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Abstract 

 

Rituximab, a monoclonal antibody directed against the human CD20 antigen, causes 

profound depletion of all B cells. When used in patients with autoimmune disease, IgG 

autoantibody titres often fall whilst serum IgG anti-tetanus toxoid antibody titres are 

unaffected. Antibodies of both these antibody specificities have features associated with 

production by long-lived CD20
-
 plasma cells that should be resistant to Rituximab. 

Reasons for the differential loss of these apparently similar types of antibody were 

investigated.  

Initial experiments established multiplexed bead assays to measure, in parallel, serum 

titres of multiple antibody specificities. Paired acute and convalescent sera, from 11 

patients treated with Rituximab for Wegener‟s granulomatosis, were then studied. During 

5 months after treatment, and following clinical remission, IgG anti-Proteinase 3 

autoantibody titres fell gradually. All other measured antibody titres remained little 

changed. These findings favour the hypothesis that autoantibody producing plasma cells 

are sustained by disease related inflammation.  

Subsequent experimental studies support a wider hypothesis - that inflamed sites can 

support increased plasma cell numbers. In the prolific humoral response of QM mice to 

immunisation with NP-Ficoll, concurrent infection with attenuated Salmonella enterica  

serovar Typhimurium increases splenic capacity to support plasma cells. The enhanced 

support may reflect locally increased IL-6 production. 
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1 CLINICAL OBSERVATIONS LEADING TO THIS WORK, 
AND OUTLINE OF THE THESIS 

Rituximab is a monoclonal antibody directed against the human CD20 antigen, which is 

expressed on the surface of B cells but not expressed on terminally differentiated plasma 

cells [1]. This antibody, which was developed for the treatment of B cell neoplasms, 

causes profound depletion of CD20
+
 cell populations [2]. 

A formal randomised trial has also confirmed its therapeutic efficacy in rheumatoid 

arthritis [3]. To date evidence of efficacy in other autoimmune diseases is from case 

reports and case series [4-8], but further randomized controlled trials are currently 

underway [9;10].  

Some of these publications report the preservation, during Rituximab therapy, of levels of 

serum immunoglobulin and of serum titres of some antibody specificities including IgG 

against the protein antigen tetanus toxoid [3;11-13]. This is not surprising as the plasma 

cells that produce antibody in the blood and tissue fluids are not CD20
+
 [1], and so should 

not be affected directly by Rituximab. These same publications [3;11-13], and others 

[4;5] report that in contrast to the stability of total serum IgG levels following Rituximab 

treatment there is a selective decline in titres of IgG autoantibodies. The relevant 

autoantigens in these publications – immunoglobulins and proteinase-3 (PR3) – are also 

proteins. Thus, prior to these observations, it was tempting to assume that the production 

of corresponding autoantibodies was by a pathway analogous to that producing antibody 

against tetanus toxoid. The effect of Rituximab on autoantibody production was therefore 

unexpected. This thesis seeks to address this paradox. 
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Our first aim was to assess whether Rituximab therapy affected serum levels of a large 

number of antibodies specific for extrinsic antigens. The range of antibodies studied was 

chosen to reflect responses that are a) generated via the known different antibody 

production pathways, and b) generated from the whole spectrum of B cell subtypes. Tests 

were performed on paired sera from patients before and after treatment with Rituximab.  

All patients had Wegener‟s granulomatosis, and detectable levels of the associated 

autoantibody IgG anti-PR3. This autoantibody is one of those previously noted to decline 

after Rituximab therapy [4;5;12].  

The background to this work is discussed in detail in Chapter 2. Previously established 

methods that were used in studies reported in this thesis are reported in Chapter 3. Before 

the serological studies themselves could be performed it was necessary to develop the 

technology to assay some of the antibodies of interest – particularly those specific for 

pneumococcal capsular polysaccharides (PnCP). The development of these assays is 

described in Chapter 4. Findings from serological studies of human sera are reported in 

Chapter 5. 

The results of our human studies do not support the concept that the vulnerability of 

autoantibody production to Rituximab therapy was a feature of either i) a particular B cell 

subset or ii) a particular antibody production pathway. Furthermore the findings do not 

suggest that autoantibody forming cells (autoAFC) are predominantly short lived. We 

therefore sought other hypotheses to explain the paradoxical clinical observations.  

The most plausible alternative hypothesis appears to be that autoAFC are sustained in 

niches that are closely associated with disease-related inflammation. Treating the disease 

– and reducing the associated inflammation – would then be expected to reduce the 
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numbers of supported autoAFC, and so reduce circulating titres of autoantibody. In 

support of this hypothesis Muehlinghaus et al [14] have shown that in certain conditions 

antibody forming cells express the chemokine receptor CXCR3 and that this enables 

them to migrate to CXCL9, a chemokine found at sites of inflammation. A mouse model 

was used to test the hypothesis that „inflammatory niches‟ can support the extended 

survival of plasma cells. The results of this experiment are reported in chapter 6. 

Lastly the overall conclusions of this thesis, and the implications for further research into 

human health and disease, are discussed in chapter 7. 
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2 INTRODUCTION 

2.1 Wegener’s granulomatosis, and anti-Proteinase 3 

antibodies. 

Wegener‟s granulomatosis (WG) is one of the anti-neutrophil cytoplasm antibody 

(ANCA) associated vasculitides. These are rare systemic diseases typically associated 

with autoantibodies to antigens within cytoplasmic granules of neutrophils and 

monocytes. Disease manifestations can include necrotising inflammation in small vessels 

(arterioles, capillaries, and venules) of various tissues, granulomatous inflammation, and 

constitutional symptoms (including fever, malaise, weight loss, and arthralgias) [15]. 

Vasculitis within the kidney typically results in a glomerulonephritis that can result in 

acute renal failure. Capillaritis in the lung can cause life threatening pulmonary 

haemorrhage. The combined incidence of these vasculitides is 18.9 per million per year in 

the UK [16]. Disease activity is reported using the Birmingham Vasculitis Activity 

Scores (BVAS) (see Appendix 1) [17]. The aetiology of Wegner‟s granulomatosis 

remains obscure although its inflammatory nature and the presence of autoantibodies 

have led to it being classified among the autoimmune diseases. 

The ANCA in WG are usually specific for the neutrophil lysosomal enzyme - proteinase 

3 (PR3). Other ANCA that are specific for myeloperoxidase (MPO), which is also a 

lysosomal enzyme, are more closely linked with two other ANCA-associated vasculitides 

(microscopic polyangiitis, and Churg Strauss Syndrome). Combined serological testing 

by immunofluorescence (detecting any ANCA) and ELISA (detecting ANCA specific for 

PR3 or MPO) has a specificity for ANCA-associated disease of nearly 100% [18]. Bosch 

et al have recently written a comprehensive review of ANCA antibodies [19]. The 
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implications of the immunoglobulin V-region (Variable-region) somatic mutations 

identified in ANCA-producing antibody forming cells (AFC) are discussed below 

(section 2.2). 

In many patients with ANCA associated vasculitides, ANCA levels correlate with disease 

activity and severity, and changes in titres can reflect disease activity (see review by 

Harper and Savage [20]). ANCA antibodies are likely to contribute to disease 

pathogenesis [21]. Conventional therapy for induction of remission in ANCA-associated 

vasculitis involves substantial doses of the cytotoxic drug cyclophosphamide. 

Cyclophosphamide is toxic to plasma cells but also affects a wide range of other cell 

types, and the mechanism of its therapeutic action has not been confirmed.  

Toxicity can limit the therapeutic use of cyclophosphamide. Furthermore, relapses are 

common in WG - so further courses of cyclophosphamide are often needed and the risk 

of subsequent malignancy is related to cumulative exposure to the drug. As a result there 

has been much clinical interest in the potential for Rituximab to be used as an alternative 

therapeutic in ANCA-associated vasculitis. 

Professor Savage, one of my supervisors for the research undertaken here, has developed 

substantial clinical experience in the use of Rituximab in this setting. She runs a research-

orientated vasculitis clinic at the Wellcome Clinical Research Facility within the 

University Hospital Birmingham (UHB). The existence of this clinic not only provides a 

centre of excellence for the diagnosis and management of patients with WG but also 

facilitates both the recruitment of patients for research into therapies in vasculitis, and the 

collection of research samples from such patients. 
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2.2 The production of IgG Rheumatoid factor, and IgG PR3-

ANCA autoantibody, is vulnerable to Rituximab. 

Serum levels of IgG anti-PR3 ANCA (PR3-ANCA) – and IgG rheumatoid factor – 

typically fall after Rituximab therapy [3-5;11;12] although not all autoantibody 

production appears similarly vulnerable [22;23].  

Isotype switched PR3-ANCA and rheumatoid factor can exhibit variable (V)-region 

somatic mutations [24-26]. Others have identified V-region somatic mutations in IgM 

anti-PR3 from a patient with Wegener‟s Granulomatosis [27]. This later report includes a 

conformational model of the antibody-antigen interaction, and concluded that the 

acquired mutations were predominantly within the PR3 binding region [27]. This is 

consistent with a process of affinity maturation, as discussed in section 2.4.1 below, and 

is analogous to that seen in the response to tetanus toxoid [28].  

2.3 Rituximab and CD20. 

Rituximab is an IgG1 chimeric, human-mouse, monoclonal antibody specific for an extra-

cellular epitope on human CD20 [29]. CD20 is a 33-35 kDa surface antigen that is first 

expressed in large pre-B cells during primary B lymphopoiesis. It remains expressed 

throughout the B cell differentiation pathway, until B cells differentiate into plasma cells 

[1]. Surface CD20 is also detectable, at lower levels, in a small proportion of peripheral T 

cells from healthy controls and patients [30-32]. CD3
+
CD20

dim
 cells are reported to be 

predominantly CD8
+
CD45RO

+
CD28

+
HLA-DR

-
 [33], but their functional role – if any – 

is unclear.  
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The B cell surface protein, CD20, sits in the plasma membrane of B cells and crosses the

plasma membrane 4 times. Both the amino and carboxylic ends of the molecule are in the 

cytosol. This molecular structure and other largely indirect evidence has led to the 

suggestion that it acts as a calcium ion channel [34;35]. Although its function has been 

difficult to pin down, evidence supports a role for CD20 in B cell activation [34;35].

CD20 knockout mice have been developed, but have only mild phenotypic changes [36].

The role of CD20, if any, in other cell populations is unclear. 

High affinity binding of the drug results in the rapid and profound loss of virtually all B

cells from peripheral blood [2]. This depletion lasts for several months. As the B cell 

progenitors – haemopoietic stem cells and pro-B cells – do not express CD20, peripheral 

B cell repopulation occurs once therapeutic drug levels fall sufficiently. This usually 

takes place between 6 and 12 months after administration. Where studied, CD20dim non-

B cell populations were not detected in peripheral blood after Rituximab [31]. 

Rituximab-induced B cell depletion appears primarily to be due to antibody–dependent 

cell-mediated cytotoxicity (ADCC) [37]. Consistent with this, its efficacy may be 

influenced by polymorphisms in Fc RIIIa [38;39], a receptor involved in ADCC. In mice 

transgenic for human CD20, complement-mediated lysis appears to be the dominant 

mechanism in some anatomical locations [40]. This may be because ADCC is less 

effective in mice than humans or rats [41]. There is also evidence of a role for 

complement-mediated lysis in the action of Rituximab in certain human diseases [42]. 

Other reports indicate that Rituximab can also act, at least in vitro, by inducting apoptotic 

cell death [43]. 
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2.4 Follicular and extra-follicular pathways of AFC production. 

The B cell response to antigen can result in AFC production via one or both of two 

pathways: i) follicular responses associated with germinal centre formation or ii) extra-

follicular responses. Productive germinal centre (GC) responses only appear to be evoked 

by antigens that can elicit cognate interaction between T cells and B cells [44]. In most 

instances this means the antigen must have a peptide component. Extra-follicular 

antibody responses can be evoked both by T-dependent and T-independent antigens [45]. 

There is evidence that these are heterogeneous. Thus extrafollicular responses resulting 

from B2 cell activation are generally short-lived [45] while B1 cells can give rise to 

protracted extrafollicular responses with T independent memory B cell formation [46;47]. 

The systemic B cell response to antigen mainly occurs in the secondary lymphoid tissues 

– the spleen and the lymph nodes. Mucosal responses are not considered here. At sites of 

chronic inflammation, tertiary lymphoid structures can be formed [48-50]. These share 

features with but may not always be directly analogous to the secondary lymphoid tissues 

(which include the lymph nodes, splenic white pulp and Peyer‟s patches) [51;52]. Recent 

evidence indicates that, at least in Rheumatoid Arthritis, these structures do not have a 

direct role in autoantibody production [53].  

Antibody production can occur in the absence of antigenic stimulation. Thus germ-free 

mice fed on a chemically defined diet in stainless steel cages have normal IgM levels and 

secrete some IgA from the gut. These so-called natural antibodies are produced by B1 

cells [54;55]. These B1 cells can also participate in antigen-driven responses [46;56]. 

This is discussed further in section 2.5.2. 
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2.4.1 Follicular responses generate affinity matured antibody and 

CD20 - plasma cells that can be long lived. 

