked
at a system of fermions with tunable interactions. In thergircoupling limit, these fermions form composite
bosons. We derived the bosonic limit of the fermionic flutiorapropagator and showed that it coincides with
a bosonic operator of the low energy fields, as a naive gueskhhave predicted. This and more has however
been done before in [17], as we found out later. Pure bosargtuthtion theory in clean systems is simpler than
the fermionic equivalent, because pair-splitting contiitns (like Maki-Thompson) do not need to be taken into
account. On the other hand care has to be taken as intermetiemecessary to allow for a Ginzburg-Landau
like description, which certainly does not hold for the riateracting Bose gas.

We are the first to describe how fluctuational effects on oladses differ between trapped and untrapped
systems, especially in the case of a quasi-magnetic suisitigpbf an anisotropically layered system. We ex-

pect stronger divergences in the uniform scenario, as fatlanthe coherence length divergeséas 11 com-
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pared to slower growt§ ~ 1-1/2 in trapped systems. We found for the layered three-dimeasenisotropic
system a cross-over from 2D to 3D fluctuational behaviounasbherence length grows close to the transition.
We further observed that= 2 is the upper critical dimension for trapped bosonic systdmt concluded that
local probes are still able to access fluctuational obsézgab

Arguably the main contribution is a scheme that createstanohgradients of artificial magnetic fields for
cold atom systems. We discussed that such a scheme is rolamsatl phase fluctuations when tuned into the
proper region in parameter space and how it allows to medbkareharacteristic power-law behaviour of the
fluctuational magnetic susceptibility.

Lastly we have argued how the rotational behaviour of smnapid might allow for an experimental mea-
surement of the characteristics of the different phaseshafsanic superfluid-insulator transition. For this we
generalized Steiner’s theorem to the case of disjoint quaslystems. Because the three phases, normal state,
superfluid grains and total superfluid system have diffememinent of inertia, measuring the rotational prop-
erties can give evidence of such a layered transition. Theatds that these observations will only be clear
in small traps and as disorder driven transitions ofteniredarge systems to realize instances in which the
disordered phase shows specific characteristics, like fimimpressibility for the disordered Mott-insulator to

superfluid transition [47].



Chapter 4

Binary one-dimensional mixtures

One dimensional systems are very special. Already in theéique chapters we saw that in one dimension the
critical temperature for bosonic condensation is reduoezkto and that true long-range behaviour cannot be
expected. On the other hand these systems are very appkatimg theoretical point of view, because at least
in the limit of low energies they can be solved exactly, evéth imteractions. We will use the next chapter to
give a small introduction to one-dimensional systems, biwzsend fermionic, which is based on the introductory
texts by Giamarchi and Cazalilla [113, 114]. We argue thatalw energy theories for bosons and fermions look
very similar and that correlations, though not infinite inga, can still be power-law like and, for all practical
purposes, quasi-long range.

Afterwards we present original research in the matter ofdingensional mixtures. We especially investi-

gate how the bosonic and fermionic dynamical structurefacftanges when interactions are turned on.

4.1 Introduction to One-Dimensional Systems

To understand the nature of one-dimensional systems, wethanderstand the fact that only in one dimension
it is possible to enumerate particles in a non-arbitrary ematinuous fashion, as a continuous mapping of a
higher dimensional space onto a one-dimensional line igpassible. Though the particles themselves might

be identical, they are always positioned on a line. If the imdirectional, let us call it the-axis, it is always

109
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possible to say that one particle is “ahead” of another garif its position is further down the positiveaxis.
This seems not very significant at first, but it allows us tocdég the system in a very distinct way. The
approach goes back to Haldane [21]. A labelling fi@l(k) is introduced. This field changes in between two
particle positions by the valuer such that(@ (X') — @ (x)) /2 rounded to the lower integer value tells the
number of particles in the interval — x. The field is so defined that at the position of #ik particle (here
we need that the particle has definite position with respettié other particles, which is only possible in one
dimension) the labelling field has the valgéx,) = 2rk. We can also assign to each particle the equilibrium
positionx, g = nglk and describe the displacement of the particle from thatiposi, = x, — X 0. Next we can

replace the particle density

p(X) = 5(x—x)

by the fieldg, as we know that at the particle positions the label field isudtipie of 21T

P10 =3 80x=X) = 3 106 (9] 601X —2k) = ‘*‘g_iix)zépmx)’
p

where in the last step the Poisson formula was used. Intiogtiee field relative to the equilibrium position

6 (x) = (2rmpx— @ (X)) /2, the density becomes
p(x) = [nb - 7—1T0x6(x)} > g2p(mx=6(x)) (4.1)
3

We can see that the exponential terms are fluctuating faspaed to thep = 0 term and tend to average out

over longer distances, so that a good approximation to thsityas
(X) ~n— 10 0(x)
p ~ T X 9

which invites the interpretation @0/ as a density fluctuation. First we want to describe the basoeation

and annihilation operators using the new fields. To do thisigethe amplitude-phase representation (2.12),
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but to avoid naming confusion we replace the phase by ther lptt

W(x) = /p (e

where the density can be expressed in terms of the fields (Blblgbtain a complete representation in terms of

the fieldsp and6 we have to deduce their commutation relationships. Bedaundmsons

(4609, W ()] = 8 (x=x),

and given (4.1), the commutation relation must be
1 .
[Eﬁxe(x),q}(x’)} 5 (x=X).

We can defind1 = —dx0/m as the canonically conjugate momentumgtx). Again, we have a choice here
of whether we wan® the field anddy@ the conjugate momentum. For the resultant theory it is ofs®u
inconsequential as the low energy Hamiltonian is symmaifitic respect tap <+ 8 and an appropriate rescaling.
Naturally one can do the same thing for fermions, i.e. dediridabelling field etc. However, in order for
the fermion field to be anticommutative one has to perfornrdalo-Wigner transformation of the bosonic field,

which essentially is a multiplication by the labeling field

Wi = gloeza0,

This leads finally to the Haldane representation of the biesmmd fermionic fields in terms of the new fields

Bandeg

1/2 ) )
wg _ {nb— OXG:[(X)} ze|2p(nnbx—9b(x))e—|<po(x) (4.2)
p
a0:(x) 1Y% . - y
t_ _ OxUt i(2p+1) (Tmsx—65 () i@f (X)
1= - B0y st
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whereny, ¢+ are the equilibrium values of the respective densities.

The low energy Hamiltonian can be found phenomenologicdtihas to be an expansion in powers of
0x6 anddx@. In an inversion symmetric system(x) — p(—x) and ¢/(x) — @ (—x) must hold. This leads to
the conditions thady6 (x) — dx6(—x) anddk@(x) — —x@(—x). Thus a Hamiltonian cannot contain the term
o0k0 0@, as it is odd under inversion and would break the inversionmsginy. The Hamiltonian that describes
the effective low energy properties of a massless one-dimeal system can only contain even powers of the

operators. Its most general form is thus

v K 2 T_,
H_é/dx[ﬁ(ax(p) +R|'|},

where the choice of andK as independent parameters is motivated by the observaabihte speed of sound

of such a system is indeed K is the so called Luttinger parameter and contains all thermétion about

the interactions. For repulsive bosois;> 1 and becomes smaller for increasing interactions. Forlsegu
fermionsK < 1, and only for the free cag¢€ = 1. This leads to the insight that hardcore bosons, which means
bosons with infinitely strong short range repulsions, angivedent to free fermions in one dimension, which
can be verified using exact solutions [20].

