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Abstract 

Introduction 

Oesophageal adenocarcinoma presents an ever increasing challenge to the NHS, with rising 

incidence and poor overall survival.  There are few robust biomarkers available for this 

disease – either for detection or stratification.  Barrett’s Oesophagus, a precursor to 

adenocarcinoma, is common.  In the non-dysplastic setting, few patients will progress to 

cancer.  There are no current biomarkers to aid in this stratification process.  

Aims 

To assess the role of methylation biomarkers in the context of diagnosis of adenocarcinoma 

and their role in tumour biology.  To provide a methylation stratification tool in the 

identification of high risk non-dysplastic Barrett’s Oesophagus. 

Methods 

Genome wide methylation assessment was performed with validation using bisulphite 

pyrosequencing on carefully selected tissues to reveal novel methylation biomarkers 

Results 

Methylation of TRIM15, has been shown to be a robust biomarker in disease identification 

and has a role in tumour biology. 

OR3A4, a long none coding RNA, has been identified as a way to reliably risk stratify the 

non-dysplastic Barrett’s patient and forms the first biomarker of this kind. 

 

 



Conclusions 

Methylation biomarkers play a key role in disease identification and risk of cancer 

development.  They also appear to play a role in tumour biology. 
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1. Introduction 
Oesophageal carcinoma is an increasingly common cancer worldwide affecting 

approximately 450,000 people.  It is associated with very poor overall survival (1).  

This disease has two variants; Oesophageal Squamous Cell Carcinoma (OSCC) and 

Oesophageal Adenocarcinoma (OADC).  While the global predominant pathology is 

OSCC, this has not been observed in the UK and developed countries have always 

reported an OADC preponderance, however there is significant variation between 

countries.  Currently oesophageal cancer forms 5% of the digestive tract cancers in 

the UK (2).   

The incidence of OADC in the UK has significantly increased from 0.9 per 100000 in 

1971-75 to 4.5 per 100,000 in 1996-2001 (3).  This observed increase is associated 

with multiple potential risk factors which include lifestyle, environmental and genetic.  

No true occupational relationship has been shown however there is weak evidence 

suggesting a higher incidence in those who have previously had exposure to 

asbestos (4).  Disease survival correlates with stage of cancer at presentation and 

there has been shown to be significant survival advantages with the detection of 

early stage disease (5, 6). 

1.1: Epidemiology of Oesophageal Adenocarcinoma 

Oesophageal cancer diagnosis is most common in a male population and its 

incidence increases with age.  Due to the usual late stage of disease at presentation, 

overall survival remains one of the lowest for all solid cancers.  In the UK the overall 

5 year survival is only 14% (5).   



Page 2 of 181 
 

Risk factors for the two predominant oesophageal cancer types vary.  As with the 

majority of tumours, smoking has been demonstrated to be a significant risk factor, 

but has also been shown to increase the risk of progression to cancer from Barrett’s 

Oesophagus (7-11).  OADC has long been considered a disease related to chronic 

inflammation of the lower oesophagus caused by prolonged acid and bile salt reflux 

into the gullet.  This goes some of the way to surmising why the incidence of this 

disease is increasing.   

There have been numerous publications supporting the correlation between Gastro-

oesophageal Reflux Disease (GORD) and obesity and the corresponding increased 

cancer risk in this obese group (12-14).  National statistics from 2005 showed that 

22% of men and 23% of women aged 16–64 were obese (15), with an even greater 

number being overweight (16).  It follows therefore that the incidence of obesity 

induced reflux disease is rising, and with it OADC (17, 18).  There is also evidence 

that obesity is in itself an independent risk factor for OADC without the presence of 

GORD (19).   

In support of an inflammatory aetiology, Non-Steroidal Anti-Inflammatory Drugs 

(NSAIDS) and aspirin have been shown to decrease the risk of OADC by up to 40% 

(20).  Medication which as a side effect may decrease the pressure of the lower 

oesophageal sphincter mechanism, for example anti-cholinergic medications and 

calcium channel blockade, lead to increased reflux which correlates with an 

increased risk of cancer.  However, in a recent meta-analysis, not all drugs with this 

side effect increased the cancer risk suggesting there might be influences other than 

the increase in gastric reflux which lead to the higher cancer risk (21) but which are 

as yet unknown.  Multiple studies show the potential protective effects of gastric 
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Helicobacter pylori infection, decreasing incidence of OADC by up to 40% (22).  

Presence of a hiatus hernia has been shown to correlate with increased risk of 

OADC (23).  Achalasia, a primary motility disorder of the oesophagus defined as the 

inability of the lower oesophageal sphincter to relax combined with abnormal motility 

in the remaining oesophagus, also correlates with increased risk of OADC (24).   

Figure 1.1: Risk factors for oesophageal adenocarcinoma, taken from 

Pennarthur et al in 2013 (1): 

Oesophageal adenocarcinoma 
• Symptomatic gastro-oesophageal reflux disease 
• Barrett’s oesophagus 
• Obesity 
• Tobacco use 
• History of thoracic radiation 
• Diet low in vegetables and fruits 
• Increased age 
• Male sex 
• Medications that relax the lower oesophageal 
sphincter 
• Familial history (rare) 

Causative factors, increasing the likelihood of OADC development 

 

1.2: Oesophageal Squamous Cell Carcinoma 

Although not to be investigated in this thesis, it is important to recognise that OADC 

is not the only frequent tumour type to affect the oesophagus.  In many countries, 

oesophageal squamous cell cancer is the predominant tumour type seen and indeed 

OSCC remains the most common oesophageal malignancy in the world.  The 

incidence of OSCC seen in the UK has remained largely static throughout reporting, 

while OADC has increased exponentially and continues to do so.  Risk factors for the 

two diseases vary, reflecting their very different pathogenesis and origins.  Risk 
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factors for OSCC are summarised in the figure 1.2 (1).  This disease, while 

associated with an equally poor overall outcome, behaves very differently from 

OADC, not least because of their location within the oesophagus, which is usually 

much more proximal (upper and mid oesophagus) than OADC.  OSCC’s are also 

associated with varying developmental risk factors.  Symptoms as well as diagnostic 

tests remain equivocal for both pathologies.  Curative treatment is again based on 

surgery and in those without metastatic disease will include oesophagectomy.   

Figure 1.2: Risk factors for oesophageal squamous cell carcinoma, taken from 

Pennarthur et al in 2013 (1) 

Oesophageal SCC risk factors 
• Tobacco use 
• Alcohol consumption 
• Mutations of enzymes that metabolise alcohol 
• Achalasia 
• Caustic injury 
• History of thoracic radiation 
• Low socioeconomic status 
• Poor oral hygiene 
• Nutritional deficiencies 
• Non-epidermolytic palmoplantar keratoderma 

Causative factors, increasing the likelihood of SCC development 

1.3: Junctional Tumours 

Over recent years, tumour classification has been given increasing significance.  It is 

important to ascertain the anatomical location of a gastro-oesophageal tumour as this 

has a bearing on therapy and prognosis.  Therefore the concept of a ‘junctional 

tumour’ was established.  In 2005, Siewert developed and published a classification 

which, despite initial poor acceptance, is now used routinely by clinicians in the 
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staging and assessment of junctional tumours (25).  Siewert classified these tumours 

according to the following:  

1. Type I - adenocarcinoma of distal part of the oesophagus (centre located 1-

5cm above the anatomic Gastro-oesophageal Junction.)   

2. Type II - adenocarcinoma of the real cardia (within 1cm above and 2cm below 

the GOJ.)   

3. Type III - adenocarcinoma of the subcardial stomach (2-5cm below GOJ.)  

Identification of these junctional tumours and their differentiation from true lower 

OADC and proximal gastric tumours is significant because of their varying survival 

rates, which are overall much lower (26).  Theories exist as to why this is observed 

including the relatively thinner muscularis layer in this region, combined with the 

relatively greater propensity for the tumour to have access to regional lymph nodes 

(retroperitoneal, gastric and mediastinal) making early metastatic spread to these 

lymph nodes much more likely. 

1.4: Survival of Oesophageal Cancer 

The interest in the study of oesophagogastric cancer is borne largely from this 

disease being associated with such a poor overall survival.  Diagnosis of 

oesophageal cancer in the UK can lead to an anticipated 5 year survival of only 14% 

(5).  Overall survival correlates with stage of tumour at presentation, and is 

significantly worsened by the presence lymph node disease.   

1.5: Clinical Features of Oesophageal Cancer 

Of the patients who have symptomatic Oesophageal Cancer (OC), the most frequent 

symptom is dysphagia (difficulty swallowing with the sensation of food becoming 
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“stuck” in the gullet) (27).  Daly et al in 2000 reported the incidence of presenting 

symptoms in OC as dysphagia (74%), weight loss (57.3%), gastrointestinal reflux 

symptoms (20.5%), odynophagia (pain on swallowing 16.6%), and dyspnoea (the 

feeling of being short of breath - 12.1%) (27). 

Clinical suspicion of such a lesion should lead to prompt investigation, ideally in the 

form of endoscopy.  This involves the passage of an oesophagogastroduodenoscope 

(OGD) flexible endoscope via the mouth, through the oesophagus and into the 

stomach.  This allows full visual inspection of the entire length of the oesophagus and 

stomach.  Thorough completion of this examination involves cannulation of the 

duodenum and examining to the second part (D2).  This examination has the 

advantage that any identified abnormality can be biopsied for histological analysis 

and provide a definitive diagnosis.   

1.6: Oesophageal Cancer Staging 

Once cancer of the oesophagus has been identified, it is necessary to accurately 

stage the disease to determine prognosis and treatment options.  This will include a 

contrast enhanced computerised tomography (CT) scan of the thorax, abdomen and 

pelvis, endoscopic ultrasound (EUS), Positron Emission Tomography (PET) CT and 

staging laparoscopy. 

EUS assesses the depth of the tumour along with regional lymph nodes.  It has 

demonstrated 71% correlation with overall histological disease stage, but it becomes 

significantly less accurate with early T1 tumours (28).  PET-CT further increases the 

detection of metastatic disease over conventional CT alone (29).  Patients with 

junctional ADC will also require a staging laparoscopy.  This involves, under general 
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anaesthetic, a camera being inserted through the umbilicus and a thorough visual 

inspection of the abdominal cavity where any abnormality can be biopsied.  This 

allows the identification and sampling of metastatic lesions which are small and 

would not be seen on conventional imaging (30).  The final aspect of this operative 

staging process is peritoneal lavage.  The abdominal cavity is washed with fluid 

(saline) which is then aspirated, collected and sent for cytological review by a gastro-

intestinal histopathologist.  Presence of peritoneal disease, either visually (confirmed 

with biopsy) or on review of the fluid aspirate for cytology, will mean that the patient 

cannot be cured by resection and should therefore be offered palliative treatments.   

1.6.1: Interpretation of Staging Investigations 

Information obtained from the above investigations, designed to assess disease 

severity and spread, will be entered into the TNM staging score which provides an 

internationally understood nomenclature and is now in its 7th edition (31).  In this 

system, T represents the local tumour characteristics; N represents the presence or 

absence of nodal disease, which can be further broken down into the anatomical 

location of those nodes.  Finally, M represents the presence or absence of distant 

metastatic disease.  This staging tool, while used in numerous cancers, has specific 

characteristics for each tumour type.  Importantly, this staging system allows the 

multi-disciplinary team to determine whether the patient should be offered aggressive 

therapy with the intention of cure, or have their symptoms and disease controlled with 

palliative (none curative) therapy, in an internationally recognised format understood 

by all. 
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Figure 1.3:  TMN staging system for Oesophageal Cancer (32) 

Primary Tumour (T) 
TX Primary tumour cannot be assessed 
T0 No evidence of primary tumour 
Tis High-grade dysplasia 
T1 Tumour invades lamina propria, muscularis mucosae, or submucosa 
T1a Tumour invades lamina propria or muscularis mucosae 
T1b Tumour invades submucosa 
T2 Tumour invades muscularis propria 
T3 Tumour invades adventitia 
T4 Tumour invades adjacent structures 
T4a Ressectable tumour invading pleura, pericardium, or diaphragm 
T4b Unresectable tumour invading other adjacent structures, such as the aorta, 

vertebral body, and trachea 
Regional lymph nodes (N) 

NX Regional lymph node(s) cannot be assessed 
N0 No regional lymph node metastasis 
N1 Metastasis in 1-2 regional lymph nodes 
N2 Metastasis in 3-6 regional lymph nodes 
N3 Metastasis in 7 or more regional lymph nodes 

Distant metastasis (M) 
M0 No distant metastasis 
M1 Distant metastasis 
This TMN system allows tumour characteristics to be described in an internationally understood 
nomenclature. 

 

1.7: Management of Oesophageal Carcinoma 

Having progressed through the above staging process, patients with oesophageal 

carcinoma will be divided into two basic categories - those for whom treatment 

should be employed for potentially curative intent, and those for whom only palliative 

treatments are possible.  Curative intent will include patients whose disease is limited 

to the surgical resection field, in the absence of invasion of local structures and 

similarly the absence of distant metastatic disease.   
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Patients for whom the staging process predicts no chance of cure or for those who 

are deemed unfit for major surgical resection will be offered palliative treatment.  This 

may include palliative chemotherapy, the benefit of which would be to slow the rate of 

progression.  Other strategies, particularly in those patients for whom swallowing has 

been rendered difficult/impossible, include the insertion of an oesophageal stent to 

dilate the gullet and allow the passage of liquid and food boluses.  Should stent 

insertion not be possible, patients might be offered a procedure to insert a 

percutaneous feeding tube to preserve nutrition and prevent dehydration while 

making full use of their functional gastrointestinal tract, thereby avoiding the need for 

intravenous nutrition therapies.  Should none of these be possible, the patient will be 

offered best supportive care (33). 

Patients who have a favourable disease stage, suggesting cure may be possible, will 

be offered neoadjuvant chemotherapy to control systemic disease which was been 

shown to significantly improve three year survival (34, 35), followed by surgery.  

Having completed this course, or if the patient is unable to tolerate the 

chemotherapy, surgery will be considered.   

Surgery remains the only potentially curative treatment for oesophagogastric cancer.  

For oesophageal and upper junctional tumours this will include an oesophagectomy 

(removal of the oesophagus).  Historically this has been performed through both an 

abdominal and right sided thoracic incision.  The diseased oesophagus is removed, 

along with corresponding lymph nodes.  Gastrointestinal continuity is restored by 

creating a gastric conduit.  The stomach is mobilised from all of its attachments in the 

abdomen and moved into the chest.  Subsequent removal of the greater curve of the 

stomach creates a neo-oesophagus tube.  More recently, this procedure has been 
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performed using a keyhole technique – a procedure known as “minimally invasive 

oesophagectomy” (MIO).  This is now a treatment option for selected patients in large 

upper GI surgical units with the necessary experience and skills (36, 37).   

1.7.1: Complications of Oesophagectomy 

There can be little doubt that oesophagectomy is a significant surgical procedure and 

therefore carries risk of both morbidity and mortality.  The 30 day mortality rate from 

published UK figures stands currently at <2% (38)  This procedure carries significant 

risk of morbidity in the large part due to it being one of the few surgical procedures 

where both the abdominal and chest cavity are explored.  Morbidity, or disease 

brought about as a consequence of this operation, can be serious and life-

threatening.  These are defined in figure 1.4.   

Figure 1.4: Short-Term Outcomes Following Open Versus Minimally Invasive 

Oesophagectomy 

Complication % Affected 
Angina 2.9 
Myocardial Infarction 0.7 
Congestive Cardiac Failure 0.9 
Atrial Fibrillation 9.5 
Pneumonia 18.8 
Pleural effusion 16.5 
Respiratory failure 3.8 
Other Respiratory Complication 3.3 
Deep Vein Thrombosis 0.6 
Pulmonary Embolism 1.5 
Stroke 0.2 
Renal Failure 1.9 

Table adapted from: Short-Term Outcomes Following Open Versus Minimally Invasive 
Esophagectomy for Cancer in England: A Population-Based National Study. Mamidanna et al.  Annals 
of Surgery 2012 (39).  The above table lists complications seen after oesophagectomy, in addition to 
the percentage of patients who will experience them in the post-operative period. 
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1.7.2: Alternative Therapeutic Strategies 
 
With the associated risk, strategies for treating OADC avoiding oesophagectomy are 

being developed, some of which are already in common clinical use.  These include 

endoscopic resection methods for small, early tumours where there is no lymph node 

involvement (T1a N0 M0) (40).  However, while macroscopic lymph node disease is 

relatively easy to diagnose, microscopic disease is currently impossible to predict and 

there is a danger such patients will be undertreated by endoscopic therapy alone, if 

nodes containing microscopic tumour cells are not removed (41).  Such patients 

should be followed carefully after their procedure, and salvage oesophagectomy 

should be considered early where there is disease recurrence (42). 

 

1.8: The Multidisciplinary Management of the Cancer Patient 

The management of oesophageal tumours should now occur in a tertiary referral 

Upper GI cancer centre.  This allows dedicated and specialist care for upper GI 

pathology across the country, promoting the development of specialist teams for 

optimal patient management and outcome.  This also facilitates formalised research 

and training in the management of upper GI cancers.  Having dedicated centres also 

allows the development of the multi-disciplinary cancer team.  This should in general 

consist of dedicated surgeons, oncologists, radiologists, histopathologists, dieticians, 

physiotherapists and clinical nurse specialists for the optimal patient management 

and outcome.   
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1.9: Barrett’s Oesophagus 

Barrett’s Oesophagus is a phenomenon observed in the lower gullet where the 

normal squamous mucosa changes to a columnar epithelium.  The description of 

Barrett’s oesophagus was introduced in 1950 by Dr Norman Barrett.  He described a 

phenomenon of lower oesophageal cell metaplasia; where by normal squamous 

epithelium is replaced with an intestinal type columnar epithelium (43).  Numerous 

hypotheses exist as to the cause of this event.  Initially, this was assumed to be due 

to a “short oesophagus” syndrome, whereby gastric mucosa was pulled into the 

thorax as a consequence of the oesophagus not being of full length.  There is now 

consensus that this results from prolonged exposure to stomach acids and bile salts 

which reflux into the oesophagus causing chronic inflammation and tissue damage 

(44).   

Over time, and driven by chronic inflammation, this metaplastic change is observed 

(45).  For most, this metaplasia may be regarded as protective to the lower 

oesophagus.  However, BO is associated with an increased risk of future 

development of OADC.  For the majority of patients, their Barrett’s oesophagus will 

never develop beyond this benign metaplastic cell change (46, 47).  However in a 

small number of patients, presumably driven by the inflammation process, 

metaplastic cells will develop dysplasia – a warning sign of malignant potential.   

The presence of cellular dysplasia within an area of Barrett’s can be challenging to 

describe, even by experienced and dedicated GI histopathologists (48).  Dysplasia 

can range from mild to moderate and finally severe or high grade.  This difficulty in 

defining grade of dysplasia is usually as a result of the degree of inflammation of the 
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tissues.  Upon reaching high grade dysplasia however, the chance of the patient 

developing adenocarcinoma is much greater (49) and in situ OADC/early grade 

OADC is often seen in these specimens should sampling be adequate.  These 

patients therefore require urgent therapy.  The overall risk of developing cancer or 

high grade dysplasia is reported as 0.28% per year in men and 0.13% per year in 

women (47). 
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Figure 1.5: Oesophageal Microscopy  

(a) 

(b) 

(c) 

Oesophageal microscopy demonstrating Normal oesophageal squamous mucosa (a), Barrett’s 
metaplasia in squamo-columnar junction (b) and Oesophageal Adenocarcinoma (c) 
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Risk factors for the development of BO are similar to those of OADC and include 

GORD (50-54), being male (55) and increasing age (51, 53).  Other risk factors seem 

contradictory in the literature, particularly the association with obesity as body mass 

index seems to have poor correlation (10, 56) whereas abdominal circumference (56) 

and waist to hip ratio (57) seem superior predictors. 

1.10: The Development of Oesophageal Adenocarcinoma from Barrett’s 

Oesophagus 

Barrett’s adenocarcinoma develops along the well-established metaplasia-dysplasia-

carcinoma sequence, a process driven by chronic inflammation (58).  It is assumed 

that OADC originates from Barrett’s Oesophagus in the majority of cases.  Despite 

this, most patients will never have had investigations or be known to have BO until 

their cancer is diagnosed and resected.  In many OADC cases, upon histological 

review, BO will be identified surrounding the tumour.  However this is not observed in 

all cases.  It is assumed therefore that where BO cannot be identified, the tumour 

must have overgrown any remaining BO.  It is also assumed that, where BO can be 

readily identified in these samples, this was the origin of the tumour and that this 

specimen of BO must be “progressing” BO (BO which has gone on to form a Barrett’s 

Adenocarcinoma (BA)).  Recent publication has shown only a small percentage of 

patients with OADC have a prior diagnosis of BO (7.3%) but where this diagnosis is 

known, patients are diagnosed with tumours at a significantly earlier stage (59).   

The assumption that BO is the origin of the OADC, where there is evidence of 

metaplasia at the margin of the tumour features repeatedly in genetic research 
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publications in the field, and is a point which is seemingly accepted with very little 

argument, despite its obvious pitfalls.   

We currently lack the ability to be able to determine, at time of diagnosis of BO, 

which patients will go on to form OADC.  While other premalignant conditions have 

surveillance programmes in place, specifically designed to detect early neoplastic 

progression, there has been variation in surveillance programmes employed between 

individual clinicians and units.  While some institutions have employed a programme 

of endoscopic assessment every 1-2 years, others have discharged patients with BO 

and only suggest re-investigation should symptoms change.  The on-going MRC 

funded BOSS study will aim to answer which of these is the best course and aims to 

prospectively monitor BO patients with either frequent endoscopic assessment or a 

“watch and wait” policy (60), comparing surveillance endoscopy every two years with 

endoscopy at need.  

Due to the lack of clear consensus on the management of the BO patient, guidelines 

have recently been published by Fitzgerald et al on behalf of the British Society of 

Gastroenterology (51).  These guidelines suggest routine surveillance every three to 

five years in the BO patient, with treatment suggestions for those with dysplasia.  The 

differentiation between low and high risk BO is currently based on length of BO 

segment, with the differentiation currently being set at 3cm.  There are no routine 

biomarkers in use to help stratify patients into low or high risk of cancer development. 

It is clear that there is a requirement in this condition for a robust method of 

predicting which patients will progress both to dysplasia and cancer at the time of 

diagnosis of non-dysplastic BO.  It is highly likely if these patients experience 
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worsening symptoms they will already be advanced along this pathway at the time of 

re-presentation.  This proposed surveillance programme for patients with BO will 

generate a huge work load given the ever increasing incidence and the relatively low 

conversion/progression rate.  Cost implications do need to be considered and will no 

doubt be extremely expensive given the current need for OGD as a diagnostic test.  

As a potential replacement for an OGD, there are on-going studies to assess a novel 

device known as the “cytosponge.”  

Figure 1.6: The Cytosponge (61) 

 

This device is swallowed as a capsule, the coating of which dissolves in the stomach 

acid to release a small sponge, which is then pulled out through the oesophagus and 

samples cells in the process.  While early in its development, provisional results 

seem promising in terms of its sensitivity and specificity and this test seems 

preferable for patients.  It also has the advantage of being significantly cheaper (61-

63) than standard endoscopy and can be performed in the community.   
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While surveillance strategies will detect early neoplastic change in the BO patient, 

there is huge need for a method to be able to risk stratify patients with non-dysplastic 

BO.  Numerous endoscopic treatment modalities now exist for the management of 

patients with BO including those with dysplasia (64, 65).  These include endoscopic 

mucosal or submucosal resection and ablation therapy, all of which are designed to 

remove/destroy the areas of abnormality.  Having an established treatment proves 

the need for risk stratification in these patients as the pathology can be arrested prior 

to the development of a cancer, if high risk patients can be identified more 

reproducibly.  Such a tool would enable a risk stratified surveillance programme 

allowing a focussed approach, investigating only those deemed to be at high risk of 

progression to cancer.  Those with a predicted low risk would be reinvestigated only 

should their symptoms change/worsen.  This would result in significant advantages to 

both patients and the health care system.   

Avoiding unnecessary endoscopy in a low risk population would have the obvious 

advantage of not requiring an unpleasant investigation but would have large cost 

savings over surveying all those with BO.  An evidence based surveillance 

programme for those deemed high risk should see an improved disease detection 

rate, in addition to diagnosing those who have developed cancer at a much earlier 

and therefore more treatable stage.  This should also therefore lead to improved 

survival in this group. 

A surveillance strategy designed to detect pre-neoplastic dysplasia would correlate 

with cancer avoidance as we now have acceptable treatment methods for such 

patients to arrest progression before they develop cancer.  This would therefore be a 

robust and financially viable tool to be implemented in every day clinical practise.  
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This thesis will aim to develop a robust biomarker for this task, leading to 

development of a clinically useful test which could be employed to risk stratify this 

patient group. 

1.11: Epigenetics of Oesophageal Adenocarcinoma and Barrett’s Oesophagus 

1.11.1 Epigenetics 

The role of somatic mutation in the initiation of tumourgenesis is well understood, 

with multiple pathogenic driver mutations being identified across multiple tumours 

types, most notably TP53 (66-69).  However, the role of epigenetic modification in 

tumourgenesis is less well understood, but its role in development of many cancers is 

increasingly being described (70-72).  Moreover, epigenetic change may well happen 

much earlier in the cancer developmental pathway and, as a direct result, provide a 

more appropriate target for both predicting its development and potentially arresting 

tumourgenesis should a suitable epigenetic modulator be identified.   