In responses to T-dependent antigens follicular and extrafollicular responses usually 

develop in parallel, although these can occur independently of each other (see, for 

example, work by Cunningham et al [57]). Cells producing high affinity, isotype 

switched, antibody are produced in germinal centres through cycles of proliferation and 

somatic hypermutation, followed by selection involving antigen uptake and cognate 

interaction with CD4 T cells [44]. Germinal centre responses give rise to plasma cells that 

have the capacity to be long lived [58;59] and this longevity does not require continued 

antigenic stimulation [59]. However, it should be intuitively obvious that not all AFC 

survive indefinitely as new antibody responses are generated throughout adult life while 

levels of serum immunoglobulin remain relatively stable in healthy adults. Thus the 

concept of plasma cell longevity evolved to include an understanding that plasma cells 

require extrinsic support in „niches‟ and that the number of these niches together with the 

number of plasma cells they can support is limited. Experimental evidence supports this 

at the level of whole organs. This was shown by studying responses where the number of 

antigen-specific B cells was varied. This resulted in peak plasma cell numbers which 

were roughly proportional to the number of specific B cells. Nevertheless, the number of 

splenic plasma cells present after 10 days had fallen so that these were more or less 

comparable in all groups [60]. Subsequently, studies have identified some of the local 

factors likely to contribute to plasma cell survival in niches. These are considered further 

in the introduction to Chapter 6. 
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As plasma cells do not express CD20 [1] one would not expect B cell depletion by anti-

CD20 antibodies to shorten their natural lifespan. This has recently been confirmed in 

experimental mice [61]. On the contrary if Rituximab prevents the new formation of 

plasma cells, B cell depletion might actually prolong natural plasma cell lifespan by 

removing competition for niches that secure plasma cell survival. The functional correlate 

of AFC sparing during B cell depletion therapy – preservation of serum immunoglobulin 

levels, and specific antibody titres including as anti-tetanus toxoid antibodies – has been 

reported in humans [3;11-13], and more recently in mice [62].  

2.4.1.1 Germinal centres generate CD20+ memory B cells as well as plasma 

cells.  

Germinal centre responses generate memory B cells as well as plasma cells [44;63]. 

Memory B cells, which have also acquired somatic mutations, and which are isotype 

switched, are found in the blood [64], and in the marginal zone (MZ) of the spleen [65]. 

Such cells can be recruited into subsequent extrafollicular responses which can generate 

further antibody. Memory B cells are CD20
+
 [66]. In animal models anti-CD20 

monoclonal antibodies deplete memory B cells [61], and abolish the recall response to T-

dependent antigens [62]. Evidence in humans is more difficult to obtain for ethical 

reasons, but recall responses to antigens are reduced (though not absent) after Rituximab 

[67;68]. Thus Rituximab should greatly reduce, if not absolutely prevent, further 

production of new plasma cells from memory B cells. 

In the response to a widespread, and persistent, antigen – such as a blood-borne 

autoantigen – ongoing activation of memory B cells could result in production of massive 

numbers of plasmablasts and unsupported plasma cells. Importantly, both these cell types 
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can secrete antibody. As the memory B cells entering the extra-follicular response, and 

plasmablasts produced by it, are all CD20
+
, the production of new plasma cells from 

memory B cells should wane rapidly after Rituximab therapy. Unsupported AFC would 

die by apoptosis within days [60], and so this process would be swiftly followed by a 

decline in any antibody production. The indirect evidence that immunoglobulin levels are 

stable after B cell depletion by Rituximab indicates that the contribution of short-lived 

plasma cells to total serum antibody levels is probably small, although their contribution 

may be critical to countering specific infections. This thesis considers if autoantibody-

producing cells are shorter lived than those generated in response to extrinsic antigens. It 

will also consider whether Rituximab treatment can alter the number of niches that 

sustain autoantibody-producing cells.  

While memory B cells are likely to be Rituximab sensitive, germinal centre responses 

which generate memory B cells are also likely to form substantial numbers of plasma 

cells that have the capacity to find and compete for niches that can secure their own long-

term survival. It has previously been proposed that a chronic process of memory B cell 

activation is required to renew and maintain the „stable‟ plasma cell pool [69]. Such 

renewal of the pool from CD20
+
 cells would be expected to be Rituximab sensitive. If 

this was a process necessary for sustaining autoantibody levels, it too could explain the 

decline in autoantibody levels following Rituximab. The relative preservation of anti-

tetanus toxoid titres suggests that these are not being sustained by chronic memory B cell 

activation, a conclusion supported by long-term analysis of specific serum antibody titres 

in man [70]. The numbers of plasma cells in the spleen and bone marrow of mice are 

unaffected by B cell depletion therapy that results in prolonged depletion of memory B 
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cells [71]. This has been taken as evidence against the argument that ongoing renewal of 

the plasma cell pool is biologically significant. A more likely interpretation of the 

available data is that AFC will continue to occupy niches unless there is competition from 

newly-formed AFC. If this is the case it follows that plasma cells present in niches before 

Rituximab administration are likely to have an extended lifespan, when the treatment 

stops the formation of new AFC. 

2.4.2 Extra-follicular antibody responses. 

Extrafollicular antibody response can be induced by all classes of antigen – T-

independent type I (TI-1) [72], TI-2 antigens [56;73] or T-dependent (TD) antigens [60]. 

Antigens based on pure polysaccharide cores evoke a pure extrafollicular antibody 

response and do not form productive GC. Most commonly these responses have been 

studied using synthetic antigens such as haptenated polysaccharides such as Ficoll and 

hydroxyl ethyl starch [45]. Although less well studied, it is likely that responses against 

bacterial capsular polysaccharides, such those of pneumococci, behave in the same way. 

Many of the antibody forming cells produced in extrafollicular responses are short-lived 

[74;75]. This is likely to be because not all AFC produced in such an extra-follicular 

response find supportive niches required for long time survival [60].  

In the same way that ongoing stimulation of the memory B cells population could result 

in substantial Rituximab-sensitive antibody production by unsupported plasmablasts and 

plasma cells (see section 2.4.1.1), ongoing stimulation of naïve B cells could also 

generate substantial antibody production. However, evidence discussed in section 2.2 

indicates that the autoantibodies of interest are likely to be the product of a process of 

affinity maturation. Therefore this pathway is only a plausible candidate for Rituximab 
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sensitive autoantibody production if extra-follicular responses can generate somatically 

mutations.  

2.4.2.1 Extra-follicular responses can generate somatic mutations in V-

region genes. 

Extrafollicular responses, both to TI and TD antigens, are associated with isotype 

switching, but have not conventionally been associated with the somatic hypermutation 

and affinity maturation seen in the TD follicular response. Nevertheless, published 

evidence shows that low level mutation can occur in TI responses [76], including 

autoantibody responses [77], and also in patients unable to develop GCs due to defective 

CD40-CD40L signalling [78]. Indeed, extra-follicular responses against a protein 

autoantigen have been demonstrated, which include accumulation of somatic mutations in 

immunoglobulin genes, and lead to affinity maturation of the corresponding autoantibody 

response [79;80] (Figure 2-1). 

 

Figure 2-1 shows that autoantibody producing cells can accumulate at the border of the T zone and 

red pulp. Image taken from William et al.  [79].   

Panel A.  Antibodies against Thy1.1 (brown) and CD22 (blue) identify the splenic T zone and B cell 

follicle respectively. In Panels B, C, and D, anti-idiotype antibody (4.44) (brown) identifies rheumatoid 
factor producing AFC, and CD22 (blue) identifies B cells. Boxes in panel B indicate areas enlarged in 

panel C (extra-follicular focus) and panel D (B cell follicle). Panel C shows Id4.44+CD22variable cells of 

plasma cell morphology in extra-follicular foci. Panel D shows smaller Id4.44+CD22+ B cells in the B cell 

follicle. 

The affinity maturation occurring within an extrafollicular response justifies 

reconsideration of the possibility that human autoantibody production can occur by an 
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extrafollicular pathway. Furthermore this pathway appears able to recruit a range of B 

cell subtypes (see below). If this pathway produced plasma cells that were only (or 

predominantly) short lived, this could offer one explanation for the observations relating 

to Rituximab therapy. 

2.5 Subsets of B cells. 

In addition to the existence of more than one pathway to antibody production, the 

presence of several B cell subsets adds further complexity to the field. B cells have been

categorised into B1 and B2 subtypes on the basis of differences in the process of primary 

B lymphopoiesis, their capacity to self renew as mature cells and their phenotype. These 

subtypes of B cell also show distinct functional differences and to some extent, 

anatomical segregation. Although the concept of B1 and B2 cells is well established and 

the cells of these lineages have characteristic phenotypes in mice it is often not possible 

to be confident on the basis of phenotype alone that a B cell belongs to the B1 or B2 

lineages. Importantly, this ambiguity is greater in humans than in mice [81;82]. 

2.5.1 B2 cells.

Naïve B2 cells are divided into a majority population of naïve recirculating cells 

(sIgM+sIgD+B220hiCD21+CD23+), and cells typified by the fraction of splenic MZ B 

cells that are naïve (sIgMhisIgDloB220hiCD21+/hiCD23-). The recirculating B cells in adult 

rats were found to have an average lifespan of about 6 weeks and MZ B cells probably 

somewhat less [83-85]. Their survival is governed by the rate at which immature B cells 

are induced to mature into recirculating or MZ cells, and by signals such as those 

delivered by BAFF (the tumour necrosis factor alpha (TNF- ) family member B cell 
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Activating Factor) [86], and APRIL (A proliferation inducing ligand) [87]. In the absence 

of competition from immature B cells recently produced in the marrow (e.g. when 

transferred into severe combined immunodeficiency, SCID, mice), mature B cells can 

survive indefinitely and many maintain a virgin phenotype [88]. Immature B cells, by 

contrast, only live around 3 days and will die by apoptosis within days, unless they 

manage to secure a signal that induces them to differentiate either into a recirculating B 

cell or a MZ B cell [83], or they are recruited to enter an immune response by antigen 

[89].  

If B2 cells encounter antigen, and receive antigen-specific T-cell help, recirculating B2 

cells can be recruited into both follicular and extrafollicular responses [90;91]. Unlike 

naïve recirculating B cells, MZ B cells (both naïve and memory) can respond to TI-2 

antigens as well as TD antigens [92;93]. The fate of self-reactive B cells depends 

primarily on the degree of antigen receptor engagement [94] and availability of T cell 

help [89].  

2.5.2 B1 cells. 

In mice, B1 cells are sIgM
hi

sIgD
lo

CD11b
+
B220

intermediate
CD21

lo
CD23

lo
, and are further 

subdivided into B1a cells that express CD5, and B1b cells that do not [95]. B1 cell 

production is dominant over B2 production during fetal life and first occurs in the fetal 

liver [96] before moving to the splenic red pulp and bone marrow. Recently, a distinct 

phenotype for B1 cell progenitor has been characterised [97]. Postnatal B cell production 

is dominated by B2 lymphopoiesis. The B1 cell repertoire is limited as fetal pre-B cells 

do not express terminal deoxynucleotide transferase (TdT), preventing N nucleotide 

insertions during VDJ rearrangements. However, evidence has been presented suggesting 
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that 60% of adult mouse peritoneal B1 cells contain N insertions [98], which supports the 

concept that B1 lymphopoiesis also occurs in adult mice. V-region somatic mutations are 

not found in peritoneal B1 cells [99]. This is taken as evidence that B1 cells do not form 

GC. 

B1 cells can produce „natural‟ IgM and some IgA antibody in the absence of antigenic 

stimulation [54;55]. Its limited repertoire intrinsically provides protection against a 

number of pathogens, and includes specificities for phosphorylcholine (PC) (a constituent 

of cell wall carbohydrate of bacteria including pneumococci) [100]. Serotype-specific 

responses to type 3 pneumococci may also be included in the B1 repertoire in mice [101]. 

Evidence for this applying in humans is limited but it is consistent with the findings that 

vaccine responses to this serotype can be seen at an age when conventional extra-

follicular responses are not established [102].  

Isohaemagglutinins, human natural antibodies against A and B blood group antigens 

[103], are taken to be produced by B1 cells. Direct evidence for this has been limited, but 

relatively recently Zhou et al have reported that human IgM
+ 

B cells which bind the blood 

group A antigen are CD11b
+
CD5

+
, consistent with a B1a phenotype [104].  

Many studies have shown that immature high affinity autoreactive B cells are deleted or 

rendered anergic [105-108]. Clearly this is not absolute and low affinity autoreactive B 

cells can be positively recruited into the MZ and B1 pools [109-111]. For example, NZB 

mice develop spontaneous auto-immune haemolytic anaemia. This can be prevented by 

intra-peritoneal injection of water - a treatment that results in apoptosis of local B1 cells 

but not circulating B2 cells [112]. Early evidence indicated that some human 

autoantibody producing cells are derived from putative B1 cells (CD5
+
 B cells) [113] 
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though another, more recent, report indicates that anti-DNA antibodies [114] arise from 

CD5
-
 B cells. 

In addition to natural antibody production, B1 cells (including B cells which can generate 

isohaemagglutinin responses) have capacity for antigen dependent responses 

[46;101;115]. These are probably B1b responses [46;101;105;116], and may be very 

persistent [46]. Isotype switching of B1 responses has been described in mice [46], and 

natural human IgG against blood group antigens are also described [117;118]. 

It is not clear if B1 cells can undergo conventional TD responses to protein antigens 

[119]. However, Ferry et al have reported intriguing findings from a model in which mice 

have widespread intracellular expression of a protein antigen (mHEL-KK), and in which 

their B cells express a transgenic anti-HEL B cell receptor (BCR) [120]. The mice have 

greatly increased numbers of antigen-specific B1b cells in the peritoneum. They also 

describe greatly increased numbers of HEL–specific AFCs in the spleen, and T-

independent production of anti-HEL antibody. The wider implications of this complex 

transgenic system are not clear, but it is interesting to note that many autoantigens are 

intracellular. The autoantigen of greatest interest here – PR3 – is a protein of cytoplasmic 

granules of macrophages and neutrophils, but it is externalized upon phagocyte 

activation.  

2.6 Extra-follicular immune responses in the spleen. 

Much of our understanding of immune responses has emerged from the study of splenic 

responses to antigen in experimental mice. Two examples, which are pertinent to the 

animal studies reported in chapter 6, are described below after an outline of the structure 
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of the mouse spleen. These are followed by a more detailed discussion of the splenic 

extra-follicular responses to antigen. Splenic follicular responses, which are not a feature 

of the antibody responses studied in chapter 6, are not discussed further here. 