The action that is associated with such a Hamiltonian is

S— /OB dr/dx{i %axq)ate— . (%(dxqo)er = (axe)z)} .

Substituting the Fourier basis for real fields and applyirggdtandard integration of bosonic Gaussian fields we

arrive at the following correlator
VK, —k, LB

(0" (k)6 (k) = =200

)

where the denominator shows that the excitations are inpleedonic, for after analytic continuation the poles
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are atw = vk Using similar results fop we can find the correlation functions for the fields

(160)-0(0)P) =KFi(r),

wherer = (x,7) and [113]

1 X2+ (v|T| + a)?

az

)

F, (r) = —iarg|vt + aSign(t) + ix],

with a being a small cutoff parameter. Since we can deconstrudsfielthe Haldane representation (4.2), we

are interested in correlators of the type

)

<eiA[9(r)*9(0)]eiB[(P(r)ﬂP(O)]>
which according to the Debye-Waller relation for a quadrattion is the same as

exp|-AZ(10.(r) - 0(0))%) — BX([g(r) ~ 9(0)])” - 2AB(B (1) @ (0))] .

The last exponent creates merely a phase factor we want leat@g it can be absorbed into the definition
of the operators we want to average over. More interestitighy functional causes the correlation to fall of

in a power-law fashion

AK+ B
2 2K
<eiA[9(f)*9(0)]eiB[<P(r)*<P(0)]> N (0’—2 .
X2+ (V|T|+a)

This is a very general result and shows that low energy systewne dimension seem to be always in a critical

state with power-law correlators, but non-universal exgrds. This coincides with the fact that there is no real
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phase transition in one dimension (Mermin-Wagner) as tbarmot be true long range order. For practical
purposes there is a long-range order though, as with thdtataliations taken into account, correlations fall
off exponentially for distances larger thdn~ vg3. If B is large, theré can easily outgrow the finite size of the
system. If the correlator is decaying slowly enough, we heuasi long-range order. Moreover, phases can be

characterized by the operat@rassociated with the order parameter for which the susdkqytib

X (kon) = /OB dT/dX<OT (x,1)O(0, O)>e—ikx+iwhr

diverges the strongest. Quite generally wi{@i(r)O(0)) ~ r~", theny ~ (max[k, wn])¥ 2, as we can see by
dimensional analysis. Thus the strongest divergence ofubeeptibility corresponds to the slowest decaying
correlator. Though at each point all correlators fall ofpasver-laws, one can define phase diagrams with phase
boundaries where there are qualitative changes in therdange behaviour. We can imagine the system trying
to order, which however is not allowed in one dimension. Huhe system is copied and weakly linked to its
nearest neighbors to form a three-dimensional system @fstuben operators with a divergent susceptibility
can form order under the weakest link to neighbors and theesygxhibits transition into a phase. In this
way one can already classify one dimensional phases bywleild-be behaviour when generalized to three
dimensions. By changing microscopic parameters the stkadegsying correlator may change, which in return
can be considered a 1D quantum phase transition. In the eetbs we investigate a system where long range

correlations are dominated by composite operators, deecpblarons.

4.2 One-dimensional mixtures

We want to investigate the edge-state singularity of a amedsional mixture of bosons and fermions. The
quantities that can describe the excitation spectrum ardyhamical structure factors, the susceptibility of the

system with respect to perturbations that couple to theitjendere we have to differentiate between a bosonic
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and a fermionic dynamical structure factor (DSF)

S (q.0) = / dxde @ (py (x,t) 1 (0,0)

1 (6.) = [ il % (pr (x)pr (0.0)).

This is a convenient quantity, as it is experimentally asitis via different methods such as Bragg scattering or
photoemission spectroscopy (see e.g. [115, 116]). In al ddtinger liquid the excitation spectrum of density

waves should lead to DSF of the form

S(q, w) ~ (9] (w—v|dl),

which indeed holds for small momergaHowever broadening has to be taken into account even at graat
zero temperature to understand such phenomena as Coulamfld].
Another case for comparison are free fermions with dispersik) — pu = (k? —kZ) /2m, where the DSF

can be directly calculated to give fqr< 2kg

Sof (0 w) = %@(qZ/Zm— w—Vveq]) = |—r§|e<w—wf<q>>e<w+<q>—w>,

whereve = ke /mis the Fermi velocity. Clearly for a giveq there exist threshold frequencies., where

w_ = VEq— g?/mis the minimum energy necessary to remove a particle frombtitom of the Fermi sea
under momentum conservation ang = (ke + q)2/2m— kZ /2mis the maximum energy where the system can
be excited by taking fermions right at the Fermi edge andtiexcihem to momenturke + g. In between these
values the DSF is a constant and outside it vanishes. Howietais been shown that the clear features of the
free DSF are broadened into power-law behaviour when ictierss are present fao > w_ as|w— w_|~“ and

for w close tow; as|w— oo+|’3, which are known as Fermi-edge singularities [118, 119]. Wdat to study
how these singularities, which essentially appear duegtexiitation of low-energetic modes close to the Fermi

surface, behave in mixtures.
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The starting point for the interacting 1D dilute gas is a Haomian of the form [22]

Hou= [ x5 |y S 900 )~ pa)] 455 [ 0 a0

Itis convenientto replace the operators by their Haldapeasentation (4.2), which then gives the Hamiltonian

V] K Y I
Hiot = b/dx[ o 5)(%) _rlb:| f/dx[Ef 0x§0f)2+K—fr|%]

/dx[ﬂbl'lf+nfnbcos(2(9f 6b) + 1(nf —np) X) ],

t3 /Kbe

where only the most relevant terms were kept. The terms wdrdyea single species occured were put into Lut-
tinger form, and the interspecies interaction term wasaegd bygt, — g/\/m for future convenience. We
can see that the last term, which describes the back-dogttegtween fermions and bosons, makes the Hamil-
tonian look locally like a sine-Gordon Hamiltonian and diatés very fast in space Whefnf — nb\ becomes
large, so that we can neglect it compared tolthé1; terms. In the following we will assume this assumption

to hold. The effective Hamiltonian then becomes

K| m
Htot = /d [ b 5x(Po) } /dx[é 3x(0f Kfrl?
—— [ dX1pM+.
+2\/i<b_r<f/ o1t

The Hamiltonian can be diagonalized (see appendix) intoumamupled, polaronic modes (see below) [23, 22]

V. 1 Vv 1
Hiot = Ea/dx[i (dx%)z-i— nﬂﬁ] + ?A/dx[i (0X(0A)2—|— nﬂ%\] ) (4.3)

where

1 1
Va/a= > (V+vF) = 5\/(V% —Vﬁ) + GVt Vb,

One can see that for too strong interactions, one of the twadasibecomes unstable, i.e. acquires an imaginary

component. For very strong repulsive interactions thisldowean a physical separation (demixing) of the two
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liquids, whereas for very strong attractive interactidns twould mean the formation of boson-fermion dimers
[22].
One could ask, what are the operators that correspond toethenmodes. A good ansatz are the dressed

particle states [23]
f=e ey (x), a=eM90yy(x),

which are composite operators and describe polarons [1B]ywet undetermined real parametersaand A.
Their correlators can be straightforwardly calculatedhgdhe techniques from the previous section and the

Hamiltonian 4.3. Their correlators are of the form
(8(&"(0)) ~ [x|2(A* -2V +C)

where the constants, B andC are functions of the Luttinger parameters of the originatiiiand their mixing
angle tan @ (see appendix for more details (5.3)). One can maximize xpereent to find the longest range

correlations, which in the limit of weak interactions are

o0 ~
N gbf’ Ao — Obf
Obb

Ne
The physical intuition for this result is that a boson, ttgbiits nearest neighbor interaction, locally enhances or
supresses a cloud gf fermions and a fermion locally enhances or suppresses d ofo\t bosons, depending
on the sign of the interaction.