While direct genetic effects exert their role by altering the deoxyribonucleic acid 

(DNA) sequence, epigenetic change elicits the same overall effect while maintaining 

the original DNA code (73).  These effects seem to have greatest impact in the pre-

neoplastic phase but also appear to be most prevalent in the inflammatory 

environment in which many solid tumours flourish (74, 75).  Therefore it is likely that 

epigenetic changes are driven by this inflammatory state.   

Epigenetics includes the study of several different mechanisms of transcription 

control, the most common of which being histone modification and DNA methylation.  

Histones are crucial in the “packaging” of DNA and they are responsible for the 

formation of nucleosomes.  The major protein components of chromatin are histone 
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proteins.  Together, they may be considered to act as the structure around which 

DNA will wrap and fold, thus dramatically decreasing the length of the DNA strand.  

The proteins formed by histones can have their shape altered by a modification in the 

sequence of these amino acids.  Numerous modifications have been described, 

although very few have a known effect.  It is better understood however that 

modifications in the amino acid sequence of histones can either increase or decrease 

transcription and a small number of these have now been described (76).  

1.11.2: DNA Methylation 

This process, in its most simple form, is the addition of a methyl group to the DNA 

chain and thus represents a form of alkylation.  In humans, DNA methylation occurs 

at cytosine-phosphate-guanine sites (CpG sites).  Methylation of a cytosine will result 

in its conversion to 5-methylcytosine.  This process in humans is catalysed by the 

enzyme DNA methyltransferase.   

It is reported that most human CpG sites are methylated (80-90%).  However, there 

are areas within the genome that are “gene rich” and these have become known as 

CpG islands.  These regions are required to be greater than 200 base pairs, and 

contain a guanine-cytosine percentage of greater than 50%.  Interestingly, none of 

the CpG sites within these areas are methylated in the normal state.  These areas 

are common in the promoter region of most genes, including all those which have 

ubiquitous expression levels (77, 78).   

CpG methylation is now understood on the whole to correlate inversely with 

expression (79).  Therefore a fully methylated gene should be expected to have no 

expression and visa-versa, although there are some genes where the converse 
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applies.  It follows that if methylation levels are altered in various disease and pre-

cancerous tissue states, then expression of genes of interest can be altered.  This is 

of maximal relevance in Tumour Suppressor Genes, where the inactivation of such 

genes through methylation can lead to uncontrolled cell proliferation and the 

formation of a tumour.    

1.11.3: Methylation in OADC 

Aberrant DNA methylation is now known to be a common event in many human 

tumours and this is seemingly also the case in OADC (80).  In the study of the 

oesophagus, methylation has been reviewed in the context of varying tissue states 

(BO, low grade dysplasia (LGD), intermediate dysplasia and high grade dysplasia 

(HGD) as well as OADC) both as an adjunct to diagnosis (specifically in the context 

of dysplasia where this can be difficult to assess microscopically) but also as a 

biomarker which can be detected in patients tissue, and perhaps even more usefully 

in blood.   

Numerous implicated genes have been reported in the literature in the assessment of 

both BO and OADC.  The majority have focussed on the discovery of a biomarker for 

the identification of cancer.  Less commonly, researchers have investigated the role 

of methylation in BO and fewer again have proposed this as a tool for predicting the 

progression of BO towards OADC (81).   

When reviewing the literature in this area, it is apparent that most of this methylation 

research has been carried out on small numbers of patients.  Another concern is that 

all clinical subsets (defined by tumour stage) of OADC have been treated as one 

group, rather than distinct entities.  There is no data available to gauge whether this 
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is reasonable, or that all tumours behave in the same way.  The variation in clinical 

behaviour between aggressive and none aggressive tumours might well suggest an 

underlying difference in the biology of these tumours, which is likely to be reflected in 

methylation status.  

Several other observations can be drawn specifically in relation to BO.  Many of the 

samples used in the literature fail to discriminate between BO with or without 

dysplasia and it would be reasonable to assume that dysplastic BO, which has by 

definition already progressed along the metaplasia-dysplasia-carcinoma pathway, will 

behave in a very different way and therefore have different methylation signatures to 

pure metaplasia.   

Caution must also be used when reviewing the literature in the context of progressing 

and non-progressing BO.  Due to the often long time scale involved before 

progression to OADC may be seen (20+ years) and the relatively small number of 

patients with BO who will progress beyond pure metaplasia, it is a challenge to 

identify suitable patients and therefore tissue for the retrospective analysis of BO 

progression.  Conducting this type of study prospectively, while more rigorous 

scientifically, would inevitably require a lengthy study period.  As a consequence, 

researchers have routinely taken samples of BO at the edge of tumour resections to 

be representative of BO which has progressed.  This assumes that the genomic 

changes will be the same as a sample of BO where there was no tumour.  This 

methodology assumes that there is no field effect change in the oesophagus caused 

by the cancer.  In the absence of good quality evidence, this assumption may not be 

reasonable.  It was deemed vital in this study not to make the same assumptions as 

these remain unproven and this resulted in much time being spent obtaining accurate 
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tissues to avoid such potential bias and strengthen any conclusions that are 

generated.   

1.11.4: Inflammation in the Oesophagus 

It is thought that the primary driver initiating metaplastic change in the oesophagus is 

chronic acid exposure causing inflammation (82).  While in some patients there is an 

inherent weakness of the lower oesophageal sphincter mechanism, this is in general 

a disease of the overweight and obese where an increase in intra-abdominal 

pressure will facilitate and drive gastro-oesophageal reflux in the presence of an 

otherwise normal sphincter complex (18, 55, 56, 83).  

The link to inflammation is supported by the observation that anti-inflammatory drugs 

can lead to a reduction in the number of cases of OADC (20, 84, 85).  A chronic 

inflammatory state is well known to drive epigenetic change (86) and may activate or 

supress numerous pathways due to varying methylation signatures. 

 

1.12: Methylation Markers in Oesophageal Adenocarcinoma and Barrett’s 

Oesophagus 

The literature reports numerous methylation markers which have the ability to 

differentiate an oesophageal tissue sample into normal mucosa and OADC.  These 

reported markers and their relevance are described below, differentiated by the 

reported gene of interest.  
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1.12.1: P16/CDKN2A  

Many tumour types demonstrate aberrant methylation and/or mutation in CDKN2A 

including colorectal cancer and pancreatic cancer (87).  CDKN2A is a cyclin-

dependent kinase which functions as a tumour suppressor gene by regulating cell 

cycle progression through the G1/S restriction point.  It achieves this function by 

binding to cyclin-dependant kinases 4 and 6 which in turn prevent phosphorylation of 

the retinoblastoma protein.   

Mutations found in CDKN2A in BO and OADC have been shown to be consistent 

with chronic inflammation and therefore show oxidative DNA damage as a marker 

(88).  Studies have assessed its relevance in both BO and OADC and its ability to be 

used as a biomarker of either cancer or progression.  Several studies have now 

shown that CDKN2A mutations and variation in methylation levels are a very early 

event in both BO and its surrounding squamous epithelium (89).  They also appear to 

occur and be detectable long before other important mutations for example in TP53.  

CDKN2A methylation was assessed in 2002 by Bian et al.  They concluded that 

CDKN2A methylation was observed in 0% of normal tissues, 33% of metaplastic BO 

tissues and 82% of OADC.  In addition, loss of p16 expression correlated with 

CDKN2A methylation (p<0.00001) and that this methylation was the predominant 

cause of loss of expression (90).  

1.12.2: VIM (Vimentin) 

VIM hypermethylation has been reported in colorectal carcinoma and is occasionally 

used as a biomarker to identify cells which have mesenchymal origin, for example 

identification of certain sarcoma tumours.  This protein forms a major component of 
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the cytoskeleton of mesenchymal cells, which explains its use in the context of 

sarcoma recognition.  In the context of the oesophagus, Moinova et al in 2012 

demonstrated that VIM is methylated in 91% of BO, 100% of samples showing high 

grade dysplasia and 81% of OADC specimens (91).  However, in normal control 

oesophageal tissues, VIM hypermethylation was not seen.   

The use of this marker in serum for non-invasive, non-tissue dependant diagnosis 

was investigated by Zhai et al.  They concluded that VIM methylation could be used 

to distinguish between tissue types, but also that this can be detected in cell free 

circulating DNA thus providing a potentially useful, none invasive biomarker (64).  

This study was small and would need validating in a large clinical trial.  

Lind et al studied VIM hypermethylation in GI cell lines including bile duct, gall 

bladder, stomach, liver and pancreas.  The group showed that overall 75% of these 

cell lines were methylated.  They also report that methylation is seen in other non-GI 

cancer cell lines including breast and uterus.  They conclude therefore as a blood 

marker of colorectal/Gastro-intestinal malignancy this is insufficiently specific and that 

stool analysis could be more beneficial to detect GI tumours prior to invasive 

diagnostic testing (92) but this has not been validated in a large cohort.  

1.12.3: P14ARF 

This tumour suppressor gene is a key regulator of the P53 pathway.  Investigations 

by Huang et al found expression of this gene to be highly significant in relation to 

both progression of tissue from BO to cancer but it also appears to have a role in 

prognosis, with those patients demonstrating silenced genes having a far poorer 

outcome than those with normal expression.  The mechanism of this silencing 
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appears to be both CpG methylation but also Histone-H3 methylation and these 

appear to be independent in this study.   

They also demonstrated that silencing of this gene can be reversed through cell line 

exposure to 5-aza-2’-deoxycytidine (an inhibitor of the enzyme DNA 

methyltransferase).  The ability to re-express p14ARF, when it may be associated 

with up to 30% of OADC, would be a potentially useful tool in halting the progression 

of BO to OADC but also improving prognosis in patients in whom the disease is 

already well established (93). 

1.12.4: CDX2 

Caudal-related homologue 2 (CDX2) is a gene involved in the regulation of early 

embryonic development, specifically axial patterning of the alimentary tract and is 

expressed in cells from the duodenum to the rectum (94).  It is known to be 

expressed in the colon and small bowel but not in the stomach or the oesophagus.  

Significant research has looked into the effects of this gene in colorectal cancer with 

multiple studies demonstrating a loss of expression of this gene (95-97). 

In the oesophagus, it has been demonstrated that CDX2 expression varies 

depending on the tissue state examined.  37% of oesophagitis specimens showed a 

greater expression than normal oesophagus tissue, compared to 91% of BO tissues.  

In OADC, this decreased to 57%.  This is compared to 0% being seen in normal 

oesophageal tissues.  However, when examining the methylation patterns for the 

promoter region of CDX2 in both normal oesophageal tissue as well as OADC, there 

was no difference seen despite variation in expression (98).  This was also observed 

by Makita et al where they confirmed expression of CDX2 irrespective of its promoter 
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methylation status (99), although the method used (methylation specific polymerase 

chain reaction - MSP) may have overestimated methylation it is an insensitive 

technique for ascertainment of methylation status. 

1.12.5: JAK/STAT/SOCS 

Cytokine signalling depends on the activation of intracellular molecules including 

JAKs (Janus family kinases) and STATs (signal transducers and activators of 

transcription).  The later discovery of the SOCS (suppressor of cytokine signalling) 

family of molecules has led to further interest in these pathways and therefore 

increased investigation.  SOCS, which act as negative feedback regulators of 

cytokine signalling, are novel JAK regulatory proteins 2, 3 and 4.   

Tischoff et al in 2007 investigated the role of SOCS-3 and SOCS-1 in the 

pathogenesis of OADC.  They demonstrated that although SOCS-1 has a minor role 

in this process, SOCS-3 promoter methylation occurred in 74% of OADC.  In cell 

lines, this correlated with a decrease in SOCS-3 transcription and therefore protein 

expression, however they were able to reverse these levels again using 5-aza-2-

deoxycytidine (100).  

1.12.6: Wnt Signalling and Secreted Frizzled-Related Proteins 

The Wnt signalling pathway is an intricate ensemble of proteins that has a major role 

in gene transcription and cell shape through cytoskeletal regulation and calcium 

homeostasis.  In short, the Wnt signalling pathway begins by the binding of a Wnt 

ligand onto a Frizzled receptor protein located in the cell membrane.  Activation of 

this frizzled receptor in turn leads to the activation of the Intra-cytoplasmic 

dishevelled protein.  This ultimately results in the build-up of β-catenin within the cell.  
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β-catenin build up is usually avoided due to it being ubiquinated which results in its 

movement to the proteasome for digestion.  This is achieved by a complex, formed 

from protein phosphatase 2A, Axin and APC.  Binding disrupts the function of this 

complex allowing the accumulation of β-catenin which moves to the nucleus and 

leads to the induction of gene transcription.  It follows therefore that any part of this 

pathway which becomes disrupted would lead to a cell being more tumourigenic due 

to loss of this regulation.   
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Figure 1.7: The Wnt Signalling Pathway adapted from Baron R, Kneissel M 

(101) 

 

The role of the sFRP genes have been evaluated in BO and OADC.  The first of 

these by Zou et al investigated the methylation pattern seen in normal oesophageal 

epithelium, BO and OADC.  The study analysed sFRP 1, 2, 4 and 5.  It concluded 

that, as expected, there were low levels of methylation in normal tissues (10, 67, 0 

and 14% respectively) which increased dramatically by the time metaplastic tissue 

was analysed with hypermethylation seen in all genes (81, 89, 78 and 73% 

respectively).  Methylation increased only marginally further between BO and OADC.  

As anticipated, hypermethylation lead to a decrease in protein expression in cancer 
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cells and this correlated inversely with grade and stage of tumour (102).  This 

suggests that many of the methylation patterns of OADC are already well established 

by the time BO is seen.  However, this study should be interpreted with caution as 

many of the BO samples analysed (33/40) showed evidence of dysplasia, with 13 

samples being high grade.  It is therefore unclear from these findings whether the 

sFRP genes are methylated in BO alone or whether this is seen in the context of 

dysplasia only.  When this group analysed BO vs LGD vs HGD, sFRP expression 

decreased as dysplasia increased.  This study proves that the varying levels of 

dysplasia should be analysed in their own right as individual sub sets and it is not 

representative to group all degrees of dysplasia into a single BO sample cohort.   

Clement analysed sFRP1 and 2 in addition to APC hypermethylation, with 

subsequent lack of expression being demonstrated in all BO and 95% of OADC.  

Interestingly, and following the pattern seen above, WNT2 expression in this study 

increased as dysplasia worsened (103).  This again is in-keeping with the 

observation that pure BO should not be analysed with dysplastic samples.    

The role of Wnt inhibitory factor-1 was analysed in the progression of BO to OADC 

(104) .  Findings revealed WIF-1 methylation and subsequent silencing was greater 

in OADC than in normal matched tissues.  Moreover, WIF-1 methylation was also 

seen in BO samples however the level of methylation was greater in those patients 

with BO who had progressed to cancer and much lower in BO samples where there 

had been no such progression, again demonstrating a potentially clinically useful 

biomarker of disease progression.    
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The presence of free serum hypermethylated DNA of the APC gene was analysed in 

patients with OADC.  This was only seen in 25% of OADC patients however its 

presence was more likely to correlate with poor disease prognosis when matched to 

survival data (105).  This again questions the possibility that biomarkers found in the 

tumour tissue can be detectable in the blood and this would provide a far more 

acceptable test to patients should one be identified in this study.   

1.12.7: Methylation of Cell Free Circulating DNA as Biomarkers 

More recently, genome wide comparisons of methylation patterns seen in cell free 

circulating DNA have been performed between signatures seen in tissue samples in 

comparison to those seen in the plasma.  Zhai in 2012 found in total 911 loci could 

discriminate OADC patients from normal, 533 that distinguished BO from OADC and 

a further 46 that differentiated BO from normal (106).  This again suggests a huge 

area of potential future blood based biomarker development. 

1.12.8: Other Markers 

Smith et al examined the methylation signatures for 9 genes known to be associated 

with other tumours and reviewed these in OADC and other oesophageal tissue 

states.  The 9 examined genes included APC, CDKN2A, ID4, MGMT, RBP1, RUNX3, 

SFRP1, TIMP3 and TMEFF2.  The methylation signatures of these genes were 

analysed in normal oesophageal tissue, BO (including tissues demonstrating 

metaplasia only along with high grade dysplastic samples) and OADC.  Their 

comparison demonstrated that BO tissue was closer in methylation pattern to OADC 

than to normal oesophageal tissue (107).   
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Numerous other studies have reviewed the methylation patterns of single genes in 

OADC.  The O6-Methylguanine-DNA Methyltransferase (MGMT) gene which is 

involved in DNA repair was investigated and despite hypermethylation being seen in 

BO and OADC samples, no correlation was seen in terms of disease severity or 

survival (108).   

Kaz et al, applied a Illumina GoldenGate methylation array to samples of squamous 

epithelium, BO, BO with HGD and OADC.  This group demonstrated overall 

methylation to increase between all groups except HGD vs. OADC – again 

confirming that HGD approaches OADC from a methylation perspective.  This group 

proposed 20 differentially methylated regions and genes between tissues.  These 

genes included RBP1, ALPL, POMC, VCAN and TIAM1 (109).   

1.13: Methylation in Progression of BO to OADC 

The ability to detect methylation signatures that can predict progression from BO to 

OADC, the so-called “high risk” BO, would provide a highly useful predictive 

biomarker.  This is particularly the case should there be a marker which can perform 

this prediction at the stage of non-dysplastic BO.  Investigation of this phenomenon is 

substantially more difficult as it requires sufficient time for patients to progress to 

OADC.  Another weakness is that BO may have been sampled at the edge of a 

tumour specimen and this taken to represent BO which has progressed to cancer.  It 

is unclear whether this is a valid assumption and whether field effect methylation 

change will affect any result seen. 

Wang et al assessed both APC and p16 methylation in normal oesophageal tissue, 

BO and OADC.  A separate subgroup analysis was undertaken between patients 
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who progressed beyond their baseline pathology (i.e. BO to dysplasia or OADC.)  

This group demonstrated that samples from patients who progressed had 

significantly elevated methylation of both APC (86% vs. 40%) and p16 (100% vs. 

33%) when compared to those who did not progress.  It was also shown that where 

there was no methylation of APC or p16, none of the patients progressed to cancer 

suggesting these to be significant biomarkers (110).   

The role of MGMT was studied in progression from BO to OADC using methylation-

specific PCR on 133 patients.  Hypermethylation was demonstrated in 78.9% of 

OADC and 88.6% of BO samples.  In normal tissue, this was seen only in only 21.4% 

of samples.  Assessment of subsequent protein expression by immunohistochemistry 

correlated hypermethylation with decreased protein levels.  This was significant as 

decreased expression correlated with a worse disease stage as well as lymph node 

positivity (111).   

PKP-1, found in epithelial layers as part of the desmosome complex, was examined 

by Kaz et al.  This group showed that while low methylation was seen in normal 

squamous tissue (9.1%), increasing methylation was observed throughout the states 

of pathology; BO - 12.8%, HGD/cancer – 33.3%.  When this gene was then later 

knocked down in a BO cell line, it was demonstrated that cells had a greater motility 

(112), which would be in keeping with the process expected in cancer cell.  

A cohort of progressors vs. non-progressors was analysed in a panel of genes 

including APC, TIMP3 and TERT.  Samples were collected from patients with BO and 

then observed for 4-10 years.  Over this period, several patients developed OADC 

and the methylation patterns of these samples were contrasted to patients who over 
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the same period had experienced no progression.  The results demonstrated an 

obvious difference between those who had and had not progressed.  In those 

samples where disease progression had been seen, 100%, 91% and 92% 

hypermethylation was observed for the above three genes respectively.  When 

contrasted to patients who had not undergone any progression, the levels observed 

were 36%, 23% and 17% respectively (113).   

A similar study (114) examined several other genes, many of which have been 

implicated previously.  However, they reported significant hypermethylation in 

progressing samples in p16, RUNX3 and HPP1.  The finding that TIMP3 and APC 

were independent risk factors for progression was not replicated in this study. 

A much larger study included 50 progressing patients and 145 none progressing 

patients.  Of the panel of genes analysed, significant hypermethylation was observed 

for HPP1, p16 and RUNX3 in the progressing patients.  Although this study 

examined a panel of potential methylation candidate genes, only the above three 

genes showed statistical differences between groups.  Results showed HPP1 

(p=0.0025), p16 (p=0.0066) and RUNX3 (p=0.0002) were significantly 

hypermethylated in progressing samples (115).   

AKAP12 (A-kinase anchoring protein) is a known tumour suppressor scaffold protein.  

Jin et al examined AKAP12 methylation in a large study, which examined 259 

oesophageal samples in which methylation was 0% for normal tissue, increasing to 

38.9% in BO and 52.2% in HDG and OADC.  They also demonstrated a field effect of 

methylation, whereby true normal squamous epithelium has a lower methylation level 

than normal tissue from a cancer patient (116).  This study, proposing a methylation 
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field effect change in the cancer patient, would bring into question the results of 

studies which have used BO at the edge of a tumour resection to represent 

progressing BO.   

Agarwal et al performed an array based approach to compare the methylomes of 

progressor vs. non-progressing patients.  Progressing patient’s original biopsies 

began either with no dysplasia, indefinite dysplasia or low grade dysplasia, making 

comparison difficult.  Their subsequent analysis of the top 25 differential methylation 

patterns surprisingly found only 3 gene regions with hypermethylation amongst the 

progression group (Pro_MMD2, Pro_ZNF358 and Intra_F10) with all the others 

showing hypomethylation (117).  This is the first such study that has demonstrated 

hypomethylation of genes in regard to BO progression.  

1.14: Summary of Methylation Markers 

There are clearly demonstrable differences in methylation patterns between tissue 

states.  Unfortunately, a lack of uniformity in the samples selected in these studies 

including peri-tumour BO taken to represent progressing BO, and BO taken in 

numerous states of dysplasia make it difficult to establish any overall representative 

findings.   

None of the studies use an objective, quantitative genome wide methylation platform 

to compare tissue types before proceeding to validation exercises and many studies 

include small sample numbers.   

The fact that methylation signatures of varying genes clearly show significant 

differences between tissues suggests pursuing the study of methylation to be of 

value in this disease in the hope of biomarker development.   
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1.15: Methylation Assessment Technologies 

1.15.1: Pyrosequencing 

This method of methylation assessment provides reliable quantification of 

methylation at individual CpG sites.  The process also incorporates inbuilt quality 

control mechanisms to ensure complete bisulphite conversion of the starting DNA 

material. 

Pyrosequencing has become known as the “sequencing by synthesis” technique for 

methylation assessment.  Nucleotides are added and incorporated into a DNA chain, 

which in turn releases pyrophosphate producing a light signal.  Methylation 

pyrosequencing requires the input of bisulphite converted DNA.  During the process 

of bisulphite conversion, un-methylated cytocines are converted to uracil.   Those 

which are methylated remain unchanged.  The assessment of methylation therefore 

comes from the comparison ratio of T and C nucleotides synthesised into the chain 

(118).  This method remains the gold standard for methylation assessment.  A 

diagram demonstrating the above is shown in figure 1.8.  The potential problem 

however, is that bisulphite conversion of DNA is not always complete.  Therefore the 

inbuilt control mechanism within the sequencing platform which makes an 

assessment of the success of conversion is essential.  Any sample in which there is 

incomplete conversion will be rejected.  
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Figure 1.8: Pyrosequencing Diagram 

 

This image has been created during "DensityDesign Integrated Course Final 

Synthesis Studio" at Polytechnic University of Milan, organized by 

DensityDesign Research Lab. Image is released under CC-BY-SA licence. 

Attribution goes to "Jacopo Pompilii, DensityDesign Research Lab". 

1.15.2: Golden Gate Methylation Array 

This now out dated methylation assessment platform allows the assessment of 1536 

CpG sites.  This method again uses a bisulphite converted DNA comparison to 

assess methylation of a particular CpG site.  Four probes are present for each of the 

CpG sites to be quantified.  Hybridisation between cytosine vs thymine (which has 

almost identical properties to uracil) provides the percentage methylation of a 

particular CpG site in a given sample.  This technology, while still widely reported in 

the literature, has generally been superseded by the Illunima 450 human methylation 

system which examines 485,000 probes in a genome wide assessment platform.  

The reason that this platform is now less commonly used is due to its flaws, which 

https://en.wikipedia.org/wiki/Polytechnic_University_of_Milan
http://www.densitydesign.org/
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include a limited panel of genes only, limited CpG’ targets (1536) and assay bias 

meaning methylation values are not reliable. 

1.15.3: Illumina Methylation 450 Array 

This latest technology for epigenetic-wide association studies, allows the direct 

comparison of 485000 individual CpG sites per sample.  Sites chosen were selected 

from a panel of experts.  As described by Illumina, the array  (119): 

“covers 99% of RefSeq genes, with an average of 17 CpG sites per gene 

region distributed across the promoter, 5'UTR, first exon, gene body, and 

3'UTR. It covers 96% of CpG islands, with additional coverage in island shores 

and the regions flanking them. Further content categories requested by the 

Consortium include: 

•CpG sites outside of CpG islands 

•Non-CpG methylated sites identified in human stem cells 

•Differentially methylated sites identified in tumour versus normal (multiple 

forms of cancer) and across several tissue types 

•CpG islands outside of coding regions 

•miRNA promoter regions” 

Again the array requires bisulphite converted DNA as a starting material followed by 

amplification of the entire genome using DNA polymerase.  The resulting DNA is then 

fragmented and purified before being hybridised to the bead chip, which is crucial in 

this platform.  In its most basic format, each CpG has two bead types, one of which 
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will represent the methylation strand and other the none methylated.  

