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ABSTRACT 

Chronic Lymphocytic Leukaemia (CLL) is associated with significant immunosuppression, 

with infection being the predominant cause of death. The immunosuppression is multifactorial 

and includes hypogammaglobulinaemia and T cell dysfunction. Expanded populations of 

effector memory T cells which are oligoclonal are postulated to arise in response to common 

antigenic stimulation. Increased expression of the inhibitory receptor programmed-death 1 

(PD-1) has also been reported on the total CD4+ and CD8+ T cells in patients with CLL.  

Cytomegalovirus is a ubiquitous herpes virus which contributes to the oligoclonal populations 

of CD4+ and CD8+ T cells described. In the healthy elderly, CMV is associated with an 

immune risk phenotype and leads to an earlier death. But the impact of CMV on clinical 

outcome measures in CLL is unknown. 

Using 60 CMV class I tetramer and for the first time 15 class II tetramer responses, I have 

characterised the phenotype and function of CMV-specific T cells in patients with CLL. 

Interestingly, increased expression of PD-1, was observed on CD4+ but not CD8+ CMV-

specific T cells which remained constant over time and was not a result of recent T cell 

activation. Cytokine production of both CD4+ and CD8+ CMV-specific T cells was shown to 

be impaired in patients with CLL and PD-1 expression on CMV-specific CD4+ T cells 

contributed to this.  Telomere lengths were also greatly reduced in CMV-specific T cells.  

I have also used droplet digital PCR to successfully measure latent CMV viral load and found 

in advanced stage disease an increased CMV viral load was detectable. This most likely arises 

as a result of the increased immunosuppression and T cell dysfunction observed.   

Despite these findings, this work reports no evidence that CMV infection impacts on clinical 

outcomes including time to first treatment or overall survival in two large independent cohorts 

of patients with CLL. 
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1.1 The human immune system 

1.1.1 Overview of the human immune system 

The human immune system is comprised of the innate and adaptive immune response. It has 

evolved to destroy pathogens and recognize abnormal self antigens. The innate response is 

more primitive and is comprised of phagocytes (macrophages, neutrophils and dendritic cells) 

basophils, eosinophils, mast cells, γδ T cells and natural killer cells. It is referred to as the 

“non-specific” arm of the immune system, as it recognises foreign antigen through conserved, 

pathogen-associated molecules and does not require prior exposure to the pathogen in 

question (Murphy et al., 2012, Alberts et al., 2002). The human complement system is also 

part of the innate immune system, existing as a cascade of plasma proteins that act to 

opsonize foreign antigen and recruit inflammatory cells. The complement system also assists 

the antibody-mediated response and can subject infected cells to cytolysis (Dunkelberger and 

Song, 2009). The innate immune response delivers a fast and broadly effective response, but 

does not provide any immunological memory (Murphy et al., 2012). 

In contrast, the adaptive immune system provides immunological memory to previously 

encountered pathogens and is antigen specific. It is composed of a humoral response mediated 

by B lymphocytes and a cell mediated response mediated by αβ T lymphocytes. The 

specificity of the adaptive response arises through receptors on the cell surfaces termed the B 

cell receptor (BCR) and T cell receptor (TCR), which recognise cognate antigen and are 

largely similar in structure (Goldsby et al., 2003). Although the initial response following 

primary exposure is slow, immunological memory permits a rapid, effective response should 

the same pathogen be encountered again (Murphy et al., 2012). The effectiveness of 

vaccination relies on an intact adaptive immune response to generate long term 

immunological memory (Ahmed and Gray, 1996).  
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1.1.2 Major histocompatibility complex (MHC)  

The major histocompatibility complex is also known as the human leukocyte antigen (HLA). 

The two main types of MHC molecule are referred to as MHC I and MHC II. Both MHC 

molecules are found on the cell surface and contain a peptide-binding groove where antigen is 

presented (Townsend and Bodmer, 1989). MHC molecules are highly polymorphic due to the 

presence of a large number of alleles at each of the 9 loci on chromosome 6 that encode the 

MHC proteins. This increases the chance that peptide will be able to bind with good affinity 

and be presented. Humans inherit MHC alleles ‘en-bloc’, with one chromosome containing 

maternal alleles and the other containing paternal MHC alleles, with co-dominant expression 

(Murphy et al., 2012).   

For T cell activation, the TCR interacts directly with the MHC molecule presenting the 

cognate peptide. MHC 1 expression is found on all nucleated cells in the human body and 

serves to present antigen from within the cell (either endogenous or pathogenic) to cytotoxic 

CD8+ T cells. For this, the proteasome processes protein into peptides, which are then 

transported via the ‘transporters of antigen-processing’ (TAP) to the endoplasmic reticulum 

for loading onto the MHC I molecule (Heath and Carbone, 2001). MHC II molecules are 

found on the professional antigen presenting cells, which are dendritic cells, macrophages and 

B cells. These endocytose exogenous antigen and present it via the MHC II binding domain to 

CD4+ T helper cells (Murphy et al., 2012). MHC II molecules are prevented from binding 

endogenous peptide in the endoplasmic reticulum by the presence of an invariant chain (Ii). 

This is later degraded before being exchanged for peptide ready for presentation to CD4+ T 

cells. Finally, additional antigen presentation (cross-presentation) can arise from dendritic 

cells phagocytosing antigen from other cells, followed by TAP-dependent processing and 

presentation via MHC-1 to cytotoxic CD8+ T cells (Heath and Carbone, 2001) (Figure 1.1). 
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Figure 1.1 

The MHC class I and II antigen presentation pathways 

MHC class I molecules present peptide that has been processed from endogenous proteins by 

the proteasome. The resulting peptides are transported via transporters of antigen-processing 

(TAP) to the endoplasmic reticulum where they are loaded onto the peptide binding groove of 

MHC I before being transported to the cell surface for antigen presentation to CD8+ T cells. 

MHC class II molecules are found on professional antigen presenting cells and present 

exogenous antigen.  Peptides that have been endocytosed are then loaded onto the MHC II 

binding groove. The presence of an invariant chain (Ii) prevents endogenous peptides being 

presented. This is degraded to CLIP (class II invariant-chain peptide), which is then 

exchanged for the exogenous peptide and presented on the cell surface to CD4+ T cells. 

Adapted from (Heath and Carbone, 2001). Permission obtained from Nature publishing group 

(license number 3856960893508).  
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1.1.3 B cells 

B cells arise from haematopoietic stem cells and each cell has a unique BCR. The BCR is also 

known as an immunoglobulin and is composed of a pair of identical heavy and light chains 

joined together by disulphide bonds. Each chain has a highly conserved constant region and a 

diverse variable region. The combination of the heavy and light chain variable regions 

determines the antigen binding specificity (Edelman and Gally, 1964). The genes encoding 

the variable regions of the heavy chain are found in 3 separate segments called the V, D and J 

segments; for the light chain variable region these consist of just V and J segments (Hozumi 

and Tonegawa, 1976). These are randomly combined by recombinase activating gene 

enzymes (RAG-1 and RAG-2) to increase the receptor repertoire (Oettinger et al., 1990, 

Schatz et al., 1989) (Figure 1.2). Further receptor diversity is gained through the addition of 

extra nucleotides by terminal deoxynucleotidyl transferase and somatic hypermutation 

(Goldsby et al., 2003).  

Within the bone marrow, early B cells are first subjected to positive selection by a mechanism 

independent of antigen recognition and then by negative selection, whereby those with a BCR 

able to recognize self-antigen undergo deletion, anergy, or ignorance in order to achieve 

tolerance and prevent a response to self-constituents (Murphy et al., 2012). After exiting the 

bone marrow, the B cells circulate to the secondary lymphoid organs where they differentiate 

into mature, naïve B cells. Mature B cells that have undergone somatic hypermutation 

encounter their cognate antigen via their BCR and endocytose antigen in order to process it 

and present it to T follicular helper CD4+ T cells, which are located in the germinal centers of 

secondary lymphoid organs (LeBien and Tedder, 2008). Within the germinal centers, T 

follicular helper cells then give contact-dependent survival signals which permit the 

differentiation of B cells into memory B cells or plasma cells, which are then capable of 
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producing antibody with the same antigen specificity in future responses (LeBien and Tedder, 

2008). 

Regulatory B cells (Breg) are an additional type of B cell that support immunological 

tolerance. Breg cells secrete Il-10 and TGF-Beta and have an immunosuppressive impact on 

activated immune cells (Rosser and Mauri, 2015). They are also able to skew immune 

responses towards a regulatory phenotype and are thought to be important in the development 

and maintenance of T regulatory cells (Flores-Borja et al., 2013, Yoshizaki et al., 2012).  
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 Figure 1.2 

Gene rearrangement of V (D) and J segments for receptor generation. 

The BCR and TCR are both composed of protein chains derived from independent loci. The 

first receptor chain locus (the heavy chain in the BCR and beta chain in the TCR) is 

composed of a recombination of gene segments known as the V, D and J segments. The 

second receptor chain locus is a recombination of just V and J segments (this is the light chain 

in the BCR and the alpha chain in the TCR). These loci make up the variable regions of the 

receptor chains and following transcription are spliced (indicated by red dotted line) together 

with the constant regions of the BCR or TCR to complete the chain. Adapted from (Nemazee, 

2006). Permission obtained from nature publishing group. (License number 3857000275704). 
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1.1.4 T cells  

T cell progenitors also arise from haematopoietic stem cells in the bone marrow and migrate 

to the thymus where they undergo gene rearrangement of their alpha and beta chains to 

produce a TCR (Kondo, 2010, Hedrick et al., 1984). Similar to the BCR, the β chains contain 

rearranged V,D and J segements, whilst the α chains contain rearranged V and J segments 

(figure 1.2). These gene rearrangements permit up to 1015 unique receptors to be produced 

from a relatively small number of genes (Arstila et al., 1999). Each cell has receptors of only 

one specificity and around 30,000 TCRs on its cell surface (Murphy et al., 2012). At this stage 

T cells express both CD4+ and CD8+ receptors. Before exiting the thymus, the thymocytes 

are subjected to a process of positive and negative selection through interaction with thymic 

antigen presenting cells expressing MHC molecules (Klein et al., 2014). T cells recognizing 

MHC II, lose expression of CD8 and express just CD4, whilst those recognizing MHC I 

express just CD8 and lose CD4 (Murphy et al., 2012). Those recognizing self antigen with 

strong affinity are negatively selected for, whilst those with the potential to recognize non-self 

are positively selected for and become mature, antigen-naïve T cells (Klein et al., 2014). After 

exiting the thymus, naïve T cells enter the periphery but continue to re-circulate within 

secondary lymphoid organs where they can interact with cognate antigen. Professional 

antigen presenting cells migrate to the secondary lymphoid organs and present antigen via 

MHC molecules to the re-circulating lymphocytes. When naïve T cells encounter cognate 

antigen, they exponentially proliferate and differentiate into helper T cells (CD4+) or effector 

CD8+ T cells. CD8+ effector cells mediate their cytotoxicity through molecules known as 

perforin and granzyme or via the Fas/Fas ligand pathway (Lowin et al., 1994). CD4+ helper T 

cells consist of 2 main subtypes; T helper 1 type (Th1) and T helper 2 type cells (Th2). Th1 

cells are helper T cells that produce IFNγ and promote CD8+ cytotoxic T cells responses. Th2 
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cells target extracellular parasites and can produce Il4, Il5 and IL10 and assist the humoral 

response (Murphy et al., 2012).  

In humans, following resolution of infection, a pool of specific memory T cells persist, which 

are proficient at generating a rapid and effective response should re-infection or reactivation 

occur. This pool of T cells can be defined into memory and effector subsets based on 

combinations of CD45RA, CCR7 and CD27 expression (Sallusto et al., 2004, Sallusto et al., 

1999). Naïve T cells are double positive, expressing CCR7 and CD45RA, whereas primed 

CD8+ T cells can be considered as belonging to one of three different subsets. Two of these 

lack expression of CD45RA; central memory cells (TCM) and effector memory (TEM) cells. 

TCM cells express CCR7, while TEM cells lack expression of CCR7. TCM cells respond to 

antigen by proliferation and differentiate into TEM cells. In comparison TEM cells have poor 

proliferative capacity but great effector function and produce cytokines including IFN-γ 

(Larosa and Orange, 2008). In humans there is another memory subset, termed TEMRA, which 

are CCR7 negative cells that co-express CD45RA. These cells are the most differentiated of 

memory cells and have poor proliferative capacity but are highly cytotoxic (Geginat et al., 

2003) (Figure 1.3). 

Other types of T cells also exist and include T regulatory cells (Tregs). Tregs act to suppress 

the actions of other T cells and immune components. They can prevent potentially self-

reactive T cells that have exited the thymus from causing auto-immune disease. ‘Natural’ T 

regulatory cells (Tregs) are produced in the thymus and express cell surface markers CD25, 

CD4 and the transcription factor Forkhead box P3 (FoxP3) (Hori et al., 2003). They mediate 

their immunosuppressive actions through direct cell contact and also via suppressive cytokine 

production. Further ‘inducible’ Tregs also exist and are produced in the periphery in response 

to antigen stimulation (Vignali et al., 2008).  
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Figure 1.3  

T cell memory subsets and their phenotypic markers 

The phenotype of memory cells based on CCR7, CD45RA, CD27, CD28 and CD57 

expression. As memory cells become more differentiated, their cytotoxic capacity increases 

but their proliferative capacity diminishes (Mahnke et al., 2016). 
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1.1.5 Exhaustion and senescence 

T cell exhaustion is used to describe cells that have been exposed to chronic, excessive 

antigen stimulation and is observed in the context of chronic viral infections and cancer. 

Exhausted T cells exhibit a hierarchal loss of effector functions and have increased expression 

of inhibitory receptors including programmed death 1 (PD-1), T-cell immunoglobulin and 

mucin-domain containing-3 (TIM-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 

and lymphocyte activation gene 3 (LAG-3) (Wherry et al., 2003, Legat et al., 2013). T cell 

exhaustion is reversible and immune responses can be reinvigorated through blockade of the 

inhibitory receptors (Wherry, 2011). Despite their name, exhausted T cells are not inert and 

still act to prevent pathogen or tumour proliferation but their functioning is suboptimal and 

thus ineffective at eradicating disease. They also have a distinct transcriptional profile to that 

of effector and memory T cells (Wherry and Kurachi, 2015).  

Senescent T cells arise from repetitive T cell stimulation over time. Like exhausted T cells, 

they are viable cells with a low proliferative capacity and low telomerase activity. Senescent 

T cells differ from exhausted cells in their low expression of inhibitory markers, high 

expression of CD57 and preserved effector function (Wherry and Kurachi, 2015).  

1.1.6 Tetramers 

Tetramers permit the isolation and characterization of antigen-specific T cells in the 

laboratory. They consist of MHC-peptide complexes that contain streptavidin, which is 

tetravalent in structure (Altman et al., 1996). Typically, in-vivo interactions between T cells 

and self-MHC molecules presenting peptide are weak and very short lived. The presentation 

of 4 peptide-MHC molecules improves the avidity and extends the half-life of the interaction 

and thus improves the chances of detecting antigen-specific T cells (Dolton et al., 2015, 

Altman et al., 1996). This interaction is then identified by flow cytometry and the magnitude 
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of antigen-specific T cell responses can be assessed (Khan et al., 2002). MHC class I 

tetramers were first described in 1996 to identify HIV-specific CD8+ T cells (Altman et al., 

1996) followed by class II tetramers in 1998 (Crawford et al., 1998). Although the use of 

MHC class I tetramers have been common place since their discovery, use of MHC class II 

tetramers has lagged behind due to difficult in stably producing MHC class II tetramer (which 

requires optimized folding conditions for each species and allotype) and low avidity (Vollers 

and Stern, 2008).  

Class I tetramers are formed from B2microglobulin and the MHC class I molecule folding 

around the peptide of interest. This forms the monomer MHC/peptide unit, which is then 

biotinylated and purified. Four individually biotinylated monomers then combine with 

streptavidin to form the tetramer. The structure of a class I tetramer is illustrated in Figure 1.4 

(Klenerman et al., 2002). Similarly, class II tetramers are formed from the folding of peptide 

around MHC class II molecules and biotinylated before combining with streptavidin.  
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Figure 1.4 

The structure of a tetramer 

Tetramers are composed of four monomeric MHC molecules with bound cognate peptide. T 

cell interactions with an individual MHC molecule (shown on the left), would fail to produce 

adequate binding and reproducible staining. When 4 MHC molecules are bound by 

fluorescent labeled streptavidin (shown on the right), the avidity of the bound T cells 

increases and can be visualised by flow cytometry. Adapted from (Klenerman et al., 2002) . 

Permission obtained from nature publishing group. (License number 3900150693292).  
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1.2 Chronic Lymphocytic Leukaemia  

1.2.1 Overview of chronic lymphocytic leukaemia 

Chronic Lymphocytic Leukaemia (CLL) is the most common leukaemia in Western Society, 

with an estimated UK incidence of 3400 cases per annum (CRUK, 2015). Clinically, CLL 

behaves heterogeneously and remains incurable with current chemotherapeutic options with 

the exception of allogeneic transplantation for a small minority of patients. Up to 80% of 

patients are incidentally detected by a persistent lymphocytosis and most patients are over the 

age of 65 years (Shanafelt and Kay, 2007). Given most patients are identified at an early 

stage, treatment is often not required at diagnosis and up to one third of patients may never 

require treatment during their lifetime (Shanafelt and Kay, 2007). 

CLL is characterised by an unremitting proliferation of a mature B cell clone, which have 

specific immunophenotypic markers that differentiate it from other B cell malignancies. The 

malignant cells resemble antigen experienced B cells and demonstrate monoclonality through 

a predominance of either kappa or lambda light chain expression. Using sensitive 

immunophenotyping to screen healthy populations it has been shown that a CLL clone may 

be present in up to 12% of the population over the age of 40, where the lymphocyte count 

remains <5000/μl (Rawstron et al., 2002a, Ghia et al., 2004). This is now termed Monoclonal 

B lymphocytosis (MBL) and is known to precede all cases of CLL (Marti et al., 2005, 

Landgren et al., 2009).  MBL can be split into low count (<0.5x 109/l lymphocytes) for which 

the risk of progression to CLL is negligible and routine follow up is not warranted, and high 

count >0.5x109/L where the risk is between 1 and 2 % per year, a situation akin to another 

clonal B cell disorder, Monoclonal Gammopathy of Undetermined Significance and its 

progression to Multiple Myeloma (Strati and Shanafelt, 2015).  
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In CLL, the clonal B cells, were originally thought to be indolent with a low proliferative 

capacity.  The replicative ability of CLL cells was appreciated when Messmer D et al found 

the leukaemic cell birth rate to be between 0.1 and 1% of the CLL clone each day (Messmer 

et al., 2005). Traditionally, the bone marrow was thought to be the proliferative component of 

CLL with the peripheral component being quiescent. Further work has shown that in addition 

to the bone marrow, much of this proliferative activity actually occurs within secondary 

lymphoid organs and that the microenvironment of the lymph node is important for 

encouraging the growth and survival of the tumour cells particularly in pseudofollicles 

(Herishanu et al., 2011, Patten et al., 2008). Stimulated T cells and aberrant cytokine signaling 

participate in tumour evolution and provide anti-apoptotic support, which secures the 

longevity of the tumour clone (Ramsay and Rodriguez-Justo, 2013).  

Predicting time to first treatment at diagnosis remains difficult based on the universally 

adopted staging methods developed four decades ago and although prognostic scoring 

systems which integrate biological and genetic features are now available, these are still not 

commonplace in clinical practice (Parikh and Shanafelt, 2016).  For the majority of patients, 

treatment involves one or other conventional chemotherapy agents with or without 

monoclonal antibody therapy usually for a planned number of cycles, although the duration is 

often dictated by patient tolerance and toxicity, balanced against the need to achieve minimal 

residual disease status. Newer agents targeting the BCR signaling pathway offer efficacy for 

those with relapsed disease with a 71% overall response rate (Byrd et al., 2013) and trials are 

underway to assess their use in first line management. Despite the great responses seen to 

newer agents, CLL still remains incurable without an allogeneic transplant, a procedure that 

for most CLL patients remains inappropriate given the age profile and co-morbidities 

prevalent in this cohort of patients. 
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In addition to the overt clinical features of CLL, immunosuppression, which is multifactorial, 

is also problematic. It results from a combination of hypogammaglobulinaemia, immune 

cytopenias, a dysfunctional T cell repertoire and iatrogenic myelosuppressive therapy 

(Hamblin and Hamblin, 2008). Infection remains the commonest cause of death despite early 

use of antibiotic regimens and prophylactic immunoglobulin therapy to those deemed to be 

high risk (Hamblin and Hamblin, 2008). Overall CLL is highly heterogeneous, with a variable 

clinical course extending from a normal lifespan for some, to a progressive and refractory 

disease, with premature mortality in others (Chiorazzi et al., 2005). 

1.2.2 Diagnostic features of Chronic Lymphocytic Leukaemia 

The diagnosis of CLL is confirmed by peripheral blood film examination, demonstrating 

small, uniform mature lymphocytes with clumped chromatin, small nucleoli and little 

cytoplasm (Bain, 2006). Smear cells may be visible and are the result of pronounced 

mechanical fragility of the leukaemic cells, which become more predominant as the disease 

progresses.  

To fulfill the diagnostic criteria set by the International Workshop on Chronic Lymphocytic 

Leukaemia (IWCLL) a clonal lymphocytosis of >5x109/L must persist for more than three 

months and demonstrate typical cell markers (Hallek et al., 2008). The characteristic 

phenotype includes B cell markers CD5, 19, 23 and 20. In addition, they express surface 

immunoglobulin weakly. The absence or weak expression of FMC7, CD79B and CD22 is 

also apparent (Dighiero and Hamblin, 2008, Hallek et al., 2008, Moreau et al., 1997, Matutes 

et al., 1994). Matutes et al first produced a 5 point scoring system for cell markers indicative 

of a diagnosis of CLL, which was later modified by Moreau et al  (table 1.2) (Matutes et al., 

1994, Moreau et al., 1997). Scores of 1 or 2 are indicative of alternative B cell disorders 

whilst scores of 4 or above are highly indicative of a diagnosis of CLL (Moreau et al., 1997). 
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The presence of anaemia should be investigated to exclude an autoimmune haemolytic 

component, which is known to occur in 5% of CLL cases (Moreno et al., 2010). Screening for 

hypogammaglobulinaemia is also commonly performed at diagnosis. Further prognostic tests 

including IGHV status and fluorescence in situ hybridization for chromosomal abnormalities 

may be undertaken at the clinician’s discretion and where resources permit (Parikh et al., 

2016). 

Prior to any treatment commencing, FISH testing should always be performed, including 

those patients who had no evidence of chromosome 17p deletion at diagnosis (Oscier et al., 

2012, Zent and Burack, 2014). The presence of chromosome 11q or 17p deletion is known to 

carry an adverse prognosis and poor response to conventional alkylating agents and purine 

analogues. Mutation analysis for p53 and ATM mutation should also be undertaken, alongside 

bone marrow examination for clarification as to the origin of any cytopenias that are present 

and a CT staging scan to assess non-palpable disease and to monitor treatment response 

(Oscier et al., 2012). 
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Table 1.1 

The modified CLL scoring system  

A score of 4 or above is highly indicative of a diagnosis of CLL (Moreau et al., 1997).  
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1.2.3 Epidemiology of CLL 

Chronic Lymphocytic leukaemia represents 11% of all haematological malignancies and 

accounts for 25% of all leukaemias (HMRN, 2013, Yee and O'Brien, 2006). It has an 

incidence of 7 per 100 000 persons in the UK and the majority of patients are over the age of 

60 (HMRN, 2013). There is a male predominance for the disease, with a reported male: 

female ratio of 2:1 (Catovsky et al., 1989). The prevalence of CLL varies amongst ethnic 

populations, with higher rates observed amongst white Caucasian populations compared to 

Asian or African populations (Dores et al., 2007).  

1.2.4 The pathogenesis of Chronic Lymphocytic Leukaemia 

1.2.4.1 The cellular origin of CLL cells 

Defining the cell(s) of origin of CLL has proven difficult. After identifying the presence of 

unmutated IgVH and mutated IgVH CLL cases, a two-cell model for the origin of cell was 

proposed (Chiorazzi and Ferrarini, 2011). This was also supported by a distinct difference in 

the IGVH repertoire described between mutated and unmutated CLL, where stereotypy is 

observed in around 30% of cases (Murray et al., 2008). However subsequent gene expression 

profiling has challenged this theory, as minimal differences were shown to exist between 

these 2 types of CLL (Klein et al., 2001). This has led to a theory that a common cellular 

origin is more likely. Indeed, the existence of a CLL-stem cell that has self-renewing 

capacities and can act as a reservoir for maturing CLL cells has been proposed. Such a stem 

cell could represent any cell type after the IGV rearrangement stage in B cell development 

(Chiorazzi and Ferrarini, 2011). However, marginal zone (MZ) B cells also pose as a potential 

candidate as these can express both mutated and unmutated IgVH genes and often can be self-

reactive or polyreactive to common antigens encountered (Chiorazzi and Ferrarini, 2003). 
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Consistent with this, it is generally accepted that CLL cells are antigen experienced and have 

probably undergone several rounds of proliferation prior to a transforming event. However, 

immunophenotyping of CLL cells does not correspond with the CD5-CD23-CD22+ 

phenotype of MZ B cells (although notably CLL cells are constitutively activated, so these 

differences may reflect the activation status of the cell) (Chiorazzi and Ferrarini, 2011). Thus, 

the cellular origin of CLL (and also the potential for multiple cellular origins) is still the 

subject of ongoing research, with increasing emphasis on defining the origin of those cells 

found within the proliferation zones of the secondary lymphoid organs and bone marrow.  

1.2.4.2 Genetic predisposition 

The exact pathogenesis of chronic lymphocytic leukaemia remains unknown. Certain genetic 

susceptibility loci are known to exist for CLL and population based studies have clearly 

demonstrated the disease has a strong familial aggregation (Crowther-Swanepoel et al., 2010). 

First degree relatives of patients with CLL are almost 8 times more likely to develop CLL 

than the general population and the finding of MBL amongst first-degree relatives is also high 

at 13.5%, compared to 3.5% in an unselected population over 40 years of age (Goldin et al., 

2004, Rawstron et al., 2002b, Rawstron et al., 2002a). Interestingly, genetic anticipation can 

be demonstrated, with the onset of symptoms in familial cases occurring approximately 10 

years earlier than sporadic CLL cases (Wiernik et al., 2001, Goldin et al., 1999). Finally, the 

incidence of other lymphoid malignancies including hairy cell leukaemia is also increased in 

first-degree relatives, although not to the same degree as CLL (Goldin et al., 2009). 

1.2.4.3 BCR stimulation 

For those without a family history, no known association exists with radiation or 

chemical/pathogenic exposure. Instead it is thought to involve a combination of chronic 

antigen stimulation together with acquired B cell genetic aberrations and interactions with the 
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microenvironment. As discussed above, the phenotype of CLL cells represents that of 

antigen-experienced B cells, although ambiguity exists over the cellular origin of CLL 

(Chiorazzi et al., 2005, Seifert et al., 2012).  

The role of BCR signaling in CLL tumourgenesis has recently been shown in a transgenic 

mouse model (Iacovelli et al., 2015). Common antigen stimulation has been postulated to 

arise following work demonstrating a restricted immunoglobulin heavy chain repertoire 

amongst patients, in comparison to the usual vast Ig repertoire of healthy individuals 

(Chiorazzi and Ferrarini, 2003, Stevenson and Caligaris-Cappio, 2004, Agathangelidis et al., 

2012). An example is the IGHV1-69 gene and its distinct 51p1-like allele, which is found in 

approximately 20% of all CLL cases (Potter et al., 2003). Candidate antigens required for 

chronic stimulation have included both self and common exogenous peptides that could be 

repeatedly available and have included Cytomegalovirus (CMV) (Herve et al., 2005, Lanemo 

Myhrinder et al., 2008, Hoogeboom et al., 2013, Steininger et al., 2012). Several groups have 

studied the use of recombinant antibodies (rAb), which have been produced to impersonate 

common immunoglobulins expressed in CLL clones and have been shown to recognise 

several self antigens, including non-muscle myosin heavy chain IIA and apoptotic peptides 

(Chu et al., 2008, Catera et al., 2008). More recently, Steininger et al found 6 rAb (encoded 

by IGHV1-69 or IGHV3-21) to react with the CMV structural protein, pUL32, including a 

rAb from the germ-line IGHV1-69 51p1 allele (Steininger et al., 2012). Despite these reports, 

the nature of antigens which can stimulate the BCR on CLL clones is still not defined and 

others have found evidence for autonomous BCR activation (Duhren-von Minden et al., 2012, 

Binder et al., 2013). More recently, the success of small molecules which target the BCR 

signaling pathway have given further support for the importance of BCR simulation in the 

pathogenesis of CLL and these are discussed in more detail in section 1.1.8. 
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1.2.4.4 The microenvironment 

Survival of CLL cells is also dependent on interactions with the tumour microenvironment. 

“Pseudo-follicles” form in secondary lymph node organs and are identifiable as proliferation 

zones where 1-2% of the CLL population are renewed daily and stain positive for the 

proliferation marker ki67 (Messmer et al., 2005). The homing of CLL cells to the 

proliferation zones is dependent on cytokine and adhesion molecule interaction provided by 

various cell types including mesenchymal stromal cells and T cells within the 

microenvironment. Within the lymph nodes of patients with CLL, monocytoid cells termed 

“nurse-like cells (NLC)” also arise and secrete chemokines, which together with the 

mesenchymal stromal cells attract and traffic CLL cells to the lymph node. NLC have also 

been shown to present antigen to activate the BCR of CLL cells and can activate the nuclear 

factor kappa B signaling pathway, which is important for B cell activation (Herishanu et al., 

2011, Burger et al., 2000, Binder et al., 2010).  

Furthermore, CD38 expression is higher in CLL cells isolated from the proliferation zone and 

NLC are known to express CD38L (CD31) (Deaglio et al., 2005, Patten et al., 2008). 

Increased amounts of IL-4, IL-6, IL-10 and tumour necrosis factor alpha (TNFα) are also 

found and promote tumour cells with resistance to apoptosis in addition to providing 

proliferation support (Mainou-Fowler et al., 2001, Fayad et al., 2001, Cordingley et al., 1988). 

Follicular dendritic cells and endothelial cells are also important for tumour cell adherence 

and retention within the lymph nodes and can promote drug resistance and challenge efforts to 

attain MRD negativity (Maffei et al., 2012, Cols et al., 2012, Maffei et al., 2014). 

1.2.4.5 T cells  

Within the proliferation zones, an increase in T cells is seen and these appear activated 

(Schmid and Isaacson, 1994). The interaction of CD40 ligand (CD40L) on CD4+ T cells with 
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the CD40 receptor found on B cells, is essential for normal B cell responses to antigen and in 

the context of CLL, this CD40L interaction fosters survival of the tumour clone (Kitada et al., 

1999). T cell help is recruited through the expression of CCL22 and CCL21 by CLL tumour 

cells and has been found to attract activated CD40L CD4+ T cells (Ghia et al., 2002). 

Furthermore, activated autologous T cells have also been shown to induce CD38 expression 

on CLL cells following co-culture and CD38 positive CLL cells are more likely to proliferate 

and expand, increasing the tumour burden (Patten et al., 2008).  

The importance of CD4+ T cells in CLL biology is also highlighted through a xenograft 

model, where the adoptive co-transfer of even small numbers of autologous CD4+ T cells 

with CLL cells has been shown to produce disease resembling human CLL in a mouse, with 

depletion of CD4+ T cells culminating in loss of tumour replication. Using this model, Patten 

et al also demonstrated CD38 expression increased on CLL cells in culture, in the presence of 

activated T cells and this was reduced by partial depletion of CD4+ T cells. Furthermore,  

CD4+ T cells were shown to co-localise with ki67+ CLL cells on paraffin embedded sections, 

providing further evidence for the importance of CD4+ T cell interaction with the tumour 

clone (Patten et al., 2008).  

In the peripheral blood compartment, patients with CLL actually demonstrate increased T cell 

numbers, which is predominantly due to an increase in the absolute CD8+ T cell number 

(Mackus et al., 2003). The T cell subsets are greatly restricted to populations of clonal and 

oligoclonal cells in CLL (Serrano et al., 1997, Rezvany et al., 2003). Loss of the normal 

immune synapse formation between antigen presenting cells and T cells is lost in CLL. 

Without adequate synapse formation, antigen recognition, immune surveillance and T cell 

cytotoxicity is impaired (Ramsay et al., 2008, Ramsay et al., 2012). Furthermore, the 

inhibitory receptors CTLA-4, PD-1, CD160 and CD244, are reported to be increased on T 
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cells in patients with CLL (Motta et al., 2005, Brusa et al., 2013, Riches et al., 2013, Nunes et 

al., 2012). A further compromise to immune surveillance in CLL is the finding that the 

number of T regulatory cells is also increased and the secretion of numerous cytokines by the 

CLL clone also contributes to the T cell anergy observed. (Piper et al., 2011, Jak et al., 2009, 

Fayad et al., 2001).  

Finally, from clinical observations, T cell dysfunction is also apparent. Expansions of CD28-

CD57+ cells are seen in CLL and have been associated with neutropenia, whilst increased 

frequencies of autoimmune disease are also well documented in patients with CLL (Moreno 

et al., 2010, Katrinakis et al., 1995). Second malignancies are increased in patients with CLL 

although it is unclear if immune dysfunction contributes to this. 

1.2.5 Clinical features of Chronic Lymphocytic Leukaemia. 

Patients usually present incidentally following full blood count analysis demonstrating a 

persistent lymphocytosis. Less frequently, presentation in the form of non-tender 

lymphadenopathy or general fatigue can occur and up to 15% of patients may present with 

constitutional B symptoms, comprising drenching night sweats, fevers or unintentional weight 

loss (Abbott, 2006). These symptoms often manifest at times of disease progression and are 

far commoner in Binet stage C patients compared to those with stage A disease. A history of 

susceptibility to infections including varicella zoster, influenza or bacterial pneumonia may 

also be present at diagnosis (Moreira et al., 2013). Physical findings include 

lymphadenopathy, splenomegaly or hepatomegaly and pallor or bruising from the presence of 

anaemia and or thrombocytopenia. 

1.2.6 Clinical Staging in Chronic Lymphocytic Leukaemia. 

In practice two clinical prognostic scoring systems are used today. Their ability to 

prospectively predict overall survival has been validated in numerous studies (Oscier et al., 
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2010). The Rai system was first published in 1975 and identified 5 stages of disease (Rai et 

al., 1975) This was later modified in 1987 to identify 3 distinct patient subsets that differed in 

their survival (Rai, 1987). The simplicity of this scoring system (based on their clinical 

features and full blood count results alone) led to its universal acceptance and improved the 

accountability of results from prospective clinical trials (table 1.2). 

The second staging system, known as the Binet classification, was developed later in 1981 

and has been more widely adopted in Europe. Similarly, it classifies patients into 3 distinct 

groups (Binet et al., 1981). Stage A patients are those with less than three enlarged lymph 

node groups (where a lymph node group includes either cervical, axillary or inguinal lymph 

nodes, spleen or liver). Whilst those in stage B have more than three nodal groups and Stage 

C patients have anaemia (Hb <10) and or thrombocytopenia (plt < 100) (Table 1.2). As with 

the Rai scoring system each stage predicts survival outcome (Binet et al., 1981). Binet stage A 

or Rai stage 0 has an excellent prognosis with a median survival of greater than 10 years, 

whilst Binet stage B or intermediate Rai stage has between a 5 and 7 year median survival. 

Those patients falling into Binet stage C or high risk Rai stage have the worst prognosis with 

a median survival between 2 and 3.5 years (Cramer and Hallek, 2011). In 1989, The 

International Workshop on Chronic Lymphocytic Leukaemia (IWCLL) advocated integrating 

these two commonly used staging systems but despite this, each prognostic scoring system 

has remained largely separate in common clinical practice (Cheson et al., 1996).  
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Table 1.2  

The two staging systems used in CLL (Binet et al., 1981, Rai, 1987 ) 
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Despite their use worldwide and recent endorsement by the IWCLL (Hallek, 2013), 

limitations exist (Zenz et al., 2010b). Neither prognostic scoring system discriminates 

between the origin of cytopenias in order to fulfill the requirement for poor risk or stage C 

disease. Moreno et al identified 73 Binet stage C patients and classified the cause of their 

cytopenia into “immune” or “infiltrative”. Those with an immune origin for cytopenia, had on 

average a 45 month survival advantage (P=0.02) (Moreno et al., 2010). This work also 

demonstrated that patients with “immune” stage C disease still had a shorter survival than the 

stage A cohort and have associated poor prognostic risk factors such as zap70 and CD38 

expression (Dearden et al., 2008).  