We want to investigate the edge state spectrum. Physitadiyrieans that with a probe bosons or fermions
are excited and the resultant spectrum is measured. Suabtbe pansfers energy and momentum into the
system and can thus be be quantified by a characteristia#@raitfrequencyw and momentum vectay. In
principle there are large areasdn- w space that allow for excitation, however they tend to be ificult
to describe analytically, because the amount of possibhauayc processes is large. The situation is however
different at the edge of the spectrum, where the excessyoarpp of the principal impurity excitation energy

& is small, at least small enough to only excite the lowestdyimodes of the system, namely the Luttinger



CHAPTER 4. BINARY ONE-DIMENSIONAL MIXTURES 118

modes.
In fact we can postulate an impurity Hamiltonian that ddsesithe impurity, the two Luttinger modes and

interactions between the impurity and the low energy mogés5]

Hiot = Ha+ Ha + Himp + Hint

Va/A 1
Ha/A: %/dx[é (ax%/A)2+ T[ﬂg/A

Himp — / dxd"(x) [g — vady] d(x)

Hint = / dX [Va o0k@n + Va o0k +VanMa +Vanla) d'd(x). (4.4)

In the Hamiltoniarg is the dispersion relation of the impurity amgl= dk& is the group velocity. Th¥; 4 4/n

are constants that we have to determine.

4.2.1 Description of the impurities

We want to describe what happens when one impurity is imrderséwo liquids. This step is not strictly
necessary to find the behaviour of the dynamical structuterfafor the edge-state singularity, it is nonetheless
an interesting exercise to gain physical insight. In genertuid without impurity can be described by its
entropy functional

S= S(Ev PNy, N25V7V51’V52) = S(S, gvplap27V517V52) )

which only depends on the energy dengitynomentum densityg, the superfluid particle densitigs » and
the superfluid velocitiesg » [96]. That has the important implication that an interagtmixture of fluids has
only one normal component (because the momentum transtecoapled and only one momentum densjty
exists) rather than a normal component for each fluid. Adddily there are up to two superfluid components,
characterized by a local pha¥4 »(x). One might ask whether the description by superfluid is eeien
one dimension. That impurities can move in a one-dimensgysiem without dissipation follows from the
quasi-order and the appearance of a critical velocity [120]

The Lagrangian of two non-interacting liquids is given ie thydrodynamical description by ([28])



CHAPTER 4. BINARY ONE-DIMENSIONAL MIXTURES 119

Lo= /dX [ — &1 (M) + @ — £2(y)]
= /dX (U1 — &1 (1) + plonz — €2 (N2)]

=Lo(H12,Mmp2).

Hereg is the energy density of the fluid and in equilibrium

0§
Hi = pi (ni):d_nli'

The grandcanonical potential for such an equilibrium flgid i

Qo (M12) = —Lo(M1,2,N12).

To describe the impurity, it is convenient to focus on iteeffon the fluid. If the impurity is small, which
means its scale i &, and it equilibrates fast with its immediate environmerg, r% > g, the equilibration
time scaler is much smaller than the time scale of the phonons surrogrigithen the effect of the impurity is
merely to deplete locally particléd; » out of the superfluids and to cause phdse drops along the superfluid
[121, 122]. We want to find a model that describes these Vasab terms of the momentum of the impurity.

Let us assume an impurity with malgsmoves through the system with velocify= X. Instead of looking
at a moving impurity, one can also make a Galileian transfiotma reference frame that moves with velocity

—V in which the impurity stands still. Such a transformatioeates currents in the fluids
ji=—nv

and shifts the chemical potential

T
Hi = Hi+m
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with my the mass of the moved particles of the respective liquid dmatiened quantities are after the transfor-
mation.
Importantly, we also find that
i

)

n N
which means that the currents are not independent of eaeh oth

The impurity effect can then be described as a shift in thedj@anonical potential in terms of the energy

of the impurity as well as a change in the potential of theitigwaround it
Qg = Eq — N1 — 1Ny

TheN; have a negative sign, because they are taken out of the liquid

The energy of the impurity is also affected by the shift

(M Np + MpNp) V2

Ey=Eq— PV + 5

We can now relate the shift in thermodynamic potential tolthgrangian of an impurity viag = —Q/d,

La (Vo) = —Eq+ (KiNs+ paNe ) = —Qg (7', 1),

This is interesting, as on one side we have a Lagrangian attteasther a proper thermodynamic potential, i.e.
a statistical quantity.
In the next step we vary the thermodynamic quantijigs which allows us to identify the conjugate vari-

ables
dQy = Wad j; + Wad jo + Nodpty + Nod iy

with
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Y :(9ji/Q ,N; Zﬁui/Q .

In equilibrium,¥; andN; are locked¥; = W;(N;). However, for the kind of processes which we consider,
the ®;,N; should be considered as dynamical variables. Legendreftiaming the grandcanonical potential

gives a quasi Hamiltonian

Hq (W12,N12) = Qld - Z (ji/LlJi + ui/Ni)

d(Ho) == Y (Jiaw + wdN).

Following, this gives for the impurity Lagrangian

La(V,W12,Ni2) = % (M - ZmM) VZ-V (Z ni””i) - (Z IJiNi> —Hg (W12,N12). (4.5)

This Lagrangian so far describes only the impurity that isantact with its local environment, but not yet
the coupling to the phonons, which we will derive later. Faclsa Lagrangian one can define the canonical

momentum
oL

P=og = (M—Zmni>v+|2nilvi

and the corresponding full Hamiltonian

H(PW,N)=PV—L

1(P—3inW)?
— T 2N SN Hy (We 2, Ny o).
2 M= 5;mN IZM i +Ha (W1,2,N12)

The corresponding equations of motion are



CHAPTER 4. BINARY ONE-DIMENSIONAL MIXTURES 122

—aniH = niV—quin =0

—ﬁNiH = —Ui— %mvz—dNi Hg = 0.

Also needed is the fact that = {2 j, which means thaj, = {L9j, and translates t#; = 2W¥,.
At this point we have to make assumptions about the shapg.dfor weak independent coupling between

the impurity and the two liquids, the energy of the impurignde approximated by the energy of depleton-

solitons (see appendix 5.7) as

4 va\¥? 4 v2\ /2
[ 1- — z 1-
d 3c1n1( c§> +302n2( c§> )

whereg; is the speed of sound of thih liquid.