2.6.1 The structure of the spleen. 

The spleen is the largest secondary lymphoid organ in mammals. It is the predominant 

site of immune responses to blood borne antigens (and peritoneal antigens). The spleen 

consists of distinct areas of white and red pulp. The red pulp consists largely of vascular 

sinusoids containing erythrocytes and macrophages. Scattered through the red pulp are 

fibrous collagen bundles, or trabeculae, which run between the major red pulp blood 

vessels and the splenic capsule [45]. 

Lymphoid white pulp areas are scattered throughout the red pulp, and are divided into T 

zones and B cell areas (follicles) according to the dominant lymphocyte subtype present 

in the non-immunised state. In the resting state, B cell areas can be further subdivided 

into primary follicles, through which naïve recirculating IgM+IgD+ B2 cells pass, and the 

outer MZ which contains naïve IgM+IgDlow/low/ B cells and can also contain memory B cells 

[45;121]. 
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Figure 2-2 is a schematic diagram of areas within the splenic white pulp.  T: T zone. F: B cell follicle. 
MZ: marginal zone. Taken from MacLennan et al.  2003 [45]. 

In the resting state, the MZ can thus be identified by the presence of IgM+IgDlow/low/ cells.

The marginal sinus that separates the more peripheral MZ from the B cell follicle can be 

identified by the presence of “marginal zone metalophillic macrophages”. These cells 

express the MOMA-1 antibody, also known as CD169 [122]. 

2.6.2 Two informative animal models of the immune response. 

2.6.2.1 The Quasi-monoclonal (QM) mouse. 

Cascalho et al reported the development of the QM mouse in 1996 [123], and it has 

subsequently been widely used in the study of the response to the hapten NP (4-hydroxy-
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3-nitrophenyl acetyl). Conjugation of NP to the neutral polysaccharide Ficoll results in 

the formation of the TI-2 antigen NP-Ficoll. 

The QM mouse has one transgenic immunoglobulin heavy chain gene – μH 17.2.25 – and 

can neither express genes that encode for germline heavy chains nor those that encode for 

κ light chains. Thus the transgenic heavy chain can only combine with a λ light chain. 

Any such combination results in a primary antibody specificity for NP. In practice 

subsequent somatic mutation and secondary rearrangements result in a naïve B cell 

repertoire that is 80% specific for NP [123]. 

When such mice are immunised with NP-Ficoll a massive extra-follicular response is 

generated, filling the splenic red pulp with NP-specific AFC [60] by day 3. AFC numbers 

then decline precipitately, with steady state numbers reached by day 8 to 10 which are the 

comparable to the number present pre-immunisation.  This is consistent with an extrinsic 

(tissue related) limit to the number of AFC that can be supported by the tissues [60]. 

“QMxB6 mice” are generated locally by crossing QM mice with C57/BL6 mice for 10 

generations, selecting for the NP heavy chain each time. In these mice approximately 5% 

of naïve B cells are specific for NP. Intraperitoneal immunisation of such mice with NP-

Ficoll still results in a very substantial, and reproducible, T-independent extra-follicular 

response; and generates numbers of NP-specific AFC far in excess of those that can be 

supported by the spleen in the longer term. 
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2.6.2.2 The splenic immune response to attenuated Salmonella enterica 

serovar Typhimurium. 

After intraperitoneal injection of 10
5

 viable S. Typhimurium (strain SL3261), susceptible 

C57/BL6 develop clinical infection which lasts more than 1 month [57]. This infection is 

characterised by progressive splenomegally which typically reaches 10 times its original 

size by 3 weeks, before gradually resolving. This is accompanied by a massive TD extra-

follicular immune response which results in relative increases in numbers of splenic IgM- 

and IgG2c- (equivalent to IgG2a- in other strains of mice) AFC that are even greater than 

the concurrent increases in splenic size. TD follicular responses only emerge as the 

bacteria are largely cleared during the second month of infection. 

By day 7 post infection, few of the AFC generated from extra-follicular responses are 

dividing (as assessed by Ki67
+ 

staining) yet their numbers decline only slowly and remain 

well above baseline values through to 1 month. This is consistent with an increased 

capacity for the infected spleen to support non-dividing plasma cells. 

2.6.3 The splenic extrafollicular response to antigen. 

If naïve recirculating B cells or MZ B cells encounter protein antigen within the 

circulation they exit the splenic vasculature and migrate to the outer splenic T zone [72]. 

These antigen-activated B cells acquire the ability to find and make cognate interaction 

with primed T cells, which also accumulate in the outer T zone.  After interaction with 

appropriate, primed, T cells the B cells begin to proliferate and after 2 to 3 days either 

enter follicles and form GC or become migrate to extrafollicular foci and become 

plasmablasts as part of an extra-follicular response [45]. Available evidence indicates that 

recirculating B2 cells do not generally respond to TI-2 antigens [92;93]. 
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MZ B cells, which do not recirculate through the blood [124], but migrate back and forth 

between local follicles [125], are capable of responding to TI-2 antigens as well as TD 

and TI-1 antigens [93]. TI-2 antigens include haptenated Ficoll [92]. The extra-follicular 

response to NP-Ficoll has been extensively studied, including in our laboratory. Upon 

activation via their B cell receptor, NP-specific B cells migrate into the outer T zone 

within 8 hours [126]. Towards the end of the second day after immunization, these cells 

start to upregulate CD138 - a surface and cytoplasmic marker associated with plasma 

cells [1]. These cells then upregulate Blimp-1 (B-lymphocyte induced maturation protein-

1) – a transcription regulator required for further differentiation into plasma cells [127]. 

By 48 hours after B cell activation by NP-Ficoll, the B cells have undergone three 

divisions. 

As the proliferating B cells (B-blasts) differentiate into plasmablasts, they migrate to 

extra-follicular foci at the margin between the T zone and the red pulp [45;128], and on 

into the red pulp itself [128]. Not all of these plasmablasts survive, and most are short 

lived [60;74;75].  

In mice with a high proportion of B cells that are specific for NP, the plasmablasts 

generated following immunisation fill the red pulp by day 3 [60;128]. In the response to 

NP-Ficoll in QM mice [60], mass apoptosis of plasmablasts is seen between 4 & 6 days, 

such that only about 5% of AFC remain by day 8. Our group has reported that AFC 

contact with, or at least proximity to, CD11c
hi
 dendritic cells contributes to subsequent 

AFC survival [128]. These CD11c
hi
 cells are usually confined to the interface between 

the red pulp and T zone [128]. However, others have presented evidence that AFC 

numbers at day 6 post immunization are unaffected by the absence of CD11c
hi

 cells 
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[129]. Recently Mohr et al [130] have shown that CD11c
+
 dendritic cells, associated with 

plasmablasts in lymph nodes (LN), are the main source of IL-6 in LN during T-dependent 

antibody responses. 

Those plasmablasts that do survive differentiate into plasma cells. Whilst both 

plasmablasts and plasma cells secrete antibody, plasma cells are probably more 

productive of antibody on a per cell basis [131;132]. As already mentioned plasma cells 

are terminally differentiated antibody secreting cells, that have the potential to be very 

long lived [58;59;70]. Longevity appears to depend upon the plasma cells finding 

extrinsic support (see section 2.8). Importantly, it appears that tissues have only limited 

capacity to provide such support [60]. In the steady state, splenic plasma cells are 

predominantly found clustered around large collagen fibres in the red pulp [45;133].  

2.7 Chemokines mediate co-ordinated migration of AFCs. 

Migration of AFCs from extra-follicular foci of the spleen, to their final site of retention 

is co-ordinated by chemokines, and occurs at the plasmablast stage [133;134]. 

Chemokines are chemotactic cytokines; small (8-15 kDa) structurally related molecules 

with diverse roles in cell trafficking. The CXC subfamily of chemokines, so called 

because they all have one intervening amino acid between their two N-terminal cysteine 

residues, includes CXCL9, CXCL10, CXCL11, and CXCL12 [135]. 

2.7.1 Four CXC chemokines: CXCL9, CXCL10, CXCL11 and CXCL12. 

The chemokines CXCL9, CXCL10, and CXCL11 are also known as Monokine induced 

by gamma interferon (MIG), Interferon gamma inducing protein-10 (IP-10) and 

Interferon–inducible T Cell Alpha Chemoattractant (ITAC), respectively. All are ligands 
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for the receptor CXCR3 which is expressed on T cells, NK cells, and some AFC, but not 

monocytes or neutrophils [136]. CXCL11 has the highest affinity interaction with 

CXCR3, and CXCL9 has the least [137]. As implied by their names, γ-Interferon (γ-IFN) 

induces expression of all three chemokines in macrophages [138;139]. However γ-IFN, 

often alternatively IFN-α, and sometimes also TNF- , can induce expression from a 

range of other cell types including endothelial cells [140;141], fibroblasts [141-143], and 

eosinophils [144]. Constitutive CXCL9 mRNA expression has been found in splenic 

CD11c+ dendritic cells and splenic B220+ cells in mice, though in both these cell types 

levels of CXCL9 mRNA are also enhanced by γ-IFN stimulation [145]. CXCL10 is 

reported to be constitutively expressed in spleen stromal cells [146]. Lipopolysaccharide 

can induce expression of CXCL10 and CXCL11 in macrophages by an γ-IFN 

independent pathway [147;148]. 

CXCL12 (Stromal derived factor-1; SDF-1) is constitutively expressed at high levels on 

bone marrow stromal cells (at the level of mRNA), and at lower levels in stromal cells 

from the LN or spleen [149]. It is also found in high concentrations in the inflamed 

rheumatoid joint, where it produced by synoviocytes [150]. In vitro, CXCL12 is 

chemotactic for B cells, T cells and macrophages [151] and plasmablasts [133]. All these 

cell types express CXCR4, the main receptor for CXCL12 [133;135;152]. The in vivo

role of CXCL12 in guiding plasmablast chemotaxis is further discussed in section 2.8.

CXCR4 is also widely expressed on many other cell types including neutrophils [153] 

and plasma cells [134]. Its possible role as a receptor that enhances plasma cell survival 

factor is discussed in section 2.8.1.3.
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2.7.2 CXCR4 mediated AFC migration. 

At least in secondary responses to protein antigens, most AFC express CXCR4, the 

receptor for CXCL12 [14;134]. The absence of CXCR4 greatly reduces, but does not 

abolish, the accumulation of AFC in the bone marrow after a secondary immune 

response, thus other mechanisms for guiding migration to bone marrow are likely to co-

exist [133]. 

In the primary response to intra-peritoneal NP-Chicken Gamma Globulin (NP-CGG), 

splenic AFC are more frequent than bone marrow AFC [133]. Six days after 

immunization with NP-CGG, most of these AFC appear to cluster near fibres or vessels 

in the splenic red pulp [133]. In contrast, six days after similar immunization of CXCR4-/-

mice the AFC are aberrantly located within the spleen – residing largely in the MZ 

though some are scattered through the red pulp. However in elegant studies of the 

response to NP-CGG in chimeric mice, at day 14 after immunization, splenic numbers of 

IgG1 CXCR4 NP-specific AFC and IgM CXCR4 NP-specific AFC are little affected by 

the co-existence of CXCR4+ NP-specific AFC [133]. From these studies one can 

conclude that i) CXCR4 is normally expressed by most AFC emerging from a primary 

splenic TD response, that ii) CXCR4 expression on AFC influences their migration 

within the spleen, but that iii) the absence of CXCR4 does not impair splenic AFC 

survival, at least in that model, and that iv) some AFC migrate into the splenic red pulp 

without CXCR4 [133]. Equivalent, detailed studies of the splenic T-independent extra-

follicular response to antigen have not been reported.  
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2.7.3 CXCR3 mediated AFC migration. 

A proportion of plasmablasts migrate towards CXCL9 and CXCL10 and CXCL11 in 

secondary responses in vitro [134]. The proportion of memory B cell derived AFC that 

express CXCR3, and the proportion that migrate to CXCL9 and CXCL10 and CXCL11 is 

increased by in vitro incubation of the precursor memory B cells with γ-IFN [14]. Most T 

cells present at sites of inflammation express CXCR3 [136]. It is tempting to assume that 

CXCR3 expression on AFC accounts for the observed accumulation of some AFC at sites 

of inflammation, but it has yet to be formally demonstrated, in mice or humans, that a 

high proportion of AFC at these sites express CXCR3. CXCR3 expression on AFC from 

primary responses is yet to be reported. Conversely CXCL12 expression is present at 

some inflamed sites [154], and so CXCR4 mediated AFC migration to sites of 

inflammation is also possible.  

2.8 Niches that allow plasma cell survival.  

It is inherently probable that there is likely to be finite capacity to the number of AFC an 

organism can support. As individual plasma cells can be very long lived [58;59], and 

antigenic stimulation continues throughout life, a virtually limitless capacity for support 

of AFC would result in a steady rise in immunoglobulin titres throughout life. This is not 

the case [155].  

By extension, the capacity of an individual organ to accommodate plasma cells is likely 

to be limited. Evidence to support of this concept, with respect to the spleen, has 

previously been published by our group [60]. They found that the number of AFC 

persisting in the spleen 10 days or more after an immunization is constant, even where a 
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huge excess of plasma cells is generated early in the response. AFC numbers were 

comparable in both T-dependent, and T-independent responses. This is consistent with a 

fixed number of niches available to accommodate AFC generated from any type of 

response.  

It follows that if an organism‟s capacity is constant, new AFC can only acquire niches by 

displacing in-situ AFC. Odendahl et al have offered evidence to support this [156]; six 

days after immunization of humans with tetanus toxoid, relatively immature blood-borne 

AFC were largely specific for tetanus toxoid, while co-existent mature AFC in the blood 

were not.  