Another potential future consideration includes the adoption of other nodal groups to the 

existing scoring systems. This is increasingly being noted with the advent of pre-treatment CT 

scanning. However, several studies have reviewed the addition of imaging in predicting 

prognosis but come to differing conclusions (Eichhorst et al., 2011, Blum et al., 2007, 

Muntanola et al., 2007).  

1.2.7 Laboratory based prognostic markers in CLL 

In addition to clinical staging, many laboratory based tests have been validated as indicators 

of poor prognostic disease in CLL and are increasingly important for early stage, 

asymptomatic patients where anxiety regarding the diagnosis remains high and where the Rai 

and Binet staging system fail to discriminate between those patients likely to progress quickly 

and those with indolent disease. 

1.2.7.1 Lymphocyte Doubling Time 

A lymphocyte doubling time (LDT) of less than 12 months confers poor prognostic risk and 

identifies individuals whose disease is progressing. In stage A patients, a LDT less than 12 

months corresponded to a median of 61 months progression free survival, compared to those 
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whose LDT was greater than 12 months, where a median survival at 118 months still had not 

been reached (Montserrat et al., 1986, Shanafelt et al., 2004).  

More recently, Nunes et al demonstrated LDT to be the most important prognostic parameter 

for time to first treatment in stage A CLL (Nunes et al., 2012). Although LDT is a widely 

accepted prognostic marker, it is likely that a combination of biological events are required 

before the tumour cell proliferation index increases and clearly LDT does not represent a 

means of detecting disease progression at diagnosis. 

1.2.7.2 Beta-2 Microglobulin 

Beta-2-Microglobulin (β2M) remains a simple, cheap and reliable predictor of prognosis in 

CLL, particularly when adjusted for glomerular filtration rate (Delgado et al., 2009). It 

constitutes part of the MHC 1 molecule located on all human nucleated cells.  Notably, an 

increase in β2M is seen with bulky lymphadenopathy and bone marrow infiltration and is an 

independent predictor of overall survival. Of all the current serum markers, it is the most 

powerful at predicting outcome (Pratt et al., 2009, Hallek et al., 1996).  

1.2.7.3 Immunoglobulin Heavy Chain Gene (IGHV) Mutations  

IGHV mutation analysis is performed on fresh lymphocytes using RT-PCR. The patient’s 

mutation status is determined by the percentage of variation in the B cell clone DNA 

sequence compared to the patient’s germline and is defined as mutated when it exceeds 2% 

(Hamblin et al., 1999). Using this definition, approximately 50-70% of all CLL patients are 

found to have mutated IGHV (Hamblin et al., 1999, Damle et al., 1999). 

In 1994, following a review of reported cases, a subset of patients with CLL with mutated 

variable heavy chain genes were first recognised (Schroeder and Dighiero, 1994).  

Subsequently, Fais et al also delineated a group of CLL patients whose clonal B cells did not 

appear antigen naïve. Instead, somatic mutations involving amino acid changes within the 
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complementarity determining regions (CDR1 and 2) of the immunoglobulin heavy chain 

variable domain (IGHV) were noted, suggesting antigen recognition had already taken place 

within the germinal centre and as such the CLL clones represented “memory” type B cells 

(Fais et al., 1998).  

By 1999, two cardinal papers were published identifying a prognostic difference between 

those patients with a mutated and unmutated IGHV. Damle et al reported 18 of 23 patients 

(78%) with a mutated IGHV region required either no or minimum therapy and their median 

survival exceeded the study time. By comparison, 75% of the unmutated IGHV group 

required treatment (p=0.0001) and their overall median survival was reduced to 9 years 

(Damle et al., 1999). Shortly after, Hamblin et al studied another cohort of 84 CLL patients 

(38 unmutated, 46 mutated) and similarly found those with an unmutated IGHV had an 

advanced stage of disease (p=0.0009) and were more likely to have concurrent trisomy 12 

anomaly.  Kaplan Meier survival analysis found a difference in survival of 176 months, with 

those unmutated patients having the shortest median survival of only 117 months (Hamblin et 

al., 1999). 

The mutation status of the IGHV has been found to associate with other known prognostic 

markers of CLL. Abnormalities in p53 functioning are strongly associated with absence of 

IGHV mutation (Lin et al., 2002), as is the expression of Zap70 (Crespo et al., 2003). 

Conversely patients with mutated IGHV, often have the favourable 13q14 deletion and longer 

survival (Oscier et al., 1997, Lin et al., 2002). One exception to this rule is patients 

specifically harbouring a mutated VH3-21 gene segment, whereby an increased frequency of 

p53 dysfunction is seen, with a poorer outcome (Lin et al., 2003). Although technically 

challenging and costly to perform, IGHV mutation analysis is now recommended at diagnosis 

where resources are available (Parikh et al., 2016) and within the context of clinical trials, its 
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use permits a confident and accurate distinction of two prognostic groups of patients with 

CLL.  

1.2.7.4 Flow Cytometry  

ZAP70: Zeta-chain associated protein (ZAP-70) is a tyrosine kinase protein that is usually 

expressed by T lymphocytes and NK cells and is important for T cell receptor signaling 

(Isakov et al., 1995).  Its expression on CLL cells was identified following microarray 

analysis in an attempt to find surrogate markers for IGHV mutation status (Rosenwald et al., 

2001). 

Shortly after this, Crespo et al studied ZAP-70 expression on 56 CLL patients. Critically, they 

found an expression of ZAP-70 on more than 20% of leukaemic cells inferred poor prognosis 

and that expression coincided with the presence of unmutated IGHV. Conversely, of the 24 

patients without 20% ZAP-70 expression, 21 had a mutated IGHV (P<0.001) (Crespo et al., 

2003).  

The detection of ZAP-70 expression using flow cytometry remains a reliable indicator of 

disease prognosis and it is simple to perform.  

CD38: CD38 is an enzyme expressed on B cells and is important for cell adhesion, signal 

transduction and maintaining intracellular calcium (Cesano et al., 1998). Within the context of 

CLL, Damle et al first identified it as a prognostic marker in 1999 and noted an expression of 

>30% predicted a shortened time to chemotherapy and reduced overall survival in comparison 

to those CD38 negative (<30%) patients. CD38 expression also correlated with unmutated 

IGHV status when expression was >30% in all patients investigated (Damle et al., 1999). 

However, further work has found it to be independent of IGHV mutation status as a 

prognostic indicator (Hamblin et al., 2002).  
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Subsequent studies with larger patient numbers have confirmed CD38 as a prognostic marker 

for predicting progression free survival in stage A patients at diagnosis and have also 

demonstrated expression as low as 7% coincides with a poorer outcome (Kröber et al., 2002, 

Letestu et al., 2010). Importantly, this ability to distinguish amongst Binet stage A patients 

has led to recommendation that CD38 testing is performed at diagnosis, as unlike ZAP70 and 

FISH analysis, it remains an independent prognostic marker at diagnosis (Pepper et al., 2012). 

Furthermore, CD38 expression is not influenced by therapeutic interventions, although it can 

increase as disease progresses, and its presence at diagnosis provides a good indicator for the 

proliferative potential of an individual’s B cell clone (Patten et al., 2008, Hamblin et al., 2002, 

Damle et al., 2007, Durig et al., 2002). 

1.2.7.5 Cytogenetics 

No single genetic defect is known to be necessary to cause CLL but a small number of 

recurrent genetic abnormalities arise in patients with CLL and have clear prognostic value 

(Zent and Burack, 2014). Previous difficulties in elucidating genetic aberrations using 

karyoptyping of metaphase cells have been superseded by the use of interphase fluorescence 

in-situ hybridization (FISH) and mutation analysis. It is known that 80% of patients with CLL 

have an identifiable genomic aberration and FISH is now recommended for all newly 

diagnosed patients, where resources permit (Parikh et al., 2016, Stilgenbauer et al., 2002, 

Döhner et al., 2000). Typical panels evaluate for the 4 commonest chromosomal 

abnormalities. These are deletion of 17p13, 11q22-23, 13q14 and trisomy 12. In addition, 

mutation analysis for TP53 and ATM is also now standard clinical practice. Novel mutations 

including NOTCH 1 (Rossi et al., 2012b), SF3B1 (Quesada et al., 2012) and BIRC3 (Rossi et 

al., 2012a) mutations also add prognostic value but are not currently in routine use outside of 

clinical trials. It is hoped that as availability and affordability of targeted next-generation 
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sequencing improves, detection of these genetic mutations will provide better prognostic 

information (Zent and Burack, 2014, Baliakas et al., 2015). The main genetic abnormalities 

are discussed below: 

17p deletion/TP53 mutation: Briefly, TP53 is a tumour suppressor gene, found on the short 

arm of chromosome 17 (17p13). The product, p53, is an important cell cycle regulator, 

playing a key role in the DNA damage response and is commonly mutated in a variety of 

malignancies. Loss of TP53 is known to occur in 5% of patients with CLL prior to any 

treatment, whilst a further 7 % have mutations in their TP53, which are undetectable by FISH 

analysis (Gonzalez et al., 2011). Amongst cytogenetic abnormalities, deletions in 17p are 

known to produce the shortest median time to treatment and both mutations and/or deletions 

of TP53 provide resistance to conventional DNA-damaging chemotherapy and reduced 

overall survival (Zenz et al., 2010a, Döhner et al., 2000, Wattel et al., 1994). Alemtuzumab 

and more recently, the use of B cell receptor pathway inhibitors such as ibrutinib (a bruton 

tyrosine kinase inhibitor) should be used to treat patients with 17p deletion/p53 mutation, as 

its efficacy is independent of p53-mediated killing.  

11q deletion/ATM mutation: The ATM (ataxia telangiectasia mutated) gene is located on 

chromosome 11q23. Like p53, it is also a cell cycle regulator and is important for the repair of 

damaged DNA by homologous recombination (Stankovic et al., 1999). Deletion of 11q22-23 

is the second commonest genetic abnormality found in CLL and is associated with a reduced 

survival (Döhner et al., 2000). In approximately one third of CLL patients with an 11q 

deletion, the remaining ATM allele is also mutated (Austen et al., 2007). Deletion of 11q is 

associated with bulky lymphandenopathy, disease progression and reduced overall survival, 

although the adverse outcome appears to be partly overcome in the rituximab era 

(Stilgenbauer et al., 2002). 



Introduction 

 33 

Trisomy 12 This is found in up to 20% of patients with CLL and confers an intermediate 

prognosis (Döhner et al., 2000). Trisomy 12 is recognised as a clonal driver mutation that 

occurs early in CLL evolution (Landau et al., 2013).  

13q14 deletion Deletion of the long arm of chromosome 13 is associated with a more 

favourable outcome in patients with CLL and represents the commonest chromosomal 

abnormality found in over 50% of cases (Van Dyke et al., 2010). It is associated with loss of 

the micro-RNA (miR) genes miR15 and miR16, which leads to downregulation of multiple 

oncogenes including bcl-2 (Calin et al., 2002). Figure 1.4 demonstrates Kaplan-Meier curves 

for overall survival based on the aforementioned chromosomal abnormalities. 

NOTCH 1, SF3B1 and BIRC3 mutations 

Mutations in NOTCH1 (seen in around 10% of CLL cases requiring treatment), SF3B1 (seen 

in 17% of CLL cases requiring treatment) and BIRC3 (seen in 4% of patients at diagnosis) are 

all risk factors for a shorter time to first treatment and overall survival (Oscier et al., 2013, 

Rossi et al., 2012b, Rossi et al., 2012a, Stilgenbauer et al., 2014). Activating mutations in 

NOTCH1 are enriched in patients with chemotherapy resistant disease and have also been 

associated with an increased risk of transformation to diffuse large B cell lymphoma (Puente 

et al., 2011). The presence of NOTCH1 mutations have also been found to occur more 

frequently in patients with trisomy 12 (Balatti et al., 2012) and from the CLL8 study, patients 

with NOTCH1 mutations do not benefit from the addition of rituximab (Stilgenbauer et al., 

2014).  

The deletion or mutation of BIRC3 is also enriched in patients with chemotherapy refractory 

disease. Furthermore, BIRC3 is deleted in more than 80% of patients with a deletion in 11q 

and in this context, its value as an independent prognostic marker has been disputed (Rose-

Zerilli et al., 2014). Finally, SF3B1 encodes a protein required for producing mature RNA and 
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mutations in SF3B1 have again been shown to infer a poor overall survival (Quesada et al., 

2012, Stilgenbauer et al., 2014). Together, it is hoped that in the future, these key genetic 

mutations may form part of a new prognostic index score for patients with CLL at diagnosis 

in order to risk stratify early stage patients and direct patients towards the use of targeted 

therapies rather than conventional chemotherapy (Cortese et al., 2014, Rossi et al., 2013).  
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Figure 1.5 

The overall survival of patients with CLL when stratified by chromosomal 

abnormalities. 

A Kaplan-Meier curve of survival in CLL based on cytogenetics. The median survival is 

worst for those with chromosome17p deletion at 32 months, followed by deletion of 

chromosome 11q deletion at 79 months. Patients with trisomy 12 were found to have a longer 

survival than those with no genetic chromosomal abnormality, with a median survival of 114 

compared to 111 months. Reproduced with permission from  Copyright Massachusetts 

Medical Society. 
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1.2.8 Current treatment strategies for Chronic Lymphocytic Leukaemia 

A consensus to treat patients only when they become symptomatic or have clear evidence of 

disease progression should be adhered to outside the setting of a clinical trial (Oscier et al., 

2012). The watch and wait policy for early stage patients is based on several studies and a 

large meta-analysis (n= 2048) (CLL, 1999). As early as 1988, Shustik et al demonstrated in a 

small number study (n=59) that after 5 years of follow up, there was no survival advantage to 

those treated with monthly chlorambucil compared to observation only (Shustik et al., 1988). 

In 1998, Dighiero et al similarly studied stage A patients in 2 randomised trials with one trial 

comparing chlorambucil against no treatment (n=609; 11 years follow up) and the other 

comparing intermittent chlorambucil with prednisolone versus no treatment arm (n=926; 6 

years follow up). In both studies there was no survival benefit for earlier treatment and in 

non-treated patients 49% had no further signs of disease progression more than 11 years later. 

As such the treatment of early stage CLL was deemed unnecessary (Dighiero et al., 1998). In 

addition to a lack of therapeutic efficacy, reports have highlighted the risk of chemotherapy 

related toxicity including myelodysplasia and acute myeloid leukaemia and concerns 

regarding tumour resistance following upfront chemotherapy have also been raised (Dighiero 

et al., 1998, Ricci et al., 2011, CLL, 1999).  

Recently with the advent of monoclonal antibodies, Ferrajoli et al have investigated the 

impact of early treatment in asymptomatic patients with single agent Rituximab (CD20 

monoclonal antibody) given weekly for 8 weeks at 375mg/m2. Although given to 

asymptomatic early stage patients, recruitment targeted only patients with high β2M and 

therefore those patients more likely to progress. This treatment regimen has been found to be 

safe and well tolerated. As yet any survival advantage of single agent rituximab over watch-

and-wait is not known, but an overall response rate of 82% has been demonstrated and 
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tolerability proven (Ferrajoli et al., 2011). The CLL12 trial is now also underway which will 

randomise Binet stage A patients with high risk of disease progression to either ibrutinib (a 

novel bruton tyrosine kinase inhibitor discussed below) or watch and wait (Langerbeins et al., 

2015).  

Outside of such clinical trials, initiating treatment should be based on one of indications 

outlined by the IWCLL and listed in table 1.3. For optimal management, each case should be 

discussed in a multidisciplinary team meeting, overseen by a haemato-oncologist (Shanafelt et 

al., 2012). The majority of patients will respond well to the initial course of therapy but 

inevitably will relapse, with successive cycles of treatment becoming less effective and 

toxicity accumulating.  

The depth of response achieved with each cycle is important, with MRD negativity producing 

an improved overall survival (Hallek et al., 2010). Encouragingly, the past decade has seen an 

increase in patient response to chemotherapy, duration of remissions, overall survival and the 

addition of new more targeted therapies including monoclonal antibodies and those targeting 

the B cell receptor pathway (Brenner et al., 2008).  

Deciding on which treatment regimen to employ can be difficult, particularly as many patients 

with CLL are on average older than that those recruited into clinical studies and often have 

multiple comorbidities and often frailty. This limits both treatment choices and doses that are 

safe and requires the physician to balance therapeutic gain against toxicity and reduced 

quality of life. There is an increasing focus especially in trials on formally assessing co-

morbidities, frailty and disability in order to optimally dose adjust but this field requires 

further study. 
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Table 1.3.  

IWCLL indications for the treatment of CLL (Hallek et al., 2008)  
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1.2.8.1 Fit, young patients first line therapy 

Providing no p53 mutation or deletion is present, the current gold standard treatment regimen 

for those deemed fit enough is FCR (fludarabine, cyclophosphamide and rituximab). From the 

German CLL8 trial of 817 treatment naïve patients with CLL, FCR has been shown to 

produce a superior overall survival compared to FC alone, with long-term remissions (HR 

0.68; p=0.001). However, recruitment to this study involved relatively young patients (median 

age 61) who had no comorbidities (median cumulative illness rating score (CIRS) of 1) 

(Hallek et al., 2010, Fischer et al., 2016). Difficulties extrapolating these findings to the 

average cohort of elderly patients with CLL have occurred, as the degree of myelosuppression 

achieved using FCR is often too great for many patients with CLL, with prolonged 

neutropenia for up to 1 year post therapy seen in the FCR arm of the trial (Fischer et al., 

2016). Reduced dose FCR regimen is an alternative option for some. The median PFS with 

FCR is between 4-5 years but this is significantly greater for patients with a mutated IGHV 

and many of these patients have PFS extending beyond 10 years. The addition of Rituximab 

or alternative anti-CD20 monoclonal antibodies to regimens has also improved the outlook for 

20% of patients requiring treatment that have an 11q deletion (Hallek et al., 2010), but 

conversely the addition of an anti-CD20 mAb to those with NOTCH1 mutation, may not 

provide any additional benefit to FC alone (Stilgenbauer et al., 2014). The main question in 

2016 is whether an ibrutinib plus rituximab combination can replace FCR for newly 

diagnosed patients and this is being examined in the UK FLAIR study currently. 

1.2.8.2 Elderly or less fit patients first line therapy 

First line therapy for unfit or elderly patients includes bendamustine or chlorambucil with 

rituximab or an alternative CD20 monoclonal antibody (mAb) such as ofatumumab (shown in 

COMPLEMENT-1 trial to have superior efficacy in combination with chlorambucil compared 
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to chlorambucil alone (Hillmen et al., 2015)) or obinutuzumab (shown to have superior 

outcome for unfit patients with bendamustine in CLL11 trial compared to bedamustine and 

rituximab (BR) (Goede et al., 2014)). 

Considering chemotherapy agents for less fit patients, bendamustine has been shown to have 

superior PFS and response rates compared to chlorambucil and like chlorambucil, appears to 

be well-tolerated (Knauf et al., 2009). The CLL10 trial compared patients with bendamustine 

and rituximab (BR) to those given FCR but again in a young cohort (median age 61). Interim 

analysis showed no difference in overall response rate (ORR) or overall survival, although the 

complete response rate (FCR: 47.4% vs BR: 38.1%; p=0.031) and progression free survival 

(FCR: 85 vs BR: 78.2%; p=0.041) were more superior in the FCR arm. However when PFS 

was analysed in patients less or more than 65 years old, those randomized to the BR arm were 

significantly older (BR: 38.7% vs FCR: 30.5% were over 65 years old; p=0.042) and overall 

the BR arm had more cases with unmutated IGHV (BR: 53% vs FCR: 67.8%; p=0.003). In 

those over the age of 65, no clear benefit for FCR therapy was found. The FCR arm also had a 

much greater side effect profile with more infections and haematotoxicity observed 

(p<0.0001) and 47% of those over 65 in the FCR arm had at least one infection (Eichhorst et 

al., 2013) 

In support of these findings, in 2014 the national comprehensive cancer network (NCCN) 

recommended that fit patients over 70 or those under 70 with co-morbidites should not 

receive FCR (NCCN, 2014). Instead, outside of a trial, bendamustine (or chlorambucil) and 

obinutuzumab (or an alternative anti-CD20 mAb) seems a reasonable alternative for elderly 

fit patients requiring first line therapy. Assessment of comorbidities, frailty and disability is 

becoming increasingly recognized as important in guiding treatment decisions. 
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1.2.8.3 Second line therapy 

No clear guidance exists for second line therapy. Patients who relapse 2 or more years after 

initial treatment are often considered for retreatment with their initial treatment regimen 

providing it was well tolerated. Typically responses are less durable with each subsequent 

relapse and inevitably these patients will receive the newer novel agents such as ibrutinib if 

available or within a study. Patients deemed very high risk (those who are refractory or 

relapse within 6 months of first line therapy or those who are inherently resistant to 

chemotherapy mediated killing, with a p53 mutation +/or 17p deletion) were until recently 

considered for subcutaneous alemtuzumab (humanised anti-CD52 mAb) with high dose 

steroid and consolidated where possible with an allogeneic transplant if fit enough (Cortelezzi 

et al., 2012, Pettitt et al., 2012). The benefit of reduced intensity allograft and potential for 

cure has been shown in numerous studies and should still be considered for anyone fit enough 

with high-risk disease (Dreger et al., 2007, Dreger et al., 2010, Moreno et al., 2005). 

However, the more recent addition of the B cell receptor (BCR) signaling pathway inhibitors 

such as the BTK inhibitor (ibrutinib or acalabrutinib) (Byrd et al., 2016, Byrd et al., 2013) or 

the PI3K delta inhibitor, idelalisib (Furman et al., 2014) and the BCL-2 antagonist, venetoclax 

(Roberts et al., 2016), have changed the management for this challenging group of patients 

and when to intervene with transplantation is less clear (Dreger et al., 2014). Not only are 

these drugs orally available but they are showing dramatic efficacy in difficult-to-treat patient 

groups and those with high-risk genetic aberrations as detailed below. Finally, with the 

increasing survival of patients with CLL there is probably an increasing incidence of 

Richter’s transformation, which typically presents as an aggressive, often focal tumour in a 

lymph node or as an extramedullary tumour, which is intensively active on PET imaging. 
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1.2.9 BTK inhibitors 

For relapsed refractory patients on single agent ibrutinib the overall response rate was 

remarkable at 71% and was associated with a durable progression free survival (Byrd et al., 

2013). A comparison with ofatumumab in previously treated relapsed/refractory patients with 

CLL, demonstrated a superior PFS with ibrutinib and also ORR (ibrutinib: 42.6% vs 

ofatumumab: 4.1; p<0.001) and importantly also demonstrated efficacy in those with 17p 

deletion with 83% of the 127 patients with 17p deletion showing PFS at 6 months (Byrd et al., 

2014). Untreated patients with TP53 aberrations have also been shown to have a RR of 97% 

and PFS of 91% at 24 months on ibrutinib therapy (Farooqui et al., 2015). Ibrutinib is 

generally well tolerated although an increased risk of bleeding, particularly in the presence of 

oral anti-coagulants and an increase risk of atrial fibrillation have been found (Byrd et al., 

2014, Byrd et al., 2013). Newer, more selective second generation BTK inhibitors with an 

improved side effect profile are now appearing in clinical trials (Byrd et al., 2016). 

1.2.10 PI3K inhibitors 

In early studies, idelalisib as a single agent already showed promise with response rates of 

72% observed amongst patients previously treated who had a short time to relapse (Brown et 

al., 2014). In 2014, 220 patients, of whom nearly 80% were over the age of 65 and had 

significant co-morbidity or were deemed not fit enough for chemotherapy, were investigated 

in a phase III study comparing rituximab and idelalisib versus rituximab and placebo. The 

study had to be stopped early due to the overwhelming difference in efficacy in the idelalisib 

arm, with 93% showing PFS at 24 weeks compared to 46% (p<0.001) and an ORR of 81% 

versus 13% (p<0.001) (Furman et al., 2014). Data for responses amongst prognostic groups is 

due to be published soon but oral reports again shown good efficacy against 17p del disease. 

Like ibrutinib, idelalisib is generally well tolerated in the relapse setting although temporary 
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transaminitis is common and reports of pneumonitis, colitis and hepatic dysfunction have also 

been reported (Furman et al., 2014). Unfortunately toxicities appear particularly increased in 

newly diagnosed patients with an excess of early deaths in Phase III studies (7.4% deaths in 

idelalisib arm vs 3.5% deaths in placebo arm) including from CMV and pneumocystis 

jirovecii leading to an interim recommendation to not initiate idelalisib as first line therapy 

(written correspondence). Further investigation of toxicity is ongoing and the long-term future 

of idelalisib remains uncertain. 

1.2.11 BCL-2 antagonists 

Results of the phase I trial using venetoclax in multiply relapsed disease have recently been 

published. Almost 90% had adverse prognostic features including poor cytogenetics and a 

79% response rate was observed amongst the 116 participants, which included those with 17p 

deletion. Of note, 20% of participants had a complete remission with 5% reaching MRD 

negativity. Side effects included tumour lysis syndrome and a grade 3/4 neutropenia in around 

40% but the authors concluded that the safety profile was manageable in this group of patients 

(Roberts et al., 2016).  

1.2.11.1 Concluding on the newer agents 

BCR pathway inhibitors and BCL2 antagonists have shown great promise and are changing 

the landscape of CLL management. With a tolerable side effect profile in the relapsed setting 

and evidence for their efficacy against 17p deleted disease and chemotherapy 

refractory/multiply relapsed patients with significant co-morbidities, the overall survival of 

patients with CLL is set to improve, particularly as new combinations of these agents are 

trialed with immunotherapeutic agents. However, the duration of therapy required and the 

long-term side effect profile are still unknown and despite such encouraging responses, 

resistance has already been reported and complete remissions are rare. In addition the 
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emergence of toxicities with the use of idelalisib in newly diagnosed patients has highlighted 

the need for caution. The search for a cure for CLL therefore continues.  

1.3 Cytomegalovirus 

1.3.1 Overview of cytomegalovirus 

Cytomegalovirus is one of 8 ubiquitous human herpes viruses that infects populations 

worldwide (Mocarski ES, 2007). The virus is acquired through close personal contact and 

transferred through all bodily fluids, often at a young age. Its prevalence varies throughout the 

world and in general, healthy immunocompetent individuals are asymptomatic during primary 

infection. On occasion primary infection can be associated with an infectious mononucleosis 

type illness and a persistence of fatigue that can last several months (Hurt and Tammaro, 

2007). The archetypical manner by which herpes viruses persist, is by maintaining a state of 

latency in their host for life. As a result, CMV has evolved strategies to avoid human immune 

surveillance.  

In order for CMV to maintain latency, a rapid and intact cellular immune response is required 

to control the virus throughout life. This chronic, relentless T cell mediated viral suppression 

places an incredible burden on the immune system to maintain status quo (Khan et al., 2002). 

Conversely, a state of immunosuppression provides a niche for the uncontrolled replication of 

virus and the production of symptomatic disease. Such reactivation is a common phenomenon 

seen in progressive HIV infection, bone marrow transplantation and solid organ transplants. 

Florid and uncontrolled CMV replication can be in almost any tissues but frequently it results 

in colitis, pneumonitis or retinitis and requires anti-viral therapy (Navarro, 2016).  

CMV may also result in congenital malformations and neurological impairment if primary 

infection or reactivation occurs during pregnancy and the virus crosses the placenta. The risk 

of end organ damage is greatest during the first trimester and commonly results in congenital 



Introduction 

 45 

deafness and neurological impairment (Cannon et al., 2010). Given the ubiquitous nature of 

CMV and its clinical implications, the development of a vaccine against CMV has been 

highlighted as a major public health priority by the Institute of Medicine and although 

advances are being made, a range of different vaccines are still at the early stages of 

development with only a few in phase I or II clinical trials (Arvin et al., 2004). 

1.3.2 The epidemiology of Cytomegalovirus 

Human CMV can only infect humans. Although prevalent worldwide, rates of CMV infection 

vary, being highest in South America, Asia and Africa and lowest in Western Europe (Cannon 

et al., 2010). In countries with the greatest infection rates, acquisition of the virus usually 

occurs at a young age and can be transmitted via breast milk or through direct contact. In 

western society, prevalence increases with age, with seropositivity estimated to be 70% in 

people over the age of 60. People of lower socioeconomic status are also more likely to carry 

the virus. The differing rates of infection are likely to reflect differences in breast feeding, 

child care arrangements, cramped living conditions and differences in sexual practices 

(Cannon et al., 2010).  

1.3.3 The structure of Cytomegalovirus 

CMV is the largest of the human herpes viruses with a genome size of 236 kbp (Dolan et al., 

2004). The central structure of the virus is icosahedral in shape and consists of a nucleocapsid 

containing double-stranded DNA. Between this and the viral envelope is the proteinaceous 

tegument layer (Mocarski ES, 2007) (Figure 1.5). The virus exists as an episome whilst latent 

(Bolovan-Fritts et al., 1999). 213 open reading frames (ORFs) have been identified for CMV 

(Sylwester et al., 2005). Interestingly, only 47 of these genes are important for viral 

replication. The majority of the remaining genes are thought to direct immune evasion or 

modify the hosts’ cellular response. Indeed, deletion of certain ORFs results in increased viral 
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replication suggesting certain proteins encode a suppressor function on viral replication 

(Dunn et al., 2003). Many broadly distributed epitopes are responsible for the T cell immune 

response seen in humans, with at least 151 ORF known to be capable of generating CD4+ or 

8+ T cell responses (Sylwester et al., 2005). Amongst the most immunodominant and most 

studied, is the phosphoprotein 65 (pp65) tegument protein that can be recognised by the 

immune system at all stages of viral replication and evokes both a humoral and cellular 

immune response (Kern et al., 2002).  

1.3.4 The immune response to CMV 

The humoral response to CMV occurs early in the primary immune response and the presence 

of IgG recognising CMV epitopes is the standard method for identifying prior CMV 

infection, using ELISA technique. Where a primary defect in the humoral system exists from 

birth, for example in the case of X-linked agammaglobulinaemia, reactivation of CMV is still 

not frequently encountered (Sullivan and Stiehm, 2014). This is fundamentally due to the 

presence of a dominant cellular immune response, a feature required by all infected humans 

and mice to prevent viral reactivation and used for therapeutic benefit in the correction of 

CMV viraemia in bone marrow transplant patients who receive CMV-specific CD8+ T cells 

(Cobbold et al., 2005).  

T cell immune responses appear around 7 days following primary infection (Rentenaar et al., 

2000). Usually, more than 2% and up to 50% of the CD8+ T cell repertoire is devoted to 

controlling lytic replication in health and unsurprisingly, CMV is speculated to be the most 

immunodominant antigen mankind encounters (Gillespie et al., 2000, Moss and Khan, 2004b, 

Wikby et al., 2002). This dominant CD8+ response is known to skew and invert the normal 

CD4:8 T cell ratio. The expanded populations of CD8+ T cells are oligoclonal and are of a 

late differentiated memory phenotype with low expression of the co-stimulatory molecules 
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CD27 and CD28. They typically are negative for CCR7 but often re-express CD45RA (Khan 

et al., 2002, Lachmann et al., 2012, Pourgheysari et al., 2007) (figure 1.3). This expansion of 

differentiated memory cells coincides with a restriction in the naïve memory T cell pool and 

increases with age. This finding is referred to as “memory inflation” (Karrer et al., 2003). 

Similarly, the CD4+ T cell response is known to increase with age and consist of effector 

memory cells that have increased expression of CD57 and a reduction in the expression of 

CD27 and CD28, a phenotype thought to be reflective of CD4+ T cells nearing senescence 

(Pourgheysari et al., 2007).  Both virus–specific CD4+ and CD8+ T cells exhibit a cytotoxic 

phenotype with high levels of granzyme and perforin and have been found at even higher 

frequencies in immunocompromised individuals. There have also been reports of features of 

T cell exhaustion observed amongst T cells recognizing CMV, with loss of IL-2 production, 

poor proliferative capacity and increased PD-1 expression seen on CD4+ T cells (Antoine et 

al., 2012, Sester et al., 2008, Dirks et al., 2013).  

Finally, it has been suggested that the dominant CMV T cell responses may impact on the 

ability to deal with heterologous infections and CMV positive elderly individuals have also 

been shown to have impaired vaccination responses compared to individuals who are CMV 

negative (Weng, 2006, Khan et al., 2004).  
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Figure 1.6 

The structure of cytomegalovirus. 

A 3-dimensional image of the structural components of cytomegalovirus including the 

icosahedral nucleocapsid surrounded by the tegument and the outermembrane containing 

glycoprotein structures including glycoprotein B (gB). Adapted from (Gandhi and Khanna, 

2004). Permission obtained from Elsevier (license number 3857141295803). 
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1.3.5 Cytomegalovirus establishes latency in the myeloid lineage 

Latency describes the ability of a virus to persist within a host without the production of 

infectious virions. The virus remains within a latent state, which continues until the necessary 

stimuli are provided that permit reactivation. Whilst latent, CMV conceals itself and remains 

exceedingly difficult to isolate (Jordan, 1983). Fundamentally, the existence of CMV is 

estimated to be of low frequency, with less than one in 10,000 peripheral blood mononuclear 

cells thought to be harbouring the virus (Slobedman and Mocarski, 1999).  

Speculation regarding the cell type responsible for the carriage site of CMV was deduced 

from the ability of the virus to be transmitted through blood transfusion. It was also noted that 

the risk of transmission could be minimised by leucodepleting blood, suggesting leucocytes 

within the peripheral blood compartment were a host cell for viral latency (Verdonck et al., 

1987, de Graan-Hentzen et al., 1989, Adler, 1983). More recently, sensitive PCR techniques 

have revealed that the virus persists within the myeloid lineage. Self-renewing CD34+ 

haemopoietic stem cells represent a reservoir for maintaining viral infection and it has been 

estimated that latent virus is present in 0.01% - 0.001% of myeloid progenitor cells within 

bone marrow (Kondo et al., 1994, Hahn et al., 1998). The primary cell for CMV carriage is 

thought to be the human monocyte, with no evidence for existence of the virus within 

neutrophils or lymphocytes apparent (Taylor-Wiedeman et al., 1991).  

Transcription of intermediate early (IE) genes is required to initiate CMV replication and 

evidence for this is lacking amongst CMV infected monocytes suggesting the virus remains 

truly latent in this cell type (Reeves et al., 2005). From in-vitro studies, monocytes that have 

been infected in cell culture are also not permissive to replication and this has been shown to 

be due to inhibition of the major IE promoter through chromatin remodeling. The presence of 

heterochromatin protein 1 associating with the promoter is thought to be responsible for this 
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inhibition (Murphy et al., 2002, Reeves et al., 2005). It is hypothesized that once the host cell 

differentiates into a macrophage, if a suitable cellular environment is reached, viral replication 

can proceed (Sinclair, 2008).  

1.3.6 Reactivation of Cytomegalovirus 

Detecting CMV in health is extremely difficult (Steininger et al., 2004). Indeed, a positive 

CMV PCR is generally interpreted as evidence of clinically significant reactivation but the 

ability of CMV to subclinically reactivate in individuals with a competent adaptive immune 

system is also now recognised. The virus can be detected during stressful periods in health 

and also at sites of inflammation for example following a myocardial infarction or in 

rheumatoid arthritis (Núñez et al., 2012, Einsele et al., 1992). It is also thought to occur more 

frequently in the elderly as host immunity wanes (Leng et al., 2011b). Such repeated antigenic 

stimulation of T cells during a lifetime, is thought to account for the accumulation of CMV 

specific memory T cells and contributes to the immune phenotype changes seen with ageing 

(Weinberger et al., 2007). CMV can distribute throughout the body and infect numerous cell 

types. The differential environment of cell types places a substantial influence on the 

replicative ability of CMV (Mocarski ES, 2007).  

