
 
 

 

 

 

PHYSICAL PROPERTIES OF PARTICLES 

AND THEIR IMPLICATIONS FOR THE 

CALCULATION OF THE HUMAN 

REGIONAL LUNG DOSE 

 

By 

VAN TUAN VU 

 

 

 

A thesis submitted to the University of Birmingham for the degree of 

 DOCTOR OF PHILOSPHY 

 

Division of Environmental Health and Risk Management 

School of Geography, Earth and Environmental Sciences 

University of Birmingham 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



 
 

ABSTRACT 

Ambient particles are of high concern due to their effects on both human health and climate 

change. This study aims to investigate the physical properties of particles and their 

implications for source apportionment and health human exposure studies.  A wide range of 

particle number size distribution (PNSD) measurements was conducted in selected 

environments using state-of-the-art high time resolution instruments. It is found that PNSD 

varied in different environments, depending on emission sources and atmospheric processes. 

A mass balance model was used to predict the penetration, infiltration factors, deposition and 

loss rates of indoor particles. The loss rates of indoor particles, which are mainly subject to 

deposition, coagulation and evaporation, were found to be a function of particle size and 

time. This study successfully predicted the concentration of indoor particles from outdoor 

datasets based on an enhanced mass balance model with consideration of the change in loss 

rate by time.  

Moreover, HTDMA measurements were performed to study the hygroscopic properties of 

particles in outdoor and indoor environments, and from five major indoor sources. The 

particles emitted from indoor sources were mostly hydrophobic. An enhanced lung deposition 

model based on the ICRP and MPPD models was developed to predict the deposition fraction 

of particles in the human respiratory tract, with consideration of their hygroscopicity.  

Furthermore, this work utilizes PNSD datasets to apportion the sources of particles by 

number, surface area and volume using a Positive Matrix Factorization (PMF) model. A 

combination of lung deposition models and the PMF technique was applied to identify which 

sources are mostly responsible for deposited particles in the different regions of lung. 
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Chapter 1: INTRODUCTION 

 

This chapter first aims to give the background of ambient aerosols and then discusses their 

health effects. The main part of this chapter is a literature review of respiratory exposure 

dose analysis for inhaled aerosols. In this review, lung dose, or the dose rate of particles and 

their calculation methods, are defined. In addition, it briefly presents the main factors that 

control the dose of particles in the human respiratory tract, such as particle properties, 

minute ventilation or subject characterization. Finally, the main goals and outline of the PhD 

study are introduced in this chapter. 

The Chapter 1, 2 and 3 contain some sections of verbatim text adapted from Vu et al. (2015b) 

published as part of this PhD. The author’s contribution: contribution of ideas and writing. 

 

1.1. Background of ambient aerosols 

Ambient aerosols are a mixture of organic and inorganic substances suspended as liquid 

droplets or solid particles in the air, with diameters ranging between ~ 2 nm and ~ 100 µm. 

Atmospheric aerosols can scatter light efficiently, changing the balance of solar radiation 

reaching the earth’s surface, thus resulting in climate change; they also have indirect impacts 

on the climate due to their effects on clouds formation by acting as cloud condensation 

nuclei. In addition, some of them may contain potentially toxic chemicals such as polycyclic 

aromatic hydrocarbons (PAHs), causing a series of health problems due to inhalation. As a 

result, there has been a rapid rise in research on ambient aerosols in recent decades. 

Ambient particles may be either directly derived in the ambient air from both anthropogenic 

or natural sources, such as traffic emissions, biomass burning or volcanoes (primary 
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aerosols), or formed by chemical reactions such as atmospheric nucleation (secondary 

aerosols). Each source has a different contribution to different particle metrics (number, 

surface area and mass). In urban areas, traffic related emissions are well known as a major 

source of both particle number and mass.  

Different types of sources generate particles with different physical and chemical properties, 

including their (number, surface area and mass) concentration, size, chemical composition, 

and aerodynamic, hygroscopic, optical and other properties. Of these particle properties, 

particle number size distribution is the most important parameter because it not only provides 

us information about sources and atmospheric processing of particles, but it also plays a vital 

role in determining regional lung deposition. In addition, particle size has marked effects 

upon atmospheric visibility and climate.  

1.2. Health effects of ambient particles 

Exposure to ambient aerosols has been found to be associated with an increase in mortality, 

such as exacerbation of asthma and cardiovascular problems in both epidemiological and 

toxicological studies (Donaldson et al., 2001; Kumar et al., 2010). A recent study published 

in Nature found that ambient air pollution, mostly by PM2.5 may cause more than 3 million 

premature deaths on global scale every year (Lelieveld et al., 2015).  

Aerosol properties in terms of physical and chemical characteristics play an important role in 

exposed route and thus have a consequent direct health effect. Many previous studies have 

found that particle mass and its chemical properties, such as PM10, black carbon and heavy 

metals contained in PM are directly linked to the health effects; fine particles can also 

penetrate deeper into the lungs. However, some recent evidence suggests that the ultrafine 

particles that are most commonly measured in terms of their number concentrations could 

have a higher toxicity compared to corresponding masses of fine particles due to their large 
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surface area, oxidative capacity and radical species formation, which can lead to cellular 

DNA damage or induce inflammatory effects (Peters et al., 1997). Furthermore, the ultrafine 

particle is widely known to penetrate into the lung more easily. Therefore, the determination 

of the respiratory tract deposition of aerosol particles which depends much upon their size 

distribution is becoming crucial in addressing the question of what the most important metric 

linked to health outcome is (Harrison et al., 2010; Kumar et al., 2013). 

1.3. Literature review of respiratory exposure-dose analysis for inhaled submicron 

aerosols 

1.3.1. Introduction 

Exposure to ambient aerosols is consistently associated with adverse health effects in 

numerous scientific studies (Pope and Dockery, 2006). In particular, smaller particles are able 

to penetrate into the deeper regions of the respiratory tract including the pulmonary 

epithelium, causing serious health problems such as lung morbidity and mortality (Donaldson 

et al., 1998). Estimation of the respiratory deposition dose plays a vital role not only in the 

determination of the particle-induced biological response in toxicological studies, but also in 

risk assessment of air pollution in epidemiological studies. Harrison et al. (2010) indicate that 

relating health outcomes to measured particle mass concentrations most likely underestimates 

the public health impacts and emphasize that the regional dose, not pollutant exposure, 

probably drives health outcomes.  

The regional lung dose is defined as the proportion of inhaled particles deposited in the 

respiratory tract during an exposure time period. The lung dose of particles by number in 

different lung regions (i) with a specific particle size range (Dp1-Dp2) was calculated based 

on the following equation (Hussein et al., 2013): 

Dosei, = ∫ VE. DFi. nN
0 . Δt. dlogDp

Dp2

Dp1
                                                                          (1.1) 
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where, DFi is the deposited fraction of a specific particle in the human respiratory tract; 

𝑛𝑁
0 =dN/dlogDp is the lognormal particle number size distributions; Δt is the exposure time 

period (minute ) and Dp is the particle diameter (µm); VE is defined as the minute ventilation 

or ventilation rate is the volume of gas inhaled or exhaled from the lungs during a time period 

(m
3
 minute

-1
). Equation (1.1) can be transformed into equation (1.2): 

Dosei, = CTN*VE * DFi* Δt                                                                                        (1.2) 

where, DFi is the total deposition fraction of aerosol population in the different regional 

lungs. CTN is the total number concentration (particle cm
-3

). 

Therefore, the daily regional dose of particles can be calculated as the following equation: 

Daily Dosei  =  ∑ Cj ∗ VEj ∗ DFi,j ∗ tj
n
j=1                                                                   (1.3) 

where, Cj, VEj, DFi,j, tj is the total concentration (particle cm
-3

), minute ventilation (m
3
 

minute
-1

) , deposition fraction and exposure time (minutes) of particles in the different 

exposure scenario j (such as in the working place, home or outdoor) and ∑ tj = 1440n
j=1  

minutes. 

In a given exposure scenario, the respiratory tract deposited particle dose rate, which is 

defined as the total amount of particles deposited in the respiratory tract during a period of 

time, can be calculated as: 

Dose Rate = DF * C*VE                                                                                          (1.4) 

The dose not only depends upon the measured particle concentrations in each environment, 

but is also influenced by complex parameters including particle properties, breathing patterns, 

flow dynamics and lung structure. Although ambient aerosols and their deposition in the 

respiratory tract have been of much concern in recent years, there are few studies on the 

regional lung dose of ambient aerosols (Kristensson et al., 2013).  
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This work first discusses the factors governing the lung dose of particles. It then briefly 

reviews and compares the current mathematical models of regional lung deposition. The third 

part of this chapter will summarize the lung dose results from previous studies and finally 

discuss the current challenges and future solutions. 

1.3.2. Factors controlling the lung dose of particles 

From equation (1.3), it is obvious that the lung dose of particles is controlled by four 

important factors including concentration, minute ventilation, deposition fraction and 

exposure time. This section will discuss these four factors and identify which is the most 

important in lung dose monitoring.  

1.3.2.1.  Particle number concentration in different scenarios 

a. Outdoor environments 

Atmospheric aerosols are a mixture of primary particles emitted from anthropogenic 

activities (transportation, power generation, industries or cooking), and natural sources 

(volcanos, forest fires), and secondary particles formed by gas-to-particle conversion 

mechanisms. Aerosol concentration is found to be quite variable between environments, and 

even within in an environment types due to its strong dependence on the atmospheric process 

or local sources. Table 1.1 shows the range of particle number concentration of atmospheric 

aerosols in different environments. For example, the number concentrations of particles with 

diameters from 3 nm to 10 µm vary in urban areas, ranging from ~10
3
 to ~10

6
 particle cm

-3 

(Stanier et al., 2004; Wang et al., 2011b; Weijers et al., 2004), while the concentrations of 

particles with diameters in the range of 10 nm–20 µm at urban background sites are normally 

around 10
3
-10

4
 cm

-3
.  These values are lower than those in other urban sampling sites, such as 

downtown and traffic or and suburban areas, but they are much higher than those in rural and 
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clean background areas. Investigating the characteristics of particle number size distribution 

in four European cities, Von Bismarck-Osten et al. (2013) report that the average total urban 

particle number concentrations were 1.6-2 times higher than those in rural areas, but 2.4-3.4 

times lower compared with those at the road side. Similar results were found in Munich, 

Germany (Held et al., 2008), and Guangzhou, China (Yue et al., 2013). A detailed 

information of particles in cities can be found in excellent reviews by Kumar et al. (2014) and 

Vu et al. (2015b). 

Table 1.1: Particle number concentration of atmospheric aerosols (Seinfeld and Pandis, 

2012). 

Environments Number concentration (particles cm
-3

) 

Urban background 10
3 
- 10

4 

Urban polluted 10
4 
- 4 x 10

6 

Rural 10
3
 – 10

4 

Marine 10
2
 – 4 x 10

2 

Remote continental  50 – 10
4 

 

b. Indoor environments 

 

Indoor aerosols are a mixture of outdoor particles that infiltrate into indoor environments, 

particles released by indoor activities, and new particles formed by gas-to-particle 

conversion. Hence, their concentrations are strongly affected by the outdoor/indoor 

penetration process, which depends on building characteristics, the removal process from 

indoor air such as deposition or air exchange, and the emission rate of indoor sources 

(Bhangar et al., 2011). The penetration and deposition rates of particles are found to greatly 

depend upon particle size. In the absence of an indoor source, the indoor concentration level 

is normally found to be lower than the outdoor level. In recent decades, many studies on 
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particle characterization have been conducted in different indoor environments, such as 

homes, schools, offices, and other working places.  

1.3.2.2.  Variation in deposition fraction 

As dissed below, the total and regional deposition fraction (or deposition fraction) vary 

between nearly zero and almost one, depending upon the inhalation conditions (breath rate, 

route and volume), subject category (lung morphology, age, gender, and disease), and particle 

properties (size, shape, density and chemical composition) (Löndahl et al., 2014). 

a. Particle properties 

Particle size  

Particle size is the most important parameter in determining the regional lung deposition of 

particles because of its direct effects upon the main lung deposition mechanisms including 

diffusion, impaction and sedimentation (ICRP, 1994; Martonen et al., 2005).  

Hygroscopicity, particle density and shape 

When an inhaled particle penetrates into the human respiratory tract, its size and density may 

be changed due to its hygroscopic properties, altering its deposition efficiency. The 

hygroscopic growth factors of particles depend on their initial size and chemical composition, 

the regional lung’s temperature and relative humidity, and its travelling time in the lung 

(Ruzer and Harley, 2012).  

If the particle is spherical, the relationship between the growth factor and particle density is 

given by the following equation (Martonen et al., 2005): 

ρi =
ρ0−ρH2O

Gfi
3 + ρH2O                                                      (1.10) 
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where, ρ0 and ρi are the initial particle density and the particle density in the airway 

generation i (g cm
-3

); Gfi is the growth factor of the particle in the airway generation i; and  

ρH2O is the particle density of water (g cm
-3

). 

Ferron et al. (1988) measured the growth and deposition of dry NaCl, CoCl2.6H2O and 

ZnSO4.7H2O particles in the human regional lung due to inhalation. Their study reported that 

small pure salt particles (Dp <1 µm) can grow and reach their final size during inhalation 

while the larger particles ((Dp >7 µm) grow by less than 20% during inhalation. The 

deposition of hydrophobic particles was found to be higher than those of hygroscopic 

particles with an equivalent diameter for submicron particles, but lower for micron-sized 

particles. Winkler-Heil et al. (2014) explain that diffusion has less effect on the submicron 

particles, whereas there are more efficient impaction and sedimentation effects on super-

micron particles due to their hygroscopicity.  

There are few studies on the effect of particle density and shape on regional lung deposition. 

Figure 1.1 shows the effect of particle density on the deposition fraction of particles. Particles 

with a higher density have a higher total deposition fraction than others with the same 

diameter but lower density. Note that the particle density we used in the ICRP model is 

“effective density”. 
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Figure 1.1: Regional lung deposition fraction of hydrophobic particles with different densities 

calculated for a man sitting, using an ICRP model.  The particle diameter is the equivalent 

diameter. For spherical particles, the equivalent diameter equals to the mobility diameter. 

b. Subject factors  

The variation in subjects not only has a strong effect on the lung deposition fraction of a 

particle due to the differences between lung structures and breathing patterns, but has also an 

influence on the total lung dose because of varying minute ventilation. Kim and Kang (1997) 

compared the regional deposition of inhaled particles between men and women and found 

that there was a slight increase in women for ultrafine and coarse particles at the same 
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controlled breathing pattern. However, the total deposition fraction was slightly lower in 

women than men with a spontaneous breathing pattern. This is consistent with predictions of 

the ICRP model (ICRP, 1994).  

There is no significant variation in the lung deposition fraction of fine particles found in adult 

and elderly groups (Bennett et al., 1996). There are both experimental and modelling studies 

for total lung deposition in children (Hofmann et al., 1989; Schiller-Scotland et al., 1994; Xu 

and Yu, 1986; Zeman, 1998). There are possibly higher deposition fractions in infants and 

young children compared to adults. However, these results are found to be variable and 

inconsistent due to the difficulty in monitoring breathing patterns in experimental studies and 

in modelling for the development of lung morphology. There is a lack of experimental data to 

validate the models.  

The total deposition fraction has shown an increase in the total lung deposition of ultrafine 

and fine particles for patients with obstructive airway diseases such as asthma and chronic 

obstructive pulmonary disease (COPD) (Löndahl et al., 2014). In one of the earliest 

researches, Anderson et al. (1990) compared the total efficient respiratory tract deposition of 

non-hygroscopic ultrafine particles (di-2-ethylhexyl sebacate- DEHS, size range: 0.02-0.24 

µm) in five subjects with obstructive lung disease- three subjects with restrictive lung disease 

and ten healthy subjects. The results showed that the total lung deposition fraction of ultrafine 

particles in patients with restrictive lung disease was similar to that in healthy subjects, but 

there is a significant increase in patients with obstructive lung disease. 

 Kim and Kang (1997) measured the total lung deposition fraction of monodisperse aerosols 

of DEHS with 1.0 µm mass median aerodynamic diameter (GSD ~1.2) and found the lung 

deposition fractions were double higher in COPD patients, around 50% higher in smokers 

with small airways disease and asthmatics, and 16% higher in smokers. This result was 
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consistent with Chalupa et al. (2004), who found the efficient lung deposition of ultrafine 

particles with a CMD of 23 nm and GSD of 1.6 was approximately 17% higher in asthmatic 

subjects during breathing at rest, but that there was no significant difference during breathing 

at exercise. Furthermore, Brown et al. (2002) compared the lung deposition fraction of 

technetium-99m-labeled ultrafine carbon aerosols with a CMD of 33 nm and geometric 

standard deviation (GSD, or ϭ) of 1.7 between 9 healthy subjects and 10 COPD patients, who 

were subdivided into a bronchitis (7 patients) and an emphysemic (3 patients) group. The 

data demonstrated that DFs in heathy subjects (DF ~0.62) was found to be slightly lower than 

those of bronchitic patients (0.67), but much higher than those of emphysemic patients (0.48).  

A lower lung deposition fraction of ultrafine particles in emphysemic patients was also found 

by Londahl et al. (2012).  

Human physical activity and minute ventilation 

Exercise increases the human respiratory tract dose of particles in a constant 

microenvironment due to the increase in both deposition fraction and minute ventilation. 

Daigle et al. (2003) measured the lung deposition of a polydisperse carbonaceous ultrafine 

particle (CMD ~26 nm, GSD ~1.6) in 17 healthy subjects during rest and exercise. The 

deposition fraction during rest was 0.66 ± 0.11, which increased to 0.83 ± 0.04 during 

moderate exercise, while the minute ventilation increased from 9.0 ± 1.3 L min
-1

 during rest 

to 38.1 ± 9.5 L min
-1

 during exercise. As a result, the total number of deposited particles was 

more than 4.5 times higher during exercise than at rest.  

Similarly, Löndahl et al. (2007) compared the lung deposition of ultrafine hydrophobic and 

hygroscopic particles during rest and exercise. The deposition fraction showed a small 

increase in hydrophobic particles with diameter lower than 30 nm during exercise, but the 

minute ventilation increased fourfold; therefore, the dose increased more than four times at 
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the exercise level. Moreover, there was no significant difference in the average deposition 

fraction due to gender, but the minute ventilation for male subjects was four times higher than 

female subjects during exercise.  

As discussed above, minute ventilation is a main factor in the increase in dose rate when 

doing exercise. Minute ventilation depends upon exercise level and subject characterization, 

such as age, gender and disease. Brown et al. (2002) measured the minute ventilation in 

COPD patients. The results showed that was 6.93 ± 1.63 and 10.9 ± 6.2 L min
-1

 in bronchitic 

and emphysemic patients, which was found to be higher than that for healthy subjects (5.83 ± 

1.36 L min
-1

). Likewise, Londahl et al. (2012) found the minute ventilation in COPD patients 

was 10.6 ± 2.9 L min
-1

, while for healthy subjects it was 8.4 ± 1.5 L min
-1

. Higher minute 

ventilation was found in patients with asthma than healthy subjects (Chalupa et al., 2004). 

Table 1.2 and Table 1.3 show the minute ventilation for healthy people. 

Table 1.2: Minute ventilation (L min
-1

) for Caucasian people by ICRP (1994). 

Activity 

Ages 

3 months 1 year 5 years 10 years 
15 years 30 years 

Female Male Female Male 

Resting (sleeping) 1.5 2.5 4.0 5.2 5.8 7.0 5.3 7.5 

Sitting - 3.7 5.3 6.3 6.7 8.0 6.5 9.0 

Light exercise 3.2 5.8 9.5 18.7 21.7 23.0 20.8 25.0 

Heavy exercise - - - 39.7 42.8 48.7 45.0 50.0 
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Table 1.3: Minute ventilation (L min
-1

) for people in US by EPA (2009). 

Ages category  
Sleep or Nap Light activities 

Moderated 

Activities 
Heavy activities 

Male Female Male Female Male Female Male Female 

<1 year 3.1 2.9 7.9 7.3 14.5 14.0 27.5 24.2 

1 year 4.5 4.6 11.6 11.6 21.4 21.0 40.3 36.5 

2 years 4.6 4.6 11.7 12.0 21.5 21.3 40.5 37.6 

3 to <6 years 4.4 4.2 11.4 10.9 21.0 20.0 39.0 34.5 

6 to <11 years 4.6 4.4 11.6 11.1 22.3 21.0 43.6 39.4 

11 to <16 years 5.3 4.8 13.2 12.0 26.4 23.6 50.8 46.6 

16 to <21 years 5.3 4.4 13.4 11.1 29.0 23.2 53.2 44.1 

21 to <31 years 4.7 3.9 13.0 10.6 29.2 22.9 53.9 45.7 

31 to <41 years 5.2 4.0 13.6 11.1 30.3 22.7 54.3 44.4 

41 to <51 years 5.7 4.4 14.4 11.8 31.6 24.5 57.3 47.0 

51 to <61 years 3.8 4.6 14.6 12.0 32.7 25.2 58.4 47.4 

61 to <71 years 6.0 4.5 14.1 10.8 29.8 21.4 54.1 40.0 

71 to <81 years 6.1 4.5 13.9 10.8 29.3 21.1 52.5 40.6 

 >81 years 6.0 4.5 13.8 10.4 28.5 20.9 53.3 41.9 

 

1.4. Lung deposition models 

Many models have been developed in recent years to predict the lung deposition of particles. 

Martonen et al. (2005) classified these approaches into four categories; namely, empirical, 

deterministic, and stochastic models and computational fluid dynamics (CFD). Empirical 

models are developed by fitting algebraic relationships to experimental data to derive the 

lung deposition of particle equations, while deterministic models describe the particle 

trajectories by particle momentum equations based on the simulation of air and particle 

motion, with simple assumptions of airway structures and airflow conditions. The stochastic 

models are designed to account for lung morphological variability, in which the 

morphometric parameters are given randomly by statistical distribution based on 

experimental measurements. The last type of model is the CFD models, version of which 

have been more developed in recent years since computers have become more powerful. In 

the CFD models, particle motions and deposition are determined by computational fluid 
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dynamic simulations, which can describe the influence of complicated flow air patterns on 

the particle motion and deposition in the respiratory airway system. One of the great strengths 

of CFPD models is that they can predict the particle deposition fraction and localized patterns 

in a specific selected geometric unit of the human respiratory tract.  

From other modelling perspective, Hofmann (2011) divided current particle models into four 

categories: the whole lung approach (i.e. deposition in the whole or regional lung); the local 

lung approach (i.e. deposition in the localized lung region such as the airway bifurcations); 

the Lagrangian approach; and the Eulerian approach. The Lagrangian approach considers the 

transport and deposition of individual particles, while the Eulerian approach focuses on the 

fate of a population of particles in the human respiratory tract. For more detail, the readers 

can refer to the reviews of lung deposition models by Hofmann (2011) and Martonen et al. 

(2005).  The International Commission on Radiological Protection (ICRP) and Multiple-Path 

Particle Dosimetry Model (MPPD) models are two of the most popular models for predicting 

particle deposition in the whole and regional lung.  

1.5. Summary of lung dose studies 

On the microenvironment scale, Wang et al. (2010) predicted the regional lung deposition of 

nanoparticles for workers in a carbon black manufacturing factory. The exposure 

concentration was 25.7 × 10
3
, 42.1 × 10

3
, and 13.7 × 10

3
 particle cm

-3
 (based on the 

assumption of minute ventilation for workers being 1.5 m
3
 h

-1
, the estimated lung dose rate 

was 38.4 × 10
9
, 63.2 × 10

9
, and 20.6 × 10

9
 particles hour

-1
 ) in the packaging, warehouse and 

pelletizing areas, respectively. More than 64% of the total particle number was found in the 

alveolar region. In a later research, Wang et al. (2011a) reported that the estimated lung dose 

rate was 138.0 × 10
9
, 92.2 × 10

9
, and 227.0 × 10

9
 particles hour

-1
 in three working areas, the 

forming, threading and heat treating areas in a fastener manufacturing plant.  
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Similarly, Elihn et al. (2011) investigated the regional lung deposition of ultrafine particles in 

seven industrial plants and at the different sites of 24 work activities and found the deposited 

particle number varied between different working places. Löndahl et al. (2009) 

experimentally compared the human lung deposition of particles from the kerbside of a busy 

street, from traffic exhaust and biomass combustion. The results showed that the deposition 

doses (if inhaled total particle mass concentration of 100 µg m
-3

) of particle numbers from 

these above sources were 80.0 × 10
9
, 103 × 10

9
, and 6.5 × 10

9 
particles hour

-1
.  

For the daily lung dose calculation, Buonanno et al. (2011) developed a numerical 

methodology based on the Monte Carlo method to estimate the tracheobronchial and alveolar 

dose of submicron particles for different population age groups in Italy, using  a combined 

data set of particle number size distribution collected in major microenvironments and Italian 

human activity data. The daily tracheobronchial and alveolar number dose for all of the age 

groups was 65 × 10
9 

and 150 × 10
9 

particles day
-1

, and the major sources of doses were found 

to be indoor cooking (females), working time (males) and transportation (children). 

 Hussein et al. (2013) modelled the regional deposited dose of submicron aerosol particles for 

males and females in the absence of indoor sources. The results demonstrated that the daily 

dose of submicron particles in the respiratory tract for adult males was 40 × 10
9
and 57 × 10

9 

(particles day
-1

) on weekends and workdays. In terms of regional lung dose, most of the 

inhaled particles by number (62.8%) deposited in the alveolar region, followed by the 

tracheobronchial region (22.7%) and the extra-thoracic region (14.5%). Furthermore,  

Hussein et al. (2015) indicated that the daily lung dose of particles by number could increase 

four folds due to exposure for 5 minutes of aerosols emitted during printing job.  

1.6. Goals of this PhD study 
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The regional dose, not pollutant exposure, probably drives health outcomes in the 

epidemiology studies (Harrison et al., 2011). Therefore, the aim of this study is to develop an 

approach for the calculation of the human regional lung dose based on ICRP/MPPD models. 

In addition, this study also aims to comprehensively investigate the physical properties of 

particles which play important roles in the lung deposition calculation. Moreover, the 

identification of the most relevant sources of atmospheric particles and the association 

between a particle source and lung deposition could play a vital role not only for risk 

assessment of air pollution in epidemiological studies, but also for policymakers to introduce 

optimal legislation for air quality control  for the protection of public health.  Hence, the last 

purpose of this study is to apportion the sources of particles deposition in the human 

respiratory tract. To address these issues, the study focuses on: 

(1) Measurement of particle size distribution for particle number from both indoor and 

outdoor environments.  

(2) Indoor/outdoor modelling for particle size using a mass balance model. 

(3) The hygroscopic growth of particles and its implication for lung deposition 

calculation. 

(4) Source apportionment of the lung dose of ambient submicron particles. 

(5) Lung dose of particles emitted from different major indoor sources and the modelling 

of daily human lung dose of particles. 

 

1.7. Thesis outline 

 

This thesis consists of eight chapters, as shown in Figure 1.2. Chapter 1 gives the background 

of ambient aerosols and their health effects, a literature review of the existing knowledge of 
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the dose of particles in the human respiratory system. It then presents the main goals of this 

PhD study. 

 

Figure 1.2: The structure of this PhD thesis. 

Chapter 2 provides the descriptions of the instruments used for measuring the concentration, 

size and hygroscopic properties of particles, as well as the information on lung deposition 

(ICRP, MPPD) and source apportionment models (PMF). 

Chapter 3 presents the concentrations and wide range of size distributions of brake wear 

particles which were measured from a laboratory test rig. 

Chapter 4 evaluates the use of a dynamic mass balance model for predicting the penetration 

factor, infiltration factor and deposition rate of submicron particles in a house located at a site 
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of busy traffic in Bologna (Italy). This chapter also discusses the roles of coagulation and 

evaporation processes in estimating the loss of indoor particles. 

Chapter 5 reviews the existing knowledge on the hygroscopic properties of particles and their 

influence on the lung deposition fraction calculation. In addition, it applies the modified 

ICRP model to estimate the regional lung deposition fraction of particles collected from a 

street canyon and an urban background site in London and a rural site in the west of London, 

UK. 

Chapter 6 presents the results of source apportionment of submicron particles at an urban 

background area in London, UK. This chapter also identities which source is most 

responsible for particles deposited in the human respiratory system. 

Chapter 7 presents the results of physical properties of particles gained from the 

indoor/outdoor experiments in Prague, Czech Republic from HEXACOMM sampling 

campaigns. This chapter also discusses the lung deposition of particles emitted from five 

major indoor sources. 

Chapter 8 gives a summary of the thesis, followed by an overall conclusion derived from this 

research. It also discusses the implications, limitation and future directions for this study. 
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Chapter 2: METHODOLOGY 

 

This chapter outlines the general methodology used in the study. It first lists the real time 

instruments used to characterize the concentration, size and hygroscopic properties of 

particles, including a Scanning Mobility Particle Size Spectrometer (SMPS), Engine Exhaust 

Particle Sizer (EEPS), Fast Mobility Particle Sizer (FMPS), Aerodynamic Particle Sizer 

(APS), and Hygroscopic Tandem Differential Mobility Analyser (HTDMA). It then provides 

information on the two human respiratory tract deposition models: a semi-experimental 

model supplied by the International Commission on Radiological Protection (ICRP model) 

and a Multiple-Path Particle Dosimetry Model developed by Applied Research Associates, 

Inc. (MPPD model version 2.11). In addition, the chapter describes a positive matrix 

factorization (PMF) model and its application on particle number size distribution in the 

source apportionment study of particles. Finally, it summarizes the software and programing 

language used for the data analysis. 

 

2.1. Real time measurement instruments 

2.1.1. Scanning Mobility Particle Size Spectrometer (SMPS) 

An SMPS spectrometer is a high resolution nanoparticle sizer that is widely used to measure 

aerosol size distributions in the size range from few to 1000 nm. The principal operation of 

this spectrometer is based on the electrical mobility properties of particles. An SMPS system 

mainly consists of an electrostatic classifier (EC) combined with a Differential Mobility 

Analyser (DMA) to classify particle sizes based on their mobility, and a Condensation 

http://www.ara.com/
http://www.ara.com/
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Particle Counter (CPC) to count the particle number concentration. In our study, we used an 

SMPS model 3696 from TSI (TSI, 2010). 

An aerosol impactor on the inlet should be mounted outside the electrostatic classifier to 

remove large particles which may carry many more than a single charge. There are three 

impactors, with nozzle diameters of 0.0475, 0.0508 and 0.0871 cm. The impactor is selected, 

depending upon the type of DMA, CPC, aerosol sample flowrate and the collected size range. 

In our study, we used an impactor with a nozzle diameter of 0.0508 cm that can remove 

particles with a diameter larger than 1 µm. Before entering the DMA, sample aerosols are 

neutralized by an aerosol neutralizer based on either radioactive or soft x-ray sources (TSI, 

2010).  

Differential Mobility Analyzer (DMA) 

A DMA column consists of a high voltage centre rod and an outer grounded tube, generating 

an electric field inside. As the aerosol sample flow come from the top to the bottom of the 

column, the neutralized aerosols are forced to the outer tube or drawn to the inner rod due to 

the effect of the electrical field on the charged particles; they are then separated according to 

size based on their electric mobility. For example, particles with a higher electrical mobility 

move towards the inner rod faster than those with a lower electrical mobility, and they make 

contact with the central rod sooner (TSI, 2010).  

The electrical mobility of an aerosol depends on its size, charge (which is controlled by a 

neutralizer before entering the DMA), sample and sheath flows, the voltage of the central rod, 

and the DMA geometry.  At a given voltage and flow rate, only particles with a certain size 

can pass through an output slit which is located at the bottom of the rod, and continue to the 

CPC for concentration measurement. In our study, we used a long DMA from TSI in the 

SMPS system. 
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Figure 2.1: Flow schematic of an electric classifier with a long DMA (TSI, 2010). 

Condensation Particle Counter (CPC) 

CPCs are used to detect the monodisperse aerosol once it passes through the DMA. The 

principal operation of a CPC is that it uses heterogeneous condensation to grow the particle; 

these grown particles will be detected by an optical detector. In our study, we employ the 

CPCs from TSI using n-butanol as a supersaturated vapour. In these CPCs, the aerosol 

sample stream passes through a heated saturator, where butanol is vaporized and 

contaminated by diffused butanol vapours. Then, the aerosol and butanol vapour will pass 

into a cooled condenser where butanol vapour is supersaturated and condensed. Particles in 

the sample stream will be act as condensation nuclei and start to grow into larger droplets due 

to condensation. The large droplets will enter into an optical detector and be easily counted 

by number (TSI, 2007). 
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Figure 2.2: Schematic of CPC model 3775 (TSI, 2007). 