Also we do know the momentum of the depleton-impurity frontrmgcopic considerations (see appendix

2 2
P=-2n ! 1—V—2+arcsin<¥) +—2ny x 1—V—+arcsin(x) .
C1 C1 C1 Co C% Co

These lead to the conditions

5.7)

JP .V
— = —-2arcsin—
0ni Ci

and

2\ 1/2
O—E:ZCi (1—\/—> .

on c?

Lastly we can relate some of the partial derivatives to edlabroBy using that

o _ mef

0ni n;
and that for the dilute system the energy per particle goes-as;(n;) + gmn, we can replace andV deriva-
tives byu andj derivates. When we keep in mind thét= d;, Q andN; = d,;, Q we obtain from the Hamiltonian

equations a system of equations that allows us to solv&’ttendN; in terms of the impurity velocity/, the

densitie;, the speeds of soundsand the interaction term
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Z_\I;—MV:n1LP1+nsz—m1VN1—m2VN2:R
aL myc3 oP JE
— =V¥ ;- —AN;—g\p= —V — —
ong gt ohe ony ony’
L mzc% JoP JE
S—=VW— —EN—gNy = ——V — ——.
0[‘12 2 ny 2 gNl anz 0[‘12

The additional condition to close the system is thg@¥; = no,W,, which is a direct consequence from the fact
that any equilibrium flow in one of the liquids must be accompd by a flow in the other liquid. This set of

equations can be inverted. Let us assume the cage-df. Then eliminating¥; in favor of W,we obtain

W K1t W10+ KaW20
Ny | = Kzr:%c/% (ﬂ—i Wo0— Lp1,0) +Nyo |
N Klr:ll—\c/% (2—; WYio— '*Pz,o) + N2
where Ua
Wio= —2arcsin::ii, Nio= % (1— V—CIZZ) /
and

%)
)09

This is reassuring, as these equations resemble the eqoétiosingle liquid-impurity system. The phases are

Ki =

weighted superpositions of the original phases whereaddpketion clouds tend to change only a little.
When we reintroduce thg, the picture does not change that drastically. If weHet mlcfmzcg and
Xi =ng/E, A = (gm— mciz) andn; = (grr— mvz) /E , where the bar denotes the opposite particle species,
then we find for the new values
1 %K,l‘-l-’]_,o + KIZ‘-IJ2,0+

LPZ - \VZ V2 mV Ny VN ’ (46)
[1— ;J + [1— ;2} —X1M1—X2N2 | +X2 ()\2—1”1 F AT — W0 — '71‘“2,0)
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wherek; = {1— %;} :

For the number occupations we have

2

N 1 (N2 — A2+ X2) (Nwz—Nqu)-i-(/\2”‘2;2—1—()\2—172)%) N1
g e |

z g |~ XM= XNz | —l—( zT—(nz—i—Xl)T) 2.0 |

4.7)

N 1 (N1 — A1+ X1) (Nw, —Ny,) + (/\1mlTV2 +(A1—n1) mlTC%) N0
S neeT A8

z g |~ XM= XNz | —l—( 1T_(’71+X2)T) 2.0 |

whereNy, = nVW; /E.

As expected, the interaction shifts the depletion and phesps. We have to keep in mind that the proper
units are recovered whean— hn. Then,A and x are dimensionless and correspond to energy ratios.xThe
are proportional to the potential energy felt by specidge to the other particles. Thgis that value corrected
by the kinetic energy of the particle travelling at the speédound of the opposite species, and tjés that

value, but corresponding to the speed of the impurity.

4.2.2 The coupling of the impurity to phonons

So far we looked at the impurity as an isolated unit. To untdexswhy the creation of an impurity may cause
excitations of the Luttinger liquid, we have to understand/tthe coupling comes to happen. In the derivation
we use only gauge and Galilean invariance to find that the lcmupetween the impurity and the phonons
is necessary, as these arguments are very general andllgasibaw [121]. Finally we relate the coupling
constants to thermodynamical quantities.

We remember that we identified the phononic fields with thesiigvariationsp(x) = dx6(x)/m of the
medium and the flow(x) = dx@(x)/m of the medium, such that— n+ p(x) andyu — u — @—mi?/2. The

phononic Lagrangian can be obtained by taking only the slasations of the hydrodynamic Lagrangian den-
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sity . = un—ep(n) [28] into account

Lo = / dXLZ (N(x.1), L(x 1)) — 2 (n, )]

2
—/dx[—pu—m—<eo<n+p>—eo<n>—up> ,

wheregy is the hydrodynamic energy functional of the liquid.
When the impurity is present, locally the supercurrent diecchemical potential are affected by the impurity
mZ m\V-u?® m\v?

IJIZIJ—QD—T-F > —u(n)+7—(¢+VdXCD)

. 1 a
'=—(+p)(V-u=—nV——(6+Vd).

where it was used that the relative velocity between liquid enpurity isV — u. In the last step we used the
exact continuity equatioi/ = —n(x)u= — (n+ p) u. Also we have to keep in mind, that the phonon variables
are locally evaluated at the impurity positit). We can now generalize the impurity Lagrangian 4.5 to take
the phononic part into account and obtain the correct cogplvith the total time derivative

d .
azat‘i‘xax:at‘Fvax

we get the phonon-impurity interaction

1. d d
Lint = Ewae(x,t)ﬁ-Na@(X,t).

This type of interaction can be transformed into the morermominteraction term in (4.4). An easy way to
see this is by using the chiral representation [113] whezgttononic fields are written as right and left moving
componenty+ (x,t) = x+ (XxF ct), wherec is the speed of sounds of the Luttinger liquid. We also knacat th

the impurity has a classical trajectoXy= V, so that the total derivatives become

d d d

aqo, ae thi (X,t) = (VFc) o= (X, 1) ~ kO (X,1),0k@(X,1).
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Such terms can be second-quantized into the form of the medgl

Vpdx0(X,t) = /dxaxe(x,t)é(x— X)

— /dxvgaxe(x,t)za(x_m = /dxvgaxe(x,t)de

which allows to relate thdl, W of the impurity to the interaction constants with the liquid

N
Vp=———o
T VKc
VKY

We can now use a similar derivation to find a physical intagiien of the coupling constants. Let us for now

focus on the coupling of the form

Hint:/dXV<p0X(pde:/dxm\{pude.

Now let us assume that the field is flowing with veloaityn the lab frame and an impurity is created with
momentuny in the comoving frame. The momentum in the lab frame willdoe q+ myu, wheremy is the
bare mass of the impurity. The energy of the impurity in theftame ise (p = g+ mgu) = £(q) +qu-+mgu?/2,
which follows from Galilean invariance [123]. Observingthystem from the point of view of the lab frame,

i.e. replacingg = p — mgu we find

2

u
£(p) = £ (p— myu) + (p— Mau) U+ mu? /2 ~ &(p) — Mgudpe + pu—My— ~ £(p) + (P — Mudpe) U

At the same time for small momenta we can assume the effentgam® for the impurity

2

~egt P
f(p)~€o+2m*-

We get thus for the coupling,



CHAPTER 4. BINARY ONE-DIMENSIONAL MIXTURES 127

—mydpe 1-T8  mr—

m m m

Vo

Thus the ternvy, ~ 5T”‘dvd, wheredmis the change in effective mass of the impurity.