Several sets of genes are expressed sequentially during lytic replication of CMV. Immediate 

Early genes (IE) are the first expressed during infection and act to prepare the cell 

environment for viral DNA production. Importantly, the differentiation of CD34+ cells and 

monocytes to mature DCs results in the association of acetylated histone 4 (H4) with MIEP 

(major immediate-early promotor). This modification is accompanied by the dissociation of 

repressor protein HP-1 from MIEP. Together this appears to instigate chromatin opening and 

permits the transcription of MIEP (Reeves et al., 2005).  Activation of the MIEP is then 

associated with expression of the IE genes and sanctions a transcription cascade that leads to 



Introduction 

 51 

viral replication. The cascade subsequently results in early (E) and late (L) gene expression. 

Functionally, the early genes are important in the coordination and production of viral DNA, 

whilst late genes are responsible for producing important structural proteins for the new 

virions produced (Mocarski ES, 2007) .  

1.3.7 Cytomegalovirus and the ageing immune system 

Immunosenescence describes the deterioration in the human immune system that occurs with 

ageing and is associated with an increased risk of infection (O'Connor et al., 2014). It is 

multifactorial in origin, but probably the most pronounced changes are seen within the CD8+ 

T cell compartment, where a restriction in the naïve T cell subset (mediated by thymic 

involution) and an expansion in effector memory T cells is seen contributing to inversion of 

the CD4:8 ratio (Linton and Dorshkind, 2004). An increase in pro-inflammatory cytokines 

also arises with ageing (Franceschi et al., 2000). These findings are exaggerated in individuals 

who are CMV positive. Several large population based studies have investigated the impact of 

CMV in healthy ageing and have associated it with an “immune risk phenotype” (IRP), which 

associates with mortality (Strindhall et al., 2012, Pawelec et al., 2001, Wikby et al., 2006).  

The Swedish OCTO study, recruited 109 healthy donors and first described the 2 year 

increased mortality seen in individuals aged over the age of 86, with an inverted CD4:8 ratio 

and reduced T cell proliferation (Ferguson et al., 1995). The inverted CD4:8 ratio was noted 

in 32% of individuals by the end of study. At risk individuals were found to be CMV positive 

with an expanded population of terminally differentiated memory CD8+ T cells. It was also 

later suggested that IRP could be simplified to just inversion of the CD4:8 ratio defined as 1 

(Wikby et al., 2002) and this was subsequently confirmed in an independent UK cohort in 

2003 (Huppert et al., 2003). 
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The Swedish NONA study recruited 138 individuals (with patients aged over 86) and 

reviewed cytokine production. Within only 2 years of follow up, the NONA study revealed 

individuals with an IRP at recruitment proceeded to develop an increase in the inflammatory 

cytokine IL-6, which was shown to independently predict 2 year mortality (Wikby et al., 

2006). IRP was again associated with persistent CMV infection. Using the findings of IRP 

and evidence of low grade inflammation, 57% of deaths within the 2 years were predicted 

(Wikby et al., 2006).  

The HEXA study has also looked at similar immune profile findings but in a randomly 

selected younger cohort with a mean age 66. 15% were noted to have inverted CD4:8 ratio 

which again correlated with CMV seropositivity (Strindhall et al., 2012). Due to the young 

age of participants, clinical outcome measures are not yet known in this cohort but it has been 

reported that the CD4:8 ratio inversion appears to be more frequent in males than females. 

1.4 Cytomegalovirus and Chronic Lymphocytic Leukaemia 

1.4.1 Overview 

In certain populations, CMV seroprevalence in patients with CLL has been found to be higher 

than the age and sex matched control population (Steininger et al., 2009). Despite the 

immunosuppression associated with CLL, CMV-specific CD4+ and CD8+ T cells have also 

been shown to accumulate to a greater extent in patients with CLL compared to healthy age 

matched controls. Repeated or chronic exposure to CMV has been attributed to this finding 

(Akbar, 2010, Mackus et al., 2003, Walton et al., 2010, Pourgheysari et al., 2010). However, 

the frequency and duration of CMV reactivation in CLL remains undetermined. One study 

found up to 12% of patients were harboring CMV DNA in their leucocytes. However, this 

was in a selected cohort biased towards patients with an IGHV4-34 gene arrangement in their 

BCR and antibody titres of IGHV4-34 are known to be raised in individuals who are infected 
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with CMV (Kostareli et al., 2009). Another large study of 200 unselected patients found 3% 

had detectable CMV DNA (Vanura et al., 2013), whilst others studies have found little 

evidence for CMV reactivation using PCR methodology (Mackus et al., 2003, Pourgheysari, 

2010).  

There is also limited evidence for the prognostic impact of CMV infection in patients with 

CLL. Suggestions from a small cohort of 53 patients, with 23 deaths, point towards a poorer 

outcome, with up to 45 months shorter survival time on univariate analysis for CMV positive 

patients compared to those CMV negative for the virus (HR 0.67 (95% CI 0.25-1.81) p= 

0.42). Interestingly, this report also noticed a tendency for increased infections within this 

cohort, although the authors did not make a firm conclusion as again, numbers were small 

(Pourgheysari, 2010).  

A reversal in the CD4:8 ratio in healthy elderly adults clearly correlates with being 

serologically positive for CMV (Olsson et al., 2000, Wikby et al., 2002), and in CLL an 

inverted CD4:8 ratio has been associated with poor prognosis in early stage patients (Nunes et 

al., 2012). The HEXA study discussed in section 1.2.7 recruited donors of a similar age to 

patients diagnosed with CLL and also confirmed, at this younger age, that CMV is associated 

with an inverted CD4:8 ratio (Strindhall et al., 2012). Thus, there is compelling evidence that 

CMV impacts on the T cell repertoire in CLL but its impact on survival and need for therapy 

has not been fully evaluated. Without larger epidemiological and scientific studies in this 

field, any potential therapeutic benefit of anti-viral therapy in CLL may not be realised. 

Contributing literature relevant to this field will now be discussed in greater detail within the 

introduction of each chapter.  

1.5 Aims of this study 

There are 4 main questions addressed in this thesis: 
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1. Using class I tetramers, what is the impact of CMV infection on the phenotype and 

function of CD8+ T cells in patients with CLL and does CMV impact on the CD4:8 

ratio in these patients.  

2. Using novel class II tetramers, what is the impact of CMV infection on the phenotype 

and function of CD4+ T cells in patients with CLL. 

3. Can CMV viral load be detected and quantified in patients with CLL and how does it 

relate to healthy donors and stage of disease. 

4. Does CMV infection impact on survival or time to first treatment in patients with CLL 

and how does CMV impact on infection morbidity. 

.
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2.1 Purification of peripheral blood mononuclear cells and plasma 

Peripheral blood monocyte cells (PBMC) and plasma were extracted from peripheral whole 

blood using a Ficoll density-gradient centrifugation under sterile conditions. Following 

venesection into lithium heparin lined blood tubes, blood was diluted 1:1 with RPMI 

(Invitrogen Gibco, Paisley UK) and layered onto ficoll-paque media (PAA, Buckinghamshire, 

UK). Next, samples were centrifuged at room temperature (RT) at 1800 rpm for 25 minutes 

(Allegra X-12R centrifuge, Beckman Coulter), with the brake off to maintain separation of 

layers during deceleration.  1.8ml of plasma was then retrieved from the top layer and stored 

at -20oC. The PBMC layer, which is visible as a band, was then extracted using a sterile 

transfer pipette and transferred to a fresh sterile falcon tube. Samples were then washed in 

RPMI and centrifuged for 10 minutes at 2000rpm. After discarding the supernatant, a further 

wash in RPMI and centrifugation for 10 minutes at 1600rpm occurred prior to ascertaining a 

mononuclear cell count using a haemocytometer. Cells were then either immediately used for 

stimulation assays or cryopreserved in freezing media (10% DMSO in FCS (Sigma-Aldrich 

Poole, UK, PAA)) and stored at -80oC overnight before transferring to -175oC. 

2.2 DNA extraction 

2.2.1 DNA extraction from a PBMC pellet  

DNA was extracted from up to 5 x 106 pelleted cells using GenElute Mammalian Genomic 

DNA Miniprep kit, according to maufacturer’s instructions (Sigma-Aldrich). Cells were 

resuspended in 200μl of resuspension buffer with 20μl of Proteinase K. 200μl of lysis solution 

C was then added and vortexed to homogenise the sample before incubating at 55oC for 10 

minutes. 500μl of column preparation solution was added to a column provided with the kit 

and then centrifuged at 10,500 RPM for 1 minute. 200μl of 70% ethanol was then added to 



                                                                                   
Materials and Methods 

 57 

the homogenised sample prior to loading on to the prepared column and centrifuging at 8000 

RPM for 1 minute. The column containing the bound DNA was then removed and placed in a 

new collection tube.  Using 500μl of wash solution, cells were then washed and centrifuged 

twice; first at 8000 RPM for 1 minute, then again at 13,000 RPM for 3 minutes. After the 

final wash, the DNA was eluted into a clean 1.5ml collection tube by adding 20μl of sterile 

DEPC treated water. A final incubation at RT for 5 minutes occurred prior to centrifuging at 

8000 RPM for 1 minute. The final elution step was repeated to retrieve DNA into a final 

volume of 40μl. This was then stored at -20oC. 

2.2.2 DNA quantification. 

The Nanodrop 2000 (Thermo Scientific, Waltham, MA, USA) was used to assess the purity 

and concentration of DNA. Briefly, following water calibration, 1μl of DNA sample was 

loaded on to the Nanodrop and using Nanodrop2000/2000c software, the 260/280 absorbance 

was measured, with a ratio between 1.6 and 1.9 deemed adequate for purity for further 

experiments. The concentration of DNA was given as ng/μl.    

2.3 CMV ELISA 

Using the previously published CMV ELISA testing kit (University of Birmingham) the 

presence and quantification of CMV IgG antibody was determined (Kilgour et al., 2013, 

Bartlett et al., 2012, Savva et al., 2013). The ELISA plate was first prepared the day before 

using mock and CMV-infected lysate. To do this, alternatively across the 96 well plate, a row 

of 50μl of mock-lysate, followed by 2 rows of 50μl CMV-lysate were applied and incubated 

at 4°C overnight. The next day, wash buffer was prepared as 0.5% Tween-20 in phosphate 

buffered saline (PBS) (Sigma-Aldrich) and dilution buffer prepared as 1% BSA (Sigma-

Aldrich) in wash buffer. Using a known CMV lysate mixture generated from 3 healthy 

donors, 1 in 4 serial dilutions were used as a standard for titre calculations. After washing the 
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plate, a 1 in 600 dilution of patient serum to dilution buffer was added to the appropriate 

mock and lysate well corresponding to that patient sample and incubated for 1 hour at RT. 

After further washing, 100μl of 1 in 8000 dilution of IgG (SouthernBiotech, Alabama USA) 

was added to each well and incubated for 1 hour in the dark, RT. After repeat wash steps, 

100μL of TMB (3, 3′, 5, 5′-tetramethylbenzidine ELISA peroxidase substrate) (Rockland, 

Limerick USA) was added and incubated for 10 minutes in the dark, RT. To stop the reaction, 

100μl of 1mM HCl was added. Using the Viktor plate reader and PRISM version 6, CMV 

IgG titres were calculated through extrapolation of the standard curve titres.  

2.4 HLA Typing 

HLA typing was performed using PCR, as described by Bunce et al. (Bunce et al., 1995). 

HLA type was required for appropriate application of tetramers described in section 2.5. 

Table 2.1 contains the forward and reverse sequences of the primers used for each HLA type 

tested and the volume added per reaction, DEPC treated water was then added to each 

forward and reverse primer to reach a total volume of 4μl.  

TDMH buffer was pre-prepared and stored at -20oC. To prepare the TDMH, 676 μl of 10x 

NH4, 135.2 μl of 10mM dNTPS, 270 μl of MgCl2, 162 μl of glycerol, 40 μl of cresol red and 

1316.8 μl of H2O were added and vortexed well prior to freezing.  

A separate mastermix was made for each patient sample comprising enough for 10 reactions. 

For the mastermix, 140ng of DNA, made up to a total volume of 40μl  with DEPC water, 

together with 70.8μl of TDMH, 0.75μL of BioTaq DNA polymerase (Bioline, London UK) 

and 7μl  of control forward and 7μl  of reverse primer. 9μL of mastermix was then mixed with 

4μl  of the HLA primer stock for each PCR reaction. Reaction conditions consisted of 1 

minute at 96oC, followed by 5 cycles of 25 seconds at 96oC, 45 seconds at 70oC, 45 seconds 

at 72oC, followed by 21 cycles of 25 seconds at 96oC, 50 seconds at 65oC, 45 seconds at 
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72oC, followed by 4 cycles of 25 seconds at 96oC, 60 seconds at 55oC, and 120 seconds at 

72oC. Samples were run on a 1% agarose gel containing 0.5 μg/ml ethidium bromide (Sigma-

Aldrich) for 35 mins at 140V against a hyperladder (Bioline) and the gel image obtained 

using the kodak TVC312A gel reader.  

2.5 Tetramer preparation 

2.5.1 CMV Class I Tetramer Preparation 

9 CMV class I tetramers were kindly donated by Mrs J Begum to identify CMV-specific 

CD8+ T cells (Monomer details can be found in Table 2.2) (University of Birmingham). For 

this, 1μl of tetramer was added to 1x106 cells in 50μl of PBS buffer and incubated for 15 

minutes at 37oC, prior to a further wash in MACS buffer.   

2.5.2 CMV Class II Tetramer Preparation 

For type 2 tetramer staining, 2 CMV tetramers (DYS and AGI) were generated by Benaroya 

Research Institute at Virginia Mason Seattle and stored for up to 6 months at 4°C. For 

tetramer staining, 1 x 106 cells were resuspended in 50μl of sterile human serum and 0.5μl of 

the appropriate tetramer added for the individual’s Class II HLA type. Cells were then 

incubated at 37oC degrees for 30 minutes prior to any surface or intracellular staining.  
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Table 2.1    Primer sequences used for HLA typing analysis.  

 

Table 2.2     Details of the CMV monomers used for tetramer work and their HLA restriction 
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2.6 Immunophenotyping 

2.6.1 Surface staining for immunophenotyping 

For immunophenotyping experiments, all wash steps involved the addition of 3ml of MACS 

buffer (University of Birmingham), prior to centrifugation at 1800rpm for 5 minutes unless 

stated otherwise. PBMCs were defrosted and immediately washed in 13ml of PBS (University 

of Birmingham). After determining the cell concentration using a haemocytometer, 1x106 

PBMC per tube were used for staining experiments. Live-dead fixable cell staining assay 

(Invitrogen) was added to each facs tube and incubated at RT in the dark for 15mins. Cells 

were washed before the addition of the appropriate tetramer if required as detailed in section 

2.5. After repeat washing, surface antibodies were added for each panel and incubated for 15 

mins at 4oC in the dark before a final wash and analysing on the LSRII™ (BD Biosciences). 

To identify correctly positive populations of cells, an unstained control and fluorescence-

minus-one sample was performed for each experiment. Table 2.3 gives an overview of the 

panels used within this study. 
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Table 2.3   

Antibody panels. 

Red denotes the antibodies that are intracellular and therefore added after fixation and 

permeabilisation. 

Panel 1 - CD8 CMV T cell phenotype  
 Antibody  Colour Clone Company 

CD3 Efluor450 OKT3 eBiosciences 
CCR7 FITC 150503 R&D systems 

CD45RA AF700 HI100 BioLegend 
CD4 APC-Cy7 RPA-T4 BioLegend 
CD19 PE-CF954 HIB19 BD Biosciences 
CD14 PE-CF954 MOPg BD Biosciences 
CD8 Amcyan SK1 BD Biosciences 

Class I tetramer APC N/A University of Birmingham 
Viability Red dye N/A Invitrogen  

PD1 Percp/Cy5.5 EH12.2H7 Biolegend 

    Panel 2 - CD4 CMV T cell phenotype 
 Antibody  Colour Clone Company 

CD3 Amcyan  SK1 BD Biosciences 
CCR7 FITC 150503 R&D systems 

CD45RA AF700 HI100 BioLegend 
CD4 PE-CF954 RPA-T4 BD Biosciences 
CD19 Pacific Blue HIB19 eBioscience 
CD14 Pacific Blue HCD14 eBioscience 

Class II tetramer PE N/A Benaroya Research Institute  
Viability Bue stain N/A Invitrogen 

TIM3 APC  F38-2E2 eBioscience 
PD1 Percp/Cy5.5 EH12.2H7 Biolegend 

    Panel 3 - Activation panel for CD4 CMV specific cells 
Antibody  Colour Clone Company 

CD3 Amcyan SK7 BD Biosciences 
CD4 APC-CY7 RPA-T4 BioLegend 

Viability Red stain N/A Invitrogen  
Class II tetramer PE N/A Benaroya Research Institute  

CD38 PE-Cy7 HIT2 BioLegend 
CD69 AF647 FN50 Biolegend 
PD1 BV421 EH12.2H7 BioLegend 
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Panel 4 - Cell sorting for telomere length analysis CD8 CMV specific 
cells 

Antibody  Colour Clone Company 
CD3 FITC UCHT1 Beckman Coulter 
CD8 Percp/Cy5.5 SK1 Biolegend 

Class I Tetramer APC N/A University of Birmingham 
Viability Red stain N/A Invitrogen 

    Panel 5 - Cell sorting for telomere length analysis CD4 CMV specific 
cells 

Antibody  Colour Clone Company 
CD3 APC-Cy7 SK7 BioLegend 
CD4 Percp/Cy5.5 OKT4 eBioscience 

Class II Tetramer PE N/A Benaroya Research Institute  
Viability Red stain N/A Invitrogen 

    Panel 6 - Stimulation panel for CD4 CMV specific cells 
Antibody  Colour Clone Company 

CD3 Amcyan SK7 BD Biosciences 
Class II tetramer PE N/A Benaroya Research Institute  

Viability Red stain N/A Invitrogen 
CD4 APC-Cy7 RPA-T4 BioLegend 

IFN-gamma AF700 4s.B3 BioLegend  
TNF-alpha PE-CY7 MAb11 eBioscience 

Il-4 APC 8D4-8 BioLegend 
Il-5 FITC 9906 R&D systems 
Il-10 BV421 JES3-9D7 Biolegend 
PD1  PerCP/Cy5.5 EH12.2H7 BioLegend 

Fix/Perm:  4% PFA and Saponin  

    Panel 7 - Stimulation panel for CD8 CMV specific cells 
Antibody  Colour Clone Company 

CD3 APC-Cy7 SK7 Biolegend 
Class I tetramer APC N/A University of Birmingham 

Viability Red stain N/A Invitrogen 
CD8 Amcyan SK1 BD Biosciences 

IFN-gamma AF700 4s.B3 BioLegend  
TNF-alpha PE-CY7 MAb11 eBioscience 

Fix/Perm:  4% PFA and Saponin  
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Panel 8 - Cytotoxicity panel for CD4 CMV specific cells  
Antibody  Colour Clone Company 

CD3 Amcyan SK7 BD Biosciences 
CD4 APC-Cy7 RPA-T4 BioLegend 

Viability Red stain N/A Invitrogen  
Class II tetramer PE N/A Benaroya Research Institute  

Granzyme B  AF647 GB11 BioLegend 
Perforin  FITC dG9 eBioscience 

Fix/Perm:  4% PFA and Saponin  

    Panel 9 - T regulatory panel for CD4 CMV specific cells 
Antibody  Colour Clone Company 

CD25 Pe-CY7 M-A251 BD Biosciences 
Foxp3 AF700 PCH101 eBioscience 
CD3 eFluor450 OKT3 eBioscience 

Viability Red stain N/A Invitrogen  
Class II Tetramer PE N/A Benaroya Research Institute  

PD1 Percp/Cy5.5 EH12.2H7 BioLegend 
CD4 APC-Cy7 RPA-T4 BioLegend 

Transcription factor kit (ebioscience) 

    Panel 10 -  Transcription factor staining for CD4 CMV specific T cells 
Antibody  Colour Clone Company 

CD3 BV605 OKT3 BioLegend 
CD4 APC-Cy7 RPA-T4 BioLegend 

Class II tetramer PE N/A Benaroya Research Institute  
Viability Red stain N/A Invitrogen 

Eome FITC WD1928 eBioscience 
Tbet Percp/Cy5.5 4B10 Biolegend 
PD1 BV421 EH12.2H7 BioLegend 

Transcription Factor kit (ebioscience) 

    Panel 11 - Cytotoxicity panel for CD8 CMV specific cells  
Antibody  Colour Clone Company 

CD3 APC-Cy7 SK7 Biolegend 
CD8 Amcyan SK1 BD Biosciences 

Viability Red stain N/A Invitrogen  
Class I tetramer APC N/A University of Birmingham  

Granzyme B  PE GB11 BD Biosciences 
Perforin  FITC dG9 eBioscience 

Fix/Perm:  4% PFA and Saponin  
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Panel 12 - Sorting for myeloid subsets 
 Antibody  Colour Clone Company 

Viability Red stain N/A Invitrogen 
CD34 PE 563 BD Biosciences 
CD56 percp/Cy5.5 B159 BD Biosciences 
CD16 Pe-Cy7 3G8 Biolegend 
CD14 FITC M5E2 BD Biosciences 
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2.6.2 Intracellular staining with 4% paraformaldehyde and saponin. 

Prior to fixation, cells were defrosted, counted and stained with tetramer and surface 

antibodies as described in section 2.6.1. Details of the antibodies used for each intracellular 

experiment are found in Table 2.3 (panels 6-8 &11). After incubating for 15 minutes at 4oC 

with surface antibody, cells were washed in MACS. Discarding the supernatant, cells were 

then resuspended in 100μL of 4% PFA (Sigma-Aldrich) and left at RT in the dark for 15 

minutes. After a further wash in MACS, cells were resuspended in 0.5% saponin (Merck 

millipore) and incubated for 5 minutes at RT in the dark. Subsequently, the appropriate 

intracellular antibodies (highlighted in red within table 2.3) were then added and left for 30 

minutes at RT in the dark prior to washing in MACS and analysing on the flow cytometer.  

2.6.3 Intracellular staining with FoxP3 transcription factor kit.  

Prior to fixation, cells were defrosted, counted and stained with tetramer and surface 

antibodies as described in section 2.6.1. Details of the antibodies used for the each 

intracellular experiment are found in Table 2.3 (panels 9 & 10). After incubating for 15 

minutes at 4oC with surface antibody, cells were washed and the supernatant discarded. Using 

the transcription factor staining kit (eBioscience) cells were resuspended in 500μL of diluted 

4x fixation concentrate. For this, 125μL of fixation solution was added to 375μl of the diluent 

provided with the kit. Cells were then incubated for 30 minutes at RT in the dark. Meanwhile, 

a 1 in 10 dilution of the 10 x permeabilisation buffer was prepared with MACS buffer. After 

fixation, the cells were washed in 2 ml of the diluted permeabilisation buffer, centrifuged at 

1800rpm for 5 minutes and the supernatant discarded. A further 100μL of diluted 

permeabilisation buffer was then added and cells left for 15 minutes at RT in the dark. 

Intracellular antibodies were then added for the respective panels (indicated in red in Table 

2.3) and left for 30 minutes in the dark at RT prior to a further wash in 2ml of diluted 
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permeabilisation buffer. After further centrifugation, the supernatant was discarded and cells 

resuspended in 200μl of MACS and ran on the LSRII. 

2.7 Stimulating CMV-specific T cells.  

Following the method described by Te raa et al for CD8+ T cells and following optimization 

experiments described in chapter 4 for CD4+ T cells, 2 x 106 PBMCs were defrosted and 

washed before being stimulated with the appropriate concentration of peptide for NLV, TPR 

or ELK as described in chapter 3 or DYS and AGI as described in chapter 4, for 6 hours at 

370C in the presence of 1μl of protein transport inhibitor cocktail (eBioscience) (te Raa et al., 

2014). B:T cell ratios were not manipulated for this work and as such represented that found 

in-vivo. After stimulation, cells were washed, stained and incubated at 37oC with class I or II 

tetramer, as described in section 2.5. Following this, surface staining as detailed in panels 6 

for CD4+ cell stimulation or panel 7 for CD8+ cell stimulation, were performed prior to 

intracellular staining as described in section 2.6.2 using PFA and saponin. Cells were then 

washed and ran on the LSRII.  

2.8 Cell sorting for telomere length analysis 

Cells were stained with the appropriate tetramer at 370C as described above, followed by 

Live-dead fixable cell staining assay (Invitrogen). Surface antibodies were then added as 

detailed in Table 2.3 (Panels 4 and 5). Tetramer positive cell populations were sorted 

alongside the corresponding CD4+ or CD8+ tetramer negative populations into 1.5ml 

eppendorfs, which had been coated with MACS buffer, using the MoFlow sorter (Beckman 

Coulter).  Sorted cells were then centrifuged at 1300 RPM for 5 minutes and the supernatant 

discarded. Cell pellets were then stored at -80oC and transported on dry ice to Cardiff 

University for further analysis. Single molecule PCR was performed amplifying the telomere 
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lengths as described by Baird et al and is discussed in more detail in chapters 3 and 4 (Baird 

et al., 2003).  

2.9 Digital and QPCR to detect CMV viral load amongst myeloid cells 

2.9.1 Cell enrichment for myeloid cell subsets: CD14, CD34 and CD16.  

Using excess cells obtained from apharesis of healthy stem cell donations, enrichment of 

CD14, CD16, CD34 and dual positive CD14/16 cells were obtained by cell sorting (MoFLow 

sorter, Beckman coulter). This was required in order to assess CMV viral load in myeloid 

subsets. For this experiment, cells were defrosted and washed in PBS prior to surface staining 

as described in section 2.6.1 using panel 12. Unfortunately due to the limited number of cells 

and donor material available, the purity for each sorted population was not obtained.  

For extraction of CD14 positive cells from healthy donor PBMC, positive selection using 

CD14 magnetically labeled beads was used and an average enrichment found to be 98.73% 

(SD 0.39) by flow cytometry (Miltenyi Biotec, Surrey, UK). DNA extraction was then 

performed on the enriched cell populations according to the protocol for GenElute 

Mammalian Genomic DNA miniprep kit (Sigma-Aldrich, St. Louis, MO USA) and DNA 

concentration and purity checked using the Nanodrop 2000 (Thermo Scientific, Waltham, 

MA, USA).  

2.9.2 CMV plasmid controls for standard curve generation for QPCR.  

Human CMV HHV5 kit (PrimerDesign) for quantitative PCR (QPCR) amplification of 

glycoprotein B was purchased and used for all CMV PCR reactions including digital PCR. 

The plasmid control from the kit was reconstituted and aliquoted for storage at -20oC. For 

each experiment, plasmid dilutions were prepared fresh and were diluted to produce the 
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following copies per reaction: 50000, 10000, 2500, 500, 250, 100, 50,10, 5 and 1 (Parry et al., 

2016b). 

2.9.3 Droplet Digital PCR.  

The QX100 droplet digital PCR system was used to generate digital PCR results (Bio-rad). 

For this, a reaction mixture consisting of 5μl of either CD14 positive DNA (10ng/μl ) or 

plasmid standard were used and made up to a volume of 8μl with PCR grade water. This was 

then mixed with 10μl of 2 x ddPCR supermix for probes (Bio-rad), 1μl of reconstituted FAM 

labeled CMV primer and probe (Primer Design) and 1μl of HEX labeled RPP30 copy number 

assay for ddPCR which was used as an internal control (Bio-Rad). The reaction mixture was 

then loaded into a disposable plastic cartridge for droplet generation (Bio-Rad). 70μl of 

droplet generation oil (Bio-Rad) was also added before loading the cartridge into the droplet 

generator (Bio-Rad). Following droplet generation, samples were then transferred into a 96 

well PCR plate (Eppendorf) and PCR amplification carried out using the T100 thermocycler 

(Bio-Rad). PCR conditions consisted of 10 min at 95oC, prior to 40 cycles at 94oC for 

30seconds and 60 seconds at 60oC and a finally 1 cycle at 10min at 98oC, ending at 12oC. 

After amplification the plate was loaded onto the droplet reader (Bio-rad) and results analysed 

by QuantaSoft software (Bio-Rad) to give the number of virus copies per μl of PCR reaction. 

A positive and negative control together with a well containing just water, was included in 

each experiment. Results were obtained in triplicate and averaged. Each mammalian cell 

contains 2 copies of the internal control RPP30. Therefore the absolute quantification of 

RPP30 obtained by digital PCR was divided by 2, in order to determine the actual cell number 

present. The absolute CMV viral load was then divided by this figure to obtain the CMV load 

per cell in each well (Parry et al., 2016b). 
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2.9.4 Quantitative PCR.  

For QPCR, the 7500 Real Time PCR system was used (Applied Biosystems, Life 

Technologies). Using the same amount of starting DNA as used for the ddPCR assay, a 

reaction mixture consisting of 5μl of standard plasmid or 5μl of CD14 positive DNA 

(10ng/μl) was made up to a volume of 9μl with PCR grade water, together with 10μl of 2 x 

Taqman Universal mastermix II (Applied Biosystems) and 1μl of FAM labeled CMV primer 

and probe were loaded into a 96 well PCR plate (Eppendorf). PCR amplification consisted of 

2 min at 95oC, prior to 50 cycles at 95oC for 10 seconds and 60 seconds at 60oC.  A positive 

and negative control plus water well were included in each experiment and the standard curve 

repeated in triplicate and averaged. Samples were only considered positive if present in 

triplicate (Parry et al., 2016b). 

2.10 Functional Antibody testing 

Functional antibody testing was performed by The Clinical Immunology Service at the 

University of Birmingham for work presented in chapter 6. This was performed in order to 

ascertain specific IgG responses to antigens of commonly encountered pathogens. Responses 

were then used to assess vaccine responsiveness and protective immunity against these 

common pathogens in accordance with criteria outlined by the WHO. For this work, 1 ml of 

patient serum was collected and stored at -20oC until testing. A 1:100 dilution of serum was 

then used to determine IgG antibody levels to 19 vaccine antigens: 12 pneumococcal (Pn) 

polysaccharides (serotypes 1, 3, 4, 5, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F), four 

meningococcal polysaccharides (serogroups Men A, C, W and Y), Haemophilus influenza-b 

(Hib), tetanus toxoid and diphtheria toxoid, using a bead based 19-plex antibody. The 

polysaccharide antigens were first conjugated to poly-L-lysine (Sigma -Aldrich).  All 

antigens, including the toxoids, were then conjugated onto carboxylated microspheres 
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(BioRad) specific for different bead regions.  Patient samples were incubated with the 

conjugated beads alongside a serial dilution of standard reference sera. A subsequent 

incubation with mouse anti-human IgG phycoerythrin (PE)-conjugate (Southern Biotech) 

took place before analysis on a Luminex-100 instrument (BioRad). Data analysis was 

performed using Bio-plex Manager 4.1.1 software (BioRad). This created a standard curve of 

median fluorescence intensity (MFI) against antibody concentration for the reference standard 

serum, which the software used to assign specific antibody concentrations to the test sera 

(Whitelegg et al., 2012).  

2.11 Ethical approval 

For the study of patients with CLL, ethical approval was obtained from West Midlands 

regional ethics committee (REC) (#10/H1206/58). For healthy donor controls, ethical 

approval was also obtained from West Midlands REC (#2002/073). For the use of waste 

material for donor stem cell bags ethical approval was obtained from West Midlands REC 

(#05/Q2707/175). Additional ethics was obtained to investigate the impact of CMV on patient 

outcome from South East Wales REC (#02/4806) and from the Human Subjects Institutional 

Review Board at the Mayo Clinic and the University of Iowa. Written informed consent was 

obtained from all participants in accordance with the Declaration of Helsinki. 

2.12 Statistical Analysis  

The statistical analysis used for each specific chapter is detailed in the methods section of that 

particular chapter. In general, normality testing was performed using d’Agostino-pearson 

omnibus normality test. Where normality was confirmed, Student’s T-tests were used to 

compare 2 datasets and where normality wasn’t shown, non-parametric Mann-Whitney 

testing was performed. For 3 or more datasets, where normality was shown, Anova testing 
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was performed. For comparison of more than 2 non-parametric datasets, Kruskal-Wallis test 

with post hoc Dunn’s testing was performed. For correlation analysis, pearson’s correlation 

co-efficient where data was parametric and spearman’s correlation for non-parametric data 

was used. Linear regression was used to examine the relationship between variables as 

detailed in chapter 5. For functional antibody work, the geometric mean and SD was utilised 

to present the data. Survival analyses employed the Kaplan-Meier method.  Curves were 

compared using the log rank test. Dot plot graphs throughout are presented as the median with 

the IQR. Prism version 6 was used to produce illustrations and all statistical analysis other 

than the multivariate analysis presented in chapter 6.  For multivariate analysis, Cox 

proportional Hazards model were constructed using SPSS version 23 and data on the selection 

of variables modeled is presented in chapter 6.  
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3.1 Introduction 

Chronic lymphocytic leukaemia is associated with an increase in the absolute numbers of 

circulating CD8+ T cells and expanded populations of differentiated memory CD8+ T cells 

(Serrano et al., 1997, Goolsby et al., 2000, Briggs et al., 1990, Mackus et al., 2003). The 

proliferative capacity, cytotoxicity and cytokine production of these CD8+ T cells is known to 

be impaired in patients with CLL and microarray analysis of the gene expression profile of 

CD8+ T cells has demonstrated multiple pathway defects in the cytoskeleton network and 

vesicle trafficking, both of which are pivotal for T cell activation and effector functioning 

through immunological synapse formation (Ramsay et al., 2008, Gorgun et al., 2005, 

Scrivener et al., 2003, Riches et al., 2013).   

Evidence for clonal CD3+ T cell populations was first reported in 1990 in patients with CLL 

(Wen et al., 1990). Analysis of the T cell receptor V alpha and beta gene usage and TCR 

sequencing supported the existence of populations of clonal and oligoclonal CD8+ cell 

populations (Farace et al., 1994), as did analysis of the size of the CDR3 region of the TCR 

transcript in patients with CLL (Alatrakchi et al., 1998). These oligoclonal CD8+ T cells have 

been shown to proliferate when exposed to autologous dendritic cells presenting the cognate 

immunoglobulin derived VH-DR3 region, and secrete IFN-γ in response to autologous 

dendritic cells that had endocytosed apopototic bodies from dying CLL cells (Kokhaei et al., 

2003). However, there is no definitive evidence to support the hypothesis that these clonal T 

cells are CLL-specific and unstimulated CD8+ T cells from patients with CLL have failed to 

activate in the presence of autologous CLL tumour cells (Krackhardt et al., 2002, Buhmann et 

al., 1999).  

Chronic activation of CD8+ T cells by commonly encountered pathogens could be an 

alternative mechanism leading to the clonal T cell expansions seen. CMV is common, 
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maintains latency, frequently reactivates in its host with increasing age and is known to drive 

CD8+ T cell differentiation to a CCR7-CD45RA+/- phenotype (Gamadia et al., 2001). In 

healthy elderly CMV seropositive individuals, CMV-specific CD8+ T cells have been shown 

to constitute up to 25% of all circulating CD8+ T cells and the CD8+ T cell response to CMV 

is thought to be greater than that directed against any other pathogens (Khan et al., 2002). 

Paradoxically this response increases further in states of immunosuppression (Gamadia et al., 

2001). Mackus et al first identified an increase in the frequency of CMV-specific CD8+ T 

cells in patients with CLL compared to age matched healthy donors. Using HLA A2 NLV and 

HLA B7 TPR tetramers, Mackus et al showed an increase in CMV-specific T cell in CLL 

patients (n=10) compared to controls (n=6) (P=0.0225) and found up to 15% of CD8+ T cells 

were directed against CMV. PCR detected the virus in one patient.  Mackus et al described 

their phenotype to be consistent with a cytotoxic effector memory cell being CD27- and 

CD45RA+ (Sallusto et al., 1999, Mackus et al., 2003). Positive CMV serology also increased 

the relative and absolute number of these cells compared to patients who were CMV negative, 

leading the authors to conclude that the expanded populations of CD27-CD45RA+ cells were 

unlikely to be tumour-specific (Mackus et al., 2003).  