Immunohistochemical staining of the comparison samples allows an assessment of 

methylated to unmethylated DNA strands when the chip is read. 

1.14: Thesis Aims 

The work presented in this thesis will aim to determine the relevance of methylation 

in the oesophagus.  Specifically, I aim to assess whether methylation patterns play 

any role as biomarkers of adenocarcinoma utilising pre-existing publications in this 

area.   

Should this be successful, I will employ a novel genome wide approach to seek 

biomarkers that have yet to be identified but which may be more robust by use of a 

genome wide interrogation of CpG sites.  Any such identified markers might also 

have implications for tumour biology, and these will be examined.  

Finally, I aim to use the same technology but with novel tissue sample selection to 

determine whether methylation markers can be utilised to predict a cohort of high risk 

non-dysplastic BO.  Additionally, I will assess methylation patterns in tumours with 

and without lymph node metastasis in an attempt to supplement the current cancer 

staging process, providing justification for oesophagectomy in early tumours where 

microscopic nodal disease is currently impossible to predict.  
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2. Research and Thesis Hypotheses 
The literature review shown before demonstrates that there is both a clinical need for 

biomarker/s to aid in the diagnosis of OADC, and provide inroads to the biology of 

this tumour.   

In addition, a discovery exercise to determine the ability of methylation to stratify the 

risk of progression in patients with Barrett’s Oesophagus towards cancer will be 

performed.  To date, there has been no genome wide methylation study comparing 

these two groups.   

I therefore hypothesise that: 

1. Methylation signatures will have the ability to differentiate tissue types to 

discriminate normal squamous tissue from Barrett’s Oesophagus and 

adenocarcinoma tumour tissue.   

2. Tissue discriminating methylation markers will have functional significance 

within the cell.  This will be assessed using an OE33 cell line model and 

methylation modulation using 5AZA.  The effects of demethylation on 

expression will be assessed 

3. Methylation signatures will be able to differentiate between patients with non-

dysplastic Barrett’s Oesophagus who over time do and do not progress to 

oesophageal adenocarcinoma. 

4. Methylation patterns will be able to supplement the clinical staging system 

where-by more aggressive tumours with lymph node involvement will reveal a 

different methylation signature to those in which there is no lymph node 

involvement.   
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3: Material and Methods 
3.1: Materials 

3.1.1Tissues 

Tissues used in this study were a combination of formalin fixed paraffin embedded 

(FFPE) samples and a smaller collection of fresh tissue samples.  FFPE tissue could 

be used in this context both due to availability but also due to the stability of 

methylation patterns in historical tissues.  In addition, the ability to use FFPE tissue 

for methylation assessment makes a clinical application easier. 

3.1.2: Chapter 4 Samples 

All samples were FFPE resection specimens.  OADC resection patients were 

identified from theatre records in the UHB operating log.  The log was tracked 

retrospectively until sufficient samples were identified.  Cases were included where 

the patient had undergone oesophagectomy (open or minimally invasive), and where 

the operation had been successfully completed.  Abandoned procedures or those 

where the patient had an oesophagectomy for squamous cell cancer or benign 

diseases were excluded.  Other rare tumour types were also excluded from the 

study. 

Tissue was acquired under an ethically approved request from the University of 

Birmingham Human Biorepository (HBRC).  Initially, diagnostic slides were retrieved 

from the archives and were then reviewed by a consultant histopathologist.  The 

diagnosis was of OADC was confirmed before determining whether there would be 

sufficient volume of the required tissue type in each sample.  Tumour and adjacent 

normal squamous mucosa was selected from each patient.  Where present, and in 



Page 42 of 181 
 

sufficient volume to allow sampling, BO was also identified and tissue blocks 

requested.  Where possible, blocks were selected where the entirety of that block 

represented the tissue of interest.  While this was frequently possible, this was not 

always the case.  Some blocks needed cold steel macro dissection and where 

required the area of interest on each block was identified by the same pathologist on 

a reference H+E slide, which was later used to cut out the appropriate tissue from the 

block sections.  

The selected block guide was re-submitted to the HBRC, along with instruction as to 

whether blocks required cutting into scrolls (where the entire block represented the 

tissue of interest) or trimmed and adhered to microscope slides (where further 

dissection was needed). 

60µm of tissue was requested in total.  Previous experience within the research 

group had determined that a minimum of 60µm of tissue was needed for adequate 

DNA extraction.  Therefore, where there was uniformity of tissue in the blocks and no 

further dissection was required, 3x20 µm scrolls of tissue were cut.  Where further 

dissection was necessary, 8 µm tissue slices were cut and adhered to a diagnostic 

glass microscope slide.  The tissue was not stained and no cover plate was applied.  

Eight of these slides per block were cut to allow a minimum of 60 µm of tissue.   

Where slides were produced and further dissection was needed, this was performed 

under microscopy using a scalpel blade.  The resulting tissue of interest was placed 

in a microfuge tube for DNA extraction.   
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3.1.3: Chapter 5 Samples: 

Many of the samples used in Chapter 4 were also utilised in Chapter 5.  However, 

additional samples were also required for revalidation studies.  It was desirable that 

these came from a secondary internal sample cohort, in addition to an external 

sample cohort.  Therefore, the theatre log review was extended to identify a further 9 

cases of oesophagectomy for OADC as per the above criteria.  In addition a similar 

cohort of cancer resection specimens were sourced from neighbouring Birmingham 

Heartlands Hospital utilising an existing tissue transfer agreement in place with 

HBRC.  The cases for inclusion were identified in the local trust.  Again all specimens 

were from OADC patients having undergone oesophagectomy.   

All diagnostic H+E slides were again reviewed by the same histopathologist, and 

blocks cut and prepared according the criteria given above by the HBRC and again 

supplied as scrolls (in microfuge tubes) or on slides needing further dissection.  

3.1.4: Chapter 6 samples: 

3.1.4.1: Non-Dysplastic BO samples 

In order to determine variation in methylation between progressing NDBO patients vs 

none progressing NDBO patients, external cohorts had to be sourced as there was a 

lack of longitudinal data in the local unit to be able to identify these tissues, and 

therefore extension to surrounding hospitals was required.  Specifically, it was 

important to track patients who had had a diagnosis of BO (non-dysplastic) in whom 

there were serial biopsies proving the progression or not of the disease process (i.e. 

the patients were enrolled in BO surveillance).  I am very grateful to Dr Nigel Trudgill 

at Sandwell General Hospital for providing access to his retrospective BO database.  
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Once this was obtained, all patients’ cases were reviewed in turn.  Dr Trudgill 

provided a list containing 37 patients who had progressed beyond base line 

pathology to OADC.  However when this list was scrutinised, many of the patients 

had dysplastic disease at the original biopsy.  Since the hypothesis for this work was 

to predict progression before dysplasia was seen, each of these cases had to be 

excluded.   

In addition, many of the patients identified had no evidence that they had ever been 

diagnosed with OADC.  This is believed to be a result of the tumour being diagnosed 

at a different unit.  However, these patients were also excluded as definitive evidence 

of tumour diagnosis was required for tissue validity.  While there were several 

patients who had only one BO biopsy prior to their OADC diagnosis, many had serial 

biopsies.  Where this was the case, each of these temporal biopsies were obtained to 

allow a separate review of the changes over time as the patient progressed towards 

cancer.  This resulted in 12 patients meeting the inclusion criteria, the majority of 

which had temporal biopsies.  Each of these cases were reviewed again by a local GI 

histopathologist to ensure original diagnosis of non-dysplastic BO was correct.   

None progressing samples were obtained locally.  Care was taken in attempting to 

match these samples in terms of gender and age and year of original diagnosis of 

BO.  To be determined non-progressing, the patient must have been enrolled in a 

surveillance programme for a minimum of 20 years and have temporal biopsies to 

within two years of the analysis.  If at any point the patient had a dysplastic sample of 

BO, this patient was excluded.  Again, each of the H+E slides were reviewed by a GI 

histopathologist to ensure no dysplasia was present and that samples represented 

BO. 



Page 45 of 181 
 

Due to the preparation of OGD biopsy samples in blocks to allow microscope 

examination, multiple biopsies were prepared alongside each other in the same 

block.  Not all of these samples may have been oesophageal biopsies, or have 

demonstrated NDBO.  Therefore, the examination of the slides by a histopathologist 

was crucial in the identification of the specific biopsy of interest so that the precise 

tissue was used in downstream analysis.  Much of the tissue used in this work, as a 

result of being from very historical samples and from such small biopsies, yielded 

very low amounts of DNA which was often of poor quality.  

3.1.4.2: Lymph Node Positivity Samples  

In order to determine markers of aggressiveness, one of two options was possible.  

As a marker of lymph node disease was sought, it was felt important to keep all of 

other aspects of the samples to be the same.  Therefore, it was felt there was little 

point comparing for example a T1N0 tumour with a T3N1 tumour as it might be easily 

predicted that there would be inherent differences in these samples other than their 

lymph node status (especially as hypermethylation is likely to be progressive with 

advancing tumour stage).   

This marker would demonstrate maximal clinical use in the early, small T1 tumours 

where lymph node disease if present is likely to be microscopic and therefore not 

identifiable by routine imaging techniques.  However, developing a cohort of 

resection patients in sufficient number of both T1N0 and T1N1 proved impossible.     

Due to the nature of OADC at presentation, and the need to standardise the tumour 

samples as much as possible, it was decided to use a T3 sample cohort.  While there 

was an abundance of T3N1 resection samples, difficulties were encountered gaining 
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enough samples of T3N0 disease locally, therefore some of these samples were 

again acquired from the local Birmingham Heartlands Trust through the pre used 

tissue transfer agreement of ethically approved tissues, facilitated by HBRC.  Once 

again, all tissues used had their H+E slides re-examined to determine diagnostic 

accuracy and were prepared and delivered in the same format described above – 

either as tissue scrolls where there was sample uniformity, or on microscope slides 

where further trimming was required.  

3.2: DNA Extraction 

Tissue (scrolls or dissection sections including wax) were placed into 1.5 ml 

microfuge tubes.  DNA extraction was performed using Qiagen DNeasy Blood and 

Tissue kits, following the manufacturer’s protocol.  ATL buffer was added to cover the 

tissue.  This equated to a volume of 360µL.  20µL of Proteinase K (20mg/mL) was 

added to each sample and the samples were incubated at 55°C, however they were 

vortex mixed every 2 hours during the day and left overnight.  Due to the large tissue 

volume in some samples (normally resection specimens), there was occasionally 

remaining visible tissue seen after 24 hours.  When this was the case, a further 20µL 

of Proteinase K was added and the samples left for a further 24 hours with periodic 

vortexing until no visible tissue remained.   

Once digestion was completed, samples were removed from the incubator and 

immediately centrifuged at 10,000 rpm for 1 minute to allow the wax to sit above the 

sample.  Microfuge tubes were left at room temperature to allow the wax on top to 

form a solid plug.  When solidified, the wax plug was punctured with sterile pipette tip 

which was subsequently discarded.  A new sterile tip was passed through the 
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opening created in the wax plug and the sample below extracted.  This sample was 

then placed into a new sterile microfuge tube while the wax was discarded.  This was 

repeated for all samples.   

Further DNA extraction was performed by following the Qiagen DNeasy blood and 

Tissue kit protocol for tissue samples.  200µL of Buffer AL was added to each sample 

and mixed by vortexing.  Following this, 200µL of 100% ethanol was added and 

again the samples were mixed by vortexing.  The entire volume was then added to a 

Qiagen mini spin column and centrifuged at 8000 rpm for one minute.  The flow-

through was discarded.  500µL of wash buffer AW1 was added to the columns which 

were centrifuged for 1 minute at 8000 rpm.  Subsequently, 500µL of buffer AW2 was 

added and samples were then centrifuged at 14,000 rpm for three minutes.  All flow-

through was discarded.  Spin columns were places in new sterile microfuge tubes 

followed by the addition of 200µL of buffer AE to the centre of the spin columns.  

Columns were incubated for one minute at room temperature before centrifuging at 

8000 rpm for one minute.  Where there was predictably a large amount of DNA from 

each sample (large starting amount of tissue), a second DNA elution was taken.  

Where starting samples were small (usually BO biopsy samples) this step was not 

performed. 

3.3: DNA Quantification 

Each sample of extracted DNA was then analysed on the Nanodrop (ND-2000) to 

assess DNA yield as well as purity of sample.  260/280 and 260/230 ratios were 

recorded to assess sample purity and minimise RNA/carryover contamination.  Any 

sample with a 260/280 ratio < 1.7 or 260/230 ratio > 1.8 was not used. 
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3.4: Nanodrop 

This machine uses spectrometry to analyse the DNA sample.  UV Light is passed 

through the sample, and the receiver measures the intensity of the light able to be 

transmitted through.  The resulting graph trace produced will not only provide the 

quantity of DNA in the sample, but will also define the purity of that sample, or more 

specifically the amount of contamination present.  These purity estimates are 

provided by the 260/280 and 260/230 measurements.  Samples which are outside 

the usual range were not used in experiments, as is it likely that the contamination 

would have skewed the results obtained.  

3.5: Bisulphite Conversion of DNA 

To assess methylation, it is necessary to bisulphite convert the DNA sample.  In this 

conversion, all un-methylated cytosine are converted to uracil, whereas those that 

are methylated remain unchanged.  This ultimately allows a comparison of cytosines 

to uracils in sequencing experiments.  It is the resulting ratio of cytocines and uracil’s 

that allow the pyrosequencer to establish the methylation percentage of any given 

sample.  This bisulphite conversion was performed using a combination of the 

Qiagen Epitect Plus Bisulphite Conversion Kit and Zymo DNA methylation bisulphite 

conversion kits.  Both achieve the same conversion reactions, but each have varying 

compatibility with downstream applications which determined the kit to be used and 

the temperature steps needed.  

In order to perform this conversion, 500 ng of DNA was added to a sterile microfuge 

tube.  This will be a variable volume depending on the resulting concentration of DNA 

achieved after the extraction elution.   
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3.5.1: Qiagen Protocol for Bisulphite Conversion 

RNA free water was added to the 500ng DNA sample to make a total volume of 

40µL.  85µL of bisulphite mix was added and finally 15µL of DNA protect buffer.  This 

made a total reaction volume of 140µL and a correctly made mixture turned blue 

upon the addition of the protect buffer.  This reaction volume was then placed in a 

thermocycler according to the following conditions: 95°C for 5 minutes to denature, 

60°C for 25 minutes as incubation, 95°C for 5 minutes as denaturation, 60°C for 85 

minutes to incubate, 95°C for 5 minutes to denature and a final 60°C for 175 minutes 

to incubate.   

After completion of this cycle, a hold stage was programmed to last indefinitely.  This 

was avoided as there was suspicion of DNA damage due to the compounds within 

the conversion mixture.  Therefore all samples were cleaned within 30 minutes of the 

termination of the bisulphite cycle. 

3.5.2: Qiagen Bisulphite Clean-up 

After the conclusion of the bisulphite conversion reaction it was again necessary to 

extract the resulting converted DNA for downstream reactions.  This process involved 

the following steps according to the manufacturer’s protocol: 

310µL of buffer BL was added to each reaction mixture and the sample vortexed 

before a further 250µL of ethanol (100%) was also added.  The sample was again 

mixed followed by a short centrifuge spin to push the entire sample to the bottom of 

the microfuge tube.  The resulting volume of sample was added to a bisulphite micro-

centrifuge tube and spun at maximum speed for 1 minute.   
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After each spin, the resulting flow through was discarded.  500µL of buffer BW was 

added to each tube and again spun at maximum speed for 1 minute with the resulting 

fluid being discarded.  The process was repeated with buffer BD, however before 

spinning the samples were incubated at room temperature for 15 minutes.  After 

discarding the resultant liquid, a further 2 additions of buffer BW were applied and 

centrifuged.  A final 250µL of ethanol was added and spun through the spin column 

before allowing all alcohol to evaporate.   

In order to elute the DNA, 20µL of buffer EB was carefully added directly to the 

central membrane of the spin column prior to the final centrifugation of 15000g for 1 

minute.  The resulting DNA was stored at -20°C until needed for downstream PCR 

reactions.  All samples were treated in this way.   

Control DNA (100% methylated and 100% unmethylated) was also subjected to 

bisulphite conversion in this way to be used as both positive and negative controls in 

the PCR and subsequent pyrosequencing reactions.   

3.5.3: Zymo Bisulphite Conversion Protocol (for compatibility with the Illumina 

450 Methylation array): 

500ng of DNA was used for this conversion reaction.  Firstly, as per protocol, CT 

conversion reagent was made as per instructions.  CT conversion reagent (Zymo) is 

a proprietary formulation of sodium bisulphite used in bisulphite conversion reactions.  

DNA was added to a sterile microfuge tube diluted with water to make a final volume 

of 50µL.  The resulting mixture was incubated at 37°C for 15 minutes.  100µL of the 

pre made CT conversion reagent was added to each of the reaction tubes and mixed 

thoroughly by vortex.  The sample was then placed in a thermocycler, and the 
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samples were all handled according to the modified Illumina array protocol: 95°C for 

30 seconds followed by 50°C for 60 minutes.  This cycle was repeated 16 times.  

Therefore this reaction was allowed to run overnight.  

On conclusion of the thermal programme, samples were placed in ice for 10 minutes.  

Meanwhile, 600µL of M binding buffer was added to a Zymo spin column followed by 

the sample from the conversion reaction which was then vortex mixed.  The sample 

was centrifuged at maximum speed for 30 seconds.  100µL of wash buffer was 

added and the sample spun again.  This was followed by 200µL of desulphonation 

buffer.  On this occasion, samples were incubated for 20 minutes before again 

spinning at maximum speed.  The flow through was discarded after each spin.   

200µL of wash buffer was added and centrifuged.  This was repeated.  Finally, the 

spin column was placed in a sterile microfuge tube before 10µL of Elution buffer was 

added to the centre of the spin column membrane.  Again the column was 

centrifuged at maximum speed for 30 seconds to elute the converted DNA.  Samples 

were immediately frozen at -20°C until ready to be used in the PCR reaction.   

3.6: Pyrosequencing PCR Reaction 

After selection of the appropriate gene/CpG site of interest, methylation insensitive 

primers were designed and sourced.  Primer design was performed using Qiagen 

PyroMark Primer Design software v2.0.  Primers were designed to flank CpG sites of 

interest.  Where the CpG site was an Illumina CG methylation probe, the probe 

location was retrieved from the UCSC genome browser and FASTA sequence 

retrieved for -200bp to + 200bp of the target CG dinucleotide.  Primer design settings 

were optimised to design amplicons suitable for FFPE pyrosequencing, with the 
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optimum amplicon size set to between 80-150bp.  All other settings were as per the 

standard Qiagen design parameters.  Primers were ordered from Sigma Aldrich 

Oligos, with the biotinylated pyrosequencing primer being purified by high 

performance liquid chromatography and the remainder by desalting.  

PCR optimisation was carried out for all reactions, initially via means of a gradient 

PCR.  Subsequent experiments revealed that although the PCR reaction was initially 

designed for 25µL reaction volumes, these did not routinely produce enough product 

DNA to obtain downstream results and therefore 50µL reaction volumes were 

routinely used.   

To perform pyrosequencing PCR, a Qiagen PyroMark PCR Gold kit was used.  The 

master mix volumes used in this methylation PCR reaction are shown in the table 

3.1, and follow the manufacturer’s guidelines.  

Table 3.1: Methylation PCR reagents and volumes 

Ingredient X1 volume µL Used volume (x2) µL 

Master Mix 12.5 25 

Coral load Dye 2.5 5 

Magnesium (3.5mM) 1.5 3 

Q5 reagent 5 10 

Primer (20mM) 2.5 5 

DNA 1 2 

Total 25 50 
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In addition to experimental DNA, each PCR and downstream pyrosequence was 

performed with 3 control reactions.  These included, for all runs, a water control as 

well as known 100% methylated DNA and also 100% un-methylated DNA.   

Table 3.2: Methylation PCR conditions 

Step name Time  Temperature (°C) 

Activation 15 Minutes 95 

Denaturation 30s 94 

Annealing 30s 56 

Extension 30s 72 

Number of cycle repeats 45  

Final extension 10 minutes 72 

 

3.7: PCR Validation 

Success of the PCR reaction was determined by agarose gel electrophoresis.  To 

perform this, a 1.5% agarose gel was made by boiling 0.75g of agarose powder with 

50mls of TE (x1).  This was heated in a water bath until all solid powder dissolved.  

Once cooled slightly, 2µL of ethidium bromide was added and mixed.  The resulting 

solution was then poured into a gel mould before being allowed to cool and solidify. 

When solid, the resulting gel was placed in an electrophoresis gel tank filled with TE.  

Samples were loaded into wells.  Due to the presence of the Coral Load in the 

original PCR reaction, no additional gel loading dye was required.  Samples were run 

at 90V for 33 minutes (after trials to show this produced the best quality bands).  A 

DNA ladder (Geneflow PCR Ranger, Product number L3-0001/L3-0024) was also 
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added to each gel to allow identification of product size.  An example of such a gel is 

shown in figure 3.1 

 

Figure 3.1: Agarose gel electrophoresis  

 

This example of electrophoresis shows post PCR DNA production for all samples.  The size of the 

DNA product can be ascertained from the DNA ladder also shown.  

 

After completion of the run, the gel was exposed to UV light to assess the product 

band.  Only if there was a good product band, but with no bands visible for water 

were the samples taken forward to downstream pyrosequencing.  Multiple issues 

were encountered with the presence of positive water bands from the PCR.  Steps 

were taken to avoid these which included changing of PCR reagents as well as 

primers which may have become contaminated.  All hardware was sterilised under 

UV light prior to commencing the PCR reaction.  This included all pipettes, tips, and 

microfuge tubes as well as reaction plates.  Reactions were set up in a sterilised PCR 

hood using filter tips and clean water samples for controls.  Intermittently positive 
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bands were seen in the water control, however when these samples were taken to 

pyrosequencing, no trace/result was produced.  Therefore, as long as the positive 

and negative controls were giving the expected results and the samples revealed 

results other than that of the water these results were permitted. 

3.8: Pyrosequencing 

Pyrosequencing is a semi-quantitative method of determining genetic sequence 

information that utilises pyrophosphate which releases light by catalysing an ATP 

reaction.  Resulting samples from the PCR were vortex mixed for 20 minutes with 

binding buffer (37µL) and a micro bead mixture (3µL).  This allows the DNA product 

from the PCR reaction to bind to the bead in the sample.  Only the DNA which was 

bound to this bead would be carried forward into the pyrosequence.  While this was 

mixing, a solution of annealing buffer (35µL) and relevant sequencing primer (5µL) 

was formed with the complimentary primer of the gene of choice being analysed.   

This primer solution was added to a pyrosequencing plate with 40µL of sequencing 

solution being added to each well of a 96 well sequencing plate.  After being 

thoroughly mixed, for maximal DNA attachment to the beads, each sample is picked 

up with the hedgehog device.  This device uses negative pressure to lift up the 

sample, retaining the beads with DNA attached while removing the liquid component.  

Therefore, as already stated, only DNA attached to the beads will be taken into the 

pyrosequence, while the remaining DNA in solution will be wasted.  The sample is 

then passed through various wash buffers.  These include 70% ethanol (200mls) 

followed by 0.2M sodium hydroxide solution (200mls) and finally pre supplied wash 

buffer (Qiagen PyroMark wash buffer (979008)) (200mls).   
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After the washing process, the beads are released into the sequencing primer by 

withdrawing the suction and allowing the beads to fall away from the suction device 

into the sequencing plate.  Due to the presence of beads in this otherwise colourless 

liquid, the resulting liquid then assumed a cloudy appearance.  Facilitation of the 

beads to fall into the sequencing solution was often required by agitation.  This 

sequencing plate was then heated to 80°C for 2 minutes on a heat block. 

The resulting plate, loaded with bisulphite converted DNA adhered to beads in 

sequencing primer solution, was loaded into the pyrosequencing machine (PyroMark 

Q96 ID).  The sequence to be examined, based on the sequencing primer, was 

loaded into the software.  Enzyme and substrate were added to the dispensing 

cartridge as well as each of the 4 nucleotides at a volume specified by the 

pyrosequencing software (Qiagen PyroMark Gold Q24 Reagents (970802)).  The 

sequence was then allowed to run.   

The pyrosequencer adds nucleotides to the sequencing plate in the dispensation 

order specified (as per the sequencing entered).  As it does so, the nucleotides bind 

to the single-stranded DNA strand resulting from the PCR reaction which is now 

bound to the bead.  This reaction is performed by DNA polymerase enzyme.  The 

reaction also contains a chemoluminescent enzyme, which emits a detectable light 

each time a base is added, and is proportional to the amount of phosphate released 

in the polymerase reaction.  This allows the quantification between DNA which is 

methylated and unmethylated by the presence or absence of a methylated cytosine 

and the nucleotide that is therefore added.  This can be analysed as a percentage of 

the original DNA sequence to produce a value for the percentage methylation at each 
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position in the sample provided.  The pyrosequence reaction produces a trace, an 

example of which is shown in figure 3.2 

Figure 3.2: Pyrosequencing Trace 

 

Standard pyrosequencing trace - this primer sequence contains two CpG sites.  These are shown in 
blue.  Peaks demonstrate the light signal emitted following the addition of nucleotides.  The CpG sites 
highlighted in blue show that these have passed the internal quality control process.  Success of 
sample bisulfite conversion is tested in each sample.  The grey bar, in this case without a peak, shows 
successful sample conversion. 