A similar thing can be found for the teriy. We see that it directly couples to the change in density,ifo w

& J¢€ d&q 040
& (PN+p) = Eg(P.N)+ 510 = Eg(P.N) + 5 = Eg(PN) + 5
or
. 10¢gy
Vo= 20

4.2.3 The Dynamical Structure Factor

As a reminder, we want to use our model (4.4) to find the dynalstcucture factors

S (q.w) = / dxdte - (py (x,t) 1 (0,0)

51 (6.) = [ il % (pr (x1)pr (0.0)),

close to the edge of the spectrum. This means that all theablaenergy and momentum is deposited into the
moving impurity and the low-lying Luttinger modes of thedid. It is clear that the impurity carries almost all
of the momentum, as the momentum and energy are in a lingaiorghip for the Luttinger liquid and therefore
low energetic modes must only have little excess momentais.thus useful to project the relevant creation

and annihilation operators onto the physically relevabbsunds [24]

a(x) = a(x)|, +ed(x),

c(x) = c(¥)| +€d(x).
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Using Haldane's representation 4.2 for the Luttinger congus

)], = nb+nb1/2<zé2pmbx B() - <x>>

|LL i + M) 1/2 <Ze 2p+1)(mix—6¢ (X)) g i(pf(X)>7

we can see that the fermions have no zero momentum contribyintit rather that their lowest momenta are the
two Fermi pointstrm; in one dimension. It is common to only take the lowest lypgalues. That however
is not strictly necessary and we want to keep the option opehdving contributions that are not of the lowest
type. However we take into account that the prefadiars I'Ii]l/2 fluctuates only on a small scatell; /n; <« 1
and we can approximate themasnl/ 2

The density-density correlation can then, using momentumservation and Haldane’s representation (4.2),

be rewritten as

(0 (%,1) 9o (0,0)) = 5 & cf 2P g a(le 20Ol (0l (4.9)
p

+%é‘qx<e—i2peb<x> (9 ¢ ff §2PBb(0) gl (0 >

where in the first sum the momema= —k — 2mrpn, and in the second sum= 2mpn, + k.

Equivalently for the fermions

(ps (x,t)p1 (0,0)) = Zel <dTe' 2p+1)65 (x) g0 (X) g—1(2p+1)61 (0) o i(pf(o)d0>
P
+ Zeiqx <e*i(29+1)9f (0 g~191(X) g gl (2P + 1161 (O) gl (0)> ’
P
with q= —k— (2p+ 1) rms in the first sum andj = (2p+ 1) rm; + k in the second.

To evaluate the correlations we have to use the transfooms(b.2) and (5.4) from the appendix to express

the purely fermionic fields in terms of the diagonal polaodirelds. However, in the Hamiltonian there is still
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the interaction of the polaronic fields with the impurity
Hint = / dX[Va’<p(?x§0a+VA,q3(?xq0A—|—Va,|-||-|a—|—VA’r| HA} de.

Since the interaction Hamiltonian is not quartic, it can beged away by a transformation of the form [124]

U _exp[i/dx > (Ci.66; +Cj o) d'd(x)| = expliS],
j=a,A

where theC; g/, are constants. We want the new Hamiltonian to be of the sifiopie
Hnew=U THoIdU = Ha + Ha+ Hg + const

We can see that this works by using the canonical relatiprgtti) , 0 (x)] = i3 (x— X') and [d(x),dT(X)] =
d0(x—X), because

X! X!
/ dx [0(x).36(x)] = m/ 3(x—x)dxX = in® (x' —X),
0 0

from which follows thatf 6(x), d@(X)] = inm® (X — x),, where® (x) is the Heaviside function. Additionally we
need that if A, B] = c-numberthen[A, f (B)] = [A,B] ' (B), given thatf is sufficiently analytic.

Because the Hamiltonian is quadratic we have the finite esipan
t , 1. .
Hnew = U "HoldU = Hold — [iS,Hold] + > [iS, [iS, Hola] -

This expansion is sufficient § [iS, [iS, Hoia]] commutes with all other operators, since the next term wbeld
the commutator oS with a constant, which vanishes. So if we choi%ig such a way that [iS, Hejg] = —Hint
then the interaction is indeed gone. We have to check thaéwdmteraction terms are created during the trans-
formation. Indeed, the basic commutators can be straighdfally calculated. For the Luttinger Hamiltonian

Hu = 2 [ dx [(axe)%r (axgo)z] , the impurity Hamiltoniary = &5 [ dxd'd andHin = [ dx (Va8 +Vydk®),
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iS=i [dx (Cg8+Cyp)d'd gives

[lS, H|_|_] = —V/dX (Ceaxe +C(paxq0) de,
[iS,Hg] =0

[|S, Hint] = —7T/dX (CQV(p'i‘C(pVQ) de

VTT

[iS,[iS,H]] = >

/ dx(d'd)® (C3 +Cj) = const.

Thus choosing

allows us to diagonalize our Hamiltonian, where in the newniitanian merely the dispersion relation of the
impurity is shifted.
The transformation also has to be applied to our previousabpes. While the Luttinger fields stay unaf-

fected, the impurity operator is translated by an operdttiveform é5, S= fdxCXde(x)
[|S, dx] = iCXdX

and thus the expansion BffdU does not terminate, but rather becomes

) = de*.

d(x) — d' (x)g Zi-an(Ci.06+C0®) )

utd(x)u =d(x) ( io (—r?!x)”

In our problem

We can gain an intuition for this. The creation or destruttid an impurity creates locally an excitation in
the Luttinger liquid, expressed by the exponential clotid-eA(Cie6i+Cio®) ™ Now the dynamical structure
factors can be considerably simplified, as within the catreh factors the impurities can be separated out. At

the same time we can rewrite everything in terms of the paiarelds@, A, 62 a. One is left with
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S (0, w) =
/ dx / a (<ej(2p617cA,e)6A<x,t>é(el—cA,mA(x,wefi(2p617cA,e)eA<o,0>é(sl—cA,mA(o,m> y
(d'

dte
(x)d(0))(---)aa)

where the the tern... ) o_, , is similar to the first one, except that it contains the figidb, and the correspond-

ing prefactors. Here it did not matter, which of the two comeiats of (4.9) were used, as they both contribute
in the same way. The averagd' (x)d (0)) = e @5 (x— v4t). The remaining integral can be performed us-
ing standard methods [113] where the exponents createdebfyelids add up. At the edge of the spectra the

dynamical structure factors show the characteristic biehav

So.1(@,0) ~ |0 — a1
wherewy is the energy of the impurity and
1 2 2 2 2
Zp(p) = > [(Zpél_CA,Q) + (2p% —Ca0) "+ (61— Cap) + (€2—Cayg) } ; (4.10)
1
Zi(p) = > [(2p31+[31—CA,9)2+ (2p52+52—ca,9)2+ (Vl—CA,(p)2+ (V?_Ca,q))z} ,

and where the, 3,y,d come from the diagonalization of the Luttinger modes (%2). One can check

that for non-interacting mixtures and non interacting imiies (Cg,, — O,va — Vp andva — V) the free cases

are recovered

1 1
Zi = [Kf+—:|.