2.8.1 Extrinsic factors that may contribute to plasma cell survival. 

As discussed above, only a small proportion of plasma cells generated in a splenic 

immune response achieve longevity [60;74;75] but, at least in the bone marrow, plasma 

cells can be very long lived [58;157]. In vitro and in vivo studies have identified multiple 

extrinsic factors that may contribute to this survival.  



28 

 

Figure 2-3 shows some putative factors associated with plasma cell survival in niches. Taken from 

Tarlinton et al. 2008 [158]. 

2.8.1.1 Interleukin-6. 

Interleukin-6 (IL-6) can be produced by a wide range of cell types including fibroblasts, 

macrophages, B cells, T cells, and synovial „nurse-like cells‟ [159-161] and CD11c
+
 

dendritic cells [130]. Whilst plasma cell numbers decline precipitately if cultured in vitro 

with medium alone [160;162], the addition of IL-6 to such cultures greatly increases the 

proportion of cells surviving, at least to 3 days [162]. Others have offered evidence that, 

in co-culture, bone marrow stromal cells can similarly prolong plasma cell survival; an 

effect dependent in part on stromal cell production of IL-6 [160]. However the same 

group have subsequently demonstrated that even though splenic stromal cells generate 
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more IL-6 than bone marrow stromal cells, it is the latter cell type that has greater 

efficacy at ensuring plasma cell survival [149]. 

Results from in vivo studies are also superficially conflicting. Twenty-one weeks after 

immunization of IL-6 deficient mice with alum-precipitated ovalbumin (OVA), serum 

levels of IgG anti-OVA, and numbers of OVA-specific AFC in the bone marrow are no 

different to wild type animals [162]. In contrast an earlier report demonstrated that excess 

IL-6 results in greatly increased numbers of plasma cells in multiple lymphoid tissues, 

and greatly increased serum levels of IgG1, but only modest increases in serum levels 

other IgG subclasses or IgM [163]. The plasma cells in this latter study did not have 

neoplastic features, but the findings could be due to increased proliferation of AFC 

precursors, rather than increased plasma cell survival. Recently published evidence 

indicates that IL-6 dependent effects on serum levels of IgG1 after immunization are 

mediated by IL-21 [164] (see section 2.8.1.5 below). Nevertheless, collectively, these 

results are compatible with two conclusions: i) that increased levels of IL-6 may enhance 

plasma cell survival and ii) that there is functional redundancy between IL-6 and other 

factors that support in vivo plasma cell survival. 

At least in vitro, IL-6 demonstrates marked synergy with other factors that can enhance 

plasma cell survival. These include BAFF [165], and ligands for CD44 [162] (see 

sections 2.8.1.2.2 and 2.8.1.7).  
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2.8.1.2 Members of the Tumour Necrosis Factor  superfamily. 

2.8.1.2.1 Tumour Necrosis Factor- . 
TNF-  is predominantly produced by macrophages and T cells [166], though secretion 

from activated B cells also occurs [167;168]. TNF-  significantly enhances plasma cell 

survival in vitro [162]. In a direct comparison with IL-6, the supportive effect of TNF-

is less marked, at least at the concentrations used [162]. Limited data in humans come 

from reports regarding therapeutic administration of anti-TNF therapy (Etanercept). This 

therapy does not appear to result in a fall in total serum immunoglobulin levels [169].

The possibility that TNF-  may have synergistic effects with other plasma cell survival 

factors has not been reported. 

2.8.1.2.2 B cell activating factor (BAFF) and A proliferation inducing ligand 
(APRIL).

BAFF and APRIL are also members of the TNF-  superfamily [170]. Both exist in a 

secreted form, though BAFF can also be expressed in a transmembrane form [170].

BAFF and APRIL are both expressed by monocytes, macrophages, cells of dendritic 

morphology, and T cells [170;171]. Expression of BAFF has also been reported in a 

range of other cell types, including synoviocytes [172], Vascular cell adhesion molecule-

1+ (VCAM-1+) bone marrow stromal cells [173], and neutrophils [174;175]. More 

recently expression of BAFF and APRIL (at the level of both mRNA and protein) has 

been reported in the B-lymphocyte lineage [176]. Interestingly, the same report presented 

data to indicate that splenic plasma cells in autoimmune-prone NZB/NZW F1 mice 

express both BAFF and APRIL. 
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Three recognised receptors can interact with either BAFF or APRIL, or both. These are 

the BAFF receptor (BAFF-R), transmembrane activator and calcium modulator and 

cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA). Only BAFF 

can interact with the BAFF-R. TACI and BCMA can be activated by either APRIL or 

BAFF [170]. Syndecan-1 (CD138) has also been reported to bind APRIL though 

downstream effects mediated through this interaction have not been confirmed [177].  

BAFF-R and TACI are expressed on B cells [170]. TACI is also expressed on 

macrophages [170], whilst BAFF-R is expressed on some T cells [170;178]. As B cells 

differentiate into plasma cells BAFF-R is down-regulated TACI is little changed and 

BCMA is massively up-regulated [130]. This implies a stronger role for APRIL in 

securing plasma cell survival. Recently GR1
+
 macrophages in the medullary cords of LN 

that are surrounded by clusters of plasma cells have been found to be potent producers of 

APRIL [130]. Downstream effects mediated by ligation of BAFF-R or TACI are not 

further discussed here.  

BCMA is also expressed on bone marrow plasma cells [165]. Ligation of this receptor 

greatly enhances in vitro survival of bone marrow derived plasma cells and, as mentioned 

above, their survival is further augmented by the additional presence of IL-6 [165]. In 

vivo studies support this; in BCMA
-/-

 mice numbers of bone marrow PCs are greatly 

reduced (but remain detectable) several weeks after immunisation [165]. In keeping with 

previous studies [177], recent evidence from transfer experiments [179] appears to 

indicate that the presence of APRIL, but not BAFF, in the recipient bone marrow 

enhances survival of engrafted AFC up to 48 hours after transfer. 
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2.8.1.3 CXCL12. 

During early in vitro studies CXCL12 – the ligand for CXCR4 – was reported to enhance 

plasma cell survival [162]. VCAM-1
+
 bone marrow stromal cells express CXCL12 [173], 

and it appears that in vivo most bone marrow plasma cells are in proximity to these cells 

[180]. However, as discussed above (section 2.7.2), experimental data indicates that 

CXCR4
-
 AFC are at little or no survival disadvantage, within the spleen, compared to 

CXCR4
+
 AFC [133]. Furthermore, although at 14 days after an immunization numbers of 

CXCR4
-
 AFC in the bone marrow are reduced when in competition with CXCR4

+
 AFC 

[134], separate studies indicate that at 90 days after immunisation the numbers of bone 

marrow AFC are comparable in mice with CXCR4
- 
AFC and those with CXCR4

+
 AFC 

[181]. More recently, and in contrast to earlier work [162], Minges-Wols et al have found 

that plasma cell survival during in vitro co-culture with stromal cells is not affected by 

the addition of neutralising anti-CXCL12 antibody [149].  

Thus whilst there is strong evidence that CXCR4 is a significant chemotactic factor for 

plasma cell precursors is strong (see section 2.7.2), the evidence that CXCR4 is also an in 

vivo survival factor for plasma cells themselves is less convincing. 

2.8.1.4 Interleukin-5. 

Interleukin-5 was amongst the extensive range of cytokines investigated by Cassese et al 

for capacity to support plasma cell in vitro [162]. At the concentrations used, it 

substantially enhanced plasma cell survival to 3 days, though to a lesser extent than IL-6 

or CXCL12. 
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However, the same report noted that bone marrow supernatants from IL-5-/- mice were no 

less effective than supernatants from wild type mice in supporting plasma cell survival in 

vitro - consistent with significant functional redundancy, and a therefore lesser role for 

IL-5 in vivo. 

2.8.1.5 Interleukin-21.

Interleukin-21 has been described only relatively recently [182]. It is secreted by CD4+ T

cells, and has homology to several other cytokines including IL-2, IL-4 and IL-7 [183].

The receptors for these various cytokines all share a common c chain [183].

IL-21 has many known functions, affecting a range of immunological cell types [183]. 

Excess production of IL-21 by transgenic mice results in increased plasma cell numbers 

[184] in part, at least, through upregulating Blimp-1 [184]. Other actions of IL-21 on cells 

of the B-cell lineage are complex and are discussed below: 

IL-21 receptor knockout mice have impaired antigen specific IgG1 responses, whilst 

corresponding antigen specific IgM responses are relatively spared [185]. Furthermore,

recently published data indicates that IL-21 mediates the increased in vivo production of 

antigen specific IgG1 that occurs when antigen is co-administered with IL-6 (but without 

any other adjuvant) [164]. The IgM response to antigen is not enhanced in the same way 

[164]. 

It appears that when B cell IL-21 receptor ligation occurs concurrently with BCR 

activation, then B cell proliferation is induced [186]. In contrast in the absence of BCR 

activation, IL-21 receptor ligation results in induction of apoptosis – even if Toll Like 

Receptor (TLR)-mediated B cell signalling is available [186].  
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IL-21 has also been proposed as a putative plasma cell survival factor [158].  

2.8.1.6 Cells that may support plasma cell survival.  

Although many molecules that are putatively supportive of plasma cells have been 

identified, the cells that comprise plasma cell niches have been relatively less well 

characterised.  

Some cells types that may support plasma cell development or survival have already been 

discussed above. These include CD11c
hi
 dendritic cells in the spleen (section 2.6.3), and 

VCAM-1
+
 bone marrow stromal cells that express CXCL12 (section 2.8.1.3), and/or 

BAFF (section 2.8.1.2.2). Markers that identify putative niche-forming cells in the spleen 

are less well investigated. As VCAM-1 is very widely expressed in the splenic red pulp 

[187] it is unlikely, on its own, to define a cell type that supports plasma cells. 

BP3 (CD157) was identified as a surface antigen on bone marrow stromal cells [188], 

whilst the same antigen had already been identified on cells in the spleen [189]. BP3
-/-

 

mice exhibit defects in the immune response to TI-2 antigens [190]. The mechanism 

underlying this is not clear, and it was considered plausible that BP3 cells contribute to 

splenic plasma cell niches. 

Mice deficient in CD169 (sialoadhesin) are reported to have lower levels of IgM [191]. 

More recently Mohr et al [130] have reported that CD169
+
 cells are present at several 

sites within the LN, and that some subsets of these CD169
+
 cells, identified according to 

expression of CD11b and F4/80, are associated with AFC in the LN outer T zone and 

medullary cords. Some of these cells expressed CXCL12 and adhesion molecules that 
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may assist interaction with AFC. It therefore appeared plausible that CD169
+
 cells could 

contribute to the formation of splenic plasma cell niches. 

2.8.1.7 Other factors that may contribute to plasma cell survival. 

Plasma cells express CD44. Cassese et al have also demonstrated that CD44 mediated 

signalling, whether induced by activating antibodies or by hyaluroniuc acid, can 

significantly enhance plasma cell survival in vitro [162]. Interestingly this effect appears 

to be synergistic with the effects of IL-6.  

Others have demonstrated that VLA-4 (Very late antigen-4) mediated signals may 

promote plasma cell survival at least in vitro, though this does not appear to be via 

interaction with VCAM-1 [160]. More recently DiLillo et al have reported in vivo 

findings that may support this, or at least support a permissive role for VLA-4 in ensuring 

plasma cell survival in supportive niches [62]. In experimentally immunised mice that are 

unable to regenerate their plasma cell pool (due to depletion of plasma cell precursors), 

co-blockade of LFA-1 (Lymphocyte function-associated antigen-1) and VLA-4 results in 

a significant fall in both a) numbers of antigen specific AFC in the bone marrow and b) 

levels of antigen-specific serum IgG. 

2.9 Outline of human serological work. 

It should be clear from the evidence discussed above, that the conventional pathway for 

production of most affinity-matured, isotype-switched, antibody specific for protein 

antigens – namely the GC pathway – should not be sensitive to Rituximab. Available 

evidence regarding most antibody production still supports this concept. B cell depletion 

by Rituximab does not significantly affect titres of neutralising antibodies against tetanus 



36 

toxoid [3;11;12]. Falls in serum immunoglobulins are also generally modest, although 

falls in serum IgM have been seen after repeated cycles of treatment [192]. This makes 

the Rituximab-related falls in titres of certain autoantibodies, which otherwise exhibit 

features similar to anti-tetanus antibody, all the more striking. The wider literature 

introduced above raises the possibility that other pathways – and other B cell subtypes – 

could generate IgG anti-PR3 autoantibodies and IgG rheumatoid factor.  

We initially considered three possible explanations for the observations that production of 

some autoantibody species appears sensitive to Rituximab therapy. Based on the results 

set out in Chapter 5, a fourth possibility has emerged that seems consistent with available 

data. These explanations are not mutually exclusive:  

1. Autoreactive B cells which differentiate into autoAFC could be contained in a 

different B cell subset to those containing specificities for other protein antigens.  

2. autoAFC could be generated via a different antibody production pathway to that 

used for conventional protein antigens. 

3. autoAFC could be intrinsically short lived, with ongoing production of 

autoantibody dependent on constant renewal of the autoAFC population by 

differentiation of new B cells. 

4. autoAFC may selectively occupy sites in inflammatory tissues that maintain their 

survival, but these sites are vulnerable to Rituximab treatment. 

The primary aim of the first phase of my research fellowship was to determine whether 

established antibody production derived from these other pathways and from other B cell 
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subtypes is also sensitive to disruption by Rituximab. To achieve this, it was initially 

necessary to develop the technology to assay antibodies to multiple PnCP in parallel.  
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3 METHODS 

3.1 Commonly used reagents. 

Protocols for the preparation of some standard laboratory reagents, used widely in this 

research, are reported below: 

 Carbonate Coating Buffer: Dissolve 0.8g Na2CO3, and 1.47g NaHCO3 in 500ml distilled 

water, then add Sodium Azide to a final concentration of 0.02%. 