Subsequent studies have investigated whether CMV is responsible for the global impairment 

of CD8+ T cell function reported in patients with CLL. Features of CD8+ T cell exhaustion 

have been described in CLL in vitro and in murine models (Gassner et al., 2015, McClanahan 

et al., 2015, Riches et al., 2013). These studies have appraised expression of the T cell 

inhibitory receptors PD-1, CD160 and CD244 (Riches et al., 2013), poor immunological 

synapse formation (Ramsay et al., 2008) and loss of proliferative capacity (Riches et al., 

2013). Riches et al reported that the increased expression of inhibitory receptors on CD8+ T 

cells was present irrespective of CMV serological status and that PD-1 expression was 
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decreased in CMV positive patients compared to negative on CD8+ T cells and attributed this 

decreased expression to a skewed CD8+ T cell differentiation in CMV positive individuals, 

with a greater ratio of TEMRA: TEM cells observed in CMV positive individuals.  This work 

also demonstrated that the production of Th1 cytokines was increased in CD8+ T cells in 

patients with CLL when stimulated with PMA and ionomycin and that the defects in CD8+ T 

cell cytotoxicity reported were due to a lack of polarized expression of CD107a and granzyme 

B at the immunological synapse. No difference was reported in CD8+ cytokine production, 

proliferation or cytolytic activity in CMV positive and CMV negative patients with CLL 

(Riches et al., 2013).  

The aim of this work was to specifically identify CD8+ CMV-specific T cells and assess their 

contribution to the phenotype and function of the CD8+ T cell repertoire in patients with 

CLL. The results from this chapter were also used to provide a comparison for experimental 

data presented in chapter 4, where the CD4+ CMV-specific immune response is interrogated 

in patients with CLL.  

3.2 Methods 

3.2.1 Recruitment of donors 

120 patients with CLL were recruited from outpatient haematology clinics at BHH and 

QEHB. All patients were either untreated or more than 6 months post treatment and all had a 

lymphocyte count >1.5x 109/L at the time of sample collection. 34 healthy donors were also 

recruited to this study. Following a 50 ml blood donation, plasma and PBMCs were extracted 

over a Ficoll-density gradient as described in chapter 2. DNA was extracted from a PBMC 

pellet for PCR to identify the class I HLA type of donors.  
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3.2.2 CD8 CMV specific T cell immunophenotyping   

PBMCs were defrosted and stained as described in chapter 2. For this chapter, flow cytometry 

panel 1 was used for analysis of memory phenotype and PD-1 status, panel 11 for analysis of 

cytotoxicity and panel 4 for cell sorting of CD8+CMV-specific T cells for telomere length 

analysis.  

3.2.3 Peptide stimulation assay 

Following identification of an ELK, TPR or NLV tetramer response, 2x106 cells were 

incubated at 37oC for 6 hours with either 0.25μg/μl TPRVTGGGAM (TPR) peptide or 

NLVPMVATV (NLV) or ELKRKMIYM (ELK) at 0.5μg/μl. Tetramer and antibodies were 

then applied as detailed in panel 7.  

3.2.4 Statistical analysis 

Unless otherwise stated, non-parametric unpaired Mann-Whitney testing was performed to 

compare 2 groups within this chapter. Additional statistical testing is described in the figure 

legends. 

3.3 Results 

3.3.1 Identifying CD8+ CMV specific T cell responses 

120 patients were recruited and 27 CMV negative donors were identified. A further 61 

patients were found to be CMV positive and had at least one appropriate HLA type for 

examining CMV specific CD8+ T cell responses. To examine the CD8+ CMV-specific T cell 

response, 9 different tetramers were used depending on the class I HLA type identified; (22 

donors were HLA A1 (for which VTE and YSE tetramers were applied), 38 donors were 

HLA A2 (for which NLV and VLE tetramers were applied), 33 donors were HLA B7 (for 

which TPR and RPH tetramers were applied) and 21 donors were HLA B8 (for which ELK, 
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ELR and QIK tetramers were applied). A total of 114 tetramer stains were performed, of 

which 60 tetramer responses were identified from 45 patients; 33 from patients with a pp65 

response (tetramers NLV, YSE, TPR and RPH), 24 from patients with an IE-1 response 

(ELK, ELR, QIK and VLE) and 3 patients with a pp50 (VTE) response. A true tetramer 

response was verified through the lack of background staining by gating all CD3+ T cells, 

against CD8+ T cells. The median age of the patients with CLL with identifiable CD8+ 

tetramer responses was 73 (IQR: 66.5-80). Table 3.1 provides the characteristics of the 45 

patients with identified tetramer responses used in this chapter.  

Using the same tetramers and for comparative analysis, 15 age matched healthy donors (HD) 

were also identified to have CD8+ CMV specific T cell responses (12 pp65 and 3 IE-1 and 0 

pp50 responses), with a median age of 80.5 (IQR: 75.5-83.8). Figure 3.1A shows the gating 

strategy for identifying tetramer responses.  

3.3.2 The magnitude of the CMV specific CD8+ T cell response is not 

increased in patients with CLL compared to healthy donors. 

Next, the CMV-specific CD8+ T cell response was compared between patients with CLL and 

healthy donors. In contrast to published findings reported by Mackus et al, an increase in the 

CMV-specific CD8+ T cell response was not observed amongst patients with CLL (median 

HD: 2.10 vs CLL 1.00%; p=0.527) (Mackus et al., 2003). This result was somewhat 

surprising but may be explained by the fact that the healthy donors were on average 7 years 

older (Figure 3.1B). Indeed, amongst all donors (CLL and HD) a significant increase in the 

CMV-specific CD8+ T cell response was observed with increasing age (R2=0.06; p=0.035). 

Furthermore, when a comparison of CMV-specific CD8+ T cell responses were made 

between those under the age of 80 and those over, a greater response was observed in those 
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aged 80 or over (median age in <80 years was 0.95 vs 2.3 in those over the age of 80; 

p=0.039) (Figure 3.1C).  

3.3.3 CMV specific CD8+ T cell responses increase with stage of disease in 

patients with CLL.  

Having demonstrated no difference in the magnitude of CMV-specific CD8+ T cell responses 

in HD and patients with CLL, I next assessed whether CMV responses increased with disease 

severity. For this, the magnitude of IE-1 and pp65 tetramer responses was assessed by Binet 

stage of disease in patients with CLL. Patients with tetramer responses that were classed as 

Binet stage C demonstrated the greatest CMV-specific CD8+ T cell responses with a median 

frequency of 2.8% compared to stage A patients who had the lowest frequency at 0.55% 

whilst stage B patients demonstrated an intermediate frequency of 1.05% (Figure 3.2). 

Overall the difference between the 3 groups did not reach significance (p=0.051) but post-hoc 

Dunn testing revealed a significant difference between stage C patients and stage A patients 

(p=0.018).  As age impacts on CD8+ CMV-specific T cell responses, the ages of patients 

were then compared by stage of disease. No difference was observed in the age of patients by 

stage of disease, such that stage of disease appears to impact on the magnitude of CD8+ T cell 

responses independently of age (Median stage A: 73 vs Stage B: 67 vs Stage C: 79;  p= 0.638 

Kruskal-wallis test). 
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Table 3.1   

Clinical characteristics of CLL patients with a CMV-specific CD8+ T cell response 
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Figure 3.1  

CMV-specific CD8+ T cell response increases with age 

A) Demonstrates the gating strategy for identifying CD8+ CMV-specific T cell responses. 

After excluding doublets, live PBMCs were identified, followed by CD3+ cells positive for 

CD8 and tetramer. B) No significant difference was observed in the frequency of CMV-

specific CD8+ T cells in patients with CLL compared to HD (Mann-Whitney). C) A 

significant positive correlation was observed with age and the magnitude of CMV-specific 

CD8+ T cell responses (p=0.035) (Pearson’s correlation co-efficient). This was further 

observed when comparing those donors over the age of 80 to those below the age of 80 

(p=0.039) (Mann-Whitney).  
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Figure 3.2  

CMV- specific CD8+ T cell responses increase with advanced stage disease 

The IE-1 and pp65 CD8+ T cell responses analysed by stage of disease is shown. An increase 

in the frequency of response is seen with stage of disease, with stage C patients demonstrating 

a greater frequency of CMV-specific CD8+ T cells than stage A patients (p=0.051) (Kruskal-

Wallis test). 
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3.3.4 CMV-specific CD8+ T cells acquire a TEMRA phenotype.  

The phenotype of the identified CMV-specific CD8+ T cells was next investigated. Many cell 

markers have been used to identify memory cell subsets as described in chapter 1 and 

illustrated in figure 1.3. In order to reduce heterogeneity between publications Maecker et al 

suggest utilising CCR7 and CD45RA to define memory subsets (Maecker et al., 2012). Using 

CCR7 and CD45RA surface staining, memory subsets were defined as naïve (CCR7+, 

CD45RA+), central memory (TCM) (CCR7+, CD45RA-), effector memory (TEM) (CCR7-, 

CD45RA-) and terminally differentiated effector memory cells (TEMRA) (CCR7-, CD45RA+). 

An example of representative staining in a healthy donor can be seen in Figure 3.3A.  

Firstly, a comparison of memory subset distribution between all HD and patients with CLL 

regardless of CMV serostatus did not reveal any difference in the total CD8+ T cell 

populations, with similar proportions of each memory subset observed (median HD: Tnaïve 

6.5%; TCM 5%; TEM 54.3%; TEMRA 29.5% vs CLL: Tnaïve 3.4%; TCM 3.1%; TEM 50%; TEMRA 

35.1%) (Data not shown).   

Next, CD8+ T cell memory subsets were compared between CMV positive and CMV 

negative individuals. In healthy donors, no statistical difference was observed in the 

frequencies of memory subsets when comparing CMV positive to negative donors, although a 

trend towards greater frequencies of TEMRA cells and reduced Tnaïve cells was observed in 

CMV positive donors (CMV negative vs CMV positive: TEMRA: 26.3% vs 31.8% (p=0.306); 

Tnaive: 7.25% vs 2% (p=0.137) and TEM: 51.2% Vs 59.6% (p=0.251)) (Figure 3.3B). Next CLL 

patients who were CMV positive (n=61) and CMV negative (n=27) were investigated. 

Patients with CLL who were CMV positive had a greater frequency of TEMRA cells compared 

to patients who were CMV negative (CMV positive TEMRA 36.9% vs CMV negative TEMRA: 

23.5 %; p=0.051) (figure 3.3C). A trend towards a reduced frequency of naïve CD8+ T cells 
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and increased TEM CD8+ T cells was also observed amongst CMV positive patients compared 

to CMV negative patients, although these did not reach statistical significance (median CMV 

negative Tnaive: 6.4% vs CMV positive Tnaive: 3%; p=0.181 and CMV negative TEM: 43.5 % vs 

CMV positive TEM: 51%; p=0.101). 

Next, the CMV-specific CD8+ T cell memory phenotype was investigated. CMV specific 

CD8+ T cells were either TEM or TEMRA in phenotype in both HD and patients with CLL. In 

HD, a greater proportion of TEMRA cells were observed compared to TEM amongst CMV-

specific CD8+ T cells (84.7% TEMRA vs 14.5% TEM; p=0.0001) (figure 3.3D). Healthy donors 

were also seen to have more TEMRA cells than patients with CLL (HD: 84.7 vs CLL 50.7; 

p=0.047) (data not shown). The frequency of TEM and TEMRA CD8+ CMV-specific T cells was 

similar in patients with CLL, with a marginally greater proportion of TEMRA cells observed 

(TEMRA 50.7% vs TEM 43%; p=0.751) (figure 3.3E). No difference between CMV-specific T 

cell memory phenotype and the background CD8+ T cells were observed in CMV positive 

patients (Figure 3.3E).  

In summary, CMV-specific CD8+ T cells in both healthy donors and patients with CLL have 

an differentiated effector memory phenotype. However, in patients with CLL a greater 

proportion were found to be TEM in phenotype (43%) compared to healthy donors where TEM 

phenotype made up only 14.5% of the CMV-specific CD8+ T cells.  
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Figure 3.3  

The memory phenotype of CMV-specific CD8+ T cells  

(A) represents a typical plot of CD8+ T cell staining for memory subset analysis using CCR7 

and CD45RA. (B) Demonstrates the frequency distribution of memory T cell phenotypes in 

CMV positive and negative healthy donors. (C) Demonstrates the frequency distribution 

amongst CMV positive and negative patients with CLL. CMV positive donors had a greater 

frequency of TEMRA memory cells (36.9%) compared to patients who were CMV negative 

(23.5%) (p=0.051). (D) Demonstrates the frequency distribution amongst the total CD8+ T 

cell population and also the CMV-specific CD8+ T cell populations in HD. The CMV-

specific CD8+ T cell phenotype was predominantly TEMRA. (E) In contrast, patients with CLL 

demonstrated no difference in memory subset distribution between CMV-specific CD8+ T 

cells and the total CD8+ T cell population, including the frequency of TEMRA cells (CMV-

specific CD8+ T cells: 50.7% vs total CD8+ population 39.6%; p=0.104) (Mann-Whitney).  
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3.3.5  CMV specific CD8+ T cells contain granzyme and perforin. 

Having demonstrated phenotypic differences in memory subsets in HD and patients with 

CLL, I next went on to assess if there was any difference in the expression of perforin and 

granzyme B amongst CMV-specific CD8+ T cells. Using intracellular staining described in 

chapter 2, a total of 25 donors (15 CLL and 10 HD) were investigated. In all donors, the 

majority of CMV-specific CD8+ T cells expressed both perforin and granzyme B (median 

83.6% (IQR: 63.7-92.2) consistent with published literature (Gamadia et al., 2001). 

Expression of perforin and granzyme amongst CMV-specific CD8+ T cells was significantly 

greater than that observed on the total CD8+ T cell population (median 57.3% IQR: 44.9-

75.4; p=0.0007) (Figure 3.4A). When comparing HD and patients with CLL, the granzyme B 

and perforin content of CMV-specific CD8+ T cells was not significantly different (median 

CLL: 87.4% vs 73.3%; p=0.13) (Figure 3.4B). However, a greater difference was observed 

between CMV-specific CD8+ T cells and the total CD8+ T cell perforin and granzyme B 

expression in patients with CLL (p=0.001). A similar trend was seen in HD although this did 

not reach statistical significance (p=0.325).  
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Figure 3.4 

Perforin and granzyme B expression are high in CMV-specific CD8+ T cells 

A) Demonstrates a dot-plot of perforin and granzyme B expression on CD8+ T cells from all 

donors (CLL and HD). Expression was found to be greatest on CD8+ CMV-specific T cells 

compared to background CD8+ T cells (83.6% vs 57.3%) (Mann-Whitney). When healthy 

donors and patients with CLL were analysed separately, a greater difference was noted in 

patients with CLL between the perforin and granzyme B expression in CMV-specific CD8+ T 

cells compared to the total CD8+ T cell population (p=0.001), as illustrated in dot-plot (B) 

(Mann-Whitney).  
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3.3.6 CD8+ CMV-specific T cell function. 

To further assess the functional capacity of CMV-specific CD8+ T cell responses, I next 

stimulated PBMCs from HD or patients with CLL with cognate peptide for 6 hours and then 

performed tetramer staining, followed by intracellular staining as detailed in chapter 2. In 

order to ascertain the optimal concentration of peptide at which surface tetramer staining 

could be observed alongside maximum cytokine production, three peptides were titrated 

(ELK, TPR and NLV) in a healthy donor. Cytokine response was measured as the percentage 

of double positive CMV-specific CD8+ T cells producing IFN-γ and TNF-α. For NLV and 

TPR, the optimal concentration was determined to be 0.25μg/ml, whilst for stimulation with 

ELK a concentration of 0.5μg/ml was found to be optimal. An example of the titration graph 

for NLV is shown in figure 3.5A. Following peptide titrations, PBMCs from donors with 

known tetramer responses were stimulated with the appropriate peptide, alongside an 

unstimulated control for 6 hours at 37oC. Minimal cytokine expression was seen, if any, in 

unstimulated tetramer positive cells and where detected, this percentage was subtracted from 

the percentage expression found in stimulated cells. This subtraction allowed only the 

inducible cytokine production following peptide stimulation to be ascertained.   

All CMV-specific CD8+ T cells that produced IFN-γ also produced TNF-α. TNFα was 

occasionally produced in the absence of IFN-γ and this was most notable in patients with 

CLL. In HD, on average 0.7 % of CMV-specific cells were seen to make TNF-α only, whilst 

amongst patients with CLL, 4.8% produced TNF-α alone (p=0.019). Overall, the proportion 

of CD8+ CMV tetramer+ T cells producing both IFN-γ and TNF-α was decreased in patients 

with CLL (n=10) compared to HD (n=10) (35.95% vs 55.7%; p=0.029 Figure 3.5C) 

suggesting CLL cells are suboptimal at producing cytotoxic cytokines following induced 

stimulation.  
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Figure 3.5 

CMV-specific CD8+ T cells produce less IFN-γ and TNF-α than healthy controls.  

A) An example of the optimization of peptide concentration for CMV-specific T cell 

stimulation using NLV peptide. An arrow indicates the optimal concentration used for further 

experiments, which was derived from the peptide concentration that provided the maximum 

cytokine response, whilst retaining tetramer staining. B) An example plot of CD8+ CMV-

specific T cell production of IFN-γ and TNF-α. C) A comparison of responses from 10 HD 

and 10 patients with CLL, revealed a poorer IFN-γ and TNF-α response from stimulated 

CMV-specific CD8+ T cells in patients with CLL (p=0.029) (Mann-Whitney).  
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3.3.7 PD-1 expression is increased on CD8+ T cells of patients with CLL.  

Given that CMV-specific CD8+ T cells derived from patients with CLL have inferior IFN-γ 

and TNF-α in response to CMV peptide stimulation, I next examined whether these cells 

exhibited the inhibitory cell marker PD-1. An example of PD-1 staining is shown in figure 

3.6A. Increased expression of PD-1 has been reported on CD8+ T cells in patients with CLL 

and has been associated with T cell exhaustion. PD-1 expression was found to be greater on 

CD8+ T cell from patients with CLL (n=72) compared to HD (n=20) (Median HD: 8.5% vs 

CLL: 15.85; p=0.0004) (figure 3.6B).  

3.3.7.1 PD-1 expression on CD8+ T cells does not correlate with stage of 

disease 

To assess if the increase in PD-1 expression in patients with CLL is possibly driven by 

tumour load in the peripheral blood, PD-1 expression was examined on CD8+ T cells in 

patients with CLL according to stage of disease. No difference was observed between patients 

with advanced stage of disease and those with stage A CLL (Kruskal-wallis testing for Stage 

A: 16.45% vs Stage B: 14.51% Vs Stage C: 19.35%; p= 0.247) (figure 3.6C).  

3.3.7.2 PD1 expression on CD8+ T cells is not influenced by prior treatment. 

A further comparison of the PD-1 expression on CD8+ T cells in patients with CLL was 

undertaken to ascertain if a history of prior chemotherapy treatment impacted on PD-1 

expression in this cohort. Amongst patients with CLL, no difference was observed in those 

patients who had previously been treated (14.9%) compared to those who had received prior 

chemotherapy (16.6%); (p=0.583) (figure 3.6D).  
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3.3.8 PD1 expression is decreased on CMV-specific CD8+ T cells. 

Having shown that tumour load and previous therapy did not impact on PD-1 expression, I 

next investigated the impact of CMV seropositivity on PD-1 expression. The frequency of 

PD-1+ CD8+ T cells was compared between patients with CLL who were CMV positive to 

those who were CMV negative. CMV sero-status was determined using in-house ELISA 

method as described in chapter 2. No significant difference in PD-1 expression was observed 

between CLL patients based on serostatus (CMV negative CD8+PD-1+ T cells: 16.10 vs 

CMV positive CD8+PD-1+ T cells: 16.25; p=0.582). Neither was a difference observed by 

CMV serostatus on CD8+ PD-1 T cell expression in HD (CMV negative: 5.15% vs CMV 

positive: 10.15%; p=0.254) (data not shown).  

Analysis of PD-1 expression on the 60 CMV-specific CD8+ T cell responses identified in 

patients with CLL was next undertaken. PD-1 expression was decreased on CMV-specific 

CD8+ T cells in patients with CLL compared to the total CD8+ T cell populations (CLL: 

CD8+ T cells: 15.3% (IQR: 6.68-26.3) vs CMV-specific CD8+ T cells: 7.35% (IQR: 2.15-

12.93); p=<0.0001). In comparison HD CMV-specific CD8+ T cell responses demonstrated a 

greater expression of PD-1 compared to the total CD8+ T cell population, although this did 

not reach statistical significance on the 15 responses examined (CD8+ T cells: 8.8% 

(IQR:5.1-12.9) vs 12.5 (IQR: 4.4-27); p=0.254). Finally, PD-1 expression on CD8+ CMV-

specific T cells derived from CLL patients was significantly decreased compared to HD 

CMV-specific CD8+ T cells (p=0.043) (figure 3.6E).  
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Figure 3.6 

PD1 expression on CD8+ T cells and CMV-specific CD8+ T cells.  

A) Example of PD-1 staining observed on CD8+ T cells and CMV-specific CD8+ T cells in 

patients with CLL. B) The percentage of PD-1 expression on CD8+ T cells in patients with 

CLL and HD is shown. The percentage of PD-1 expression on CD8+ T cells in patients with 

CLL according to disease stage (C) and previous therapy (D) is shown. E) The percentage of 

PD-1 expression on CMV-specific CD8+ T cells in patients with CLL and HD is shown 

(Mann-Whitney testing used). 
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3.3.9 Telomere lengths of CD8+ CMV-specific T cells are reduced 

compared to the total CD8+ T cell population.  

Given the degree of T cell differentiation of CMV-specific CD8+ T cells described in section 

3.3.4, I next investigated their telomere lengths as an indication of whether these cells had 

undergone multiple rounds of cell division and compared these to the total CD8+ T cell 

population. Somatic cells are known to lose between 50 and 100bp in their telomere lengths 

with each round of cell division until a critical shortening in length is reached. Once this point 

is reached, cells undergo apoptosis or become senescent (Hills et al., 2009). Single telomere 

length analysis, is a single cell PCR technique whereby the XpYp telomere at the end of the 

chromosome is examined. Multiple single cell telomere lengths from a cell population are 

used to determine the mean telomere length of the cells of interest.  

Here, 3 patients with CLL with known CMV-specific CD8+ T cell responses were identified. 

PBMCs were then sorted for tetramer positive cells, alongside tetramer negative CD8+ T cells 

at the University of Birmingham and then transported and analysed at the University of 

Cardiff by Professor Duncan Baird. CMV-specific CD8+ T cell populations were found to 

have reduced mean telomere lengths compared to the tetramer negative CD8+ T cell 

population in patients with CLL. A mean difference of 1.38kb was observed  (maximum 

1.6kb) (n=3; p=0.06) (Donor 1 CD8: 4.39 kb vs tetramer: 2.79 kb p= <0.0001; donor 2 CD8: 

3.42 kb vs tetramer: 3.15 kb p=0.12; donor 3 CD8: 3.25 vs tetramer: 1.89 p= <0.0001). 

(Figure 3.7). 
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Figure 3.7 

Telomere lengths of CD8+ CMV-specific T cells are significantly shorter than CD8+ T 

cells. 

A) A comparison of the telomere lengths from a tetramer population (tet) and the tetramer 

negative CD8+ T cell population (CD8) of 3 patients with CLL is shown on the gel image. 

Each vertical line represents a PCR reaction (with a total of 6 PCR reactions per donor) and 

within these reactions, each band represents the molecular weight of a single telomere from a 

single cell. The mean and standard deviation is then calculated from the molecular weight of 

the bands detected.  B) graphical representation of the significant difference in molecular 

weight of the CD8+ CMV-specific cell telomere lengths compared to the total CD8+ T cell 

population (Student’s T test).  
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3.3.10 CD4:8 ratio 

The shortened telomere lengths and effector memory phenotype described in CMV-specific T 

cells in patients with CLL suggest that CMV-specific T cells have frequently encountered 

antigen, and contribute to the oligoclonal populations of CD8+ T cells observed. In health, 

CMV is attributed to reversing the CD4:8 ratio. In order to confirm whether CMV leads to an 

inverted ratio in patients with CLL, I have examined the CD4:CD8 ratio in an untreated 

patient cohort. Firstly, no difference was observed in CD4:8 ratio when comparing HD to 

patients with CLL in these cohorts (HD ratio: 1.16 vs CLL ratio: 1.205; p=0.696) (data not 

shown). When CLL patients were analysed by CMV status, the CD4:8 ratio did not differ 

between those CMV positive (1.22) and those CMV negative (1.20) (p=0.534). 

Next, the CD4:8 ratio was examined by stage of disease. As chemotherapy can alter the 

distribution of CD4+ and CD8+ T cells, untreated patients were analysed. Due to low 

numbers of Binet stage B and C patients who were untreated, these two groups were 

combined and compared to the CD4:8 ratio of Binet stage A patients. This analysis revealed a 

significant decrease in the CD4:8 ratio in those untreated patients with more advanced stage 

disease (Stage A ratio: 1.7 vs Stage B/C ratio: 0.8; p=0.009) (figure 3.8A). Consistent with 

this, a significant increase in the percentage of CD3+CD8+ T cells were observed with 

advanced disease compared to patients with Binet stage A CLL (Stage A CD8%: 31.85% vs 

Stage B/C: 41.90%; p=0.01). However, no difference was observed with CD3+CD4+ T cell 

percentages and disease stage (stage A: 53.75% vs stage B/C: 44.4%; p=0.113) (figure 3.8B). 

Finally, the ratio was examined in relation to those patients with CLL who had received 

treatment and those who were untreated. Interestingly, amongst patients who had been 

treated, a lower CD4:8 ratio was observed compared to those untreated (untreated ratio 1.43 

vs treated  0.77; p=0.0003) (figure 3.8C).  
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Figure 3.8 

CD4:8 ratio analysis  

A) demonstrates a dot-plot graph of the CD4:8 ratio by stage of disease. Patients with more 

stage B/C disease had a significantly lower CD4:8 ratio than stage A patients. B) An increase 

in the percentage of CD8+ T cells was observed in those with more advanced stage disease 

and the reverse was true of CD4+ T cells, although this did not reach statistical significance. 

C) Patients who had received prior chemotherapy had a significantly lower CD4:8 ratio than 

patients who were untreated (Mann-Whitney testing used). 
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3.4 Discussion 

In this chapter, the contribution of the CMV-specific immune response to the total CD8+ T 

cell repertoire of patients with CLL has been examined in a large cohort. 60 CMV-specific 

CD8+ tetramer responses (the largest reported to date) were identified in patients with CLL 

and were used to ascertain the phenotypic contribution of these virus-specific cells to the total 

CD8+ T cell population.  

The term memory inflation is used to describe the expansion of CD8+ CMV-specific T cells, 

which is observed with ageing (Karrer et al., 2003). This work demonstrates ‘memory 

inflation’, with an increased frequency of CMV-specific T cells observed with increasing age 

when examined both continuously (by correlation with age) and also categorically (in those 

below and above the age of 80). It has previously been reported that expanded clonal 

populations of CMV-specific T cells occur in greater frequency than in healthy controls 

(Mackus et al., 2003). However, no difference in the magnitude of CMV-specific CD8+ T 

cell responses was found amongst this very large cohort of patients with CLL. It is possible 

that in this study, the 7 year age difference observed between healthy donors and patients with 

CLL may account for the lack of difference observed. Despite finding no difference in the 

frequency of CMV-specific responses amongst patients with CLL and HD, 5 of the CD8+ 

CMV-specific T cell responses seen in this study were of a greater magnitude than has 

previously been described in the literature (29.6% of CD8+ T cells being the highest, 

compared to 14% previously reported) (Mackus et al., 2003).  

When CMV-specific T cell responses were analysed by stage of disease, an overall trend was 

observed for increased frequencies in patients with more advanced stage disease, and a 

significant difference was observed between stage A and C patients. CD4+ CMV-specific T 

cell responses have similarly been shown to increase in frequency with progressive disease 
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(Pourgheysari et al., 2007). Paradoxically, these findings suggest that the gradual impairment 

in humoral and T cell immunity that arises in patients with CLL, actually contributes to the 

expansion of CMV-specific CD8+ T cell populations observed. It also suggests that perhaps 

the expanded populations of CD8+ CMV-specific T cells arise in response to more frequent 

subclinical CMV reactivation as the host immunity declines with disease progression. In 

support of this, the immunosenescence observed in healthy elderly people is also thought to 

lead to an increased frequency of CMV viral reactivation (Stowe et al., 2007).   

In agreement with others, this work has shown an expansion of effector memory cells that are 

re-expressing CD45RA in patients with CLL who are CMV positive (Tonino et al., 2012, 

Riches et al., 2013). A restriction in the naïve CD8+ T cell pool amongst patients with CLL 

who are CMV positive was also noted. A similar trend was also observed in healthy donors 

but due to small sample number of healthy donors did not reach the statistical significance 

previously reported (Pawelec et al., 2010, Derhovanessian et al., 2011). The expansion of 

CD8+ TEMRA cells and diminishing Tnaive populations is thought to lead to immunosenescence 

and poor response to new antigens observed in those over 50 years of age (Weltevrede et al., 

2016) and may also contribute to the poor response to infectious agents seen in patients with 

CLL and discussed further in chapter 6.   

This study has shown that the memory phenotype of CMV-specific CD8+ T cells is split 

between TEM and TEMRA, with a slightly greater proportion of TEMRA cells observed. This 

contrasts with that observed in HD, whose CMV-specific CD8+ T cells were over 80% TEMRA 

in phenotype. Re-expression of CD45RA is generally thought to represent quiescent cells, 

which have not encountered antigen for a prolonged period (Carrasco et al., 2006). It is of 

interest therefore that less CD45RA expression was observed in patients with CLL compared 



 CD8+ CMV-specific immune response 

 102 

to HD and may suggest more frequent viral reactivation or antigen exposure than that 

observed in HD.  

This work has also confirmed the findings of others that the exhaustion marker PD-1 is 

increased on the total CD8+ T cell population in patients with CLL (Nunes et al., 2012, Brusa 

et al., 2013, Riches et al., 2013). It also finds PD-1 expression to be unrelated to stage of 

disease and therefore is unlikely to be in response to overall tumour burden. Riches et al have 

previously reported this increase in PD-1 on CD8+ T cells in patients with CLL to be 

attributed to CMV negative donors, and showed that patients that were CMV positive had 

lower frequencies of PD-1 positive CD8+ T cells. Having now compared CMV positive 

patients to CMV negative patients in a larger cohort, this work reports no difference in the 

expression of PD-1 at the level of the CD8+ T cell population.  

However, I have shown that CMV-specific CD8+ T cells do have lower frequencies of PD1 

expression than the total CD8+ T cell population and also, that this is of a lower frequency 

than that observed on CMV-specific CD8+ T cells from healthy donors. This corroborates the 

findings by Te raa et al, who used class I tetramers to show that CMV-specific CD8+ T cells 

have decreased PD1 expression (te Raa et al., 2014). 

Given there is low expression of PD-1 on CMV-specific CD8+ T cells, it is surprising overall 

no difference was observed between CMV positive and negative patients on the expression of 

PD-1 on the total CD8+ T cell pool. However, the magnitude of CMV CD8+ T cell responses 

varies greatly between donors and may account for the lack of a difference in PD-1 

expression seen amongst the total CD8+ T cell population compared to the low level observed 

when CMV-specific CD8+ T cells are examined in isolation. Importantly, healthy donors 

were shown to have higher expression of PD-1 on their CMV-specific CD8+ T cells, a 

finding previously reported, yet HD also had greater IFN-γ and TNF-α responses to peptide 
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stimulation (te Raa et al., 2014). This suggests that PD-1 is not present as an exhaustion 

marker on CD8+ CMV-specific T cells.  

The shortened telomere lengths observed in CD8+ CMV-specific T cells suggest these 

clonally expanded cells with their effector memory phenotype have frequently encountered 

antigen in patients with CLL. In fact, the telomere lengths recorded for the CMV-specific 

CD8+ T cells were of such low molecular weight that multiple rounds of cell division had to 

have occurred for this result. These findings also suggest that CMV-specific CD8+ T cells 

contribute substantially to the reduced telomere lengths that are reported in patients with CLL 

compared to healthy age matched controls (Röth et al., 2008). 

Interestingly, CMV-specific CD8+ T cells from patients with CLL produced less IFN-γ and 

TNF-α compared to healthy donors following peptide stimulation. These experiments used 

unadultered PBMCs to investigate this, in order to reflect likely in-vivo findings. Te Raa et al, 

also described reduced cytokine production in patients with CLL where peptide is presented 

via CLL cells (te Raa et al., 2014). This finding is unsurprising, as CD8+ T cell function has 

previously been described to be impaired in patients with CLL and is thought to be due to 

poor synapse formation and a lack of appropriate vesicle trafficking (Riches et al., 2013). In 

an attempt to circumnavigate the TCR for stimulation and thus avoid the need for synapse 

formation, Riches et al stimulated CD8+ T cells from patients with CLL with PMA and 

ionomycin and reported no difference in the total amount of IFN-γ and TNF-α produced in 

CMV positive patients compared to CMV negative patients and concluded that the capacity 

for cytokine production was not impaired (Riches et al., 2013). In support of this finding, te 

Raa et al showed that when CMV peptide was presented via LCLs, cytokine production was 

comparable to that of healthy donor CD8+ CMV-specific T cells and further supports the 

notion that these CD8+ T cells are not functionally impaired or exhausted in patients with 
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CLL (te Raa et al., 2014). Despite these published findings, without the modification of B:T 

cell ratios and aided professional antigen presentation, the in vivo response to CMV peptide is 

still likely to be impaired based on the experimental data presented here and by others (te Raa 

et al., 2014) This impaired cytokine production may compromise host immunity towards the 

virus, potentially increasing the chance of reactivation and contributing to the expanded T cell 

populations of CMV-specific T cells reported. 

Although CMV has been attributed to an inverted CD4:8 ratio, this work found no association 

with CMV serology and CD4:8 ratio in patients with CLL. However, this work did find that 

patients with stage B and C disease had lower CD4:8 ratios compared to stage A patients and 

furthermore found this to be the result of an increased frequency of CD8+ T cells with 

advancing disease. This supports the work of Nunes et al, who found early stage patients were 

more likely to progress if the CD4:8 ratio was reversed (Nunes et al., 2012). In addition, I 

have also found that treatment influences the CD4:8 ratio, with those who have received 

chemotherapy, demonstrating a lower ratio that those who have not. This suggests that 

following chemotherapy, normalization of the CD4:8 ratio does not occur.  

3.5 Conclusion 

In conclusion, CMV-specific CD8+ T cells in patients with CLL contribute to the effector 

memory populations which are greatly expanded in patients with CLL but do not contribute to 

the increased expression of PD-1 observed on CD8+ T cells in patients with CLL. The 

impaired cytokine production following peptide stimulation of CMV-specific CD8+ T cells, 

is likely to be representative of in-vivo findings given the published evidence for poor 

immunological synapse formation and antigen presentation that exists in patients with CLL 

and may give rise to more frequent or more protracted episodes of viral reactivation that 
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further contribute to the memory inflation and shortening of telomere lengths of CMV-

specific CD8+ T cells described here in patients with CLL.   
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4.1 Introduction 

Acquired defects in T cell function are well described in CLL and contribute to the increased 

risk of infection and autoimmune phenomena observed in patients with CLL (Scrivener et al., 

2001, Hamblin, 2006, Hamblin and Hamblin, 2008). The abnormalities include an inverted 

CD4:8 ratio, expansions of oligoclonal and terminally differentiated effector CD4+ and CD8+ 

T cells, changes in gene expression profiles and increased markers of T cell exhaustion and 

poor immunological synapse formation (Nunes et al., 2012, Frolova et al., 1995, Ramsay et 

al., 2008, Hamblin and Hamblin, 2008).  

Despite an imbalance in the normal CD4:8 ratio, patients with CLL actually have increased 

CD4+ T cell numbers compared to healthy donors (HD) (Pourgheysari et al., 2010, Riches et 

al., 2013). Amongst CD4+ T cells, expanded populations of T regulatory cells (Tregs) are 

observed (Jadidi-Niaragh et al., 2013, Piper et al., 2011), whilst T helper-17 populations are 

thought to be reduced, particularly in advanced stages of the disease (Piper et al., 2011, 

Jadidi-Niaragh et al., 2013, Beyer et al., 2005). These findings imply a shift in the balance of 

CD4+ T cells towards an immunoregulatory phenotype and away from a pro-inflammatory 

phenotype, but a significant proportion of CD4+ T cells exist that are highly cytotoxic and are 

capable of producing IFN-γ (Pourgheysari et al., 2010). These cytotoxic cells have been 

estimated to account for 50% of the CD4+ T cell population in CLL (Porakishvili et al., 

2004). Functionally, CD4+ T cells in patients with CLL display a range of abnormalities, 

including elevated levels of intracellular IL-4 and TNF-alpha (Mu et al., 1997, Mainou-

Fowler et al., 2001), but perhaps the most striking abnormality amongst the CD4+ T cell pool 

is the oligoclonality and expansion of CD4+, CD57+, CD28- cells (Porakishvili et al., 2004).  