2.1.2. Fast Mobility Sizers (EEPS and FMPS) 

Two commercial TSI fast mobility spectrometers, the Engine Exhaust Particle Sizer (EEPS) 

and the Fast Mobility Particle Sizer (FMPS), were deployed in our measurements of traffic-

related emissions. The EEPS/FMSP instruments and a SMPS system are similar in their 

principal classification of particle based on particle electric mobility, but differ in their 

charger, flow and detector schematic.  

In an EEPS/FMPS system, particles are positively charged using a unipolar corona charger. 

They are expelled forward in the electric field generated by a high-voltage electrode column, 
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and classified according to their electrical mobility. A charged particle strikes its respective 

electrometer in a series of electrometers in the stack. Due to its different electric mobility for 

different charges, a particle with a higher charge strikes an electrometer near the top while 

those with lower charges strike an electrometer lower in the stack. The charge transferred 

from a particle to an electrometer after its strike will inverse to its concentration and size 

(TSI, 2005).  

The EEPS and FMPS are similar in their operation and design, but differ in their time 

resolution measurement. The EEPS/FMPS instruments can measure a particle size range of 

5.6-560 nm with the fastest time resolution (for one size distribution measurement) at 0.1 s 

from EEPS and 1s from FMPS.  

 

Figure 2.3: Flow and Data Inversion Schematic of EEPS/FMPS (TSI, 2005). 
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2.1.3. Aerodynamic Particle Sizer (APS) 

The APS sizes a particle in according to aerodynamic diameter in the range of 0.5-200 µm 

based on a time-of-flight technique and detects particles using a light-scattering technique 

(Hinds, 1999; TSI, 2006). In an APS, there are two partially overlapping laser beams to 

detect particles. Once particles enter into the sample inlet, they are accelerated by the airflow 

through an accelerating orifice. Small particles of less than 0.3 µm, with approximately the 

same velocity as the air, will continue with the accelerating flow and exit. Larger particles 

accelerate more slowly due to the increased inertia; their velocities depend on their sizes.  

Light is scattered as a particle passes through the laser beam, and it is detected by an 

avalanche photodetector (APD). The pulse of scattered light from the APD will be converted 

into an electrical pulse. The particle velocity can be determined from the time interval 

between the two electrical pulses created by that particle when it passes through two laser 

beams, resulting in a determination of its size (TSI, 2006).  



 

25 
 

 

Figure 2.4: Operation of APS 3221 (TSI, 2006). 

In our study, we used the APS model 3211 from TSI, which can measure the particle size 

distribution in the size range of 0.5-20 µm. One of this instrument’s limitations is that an 

error known as coincidence can occur when a second particle arrives in the timing zone; the 

space between the two laser beams (12 µm) before the first has finished its time of flight, 

leads to the instrument under-estimating the particle concentration. This type of error occurs 

when we measure in an extremely polluted environment (the default setting for the maximum 

level of aerosols to avoid coincidence is 1000 particle/cm
3
). For ambient air, the number of 

coarse particle is small, therefore the coincidence is negligible. However, when we measure 

the particles emitted from a brake rig text, the coarse particle level exceeds 1000 particle/cm
3
. 

To prevent coincidence error, we used an aerosol diluter (TSI, model 3302A) to dilute the 
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aerosols in sample flow before they enter into the APS inlet. The dilution ratios of this diluter 

were set up in the range from 20 to 100 times.   

2.1.4. Hygroscopic Tandem Differential Mobility Analyser (HTDMA) 

The Hygroscopic Tandem Differential Mobility Analyzer (HTDMA) used in this study was 

developed by the Laboratory of Aerosol Chemistry and Physics, Institute of Chemical 

Process Fundamentals of the ASCR, (ICPF, Czech Republic). This system consists of two 

DMAs (Vienna type), an aerosol bipolar charger, an aerosol drier, an aerosol humidifier, and 

a CPC 3772 (TSI).  

 

Figure 2.5: HTDMA schematic. 

In this system, the atmospheric aerosol sample flow is first dehydrated though an aerosol 

drier, and neutralized by an aerosol charger before passing through the first DMA. The 

sample flow and sheath air should be kept at low relative humidity (RH <20%) to make 

ensure the aerosols are dry. Dry aerosols were selected by the first DMA in a narrow quasi-

monodisperse size interval, and then they undergo at a high relative humidity environment 
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(approximately at 90% RH) by an aerosol humidifier, and continued to pass through the 

second DMA. The size of wet monodisperse aerosols are classified by the second DMA and 

the number concentration is measured by a CPC. The growth factor of a particle is 

determined by a ratio of a wet particle diameter measured by the second DMA and a dry 

particle diameter measured by the first DMA.  

2.2. Lung deposition models 

2.2.1. International Commission on Radiological Protection (ICRP) model 

The ICRP model is a semi-empirical model which determines the deposition fraction of 

particles in five regions of the airway system (the nose and mouth, throat and larynx, upper 

airways, lower airways, and alveolar) based on numerical fitting experimental data and theory 

calculation. The deposition of particles is controlled by different transport processes, which 

strongly depend on particle size. In the empirical modelling of the deposition data, the 

deposition fraction of particles is calculated by two kinds of deposition processes known as 

aerodynamic and thermodynamic transport.  

In terms of aerodynamic deposition, particles with an aerodynamic diameter greater than 0.5 

µm are mainly deposited in the regions of the respiratory tract due to inertial motion 

(impaction), and gravitational settling (sedimentation). For very large particles or fiber, their 

deposition is determined more by interception with the surfaces in the extra-thoracic region.  

The aerodynamic deposition efficiency is given by the following equation: 

Ƞae = 1 – (1-ȠI )( 1-ȠS )                                                                                                     (2.1) 

Where, Ƞae, ȠI, ȠS is deposition by aerodynamic transport, impaction and sedimentation. 

In terms of thermodynamic deposition, particles with an equivalent physical diameter of less 

than several hundred nano-meters are mainly deposited by the transport process of Brownian 
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diffusion. This thermodynamic transport is determined by the thermodynamic diameter of the 

particle, which is considered to be equal to the particle volume equivalent diameter.    

ICRP (1994) recommended that simultaneous thermodynamic and aerodynamic transport is 

only significant for particles in a transit regime size range of 0.1 µm thermodynamic diameter 

to 1 µm aerodynamic diameter. Thermodynamic transport predominantly accounts for the 

deposition of small particles, while aerodynamic transport is mainly responsible for large 

particles. For particles in a transit regime size range, their deposition efficiencies will be 

combined by the following equation: 

Ƞ = (Ƞth
2
 +Ƞae

2
)
1/2

                                                                                                           (2.2) 

Where, Ƞ is the total deposition and Ƞth, Ƞae is the deposition efficiencies determined by 

thermodynamic and aerodynamic transport. 

General equations of deposition efficiency of particles from the ICRP model 

In the ICRP model, each regions of the respiratory tract is represented by an equivalent 

particle filter, as shown in Figure 2.6. In the empirical filtration model, each anatomical 

region can be represented by one or more filters in series, in which each filter can be 

characterized by two parameters: its volume and its overall efficiency in removing airborne 

particles.  

The deposition efficiency (DEj) of particles that are deposited in the j
th

 filter is given by 

equation (2.3): 

𝐷𝐸𝑗 = Ƞ𝑗∅𝑗 ∏ (1 − Ƞ𝑗)
𝑗−1
𝑗𝑗=0                                                                                                 (2.3) 

where, Ƞ𝑗 is the filtration efficiency of the j
th

 filter and ∅𝑗is the fraction of tidal air that 

reaches the j
th

 filter on inhalation. 
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In terms of regional lung deposition, its efficiency (Ƞ𝑗) is expressed in terms of three 

parameters: a, R and p which are combined in the general form a* R
p
 (Rudolf et al., 1990). 

These three parameters depend upon the particle size, components of the total volumetric 

flow rate, anatomical dead space, scaling parameters for different subjects, and the time 

constant for conduction (residence of air) in the different airways. The values of a, R and p 

recommended by ICRP (1994) are given in Table 2.1. 

 

Figure 2.6: Empirical representation of the inhalability of particles and their deposition in the 

extrathoracic (ET), bronchial (BB), bronchiolar (bb), and alveolar regions (AL) of the 

respiratory tract during continuous cyclic breathing by transport through a series of filters 

(ICRP, 1994). 
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Table 2.1: Recommended parameters for substitution in the ICRP model of regional deposition due to inhalation (ICRP, 1994). 

Phase Filter j Region 

Regional deposition efficiency, Ƞ𝑗 

Volumetric Fraction 

∅𝑗 

Aerodynamic Thermodynamic 

Ƞ𝑎𝑒 = 1 − exp (−𝑎𝑃𝑅𝑝) Ƞ𝑡ℎ = 1 − exp (−𝑎𝑃𝑅𝑝) 

a R p a R p 

Inhalation 

1 ET1
(*) 

3.0 × 10
-4 dae

2 VnSFt
3 1 18 D(VnSFt)−1/4 1/2 1 

2 ET2
(**) 

5.5 × 10
-5

 dae
2 VnSFt

3 1.17 15.1 D(VnSFt)−1/4 0.538 1 

3 BB 4.08 × 10
-6

 dae
2 VnSFt

2.3 1.152 22.02dt
1.24Ψth DtB 0.6391 1 −

VD(ET)

VT

 

4 bb 0.1147 (0.056+ t𝑏
1.5)𝑑𝑎𝑒

𝑡𝑏
−0.25

 1.173 -76.8+167SFb
0.65 Dtb 0.5676 1 −

[VD(ET) + VD(BB)]

VT

 

5 AL 0.146SFA
0.98 dae

2 𝑡𝐴 0.6495 170+103SFA
2.13 DtA 0.6101 1 −

[VD(ET) + VD(BB) + VD(bb)]

VT

 

Exhalation 

6 bb 0.1147 (0.056+ t𝑏
1.5)𝑑𝑎𝑒

𝑡𝑏
−0.25

 1.173 -76.8+167SFb
0.65 Dtb 0.5676 1 −

[VD(ET) + VD(BB)]

VT

 

7 BB 4.08 × 10
-6

 dae
2 VnSFt

2.3 1.152 22.02dt
1.24Ψth DtB 0.6391 1 −

VD(ET)

VT

 

8 ET2
(**)

 5.5 × 10
-5

 dae
2 VnSFt

3 1.17 15 D(VnSFt)−1/4 0.538 1 

9 ET1
(*)

 3.0 × 10
-4 dae

2 VnSFt
3 1 18 D(VnSFt)−1/4 1/2 1 

Note: (*)Ƞ𝑎𝑒 = 0.5[1 − 1/𝑒𝑥𝑝 (−𝑎𝑃𝑅𝑝)] and Ƞ𝑡ℎ = 0.5[1 − 𝑒𝑥𝑝 (−𝑎𝑃𝑅𝑝)]; (**)Ƞ𝑎𝑒 = 1 − 1/𝑒𝑥𝑝 (−𝑎𝑃𝑅𝑝) and Ƞ𝑡ℎ = 1 − 𝑒𝑥𝑝 (−𝑎𝑃𝑅𝑝); 

𝑑𝑎𝑒, 𝑑𝑡ℎ are the aerodynamic and thermodynamic diameter of a particle (µm). 𝑉𝑛is the total volumetric flow rate (mL/s). 𝑉𝐷(𝐸𝑇), 𝑉𝐷(𝐵𝐵), 𝑉𝐷(𝑏𝑏) are the 

anatomical dead spaces of ET, BB and bb (L). 𝑆𝐹𝑡, 𝑆𝐹𝑏 , 𝑆𝐹𝐴are scaling parameters for different subjects; D: diffusion coefficient; 𝑡𝐵, 𝑡𝑏, 𝑡𝐴 are the time 

constants for conduction of air though BB, bb and AL;  𝛹𝑡ℎ is an empirical correction factor for enhancement of thermodynamic deposition.
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2.2.2. Multiple Path Particle Dosimetry (MPPD) model 

The MPPD model of the human lung is a mathematical lung deposition model developed by 

Asgharian et al. (2001). The MPPD model is most realistic deposition model, which 

considers the branching asymmetry of airways and related air flows based on detailed 

information on measured lung geometries.  

There are four options of human lung structure provided in the software model: symmetric, 

multiple-path, stochastic geometry and age-specific model. The symmetric and multiple path 

models use a symmetric tree for the whole lung and the lobar data, as provided by Yeh and 

Schum (1980). These models should be used to predict the regional lung (ET, TB, AL) or 

total lung deposition of particles or average lobar-specific deposition. The stochastic model 

uses data provided by Koblinger and Hofmann (1990). In this model, the asymmetric 

structures of the tracheo-bronchial (TB) region are generated stochastically based on the 

morphometric measurements of  Yeh and Schum (1980).  

This model mode can be used to accurately predict particle deposition in the specific lung 

airways, as well as the regional lung; however it requires a powerful computer because of the 

large datasets of generated lung structure. The age-specific model is built based on the 

measurement data of Mortensen et al. (1989) and Mortensen et al. (1983). There are two 

options in this model: (1) the age-specific symmetric model uses a dichotomous, branching, 

symmetric tree single path model, and (2) the age-specific 5-lobe model uses 5-lobe 

symmetric geometries which are similar to the Yeh-Schum 5-lobe lobar-specific model, but 

different in the lung structure. These models are recommended for calculation of the particle 

deposition in children and young adults in the age range from 3 months to 21 years. 

Like the ICRP model, the mechanisms for particle deposition are considered by the diffusion 

and sedimentation within an airway and impaction at the airway bifurcations. Therefore, 
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deposition efficiency of particles in each airway branch is the function of the air velocity, 

airway dimensions, bifurcation angle, gravity angle and particle density (Ingham, 1975; 

Wang, 1975; Zhang et al., 1997). This model assumes that airway branching is dichotomous 

and that each airway branch is cylindrical and straight. However, it neglects the interception 

because this is only used for spherical particles with a size range from 0.01 to 20 µm.      

2.2.3. Comparison of the ICRP and MPPD models 

This section compares the lung deposition models. The ICRP and MPPD models are two 

popular models that have been used in recent years to calculate deposition fraction (DF) of 

particles in the different regions of the respiratory tract. A computational program on was 

written on R-programming based on the ICRP’s equations (as shown in Table 2.1) to 

generate the ICRP deposition fraction curves. (The code was written by the author- Tuan V. 

Vu).   

In the comparison, we calculated the regional lung deposition of spherical particles with unit 

density for a man under nasal sitting breathing conditions. The parameters were input in the 

model based on the ICRP’s recommendations (FRC=3301 mL; VT =750 mL; Vn = 300 mL). 

The input parameters in the MPPD model were the set up in Table 2.2. The information on 

the functional residual capacity, upper respiratory tract volume, breathing frequency, and 

tidal volume is also provided by ICRP (1994). The inspiratory and pause fractions of the 

residence time of particles in the lung are referred to Ferron et al. (1988).  
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Table 2.2: MPPD model input for a man in resting (sitting) and light exercise states. 

Airway 

Morphometry 

Species Sitting Light exercise 

Model Yeh/ Schum 5-Lobe 

FRC (mL) 3301 

URT Volume (mL) 50 

Particle Properties 
Nanoparticle Model YES 

Inhalability Adjustment YES 

Exposure 

Scenario 

Acceleration of gravity (cm
2
 s

-1
) 981 

Body orientation Upright 

Breathing Frequency (min
-1

) 12 20 

Tidal Volume (mL) 750 1250 

Inspiratory Fraction 0.435 0.435 

Pause Fraction  0.05 0.05 

Breathing Scenario Nasal Nasal 

Note: FRC: functional residual capacity; URT: Upper Respiratory Tract 

As a result, figure 2.7 shows the comparison between the ICRP/MPPD models for a man in 

resting (sitting) and light exercise states. For particles with diameters lower than 10 nm, 

MPPD model likely underestimate both total and regional lung deposition of particles. For 

particles larger than 10 nm, the results between two models are found to be consistent, 

although the deposition fraction of fine particles (0.01 µm < Dp <1µm) from ICRP model 

was found to be slightly lower than those from the MPPD model. The variation between these 

deposition efficiencies was lower than 10%, but these errors could be acceptable when 

compared to those from subject variability. Hofmann (2011), who also compared the ICRP 

and MPPD models for mono-disperse aerosols, noted that these differences probably derived 

from the application of different morphometric lung models, analytical deposition equations 

and modelling techniques.  



 

34 
 

 

Figure 2.7: Regional lung deposition fraction of spherical particles with unit density for a 

man under nasal sitting breathing conditions based on ICRP and MPPD models. 

Current problems and application of the ICRP/MPPD models 

In general, the mathematical lung deposition models have great advantages. For examples, 

they can predict lung deposition in a variety of inhalation conditions, give a detailed dose 

analysis, and complete the experimental gaps. However, they still have some disadvantages 

because of their assumptions in simple geometry and ideal flow conditions. Hofmann (2011) 

indicates two major problems in the application of analytical whole lung models: (1) the 

inter-subject variability of morphological and physiological parameters and (2) the 

assumption of flow conditions to airway bifurcations for realistic inspiratory and expiratory 

flow patterns.  
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Although ICRP used some experimental data sets to fit their empirical equation, very limited 

data from experiments were used in that model. There should be more experimental data for 

the validation and empirical adjustments for the models. Some software products have been 

developed such as the MPPD model or the ExDoM model (Aleksandropoulou and Lazaridis, 

2013), which allow users to easily estimate the lung deposition of aerosols. However, these 

products do not fully consider the effects of particle shape or hygroscopicity.  

2.3. Source apportionment model (PMF model) 

Positive Matrix Factorization (PMF) has been a widely used tool in recent years to identify 

and apportion the sources of particles by number (Vu et al., 2015b). In the source 

apportionment of particles in terms of number, each size bin in the dataset is considered as an 

input variable.  The goal of PMF is to identify the number of factors (p), the size profile (f) of 

each source, and the amount of number (g) contributed by each factor to each individual 

measurement using the following equation: 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘𝑓𝑘𝑗 +  𝑒𝑖𝑗
𝑝
𝑘=1                                                                                                      (2.4) 

where, xij is the particle number concentration of size bin j on the i
th

 sample, and 𝑒𝑖𝑗 is the 

residual for each measurement/ size bin. 

The number of PMF factors is determined by the minimum of the object Q, which is based on 

these uncertainties (u) in a combination with the environmental meaning of each factor. 

𝑄 = ∑ ∑ [
𝑥𝑖𝑗−∑ 𝑔𝑖𝑘𝑓𝑘𝑗

𝑝
𝑘=1

𝑢𝑖𝑗
]

2
𝑚
𝑗=1

𝑛
𝑖=1                                                                                            (2.5) 

PMF solutions are interpreted based on (1) modal characteristics of number (volume) size 

distribution, (2) diurnal patterns of contribution, (3) source contributions to total number or 

volume concentration, (4) the correlation of the G-matrix with the measured gaseous or 
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composition species and (5) source directionality by the local wind trajectories and 

conditional probability functions (Ogulei et al., 2007). 

The number of variables has ranged from 16 to 158, depending on the numbers of 

measurements, the quality of variables and the goals of the study. To smooth the size 

distribution data and reduce uncertainty in the number concentration, some studies have tried 

to reduce the original number of size bins by summing sets of consecutive size bins 

(Thimmaiah et al., 2009; Zhou et al., 2005).  In addition, Zhou et al. (2004) suggest that data 

from days with intense nucleation events, which considerably affect the stability of particle 

size distribution data should be excluded. In some instances the last size interval has not been 

included because of a drop in collection efficiency or low data capture (Gu et al., 2011; Kim 

et al., 2003). In some studies, auxiliary data such as ion species, heavy metals, gaseous 

pollutants, meteorological parameters and traffic data have been added to help separate and 

identify the sources of particulate matter (Harrison et al., 2011; Ogulei et al., 2006b; 

Thimmaiah et al., 2009). In this study, we ran a PMF (US EPA model version 3) on a profile 

of 6,098 hourly particle number sizer distribution comprising 51 size bins ranging from 16.6 

to 604 nm. 

Calculation of measurement errors and uncertainties 

Since the error matrix for particle counts is not provided by the experimental instruments, 

several methods to assign measurement errors (σ) have been reported. The most popular 

formula to calculate measurement errors was introduced by (Ogulei et al., 2006a) as the 

following empirical equation: 

σi,j=  {
α(Ni,j +  Nj̅)       if Ni,j > 0

2 Nj̅                         if Ni,j = 0
 

    (2.6) 
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where, σi,j is the calculated measurement error for size bin j and measurement i
th

. Ni,j is the 

measured number concentration for size bin j and measurement i
th

, and  N̅j is the arithmetic 

mean of the reported values for size bin j.  α= 0.01 is an arbitrary constant and was 

determined by a trial and error method. The missing data are replaced by N̅j, the mean value 

for the size bin, and the uncertainty is assumed to be three times N̅j. 

There are several approaches to estimate uncertainty. This study calculated the uncertainty 

(uij) of a size bin j and sample i in the following equation (Ogulei et al., 2006b): 

uij =σi,j + C3(Ni,j)                                                                                          (2.7) 

where, σi,j is the calculated measurement error for size bin j and measurement i
th

. Ni,j is the 

measured number concentration for size bin j and measurement i
th

. C3 is a dimensionless 

constant value and should be chosen when the scaled residuals are approximately randomly 

distributed between -2 to +2. 

2.4. Data handling 

Data statistical analysis, polar plots and concentration weighted trajectories were performed 

in the CRAN R program (Version 3.1.5) using the “Open-air” package developed by Carslaw 

and Ropkins (2012). This study used an enhanced algorithm which was developed in CRAN 

R by Beddows et al. (2010) to merge two types of data sets (aerodynamic and mobility) 

collected from APS and SMPS instruments into one particle size spectrum matrix. A mass 

balance model and a coagulation model were coded and performed in CRAN R by the author. 

To analyse the growth factors from the HTDMA, this study used a TDMAinv conversion 

approach provided by the Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI, 

Switzerland) (Gysel et al., 2009) which was run on the Igor Wave Metric software, version 

6.1. This study also used Microsoft Excel 2010 for some simple plots, and SigmaPlot version 

13.0 for contour plots. 
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Chapter 3: AN INVESTIGATION INTO THE PARTICLE SIZE 

DISTRIBUTION COLLECTED FROM AN AUTOMOTIVE BRAKE 

CALIPER TEST RIG 

 

This chapter investigates brake wear particle size distribution which is known as an essential 

parameter in source identification and human respiratory deposition determination. 

Concentrations and size distributions of brake wear particles were measured from a 

laboratory test rig using an Aerodynamic Particle Sizer Spectrometer (APS 3321 operated in 

series with an Aerosol Diluter 3302A), a Condensation Particle Counter (CPC 3775) and a 

high time resolution Engine Exhaust Particle Sizer Spectrometer (EEPS). The number of both 

ultrafine and coarse particles increased during braking. Particle nucleation was observed at 

an appropriate high brake pad temperature. As a result, the braking processes released 

particles with a wide range of size distributions, ranging from few nanometers to 

micrometers. They showed a bi-modal size distribution with a major mode around 120-140 

nm in the submicron size range, and a peak mode around 1.1-1.58 µm in the coarse size 

range. The count median diameter (CMD) depends upon brake load. The particle volume size 

distribution showed a bimodal size distribution including a major coarse mode (accounting 

for around 95% of total volume) with a volume median diameter (VMD) of 1.6-2.4 µm, and a 

minor accumulation mode.  

The author’s contribution: writing, contribution of ideas, experimental design and 

measurements, and numerical calculations. 
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3.1. Introduction  

Non-exhaust particles which typically arise from road-tyre interaction, brake wear, and re-

suspension contribute significantly to urban airborne concentrations.  Previous studies show 

that brake wear can contribute 11-21% by mass to total traffic-related PM10 emissions 

(Grigoratos and Martini, 2015). It is therefore closely associated with human health 

problems. Despite its significant contributions to ambient PM emissions, knowledge of its 

particle size distribution, particularly its nucleation mode (Dp, particle diameter, is lower than 

30 nm) is limited. 

In previous studies, the particles generated from the mechanical processes of brake wear are 

well-known to have a wide range of diameters, from a few hundred nanometres to a few tens 

of micrometres (Thorpe and Harrison, 2008). Several studies have reported that brake aerosol 

size distributions have a primary peak at approximately 1 µm  (Iijima et al., 2007; Wahlström 

et al., 2010b) for the coarse mode particles. In addition, some recent studies have applied a 

Scanning Mobility Particle Sizer (SMPS) system to measure particle sizes from 10 nm to 600 

nm and have found showed a dominant peak at a particle size of about 100 nm (Kukutschová 

et al., 2011; Wahlström et al., 2010a).  

Nanoparticles (Dp <30 nm) formed from brake emissions were suggested by Garg et al. 

(2000). However, the evidence of the occurrence of nucleation particles is limited. The first 

evidence was reported by Mathissen et al. (2011), who set up a sampling tube close to the 

brake disc of a diesel car and measured the particle sizes under different driving situations 

using an Engine Exhaust Particle Sizer Spectrometer (EEPS). The experiment found that full 

braking presented a unimodal particle number size distribution with a peak at approximately 

11 nm.  Recently, Kwak et al. (2014) have presented the second evidence after observing 
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nanoparticles particles emitted from brake emissions using a proving ground and road 

simulator.  

However, test rig evidence of brake nanoparticles has been unclear until now. Therefore, this 

chapter aims at investigating brake wear particle size distribution in a wide size range, from 

few nanometers to 20 µm, in order to address a concern the whatever the formation of brake 

wear particles occurs by nucleation process. In addition, it studies the effects of different 

brake pressures, in the range from 30 psi to 60 psi, which correspond to light, medium and 

heavy braking, on the evolution of particle size.  

3.2. Experimental design and instruments 

The concentrations and size distributions of brake wear particles were measured from a 

laboratory test rig as shown in Figure 3.1. In this test system, an electric motor drove a disc 

(rotor) at a constant 1500 rpm and airborne wear particles were generated from the contact 

between the rotor and pads in a closed metal chamber. The pad and cast iron disc were 

bought from a commercial company. The chamber size was 40 cm × 50 cm × 36 cm. This 

pad and disc was simulated as a typical brake system from a car. Different braking loads were 

applied to the calipers using pneumatic pressures (30, 40 and 60 psi). The rotor speed and 

these pressure loadings also represent for the typical vehicle speed and braking loading of a 

car driving in cities. 

The temperature rise at the back of the pad was measured using a K-type thermocouple. 

Before each brake loading, the discs and pads heated by braking were cooled by the air flow 

from a fan. The brakes were applied for 5-10 minutes, then released when these pad’s 

temperature reached a maximum level or nucleation occurred. This study conducted 3, 3 and 

2 times of PNSD measurements at 30, 40, and 60 psi, respectively. 
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Figure 3.1: Schematic diagram of the test system. 

 

The brake caliper- disc assembly was concealed within a simple metal enclosure. A sampling 

inlet was connected to a suite of aerosol instruments which measured the size distribution of 

the particles generated across the size range of 0.06–18 µm. The instruments included an 

Aerodynamic Particle Sizer Spectrometer (TSI APS model 3321 operated in series with a TSI 

Aerosol diluter model 3302A), a Condensation Particle Counter (TSI CPC model 3775) and a 

high time resolution Engine Exhaust Particle Sizer Spectrometer (TSI EEPS model 3090). 

The list of instruments and their operation details are given in Table 3.1.  

Table 3.1:  List of instruments used in the brake rig test. 

Instruments Size range Resolution Measurement parameter/symbol 

Aerosol Diluter 3302A 
dilution 

ratio 100:1 

Continuous 

working 

For diluting aerosol from the brake 

emission  

Aerodynamic Particle Sizer 

 Spectrometer (APS 3321) 
0.53-20 µm 60 s 

Particle number size distribution 

(aerodynamic diameter) 

Condensation Particle Counter 

(CPC 3775) 
>4 nm 0.1 s Total number concentration  

Engine Exhaust Particle Sizer 

Spectrometer (EEPS 3090) 

5.6 - 560 

nm 
0.1 s 

Particle number size distribution 

(mobility diameter) 

Digital Thermometer (RS 206-

3722) 
- 1 s  Pad temperature measurement 
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3.3. Results 

3.3.1. Particle number, surface and mass concentrations 

Number concentration 

The submicron particle number concentrations were measured by the CPC 3775 and EEPS, 

while super-micron and coarse particles were measured by an APS sampler. When the 

braking pressure was applied, the particle number concentrations suddenly increased and 

reached their maximum values in the first minute of braking. For example, the total 

concentrations in the first minute of braking at a 45 psi load were 2.2 × 10
4
 and 1.1 × 10

4
 

particle cm
-3 

for submicron particles and super-micron particles (0.6 µm< Da <18 µm) 

measured by CPC and APS while these values were 7.5 × 10
3
 and 157 particles cm

-3
, 

respectively in the background air.  

In the next minute of braking, these numbers dropped dramatically to stable values around 

1.1 × 10
4
 and 7.1 × 10

3 
particles cm

-3
. When the braking continued, the pad temperature 

increased, therefore generating more concentrations of volatile organic compounds. When the 

temperature increased to a critical level and the concentrations of volatile organic compounds 

were high enough to be saturated, nucleation occurred, as seen in Figure 3.2. Nucleation 

events were found at 45 psi (around 118.7-144.3 
o
C) and at 60 psi braking loads (at 155.6 

o
C). There was no nucleation event at 30 psi braking.  

A decrease in the total number concentration of larger particles was found during nucleation. 

When braking stopped, nucleation was immediately suppressed. As shown in Table 3.2, the 

total number concentration of particles increased with higher braking loads.        



 

43 
 

 

Figure 3.2: Total particle number concentrations from EEPS, CPC and APS during 15 

minutes braking period at 45 psi load. 

Surface area and mass concentration 

The total surface concentrations of submicron particles were extracted from the EEPS and 

APS measurements. Note is that particles measured by the EEPS are assumed as spheres, and 

their diameter is the mobility diameter, while the diameter of larger particles measured by the 

APS is aerodynamic.  To estimate the mass from the EEPS measurements, we assumed the 

effective density of brake wear particles to be 5 g cm
-3

 (Sanders et al., 2003; Wahlström et 

al., 2010a).  
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Figure 3.3: Total particle surface area (A) and mass (B) concentrations from EEPS and APS 

during a 15 minute braking period at 45 psi load. 
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Figure 3.3 shows the particle surface area and mass concentration during braking at 45 psi. In 

the first minute of braking, both surface area and mass concentration measured from the APS 

and EEPS were found to have increased. The total surface area and mass concentrations 

increased from 590.4 µm
2
 cm

-3
 and 161.0 µg m

-3
 before braking to 8.7 × 10

4
 µm

2
 cm

-3
 and 

2.3 × 10
4
 µg m

-3
, respectively.  

In the following two minutes of braking, the surface area and mass concentrations decreased 

to 2.3 × 10
4
 µm

2
 cm

-3
 and to 7.9 × 10

3
 µg m

-3
, then increased again to 5.7 × 10

4
 µm

2
 cm

-3
 and 

2.1 × 10
4
 µg m

-3
 before the nucleation occurred. In the nucleation event, the surface area 

concentration of larger particles measured by the APS decreased from 5.4 × 10
4
 µm

2
 cm

-3
 to 

2.5 × 10
3
 µm

2
 cm

-3
. In contrast, that of the submicron particles measured by the EEPS 

increased from 1.9 × 10
3
 µm

2
 cm

-3
 to 3.2 × 10

3
 µm

2
 cm

-3
, probably due to the nanoparticle 

formation. Total mass concentration of both submicron and super-micron particles decreased 

from 2.1 × 10
4
 µg m

-3
 to 8.0 × 10

2
 µg m

-3
.  

A decrease of particle mass is maybe due to the change of the properties of brake pad because 

of high temperature during nucleation event. The total surface area and mass concentration 

increased again to 2.2 × 10
4
 µm

2
 cm

-3
 and 6.9 × 10

3
 µg m

-3
 after the nucleation event. 

Number, surface area and mass concentrations at different brake loadings (30, 45 and 60 psi) 

are given in Tables 3.2 and 3.3. 
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Table 3.2: Particle number concentration and size during experiments at different brake loads (30, 45 and 60 psi). 