Zy = =z
D 2 Ki

1
Ko’

NI =

We have to keep in mind, that these are fhe 0 cases. Because for weakly repulsive bosgns> 1 the
exponent in the structure factor can be negative. We havedp ln mind, that th@ = 0 value in the bosonic

case correspond to pure phase fluctuations, which do ndtfexithe fermions, as the Fermi momenta always
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play a role there. One the other hand density fluctuationsarbbsonic case lead fpr= 1 to

1 1
Zp == |4Kp,+ — 1
b 2[ b+KJ>>,

which means that here the structure factor is strongly ®g3@d at the edges.

The p in the formulae 4.10 should be chosen to minimizeKhg, as that is the mode that has the longest
range and thus dominates the small energy behaviour. yghatiis thep = 0 mode , but that is not necessarily
a given if the other factors balance it. Remembering @af o = %”‘Vvd could take a wide range of values. In
general such effects can happen W*@%@’ < V¢ ,p. A similar observation has been made in [125].

If we neglect the interactions between the impurity and theids, i.e.C, /4 = 0, and assume weak inter-

liquid interactions such thaf, = v, andvy = v;, the new exponents become

p=o_1[1 1

zp _Z_KbCO§w+KfSIn2w:|

71 M (4 + 1 cod Y+ ( 4K + 1 siffy
b T2 [\"PTK, "X
z?z":% _(Kw%) cod P + (Kb+ Kib) sinzw].

First of all it is interesting to see, that bofh= 0 cases generally lead to an increased suppression, because
most commonlKy, > Ks. Especially forKs the change can be very significant, as here the leading tiomec
is Ky si? i, which even for smallp can be significant enough to suppress the divergence caetyplet

How can one interpret these results? It is quite valuablesterrack to the earliest formulation of the
problem, namely the X-ray Fermi edge singularity [119]. Aectron from a low-lying valence band is excited
into the conduction band of a metal. Mahan was the first totpmit that the resulting deep hole and the
fermions close to the Fermi edge can interact leading torithgnaic corrections to the polarisation bubble and
power-law singularities at the absorption edges. It wasdvawalso seen, that by far not all metals did exhibit
such divergencies. A second effect called the orthoggneditastrophe can lead to logarithmic corrections
but with the opposite sign that can not only suppress the gawalivergence, but even the edge itself [126,
127]. The orthogonality catastrophe appears in manygdagistems, when suddenly the potential the particles

experience changes. Though the overlap between singlielpatates is still close to unity, in many-particle
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states the effect exponentiates and generally leads toeagion of the singularity at the edge, unless the
Mahan contribution is stronger. It seems that a similar rmadm happens also in one dimension. The terms
containing theCa 5 are the Mahan terms, the rest can be described in terms ofttamgonality catastrophy,

which for bosons can be seen in the exact solutions [20]. @neaggue that the bosonic soliton impurities are
a bigger distortion of the many-body wavefunction, leadimg stronger suppression when density fluctuations

are involved. This view is supported by direct calculatifi8].

4.2.4 Summary of Results for 1D mixtures

We established that the edge-state singularity behavia@yr persist in bosonic and fermionic mixtures, yet
generally is suppressed compared to the non-interactisgy a&fe calculated the depleton-impurity parameters
when two interacting superfluids are present, see (4.6) 4. (These results depend on the insight that the
two superfluid phase jumps must be coupled in equilibriumasibns. These results are useful, as they are
directly related to the coupling constants in between thdgland the impurity (4.8). Further we calculated the
dynamical structure factor for such a mixture. We includeghbr order terms in the Haldane representation
which can become relevant when the impurity velocity becotamer than the speed of sound of the Luttinger
liquids. Such Cherenkov like effects were considered leeifof121]. The coupling between the impurity and
the polaronic cloud that is created locally around it creatghase-shift in the operators, which in theory can
at some points be cancelled by the higher order phase-sghifign the Haldane representation. This however
would require considerable amounts of fine-tuning. In galntée coupling to the additional Luttinger channel
suppresses the divergence of the dynamical structurerfactess cancelled by the before mentioned impurity-
liquid interactions. Adding even more weakly interactimgmponents to the liquid would further increase
the tendency of suppression. This effect would be most ealily in the fermionic structure factor, where
already small density-density interactions with the basoan lead to a suppression due to the largeness of
Kp. These findings should be experimentally accessible wheticoniponent one-dimensional systems with

tunable interactions are considered.
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Appendix

5.1 Bosonic Gaussian Integrals

We want to explain how bosonic gaussian integrals can bealleaddl. Given a matriij (N x N) whoseN

eigenvaluesl, have non-negative real parts, iRed > 0, one can calculate general integrals of the form
—sNaMijaj+yN[ainj+nia]
Zn, |_|dRea( (Imay) e 20 & Midit 213 mitna],

To solve it, one assumes for the time being thlais Hermitian, which means its eigenvalues are real and the
matrix can be written aM = UTDU ,whereU is a unitary transformation and a diagonal matrix with real
eigenvaluesl;. One can equivalently let the unitary transformation acttet to obtain a new set of complex
variablesci = 3 ; Uija;, which, however, are integrated over a purely real diagoratix

N Jed M

N N
Z[n,n*]= <7_1T) |—| /d(Req;)d (|m0K)efdk\Ck\2+C;Jk+J§Ck — I—l G
k=1

k=1

whereJ, = ¥;Uijn;. The last step can be done by completing the square in the erpaifting the integration

variables and integrating over the real and imaginary gafectively. Here it was also used t[ﬁf& e dx=

n
a
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Lastly we find

N hdmk  gkkd ™k gn'UD R ™Ml

Kt dx B [Mk % B detM " detM

Because the right hand side is analyticip we can analytically continue the result to matrices thatraot

Hermitean. We thus have that
giM 0
z 1= ——.
(1.1°] = ~5em
The whole procedure is quite similar for real variable imgign where

1¢N -1
N 35 m(MY) 0
Z[n] :/ <d_ck) e EsiaMipx+s)agn _ €7 N
1!]1 Va2 vdetM
HereM must be a complex symmetric function with non-negative peats of its eigenvalue spectrum. In the

proof, instead of an unitary transformation, an orthogaraadsformation is used.

5.2 Summation over Matsubara frequencies

The following paragraphs are based on the exposition intle&$of Mahan[119] and Bruus and Flensberg[30].

Sums of the form
_2m

B

for T > 0 are quite common and appear at several points in this thesis

S= 5 S aliae.
fon

The trick is to rewrite the sum as a result of a complex intégnaand each term in the sum as the result of

a residue contribution. So we need a complex function thapletes at the values= iw, which happens to be

This is the Bose function, which is responsible for the props we are so interested in. The residual value of

this function at its pole is

Res_iw, [fo(2)] = lim =_.
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C = Re'?

Figure 5.1: The contour stretches to infinity to enclose thele’complex plane, but without the poles on the
imaginary axis the .