Trisma Base solution: Dissolve 121.14g tris(hydroxymethyl)aminomethane in 5L 

distilled water. 

Tris pH 7.4: Made by mixing 2 parts Trisma base solution in distilled water (0.2M), 3 

parts stock NaCl solution in water (42.5g per 5L), and 3 parts dilute hydrochloric acid 

(0.1N). 

Tris pH 9.2:  Trisma base solution was pH adjusted to 9.2 using concentrated NaOH, and 

before distilled water was added to make up to twice the original volume. 

Phosphate buffered saline (PBS): Consists of distilled water containing 150mM Sodium 

Chloride and 150mM Sodium Phosphate, adjusted to pH 7.2. 

3.2 Methods used in human studies. 

3.2.1 Ethical approval for human studies, recruitment of subjects, 

and details of process for obtaining consent. 

The research protocol, and the relevant patient information sheets and consent forms, for 

the human research undertaken for this thesis were approved by the Oxfordshire South 

Research Ethics Committee (B) (REC application number 06/Q1605/49). 
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Patients with ANCA-associated vasculitis attending UHB, and considered as potentially 

suitable for participation in this research, were first identified by their clinicians. Such 

patients were provided with written information about the proposed research and their 

potential role in it, and were given an opportunity to ask questions before written consent 

was obtained. 

3.2.2 Patients and samples. 

Samples were collected from 11 patients with disease that fulfilled the ACR classification 

criteria for Wegener‟s Granulomatosis [15] and had detectable serum anti-PR3 antibody 

before treatment. All were under follow up at Queen Elizabeth Hospital, UHB NHS 

Foundation Trust. Nine patients received Rituximab for induction of remission after a 

disease relapse. Two received Rituximab for newly diagnosed disease. Patients received 

2g to 3.2g intravenous (i.v.) Rituximab in divided doses. Eight patients received 

concurrent i.v. cyclophosphamide in two divided doses (median total dose 1.25g, range 

0.9 – 2.4g). Two patients also received i.v. methylprednisolone (1g and 1.5g). All i.v. 

therapy was completed within four weeks, and thereafter patients continued a reducing 

course of oral prednisolone. Six patients continued previous immnunosuppresive 

medications (Mycophenolate mofetil, Azathioprine, or Methotrexate) at doses unchanged 

throughout the study period. No patients had previously received Rituximab. All patients 

gave written informed consent for research participation. 

3.2.3 Collation of clinical data on consenting patients. 

Demographic data, disease activity scores (BVAS) (see Appendix 1, page 183) [17], 

serum autoantibody titres, levels of serum immunoglobulins, and serum levels of C-
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reactive protein were obtained from clinical laboratory results, patient notes, and hospital 

databases.  

3.2.3.1 Estimation of absolute B cell counts in patients’ peripheral blood. 

An estimate of the absolute number of CD19
+
 B cells per μl of patient‟s whole blood was 

derived the combination of from two sources: 

1. The proportion of blood lymphocytes that were CD19
+
 was estimated by flow 

cytometric analysis of fresh whole blood samples, after lysis of red cells by the 

addition of FACS lysis solution (Becton Dickenson). At least 10,000 flow 

cytometric events were counted per sample. This is routinely performed by the 

University of Birmingham Clinical Immunology service on 

Ethylenediaminetetraacetic acid (EDTA)-anticoagulated samples of peripheral 

blood taken from those patients attending the UHB Vasculitis clinic that were 

likely to receive Rituximab, or had previously received Rituximab. 

2. Contemporary samples were also sent for semi-automated estimation of various 

haematological indices including absolute lymphocyte counts per μl of whole 

blood, by the UHB Hematology Laboratory service.  

Measurements were performed before Rituximab treatment (except in one patient), and at 

intervals during the subsequent 4-5 months (in all patients).  

3.2.3.2 Measurement of anti-PR3 antibody titres in patients’ serum. 

Levels of anti-PR3 antibodies in fresh serum samples were routinely analysed, by the 

University of Birmingham Clinical Immunology service, for all patients attending the 

UHB Vasculitis clinic. Assays were performed using a commercially available Enzyme 
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linked immunospecific assay (ELISA) detection kit (The Binding Site, Birmingham, 

UK), according to the manufacturers instructions. 

3.2.3.3 Measurement of levels of serum immunoglobulins and C-reactive 

protein in patients’ serum. 

Total serum IgG and IgM were measured by the University of Birmingham Clinical 

Immunology service using a routine turbidometric assay (Modular P800, Roche 

Diagnostics). 

Highly sensitive assays for C-reactive protein were performed by the University of 

Birmingham Clinical Immunology service using a routine turbidometric assay (Hitachi P-

module, Dako). 

3.2.4 Collection of research blood samples from consenting patients. 

Serum samples, and whole blood samples, for research were obtained from consenting 

patients at the same time as clinical blood samples – usually during routine inpatient 

phlebotomy rounds or at the time of outpatient appointments. 

Serum samples were obtained from clotted blood samples as follows: half an hour after 

venesection, filled vacutainer tubes were centrifuged at 2000g for 10 minutes. Serum was 

then removed by pipetting and aliquotted into approximately 500μl quantities for freezing 

at -20˚C or below. Serum samples were moved to -70˚C within 1 month of collection. 

Whole blood samples for flow cytometric analysis were collected into EDTA-containing 

vacutainer tubes and kept at room temperature until use within 18 hours.  
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3.2.5 Customized microsphere-based assays of serum antibody 

concentration.  

IgM, IgG1 or IgG2 antibody each specific for tetanus toxoid, PnCP 1, 3, 6b, 9v, 14, 19, 

and 23f, PC, and purified pneumococcal cell wall polysaccharide (CWPS) (Serum Statens 

Institute, Denmark) were measured by customized multiplexed assays using antigen-

coated fluorescent microspheres after Lal et al [193]. The local development, and 

validation, of these assays is described in chapter 4. 

3.2.5.1 Conjugation of antigens to microspheres. 

3.2.5.1.1 Carbohydrate conjugation to linker protein (poly-L-Lysine). 
 Each of the seven pneumococcal capsular polysaccharides (PnCP) (LGC Prochem / 

ATCC, UK) (5mg/ml in sterile water), and CWPS (1mg/ml in sterile water) were 

separately added to equal volumes of dilute NaOH (0.01%). The alkalinized solutions 

were separately added to cyanuric chloride (5mg/ml) (Sigma), vortexed briefly, and 

100 L poly-L-lysine (Sigma) (0.1%) was added to each. After further vortexing, the 

mixtures were incubated overnight in the dark at 4°C, with agitation. Coupled 

polysaccharides were purified with separate PD-10 desalting columns (Amersham 

Biosciences) by elution with 3.5ml PBS, and aliquots of each frozen at -80°C. 

3.2.5.1.2 Protein conjugation to microspheres. 
Subsequently, each of the poly-L-lysine-coupled polysaccharides, tetanus toxoid 

(48 g/ml) (List Biological Labs) and Bovine Serum Albumin- (BSA)-conjugated 

Phosphorylcholine (PC) (200 g/ml) (BioSearch, CA, USA) were separately conjugated 

to carboxylated microspheres (BioRad Labs, UK). Microspheres were first washed (PBS-
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Tween 0.05%), and activated with N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (Sigma, UK) (5mg/ml) and N-hydroxysulfosuccinimide sodium salt 

(Sigma, UK) (5mg/ml) in distilled water containing 1.06g NaH2PO4 and 0.32g 

Na2HPO4 per 100ml (pH 7.3). After 2 further washes (PBS), activated microspheres 

were separately incubated with solutions of each required antigen (300 l) for 2 hours or 

overnight, at room temperature in the dark, with agitation. Antigen-conjugated beads 

were then washed twice in PBS containing 0.1% bovine serum albumin, and 0.05% 

NaN3, and stored in the dark until use. 

3.2.5.2 Performing microsphere based assays of serum antibodies. 

Serum antibody levels against PnCP 1, 3, 6b, 9v, 14, 19, & 23f were measured in patient 

samples and the standard reference serum (Serum 89SF, Food and Drug Administration, 

Maryland, USA). Seven 4-fold dilutions (1/20-1/81920) of each sample and standard 

were prepared in diluent buffer consisting of PBS containing 1% BSA (Sigma), 0.05% 

Tween, and CWPS (2 g/ml). PnCP 22f (5 g/ml) was also added to diluent buffer for 

samples, in accordance with the WHO (World Health Organization) protocol for ELISA 

detection of PnCP antibodies [194]. 

Diluted samples and standards were incubated in 96 well MultiScreenHTS microfilter 

plates (Milipore, UK) with a mixture of the relevant antigen-coated beads (2500 per bead 

type) for 1 hour at room temperature, in the dark with shaking, and then washed twice in 

wash buffer (PBS-Tween 0.05%). Beads were then incubated with phycoerythrin (PE)-

conjugated mouse anti-human immunoglobulins (Ig) (specific for IgM, IgG1 or IgG2) 

(1/200 dilution in wash buffer) (Southern biotech, AL, USA) for 30 minutes at room 

temperature, in the dark with shaking. After a further wash, beads were re-suspended in 
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wash buffer (130 l), and median fluorescence intensities (MFI) for each bead/sample 

combination were obtained by Luminex 100 machine (Luminex Corp, TX, USA). IgM, 

IgG1 and IgG2 antibodies against tetanus toxoid, CWPS, and PC were separately tested 

in an analogous fashion, except that samples and standard were diluted in buffer without 

CWPS or PnCP 22f. 

3.2.5.3 Data analysis of microsphere-based assays of serum samples 

Standard curves of MFI obtained with Luminex were computed by BioPlex Manager 

software (version 4, BioRad Labs, CA, USA). Standard curves were generated for each 

antibody specificity and for each immunoglobulin subclass, for each sample and for the 

standard serum 89SF. Hypothetical dilutions of samples and standard predicted to result 

in an equal MFI of 4 x background were obtained from standard curves, and thus relative 

concentrations of each antibody (compared to the standard) were obtained for each 

immunoglobulin subclass within each sample.  

The limit of detection for each antibody was inferred by the ratio between the dilution of 

standard serum that generated a MFI equal to 4x background, and the least diluted 

standard (1 in 20). 

3.2.6 Microsphere-based assays of serum cytokine levels 

Serum samples from patients of interest were collected and stored as described in section 

3.2.4. The cytokine assay kit (BioRad Labs) was used according to the manufacturer‟s

instructions. In summary: 

When needed, sample aliquots were thawed on ice, and diluted 1:3 with the sample 

diluent. The cytokine standard was reconstituted with 500 μL serum standard diluent and 
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left on ice for 30 minutes.  Serial dilutions of the standard were then prepared – the top 

dilution consisted of 128 μL of reconstituted standard diluted with 72 μL serum standard 

diluent. Thereafter 7 further dilutions were created using 1:3 fold dilutions. Fifty μl of 

diluent was kept aside for use as a „blank‟ (0 U/ml). All diluted standards were then kept 

on ice.  

96 well filter plates (Millipore) were pre-wet with assay buffer, 50 μL of the multiplex 

bead working suspension was added to each well, and the beads were washed with 100 μl 

wash buffer; with each vacuum filtration of excess fluid between each step. Fifty μl of 

relevant standards or sample were then added to the appropriate wells, and the plate was 

incubated at room temperature in the dark with shaking. Three further washes were 

performed before 25μl of biotinylated detection antibody was added to each well. The 

plate was then reincubated in similar conditions to previously for 30 minutes. After three 

further washes, 50μl strepavidin-PE was added to each well and the plate re-incubated 

under similar conditions for 10 minutes. After 3 further washes, the beads were 

resuspended in 125 μl assay buffer, and MFI associated with each bead region, in each 

well, were read on the previously calibrated Bioplex 100 platform (BioRad).  

Relative concentrations of cytokines in the samples were calculated by BioPlex Manager 

software (version 4, BioRad Labs, CA, USA) using 5 parameter logistic regression 

algorithms, with reference to the MFI values obtained for the serial dilutions for the 

standards.  
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3.2.7 Enzyme Linked ImmunoSpecfic Assay (ELISA) of IgG anti-

Epstein-Barr Virus Capsid Antigen in human serum samples. 

Human serum samples had previously been collected and stored as described in section 

3.2.4. ELISA assays for levels of serum IgG against Epstein-Barr Virus Capsid Antigen 

(EBV-CA) were performed according to the manufacturer‟s instructions (DiaPro). 

Briefly, 100μl of each diluted sample (101-fold dilution in sample buffer), and control 

serum, and pre-diluted calibration samples were placed in separate wells pre-coated with 

EBV-CA, and incubated at 37˚C for 60 minutes. Wells were then washed with 300μl 

wash buffer and shaken dry, with this cycle being repeated 4 times. One hundred 

microlitres of pre-prepared enzyme conjugate was then added to each well, and the plate 

incubated for another 1 hours at 37˚C. After further washes (as before) 100μl chromogen 

substrate was added to each well, and the plate incubated at room temperature for 20 

minutes. The reaction was stopped by the addition of 100μl sulphuric acid (provided by 

manufacturer) and the wells read on an „Emax‟ plate reader (Molecular Devices) using a 

450nM filter. After confirming test validity according to the manufacturer‟s 

predetermined criteria, serum anti-EBV-CA IgG levels were inferred from the standard 

curve derived from calibration samples. One patient‟s samples were found to have levels 

above the limit of accurate detection (100 Arbitrary units/ml) whereupon both assays of 

both pre-and post-Rituximab samples were repeated using 1 in 300 and 1 in 1000 

dilutions, in parallel with a new standard curve. The lower limit of detection for the assay 

was reported by the manufacturers. 
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3.2.8 Measurement of levels of isohaemagglutinins in patients’ serum 

samples. 