Press. 
Instru-

ments 

Before braking Braking start point Braking Nucleation After braking stops 

TN (10
3
) CMD TN (10

3
) CMD TN (10

3
) CMD Temp. TN (10

3
) CMD 

TN 

(10
3
) CMD 

30 PSI  

CPC 9.3±2.5 - 22.5±0.7 - 12.3±1.8 - 
Max 

100 
No Nucleation event 

7.0±1.1 - 

EEPS 6.1±1.4 60±7 16.1±1.1 130±18 11.2±3.3 108±12 5.2±2.2 73±28 

APS 0.24±0.12 1.0±0.1 7.9±4.3 1.1±0.1 2.8±0.2 1.3±0.1 0.4±0.1 1.0±0.1 

45 PSI  

CPC 11.0±4.5 - 37.9±14.9 - 17.5±7.8 - 
118.7-

144.3 

- 15.7±6.0 15.7±6.0 - 

EEPS 5.9±1.9 59±15 25.5±10.3 140±14 10.3±4.3 122±18 - 7.9±2.2 7.9±2.2 49±29 

APS 0.9±0.4 1.1±0.1 11.6±4.8 1.1±0.1 4.0±0.2 1.4±0.1 1.9±1.1 2.2±0.2 2.2±0.2 1.2±0.1 

60 PSI  

CPC 26.4±4.5 - 66.0±9.3 - 32.0±7.7 - 

155.6 

- 28.7±8.1 28.7±8.1 - 

EEPS 21.0±4.3 59±2 45.8±6.3 139±8 23.3±4.9 132±11 - 13.3±2.1 13.3±2.1 46±8 

APS 2.9±2.4 1.1±0.1 11.2±2.9 1.2±0.1 8.3±2.6 1.5±0.1 1.1±0.6 1.7±0.2 1.7±0.2 1.2±0.1 

Note: TN: Total number of particles (particles cm
-3

); CMD: Count Median Diameter for EEPS (nm) and APS (µm). 
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Table 3.3: Particle surface area and mass concentration and size during experiments at different brake loads (30, 45 and 60 psi). 

Surface area(10
3
 µm

3
 cm

-3
) 

Press

ure 

Instru

ments 

Before braking Braking start point Braking Nucleation After braking stops 

TS SMD TS SMD TS SMD TS SMD TS SMD 

30 

PSI  

EEPS 0.17±0.01 125±21 1.2±0.4 200±17 0.65±0.14 207±15 
No Nucleation 

0.44±0.21 210±15 

APS 0.62±0.23 1.4±0.1 33.5±15.4 1.5±0.1 18.2±2.5 1.7±0.1 3.1±1.5 1.6±0.1 

45 

PSI  

EEPS 0.27±0.04 133±11 2.9±1.6 223±7 1.37±0.64 219±13 10.4±3.2 - 0.45±0.13 216±2 

APS 0.61±0.32 1.5±0.1 69.6±15.4 1.5±0.1 32.4±2.9 1.9±0.2 2.4±1.3 - 1.3±0.4 1.8±0.1 

60 

PSI 

EEPS 0.75±0.06 140±5 2.4±1.1 216±3 2.46±0.26 235±19 44.7±18.8 - 0.44±0.08 227±16 

APS 6.5±0.3 1.3±0.1 50.1±30.1 1.4±0.1 75.6±14.7 2.0±0.2 20.4±11.2 - 10.1±2.3 1.7±0.1 

Mass (mg m
-3

) 

Press

ure 

Instru

ments 

Before braking Braking start point Braking Nucleation After braking stops 

TM MMD TM MMD TM MMD TM MMD TM MMD 

30 

PSI  

EEPS 0.02±0.01 389±11 0.36±0.03 332±2.8 0.12±0.01 330±4.8 
No Nucleation 

0.03±0.01 313±9.9 

APS 0.21±0.08 2.1±0.2 9.90±3.63 1.7±0.1 6.20±1.80 1.9±0.1 0.53±0.04 2.9±0.3 

45 

PSI  

EEPS 0.07±0.04 328±22 0.62±0.31 334±4.5 0.20±0.04 337±2.4 0.27±0.12 254±107 0.09±0.01 334±7 

APS 0.61±0.32 1.8±0.4 16.5±5.8 1.8±0.2 11.8±0.9 2.3±0.2 4.9±3.4 2.3±0.2 4.1±0.4 2.1±0.1 

60 

PSI  

EEPS 0.1±0.01 296±22 0.37±0.01 330±3.7 0.31±0.08 332±6.1 2.15±1.38 119±9 0.06±0.01 319±8 

APS 1.77±0.05 1.7±0.5 24.5±4.4 1.9±0.2 23.9±8.2 2.2±0.3 2.2±0.9 2.2±0.2 2.2±0.4 2.1±0.2 

Note: TS: Total surface area concentration (10
3 
µm

3
 cm

-3
); SMD: Surface area Median Diameter for EEPS (nm) and APS (µm). 

TM: Total mass concentration (mg/m
3
); MMD: Mass Median Diameter for EEPS (nm) and APS (µm). 
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Table 3.4: Comparison of PNSD of brake wear particles between this study and previous studies 

Brake testing 
Vehicle 

type 

Brake 

Type 
Pad/shoes Instruments 

Size 

range 

(µm) 

Diamete

r 

CMD 

(µm) 
References 

Test rig 

(braking) 
Car Disc - 

EEPS 0.06-0.56 Mob. 0.98-0.15 
This study 

APS 0.5-20 Aero. 1.4-1.5 

Field Car Disc  LM GRIMM 0.25-32 Opt. 0.35-0.40 Wahlström and Olofsson (2014) 

Field  Train Disc - GRIMM 0.25-32 Opt. 0.28; 0.35 Abbasi et al.(2012b) 

Field Car Disc - EEPS 0.06-0.56 Mob. 0.01 Mathissen et al. (2011) 

Field/Road simulation Car Disc NAO FMPS 0.05-0.52 Mob. 0.01 Kwak et al. (2014) 

Dynamometer - Disc/drum SM MOUDI/ELPI 0.1-18  Aero. < 0.03 Garg et al. (2003) 

Dynamometer Care Disc LM/SM/NAO MOUDI/ELPI 0.1-18 Aero. 1-2 Sander et al. (2003) 

Dynamometer Car Disc  LM 
SMPS 0.01-0.45 Mob. 0.1 

Kukutschová et al. (2011) 
APS 0.5-20 Aero. 1.5-2 

Pin-on-dics Truck Disc SM LA700 0.04-262 Opt. 0.35 Mosleh et al. (2004) 

Pin-on-dics Car Cast iron LM/NAO 
GRIMM 0.25-32 Opt. 0.35 

Wahlström et al. (2010a) 
SMPS 0.01-0.52 Mob. 0.1 

Pin-on-dics Train 
Railway 

wheel 
cast iron 

GRIMM 0.25-32 Opt. ~ 0.3 
Olofsson (2011) 

SMPS 0.01-0.52 Mob. 0.07 

Pin-on-dics Train 
Railway 

wheel 
Organic 

GRIMM 0.25-32 Opt. 0.3-0.4 
Abbasi et al. (2012a) 

SMPS 0.01-0.52 Mob. 0.07-0.12 

Test rig - Disc LM / NAO GRIMM 0.25-32 Opt. 0.35 Wahlström et al. (2009) 

Test rig - Disc LM / NAO APS 0.5-20  Aero. 1-2  Iijima et al. (2007) 

 
Note: LM: Low metallic; SM: Semi-metallic; NAO: Non-asbestos organic; Mob: mobility; Opt: Optical; Aero: Aerodyamic. 
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3.3.2. Evolution of number submicron particle size distribution 

Figure 3.4 shows the evolution of submicron particles at a 45 psi brake load. Before starting 

braking, the particle number size distribution displays an approximately uni-modal lognormal 

structure with a count median diameter (CMD) ranging from 60 to 68.2 nm. 

Figure 3.4: Submicron particle size distribution during the experiment period at 45 psi brake 

load. The yellow line shows the detection limit level of the instrument. 
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In the first minute of braking: A bi-modal lognormal distribution of submicron particles 

was found with the first mode at 29.43 nm and the second major mode at 154.4 nm. The 

majority of particles was found in the accumulation mode with an average CMD ranging 

from 144 to 158.9 nm. In terms of super-micron particles, the CMD increased from 1.01 µm 

before braking to 1.12 µm. In this period, the majority of accumulation and coarse particles 

were generated from the friction processes between the disc and pad. Nano particles were 

also found, which grew rapidly probably due to coagulation process.  

During braking period: After the first minute of braking, the CMD of submicron particles 

decreased to 124.1 - 130.5 nm, while the CMD of super-micron particles increased to 1.26 

µm. A bi-modal size distribution of submicron particles was found, with the first mode at 

34.0 nm and the second major mode at 143.3 nm. The first mode was maybe due to the 

growth of nano-particles, while a decrease in accumulation mode particles compared to the 

braking start point shifted the CMD of accumulation mode from 154.4 nm to 143.3 nm. 

During this period, there were few the Aitken mode particles (20 nm< Da <80 nm) than those 

compared to in the background air. More large particles (Da >80 nm) were found than those 

in the background air, but much fewer than those in the first minute of braking. 

Nucleation event: After 5 minutes of braking, nucleation occurred when the temperature 

reached 118.7
o
C. Because of nucleation, many new particles were formed, leading to a 

decrease in CMD of both EEPS and APS size distributions. The CMD of submicron particles 

was found in the nucleation mode with an average of 20.4 nm, while that of super-micron 

particles decreased to 1.16 µm.  

The formation of new particles probably due to the condensation of organic compounds 

emitted from organic binder in the brake pad. When the pad temperature increased, lead to 

breakdown and oxidation of organic binders in the brake pad. The products of breakdown are 
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semi-volatile and hence vaporise, subsequently condensing as they cool.  This could be either 

by homogeneous nucleation or heterogeneous nucleation, but heterogeneous nucleation 

would require an involatile core particle (possibly metallic).  

In the last experiment, we controlled the temperature of the brake pads and found that the 

organic vapour became totally super-saturated at approximately 172
o
C, as seen in Figure 3.5.  

In the field measurements, the brake pad temperature can reach 400 
o
C (Mathissen et al., 

2011). Thus, nucleation probably occurs.  

 

Figure 3.5: Effect of temperature on the nucleation event. 

After braking stops: The nucleation immediately ended when braking stopped. The CMD of 

submicron particle size distributions ranged from 72.5 to 84.4 nm due to the quick growth of 

small particles formed during nucleation. Due to the high temperature, a small burning event 

of the brake linings sometimes occurs and thus generates more brake dust in the size range of 

accumulation and coarse mode, as seen in Figure 3.4 (f). The CMD of coarse particles was 
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around 1.26 µm, suggesting that coarse particles were still abundant in the chamber 

environment after braking. 

The size distributions of coarse particles measured by APS are shown in Figure 3.6. Table 3.4 

show a comparison of PNSD obtained in this study and previous studies. 

 

Figure 3.6: Number size distribution of coarse particles at 45 psi braking load. 

3.3.3. Particle volume (mass) size distribution 

Particle volume 

As shown in Figure 3.7, volume size distributions of brake wear particles displayed a bi-

modal lognormal structure with a major coarse mode at around 1.6 to 2.4 µm (aerodynamic 

diameter) and a minor accumulation mode at around 323.3-327.3 nm (mobility diameter). 

When nucleation occurred, the volume median diameter (VMD) of the accumulation mode 
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decreased to 100 nm. The VMD of coarse particles increased from 1.9 to 2.4 µm when the 

pressure load increased from 30 psi to 60 psi during braking. 

Coarse mode particles were found as the majority of total particle volume (86.2-95.7%), 

followed by accumulation mode particles (4.0-11.7%).  

 

Figure 3.7: Brake wear particle volume size distribution at 45 psi brake load. 

Particle mass 

In the calculation of mass, the effective density of brake wear particles was assumed to be 5 g 

cm
-3

 as discussed above. By this assumption, the particle size distribution measured by EEPS 

in mobility diameter was converted to those in aerodynamic diameter. The mass size 

distribution is shown in Figure 3.8.  
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Figure 3.8: Brake wear particle mass size distribution at 45 psi brake load. The dot lines show 

the common EEPS/APS spectra size range which does not match well. 

 

3.4. Conclusion 

 The evolution of particle size distribution was investigated. Particle size changed quickly 

from the first minute of braking to the nucleation event.  Brake particles display a wide range 

of number size distribution, from few nanometers to 20 µm. Accumulation and coarse 

particles were found to be dominant during braking, while nano/ultrafine particles were 

mainly found during nucleation events. In submicron size range, the brake particles showed a 

bi-modal size distribution with a major mode around 140 nm and a minor mode around 35 

nm. In the accumulation and coarse size range, the brake particles mainly distributed around 

1.1 to 1.58 µm. The CMD of coarse particles increased from 1.26 to 1.49 µm when the brake 

load increased from 30 psi to 60 psi. The particle mass size distribution showed bi-modal size 

distribution, with a major coarse mode (accounting for around 95% of total volume) and a 

minor accumulation mode. The mass median diameter (MMD) of coarse mode particles 

ranged from 1.6 to 2.4 µm.  
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Chapter 4: INDOOR/OUTDOOR MODELLING OF SUBMICRON 

PARTICLES IN A HOUSE HEAVILY AFFECTED BY ROAD TRAFFIC 

EMISSIONS 

 

This chapter evaluates the use of a dynamic mass balance model for predicting the 

penetration factor, infiltration factor and deposition rate of submicron particles in a house 

located in an area with busy traffic. Particle number size distributions (PNSD) were 

measured by a Fast Mobility Particle Sizer system (FMPS model 3091, 5.6-560 nm) in both 

indoor and outdoor environments at a house located at a site of busy traffic in Bologna 

(Italy) in the period February-April 2012. The results show that the mass balance model 

could not determine the unknown penetration factor and deposition rate separately because 

of their inverse relationship, but it could predict successfully the infiltration rate. When the 

penetration rate was controlled to be approximately unity in our experiment design, the 

deposition rate and loss rate of particles at different times was calculated. The loss rate of 

small particles (nucleation and Aitken mode) in the indoor environment was found to be 

much higher than those of larger particles (accumulation mode). The study also found the 

important roles of coagulation and evaporation processes in estimating the loss of indoor 

particles. 

The author’s contribution: writing, contribution of ideas and numerical calculations. 

 

 

 



 

56 
 

4.1. Introduction 

Numerous studies have shown that people spend approximately 90% of their time indoors 

(Harrison et al., 2009). Whilst indoors, people are probably exposed to either indoor particles 

generated from indoor activities (i.e cooking or cleaning) or outdoor particles penetrating 

from outdoor environments. Ogulei et al. (2006a) found that particles of outdoor origin 

(traffic emissions and wood burning) could contribute approximately 3.5% of the total indoor 

particle number by running a PMF model on the particle number size distribution, measured 

in a townhouse in the northwest of Washington DC in the US. Therefore, determination of 

the transport mechanisms as well as the fraction of outdoor aerosols that penetrate into indoor 

environments is needed in order to apportion the sources of particles to their total lung dose 

in human exposure studies.   

The infiltration rate (F) of aerosols, which is defined as the equilibrium fraction of outdoor 

particles that penetrate indoors and remains suspended, is controlled by three main factors, 

the penetration factor (P), the deposition rate (kd) and the air exchange rate (𝑎𝑒𝑥). The 

penetration factor, or efficiency of particles at a specific diameter, is defined as the fraction of 

particles that pass through the building envelope. Thus, penetration efficiency and the 

infiltration factor must be less than unity. These penetration and deposition processes of 

particles not only greatly depend upon the building characteristics, such as building envelope 

and surface area, but also on the characteristics of the particles, especially particle size. 

Furthermore, other processes such as evaporation and coagulation could have significant 

effects on the particle losses in a house in an area with busy traffic because of high number 

concentration and volatile components.  

However, there are limited studies of modelling indoor particles from outdoor particles from 

a traffic site. Therefore, the objective of this study is to evaluate the use of a dynamic mass 
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balance model for predicting the penetration factor, infiltration factor and deposition rate of 

submicron particles. The contribution of coagulation to the loss of indoor particles is also 

investigated. 

4.2. Methodology 

4.2.1. Instruments and sampling site 

Particle number size distributions (PNSD) were measured by a Fast Mobility Particle Sizer 

(FMPS) system (model 3091, 5.6-560 nm) in both the indoor and outdoor environments of a 

house located at a busy traffic site in Bologna (Italy) during period February-April 2012, in 

two sampling campaigns. The first sampling campaign was conducted from 22
nd

 February to 

7
th

 March and the second from 16
th

 to 30
th

 April. Indoor sampling monitoring was conducted 

in an unoccupied apartment located on the ground floor of a two-storey building as shown in 

Figure 4.1.  This building is close to a busy street (31,000 vehicles per day) and near a two-

way street canyon.  

 

Figure 4.1: Sampling site and experimental conditions.  
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The FMPS spectrometer measured the size and number concentration of particles every 

second. This FMPS was connected to a switching valve (Mod 11sc 200, Pneumoidraulica 

Engineering S.rl., Vicenza, Italy) to measure both indoor and outdoor size distribution every 

10 minutes. The length of sampling inlet is approximately 2.1 m. The FMPS data set was 

corrected for particles loss (as shown in Figure 4.10) before data analysis. Air exchange rate 

(𝑎𝑒𝑥) was controlled by a novel mechanical system which consisted of an external fan 

connected to an air pipe to force the air into the centre of the room. The fan was set at a 

suitable speed to obtain a stable 𝑎𝑒𝑥  of 0.5 h
-1

. We also measured the air exchange rate via 

CO2 decay data and from this system obtained a similar value of 𝑎𝑒𝑥  to our estimation. Table 

4.1 summaries more information of sampling site. 

Table 4.1: Input parameters for mass balance models, deposition and coagulation models. 

 

Parameters Values 

Room volume 62.5 m
3 

Upward surface area 16.9 m
2 

Downward surface area 16.9 m
2 

Vertical surface area 64.4 m
2 

Air temperature  297 K 

Relative humidity 33.2 % 

Air exchange rate 0.5 (h
-1

) 

Particle size bins 27 (14.3 -523 nm) 

Mass balance model time step 20 minutes 

Coagulation model time step 1 second 

 

4.2.2. Data preparation  

The FMPS system can measure particle size ranging from 5.6 to 560 nm; however, we did 

not include the size bins below 13 nm in our calculation because a high uncertainty in 

measurements of particles in these size bins was reported from previous studies (Jeong and 

Evans, 2009; Kaminski et al., 2013). There were many cases of zero data in several of the last 

size bins for unknown reasons in the second sampling campaign, thus we also did not include 
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the size bins over 300 nm for this campaign. The switching valve allowed the FMPS to 

measure outdoor and indoor size distributions every 10 minutes; this study therefore averaged 

the data from each 10 minute period, apart from the 2 minute samples at the beginning of 

each period, to avoid any mixing of outdoor and indoor air streams. The data was analysed 

using R programing. This study used the “open-air” package developed by Carslaw and 

Ropkins (2012) for polar plots and time average. Contour plots were performed using the 

Sigma Plot software, version 13.0. An indoor mass balance model and coagulation model 

were written on R by the author (Tuan V. Vu). 

4.2.3. Indoor mass balance model 

The indoor particle concentration can be described using a mass balance model (Chen and 

Zhao, 2011): 

𝜕𝐶𝑖𝑛

𝜕𝑡
=  𝑎𝐸𝑅 ∗ 𝑃 ∗ 𝐶𝑜𝑢𝑡 − 𝑎𝐸𝑅 ∗ 𝐶𝑖𝑛 − 𝑘𝑑 ∗ 𝐶𝑖𝑛 +  

𝑆

𝑉
+ 𝐽𝑂𝑡ℎ𝑒𝑟                   (4.1) 

Where Cin is the indoor particle concentration (particles cm
-3

),  

Cout is the outdoor particle concentration (particles cm
-3

),  

P is the penetration factor, 

𝑎𝐸𝑅is the air exchange rate (h
-1

),  

𝑘𝑑is the deposition rate (h
-1

),
 

S is the emission rate of particles (particles h
-1

),  

V is volume of the room (cm
3
), and t is the time (h). 

JOther: particle production or loss rate due to other indoor processes such as coagulation, 

nucleation, condensation or evaporation (particles h
-1

).   

For each time step of the specified period (∆t), the indoor concentration is modelled using a 

numerical backward difference (Chen and Zhao, 2011): 



 

60 
 

𝐶𝑖𝑛 (𝑡+∆𝑡) =
𝑎𝐸𝑅∗𝑃∗𝐶𝑜𝑢𝑡 (𝑡+∆𝑡)

𝑎𝐸𝑅+𝑘𝑑
(1 − 𝑒−(𝑎𝐸𝑅+𝑘𝑑)∗∆𝑡) + 𝐶𝑖𝑛 (𝑡)𝑒−(𝑎𝐸𝑅+𝑘𝑑)∗∆𝑡 +  

𝑆∗∆𝑡

𝑉
+ 𝐽𝑜𝑡ℎ𝑒𝑟 ∗ ∆𝑡 

(4.2) 

There was no indoor source during the sampling campaign (S=0) and the air exchange rate 

(𝑎𝑒𝑥) was controlled by 0.5 (h
-1

), therefore the indoor concentration can be estimated 

following the equation: 

𝐶𝑖𝑛 (𝑡+∆𝑡) =
0.5∗𝑃∗𝐶𝑜𝑢𝑡 (𝑡+∆𝑡)

0.5+𝑘𝑑
(1 − 𝑒−(0.5+𝑘𝑑)∗∆𝑡) + 𝐶𝑖𝑛 (𝑡)𝑒−(0.5+𝑘𝑑)∗∆𝑡   +   𝐽𝑜𝑡ℎ𝑒𝑟 ∗ ∆𝑡        (4.3) 

Based on the outdoor concentration (Cout), and the initial indoor concentration (Cin at a 

specific time, such as t=0), we can estimate the indoor concentration Cin based on equation 

(4.3). The outdoor and indoor switching valve time was 10 minutes, thus the time step 

between two outdoor measurements (∆t) is 20 minutes (1/3 hour). 

To determine the penetration factor and deposition rate (P, kp), the p and k values (with 0< P 

≤1 and kP> 0) were changed with an interval of 0.01 until modelled Cin best fitted with 

observed Cin. To evaluate goodness-of-fit in the comparison of the model to the observed data 

set, we used two criteria: 

1. The Root Mean Square Error (RMSE) between the model and observed indoor 

concentrations: 

RMSE = √
∑ (𝐶𝑖𝑛 𝑏𝑦 𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 − 𝐶𝑖𝑛 𝑏𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡)2𝑁

𝑖=1

𝑁
 

where, N: total number of samples 

2. The Pearson Correlation Coefficient of determination (r) between two indoor data sets 

estimated by a mass balance model and observed by real measurements. 
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4.2.4. Coagulation Model 

The coagulation equation was introduced by the following equation (Müller, 1928; Seinfeld 

and Pandis, 2012): 

𝜕𝑁𝑣

𝜕𝑡
=

1

2
∫ 𝛽𝑣−ṽ,ṽ

𝑣

0
𝑁𝑣−ṽ𝑁ṽdṽ −  𝑁𝑣 ∫ 𝛽𝑣,ṽ𝑁ṽdṽ

∞

0
                                                                  (4.4) 

where v-ṽ and ṽ are the volumes of two coagulating particles, v is the volume of the new 

particle due  to coagulation, and N is the time-dependent number concentration (particles cm
-

3
) of particles with a volume of v, v-ṽ or ṽ. βv−ṽ,ṽ is the coagulation rate coefficient 

(coagulation kernel) of the two colliding particles (cm
3
 particle

-1
s

-1
). 

For a monomer size distribution, equation (4.4) is discretized and written in fully implicit 

finite-difference form as (Jacobson, 2005; Seinfeld and Pandis, 2012): 

𝑁𝑘,𝑡−𝑁𝑘,𝑡−∆𝑡

∆𝑡
=

1

2
∫ 𝛽𝑘−𝑗.𝑗

𝑘−1

𝑗=1
𝑁𝑘−𝑗,𝑡𝑁𝑗,𝑡 −  ∫ 𝛽𝑘,𝑗𝑁𝑘,𝑡

∞

𝑗=1
𝑁𝑗,𝑡                                                  (4.5) 

where, k is the size bin which is produced when particles in bin k-j coagulate with particles in 

size bin j. ∆𝑡 (s) is the time step and t and t - ∆𝑡 are the final and initial times respectively. A 

size distribution is defined as a monomer size distribution when “the volume of each particle 

in size bin k equals the volume of particles in the smallest size bin multiplied by k” (Jacobson 

et al., 2005).  

To solve equation (4.5), several techniques can be used, one of which is the semi-implicit 

coagulation model discussed by Jacobson (1994). In this model, 𝑁𝑗,𝑡 is replaced by 𝑁𝑗,𝑡−∆𝑡. 

Therefore, equation (4.5) is re-written as: 

𝑁𝑘,𝑡 =  
𝑁𝑘,𝑡−∆𝑡+

1

2
∆𝑡 ∑ 𝛽𝑘−𝑗.𝑗

𝑘−1
𝑗=1 𝑁𝑘−𝑗,𝑡𝑁𝑗,𝑡

1+ ∆𝑡 ∑ 𝛽𝑘.𝑗
∞
𝑗=1 𝑁𝑗,𝑡𝑁𝑗,𝑡−∆𝑡

                                                                       (4.6) 
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Equation (4.6) is responsible for the loss of particles by number when two particles coagulate, 

but does not conserve volume. In order to conserve volume concentration, equation (4.6) is 

reformed as: 

𝑣𝑘,𝑡 =  
𝑣𝑘,𝑡−∆𝑡+∆𝑡 ∑ 𝛽𝑘−𝑗.𝑗

𝑘−1
𝑗=1 𝑣𝑘−𝑗,𝑡𝑁𝑗,𝑡−∆𝑡

1+ ∆𝑡 ∑ 𝛽𝑘.𝑗
∞
𝑗=1 𝑁𝑗,𝑡−∆𝑡

                                 (4.7) 

where, 𝑣𝑘,𝑡 = 𝑣𝑘𝑁𝑘,𝑡. 

For an arbitrary size distribution, equation (4.7) becomes: 

𝑣𝑘,𝑡 =  
𝑣𝑘,𝑡−∆𝑡+∆𝑡 ∑ (∑ 𝑓𝑖,𝑗,𝑘

𝑘−1
𝑖=1 𝛽𝑘−𝑗.𝑗

𝑘
𝑗=1 𝑣𝑖,𝑡𝑁𝑗,𝑡−∆𝑡)

1+ ∆𝑡 ∑ (1−𝑓𝑖,𝑗,𝑘)𝛽𝑘.𝑗
𝑁𝐵
𝑗=1

𝑁𝑗,𝑡−∆𝑡

                             (4.8) 

where, 𝑓𝑖,𝑗,𝑘is the volume fraction and 𝑁𝐵 is the last size bin. 

𝑓𝑖,𝑗,𝑘 = {

(
𝑣𝑘−1−𝑉𝑖,𝑗

𝑣𝑘+1−𝑉𝑘
)

𝑣𝑘
𝑉𝑖,𝑗

𝑣𝑘 ≤  𝑉𝑖,𝑗<𝑣𝑘+1       𝑤𝑖𝑡ℎ 𝑘<𝑁𝐵

1− 𝑓𝑖,𝑗,𝑘−1𝑣𝑘−1 ≤  𝑉𝑖,𝑗<𝑣𝑘       𝑤𝑖𝑡ℎ 𝑘>1  

1                                                  𝑉𝑖,𝑗<𝑣𝑘                         𝑤𝑖𝑡ℎ 𝑘=𝑁𝐵

0                                                                                  𝑎𝑙𝑙  𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

                    (4.9) 

The final number concentration of particles due to coagulation is: 

𝑁𝑘,𝑡 =
𝑣𝑘,𝑡

𝑣𝑘
                                                                                                                        (4.10) 

 

Coagulation rate coefficient (kernel) 

The coagulation rate coefficient is calculated by: 

βi,j = Ki,jCEi,j                                                                                              (4.11) 

where, βi,j is the coagulation rate coefficient of particles (cm
3 

particle
-1 

s
-1

); Ki,j is the 

collision kernel (cm
3 

particle
-1 

s
-1

) and CEi,j is a coalescence efficiency between particle size i 

and size j. 

Collision kernel 

The collision kernel is calculated in this research with consideration of the following physical 

processes: 

 Brownian motion 
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 Convective Brownian motion enhancement 

 Van der Waals and viscous force 

 Gravitational collection  

 Turbulent inertial motion and shear 

All the collision kernel calculations were calculated in R program, based on the equations in 

previous work by (Alam, 1987; Jacobson, 1994; Sceats, 1989). As a result, the fine particles 

(Dp <1 µm) are mainly subject to the Brownian motion, Convective Brownian motion 

enhancement and Van der Waals/viscous force. The coagulation efficiencies of two particles 

were calculated and are shown in Figure 4.2.  

 

Figure 4.2:  Coagulation kernel (cm
3
particle

-1
s

-1
) with consideration of Brownian motion and 

its convection effects and the van der Waals/viscous force with the Hamaker constant of 

200KBT. 

Coalescence efficiencies 

For small particles (Dp <1 µm), the coalescence efficiency is approximately unity (Jacobson 

and Seinfeld., 2004). Jacobson and Seinfeld (2004) recommend that for two small particles 
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coalescence is probably enhanced by the van der Waals forces, therefore the van der 

Waals/viscous forces can be referred to either in terms of a collision kernel, or in terms of a 

coalescence efficiency.  

4.3. Result and Discussion 

4.3.1. Indoor/outdoor (I/O) ratios 

4.3.1.1. Diurnal patterns of I/O ratios 

Figure 4.3 shows the I/O ratios of submicron particles for two sampling campaigns at 

different times (00:00-06:00; 06:00-12:00; 12:00-18:00; 18:00-24:00). In general, the I/O 

ratios of a particle greatly depend upon its size. A small particle has a lower I/O ratio than a 

large one due to its higher loss rate by deposition and coagulation. The I/O ratios for ultrafine 

particles ranged between 0.2 and 0.8, while those of accumulation mode particles ranged 

from 0.4 to 0.8.  

 

Figure 4.3: I/O ratio as a function of particle diameter at different times (00:00-06:00; 06:00-

12:00; 12:00-18:00, and 18:00-24:00). The upper and lower dashed lines show the confidence 

level at 95%. 

As shown in Figure 4.3, the I/O ratios at different times presented similar trends, but they 

were found to be lower in the daytime, particularly during traffic rush hours (6:30-9:30 am), 
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than at night time (00:00-06:00). In addition, the I/O ratios were found to be higher at the 

weekend (Figure 4.4). A higher loss rate of ultrafine particles during the daytime could be 

explained by the influence of coagulation and evaporation. The concentration of ultrafine 

particles in both outdoor and indoor environments during the daytime was much higher than 

those during night time. Because of the increased number concentration during the daytime, 

the loss rate of indoor particles in this time period was increased due to coagulation process, 

leading to the lower I/O ratios.  

Particle volatility may also explain for the loss of ultrafine particle during the daytime. 

Kittelson (1998) found that particles below 50 nm from traffic emissions consisted of a 

significant fraction of volatile components. When these particles enter a house, they can lose 

their volatile fractions and shrink to under 20 nm Kuhn et al. (2005). Zhu et al. (2005) 

investigated the penetration of ultrafine particles into an unoccupied house near the 405 

Freeway in Los Angeles, US. Their study found that the I/O ratios decrease when ultrafine 

particle size decreases to around 10-20 nm, but then increase again for particles below 10 nm.    

Interesting, the I/O ratios of indoor accumulation mode particles (Dp >~ 80 nm) were also 

found to be significantly higher at night times (00:00-06:00 am) than those in the daytime 

(06:00-12:00 pm). Moreover, the coagulation process does not significantly affect these 

particles like as it does with small particles. This could be explained by the higher loss rate 

due to higher deposition and evaporation rates (this will be discussed in Section 4.3.3.3). In 

addition, these accumulation mode particles probably consist of a higher fraction of 

aggregates generated from traffic emissions during the daytime. These particles have a fractal 

dimension ranging from 1.5 to 2.5, with a typical value around 1.7 (Wentzel et al., 2003). 

Note that the particle diameter measured by FMPS in our study is the electrical mobility 

diameter. Because of soot particles, the equivalent volume diameter of the daytime 

accumulation particles will be smaller than their mobility diameter. Therefore, the diffusion 
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coefficient for daytime accumulation particles was higher than those for night time 

accumulation particles (which may have a smaller fraction of aggregates). The deposition of 

these particles is mainly controlled by diffusion (Hinds, 1999), hence the indoor daytime 

accumulation particles should have a higher deposition rate than night time particles.  

Similarly, I/O ratios on week days were lower than those on weekend days. Figure 4.4 shows 

the typical diurnal patterns of I/O ratios on both week and weekend days. The I/O ratios were 

found to be at their lowest between 7:00 and 9:30 AM, corresponding to the traffic rush 

hours. 

 
Figure 4.4: Comparison of the diurnal patterns of I/O ratios between a typical week and 

weekend days. 
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4.3.1.2. Effects of meteorological parameters on the I/O ratios  

Figure 4.5 shows the dependence of I/O ratios on wind speed and direction. I/O ratios, 

particularly for accumulation particles (Dp >100 nm) increased when the wind speed 

increased. The effect of wind speed is to dilute the local traffic emissions which would then 

lead to higher I/O ratios. There was no clear influence of wind direction on the I/O ratios of 

small particles, but it had a significant effect on the I/O ratios of particles larger than 100 nm. 