Oligoclonality has been shown through restricted T cell receptor V beta gene usage and is 

more prominent amongst CD4+ T cells compared to CD8+ T cells (Rezvany et al., 1999). 
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Furthermore, these expanded oligoclonal populations of CD4+ T cells are also less responsive 

to stimulation in vitro with autologous leukaemic B cells compared to CD8+ T cells (Rezvany 

et al., 2003). T cells expand clonally in response to recognition of cognate antigen and 

although this has led to speculation that tumour-derived antigens may be driving these 

oligoclonal CD4+ populations, little evidence currently exists to support this notion.  

As described in chapter 1, CLL affects predominantly people in their later decades, at an age 

where thymic involution has occurred and reactivation of latent viruses such as varicella 

zoster becomes increasingly common. It is also an age at which approximately 70% of 

patients within Western Europe and USA would be latent carriers of CMV (Parry et al., 

2016a). As such, chronic viral infection may represent one factor that acts to drive the 

accumulation of the increased populations of CD4+ T cells seen in patients with CLL. 

Previous work investigating the CMV-specific CD4+ T cell response in patients with CLL 

have indeed found it to be 4 fold higher than that of healthy age matched individuals and this 

response is further increased with disease progression and in response to chemotherapy 

(Pourgheysari et al., 2010). These expanded populations of CMV-specific CD4+ T cells are 

known to be of a differentiated memory subtype, predominantly effector memory in 

phenotype and express high levels of perforin (Walton et al., 2010). Little is known about 

their transcriptional profile or exhaustion marker status (Pourgheysari et al., 2010, Walton et 

al., 2010, Fletcher et al., 2005).  

T cell ‘exhaustion’ is a term used to describe T cell dysfunction that results from persistent 

antigen exposure and was first described in the context of chronic viral infections but more 

recently has been described in relation to the immune response to malignancies, including 

melanoma, lung cancer and leukaemias (Turnis et al., 2015). Exhausted T cells are 

characterized by expression of multiple inhibitory receptors, low CD57 expression and NK 
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cell markers and poor functionality (Wherry and Kurachi, 2015). One important inhibitory 

receptor is programmed cell death one (PD-1), which is increased on CD4+ T cells in the 

context of both chronic viral infections and CLL (Riches et al., 2013, Wenjin et al., 2012, 

Rusak et al., 2015). Following engagement with its ligand (PDL1 or PDL2), PD-1 activation 

serves to inhibit T cell activation and effector function, and may facilitate tumour or viral 

escape from immunosurveillance (Wherry, 2011). In patients with CLL, both CD4+ and 

CD8+ T cells have increased PD-1 expression compared to healthy age matched controls 

(Brusa et al., 2013, Rusak et al., 2015) and recently, the use of PD-1-blocking antibodies has 

shown therapeutic potential (McClanahan et al., 2015, Gassner et al., 2015), with recruitment 

into a phase 2 trial underway for patients with CLL (clinicaltrials.gov, 2016).  

Given the high prevalence of latent CMV infection and its dominant impact on the immune 

repertoire, CMV remains a significant confounding factor in any T cell immunophenotyping 

results for patients with CLL and in particular for characterizing its contribution towards 

CD4+PD-1+ cell populations. As discussed in chapter 3, CD8+ T cell abnormalities have 

been the focus of attention in patients with CLL and the use of class I tetramers to identify 

CMV-specific CD8+ T cells in patients with CLL has found preserved functionality and low 

levels of PD-1 expression, such that CMV-specific CD8+ T cells appear relatively unaffected 

considering the dysfunctional CD8+ T cell abnormalities described in patients with CLL (te 

Raa et al., 2014, Riches et al., 2013, McClanahan et al., 2015).  

In comparison, the CD4+ CMV-specific immune response in CLL is relatively understudied. 

Using novel class II CMV tetramers, this work aims to identify, for the first time, populations 

of CMV specific CD4+ T cells in both patients with CLL and healthy donors and assesses 

their phenotype and transcription factor profile. Information derived from these studies will 
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evaluate the impact of CMV-specific CD4+ T cells on the global CD4+ T cell dysfunction 

seen in patients with CLL compared to healthy donors.  

4.2 Methods 

4.2.1 Patient recruitment.  

146 patients with CLL attending outpatient clinics at either University Hospital Birmingham 

or Birmingham Heartlands Hospital were recruited for study. All patients were either 

untreated or at least six months post treatment. A maximum of 50ml of blood was taken at 

each outpatient visit in lithium heparin.  

For healthy donor recruitment, 61 participants aged 65 or above were enrolled. Samples were 

prepared using ficoll-paque gradient centrifugation and cryopreserved as described in chapter 

2. Samples were then defrosted prior to use.  

4.2.2 CMV ELISA and HLA typing 

CMV status was confirmed in HD and patients using the ELISA technique described in 

chapter 2. DNA was extracted from pelleted whole PBMC and HLA class II typing performed 

by PCR.  

4.2.3 CD4 CMV specific T cell immunophenotyping   

PBMCs were defrosted and stained as described in chapter 2. The following antibody panels 

were then used in this chapter: panel 2 for analysis of memory phenotype, panel 3 for analysis 

of activation markers and panel 8 for analysis of cytotoxicity. For statistical analysis, results 

are expressed as the median and Mann-Whitney testing was performed for comparative 

analysis of non-parametric data, unless indicated in the figure legends.   
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4.2.4 Peptide stimulation assay 

Following identification of a DR7 or DR52B tetramer response, 2x106 cells were incubated at 

37oC for 6 hours with either 0.5μg/μl DYSNTHSTRYV (DYS) peptide or 

AGILARNLVPMVATV (AGI) 0.5μg/μl respectively. Tetramer and antibodies (both surface 

and intracellular) were then applied, as described in chapter 2. For analysis of cytokine 

responses, SPICE version 5.3 (downloaded from http://exon.niaid.nih.gov/spice 28th January 

2016) was performed. 

4.2.5 Intracellular staining for transcription factors 

1 x 106 PBMCs were defrosted, washed and stained with tetramer, followed by live/dead stain 

as above. Antibody panels 9 and 10 were applied.  

4.2.6 Telomere length analysis 

20x106 PBMCS were defrosted. CD4+ T cell and tetramer positive cells were enriched as 

described in chapter 2 on the MoFlo™ sorter. A purity of 97% tetramer positive cells and 

98% CD4+ tetramer negative cells was obtained. Samples were then shipped on dry ice as a 

semi-dry pellet to the University of Cardiff for further analysis. STELA telomere length 

analysis with single cell PCR amplification of the XpYp telomere region was obtained as 

previously described (Baird et al., 2003). Student’s T test was then used to compare the 

molecular weight of the PCR product between tetramer positive and background CD4+ T 

cells. 

4.3 Results  

4.3.1 Donor characteristics  

Of the 146 patients recruited, 47 were found to be both CMV seropositive and to have the 

appropriate HLA alleles that permit examination of the CMV specific CD4+ T cell response 

http://exon.niaid.nih.gov/spice
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with the two novel tetramers available. A total of 15 responses were found, 10 from patients 

recognising the peptide DYS derived from glycoprotein B and 5 recognising the peptide AGI 

from pp65. The median age of the patients with CLL with identifiable tetramer responses was 

77 years (IQR 54-93). Using the same tetramers and for comparative analysis, 11 healthy 

donors (HD) were also identified to have CD4+ CMV specific T cell responses (8 gB and 3 

pp65 responses), with a median age of 61 years (IQR 51-86). The characteristics are shown in 

table 4.1. 

4.3.2 The magnitude of the CMV specific-CD4 T cell responses in patients 

with CLL is greater than in healthy donors 

The CMV specific CD4+ T cell response was identified and compared between patients with 

CLL and healthy donors (HD). Figure 4.1A shows an example of staining for both DYS and 

AGI tetramers. A true tetramer response was verified through the lack of background staining 

by gating all CD3+ T cells, against CD4+ T cells. The magnitude of CD4+ CMV-specific T 

cell responses was found to be greater in patients with CLL compared to HD (HD 0.7% 

(range: (0.01-8.6%) vs CLL 4% (range: 0.1-37.7%); p=0.049) Figure 4.1B. 
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Table 4.1  

Clinical characteristics of CLL patients with CMV-specific CD4+ T cell responses 
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Figure 4.1 

An example of AGI and DYS tetramer staining and the magnitude of the CMV-specific 

CD4+ T cell response in patients with CLL and HD. 

A) An example of tetramer staining is shown for both AGI (left) and DYS (right). Cells 

displayed are CD3+ T cells.  B) The frequency of CMV-specific CD4+ T cells are increased 

in patients with CLL compared to HD (HD: 0.7% Vs CLL: 4%; p=0.049) (Mann-Whitney).  
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4.3.3 CMV specific CD4+ T cells have an effector memory phenotype  

Next, the phenotype of the CMV specific CD4+ T cells was investigated in HD and patients 

with CLL. Using CCR7 and CD45RA, memory subsets were defined as naïve (CCR7+, 

CD45RA+), central memory (TCM) (CCR7+, CD45RA-), effector memory (TEM) (CCR7-, 

CD45RA-) and terminally differentiated effector memory cells (TEMRA) (CCR7-, CD45RA+). 

An example of the staining can be seen in Figure 4.2A.  Firstly, CD4+ T cell memory subsets 

were compared between CMV positive (n=68) and CMV negative (n=27) patients with CLL 

and in HD (CMV positive n=20; CMV negative n=10). A trend towards a greater frequency 

of TEM cells was seen in patients with CLL who were CMV positive compared to those who 

were CMV negative, although this did not reach statistical significance (CMV negative TEM: 

50.3% Vs CMV positive TEM 53.6%; p=0.210). No difference was observed in Tnaive or TCM 

phenotypes when examined by serostatus in both HD and patients with CLL.  The only 

significant difference was observed between cells of TEMRA phenotype, which were increased 

in both HD and patients with CLL in CMV positive subjects compared to CMV negative 

individuals (HD: 0.95% Vs 2%; p= 0.042 and CLL: 1.1% Vs 3.3%; p=0.0009 (figure 4.2B 

+4.2C). However, the percentage of CD4+ T cells of TEMRA phenotype overall (regardless of 

CMV serostatus) was much lower in both HD and patients with CLL compared to that seen in 

CD8+ T cells (as reported in chapter 3) (HD CD4+:1.35 vs CD8+ 29.5% and CLL CD4+ 

2.6% vs CD8+ 35.10%) (data not shown).  

Next, tetramer responses in both HD and patients with CLL were examined and found to 

predominantly be TEM in phenotype compared to TEMRA (HD: TEM vs TEMRA 91.2 vs 0.6%; 

p<0.0001 and CLL: TEM 94.4% VS TEMRA 1.4%; p=0.0003 (figure 4.3D + 4.3E). This 

contrasts with CD8+ CMV-specific T cell populations, whose frequency was described in 

chapter 3 and was found to be equally distributed between a TEM and TEMRA phenotype.  
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Interestingly, no difference was observed between the CD4+ T cell population and CMV 

specific CD4+ cells in patients with CLL but this may in part be due to the fact that patients 

with CLL already have expanded populations of TEM cells compared to HD, regardless of 

CMV status (HD 29.70% TEM Vs CLL 52.9% TEM; p=0.0003) (data not shown). Amongst 

HD, an increased proportion of CMV-specific CD4+ T cells with TEM phenotype were 

observed compared to the background CD4+ T cell population  (CD4+ TEM cells: 35.2% Vs 

HD tetramer+ TEM cells 91.2%; p=0.001 Figure 4.3E).  
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Figure 4.2 

CMV specific CD4+ T cells predominantly have an effector memory phenotype 

(A) Example gating for memory subset phenotyping of CD4+ T cells (red) and CMV-specific 

CD4+ T cells (black) is shown (B) The memory phenotype of CD4+ T cells in patients with 

CLL did not differ greatly between CMV seropositive (n=69) and seronegative donors 

(n=27), other than a significant but overall small increase in the percentage of cells with a 

TEMRA phenotype in CMV positive patients. (C) Demonstrates the memory phenotype in 

CD4+ T cells in healthy donors who were CMV positive and CMV negative by serology, 

with a greater proportion of TEMRA cells seen in those who were CMV positive.  In both 

healthy donors and in patients with CLL, a comparison of CMV specific CD4+ T cells with 

the total CD4+ T cell population, revealed an increase in cells with a TEM phenotype amongst 

tetramer positive cells. This did not reach statistical significance in patients with CLL, which 

is most likely due to the fact that patients with CLL already have a CD4+ T cell repertoire 

that is enriched with cells of TEM phenotype (D) but did reach significance in healthy donors 

(p=0.001) (E) (Mann-Whitney).  
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4.3.4 CMV-specific CD4+ T cells demonstrate increased expression of 

CD38 in patients with CLL. 

I next went on to examine the expression of activation markers on CMV-specific T cells in 

both HD and patients with CLL. CD69 is a C-type lectin receptor, which is amongst the first 

protein to be expressed following T cell activation and is important for lymphocyte 

proliferation following antigen recognition. It is only transiently expressed on activated CD4+ 

T cells. In contrast, CD38 is another transmembrane glycoprotein receptor induced through T 

cell activation, but has a maximum expression 14-17 days following T cell activation 

(Chadburn et al., 1992). Immunophenotyping for CD69 and CD38 on CD4+ T cells was 

performed on 10 HD and 10 patients with CLL. No difference was observed in CD69 

expression on CD4+ T cells in HD or patients with CLL (HD: 2.6% Vs 4.3; p=0.197). A low 

frequency of CD69 was also observed on CMV-specific CD4+ T cells in both HD and 

patients with CLL (HD median 3.8% Vs 4.2% in CLL; p=0.54). This was further confirmed 

by MFI (HD 734 Vs CLL 733; p=0.58). No difference was observed between CMV-specific 

cells and CD4 T cells in HD (p=0.255) or patients with CLL (p=0.565).   

A trend towards a higher frequency of CD38 expression was found on CD4+ T cells from 

patients with CLL (HD: 13.7 Vs CLL: 18.2; p=0.342) but was even more pronounced on 

CMV-specific CD4+ T cells from patients with CLL (HD: 13.6% Vs. CLL: 36.6%, p=0.014). 

This was further confirmed by MFI (HD 422 Vs. CLL 858, p=0.052). Interestingly, one donor 

with CLL demonstrated a CMV-specific CD4+ T cell response that comprised 37.7% of the 

CD4+ T cell repertoire and 75% of this population were found to be CD38 positive.  This 

profile was observed in the whole cohort where CMV-specific CD4+ T cells had greater 

CD38 expression than the total CD4+ T cell population (p=0.006).  
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Figure 4.3  

CD38 expression is increased on CMV-specific T cells, particularly in patients with 

CLL.  

CD69 expression was examined on CMV-specific T cells and found to be of low frequency 

on CMV-specific T cells in both HD and patients with CLL (A). CD38 expression was also 

examined as a marker of activation and was found to be higher on CMV- specific CD4+ T 

cells in patients with CLL compared to HD (B) (Mann-Whitney). 
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4.3.5 Functional response of tetramer-specific T cells following CMV 

peptide stimulation.  

In order to examine the cytokine profile of CD4+ CMV-specific T cells, experiments were 

performed firstly to ascertain the optimal stimulation conditions. Initial attempts to stimulate 

the cells using PMA and ionomycin lead to reductions in the frequency of tetramer positive 

staining, even at low concentrations. Te Raa et al had recently published their method for 

studying CD8 CMV-specific T cell functionality using peptide stimulation (te Raa et al., 

2014). This method was adopted but optimized for CD4+T cell work. Variables that I 

investigated included the optimal peptide concentration, whether peptide or lysate stimulation 

of CD4+ T cells could produce superior cytokine production, the use of dasatinib during 

incubation and whether the order with which tetramer and peptide were added produced 

different results. Aside from titrating peptide concentrations, all optimisation experiments 

were carried out using a young HD with a known DYS response. The results of the 

experiments used to assess these variables are as follows:   

4.3.5.1 Peptide concentration 

In order to ascertain the optimal concentration of peptide at which surface tetramer staining 

was observed alongside maximum cytokine production, a single healthy donor was identified 

with either DYS or AGI tetramer response and used for each titration experiment. PBMCs 

were stimulated using DYS or AGI peptide at concentrations shown in figure 4.4 for 6 hours 

at 37oC prior to tetramer staining. Cytokine response was measured as the percentage of 

double positive CMV-specific CD4+ T cells producing IFN-γ and TNF-α. For both tetramers, 

the optimal concentration was determined as shown in figure 4.4. With an increasing peptide 

concentration greater than 0.5μg/ml, the percentage of surface tetramer staining was reduced, 

resulting in an overall decrease in the percentage of cytokine producing CMV-specific T cells. 



 CD4+ CMV-specific immune response 

 122 

In contrast, peptide concentrations less than 0.5μg/ml preserved the frequency of positive 

tetramer staining but resulted in poor stimulation and a suboptimal cytokine response. For 

each peptide a concentration of 0.5μg/ml was confirmed to be optimal and used in all 

subsequent experiments (figure 4.4).  
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Figure 4.4 

DYS and AGI peptide concentrations were titrated for optimal stimulation response.  

Using a range of DYS peptide concentrations, CMV-specific CD4+ T cells were identified 

from the same donor and their CMV response assessed. The optimal peptide concentration 

was found to be 0.5μg/ml, which produced a maximal cytokine response of 22%, whilst 

maintaining a tetramer response of 14% (the same as that found in an unstimulated sample). 

Similarly, AGI was also titrated and again, 0.5μg/ml was found to be optimal. This produced 

a maximum cytokine response of 49% of the tetramer positive cells, whilst maintaining the 

tetramer population at 1.5% (79% of CMV-specific T cells were still identifiable, as the 

unstimulated sample demonstrated a 1.9% tetramer response). 
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4.3.5.2 Lysate or peptide stimulation 

Next, a comparison of lysate stimulation compared to peptide stimulation for tetramer specific 

assessment of cytokine release was performed. Using fresh HD cells, a 6 hour 0.5μg/ml DYS 

peptide or lysate stimulation was compared to unstimulated cells. A similar percentage of 

tetramer positive cells were identified using either method (peptide stimulation: 1.09% Vs. 

1.04% lysate stimulation). Peptide stimulation was found to be slightly superior, with 79.9% 

of tetramer+ cells producing IFN-γ and TNF-α compared to 78.6% in lysate stimulation (table 

4.2). Peptide stimulation rather than lysate stimulation was then used for future experiments.  

4.3.5.3 The addition of tetramer before or after peptide stimulation 

Using the same HD, but with previously cryopreserved cells, a comparison of the order with 

which tetramer was added to the stimulation assay was compared with unstimulated cells. 

Unstimulated cells, with the tetramer added just prior to surface staining resulted in a tetramer 

response of 2.07% and no IFN-γ TNF-α production. In contrast, cells incubated first with 

tetramer for 1 hour and then washed and rested for 6 hours (without further peptide 

stimulation) resulted in only 1.6% of tetramer cells being identified but of these, 10.25 % 

produced TNF-α but no IFN-γ, This demonstrated that the tetramer binding to the TCR was 

able to stimulate a small but significant amount of cytokine production in the absence of 

peptide stimulation. Adding tetramer first for an hour at 37 oC followed by 6 hour incubation 

with 0.5μg/ml DYS peptide resulted in 77.6% of tetramer+ cells producing IFN-γ and TNF-α 

with 1.06% tetramer cells detectable. In comparison, performing the 6 hour peptide 

stimulation before adding tetramer produced 72.3% IFN-γ and TNF-α, but with 1.8% tetramer 

positive cells identified (table 4.2). These results suggested that the addition of tetramer first 

produced a greater stimulation period but this resulted in greater downregulation of the TCR. 
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Adding the tetramer after the 6 hour stimulation, improved the percentage of tetramer cells 

detectable but also provided no detection of cytokines in the unstimulated control sample. It 

was therefore decided to incubate with peptide prior to surface staining with tetramer and 

fixation.  

4.3.5.4 The use of Dasatinib 

Dasatanib is a reversible protein kinase inhibitor that has been shown to reduce the affinity 

threshold at which tetramer binds to the TCR and inhibit tetramer-induced lymphocyte cell 

death, whilst improving the intensity of staining (Lissina et al., 2009). To investigate if 

dasatinib could enhance the ability to capture all tetramer positive cells during a peptide 

stimulation assay, cells from a HD were incubated with or without 1μM of dasatinib for 30 

minutes at 37oC, followed by tetramer staining and then a 6 hour stimulation with 0.5 μg/ml 

of DYS peptide at 37oC. Results were compared with an unstimulated sample. Dasatanib was 

found to maintain the frequency of tetramer positive cells to that seen in the unstimulated 

sample (2% for unstimulated, 2% for stimulated with dasatanib and 1.2% for stimulated 

without dasatanib). However, a distinct reduction in the production of IFN-γ and TNF-α was 

found compared to cells stimulated in the absence of dasatanib (70% IFN-γ when stimulated 

without dasatanib vs 11% in the presence of dasatanib). Therefore, although tetramer staining 

was preserved, the addition of dasatanib was not found to enhance the experimental data due 

to the poor cytokine staining and was therefore omitted from further experiments.  

4.3.5.5 The conclusions from optimisation experiments 

Minimal difference was noted between lysate and peptide stimulation for cytokine production 

using fresh cells. This, together with the need for fresh cells for lysate stimulation compared 

to cryopreserved cells for peptide stimulation resulted in a decision to use peptide stimulation 
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for future stimulation experiments. The use of defrosted cells was also shown to be 

comparable to fresh cells for cytokine responses using peptide stimulation (although of note, 

this comparison was made from two separate experiments carried out on different days.) 

Adding tetramer first prior to peptide stimulation was found to initiate cytokine production 

and also diminish tetramer responses further, so a decision to add tetramer after peptide 

stimulation was made. The addition of dasatanib did not enhance the experiment and in fact 

impaired cytokine responses, so was discarded from further experiments. Finally, a peptide 

stimulation with 0.5μg/ml was found to be optimal for both types of CD4+ CMV-specific T 

cells.  
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Table 4.2  

Optimisation of CD4+ CMV-specific cell staining following stimulation. 
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4.3.6 CMV-specific CD4+ T cells have a Th1-skewed cytokine profile 

Following on from the optimization experiments, and to assess the functionality of CMV-

specific CD4+ T cells in patients with CLL and HD, a 6 hour peptide stimulation at 37oC was 

performed prior to tetramer incubation and antibody staining. CMV-specific T cells are 

described in the literature to have a Th1 phenotype and make TNF-α and IFN-γ (Edwards et 

al., 2014)Therefore these cytokines were chosen to identify any Th1 response. T cell 

production of Il-4 and serum levels of Il-10 are increased in patients with CLL, so these 

cytokines were chosen in order to evaluate if CMV-specific CD4+ T cells could be Th2 

skewed and contribute to this finding (Mainou-Fowler et al., 2001, Mu et al., 1997, Fayad et 

al., 2001). The Th2 cytokine, Il-5 was also chosen, as a recent article had detected low-level 

production amongst CD4+ T cells responding to CMV peptide in healthy donors (Mason et 

al., 2013). For each experiment, an unstimulated control was incubated for 6 hours at 37oC in 

the absence of any peptide stimulation. Tetramer staining was added to all samples prior to 

surface staining. Minimal expression of cytokines was seen in unstimulated tetramer-positive 

cells but, if this was detected, this percentage was subtracted from the percentage expression 

found in stimulated cells. This subtraction allowed only the inducible cytokine production 

following peptide stimulation to be ascertained, which is presented in Figure 4.5. Overall, the 

proportion of CD4+ CMV tetramer+ T cells producing both IFN-γ and TNFα was decreased 

in patients with CLL (n=9) compared to HD (n=8) (21% vs 47.6%; p=0.0037. Figure 4.5) 

suggesting CLL cells are suboptimal at producing cytotoxic cytokines following induced 

stimulation. Most CMV-specific cells that produced IFN-γ also produced TNF-α, only 0.2% 

of CMV-specific cells from patients with CLL and 2.2% of HD CMV-specific cells made 

IFN-γ in the absence of TNFα. In contrast to this finding, TNFα was frequently produced in 

the absence of IFN-γ and this was most notable in patients with CLL. In HD, on average 2 % 
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of CMV-specific cells were seen to make TNF-α only, whilst amongst patients with CLL, 

11.5% produced TNF-α alone (p=0.056). A small percentage of CMV-specific cells in 

healthy donors (0.7%) and in patients with CLL (3.7%) were found to also produce Il-4, with 

no difference observed between HD and patients with CLL (p=0.595).  
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Figure 4.5 

The cytokine profile of peptide stimulated CMV-specific CD4+ T cells 

Using Spice software, plots of HD (left) and CLL donors (right), consisting of pie charts 

representing the percentage of cytokine expression of all subjects studied and by graphically 

representation underneath where coding for the pie slice colours can also be found. The arcs 

around the pie charts represent the total percentage production of each individual cytokine 

(see coding within figure). Within the bar chart HD are shown in blue and patients with CLL 

in red. Production of both IFN-γ and TNF-α by CMV-specific CD4+ T cells was greater in 

HD than patients with CLL, whilst patients with CLL had more CMV-specific cells 

producing just TNF-α (Mann-Whitney). A small amount of IL-4 from CMV-specific cells 

was made by both HD and patients with CLL.   

 

HD CLL 
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4.3.7 CMV-specific CD4+ T cells have a cytotoxic phenotype with a high 

frequency of perforin and granzyme B. 

The expression of perforin and granzyme B was then examined in CD4+ T cells and CMV-

specific CD4+ T cells. Cells were analysed for single positive granzyme or perforin staining, 

as well as a dual positive expression pattern. Figure 4.6A shows an example of the staining 

observed using flow cytometry and Table 4.3 shows the median frequency of cells positive 

for these cytotoxic granules in both HD and patients with CLL.  

The frequency of dual positive staining for perforin and granzyme B was found to be greatest 

in CMV-specific CD4+ T cells. Amongst the total CD4+ T cell populations, the frequency of 

dual positive staining was less, with no difference being observed in the proportions of 

granzyme B and perforin positive cells in patients with CLL compared to HD (median 21.2% 

in HD and 17.5% in CLL donors, p=0.618). Comparatively, the majority of CMV-specific 

CD4+ T cells displayed a significantly higher proportion of both granzyme B and perforin 

compared to the total CD4+ T cell population (84.75% in HD (p=0.0001) and 79.05% in 

patients with CLL (p=0.009). No difference was observed between HD and CLL CMV-

specific CD4+ T cells (p=0.362). These findings highlight the pronounced cytotoxic capacity 

and potential for cell lysis by CMV-specific CD4+ T cells in both HD and patients with CLL 

(Figure 4.6B).  
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Table 4.3  The percentage expression of perforin and granzyme 
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Figure 4.6  

CMV-specific CD4+ T cells display great cytotoxic capacity with perforin and granzyme 

B expression.  

A) CD4+ T cells and CMV-specific CD4+ T cells were fixed and permeabilised with PFA 

and saponin prior to intracellular staining for perforin and granzyme B. The flow plot on the 

left demonstrates a typical example of CD4+ T cell staining, whilst the flow plot on the right, 

demonstrates the high frequency of perforin and granzyme B positive CMV-specific CD4+ T 

cells in the same patient. B) A dot plot graph representing the frequency of dual positive 

perforin and granzyme B CD4+ T cells. A significant increase in dual expression amongst 

CMV-specific CD4+ T cells is seen in both HD and patients with CLL (Mann-Whitney).  
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4.3.8 CMV-specific CD4+ T cells from patients with CLL have increased 

PD-1 expression compared to HD. 

Given the interest in PD-1 as a marker of T cell exhaustion in patients with CLL, we next 

went on to assess expression of this inhibitory T cell marker on CD4+ T cells with particular 

focus on CMV-specific CD4+ T cells. Figure 4.7A shows an example of PD-1 staining of 

CD4+ T cells and CMV-specific CD4+ T cells by gating and MFI. As described by others, 

CLL patients have a greater proportion of CD4+ T cells expressing PD-1 than healthy age-

matched donors (HD: 9.1% Vs. CLL 15.6%; p=0.0007) (Riches et al., 2013, Brusa et al., 

2013).  

In contrast to reports investigating CMV-specific CD8+ T cells (te Raa et al., 2014), the 

proportion of CMV-specific CD4+ T cells expressing PD-1 was increased in both patients 

with CLL and HD compared to the whole CD4+ T cell population (HD: CD4+ 6.4% Vs. 

CMV-specific CD4+ 26.8% p= 0.004 and CLL: CD4+ 22.2% Vs. CMV-specific CD4+ 

52.4% p=0.017). Overall, the frequency of PD-1+ CMV-specific cells was greatest in patients 

with CLL compared to HD (HD 26.8% Vs. CLL 52.4%; p=0.028) (Figure 4.7B). This finding 

was also observed by MFI (HD CMV specific CD4+ T cells: 584 Vs. CLL: 988; p=0.031. 

(Figure 4.7C). 

4.3.9 Tim-3 expression is not increased on CD4+ CMV-specific T cells  

Tim-3, another inhibitory T cell receptor associated with T cell exhaustion, was also 

investigated, Tim-3 expression was low on CD4+ T cells in HD and no increase was observed 

amongst CD4+ T cells in patients with CLL. Furthermore, no difference was observed 

between CMV-specific and the total CD4+ T cell population in HD or patients with CLL (HD 

CD4+: 1% vs CMV-specific CD4+: 1.2%; p=0.573 and CLL: CD4+ 0.3% vs CMV-specific 

CD4+: 0.7% p=0.733).  
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Figure 4.7  

PD-1 expression is increased on CMV-specific CD4+ T cells and this is more pronounced 

in patients with CLL compared to HD. 

(A) An example flow plot of CD4+ (left) and CMV-specific CD4+ (right) T cells and their 

expression of PD-1. PD-1 is seen to be greater on CMV-specific T cells. (B) This was also 

demonstrated by MFI.  The grey histogram shows unstained cells, the dark solid line 

demonstrates CD4+ T cells and the dashed line shows CMV-specific CD4+ T cells. (C) A 

comparison of PD-1 expression by percentage of cells is shown. PD-1 expression is greater on 

CD4+ T cells in patients with CLL compared to HD. Whilst CMV-specific T cells have 

greater PD-1 expression in both HD and patient with CLL compared to the total CD4+ T cell 

population (Mann-Whitney). (D) These findings were also confirmed to be significant by MFI 

(Mann-Whitney).  
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4.3.10 PD-1 expression on CMV-specific T cells is not associated with 

recent activation 

PD-1 is known to be expressed on the surface of activated T cells (Keir et al., 2008) and it 

was therefore important to investigate if PD-1 expression on CMV-specific CD4+ T cells is a 

reflection of recent activation, particularly given the finding of increased CD38 expression in 

section 1.3.4. Combining data from 10 HD and 10 patients with CLL, I initially examined the 

percentage of PD-1+ cells that expressed a CD38+ or CD38- phenotype. No increase in PD-1 

expression was observed on CD38+ CMV-specific T cells. In fact, the opposite was observed, 

with increased PD1+ seen on CMV-specific T cells that were CD38 negative (median CD38 

negative PD-1%: 38.7 Vs CD38 positive PD-1%: 8.05%; p=0.004). To investigate this 

further, I analysed the total CMV-specific tetramer population for potential correlation 

between PD-1 expression and CD38 expression, this found no significant correlation and an 

R2 value of 0.0099 (figure 4.8).  
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Figure 4.8  

PD-1 positive CMV-specific CD4+ T cells are not recently activated 

(A) CD38 negative CMV-specific CD4+ T cells were found to have a greater percentage PD-

1 expression than CD38 positive cells (38.7% vs 8.05%) (Mann-Whitney) and when 

correlating PD-1 expression against CD38 expression on CMV-specific CD4+ T cells, no 

correlation was observed (Pearson’s correlation co-efficient) (B). These data suggest that PD-

1 is not expressed on CMV-specific CD4+ T cells as a result of recent T cell activation.  
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4.3.11 PD-1 expression remains constant over time. 

Over a year period, repeat bleeding of both healthy donors and patients with CLL revealed 

PD-1 expression remained constant over time on CMV-specific CD4+ T cells. Details of the 

percentage PD-1 expression at specified time points of 6 donors are shown in table 4.4 and 

the data is graphically represented in figure 4.9. No significant difference was found between 

PD-1 expression over time (p=0.688). This finding again supports the notion that PD-1 

expression on CMV-specific CD4+ T cells is not in response to recent activation but that a set 

level of expression arises at some point during the course of infection.   

4.3.12 PD-1-positive CMV-specific CD4+ T cells produce less IFN-γ and 

TNF-α 

9 samples from patients with CLL and 8 HD with known tetramer responses were stimulated 

with peptide for 6 hours prior to tetramer staining as described in section 1.3.6. Surface 

staining for PD-1 was followed by intracellular staining for IFN-γ and TNF-α. CMV-specific 

CD4+ T cell populations were identified and the amount of cytokine production from PD-1 

positive and negative cells was assessed. PD-1+ CMV-specific CD4+ T cells showed reduced 

production of both cytokines compared to PD-1- CMV-specific CD4+ T cells (Figure 4.10A) 

(IFN- γ produced from CMV-specific PD-1- cells 25.35% vs CMV-specific PD-1+ cells 

13.4%; a 11.95% reduction; p=0.037 and TNF-α produced from CMV-specific PD-1- cells 

40.1% vs CMV-specific PD-1+ cell 14.8%; a 25.3% reduction; p=0.0007).  No difference was 

observed amongst the percentage of PD-1+ cells and PD-1- cells able to produce Il-4 

(p=0.306). An example of cytokine staining for CMV-specific CD4+ T cells with PD-1 

expression can be seen in Figure 4.10B. Overall, inducible cytokine production of IFN-γ and 

TNF-α is impaired in PD-1+CMV-specific CD4+ T cells.  
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Table 4.4   

PD-1 expression is relatively constant over time 

 

 

Figure 4.9  

PD-1 expression on CMV-specific CD4+ T cells is stable up to 32 months later.  

PD-1 expression on CMV-specific T cells is shown in 3 HD and 3 patients with CLL and was 

found to be stable over time (p=0.688; Wilcoxon matched-pairs rank testing). 
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Figure 4.10  

PD-1 positivity is associated with reduced cytokine production from CD4+ CMV-

specific T cells 

(A) Example plots of unstimulated CMV-specific T cells demonstrated no TNF-α (left plot) 

or IFN-γ (right plot) production but positive PD-1 expression. Following stimulation, both 

IFN-γ and TNF-α production was observed but not by PD-1 positive cells. (B) Both TNF-α 

and IFN-γ production was greater in PD-1 negative CMV-specific CD4+ T cells compared to 

PD-1 positive CMV-specific CD4+ T cells (p<0.0007 and p<0.037 respectively) (Mann-

Whitney). 
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4.3.13 Transcription factor expression of CMV-specific CD4+ T cells 

4.3.13.1 Tbet and eomesodermin 

The expression of the transcription factors Tbet, Eomesodermin and Foxp3 was next 

investigated within the CMV-specific T cells. Eomesodermin (Eomes) and Tbet play a crucial 

role in T cell development and are widely expressed in CD8+ T cells where they have been 

most widely studied and regulate effector cell differentiation (Cruz-Guilloty et al., 2009, 

Knox et al., 2014). Expression of Tbet is attributed to the upregulation of perforin and 

granzyme B in CD8+ effector T cells and is known to increase within 24 hours of T cell 

activation (McLane et al., 2013, Knox et al., 2014). In CD4+ T cells, Tbet is thought to be the 

masterregulator of Th1 CD4+ T cell development and inhibits Th2 and Th17 CD4+ T cell 

formation (Szabo et al., 2000).  In contrast to Tbet, Eomes expression does not increase 

following T cell activation but appears the more differentiated an effector memory cell 

becomes and its absence leads to a deficiency in effector memory T cells (McLane et al., 

2013, Pearce et al., 2003). Both Tbet and Eomes are thought to influence the production of 

IFN-γ (Knox et al., 2014). In comparison to CD8+ T cells, expression of Tbet and Eomes in 

CD4+ T cells is far less frequent and has not been studied to such an extent (Knox et al., 

2014, Pearce et al., 2003). Given the Th1 profile of CMV-specific CD4+ T cells that I had 

observed, I next investigated this transcription factor profile and its relationship with 

functional status in 10 CLL and 10 HD CMV-specific CD4+ T cells. Cells were firstly 

incubated at 37oC with tetramer, prior to surface staining and fixation using the transcription 

factor method. After permeabilising the cells, antibodies for Eomes and Tbet were added. 