Keeping in mind that each residue is weighted with an addti@rmi in the application of the residue theorem,

it becomes clear the the suatan be written as an integral of the form

dz

i%mmMé%ﬂ—L——m@w®éﬂ

S= :
271

|+~

The contouc itself only is located around the poles aroting, but not around other residuesgiiz) itself.
How to continue further naturally depends on the specifimfg(z) takes. Two cases are prevalent. In the

first caseg(z) has a number of simple residues, i.e.

o) =1;=%

Then we can choose a contdlyg: (see figure 5.1) that covers the entire complex plane. Theiitapt insight
is that the outer contour (the radius) does not contributieointegrale in the limit adg(z)e'™ goes to zero
providedr > 0 andz = Reé¥ with R— . Then the countour integral can be decomposed into the gannsing
from our original sum, i.e. the residues along the y-axigl, #ue remaining residues that are scattered along the

complex plane and stem from the po#®sThus
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Im(z)

oo 00 oo

Re(z)

C = Reid)

Figure 5.2: The contour now not only excludes the poles, Isotthe branch cut (dark bar) and could in principle
be distorted to exclude the branch only.

/Q Zd_; fs(2)g(2)e™* =0

=S+ Z Res_; [0(2)] fe(z)e".

So

S= -3 Res-4 [9(2] fo(a)*"

For completeness we should also look at the case where thédog(z), rather than having simple poles,
has a branch cut say along the negativeaxis,x < —a (see figure 5.2).

As before, the complex plane can be enclosed by a contoubshiégelf carries no weight, but the terms
arising from the residues @f(z) are replaced by contour integrals along the branch cut. \Wd t®keep in
mind that the mathematical direction of contour integmratiemands, that the lower branch is transversed in the
negative direction. As the function is not well defined on lthanch cut itself, one rather shifts the complex
variable by a small imaginary amount along the upper braneiRez) +in and the lower branch by a small

negative imaginary amourt= Re(z) — in. Replacing the integration variabRgz) by €, we arrive at the
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solution for the case whegi(z) has a branch cut along the real axis

S= %/defm [g(e+in)—g(e—in))eT,

where necessarily the parts of the real axis without a braattioes not contribute, &$(e +in) —g(e —in)] —
0. This sum can of course be extended for the case where addisimigle poles appear fgr(z) on the complex
plane.

At this point we should also mention the other important casenely where the Matsubara sum stretches
over the frequencies, = (2n+ 1) /3. This case becomes necessary when studying fermions, thegréat
class of particles in nature. The same derivation still Bptohly that the Bose function has to be replaced by a

function which has poles at the new set of frequencies. Thistfon is the Fermi function

1

fr(2)= efz+1’

and has very different properties compared with the Bosetiom.

5.3 Estimation of relaxation times

From the generalized Gross-Pitaevskii equation (2.13)amesee, that the time evolution of the growth or decay

of the order parameteb is controlled by

1 v /
— ~ ——— [ dkidkodk3d (kq,ko +k
% @nh 1dkaodksd (K1, k2 +ka)

x &(&1— & —3) (14 ) £9£3.

which is proportional to the collision term that changesthimber of particles in the condensate and the thermal
cloud, while conserving the overall particle number. It vedso assumed that = 0. If the distributionf is
a bose distribution, then the collision term in between trernal particles vanishes and these are in thermal

equilibrium. Because we want to look at thermal fluctuatjdghs is a decent approximation. We are thus to
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assume the equilibrium distribution
1

Me)=gew 1
wherepu is a small parameter. We define all (almost) constant fadtons the Harttree-Fock potential into the
chemical potential such that the energy functions becomes
R K7
& =
2m

)

which is also valid, as we are at a high temperature (closettoat temperature in fact), where the Bogoliubov
spectrum can be replaced by a free particle spectrum. Therfiegration leads to the replacementkaf=
k2 +ks.

Theg; term becomes then

R2 ka2 R2 R2
£ = lka|” |k2_|_k3|2:%(k%+k§+k2k30039),

2m 2m

where is the angle between the two vectors andikhhe absolute values of the momenta. kKhentegration

o0 1
/d3k2:2n/ kgdkz/ d(cosh).
0 -1

Next, one integrates over c8swhile keeping in mind that

is changed to

ﬁZ
O(g — & — =90 —kokscosO
(&1— & — &) <2m oksco )

= 22—m6 (cosh).
h=koka
The resultis
1 4g’m

P /0 /0 koks (1+ f1) fofadkodks.

We want to approximate the last integral to see tlyat> o, as this would mean that the dynamics freeze out.
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Substitutingk = BA?k3/2mandy = BR?k3 /2mleads to

1 4P dxdy 1 1
T B Jo Jo (ePH_1) (@ PR 1)\ e Pa_1)°

Lastly we approximate

// exﬁu—dXde);Bu—l)<l eX+yBu_> // exﬁu_dxcgﬁu_l)

Let us approximate the asymptotic behaviour of the integrglrewriting

0 dX o0 h
Y A S SR
/ (ePi—1) [, e

wheret = —1/Bu is a large parameter and

h(x) = |og(eXe1/t )

Let us expand the functidm(x,t) around smalk, as this is indeed the part of the integral with the strongest

contribution. Then

h(x,t) = log (e?‘el/t - 1)

—t+log (e?‘ - efl/‘)

~t+log ((1— e*l/t) + X+ X—22 +O(x3)) .

~t+log (1— efl/t) +log (1+ (1— efl/t) 71x+ (1— efl/t) o X—22 +O(x3))

Nextwe rescalg —y = (1 — efl/t) X, a transformation which in the higher limits for> « gets rid of all terms

of higher order tha. Whereas the prefactor gets rid of the first log lerm
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| — / T de (e V) e (1e 1) hejar., dX
0 (1— e*l/t)

_ et /mdyefyf(lfefl/‘)yZ/zf...
0

; -1 ® -y _ A1
tIgrgoet A dye Y =¢

This means we can approximate
1 4g°m?
— >
o~ B2R’

et

which proves that the dynamics do not freeze out and equilibfluctuational effects can be observed for

experimental times> 19 — O.

5.4 Discussion of the Polylogarithm atr = 2

For the interesting case = 2 one can rather straightforwardly perform the calculativactly

© a-zn 7'[2 © 1 _@2Zn
Ha (e nzl o6 nzl n?
7'[2 00 e xn nz z e Xxn
~ 6 Z / 6 _/o dXZ n

=
7'[2 z
-5 /dxlog(l e’).

Sincex < z« 1 one can expand

) n

log[1-e ¥ = Iognil( 1)™? = log x Zoﬁ (—D)"

- Iogx+logniﬁ (=",

Integrating ovex
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z 0 Xn nl _ 00 74 Xn n
/odx Iogx+logn;m(—1) ] N/O dxlogx+nzl/0 dxm (-1)
A1 .
=2z(logz— 1)+nzlm(—l) .
Thus
P (& + n
le(e ):E—FZlOgZ—Z-FnZlm (—1)

and already the leading order correction contains the ithigar

5.5 Short introduction to Grassmann fields

Grassmann fields are in a sense the extension of the cohtfamalism to anticommuting (fermionic)
creation/annihiliation operators. Because the operaintsommute, we have thafcj = —c;C;, especially
&=0.

A coherent stat@) is then defined similarily

Gln)y=nin).

Naturally these) cannot be complex numbers as in the bosonic case, since
&Cimi) [nj) = ninjlni) [nj)
=—¢&CIni) [nj) =—nimi|m)|n;),
and especially)? = 0.