The I/O ratios from SW wind direction were higher as seen in Figure 4.6. This is maybe due 

to the long range transport of accumulation mode particles in the condition of strong wind at 

night time (00:00-04:00). 

 

Figure 4.5: I/O ratios in different wind speeds. 
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Figure 4.6: I/O ratios in different wind directions 

4.3.2. Effect of coagulation on the loss/production of indoor particles 

4.3.2.1. Evolution of particle number size distribution due to coagulation only 

The coagulation model was run with a time step of 1 s. The simulation time was 20 minutes. 

The initial particle number size distribution which was extracted from the indoor particle 

number size distribution data set was measured at 9:10:00 on 22/02/2012 at a house in a busy 

traffic area. The evolution of particle number size distribution by time due to coagulation 

only is shown in Figure 4.7. 
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Figure 4.7: The evolution of PNSD due to coagulation only during a 20 minute period. 

As shown in Figure 4.7, particles in nucleation and Aitken mode see a large reduction after 

20 minutes. For example, particle number concentration at 20 nm, 30 nm and 52 nm was 

reduced by 14.2%, 10.2% and 4.1%, respectively. In this simulation, all particles are assumed 

as spherical particles. In contract, the number concentration of larger particles (Dp >150 nm) 

showed an increase; however, this increase was not significant with a variation lower than 

3%. Moreover, the particle number concentration in accumulation mode (90 nm< Dp <150 

nm) does not change significantly with a variation of ± 2%.  

The first minor peak of 19 nm tends to disappear, while the major peak grows from 34 nm to 

60 nm. In summary, the coagulation of particles during a 20 minute period not only has a 

large effect on particle number, but also on the shape of their size distributions. The loss of 

particles could increase more due to coagulation, if particles were aggregates (Jacobson and 

Seinfeld, 2004), therefore we cannot neglect the contribution of coagulation process to loss of 

indoor particle in the modelling of indoor/outdoor particles in a house in an area with busy 

traffic. 
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4.3.2.2. Effects of coagulation on the loss of indoor particles 

A coagulation model was applied to the indoor particle size distribution to estimate the loss/ 

production of particles due to coagulation only during a 20 minute period (a time step in our 

mass balance model is 20 minutes). The % loss of particle concentration for a particle with a 

specific size is shown in Figure 4.8. Because the particle size distributions of indoor particles 

are more stable, the loss or production of indoor particles depends greatly on their 

concentration.  

As shown in Figure 4.8, coagulation has a weaker effect on the loss of indoor particles if the 

total number concentration of particles is low. In addition, the influence of coagulation on the 

loss or production of particle increases when the total number concentration increases. For 

example, particles of 22.1 nm may lose a maximum of 4.3% of their concentrations due to 

coagulation if the total number concentration is lower than 5000 particles cm
-3

. When total 

particle number increases to 1.5 × 10
4
 particles cm

-3
, more than 15% of those particles could 

be lost by coagulation. Coagulation has stronger effect on small particles than larger ones. It 

reduces the particle number concentration of nucleation and Aitken mode particles, but 

increases the number concentration of accumulation mode particles. 
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Figure 4.8: Loss or production (%) of indoor particles due to coagulation only during a 20 

minute period at different total number concentrations of particles. Nu: Nucleation mode 

particles (Dp <30 nm); AIT: Aitken mode particles (30nm< Dp <100 nm); ACC: 

Accumulation mode particles (100 nm< Dp <620 nm). 
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4.3.2.3. Correlations between the loss of indoor particles by coagulation only and their 

concentrations. 

Figure 4.9 shows very high correlations between the loss/production of indoor particles due 

to coagulation and their concentrations during a 20 minute period. It means the number 

concentration has a much larger effect on the loss/production of indoor particles due to 

coagulation than their size distributions.     

 

Figure 4.9: Correlation between the loss or production of particles of a specific size and their 

concentrations during a 20 minute period. 
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4.3.3. Prediction of the penetration factor, deposition rate, and infiltration factor using 

a mass balance model 

4.3.3.1. Penetration factor (or efficiency) 

The penetration factor is defined as the fraction of particles in the infiltration air that enters 

indoors through the building envelope (Chen and Zhao, 2011). The particle penetration factor 

through building cracks depends upon particle size, the pressure difference between 

indoor/outdoor environments, and the characteristics (i.e. surface roughness, geometry) of the 

cracks. As in the above definition, the penetration efficiency of a particle that passes through 

a building shell must be lower than unity. Accumulation mode particles (Dp, 0.1-1 µm) have 

higher penetration efficiencies than ultrafine and coarse particles. It is easier for smaller 

particles to be lost during the penetration process though the building shell because of their 

higher diffusion efficiencies, while larger particles are subject to gravitational settling, 

leading to their lower penetration efficiency (Liu and Nazaroff, 2003).  

In this study, the air exchange between indoor and outdoor environments was controlled by a 

mechanical system which consisted of an external fan connected to an air pipe to force the air 

to the centre of the room.  With this novel experimental design, the penetration factor is close 

to 1.0 (Sajani et al., 2015). To evaluate the loss of particles through the air exchange system, 

an additional three-day experiment was performed to measure particle size distribution at the 

inlet of the fan and the outlet of the pipe using an FMPS system.  A switching valve which 

switched the FMPS inlet every five minutes was deployed to measure outdoor/indoor particle 

size distributions.  

The average number size distribution of upstream and downstream particles and penetration 

efficiency are shown in Figure 4.10. There was a small loss of particles below 20 nm in the 

pipe due to their very high diffusion coefficient. 
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Figure 4.10: Particle penetration factor through the study system. 

4.3.3.2. Application of a mass balance model to predict the penetration factor, 

infiltration factor and deposition rate  

A mass balance model was applied to a night-time data set (00:00-06:00 am) which has an 

averaged indoor number concentration of 5272.6 particles cm
-3

. As discussed in section 

4.3.2.3, the coagulation process could be negligible if total particle concentration is lower 

than 5000 particles cm
-3

. Therefore, we assumed that coagulation and evaporation process do 

not play a significant role in this period. The mass balance model (4.3) will be converted to 

the following equation: 

𝐶𝑖𝑛 (𝑡+∆𝑡) =
0.5∗𝑃∗𝐶𝑜𝑢𝑡 (𝑡+∆𝑡)

0.5+𝑘𝑑
(1 − 𝑒−(0.5+𝑘𝑑)∗∆𝑡) + 𝐶𝑖𝑛 (𝑡)𝑒−(0.5+𝑘𝑑)∗∆𝑡                               (4.12) 
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a. Can we predict simultaneously unknown penetration factor and deposition rate (kd, h
-1

) 

values using a mass balance model? 

In equation (4.12), P and kd (h
-1

) were allowed to vary independently over the likely ranges of 

values 0< P ≤1 and kd >0 respectively. In our model, the P values varied with intervals of 

0.01 between 0 and 1, and the kd (h
-1

) values varied with intervals of 0.01 between 0 and 10.  

Each pair of P and kd values result in different values of RMSE and r. To obtain the best fit 

between the modelled and measured indoor concentration, the pair of P and kd values was 

selected with a minimum value of RMSE and maximum value of r.  

As a result, it is impossible to obtain a unique pair of P and kd values because there are 

numerous pairs of values for P and kd that have similar low values of RMSE. For example, 

Figure 4.10 shows the distribution of RMSE and r values for particles at a count diameter of 

93.1 nm, depending on different values of P and kd. The orange curve shown in Figure 4.11 

illustrates the area of lowest minimum value of RMSE. This means that there are many pairs 

of P and kd values corresponding to a minimum value of RMSE (minimum value of RMSE is 

1.45). In this case, P ranged from 0.45 to 1.0 and kd ranged from 0 to 0.35 h
-1

. Similarly, as 

shown in Figure 4.11, there were various pairs of P and kd that were close to the highest value 

of r (~0.98). This result is in agreement with those of Bennett and Koutrakis (2006), 

determined the best values for P and k through the minimum value of χ
2
 (referred to as the 

error) using the NLIN procedure in SAS (SAS Inc. Carry, NC).  
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Figure 4.11: Dependence of RMSE and r upon penetration factor and deposition rate. 
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b. Determination of the infiltration factor using a mass balance model 

As discussed in section 4.3.3.2, a mass balance model did not successfully yield a unique P 

and kp solution, however it did give us various pairs of P and kd values. As shown in Figure 

4.11, there is a linear relationship between these two parameters, suggesting that we may 

determine the infiltration factor (Fin) based on this model. 

The infiltration factor (Fin) is defined as the equilibrium fraction of outdoor particles that 

penetrates indoors and remains suspended. Therefore, it is controlled by the penetration 

factor, exchange rate and deposition rate if we assume that coagulation and evaporation do 

not have a significant effect. The dynamic infiltration factor is calculated using the following 

equation: 

𝐹𝑖𝑛 =
𝑎𝐸𝑅∗𝑃

𝑎𝐸𝑅+𝑘𝑑
                                                                                                   (4.13) 

Fin represents for the fraction of outdoor particles that enters indoors and remains suspended, 

hence Fin is lower than unity. To combine equations (4.12) and (4.13), the mass balance 

model will be transferred to the following equation: 

 

𝐶𝑖𝑛 (𝑡+∆𝑡) =
𝐶𝑜𝑢𝑡 (𝑡+∆𝑡)

𝐹𝑖𝑛
(1 − 𝑒−

𝐹𝑖𝑛
0.5∗𝑃

∗∆𝑡) + 𝐶𝑖𝑛 (𝑡)𝑒−
𝐹𝑖𝑛

0.5∗𝑃
∗∆𝑡

                                                  (4.14) 

In this model, Fin and P were allowed to vary independently from 0 to 1, leading to different 

values of RMSE and r. As shown in Figure 4.11, the minimum value of RMSE strongly 

depends upon the value of the infiltration factor. The value of Fin was selected if it generated 

not more than 105% of the minimum of RMSE values. For example, the minimum of an 

RMSE for particles with a diameter of 93.1 nm is 1.45, therefore the Fin value will be 

considered if it generates an RMSE lower than 1.52. Following this criterion, the Fin of these 
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particles value ranged between 0.45-0.52, as shown in Figure 4.12. In summary, a mass 

balance model can successfully predict the infiltration factor. 

 

 

Figure 4.12: RMSE and r depend upon penetration and infiltration factors. 
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c. Determination of the deposition rate (kd) when the penetration factor is known 

The mass balance model fails to predict both unknown P and kd values, but it gives us the 

relationship between these values. Therefore, if we know one value of these parameters, it is 

easy to predict the value of the other. In our novel experimental design, the penetration factor 

was controlled to be nearly unity, as shown in Figure 4.10; deposition rate was estimated 

based on the application of a mass balance model to night time data sets. As shown in Figure 

4.14, the mass balance model predicts very well indoor particles with a diameter larger than 

34 nm (r >0.87), particularly for accumulation particles (r >0.95 for sampling campaign 1), 

but it is not very good in predictions of nucleation mode particles (r ~0.64-0.81). This is 

maybe due to the influence of evaporation and the weak effect of coagulation on the small 

particles.    

The estimated particle deposition rates are shown in Figure 4.13. They ranged from 0.3 to 

1.97 h
-1

, closely depending upon particle size. For submicron particles, a smaller particle has 

a higher deposition rate. The deposition rate of a particle with a diameter of 30 nm is three 

times higher than that of a particle with a diameter of 100 nm. This finding is consistent with 

previous studies by Long et al. (2001), Chao et al. (2003) and Hussein et al. (2006). In 

addition, we compare this deposition rate calculated by a mass balance model with those 

calculated by Lai and Nazaroff (2000)’s theory models. For particles with a diameter smaller 

than 150 nm, our estimated deposition rate fits very well with the calculation from models 

with an assumption of friction velocity (u) ranging from 35 to 40 cm/s. For larger particles, 

the deposition rate was found to be much higher than a Lai and Nazaroff (2000) deposition 

rate curve. This is maybe due to their assumption of a perfectly smooth surface, which has a 

marked effect on the accumulation mode particles. 
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Figure 4.13: Comparison between deposition rates estimated by the mass balance model and 

Lai&Nazaroff’s model. 

 

 

Figure 4.14: Correlation efficient (r) between modelled and observed data. 
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4.3.3.3. Loss rate of particles at different times 

In section 4.3.3.2, we found strong correlations between loss/production of particles of a 

certain diameter due to coagulation and their indoor concentrations. In this section, we 

assume the loss/production of particles due to evaporation has a strong linear correlation with 

the number concentration in appropriate time periods like coagulation.  

The kc and ke are defined as the loss rate of particles due to the coagulation and evaporation 

processes (h
-1

). The kc and ke can be negative values if these processes produce particles. The 

mass balance model in equation (4.3) will be transformed to the following equation: 

𝜕𝐶𝑖𝑛

𝜕𝑡
=  𝑎𝐸𝑅 ∗ 𝑃 ∗ 𝐶𝑜𝑢𝑡 − 𝑎𝐸𝑅 ∗ 𝐶𝑖𝑛 − 𝑘𝑑 ∗ 𝐶𝑖𝑛 − 𝑘𝑐 ∗ 𝐶𝑖𝑛 − 𝑘𝑒 ∗ 𝐶𝑖𝑛          (4.15) 

 

The total loss rate of particles with a certain diameter (kloss) is defined by the sum of the loss 

rate due to deposition, coagulation and evaporation processes: kloss = kd + kc + ke. 

Equation (4.15) will be solved in the same way as equation (4.16) for each time step. 

𝐶𝑖𝑛 (𝑡+∆𝑡) =
0.5∗𝑃∗𝐶𝑜𝑢𝑡 (𝑡+∆𝑡)

0.5+𝑘𝑙𝑜𝑠𝑠
(1 − 𝑒−(0.5+𝑘𝑙𝑜𝑠𝑠)∗∆𝑡) + 𝐶𝑖𝑛 (𝑡)𝑒−(0.5+𝑘𝑙𝑜𝑠𝑠)∗∆𝑡      (4.16) 

A mass balance model based on equation (4.16) was applied to the dataset at different times 

(06:00-12:00; 12:00-18:00; 18:00-24:00) to estimate the loss rate of particles. This total loss 

rate and the performance of the mass balance model based r value are shown in Figure 4.15 

and 4.16. 
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Figure 4.15: Total loss rates (kloss) of indoor particles in different time periods. 

 

Figure 4.16: Correlation coefficient (r) between modelled and observed data in different time 

periods. 

Interestingly, the mass balance model performs very well in the prediction of nucleation 

mode particles during the day time. For example, the correlation coefficient (r) between the 

modelled and measured concentration of particles of 14.3 nm for dataset from 6:00-12:00 was 

very high. It was higher than 0.82 for the first sampling campaign and 0.86 for the second 

sampling campaign as shown in Figure 4.16. This means that we can use a mass balance 

model to model the indoor concentration from outdoor in appropriate time periods as well as 

to predict the total loss rate of particles.    
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Figure 4.15 shows the total loss rate (kloss) of particles in different time periods. A higher loss 

rate was found in the period 06:00-12:00 than at night time, suggesting that coagulation and 

evaporation play very important roles in the loss of particles during the daytime in a house 

heavily affected by road traffic emissions. As shown in Figure 4.17, the particle number 

concentration for both outdoor and indoor environments during the daytime was much higher 

than that during the night time, resulting in a higher particle loss due to the coagulation 

process.  

This result is in agreement with the higher I/O ratio at night time that was discussed in 

section 4.3.1.1. Like the deposition rate, the loss rate for a particle strongly depends upon its 

size. The total loss rate of a particle increases exponentially when its size decrease from 100 

nm to 22.5 nm. This is due to the greater increase in coagulation and evaporation effects on 

small particles (the Aitken mode particles) than large particles (accumulation mode particles). 

 
 

Figure 4.17: Outdoor/indoor particle number size distribution (PNSD) in different time 

periods. 
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The total loss rate of particles increased slightly or was unchanged when their sizes decreased 

to lower than 22.5 nm. Evaporation is probably a main reason for this. Kuhn et al. (2005) 

found that some particles in the size range 20-40 nm consist of many volatile components. 

They may become particles of 20 nm or less due to the evaporation of volatile components. 

Therefore, the loss of particles of 20 nm or less did not increase due to the production of 

these particles by the evaporation of larger ones. 

In summary, the mass balance model can successfully predict indoor particles as well as their 

loss rate in different time periods. The total loss rate of particles during the daytime was 

much higher than those during the night time. Coagulation and evaporation play important 

roles in the loss of indoor particles in a house affected by road traffic emissions.   

4.3.4. Modelling the indoor particles at a house affected by traffic emissions based on 

an application of a mass balance model to the full dataset 

In order to model the indoor particles for the full dataset, we performed a mass balance model 

based on equation (4.16) using two approaches: 

(1) Approach 1: We applied a mass balance model to the full dataset without the change in 

kloss by time. This means that the mass balance model does not consider the change of 

loss rate due to coagulation and evaporation between daytime and night time. 

(2) Approach 2: We applied a mass balance model to full dataset with consideration of the 

change in kloss in different time periods. In this approach, the kloss will be different 

corresponding to the four time periods (00:00-06:00; 06:00-12:00; 12:00-18:00; 18:00-

24:00). 

Figure 4.18 compares the RMSE and r values between the two approaches. There was not 

much difference between the RMSE values in the two approaches, but the indoor data 



 

85 
 

modelled by the second approach had closer trends to the measured data due to a significantly 

higher r value. The r values between the indoor data modelled by the second approach and 

the measured data were higher than 0.8, suggesting that a mass balance model can predict 

well the indoor particles using outdoor data.   

Figure 4.19, 4.20 & 4.21 show a comparison between indoor concentrations estimated by the 

models and measured by FMPS. 

 
Figure 4.18: Comparison of indoor modelling by two the approaches for 2 sampling 

campaigns. 
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4.4. Conclusion 

In conclusion, this study had investigated the I/O ratios in different time periods. As a result, 

these ratios have a strong diurnal pattern and were much lower in the daytime than at night 

time. In addition, it has evaluated the mass balance model that was applied to predict the 

indoor concentrations from outdoor concentrations. A mass balance model cannot predict 

unknown penetration factors and deposition rates separately, but it can predict the infiltration 

factor. Coagulation and evaporation processes play important roles in the loss or production 

of particles.  

Based on the mass balance model, the loss rate of indoor particles was calculated.  This not 

only depends upon their size, but also the sampling time. A higher loss rate was found for 

smaller particles and in the daytime. A very high correlation between the modelled and 

measured indoor data suggests that a mass balance model with a consideration of different 

loss rates during different time periods can predict very accurately the concentration of 

indoor particles originating from outdoor particles in a house heavily affected by road traffic 

emissions. 
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Figure 4.19: Comparison between the indoor concentrations modelled by a mass balance model and measured data for particles with diameters of 16, 26 and 

39 nm. 



 

88 
 

 

Figure 4.20: Comparison between the indoor concentrations modelled by a mass balance model and measured data for particles with diameters 

of 60, 93 and 143 nm. 
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Figure 4.21: Comparison between the indoor concentrations modelled by a mass balance model and measured data for particles with diameters 

of 220, 242 and 450 nm. 
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Chapter 5: HYGROSCOPIC PROPERTIES OF PARTICLES AND 

THEIR IMPLICATIONS FOR THE CALCULATION OF LUNG 

DEPOSITION FRACTION 

 

This chapter presents the existing knowledge on the hygroscopic growth factor (Gf) of 

atmospheric submicron particles and their influence on the lung deposition calculation. The 

chapter first briefly reviews the Gf values of particles emitted from various sources, including 

nucleation, traffic emissions and biomass burning, and discusses the spatial and temporal 

variations. It then summarizes the Gf values of submicron particles and the number fraction 

of each hygroscopic group measured in different ambient environments. These include 

marine, roadside, urban background and rural environments. Furthermore, the effect of 

hygroscopicity on the lung deposition fraction of ambient particles has been estimated. The 

ICRP model seems to predict well the deposition fraction (DF) values for small ambient 

particles in the extra-thoracic and tracheo-bronchial region, but not the alveolar region, 

where they are overestimated. Finally, this chapter applies our modified ICRP model to 

estimate the lung deposition of particles from a street canyon and an urban background site 

in London and a rural site 80 kilometres to the west of London, UK. 

This chapter contains some sections of verbatim text adapted from Vu et al. (2015b) 

published as part of this PhD. The author’s contribution: writing, contribution of ideas and 

numerical calculations. 
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5.1. Introduction 

Hygroscopic properties are well known to play a vital role in the atmospheric behaviour and 

health implications of aerosols (Ferron et al., 2005; Hiller, 1991; Tu and Knutson, 1984).  

Aerosol particles can shrink or grow in size by exchanging water vapour with the surrounding 

air as relative humidity (RH) changes, thus having a direct effect on the radiation balance of 

the atmosphere through the change in scattering and absorption of light (Tang et al., 1981). 

Furthermore, hygroscopicity has a strong influence on the ability of particles to act as cloud 

condensation nuclei (Hämeri et al., 2001; Petters and Kreidenweis, 2007; Reutter et al., 

2009). Consequently, it also indirectly affects the global climate. Particles can also absorb the 

water vapour in the respiratory tract when they penetrate into the lung, changing in size, and 

hence affecting their lung deposition fraction (Broday and Georgopoulos, 2001; Chan et al., 

2002; Finlay and Stapleton, 1995; Hofmann, 2011). 

The hygroscopic growth factor (Gf) is one of most used parameters in determining the 

hygroscopic properties of particles and their influences. The hygroscopic growth factor (Gf) 

is defined (Equation 5.1) as the ratio between particle diameter measured at a specific RH 

(Dw), and dry particle diameter (Dp) measured at a low RH (RH <10%) (Massling et al., 

2005; Swietlicki et al., 2008): 

Gf (RH) = 
𝐷𝑤(RH)

𝐷𝑝 (RH<10%)
             (5. 1) 

The Gf of atmospheric aerosols is determined by several methods, including measurement 

using particle spectrometers (i.e. the Hygroscopic Tandem Differential Mobility Analyzer H-

TDMA) or estimated using models from the growth factors of each particle composition 

(Meier et al., 2009). Gf values depend upon both the physical and chemical properties of 

particles, such as particle size and composition. Based on the Gf values, ambient aerosols 
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have been classified into four hygroscopic groups: nearly hydrophobic particles (Gf =1.0-1.11 

for 100 nm particles at RH =90%), less-hygroscopic particles (Gf =1.11-1.33), more-

hygroscopic particles (Gf =1.33-1.85) and sea-salt particles (Gf >1.85) (Swietlicki et al., 

2008). 

Recently, there have been numerous publications which have reported measurements of the 

hygroscopic growth factors of particles in various environments. Swietlicki et al. (2008) 

made an excellent review on the hygroscopic properties of submicron atmospheric particles 

measured with H-TDMA instruments. Swietlicki et al. (2008)’s work describes the Gf 

measurement methods, the variation in measured Gf between different atmospheres as well as 

the influence of chemical and physical properties on Gf. In addition, the implications of Gf in 

predicting particle critical supersaturation have been considered (Rissler et al., 2010; 

Swietlicki et al., 2008). However, the temporal variation or influence of sources upon Gf has 

not yet been fully investigated. Therefore, this work aims to summarize the measured Gf 

values from different sources and the chemical and physical processes which cause the 

change in Gf values during ageing processes. In addition, we have estimated the influence of 

hygroscopic properties on the lung deposition of ambient particles. Furthermore, we applied 

our modified ICRP curves to estimate the regional lung deposition fraction of ambient 

particles in three sites in southern England with strongly contrasting traffic volumes.   

 

5.2. Hygroscopic properties of aerosols emitted from different source 

5.2.1. Traffic Emissions 

Traffic emissions are recognised as a main source of particles in urban environments 

(Morawska et al., 2008), and hence the hygroscopic properties of traffic particles are of much 

interest. One of the earliest Gf measurements of traffic particles was conducted by 
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Weingartner et al. (1993). Aerosols were generated by a four-stroke spark ignition engine 

using unleaded gasoline and then analysed by a Humidity Tandem Differential Mobility 

Analyzer (HTDMA) system. Measured growth factors of particles with original diameters of 

29, 42, 77 and 111 nm at sub-and-super saturations showed very low values (~0.98-1.15), and 

therefore they were considered to be hydrophobic. The study found that particles of different 

sizes showed different hygroscopic behaviours. For example, primary particles with 

diameters of 29 and 42 nm were observed to grow faster than aggregates with a diameter of 

77 and 111 nm.  

In addition, Weingartner et al. (1995) noted that particles with a diameter of 51.5 nm kept 

their initial size, whilst larger ones (108 nm), typically non-spherical fractal-like structure 

aggregates, shrank to around 99% of their initial size at RH ≤95%. This could be explained 

by the capillary forces of water condensed in the angle cavities of aggregates, which caused 

any asymmetric part of the aggregates to collapse. When exposed to RH ≥95%, both primary 

particles and aggregates started to grow, but this growth was not appreciable. Similarly, 

Weingartner et al. (1997) conducted an experiment on soot particles from a diesel engine and 

found that these particles were also nearly hydrophobic with growth factors roughly 1.01 for 

50-110 nm particles. This result was confirmed by Dua et al. (1999) who measured the 

hygroscopicity of particles emitted from two different diesel-powered vehicles. The diesel 

particles were found to be slightly soluble, and did not show a significant growth at a RH 

greater than 99%. 

The hygroscopicity of traffic particles depends upon the type of fuels, fuel additives and pre-

treatment devices. Weingartner et al. (1997) found that the growth factors of gasoline 

particles were smaller than those of diesel particles measured under loads representing a lean 

air/fuel ratio. In addition, a higher sulphur level in fuel was reported to lead to a higher 

growth factor of particles. Moreover, soot particles become more hygroscopic once they are 
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subjected to pre-treatment with O3 and UV radiation (Weingartner et al., 1997), which can be 

explained by the oxidation or photolysis of hydrocarbons such as PAHs on the particle 

surface, which produce more soluble compounds.  

In a further study on the effect of fuel on hygroscopic properties of diesel particles, Happonen 

et al. (2013) studied the effect of adding oxygen into the fuel using hydro-treated vegetable 

oils (HVO) and with HVO + fuel-oxygenate (di-n-pentyl ether) blend. They found an 

increased hygroscopicity of exhaust particles after the addition of the oxygen rich blend.  

Oxygen atoms, which were emitted in larger quantities with oxygenated fuel, may increase 

the oxygen to carbon ratio of an hypothetical superficial thin layer of organic material on the 

exhaust particles (Happonen et al. (2013)), resulting in more polar compounds by oxidation, 

and thus increasing the hygroscopic growth of the emitted particles. This is consistent with 

the findings of Jimenez et al. (2009), who reported that an increase of the oxygen to carbon-

ratio resulted in an in increased hygroscopicity of the organic aerosol. 

During the ageing process, the hygroscopic properties of such particles could be changed 

leading to a higher growth factor. Weingartner et al. (1995) measured the hygroscopicity of 

aged aerosols in a dark bag filled with exhaust gases from an engine. Their investigation 

found that particles became more hygroscopic when the residence time increased in the bag. 

After six hours of the aging process, the Gf values of traffic particles increased from 1.0 to 

1.04. Weingartner et al. (1997) suggested four possible mechanisms, to understand the 

changes in the hygroscopicity of the soot particles during the aging process. These were 

coagulation, gas-to-particle conversion, cloud processing and photochemical degradation. 

 Kotzick and Niessner (1999) studied the aging process of ultrafine carbon aerosols in order 

to clarify which chemical and physical processes were responsible for these changes. They 

suggested that coagulation of ultrafine carbonaceous aerosols with soluble particles such as 
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sodium chloride, sulphuric acid aerosols and oxidised hydrophilic species produced by 

reaction with ozone could transform carbonaceous particles, making then more hydrophilic 

and allowing them to act as cloud condensation nuclei in the atmospheric condensation 

process. This is in agreement with Decesari et al. (2002) who suggested that water-soluble 

organic compounds produced from the oxidation of soot particles make soot particles become 

more hydrophilic.  

In a recent study on the change in hygroscopicity during ageing of diesel soot, the increase in 

the hygroscopic growth factor of soot particles was linked with the condensation of 

secondary organic aerosols formed by the photo-oxidation of volatile organic compounds 

emitted with exhaust gases (Tritscher et al., 2011).  

5.2.2. Biomass Burning 

Biomass burning is an important source of particulate matter in the atmosphere. The 

hygroscopicity of particles emitted from biomass burning is known to change the light 

scattering and cloud nucleation properties, thereby having a strong impact on the earth’s 

radiative balance, as well as the climate. Hence, the hygroscopicity of biomass burning 

related particles is of much concern. 

Freshly emitted biomass burning particles are known to be hydrophobic or less-hygroscopic. 

Rose et al. (2008) showed a low growth factor with Gf values varying between 1.04 and 1.10 

at RH 85%. This low hygroscopic growth factor is due to the chemical properties of particles 

generated from biomass burning, which mainly consist of organic materials and black carbon, 

both known to be hydrophobic or less-hygroscopic (Martin et al., 2013). Dusek et al. (2011) 

suggested that the hygroscopicity of wood burning particles was predominantly influenced by 

organic compounds. The growth factors of freshly generated biomass burning particles are 

small and equivalent to particles consisting of 5-20% ammonium sulphate along with 
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insoluble materials. Investigating the hygroscopic properties of five major organic products 

(levoglucosan, D-glucose, and vanillic, syringic and 4-hydroxybenozoic acids) from the 

pyrolysis of wood, Mochida and Kawamura (2004) found that levoglucosan and D-glucose 

show a significant hygroscopic growth (Gf ~1.37-1.38 at 90% RH) while the remainder do 

not show any hygroscopic growth even up to 95% RH.  

Like traffic-related particles, particles emitted from biomass burning are expected to show an 

increase in hygroscopic growth factors during ageing in the atmosphere. Kotchenruther and 

Hobbs (1998) reported that the growth factors for light scattering for aged smoke (1.3-1.5) 

were higher than those for fresh smoke (1.1-1.3). A recent study by Martin et al. (2013) who 

conducted different wood burning experiments in a smog chamber found that the 

hygroscopicity of such particles increased with time during the aging process, except in the 

smouldering phase experiment. Secondary formation of soluble components such as sulphate 

and polar organic compounds was responsible for the increase in the hygroscopicity of smoke 

particles during ageing (Hallquist et al., 2009; Kotchenruther and Hobbs, 1998; Rogers et al., 

1991). Furthermore, Decesari et al. (2002) reported that macromolecular humic-like 

substances can be formed by the atmospheric oxidation of soot; thereby increasing the water 

uptake properties of aerosol particles. To conclude, the oxidation of organic soot is also 

known as the main ageing process which makes particles become more hydrophilic (Martin 

et al., 2013). 

5.2.3. Nucleation 

New particles formed by nucleation account for a significant fraction of the total number of 

particles in the atmospheric environment. Ogulei et al. (2007) reported that nucleation related 

with traffic emissions represented between 15% to 21% of the total number of particles in 
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Rochester, United States. Similarly, another study conducted by Kasumba et al. (2009) found 

that nucleation represented between 15.4 to 20.7% of total particle number.  

The hygroscopic properties of nucleation mode particles (4-20 nm) have been measured in 

various environments such as in urban/suburban areas (Petäjä et al., 2007; Sakurai et al., 

2005; Väkevä et al., 2002b), in boreal forests (Hämeri et al., 2001; Park et al., 2009) and in 

coastal regions (Buzorius et al., 2004; Väkevä et al., 2002a). Sakurai et al. (2005) measured 

Gf in an urban background of Atlanta and reported that the 10 nm nucleation particles were 

more hygroscopic; showing a growth factor value of ~1.4, which was equivalent to 10 nm 

ammonium sulphate particles. This finding is in agreement with the hypothesis that new 

particles in Atlanta consisted of ammonium and sulphate alone (Jung et al., 2006). Similarly, 

Petäjä et al. (2007) found higher growth factors (Gf maximum ~ 1.6) of nucleation mode 

particles during nucleation event days, compared to those (Gf maximum ~1.3) on non-event 

days in Marseille (France). However, this study also found that the condensational growth of 

nucleation mode particles does not only depend upon sulphuric acid concentration, but is also 

controlled by other water insoluble components. By dividing the nucleation event days into 

groups based on the anthropogenic influence, Petäjä et al. (2007) concluded that the Gf values 

varied between the different properties of condensing vapours. Particularly, during clean 

events with less anthropogenic influence, the growth of nucleation particles was due to 

insoluble materials rather than the condensation of water soluble components, whilst during 

the polluted events, the growth of particles was mainly contributed by water soluble 

components.   