Figure 4.11A gives an example plot of the Tbet and Eomes staining observed. Virtually all 

CD4+ CMV-specific cells in HD and patients with CLL expressed Tbet, whilst a much lower 

expression was observed in CD4+ T cells (HD: 86.2% Vs 26.5% respectively; p=0.0007 and 
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CLL: 90.85% Vs.38.65%; p<0.0001). No difference in Tbet expression within CMV-specific 

CD4+ T cells was found between patients with CLL and HD (p=0.215) (Figure 5.11B, left 

panel).  

Eomes expression was also similar between patients with CLL and HD CD4+ T cells (18.75% 

HD Vs. 22.75% CLL, p=0.542) and again, expression was of much greater magnitude in 

CMV specific CD4+ T cells (median HD 60% Vs 57.70% in CLL). Remarkably, the positive 

Eomes staining on CMV-specific CD4+ T cells in many of the donors accounted for the total 

Eomes positive staining in the whole CD4 population, suggesting CMV impacts greatly on 

the presence of this transcription factor amongst CD4+ T cells of CMV positive donors. 

Notably, no single positive Eomes staining was observed amongst CMV-specific CD4+ T 

cells. Furthermore, combined analysis of HD and CLL patient data confirmed CMV CD4+ T 

cells to express more Eomes than the total CD4+ T cell population (CMV specific CD4+ T 

cell 57.7% Vs. CD4+ T cells 18.75%, p=0.0005).  

Next, using the combined HD and CLL dataset, expression of Tbet and Eomes was correlated 

with the expression of PD-1. Interestingly, neither Tbet nor Eomes expression were found to 

correlate with PD-1 MFI (r=-0.219 and r=-0.13 respectively) (Figure 4.11C).  

Next, the functional responses to peptide stimulation observed in section 1.3.6 were correlated 

with the individuals’ transcription factor profile. No correlation was observed between Tbet+ 

expression and dual TNF-α+ IFN-γ + cytokine production. However, the frequency of Tbet+ 

Eomes+ CMV-specific CD4+ T cells positively correlated with an increase in production of 

TNF-α and IFN-γ (r=0.4489; p=0.050) Figure 4.11D. Together, these findings suggest that 

Eomes positivity is important for CD4+ T cell differentiation and positively influences the 

production of cytotoxic cytokines, but not PD-1 expression. 
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4.3.13.2 FoxP3 

PD-1 is expressed on many regulatory cells and regulatory cells may produce IL-4.  To 

address the question of whether or not CMV-specific CD4+ T cells may also include 

conventional Tregs, expression of the transcription factor FoxP3 and CD25 was next assessed 

on tetramer-positive cells in 5 HD and 5 patients with CLL. Following incubation with 

tetramer, surface staining including CD25 was performed before cells were fixed and 

permeabilised using the transcription factor kit, with subsequent incubation with anti-FoxP3 

antibody. Amongst CD4+ T cell populations, CD25+FoxP3 populations were identified at a 

low level (HD:1.8% (IQR: 1.4-3.3);  CLL: 3% (1.4-6.4) p=0.547). However, no 

FoxP3+CD25+ phenotype was found amongst CMV-specific CD4+ T cell populations in 

patients with CLL or HD, confirming the CMV-specific CD4+ T cells identified do not have 

any FoxP3+ T regulatory cell phenotype to account for the expression of IL-4 or PD-1 (Figure 

4.12). 
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Figure 4.11 

The T-bet and eomesodermin profile of CMV-specific CD4+ T cells 

(A) An example plot is shown of CD4+ T cells (left) and CMV-specific CD4+ T cells (right) 

for T-bet and Eomesodermin staining. Both transcription factors were more commonly 

expressed in CMV-specific CD4+ T cells compared to the whole CD4+ T cell population in 

both HD and patients with CLL as demonstrated in the dot plots shown in part (B) (Mann-

Whitney). Virtually all CMV-specific CD4+ T cells were T-bet positive (HD: 86.2% and 

CLL:  90.85%) and CMV-specific CD4+ T cells also demonstrated positive Eomes staining 

but at a lower magnitude (HD: 60% HD vs CLL: 57.70%). No CMV-specific cells were 

Eomes positive without co-expression of T-bet in either patients with CLL or HD. No 

correlation was observed between the MFI of PD-1 and T-bet (Spearman’s rank correlation) 

or Eomes (Pearson’s correlation co-efficient) (C). Combining the HD and CLL donor results, 

no correlation was observed with T-bet expression and TNFα+IFN-γ+ production 

(Spearman’s rank correlation). However, a positive correlation was observed between Eomes 

expression and cytokine production (p=0.05) (Pearson’s correlation co-efficient).  
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Figure 4.12 

CMV-specific CD4+ T cells are not conventional Foxp3+ T regulatory cells. 

Identification of conventional T regulatory cells  (Tregs) by CD25+FoxP3+ staining of CD4+ 

T cells (black) is shown. CMV-specific cells (red) are both CD25- and FoxP3-. 
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4.3.14 Telomere lengths of CMV-specific CD4+ T cells are significantly 

shortened. 

Single cell length analysis of the XpYp telomere end was performed for CD4+ T cells and 

CMV-specific CD4+ T cells from 4 patients with CLL, as described in chapter 3 for CD8+ T 

cells. Multiple single cell telomere lengths from a cell population were used to determine the 

mean telomere length of the cells of interest. For this work, CMV-specific CD4+ T cells and 

non-tetramer positive CD4+ T cells were sorted at the University of Birmingham and then 

transported and analysed at the University of Cardiff by Professor Duncan Baird. CMV-

specific CD4+ T cell populations were found to have reduced telomere lengths compared to 

the background CD4+ T cell populations in patients with CLL, with the mean difference of 

0.36 kb in those with shortened telomere lengths (maximum 1.6 kb) (Donor 1 CD4: 3.33 kb 

vs tetramer 2.03 kb; p= <0.0001. Donor 2 CD4: 5.36 kb vs tetramer 3.53 kb; p=<0.0001.  

Donor 3 CD4: 3.37 kb vs tetramer 2.39 kb; p=<0.009 and donor 4 CD4: 3.45 kb vs tetramer 

3.34 kb; p= 0.87). These telomere length differentials are consistent with large differences in 

the proliferative history of the cell populations and suggests CMV-specific CD4+ T cells 

contribute to the reduced telomere lengths seen in patients with CLL and also confirms CMV-

specific CD4+ T cells have a substantial mitotic history, likely in response to both primary 

and reactivated CMV viral load (Figure 5.12). 
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Figure 4.13 

CMV-specific CD4+ T cells show significantly shortened telomere lengths 

Two examples of single cell telomere length analysis of CMV-specific CD4+ T cells are 

shown (tet) alongside the total CD4+ T cell telomere length (CD4) (A). Below the gel is the 

mean telomere length and standard deviation for each sample. To the left of each example is 

the reference ladder.  B) The mean telomere lengths are significantly shorter in CMV-specific 

T cells compared to non-tetramer CD4+ T cells in 3 of the 4 donors tested (Student’s T test).  
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4.4 Discussion 

CD4+ T cell responses are crucial for the effective control of CMV infection. Patients with 

advanced and untreated HIV infection exemplify the deleterious impact of diminished CD4+ 

T cell control and exhibit frequent episodes of CMV reactivation. In contrast, patients with 

CLL rarely develop overt CMV reactivation, despite most suffering from a subtle but global 

immunosuppression that includes T cell dysfunction (Duraiswamy et al., 2011). 

Paradoxically, CMV seropositive patients with CLL actually have an expansion of CMV-

specific T cells compared to healthy donors. Previously, the study of virus-specific CD4+ T 

cell responses has relied on lysate or peptide based stimulation to identify CMV recognising 

CD4+ T cells or to cells expressing CD28-CD57+. At the time of writing, this work 

represents one of the first uses of class II tetramers to identify CD4+ CMV-specific T cells 

and has permitted analysis of responses recognising just one individual epitope, rather than a 

global CD4+ T cell response to CMV. It has also allowed characterization of these cells in the 

absence of any prior stimulation. Using two different tetramers, this work has confirmed the 

unparalleled magnitude of CD4+ CMV-specific T cell responses in healthy donors and 

consistent with published data found that patients with CLL have an even greater frequency of 

circulating CD4+ CMV-specific T cells which contribute substantially to the CD4+ T cell 

immune repertoire in CMV seropositive patients (Pourgheysari et al., 2010, Walton et al., 

2010). This work has also confirmed the highly cytotoxic profile of CMV-specific CD4+ T 

cells with great proportions of perforin and granzyme B positive cells observed (Walton et al., 

2010, Porakishvili et al., 2004). Furthermore, these virus-specific cells had substantial 

expression of PD-1 in health and to an even greater extent in patients with CLL. PD-1 

expression is known to be increased in patients with CLL but also correlates with disease 

progression on CD4+ T cells (Rusak et al., 2015). The great frequencies with which CMV-
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specific T cells were observed and also the extent to which they express PD-1 highlights the 

importance of determining the CMV profile of donors (be it healthy or patients with disease) 

for any PD-1 studies investigating the global CD4+ T cell repertoire in future studies.  

Over the 3 year study period, the percentage of CD4+ CMV-specific T cell responses was 

remarkably stable, as was expression of PD-1 on CMV-specific cells. One exception to this 

was noted in a 93 year old patient who was hospitalised for 5 months following community 

acquired pneumonia. In this case, the CMV-specific CD4+ T cell response towards a single 

epitope increased to more than half of all CD4+ T cells (from 11% to 51%) without any 

symptoms or signs of overt CMV reactivation. This suggests dynamic change to the CMV T 

cell repertoire may arise in the context of immunosuppression or psychological stress. This 

finding also suggests that subclinical viral reactivation may account for the greater frequency 

of CMV specific T cell responses observed in patients with CLL and supports the hypothesis 

of a “silent war” against CMV, previously proposed in 2011 (Akbar, 2010). Incidentally, the 

percentage of PD-1 positive cells in the CMV-specific T cell population did not change 

dramatically in this donor (21% on initial sample compared to 9.9% on subsequent sample) 

and over the study period. PD-1 expression was found to be stable amongst CMV-specific 

CD4+ T cells, this may be reflective of the poor proliferative capacity but extended lifespan 

observed amongst CMV-specific T cells (Wallace et al., 2004). In a mouse model 

investigating CD8+ T cells in the context of chronic infection, the percentage of PD-1 

positive cells recognizing the gp-33 epitope of LCMV-13 was also found to remain stable 

even following antigen withdrawal, suggesting this stable phenotype is imprinted early 

following primary infection (Utzschneider et al., 2013). This contrasts with acute viral 

infections such as hepatitis B, whereby PD-1 positive cells are upregulated during the 

inflammatory stage but then decrease as inflammation subsides (Wenjin et al., 2012). 
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Following primary infection with CMV, PD-1 is known to upregulate on CD4+ T cells and 

inhibit the production of IL-2, TNF-α and IFN-γ production (Antoine et al., 2012). 

Interestingly, work by Utzschneider et al, also found that stable populations of PD-1+ CD8+ 

T cells in the setting of chronic viral infection were able to re-expand when required and 

daughter cells demonstrated the same PD-1 expression and cytokine capacity. These findings 

suggest that proportions of PD-1+ T cells exist in the setting of chronic infection, not as 

exhaustive T cells but as cells that prevent overwhelming host mediated immune damage 

(Utzschneider et al., 2013). Given the cytotoxic profile observed amongst these virus specific 

T cells and their Th1 skewed phenotype, it would seem appropriate for some inhibitory 

checkpoint blockade to be in place for averting any damage to self in the event of viral 

reactivation.  Interestingly, PD-L1, one of the two ligands recognized by PD-1 is known to be 

expressed on CLL cells but is also found together with PD-L2 on activated macrophages 

which present viral antigen via MHC II to PD-1 expressing CD4+ T cells (Brusa et al., 2013, 

Rodriguez-Garcia et al., 2011).  

As previously reported, CMV positive individuals have expanded populations of CD8+ TEMRA 

cells in both health and in patients with CLL (Riches et al., 2013). This work has also found 

this to be true of CD4+ T cells too, although to a much lesser extent (CD4+ TEMRA cells are 19 

fold less common than CD8+ TEMRA cells in HD compared to 13 fold in patients with CLL 

CLL). The expanded populations of TEMRA CD8+ T cells have been shown to have low PD-1 

expression and this is thought to account for the lower frequency of PD-1+ CD8+ T cells in 

CMV positive patients with CLL (Riches et al., 2013). In contrast, PD-1 expression on CD4+ 

T cells in patients with CLL is known to be similar in both CMV positive and negative 

individuals (Riches et al., 2013). This work investigated this association further and has found 

the CMV-specific CD4+ T cells contribute to the increased PD-1+ CD4+ T cell pool 
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described in patients with CLL (Riches et al., 2013, Rusak et al., 2015) and that these cells are 

predominantly TEM in phenotype. Amongst both HD and patients with CLL, the proportion of 

CMV-specific CD4+ T cells with a TEM phenotype exceeded that of the total CD4+ T cell 

population, although this only reached significance in HD. This work reports that patients 

with CLL already have greatly expanded TEM CD4+ T cells regardless of their CMV 

serostatus (p=0.0003) and provides an explanation as to why no significant difference was 

observed in TEM status between CMV-specific T cells and the total CD4+ population in 

patients with CLL, despite 94% of CMV-specific cells being TEM in phenotype. Importantly, 

this predominant TEM phenotype of CD4+ CMV-specific T cells contrasts with the memory 

profile of CD8+ CMV-specific T cells, where almost half of identified CMV T cell 

populations were TEMRA in phenotype. Given the reported differences in PD1 expression by T 

cell differentiation status, this may account for the difference in PD1 expression observed 

amongst CD4+ and CD8+ CMV-specific T cells (Legat et al., 2013, Baitsch et al., 2012, 

Duraiswamy et al., 2011, Riches et al., 2013).  

Another important factor in determining the expression of inhibitory receptors, including PD-

1, is the activation status of T cells (Keir et al., 2008) In the case of CD4+ CMV-specific T 

cells, expression of CD69, a short-lived activation marker was negligible, whilst expression of 

CD69 in the total CD4+ T cell population was consistent with previous publications (3.8% in 

HD and 4.2% in patients with CLL (Waldrop et al., 1997). An increase in CD38 expression 

was observed amongst CD4+ T cells in patients with CLL compared to HD but was increased 

further on CMV-specific CD4+ T cells. This may reflect recent subclinical viral reactivation 

given the ages of the donors studied. However, there was no suggestion that recent activation 

was the cause for PD-1 expression amongst these virus-specific cells and indeed, despite an 
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overall increase in CD38+ expression being observed on CMV-specific CD4+ T cells, those 

cells which expressed more CD38 were actually found to have less PD-1 expression.   

Following optimisation of the peptide stimulation assay using a younger donor, CMV-specific 

CD4+ T cell cytokine responses were assessed and found to include predominantly the 

production of IFN-γ and TNF-α but also small amounts of Il-4. No Il-5 or IL-10 was 

observed, although the lack of prolonged incubation with peptide (used in order to preserve 

tetramer staining) meant optimal stimulation periods of >10 hours could not be reached for 

this to be conclusive. However, there is no evidence from the literature of IL-5 or IL-10 

production from CMV-specific CD4+ T cells, suggesting the Th1 skewed phenotype 

observed is likely to be a representative. Interestingly, IL-4 production has been reported in 

the context of CD4+ CMV T cell responses previously (Waldrop et al., 1997, Kallas et al., 

1998) and is also seen amongst Th1 dominant responses to other pathogens such as 

tuberculosis, where a small but definite population of pathogen specific CD4+ T cells are 

postulated to dampen the cytotoxic response and prevent damage to host (Prabha et al., 2007). 

An alternative explanation would be the presence of conventional Tregs, as these are 

expanded in patients with CLL and produce Il-4 amongst other cytokines (Tiemessen et al., 

2007). However, no evidence for a FoxP3+CD25+ phenotype was found amongst identified 

populations of CMV-specific CD4+ T cells to account for the Il-4 observed.   

Notably, a reduced functional response was observed in CMV-specific CD4+ T cells of 

patients with CLL. T cell function is known to be diminished in patients with CLL but this 

does not necessarily relate to the functional potential of the cell being investigated. Poor 

synapse formation and impaired antigen presentation are also contributing factors (Ramsay et 

al., 2012, Scrivener et al., 2003).  Indeed, Te Raa et al recently demonstrated that, using CMV 

peptide-loaded LCLs and a controlled B:T cell ratio, cytokine production in CD8+ CMV-
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specific T cells from CLL patients was similar to that of HD and concluded poor antigen 

presentation by CLL cells to contribute to the reduced cytokine responses observed in CMV-

specific CD8+ T cells from patients with CLL (te Raa et al., 2014). In my work, unadulterated 

PBMC cells have been used in patients and donors in order to simulate the presentation of 

peptide to CMV-specific T cells as it would be in vivo. Using this approach I have observed 

that, at an individual epitope level, functionality amongst CMV-specific CD4+ T cells 

appears to be reduced in patients with CLL. This impaired functionality may be one reason 

why such large expansions of CMV-specific T cells are required to control viral load. 

Furthermore, it has previously been reported that the global proportion of CD4+ T cells 

producing IFN-γ in response to lysate stimulation is actually increased in patients with CLL 

(Pourgheysari et al., 2010). This again provides insight into how great the overall magnitude 

of CD4+ T cells dedicated to recognizing CMV can actually be in this disease. 

The expression of PD-1 was also shown to influence the diminished functional response to the 

exogenous cognate peptide in this work. Similar findings have been shown in renal transplant 

recipients, where high PD-1+ expression on CMV-specific CD4+ T cells correlated with 

poorer IFN-γ production and even loss of viral control (Sester et al., 2008). The CD4+ PD-1+ 

FoxP3- phenotype of CD4+ CMV-specific cells have previously been described in patients 

with CLL but in this work, I have shown that the same phenotype is also found in health on 

CMV-specific CD4+ T cells. Although PD-1 expression is one characteristic feature 

described on exhausted T cells, this work has not found any other features that suggest these 

CMV-specific CD4+ T cells are indeed truly exhausted (Brusa et al., 2013).  

Amongst both healthy donor samples and patients with CLL, PD-1+ CD4-specific T cells 

producing IFN-γ and TNF-α were still observed. Work is now required to identify if other 

additional inhibitory markers or features of exhaustion are present on CMV-specific CD4+ T 
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cells and to interrogate the impact of PD-1 expression in the context of an intact 

immunological synapse formation. Furthermore, in patients with CLL, a state of 

“pseudoexhaustion” has been suggested for such PD-1+ T cells, which are capable of some 

cytokine production, and may be a reflection of the antigen affinity dictating the 

responsiveness seen amongst CMV-specific T cell populations (Riches et al., 2013).  

Tbet and Eomes are important for memory cell differentiation and are the ‘master regulators’ 

of CD8+ T cell function. Comparatively little is known of their expression and impact on 

CD4+ T cell plasticity and cellular cytotoxicity (Knox et al., 2014). My work reports that both 

Tbet and Eomes are co-expressed in most CMV-specific CD4+ T cells recognising gB and 

pp65 proteins, along with expression of perforin and granzyme, and that this occurs in the 

context of a TEM memory phenotype. Eomes expression is not frequent amongst CD4+ T cells 

in comparison to CD8+ T cells, yet it was observed amongst CMV-specific CD4+ T cells. 

Furthermore, this expression was seen to consist of the entire Eomes+ CD4+ T cell population 

amongst certain donors and at the time of writing, this appears to be the first report 

highlighting the impact of CMV on the total CD4+ T cell Eomes frequency.  

Eomes expression has also been implicated in PD-1 expression and more recently the 

production of IFN-γ (Edwards et al., 2014, Buggert et al., 2014). In support of this, Eomes 

expression correlated positively with TNF-α IFN-γ production. However, no correlation was 

observed between Eomes and PD-1 expression within CMV-specific CD4+ T cells. One 

reason to explain this difference is that PD-1 positive cells have been described to have single 

positive expression and are usually negative for Tbet (Buggert et al., 2014). Amongst the 

CD4+ CMV-specific T cell populations investigated here, all cells with positive expression of 

Eomes were also positive for Tbet.  
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4.5 Conclusion 

Collectively, this work has shown that CMV-specific CD4+ T cells have increased PD-1 

expression and contribute to the PD-1+ phenotype observed in CD4+ T cells from both 

healthy donors and to a greater extent, patients with CLL. Although impaired in their ability 

to produce cytokines, it is not clear if these cells are truly exhausted. Their effector memory 

phenotype, Eomes expression and shortened telomere length, suggest CMV-specific T cells 

have undergone multiple rounds of cell division and the stable expression of PD-1 is most 

likely representative of a means by which an overwhelming CD4+ T cell response can be 

inhibited to prevent host damage, whilst permitting effective control of viral replication. The 

CMV-specific CD4+ T cell response in patients with CLL is increased and associated with 

increased expression of CD38 and PD-1 but reduced IFN-γ and TNF-α production. In 

conclusion, this work describes a proportion of CMV-specific CD4+ T cells with a PD-1+ 

CD25- phenotype which most likely function to maintain homeostasis through an, as yet 

uncharacterised, immuneregulatory T cell role.  
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5.1 Introduction 

CMV like other herpesviruses, maintains a state of lifelong latency following primary 

infection. The cellular and humoral CMV-specific immune response controls viral replication 

and this immunity must be maintained throughout life in order to prevent episodes of 

clinically significant viral reactivation (Moss and Khan, 2004b). As described in chapter 3 

and 4, the magnitude of the CMV-specific immune response is higher than has been recorded 

against other pathogens and increases with age, a phenomenon termed ‘memory inflation’ 

(Chidrawar et al., 2009, Karrer et al., 2003). The resulting impact of CMV on the human 

immune system is evident through the inverted CD4:8 ratio and accumulation of large 

numbers of late-differentiated memory cells (Strindhall et al., 2012). As described earlier, 

CMV infection has been suggested to accelerate immune senescence with ageing and is 

associated with a variety of clinical problems and increased risk of mortality (Savva et al., 

2013, Roberts et al., 2010, Strandberg et al., 2009, Schmaltz et al., 2005). 

Subclinical episodes of CMV reactivation are thought to frequently occur during a lifetime 

but are rapidly controlled by the host immune response, thus averting any clinically apparent 

disease (Stowe et al., 2007). In order to understand more about the mechanisms by which 

CMV infection may impact on the health of elderly donors it is important to improve 

understanding of the level of CMV load within the blood and how this is related to specific 

features of the CMV-specific immune response (Parry et al., 2016b).  

In addition to the immunosenescence of ageing, latent CMV is also attributed to a continued 

level of systemic chronic inflammation in health. This appears to be a perpetual cycle, as 

cytokines such as prostaglandin and TNF-α are released during inflammation and have been 

shown in turn to prompt viral reactivation (Kline et al., 1998, Docke et al., 1994). In diseases 

such as CLL, vasculitis and some auto-immune conditions, where a state of relative but not 
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overt immunosuppression exists, CMV specific T cells have been shown to accumulate and 

are thought to arise in response to more frequent episodes of viral reactivation. Despite this, 

amongst studies investigating this relationship, the opportune sampling of patient’s blood or 

tissue, ordinarily fails to detect any appreciable viral load by PCR (Pourgheysari et al., 2010, 

Morgan et al., 2011, Mackus et al., 2003). This is unsurprising, as it is well documented that 

the level of CMV within whole blood is very low and conventional PCR assays are almost 

invariably negative in healthy donors (Parry et al., 2016b, Slobedman and Mocarski, 1999, 

Stanier et al., 1992, Jordan, 1983). 

An alternative means of assessing CMV viral load would be to assess its presence amongst 

latently infected cells. The sites of CMV latency include haemopoietic stem cells and 

monocytes and purification of discrete cell subsets that harbor the virus, followed by PCR 

amplification, is one approach that has been used to increase the sensitivity of viral detection 

(Leng et al., 2011b). As discussed in chapter 1, viral latency is maintained during monocytic 

carriage (Sinclair, 2008). In contrast, lytic viral replication is thought to only arise following 

differentiation of monocytes into macrophages (Reeves et al., 2005, Bain et al., 2003, 

Stevenson et al., 2014).  

The use of highly sensitive PCR assays increases the frequency of CMV detection. Nested 

PCR offers the advantage of substantial sensitivity but is poorly quantitative (Leng et al., 

2011b), whereas droplet digital PCR (ddPCR) is a new approach that provides both a 

sensitive and direct method for detecting target DNA without the need for a ‘standard curve’. 

ddPCR emulsifies an oil-based PCR reaction into thousands of droplets, each of which then 

acts as a PCR micro-reaction and increases the chances of a rare event being detected.  Using 

Poisson’s distribution, a direct measurement of the target DNA can then be determined. 

ddPCR does not therefore rely on any interpretation of rate-based data, as is the case with Q-
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PCR (Parry et al., 2016b). The versatility of ddPCR for detection of low copy number events 

is now being recognised and gradually becoming part of clinical practice for monitoring 

mutations levels in disease (Watanabe et al., 2015, Kinz et al., 2015).  

This work, using purified monocyte DNA combined with droplet digital PCR, demonstrates 

an absolute quantification of CMV viral load is obtainable in the blood of healthy donors and 

patients with CLL. Furthermore, absolute quantification of latent viral load in healthy donors, 

according to age is presented, as well as a comparison of the CMV load obtained in CLL 

patients. 

5.2 Methods 

5.2.1 Recruitment of healthy donors 

Forty-four healthy donors were confirmed to be CMV positive using the CMV ELISA 

described in chapter 2. Healthy donors were between the ages of 25 and 86 (median 50 years; 

IQR 41.5-62.75). Following a 50 ml blood donation, plasma and PBMCs were extracted over 

a Ficoll-density gradient and cryopreserved, as described in chapter 2. PBMCs were used for 

monocyte extraction whilst plasma was used for CMV ELISA testing.  

5.2.2 Recruitment of peripheral blood stem cell donors 

5 CMV positive peripheral blood stem cell donors who had received G-CSF mobilization 

were also recruited and aliquots of PBMC were cryopreserved prior to defrosting and 

extraction of myeloid cell subsets. 

5.2.3 Recruitment of CLL patients. 

25 patients with CLL with a median age of 66 were recruited from outpatient haematology 

clinics at BHH and QEHB and clinical characteristics were obtained from electronic records 

(Table 5.1). All patients were either untreated or more than 6 months post treatment and all 
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had a lymphocyte count >1.5x 109/L at the time of sample collection. Binet staging was 

performed at the time of sample collection to reflect the nature of the current sample rather 

than previous staging which may have been influenced by therapy. PBMCs and plasma were 

isolated using a ficoll-density gradient described in chapter 2 and then cryopreserved under 

sterile conditions.  

5.2.4 Extraction of CD14, CD16 and CD34 cells from stem cell donations 

Enrichment of CD14, CD16, CD34 and dual positive CD14/16 cells from stem cell donations 

were sorted by flow cytometry using panel 12 of table 2.3, as described in chapter 2 

(MoFLow sorter, BD Biosciences).  

5.2.5 DNA extraction of healthy donor and CLL CD14+ cells from PBMC 

Positive selection of CD14+ monocytes was undertaken using magnetically labeled beads as 

described in chapter 2. The average enrichment of 4 samples was found to be 98.73% (SD 

0.39) by flow cytometry (Figure 5.1). DNA extraction was then performed using the GenElute 

Mammalian Genomic DNA miniprep kit described in chapter 2. 

5.2.6 Q-PCR and ddPCR of glycoprotein B in enriched cell populations  

50ng of DNA was extracted from isolated CD14+, CD34+, CD16+ and CD14+/CD16+ 

populations in each PCR reaction. The methodology for Q-PCR and ddPCR are described in 

detail in chapter 2.   

5.2.7 Statistical Analysis  

Kruskal-Wallis test and post hoc Dunn’s testing was used to compare CMV viral load with 

each decade of age. A growth exponential curve was used to assess the CMV load doubling 

time and linear regression used to assess the relationship between CMV copies (log10) and the 

age of participants.  For the standard dilution series ran in triplicate, the results were log 
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transformed log10 and Pearson’s correlation co-efficient was used after confirming normality, 

to compare the quantitative agreement between ct value and plasmid copy number. Linear 

regression was used to examine the relationship between ddPCR copy number reading and 

that of the plasmid dilution and also to compare Q-PCR copy number with that of ddPCR in 

healthy donor samples. Mann-Whitney testing was used to compare detectable viral load in 

HD compared to patients with CLL. Comparison of ages within CLL groups and to healthy 

donors was performed using Student’s T-test after normality was confirmed using D’Agostino 

& Pearson normality testing.  
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Figure 5.1 

Monocyte enrichment using CD14+ positive selection magnetic bead kit 

Flow plots demonstrating before (A) and after (B) CD14+ magnetic bead sorting of peripheral 

blood mononuclear cells. The average enrichment was found to be 98.73% (SD 0.39).  
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Table 5.1 

Clinical data of patients with CLL 

  
Digital PCR 

cohort 
Median age at diagnosis (years) 66 (58.5-69.5)  

Male sex 17/25 (68%)  
Follow up time at the point of sample collection (years) 8.5 (4.3-11) 

Previous history of treatment  18 (72%) 
Time since treatment finished (years) 2.8 (1.5-8.8) 

    
Binet stage A 16 
Binet stage B 1 
Binet stage C 8 

Missing 0 
    

CD38 positive 7 
CD38 negative 9 
CD38 missing 9 

    
IGHV mutated 5 

IGHV unmutated 5 
IGHV missing 15 

    
FISH   

Normal 8 
13q- 5 
12+ 3 
11q- 1 
17p- 2 
Other 0 

Missing 6 
 



    Digital PCR to ascertain latent CMV viral load 

 167 

5.3 Results  

5.3.1 Healthy donors 

5.3.1.1 Digital PCR detection of CMV within the monocytes of healthy donors 

CD14+ monocytes were purified using magnetic beads from 44 healthy donors samples and 

DNA was extracted using a mini-prep kit. Into a well of the ddPCR cartridge, 50ng of sample 

DNA was added together with the PCR reaction mixture. 70μl of droplet generation oil was 

then used to emulsify the sample and generate the droplets (Figure 5.2).  After transferring the 

formed droplets to a 96 well plate, amplification using standard PCR was the performed. 

Assessment of the number and proportion of positive and negative droplets was determined 

using Quantasoft software and an absolute quantification based on poisson distribution was 

produced for each sample. Figure 5.3 gives an example of the typical positive and negative 

droplets ascertained. The threshold for positive and negative droplets was verified by a Biorad 

scientific advisor and was the same between independent runs. A positive and negative 

control was used on each 96 well plate used. Detectable viral load was found in 16 donors 

(36%) and was confirmed in each case by 3 independent runs (Parry et al., 2016b).  

5.3.1.2 CMV viral load within monocytes increases markedly above the age of 

70 years 

When these results were assessed in relation to donor age it was clear that the proportion of 

donors in which CMV was detectable increased markedly with age. Specifically, CMV was 

detected in 9 of 37 (24%) of donors aged below 70 years, whereas a positive test was seen in 

each of the 7 donors aged over 70 (Figure 5.4A). In those aged 20-30, 1 out of 6 (16.7%) had 

a detectable load; 1 out of 4 (25%) in 30-40 year olds; 1 out of 13 (7.7%) in 40-50 year olds; 3 
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out of 8 (37.5%) in 50-60 year olds and 3 out of 6 (50%) in 60-70 year olds (Parry et al., 

2016b).  

The absolute quantification of CMV viral load per μl was firstly determined by QuantaSoft 

software and was also found to increase with age, with a marked increase in donors aged over 

70 years (kruskal-wallis p<0.0004). Post hoc Dunn testing showing significant differences 

between 20-30 and 70-80 year olds (p=0.019) and 40-50 compared to both 70-80  (p=0.001) 

and 80-90 year olds (p=0.023). Viral load varied from 0.144 copies per l to 9.14 copies per μl, 

with a mean copy number per μl of 0.756 (SD 1.395) in those under the age of 70, compared 

to 5.006 copies per μl (SD 2.13) in those over the age of 70 (Figure 5.4B) (total reaction 

volume 20μl with 50ng of DNA).  
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Figure 5.2 

A schematic of the method used to generate the viral load.  

Monocytes were firstly labeled with magnetic CD14 beads and then passed through a column 

for purification. DNA was then extracted and used for ddPCR reaction, whereby the starting 

DNA is emulsified into thousands of tiny droplets to increase the chance of a rare event being 

detected by PCR (Illustration edited by Tyler Lieberthal, Imperial College London).  
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Figure 5.3  

Droplet digital PCR examples of positive and negative droplet detection. 

Examples of the read outs produced with QuantaSoft software are given. The internal copy 

number variation assay measuring RPP30 is shown in (A) and CMV detection in (B). The 

threshold set is marked with an arrow and was consistent in all experiments. Patients 1-3 have 

a detectable CMV viral load, whilst patient 4 has no detectable CMV viral load but clearly 

has genomic DNA present by the positive droplet detection in the RPP30 assay seen in (A).  
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Figure 5.4 

CMV viral load is detectable with increasing frequency and quantity throughout life 

(A)The percentage of donors with detectable CMV DNA increased with age, such that 

everyone tested above the age of 70 had a detectable viral load. (B) The CMV viral load also 

increased with increasing age (range: 0.144 copies per ul to 9.14 copies per ul; p<0.0004).  
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5.3.1.3 Viral load quantified per monocyte 

Next, the number of CD14 positive monocytes in each ddPCR reaction was measured by 

ddPCR using the copy number variation assay RPP30. RPP30 is an endogenous gene, which 

can be used to normalise copy number. An example of the positive and negative RPP30 

droplets can be seen in Figure 5.3. When incorporating RPP30 into the reaction, once again, 

viral load was seen to increase substantially with increasing age. The absolute viral load 

varied markedly from 3 copies per 10,000 monocytes to 353 copies per 10,000 monocytes, a 

range of 117 fold. This value was also found to increase with age, again with a marked 

increase observed in donors aged over 70 years (kruskal-wallis p=0.0005). The mean viral 

load in donors aged below 70 years was 8.6 copies per 10,000 monocytes (SD 38), with a 29-

fold increase in those over the age of 70, where the mean viral load was 249 copies per 10,000 

monocytes (SD 59) (Figure 5.5A). Modelling of the data with an exponential growth curve 

showed that the CMV viral load doubling time was 9.6 years (R2 =0.64) (Figure 5.5B) (Parry 

et al., 2016b). 

5.3.1.4 The increase in CMV viral load with age is confirmed through the use 

of quantitative PCR 

A second method was then used to confirm the observation of an increase in CMV load 

within monocytes in relation to age. At first, quantitative PCR (QPCR) was calibrated using 

an average plasmid series dilution with 50000, 10000, 2500, 500, 250, 100, 50,10, 5 and 1 

copies per reaction. This produced an R2 value of 0.983 (p<0.0001) (Figure 5.6A). Using 

triplicate runs, QPCR was sensitive down to a single copy of plasmid CMV per reaction. This 

same series of diluted plasmids was then verified using ddPCR and the absolute copy number 

of CMV was calculated through QuantaSoft® software. ddPCR was again capable of 
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detecting 1 copy of CMV per reaction indicating that results generated from ddPCR and 

QPCR correlate very strongly (R2=0.995; p=<0.0001) (Fig 5.6B). 

We then used QPCR to assess CMV load within the 44 healthy donor monocytes. 13 of the 16 

samples positive by digital PCR were also found to be positive by QPCR (81%). 27 out of the 

28 samples that were negative by ddPCR were also negative by QPCR, although one was 

reported positive by QPCR. The relationship between the two techniques using 13 results that 

were positive by both methods had a co-efficient of determination of R2=0.626 (p=0.0013).  

The QPCR technique also revealed a pronounced increase in viral load in association with age 

(Parry et al., 2016b) (Fig 5.6C).  