3.9: Cell Culture 

Cell line OE 33 was sourced.  This was acquired from Sigma Aldrich and is also 

known as JROECL33.  Sigma defines this cell lines characteristic as: 

“This cell line was established from the adenocarcinoma of the lower 

oesophagus (Barrett′s metaplasia) of a 73 year old female patient. The tumour 

was identified as pathological stage IIA (UICC) and showed poor 

differentiation. OE33 express HLA-A, -B and -C antigens (MHC class I) and 

ICAM-1 constitutively. Expression of HLA-DR (MHC class II) can be induced 

by treatment with interferon-gamma. The cells express epithelial cytokeratins 

and are tumorigenic in nude mice.”* 

*Data taken from ATTC database 
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This cell line was selected as its origin is from oesophageal adenocarcinoma with 

evidence of having arisen from BO.  Cells were cultured as adhesive cells in tissue 

culture plates at 37°C in 5% CO2.  Media used was Dulbecco’s Modified Eagle’s 

Medium (DMEM) with the addition of 10% bovine calf serum and 1% 

penicillin/streptomycin mixture.  Cells were observed each day while in culture and 

split before confluence.  To split, medium was removed prior to a phosphate buffered 

saline (PBS) wash.  Trypsin was then added (volume would vary depending on plate 

size used) before returning the plates to the incubator for 10-15 minutes.  After this 

time, the cells were reviewed under the microscope to ensure they had released from 

the plates – when ready cells would become circular in appearance and move 

around the plate when tipped from side to side.   

Cells were collected in fresh media before being added to a new plate at the desired 

concentration for pending experiments.  To determine cellular concentration, cells 

were collected in a fixed volume before being stained with trypan blue (which allows 

the identification of viable vs dead cells) and then counted using a haemocytometer.  

After re-plating, the cells were then left for growth to establish.  Splitting was 

generally required twice per week.   

3.10: DNA Extractions from Cell Lines: 

Cells were cultured in 3cm sterile plates.  DNA was extracted by again first removing 

the media and then washing in PBS.  1 ml more PBS was added to the plates before 

the cells were scraped to detach them from the surface.  The resultant solution was 

added to a microfuge tube and centrifuged at 1300 rpm for 10 minutes.  This resulted 
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in the formation of a cellular pellet.  The residual PBS was withdrawn carefully so as 

not to disturb the cell pellet and then re-suspended in a further 200µL of PBS 

Tissue lysis buffer was subsequently added along with 20µL of Proteinase K to digest 

the cells releasing DNA.  DNA was then extracted by the addition of 200µL of buffer 

AE and ethanol (100%).  This resultant volume was transferred to a spin column and 

centrifuged at 6000g for 1 minute.  500µL of wash buffer 1 was added and the 

sample spun as before.  500µL of wash buffer 2 was added and the column spun at 

maximum speed for 3 minutes.  The DNA was finally eluted into 200µL of buffer AE 

before quantifying by nanodrop.   

3.11: RNA Extraction for Gene Expression Work: 

RNA was extracted from the cells using the TRIzol technique.  After removing the 

media and washing the cells in PBS, 1ml of TRIzol was added to the culture plate 

and again the cells were scrapped and mixed.  The resulting mixture was added to a 

microfuge tube.  The sample was incubated at room temperature for 5 minutes.  0.2 

ml of chloroform was added before mixing and again incubating at room temperature 

for 3 minutes.  The resulting microfuge tubes were placed in a refrigerated centrifuge 

for 15 minutes at 4°C and spun at 12000g.  This spin generated a 3 phase separation 

consisting of phenol-chloroform phase (containing protein), an interphase (containing 

DNA) and a clear upper aqueous phase in which the RNA is found.   

This upper aqueous phase was removed with care and placed in a sterile microfuge 

tube.  To this, 0.5 ml of isopropanol was added and the sample incubated at room 

temperature for 10 minutes.  The sample was again centrifuged at 12000g for 30 

minutes at 4°C.  This generated an RNA pellet visible in the bottom of the microfuge 
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tube.  The residual liquid was removed before washing the pellet with 1ml of 75% 

ethanol.  This was then vortex mixed and again centrifuged.  The ethanol was 

removed and the sample pellet allowed to dry in room air.  The pellet was re-

suspended in 20µL of RNase free water and finally heated to 60°C for 15 minutes.  

Samples were then frozen at -80C until ready to make cDNA for expression analysis.    

Prior to cDNA production for Real time PCR analysis, RNA samples were nano- 

dropped for quality analysis and also analysed using the Qubit for RNA quantity.  

For the production of cDNA, 2ng of RNA was required in a total volume of 8µL with 

the addition of water.  This experiment was performed using the Applied Bioscience 

High Capacity cDNA kit. 

To the resulting RNA solutions, 2µL of random Primers (10x hexamers) were added 

and the reaction heated to 65°C for 5 minutes in the thermocycler before being 

cooled immediately in ice.  After 2 minutes, 10µL of pre-prepared reverse 

transcriptase enzyme master mix volume was added.  This master mix was 

composed as follows (Table 3.3): 

Table 3.3: cDNA Production Reagents  

Reagent Volume (µL) 

Water 6.2 

Reverse Transcriptase Buffer 2.0 

Deoxynucleotide Triphosphates (dNTPs) 
(25x) 

0.8 

Reverse Transcriptase Enzyme 1 

Total 10 
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This reaction volume was then again placed in the thermocycler for the following 

cycle (Table 3.4): 

Table 3.4: cDNA Production Reaction Conditions 

Step Temperature °C Time (mins) 

1 25 10 

2 37 120 

3 85 5 

 

The result from the above was the production of the much more stable cDNA from 

the original RNA which is sensitive to degradation.  An assumption was made, as per 

all RNA expression analyses, that if a greater amount of cDNA was observed in a 

sample, this correlated to a greater amount of RNA which will in turn correlate to the 

cell expressing more of the respective protein. 

3.12: Real Time qPCR for the Assessment of RNA Quantity within a Cell 

This technique was used to determine the relative amount of cDNA from the original 

RNA extractions.  In order to perform qPCR, employing a SybrGreen technique, 

using a 1:2 ratio the following was added to each reaction.  1.3µL sample was added 

to 8.7µL of the SybrGreen master mix which contained 1.3µL of primers in addition to 

10.5µL of water.  The result was a reaction volume of 10µL.   
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Table 3.5: qPCR Reagents 

Sample  Volume (µL) 

RNA sample  1.3 

Master mix 1.3µL Primers 8.7 

 10.5µL Water  

Total  10 

 

Samples were run in triplicate in addition to a water sample control.  Results 

produced a Cycle threshold (Ct) value (the value at which increase becomes 

exponential) from which the delta Ct can be calculated which is the difference 

between the Ct vales.  Finally, it was then possible to calculate the delta delta Ct 

value, which converts the Ct value into the percentage expression change.  Given 

the logarithmic scale of RTPCR results, a change of 1Ct correlates to a 100% 

increase in expression.   

3.13: Protein Extraction from Cells 

In order to validate the RNA expression findings, protein was also measured in the 

cell lines to ensure that there was a correlation between RNA expression and 

subsequent protein content within the cell.  As a result of the TRIzol technique used 

for RNA extraction, this also allowed protein to be extracted from the same sample.  

This ensured that methylation, RNA expression and downstream protein analysis 

was all conducted from the same sample.   
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As described before, the TRIzol extraction technique requires the cells to be lysed in 

TRIzol solution before chloroform is added and the sample centrifuged.  This 

chloroform separation forms 3 visible layers – the top clear layer, as described 

above, contains RNA and was used for RNA extraction.  The much smaller 

interphase layer contained DNA.  The residual, much larger volume layer contains 

protein.   

To this, 1.5mls of isopropanol was added.  Samples were allowed to incubate for 10 

minutes at room temperature before centrifuging again.  Samples were spun at 

12000g for 10 minutes at 4°C, after which time a visible white protein pellet was 

formed.  This protein pellet was washed as follows: 

A solution of 0.3M guanidine hydrochloride in 95% ethanol was made by adding 

0.285g of guanidine to a 10 mL solution of 95% ethanol diluted with water.  2mls of 

this solution was added to the protein pellet.  This was left to incubate for 20 minutes 

before centrifuging at 7500g for 5 minutes at 4°C.  This wash was repeated 2 further 

times.  Finally, 2 mls of 100% ethanol was added to the pellet and again incubated 

for 20 minutes at ambient temperature and spun as before.  The ethanol wash was 

removed before leaving the pellet to air dry. 

Re-suspension of the protein pellet was challenging.  Initially, the resulting pellet was 

dissolved in RIPR buffer.  However, the yield of this suspension was poor as 

analysed by protein assay (Pierce BCA protein assay kit 23225).  This meant that 

further dissolving attempts were needed.  To do this, untreated native OE33 cells 

were lysed in TRIzol and the resulting protein pellet was attempted to be dissolved in 

reagents shown in figure 3.6. 
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Table 3.6: Reagents used to attempt to dissolve protein plug 

Dissolving agent Total volume (µL) 

1% SDS 200 

1% SDS at 50°C 200 

RIPR 200 

RIPR + 1% SDS (50:50) 200 

NaOH + RIPR 200 

0.05% SDS with 4 M urea in TRIS-HCl 

(with pH 8) 

200 

 

The resulting solutions were compared using a protein assay to assess amount of 

protein obtained.  This assay was performed using spectrophotometry in which 10µL 

of protein solution was mixed with 50µL of assay solution and allowed to incubate at 

37°C for 30 minutes.  On the same 96 well plate, a stock solution of a known protein 

concentration was added.  After analysis, the background noise was subtracted from 

the sample noise using the known protein stock as a control.  This allowed the 

amount of protein per sample to be calculated.  From this, the agent that dissolved 

the maximum amount of protein was 0.05% SDS with 4 M urea in TRIS-HCl (with pH 

8) solution and therefore this was used for the experimental protein dissolving step.   
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3.13.1: Protein Analysis: 

In order to compare the amount of protein in the cells, a western blot technique was 

employed (Mini-PROTEAN tetra hand cast system (BIO-RAD)).  This allows the 

quantity of protein to be assessed.  Western Blots allow protein analysis firstly by 

using voltage separation of proteins of differing sizes on a gel, alongside a protein 

ladder which allows the size of the protein fragment to be determined.  These 

invisible proteins are then transferred onto a membrane, allowing proteins of interest 

to be located using antibody induced “staining” followed by chemoluminescent 

localisation.  Presence or absence of proteins can be discovered using this 

technique, as well as relative quantity of protein in any given sample (in comparison 

to another sample on the same blot). 

To perform a western blot, an antibody was acquired for the protein to be assessed.  

Following the protein assay, the total amount of protein per individual sample was 

calculated.  It is important to ensure that each sample to be tested to contains the 

same overall amount of protein so that any change in amount of singular protein to 

be analysed would be seen.   

20ng protein was mixed with 5 µL of 5x SDS loading buffer and then heated to 100°C 

on a heat block.  Up to 40µL of sample was loaded into a loading gel for the western 

blot which was so made that it sat on top of the running gel in the electrophoresis 

tank.  Gels were made according to the table 3.7.  Samples were allowed to run 

alongside a protein ladder (10µL PageRuler TM) for 90 minutes or until the loading 

dye reached the base of the gel (100V for 15 minutes through the stacking gel, 
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followed by 180V through the running gel).  This process separated each protein in 

the sample according to size. 

Table 3.7: Ingredient list for Western Blot stacking and running gels 

 Running Gel Loading Gel 

Ammonium Persulfate 10mg 10mg 

diH2O 1.9 ml 3.7 ml 

Gel Buffer (I) or (II) 10 ml (I) 5 ml (II) 

Polyacrylamide 8.1 ml 1.3 µL 

Tetramethylethylenediamine 60µL 60 µL 

 

After this, the proteins in the gel were transferred to a membrane (Hybond 

hydrophobic difluoride (PVDF) membrane (Amersham Hybond-LFP – GE 

Healthcare)) which would allow the individual protein of interest to be highlighted by 

the chosen antibody.  The membrane was soaked in methanol for 30 seconds prior 

to use.  This transfer process was again performed by electrophoresis.  The Running 

gel was removed from container and placed in a transfer bracket.  The transfer was 

allowed to run for 90 minutes at 90V.  At the end of this stage, the gel was discarded 

if there had been successful transfer of the visible protein ladder. 

The membrane was then cut in two at the appropriate place using the ladder as a 

marker in order to allow one of the halves to contain the protein of interest and the 

other half to contain a marker protein, which in this example was β-actin.  

Membranes were incubated in a blocking solution (10% milk in Tris buffered saline) 

for one hour being agitated on a rocking tray.  Antibody containing solutions were 
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prepared, one containing the β-actin antibody and the other containing the antibody 

to be examined.  The membranes were placed in these solutions and left to incubate 

at 4°C overnight on a rocking table. 

The following day, membranes were washed before being exposed to the secondary 

antibody.  This secondary antibody attaches only to the primary antibody that was 

specific to the protein being analysed.  Membranes were washed with 1 x Tris-

Buffered Saline and Tween 20 (TBST) to remove the primary antibody.  4 washes in 

total were performed.  Membranes were then incubated with secondary peroxidase 

conjugated antibody for 60 minutes at room temperature.  A further 4 washes with 

TBST were performed.   

Blots were developed using the Amersham Western Blotting Detection Reagents Kit 

(GE Healthcare), applying the manufacturer’s instructions.  Reagents were mixed in a 

1:1 ratio.  Corresponding membranes were sealed in a plastic bag, in which 5 mL of 

the detection reagents were placed.  The reagent mixture was moved around the bag 

and therefore over the membrane for 1 minute.  Membranes were then placed into a 

developing cassette (Amersham Hypercassette – GE Healthcare).  Amersham 

Hyperfilm MP (GE Healthcare) was positioned over the membranes and then placed 

into a developer.  Varying time periods were used to ensure a band was produced.  

Protein of interest, as well as the β-actin band was analysed to compare the overall 

protein amounts in each sample.  If there was any variation in the β-actin level seen 

this was adjusted for in the value obtained for the protein of interest.  Band intensity 

was gauged by scanning the resulting films and assessing the band using ImageJ 
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software.  This produced a numerical value for the resulting band and therefore 

protein concentration could be compared between samples.  

3.13.2: Demethylation of OE33 

This adherent cell line was cultured in DMEM with the addition of 10% Foetal bovine 

serum and 1% penicillin and streptomycin antibiotic cover.  Cells were cultured in 

sterile cell culture flasks in this media until reaching sub-confluence at which time 

they were split.  In general this would occur at intervals of between three and four 

days. 

The first stage was to determine the usefulness of this cell for TRIM15 expression 

work.  To do this, DNA was extracted from OE33 cells, and bisulphite converted 

before TRIM15-cg19115272 methylation PCR was performed with subsequent 

pyrosequencing.  This allowed the base line methylation of TRIM15-cg19115272 in 

this cell line to be determined. 

In order to demonstrate the correlation between methylation and expression using 

the OE33 cell line, it was then necessary to be able to reduce methylation in this cell.  

To do this, the cells were treated with the DNA methyltransferase inhibitor 5-Aza-2′-

deoxycytidine. 

Initially, 5AZA dilution experiments were performed to assess the necessary dose 

required to promote demethylation, yet not be toxic to the cell.  To perform this, OE33 

cells were cultured in 3cm plates with 3 mls DMEM added.  Cells were added at an 

initial concentration to allow sub confluence by day 5.  On day two, having allowed 

the cells time to adhere, the media was changed and 5AZA was added to achieve 

concentrations of 0.5, 1, 2 and 5 mM.  Each day, one plate was used for cell counting 
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whereas in the remaining cultures the media was changed and more 5AZA added to 

achieve the desired concentration.   

Initially, 5AZA was dissolved in DMSO as per the manufacturers guidelines as 

solubility was maximal in this solution.  However, it should be noted that DMSO is 

toxic to the cells therefore exposure of culturing cells to DMSO should be limited.  On 

day one, cells were split into sufficient number of plates to allow sacrifice of one plate 

per AZA dilution per day in order to count cell growth.  These experiments confirmed 

that 1mM 5AZA was the maximal achievable concentration prior to the cells dying.   

To conduct the demethylating experiment, OE33 cells were cultured again in DMEM 

having been split on day one to achieve sub confluent growth by day 5.  Again cells 

were left to adhere overnight prior to any treatment.  On days two to four, cells had 

their media changed with the addition of 5AZA to achieve a concentration of 1mM 

5AZA.  Experiments were repeated in parallel with control plates receiving DMSO 

only and two plates each receiving treatment for a final cell harvest allowing for DNA 

and RNA extractions.   

On day 5, cells were harvested initially for DNA extraction.  To perform this, media 

was removed and the cells washed with PBS.  This wash PBS was removed before 

adding an additional 1ml of fresh PBS.  Cells were scraped from the plate and 

collected in the PBS which was transferred to a sterile microfuge tube.  This was then 

centrifuged at 1300 RPM for 10 minutes.  This resulted in the formation of a cellular 

pellet.  Excess PBS was removed before re-suspending the pellet in 200µL of PBS.  

DNA was then extracted according to the Qiagen blood and tissue extraction kit.  In 

short, this involves adding 20µL of proteinase K prior to the addition of 200µL of lysis 
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buffer and 200µL of 100% ethanol, with a thorough vortex following each addition.  

The resulting mixture was then added to a micro centrifuge spin column before being 

spun for 1 minute at 6000g.  The resulting fluid was discarded before washing the 

DNA with wash AW1 followed by AW2.  Finally the DNA was eluted with an elution 

buffer into a clean microfuge tube with a 200µL volume.   

DNA was quantified by the Nanodrop before undergoing bisulphite conversion and 

then methylation specific PCR for TRIM15-cg19115272 (previously described).  

Finally, the samples were analysed by pyrosequencing to obtain methylation data for 

the cell lines pre and post treatment with 5AZA. 

Given that 5AZA inhibits the enzyme DNA methyltransferase, it would be expected 

that as the cells passage, observed methylation would half.  Therefore, had the 

treatment been successful, by the end of 3 treatment days and therefore 4 divisions, 

with an original methylation of 90%, one would expect to achieve a resulting 

methylation of only 11.25%.  It was expected therefore that if methylation were the 

driving force behind expression of this gene, it would be possible to observe an 

increase in expression of RNA following this treatment.  Were this methylation 

change not the driving force behind expression of this gene, no difference would be 

seen.   

However, upon analysis of the results obtained from this experiment, no decrease in 

methylation was observed at this concentration of 5AZA.  Numerous reasons why 

this may be the case exist including all of the below: 
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• 5AZA dose incorrect. 

• Degraded 5AZA due to freeze/thaw cycles. 

• OE33 cells resistant to 5AZA molecule. 

• TRIM15 Gene is refractory to demethylation (where a secondary factor is 

responsible for expression control). 

It was necessary to therefore test and modify each of the conditions to determine 

which of the above was preventing demethylation of this gene in this cell line. 

Cell growth curves were plotted for increasing doses of 5AZA until reaching the 

maximum dose possible while maintaining cell growth. 

Other genes were analysed on the same extracted DNA to determine whether 

TRIM15 was refractory to methylation change or whether this treatment had failed 

across the genome.  Therefore, the methylation of sFRP 2 and 4 were also analysed 

by bisulphite pyrosequencing in native and post 5AZA treated OE33 cell DNA.  

These genes were selected due to their availability within the laboratory and the 

reliability of the assay.  This also revealed no difference in methylation post 

treatment.   

5AZA was then dissolved in sterile water, as this was also an acceptable solvent as 

per the manufacturer’s guidelines.  OE33 cells were again plated on day one at a 

concentration to allow confluence by day 5.  Cells were treated with 5AZA on day 2, 

3 and 4.  Despite initial dose/growth relationship curves, cells were treated with 

successively increasing doses with a doubling dose each time (equating to 0.5, 1, 2 

and 4mM).  The analysis of DNA methylation at the end day 5 revealed that 

methylation of the candidate loci had decreased from 90% to 59% with the maximum 
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5AZA dose given.  The dose of 5AZA needed to achieve this reduction in methylation 

was 4mM.   

Each dose of 5AZA given was performed in repeats of 4, such that one plate of cells 

could be analysed for DNA methylation while the remaining plates, if a significant 

reduction in methylation had been observed, could be used to RNA extraction to 

quantify expression. 

With methylation reduced, it was necessary to ensure that methylation correlated 

with expression.  In order to do this the remaining aliquots of OE33 cells which had 

been exposed to the same conditions and treated at the same time as the cells used 

for DNA extraction were then used for RNA extraction according to the TRIzol 

protocol (as described in methods).  Once extracted, the RNA product was then used 

to make cDNA as previously described.  cDNA for TRIM15 was then analysed by 

Real Time QPCR.  If TRIM15 could be detected as cDNA, it must follow that in the 

cell there was RNA for this gene and therefore by definition the cell was transcribing 

this gene.  The RNA from the 5AZA treated OE33 cells was compared in this reaction 

to the RNA of native OE33 cells.  This would reveal whether the reduction in 

methylation was able to bring about the anticipated increased expression of TRIM15. 

RNA expression was calculated from the rtPCR experiments by the machine derived 

Ct result – the level at which gene replication becomes exponential in the PCR 

reaction.  The calculation of delta Ct – the difference between normal expression and 

the treated cell line expression shows if there is any expression change.  Finally, the 

calculation of delta delta Ct, which takes into consideration that an increase of 1 delta 

Ct correlates to a 100% increase in expression due to the logarithmic nature of the 
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scale applied, shows the real percentage increase in expression as a consequence 

of 5AZA induced demethylation.  

3.14: Methylation Arrays 

The most up-to-date methylation array platform is the Illumina methylation 450 array, 

in which the methylation status of more than 450,000 individual CpG sites are 

examined (120).  Through a bioinformatic analysis of the comparison groups, this 

then allows identification of variation in the sample cohorts.  This is assumed 

therefore to represent the population variation, but any such identified differences 

require validating in much larger cohorts in order to prove this difference is not seen 

by chance alone.   

3.14.1: Sample Preparation 

Samples as detailed above were sourced as explained.  Samples underwent a 

standard DNA extraction protocol as previously described.  Quantification of DNA 

was again performed using the NanoDrop.  In addition, because of the need for 

accurate quantification, the Qubit fluorimeter was also used to measure DNA 

concentration as this was believed to provide a more accurate reading.   

3.14.2: Array DNA Quantification 

In order to perform Qubit DNA quantification, it was first necessary to calibrate the 

equipment with standard DNA concentrations (provided in the kit).  A 1:200 solution 

was made by adding the specified volumes of dsDNA BR reagent to dsDNA BR 

buffer (as per the manufacturers guidelines).  190µL of this working volume was 

added to a 0.5ml PCR tube before then adding 10µL of sample DNA.  This was 
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incubated for 2 minutes at room temperature to allow binding of the sample DNA.  

After calibrating, the sample DNA was quantified following the machine instructions.  

This resulted in a QF value which relates to µg/ml.  Therefore, in order to calculate 

the amount of DNA in the original sample the following calculation was used: 

Concentration of sample = QF value × (200 ÷ x) 

Where x = the volume in µL of sample added to the quantification master mix.   

3.14.3: Array DNA Quality Control 

As a result of the use the FFPE tissue, Illumina recommend a quality control step to 

ensure the DNA is of sufficient quality to produce an array result.  This was 

undertaken by a qPCR process using the Illumina FFPE QC kit. 

Firstly, after quantification, samples were diluted to a 1ng/µL concentration.  10µL of 

the QCT (the control) solution was added to 990µL of water and placed into a 96 well 

plate.  The PCR was performed in a 20µL reaction volume which was composed of 

10µL of PCR master mix, 2µL of QCP and 4µL of water.  16µL of this master stock 

was added to either 4µL of the QCT solution, 4µL of the DNA sample or 4µL of water 

to make the overall 20µL working volume.  Each sample and control at this stage was 

run in triplicate as per standard QPCR reaction protocols specified by Illumina. 

The plate was sealed and centrifuged to ensure all liquid was at the base of the well 

and then placed in the RTPCR machine (Applied Biosystems 7500).  The cycle for 

this reaction are shown in table 3.8. 
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Table 3.8: Thermal conditions for array quality control 

Number Temperature Time 
1 50 2 mins 
1 95 10 mins 
 95 30 secs 

40 cycles 57 30secs 
 72 30secs 

 

Analysis of the data to determine whether the sample was of satisfactory standard to 

pass the quality control process involved taking the average Ct for each sample and 

deducting the QCT Ct (i.e. the controls).  If the resulting value (Delta Ct) was below 5, 

the sample had passed the quality control process and was taken forward to the 

array.  Six samples in each category (BO progressors, BO none progressors, T3N1 

tumours and T3N0 tumours) were obtained for the array analysis having passed QC.  

3.14.4: Array DNA Bisulphite Conversion 

After obtaining the required number of samples which passed the QC stage, the 

Zymo EZ methylation kit was used as per Illumina guidelines with a variation in cycle 

conditions for array compatible bisulphite conversion.  For normal none array 

conversions, the sample is incubated at 50°C for 12-16 hours.  For the array samples 

16 cycles were needed of 95°C for 30 seconds followed by 50°C for 60 minutes.  