More evidence of the contribution of other insoluble materials to the growth of nucleation 

particles has been provided by other observations of the lower growth factor values of 

nucleation particles (Hämeri et al., 2001; Väkevä et al., 2002a; Väkevä et al., 2002b). Väkevä 

et al. (2002a) reported that the nucleation mode particles (8-10 nm) sampled during 



 

98 
 

nucleation events on the coast of Ireland were less hygroscopic (Gf ~1.1). This was attributed 

to new particles formed in coastal areas as a result of the nucleation of iodine oxides 

(Carpenter et al., 1999; O'Dowd et al., 2002a; O'Dowd et al., 2002b), resulting in a much 

lower growth factor. In addition, Hämeri et al. (2001) investigated the hygroscopic growth of 

nucleation particles at a boreal forest site in Southern Finland. This study concluded that the 

sulphuric acid concentrations could not explain the growth of nucleation particles by 

themselves in the boreal forest, suggesting that the growth process may be related to organic 

compounds.  To conclude, the hygroscopic growth factor of nucleation mode particles varied 

between environments, depending upon the air masses as well as the nucleation and growth 

mechanism in different atmospheres.  

 

5.3. Hygroscopic behaviour of ambient aerosols 

5.3.1. Spatial Variation 

Urban environments 

The growth factors of urban particles in most previous studies have been classified in three 

groups: near-hydrophobic, less-hygroscopic and more-hygroscopic (Swietlicki et al., 2008). 

The dominant hydrophobic and less-hygroscopic particles in the urban environments could be 

explained by the sources of particles at these sites, where traffic-related emissions were found 

as to be main source of urban ultrafine particles (Morawska et al., 2008). Near-hydrophobic 

particles can be assumed to originate from fresh traffic emissions that contain black carbon, 

while less-hygroscopic particles may have originated from transformed oil combustion 

particles (Swietlicki et al., 2008). In addition, other combustion processes such as wood 

combustion in some cases contribute significantly to the number fraction of near-hydrophobic 

and less-hygroscopic particles (Baltensperger et al., 2002; Dusek et al., 2011).  
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Hygroscopic properties were measured at both urban background and kerbside sites in 

previous studies. Ferron et al. (2005) reported that the growth factors of particles within a 

certain size from different sampling sites do not vary significantly, but the 

hydrophobic/hygroscopic particle fraction is strongly influenced by the type of site. At the 

kerbside site, the number fraction of the nearly-hydrophobic group accounted for more than 

80% of total particles with a size of 50 nm, while this number was 30-40% at the background 

site. When particle size increases (>100 nm) the fraction of near-hydrophobic particles 

decreases while the fractions of less hydrophobic and hygroscopic particles increases. For 

example, nearly-hydrophobic particles measured at an urban background in Neuherberg, 

Germany accounted for 42% of total particles with size of 50 nm while they only represented 

25% of particles with a size of 200 nm (Tschiersch et al., 1997). This is consistent with the 

decrease in traffic particles of larger sizes. Particle number size distributions of particles 

emitted from vehicles show peaks at below 50 nm (Charron and Harrison, 2003). 

Hygroscopic particles, which are known to come from regional background transportation, 

were found to be dominant in the accumulation mode.      

Rural environments  

Aerosol particles in rural environments can derive from anthropogenic sources such as traffic 

or industrial emissions by advection and from local emissions such as biomass burning, as 

discussed below. They also originate from atmospheric processes such as nucleation. Since 

rural sites may be exposed to aerosols from multiple sources, the observed Gf show a large 

variation. Similar to urban environments, the growth factors in rural areas have been 

classified into three groups: near-hydrophobic (Gf ~1.01-1.14), less-hygroscopic (Gf ~1.14-

1.32) and more-hygroscopic (1.34~1.63). The number fractions of the three classes show 

differences between urban and rural areas. The less- and more-hygroscopic particles are 

major contributors to the total number of particles.  Swietlicki et al. (1999) reported that the 
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number fraction of more-hygroscopic particles accounted for 64% of total particle number 

concentrations with a size of 35 nm, while this number increased to 81% of the total particle 

number with a size of 265 nm. However, during biomass burning events, the contribution of 

more-hygroscopic groups was limited and the number fraction of less-hygroscopic particles 

was dominant (Rissler et al., 2006). The large fraction of organic compounds and black 

carbon emitted from biomass burning were the reason for the abundance of less-hygroscopic 

particles.  

Marine environments  

More-hygroscopic particles are ubiquitous in marine environments. Zhou et al. (2001) 

reported that the frequency of occurrence of more-hygroscopic particles was above 81% and 

when these were present it represented a number fraction larger than 0.93. A mixture of 

ammonium sulphate and non-neutralized sulphate, which originate from oceanic biota, are 

the main components of this group, leading to very high growth factors. For example, the 

observed Gf of more-hygroscopic particles with a diameter of 50 nm in coastal environments 

ranges from 1.40 to 1.9 at 90% RH (Zhou et al., 2001). These are much higher than the Gf in 

rural (Gf ~1.32-1.61) and urban environments (Gf ~1.36-1.49). 

 The growth factors of marine aerosols are found to be even higher during days with high 

wind speeds, when the marine aerosols include externally mixed sea salt particles. Wind at 

high speeds brings freshly produced sea-salt particles with high volume fractions of sodium 

chloride, with a large growth factor Gf >1.85, resulting in higher growth factors for marine 

aerosols. However, the lifetime of externally mixed sea salt aerosols is short and limited by 

ageing processes. During ageing periods, sodium chloride reacts with sulphuric acid or with 

ammonium and sulphate compounds producing sodium sulphate, which has a lower growth 

factor (Gf ~1.6). The number fraction of less-hygroscopic and near-hydrophobic particles was 
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often lower than 0.1 with the occurrence frequency around 20%. These particles could have 

arrived from continental air masses or local emission from ships. 

5.3.2. Temporal Variation 

It is clear that the temporal pattern of the number fraction of hydrophobic/hygroscopic 

particles depends strongly upon the pattern of local sources, as well as the meteorological 

conditions such as temperature variation, precipitation or the origin of the air mass.  Massling 

et al. (2005) reported that the number fraction of nearly-hydrophobic particles measured in an 

urban background area showed a distinct diurnal pattern, with peaks corresponding to daily 

rush hours. Nearly-hydrophobic particles, which are found to be dominant during the daytime 

in urban areas, can be attributed to soot and organic compounds emitted directly from 

vehicles or the particles formed by nucleation in the dilution and cooling of fresh vehicular 

emissions, leading to a lower averaged growth factor during the daytime. In contrast, another 

study in a boreal forest by Hämeri et al. (2001) showed the opposite behaviour.  

The growth factors of particles in nucleation and Aiken modes were found to be at their 

highest during the early afternoon and lowest during the late evening and early morning. This 

trend was consistent with other studies (Boy et al., 2004; Ehn et al., 2007; Fors et al., 2011; 

Petäjä et al., 2007).  Fors et al. (2011) suggested that an increase in the planetary boundary 

layer depth which entrains more hygroscopic particles with height when the sun rises could 

be an explanation for the increase in hygroscopic particles in boreal forests. Another reason 

could be from the different atmospheric conditions between day and night (Ehn et al., 2007). 

For example, the evaporation of semi-volatile organics with low hygroscopicity during the 

daytime alters more hygroscopic particles (Fors et al., 2011).  It could also be associated with 

daytime oxidative processes which produce more functionalised organic compounds that 

have higher hygrocopicity (Wong et al., 2011). 
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There are a few studies on long-term measurements of particle hygroscopicity. The growth 

factors of each group seem to be stable, while fraction numbers exhibit a seasonal variation 

(Ferron et al., 2005). A two-year study in southern Sweden reported that the number fraction 

of less-hygroscopic particles was higher in winter (Fors et al., 2011). This trend concurs with 

a recent study in Paris (Kamilli et al., 2014). 

5.4. Effect of aerosol hygroscopic properties on calculation of lung deposition  

5.4.1. Lung Deposition Calculation for Ambient Submicron Aerosols 

The International Commission on Radiological Protection (ICRP) model and the Multiple 

Path Particle Dosimetry model (MPPD) are those most widely used to estimate the regional 

lung deposition of particles (Hussein et al., 2013). However, when these current mathematical 

models are utilized to calculate the regional lung dose of ambient particles, the result may not 

be accurate (Asgharian, 2004). Montoya et al. (2004) compared the total deposition fraction 

of fine and ultrafine ambient aerosols measured in a group of six healthy adults and the 

estimated total deposition fraction by the ICRP model. They reported that the ICRP model is 

likely to predicts the total deposition fraction well for ambient particles smaller than 400 nm, 

but underestimates the deposition of particles larger than 676 nm, which is in agreement with 

other studies (e.g., Daigle et al. (2003), Löndahl et al. (2009)). The main reason is that the 

theoretical models do not account for particle growth due to the hygroscopic properties of 

ambient particles when they penetrate into the respiratory system (Löndahl et al., 2009; 

Montoya et al., 2004).  

The aim of this section is to investigate and compare the effects of the hygroscopicity of 

particles from different ambient environments on their lung deposition fraction using a 

modified ICRP model for hygroscopic particles. This chapter uses 13 published data sets 

from previous studies for hygroscopic growth factors and their number fraction in rural, 
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urban background and roadside environments (Roadside: Bavaria (Ferron et al., 2005), 

Copenhagen (Löndahl et al., 2009), Bresso (Baltensperger et al., 2002); Urban background: 

Neuherberg (Tschiersch et al., 1997), Leipzig (Massling et al., 2005), Taipei (Chen et al., 

2003), Beijing (Massling et al., 2009), Guangzhou (Tan et al., 2013), Shanghai (Ye et al., 

2013); Rural: Bologna (Svenningsson et al., 1992), Berlin (Busch et al., 2002), 

Hohenspeissenberg (Ferron et al., 2005), Great Dun Fell (Swietlicki et al., 1999) as shown in 

Table 5.1. 

 

Table 5.1: Hygroscopic growth factors and number fractions of three hygroscopic particle 

groups in the atmosphere (NH: Nearly-hygroscopic, LH: Less-hygroscopic, MH: More-

hygroscopic). 

Locations Dp RH 
Gf (Number fraction) Type of 

environments 
References 

NH LH MH 

Bavaria, Germany 

50 

85 

1.01(0.83) - 1.30 (0.17) 

Roadside Ferron et al. (2005) 
100 1.01 (0.84) - 1.33 (0.16) 

150 1.01 (0.78) - 1.39 (0.22) 

250 1.04 (0.68) - 1.47 (0.32) 

Copenhagen, 

Denmark 

30 

91 

1.03 (0.89) - 1.47 (0.11) 

Roadside Löndahl et al. (2009) 
40 1.03 (0.82) - 1.39 (0.18) 

80 1.02 (0.77) - 1.46 (0.23) 

160 1.03 (0.72) - 1.62 (0.28) 

Bresso, Italy 

20 

90 

1.02 (-) - - 
 Roadside 

(100 m 

highway) 

Baltensperger et al. 

(2002) 

50 1.03 (0.51) 1.21 (0.49) - 

100 1.02 (0.48) 1.25 (0.62) - 

200 1.02 (0.28) 1.28 (0.72) - 

Leipzig, Germany 
50 

92 
1.06 (0.31) 1.25 (0.31) 1.44 (0.39) Urban 

background 
Massling et al. (2005) 

150 1.09 (0.22) 1.33 (0.15) 1.65 (0.65) 

Neuherberg, 

Germany 

50 

90 

1.05 (0.42) - 1.36 (0.58) 

Urban  Tschiersch et al. (1997) 

75 1.02 (0.40) - 1.23 (0.60) 

110 1.02 (0.40) - 1.25 (0.60) 

165 1.03 (0.35) - 1.29 (0.65) 

300 1.02 (0.25) - 1.34 (0.75) 

Taipei, Taiwan 

53 

90 

1.11 (0.78) - 1.43 (0.22) 

Urban Chen et al. (2003) 82 1.11 (0.74) - 1.49 (0.26) 

95 1.11 (0.61) - 1.54 (0.39) 
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202 1.11 (0.59) - 1.66 (0.41) 

Beijing, China 

30 

90 

0.99 (0.17) 1.07 (0.41) 1.26 (0.42) 

Urban 

background 
Massling et al. (2009) 

50 1.04 (0.22) 1.21 (0.34) 1.40 (0.45) 

150 1.06 (0.21) 1.27 (0.25) 1.53 (0.54) 

250 1.06 (0.24) 1.28 (0.25) 1.58 (0.54) 

350 1.06 (0.28) 1.30 (0.27) 1.60 (0.46) 

Guangzhou, China 

40 

90 

- 1.16 (0.41) 1.46 (0.59) 

Urban 

background 
Tan et al. (2013) 

80 - 1.14 (0.38) 1.48 (0.62) 

110 - 1.13 (0.33) 1.49 (0.67) 

150 - 1.12 (0.30) 1.51 (0.70) 

200 - 1.11 (0.26) 1.55 (0.73) 

Shanghai, China 

30 

91 

1.09 (0.35) - 1.40 (0.65) 

Urban 

(background) 
Ye et al. (2013) 

50 1.08 (0.24) - 1.49 (0.76) 

80 1.06 (0.18) 1.31 (0.06) 1.58 (0.76) 

100 1.05 (0.20) 1.31 (0.04) 1.60 (0.76) 

130 1.04 (0.21) 1.35 (0.04) 1.63 (0.74) 

150 1.04 (0.22) 1.36 (0.03) 1.65 (0.74) 

180 1.03 (0.22) 1.36 (0.02) 1.67 (0.75) 

200 1.03 (0.21) 1.34 (0.02) 1.68 (0.76) 

Bologna, Italy 

30 

90 

- 1.12 (0.61) 1.59 (0.39) 

Rural 
Svenningsson et al. 

(1992) 

50 - 1.13 (0.63) 1.61 (0.37) 

100 - 1.15 (0.59) 1.58 (0.41) 

150 - 1.10 (0.53) 1.55 (0.47) 

200 - 1.12 (0.57) 1.57 (0.43) 

Berlin, Germany 

50 

90 

- 1.12 (0.08) 1.43 (0.92) 

Rural (80 km 

south east of 

Berlin) 

Busch et al. (2002) 
100 - 1.11 (0.12) 1.49 (0.88) 

150 - 1.08 (0.05) 1.56 (0.95) 

250 - 1.08 (0.02) 1.63 (0.98) 

Hohenspeissenberg, 

Germany 

50 

90 

1.07 (0.52) - 1.29 (0.48) 

Rural Ferron et al. (2005) 
100 1.03 (0.44) - 1.35 (0.56) 

150 1.03 (0.38) - 1.41 (0.62) 

250 1.04 (0.30) - 1.48 (0.70) 

Great Dun Fell, UK 

35 

90 

- 1.10 (0.36) 1.38 (0.64) 

Rural Swietlicki et al. (1999) 

50 - 1.12 (0.37) 1.44 (0.63) 

75 - 1.11 (0.39) 1.52 (0.61) 

110 - 1.12 (0.31) 1.58 (0.69) 

165 - 1.14 (0.24) 1.64 (0.76) 

265 - 1.15 (0.20) 1.69 (0.81) 

 

5.4.2. A modified ICRP model for ambient particles 

The origin ICRP curves for hydrophobic particles are generated for monodisperse spheres of 

standard density in standard conditions. A modified ICRP model for hygroscopic particles is 
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based on the previous work of  Löndahl et al. (2009), Kristensson et al. (2013) and Hussein et 

al. (2013). Ambient particles are divided into three groups: near-hydrophobic, less-

hygroscopic and more-hygroscopic. Subsequently, the ICRP model is applied separately for 

each type of particles, with a consideration of their growth when they penetrate into the 

respiratory tract. The final deposition fraction, which is defined as the fraction of particle can 

deposit in the lung in each environment was calculated by the mean value of deposition 

fraction for these three groups weighted by their number fractions for each group as shown in 

equation (2) and assuming a relative humidity equilibrium in the airways of 99.5%.It is 

assumed that the submicron particles which have increased to their equilibrium size by their 

growth in the respiratory tract have the same behaviour as insoluble particles with a similar 

size in the respiratory system (Asgharian, 2004).  For example, hygroscopic particles with an 

initial size of 50 nm and a Gf value of 2 (at 99.5% RH) are assumed to have an equivalent 

deposition fraction to hydrophobic particles (Gf = 1) with a diameter of 100 nm (Löndahl et 

al., 2009). However, when a particle penetrates into the lung, its growth is not only controlled 

by its hygroscopic properties but also due to its residence time.  

The submicron particles can growth rapidly while larger particles may not reach their 

equilibrium size during the inhalation cycle. Hence, the above assumption by Londahl et al. 

(2009) is limited to small particles which can grow and reach their equilibrium size rapidly. 

Ferron (1977) found that particles smaller than 0.2 µm can reach their equilibrium size within 

0.1 sec in the human respiratory tract. To correct the size growth for particles larger 0.2 µm 

when they penetrate into the regional lung due to their residence time, our study used an 

approach which described the correlation between particle growth and residence time, 

provided by Ferron (1977). Particle growth can be approximated by the following equation 

(Ferron, 1977; ICRP, 1994): 
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𝐹(𝑡) =  
𝐷𝑝 (𝑡)−𝐷𝑝(0)

𝐷𝑝(𝑒)−𝐷𝑝(0)
=

𝐷𝑝(0)∗[exp(−
10𝑡0.55

𝐷𝑝(0)
)

0.6

−1]

𝐷𝑝(𝑒)−𝐷𝑝(0)
                           (5.2) 

where, F(t) is the fraction of equilibrium size, Dp (t) is the particle size in aerodynamic 

diameter at t (s); Dp (0) is the initial dry particle (µm), Dp (e): Equilibrium particle size (µm), 

and t is the residence time is the lung (s). In our estimation, atmospheric particles are 

assumed to be spherical particles with unity density, therefore Dp is considered to be equal to 

the particle volume equivalent (thermodynamic) diameter.  

The variation in the hygroscopic growth fraction as a function of time calculated from 

different initial sizes of dry particles is shown in Figure 5.1. 

 

Figure 5.1: Variation in hygroscopic growth as a function of time and size. 

 

To estimate the growth factor in each lung region, we assumed the residence time of particles 

in the ET, TB, AL regions to be 0.116, 0.308, 1.32 s during inspiration and 1.56, 0.356 and 
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1.56 during expiration, with a pause time of 0.2 s (Ferron, 1977). The particle growth factor 

is each region will be calculated by: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝐺𝑓 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑙𝑢𝑛𝑔 𝑟𝑒𝑔𝑖𝑜𝑛 =
∫ 𝐺𝑓′(𝑡)∗𝑑𝑡

𝑡2
𝑡1

𝑡2−𝑡1
        (5.3) 

where, t1 and t2 are the time when particle come in and out of the regional lung; for example, 

t1=0 and t2 =0.116s for particles coming in and out of the ET region during inspiration. 

If we define 𝐺′𝑓(𝑡) as the growth factor of particle at t (s) (𝐺′𝑓(𝑡) =
𝐷𝑝(𝑡)

𝐷𝑝(0)
), and 𝐺𝑓(𝑚𝑎𝑥) as the 

maximum growth factor of particles (when particles can reach their equilibrium size) 

((𝐺𝑓(𝑚𝑎𝑥) =
𝐷𝑝(𝑒)

𝐷𝑝(0)
), from the equation (5.3) we have: 

𝐺′𝑓(𝑡)= 𝐺𝑓(𝑚𝑎𝑥) + F(t)*(𝐺𝑓(𝑚𝑎𝑥) − 1)                      (5.4) 

In the distal airways, the lumen air is likely to have reached equilibrium. However, in the 

proximal airways and the extra-thoracic region of the respiratory tract, the relative humidity 

in the airways may depart substantially from 99.5% equilibrium due to interactions between 

the ambient air temperature and humidity and the temperature and water activity of the mucus 

layer. Morrow (1986) showed that supersaturations as large as 130% could occur in the 

trachea under certain ambient temperature and humidity conditions. Calculations presented in 

this paper have been made considering a relative humidity of 99.5% and a temperature of 37 

o
C consistent throughout the respiratory tract. 

DFambient= . DFnearly-hydrophobic + .DFless-hygroscopic + .DFmore-hygroscopic  (5.5) 

where, DFambient, DFnear-hydrophobic, DFless-hygroscopic, DFmore-hygroscopic are deposition fractions of 

ambient particles, nearly-hydrophobic particles, less-hygroscopic particles and more-

hygroscopic particles, respectively.  are the number fraction of nearly-hydrophobic, 

less-hygroscopic and more-hygroscopic particles (= 1). 
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Calculation of the hygroscopic growth factor of particles at 99.5% RH. 

Almost all published data for the growth factor of ambient particles were measured at around 

90% RH (Swietlicki et al., 2008), whilst the RH in the respiratory tract is approximately 

99.5% (Hussein et al., 2013). To estimate the growth factor of particles at the relative 

humidity found in the lungs (99.5%), we used Rissler’s model (Kristensson et al., 2013; 

Rissler et al., 2006) which was introduced in previous studies by Swietlicki et al. (1999), 

Löndahl et al. (2009) and Kristensson et al. (2013). 

Gf = √1 + 𝐾𝑅
𝑀𝑤

𝜌𝑊
(

𝑎𝑤

1−𝑎𝑤
)

3
 (5.6) 

where, KR is a hygroscopic parameter which presents the effective number of moles of 

soluble molecules or ions per dry particle volume unit; Mw, ρw are the molecular weight and 

density of water; and aw is water activity. 

According to the Köhler equation: 

aw = 
𝑅𝐻

100.𝐶𝑘
 (5.7) 

where, Ck is the Kelvin curvature correction factor: 

Ck = exp(
4𝑀𝑊𝜎𝑠

𝑅𝑇.𝜌𝑤𝐷𝑝
)                                                                (5.8) 

σs is the surface tension of the solution; R and T are the ideal gas constant and temperature 

respectively, and Dp is the particle diameter. 

From equation (5.6), we have: 

𝐺𝑓
3 = 1 + KR

𝑀𝑤

𝜌𝑤

𝑎𝑤

1−𝑎𝑤
                              (5.9) 

Combined with the Kohler equation (5.7), equation (5.9) will be: 

𝐺𝑓
3 = 1 + KR

𝑀𝑤

𝜌𝑤

𝑅𝐻

100𝐶𝑘−𝑅𝐻
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    KR = 
(𝐺𝑓

3−1)𝜌𝑤(100𝐶𝑘−𝑅𝐻)

𝑀𝑤𝑅𝐻
                 (5.10) 

The HTDMA typically measures the Gf at relative humidity a%, which is lower than 99.5 % 

(normally the relative humidity inside the second DMA of a HTDMA system is around 80-

90%). From equation 5.10, we can calculate the hygroscopic parameter at known relative 

humidity a% measured by HTDMA. 

KR-a% = 
(𝐺𝑓−𝑎%

3 −1)𝜌𝑤(100𝐶𝑘−𝑎%−𝑎)

𝑀𝑤𝑎
                (5.11) 

KR-a%: Hygroscopic parameter at relative humidity a % 

Ck-a%: Kelvin curvature correction factor at relative humidity a % 

From equation (5.8), we have: 

Ck-a% = 𝑒
4𝑀𝑤𝜎𝑠

𝑅𝑇𝜌𝑤𝐷𝑝−𝑎%                       (5.12) 

Dp-a% : Particle diameter at relative humidity a %, therefore Dp-a% = Dp.Gf-a  , in which Dp: 

Dry particle diameter and Gf-a: growth factor at relative a %. 

Similarly, the hygroscopic parameter at relative humidity 99.5% is 

KR-99.5% = 
(𝐺𝑓−99.5%

3 −1)𝜌𝑤(100𝐶𝑘−99.5%−99.5)

𝑀𝑤.99.5
               (5.13) 

In Rissler’s model, the hygroscopic parameter is assumed as a constant parameter over the 

relative humidity change, therefore KR is the same value for a % and 99.5%. From equation 

(5.11) and (5.13), we have: 

(𝐺𝑓−99.5%
3 −1)𝜌𝑤(100𝐶𝑘−99.5%−99.5)

𝑀𝑤.99.5
     =    

(𝐺𝑓−𝑎%
3 −1)𝜌𝑤(100𝐶𝑘−𝑎%−𝑎)

𝑀𝑤𝑎
              (5.14) 

The Gf at 99.5% RH is estimated from the following equation: 
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𝐺𝑓−99.5%
3  = 1 + 

(𝐺𝑓−𝑎%
3 −1).99.5.(100𝐶𝑘−𝑎%−𝑎)

𝑎 (100𝐶𝑘−99.5%−99.5)
 

 Gf-99.5% = √1 + (𝐺𝑓−𝑎
3 − 1).

99.5

𝑎
.

(100𝑒
2.09

𝐷𝑝.𝐺𝑓−𝑎−𝑎)

(100𝑒
2.09

𝐷𝑝.𝐺𝑓−99.5−99.5)

3

  (5.15) 

where, Gf-99.5% is the growth factor at 99.5% RH, Gf-RH is the growth factor at a% RH and Dp 

is the particle diameter measured at low RH (<10%).  

This model assumes that the number of soluble molecules is constant over the relative 

humidity and the droplet solution is ideal (Rissler et al., 2010), therefore KR is assumed to be 

a constant value as relative humidity changes from a% to 99.5%. The value of 2.09 was 

calculated assuming a surface tension of 0.072 J m
-2

. (M water=18 g mol
-1

; R: 8.314 J mol
-1

 K
-

1
; T=298 K) according to Petters and Kreidenweis (2007).  

Different surface tensions could cause some bias for growth factors calculation at 99.5%. 

Most particles in the atmosphere are composed of a substantial amount of organic material, 

which is functionalized from atmospheric processing and is likely to act as a surfactant and 

substantially decrease the particle surface tension. However, the error associated with 

different surface tensions can be acceptable, as proved by a comparison between different 

models by Rissler et al. (2010). 

The H-TDMA system has been used to determine hygroscopic growth factors and their 

number fractions for particles with selected diameters, typically from 30 nm to 350 nm. To 

estimate the hygroscopic growth factors and number fractions for a full size range (10-1000 

nm), it is assumed that the hygroscopic parameter Kr and number fraction of particles at a 

diameter of 30 nm, is suitable for those smaller than 30 nm, while those of particles with a 

diameter of 350 nm are suitable for those larger than 350 nm (Hussein et al., 2013). Growth 
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factors of the three hygroscopic groups at 99.5% RH were estimated according to equation 

(5.15), as shown in Figure 5.2 using growth factors reported in the literature.  

 

Figure 5.2: Estimated hygroscopic growth factors of nearly, less and more hygroscopic 

particles at 99.5% RH from different environments. Calculations according to equation 5.12. 

Effects of Hygroscopic Properties of Particles on Lung Deposition in Different 

Environments 

ICRP model curves were modified using the particle hygroscopic growth factors reported in 

the literature in each group and then equation (5.2) was used to estimate the average value for 

the ambient particles. The total average deposition fraction (DF) of particles measured from 

different environments is shown in Figure 5.3.  

As seen in Figure 5.3, the hygroscopic properties of particles have a marked effect on the 

total lung deposition fraction (DF) of particles. Due to particle hygroscopicity, the deposition 

fraction curve shifts its minimum from 400 nm for hydrophobic particles to 120-150 nm for 

rural and urban background particles and to 140-200 nm for roadside particles (dry diameter). 
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This is consistent with the experimental and modelled deposition of airborne particles at a 

kerbside site conducted by Löndahl et al. (2009) who report that in kerbside areas, the lung 

deposition fraction has a minimum value of around 200 nm. The shifts in deposition curves to 

the left or right could be explained by the decrease in Brownian diffusion and the increase in 

sedimentation and impaction (ICRP, 1994). 

In roadside environments, the ICRP model seems to predict well the deposition fraction of 

particles smaller than 200 nm. This could be explained by the fact that small particles at 

traffic sites are freshly emitted from traffic exhaust, and therefore mostly comprise 

hydrophobic particles.  

At rural and urban background sites, the ICRP model seems to overestimate the lung 

deposition fraction for particles smaller than 150 nm. For example, the deposition fraction of 

hydrophobic particles with a diameter of 100 nm is found to be 40% higher than those of 

particles with the same diameter size at rural sites. In contrast, the ICRP model seems to 

underestimate the total deposition fraction for particles larger than 200 nm.  

The DF values for ambient particles with a diameter of 1µm are more than two times higher 

than those predicted by the ICRP model (Figure 5.3). This means that there is a huge error if 

the ICRP model is used to predict the lung deposition fraction of ambient particles larger than 

200 nm without considering their growth factors. The error of not including the 

hygroscopicity factor of particles in the lung deposition calculation is of similar magnitude to 

the individual variability in the deposition fraction for particles in the low deposition fraction 

range associated with factors such as different lung geometries, breathing patterns, or lung 

disease. 
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Figure 5.3: Calculations of the deposition fraction in the whole lung of ambient particles in 

various environments. 

There is little difference between the deposition fractions calculated for different sampling 

sites within each type of environment, suggesting that similar deposition fraction curves are 

applicable for each type of environment. The maximum variations between deposition 

fractions for particles smaller than 200 nm calculated for different sampling sites are 6.3%, 

15.9% and 13.3% (Figure 5.3) within roadside, urban background and rural environments, 

respectively.  

Figure 5.3 also shows that values of DF for particles in urban background areas seem to be 

similar to those in rural areas. On the contrary, the DF of a particle in the ultrafine size range 

in roadside areas is found to be 1.2 to 1.6 times higher than those in urban background and 

rural areas. 
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The hygroscopic properties of particles also have a strong influence on the regional lung 

deposition fraction, as shown in Figure 5.4. In the extra-thoracic region, the hygroscopic 

properties seem to have little effect on the DF of ultrafine particles (Dp<100 nm), whilst the 

DF increases considerably according to their hygroscopic growth properties for particles 

larger than 200 nm (Figure 5.4A).  The DF in the tracheo-bronchial region is that the least 

affected by the growth factor (Figure 5.4B). In the alveolar region, the DF for ambient 

particles smaller than 200 nm is much lower than for hydrophobic particles, whilst the DF 

increases for particles larger than 200 nm, according to their hygroscopicity (Figure 5.4C). 

 

 

Figure 5.4: Calculations of the deposition fraction in the regional lung of ambient particles in 

various environments. A: In the extra-thoracic region (ET); B: in the tracheo-bronchial 

region (TB) and C: in the alveolar region (AL). 

5.5. Application of a modified ICRP model to calculate the lung deposition fraction of 

ambient aerosols 

5.5.1. Particle size distribution from traffic, urban background and rural areas in 

London, UK  

Particle number size distributions were measured by a Scanning Mobility Particle Sizer 

(SMPS) covering the size range 16.5-604 nm operated by the Department for Environment, 
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Food and Rural Affairs (DEFRA). The SMPS system included an Electrostatic Classifier 

(EC, TSI model 3080) and a Condensation Particle Counter (CPC, TSI model 3775).  In this 

study, a year of data observed at a traffic (Marylebone Road), urban background (North 

Kensington) and rural (Harwell) monitoring site during 2008 were extracted from the 

DEFRA website (see http://uk-air.defra.gov.uk/ for more detailed information). 

Sampling sites information 

Marylebone Road: This monitoring station is classified as a kerbside site by the London Air 

Quality Network. A SMPS system was located in an air conditioned cabin on Marylebone 

Road within a street canyon. Marylebone Road comprises six-lane highway and is frequently 

busy with around 80,000 vehicles per day. 

North Kensington: This monitoring station is located in the grounds of Sion Manning School, 

where is representative of a typical urban background area of London. 

Harwell: This monitoring station is within the grounds of the Harwell Science Centre in 

southern England. This site is representative of a rural background area.  

Particle size distributions 

Figure 5.5 shows the particle size (number, surface area and mass) distributions from the 

traffic, urban background and rural areas. In all sampling sites, the majority of particles by 

number was found in the Aitken mode while particle surface area and mass were mainly 

distributed in the accumulation mode. The CMD (count median diameter), SMD (surface area 

median diameter), and MMD (mass median diameter) of submicron particles at the traffic site 

were 46.2, 150.0 and 217.7 nm, respectively. Higher values than these were found in the 

urban background and rural areas. The CMD, SMD and MMD of submicron particles in the 

http://uk-air.defra.gov.uk/
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urban background area were 52.9, 157.7 and 237.0 nm while the values of submicron 

particles in the rural area were 56.9, 176.1 and 255.0 nm. 

 

Figure 5.5: Size distribution by number, surface area and mass of submicron particle at traffic 

(Marylebone Road), urban background (North Kensington) and rural (Harwell) sampling 

sites. Assuming particles are spheres and effective density is 1 g cm
-3

. 