5.3.1.5 CMV viral load is focused within CD34+ haemopoietic cells and 

CD14+ monocytes 

As CMV latency and peripheral carriage is thought to predominantly take place within the 

myeloid series, the CMV load in different cell types was next assessed. PBMCs from 5 G-

CSF mobilized CMV positive donors were defrosted and washed before applying the 

antibodies listed in section 5.2. Using flow cytometry 6 x 107 cells were sorted into 4 different 

cell populations; these were CD34+ haemopoietic stem cells and 3 monocyte subsets CD14+, 

CD14+CD16+ and CD16+ (an example of gating strategy can be found in figure 5.7). A 

further fraction of whole PBMC was also assessed. A detectable CMV load was found in 3 of 

these 5 samples through the use of ddPCR and qPCR. The average viral load found in the 

CD34+ stem cell fraction was 0.266 copies per μl. Within the monocyte subsets, CMV was 

found only within the CD14+ and CD14+CD16+ subsets. For CD14+ cells, an average of 

0.137 copies per μl were recorded whilst for CD14+CD16+ the average copy number was 

0.352 per μl. No detectable load was found in any of the CD16+ populations (Parry et al., 

2016b) 
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Figure 5.5 

CMV viral load when quantified per 10,000 monocytes, increases with age. 

A) The CMV viral load per 10,000 monocytes increases with age and is most notable over 70 

years of age (kruskal-wallis p=0.0005). B) Using an exponential growth equation, CMV 

doubling time was found to be 9.6 years.  
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Figure 5.6 

Q-PCR for testing CMV load in monocytes. 

(A) The CMV plasmid was diluted to produce the following copies per reaction: 50000, 

10000, 2500, 500, 250, 100, 50,10, 5 and 1 and ran in triplicate. Results were then logged and 

the co-efficient of determination was found to be 0.983 using linear regression (B) Next, the 

copy number of each plasmid dilution was explored using ddPCR. Again, using a log scale, 

the co-efficient of determination was found to be 0.995. (C) Finally, a comparison of ddPCR 

and QPCR values for the 13 samples found to be positive by both techniques revealed a co-

efficient of determination of 0.626.  
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Figure 5.7 

Gating strategy for cell purification by flow cytometry and the detection of CMV 

amongst cell subsets. 

A) After excluding CD56+ PBMCs, cells were then gated for CD16+, CD14+ and 

CD14+CD16+ as shown. B) CD34+ cells were extracted from the whole PBMC population. 

C) CMV viral load was detectable amongst all subsets tested, except CD16+.  
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5.3.2 Patients with CLL 

5.3.2.1 CMV load increases amongst patients with more advanced disease. 

Next, CMV viral load was investigated amongst patients with CLL using CD14+ monocyte 

DNA as described above. 25 patients (16 stage A, 1 stage B and 8 stage C) were used to 

firstly assess if viral load was detectable. 24 out of 25 patients tested had a viral load 

detectable. These were then compared to the 13 healthy donors aged between 60 and 90, 

tested in section 1.3.1. Despite attempting to obtain samples from similar ages of healthy 

donors and patients with CLL, the mean age was found to be significantly different between 

HD donors tested and patients with CLL (HD: mean±SEM 72.7±2.51 Vs CLL: 65.04±2.10; 

p=0.03). No difference was found between the ages of stage A patients and stage B/C (Stage 

A: 64.31±2.51 Vs stage B/C 66.33±3.91; p=0.654) and similarly, no difference was observed 

between HD age and stage B/C patients (p=0.166) However, a significant difference was 

observed in age between stage A patients and HD, with HD being on average 8.39 years older 

than the recruited stage A patients (p=0.027). 

Droplet digital PCR analysis found no difference between the CMV viral load in patients with 

CLL and HD (HD:166.3 IQR. 4.118-251.2 Vs. CLL 73.04 IQR. 18.49-484.3; p=0.3646). 

Similarly, no difference in stage A patients with CLL and HD was also observed (HD: 166.3; 

IQR 4.118-251.2 Vs. CLL: 29.18; IQR 12.45-196.7 Vs. p=0.991). However, analysis of more 

advanced stage patients (stage B and C) revealed a substantial increase in CMV viral load, 

with significant differences observed when compared to both stage A patients (p=0.003) and 

also HD (p=0.043) (Figure 5.8). Given no significant difference in age was observed between 

stage A and stage B/C patients, this suggests that the increased viral load detected is as a 

result of advanced stage disease rather than an age effect.  
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5.3.2.2 CMV viral load is dynamic amongst patients with CLL  

As the magnitude of CMV load was greater amongst patients with more advanced stage CLL, 

10 patients were next investigated over a period of time (median 12 months; range 0-25 

months). Using cryopreserved PBMC samples, which had been collected over a period of 

time, CD14+ monocytes were first enriched using magnetic beads and then DNA extracted. 

ddPCR was then performed and CMV viral loads compared. Interestingly, viral loads were 

found to be dynamic in all patients tested, with fluctuations in viral load observed in the same 

donors at different time points. The most striking change in CMV viral load resulted in a 214 

fold difference from the lowest load detected to the highest viral load per 10,000 monocytes. 

Figure 5.9 illustrates the fluctuations in CMV viral load amongst 5 of the donors investigated. 

These fluctuations are most likely the result of episodes of intermittent subclinical viral 

reactivation, which may arise more frequently as disease progresses in the context of 

increasing immunosuppression.  

5.3.2.3 CMV viral load is influenced by disease progression  

During the study period, 5 patients with evidence of disease progression were investigated 

over a median period of 8 months (IQR. 5-17). Progression was defined as an increasing 

white cell count or the development of lymph nodes or splenomegaly or pancytopenia. 

Interestingly, patients with evidence of disease progression also showed dynamic changes in 

their viral load but in particular it was noted that an increase in viral load coincided with 

documented disease progression. Amongst the 5 patients, an average 25 fold increase in CMV 

load was found comparing the initial sample viral load (when disease was stable), to the last 

sample at which point patients showed definitive signs of disease progression (median viral 

load 26.01 copies/10,000 monocytes on initial sample to 660.9 copies/10,000 monocytes on 

the final sample; p=0.016). Figure 5.10 shows 3 examples of viral load changes and their 
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corresponding clinical features. These examples suggest that loss of viral control occurs more 

frequently with disease progression (Figure 5.10).  

5.3.2.4 No viraemia was detectable on plasma sampling. 

To assess if the presence of detectable viral load amongst monocytes represented reactivation 

of latent virus, 9 CMV positive patient plasma samples were sent to Heart of England NHS 

Foundation trust, together with the corresponding monocyte enriched DNA retrieved on the 

same day. Samples of monocyte enriched DNA were already identified to have a detectable 

load by ddPCR prior to sending. Samples were treated according to the standard operating 

procedures for PCR CMV testing at the hospital. 7 out of the 9 CD14+ monocyte samples had 

a detectable load by PCR, whilst none of the serum samples had any detectable CMV viral 

load.  This suggests that the detection of CMV within its CD14+ monocytes is of latent form 

and not coinciding with reactivation. It also confirms results from section 1.3.1.4 that ddPCR 

is more sensitive than standard PCR for the detection of latent CMV viral load.  
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Figure 5.8 

CMV viral load is greatest in patients with advanced stage disease. 

No difference was observed in CMV viral load in monocyte DNA taken from patients with 

stage A disease compared to HD. However, stage B/C patients exhibited increased CMV viral 

loads, which were greater than both HD and early stage CLL patients (Mann-Whitney). 

 

Figure 5.9 

CMV load is dynamic in patients with CLL 

Figure 5.9 shows a graphic representation of the dynamic changes in CMV viral load over 

time in patients with CLL. 
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Figure 5.8 

 

 

Figure 5.9 
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Figure 5.10 

CMV load increases with disease progression  

A-C) demonstrates the increase in viral load and the corresponding clinical features in 3 

individual patients. D) demonstrates the 40 fold difference in viral load between initial 

samples taken at the point disease was stable, to the last sample where disease progression 

was evident (Mann-Whitney).  
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5.4 Discussion 

Cytomegalovirus infection has been associated with mortality and morbidity in elderly 

people. However, the mechanisms that underlie this association are not well established. A 

key determinant in this regard is a greater understanding of the balance of the viral load and 

the host immune response during healthy ageing (Parry et al., 2016b). This work, for the first 

time, found that the level of cytomegalovirus viral load within blood monocytes increased 

markedly in elderly people but was even more pronounced in patients with advanced stage 

CLL.  

I have described for the first time the use of digital droplet PCR to provide an accurate 

quantitative measure of latent viral DNA. Previous methods for detection of CMV from 

monocytic DNA have generally relied on nested PCR techniques, which made quantification 

challenging and also raised substantial problems with reproducibility (Roback et al., 2003, 

Parry et al., 2016b). Quantitative PCR is far more accurate but relies on interpretation of the 

cycle threshold of a sample against a known calibration standard. This is restricted by the 

lower limit of detection of the standards and the rate of amplification, which can vary between 

different PCR runs (Parry et al., 2016b). In contrast, digital PCR provides an absolute 

quantification and avoids these limitations. Our analysis included a direct comparison of 

ddPCR and Q-PCR and, as expected, we observed an extremely high concordance between 

the two technologies. However ddPCR was found to offer superior sensitivity and reliability 

of detection. 17 samples were found to be positive by either ddPCR or Q-PCR, 16 of these by 

ddPCR and 14 by Q-PCR (Parry et al., 2016b). Simiarly, PCR testing within an NHS hospital 

laboratory also detected CMV DNA in only 7 out of 9 (78%) CD14+ monocyte samples, 

whereas all 9 samples were positive by ddPCR.   
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Monocytes are established as the most important haemopoietic site of viral latency and 

carriage of CMV throughout the body (Larsson et al., 1998, Soderberg et al., 1993). In a 

murine model, CMV infected monocytes have also been shown to disseminate viral infection 

to distal sites such as salivary gland (Daley-Bauer et al., 2014). With this knowledge, Leng et 

al have previously used monocyte enriched DNA and found high rates of CMV detection 

using conventional PCR techniques (Leng et al., 2011a).  

Using ddPCR, we have shown that amongst healthy donors, CMV was only detectable in a 

minority, with only 36% of participants having a positive detection of virus despite the 

presence of CMV-specific IgG antibodies, which confirmed prior infection. Interrogation of 

this finding revealed detection of CMV in people below the age of 50 years was actually 

infrequent, and was observed in just over 10% of donors tested. The lower limit of detection 

provided by ddPCR in our assay was for a single copy of virus within the total reaction 

volume (20μl) and as such a negative result indicated absent or extremely low levels of virus 

(Parry et al., 2016b). This low level carriage may reflect a lower intrinsic probability of viral 

reactivation in younger donors but is perhaps more likely to reflect the consequence of 

effective immune surveillance of viral replication in younger individuals (Parry et al., 2016b).  

The frequency of viral detection increased markedly with each decade above the age of 50 

years to 37.5% and 50%, whilst all donors over the age of 70 had a detectable level. 

Interestingly the amount of viral DNA detected within the blood also increased substantially 

with age with a 29 fold increase observed between donors aged less than 70 and those over 

this age. This supports the work by Leng et al who used a non-quantitative nested PCR 

method to detect CMV in monocyte populations in 9 out of 16 (56%) elderly healthy donors 

tested. Importantly, the mean age was 83 years for participants in the study of Leng et al 

(range 72-90), which would account for the higher rate of detection compared to our cohort 
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(Leng X et al 2011). Overall, it appears that a gradual impairment in the ability to control 

CMV starts around the age of 50 years but deteriorates markedly over the age of 70.  

In support of increasing viral load detection with age, the same scenario is known to arise 

with other human latent herpes virus infections. For example, VZV DNA by PCR has been 

shown to increase in PBMCs with ageing (Devlin et al., 1992) and similarly, plasma viral 

load detection for Epstein Barr Virus (EBV), another human herpes virus, has been shown to 

increase with age (Stowe et al., 2007). Together, these suggest that cumulatively the chronic 

burden placed on the immune system by latent infection increases with age, and the frequency 

of reactivation and viral latent load rises to detectable levels. The difficulty in proving this 

hypothesis is the inability to detect overt CMV reactivation in healthy individuals and relies 

on opportune sample collection. However, one means to address this in the future may be to 

study IgM titres, as an indication of recent reactivation or primary infection (McVoy and 

Adler, 1989). IgM titres correlated with monocyte viral loads may provide more evidence for 

a causal link between recent reactivations and the fluctuating latent viral loads observed in 

this work.  

Importantly, this work did not address the number of CMV copies within individual 

monocytes. This has previously been reported to vary between 2 and 13 copies per cell 

(Slobedman and Mocarski, 1999). Thus, it remains uncertain if ageing is associated with an 

increase in the number of viral copies within each infected monocyte or if there is an increase 

in the proportion of infected cells (Parry et al., 2016b). 

The ddPCR assay detects the level of latent viral DNA but does not assess the level of 

infectious virion. The detection of CMV by PCR in serum is used as a marker of CMV 

reactivation within a clinical setting. Using standard NHS laboratory procedures, this work 

did not find any evidence of CMV reactivation amongst serum samples where a 
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corresponding positive CMV load was detectable by ddPCR of monocyte DNA. In addition, 

others have previously made attempts to detect CMV virions from whole blood in CLL 

patients but have failed to identify any evidence of reactivation (Pourgheysari et al., 2010, 

Mackus et al., 2003).  This suggested that viral DNA was retained within cells, with no 

evidence of extracellular virus and would be consistent with detection of latent virus only 

(Parry et al., 2016b).  

I was also interested to use the sensitivity of ddPCR to examine the presence of CMV within 

specific subsets of the myelo-monocytic lineage. In humans, differences in carriage of CMV 

amongst particular monocyte subsets has not been addressed but many groups have confirmed 

the presence of CMV DNA in CD14 monocyte cells (Larsson et al., 1998, Soderberg et al., 

1993). CD14 and CD16 can be used to delineate three major subclasses of monocyte (Ziegler-

Heitbrock et al., 2010).  Classical monocytes are CD14+CD16- and account for more than 

70% of peripheral monocytes. They are known to be important for innate immunity. 

Intermediate monocytes are CD14+CD16+ and have more phagocytic properties than non-

classical monocytes, which are CD14-CD16++ counterparts (Stansfield and Ingram, 2015). In 

this work, CMV was not detectable within CD14-CD16+ monocyte cells. This finding is in 

contrast to murine CMV, where CD16+ monocytes have been shown to exhibit higher levels 

of CMV latency than CD14+ cells (Daley-Bauer et al., 2014).  

We were also interested to compare levels of CMV load within CD34+ haemopoietic stem 

cells from G-CSF mobilized blood donations. CMV was detected in 3 of these 5 samples, 

which is comparable to a previous report of 8 positive samples out of 12 using an alternative 

PCR methodology (Slobedman and Mocarski, 1999). This suggests that viral DNA may either 

pass selectively into cells that differentiate into the monocytic lineage or that some degree of 

viral replication occurs during myelopoiesis in order to sustain viral loads during the periods 
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of cellular proliferation prior to monocyte formation (Parry et al., 2016b). Interestingly, 2 of 

the 3 donors for which a viral load was detectable in our cohort were sibling donors aged 63 

and 67 years. Information relating to age for the other donors was not available but unrelated 

stem cell donation is limited to those under 60 years, suggesting that even amongst G-CSF 

stimulated PBMCs age may play an important role in influencing the latent viral load and the 

ability to detect it. 

Total immunoglobulin levels are known to fall with age but an increase in CMV-specific 

antibody has been described to increase with both healthy ageing and in the context of CLL 

(Ogunjimi et al., 2014, Vanura et al., 2013, McVoy and Adler, 1989, Alonso Arias et al., 

2013). Ageing has also been shown to increase Varicella zoster viral (VZV) titres, another 

herpes virus where clinical reactivation is more overtly apparent and usually accompanied by 

symptoms in the ageing population (Ogunjimi et al., 2014). This paradoxical accumulation of 

CMV-specific immune memory may actually suppress the development of heterologous 

immune responses and may be a contributing factor towards immune senescence. 

The steady increase in IgG CMV immunity over a lifetime, suggests that impairment in 

humoral immunity is not a major contributory factor towards the increase in viral load with 

ageing. As described in chapters 3 and 4, the T cell immune response to CMV is also 

markedly increased in the context of ageing and CLL, such that the virus-specific CD8+ T 

cell response can come to dominate the CD8+ T cell repertoire in some donors (Wikby et al., 

2002,Khan et al., 2002). This profile of ‘memory inflation’ is also seen in murine CMV 

infection but relatively little is known about the specific profile of CMV proteins that drive 

CD8+ T cell expansion during ageing, although the importance of structural proteins such as 

pp65 are well documented (Khan et al., 2002, Moss and Khan, 2004a). In agreement with 

this, the presence of CMV DNA within monocytic cells has previously been correlated with 
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an increased pp65-specific T cell immunity in elderly donors (Leng et al., 2011b, Parry et al., 

2016b).  

One suggestion to explain the rising CMV load that is observed in both ageing and 

progressive CLL could be that the accumulated T cells are dysfunctional or exhausted or 

simply not achieving appropriate synapse formation for an adequate immunological response. 

(te Raa et al., 2014). As described in chapter 4, CMV specific-CD4+ T cells in patients with 

CLL have elevated levels of PD-1 and impaired release of cytotoxic cytokines. In addition, in 

healthy elderly individuals, CMV-specific CD4+ T cells have previously been shown to be 

driven to exhaustion, with restricted replicative capacity (Fletcher et al., 2005) and the 

importance of CD4+ T cell control of CMV is most evident in the overt reactivation of CMV 

that is observed amongst HIV patients with low circulating CD4+ cell counts. Together, these 

findings suggest that functioning CD4+ T cells are a necessity for the control in health of 

latent CMV. Whether the immunological synapse is impaired or a lifetime of subclinical 

reactivation are driving T cells towards sensence or exhaustion, the increased latent load 

observed in both elderly healthy donors and CLL patients is likely the result of some form of 

T cell dysfunction.  

Although a definite increase in viral load was observed amongst patients with advanced stage 

CLL, no difference was found between healthy donors and stage A patients CLL in this work. 

This is perhaps surprising given the marked immunosuppression that is described in early 

stage, untreated patients in chapter 6. One explanation for this difference may be due to the 

healthy donors being on average 8 years older than the stage A CLL patients (p=0.027) and 

given ageing has been shown to correlate with increased viral load, this may account for why 

no difference was observed.   
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Although episodic reactivation of CMV has been assumed to be the underlying determinant 

that drives the observed T cell expansion in both elderly individuals and patients with CLL, 

attempts to amplify CMV viral load using conventional PCR have failed to identify any 

detectable virus or any causal link (Pourgheysari et al., 2010). For the first time, this work 

identifies a dynamic latent viral load is present in healthy donors and patients with CLL. The 

fluctuations in monocyte viral load suggests that subclinical reactivations are likely to be 

occurring and priming the immune system (reflected in the expansion of differentiated 

terminal effector memory cells) as well as influencing the latent viral load in the myelo-

monocytic lineage.  

It has previously been reported that CMV-specific CD4+ T cells are influenced by the stage 

of CLL and I have shown in chapter 3 that CMV-specific CD8 T cell responses are greater in 

stage C patients compared to stage A (Pourgheysari et al., 2010). My observed difference in 

viral load between stage A and stage C patients provides evidence for increased epitope 

exposure to be driving the expansion of CMV-specific T cells with disease progression. 

Interestingly, CMV CD4+ T cells have been reported to increase further with treatment. This 

work did not address CMV viral loads during or after treatment but it is feasible given the 

immunosuppression entailed with therapy that the frequency of subclinical reactivation would 

increase alongside the monocytic viral load. 

5.5 Conclusion 

In conclusion, these data reveal a balance has evolved between chronic CMV infection and 

the host immune response, which can break down during ageing. A breakdown in this 

symbiotic relationship appears to accelerate in the presence of advanced CLL, most likely as a 

result of attritional effects on chronic surveillance, immune senescence and a worsening 

immune suppression associated with disease progression.  
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6.1 Introduction 

6.1.1 CMV infection in healthy individuals 

The prevalence of CMV infection in humans increases with each decade of life and is 

dramatically influenced by geographical and socio-economic factors. In developing countries 

up to 100% of people may be infected by the age of one, contrasting with developed countries 

where the prevalence in adulthood reaches anywhere between 45 and 100% (Cannon et al., 

2010). As described in chapters 3 and 4, a considerable proportion of CD4+, and to a greater 

extent CD8+ CMV specific T cells accumulate over time and are required in order to maintain 

viral latency and prevent CMV reactivation (Chidrawar et al., 2009). This ‘memory inflation” 

leads to an inversion of the CD4:CD8 T cell ratio (Olsson et al., 2000) and negatively impacts 

on survival in otherwise healthy CMV positive elderly individuals (Olsson et al., 2000, 

Wikby et al., 2005). 

Increased morbidity associated with CMV infection has also been described, including an 

increased risk of cognitive defects (Weaver et al., 2002), hypertension (Haarala et al., 2012) 

and depression (Phillips et al., 2008). Furthermore, higher CMV IgG titres have been found to 

correlate with increased mortality (Roberts et al., 2010) and the burden of CMV infection has 

also been shown to impair responses to vaccination (Trzonkowski et al., 2003). 

6.1.2 The immunodeficiency associated with CLL 

CLL is associated with an increased morbidity and mortality from infection, as a result of a 

multifactorial secondary immunodeficiency. Patients with CLL demonstrate 

hypogammaglobulinaemia, T cell dysfunction and treatment related immune suppression 

(Hamblin and Hamblin, 2008). This increased susceptibility to infection is present even at an 
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early stage in the disease course and patients often have a history of serious infections at 

diagnosis (Parry et al., 2015, Moreira et al., 2013).  

Hypogammaglobulinaemia is the most recognized immunodeficiency in patients with CLL 

and it is recommended that serum immunoglobulins level are checked at diagnosis (Oscier et 

al., 2012). All subclasses of immunoglobulin are affected and the deficiency becomes more 

apparent as disease progresses, with up to 85% of patients having demonstrable 

hypogammaglobulinaemia (Hamblin and Hamblin, 2008). Increased mortality is due to a 

propensity for infections caused by encapsulated bacteria, including Streptococcus 

pneumonia, occurs as a result (Rozman et al., 1988). 

In addition to deficiencies in the humoral compartment, changes in the T cell repertoire are 

also important for overall prognosis in CLL, and an inverted CD4:CD8 T cell ratio is 

associated with disease progression (Nunes et al., 2012). The CD4:CD8 ratio is known to be 

lower in CMV seropositive individuals compared to CMV negative (Olsson et al., 2000). In 

CLL, despite the immunosuppression described, the CMV specific immune response is 

actually of greater magnitude than in healthy individuals (Mackus et al., 2003). This is 

thought to be in response to increased levels of subclinical viral reactivation and is discussed 

further in chapter 5 (Parry et al., 2016b). However, it is not known how the impact of CMV 

infection influences outcome in CLL. In this chapter, the impact of CMV on overall survival 

(OS) and time to first treatment (TTT) is investigated for the first time in two independent 

cohorts (the ‘discovery’ and ‘confirmatory’ cohorts) of newly diagnosed patients. A further 

study into the impact of CMV on the incidence of infections in patients with CLL in the 

‘vaccination cohort’ is also described, alongside the use of functional antibody (Fnabs) testing 

as a marker for global immune competence and vaccine efficacy in patients attending CLL 

clinic (Phillips et al., 2006). Functional antibody testing (Fnab) is also referred to as specific 
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antibody testing and quantifies antibody levels to different bacteria in human serum, including 

different serotypes, indicating the efficiency of antibody responses against common bacterial 

infections and vaccine responsiveness.  

6.2 Methods 

6.2.1 Recruitment to the Discovery and Confirmatory Cohorts.  

Three hundred and forty-seven patients in the discovery cohort were assessed as part of the 

ongoing prospective cohort study of NHL patients from the Molecular Epidemiology 

Resource of the University of Iowa/Mayo Clinic Lymphoma Specialized Program of 

Research Excellence (SPORE). This study was reviewed and approved by the Human 

Subjects Institutional Review Board at the Mayo Clinic and the University of Iowa, and 

written informed consent was obtained from all participants in accordance with the 

Declaration of Helsinki. Since September 2002, enrollment was offered to consecutive newly 

diagnosed patients with CLL, evaluated at Mayo Clinic Rochester or the University of Iowa 

within 9 months of diagnosis. All patients were US residents aged 18 years and older. 

Exclusion criteria included known HIV infection and unwillingness or inability to provide 

written informed consent. Patients fulfilled IWCLL criteria and/or fulfilled the World Health 

Organization criteria for the small lymphocytic lymphoma variant (SLL) variant of CLL. 

Baseline clinical, laboratory, and treatment data were abstracted from medical records and 

participants provided peripheral blood serum samples and were followed every 6 months for 

the first 3 years, and then annually thereafter. Time to first treatment and overall survival 

were verified through medical record review.  

For the confirmation cohort, 236 newly diagnosed patients with CLL were enrolled from 

clinics at the University Hospital of Wales and Llandough Hospital. All patients met the 

IWCLL criteria for CLL. Samples were taken within 12 months of diagnosis and prior to any 
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treatment. Data for disease progression and mortality was collected on an annual basis and 

verified through medical records. For both cohorts, prognostic testing, including 

immunoglobulin heavy chain variable [IGHV] region gene mutation analysis, ZAP-70 status, 

CD38 status, CD49d status, and cytogenetic abnormalities assessed by interphase FISH 

testing, were performed. Adverse FISH results were defined by the presence of 17p deletion 

or 11q deletion. Serum immunoglobulin measurement was only available at the time of 

sample collection in the discovery cohort. The clinical characteristics for these two 

prospective cohorts are shown in table 6.1.  

6.2.2 Recruitment to the Vaccination Cohort. 

Fifty-six consecutive CLL patients with a median age of 72 were recruited over 3 weeks at 

BHH and QEHB Hematology clinics in June 2013 and clinical characteristics are shown in 

table 6.1. Socio-demographic and patient outcome at the most recent point of contact were 

documented from patient questionnaires and electronic records. None of the patients were 

receiving immunoglobulin replacement therapy at the time of recruitment. The number of 

hospital-recorded infections was defined by the presence of a positive microbiology result 

since the date of diagnosis, or a diagnosis of infection written in a clinical correspondence. 

Vaccination history was obtained from Primary Care records. The patient questionnaire 

included health and infection history (Appendix 1). For an aged matched comparison of 

functional antibodies, results from a control population of 162 unvaccinated healthy elderly 

patients, with a median age of 74.6 (66.2-83.0), recruited from five medical practices in 

Birmingham (UK) between September and November 2003, were used (Phillips et al., 2006). 

Both patients and age matched healthy participants, donated 9 ml of peripheral blood into 

vacutainer tubes containing clot activator for separation of serum prior to Fnab analysis.   
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Table 6.1 

Characteristics of CLL patients in the discovery, confirmatory and infection cohorts. 

 

Discovery cohort 
(n=347) 

Confirmatory cohort 
(n=236) 

Infection cohort 
(n=56) 

Median age at diagnosis 
(years) 62 (37-91) 65.1 (24-99) 72 (65-78) 

Male sex 237 (68%) 150 (64%) 30 (54%) 

 
  

 Binet stage A 180 182 49 
Binet stage B 155 25 1 
Binet stage C 11 27 6 

Missing 1 2 0 

 
  

 CD38 positive 82 99 14 
CD38 negative 218 117 28 
CD38 missing 47 20 14 

 
  

 Zap70 positive 93 82 2 
Zap 70 negative 203 134 3 
Zap 70 missing 51 20 51 

 
  

 IGHV mutated 176 125 8 
IGHV unmutated 104 40 7 

IGHV missing 67 71 41 

 
  

 CD49d positive 64 102 0 
CD49d negative 131 69 0 
CD49d missing 152 65 56 

 
  

 FISH   
 Normal 76 61 27 

13q- 120 37 9 
12+ 50 6 4 
11q- 22 15 4 
17p- 11 5 2 
Other 5 2 1 

Missing 63 110 13 
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6.2.3 CMV IgG ELISA 

The CMV serostatus of all participants was ascertained using the ELISA technique described 

in chapter 2.  

6.2.4 Functional antibody testing 

Alongside immunoglobulin measurements, functional antibody testing was performed on the 

vaccination cohort as described in Chapter 2. Fnabs were determined against 19 antigens of 

organisms that are commonly vaccinated against. Thresholds were set as per WHO criteria; 

≥0.35μg/ml in two thirds of 12 pneumococcal serotypes tested for; >2 μg/ml for each of 

meningococcal A, C, W135 and Y; >0.1 μg/ml for both tetanus and diphtheria and >1 μg/ml 

for Haemophilus influenzae type B. 

6.2.5 Statistical analysis 

6.2.5.1 Discovery and confirmatory cohort statistics 

Chi-square testing (and Fisher’s exact test where appropriate) were used to assess the 

association between CMV seropositivity, demographic, clinical and prognostic factors in CLL 

patients. Both the discovery and confirmation cohorts were characterised using descriptive 

statistics. For compatibility between datasets, Rai staging for the discovery cohort was 

converted to Binet staging. Rai 0/1 representing Binet A, Rai stage II representing Binet B 

and Rai stage III/IV representing Binet stage C. TTT was defined as the time from diagnosis 

to disease progression requiring treatment. OS was defined as the time from diagnosis to 

death due to any cause. Patients without an event or death were censored at time of last 

known follow-up. Kaplan-Meier survival curves and Cox proportional hazards regression 

models were used to assess the association between CMV positivity and the outcomes of 

interest. Cox models were adjusted for demographic and CLL prognostic factors which were 
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found to impact significantly on survival and TTT in univariate analysis. An analysis of the 

continuously distributed CMV IgG ELISA values was also performed. CMV titre was 

transformed to the base 2 log and entered as a covariate into cox regression analysis.  

6.2.5.2 Vaccination cohort statistics 

Student’s T-test was used to compare data between patient groups when normally distributed 

and Mann-Whitney testing where normality was not demonstrated. Univariate assessment of 

the relationships between prognostic factors and time to first infection were carried out using 

Kaplan-Meier plots, with log rank tests used to evaluate significant differences. Functional 

antibodies were normally distributed when log transformed and are presented as geometric 

means. 

6.3 Results  

6.3.1 Clinical characteristics and demographics by CMV status  

6.3.1.1 Discovery cohort  

Participant CMV status was obtained by ELISA and associations between HCMV 

seropositivity and CLL prognostic factors were firstly examined. Of the 347 participants, 198 

(57%) were CMV seropositive and 149 (43%) were CMV seronegative.  CMV positive 

patients were significantly older at the time of diagnosis with a median age of 64 years (range 

37 to 87) compared to 60 years in CMV seronegative individuals (range 37 to 91) (p<0.0001). 

There was no association between CMV seropositivity and any other demographic or clinical 

characteristic (Binet stage, sex, ECOG performance score or absolute lymphocyte count) or 

prognostic markers (ZAP-70, CD38, IGHV, CD49d, FISH) (Table 6.2).  
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6.3.1.2 Confirmatory cohort  

Of the 236 patients with CLL in this cohort, 179 (76%) were found to be CMV seropositive. 

Unlike the discovery cohort, CMV serostatus was not associated with age at diagnosis. Nor 

was it associated with any of the other demographic, clinical or prognostic markers found in 

the confirmation cohort (Table 6.3).  
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Table 6.2  

Clinical characteristics of the discovery cohort by CMV status.  

Variable Categories CMV negative 
(n=149) (%) 

CMV positive 
(n=198) (%) 

Total 
(n=347) P value 

Age at 
diagnosis 
(years) 

N 149 198 347 
p<0.0001 Median 60.0 64.0 62.0 

Range 37.0 – 91.0 37.0 – 87.0 37.0 – 91.0 

Gender 
Female 43 (28.9) 67 (66.2) 110 

p=0.324 
Male 106 (71.1) 131 (33.8) 237 

BINET stage 

A  71 (47.7) 109 (55.3) 180 

p=0.320 
B 72 (48.4) 83 (42.1) 155 
C 6 (4.0) 5 (2.5) 11 
Missing 0 1 1 

CD38 
Positive 34 (25.8) 48 (28.6) 82 

p=0.587 Negative 98 (74.2) 120 (71.4) 218 
Missing 17 30 47 

ZAP-70 
Positive 42 (32.8) 51 (30.4) 93 

p=0.652 Negative 86 (67.2) 117 (69.6) 203 
Missing 21 30 51 

IGHV 
Mutated 81 (35.2) 95 (61.3) 176 

p=0.546 Unmutated 44 (64.8) 60 (38.7) 104 
Missing 24 43 67 

CD49d 
Positive 23 (27.7) 41 (36.6) 64 

p=0.191 Negative 60 (72.3) 71 (63.4) 131 
Missing 66 86 152 

BadFISH 
Yes 15 (12.5) 18 (11.4) 33 

p=0.777 No 105 (87.5) 140 (88.6) 245 
Missing 29 40 69 

FISH 

Normal 30 (24.4) 46 (28.6) 76 

p=0.211 

13q 50 (40.7) 70 (43.5) 120 
Trisomy 12 25 (20.3) 25 (15.5) 50 
11q 13 (10.6) 9 (5.6) 22 
17p 2 (1.6) 9 (5.6) 11 
Other 3 (2.4) 2 (1.2) 5 
Missing 26 37 63 

Titre 

N 149 198 347 

p<0.0001 Mean (SD) 1.4 (2.0) 772.1 (1723.5) 441 (1355.4) 

Median (IQR) 0.4 (0.0 – 2.2) 227.1 (113.8 – 
503.4) 72.6 (0.8 – 260.3) 

IgG 

N 95 95 232 

p=0.632 
Mean (SD) 818.3 (281.3) 854.4 (316.0) 839.6 (302.2) 
Median 820.0 806.0 814.0 
Range 190.0 – 1750.0 189.0 – 2220.0 189.0 – 2220.0 
Missing 54 61 115 
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Table 6.3  

Clinical characteristics of the confirmatory cohort by CMV status 

Variable Categories CMV negative 
(n=57) (%) 

CMV positive 
(n=179) (%) 

Total 
(n=236) P value 

Age at 
diagnosis 
(years) 

N 57 179 236 
p=0.809 Median 65.0 67.0 65.1 

Range 24 – 87 28 - 99 24 - 99 

Gender 
Female 15 (26.3) 71 (39.7) 86 

p=0.068 
Male 42 (70.7) 108 (60.3) 150 

BINET stage 

A  47 (82.5) 135 (76.3) 182 

p=0.655 
B 5 (8.8) 20 (11.3) 25 
C 5 (8.8) 22 (12.4) 27 
Missing 0 2 2 

CD38 
Positive 20 (40.0) 79 (47.6) 99 

p=0.345 Negative 30 (60.0) 87 (52.4) 117 
Missing 7 13 20 

ZAP-70 
Positive 21 (41.2) 61 (37.0) 82 

p=0.588 Negative 30 (58.8) 104 (63.0) 134 
Missing 6 14 20 

IGHV 
Mutated 27 (75.0) 98 (76.0) 125 

p=0.905 Unmutated 9 (25.0) 31 (24.0) 40 
Missing 21 50 71 

CD49d 
Positive 23 (60.5) 79 (59.4) 102 

p=0.901 Negative 15 (39.5) 54 (40.6) 69 
Missing 19 46 65 

BadFISH 
Yes 4 (12.9) 16 (16.8) 20 

p=0.602 No 27 (87.1) 79 (83.2) 106 
Missing 26 84 110 

FISH 

Normal 16 (51.6) 45 (47.4) 61 

p=0.477 

13q 10 (32.3) 27 (28.4) 37 
Trisomy 12 0 (0.0) 6 (6.3) 6 
11q 2 (6.5) 13 (13.7) 15 
17p 2 (6.5) 3 (3.2) 5 
Other 1 (3.3) 1 (1.1) 2 
Missing 26 84 110 

Titre 

N 57 179 236 

p<0.0001 Mean (SD) 0.26 (0.85) 497.4 (2060.5) 377.3 (1806.0) 

Median (IQR) 0.0 (0.0 – 0.0) 202.1 (103.9 – 
357.1) 

128.3 (24.1 – 
256.6) 
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6.3.2 CMV infection and its impact on overall survival  

6.3.2.1 CMV infection and its impact on overall survival in the discovery 

cohort.  

The median follow up time for the discovery cohort was 3 years (IQR 2.4-4.2) and at the 

point of last data collection 68 participants (20% (68/347)) had died. 49 deaths (25%) were 

recorded for the CMV positive group and 19 deaths (13%) were noted in the CMV negative 

group. Overall survival (OS) was defined as the time from diagnosis to death due to any 

cause. Patients without an event or death were censored at time of last known follow-up. 