Samples were cleaned-up as per the manufacturer’s protocol and eluted into 10µL of 

elution buffer.  Samples were stored at -80°C until ready to perform the following 

array protocol.  
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3.14.5: DNA Repair Process 

The resulting samples, having been obtained from FFPE tissue, required a DNA 

repair process as per the Illumina 450 methylation array protocol which was followed 

exactly (121).  This process allows the restoration of degraded FFPE DNA into a form 

which is able to be amplified by the subsequent methylation protocol.   

3.14.6: Illumina Methylation 450 Array 

Immediately after completion of the DNA repair protocol, the methylation array 

protocol was commenced to prevent sample degradation.  The full Illumina 

methylation 450 protocol was followed exactly as per the manufacturers instruction 

(122) . 

In brief, the protocol can be broken down into the following discreet stages: 

1. DNA amplification: 

• Firstly DNA is denatured and neutralised. 

• The DNA is then amplified in an isothermal reaction in a whole genome 

format. 

2. The formed amplified DNA is fragmented. 

3. DNA precipitation: 

• The isopropanol precipitated DNA forms a visible blue pellet following 

centrifugation. 

4. The DNA pellet is re-suspended. 

5. The samples are then loaded onto the bead chip and allowed to hybridise 

overnight. 
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6. Un-hybridised DNA is then washed away from the bead chip. 

7. The hybridised DNA strands were then labelled to allow reading by the 

Illumina IScan. 

8. Samples were then read using the IScan.  We are very grateful to the 

Genomics section and Professor Ian Tomlinson at the Wellcome Trust Centre 

for Human Genetics for scanning the prepared chips. 

3.14.7: Bioinformatic Analysis of Array Data 

Bioinformatics analysis of the methylation microarrays was carried out by Dr Andrew 

Beggs, using the ChAMP package (123) via Bioconductor/R.  In brief, red/green 

intensity values were captured from Illumina iDAT files, background corrected and 

SWAN normalised to produce M values.  

M values were analysed using a logistical regression model using Empirical Bayesian 

shrinkage of moderated t-statistics to correct for small sample size.  In short, this 

allows the direct comparison of CpG sites between groups of similar samples.  Each 

group in this cohort contained 6 samples, which were in turn compared to 6 samples.  

This small sample size was controlled for by setting stringent FDR Q-values of <0.05.  

Identification of variable methylated sites allowed the CpG site markers to be 

highlighted.  Methylation primers were then designed and sourced to cover these 

sites for the validation exercise.  Validation of the in house array was performed in 

the same way as specified previously using bisulphite pyrosequencing.  PCR primers 

were again designed and sourced from Sigma Aldrich.  
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4 – Assessment of Published Methylation Arrays in 

Oesophageal Adenocarcinoma 

4.1: Introduction 

The initial hypothesis of this thesis was to determine whether methylation biomarkers 

could determine tissue status in the oesophagus.  To do this, it was necessary to test 

both methylation signatures in OADC and the use of recent technological advances 

in finding these markers.  There is no current robust methylation biomarker that has 

the ability to discriminate tissue type i.e. normal squamous tissue from BO and 

OADC.  To date, the bulk of the literature in this area examines seemingly random 

markers which are of interest to the researching group, or which have been shown to 

have an effect elsewhere in the GIT and are therefore investigated in oesophageal 

tissues.   

A comprehensive, genome wide search of differential promoter methylation using a 

current state of the art platform (HumanMethylation450 arrays) has not been 

performed, partly because of cost implications, but also because of difficulties with 

sample selection.  One such study (109), while using a much earlier and therefore 

more basic array platform, did publish markers that may be of interest.  If these 

published markers, which were not validated, did discriminate between tissue types, 

this would provide the justification either for performing the array again using the 

latest technology or sourcing this from elsewhere.   

In the above mentioned publication, an Illumina GoldenGate methylation bead array 

was used to highlight variation in methylation between normal oesophageal tissue 
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samples compared with BO, HGD and also OADC samples.  A weakness of this 

study was that the BO samples, which appear to have been analysed as a collective 

group, contained non-dysplastic biopsies in addition to those with dysplasia and 

notably some having high grade dysplasia.  It is unlikely that BO samples without 

dysplasia will have the same methylation profiles as those with dysplasia but his 

remains unproven.  This group published the top 20 of these markers demonstrating 

differences in methylation patterns between tissue types.   

Table 4.1 shows a list of significantly differentially methylated markers identified in 

this study.  5 of the suggested potentially interesting genes were selected from this 

publication (highlighted in red) and methylation primers were designed to cover the 

CpG sites identified from this array and subsequent analysis.  These markers were 

chosen based on availability of commercially produced methylation PCR primers 

which were all sourced from Qiagen. 
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Table 4.1: Previously published methylation sites with the ability to 

differentiate oesophageal tissue types, as determined by the Illumina Golden 

Gate array (109). 

Gene ID CpG Location Avg. β OADC Avg. β BO 

SERPINE1 +189 0.52 0.30 

ALPL −278 0.38 0.12 

RBP1 −150 0.41 0.22 

POMC −53 0.48 0.21 

CDH11 −203 0.49 0.25 

CDH11 +102 0.50 0.26 

ALPL −433 0.50 0.26 

CSPG2/VCAN −82 0.68 0.44 

TAL1 +122 0.35 0.16 

RBP1 +158 0.66 0.40 

MMP2 +21 0.21 0.11 

BMP6 −163 0.40 0.22 

TIAM1 −117 0.54 0.28 

GPX3 +178 0.42 0.22 

CD40 +58 0.51 0.34 

IGFBP7 −371 0.40 0.17 

RET −260 0.55 0.29 

Gene ID: Gene name as identified from array 

CpG location: Hg 19 genome coordinates of identified probe 

Avg.β: Mean methylation 

Table demonstrating the top 20 methylation differences between OADC and BO from a golden gate 

array as previously published.  
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4.2: Aims:  

We aimed to validate methylation biomarkers utilising a previously published primitive 

array by bisulphite pyrosequencing, to see if these markers would successfully 

validate in our cohort.  

4.3: Methods 

4.3.1: Samples 

All samples used in this validation experiment were FFPE blocks taken from 

resection specimens of oesophagectomy cases at University Hospital Birmingham.  

Specimens were identified using operating logs, which were then correlated with 

histopathology reports to ensure identified patients had oesophageal 

adenocarcinoma.  Cases were selected retrospectively from this log until sufficient 

cases were identified (as described below in the power calculation).  

Identified cases were supplied to the local HBRC department, who extracted the 

diagnostic slides from the pathology archives.  These slides were then all reviewed 

by a consultant GI histopathologist, to ensure the diagnosis was accurate, and to 

then further identify blocks of interest within the resection specimen.   

A more detailed block guide was relayed back to HBRC, who then kindly trimmed the 

blocks to provide the tissue.  Tissue was either supplied as scrolls, if all the tissue in 

a specific block was uniform, or cut into thinner sections and adhered to slides if 

further dissection was needed.  Where this was the case, the diagnostic H+E slide 

was marked by the histopathologist to indicate the area of interest and facilitate 

further dissection.  
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Where tissue on slides required further dissection, this was performed under 

microscope guidance using a sterile scalpel blade.  Resulting tissue removed from 

the slides was placed in a microfuge tube, and further handled as per the scroll 

tissues.   

DNA was extracted from all samples using a Proteinase K digestion along with a 

buffer for a minimum of 24 hours at 56°C.  Samples were vortex mixed regularly to 

aid digestion.  All samples were reviewed after 24 hours.  If there was incomplete 

digestion (visible tissue fragment seen in the sample) a further 20µL of proteinase K 

was added and the sample incubated again at 56°C.   

Samples were cleaned up as described in the methods section, to yield the final DNA 

sample which was both quantified and qualified using the Nanodrop.  

4.3.2: Power Calculation 

In order to show statistical variation in samples, a minimum sample cohort was 

required.  It was assumed, that a significantly differentially methylated gene would 

have a differential methylation of around 45%, therefore using p1=0.45, p2=0.90, 

alpha=0.05 and beta=0.90, 24 samples would be required in each group to detect 

this methylation change with a power of 90% (Calculation performed with Stata 11.2, 

StataCORP TX).   

Therefore, 24 resection patients were included in this Chapter.  From each of these, 

normal proximal mucosa (resection margin) was obtained as well as 

adenocarcinoma.  From 8 patients, on histology review, there was BO in sufficient 

quantity adjacent to the tumour to allow sampling.  These 8 samples of BO were also 

acquired and processed in the same way into order to see whether there was a 
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methylation variation between these tissue stages, assuming the well described 

sequence of normal to BO to cancer was followed.  

Prepared tissues, either as scrolls or as dissected slides, were placed in microfuge 

tubes.  DNA was extracted as described. 

4.3.3: Bisulphite Pyrosequencing 

Extracted DNA from FFPE blocks was subjected to quantification using the 

NanoDrop and then Bisulphite converted using the Qiagen Epitect conversion kit. 

Pyrosequencing primers were obtained from Qiagen, using the standard design for 

each gene selected in the validation panel.   

The genes selected were VCAN, ALPL, TIAM1, POMC and RPB1, due to the 

availability of methylation primers from Qiagen.  

Each primer, as supplied by Qiagen, required optimisation in order to produce DNA 

product of sufficient amount to show a good quality band on agarose gel 

electrophoresis.  Primers were optimised firstly with a gradient PCR reaction to obtain 

the temperature at which the primer worked best, which was often not that which was 

specified by the manufacturer.  Each primer also needed a variable amount of DNA 

in order to obtain a good DNA product band in electrophoresis.  After this, each gene 

was analysed by bisulphite pyrosequencing on all 56 samples.  Only when the values 

obtained passed the internal Quality control process of the pyrosequencing software 

were the results allowed to be entered into the analysis.   
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4.3.4: Statistical Analysis 

In order to analyse the results fully, three comparisons were performed.  These 

include: 

1. Normal squamous mucosa vs OADC tissue  

2. Normal squamous mucosa vs Barrett’s Oesophagus 

3. Barrett’s oesophagus vs OADC tissue 

To do this analysis, the results from each of the individual CpG sites analysed had 

their methylation compared using a T-test to assess whether there was any notable 

difference between values, and whether any such difference met the threshold for 

statistical significance (having a “p” value <0.05). 

4.4: Results 

Each gene, and individual CpG site, was analysed in turn comparing each of the 

above tissues.   

Therefore, over the next pages statistical logistical regression analysis for each 

amplicon and individual CpG within the amplicon are presented.  Each CpG site was 

analysed independently from another to highlight significance.  Those “P” values 

shown in red are significant values.  Each respective CpG site was analysed in 

respective tissue type comparison.  The following comparisons were therefore 

performed: 

1. Normal squamous mucosa vs OADC tissue 

2. Normal squamous mucosa vs Barrett’s Oesophagus 

3. Barrett’s mucosa vs OADC tissue 
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Tables 4.2: Pyrosequencing data and statistical analysis for attempted 
validation of ALPL 

Raw data (mean) 

Tissue Mean 
methylation 
CpG1 (%) 

Mean 
methylation 
CpG2 (%) 

Mean 
methylation 
CpG3 (%) 

Mean 
methylation 
CpG4 (%) 

Mean 
methylation 
CpG5 (%) 

Normal 49.83 44.47 41.87 46.36 51.13 
Barretts 49.94 42.92 45.69 43.93 52.98 
Tumour 48.86 39.93 40 43.79 47.90 
 

Tumour vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.16 0.15 1.12 0.26 0.89-1.51 
2 0.87 0.12 -1.04 0.30 0.67-1.13 
3 1.07 0.13 0.56 0.57 0.84-1.37 
4 1.02 0.12 0.3 0.90 0.80-1.28 
5 0.90 0.11 -0.88 0.38 0.70-1.15 
 

Barrett’s Oesophagus vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.13 0.19 0.72 0.47 0.81-1.57 
2 1.01 0.23 0.06 0.95 0.65-1.28 
3 1.32 0.27 1.33 0.18 0.58-1.97 
4 0.77 0.16 -1.28 0.20 0.51-1.15 
5 0.88 0.20 -0.58 0.56 0.56-1.37 
 

Barrett’s Oesophagus vs tumour tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 0.66 0.20 -1.39 0.16 0.37-1.18 
2 1.13 0.34 0.41 0.68 0.63-2.05 
3 1.33 0.35 1.11 0.27 0.80-2.22 
4 0.76 0.18 -1.19 0.23 0.48-1.20 
5 1.29 0.27 1.21 0.23 0.85-1.95 
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Tables 4.3: Pyrosequencing data and statistical analysis for attempted 
validation of POMC 

Raw data (mean) 

Tissue Mean 
methylation 
CpG1 (%) 

Mean 
methylation 
CpG2 (%) 

Mean 
methylation 
CpG3 (%) 

Mean 
methylation 
CpG4 (%) 

Normal 45.74 60.00 29.14 37.43 
Barretts 41.21 51.98 30.40 36.95 
Tumour 40.00 53.85 24.45 31.45 
 

Tumour vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.00 0.04 0.07 0.95 0.92-1.09 
2 1.04 0.05 0.85 0.39 0.95-1.13 
3 1.00 0.07 -0.01 0.99 0.88-1.14 
4 0.90 0.07 -1.33 0.19 0.76-1.05 
 

Barrett’s Oesophagus vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.01 0.07 0.09 0.93 0.88-1.15 
2 0.99 0.08 -0.10 0.92 0.85-1.16 
3 1.10 0.11 0.92 0.36 0.90-1.33 
4 0.92 0.12 -0.63 0.53 0.71-1.19 
 

Barrett’s Oesophagus vs tumour tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 0.99 0.06 -0.10 0.92 0.89-1.11 
2 0.94 0.06 -0.93 0.53 0.83-1.07 
3 1.14 0.15 1.02 0.31 0.88-1.47 
4 1.10 0.21 0.51 0.61 0.76-1.60 
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Tables 4.4: Pyrosequencing data and statistical analysis for attempted 
validation of RBP1 

Raw data (mean) 

Tissue Mean 
methylation 
CpG1 (%) 

Mean 
methylation 
CpG2 (%) 

Mean 
methylation 
CpG3 (%) 

Mean 
methylation 
CpG4 (%) 

Mean 
methylation 
CpG5 (%) 

Normal 47.69 44.71 61.16 25.77 50.25 
Barretts 55.5 50.81 73.23 29.54 61.73 
Tumour 49.25 45.12 60.69 24.95 50.50 
 

Tumour vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.08 0.08 1.11 0.27 0.94-1.25 
2 1.00 0.07 -0.01 0.99 0.87-1.15 
3 0.96 0.07 -0.65 0.52 0.84-1.09 
4 0.94 0.08 -0.69 0.49 0.79-1.12 
5 1.02 0.06 0.26 0.79 0.90-1.15 
 

Barrett’s Oesophagus vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 0.92 0.11 -0.65 0.52 0.72-1.18 
2 1.00 0.09 -0.05 0.96 0.83-1.19 
3 1.15 0.13 1.19 0.23 0.91-1.44 
4 0.80 0.14 -1.26 0.21 0.57-1.13 
5 1.08 0.13 0.66 0.51 0.86-1.36 
 

Barrett’s Oesophagus vs tumour tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 0.04 0.14 0.28 0.78 0.80-1.36 
2 0.97 0.16 -0.19 0.85 0.71-1.33 
3 1.16 0.12 1.40 0.16 0.94-1.43 
4 0.86 0.19 -0.69 0.49 0.56-1.32 
5 0.98 0.11 -0.22 0.83 0.78-1.22 
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Tables 4.5: Pyrosequencing data and statistical analysis for attempted 
validation of TIAM1 

Raw data (mean) 

Tissue Mean methylation 
CpG1 (%) 

Mean methylation 
CpG2 (%) 

Mean methylation 
CpG3 (%) 

Normal 4.01 6.47 7.28 
Barretts 11.22 16.08 12.20 
Tumour 6.18 8.45 9.77 
 

Tumour vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.08 0.07 1.23 0.22 0.95-1.23 
2 1.01 0.05 0.14 0.89 0.91-1.11 
3 1.05 0.05 0.96 0.34 0.95-1.15 
 

Barrett’s Oesophagus vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.02 0.08 0.24 0.81 0.87-1.20 
2 1.14 0.07 2.11 0.04 1.01-1.30 
3 1.07 0.09 0.77 0.44 0.90-1.26 
 

Barrett’s Oesophagus vs tumour tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.09 0.07 1.26 0.01 0.95-1.25 
2 1.14 0.08 1.96 0.05 1.00-1.30 
3 1.01 0.06 0.11 0.92 0.90-1.14 
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Tables 4.6: Pyrosequencing data and statistical analysis for attempted 
validation of VCAN 

Raw data (mean) 

Tissue Mean 
methylation 
CpG1 (%) 

Mean 
methylation 
CpG2 (%) 

Mean 
methylation 
CpG3 (%) 

Mean 
methylation 
CpG4 (%) 

Mean 
methylation 
CpG5 (%) 

Normal 7.85 27.09 7.65 27.75 5.92 
Barretts 8.85 29.90 11.38 26.69 5.49 
Tumour 8.03 30.47 11.28 35.52 8.16 
 

Tumour vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.00 0.03 -0.09 0.93 0.93-1.07 
2 0.99 0.02 -0.34 0.73 0.94-1.04 
3 1.06 0.06 1.22 0.22 0.96-1.18 
 

Barrett’s Oesophagus vs normal tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.00 0.05 -0.06 0.95 0.91-1.10 
2 0.99 0.03 -0.26 0.79 0.93-1.06 
3 1.07 0.07 1.09 0.28 0.95-1.22 
 

Barrett’s Oesophagus vs tumour tissue: 
CpG Odds Ratio Standard. 

Error 
z P>|z| 95% Conf. 

Interval 
1 1.02 0.06 0.29 0.77 0.91-1.13 
2 0.99 0.03 -0.17 0.86 0.93-1.06 
3 1.00 0.05 0.06 0.96 0.90-1.11 
CpG: Methylation site analysed  

Odds ratio: ratio of the probability between the observed probe being associated with event A vs event 
B e.g tumour/normal tissue 

Standard error: Standard deviation of the mean 

Z: z-score: this is a score derived from the logistic regression; it is the regression coefficient divided by 
the standard error 

P>[z]: p-value 

95% confidence interval:  The likelihood of the results being significant 

CpG numbers vary depending on number included in each primer – all data presented.  See Appendix 
9.1 for CpG site information. 
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In general, there is little observable difference in methylation between tissues in 

these data.  This is further confirmed in the logistical regression analysis.   

The only clear difference seen in this data is the hypermethylation in BO tissue in 

TIAM1.  This observation, seen only in CpG site 2, reveals a methylation of 6.47% in 

normal squamous mucosa.  However, methylation in BO mucosa increases to 

16.08%.  Regression of this difference reveals this to be a statistically different 

variation, with p=0.035 (rounded to 0.04 in the tables shown).  

None of the other results obtained show any statistically different results.  

This single significant marker can be shown in graphical form to demonstrate the 

difference in methylation between tissues: 
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Figure 4.1: Variation in methylation between tissue types of TIAM1. 

 

Boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 

Values above the lines are outlying data points 

 

Figure 4.1 shows the difference in methylation patterns between Normal Squamous 

epithelium in the oesophagus compared with Barrett’s mucosa and OADC.  The 

difference in methylation between Barrett’s and normal squamous mucosa showing a 

statistically significant difference (p=0.04). 
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The difference in methylation between tissue types in this analysis is clearly shown in 

figure 4.1.  It is also interesting to note that this same CpG site approaches 

significance at discriminating between Barrett’s and tumour tissue also (p=0.05).  

Interestingly though, the methylation seen in these data show that methylation is 

almost the same between normal and tumour tissue.  It is unclear why BO would 

have such a hypermethylation of this site.  

4.5: Conclusions 

Despite the large number of genes studied here, only one marker reached statistical 

significance in validation despite analysing methylation on a sample size great 

enough to reveal any difference should this be present.  Methylation at the second 

CpG of the gene TIAM1 had the ability to differentiate normal squamous epithelium 

from Barrett’s Oesophagus tissue.  This same marker comes close to reaching 

significance (p=0.05) at differentiating Barrett’s Oesophagus tissue from tumour 

samples, but fails to meet the agreed statistical threshold of being below P=0.05.  

However, it should be noted that the number of BO samples in this analysis was 

significantly lower than the 24 samples needed to meet the demand of the power 

calculation.  As a consequence, this observation may be a result of this lower “n”.  

Further analysis of methylation of this gene in a further 16 samples of BO would be 

required to validate this finding beyond any doubt.  

TIAM1, also known as T-cell lymphoma invasion and metastasis protein 1, which in 

turn activate Rho-like GTPases (124).  These proteins are known to play a significant 

role in cell movement and adhesion (125, 126).  The significance of this gene has 

already been investigated in OADC, specifically invasion and lymph node metastasis.  
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Expression of TIAM1 was shown to be higher in patients with more invasive disease 

as well as those with metastasis (127).  Therefore, the demonstrated difference in 

methylation between normal squamous mucosa and OADC tissue could well be one 

of the controlling influences over this gene and is worthy of further investigation.  

However, this chapter clearly shows that BO samples have a very different 

methylation pattern from both tumour and normal tissue in this specific CpG site.  

This statistically significant result shown in the above box plot reveals no overlap with 

normal squamous mucosa and comes near no overlap with tumour samples.  This 

marker, in addition to the remaining tested markers, does not behave as might be 

expected.  It would be anticipated that methylation would increase in a stepwise 

progression with normal mucosa having the lowest level of methylation, increasing in 

BO samples, peaking at high grade dysplasia and reducing slightly from this in 

tumour samples.  This possibly represents the inflammatory status of the tissue 

examined.  Therefore, the pattern demonstrated here, while unexpected, does clearly 

highlight this as a potentially important marker.   

Therefore, returning to the original array publication from which these markers were 

chosen, there is the suggestion of a potentially important and unique marker.  

However the majority of markers and CpG sites identified by the performed array 

failed to validate in this analysis.  There are many potential reasons why this may be 

the case. 

While powered sufficiently in terms of the number of normal specimens and tumour 

samples, there was only a small number of BO patients included.  This means that 

while interesting, no solid conclusions can be drawn from the methylation levels for 
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BO samples presented in this chapter.  While the number of included samples of 

normal mucosa and tumour met the numbers required, it is still possible that were 

more specimens included, other markers would have been able to discriminate 

between tissue types.  

It has to be recognised that the array used in the original publication has now been 

superseded largely by the Illumina 450 methylation array system.  However, 

bisulphite pyrosequencing remains the main stay of methylation array validation and 

the strict criteria applied to the use of results obtained and their validity provides no 

element of error. 

While unlikely, it is possible that the samples used in this experiment were again not 

representative of the cancer population.  As a result of the chronological nature of the 

included samples, all tumour stages were included.  This translates into T1-T4, N0 

and N1 samples being used and it might be possible that there would be some 

variation in the methylation levels seen between tumour stage (there is no published 

data to support this).  It is unclear which samples were used as “tumour” in the 

original array publication and therefore no adjustment in the cohort used in the 

validation set was possible.  However, the cohort used in this study was 

representative of the wide spread of tumours observed in clinical practice, in which 

any validated marker would have to be robust should it ever be considered for routine 

clinical use. 

Finally, the interpretation of array data published by the original authors may have 

been inaccurate.  Due to the large volume of data produced by an array, and the 

inherent complexity of that data, interpretation can be a challenge and is liable to 
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error.  No further comment can be made about this as the original data from the 

arrays was unavailable; therefore the published genes were taken at face value for 

the validation experiments presented here. 

4.6: Discussion  

This chapter has shown promise in the search for a methylation biomarker with the 

ability to discriminate between tumour and normal tissue in the oesophagus, and has 

revealed one marker from an array which has validated in a powered experiment.  It 

is assumed, in moving forward with this work, that with more modern techniques now 

available, it may be possible to find further, more robust novel biomarkers.   

These initial validation experiments are helpful in that they, along with the reported 

literature, show that methylation markers can be significantly variable in tissue states 

relevant to oesophageal adenocarcinoma.  However, the markers reported in the Kaz 

et al (109) paper have largely failed to validate.  While this was the first published 

study using an array platform to assess markers of different disease states (109), 

validation attempts as performed here have undoubtedly highlighted the potential 

pitfalls associated with this approach.  Despite now being superseded, the fact that 

only one of the markers highlighted in the array has validated reveals the 

weaknesses and pitfalls in array experiments. .   

While markers from an array may reach the required level of variation between 

samples to meet statistical significance, this may be a chance finding due to the 

inevitable small number of tissues analysed on an array.  Arguably therefore, these 

results in isolation are meaningless unless they validate in a powered experiment 

performed after the initial array experiment on a separate, independent sample 
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cohort as was performed here.  This approach does show that array based discovery 

has the ability to generate markers of interest, and may identify novel markers other 

than those which are analysed due to their particular interest to the researching team 

or because of their highlighted use in other disease processes.   

This chapter has therefore provided the justification for using a modern array based 

approach to investigate whether any more significant methylation markers can be 

identified in the context of tissue discrimination in oesophageal adenocarcinoma.   

In addition, the work presented above demonstrates that an array based approach 

needs to have the proper experimental design and the correct techniques to analyse 

these datasets must be chosen. 

To continue this work into the next chapter, a more modern array based approach 

will be utilised to answer the questions posed previously.  This chapter has clearly 

provided the justification for this expensive but promising modern technique. 
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5: Data Mining of the TCGA Database to Search 

for Differentially Methylated Biomarkers of 

Oesophageal Adenocarcinoma, Independent 

Validation and Functional Assessment 

5.1: Introduction: 

Methylation arrays have the ability to compare tissue types to reveal signatures 

specific to that particular tissue.  These signatures vary as a consequence of, or are 

indeed a driving factor of disease.  As demonstrated previously, an array based 

approach is a valid methodology for methylation biomarker discovery but it must be 

accepted that not all markers identified in an array will validate in larger powered 

cohorts.  Clearly therefore an array must be followed by validation before results can 

be meaningful. 