5.5.2. Deposition fraction of particles in traffic, urban background and rural areas 

The deposition fractions of particles in traffic, urban background and rural areas were 

calculated by the application of an original ICRP curve for hydrophobic particles and a 

modified ICRP curve for hygroscopic particles. Figure 5.6 shows a comparison of the 

deposition fraction of particles calculated by original and modified ICRP curves. The total 

DF for submicron particles by number, surface area and mass was 0.49, 0.20 and 0.15 at the 

traffic site while it was 0.44, 0.19 and 0.15 at the urban background site and 0.42, 0.17 and 

0.14 at the rural site using original ICRP curves for hydrophobic particles. Based on the 

modified ICRP curves for ambient particles, the DF by number decreased whereas those by 

surface area and mass increased. The total DF for submicron particles by number, surface 

area and mass calculated by a modified ICRP model was 0.44, 0.23 and 0.22 at the traffic site 
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while it was 0.34, 0.23 and 0.28 at the urban background site and 0.31, 0.27 and 0.35 at the 

rural site. 

 

Figure 5.6: Regional fractions of particles from different ambient environments. 
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At all sites, ultrafine particles (16.4 nm< Dp  <100 nm) were found to be deposited mainly in 

the alveolar region whereas the highest DFs of accumulation mode particles (100nm< Dp 

<604 nm) for both sites were found in the extra-thoracic region. For example, the DF of 

ultrafine particles at the traffic site for number, surface area and volume in the alveolar region 

was 0.33, 0.20 and 0.17, which was much higher than those in both extra-thoracic (0.08, 0.04 

and 0.03) and trachea-bronchial regions (0.09, 0.05 and 0.03). Meanwhile, this value of 

accumulation mode particles was mostly found be highest in the extra-thoracic (0.05, 0.10 

and 0.12 for number, surface area and mass, respectively), followed by the alveolar region 

(0.07, 0.08 and 0.09) and the trachea-bronchial region (0.01, 0.01 and 0.01).  

Comparing the DFs of the roadside, urban background and rural sites, the average DFs of 

total particles by number in the roadside were higher than those in the urban background and 

rural areas. However, in terms of surface and volume, the highest DFs were found in the rural 

area.  

The total DFs of submicron particles (16.5-604 nm) by number in this study is consistent with 

a previous experimental study by Morawska et al. (2005), who reported that the DF of 16-625 

nm particles by number in the whole lung was 0.30 ± 0.09 for diesel smoke and 0.41 ± 0.08 

for petrol smoke. Based on the ICRP model, Kurth et al. (2014) reported the DFs at non-

mining areas ranged from 0.3 to 0.5, depending upon seasonal variation.  However, our DF 

values are lower than those of the 12-580 nm particles (0.60, 0.29 and 0.23 for number, 

surface and mass) from the kerbside of a busy street in Copenhagen from an experiment 

conducted by Löndahl et al. (2009). In addition, Kristensson et al. (2013) found that the 

average number, surface and volume DF of 3.2-930 nm traffic particles was 0.59. 0.31 and 

0.32, respectively.  
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The variable DFs from different studies could be explained by the different size range of 

particles and size distribution variation between studies. Moreover, DFs not only depend 

upon the measured particle size range, but also on experimental or model conditions such as 

subjects, activity levels which have been reported differently in previous studies. More 

studies are clearly needed on the depositions of particles in the human respiratory tract.   

Uncertainty  

In our above calculation in this chapter, we assumed the effective density of ambient particles 

is unity while the effective density of ambient particles typically ranged from 1.0 to 2.0 g  

cm
-3

 (Löndahl et al., 2014). The effective density has no significant effect on the DF of 

particles with mobility diameters (Dm) lower than 300 nm (Löndahl et al., 2014), but for a 

larger particle (Dm> 300 nm) the DF of such particles with higher effective densities will 

increase slightly due to the increase in their aerodynamic deposition.  

However, this error is not significant for the calculations of DF of large ambient particles 

based on our modified ICRP curves, because when an ambient particle larger than 300 nm 

penetrates the human lung, its effective density tends to be close to unity due to its intake of 

water vapour. For example, if we assume the effective density of particles with a diameter of 

300 nm from urban backgrounds is 2 g cm
-3

, their averaged growth factor at 99.5 RH% is 

approximately 2.5 as calculated in Figure 5.2 and Table 1. Based on equation (1.10) (in 

Chapter 1), the effective densities of those particles in the lung will decrease to 1.05.        

5.6. Conclusion 

In summary, the typical hygroscopicity of particles varies widely between different 

environments, depending upon the local sources and air masses, and shows clear diurnal and 

seasonal trends, with higher values found in the daytime and summer. Hygroscopic particles 
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emitted from different sources were investigated. Freshly emitted traffic particles and 

biomass burning particles are hydrophobic or less-hygroscopic, whilst growth factors are 

found to increase during ageing. Finally, the hygroscopic properties of particles have marked 

effects, not only on total lung deposition but also on the regional lung deposition of particles, 

causing a variation in DFs between sampling environments. For ultrafine particles (Dp <100 

nm), the DF of these in kerbside areas was 1.2-1.6 times higher than those in urban 

background and rural areas.  

The ICRP model seems to predict well DF values for small ambient particles in the extra-

thoracic and tracheo-bronchial regions, but not the alveolar region, where they are 

overestimated. However for larger particles (Dp >200 nm) the ICRP model underestimates the 

DF values, with the extra-thoracic region the most affected of the three. As a consequence, 

the DF values of ambient particles larger than 200 nm in the total lung were much higher than 

the hydrophobic particles due to their hygroscopic growth, while total lung DF was lower 

than predicted by the ICRP model for smaller particles in rural and urban background areas, 

but not in roadside areas.  

Based on the modified ICRP model, the deposition fractions of particles in traffic, urban 

background and rural areas were calculated. The average number DFs of particles in the 

roadside site were higher than those in the urban background and rural areas, whereas in 

terms of surface and volume the highest DFs were in the rural area. The DF values not only 

depend upon the particle size, but also on its hygroscopic properties. 
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Chapter 6: SOURCE APPORTIONMENT OF THE LUNG DOSE OF 

AMBIENT SUBMICROMETRE PARTICULATE MATTER 

 

This chapter aims to apportion the sources of submicron particles measured at an urban 

background area in London and identify which source is most responsible for particles 

deposited in the human lung. Particle number size distributions (PNSD) measured by a 

Scanning Mobility Particle Sizer (TSI, USA), covering the size range of 16.5-604 nm at the 

London North Kensington background sampling site during 2012 were used in a Positive 

Matrix Factorization (PMF) model to apportion to six dominant sources of particles.  These 

included local traffic emissions (26.6% by number), aged traffic emissions (29.9%), urban 

accumulation mode (28.3%), nucleation (6.5 %), inorganic secondary aerosols (1.7%) and 

mixed secondary aerosols (6.9%). Based on the ICRP model, the total deposition fractions of 

submicron particles for the aforementioned sources in the human respiratory tract were 0.57, 

0.41, 0.24, 0.62, 0.24 and 0.24, respectively.  In terms of source apportionment of particles 

deposited in the lung, traffic emissions represent the main source of particles deposited by 

number in both the regional and total lung, accounting for 59 to 71% of total deposited 

particles, followed by regional accumulation mode (17%) and nucleation (10%) particles. 

Secondary aerosols only account for 5.1 % of the total deposited particles by number, but 

they represent the main source of particles deposited in the lung expressed as surface area 

(44.6%) and volume (72.3%) of total deposition.   

This chapter contains some sections of verbatim text adapted from Vu et al. (2016) published 

as part of this PhD. The author’s contribution: writing, contribution of ideas and numerical 

calculations. 
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6.1. Introduction 

Particles in urban ambient air are released from various anthropogenic activities, such as the 

combustion of fuels and from natural sources such as atmospheric nucleation (Ogulei et al., 

2007). Exposure to ambient aerosols is consistently associated in numerous scientific studies 

with adverse health effects (Pope and Dockery, 2006). Very small particles such as ultrafine 

particles (Dp <100 nm) are able to penetrate deep into the respiratory tract (e.g. reaching the 

pulmonary epithelium), causing serious health problems such as respiratory morbidity and 

mortality (Donaldson et al., 1998). Moreover, different types of sources generate particles 

with different size distributions, chemical compositions and concentration characteristics 

(Lighty et al., 2000). This results in particles from different sources behaving differently 

during the process of inhalation, showing different penetration through the respiratory tract 

and depositing with different fractions in different regions of the lungs. For example, Löndahl 

et al. (2009) estimated the total lung deposition fraction of particles by number emitted from 

traffic exhaust was 0.68, which was three times higher than those of particles released from 

biomass burning (0.22). Therefore a detailed identification of the most relevant sources of 

atmospheric particles and the association between a particle source and lung deposition could 

play a vital role not only for risk assessment of air pollution in epidemiological studies, but 

also for policymakers to introduce optimal legislation for air quality control.  

In order to identify and apportion the most relevant sources of ambient particles, applying 

Positive Matrix Factorization (PMF) to particle number size distributions (PNSD) has 

become a widely used tool in recent years (Viana et al., 2008). PMF considers each size bin 

in the PNSD dataset as an input variable. Additional variables such as ion species, heavy 

metals, gaseous pollutants, meteorological parameters and traffic data can be very valuable to 

separate and identify the sources of particles as demonstrated in previous studies (Harrison et 

al., 2011; Ogulei et al., 2006b; Thimmaiah et al., 2009).  
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The advantage of this method is that it can identify specific sources of very small particles, 

such as nucleation. It can also separate sources of particles such as brake- and tyre-wear, 

which are generally difficult to separate using PMF on particle composition data only. In 

addition to source identification and apportionment of concentrations measured in ambient 

air, and considering the different deposition fractions of particles generated from different 

sources, there is still the need for evaluation of which sources are most responsible for 

particles deposited in the human respiratory tract. 

This study aims to estimate the lung deposition of particles generated from specific sources 

contributing to particle size distribution in North Kensington, an urban background area of 

London, United Kingdom. In order to do so, we first apportioned the sources of submicron 

particles in the area using PMF. Subsequently, we estimated the lung deposition fraction of 

particles generated from each specific source by applying the ICRP model on the PMF factor 

profiles. Finally, we investigated which source may be most relevant to health outcomes by 

comparing the results of the source apportionment of particle deposited in the human 

respiratory tract. 

6.2. Materials and Methods  

6.2.1. Site Description and Data Measurement 

Particle number size distributions and concentrations of other air pollutants were measured in 

North Kensington, London, UK. This monitoring station, which is located in the grounds of 

Sion Manning School, is representative of the typical urban background area of London.  The 

site location and pollution climate have been described by Bigi and Harrison (2010). 

Particle number size distributions (PNSDs) were measured during 2012 by a Scanning 

Mobility Particle Sizer (SMPS) operated by the Department for Environment, Food and Rural 

Affairs (DEFRA) as part of the UK national network. This SMPS system comprised an 
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Electrostatic Classifier (EC, TSI model 3080) and a Condensation Particle Counter (CPC, 

TSI model 3775) and was set up at a 15 minute time resolution with six scans of 2.5 minutes 

covering the size range 16.6-604 nm.   

Air pollutants (CO, NO, NO2 , SO2, BC, O3, PM2.5 and PM10), aerosol chemical composition 

data (Na
+
, Mg

2+
, NH4

+
, Ca

2+
, Cl

-
, PO4

2-
 and SO4

2-
) and meteorological data (wind speed and 

direction) were extracted from the DEFRA website (see http://uk-air.defra.gov.uk/ for more 

detailed information). 

6.2.2. Data Handling, PMF and ICRP Models 

6.2.2.1. Data handling  

Data statistical analysis, polar plots and concentration weighted trajectories were performed 

in the R program (Version 3.1.5) using the “Open-air” package developed by Carslaw and 

Ropkins (2012). Missing data was linearly interpolated between the values from the nearest 

size bins. Air pollutant concentrations, SMPS data and meteorological data were averaged on 

an hourly basis. 

6.2.2.2. PMF models 

In this study, a profile of 6,098 hourly PNSDs comprising 51 size bins ranging from 16.6 to 

604 nm were input into the PMF US EPA model version 3. Each size bin in the PNSD was 

considered as an input variable. Since uncertainties were not provided by the experimental 

instruments, these were estimated based on an empirical method introduced by Ogulei et al. 

(2006; 2007).   

The method for determining the correct number of factors in the PMF analysis has been 

described by Lee et al. (1999) and Yakovleva et al. (1999).  PMF factors were interpreted 

based on (1) modal structure of number and volume size distributions, (2) the diurnal patterns 

http://uk-air.defra.gov.uk/
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of factor contribution, (3) the contribution of each factor to total number and volume, (4) the 

relationship with auxiliary information such as gaseous and chemical composition data and 

(5) source directionality by local wind trajectories and polar plots (Ogulei et al., 2007).   

6.2.2.3. ICRP model 

The ICRP model was developed to predict the deposition of particles with a wide size range 

from 1nm to 100 µm in the respiratory system consisting of three main regions: extra-

thoracic (ET), trachea-bronchial (TB) and pulmonary/alveolar (AL) (ICRP, 1994). In our 

calculations, we applied the ICRP model with Hind’s parameterization of the grand average 

particle deposition to estimate the total and regional deposition fraction (DF) due to 

inhalation by males and females at three exercise levels (Hinds, 1999). 

The DFs calculated by the ICRP are for spherical hydrophobic particles. However, 

hygroscopic particles are typically dominant in the ambient environment (Asgharian, 2004; 

Löndahl et al., 2009; Montoya et al., 2004). To address this problem, we adjusted the ICRP 

curve for both hydrophobic and hygroscopic particles based on an assumption that particles 

generated from combustion sources (i.e. traffic emission or biomass burning) are nearly 

hydrophobic and inorganic/organic secondary aerosols are a mixture of less hygroscopic and 

more hygroscopic particles (Cruz and Pandis, 2000; Löndahl et al., 2009; Massling et al., 

2005; Tritscher et al., 2011; Väkevä et al., 2002b; Varutbangkul et al., 2006; Weingartner et 

al., 1997). The details of this method are given in Chapter 5 or Vu et al. (2015a). The regional 

and total lung deposition fractions of particles from different sources identified by PMF were 

estimated based on an application of the ICRP model to each source’s particle size 

distribution as adjusted by its expected hygroscopicity.  
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6.3. Results  

6.3.1. Overview of Data 

The average total number concentration was 5.6 ± 3.3 x 10
3
 particles/cm

3
, of which 1.2 ± 0.9 

x 10
3
, 3.3 ± 2.1 x 10

3
 and 1.0 ± 0.9 x 10

3
 particles/cm

3
 was accounted for by the nucleation 

mode, Aitken mode, and accumulation mode, respectively. The majority of particles by 

number were in the ultrafine region (Dp ≤ 100 nm), which represented 81.4 % of total 

number concentration, whereas accumulation mode particle only accounted for 18.6 % of the 

total particle number, but represented 90.5% of the total particle volume.  

As shown in Figure 6.1a, the particle number size distribution shows a peak number mode at 

36.6 nm and a peak volume mode at 294.3 nm. The diurnal pattern (Figure 6.1b) shows two 

distinct peaks coinciding with the traffic rush hours, and the lowest concentration was found 

during the early morning. 

 
 

Figure 6.1: Particle number/volume size distribution (A) and diurnal pattern of particles (B) 

by  number in North Kensington, UK during 2012. Nu: Nucleation mode particles; AIK: 

Aitken mode particles, ACC: accumulation mode particles, and Total: total particles. 
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6.3.2. PMF Results 

The PMF method (US EPA PMF version 3.0.), which is described by Ogulei et al. (2006b), 

was used to apply to particle number size distributions. In this study, α =0.01 and C3 =0.105 

were selected to estimate uncertainties. The method of determining the correct number of 

factors has been described by Lee et al. (1999) and Yakovleva et al. (1999). As shown in 

Figure 6.2, the number of factors can be from 4 to 10.  The value of Q becomes stable when 

we increase this number.  

 

 
Figure 6.2: Q-value with different number of factors. 

 

 

The profile of six resolved factors obtained by PMF is shown in Table 6.1 and Figure 6.3. 

The first factor has a peak by number at a diameter of approximately 29 nm (Figure 6.3). This 

factor represents 26.6% of the number concentration (Table 6.1), but makes only a small 

contribution to the volume concentration (3%). The modality of this factor (Figure 6.3) is 

similar to the shape of the nucleation mode of the particle number size distribution from road 

traffic emissions (Vogt et al., 2003; Zhang et al., 2004).  
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These particles could be emitted directly from gasoline cars or from the growth of nucleation 

particles released from diesel cars (Ristovski et al., 2006; Wehner et al., 2009). This factor 

has a weak correlation with NO2 (r
2 

=0.43), as shown in Table 6.2. In addition, the strong 

diurnal pattern shows two dominant peaks corresponding to morning and evening rush hours, 

suggesting that this factor represents the exhaust nucleation particle mode (Harrison et al., 

2011).  The polar plot shows no dominant direction, and therefore this factor can be attributed 

to local traffic emissions.  

 

Table 6.1: Statistics of the particle number and volume concentrations for six factors.  

 

 
%N %V N-peak V-peak 

%N- 

NU 

%N- 

AIT 

%N- 

ACC 

% V- 

NU 

% V- 

AIT 

% V- 

ACC 

F1 26.6 3.2 29 nm 
48 nm; 

191 nm 
47.1 50.6 2.4 3.9 25.6 70.5 

F2 29.9 8.6 52 nm 
80 nm; 

294 nm 
8.0 88.9 3.1 0.3 39.0 60.7 

F3 6.5 1.0 20 nm 237 nm 87.2 9.3 3.5 3.8 6.9 89.3 

F4 1.7 23.4 
86 nm; 

216 nm 
392 nm 2.2 42.8 55.0 0.0 0.9 99.0 

F5 6.9 34.0 
27 nm; 

205 nm 
274 nm 12.6 14.6 72.8 0.0 0.5 99.4 

F6 28.3 29.7 93 nm 165 nm 1.4 60.0 38.6 0.0 15.6 84.4 

Note, % N: percentage of particles by number; % V: percentage of particles by volume; N-

peak: peak number mode; V-peak: peak volume mode; NU: nucleation mode (Dp <30 nm); 

AIT: Aitken mode (30 nm< Dp <100 nm); ACC: accumulation mode (100 nm< Dp<600 nm). 
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Table 6.2: Correlations between contributions of six factors with other chemical species. 

 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Wind speed -.146
**

 -.381
**

 .069
**

 -.400
**

 -.388
**

 -.419
**

 

CO .252
**

 .531
**

 -.124
**

 .519
**

 .556
**

 .688
**

 

O3 -.251
**

 -.436
**

 .124
**

 -.392
**

 -.215
**

 -.355
**

 

SO2 .155
**

 .316
**

 .102
**

 .251
**

 .249
**

 .330
**

 

NO .224
**

 .505
**

 -.104
**

 .501
**

 .476
**

 .684
**

 

NO2 .428
**

 .643
**

 -.129
**

 .494
**

 .496
**

 .693
**

 

NOx .320
**

 .603
**

 -.123
**

 .545
**

 .528
**

 .751
**

 

BC .290
**

 .638
**

 -.056
**

 .563
**

 .581
**

 .819
**

 

OC .035
**

 .363
**

 .110
**

 .488
**

 .628
**

 .770
**

 

PM2.5 -.005 .384
**

 -.142
**

 .861
**

 .788
**

 .664
**

 

PM10 .087
**

 .418
**

 -.190
**

 .853
**

 .747
**

 .677
**

 

Ca
2+

 .175
**

 .114
**

 -.053
**

 .250
**

 .175
**

 .211
**

 

Cl
- 

-.021 -.037
*
 -.198

**
 .024 -.015 .037

*
 

PO4
3-

 -.009 .183
**

 -.100
**

 .386
**

 .347
**

 .410
**

 

Mg
2+

 -.011 -.026 -.181
**

 -.025 -.065
**

 .033 

Na
+
 .126

**
 -.046

**
 -.277

**
 .004 -.105

**
 .015 

NH4
+
 -.044

*
 .244

**
 -.234

**
 .801

**
 .631

**
 .466

**
 

SO4
2-

 -.111
**

 .146
**

 -.014 .619
**

 .508
**

 .272
**

 

NO3
-
 .011

**
 .131

**
 .100

**
 .757

**
 .549

**
 .280

**
 

Note: 
**

 Correlation is significant at the p value <0.01; 
*
 Correlation is significant at the p 

value < 0.0. 
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Figure 6.3: Polar plot, particle size distribution and diurnal patterns of six resolved PMF 

factors. 
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The second factor shows the main  particle number distribution in the size range between 20 

nm and 100 nm, with the peak diameter around 52 nm, corresponding to solid carbonaceous 

particles from diesel exhaust (Shi et al., 2000). This factor contributes 29.9% of the total 

number concentration and only 8.6% of total volume concentration. The diurnal variation 

shows obvious morning and evening peaks. In addition, this factor contribution has strong 

correlations with other air pollutants (CO, NO, NO2 and BC) and a moderate correlation with 

PM10 (see Table 6.2). Hence, this factor mainly comprises traffic emission sources, but unlike 

factor 1, the polar plot shows that this source dominantly comes from easterly and south-

easterly directions. Therefore, it could be aged traffic emissions (Zhou et al., 2004), 

transported from central London. There was an increase in the factor contribution in the 

winter and on weekend days, and therefore this factor may also contain domestic combustion 

sources, such as biomass burning or cooking.  

The particle number size distribution of factor 3 is dominated by nucleation size range 

particles, with 87% of the total number concentration being within this range (see footnote to 

Table 6.1 for definitions of size ranges). This factor possesses small particle number 

concentrations (6.5%) and small volume concentration (1%). The diurnal pattern shows a 

major peak around noon, which is attributed to regional photochemical nucleation events.  

The seasonal variation shows that this factor is mostly found from June to September, and the 

polar plot shows marked directionality from the western sector as shown in Figure 6.3. This 

could suggest that factor 3 is aged nucleation particles with an origin in the westerly sector.  

This is supported by a study on new particle formation at a rural site in southeast England 

which found that nucleation events occur predominantly with westerly maritime air masses, 

high wind speed, and low PM2.5 and NOx concentrations (Charron et al., 2007; Charron et al., 
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2008).  There is a smaller contribution of factor 3 from the south-easterly sector, which is less 

easily explained.   

The fourth factor accounts for only around 2% of total particle number, but accounts for 

nearly 25% of total particle volume. The size distribution of this factor shows a bimodal 

distribution with two peaks at 86 nm and 216 nm, and more than 95% of total particle number 

in the Aitken and accumulation ranges, while 99% of total particle volume is within the 

accumulation mode.  Factor 4 is strongly correlated with PM2.5 (r
2
 =0.86), PM10 (r

2
 =0.85), 

NH4
+
 (r

2
 =0.80), NO3

-
 (r

2
 =0.76) and SO4

2-
 (r

2
 =0.62), and has an inverse correlation with 

ozone. The obvious directionality shows that this factor originates from the east and northeast 

sectors, and the diurnal variation shows a significant decrease in the afternoon. This 

behaviour suggests that this factor represents regional inorganic secondary aerosols. This is 

consistent with results from cluster analysis conducted by Beddows et al. (2009), who 

associated regional air pollutant transport with clusters of concentrations showing a 

correlation with PM10, an inverse correlation with ozone and a decreasing concentration in 

the afternoon. 

Factor 5 shows a main accumulation mode at 205 nm and a smaller peak at 27 nm. This 

factor has a similar diurnal pattern to factor 4. The main directionality is from the northeastly, 

southeastly and easterly sectors. This factor also has high and moderate correlations with 

other air pollutants (PM2.5 (r
2
 =0.79), PM10 (r

2
 =0.75), NH4

+
 (r

2
 =0.63), NO3

-
 (r

2
 =0.55) and 

SO4
2-

 (r
2
 =0.51), although weaker correlations than those of factor 4. In addition, this factor 

shows a moderate correlation with total organic carbon (r
2
 =0.63). Therefore, it also suggests 

an association with secondary aerosol, but to a mixture of inorganic and organic aerosols.   
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The “Concentration Weighted Trajectory Approach analysis” was performed using the 

“Open-air” package as shown in Figure 6.4 and 6.5. This approach is useful for viewing the 

long-range transport of secondary aerosols because the accumulation mode particles (from 

secondary aerosols) have a long lifetime in the atmosphere.  Figure 6.4 shows the major 

directionality of factor 4 and factor 5 with PM2.5, PM10, NH4 and SO4, suggesting that 

secondary aerosol could originated from mainland Europe due to long-range transport. This is 

consistent with a study of receptor modelling of secondary particulate matter at UK sites 

(Charron et al., 2013). 

 
 

Figure 6.4: Gridded and smoothed back trajectory concentrations showing mean factor 4, 

factor 5, NH4
+
, SO4

2-
, PM2.5 and PM10 concentrations using the Concentration Weighted 

Trajectory approach. 
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The last factor (Factor 6) shows uni-modal number/volume size distribution with a peak 

around 93 nm by number and 165 nm by volume. This particle size distribution was 

attributed to combustion sources which mainly contain carbonaceous particles (Hildemann et 

al., 1991; Venkataraman et al., 1994). In addition, this factor accounts for 28.3% of the total 

number concentration and 29.7% of the total volume concentration. The diurnal pattern 

shows a peak in the morning rush hours and a peak later in the evening rush hours.  This 

factor correlates with the second factor which has been identified as traffic emissions (r
2
 

=0.6). Moreover, this factor has strong correlations with NO, NO2, NOx, and CO (Table 6.2), 

suggesting that it could also represent the solid particle mode from traffic emissions 

(Dall'Osto et al., 2012; Harrison et al., 2011). However, an increase in the contribution of this 

factor on weekend days and in the cold season, and its strong correlations with both black and 

organic carbon, shows that this factor could also be emitted by other combustion sources such 

as power stations or biomass burning, which also show a peak around 100 nm (Janhäll et al., 

2010; Wang et al., 2013).  

The polar plot shows the main directionality of this factor to be in the east and southeast 

sectors. Hence, this factor could be the regional background accumulation mode. By using 

cluster analysis, Beddows et al. (2009) also found a large accumulation mode at 100 nm at 

the British Telecom Tower, which is also classified as being in an urban background area of 

London. A recent study by Beddows et al. (2015) found that there were four sources of 

particle number, namely traffic emissions, urban background, nucleation and secondary 

aerosols, based on application of PMF to a two-year data set of particle number size 

distribution in North Kensington.  

In this study, we selected six factors because we found that the urban background factor 

consisted mainly of aged traffic emissions and wood burning emissions and the secondary 

aerosols contained inorganic secondary aerosols and mixed secondary aerosols, therefore 
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these two factors (urban background and secondary) could split into four. This separation 

increased the best fit between modelled and measured data by reducing the total residual; 

however, we noted that this separation was not totally clean since the traffic emissions and 

other combustion such as wood burning could share a common size distribution profile.  

 

Figure 6.5: Gridded and smoothed back trajectory concentrations showing mean 4 factor 

contributions using the CWT approach. 

To conclude, the dominant source contribution of particles by number in the London urban 

background area was attributed to traffic emissions (56.6 %).  This was followed by the urban 

accumulation mode (28.3%), which could mainly originate from combustion sources such as 
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wood burning.  The highest contribution of traffic emissions to total particle number in urban 

areas was also found in the previous studies by Ogulei et al. (2007), Pey et al. (2009), Gu et 

al. (2011) and Wang et al. (2013). Gu et al. (2011) reported that traffic and combustion 

emissions represented 65.2 and 26.1% of total particles number in Augsburg, Germany. 

Particles from combustion- related sources (aged traffic and urban accumulation mode) have 

strong correlations with black and organic carbon, suggesting that these sources mainly 

comprise carbonaceous particles. Secondary aerosols accounted for a small fraction of the 

particles number (8.6%), but they were the main contribution source of submicron particles 

by volume (57.4%). These particles were considered to contain mainly ammonium nitrate and 

sulfate, and organic aerosols.  The urban accumulation mode accounted for 29.7% of particles 

by volume, while those of traffic emissions and nucleation were 11.8 and 1.0%, respectively. 

In terms of particle surface area, the urban accumulation mode was the most domination 

fraction (39.2 %), following by mixed secondary aerosol (26.9%), aged traffic emission 

(14.2%), inorganic secondary aerosol (13.2%), fresh traffic emission (6%) and nucleation 

(1.3%).  

Differences between the PMF results of this study and the PMF results from Beddows et 

al. (2015) 

Beddows et al. (2015) applied PMF model to two-year PNSD data sets collected at North 

Kensington and found that there were four main sources of particles: traffic emissions (44.8% 

by number), urban background (43.0%), nucleation (7.8%) and secondary aerosols (4.4 %). 

The differences between the PMF results of this study and from Beddows et al. (2015) are 

due to the following reasons: 

 In this study, the PMF analysis used a one-year particle number size distribution while 

Beddows et al. (2015) ran PMF on a combined 2011 and 2012 data sets. The PNSD from 
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2012 looks very interesting and different to the previous year because an increase in 

particle number was found on the weekend days.  

 If the number of factors selected is 4, the result seems to be similar to Beddows’ findings 

(as shown in Figure 6.6), with the same profile for each factor. 

 

 
 

 

Figure 6.6: Profiles and contribution of each factor from PMF with four factor solution. 
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Using the four factor solution, the traffic emission factor only includes sizes in the range of 

30-40 nm; however, several studies have found that the traffic emissions also shows a 

distribution in the accumulation mode (around 70-100 nm). Therefore, the urban background 

may mostly reflect soot traffic emissions. The increase in the urban background factor on 

weekend days may be explained by wood burning or cooking. It is preferable to separate the 

traffic emissions and the wood burning, since traffic emissions typically show a number size 

distribution of around 70-100 nm, and wood burning above 100 nm (Janhäll et al., 2010; Reid 

et al., 2005; Reid and Hobbs, 1998). 

By increasing the number of factors to six, the nucleation and traffic emission factors keep 

their profiles, but the secondary aerosol factor splits into two factors, inorganic secondary 

aerosols and mixed (organic and inorganic) secondary aerosols, and the urban background 

factor also splits into two factors (aged traffic and urban accumulation mode) (as shown in 

Figure 6.7).   

 

Figure 6.7: Comparison of the secondary and urban background aerosols between the PMF 

solutions of four and six factors. 

From the seasonal polar plots for factor 4 (mixed inorganic and organic secondary aerosol) 

and factor 6, a strong effect of local sources (probably wood burning) in the winter is seen 

(see Figure 6.8). 
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Figure 6.8: Seasonal polar plot of urban accumulation mode and mixed secondary aerosols. 

 

 

 
Figure 6.9: Seasonal polar plot of local traffic, aged emission, inorganic secondary aerosols, 

and nucleation. 
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In addition, the accumulation mode had a very high correlation with the wood smoke 

indicator (CWOD) (r
2 

=0.84) during the winter period (Figure 6.10). The mixed secondary 

aerosol factor has a stronger correlation (r
2 

=0.63) with OC than the inorganic aerosol factor 

(r
2 

=0.49), but weaker one (r
2 

=0.63) with NH4 than the inorganic aerosol factor (r
2 

=0.81). 

This suggests that wood burning could release accumulation mode particles from organic 

secondary aerosols.   

 
Figure 6.10: Correlation between the urban accumulation mode factors and CWOD. 
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  Figure 6.11: Correlation between other factors and CWOD. 

 

In conclusion, the PMF results with six factors can explain more about the secondary aerosol 

and urban background sources and the contribution of wood burning to those sources. 

Moreover, the residual between modelled and measured concentrations decreases by 

increasing the number of factors from four to size. However, there is a disadvantage with this 

solution: 

 The urban accumulation mode (mostly due to wood burning) and traffic emissions is not 

totally cleanly split (as seen in Figure 6.12), due to the similar size distribution profiles of 

these two sources. Wardoyo et al. (2006) note that wood burning could have a CMD of 30-70 

nm during fast burning of wood in laboratory-scale experiments. Therefore, the urban 

accumulation background can contain traffic particles, and on the other hand the aged traffic 
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emissions also can contain particles emitted from wood burning or cooking emissions. The 

highest correlations of these factors are shown in Figure 6.12: 

 

 
Figure 6.12: Correlation between each factor. 

 

 

6.3.3. Which Source is Most Responsible for Particles Deposited in the Human 

Respiratory Tract? 

6.3.3.1. Total and regional lung deposition fractions (DFs) 

Table 6.3 shows the regional lung deposition fractions (DF) of particles from different 

sources. These were estimated by applying a modified ICRP model (Vu et al., 2015a) to the 

PMF factor profiles. In terms of particle number, particles released from nucleation (F3) and 

local traffic emission sources (F1) were found to have the highest deposition fractions in the 

total lung, with DFs of 0.62 and 0.57, respectively, followed by aged traffic particles (F2, DF 

=0.41). In contrast, the volume deposition fraction of nucleation particles (F3) is only 0.17, 
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while the volume deposition fraction for secondary aerosol was found to be the highest, 

ranging between 0.25 (F5) and 0.41 (F4). By surface area, 22-37% of total secondary aerosol 

surface concentration can be deposited into the lung, while the surface area deposition 

fraction for accumulation mode particles (F6) is only 16%. The total surface area deposition 

fraction for local (F1), aged traffic emission (F2) and nucleation (F3) is 0.37, 0.28 and 0.27, 

respectively.  