An algebra can be defined in which allows for addition and iplidation. Given a set of fermionic states

2
1)|2)...|N), which by virtue of the fact that¢' ) = 0 can only be occupied by a single particle or not at all,
2 hich by vi f the f h A,T 0 ly b ied b ingl icl I
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a general vector in that space can be written as

where all thecs are complex numbers and in every produchef eachn; can appear at most once. One can

define differentiation and integration with respect to the

Oninj = &j,

/dni :0,
/dnini =1

There is no need to consider integration boundaries andraiteof functions become particularily simple, as
these functions are defined by their Taylor expansion todidr for which the above defined rules apply.

The coherent state can then be written as
) =& %19 |0,

where|0)is the vacuum state and tleeare either 0 or 1, depending of whether the state is occupiadto As
for the bosonic case, one may introduce conjugate figtdbut these are simply new Grassmann fields without

relation to the original field). For our case important, the Gaussian integration
/ dn*dne 1M =,
whereA is a complex number. For a matiixwe have the generalized Gaussian integration

/ (n dni*dm> e TAT — detA (5.1)

which differs from the important bosonic case where the Giansintegral would give dét—1. Along with the
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completeness relation

/d(n*,n)e*zi’“*”|n><n|=l,

it becomes clear that a coherent state picture with imagitiare integration, as in the bosonic case, can be
straightforwardly extended, with the difference that tledds themselves are Grassmannian fieldand that
the trace operation in the definition leads to the boundanditon (0) = —(B), which translates into

Matsubara frequencies

wh=(2n+1)B L neN

5.6 Diagonalization of two interacting Luttinger liquids

The goal is to diagonalize the Hamiltonian

Hiot = 2 [ dx| 22 (@ n2 /d (@ n 2} /dxnn
tot = /X|: X(oo + ] X|: X(Pf +Kf zm pllf.

We will substitute the bosonic and fermionic fields with treswfieldsg, a, Ma/a

@ =M+ &MNa,@h = E1¢n + &2,

@ = BiNa+ BolMa, ¢ = Viga+ Yo,

Substituting the mode& anda we have
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Htot_/dx{vg—lg’ef(dx%)z+ V;—};k’eg(a @) +—K£1£20X¢A0th+—612I'IA+Vbn622H§+M5162FIAI'Ia]
v/ dx{%yf(a B+ O+ T e+ i BT+ S BB+ T fuarla
+ / dx; m (BB + B2B2M12 + (Bud + Body) MalTa)
_/dx{ 2}; Vi fVZ] \2/bKn5l+anﬁl+2\/Wﬁlél‘|
+ / dx{vb—Kbe s2+—vm] Oxn et + Vb"éléz+—ﬁlﬁz+ J& <5152+B261)] MaMa.

Eliminating the mixed terms gives the constraints

1 Ks
[bTKbe & +—V1V2} =0, lvbn5152+\/f—n[31[52+ \/&(31524-[3251)1 =0

Additionally we want the fields to behave like appropriatétinger liquids, i.e.[l‘la/A(x), d)a/A(x’)} =id(x—X)
and[Ma,Ma] = [¢a, @] = [Ma, @] = [Ma, gu] = 0. This gives

(O&1+%e) =1

(B +Boy) =1

In addition we still need to enforce thiffl,, ¢ | = [+, @) = 0. This leads to

Bi&1+Bg2 =0

v+ &y =0.
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This suggests that the amplitudes(dt €) and (83, y) cancel out and that together with the first condition the
system can be described by a single mixing angléddditionally the parity ofe; &, should be the opposite of

viye. The ansatz to make would be

&= —Cj_

1 1 o
coS & =Cy——==5sIn
AR COSY 2= Co g SInY

& = —& VWoKpcosy & = &Ko sing

Br=¢& oV ViKising B=2 o V/ViKicosy

Using that cog/siny = Sinzz‘” and cod y — sir? y = cos AP one is lead by using the second constraint that

ViVp
tan2y =g ( (5.3)

2 2\
vf—vb)

In addition we can subsitute those values into the non-targsprefactors

2
CZcody + CBsir y] :;7_711

= 77l

Vbe Vf Ks
e y2

[Vbn612+vfn[31+ IM_ 5| =

[VBCOS @+ V5 sir? ( + g, /VpVr siny cosy|

2Kp 2,/KpKsy 202
Vbe Vf Ky Vz- %2
2m &+ 2n

VbT[ 2 Vf7T gT[

From this it follows that

202

V4 = [V5Ccos i+ VE sir?  + g, /VpVs siny cosy|

V2 = [VZsir? i+ cos i + g, /Vpvr sin cosyy] .

[VBSIN? @ + V% COS* (J + g /VpVs Siny cosy] .
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We can use that cégarctarix)/2) = \1/?5_;1 =1+1 \/1+_x and sirf (arctarix)/2) = 2”1_12;21 =1-1 _11+ v
and cogarctar{x)/2) sin(arctarfx)/2) = . \/)1(_2
+X
1 1 Vi—VZ+g bv X

wherex = g2 . Then

1 2
Zn= 3 08+ 31/ (4 -3) s v

Additionally one has the facto(, . A particularily useful choice is such thi o = 1. We have that

VpK ViKs
e+ R o

KA: T Vb7T52 it V_A
7 Ot + 7 BY
2
Ka: %
Va

From this it follows thaC, = /VaandC, = | /v is a convenient choice. So one finally obtains

&g = Vbe cosy &=, /vbe siny

V1= /vfo sing  p= vaf cosy (5.4)
51 - _ /Vbe COSL[I 52 /Vbe SInL[l

Br= Vfo i sing - Ba= \/Vfo

5.7 Solitonic dispersion relation

The Gross-Pitaevskii equation allows for special solgithrat are moving with constant speed in time. Such a
solution is called soliton and is in the case of a gray sdlitiepresented by a dip in the particle density and a
phase jump of the macroscopic wave-function across thesdip [t is therefore a good model for an impurity,
as the fluid has to create a hole in which the impurity sits aenegally a phase jump is expected across the
impurity.

So we are looking for solutions of the time-dependent GP #&guahat move with velocity, i.e. ® =
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@ (x—Vt).One can rescale all lengths by the healing lerfgth have a dimensionless ansatz

® = Vnf(ye H/N,

wherey = (x—Vt) /€.

This gives
vdf d’f 2
2i——=—+4f(1-|f|7).
Vace T aE T (1-117)
Further we demand that the impurity is localized, meaniag) fr away from the dip, the condensate is flat

[f| — 1, 3—:/—>O.

A solution that fulfills these conditions is [129]

Vv [ V? X—Vt V2

which is the non-stationary generalization of the boxeteptial boundary solution.

The energy of such an isolated solution is finite and given by

&= [ l;zn 2+%(|¢|2—n)],

which is the energy difference with respect to the grountstalution. The result is

4 v2\ %2
Ed—ﬁﬁCﬂ(l—?) .

Because increasing the velocity reduces the energy, onargare that the soliton has something like a

do

dx

negative mass, which is in accordance with the observafitimeodip and the depletion of particles out of the
condensate through the impurity.
The canonical momentum associated with the soliton canimedfby using the relationshi = 0Eq/d pc

to give
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_ L, Edﬁ(E)dVi
pc—/o V]

i)

which is however not equivalent to the physical momentum.
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