The array on which Chapter 4 was based (Illumina GoldenGate) used a now 

outdated array technology, which has been superseded by the Illumina 450 

methylation array system.   

The Illumina methylation 450 array platform now represents the most up to date 

technology for biomarker discovery of this nature.  Due the work in Chapter 4 only 

being able to reveal a single validated marker, it was thought necessary to pose the 

same question using a more modern technique to ascertain whether more robust 

biomarkers could be found.   
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Biomarkers have potential use in two regards.  Firstly, they have the ability to assist 

and streamline the diagnostic process.  If a methylation profile can differentiate 

between a tumour specimen and normal mucosal biopsy, this could have far 

reaching implications for current diagnostics in use in the oesophagus.  Not least 

because of the recent development of strategies to avoid the need for an OGD 

examination (for example the cytosponge described earlier).  As previously 

discussed, the cytosponge samples cells as it is withdrawn from the oesophagus.  

Clearly much of the cellular architecture in the resulting sample is lost in comparison 

to a formal biopsy.  However, analysis of the methylation profile of the cells sampled 

may well increase the sensitivity of this test, and patients would no doubt prefer this 

to having to undergo an OGD. 

Although not essential to biomarker discovery, once validated it is important to 

explore the functional significance, if any, of such a marker.  The link between 

methylation and expression is clearly described and theoretically therefore it could be 

anticipated that the variation in methylation seen reflects expression variation within 

the affected tumour cells (assuming normal mucosal cells have “normal” methylation 

profiles).  The process of exploring functional significance of varying methylation 

levels opens a huge area of potential work.  However, the first stage in any such 

process is proving the link between methylation and expression of any given gene.  It 

must be accepted that genes will have numerous control mechanisms of which 

methylation is only one.  Therefore, the expected link between methylation and 

expression is not guaranteed should the overriding cellular control be different. 

During the course of this work, the Tumour Cancer Genome Atlas (TCGA) published 

the results of the genetic and methylation 450 array data for OADC.  The TCGA was 
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established in 2005.  Its remit was to categorise the genomic mutations seen in 

cancer using modern sequencing techniques and subsequent bioinformatic analysis.  

Methylation data from the TCGA database was acquired using Illumina methylation 

450 arrays and so represented a robust modern array technique for OADC biomarker 

discovery.  The methylation array data for OADC was extracted from the database, 

along with the data for normal oesophageal squamous mucosa and analysed in the 

hope of discovering potentially informative markers.   

5.2: Aims: 

To determine whether a modern methylation array based approach can elucidate 

novel methylation biomarkers that can differentiate tumour from normal squamous 

mucosa in the oesophagus. 

5.3: Materials and Methods 

5.3.1: TCGA Methylation Array Datasets: 

Level 2 (IDAT files) datasets were downloaded from the oesophageal 

adenocarcinoma section in the TCGA Data portal for all available (at the time of the 

study) tumours (n=11) and normal oesophageal tissues (n=10).   

Adjusted methylation intensity (red/green) values were analysed using Limma and 

Bioconductor.  Methylation values were background corrected and SWAN normalised 

and a logistic regression model using empirical Bayesian shrinkage of moderated T-

statistics was performed.  Differences in methylation between the tissues were 

validated on the cohort of samples used in Chapter 4 which had already been 

extracted and bisulphite converted.   
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5.3.2: Bisulphite Pyrosequencing  

Sigma bisulphite pyrosequencing primers were designed and sourced for the desired 

sequences revealed by the array analysis and run on these samples using an 

optimised PCR technique previously described.   

Once validated on internal samples (24 tumour/normal pairs with 8 BO samples), 

further samples were sourced from the histopathology department at neighbouring 

University Hospital Birmingham as an internal validation cohort (9 tumour/normal 

pairs).  As before, each tissue block used in the study underwent dedicated Upper GI 

histopathological review.  Where possible, blocks were chosen to represent the entire 

tissue type and therefore these sections were cut as scrolls.  Where sections 

required further dissection, tissue was cut onto slides and an H+E slide produced and 

marked as the tissue guide to allow dissection.  Extraction of DNA proceeded as per 

protocol described previously. 

After validation on the second in-house sample set, an external sample cohort was 

sourced from neighbouring Birmingham Heartlands Hospital covered under the pre-

existing ethical approval and tissue transfer arrangement, and facilitated by HBRC (8 

tumour/normal pairs).  Samples selected for inclusion were identified from patients 

recruited to the OE03 trial, in which Birmingham Heartlands Hospital participated but 

whose records were held locally to enable identification of relevant patients.  Despite 

being obtained from a separate unit, all samples had their histology slides reviewed 

by the same histopathologist to ensure sample control. 

Again samples were acquired with the assistance of the HBRC, to which a list of 

required blocks was provided and these were then sourced under a tissue transfer 
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agreement which was already in place.  Once the blocks were obtained, along with 

the original diagnostic H+E slides, an independent histopathology review was 

undertaken to again ensure the samples were of OADC.  Specific blocks of interest 

were identified and this data relayed to HBRC for tissue sectioning.  DNA extraction 

followed the uniform technique. 

All samples underwent DNA quantification before proceeding to bisulphite 

conversion.  PCR methodology was standardised once optimisation for the individual 

primers had been performed.  

Pyrosequencing was performed and only results of good quality (which passed the 

quality control process of the pyrosequencing software) were taken forward for 

analysis.  Samples which failed the PyroMark QC standard were repeated until all 

results met the required threshold. 

5.4: Results: 

5.4.1: TCGA Analysis: 

The TCGA database included 11 OADC samples for analysis.  These were identified 

in the atlas and the data exported.  In addition, all of the data for the comparative 

normal squamous tissue were also exported (n=10).  These results were then 

analysed according to a Bayesian Regression model, to determine methylation 

variation between the two tissue types and the significance of each highlighted 

difference.   

Figure 5.1 shows an overall representation of the differences in methylation seen in 

all of the analysed CpG sites (485,000), and also the significance of the variation.  
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The data shows the change in methylation of a tumour in comparison to normal 

squamous mucosa.  Therefore, data points to the right of 0 show a hypermethylation 

whereas those to the left show hypomethylation.  The position of the data point on 

the “y” axis reveals the significance of the result, with those highlighted in blue having 

the maximal variation between tissue type and the greatest statistical significance.  

These blue sites shown in the graph were therefore selected for validation 

experiments.  
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Figure 5.1: TCGA methylation 450 array data comparing methylation between 

normal oesophageal squamous mucosa and adenocarcinoma 

 

This box plot shows a graphical representation of the variation in methylation between normal 
squamous epithelium and OADC.  Each data point represents one of the 485000 CpG sites examined 
in the Illumina methylation 450 array.  These data assume squamous mucosa have a “normal” 
methylation, therefore any point to the right of 0 has a hypermethylation change in contrast to data 
points to the left of 0 having a hypomethylation change. The log odds (y-axis) demonstrates the 
significance of the methylation difference observed.  Data points shown in blue therefore have the 
maximal differential methylation at the maximal significance.  

 

The above volcano plot is summarised in table 5.1 below.  The following table shows 

the top 20 differentially methylated CpG markers from the array analysis.  Each of the 
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markers shown in the table demonstrates significant (p<0.05) methylation variation 

between tumour and normal tissue.  However, while many sites are revealed as 

significant differentially methylated in this analysis, it must be acknowledged that 

these values are Bonferroni adjusted and therefore it is more important to recognise 

island methylation as a whole rather than isolated individual CpG sites.  
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Table 5.1: methylation 450 array data revealing top 20 differentially methylated 
sites between normal mucosa and OADC 

Probe ID t P.Value adj.P.Val Gene Name (as per PyroMark software) 

cg04992638 24.10550781 3.03E-17 7.26E-12 C17orf46;LOC100133991;LOC100133991 

cg09769113 23.94763281 3.48E-17 7.26E-12 TRIM15 

cg18155853 -23.6600785 4.49E-17 7.26E-12 LRRIQ4 

cg19115272 22.04882122 1.98E-16 1.93E-11 TRIM15 

cg00177787 22.04523172 1.98E-16 1.93E-11 0 

cg24542751 21.37753194 3.78E-16 2.77E-11 LOC100133991;LOC100133991;C17orf46 

cg05664039 21.32108857 3.99E-16 2.77E-11 TRIM15 

cg02478172 21.09300259 5.00E-16 3.04E-11 PTPRN2;PTPRN2;PTPRN2 

cg23623622 20.31337887 1.10E-15 5.92E-11 TRIM15 

cg11692307 19.80733943 1.85E-15 8.45E-11 PLCH2 

cg11133524 19.7769069 1.91E-15 8.45E-11 0 

cg02827132 19.50514463 2.55E-15 9.58E-11 0 

cg08247376 19.49946975 2.57E-15 9.58E-11 C17orf46;LOC100133991;LOC100133991 

cg16601494 19.14889075 3.74E-15 1.19E-10 C1orf70;C1orf70 

cg00330492 18.98857777 4.45E-15 1.19E-10 0 

cg05649391 18.98274573 4.47E-15 1.19E-10 MYBPC3 

cg26742995 18.97517146 4.51E-15 1.19E-10 LOC100133991;LOC100133991;C17orf46 

cg07922007 18.97265613 4.52E-15 1.19E-10 0 

cg17892556 18.88673894 4.97E-15 1.19E-10 ZNF625;ZNF625 

cg13768269 18.86137023 5.11E-15 1.19E-10 0 
 

Probe ID – the Illumina cg probe ID from the Illumina manifest 

T = the t value – the size of the difference relative to the variation in the sample 

p-value = the raw p-value, not corrected for multiple testing 

Adjusted p-value = the p-value corrected for multiple testing 
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Of note from table 5.1 is that, despite not being the top hit, Tripartite Repeat Motif 15 

(TRIM15) is seen 4 times in the table of top 20 hit potential markers (highlighted in 

yellow).  As a result of this, TRIM15 was chosen as the marker with the greatest 

potential ability to differentiate tissue type, and was therefore taken forward for 

validation attempts as this seemed a potentially informative marker. 

5.4.2: TCGA Array Validation 

TRIM15 methylation primer was sourced from Qiagen and using this, bisulphite 

pyrosequencing was performed on the original 24 tumour/normal pairs.  In addition, 8 

samples of BO were also analysed in order to determine whether this marker might 

be able to discriminate out this intermediate tissue type.  It was unknown how 

methylation in BO would be represented by this gene as there was no array data on 

BO samples.  However, the published literature shows a progressive methylation 

increase from normal tissue through BO and peaking at high grade dysplasia (91).  

Commonly, methylation is then reduced in the cancer samples (91).  This was 

therefore anticipated here. 

The amplicon generated from this primer contained 6 CpG sites, within which were 

the 4 sites on interest revealed from the array data.  The analysis, for 4 significant 

sites on this amplicon are show in figure 5.2. 
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Figure 5.2: Pyrosequencing Validation Data of TRIM15 

 

The boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 

Values, represented by dots are outside the expected results range and are therefore shown as 
outliers. 

This graph shows the variation in methylation between normal squamous mucosa, Barrett’s mucosa 
and OADC.  The TRIM15 primer contained 4 CpG sites in the TRIM15 gene, which are represented 
above. 

 

It can be clearly seen from figure 5.2 that all 4 sites of TRIM15 analysed in this 

experiment were able to differentiate between tissue types, however only the 

difference between normal mucosa and tumour was statistically significant (p<0.05).  
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Therefore, to confirm this finding, further samples were acquired (as described) in 

order to validate this result further using bisulphite pyrosequencing.  However, on 

second round validation samples with the previously used Qiagen TRIM15 primer, 

the markers failed to validate.   

Re-analysis of the original TCGA database results in fact showed that the primer 

being used did not exactly cover the 4 CpG sites of interest that were originally 

identified by the array as discriminatory between tumour and normal oesophageal 

tissues.  As a consequence, 4 new primers were designed, each of which targeted a 

specific site from the array data.  These primers were sourced from Sigma.  The 

position of the respective 4 CpG sites within the TRIM15 gene are shown in figure 

5.3. 
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Figure 5.3: TRIM15 gene and location of the array identified probes 
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Initial validation with the new primers and therefore specific target CpG sites was 

performed on 8 matched samples.  This small sample cohort was used to ensure 

primers were optimised, functional, significant and therefore worth pursuing further.  

Each of the 4 primer pairs were optimised as previously described to yield maximal 

DNA amplification, confirmed by the resulting strength of the product band on 

agarose gel electrophoresis and the quality of the results obtained on the 

downstream pyrosequencing QC. 

Table 5.2 demonstrates the statistical significance of each of the TRIM15 CpG sites.  

Of note is that two of the sites failed to reach significance in this small validation 

experiment, and were therefore excluded from further analysis.  However, the first 

and second sites shown here did have significant “P” values and were therefore 

taken forward for validation on all three sample cohorts.  
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Table 5.2: Analysis of TRIM15 methylation results for each of the 4 primers on 8 

tumour/normal tissue pairs. 

  
 

TRIM15 gene site 
 

p-value 

TRIM15-cg09769113 0.001 

TRIM15-cg19115272 0.0027 

TRIM15-cg05664039 0.280 

TRIM15-cg23623622 0.0674 

 

The table above shows the statistical difference in methylation of the TRIM15 CpG 

sites identified from the Illumina methylation 450 array.  All internal samples, from 

both the first and secondary cohort were analysed with these two significant TRIM15 

primers (TRIM15-cg09769113 and TRIM15-cg19115272).  When they successfully 

validated and were able to discriminate between tissues, an external sample cohort 

of the same tissue types (tumour and normal samples) was obtained as described 

and also analysed.  In total, data was obtained for 41 tumour and normal squamous 

samples.   

On completion and analysis of the two CpG’s (TRIM15-cg09769113 and TRIM15-

cg19115272), only one amplicon validated with statistical significance.  While 
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approaching significance, CpG TRIM15-cg09769113 did not quite meet the P<0.05 

threshold and therefore was excluded from further discussion. 

To continue with CpG TRIM15-cg19115272 it can be clearly seen (figure 5.3) that 

there is a stark variation in methylation levels between normal tissue and tumour in 

this analysis.  It can be observed that tumour tissue is hypermethylated in 

comparison to normal squamous mucosa.  While there are outlying points in this data 

set (those outside of the 95% confidence interval) all of these are seen in the tumour 

samples and are significantly hypermethylated in comparison to normal tissue.  Were 

these results to have been included in the analysis even greater significance would 

have been reported. 
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Figure 5.4: Methylation difference between normal squamous mucosa and 

adenocarcinoma of TRIM15 cg19115272. 

 

The boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 

Values, represented by dots are outside the expected results range and are therefore shown as 
outliers. 

Box plot showing the variation in methylation between normal squamous mucosa and OADC in 
TRIM15 cg19115272.  There is statistically different variation in these data (p<0.0001 (5x10-8) 
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Statistical analysis of the results in the graph (figure 5.3) above, demonstrating their 

significance are shown in the table 5.3 below.   

 

Table 5.3: Difference in methylation between normal squamous mucosa and 

adenocarcinoma of TRIM15 cg19115272 

Tissue Average methylation 95% CI p-value 

Normal 20.6% 17.3-23.9%  

< 0.0001 (5x10-8) Tumour 36.6% 32.3-40.9% 

 

Therefore from these data, a reliable methylation biomarker, with the ability to 

differentiate normal from tumour tissue has been presented.  Taking this result 

forward and applying it to a clinical situation, the aim was to develop a methylation 

marker that might have potential use in the management of patients.  Using the 

above dataset, and applying a logistic regression model, with a pre-determined 

methylation threshold of 34% and modelling for the known population prevalence of 

OADC, the following can be determined about CpG TRIM15-cg19115272 methylation 

in routine clinical practice (table 5.4). 
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Table 5.4: Logistical regression analysis of TRIM15 methylation data 

Test % 

Sensitivity 50 

Specificity 95.3 

Positive Predictive Value 38.9 

Negative Predictive Value 97 

 

The overall conclusion from the above results is that, in a population adjusted dataset 

and setting the methylation threshold at 34%, any tissue sample with a methylation 

level below this has a 97% chance of not being a tumour.  The 34% methylation 

threshold was determined by modelling using a ROC curve, which allows the 

threshold to be chosen to maximise sensitivity and specificity.  Therefore, this could 

be used as a reliable method for excluding cancer in an oesophageal tissue sample.  

5.5: Oesophageal Methylation Field Effect Change 

5.5.1: Introduction: 

To date, all of the tissues used in this thesis have been from cancer resection 

patients.  Although the histology review process has meant that there can be 

certainty about tissue type analysed, with normal tissue having no evidence of 

tumour cells, it does mean that if there is any potential methylation field effect change 
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this would influence the results.  This is particularly significant if TRIM15 methylation 

were to have a future role to play in OADC diagnosis.  Because hypermethylation is 

seen in tumour tissue in comparison to normal squamous epithelium, if there were to 

be a field effect in the oesophagus then the methylation differential between tissue 

types would be narrower than would be seen in truly normal tissues.  Field effect 

changes have been observed elsewhere in the GIT, particularly in the colon, and 

these are the basis under which the ENDCAP study (128) is now investigating 

methylation field changes to predict ulcerative colitis associated cancer.   

The use of oesophageal tissues, as matched samples from a cancer patient, features 

routinely in methylation research.  No previous publications have demonstrated the 

presence or absence of a field effect in the oesophagus.  It was deemed important to 

demonstrate whether this phenomenon did or did not exist.  If it were to be proven in 

this work, much of the previous literature in this field, and particularly where normal 

mucosa or BO samples are taken from a cancer patient, would be brought into doubt.  

5.5.2: Aims: 

To determine whether cancer of the oesophagus creates a field effect methylation 

change in adjacent normal squamous mucosa. 

5.5.3: Materials and Methods: 

To test whether any such field change exists in the oesophagus it was necessary to 

acquire “normal” oesophageal tissue.  To do this, endoscopy clinics were targeted to 

take oesophageal biopsies from patients.  Patients who underwent endoscopy 

demonstrating normal upper GI mucosa were selected for biopsy.  Sequential 

patients demonstrating a macroscopically normal oesophageal appearance 
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underwent a lower oesophageal biopsy.  Full patient consent was obtained prior to 

OGD examination for inclusion in this research from patients undergoing OGD by an 

upper GI consultant at UHB.  This sample collection was facilitated by HBRC and 

had full ethical approval.  

At the time of research biopsy, a further biopsy was also sent to pathology for 

confirmation that the tissue used represented normal oesophageal mucosa without 

any abnormality.  This was particularly important as by definition these patients had 

upper GI symptoms (usually reflux symptoms).  Only where the formal histology 

report revealed normal mucosa were the samples included in this experiment.  9 

such patients and therefore biopsy samples were included in this study. 

Fresh tissue biopsies were snap frozen in liquid nitrogen and stored at -80°C until all 

9 samples had been acquired.  When ready for experimentation, the samples were 

fully thawed and then digested for 24 hours in proteinase K along with digestion 

buffer.  Resulting DNA was acquired according to the previously described protocols.  

Bisulphite pyrosequencing for TRIM15-cg19115272 was then performed on these 

samples in order to obtain methylation values for TRIM15 in normal squamous 

epithelium from non-cancer patients.   

5.5.4: Results: 

As presented previously, the mean methylation of TRIM15-cg19115272 in proximal 

resection margin was 20.6%.  However, in the newly analysed “normal” oesophageal 

samples, mean methylation observed was only 12.4% (p<0.05).  This work suggests 

that there may be a field effect in the oesophagus of a cancer patient, and this is 

worthy of further investigation extending to other markers of interest.   
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5.5.5: Conclusions: 

This result has far reaching implications for much of the previously published data 

using proximal resection margins to represent truly normal tissue, including data 

presented in this thesis.  Although using matched tissues for methylation analysis 

removes many confounding variables in sample acquisition, it clearly adds the 

confounding factor that it will potentially raise the methylation profile of normal tissue 

at the proximal resection margin. 

It is unclear how this is reflected in other disease states in the oesophagus.  For 

example, it might be that the presence of BO imposes a field effect change in the 

remaining oesophagus, or in fact that a pre-existing methylation variation from 

normal pre-exposes the patient to a risk of BO.  It might also be that patients who 

subsequently progress to OADC have a differing methylation signature from those 

that remain in a static state over time.  Unfortunately, no such answers exist to these 

questions, but this work clearly demonstrates how little is currently understood about 

methylation in the oesophagus and therefore future work that needs to be done.  

5.6: Crossover of TRIM15 Methylation with the Lower Gastrointestinal Tract 

5.6.1: Introduction 

As is clear from the introduction to this thesis, there is much overlap between 

methylation signatures seen in disease states in the upper and lower GI tract.  It was 

therefore hypothesised that this would also be the case with the CpG of interest on 

the TRIM15 gene (TRIM15-cg19115272).   
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This experiment is important to clarify how specific TRIM15-cg19115272 is as a 

biomarker of OADC.  Clearly, if this marker has an increased methylation in other GI 

associated pathologies then it usefulness as a specific marker of OADC is reduced.   

5.6.2: Aims 

To demonstrate the anticipated overlap of TRIM15-cg19115272 methylation between 

the upper and lower GI tract. 

5.6.3: Materials and Methods 

To investigate this anticipated overlap, a pre-existing held cohort of samples were 

analysed to determine variation in methylation of TRIM15-cg19115272 in progressive 

disease states in the colon.  Tissues examined include those from a similar 

inflammatory disease process – Ulcerative Colitis (UC).  In this disease process, 

much like that observed in the inflammatory driven metaplasia seen in formation of 

BO, the chronically inflamed colon due to UC has a much higher than background 

incidence of colorectal cancer.   

Therefore, from a known colitis cohort, samples of normal mucosa were analysed 

alongside acute colitis, chronic colitis, dysplastic samples and colon cancer.  The 

hypothesis, if there is overlap with the upper GIT, is that there would be a step wise 

increase in methylation of TRIM15-cg19115272 with normal tissue having the lowest 

methylation level, increasing through acute colitis, chronic colitis, dysplasia and then 

a similar or lower level of methylation in cancer.  Samples were analysed by 

bisulphite pyrosequencing using the same TRIM15-cg19115272 primer.   
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5.6.4: Results: 

As can be seen in figure 5.4, the pattern of methylation seen in these colonic tissue 

types is seemingly random, and there is no statistical difference between any of the 

tissues analysed.  This shows the true significance of the TRIM15-cg19115272 as a 

methylation biomarker in the upper GI tract. 
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Figure 5.5: Methylation variation between colonic tissue states of TRIM15 

cg19115272 

 

The boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 

Graphical representation of methylation variation in colonic tissue types, revealing no statistically 
different results.  

 

5.6.5: Conclusions: 

The apparent specificity of TRIM15-cg19115272 methylation at being able to 

differentiate disease states of oesophageal tissues only increases its potential 

usefulness in OADC patients.  It also opens the possibility that, should this marker be 

identifiable in samples other than tissue, it should be specific to the upper GI tract, 
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and results would not be skewed by colorectal pathology.  The obvious choices here 

would be either blood samples or stool, and the sensitivity of this being seen in the 

upper GI tract alone would be able to tailor investigations accordingly should a 

positive test in these samples be found.   

This finding does raise the possibility of a peripheral, none invasive screening test for 

OADC.  Should DNA be shed by an OADC tumour into either blood (as cell free 

circulating DNA) or stool and subsequently be detectable in sufficient amounts for 

methylation analysis, this could be exploited by clinicians to avoid the need to carry 

out invasive endoscopic examinations.  Additionally, there may also be potential use 

for this methylation marker in the context of post-operative disease monitoring, for 

which there is no current useful method.   

If a recurrent tumour continued to shed DNA into the blood, and do so with increasing 

quantity as the disease burden increases, this may well represent the first useful 

disease monitoring test.  This would present significant advantages to the patient, 

particularly if recurrent disease was identifiable early, presenting an earlier indication 

for imaging to detect tumours.  This might present an opportunity to facilitate earlier 

chemotherapy use in this patient cohort.  It might be expected that this would lead to 

a significant impact on length of survival.   While outside the remit of this thesis, this 

represents important future work to carry out.   

5.7: TRIM15 as a Functional Biomarker 

5.7.1: Introduction 

Although it is not essential for a biomarker to be of functional significance, it should 

be established whether this is the case.  Those biomarkers that do have a functional 
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role within the cell clearly have greater biological importance, and may even be 

driving the disease states in which they predominate. 

A literature review of TRIM15 reveals a paucity of data and knowledge about this 

gene and its downstream application.  Current understanding, based on 

computational modelling of protein structure, has hypothesised that TRIM15 is an E3 

ligase (129).  In short, when a protein within the cell is labelled for degradation, it 

becomes ubiquinated by an E3 ligase enzyme (130).  The addition of these ubiquitin 

complexes signals the protein for digestion by the proteasome.  However, if this 

ligase is turned off, for example by hypermethylation of the gene leading to lack of 

transcription, the protein cannot become ubiquinated and therefore will not be broken 

down.  It follows therefore that if this protein is somehow involved in normal cell 

death, and is not digested, a cell otherwise targeted for destruction will survive, and a 

tumour cell could propagate.   