Table 6.3: Total and regional lung deposition fraction (DF) of each source. 

  Number Surface Area Volume 

ET TB AL Total ET TB AL Total ET TB AL Total 

F1: Local traffic 0.06 0.11 0.4 0.57 0.04 0.06 0.26 0.37 0.05 0.03 0.15 0.22 

F2: Aged traffic 0.04 0.07 0.3 0.41 0.03 0.04 0.21 0.28 0.04 0.02 0.13 0.20 

F3: Nucleation 0.07 0.13 0.42 0.62 0.05 0.04 0.18 0.27 0.06 0.01 0.09 0.17 

F4: Inorganic Sec. 0.11 0.02 0.11 0.24 0.23 0.02 0.11 0.37 0.26 0.03 0.12 0.41 

F5: Mixed Sec. 0.08 0.03 0.14 0.24 0.12 0.01 0.09 0.22 0.14 0.01 0.09 0.25 

F6: Urban Acc. 0.03 0.04 0.18 0.24 0.03 0.02 0.12 0.16 0.03 0.02 0.10 0.14 

Note: Sec.: secondary aerosol, Acc. : accumulation mode; DFtotal=DFET + DFTB+ DFAL 

In terms of regional lung deposition, traffic and regional nucleation particles have higher 

deposition fractions in the alveolar (AL) region rather than in the extra-thoracic (ET) or 

tracheo-brochial (TB) regions in all three number, surface area and volume metrics. For 

example, the deposition fraction of local traffic particles (F1) by number is 0.40, 0.11 and 

0.06 for AL, TB and ET regions. But for secondary aerosols, the highest deposition fraction 

values are found in the ET region by volume and surface area. The regional and total lung 

deposition fractions of particles generated from different sources are mainly controlled by 

their size distribution. Smaller particles such as nucleation or local traffic emission are found 

to penetrate deeper into the respiratory tract. Table 6.4 shows a compilation of deposition 

fractions reported in previous studies. 
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Table 6.4: Deposition Fractions of particles in the whole lung in previous studies. 

Sources 
Size 

(nm) 
Number Surface 

Volume or 

mass 
References 

Diesel particles 10-500  0.47-0.65 0.39-0.32 0.27-0.28 Rissler et al. (2012) 

ETS 15-670 0.36 - - 

Morawska et al. (2005) Diesel 15-670  0.3 - - 

Petrol smoke 15-670  0.41 - - 

Hydrophobic 12-100  0.26-0.46 - - Löndahl et al. (2007) 

Traffic particles 3.2-930  0.69 0.31 0.32 Kristensson et al. 

(2013) Wood particles 3.2-930 0.38 0.22 0.22 

Traffic exhaust 12-580  0.68 0.35 0.28 
Löndahl et al. (2009) 

Biomass burning 12-580  0.22 0.23 0.24 

 

6.3.3.2. Which sources are most responsible for particles deposited in different 

regions of the lung? 

The contribution of each source to deposited submicron particles by number, surface area and 

volume in the extra-thoracic (ET), trachea-bronchial (TB), and alveolar (AL) regions and 

total lung are shown in Table 6.5. 

Table 6.5: Source apportionment of submicron particles deposited in the regional lung (%) 

  Number Surface Area Volume 

ET TB AL total ET TB AL total ET TB AL total 

F1: Local 

traffic 
34.2 41.2 37.0 37.4 3.3 15.3 11.9 9.4 1.1 5.0 4.4 2.8 

F2: Aged 

traffic 
24.8 29.6 31.5 30.4 6.2 24.8 22.4 17.2 2.4 11.2 11.0 6.9 

F3: 

Nucleation 
9.9 11.6 9.7 10.0 0.9 2.3 1.8 1.6 0.4 0.8 0.9 0.7 

F4: Inorganic 

Sec. 
4.0 0.5 0.7 1.0 36.0 11.8 10.6 19.3 43.9 33.7 26.0 38.4 

F5: Mixed 

Sec. 
11.4 2.5 3.3 4.1 40.9 12.2 18.3 25.3 38.7 23.4 30.2 33.9 

F6: Urban 

Acc. 
15.7 14.6 17.7 16.9 12.7 33.6 35.0 27.3 7.4 25.9 27.5 17.3 

Note: Sec.: secondary aerosol, Acc.: accumulation mode 
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6.3.3.3. By number 

The majority of particles by number deposited in the total and regional lung are found to be 

related to combustion sources, in which traffic emissions were found to be the main 

contributor. Local and aged traffic particles are responsible for 67.8% of particle number 

deposited in the total lung. In terms of lung regions, traffic emissions are dominant and 

account for 68.5% of particle deposition in the AL region and up to 70.8% in the TB region. 

Regional accumulation mode and nucleation particles account for approximately 17% and 

10% of particle number deposited in the total lung while secondary aerosols only account for 

around 5.1%. The dominant contribution to particles deposited in the total lung is traffic 

emissions because they are the main source of particles by number in an urban area. In 

addition, traffic particle size distributions were found predominantly in the ultrafine size 

range (<100 nm), with high deposition fractions. Therefore, traffic emission particles can 

easily penetrate and to be deposited in the human respiratory tract.  

 

6.3.3.4. By surface area 

Both combustion and secondary aerosols account for the majority of particles by surface area 

deposited in the lung. Secondary aerosols contribute nearly half of the particle surface area 

deposited in the total lung (44.6%), while regional accumulation mode particles and traffic 

particles account for 27.3% and 26.6%, respectively. In the AL and TB regions, regional 

accumulation mode particles, traffic emissions and secondary aerosols share around one third 

of total deposited particles. However, in the ET region secondary aerosols account for more 

than 76% of the total particle surface area, while accumulation mode particles and traffic 

emissions account for 12.7 and 9.5%. Only 1.6% of the particle surface area deposited in the 

total lung is attributed to nucleation particles. 

6.3.3.5. By volume 
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Secondary aerosols are identified as the main source of submicron particles by volume 

deposited in the total and regional lung. They represent approximately 71.4% of particle 

volume deposited in the total lung and up to 82.6% in the ET regional. This can be explained 

by the major contribution of secondary aerosols to particle volume. In addition, due to their 

more hygroscopic properties, their lung deposition fractions are much higher than those from 

hydrophobic particles with the same initial dry diameter (Vu et al., 2015a). Accumulation 

mode particles account for 7.4%, 25.9%, 27.5% and 17.3% of total particle volume deposited 

in the ET, TB, AL and total lung, respectively. Traffic emissions only represent around 10% 

of the particle volume deposited in the total lung. Traffic emission particles mainly penetrate 

and are deposited into the TB and AL regions, where they account for around 15-16%, while 

they only contribute to 3.5% of particle volume deposited in the ET region. Nucleation 

particles do not make a significant contribution to total submicron particle deposition by 

volume in the lung (<1%). 

Some studies suggest that ultrafine particles that are most commonly measured in terms of 

their number concentrations could have higher toxicity compared to corresponding masses of 

fine particles due to their large surface area, oxidative capacity and radical species formation, 

which can lead to cellular DNA damage or induce inflammatory effects (Atkinson et al., 

2010; Kreyling et al., 2004). In addition, Harrison et al. (2010) indicate that relating health 

outcomes to measured particle concentrations is likely to underestimate the public health 

impacts and emphasizes that the regional dose, not pollutant exposure, probably drives health 

outcomes. Therefore, our findings of the various source contributions of particles in the 

different regional lung and particle metrics can be useful in addressing part of the question of 

what the most important metric linked to health effects in epidemiology studies is. It also 

helps policy makers to make decisions on controlling particulate matter. For example, if we 

plan to reduce particles by number in urban areas, we should first consider traffic emissions 
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because of their greatest contribution (59.0-70.8%) in both the whole and regional lung. But 

if the target is to reduce submicron particles by mass, we need to first consider the secondary 

aerosols and urban accumulation mode (mostly urban combustion). 

6.4. Conclusions 

This study found that traffic emissions were the most relevant ambient source of submicron 

particles deposited by number into the human respiratory tract, accounting for 67.8% of 

particles deposited in the total lung by number at the North Kensington site. This can be 

explained by considering local and aged traffic sources as major sources of submicron 

particles by number (56.5%) in this urban background area in conjunction with their high 

lung deposition fraction (0.41-0.57). Moreover, traffic particles can penetrate deeper into the 

lung with deposition fractions of 0.3-0.4 in the AL region and 0.07-0.11 in the TB region. 

Considering the high concentrations by number attributed to traffic emissions in the PMF 

analysis, local and aged traffic emissions represent 68.5% and 70.8% of the total particle 

number deposited in the TB and AL regions, respectively. Urban accumulation mode 

particles and regional nucleation particles were also found to contribute significantly to the 

increased number of particles deposited in the lung (16.9% and 10% respectively). Secondary 

aerosols contribute only approximately 5.1% of submicron particles deposited in the total 

lung by number, but they represent a major source of particles deposited in the regions and 

total lung by volume (56.2-82.6%), followed by urban accumulation mode (7.4-27.5%), 

traffic emissions (3.5-16.2%) and nucleation (0.4-0.9%). In terms of deposited particles by 

surface area, secondary aerosols were found to be most dominant in the ET region (76.9%), 

while the main contribution in the TB region was from traffic emissions (40.1%) and urban 

accumulation mode (33.6%). In the AL region, urban accumulation mode was the highest 

contributor of particle surface area (35.0%), followed by traffic emissions (34.3%), secondary 

aerosols (28.9%) and nucleation (1.8%). 
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Chapter 7: PHYSICAL PROPERTIES AND LUNG DEPOSITION OF 

PARTICLES EMITTED FROM FIVE MAJOR INDOOR SOURCES 

 

This chapter studies the physical properties of indoor particles were measured with an SMPS 

system an APS and an H-TDMA in a flat located in an urban background site in Prague 

(Czech Republic) from 15
th

 August to 8
th

 September, 2014. Particles emitted from cleaning 

activities showed unimodal number size distributions, with the majority of particles (>98.2%) 

in the ultrafine size range (Dp <100 nm) and modes at a diameter of 19.8 nm for vacuum 

cleaning and 30.6 nm for soap/W5 cleaning. Smoking and incense burning predominantly 

generated particles in the accumulation mode with a count median diameter around 90-150 

nm while cooking emissions showed a bimodal structure with a main mode at 47.8 nm. 

Particles from vacuum cleaning, incense burning, smoking and cooking emissions were found 

to be “nearly hydrophobic” with averaged growth factor (Gf) around 1.01-1.10, while 

particles emitted from desk cleaning using organic compounds were found to be “less-

hygroscopic” (Gf ~1.12-1.16). Based on an adjusted MPPD model with a consideration of  

the hygroscopic properties of particles, the total lung deposition efficiencies of these particles 

by number when they penetrate into the human lung were 0.73 ± 0.02, 0.62 ± 0.03, 0.37 ± 

0.03, 0.32 ± 0.03 and 0.49 ± 0.02 for vacuum cleaning, desk cleaning, smoking, incense 

burning and cooking, respectively. 

This chapter contains some sections of verbatim text adapted from a manuscript of “Physical 

properties and lung deposition of particles emitted from five major indoor sources” which 

has accepted on the Air Quality, Atmosphere & Health journal. The author’s contribution: 

writing, contribution of ideas and numerical calculations. 
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7.1. Introduction 

People in developed countries spend the majority of their time (approximately 90%) in indoor 

environments (Delgado-Saborit et al., 2011), and as consequence they may be exposed to a 

range of pollutants of an indoor origin, particularly ultrafine particles which may cause 

cardiovascular, respiratory, and neurological hazards to human health (Diffey, 2011; 

Donaldson et al., 1998). Morawska et al. (2013) reported that 19-76% of the integrated daily 

residential exposure to ultrafine particles originated from indoor generated ones. 

Furthermore, their study found that particles emitted from indoor sources could represent up 

to 30% of the total burden of disease caused by aerosol exposure.  

In recent years, many studies have been performed to characterize a range of indoor 

generated particles from various microenvironments, such as home, office, school or work 

place. For example, He et al. (2004) measured the contribution from 21 different types of 

indoor activities to particle number and mass concentration in 15 residential houses. Their 

study found that the indoor particle number concentrations showed an increase of 1.5 to over 

27 times during indoor activities, while the PM2.5 concentration was also estimated to 

increase during smoking, grilling and frying activities from 3 to 90 times above the 

background level. Similarly, Bhangar et al. (2011) investigated ultrafine particle 

concentration in seven residences in northern California and indicated that cooking was the 

most important indoor activity contributing to the indoor ultrafine particle level.  

Different types of indoor activities release particles with different physical properties 

including their size distribution. The majority of particles generated from indoor combustion 

sources including, cooking, wood burning, candle burning, and fireplace or kerosene heating, 

were found in the submicron size range (Hussein et al., 2006). On the other hand, particles 

originating from resuspension from indoor surfaces due to building occupant movement are 
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predominantly distributed in the coarse mode, with a diameter lager than 1 µm (Thatcher and 

Layton, 1995). Characterization of the particle size distribution of indoor sources is not only 

useful in determining the regional lung deposition of particles, but also in source 

apportionment of indoor aerosols based on receptor modelling methods (Vu et al., 2015b). 

Ogulei et al. (2006a) ran a positive matrix factorization (PMF) analysis on indoor particle 

size distributions in an occupied townhouse in Reston (Washington DC, USA) to identify the 

contribution of indoor sources to indoor aerosols.       

Although the number of studies focusing on indoor aerosols has increased in recent years, the 

physical characterization database of indoor sources, particularly the hygroscopicity of  

indoor particles, which is known to be an important determinant of lung deposition fraction 

of particles in the human respiratory tract is still limited (Vu et al., 2015a). The aim of this 

study was to investigate physical properties including size distribution, density and the 

hygroscopicity of particles, originating from five typical indoor sources. The regional lung 

deposition fraction of indoor particles was calculated based on a modified Multiple-Path 

Particle Dosimetry Model (MPPD). Finally, the minute regional lung dose of indoor 

generated particles was estimated and compared. 

7.2. Materials and Methods 

7.2.1. Site Description and Data Measurement 

The experimental campaign was conducted from 15
th

 August to 8
th

 September 2014 in an 

apartment located in the suburban background of Prague, Czech Republic.  The apartment 

was unoccupied during the sampling period. It is located on the ground floor of a two floor 

building and has a living room, a small bathroom next to the kitchen and two bedrooms, one 

of them containing the instruments.  The apartment (as shown in Figure 7.1) and sampling 

site have been described in detail by Hussein et al. (2006).  
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Figure 7.1: Plan view of the apartment. 

The particle number size distribution (14.6-850 nm) was measured by a Scanning Mobility 

Particle Sizer system (SMPS 3696, TSI Inc., USA), comprising a TSI 3080 electrostatic 

classifier, a TSI 3081 differential mobility analyzer (long DMA) and a TSI 3775 

condensation particle counter (CPC). Larger particles and their number size distribution 

(0.54-18 µm) were measured by an Aerodynamic Particle Sizer (APS 3321, TSI Inc., USA). 

The SMPS system was operated at a low aerosol flow rate of 0.3 L min
−1

 and the APS flow 

rate was 5 L min
-1

, with a 5 minute time resolution. A Hygroscopic Tandem Differential 

Mobility Analyzer (HTDMA) developed by the Laboratory of Aerosol Chemistry and 

Physics, Institute of Chemical Process Fundamentals of the ASCR, (ICPF, Czech Republic) 

was installed to measure the hygroscopic growth factors at 90% relative humidity for 

particles with three selected initial dry sizes with diameters of 50, 100 and 200 nm.  

Indoor particles were generated in a closed kitchen, except cooking activity with opened 

door. The cleaning, smoking, incense burning and cooking activities were conducted during a 

period of approximately 10, 5, 60 and 20 minutes. There are two persons smoked with two 
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cigarettes inside the kitchen during smoking experiments. Cooking experiments were 

conducted by frying sausages with sunflower oil, and toasting breads. Sampling inlet was put 

in breathable zone. All SMPS/APS datasets were corrected for particle loss inside the tube 

(the length of the tube ~ 1.2 m) before analysis. 

7.2.2. Data Handling 

Merging SMPS/APS data 

Two types of data sets (aerodynamic and mobility) collected from the APS and SMPS 

instruments were merged into one particle size spectrum matrix (mobility diameter from 

14.9-10000 nm) using an enhanced algorithm which was developed in CRAN R by Beddows 

et al. (2010). The effective density of the particles was estimated based on the best fit 

between two instrument (APS/SMPS) datasets for number, surface area and volume spectra. 

The final diameter type obtained by this enhanced merging algorithm was mobility diameter, 

and it can be converted to aerodynamic diameter models using the following equations: 

𝐷𝑎 = 𝑥. 𝐷𝑚. √
𝐶(𝐷𝑚)

𝐶(𝐷𝑎)
 (7.1) 

𝑥 = √
𝜌𝑒

𝜌0
 (7.2) 

where, 𝐷𝑎 and, 𝐷𝑚 are aerodynamic and mobility diameters (nm), respectively; C is the 

Cunningham slip correction factor and 𝑥is known as the free parameter that is determined by 

giving the best fit between the APS/SMPS spectra. 𝜌0 is unit density and 𝜌𝑒 is the estimated 

transition-regime effective density (g cm
-3

).  Particles were assumed to be spherical, therefore 

mobility diameter equals to equivalent volume diameter. PM mass concentrations were 

estimated from the merged size distribution and effective density. 
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7.2.3. Estimation of hygroscopic growth factors in regions of the lung 

To analyse the growth factors from the HTDMA, a TDMAinv conversion approach provided 

by the Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI, Switzerland), was 

applied (Gysel et al., 2009). The TDMAinv toolkit was run on the Igor Wave Metric software 

version 6.1. This algorithm retrieved the actual growth factor probability density function 

(GF-PDF) as a piecewise linear function from the measurement distribution function of the 

HTDMA. The GF-PDF is defined as the growth factor probability density function, c(g,D) 

for particles with dry diameter D=D0 to present a growth factor (GF) is g, and the total 

probability of the presented GF is unity: ∫ 𝑐(𝑔, 𝐷0)𝑑𝑔 = 1
∞

0
 (Gysel et al., 2009). In this 

study, the HTDMA measured the mean growth factor at 90% RH: 

𝐺𝐹𝑚𝑒𝑎𝑛 = ∫ 𝑔𝑐(𝑔, 𝐷0)𝑑𝑔
∞

0
. 

To calculate the growth factors at 99.5% RH, which is assumed as the RH in the respiratory 

tract, from the observed growth factor at 90% RH from our TDMA measurements, we 

applied an approach provided by Rissler et al. (2010) using the following calculation:  

Gf-99.5% = √1 +
99.5

90
(𝐺𝑓−90%

3 − 1)
(𝐶𝑘 𝑎𝑡 90 % 𝑅𝐻−0.90)

(𝐶𝑘 𝑎𝑡 99.5 % 𝑅𝐻−0.95)

3
 (7.3) 

where, Ck is the Kelvin curvature correction factor 

Ck at a% RH = exp(
4𝑀𝑊𝜎𝑠

𝑅𝑇.𝜌𝑤𝐷𝑝−𝑎𝑡 𝑎% 𝑅𝐻
)                                (7.4) 

Mw (18 g mol
-1

) and, ρw(1 g cm
-3

) are the molecular weight and density of water; σs is the 

surface tension of the solution (assuming a surface tension of 0.072 J m
-2

); R (8.314 J mol
-1

) 

and T (298 K) are the ideal gas constant and temperature respectively, and Dp is the particle 

diameter (nm).  
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In this study, the HTMA only measured particles at three selected dry sizes of 50, 100 and 

200 nm at 90% RH. For particles of below 50 nm and over 200 nm, this study assumed that 

the soluble volume fraction of particles at a diameter of 50 nm is also descriptive of those 

smaller than 50 nm, while that of particles with a diameter of 200 nm also describes those 

larger than 200 nm. In our measurements, particle size distributions were collected using 

SMPS/APS instruments without a dryer.  It is therefore necessary to calculate the effects of 

ambient humidity on the size distribution measured by the SMPS/APS before using the data 

for the lung dose calculation.  

The dry diameter of a particle can be estimated by the ratio of particle size measured by 

SMPS and the growth factor of that dry particle in the ambient relative humidity (RH). The 

RH for the indoor environment during vacuum cleaning, soap cleaning, smoking, incense 

burning and cooking was 47.9, 57.2, 47.3, 66.2 and 72.8%, respectively. According to our 

calculation, the effect of ambient relative humidity on the measured size distributions is not 

significant since the growth factors of particles were approximately unity under these low RH 

conditions. When a particle penetrates into the lung, its growth not only depends on particle 

size but also upon its residence time. To address the particle growth dependence upon time, 

we used an approach provided by Ferron (1977) as equation (5.2) and (5.3) as introduced in 

Chapter 5. 

7.2.4. Modelling Particle Deposition in the Human Respiratory System. 

Many mathematical models have been developed in recent decades to estimate the total and 

regional lung deposition of particles; for example, the ICRP model (International 

Commission on Radiological Protection), the NCRP model (National Council on Radiation 

Protection and Measurement), the IDEAL model (Inhalation, Deposition and Exhalation of 

Aerosols in/from the Lung) or the MPPD model (Multiple-Path Particle Dosimetry) 
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(Asgharian et al., 2001; ICRP, 1994; Protection and Measurements, 1997). This study utilized 

the MPPD model to calculate the total and regional lung deposition of particles emitted from 

each source.  

The MPPD model was developed by Asgharian et al. (2001). The software (MPPD software 

version 2.11) was downloaded via http://www.ara.com/products/mppd.htm. In this study, we 

used the MPPD model to calculate the deposition fraction of particles by number in three 

regions of the lung, the extra-thoracic (ET), tracheo-bronchial (TB) and alveolar (AL) regions 

and the entire lung for adults. This study used the reference respiratory values for light 

exercise for Caucasian people during cooking and cleaning activities and for resting (sitting) 

during smoking and incense burning based on the reference data recommended by ICRP 

(1994). The input data for the MPPD model are shown in Table 7.1.    

Table 7.1: Input data to the MPPD model based on the reference respiratory values from 

ICRP (1994). 

MPPD model input data 
Cooking, cleaning 

Smoking, incense 

burning 

Man Woman Man Woman 

  

Model Yeh/ Schum 5-Lobe 

Functional Residual Capacity (mL) 3301 2681 3301  2681  

Upper Respiratory Tract Volume 

(mL) 50  50  50  50 

Particle 

Properties 

Density (g cm
-3

) 0.88 -1.56  

Nanoparticle Model YES (for particles smaller than 100 nm) 

Inhalability Adjustment YES (for particles larger than 1 µm) 

Geometric Standard Deviation  1 

Exposure 

scenario 

Acceleration of gravity (cm s
-2

) 981  981  981  981 

Body orientation Upright 

Breathing Frequency (min
-1

) 20 21 12 14 

Tidal Volume (mL) 1250 992 750  464 

Inspiratory Fraction 0.435 

Pause Fraction  0.05 

Breathing Scenario Nasal Nasal Nasal Nasal 

 

http://www.ara.com/products/mppd.htm
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However, the MPPD model may under-estimate the lung deposition of ambient particles if 

their hygroscopic properties are not taken into account (Vu et al., 2015a). In order to correct 

for the influence of particle hygroscopicity, the MPPD curves were modified for both indoor 

and outdoor particles with consideration of their hygroscopicity according to an approach 

introduced by previous studies (Kristensson et al., 2013; Löndahl et al., 2009; Vu et al., 

2015a).  

In this approach, submicron particles which have increased to their equilibrium size by their 

growth in the regional lung have the same deposition fraction in the respiratory system as 

hydrophobic particles with an identical size. Because no information was available for the 

hygroscopic growth factor for coarse particles, this study only calculated the deposition 

fraction of submicron particles (Dp <1 µm) by number. However, the deposition fraction of 

submicron particles by number is not significantly different to that of total particles since the 

submicron particles accounted for more than 99% of total particles by number. 

7.3. Results and discussion 

7.3.1. Particle Size Distributions 

7.3.1.1. Outdoor/indoor background levels 

The total number concentration for outdoor and indoor levels (with no indoor sources) was 

4.2 ± 2.1 × 10
3
 and 3.3 ± 1.3 × 10

3
 particles cm

-3
, respectively. As shown in Figure 7.2, the 

particle number size distribution of both outdoor and indoor particles appears to be the sum 

of log-normal size modes. The number mode for outdoor and indoor particle size 

distributions was 22.9 and 28.4 nm, respectively. The majority of particles by number (84.0% 

and 80.2% of total outdoor and indoor particles respectively) was found in the ultrafine size 

range (Dp <100 nm).  
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7.3.1.2. Vacuum cleaning 

The peak particle number concentration was 9.4 × 10
4
 particles cm

-3
, which decreased to 7.08 

× 10
4
 particles cm

-3 
by the fifteenth minute after cleaning stopped. The particle number size 

distribution shows a unimodal distribution with the mode at 19.8 nm. This mode increased to 

22.9 nm and 26.5 nm at 15 and 30 minutes after the activity stopped. More than 98% of total 

particles by number were found in the ultrafine particle size range (Dp <100 nm) during 

vacuum cleaning. This high number of ultrafine particles emitted from the vacuum cleaner is 

consistent with previous studies (Géhin et al., 2008; Knibbs et al., 2011; Wu et al., 2011). 

Knibbs et al. (2011) investigated particle emissions from 21 vacuum cleaners in a flow tunnel 

and found that the median emission rate of ultrafine particles was 9.92 × 10
9
 particles min

-1
, 

with a median value of CMD (count median diameter) of 25.5 nm.  

In terms of mass concentration, vacuum cleaning also generated a large fraction of coarse 

particles. The peak PM1.0, PM2.5 and PM10 mass concentrations were 1.5, 22.7 and 75.4 µg  

m
-3

. Szymczak et al. (2007) suggest that particles are in part generated by mechanical 

abrasion of the graphite brushes and copper commutator. However, the major source of 

ultrafine particles may be due to the spark discharging that occurs at voltages above 100V 

between two carbon electrodes within the vacuum cleaner motor (Helsper et al., 1993; 

Szymczak et al., 2007). Knibbs et al. (2011) reported lower ultrafine particle emissions with 

two battery-driven vacuum cleaners at lower voltages (14 and 22 V).  
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Figure 7.2: Particle number size distribution from indoor (without indoor sources) and 

outdoor environments and five major indoor sources. 

There are few studies on the chemical properties and morphology of particles emitted from 

vacuum cleaners. Szymczak et al. (2007) used a MOUDI to collect particles in the size range 

of 0.057-18.0 µm and suggested that ultrafine particles comprise mainly copper, which may 

be generated from abrasion of the copper commutator inside the motor. Lioy et al. (1999)  

reported that particles larger than 0.01 µm in diameter mainly consist of chemical binders, 
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copper and carbon (elemental and organic) which were induced by rubbing and arcing 

between carbon rods and the copper commutator. In this study, the effective density of 

vacuum cleaner generated particles obtained by the APS/SMPS merging algorithm was 1.16 

g cm
-3

 which was much lower than the material density of carbon ( ~2 g cm
-3

) and copper (8 

g cm
-3

). This finding suggests that particles released from the vacuum cleaner motor were 

possibly carbon internal void aggregates (DeCarlo et al., 2004; Helsper et al., 1993; Lioy et 

al., 1999) which have a lower effective density. 

7.3.1.3. Kitchen cleaning by soap/W5 spray cleaner 

As seen in Figure 7.2, kitchen top cleaning using organic compounds (brand name:W5 

cleaner) generated predominantly ultrafine particles with a maximum concentration of 1.25 × 

10
5 

particle cm
-3

 and a peak number mode of 30.6 nm. As with the vacuum cleaning, the 

count median diameter CMD increased and particle number concentration decreased rapidly 

due to coagulation and deposition processes after the cleaning activity finished. 

Cleaning using chemical cleaners also generated both ultrafine and coarse particles. Average 

PM1.0, PM2.5 and PM10 mass concentrations during cleaning activity were 2.5, 10.4 and 22.0 

µg m
-3

, respectively. On the other hand, nano/ultrafine particles were probably produced by 

the oxidation and condensation of volatile organic compounds (VOCs) released from the 

cleaning agent during the cleaning activity (Nazaroff and Weschler, 2004; Rohr, 2013; Singer 

et al., 2006a; Zhu et al., 2001). Singer et al. (2006b) reported that a large amount of VOCs 

were found using pine-oil cleaner. They reported a concentration measured overone hour of 

10–1300 µg m
-3

 for individual terpenoids, including -terpinene (90–120µg m
-3

), d-limonene 

(1000–1100 µg m
-3

), terpinolene (900–1300 µg m
-3

), and -terpineol (260–700 µg m
-3

). In 

addition, Sarwar et al. (2004) found that terpenes from cleaning products can react with 

ozone, resulting in secondary organic aerosol production in an indoor environment. 
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This study used W5 orange cleaner, which contains some surface active components (not 

specified in the details on the product label), soap and limonene.  In general, limonene has 

been identified to play an important role in the formation of indoor nanoparticles (Langer et 

al., 2008; Wainman et al., 2000; Wang et al., 2007b; Waring et al., 2011). Langer et al. 

(2008) showed that the nucleation and growth of particles from the reaction of O3 and 

limonene could occur even at a low concentration of reactants. The effective density obtained 

by the APS/SMPS merging process was 0.88 g cm
-3

, indicating that the majority of particles 

generated by use of cleaning products were predominantly organic. 

7.3.1.4. Tobacco smoking  

The particle number size distribution from cigarette smoking showed a unimodal structure 

with a mode at 90 nm and peak number concentration of 2.89 × 10
4
 particles cm

-3
 (note that 

two cigarettes were simultaneously smoked by regular smokers in this experiment). During 

the ageing process, the CMD increased to 120 nm, as shown in Figure 7.2. These results are 

consistent with previous studies (Hussein et al., 2006; Wu et al., 2011). Wu et al. (2011) 

measured the submicron particle number size distribution emitted from five brands of 

cigarettes and found that the number mode ranged from 102.9 to 116.7 nm with the 

maximum number concentration of 1.38 × 10
6
 particles cm

-3
. The number concentration of 

particles is not only dependent on the emission rate of the source, but also the volume of the 

chamber or the indoor environment where the smoking takes place, and the ventilation. 

Fine particles (Dp< 2.5 µm) emitted from cigarette smoking were found to make a dominant 

contribution to mass concentration, with an averaged fraction of more than 82% of total PM10 

mass. Averaged PM1.0, PM2.5 and PM10 concentrations were 3.2, 133.6 and 149.6 µg m
-3

, 

respectively. In a review of indoor particles, Wallace (1996) indicated that the most important 

indoor source of fine and coarse particles in the US was tobacco smoking, with an estimated 
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increase of up to 45 µg m
-3

 in homes with smokers. The effective density of cigarette smoke 

particles was 1.56 g cm
-3 

based on APS/SMPS merging results. This value was slightly lower 

than the material density of black carbon (~2g cm
-3

) and similar to the effective density of 

humic acids and humic-like substances (1.54-1.77 g cm
-3

) from wood burning (Dinar et al., 

2006). 

7.3.1.5. Incense burning and cooking 

Incense burning generated the majority of particles in the accumulation mode, with a CMD of 

around 110-150 nm. The total number concentration was up to 2.25 × 10
5
 particles cm

-3
. In 

the first scan of incense burning, it showed a distinct mode at 30.5 nm, suggesting that some 

nanoparticles were formed in the first few minutes of burning.  

The number size distribution of particles released during incense burning was in agreement 

with previous studies. Wu et al. (2011) measured particle number size distributions from five 

types of incense stick and found that four of them had a CMD ranging from 124.1 to 148.9 

nm and the other had a CMD of 75.5 nm. A similar study conducted by Ji et al. (2010) 

reported that the peak number mode of incense smoke was 136 nm, which was found to have 

a larger size distribution in comparison to other combustion processes such as diesel, wood or 

biomass burning. Unfortunately, the APS sampler had a problem with its inlet during 

measurement of particle size for incense burning and cooking, hence this study could not 

measure the coarse size for incense burning and cooking emissions. In this study, we adopted 

an effective density of 1.1 and 1.0 g cm
-3

 to convert the mobility to aerodynamic diameter for 

incense burning and cooking particles respectively based upon (Buonanno et al., 2009; Ji et 

al., 2010).  

Cooking emissions showed a tri-modal distribution, with a peak mode at 47.8 nm. After 

cooking, the peak mode quickly increased to 135.8 nm. The reason is probably related to the 
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ventilation (open door when people leave the kitchen after cooking activity). During the 

cooking, a large number of particles was generated, with a peak number concentration of 1.57 

× 10
6
 particles cm

-3
. In a review of cooking emission, Abdullahi et al. (2013) reported a large 

fraction of ultrafine particles released during cooking activity with the peak number mode 

around 20-100 nm. 