IgM isohemagglutinins were measured by hemagglutination. Twofold serial dilutions of 

serum were incubated separately with standard red blood cells (RBC) (blood groups A 

and B) in Allsevers (National Blood Service, Liverpool, UK), at room temperature. The 

greatest dilution causing agglutination after 45 min was recorded. Where both anti-A and 

anti-B antibodies were present in the pretreatment sample, the antigen giving the higher 

antibody titer in the pretreatment sample was used throughout the study. 

3.3 Methods used for mouse studies. 

3.3.1 Animal Licence. 

All procedures were performed under a Home Office licence to Dr Adam Cunningham, 

licence number 40/2904, and were approved by the University of Birmingham Ethics 

Committee. 

3.3.2 Animals and animal husbandry. 

“QMxB6 mice” were raised by crossing Quasi-monoclonal (QM) mice [123] with 

C57/BL6 mice for  6 generations, selecting for the presence of the QM-related transgene 

each time. Mice were bred and maintained in specific pathogen free conditions in the 

University of Birmingham BioMedical Services Unit (BMSU). They were provided with 

unlimited amounts of standard feed, and water.  

Where used, 5-Bromo 2΄-deoxyuridine (BrdU) was provided ab libitum at 1mg/ml in 

animal‟s drinking water between 24 hours and 120 hours after inoculations.
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3.3.3 S. Typhimurium – culture and preparation for inoculation. 

The bacteria used for the experiments were kindly cultured and prepared by Ms Saeda 

Bobat. An attenuated strain of Salmonella – Salmonella enterica serovar Typhimurium 

(S. Typhimurium) (SL3261 strain) [195] – was cultured overnight in LB media at 37˚C, 

with aeration. Prior experiments had established the relationship between the cell density 

of S. Typhimurium in exponential phase culture, and the optical density (OD) of the 

bacterial suspension, measured at 600nm. Once an OD between 0.8 and 1.2 was reached, 

bacteria were harvested by centrifugation (6000g for 5 minutes). Pelleted cells were then 

washed twice in PBS (with further centrifugation at 6000g for 5 minutes after each), 

before being resuspended in 1ml PBS. This was then diluted, as necessary, to give a 

predicted final concentration of 10
5
 cells per 200μl for use in immunisations.  

3.3.4 Animal inoculations. 

Mice aged between 6 and 8 weeks each received one intra-peritoneal injection of 200μL 

phosphate buffered saline, to which had previously been added either a) 30μg NP-Ficoll 

(Biosearch Technologies, Novato, CA), or b) 10
5
 live S. Typhimurium or c) both. Control 

(non-immunised) mice did not receive sham injections. Injections were kindly performed 

by Ms Jennifer Marshall, Dr Elodie Mohr, and the staff of BMSU. 

3.3.5 Animal sacrifice and the obtaining of samples. 

Animals were sacrificed at differing timepoints from 4 to 35 days after inoculation, by 

cardiac puncture under terminal anaesthesia. Control mice were sacrificed at the end of 

the experiment (day 35). Procedures were kindly performed by Ms Jennifer Marshall, Dr 

Elodie Mohr, and the staff of BMSU. 
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3.3.5.1 Preparation and storage of serum from mouse blood samples. 

Blood samples obtained by cardiac puncture under terminal anaesthesia were allowed to 

clot at room temperature, and then centrifuged at 16,060g for 10 minutes before 

extraction of serum by pipetting. Serum samples were then aliquotted and frozen at -20˚C 

or below before use. 

3.3.5.2 Preparation and storage of spleens from sacrificed mice. 

Spleens obtained after mouse sacrifice were divided, and both segments weighed. In each 

case, the larger part was stored for subsequent use in histology (section 3.3.8). The 

smaller part was used immediately in flow cytometric studies (section 3.3.7). 

3.3.6 ELISA-based assay for measurement of isotype specific anti-NP 

antibody levels in mouse serum samples. 

Samples were prepared as described in section 3.3.5.1. Nunc Maxisorb 96 well plates 

were coated with antigen by overnight incubation, in a dampened box at 4˚C, with 100μl 

per well of coating buffer (see section 3.1) containing 5mg/ml NP2-BSA. Sufficient plates 

were coated for the contemporary measurement of all samples to be compared. 

Plates were prepared for use by first being washed three times in PBS (by immersion), 

and being dried between each by shaking and by banging on dry paper. Plates were then 

blocked by incubation at 37˚C for 1 hour with 100μl per well of PBS containing 1% 

BSA, and then washed once again in PBS with shaking and banging to dry. 

Meanwhile, samples were prepared for analysis by preparing serial dilutions in PBS 

containing 1% BSA and 0.05% Tween-20, in a separate non-absorbent 96 well plate. For 
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assays of IgM anti-NP samples were diluted 1 in 10, and 4-fold thereafter. For assays of 

other isotypes, starting dilutions of 1 in 100 were used.  

One hundred microlitres of all samples‟ dilutions to be tested were then transferred to the 

pre-coated, blocked and washed ELISA-plates, and incubated at 37˚C for 1 hour, after 

which plates were washed and dried three times, as described previously. Plates were left 

with wells filled with additional PBS, until washing of all concurrently incubated plates 

was completed. Control (blank) wells, were loaded with diluent alone. 

Secondary antibodies used were alkaline-phosphatase conjugated polyclonal goat 

antibodies against specific mouse immunoglobulin isotypes (all from Southern BioTech). 

Anti-IgM was used at 1 in 2000 dilution, whilst others were used at 1 in 1000 dilution, in 

PBS containing 1% BSA, and 0.05% Tween-20. One hundred μl of the relevant antibody 

was added to each sample well, and to blank wells, and the plates re-incubated for 1 hour 

at 37˚C, before being washed as described previously. 

Meanwhile the buffer for use with enzyme substrate was prepared by dissolving 1 Tris 

tablet (Sigma) into 20ml distilled water. One p-Nitrophenyl Phosphate (pNPP) Fast
TM

 tab 

(Sigma) was then added, per 20ml Tris buffer, to be fully dissolved just before use.  

One hundred microlitres of pNPP Fast
TM

 solution was then added to each sample and 

control well and the plate then incubated at 37˚C until sufficient colour had developed for 

reading at 405nM by plate reader. 

Within sets of samples assayed for the same isotype of anti-NP antibody, changes in 

405nM absorbance were plotted against each sample‟s dilution (log scale), and a cut-off 

absorbance threshold was determined. Relative titres of measured antibody in each 
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sample were considered to be the inverse of the hypothetical concentration which 

generated the threshold optical density.  

3.3.7 Flow cytometric studies of mouse spleen cell suspensions. 

3.3.7.1 Estimation of splenic CD138+ cell counts by flow cytometry. 

This work was kindly performed by Ms Jennifer Marshall.  

Segments of freshly obtained mouse spleen were pulped, suspended in  5ml RPMI 

supplemented with 10% fetal calf serum (FCS) and  sieved  through a 70mm nylon mesh, 

before being incubated with appropriate antibodies (Table 3-1) suspended in PBS with 

1% FCS  at predetermined optimal concentrations for 20 minutes at 4˚C. 

  FL-1 FL-2 FL-3 FL-4 

Reagent anti-B220-FITC NP-PE - anti CD138-

Biotin and 

steptavidin 

APC 

Source  eBiosciences Dr P. Lane   Beckton 

Dickinson 
Table 3-1 shows reagents used for the estimation of CD138

+
 cell numbers by flow cytometry. 

FITC: Fluorescein-isothiocyanate. PE: Phycoerythrin. APC: Allophycocyanin. 

 

Samples were then immediately analysed on a Facscalibur (Becton Dickenson) flow 

cytometer using CellQuest Software.  Off-line analysis was achieved with FlowJo 

software for Mac (Version 6.3.2). Apoptotic cells were excluded by their forward / side 

scatter characteristics. Amongst the remaining cells, the proportion that were CD138
+
, 

and the proportion of these that were also NP-specific, was calculated.   

An estimate of the total cell count per spleen was obtained by counting with an improved 

Neubauer haemocytometer using Trypan blue exclusion.  
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3.3.7.2 Other flow cytometric studies of mouse spleen cell suspensions. 

This work was kindly performed by Dr Elodie Mohr. 

One third of the spleen was mashed between two glass slides in RPMI containing 5% 

FCS, 1 mg/ml of collagenase type II (Lorne Laboratories Ltd) and 0.15mg/ml DNase I 

(Sigma-Aldrich). The cell suspension was prepared by repeated pipetting for 20 

min through a fine tip pastette (alphaLaboratories). It was then treated for 5min with 

10mM EDTA (Sigma-Aldrich), before being filtered through a nylon mesh, and 

centrifuged for 5 min at 1500 rpm. Cells were resuspended in Flow-assisted cytometric 

sorting (FACS) buffer containing 5% normal mouse serum and 20% v/v of supernatant 

from 2.4G2 hybridoma culture and incubated for 10 minutes on ice. Cells were then re-

centrifuged for 5 min at 1500 rpm and resuspended in FACS buffer. A proportion of the 

prepared cells were recentrifuged and stored as a dry pellet at -20˚C until needed for 

RNA extraction (see section 3.3.14.1).  

Samples were then incubated with the appropriate antibodies (which were either directly 

conjugated to fluorochromes or to biotin) for 30 minutes on ice (see Table 3-2, Table 3-3, 

Table 3-4, and Table 3-5). Where biotinylated secondary antibodies were used, an 

additional wash step was first performed (using 150 μl PBS containing 2mM EDTA, and 

0.1% FCS). Samples were then incubated with the appropriate streptavidin conjugated 

fluorochrome for 30 minutes on ice, before the final 2 washes. 

 FL-1 FL-2 FL-3 FL-4 

Reagent anti-CD169 FITC anti F4/80 PE anti-CD11b 

PerCP-Cy5.5 

anti Gr1 biotin 

+ Strept APC 

Source 

(company) 

Serotec e-Bioscience BD 

Pharmingen  

e-Bioscience, 

BD 

Pharmingen 
Table 3-2 shows reagents used for the estimation of splenic granulocyte numbers by flow cytometry. 
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FL-1 FL-2 FL-3 FL-4
Reagent anti F4/80 FITC anti-CD11c 

PE
anti-CD8 
PerCP

anti-CD4 APC

Source 
(company)

Sertotec BD 
Pharmingen

BD 
Pharmingen

e-Bioscience

Table 3-3 shows reagents used for the characterization of splenic granulocytes with antibodies to 
CD11c, CD8 , CD4 and F4/80, by flow cytometry.  

FL-1 FL-2 FL-3 FL-4
Reagent anti  IgM FITC NP-PE anti-B220 

PerCP-Cy5.5
anti-CXCR3 
APC

Source 
(company)

Southern Biotech Dr Elodie 
Mohr

BD 
Pharmingen

Both BD 
Pharmingen 

Table 3-4 shows reagents used to assess expression of the chemokine receptor CXCR3 on putative 
NP-specific AFC, by flow cytometry.  

FL-1 FL-2 FL-3 FL-4
Reagent anti  IgM FITC NP-PE anti-B220 

PerCP-Cy5.5
anti-CXCR4 
biotin, and 
steptavidin 
APC

Source 
(company)

Southern Biotech Dr Elodie 
Mohr

BD 
Pharmingen

R&D Systems

Table 3-5 shows reagents used to assess expression of the chemokine receptor CXCR4 on putative 
NP-specific AFC, by flow cytometry. 

Where needed, intracellular staining for flow-cytometry was performed using 

Cytoifx/Cytoperm kit (BD Biosciences), and the BrdU APC flow kit (BD Biosciences), 

according to the manufacturers instructions (see also Table 3-6).

FL-1 FL-2 FL-3 FL-4
Reagent anti-BrdU FITC NP-PE anti-B220 

PerCP-Cy5.5
anti-CD138 
APC

Source BD Pharmingen Dr Elodie 
Mohr

BD 
Pharmingen

BD 
Pharmingen

Table 3-6 shows reagents used for the estimation of splenic numbers of NP-specific AFC, including 
those that have incorporated BrdU, by flow cytometry. 

Samples were then analysed on a Facscalibur (Becton Dickenson) flow cytometer using 

CellQuest Software. Off-line analysis of flow cytometric data was performed with 

FlowJo software for Mac (Version 6.3.2). 
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3.3.8 Preparation of tissues for histology. 

Part of each spleen obtained after mouse sacrifice was dip frozen in liquid nitrogen and 

stored at -70 until use.  

6µm spleen sections were cut by cryostat (Bright) and placed on multispot glass slides 

(Hendley), air dried for at least 40 minutes, and fixed in acetone (Baker) (for 20 minutes 

at 4˚C). Sections were then briefly air dried, and stored at -20˚C or below until required. 

 

3.3.9 Immunohistochemistry. 

3.3.9.1 Incubation of tissues with antibodies. 

Tissue sections were prepared in advance as described in section 3.3.8. Slides were 

brought to room temperature and placed under a fan, for at least 15 minutes, before being 

rehydrated in Tris pH 7.4 (see section 3.1) for at least 10 minutes at room temperature.  

Primary antibodies were mixed as necessary, and diluted to the pre-determined optimal 

concentrations in Tris pH 7.4. Antibody combinations used are listed in Table 3-7, Table 

3-8, Table 3-9, Table 3-10, Table 3-11, and Table 3-12. Seventy five microlitres of the 

antibody mix was added to each tissue section, which was then incubated for 45 minutes. 

During this, and subsequent, incubations slides were kept at room temperature in a moist 

cabinet. Slides were washed for at least 5 minutes in Tris pH 7.4, with stirring, between 

incubation steps. 

Secondary antibodies were mixed as necessary and then pre-absorbed with normal mouse 

serum (NMS) for 30 minutes before use - 1µl NMS being added per 10ul of mixed 

undiluted antibody. Secondary antibodies were then diluted to pre-determined 
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concentrations in Tris pH 7.4 for use. Again, 75µl of diluted antibody was added to each 

section, and the slides incubated for 45 minutes.  