Kaplan-Meier survival curves and Cox proportional hazards regression models were used to 

assess the association between HCMV positivity and the outcomes of interest. Overall, 

patients found to be CMV positive had a significantly inferior OS, with the risk of death at 

any time point more than twice that observed in CMV negative patients (HR 2.28, 95% CI: 

1.34 to 3.88; p=0.0024) (Figure 6.1A). Age, Binet Stage, ZAP-70, FISH, IGHV, CD38, and 

CD49d were also found to impact significantly on survival in univariate analysis (Table 6.4). 

These demographic and clinical variables were then incorporated into multivariate modeling 

where the risk was attenuated, with only age (HR 1.12 (95% CI: 1.06 to 1.19); p<0.0001) and 

unmutated IGHV (HR 2.78 (95% CI: 1.07 to 7.23); p=0.036) remaining significant as 

independent risk factors for OS. No difference in survival was seen between CMV positive 

and negative participants in the multivariate model (HR: 0.61, 95% CI: 0.22 to 1.69; 

p=0.343).  
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Table 6.4  

The impact of clinical variables on overall survival in CLL in the discovery cohort.  

Variable 
Cox hazards regression  

(p value) 
Hazard ratio (95% CI) 

Age 0.003 1.05 (1.02 to 1.08) 

Gender (male) 0.143 1.69 (0.84 to 3.41) 

BINET stage A (compared to C) 0.030 0.20 (0.04 to 0.85) 

BINET stage B (compared to C) 0.111 0.30 (0.07 to 1.32) 

CD38 (positive) <0.0001 3.74 (1.91 to 7.34) 

ZAP 70 (positive) 0.019 2.11 (1.13 to 3.94) 

IGHV (unmutated) 0.001 3.28 (1..60 to 6.75) 

CD49d (positive) 0.001 4.18 (1.75 to 9.95) 

Abnormal FISH <0.0001 4.35 (1.94 to 9.73) 

IgM 0.196 1.00 (0.99 to 1.00) 

IgA 0.108 1.00 (0.99 to 1.01) 

IgG 0.372 1.00 (0.99 to 1.00) 
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6.3.2.2 CMV infection and its impact on overall survival in the confirmatory 

cohort 

The median follow up time of the confirmation cohort was 7 years (IQR: 4 to 10.2 years). Of 

236 patients in this cohort, 109 (46%) had required treatment at the point of last follow up and 

93 had died (39%).  As noted in the discovery cohort, a shorter median overall survival of 

10.6 years was noted in CMV positive participants (95% CI: 8.4 to 12.5) compared to 15.9 

years (95% CI: 6.9 to 25.0) in CMV negative participants although this did not reach 

statistical significance on either univariate (HR 1.45, 95% CI: 0.86 to 2.43; p=0.158) or 

multivariate analysis (HR 0.96, 95% CI: 0.57 to 1.63; p=0.882). 

6.3.3 CMV status and impact on time to first treatment in CLL 

6.3.3.1 CMV infection and its impact on time to first treatment in the discovery 

cohort 

The relationship between CMV infection and the time to first treatment (TTT) was next 

investigated. TTT was defined as the time from diagnosis to disease progression requiring 

treatment. This information was available on 322 of the original 349 (92%) patients in the 

discovery cohort. The median time to first treatment was 7.4 years and at the last follow up, 

115 of the 322 patients (36%) were confirmed to have received treatment for CLL. A log rank 

test for differences between CMV positive and negative participants demonstrated no 

difference in TTT in either a univariate model (HR=0.90, 95% CI: 0.62 to 1.30; p=0.560) or a 

multivariate model adjusted for age, Binet Stage and prognostic variables (HR=1.12, 95% CI: 

0.68 to 1.84; p=0.651). Binet stage C compared to stage A (HR= 0.33, 95% CI: 0.01 to 0.09; 

p<0.0001) and stage B (HR= 0.11, 95% CI: 0.04 to 0.28; p<0.0001), as well as expression of 
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CD49d (HR 2.05, 95% CI: 1.16 to 3.62; p=0.013) remained significant predictors of TTT 

after adjusting for other variables in the multivariate model (Figure 6.1B). 

6.3.3.2 CMV status and impact on time to first treatment in the confirmatory 

cohort 

Binet stage, CD38, CD49d, ZAP-70, IGHV and adverse FISH status were all found to impact 

significantly on TTT in univariate testing. However, data was complete for prognostic factors 

in only 68 patients, of which 44 participants required treatment. No association between CMV 

status and TTT was found once these prognostic variables were adjusted for in multivariate 

modelling (HR 1.13, 95% CI: 0.50 to 2.55; p=0.766). Only Binet stage C compared to stage A 

(HR 0.43, 95% CI:  0.12 to 0.14; p<0.0001) and stage B (HR: 0.29 (0.09 to 0.93); p=0.037) 

were significant independent predictors of time to treatment. 

6.3.4 CMV titre and clinical outcome 

Using Log2 CMV titre as a continuous variable, the magnitude of the IgG CMV response was 

next examined for any relationship with OS or TTT.  Data were available on 198 CMV 

seropositive CLL patients within the discovery cohort. 49 deaths had occurred within this 

cohort. A trend was observed between increasing antibody titre and reduced survival, 

however this did not reach statistical significance (HR 0.95, 95% CI: 0.82 to 1.09; p=0.460). 

Of the 75 deaths amongst the 179 CMV positive participants in the confirmation cohort, again 

no relationship was seen between CMV titre and OS (HR 1.02, 95% CI: 0.88 to 1.19; 

p=0.793).  

Similarly, no significant associations were seen in either cohort between CMV titre and time 

to treatment (TTT). Given the similar outcome data for CMV seropositivity on OS and TTT 

in both cohorts, and in an attempt to increase the number of CMV positive individuals 
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available for statistical analysis, the datasets were pooled and used to assess whether the titre 

of CMV IgG as a continuous variable impacts on overall survival or TTT. Data from 337 

CMV positive individuals were analysed, of which 124 deaths were recorded during follow 

up, but again no relationship was found between CMV titre and overall survival (HR 1.01, 

95% CI: 0.91 to 1.13; p=0.800) or time to treatment (HR 1.00, 95% CI: 0.91 to 1.10; p= 

0.972). 
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Figure 6.1 
The impact of CMV status on overall survival and time to first treatment in the 

Discovery Cohort. 

The overall survival and time to first treatment was investigated in patients with CLL based 

on seropositivity for CMV. No significant difference was found in overall survival between 

CMV positive and CMV negative patients (A) (HR: 0.61; p=0.343) or the time to first 

treatment (B) (HR 1.13; p=0.766). (Proportional hazards ratio) 
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6.3.5 Investigating infection history and its relationship with clinical 

characteristics. 

6.3.5.1 Total serum IgG predicts infection at diagnosis and respiratory 

symptoms.  

Of the 56 patients recruited to the vaccination cohort, 35 were Binet stage A and untreated at 

the time of recruitment. The remaining 21 patients had received at least one line of therapy 

but were at least 1year post any treatment.  The median follow up time from diagnosis was 

7.8 years (IQR 3.5-9.9). 31 patients (55%) had one or more documented infections, and 15 

patients (27%) had required at least one hospital admission due to infection. Serum 

immunoglobulins were measured at the time of recruitment and were also measured at 

diagnosis in 36 patients. The median IgG concentration within the cohort at the time of 

recruitment was 7.6g/l (IQR 5.08-9.01) and patients with a low IgG (<6g/L) had significantly 

more hospital-recorded infections than those with IgG levels within the normal range 

(p=0.04) (Figure 6.2A). Even amongst the Binet stage A patients, who had never required 

treatment for their disease, those with one or more infection(s) had significantly lower IgG 

concentrations than patients who did not suffer infections (6.3 g/l vs 9.0 g/l, p = 0.037).  

The median IgG level from the 36 patients who had their immunoglobulins measured at the 

time of diagnosis was 8.6g/L. 14% had evidence of hypogammaglobulinaemia at this initial 

time point (IgG<6 g/l). Using Kaplan-Meier plots, with log rank tests to evaluate significant 

differences, patients with an IgG <6g/l at diagnosis were found to have a shorter time to first 

infection (44 months vs 108 months; p=0.01) whereas CD38 expression, low IgA/M, stage of 

disease, gender and age had no such association. Given the lack of other identifiable 

significant variables for modeling, multivariate analysis was not performed. 
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Forty-one of the 56 patients (73%) completed the infection questionnaire. 40% (21/56) of the 

documented infections were respiratory in origin and the total IgG level was strongly 

correlated with reported symptoms. In particular, patients who reported a cough ‘most or 

every day(s)’ had median IgG levels of 6.9 g/l compared to 8.6 g/l in patients reporting a 

cough as ‘never or rare’ (p = 0.05) (Figure 6.2B). In relation to sputum production, median 

IgG was 6.1 g/l in patients reporting sputum production ‘most or every day(s)’ compared to 

8.6 g/l in patients in whom sputum production was ‘never or rare’ (p = 0.05) (Figure 6.2C). In 

relation to the specific respiratory infections that were encountered, 14 sputum samples had 

positive bacterial microbiology and of these 3 were pneumococcal and 3 were Haemophilus 

influenzae infections, serotypes of which were unknown.  

Interestingly, treatment for CLL was seen to have a relatively modest impact on antibody 

responses. An association with total IgG concentration was indeed observed as the median 

IgG was 7.4 g/l in untreated patients compared to 5.29 g/l in those who had received some 

form of treatment (p=0.037).  However, median IgA and IgM levels were similar between the 

two groups (Figure 6.3).  
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Figure 6.2   

The impact of IgG levels on clinical symptoms and infection history. 

Box plot diagrams demonstrating; A) those with more than one hospital documented infection 

had a lower IgG level than those with no infection history (n=56). Of the 41 participants who 

completed the questionnaire, those with a low IgG reported an increased coughing frequency 

(B) and sputum production (C) compared to those with low IgG (Mann-Whitney).  
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Figure 6.3 

The impact of treatment on total immunoglobulins 

Total serum immunoglobulins were investigated in patient with CLL and analysed according 

to treatment history. No difference in the levels of IgA or IgM were observed between 

patients who had received treatment and those untreated. In contrast, a significant difference 

was noted in IgG levels, with patients previously treated having a significantly lower serum 

IgG compared to those untreated (7.93±0.57 g/L vs 6.00± 0.62g/L; p=0.03) (Mann-Whitney).  
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6.3.5.2 The impact of CMV on infection history 

CMV status was ascertained by ELISA in all 56 patients in the cohort. 15 patients were CMV 

negative (27%), whilst 41 were CMV positive (73%).  Firstly, total IgG levels were 

investigated. No difference was found between CMV positive and CMV negative participants 

in their total IgG levels at the point of recruitment to the study (CMV negative IgG 5.46 g/l 

Vs 8 g/l in CMV positive participants; p=0.230). Neither was there any significant difference 

in CMV titre between those patients deficient in IgG compared to those with normal IgG 

levels (titres: 72 vs 136; p=0.104). Similarly, there was no difference in the average number 

of infections CMV positive participants had (1) compared to CMV negative participants (1) 

(p=0.968). Using log rank testing, no difference was found between CMV positive 

participants (median 81 months) and CMV negative participants (median 116 months) in their 

time to first infection, p=0.663 (Figure 6.4). 
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Figure 6.4 

CMV does not impact on time to first infection.  

No difference in time to first infection was observed between CMV positive and CMV 

negative patient with CLL (CMV negative 116 months vs 81 months in CMV positive 

patients; p=0.663). 
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6.3.6 Functional antibody measurements. 

6.3.6.1 Low Fnabs are present in CLL patients with a normal total IgG. 

Functional antibodies were next measured on the total cohort. These were then compared to 

healthy age-matched donors, who were unvaccinated. Overall, functional antibody levels in 

patients with CLL were very low compared to HD. In particular, significant differences were 

observed in the titer of antibodies against 16 of the total 19 Fnabs tested (Table 6.4). In 

relation to specificity for pneumococcal serotypes, for which 12 are tested for, protective 

antibody levels were seen in only 3 serotypes in patients with CLL, compared to 9 serotypes 

within HD (Table 6.4). Notably, those with hypogammaglobulinaemia (IgG <6g/l) were 

particularly at risk and protected against a median of only 2 serotypes compared to 5 in those 

with IgG within the normal range (p=0.001) (Figure 6.5).  

Overall, within the group with hypogammglobulinaemia, Fnab concentrations were lower for 

18 of the 19 measured antigens compared with patients with an IgG within the normal range.   

In relation to protection from pneumococcal disease, 79% (27/34) of patients with a normal 

IgG concentration had inadequate Fnab responses compared to virtually every patient with 

hypogammaglobulinaemia (21/22; 96%).   

Similarly, Fnab results were found to be below protective levels in patients with a normal IgG 

for the other antigens tested; Men A: n=13 (38%), Men C: n=33 (97%); Men W n=28 (82%), 

Men Y n= 32 (94%), Tetanus n=13 (38%), Diphtheria n= 26 (96%) and Hib n=14 (41%).  

Interestingly and similar to the total serum immunoglobulin findings in section 1.3.5.1, there 

were few significant differences between Fnab responses in the treated and untreated cohorts; 

only two pneumococcal and one meningococcal serotype were found to be statistically 

different between the two groups (Pn4 P=0.01; Pn7F P=0.03; Men A p=0.02). 
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Table 6.5 

The average pneumococcal responses by serotype in patients with CLL according to 

vaccination history and in healthy age matched donors.  

 

Key: Bold text indicates protective levels achieved according to WHO criteria. * Indicates the 

16 serotypes which differed significantly between the total CLL vaccination cohort and 

healthy age matched donors.  
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Figure 6.5 

Functional antibody responses were lower amongst patients with a low total serum IgG. 

Patients with a low total serum IgG level had reduced functional antibody responses to 18 out 

of the 19 antigens tested and demonstrated significantly reduced protection against 

pneumococcal serotypes, with a median of 2 serotypes protected against compared to 5 

serotypes in those with a normal serum IgG level (p<0.001) (Mann-Whitney). 
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6.3.6.2 Functional antibody responses are inadequate in CLL patients who 

have received prior vaccination 

Prior pneumococcal vaccination history was available on 53 of the 56 patients (95%). 

Thirteen (24%) patients were unvaccinated against Pneumococcus, despite UK guidelines. 37 

had received the Pneumovax polysaccharide vaccine and 3 patients had been given the 

Prevenar13 conjugate vaccination.  Surprisingly, patients who had received Pneumovax had 

protective levels against 2 of 12 pneumococcal serotypes, compared with 4 of 12 

pneumococcal serotypes for the unvaccinated patients, although the median age of the 

vaccinated cohort was 73 years compared to 66 for the unvaccinated group (Table 6.4).   

Due to the cross sectional nature of this study the time from ‘vaccination to analysis’ was 

variable. However, no difference was seen in Fnab levels between patients that had received 

Pneumovax within the last 5 years (n=9) compared to those who had received the vaccine 

more than 5 years ago (range 6-15 years) (n=27).  In this cohort, no difference in Fnab levels 

was observed between patients that were vaccinated within 2 years, 2-5 years and more than 5 

years since vaccination.  

6.3.6.3 The impact of CMV on functional antibody responses 

Using Mann-Whitney testing, the impact of CMV status on pneumococcal functional 

antibody responses was next investigated. Firstly, the number of serotypes protected against 

was compared between CMV positive and negative participants. No difference was found 

between these however, with CMV positive participants demonstrating protection against an 

average of 5 serotypes, whilst CMV negative participants were protected against 3 serotypes 

on average (p=0.463). Next, the mean pneumococcal functional response of all 13 serotypes 

tested was compared between CMV negative and positive participants.  Again, no difference 
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was found (CMV negative participants, 0.301 μg/ml vs CMV positive participants 

0.498μg/ml; p=0.595) (data not shown). 

6.4 Discussion 

In patients with immunosuppression, CMV has long been recognized to be an important 

disease causing pathogen but more recently, in otherwise immunocompetent individuals, it 

has also been associated with a variety of medical conditions and increased mortality 

(Spyridopoulos et al., 2015, Kilgour et al., 2013, Savva et al., 2013). Patients with CLL are 

known to have global immunosuppression, which is multifactorial and yet, paradoxically an 

increase in CMV specific T cell responses are seen amongst patients who are CMV positive 

compared to healthy age matched controls (Pourgheysari et al., 2010, Mackus et al., 2003). 

This work represents the first investigation into the relationship between CLL and CMV, with 

outcome measures including overall survival, time to first treatment and infection risk 

explored.   

In each of the three cohorts investigated, the prevalence of CMV was found to be between 57 

and 75%, which is comparable with studies of viral seroprevalence in healthy people at a 

similar median age of 64 years (Kilgour et al., 2013). From this finding, CMV infection does 

not appear to be associated with the development of CLL but it is noteworthy that chronic 

viral infection has been suggested as a potential antigenic stimulus to account for the finding 

of shared immunoglobulin gene sequences in tumours from different patients. In particular, 

the recurrent IGHV1-69 sequence, which is common in CLL was reported to react with the 

pUL32 phosphoprotein of CMV (Steininger et al., 2012).  

On univariable analysis of the discovery cohort, a significant two-fold increase in the risk of 

death was found in CMV positive patients compared to CMV negative patients. However, 

after adjusting for other variables, this significance was lost. In particular, age was found to be 
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an important variable, with CMV positive patients being 4 years older than CMV negative 

patients. This is not surprising given CMV prevalence is known to increase with age but as 

samples were collected soon after diagnosis, an alternative possibility is that CMV infection 

could potentially serve to delay the diagnosis of CLL. To address this, a healthy age matched 

cohort is needed in the same geographical areas as the participants with CLL. Unfortunately 

this was not available at the time of the study. An alternative option might be a larger patient 

cohort with longer follow up time to identify if these factors act independently. However, the 

fact no relationship was found between CMV and age in the confirmatory cohort, suggests 

any potential benefit of CMV in delaying diagnosis is unlikely.  The discrepancy between the 

two cohorts in relation to age is likely to be the result of socio-economic and geographical 

differences impacting on the CMV prevalence in the two cohorts (Cannon et al., 2010).  

In contrast to studies in healthy elderly people, no association between survival and CMV 

infection was found. This study was limited by the lack of long term follow up and small 

number of patient deaths. In both cohorts there was clearly a trend to shorter survival in CMV 

seropositive patients so it is not possible to definitely exclude an effect of CMV on mortality 

in CLL based my work. This limitation is illustrated by the fact that not all established 

prognostic factors in CLL were found to be significant in the multivariant analysis. It may 

also suggest that any negative effect of CMV infection in the elderly is outweighed by a 

diagnosis of CLL. Another factor may be the younger age of the discovery and confirmatory 

cohorts compared to healthy elderly studies, where participants were aged between 70 and 

100 years (Roberts et al., 2010, Savva et al., 2013, Hadrup et al., 2006). Inflammatory 

markers may contribute to the mortality impact of CMV in healthy elderly individuals. 

Indeed, elevated levels of inflammatory markers, including IL-6 have been attributed (Wikby 

et al., 2006, Kilgour et al., 2013, Trzonkowski et al., 2004). This is of note, as patients with 
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CLL often already have increased levels of IL-6 and may therefore confound any impact of 

CMV on outcomes measured (Adami et al., 1994, Callea et al., 1996). It may also suggest that 

any negative effect of CMV infection in the elderly is outweighed by a diagnosis of CLL. In 

addition, patients within these cohorts were only checked for the presence of CMV infection 

around the time of diagnosis and any later acquisition of CMV infection during disease 

progression was not be accounted for within the analysis. In contrast, an alternative possibility 

is that CMV infection may actually play a potential beneficial role on immune function in 

patients with CLL. The virus stimulates a strong Th1 immune response and leads to 

accumulation of large numbers of cytotoxic cells. An example of such benefit is seen in the 

setting of stem cell transplantation, where CMV infection has been shown to reduce the 

relapse rate (Ito et al., 2013, Elmaagacli et al., 2011).  

High CMV-specific antibody titres have been correlated with poor clinical outcome in elderly 

donors (Roberts et al., 2010) but this work failed to demonstrate this in patients with CLL. 

Interestingly, progressive hypogammaglobulinaemia is a feature of progressive CLL but 

paradoxically unlike other herpes viruses such as VZV and EBV, CMV IgG titres have been 

shown to increase with disease progression (Vanura et al., 2013). Indeed, almost 50% 

demonstrated an increase in their CMV-specific IgG titre 4.6 years later and all CMV positive 

patients were still found to have detectable CMV IgG. As such it is unlikely that any patients 

with hypogammaglobulinemia were incorrectly identified as seronegative for latent CMV. 

The increase in CMV IgG observed over time may suggest episodes of reactivation are 

occurring. Furthermore, no significant difference in the total IgG was noted between CMV 

positive and negative individuals and neither was there a difference in the CMV titre in 

patients who were deficient in IgG compared to those that had a normal serum IgG level. This 

work has also found no difference between patients who are CMV positive and CMV 
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negative in terms of the average number of infections documented in hospital notes or the 

time to first infection. Neither was there any difference in the mean pneumococcal Fnabs 

response or total number of serotypes protected against in patients who were CMV positive 

compared to those who were CMV negative by serology. Overall, this indicates that the 

humoral immune system is able to respond to CMV challenge despite the overall state of 

immune suppression (Vanura et al., 2013) and that CMV does not appear to impact on the 

global immune response towards other common pathogens.   

Up to 80% of all deaths in CLL are attributed to infection (Itala et al., 1992, Molica, 1994). 

Hypogammaglobulinaemia contributes to this infection risk and consistent with previous 

reports, this work found almost 40% of patients with CLL had low serum IgG and this was 

associated with an increased risk of infection and respiratory symptoms, even amongst stage 

A untreated patients (Parry et al., 2015). Total serum IgG also predicted time to first infection 

in patients at diagnosis, with those deficient in IgG demonstrating a shorter time to 

documentation of a hospital recorded infection by a median of 5.3 years. The type of 

infections reported in hospital notes was also indicative of a humoral deficit and 

predominantly consisted of lower respiratory tract infections (Parry et al., 2015).  

As expected, low IgG levels were frequently associated with deficient Fnabs in the 

vaccination cohort. However, even amongst those with normal IgG, almost 80% demonstrated 

inadequate protection by Fnab testing for pneumoccocal serotypes. As patients with a normal 

IgG can have poor functional response, it is likely that functional antibody status gives 

independent, additional information relating to infection risk in addition to measuring serum 

IgG levels. Further work with a larger patient cohort is now needed to verify this. Currently, 

the BCSH recommend testing for serum IgG at diagnosis, and only suggest testing Fnabs 

following vaccination (Oscier et al., 2012). In following these guidelines, a substantial 
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proportion of patients with CLL would not be identified as being at risk for pneumococcal 

disease at the point of diagnosis. Testing with Fnabs would also be useful at diagnosis as a 

baseline for assessing response following vaccination.  

Fnabs are known to diminish with age, but my results show that in comparison to an 

unvaccinated healthy elderly population, patients with CLL have significantly poorer Fnab 

responses. As the healthy elderly cohort were vaccine naïve, they represent an age matched 

cohort with only natural immunity from previous exposure and infection. Despite this, the 

mean number of serotypes protected against in patients with CLL was significantly lower than 

that in the healthy elderly cohort. This comparison suggests it is the CLL disease and not age 

which results in the profoundly low Fnab concentrations giving further evidence for this 

cohort’s susceptibility to infection and degree of immune impairment (Parry et al., 2015). 

This work also demonstrates how prominent the immunodeficiency in CLL is, even at a very 

early stage of the disease (Moreira et al., 2013).  

Despite the average age being above 65, and an underlying diagnosis of CLL, only 74% of 

patients had been vaccinated against Pneumococcus, regardless of the vaccine type. This 

emphasizes not only a need for more studies on vaccination but a more robust system of 

vaccination is required with clear guidelines on whether this should occur in primary or 

secondary care. Given the differences seen in my work, future studies need to differentiate 

between the optimal program of vaccination for both the healthy elderly population and for 

patients with CLL. The timing of vaccination was not addressed in this work, but others have 

demonstrated increased vaccine efficacy is achieved when it is delivered at diagnosis. 

(Sinisalo et al., 2007). At the time samples were being collected for this work, the guidance 

was changing to receive Prevenar 13, the conjugate vaccine (PCV), rather than the 

polysaccharide, 23vP vaccine in patients with haematological disorders and a secondary 
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immunodeficiency, so this may account for the low uptake of Prevenar13 seen in this work 

(Oscier et al., 2012, England, 2014).  

The need to establish the clinical utility of pneumococcal vaccination using the newer 

conjugate vaccine is now required in patients with CLL. This study found that prior 

vaccination (mostly with 23vP vaccination) against pneumococcus did not improve Fnab 

pneumococcal concentrations, conversely concentrations were lower in this group.  The age 

of this cohort was slightly higher but no other explanation for this finding was obvious from 

this study and warrants further investigation. Studies that have examined pneumococcal 

vaccination in CLL have only looked at short term response to vaccination so this study 

provides a useful insight into the poor long term immunogenicity of 23vP vaccination in CLL 

(Hartkamp et al., 2001, Sinisalo et al., 2003). With the exception of the Influenza, 

Pneumococcus and Haemophilus Influenza type B vaccination, no other vaccines are 

currently recommended in CLL (Oscier et al., 2012). This work highlights the inadequate 

functional antibody levels found against diphtheria and tetanus though and suggests 

vaccinating against these bacteria should also be recommended and included in future 

research vaccination studies. Studies have found that the use of PCV yields a protection rate 

of up to 47% in CLL patients (Sinisalo et al., 2007). The variable vaccine response rate 

highlights the need for Fnab testing one month following vaccination, as is currently 

recommended by BCSH guidelines (Sinisalo et al., 2007, Kroon et al., 2000, Oscier et al., 

2012). This will identify those patients who require closer monitoring for infection and 

potentially prophylactic interventions. Future work is required now to assess whether those 

deficient in functional responses following initial vaccination would benefit from a booster 

vaccination, as is given routinely to infants. 
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6.5 Conclusion 

In conclusion, I have shown no evidence that CMV infection can predispose toward the 

development of CLL or that established infection can impact on time to first treatment or 

overall survival in newly diagnosed patients with CLL. Neither does CMV appear to have any 

impact on infection rates or time to first infection. This work has however, highlighted 

antibody dysregulation and poor vaccination uptake as key areas for concern in patients with 

CLL and further work is now required to optimise immunity against common vaccine 

preventable diseases, which are well established to be a leading cause of death in patients with 

CLL.  
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7.1 General discussion and conclusions 

Using class I and II tetramers, a phenotypic description of both CD8+ and CD4+ CMV-

specific T cells and their contribution to the total T cell repertoire has been shown in patients 

with CLL and compared to healthy donors. In particular, novel class II tetramers have 

provided opportunity for in-depth characterization of CMV-specific CD4+ T cells both in 

CLL patients and healthy donors. A limitation to the use of tetramers though, is the small 

number of epitope peptides for which tetramers can be generated and this is particularly the 

case for the stable production of class II tetramers (Vollers and Stern, 2008). In this regard, 

phenotypic features described in this work have been interpreted with the knowledge that 

CD8+ responses were targeting the CMV proteins IE-1, pp65 and pp50, whilst CD4+ 

responses were identifying gB and pp65 and these may not always be reflective of the total T 

cell responses directed at CMV.   

The importance of understanding the biology of CMV in the context of CLL has recently 

been highlighted through the use of the novel agent idelalisib (a PI3 Kinase inhibitor). 

Idelalisib has shown great clinical efficacy in the relapsed setting but its use in first line and 

combination therapy has been halted as a result of fatalities and serious toxicities including 

CMV reactivation. Understanding the impact of idelalisib on CMV specific CD4+ and CD8+ 

T cell phenotype and function is therefore now warranted. 

In my work, I have compared the phenotype of CMV-specific CD8+ and CD4+ T cells and 

demonstrated that both have great cytotoxic capacity with high levels of perforin and 

granzyme. No difference was observed between HD and patients with CLL for these 

molecules. Expression of perforin and granzyme is common amongst effector CD8+ T cells, 

but is unusual amongst CD4+ T cells. However, HIV, EBV and CMV-specific CD4+ 

cytotoxic cells rich in perforin and granzyme have previously been described (Zaunders et al., 
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2004, van Leeuwen et al., 2004, Appay et al., 2002). It has been postulated that cytotoxic 

CD4+ T cells arise as a surveillance mechanism to combat attempts by virus to evade MHC 

class I presentation (Appay, 2004).  

In comparing CMV-specific CD4+ and CD8+ T cells, a difference in memory phenotype was 

noticed, with a greater proportion of terminally differentiated T cells that re-expressed 

CD45RA observed amongst the CD8+ cells. In contrast, CD4+ CMV-specific T cells were 

predominantly effector memory in phenotype and negative for CD45RA. This supports 

previous work, which showed perforin positive CD4+ T cells in patients with CLL were TEM 

in phenotype (Walton et al., 2010). Interestingly, CD45RA expression has been shown in 

CD8+ T cells to correlate with the time elapsed since antigen exposure (Carrasco et al., 2006) 

and in this work I have shown that patients with CLL demonstrated a reduced percentage of 

CD45RA positive cells CD8+ CMV-specific T cells compared to healthy donors. This 

therefore suggests they have been exposed to CMV antigens more recently, most likely in the 

context of subclinical viral reactivation. The expression of CD45RA and time since antigen 

exposure has not been reported for CD4+ T cells but if parallels are drawn, this might 

suggests CD4+ T cells are being more frequently exposed to viral epitopes in their T helper 

cell capacity via cross-presentation as result of exogenous processing by profession antigen 

presenting cells.  

A similarity noted in both CD4+ and CD8+ CMV-specific cells was a dramatic reduction in 

the telomere lengths. This finding indicated that CMV-specific T cells have undergone 

numerous rounds of cell replication. Memory cells re-expressing CD45RA are known to have 

the shortest telomere lengths amongst memory T cells, therefore it is unsurprising that CD8+ 

CMV-specific T cells demonstrated this feature (Romero et al., 2007, Hamann et al., 1997). In 

contrast, the finding that populations of effector memory CD4+ T cells also had greatly 
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reduced telomere lengths compared to the total CD4+ T cell population was less expected. 

Indeed, amongst the CMV-specific CD4+ T cell populations that had statistically shorter 

telomere lengths, one of the three donors consisted of CMV-specific T cells that were entirely 

CCR7-CD45RA- in phenotype.  

PD-1 expression differed amongst CD4+ and CD8+ CMV-specific T cells in patients with 

CLL, with more PD-1 observed on CD4+ CMV-specific T cells. This increased expression 

was greater than observed on healthy control CMV-specific CD4+ T cells and was not 

associated with classical Treg markers or markers of recent activation. This contrasts with 

published work that found PD-1 on CD4+CD27-CD28- CMV-specific T cells was associated 

with FoxP3 expression (Tovar-Salazar et al., 2010). Why increased expression of PD-1 was 

observed on CD4+ but not CD8+ CMV-specific T cells is unexplained. It may reflect the 

differentiation status of the CMV-specific CD4+ T cells, as PD-1 is reported to be on T cells 

which express a TEM phenotype (Riches et al., 2013). It may also occur on CD4+ T cells to 

minimize co-stimulatory support to cytotoxic CD8+ T cells in order to prevent an 

overwhelming CD8+ T cell response that could potential damage host. Although cytokine 

responses were suboptimal in PD-1 positive cells and could be interpreted as a feature of 

exhaustion, reports have found a high expression of CD57 on CMV-specific CD4+ T cells, 

suggesting this is not the case (Pourgheysari et al., 2007, Casazza et al., 2006). Furthermore, 

the transcription factor analysis of Tbet and Eomes did not find any Eomes high, Tbet dim 

cells, which have been described in CD8+ T cells to have an exhausted phenotype in the 

context of HIV infection (Buggert et al., 2014). Thus, from the work presented in this thesis, 

it is difficult to ascertain the function of PD-1 in the context of CMV-specific CD4+ T cells. 

With the advent of class II tetramers, more attention is now required to phenotype these PD-1 
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positive CD4+ T cells further, including the presence of other inhibitor receptors and to 

understand their role in both health and patients with CLL.  

An increase in frequency of CMV-specific T cell responses with stage of disease has 

previously been reported for CD4+ but not CD8+ T cells. This work found patients with stage 

C disease had higher CMV-specific CD8+ T cell responses compared to stage A. Together, 

these findings suggest that an increased CMV directed T cell response occurs under 

conditions where immunosuppression is more prevalent. In addition, the finding that stage C 

patients with CLL also demonstrated higher levels of CMV viral load by ddPCR of monocyte 

DNA suggests subclinical reactivation may account for this T cell expansion. An alternative 

reason for these findings could relate to the poor functional responses observed. CMV 

specific T cells may maintain the capacity to deliver an effective anti-CMV response but 

without an intact synapse formation, a poor response will prevail (Ramsay et al., 2012, te Raa 

et al., 2014). This would potentially lead to more episodes of viral reactivation and boost 

CMV-specific T cells frequencies. Finally, with advanced stage disease, the increased number 

of CLL tumour cells could also potentially provide stimulus for T cell expansion. However, 

there is no direct evidence for this (Mackus et al., 2003). To address this further, serial 

measurements and correlation of CMV viral load and CMV-specific T cell responses is now 

required over time. The addition of CMV IgM testing may also help to validate periods of 

CMV reactivation. 

Despite its prevalence amongst patients with CLL, this work finds no evidence that CMV 

infection impacts on clinical outcome measures including time to first treatment and overall 

survival in 2 large cohorts of patients with CLL. I have also shown no relationship exists 

between the titre of CMV IgG antibody and the same outcome measures in patients who are 

CMV positive. Neither is there any evidence to support more infections in patients who are 
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latently infected with CMV. As such there is no suggestion that anti-viral therapy to target 

CMV would impact on outcome measures in patients with CLL.  

Finally, I have shown that functional antibody testing can provide the clinician with additional 

information for identifying patients at risk of infection, even at an early stage of disease.  

7.2 Future work 

The interesting observation of increased expression of PD-1 on CMV-specific CD4+ T cells 

now needs in-depth characterization, particularly with regards to co-expression of other 

alternative inhibitory markers, expression of CD57 and natural killer receptor markers. These 

findings would help to confirm if any exhaustive phenotype exists amongst CMV-specific 

CD4+ T cells (Wherry and Kurachi, 2015). Using RNA sequencing, sorted populations of 

PD-1 positive and negative CMV-specific CD4+ T cells could also be examined to identify 

any difference in the whole genome transcription profile. To investigate the functionality of 

the PD-1+ CMV-specific CD4+ T cells further, PD-1 blockade is also now required following 

either peptide stimulation or peptide pulsed LCLs at a controlled B:T cell ratio. LCL peptide 

presentation would also aid understanding of the contribution of immunological synapse 

formation and whether PD-1 is still a contributing factor under these circumstances to any 

impaired functionality seen.  

To understand the phenotypic T cell changes observed in CLL patients, the transcription 

factor profile needs to now be studied in more detail. From the limited number (n=20) of HD 

and patient CMV-specific CD4+ T cells examined for Eomes and Tbet expression, it 

appeared that CMV-specific T cells account for much of the total CD4+ Eomes expression 

seen in CMV positive donors and raises the question whether CMV negative donors have 

reduced frequencies of Eomes positive CD4+ T cells in their peripheral blood. This has not 

previously been reported and now needs to be investigated in a larger cohort of donors.  
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Finally, I have shown functional antibody testing is useful and effective at identifying patients 

at risk for pneumococcal disease and this is a leading cause of death in patients with CLL. 

Inadequate protection against pneumococcal disease was demonstrated in most patients and 

vaccination uptake for the recommended Prevenar13 was poor. To address this, I have now 

initiated a project which will identify the functional antibody response before and after 

Prevenar13 vaccination in order to identify those at risk and to investigate the impact of a 

booster vaccination to improve responses.
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2.VACCINATION 

 

a) Do you have the flu vaccine every year?        Yes             No       Sometimes 

    

b) Have you had the pneumonia vaccine every year?  Yes   No  

 

If yes, when did you have the pneumonia vaccine (if you remember)? 

 

3.ANTIBIOTICS 

 

a) Do you take antibiotics every day? (please tick)?             Yes             No  

 

b) How many courses of antibiotics have you had in the last 6 months to treat an infection?  

 

(Please include those prescribed by the hospital or the GP. If you have had 2 courses for the same infection this 

would count as 2 courses, not 1).  

 

Number of courses: ______________________    

 

 

 

 

 