The first method of establishing potential significance of this TRIM15 biomarker is to 

prove the correlation, if any, between TRIM15 methylation and expression.  In order 

for this methylation signature to have functional significance in this context, it is 

important to prove that the accepted link between hypermethylation and reduced 

expression applies in this case.   

In order to justify functional experiments, it was deemed necessary to firstly assess 

whether any existing data would reveal a correlation between methylation and 

expression of TRIM15.  To do this, methylation and expression data for colorectal 

tumours was extracted from the TCGA database used before.  Colorectal data was 

used as this was available from the TCGA database, whereas data for Oesophageal 



Page 124 of 181 
 

tissue was not available at the time of analysis.  The analysis of a different tissue 

type was acceptable as a proof of principle was all that was required at this stage.  

The analysis of 343 data points from the TCGA database showed a clear and 

significant (p<0.001) correlation between methylation and expression of TRIM15 

(figure 5.5).  In short, as methylation of TRIM15 increases, protein expression is 

reduced.  This is exactly the anticipated trend and should be a finding replicated in 

the oesophagus.  If this is the case, not only would the methylation of TRIM15-

cg19115272 be a significant biomarker at disease identification in the oesophagus, 

but it may also be a component in the biology of OADC.  Followed to its natural 

conclusion, the question of whether reducing methylation in an OADC tumour may in 

fact be an important drug target in the treatment of this disease is raised. 
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Figure 5.6: Correlation between TRIM15 cg19115272 methylation and 

expression  

 

Variation in methylation and expression taken from the TCGA data for colorectal expression analysis 
as a proof of principle to conduct the same experiments in an oesophageal cancer cell line.  The 
above clearly showing that as methylation increases, expression of TRIM15 decreases. 
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5.7.2: Aims 

To determine whether there is a correlation between methylation and expression of 

TRIM15-cg19115272 at the mRNA and protein level. 

5.7.3: Demethylation of OE33 and its correlation with expression of TRIM15 

The methylation of native OE33 cell line for TRIM15-cg19115272 is shown in table 

5.5.  This value was obtained by pyrosequencing of DNA extracted from the OE33 

cell line.  

 
Table 5.5: Methylation of TRIM15 cg19115272 in native OE33 cells 
 

Assay Sample Methylation (%) 
TRIM15-

cg19115272 OE33 90.36 
 

This reveals that native OE33 methylation of TRIM15-cg19115272 is >90%.  

Repeated validation experiments all produced the same overall result.  

There was an assumption that native OE33 cells, where methylation was in the order 

of 90% would show little to no expression at the RNA level.  Therefore, if methylation 

was reduced, it was hypothesised that the cells would begin to re-express TRIM15.  

QPCR results however did detect expression of TRIM15 in native OE33 cells, 

therefore indicating that methylation may not have any controlling impact over this 

gene.  Were this the case, it could be anticipated that there would be no change in 

expression when the cells were demethylated.   

OE33 cells were treated with 5AZA (as described in length in methods section) to 

decrease methylation.  However, with a reduction in methylation of 30% (from 90% to 
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59% achieved with 5AZA treatment), overall Ct on the QPCR was increased by 1.2.  

While this does not appear to be a large change in expression, calculation of the 

Delta delta Ct (the percentage change in expression given that expression doubles 

for each increment of Ct) equates to an increase in RNA of 225%.  It can be 

concluded therefore that while not the only controlling influence over the TRIM15 

gene, methylation clearly does have a role to play.  

5.8: Correlation of RNA Expression with Protein Expression 

The final assessment of potential functional significance of TRIM15 methylation 

within the cell is to link the observed change in RNA expression with downstream 

TRIM15 protein.  Clearly, it would be expected that both RNA and protein expression 

would increase with demethylation.  Therefore this was tested. 

5.8.1: Aims 

To ensure the observed difference in RNA expression of TRIM15 observed following 

OE33 demethylation correlates into protein expression. 

5.8.2: Methods 

To further quantify this difference and to ensure that the observed change in RNA 

transcription translated into end protein product, a protein assay was necessary.  As 

a result of the method used for RNA extraction (TRIzol protocol), it was necessary to 

obtain protein from the same sample again using the TRIzol extraction method.  This 

is not the most robust method of protein extraction and there are a number of flaws in 

addition to the yield being predictably lower than ideal.  The protocol is as described 

in the methods section.   
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TRIM15 protein was analysed by western blot (previously described) with the 

purpose of comparing whether the observed doubling of RNA lead to a doubling of 

protein product.  Many problems were encountered with dissolving the protein plug 

obtained at the end of the TRIzol extraction protocol.  However, experiments 

revealed that a solution of 0.05% SDS with 4M urea in TRIS-HCl (with pH 8) 

achieved the greatest amount of protein in solution.  Even with this, it was still 

challenging to make the resulting protein plug dissolve in sufficient amounts to allow 

western blot analysis.  Eventually, the plug was subjected to sonification to 

encourage its physical break down.  This resulted in a much greater protein yield and 

lead to encouraging western blot protein bands.   

Protein was first quantified by a protein assay.  This was an important step as overall 

total protein must be equal in all loaded samples to ensure that any observed 

difference in the specific protein (TRIM15) under investigation was not seen as a 

result of overloading one well with protein compared to another.   

To perform the protein assay, 10µL of protein sample was added to a protein 

fluorescence buffer.  10µL of protein standards at 4 dilutions were also analysed in 

addition to analysis buffer in the absence of sample.  This was allowed to incubate 

for 30 minutes at 37°C.  The 96 well plate with samples was then analysed for protein 

content.  In reality, if the initial green sample solution turned purple during the 

incubation, protein was present within the sample.  True colour change, and 

therefore protein concentration, was quantified by spectrophotometry.   
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After analysis on the spectrophotometer, back ground noise (empty well) was 

subtracted from all samples, followed by subtracting the value given for the assay 

buffer without sample.  

A plot was then performed for the 4 reference proteins as figure 5.6. 

 

Figure 5.7: Standardisation of protein samples 

 

Series 1 = Data points for protein standards. 

The spectrophotometer readings for standard protein concentrations (0.25, 0.5, 1 and 2) are plotted on 
the graph above.  This allows the generation of a linear correction to be applied to all measured 
protein amounts, producing a linear correlation between protein standards and results obtained.  “y” 
shows the correction to be applied to experimental samples. 

 

Figure 5.6 allowed the generation of a linear correlation between the 4 readings from 

the protein standards and spectrophotometer readings, which allowed the formula 

shown to be generated.  Therefore, by entering the spectrophotometer reading and 
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adjusting by the given formula, the protein concentration (µg/ml) was calculated for 

the extracted experimental samples.   

This allowed the calculation of sample volume required to add 20µg of protein to 

each western blot well.  Therefore, each well on the blot gel contained the same 

initial amount of protein, meaning that any observed difference in western blot band 

intensity was the consequence of a change in expression and not loading bias.  A 

standard western blot was run, with the protein being mixed with loading buffer and 

heated to 100°C for 5 minutes.  The required volume of protein was added to the 

respective wells so that the total protein in each well was equivalent.  Protein was 

loaded, both from the native cell line and also the treated cell line and these were 

loaded in triplicate.   

Although each well should in theory contain the same initial overall protein amount 

(from the protein assay calculation), this loading was confirmed with a standard 

assay which in this case was β-actin.   

The protein was allowed to run through the gel alongside a ladder by electrophoresis.  

After this, the proteins from the gel were transferred to the analysis membrane.  

Subsequently, the membrane wash washed in milk to allow nonspecific protein 

binding (this stage mops up the protein binding availability of the membrane such 

that chosen antibodies then only bind to the protein being investigated).  The 

membrane was then agitated overnight in a fresh milk solution containing the 

TRIM15 or β-actin antibody at the concentration recommended by the manufacturer. 

The following day, membranes were washed, before incubating in a secondary 

antibody with affinity for the primary antibody.  Again the membrane was washed 
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after this stage before being developed (to show the presence or absence of protein 

band) onto an x-ray film.  Varying exposures were used in order to achieve the 

optimal protein band picture and allow quantification of protein amount. 

The flaw in this experimental plan was discovered only when the x-ray films were 

developed.  Although the 5AZA treated cells demonstrated 200% increase in the 

amount of TRIM15 protein, the results also showed a 200% increase in the amount 

of B-actin protein within the samples from the treated cells in comparison to the 

native OE33 cells. 

The reason for this unexpected finding, which brings the results into question 

appears to be that β-actin also has a CpG site in its promoter region (131).  Given 

that 5AZA will theoretically reduce methylation in CpG sites across the genome it is 

possible that the variation in protein expression for β-actin had also been influenced 

by the demethylation from 5AZA.  As a protein standard against which a comparison 

should be made, this was not a wise selection and a further plan was developed. 

To prove the protein loading standardisation in a western blot, any resulting band 

would usually be compared to a standard protein that would not have been affected 

by the experiment, which usually involves using β-actin.  However, global cell 

demethylation appeared to have reduced the expression of this protein also.  As a 

result, a total protein stain (coomassie blue) was used.  Again, the gel was set up in 

the standard fashion as previously described.  Protein from native OE33 cells was 

loaded in triplicate next to protein from the 5AZA treated cells.   

Protein was also loaded from both samples as a control which would be used for a 

coomassie blue stain for total protein.  No specific protein standard was used 
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therefore, but since coomassie blue stains all proteins, this would be used as the 

control to ensure equal loading of wells.  After loading, the gel was allowed to run.  

After which, the experiment protein gel was transferred to a membrane while the 

control gel was exposed to a coomassie blue stain for 30 minutes.  As before, the 

experimental membrane was washed with milk after transfer, before being exposed 

overnight to TRIM15 antibody.   

After 30 minutes of coomassie dye exposure, the gel was left to agitate overnight in 

wash solution, until only the protein bands remained visible and blue, but the 

reminder of the gel was then clear.  Meanwhile, the protein membrane was washed 

and exposed to the secondary antibody before being exposed to x-rays capture the 

protein band intensity. 

Thereafter, experimental bands were standardised according to the amount of 

protein represented in the coomassie stain.  This allowed comparison of the protein 

expression levels, standardised for total protein sample content. 

The coomassie blue protein standardisation gel is shown in figure 5.7. 
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Figure 5.8: Coomassie blue stain  

                                     

The intensity of bands are shown on this gel, with treated (T) cell line protein on the left and untreated 
(U) on the right.  The protein ladder (L) is shown here on the far left.  Division of intensity of bands 
after scanning and assessment by ImageJ software produced the standardisation formula for 
experimental proteins. 

 

Figure 5.9: Western blot film following exposure, revealing obvious variation in 

protein content between 5AZA treated (T) and untreated (U) OE33 cells. 

 

All x-ray films, in addition to the coomassie blue protein control gel were.  Intensity of 

all the resulting bands was calculated using ImageJ.  Triplicate samples were then 

grouped to provide the mean intensity of all respective bands.  Band intensity was 

then standardised according to a protein band from the coomassie blue stain such 

that overall loading of protein difference was removed from generating bias.  This 

Protein band used for standardisation 

  L         T            U 
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allowed the calculation of average protein amount, the standard deviation and error 

between triplicate samples and the significance of the difference shown.  

5.8.3: Results 

The comparison of expression between treated vs untreated cell line protein, with 

standardisation for the total amount of protein in the sample reveals the following 

results (table 5.6) 

Table 5.6: Corrected protein content of OE33 cells, with and without 5AZA 

treatment 

Sample Average Standard 
deviation 

Standard 
error 

T-test 

Treated 2.48 0.75 0.37 P=0.014 
Untreated 1.00 0.00 0.028  

 
Average:  mean 
Standard deviation:  Variation about the mean 
Standard error:  Standard deviation of the mean 
T-test:  Calculation of a statistical p value 
 
 
This same data can then be shown graphically as figure 5.9. 
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Figure 5.10: Corrected protein content of OE33 cells, with and without 5AZA 

treatment 

 

Graphical representation of the protein content comparison between native OE33 cells and those de-
methylated with 5AZA.  This shows a reduction in protein expression of 50% when methylation was 
reduced.  This reduction in protein amount correlates with RNA expression change.  

 

Therefore, these data clearly show that expression of the TRIM15 protein is doubled 

in the cell line treated with 5AZA, i.e. where methylation was decreased from 90% to 

59%.  In addition, the expression of protein level correlates exactly with the 

expression at the RNA level.  This work now provides the preliminary evidence 

needed for the further exploration of TRIM15 function.   

5.8.4: Conclusions: 

The work in this chapter has strengthened the evidence that methylation variation 

between normal tissues and disease exists in OADC and that these have the ability 

to be used as clinically useful biomarkers.  This data has also proven the usefulness 

of modern array technology in selecting targets which have a greater ability to 
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discriminate tissues than randomly selected genes, and appears to supersede 

previous array technologies as might be anticipated.  Caution must be employed 

however, as there is no guarantee that markers shown in an array will validate in 

larger sample cohorts and care must be paid to ensuring the validation experiments 

cover not just the gene in question but the specific CpG sites within that target gene. 

This chapter also stressed the importance of accurate bioinformatic analysis of huge 

data sets to determine not only variation in methylation patterns between tissue 

states but also their significance.  However, it is observed that array data alone is 

relatively meaningless unless successful validation follows in large powered sample 

cohorts.  This point is very obvious in this data set as 3 of the 4 sites flagged in the 

TRIM15 gene failed to subsequently validate.   

The discovery of TRIM15 as a methylation biomarker of OADC is of high scientific 

interest and clearly warrants further work to discover its function both within a normal 

cells and its role in OADC.  However, the link between methylation and expression at 

both the RNA and protein level demonstrated in this chapter suggests that TRIM15 

hypermethylation might be an important transcriptional control and may therefore be 

a driving influence over the development of OADC.  If this is the case, and especially 

knowing that modulation of the gene is possible in a cell line model, this could 

potentially translate into a drug target in the future. 

Although little is known about the function of this gene, the TRIM family of genes and 

proteins have been previously reported in OADC.  TRIM44 has been reported in the 

context of OADC on 3 occasions with data suggesting a survival advantage in a 
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normally functioning gene (132, 133), but also suggests a therapeutic target to 

control its genomic overexpression (134).   

This latest discovery of TRIM15 in OADC strengthens the case that the TRIM family 

of proteins might have a driving role in this disease.  This needs significant future 

work in order to determine the precise role of these proteins in the hope of 

understanding the disease processes of this cancer better.  To begin this work, it 

would be possible perform a further targeted experiment looking at the downstream 

effectors of TRIM15 by carrying out a knockdown experiment with cell lines and 

looking for a functional pathway using RNAseq and collaborations with other 

interested groups with the appropriate experience in this field are now established to 

take this work forward. 
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6: Novel Approaches in Oesophageal Biomarker 

Discovery 

6.1: Barrett’s Oesophagus as a Clinical Problem 

The incidence of BO is increasing year upon year, which is largely thought to be a 

consequence of obesity driven reflux disease (17, 83, 135, 136).  Despite the huge 

number of patients suffering from BO, it is in its own right a benign non-harmful state.  

Indeed for many, the development of Barrett’s mucosa in a reflux inflamed lower 

oesophagus is most likely protective.  Nevertheless, a small number of patients with 

this condition will develop OADC, and the incidence of cancer in the BO population is 

up to 150 times greater than the unaffected population.   

The issue currently is that in patients with non-dysplastic BO, there are no robust 

methods for identifying the small number of patients at high risk of progression to 

cancer.  Surveillance practice of the Barrett’s patient varies widely at present, 

between some who endoscope these patients each year in contrast to others who 

will never repeat the investigation.  Recent guideline publication (137) for the 

Barrett’s patient now formally advises surveillance between 3-5 years, depending on 

segment length (with low or high risk being determined by a segment <3 or >3cm).   

The result is that huge resources will need to be invested in surveying every patient 

diagnosed with BO.  This process takes considerable financial backing, which in the 

current NHS will not be easy to achieve, and as with any surveillance programme will 

need to prove it can detect OADC at an earlier stage and lead to improved survival.  

Therefore, there is a significant requirement for a robust method of risk stratification 
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in these patients.  If a marker could be identified that had the ability to predict 

development of cancer, this would allow a much more streamlined surveillance 

programme, targeting only those who were predictably high risk for developing a 

tumour.  This would advantage the patient by resulting in potentially earlier tumour 

diagnosis and therefore better outcome.  In addition, those stratified into the low risk 

group could avoid an unnecessary investigation which although generally safe, can 

be associated with complications and is unpleasant. 

Indeed, if it were possible to identify these high risk patients and understand the 

mechanisms involved in tumour formation in this group, it might be possible to 

develop management strategies designed at preventing the formation of cancer, 

although current treatments for BO seem to conflict as to whether they reduce the 

long term cancer incidence (138).  Clearly this would provide the necessary rationale 

for a large scale clinical trial to investigate such patients in more detail.  

Stratified surveillance of the high risk Barrett’s patient will combine the advantage of 

an early diagnosis in with ever improving endoscopic mucosal resection techniques.  

Experienced endoscopists are now able to resect early tumours limited to stage T1a, 

removing the need for patients to undergo high risk oesophagectomy surgery.  

However, as stated before, the ability to differentiate a tumour between T1a, where 

lymphatic involvement would be rare, and T1b where nodal disease is considerably 

more likely is challenging with current techniques.  Clearly, when a patient has lymph 

node disease, it is crucial that these lymph nodes are removed to guarantee full 

disease clearance, and this can only be achieved with surgery.  Even in those 

patients with early disease who have had a local resection of their primary tumour, 
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lymph node recurrence/progression of missed disease is troublesome and 

necessitates salvage oesophagectomy.   

While generally excellent, current staging techniques can struggle to identify the 

subtle differences between early lesions.  Therefore, a marker of a more advanced 

disease process as evidenced by lymph node disease would be extremely useful in 

this context, and would provide the justification for high risk surgery in patients with 

early lesions but in whom there is already local lymphatic involvement present at only 

a microscopic level. 

6.2: Aims  

• To determine whether methylation signatures can differentiate between high 

risk Barrett’s which will progress to cancer vs low risk Barrett’s who will never 

progress.   

• To determine whether methylation signatures have the ability to determine 

tumour aggressiveness as evidenced by lymph node metastasis.  

6.3: Patients and Samples: 

In order to attempt to answer the above question with an array, it was necessary to 

assemble panels of specific and rare tissues 

6.3.1: Samples for Assessment of Barrett’s Progression 

Several previous groups who have attempted to answer this same question have 

done so using known cancer patients (110, 111).  Many groups have used an 

overriding assumption that where a patient has visible BO at the edge of a tumour 

specimen, this tumour must have arisen from this BO and therefore a follow-on 
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assumption is that this BO represents “progressing Barrett’s.”  For this research, it 

was considered this was an unwise assumption to make.  This statement about the 

tumour definitely having arisen from this BO is likely but not easy to prove.  In 

addition, if visible BO at the tumour edge represents progressing disease, why has it 

not all been consumed with cancer?  The very fact tumour has developed may mean 

the epigenetic signature of this tissue has already been altered in line with the 

tumour, as a field change effect is likely and has been demonstrated already in other 

tissue for example the colon, and further shown in Chapter 5 of this thesis.  In an 

attempt to determine a methylation marker of “progression risk” from non-dysplastic 

BO to OADC, using tissue of this nature was thought unwise and was therefore 

excluded as an option.   

Therefore, a different strategy to tackle this experiment was taken, although this 

posed challenges in sample acquisition.  Patients and samples were identified at the 

very origin of the disease process, and tracked throughout time retrospectively.  

Samples were only included where there was a non-dysplastic BO biopsy and then 

proof (histopathology) that the same patient developed cancer.  Patients who only 

progressed to dysplasia (of whichever grade) were excluded.  Where there was no 

histopathology proof that the patient had developed cancer, or where this diagnosis 

had been made in a different hospital, the patient was also excluded.  While this 

removed many potential patients from the experimental cohort, it meant that those 

who were included were truly representative of the target population and any results 

should be representative.   

It was a particular challenge to find a cohort of BO patients which met these stringent 

inclusion criteria.  To do this, collaborations were established with other centres 
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within the West Midlands.  Often, centres kept no robust database of BO patients, 

and this made tracking difficult.  Clearly a centre could only be included where a 

surveillance programme was conducted.  Often, where a database did exist, it 

included patients who were dysplastic at first diagnosis and these were excluded.  

Often, where robust surveillance was in place, patients had multiple biopsies of non- 

dysplastic Barrett’s before developing dysplastic changes prior to their eventual 

cancer diagnosis.  Where there were temporal biopsies, all of these were included in 

the study where tissue was available.  This means that a single patient could 

contribute several samples to the study.  This was also important as it allowed a 

comparison of markers over time – i.e. if a marker of progression was discovered, it 

would then have been possible to demonstrate how long prior to cancer development 

this marker was identifiable in the tissue sample.  

An additional challenge included the historical nature of the samples needed for this 

analysis.  It was frequently not possible for the respective pathology department to 

locate the block of interest.  This significantly limited the number of available tissues 

and of course meant that the sample cohort included was small.   

Eventually, 12 patients were included in the progressing cohort and this produced 30 

samples.  The best 6 (greatest DNA yield in addition to best quality of DNA as per 

nanodrop data) were put forward for the array analysis.  Remaining samples were 

then used for the follow-up validation exercise of array identified markers.  

The non-progressing, never-dysplastic group was easier to obtain, however not 

without issues.  Again, in order to be classed as never dysplastic, the patient had to 

be enrolled in a surveillance programme.  Patients were only included where they 
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had been in surveillance for more than 15 years, had numerous non-dysplastic 

biopsies over that time, were still alive and had a non-dysplastic BO biopsy within the 

last 2 years (showing they were still in surveillance).  37 samples were included in 

this group.  Again the best 6 samples were used in the array experiment with 

remaining samples used for validation attempts.   

6.3.2: Tissues for Assessment of Lymph Node Disease 

To discover a marker of lymph node positivity, it was necessary to acquire a group of 

samples in which as many other variables as possible could be minimised.  

Therefore, a decision had to be made.  The natural pattern of OADC means that the 

earlier the stage of tumour, the less likely it is for there to be lymph node 

involvement.   

Ideally, a cohort of T1 resected tumours, both with and without lymph node disease 

was required for this experiment.  A review in OADC resection cases revealed that 

there were insufficient numbers of such specimens available.  In order to achieve 

appropriate numbers of samples, and in an attempt to keep as many variables static 

as possible, it was necessary to select either a cohort of T2 or T3 tumours.  In 

addition there then had to be enough samples obtainable which had N0 and N1 

disease.  The review into potential sample numbers showed that using a T2 group 

would again not yield sufficient numbers for powered experiments to take place.  

Therefore, T3 tumours were used as these represented the greatest cohort of 

resected tumours, as would be expected.  Even with this being the case, it was 

challenging to find sufficient number of T3N0 samples, as lymph node involvement 

would be anticipated by the time this tumour stage was achieved.   



Page 144 of 181 
 

6.4: Methods 

DNA was extracted from FFPE biopsy samples as previously described.  These 

samples were all qualified and quantified using both Nano-drop and Qubit 

techniques.  

6.5: Methylation 450 arrays 

The discovery target gene methylation analysis was performed using an Illumina 

methylation 450 array, as this represents the latest methylation comparison array 

platform.  The array chip slides were prepared locally however the scanning of the 

chips occurred in Oxford University, with kind thanks to the Tomlinson group.   

The array samples were processed exactly as per the Illumina protocol (reference in 

Methods section).  The subsequent data generated was analysed using a Baysian 

regression model in order to compare methylation differences between the two 

sample groups.  Unfortunately, one of the chips containing a BO progressor failed to 

take the sample all the way across.  There was no identifiable reason for this other 

than failure of the capillary action to draw the sample over the chip.  Even though this 

failure was obvious at the time of sample loading, there was nothing that could be 

done to rectify the issue.  Therefore the results from this chip were reviewed prior to 

inclusion in the analysis.  Although the chip did provide data for 200,000 CpG sites, it 

was thought best to exclude all of the results from this chip for analysis so as not to 

skew any other data.  The consequence of this was that there was variability in the 

sample cohort size, but this was not thought to be important as it was the mean 

values which were taken forward for the comparison analysis, therefore this drop-out 

could be adjusted for.   
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6.5: Validation experiments 

Validation of any significant result from the above Methylation 450 array was 

performed by bisulphite pyrosequencing using the remaining samples obtained.  This 

was performed as previously described.   

6.6: Results: 

6.7.1: High Risk Barrett’s Biomarker. 

As in Chapter 5, array data was analysed in the same format to allow a comparison 

of methylomes between the two groups (non-dysplastic BO that progressed to cancer 

vs. those that remained static).  Variation (either hyper or hypomethylation) was 

ranked in order of statistical significance to allow the identification of differences 

between the groups.   