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

Rt @ CD3 BD Pharmingen  IgD – Sh Ig Dr Khan  

Incubation 

phase 2 

(With NMS) 

Rb @ Rt bt Dako Dk @ Sh 

Peroxidase 

The Binding 

Site 

Incubation 

phase 3 

Strept AP Vector   

Table 3-7 shows the protocol for immunohistochemical staining of mouse tissue sections for CD3
+
 

cells and IgD
+
 cells.  

Rt: Rat. Sh: Sheep. Rb: Rabbit. Dk : Donkey.  

 

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

NP – Sh Ig Dr Khan Rat @ IgD BD 

Pharmingen 

Incubation 

phase 2 

(With NMS) 

Dk @ Sh bt The Binding Site Rb @ Rt 

Peroxidase 

The Binding 

Site 

Incubation 

phase 3 

Strept AP Vector   

Table 3-8 shows the protocol for immunohistochemical staining of mouse tissue sections for cells with 

anti-NP Ig, and for IgD
+
 cells. 

Where used, Steptavidin-Biotin Alkaline Phosphatase complex (Strept AP) was prepared 

from component solutions „A‟ and „B‟ (Vector). Specifically, 10µl of each solution was 

added to 1ml Tris pH 7.4 and incubated for 30 minutes at room temperature prior to use. 

When Rabbit Peroxidase / Antiperoxidase complex (Rabbit PAP) was also used for two 

colour staining, this was added to the Strept AP just before use at a final concentration of 

1/100. Seventy five microlitres of the required, diluted, solution was added to each 

section, and the slides incubated for 30 minutes. 



56 

 

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

NP – Sh Ig Dr Khan Rb @ Ki67 Dako 

Incubation 

phase 2 

(With NMS) 

Dk @ Sh bt The Binding Site Sw @ Rb Ig Dako 

Incubation 

phase 3 

Strept AP Vector Rb PAP Dako 

Table 3-9 shows the protocol for immunohistochemical staining of mouse tissue sections for cells with 

anti-NP IgG. and for cells expressing the nuclear marker for proliferation – Ki67. 

 

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

Gt @ 

human 

Collagen III 

Southern BioTech NP – Rb Ig Dr Khan  

Incubation 

phase 2 

(With NMS) 

Dk @ Sheep 

Bt 

The Binding Site Sw @ Rb Ig Dako 

Incubation 

phase 3 

Strept AP Vector Rb PAP Dako 

Table 3-10 shows the protocol for immunohistochemical staining of mouse tissue sections for 

structures that bind antibodies against human Collagen III, and for cells with anti-NP Ig. 

 

Table 3-11 shows the protocol for immunohistochemical staining of mouse tissue sections with anti-

BP3 antibody and for cells with anti-NP Abs. 

 

Table 3-12 shows the protocol for immunohistochemical staining of mouse tissue sections with anti-

ER-TR7 antibody, and for cells with anti-NP Abs. 

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

Rt @ BP3 

(CD157) 

Accurate Chemical and 

Scientific  

NP – Sh Ig Dr Khan 

Incubation 

phase 2 

(With NMS) 

Rb @ Rt Bt Dako Dk @ Sh 

Peroxidase 

The Binding 

Site 

Incubation 

phase 3 

Strept AP Vector   

 Alkaline Phosphatase Peroxidase 

Incubation 

phase 1 

Rat @ 

ER-TR7 

BMA Biomedicals NP – Sh Ig Dr Khan  

Incubation 

phase 2 

(With NMS) 

Rt @ Rat 

Bt 

Dako Dk @  Sh - 

Peroxiadse 

The Binding 

Site 

Incubation 

phase 3 

Strept AP Vector   
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3.3.9.2 Enzymatic development of coloured substrates. 

3.3.9.2.1 Visualisation of peroxidase associated antibodies with 

3,3’Diaminobenzidine tetrahydrochloride. 

One tablet (10mg) 3,3‟Diaminobenzidine tetrahydrochloride (DAB) (Sigma) was brought 

to room temperature before being dissolved in 15ml Tris pH 7.4, and then filtered. 

Approximately 100µl Hydrogen peroxide (30% w/v) (Sigma) was then added to 10ml 

DAB solution immediately prior to use.  

Approximately 100 µl of the resulting mixture was added to each slide, and the sample 

observed by light microscopy to asses the progression of colour development. Once 

optimal development was achieved, the reaction was stopped by washing in Tris pH 7.4. 

3.3.9.2.2 Visualisation of Alkaline phosphatase associated antibodies with 

Fast BlueTM. 

Fast Blue
TM

 and Napthol AS-MX phospate reagents (both Sigma) were stored at minus 

20˚C and brought to room temperature before use. Four milligrams of Napthol AS-MX 

phosphate (Sigma) was placed in a glass bijou, to which 370 µl N-N-Dimethyl 

Formamide (Sigma) was added in a fume cupboard. The resulting solution was then 

added to 8mg Levamisole (Sigma) previously dissolved in Tris pH 9.2 (see section 3.1).  

Into the resulting mixture was added 10-12 mg Fast Blue
TM

, which was then mixed 

gently, and filtered before use. The final solution was protected from light if not used 

immediately. Approximately 100 µl was added to each slide, and the section observed by 

light microscopy to asses the progression of colour development. Once optimal 

development was achieved, the reaction was stopped by washing in Tris pH 7.4. 
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3.3.9.3 Final preparation of developed slides for permanent storage and 

use. 

After development of the relevant substrates and washing in Tris pH 7.4, slides were 

briefly washed in distilled water before being allowed to dry. Sections were covered with 

glass cover-slips (Surgipath) using Immu-mount fluid (Thermo Electron Corporation). 

3.3.10 Estimating splenic NP-specific AFC numbers by counting 

cells in histological sections. 

Estimates of the relative number of NP-specific AFC present in mouse spleens were 

made using the Weible point counting method [196]. Six micrometre thick splenic 

sections, that had previously been immunohistochemically stained for anti-NP antibodies 

and for CD138
+
 cells, were viewed at 100x magnification through an eyepiece with a 

10x10 graticule. NP-stained cells that were overlain by intersections on the grid were 

counted (excluding those on the right and lower margins of the grid). An estimate for the 

relative number of cells per section, for each spleen of interest, by starting in one corner 

and sequentially moving the section back and forth, one „row‟ at a time. An estimate of 

the relative number of cells per spleen was then obtained by multiplying the section‟s 

AFC count by the total splenic weight. 

3.3.11 Photography of immunohistochemically stained tissue 

sections. 

Photomicrographs of stained sections were obtained using a Hitachi HV-D30 digital 

camera attached to the P.A.L.M. microdissection platform (Microlaser Technologies 
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GmbH, Zeiss). Photomicrographs were saved as TIFF images. These were cropped or 

contrast-adjusted using Paint-Shop Pro Version 7 for windows. 

3.3.12 Laser scanning confocal microscopy. 

3.3.12.1 Incubation of tissues with antibodies. 

Tissue sections were prepared in advance as described in section 3.3.8. Slides were 

brought to room temperature under a fan, for at least 15 minutes, before being rehydrated 

in PBS at room temperature for at least 10 minutes.  

Primary antibodies were mixed and diluted as necessary. Five percent (by volume) NMS 

was then added to the antibody mixture, which was incubated at room temperature for 30 

minutes before 75µl was added to each tissue section. Sections were incubated for 1 hour 

with primary antibody, at room temperature. During this, and subsequent, incubations 

slides were kept at room temperature in a moist cabinet. Slides were washed for at least 5 

minutes in PBS with stirring, between each incubation step. 

Second and subsequent layers of staining (up to 6 more per section), were performed in a 

similar manner. Antibodies were pre-mixed with 5% NMS, or another species‟ normal 

serum able to bind any residual antibody from the previous layer of staining. Seventy five 

microlitres of antibody mixture was added to the section each time. Second and 

subsequent incubations were all 30 minutes at room temperature. Once fluorochrome-

conjugated antibodies had been applied, all incubations and wash steps were performed in 

the dark. Antibody combinations used are listed in Table 3-13 and Table 3-14. 
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After all staining was completed, sections were washed in fresh PBS. Excess liquid 

around the margin of the slide was removed, and sections were mounted in 2.5% [1,4-

Diazabicyclo(2,2,2) octane] pH 8.6 in 90% glycerol in PBS.  

 
Table 3-13 shows protocol for staining adjacent sections of mouse tissue for visualization of selected 

combinations of CD169
+
 cells, F4/80

+
 cells, Gr1

+
 cells, CD11b

+
 cells, cells specific for NP, and IgM

+ 

cells by confocal microscopy. 

AMCA: 7-amino-4-methylcoumarin-3- acetic acid. NGS: Normal goat serum. 

Reagents were obtained from the following sources: NP-Sheep Ig (Dr Khan), Dk@Gt Cy-5 (Jackson 

Immunoresearch), Sh@ Rt bt (Binding Site), Strepta Cy3 (Jackson Immunoresearch), Rt @ F4/80 FITC 

(Serotec), Rt @ CD11b FITC (e-Bioscience), Rb @ FITC (Dako), Gt @ Rb FITC (BD Pharmingen), Gt @ 
IgM AMCA (Jackson Immunoresearch), Rt@ CD169 FITC (Serotec). Normal animal sera were obtained 

from The Binding Site. 

 

Staining 

combinations 

displayed in 

thesis 

CD169 

F4/80  

anti-NP Ab 

IgM 

 

F4/80 

Gr1 

anti-NP Ab 

IgM 

CD11b 

Gr1 

anti-NP Ab 

IgM 

Corresponding 

Negative controls 

Incubation 

phase 

Staining combinations used 

Phase 1 NP-Sheep Ig  

Rt @ F4/80 

NMS 

NP-Sheep Ig  

NMS 

NP-Sheep Ig 

NMS 

 

NMS 

Phase 2 Dk@Gt Cy-5 

NMS 

Dk@Gt Cy-5 

NMS 

Dk@Gt Cy-5  

NMS 

Dk@Gt Cy-5  

NMS 

Phase 3 NGS NGS NGS NGS 

Phase 4 Sh@ Rt bt   

NMS 

Rt @ Gr1 bt 

NMS 

Rt @ Gr1 bt 

NMS 

 

NMS 

Phase 5 Strepta Cy3  

NRS 

Strepta Cy3  

NRS 

Strepta Cy3 

NRS 

Strepta Cy3 

NRS 

Phase 6 Rt @ CD169 

FITC  

NMS 

Rt @ F4/80 

FITC 

NMS 

Rt @ CD11b 

FITC 

NMS 

 

NMS 

Phase 7 Rb @ FITC 

NMS 

Rb @ FITC 

NMS 

Rb @ FITC 

NMS 

Rb @ FITC 

NMS 

Phase 8 Gt @ Rb FITC 

Gt @ IgM 

AMCA  

Gt @ Rb FITC 

Gt @ IgM 

AMCA 

Gt @ Rb FITC 

Gt @ IgM AMCA  

Gt @ Rb FITC 

Gt @ IgM 

AMCA  



61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 3-14 shows protocol for staining sections of mouse tissue for visualization of F4/80
+
 cells, 

CD11c
+
 cells, CD4

+
 cells and IgM

+ 
cells by confocal microscopy. 

Hs: Hamster. Reagents were obtained from the following sources: Hs@ CD11c (Serotec), Gt @ Hs Cy3 
(Jackson Immunoresearch), Rb @ FITC, Gt @ Rb-FITC (Dako), Rt @ CD4-APC (e-Bioscience), Gt @ 

IgM AMCA (Jackson Immunoresearch). Normal mouse serum was obtained from The Binding Site. 

3.3.12.2 Confocal microscopy – image acquisition and analysis. 

Sections were examined with a Zeiss LSM510 laser scanning confocal microscope using 

a x10 objective. A 488nm argon laser was used to excite FITC-conjugated antibodies; a 

543nm HeNe laser was used for Cy3–conjugated antibodies; a 633nm helium laser for 

Cy5 conjugates, and 351 / 364nm lasers were used for AMCA conjugated antibodies. The 

four lasers scanned separately, to obtain discrete images of 2048x2048 resolution. These 

were analysed off line using Zeiss LSM image browser version 3,5,0,376 to generate 

combined images in false-colour.  

Staining 

combinations 

displayed in thesis 

F4/80 

CD11c  

CD4 

IgM 

Corresponding 

Negative controls 

Incubation phase  

Phase 1 Hs@ CD11c 

NMS 

NMS 

Phase 2 Gt @ Hs Cy3 

NMS 

Gt @ Hs Cy3 

NMS 

Phase 3 Rt @ F4/80 FITC 

NMS 

NMS 

Phase 4 Rb @ FITC 

NMS 

Rb @ FITC 

NMS 

Phase 5 Gt @ Rb-FITC 

Rt @ CD4-APC 

NMS 

Gt @ Rb FITC 

NMS 

Phase 6 Gt @ IgM AMCA Gt@ IgM 

AMCA 



62 

3.3.13 Laser microdissection and capture of tissue sections for 

use in Real Time Reverse Transcriptase Polymerase Chain 

Reaction assays (RT2-PCR). 

3.3.13.1 Cresyl violet staining of sections for dissection. 

Sections for subsequent microdissection were prepared and stored as for histology 

(section 3.3.8), except that PALM® MembraneSlides NF were used.  For use, slides were 

removed from the freezer, and brought to room temperature under a fan, for at least 20 

minutes. Sections were then rehydrated by passage through RNAse free 100% ethanol, 

70% ethanol, and 50% ethanol (all from Sigma), and stained for 3 minutes with cresyl 

violet (sigma) 1% W/V in RNAse free 100% ethanol. Slides were then dipped 

sequentially in 50%, 70%, 100% to dehydrate, and air-dried.  