7.3.2. Hygroscopic Growth Factor of Particles 

7.3.2.1. Hygroscopic growth factor of outdoor and indoor particles when no indoor 

source was present 

The hygroscopic growth factors (Gf) of outdoor and indoor particles at an initial dry diameter 

of 50, 100 and 200 nm were measured during periods when no indoor source was present, 

from 15 to 21 August 2014. The growth factor probability density function (GF-PDF) of each 

particle size from the outdoor and indoor environments is shown in Figure 7.3. For particle 

sizes of 50 nm and 100 nm, two fractions of nearly-hydrophobic (Gf ~1.01-1.11) and less-

hygroscopic particles (Gf ~1.11-1.33) were found dominant in both indoor and outdoor 

environments. For the particle size of 200 nm, the main fractions of particles were less-

hygroscopic and more-hygroscopic (Gf ~1.11-1.85).  

Mean growth factors for outdoor particles were 1.15 ± 0.07, 1.17 ± 0.09 and 1.23 ± 0.10 for 

the particle sizes of 50, 100 and 200 nm respectively. The mean growth factors for indoor 

particles were slightly higher than those of outdoor particles with values of 1.16 ± 0.07 and 

1.18 ± 0.09 for particles with diameters of 50 and 100 nm, respectively. The loss of semi-

volatile organic constituents due to volatilization or uptake on the indoor wall surface during 

penetration from the outdoor to indoor environment could explain the small decrease in the 

fraction of nearly hydrophobic particles in the indoor environment when no indoor source 

was present. On the other hand, the mean growth factor for indoor particles with a diameter 
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of 200 nm was 1.22 ± 0.07, which was practically the same as the growth factor for outdoor 

particles (1.23 ± 0.10).  

 

Figure 7.3: Hygroscopic growth factor probability density function (GF-PDF) for outdoor 

(left) and indoor (right) particles. 

7.3.2.2. Hygroscopic growth factor of particles generated from indoor sources  

Figure 7.4 shows the hygroscopic growth factor of particles emitted from five indoor sources 

at three particle sizes of 50, 100 and 200 nm. Particles generated from vacuum cleaning were 

found to be “nearly-hydrophobic” with an average growth factor (Gf) of around 0.98-1.10 for 

particle sizes of 50 and 100 nm. This finding is in agreement with the discussed hypothesis 

that particles emitted from vacuum cleaners mainly comprise carbon and copper. The growth 

factor of particles of 200 nm was 1.16, which is higher than those for smaller particles due to 

the mix of particles generated from the vacuum cleaner motor and background. 
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Figure 7.4: Hygroscopic growth factor of particles generated from different indoor sources. 

Particles emitted from soap/W5 cleaner were found to be “less-hygroscopic” (Gf ~1.12-1.15 

for particles at 50 and 100 nm). This finding is consistent with the above suggestion that the 

ultrafine particles generated by cleaning activities using soap/W5 cleaner predominantly 

consist of organic compounds such as the products of oxidation of limonene. Virkkula et al. 

(1999)conducted a measurement of the hygroscopic properties of aerosol formed by 

oxidation of limonene, α-pinene, and β-pinene, and found that the hygroscopic growth factor 

was approximately 1.10 at 84% RH, consistent with our results. The hygroscopic growth 

factor of particles of 200 nm was 1.22. This high growth factor could also be explained by the 

mix of particles generated from cleaning activities and background in the large size range, 

while the majority of particles during this activity were found in the ultrafine size range. 

The average hygroscopic growth factors of particles emitted from cigarette smoking were 

approximately 1.01- 1.04 for all sizes of 50, 100 and 200 nm. This hygroscopic growth factor 

is found slightly to be higher than diesel combustion (Gf ~1.01), but lower than biomass 

burning (Gf ~1.04-1.10). This low hygroscopic growth factor is probably due to the chemical 

properties of particles generated from combustion, which mainly comprise black carbon and 

organic compounds. Morawska et al. (2005) found a similar count median diameter for both 

inhaled and exhaled submicron particles, suggesting that the change in particle size after its 
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travel into the lung is not significant.  However, the lack of growth of particles cannot be 

concluded with certainty due to different temperature and humidity regimes between the 

chamber and the lung. Li and Hopke (1993) found the hygroscopic growth factor of cigarette 

mainstream and sidestream smoke particles at 200 nm was approximately 1.40-1.42 at RH 

99.5%, which was slightly higher than the estimated growth factor value in our study (Gf 

~1.3 for Dp =200 nm at 99.5% humidity calculated from Gf ~1.04 at 90% measured by 

HTDMA).   

Similarly, particles emitted from incense burning were found to be nearly hydrophobic with 

the hygroscopic growth factors ranging from 1.01 to 1.05 for all particle sizes of 50, 100 and 

200 nm. A dominance of carbonaceous particles released from incense burning can explain 

those low hygroscopic growth factors. Wang et al. (2007a) measured the characteristics of air 

pollutants from incense burning in two temples in Hong Kong and found that the organic and 

elemental carbon accounted for around 60% of PM2.5 mass, while inorganic ion species only 

accounted for 12% of PM2.5 mass. Li and Hopke (1993) predicted that the hygroscopic 

growth factor of particles at 99.5% RH from the burning of incense was around 1.45 and 1.7 

for particle sizes of 100 and 200 nm, while the values in our estimation were much lower (Gf 

~1.16 and 1.31 for particles of 100 and 200 nm at 99.5% RH). Li and Hopke (1993) indicated 

that 8% errors were found in their estimation of the hygroscopic growth ratio mainly due to 

the humidity uncertainty in their HTDMA system. Furthermore, variations in particle 

composition and influences of the local environment may account for differences when 

measuring the hygroscopic growth factor of combustion aerosols.   

Particles generated from cooking activity were found to be nearly-hydrophobic (Gf ~1.0-1.02 

for all particle sizes of 50, 100 and 200 nm). In our study, we performed the cooking 

experiments by frying sausages with sunflower oil and toasting bread. This result is 
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consistent with Dua and Hopke (1996), who observed that there was no growth of particles 

emitted from cooking oils and sweet Italian sausages.   

7.3.2.3. Growth factors of particles in the lung 

The mean growth factors for particles from outdoors, indoors without indoor sources, and 

five major indoor sources in their maximum growth at 99.5% and different regions of the 

lung are shown in Figure 7.5.   

 

Figure 7.5: Hygroscopic growth factors at 99.5% RH and in the human respiratory tract. 

As discussed above, the hygroscopic properties of particles arising from different indoor 

activities show different characteristics. Particles generated from soap/W5 cleaning products 

show a more hygroscopic tendency than particles from indoor combustion sources. Particles 

emitted from cooking activities show no significant growth in all sizes. When particles 

penetrate into the respiratory tract, those with a diameter below 200 nm can quickly reach 
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their equilibrium size in all lung regions. For particles larger than 400 nm, growth factors in 

the ET region can be more than 10% lower than those in the AL region.  

7.3.3. Effects of Particles from Indoor Sources on the Lung Dose of Particles 

7.3.3.1. MPPD models for different genders and activities 

Based on the MPPD model, the deposition fraction curves of hydrophobic particles for men 

and women in light exercise and resting are shown in Figure 7.6. The total deposition fraction 

was found to be slightly greater for men than for women when resting. Specifically, the 

deposition fraction of ultrafine particles in the AL regions was found to be greater by up to 

1.35 times greater for men compared to women. On the other hand, there was no significant 

difference between the lung deposition fraction for men and women during light exercise. 

 

Figure 7.6: Deposition fraction curve from the MPPD model for man and woman in resting 

and in light exercise. 

7.3.3.2. Regional lung deposition of particles emitted from each source 

The total and regional lung deposition efficiencies of outdoor and indoor particles (with and 

without indoor source particles) for adults (males and females) by number are shown in 

Figure 7.7. The fractional total lung deposition fraction for outdoor particles and indoor 
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particles (without indoor sources) was 0.49 and 0.45. The slightly lower total deposition of 

particles from the indoor environment compared to the outdoor one was due to the shift in the 

outdoor particle number size distribution to a larger size range when they penetrated to indoor 

environments from outdoors. For both environments, a dominant fraction of particles was 

deposited in the AL region (57.6%), followed by the TB region (25.5%). Only 16.6% of 

particles by number were deposited in the ET region. 

 

Figure 7.7: Deposition fraction of particle number in regions of the lung for adults. 

For the indoor sources, alteration in the lung deposition of particles is mainly due to the 

change in size distribution. Up to 62 and 73% of total particles were deposited in the lung 

during soap/W5 cleaning and vacuum cleaning. This can be explained by the majority of 

particles released during cleaning activities being present as nanoparticles, which easily 

penetrate into the deeper regions of the lung. In contrast, the lung deposition fraction of 



 

169 
 

particles emitted from indoor combustion sources such as cooking, incense burning or 

smoking was lower because the main fraction of particles by number was found in the larger 

size range, particularly in the Aitken range, for cooking and the accumulation mode for 

incense burning or cigarette smoking.  The total lung deposition fractions were 0.49, 0.32 and 

0.37 for indoor particles generated during cooking, incense burning and smoking. For these 

particles, a predominance of deposited particles by number was found in the AL region (56.7- 

68.1%), followed by the TB region (19.5-27.0%). Only 12.2-16.2% of total deposited 

particles by number were found in the ET region. 

7.3.3.3. Discussion of the contribution of indoor sources to the lung dose of aerosols 

In order to determine and compare the effects of indoor sources upon human exposure, this 

study has compared the lung dose rate of particles by number in the indoor environment with 

and without indoor activities. The lung dose of particle number in different regions of the 

lung (i) within a specific particle size range was calculated based on the following equation 

(Hussein et al., 2013): 

Dosei, = VE*DFi*CN*Δt (7.7) 

where, VE is the minute ventilation (m
3
/min); DFi is the deposited fraction of particles in the 

different regions of the human respiratory tract; CN is the total number concentration (particle 

cm
-3

); and Δt is the exposure time period (minutes). The respiratory tract deposition particle 

dose rate, which is defined as the total particle number deposited in the respiratory system 

during a specific time period (in this study, Δt was set up to 1 minute), can be estimated from: 

Minute dose ratei, = VE*DFi*CN (7.8) 
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VE was set at 7.75 × 10
-3

 for sitting and 2.29 × 10
-2

 m
3
 minute

-1
 for light exercise, calculated 

by averaging the respective VE values for men and women at two exercise levels (sitting and 

light exercise) (ICRP, 1994). 

Table 7.2: Lung deposition of particles from outdoor and indoor environments (without and 

with indoor sources) for adults (averaged deposition fraction for both men and women). 

  

Deposition fraction 
VE         

(m
3
 min

-1
) 

Dose (10
6
 particles min

-1
) 

AL TB ET Total AL TB TB Total 

Outdoors 
0.28 0.13 0.08 0.49 

7.75*10
-3 9.0 4.0 2.6 16.1 

Indoors* 
0.26 0.11 0.07 0.45 

7.75*10
-3 6.6 2.9 1.9 11.4 

Vacuum cleaning 
0.46 0.16 0.11 0.73 

2.29*10
-2 992.5 338.2 238.0 1568.3 

Soap/W5 cleaning 
0.42 0.12 0.08 0.62 

2.29*10
-2 1419.3 406.9 258.4 2084.5 

Smoking 
0.21 0.10 0.06 0.37 

7.75*10
-3 47.1 21.5 13.7 82.9 

Incense burning 0.19 0.08 0.05 0.32 7.75*10
-3 328.7 128.3 86.6 549.5 

Cooking 0.33 0.10 0.06 0.49 2.29*10
-2 11874.5 3413.3 2159.0 17630.0 

*: Indoor environment with no indoor sources; VE: Ventilation rate (minute ventilation. 

Table 7.2 shows the minute dose rate of particles by number for adults in the outdoor and 

indoor environment (with and without indoor sources). During indoor activities, humans can 

be exposed to a huge number of particles. For example, a person when cooking could have an 

exposure of more than 1.76 × 10
10

 particles every minute, which is a thousand times higher 

than the exposure value for outdoor particles (16.1 × 10
6
 particles). The one minute dose of 

cooking particles by number at the light exercise level is equivalent to 18.3 and 6.2 hours 

exposure to outdoor particles at the resting and exercise respiration rate respectively. 

Similarly, the total minute lung dose of particles from vacuum cleaning, soap/W5 cleaning, 

smoking and incense burning could be up to 1.6 × 10
9
, 2.1 × 10

9
, 8.3 × 10

7
, 5.5 × 10

8
 

particles minute
-1

. Based on equation (7.7), it is clear that the minute lung dose rate of 

particles strongly depends upon VE, DFi and CN. While the total DFi for particles from the 
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different indoor sources had a range of 0.32 (for incense burning) to 0.73 (for vacuum 

cleaning) and the minute ventilation rate for a male adult can range by nearly 6.7 times from 

7.5 × 10
-3

 to 5 × 10
-2

 m
3
 min

-1
 (ICRP, 1994), the concentration of particles by number was 

found to show the largest variation from 3.3 × 10
3
 (for indoor environment with no source) to 

1.57 × 10
6
 (for cooking emissions) particles cm

-3
. This suggests that the concentration level is 

the main factor controlling the lung dose.  

Indoor particles not only contribute a large fraction of human exposure to aerosols during 

indoor activities, but also after indoor activities. Figure 7.8 shows the evolution of minute 

lung dose rate, concentration and lung deposition fraction of indoor particles after finishing 

indoor activities under low ventilation conditions (closed windows and door after indoor 

generation). It was found that the total concentration and minute lung dose decrease 

dramatically after stopping indoor particle generation, but the minute lung dose was still very 

high after 30 minutes, especially for cleaning activities. Because of deposition, coagulation 

and the mixing with outdoor particles due to air exchange, the size was also changed, altering 

the lung deposition fraction. For cleaning activities, the lung deposition fraction decreased to 

that of average indoor particles without indoor sources. For incense burning and passive 

smoking, the lung deposition fraction first decreased within the first 30 minutes after 

finishing indoor activities, but then increased to the background level. This can be explained 

by the deposition of particles on kitchen surfaces in the first 20-30 minutes which shifts the 

particle size distributions to a larger size. Subsequently, the mixing with outdoor particles 

which have a smaller size than incense burning and smoking aerosols, moves the particle 

number size distribution to the smaller size range, consequently affecting deposition fraction.   
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Figure 7.8: Minute lung dose rates, concentrations and lung deposition fractions of particles 

after different indoor activities. 
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Uncertainty for minute dose rate calculation  

As shown in equation (8), the uncertainty for minute dose rate calculation depends upon the 

variation of minute ventilation (VE), deposition fraction (DF), and particle number 

concentration (CN). In this study, the minute ventilation is assumed as a constant value for 

each activity. Therefore, the uncertainty in the minute dose rate calculation can be estimated 

from the uncertainties in the lung deposition fraction and particle number concentration. The 

relative standard error of lung deposition fractions of particles generated from each indoor 

source mainly depends on the variation of input size distribution, and subject difference such 

as gender, and lung structure. Since the MPPD model does not provide estimates of 

uncertainty, this study could only estimate the errors caused by the variation of particle 

number size distribution and gender. The estimated relative standard deviations of total lung 

deposition fraction calculated for vacuum cleaning, soap/W5 cleaning, smoking, incense 

burning and cooking particles were 2.7, 4.8, 8.1, 9.4 and 4.1%, respectively. 

 

The uncertainty in particle number concentrations measured for each source depends on the 

variation of particle number concentrations obtained by each SMPS measurement scan during 

the period of indoor source generation. The cleaning, smoking, incense burning and cooking 

experiments were performed during a period of approximately 10, 5, 60 and 20 minutes 

respectively. Each SMPS measurement combined two SMPS scans during 5 minutes. The 

relative standard deviation was estimated by dividing the standard deviation by the average 

number concentration of particles measured during each activity. The estimated relative 

standard deviation for particle number concentration measurement was  17.4, 9.4, 7.1, 22.3, 

14.4% for vacuum cleaning, soap/W5 cleaning, smoking, incense burning and cooking 

measurements. By combination of the relative standard deviation for lung deposition 

fractions and particle number concentrations, the uncertainty in the minute lung dose rate was 
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estimated as 17.6%, 10.6%, 10.8%, 24.2% and 15.0% respectively. Clearly, the uncertainty in 

minute lung dose rate depends mainly upon the variation of particle number concentration.  

 

7.3.4. Estimation of daily regional deposited dose: A case study 

This section aims to estimate the daily regional deposited dose of submicron particles for 

inhabitants in the suburbs of Prague (Czech Republic) in the case of absent indoor sources. It 

then estimated the relative contribution of indoor sources to the total daily lung dose. The 

daily regional dose of particles was calculated following equation (1.3) which is introduced in 

the Chapter 1. The daily lung dose depends on the particle concentration, minute ventilation, 

deposition fraction and exposure time in the different exposure scenarios. 

7.3.4.1. Daily time activity patterns 

Daily time activity patterns data in this work is based on Novák and Sýkora (2007) and 

Schweizer et al. (2007). This was carried out using the time microenvironment activity diary 

for suburban inhabitants in Prague during working days. As a result, people spend nearly 

94% their time indoor environments. The average time per day at home, work indoors and 

other indoors was 13.9, 6.5 and 1.7 h day
-1

, respectively. Novák and Sýkora (2007) found that 

people spend 6.5 h day
-1

 on sleeping from 23:00 pm to 07:00 am, 1.8 h day
-1

 on eating and 

personal hygiene, 3 h day
-1

 on leisure and entertainment, 1.5 h day
-1

 on homework and care 

for children, 0.5 h day
-1

 at neighbourhood house during working days. Suburban inhabitants 

spend approximately 2 hours day
-1

 on transportation during 7:00-9:00 am and 17:00-20:00, 

corresponding to traffic hours. 70% of them used their passenger cars for commuting to work. 

According this information, this study assumed the daily time activity patterns and minute 

ventilation for each activity in the below table 7.3: 
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Table 7.3: Assumption of time-activity and location for employments living in new suburbs 

of Prague according to Novak and Sykora (2007) and Scheizer et al. (2007). 

Activity 

Time 

spend 

(h) 

Time periods Location 

Sleeping 6.6 23:00-7:00 Home 

Eating and personal hygiene 1.8 7:00-8:00; 12:00-13:00; 18:00-20:00 Home 

Work and study 8.8 08:00-19:00 Office 

Leisure-at home 1.8 17:00-23:00 Home 

Leisure- outdoor 1.2 16:00-22:00 Outdoor 

Homework and child care 1.5 17:00-22:00 Home 

Transportation 2 7:00-9:00; 17:00-20:00 Car 

Shopping and service 0.3 15:00-19:00 Shop 

 

7.3.4.2. Relative contribution of indoor sources to the daily lung dose 

In terms of particle number size distributions in each microenvironment, we assumed the 

particle levels at homes, offices and shops are similar to those indoor levels measured in the 

unoccupied kitchen during the sampling campaign. We assume particles in a car cabin was 

described by lognormal distributions with a CMD of 53.4 nm (ϭ =1.35) from previous work 

by Joodatnia et al. (2013) and Apte et al. (2011). In terms of minute ventilations, this study 

was adopted from parameters recommended by ICRP (1994). This study assumes that minute 

ventilations during eating and personal hygiene, leisure at home, and transportation are 

similar to those at rest or sitting activity (0.54 m
3
 h

-1
 for men and 0.39 m

3
 h

-1
 for women). 

The minute ventilations for outdoor activities (leisure at outdoors) are similar to those for 

light exercise levels (1.5 m
3
 h

-1
 for males and 1.25 m

3
 h

-1
 for females), while minute 

ventilations for work and study, and homework and childcare are assumed as an average of 

those from resting and light exercise levels. Particle number concentrations and ventilations 

for men and women in different exposure scenarios are shown in Table 7.4. 
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Table 7.4: Assumed particle number concentrations, CMD and minute ventilations for males 

and females in the different exposure scenarios. 

Activities 
Number 

(10
3 
particles cm

-3
) 

CMD 

(nm) 

VE (m
-3

 h
-1

) 

(for a man) 

VE (m
-3

 h
-1

) 

(for a woman) 

Sleeping 3.2 
 

71.4 0.45 0.32 

Eating  and personal hygiene 3.5
 

65.4 0.54 0.39 

Work and  study 3.1
 

66.7 1.02 0.82 

Leisure at home 3.8
 

60.9 0.54 0.39 

Leisure outdoors 4.9
 

53.4 1.5 1.25 

Homework and child care 3.8
 

60.7 1.02 0.82 

Transportation 39
 

42.5 0.54 0.39 

Shopping and service 3.4
 

60.4 1.02 0.82 

 

 

Deposition fractions (DFs) of particles in the human respiratory tract for adults in the 

different exposure scenarios were estimated by a MPPD model as shown in Figure 7.9. The 

DF values in total lung ranged from 0.38 to 0.57. Deposited particles were mainly found in 

the AL region (54.3-65.4%), followed by the TB region (21.2-27.2%) and the ET region 

(13.3-18.5%).  

By combination of regional lung deposition fraction as shown in Figure 7.9 with daily time 

activity patterns in table 7.4, the daily regional lung dose of particles by number for a man 

and a woman in case of no indoor sources were estimated as shown in Figure 7.10.  Daily 

dose of particles by number in the whole lung was 51.8 × 10
9
 and 47.8 × 10

9
 particles day

-1
 

for a man and a woman, respectively. The majority of deposited particles were found in the 

AL region (61.1%), while only 24.4% and 15.3% of deposited particles were found in the TB 

and ET regions. These findings are in agreement with previous results by Hussein et al. 

(2013) who reported that the total deposited dose of fine particles on workdays was around 

57 × 10
9
 and 40 × 10

9
 particles day

-1
 in adult males and females. 
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Figure 7.9: Deposition fractions of particles in lung regions for a man and a woman in the 

different exposure scenarios. 
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Figure 7.10: Daily regional lung dose of particles by number for a man and a woman in case 

of no indoor sources. 
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By considering exposure to particles released by indoors, we assumed time exposure to 

particles emitted from each indoor sources is about 10 minutes.  The daily regional lung dose 

of particles associated with 10 minutes exposure to each indoor source were estimated and 

shown in Figure 7.11. Indoor sources have marked effects on both total and regional lung 

dose. For example, by adding expose to cooking emissions for 10 minutes, daily total 

deposited dose by number for adults will increase by 4.5 times. 

 
Figure 7.11: A comparison of averaged daily regional lung dose for adults between no indoor 

source and with exposure to each indoor source for 10 minutes. 
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7.4. Conclusion  

Particles released from indoor activities have many physical properties such as concentration, 

particle size, particle density and hygroscopicity which are relevant to determining lung 

deposition. Particles generated from vacuum cleaning and soap/W5 cleaning activities are 

mainly distributed in the nano size range while those from incense burning and cigarette 

smoking were found predominantly in the accumulation mode, and those from cooking 

activity were found in the Aitken mode. Most of the particles released from indoor sources 

were nearly-hydrophobic, except the particles from soap/W5 cleaning, which were less-

hygroscopic. Particles from cleaning activities showed very high total lung deposition 

fraction by number. This was up to 0.73 and 0.66 for vacuum cleaner and soap/W5 cleaning 

particles, respectively. 

Particles are predicted to deposit by number mainly in the AL region, followed by the TB 

region. This study found that people could be exposed to high aerosol concentrations due to 

indoor sources.  The minute lung dose of particles during indoor source episodes was found 

to be much greater than the indoor background level without an indoor source. The total 

minute lung dose rate of particles from vacuum cleaning, soap/W5 cleaning, smoking and 

incense burning could be up to 1.6 × 10
9
, 2.2 × 10

9
, 7.2 × 10

7
, 5.4 × 10

8
 particles minute

-1
 

respectively, while those for average outdoor and indoor background levels were 1.4 × 10
7
 

and 1.0 × 10
7 

particles minute
-1

. This suggests that indoor sources may make the main 

contribution to the total lung dose of indoor particles expressed by number.   
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CHAPTER 8: CONCLUSION 

 

8.1. Summary 

In summary, this study has investigated the physical properties (particle number size 

distribution, hygroscopicity and effective density) of particles measured in different 

microenvironments, including both outdoor and indoor sources. These properties play very 

important roles in determining the dose of particles in the human respiratory system.  In 

addition, this study successfully utilized particle number size distributions to apportion the 

sources of particles using a PMF model. The dynamic processes of particles between outdoor 

and indoor environments were addressed. 

Particle number size distributions were measured at ambient sites (traffic, urban background, 

and rural areas), microenvironments (a house and, a flat) and a chamber (brake rig test). 

Atmospheric particle size distributions generated from multiple sources can be described as a 

sum of log-normal distributions.  Each source displays a characteristic modal structure such 

as peak mode or count median diameter. After emission from the source, particles are subject 

to various dynamic processes, such as nucleation, coagulation, deposition, condensation or 

evaporation, which alter their sizes. By number, ultrafine particles, the main contributors to 

particle number concentration in urban areas, accounted for the majority of particles emitted 

from combustion sources. Formation of nanoparticles (Dp< 30 nm) has been found from both 

outdoor sources (i.e. brake emissions) and indoor sources (i.e. cleaning activities).  In 

addition, a mass balance model was used to predict indoor particle size distributions from 

outdoor PNSD data sets. It was found that a mass balance model can not only accurately 

predict indoor PNSDs, but can also help us estimate the loss rates of particles. These loss 

rates depend greatly on both particle size and concentrations. Smaller particles have higher 
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loss rates. Deposition, coagulation and evaporation play important roles in the determination 

of indoor PNSDs in a house heavily affected by road traffic emissions.      

The typical hygroscopicity of particles shows a wide variation of growth factors among 

different environments, depending upon local sources and air masses. In urban environments, 

hydrophobic and less-hygroscopic particles were dominant whereas more-hygroscopic 

particles were ubiquitous in marine environments. The dominant hydrophobic and less-

hygroscopic particles in the urban environments could be explained by the sources of 

particles at these sites, where traffic-related emissions were found to be the main source of 

urban ultrafine particles. Freshly emitted traffic particles and biomass burning particles were 

hydrophobic or less-hygroscopic, whilst growth factors were found to increase during ageing.  

This study investigated the hygroscopic properties of particles measured in both outdoor and 

indoor environments in Prague, Czech Republic. The hygroscopic factor of a particle was 

found to be a function of its size. Large particles, which normally consist of more-

hygroscopic particles, had higher growth factors than small ones. For particles with diameters 

of 50 nm and 100 nm, two fractions of nearly-hydrophobic (Gf ~1.01-1.11) and less-

hygroscopic particles (Gf ~1.11-1.33) were found to be dominant in both indoor and outdoor 

environments. For particles with diameter of 200 nm, the main fractions of particles were 

less-hygroscopic and more-hygroscopic particles (Gf ~1.11-1.85). The hygroscopic 

properties of particles generated from five major indoor sources, including cleaning activities, 

tobacco smoking, incense burning and cooking, were studied. Most of the particles released 

from those sources were nearly-hydrophobic, apart from those from soap/W5 cleaning, which 

were less-hygroscopic. Based on the merger of SMPS and APS data sets, the effective 

densities of particles from outdoor and indoor environments, and five indoor sources were 

also investigated. Effective density has no significant effects on the regional lung dose of 

ultrafine particles because the main deposition mechanism of these particles is diffusion. 
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This study developed an approach to calculating the dose of particles by considering particle 

growth in the human respiratory tract due to its hygroscopic properties. It was found that the 

hygroscopic properties of particles have marked effects, not only on total lung deposition but 

also on the regional lung deposition of particles, leading to a variation in DFs between the 

sampling environments. This study estimated the lung deposition fractions of submicron 

particles emitted from different environments and sources. By number, the lung deposition 

fractions of particles released from cleaning activities were much higher than those of 

particles from combustion sources (cooking, incense burning or tobacco smoking). Indoor 

sources were major contributors to the total daily lung dose of particles by number.   

Furthermore, the study combined the PMF and ICRP models to apportion the sources of the 

lung dose of ambient submicron particles in the human respiratory system (Figure 8.1).  It 

was found that traffic emissions were the most common ambient source of submicron 

particles deposited by number into the human respiratory tract. They accounted for 67.8% of 

particles deposited in the total lung by number at the North Kensington site. In terms of 

regional lung dose, they represented 59%, 68.5% and 70.8% of the total particle number 

deposited in the ET, TB and AL regions, respectively. Secondary aerosols contributed only 

approximately 5.1% of submicron particles deposited in the total lung by number, but they 

represented a major source of particles deposited in the regions and total lung by volume. In 

terms of deposited particles by surface area, secondary aerosols were found most dominant in 

the ET region, while the main contributors in the TB, and AL regions were traffic emissions 

and urban accumulation mode.  
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Figure 8.1: Source apportionment of particles deposited in the human respiratory tract. 

8.2. Conclusion 

This thesis presents a comprehensive data set on physical properties of particles (particle 

number size distribution, particle density and hygroscopic growth factor) and their 

implications for human lung dose calculation and source apportionment studies. The key 

findings obtained from this thesis are given as follows: 

 Particle size distributions measured from different micro-environments display different 

characteristic modal structure such as peak mode or count median diameter. Ultrafine 

particles are accounted for the majority of particles by number emitted from combustion 

sources. 
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 Hygroscopic properties of particles plays an important role for the calculation of the 

human regional lung dose of particles, particularly for larger particles (Dp >200 nm). 

Most of the particles released from major indoor sources (vacuum cleaning, smoking, 

incense burning and cooking) were nearly-hydrophobic, apart from those from 

soap/W5 cleaning, which were less-hygroscopic. 

 The sources of ambient particles deposited in the human respiratory system were 

successfully estimated by application of both PMF and ICRP models on the PNSD 

data set. It concludes that traffic emissions were the most common ambient source of 

submicron particles deposited by number into the human respiratory tract at urban 

background area. 

 Indoor sources have marked effects on daily lung dose of particles in the human 

respiratory system. For example, daily total deposited dose by number for adults will 

increase by 4.5 times by adding exposure to cooking emissions for only 10 minutes.     

  

8.3. Implications 

This work has made an extensive study of the physical properties of particles. These 

properties not only provide us with information on atmospheric processes, but they also play 

vital roles in source apportionment and human exposure studies. 

In terms of the source apportionment studies of particles, it has been shown that the sources 

of particles can be identified by running a PMF model on their number size distributions. In 

addition, we can apportion the sources of particles in the human respiratory tract based on an 

application of lung dose models to the PMF results. These findings are useful in identifying 

which sources are most relevant for deposited particles in the human respiratory tract by 

different metrics (number, surface area and volume).  This therefore helps policy makers to 
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make decisions on the control of particulate matter. For instance, we should consider traffic 

emissions first in order to reduce ambient particles by number due their predominant 

contribution (59.0 - 70.8 %) in both the total and regional lung, whereas we need to consider 

secondary aerosols and urban accumulation mode mostly urban combustion, if the reduction 

target is submicron particles by mass. 

In terms of human exposure studies, it has been shown that the deposition fraction of particles 

depends greatly on their size and hygroscopic properties. As a result, particles emitted from 

different sources shows different deposition fractions in the human respiratory system due to 

their different size distribution and hygroscopic properties. Estimating the total and regional 

lung dose of particles can help people control the risk of aerosols. Moreover, this work can be 

utilized in the toxicology of aerosols.  

8.4. Limitations and Future directions 

In the study, we have estimated the regional lung dose of particles from ambient 

environments and indoor sources using the ICRP and MPPD models with consideration of 

their hygroscopic properties and densities. However, one limitation of the work is that the 

analysis of size distributions is limited to those within the range of the SMPS. In addition, the 

H-TDMA system can measure the hygroscopic properties of submicron particles only and 

therefore particle dose (especially for volume/mass) due to the larger size fractions is not 

considered. In future studies, the lung dose of large particles should be estimated. (Harrison 

et al., 2010) suggest that lung dose, not mass metrics (PM2.5 and PM10), is the key metric to 

determine the health outcomes of particle exposure. Hence, this could be usefully linked to 

epidemiological studies in order to evaluate the consequences of the doses estimated. 

Another limitation of this work is that the effects of morphology and the composition of 

particles on their deposition fraction in the human respiratory tract have not fully considered.  
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In future studies, a new deposition approach with consideration of particle shape and 

chemical composition, is needed to estimate the regional lung dose of non-spherical aerosols. 

In the brake rig test experiments, this study used a closed chamber. However, the PNSD of 

brake ware particles could be changed due to the dilution with different air ventilation by 

wind in the real scenarios. And the temperature of pad should be higher in the real scenarios 

than the lab experiments by the heat transfer from car engine through the shaft. Therefore, in 

the next experiments PNSD of brake ware particles should be measured in an open chamber 

with well control of air ventilation and temperature. In addition, more particle number size 

distributions in other microenvironments such as offices, schools or other working places 

should be collected in order to estimate the daily lung dose. The lung dose calculation of 

chemical species associated with aerosols, which can maybe help us understand the toxicity 

of aerosols, should be addressed in future work. 
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