The comparison between BO samples that progressed to OADC in comparison to 

those which did not progress is show in table 7.1.  There were 44 differentially 

methylated sites identified. 
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Table 6.1: Top 20 array identified CpG sites with methylation variation between 
non-dysplastic samples which progress to OADC vs those which remain static 

Probe ID t P.Value Adj.P.Value Gene Name 

cg07863524 -12.26 2.02E-08 0.0031 OR3A4 

cg24007926 -11.05 6.84E-08 0.0032 NA 

cg17337672 -10.95 7.54E-08 0.0032 FGFR2 

cg02226469 -10.88 8.17E-08 0.0032 NA 

cg17433294 -10.51 1.22E-07 0.0038 NMUR2 

cg18479711 -10.31 1.52E-07 0.0039 HDAC4 

cg09011162 -10.15 1.82E-07 0.0040 LMF1 

cg19733463 -9.83 2.61E-07 0.0045 NMUR1 

cg16150571 -9.64 3.26E-07 0.0045 SNORD116-22 

cg24424217 -9.62 3.35E-07 0.0045 ZNF511 

cg13164993 -9.57 3.52E-07 0.0045 RBP3 

cg14019464 -9.53 3.70E-07 0.0045 TRIB3 

cg24581378 -9.53 3.71E-07 0.0045 ZAP70 

cg05230642 -9.36 4.54E-07 0.0051 SNORD115-14 

cg12297814 -9.26 5.08E-07 0.0052 IGFN1 

cg11231240 -9.23 5.33E-07 0.0052 NA 

cg11864327 -8.96 7.40E-07 0.0063 ZFP2 

cg16771467 -8.92 7.78E-07 0.0063 ATP8B1 

cg17304276 -8.88 8.14E-07 0.0063 CUX2 

cg11443888 -8.86 8.36E-07 0.0063 TMEM151B 
 

Probe ID – the Illumina cg probe ID from the Illumina manifest 

T = the t value – the size of the difference relative to the variation in the sample 

p-value = the raw p-value, not corrected for multiple testing 

Adjusted p-value = the p-value corrected for multiple testing  
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Of the top 20 differentially methylated sites as shown, an analysis of the identified 

genes was conducted to see whether any had been previously implicated in OADC 

or BO.  While most were de novo findings, Fibroblast Growth Factor Receptor 2 

(FGFR2) has been previously reported in the oesophagus.  Therefore, FGFR2 along 

with the top hit from the array, Olfactory Receptor 3A4 (OR3A4) was selected for 

downstream validation attempts.  

Fibroblast Growth Receptor 2 (FGFR2), a receptor tyrosine kinase, has already been 

shown to be amplified in both oesophageal and gastric cancer although, methylation 

change has not been reported (139).  Given the relative hypomethylation of this gene 

in progressing samples observed in this data and the presumed increase in 

expression as a consequence of this, this gene probe was selected as a target.  

Other studies have echoed this expression change.  Peterson et al, 2013 showed 

using immunohistochemistry that at least 51% of OADC overexpressed one of the 

receptor tyrosine kinases and that the level of over expression is also increased in 

BO and becomes increasingly so throughout the dysplastic stages (140). 

Of further potential interest with this gene is the existence of a known FGFR inhibitor 

dovitinib (141).  Although this drug has most affinity for FGFR2, there is cross over 

with other members of the RTK family and this raises the question whether it may 

have the ability to arrest development of cancer in the Barrett’s patient.   

In addition to the potential of FGFR2, the top hit marker in this array experiment was 

OR3A4.  This marker, showing hypomethylation in progressing patients, has the 

greatest significance (p=0.003) of all the 44 most significant markers shown in this 

experiment.  
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As a consequence, methylation insensitive primers were designed around these 2 

targets.  Once obtained, each of the primers was optimised.  This was particularly 

important as DNA used in this pyrosequencing was sparse and of much poorer 

quality than that used in previous chapters.  Once robust, these markers were 

analysed using bisulphite pyrosequencing as before.   
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6.7.2: Analysis of Pyrosequencing Data 

Analysis of the pyrosequencing data from FGFR2 failed to discriminate between 

samples of BO that progressed to cancer vs those that did not.  This result is 

demonstrated in figure 6.1 below. 

 

 

 

 

 

 

 

 

 

The boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 

This graph clearly shows no variation in methylation of FGFR2 between BO progressors and none 
progressors.   This marker therefore failed to validate.  
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6.7.3: OR3A4 data 

Bisulphite pyrosequencing data for the flagged OR3A4 CpG has been statistically 

analysed in table 7.2. 

Table 6.2: Pyrosequencing validation data for OR3A4.   

CpG Odds Ratio Standard. 
Error 

z P>|z| 95% Conf. 
Interval 

1 OR3A4 0.94 0.02 -3.47 0.001 0.91-0.98 
 

The significance of the data is presented in the following ROC curve (figure 7.1). 
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Figure 6.2: ROC curve demonstrating the ability of OR3A4 methylation to 

differentiate high risk BO 

 

The above ROC curve demonstrates the performance of OR3A4 as a clinical test, demonstrating 
sensitivity and specificity at varying thresholds.   

 

 

Only one of the 4 amplicons tested in this validation exercise managed to produce a 

statistically significant result.  However, the hypomethylation of OR3A4 in progressing 

patients validated with a p<0.001 and is shown in figure 7.2. 
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Figure 6.3: OR3A4 methylation differentiating high risk non-dysplastic BO 

 

The boxes span the 1st and 3rd quartiles 

Band inside the box is the 2nd quartile (the median) 

The lines are the “lower adjacent value” which is the first quartile - 1.5 x intra-quartile range and the 
“upper adjacent value” which is the third quartile + 1.5 x Inter-quartile range 
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Logistical regression on this data set, setting a methylation threshold of 80% and 

modelling for a progression to cancer rate of 0.7% reveals a potential clinical test with 

the parameters shown in table 7.3.  

Table 6.3: Logistical regression showing the use of OR3A4 methylation as a 

clinical test. 

Test % 

Sensitivity 80 

Specificity 67.6 

PPV 1.71 

NPV 99.80 

Threshold for methylation level was determined by logistic regression.  Sensitivity and 
specificity tables were formulated based on the above ROC curve and the percentage 
methylation was chosen to maximise sensitivity and specificity.  

 

6.7.4: Conclusions for Barrett’s Progression 

While this data does not demonstrate the ability to predict cancer development in the 

non-dysplastic Barrett’s patient, the negative predictive value of 99.8% is extremely 

useful.  Arguably, for the intention of designing a surveillance programme with the 

ability to risk stratify the non-dysplastic Barretts patient, this is potentially more useful.  

Of significance is the ability of this test to exclude the development of cancer in this 

group, and do so 99% of the time when methylation of the NDBO sample is above 

80%. 
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The ability to exclude cancer development in 99.8% of the non-dysplastic Barrett’s 

cohort would facilitate development of a streamlined surveillance programme, and 

lead not only to huge NHS cost savings but also the avoidance of un-necessary 

investigations in this group.  Although generally safe, it should also be considered 

that endoscopy does carry an associated morbidity and mortality, which would again 

be reduced by only offering it to those patients with a high risk of cancer 

development.  While this finding needs further validation in a larger cohort, this data 

is very promising and needs to be taken forward in the future.   

Conceivably, should this marker re-validate in a larger cohort, it is be possible that 

each patient diagnosed with non-dysplastic BO on endoscopy, and proven to be non-

dysplastic on histology review should have a sample of their Barretts sent for 

methylation assessment of OR3A4.  Any patient with methylation of this site greater 

than 80% could be reassured and discharged from further review.  Conversely, if 

methylation was shown to be below 80%, the patient should clearly be entered into a 

surveillance programme.  The avoidance of endoscopy in the low risk group would 

allow a more intensive surveillance of the high risk group, with the intention that 

should these patients develop a tumour in the future, this would be diagnosed at an 

earlier more treatable stage.  Alternatively, another argument might be to offer these 

patients treatment for their BO.  However, the evidence that such treatments reduce 

cancer incidence in this group is not currently strong. 

6.8: Biomarker Discovery of Nodal Disease 

Running in parallel with the experiment reported above was an array investigating 

whether the presence of nodal disease could be identified using a methylation 



Page 155 of 181 
 

marker.  To perform this array, 6 samples of T3N1 were compared to 6 samples of 

T3N0.  Ultimately the question was not whether it would be possible to identify nodal 

disease in a T3 cohort, but whether a marker could be found that would assist in the 

staging investigation of T1 A/B patients, where knowledge of microscopic disease 

would alter their management plan significantly. 

As these samples were run in parallel with the array already reported, there was no 

variation in methodology or sample handling.  All samples were prepared according 

to the specific protocol from Illumina as reported in the methods section.   

6.8.1: Results 

Disappointingly, while every sample in this array produced a result and worked well, 

upon statistical analysis there were no statistically significant results found.  The 20 

top hits identified in the array are reported in table 7.4 but none of these reached the 

required level of statistical significance. 
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Table 6.4: Illumina methylation 450 array data comparing T3N0 tumours with 
T3N1 tumours 

Order number Probe ID Adjusted p value Gene name 
1 cg22937649 0.1175 NTN1 
2 cg10561103 0.2529 ADAMTS16 
3 cg15165154 0.2529 CXXC5 
4 cg20970354 0.3146 NA 
5 cg10676125 0.3146 ZNF536 
6 cg23799393 0.3146 BICC1 
7 cg01526189 0.3146 CDH4 
8 cg04751761 0.3146 SLC9A3R2 
9 cg14048780 0.3146 SHC3 
10 cg26314869 0.3146 NA 
11 cg14643892 0.3146 C12orf56 
12 cg16524232 0.3146 NA 
13 cg03306486 0.3146 APC2 
14 cg18181196 0.3146 ESRRG 
15 cg14349131 0.3146 NFIB 
16 cg08296037 0.3146 IFT140 
17 cg25140795 0.3146 FLNC 
18 cg06300254 0.3146 CHAT 
19 cg07612827 0.3146 FLJ25758 
20 cg18863595 0.3146 GRM7 

Probe ID – the Illumina cg probe ID from the Illumina manifest 

Adjusted p-value = the p-value corrected for multiple testing 

 

 

As can be seen, none of the results achieves a p value of <0.05 and are not therefore 

significant.  As a result, no validation exercise was undertaken.   

6.9: Conclusions 

Despite the disappointment that there were no significant methylation differences 

between patients with and without nodal disease, the parallel array investigating BO 

patients with progressing pathology has shown interesting results, and further 
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strengthens the case for an array based approach to discover methylation 

biomarkers, followed by validation exercises.   

It is unclear at this point why the N1/0 array failed to produce significant results other 

than to suggest that methylation plays no part in nodal metastasis.  It clearly is the 

case that there are many other pathways not investigated that might explain this 

mechanism. 

However, the fact that some of the results approached statistical significance 

suggests that this may have been an experimental design issue or perhaps more 

likely a flaw in patient/tissue selection.  It is also possible that there were insufficient 

samples used in the array to demonstrate the required level of significance.  The 

initial hypothesis was that a methylation marker might assist in the cancer staging 

process predominantly in T1 disease.  In these early tumours, it is known that T1a 

carries relatively little chance of nodal disease whereas T1b carries a much greater 

likelihood.  It is vital to know whether a patient has nodal disease as T1a tumours can 

be cured by local mucosal resection, whereas T1b tumours (or any case where there 

is nodal disease) would need a lymphadenectomy which would necessitate 

oesophagectomy.   

Due to the inability to acquire sufficient numbers of T1 tumour resections to allow 

array experiments (majority of resected tumours being T3 stage), and requiring both 

resection samples of T1N0 and T1N1 patients, it was not possible to obtain these 

tissues in sufficient quantity to allow experiments to proceed in the time frame 

available.  Therefore, recognising that T3 was the predominant resected pathology, 

and large numbers of these resection samples were available with good volumes of 
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tissue – these were acquired and used as a surrogate marker of potential methylation 

signatures of lymph node disease.  

However, it is possible that the choice of T3 tumours included in this experiment was 

a mistake.  Appreciating that methylation change seems to occur early in the cancer 

process, and that T3 disease could be considered a late/advanced tumour, it is 

possible that any potential methylation signatures had long since gone from this 

cohort.  This supports the evidence that methylation change precedes genomic 

change. 

While outside the remit of this thesis, it should be considered therefore whether this 

experiment should be repeated using T1 tumours only.  However, this is not without 

potential pitfalls.  It should be considered that the majority of T1a tumours are now 

resected using a mucosal resection technique.  While all staging modalities would 

have shown these tumours to be T1a without nodal metastasis, there is no guarantee 

that this is the case, and microscopic lymph node disease could not be reliably 

excluded.  Therefore, repetition of this experiment with earlier stage tumours should 

be treated with caution, and significant follow-up of these patients would be required 

to ensure there was no local or nodal disease progression.  Only doing this would 

allow patients and therefore tissues to be accurately assigned into their respective 

groups and the analysis be valid.   

The success of the BO progressing vs non-progressing patients is a very interesting 

finding.  Never before has there been any biomarker used routinely in the 

assessment of non-dysplastic BO samples to risk-stratify their potential for 

progression to cancer.  Due to an ever increasingly obese population, driving reflux 



Page 159 of 181 
 

disease in this group, the incidence of BO diagnosis is increasing rapidly.  However, 

until the recent guideline publication in 2014 (137) no formal surveillance programme 

has been in place and there has been wide variation in practice between never 

surveying to rigorous surveillance determined largely by unit/clinician preference. 

The discovery of this biomarker raises the question as to whether its routine use 

could change long term clinical practice.  This hypomethylation change seen in 

progressing patients could be applied as a clinical test to all patients with a non-

dysplastic BO biopsy in order to determine their long term cancer development risk.   

While a second round, external validation cohort is currently being acquired to ensure 

the validity of this methylation biomarker, should this confirm the findings from the 

array, a large scale prospective clinical trial should be undertaken to assess the long 

term use of this potential clinical test.   

If successful, the methylation status of OR3A4 should be investigated in all non-

dysplastic BO patients at index biopsy.  This, like all other screening tests, would not 

be without some failure but; it may be an extremely useful tool in risk stratifying the 

non-dysplastic BO patient to determine the need for long term surveillance.  The 

ability to perform this risk stratification will be invaluable in the NHS.  Not only will it 

potentially prevent many endoscopies in patients at low risk of progression to cancer 

but it will also save these patients undergoing numerous unpleasant investigations 

which do of course carry a risk of bleeding and oesophageal perforation, which can 

lead to death.  Moreover, such a marker is likely to be extremely attractive to the 

NHS as it would lead to reducing the number of surveillance endoscopy 

examinations which would of course have a huge cost saving, although there is 
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recognition of the costs involved in introducing this methylation test to clinical 

laboratories. 

In addition to this validated marker, 42 other significantly differentially methylated 

CpG sites were identified in this array work.  Each of these needs validating.  It is 

highly likely that a panel of markers will have wider reaching significance than a 

solitary signature.  Such a panel is likely to include biological, clinical and patient 

factors, but the results above demonstrate that more focus should spend identifying 

this panel of characteristics, in the ultimate aim of identifying tumours earlier in a high 

risk population and preventing cancer associated deaths in this population.  
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7: Discussion 

7.1: Thesis Discussion 

This thesis investigated the role of DNA methylation in the oesophagus and 

specifically Barrett’s oesophagus and oesophageal adenocarcinoma.  The 

experimental plan has been logical, firstly building on a pre-existing body of work in 

Chapter 4 which not only demonstrated that methylation can have a role in disease 

identification in the oesophagus but also that array based approaches were useful as 

an investigative technique in identification of novel targets.   

Chapter 5 progressed this initial finding and revealed that more modern techniques 

have a greater information yield, demonstrating a novel methylation biomarker of 

OADC.  Work built on this marker to include a basic functional assessment of 

TRIM15 demonstrating the link between methylation and expression at both the RNA 

and protein level.  This reported link suggests a potential biological role that TRIM15 

plays in OADC and future work needs to be done to assess whether this gene, 

whose current function remains relatively unknown, could be a driving force in the 

biology of this tumour.  If so, this initial finding of a biomarker could in fact lead to the 

identification of a therapeutic pathway for OADC and significant future work is 

needed here to investigate this.  This marker is made more interesting by the 

reporting from other groups of another member of the TRIM family of proteins being 

implicated in OADC (132, 134).   

In Chapter 6, using the techniques already identified from previous work, 2 novel 

questions were proposed.  Firstly, whether aggressive tumours could be 
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differentiated out, as evidenced by lymph node disease.  While clinically the question 

was whether early tumours (T1a/b) could have their nodal status better defined with a 

methylation biomarker, the paucity of such resection cases meant that T3N0/1 

tumours were used in substitute.  An array based comparison approach between 

these groups revealed no overall variation, although it is worth noting that some 

markers were close to statistical significance.  Because no significant markers were 

revealed from this experiment, the question whether the correct tissue groups were 

selected for this experiment was raised.  Knowing that methylation changes 

predominate in early stage disease, it has been considered that the selection of T3 

tumours was incorrect to allow changes to be seen.  Therefore, there may be merit in 

repeating this experiment with the tissue for which the question was designed, 

although it will be much more challenging to obtain the correct resection cohort, 

which was not possible in the timescale allowed for this work. 

Of much greater significance from Chapter 6 was the discovery of a biomarker that 

can discriminate between non-dysplastic BO that either does or does not progress to 

OADC.  This could potentially change clinical practice.  The current and increasing 

incidence of BO, combined with the recently published guidelines on how to manage 

and survey these patients requires huge man power and expense for a relatively low 

progression risk to cancer and therefore low tumour diagnostic yield.  This marker, 

with further validation in larger numbers, could provide the first signature with the 

ability to risk-stratify these patients.  This will in turn provide huge NHS cost savings 

along with the reduction in manpower requirements not to mention removing the 

need for patients to have an unpleasant investigation which has an attached 

morbidity and rarely mortality.   



Page 163 of 181 
 

Therefore in summary, this body of work has allowed an understanding of the role 

that methylation biomarkers can have in OADC as well as proving an array based 

approach to find these potential markers is a useful tool.  Perhaps more importantly, 

it shows that despite very significant and promising markers being identified in an 

array based approach, unless validation attempts are performed the array data alone 

should not be relied upon.   

Chapter 6 adopted a novel approach into the investigation of biomarkers for BO 

progression.  The bulk of the literature reports methylation changes in specific genes 

as tissue passes from normal to BO to dysplastic BO and finally OADC.  Usually 

these are not from the same patient, as doing so would require the surveillance of a 

vast number of patients and the cohorts would be small.  This thesis adopted a novel 

approach of not only performing a whole genome array to assess methylation 

variation between progressors and none but also rigorous patient selection with 

exactly the criteria needed to answer the hypothesis.  Attention to detail here, along 

with all the steps to ensure correct tissue handling and processing produced a small 

patient cohort but none the less strong experimental results.   

7.2: Follow-up Work 

While significant progress has been made by this thesis, many questions have been 

raised and therefore future work is needed to explore these.  In turn: 

7.3: TRIM15 

TRIM15 has shown to be a reliable methylation biomarker for identification of OADC 

from normal squamous tissue, which has now validated in a large sample cohort.  

However, its functional significance has as yet not been elucidated.  Now that a link 
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between methylation and expression has been shown, this raises the question as to 

whether there is a biologically active role that TRIM15 plays in the development of 

OADC.  Unfortunately, there are few reports in the literature about TRIM15’s function 

and this needs to be elucidated further.   

Interestingly, TRIM15 is not the only member of the TRIM family of genes to have 

been shown have a biomarker function in OADC.  Another group have already 

demonstrated a mutational profile of TRIM44 in OADC, in addition to its potential 

implication in tumour biology and prognosis (132-134).  It is unlikely that these 

markers have been found by different groups without there being a definitive link to 

the biology of the TRIM genes in OADC.  Clearly this needs extensive further 

investigation.   

Therefore to continue with the work of TRIM15, an investigation into expression of 

this gene in cell lines is ongoing.  From this base line experiment, we intend to knock 

down TRIM15 in a TRIM15 expressing cell line using siRNA and then carry out 

RNAseq to examine differentially expressed pathways and genes.  Doing this for all 

of the TRIM family of genes which have been implicated in OADC will allow similar 

pathways to be highlighted which should reveal further information about this 

disease.   

Ultimately, if this gene or its family participates in the biology of this tumour, it may 

lead to the development of this/these as therapeutic targets for disease treatment.  

While this is currently a distant hope, confidence remains about the potential 

exploitation of the markers found in this study to date.  

 



Page 165 of 181 
 

7.4: OR3A4: 

The discovery of this hypomethylated gene in the progression of non-dysplastic BO 

that develops cancer has potential clinical use in the management of the BO patient.  

In the initial stage, it is necessary to externally validate this marker on a separate 

cohort of progressing and none progressing patients.  Due to the significance shown 

in this study to date, but allowing for the small sample size used thus far, testing this 

signature on an external sample cohort will allow strengthened conclusions to be 

drawn and build the case for this maker to be used routinely in clinical practise.   

Once re-validated in an external secondary retrospective cohort of patients, this 

marker will then require development in a prospective biomarker study.  This will not 

be an easy or a quick study, as the time scale over which progression to cancer 

occurs is frequently long (and potentially in excess of 20-30 years).  This will also be 

hampered by the relatively small number of patients who progress to cancer.   

In order to increase the potential number of samples that could be included in this 

study, it may become necessary to expand the inclusion criteria to include those 

patients who progress to high grade dysplasia.  As these patients have historically 

always been treated in the same way as patients with OADC (by resectional surgery) 

it is not unreasonable for these to be included also.  Of course such patients are now 

more likely to undergo a mucosal resection than full oesophagectomy, but the 

methylation signatures of OR3A4 need to be explored in this context.  However, the 

inclusion of such patients would dramatically increase the “progressing” cohort.   

Returning to the biology of OADC, little is known about OR3A4.  What is known 

however is that this specific CpG site is within a long none coding RNA.  It is 
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fortunate that a group exists within the University of Birmingham who investigates the 

role of these long none coding RNA’s.  We are now collaborating with this group to 

review what role, if any, this marker plays in cellular function.  

There are several additional questions in OADC investigation and management, in 

which methylation patterns may yet play a role either in biomarker development or 

biology of the disease. 

The most significant of these is the response to neoadjuvant chemotherapy.  As 

started previously, a patient diagnosed with OADC, for whom curative intent 

treatment is advised would begin with neoadjuvant chemotherapy.  However, it is 

well known that while many patients will have response and shrinking of their tumour, 

a percentage will have no response and may indeed progress while receiving 

therapy.   

There is lack of any current method to be able to differentiate between patients who 

will and will not respond to neoadjuvant therapy, and therefore this is given to all 

patients as a result of proven outcome advantage.  However, the effect seen could 

be even greater if targeted therapy was provided to those who had favourable 

tumours.  

To this end, a panel of tumours has now been assembled which did and did not 

respond to chemotherapy, as determined by histology Mandard regression score 

(previously discussed).  The intention is to conduct the same methylation comparison 

using the Illumina human methylation 450 array system as previously described.  It is 

anticipated this experiment will commence in the near future, having now identified 

suitable tissue cohorts. 



Page 167 of 181 
 

7.5: Thesis Summary 

In summary, this thesis presents exciting methylation biomarker research in the field 

of oesophageal adenocarcinoma, its detection, biology and risk stratification using 

the most modern, robust array technology with subsequent marker validation.  It is 

hopeful this work will provide the basis for significant further research in this field.
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9. Appendix:  
9.1 Gene/primer information  

ALPL 

Amplicon length 122 bp 

Sequenced strand sense 

Biotin modification on2 reverse PCR primer 

PyroMark Assay setup file3 Download 

Chromosomal location4 Chromosome 1, BP 218355XX-218355XX 

Sequence to Analyse GGAAGATGCCGACGGTAAAGACAAAACAGGAGACGCGCGC 

 

 

 

 

 

 

 

 

 

 

https://www.qiagen.com/GeneGlobe/rendering/PyroMarkCpGAssaySetupFile.ashx?catNo=PM00091714
http://grch37.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000162551;r=1:21835565-21835593
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POMC 

Amplicon length 163 bp 

Sequenced strand sense 

Biotin modification on2 reverse PCR primer 

PyroMark Assay setup file3 Download 

Chromosomal location4 Chromosome 2, BP 253916XX-253917XX 

Sequence to Analyze GCGTTGGGTCTCCGCTTAGAACGGGCGGGA 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.qiagen.com/GeneGlobe/rendering/PyroMarkCpGAssaySetupFile.ashx?catNo=PM00007910
http://grch37.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000115138;r=2:25391699-25391728
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RBP1 

Amplicon length 91 bp 

Sequenced strand sense 

Biotin modification on2 reverse PCR primer 

PyroMark Assay setup file3 Download 

Chromosomal location4 Chromosome 3, BP 1392586XX-1392586XX 

Sequence to Analyze CCGCGCCACCTTCGTTTCAGACGTTCAGTTCGT 

 

  

https://www.qiagen.com/GeneGlobe/rendering/PyroMarkCpGAssaySetupFile.ashx?catNo=PM00105217
http://grch37.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000114115;r=3:139258638-139258667
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TIAM1 

Amplicon length 174 bp 

Sequenced strand antisense 

Biotin modification on2 reverse PCR primer 

PyroMark Assay setup file3 Download 

Chromosomal location4 Chromosome 21, BP 327164XX-327164XX 

Sequence to Analyze ACGTGCGCGCCTTGTTGAGCAGSGGTG 

 

  

https://www.qiagen.com/GeneGlobe/rendering/PyroMarkCpGAssaySetupFile.ashx?catNo=PM00202370
http://grch37.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000156299;r=21:32716454-32716475
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VCAN 

Amplicon length 157 bp 

Sequenced strand sense 

Biotin modification on2 reverse PCR primer 

PyroMark Assay setup file3 Download 

Chromosomal location4 Chromosome 5, BP 827685XX-827685XX 

Sequence to Analyze TCACGGTTCTCTCCCGGCGCCCCTGGGTTCTTTTGTCCTGCACGC 
GGT 

 

https://www.qiagen.com/GeneGlobe/rendering/PyroMarkCpGAssaySetupFile.ashx?catNo=PM00114653
http://grch37.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000038427;r=5:82768521-82768562