3.3.13.2 Use of immunohistochemically stained slides to determine 

areas of splenic tissue for microdissection.  

Two pairs of serial sections, cut before and after the sections intended for 

microdissection, were prepared for conventional histology (section 3.3.8). Within in each 

pair, one section was stained with NP and anti-IgD, the other with NP and anti-Ki67 

(according to methods described in section 3.3.9). 

Each section was photographed in entirety, and a composite image constructed in 

PowerPoint version 2002 (Microsoft). Tissue areas of interest were identified within this 

composite image – red pulp containing NP-specific antibody forming cells (AFC), red 

pulp not containing NP-specific AFC, IgD
+
 areas, T zone, and extra-follicular foci (in 
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infected mice) – and cross-referenced with corresponding areas on the cresyl violet 

stained tissue for microdissection (Figure 3-1).   

 

 

 

 

 

 

 

Figure 3-1 shows photomicrographs of two proximate splenic sections from a mouse sacrificed 8 days 

after NP-Ficoll immunization, demonstrating relationship between appearances after cresyl violet 

staining, and after immunohistochemical staining for IgD and anti-NP antibodies.  

Left image shows section immunohistochemically stained for IgD (brown) and with NP (blue). Right image 

shows section stained with cresyl violet, revealing intense staining of the B cell follicle, slightly weaker 
staining of the T zone, and light staining of the red pulp.  

In mice sacrificed at day 4 post NP-Ficoll immunization, no red pulp areas devoid of 

plasma cells could satisfactorily be identified for dissection (see section 6.4.2). Extra-

follicular foci of antibody secreting cells, of adequate size for microdissection, were only 

satisfactorily identified in the S. Typhimurium infected mice. 

3.3.13.3 Laser microdissection and tissue capture. 

Laser microcapture was performed using a Microbeam HT microscope (PALM 

Microlaser Technologies). Twenty to forty similar areas were microdissected, and 

catapulted into twenty microlitres of RNeasy RLT buffer (Qiagen), and snap frozen on 

dry ice (-78˚C). Samples were stored at minus 20˚ C until use. 

Day 8, NP-Ficoll. Cresyl Violet. x50 Day 8, NP-Ficoll. NP. IgD. x50 
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3.3.14 cDNA preparation for semi-quantitative RT2-PCR. 

3.3.14.1 RNA isolation from spleen cell suspensions. 

This work was kindly performed by Dr Elodie Mohr. 

Cell suspensions were previously prepared as described in section 3.3.7.2. The frozen 

pellets were resuspended in 1ml of RNABee (Tel-test Inc), and homogenised by pipetting 

up and down and then vortexing. The extraction was then performed by adding 200 μl of 

chloroform and vortexing for 30 sec. After centrifugation for 15 min at 16,060g at 4C, the 

aqueous phase was removed, and the RNA precipitated by incubation with 500 μl 

isopropanol for 10 min at room temperature. The RNA was pelletted by centrifugation for 

5 min at 16,060g at 4C, and the pellet then washed twice in 1 ml of 75% ethanol, with 

similar centrifugations between washes. 

After leaving the pellets to dry slightly, they were resuspended in 30 μl of diethyl 

pyrocarbonate (DEPC, Sigma-Aldrich)-treated water containing 20U of RNAseOUT
TM

  

RNAse-inhibitor (Invitrogen). 

The concentration of RNA obtained was estimated by optical density (at 260 nm), based 

on the assumption that 40 μg/μl of RNA gives an OD of 1. Two micrograms of RNA was 

used for cDNA preparation. This amount of RNA is incubated with 1ug random 

hexanucleotides (Promega) in 13 μl total.  

3.3.14.2 RNA isolation from microdissected tissue. 

RNA isolation and cDNA preparation were performed using RNAeasy Micro Kits 

(Qiagen), according to the manufacturer‟s instructions. Microdissected samples, 

contained with twenty microlitres of RLT buffer, were lysed by micropipetting in 350μl 
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of RLT buffer, to which β-mercaptoethanol (1%) and carrier RNA (to a final 

concentration of 57ng/ml) had been previously added. The lysed solution was then placed 

in a QIAShredder spin column, itself placed within a 2ml collection tube, and centrifuged 

for 2 minutes at 16,060g. The collected volume was mixed by pipetting with 350μl of 

RNAse free 70% Ethanol (sigma), placed in an RNeasy MinElute spin column, and 

centrifuged for 15 seconds at 8,000g. After discarding the flow through, the column 

contents were was washed by adding 350μl RW1 buffer and re-centrifuging at 8,000g for 

15 seconds.  

Eighty microlitres of diluted DNAse 1 solution (10μl of DNAse1 stock with 70 μl RDD 

buffer) was then added directly to the top of the column which was then incubated for 15 

minutes at room temperature, before being washed by adding a further 350 μl RW1 

buffer and then centrifuged at 15 seconds at 8,000g.  

After placing the column into a new collection tube, 500μl RPE buffer was added to the 

column before centrifuging at 8,000g for 15 seconds, and discarding the flow through. 

Next 500μl 80% Ethanol (RNAse free) was added to the column which was centrifuged 

for 2 minutes at 8,000g, after which the flow through and collection tube were discarded. 

After placing the column into a clean collection tube, it was centrifuged again, this time 

with the cap kept open, at 16,060g for 5 minutes to dry the column contents.  

To elute the RNA, 22μl RNAse free water was added directly to the top of the column, 

which was centrifuged at 16,060g for 1 minute, with the flow through collected in a fresh 

1.5ml eppendorf tube. 
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3.3.14.3 Preparation of cDNA from isolated RNA. 

In preparing cDNA from bulk spleen cell suspensions, 2 μg extracted RNA was mixed 

with 1μl random primer hexa-nucleotides (3mg/ml, Promega) in 13μl RNAse free water. 

By contrast for microdissected samples, 2μl random primer hexa-nucleotides (3mg/ml, 

Promega), were mixed with 20μl of RNA containing eluate (see section 3.3.14.2). 

Thereafter similar methods were used for preparation of cDNA from both sources. 

Mixtures were denatured at 70˚C for 10 minutes, and shock cooled on ice to prevent re-

annealing. Meanwhile the reverse transcriptase solution was prepared. This contained 6.4 

μl RNAse free water, 8μl 5x first strand buffer (Promega), 1.5μl nucleotide mix (dATP, 

dCTP, dGTP, d, TTP at 10mM each), 0.625μl RNAseOUT
TM

 RNAse-inhibitor (40U/μl, 

Invitrogen), 1.5μl Moloney Murine Leukemia Virus reverse transcriptase (200U/ml, 

Promega). To this solution was added the 22μl water containing the RNA and primers, 

and the PCR tube contents were mixed well by pipetting.  

The mixture was incubated at 42˚C for 1 hour, before being heated to 90˚C for 10 

minutes to denature the reverse transcriptase, and then allowed to cool. The resulting 

cDNA was stored, without further dilution, at -20˚C. 

3.3.15 Quantitative Reverse Transcriptase Polymerase Chain 

Reaction Assays (RT2-PCR). 

Assays for the relative quantification of target cDNA in samples were performed, where 

possible, in duplex with assays for β2-Microglobulin or β-actin cDNA. Otherwise, 

relative amounts of target and reference gene cDNA were quantified in simultaneously 

performed, simplex, assays. Primers used had either been designed by others within the 
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research group using Primer Express computer software (Applied Biosystems) and then 

synthesized by Eurogenetec, or were purchased directly from Applied Biosystems. All 

primers were used at previously determined optimal concentrations and with standard 

reaction conditions for TaqMan PCR. Probes were detected by 5‟ conjugation to FAM 

(target species), or 5‟ conjugation to VIC or Yakima Yellow. Details of primer and probe 

sequences used, and their corresponding concentrations, are contained in Table 3-15. 

mRNA species Origin Fluoro- Assay Reference Final reagent concentration (nM)

phore configuration gene used
Forward
primer

Reverse
primer Probe

IL6 MacLennan group FAM Simplex β2-microglobulin 150 80 60

BAFF MacLennan group FAM Simplex β2-microglobulin 150 120 120

APRIL MacLennan group FAM Simplex β2-microglobulin 175 60 60

Blimp-1 MacLennan group FAM Duplex β2-microglobulin 175 80 100

-IFN MacLennan group VIC Simplex β2-microglobulin 150 120 120

IL-21 MacLennan group FAM Simplex β2-microglobulin 125 80 80

CXCL12 MacLennan group FAM Simplex β2-microglobulin 175 80 80
BCMA MacLennan group FAM Simplex β2-microglobulin 80 80 175

CXCL9 Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

CXCL10 Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

CXCL11 Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

TNF-α Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

CXCR3 Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

CXCR4 Applied Biosystems FAM Duplex β2-microglobulin 0.4μl per well

β2-

microglobulin MacLennan group

Yakima 

Yellow Both 175 60 80

Table 3-15 shows mRNA species analysed by RT2-PCR, the fluorophore associated with each probe, 
their assay’s configuration (duplex or simplex) and working concentrations of primers and probes 
used.  
Primer and probe sequences are listed in Appendix 2, page 184. FAM: 6-carboxyfluoroscein.  VICis a 
proprietary dye from Applied Biosystems.   

RT2-PCR assays were performed in 8μl final reaction volume. Quantities of target 

species‟ forward primers, reverse primers, and probes, sufficient to achieve the desired 

final concentrations, were mixed in advance with PCR master mix (Promega), and diluted 

to 7 μl with RNAse free water.

One microlitre of sample cDNA was added to the appropriate well of a 384 well 

MicroAmp plate (Applied Biosystems) which was then centrifuged for 2 minutes (200g).  

Seven microlitres of the previously prepared mix of primers, probes, enzymes and buffer 
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was then added to the sample cDNA, and the mixture re-centrifuged before being covered 

with an optically clear adhesive film (Absolute Q-PCR Seal, Thermo Scientific).  

Assays were performed using an ABI 7900 machine (Applied Biosystems), in which 

samples were heated to 50˚C for 2 minutes, then to 95˚C for 10 minutes, followed by 40 

cycles of high temperature (95˚C for 15 seconds) and lower temperature (60˚C for 60 

seconds). Results were analyzed using SDS version 2.2.2 software (Applied Biosystems).  

3.4 Statistical analysis and presentation of data. 

Statistical analysis was performed using Prism software version 5.01 (GraphPad). 

Statistical comparisons were made with the two-tailed unpaired non-parametric Mann 

Whitney test. Figures presented either were created using Excel 2002 and PowerPoint 

2002 (both Microsoft), or Prism software version 5.01 (GraphPad). 
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4 DEVELOPMENT OF MICROSPHERE BASED ASSAYS 

4.1 Introduction. 

There are considerable advantages to technologies that allow the accurate and 

reproducible performance of multiple assays, in parallel, using small amounts of a 

biological sample. In addition to their potential to save time, and minimise consumption 

of stored sera, such techniques (known as “multiplexing”) eliminate intra-assay 

variability due to pipetting, and minor changes in experimental condition. These causes 

of variability are inherent in the execution of serial assays. This is of greatest relevance 

when performing within-subject comparisons amongst the relevant assays – an 

experimental design anticipated, and subsequently used, elsewhere in this thesis. 

Prior studies have used “Luminex” microsphere based assays to measure, across a wide 

dynamic range, levels of antibodies specific to different pneumococcal capsular 

polysaccharides (PnCP) [193;197]. Although the appropriate machine was available, only 

preliminary steps towards establishing such assays had previously been made at the 

University of Birmingham. My project required accurate assays to determine within 

single samples specific class and subclass levels of antibody against all of the different 

recognized classes of antigen. Consequently I sought to establish, validate and 

standardise a local microsphere-based assay for this purpose. The aim was to use this 

approach to assess levels of antibodies against different serotype specific PnCP, as well 

as antibody specific for tetanus toxoid, phosphorylcholine (PC), or CWPS. 
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4.2 Principles of microsphere-based assays. 

Microsphere assays are analogous to enzyme-lined immunospecific assays (ELISAs). 

The binding of a soluble factor (e.g. antibody) to an immobilised substrate (e.g. antigen) 

is not linearly related to the concentration of either, or the affinity of the interaction. 

For microsphere-based assays the substrate is covalently bound to microscopic beads. 

These can be commercially obtained with substrate already attached (e.g. in cytokine 

assays) or purchased bearing carboxyl groups, for use in customised bead assays (see 

section 3.2.5.1 for conjugation method used in this work). Beads are available in a range 

of „regions‟, which are distinguished by the relative amount of two fluorochromes they 

contain. Thus when run through an appropriate machine, analogous to a flow cytometer, 

distinct bead „regions‟ can be identified by their fluorochrome signature (Figure 4-1). 

 

Figure 4-1 is a map of 100 distinct beads regions available for Luminex microsphere-based assays. 

Figure downloaded from BioRad corporation website (http://www.bio-rad.com) 
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To quantify the amount of soluble factor binding to the bead-bound substrate, an excess 

of secondary antibody, which is usually directly conjugated to phycoerythrin (PE), is 

added to the sample well. Where additional amplification is needed (e.g. cytokine 

assays), biotinylated secondary antibodies can be used and binding of this is detected 

using an avidin-PE complex. 

When running the assay, the machine reads a variable (pre-defined) number of beads 

(usually 100) of each region being studied. It measures the associated intensity of PE 

fluorescence for each bead and calculates a „median fluorescence intensity‟ (MFI) for the 

region. This is assumed to be proportional to the amount of soluble factor associated with 

the bead.  

Median fluorescence intensities assigned to a bead region are then compared to a standard 

curve (generated using dilutions of a standard preparation of the soluble factor in parallel 

wells) to obtain a measure of the relative or absolute quantity of the soluble factor in the 

sample fluid.  

As various substrates can be bound to beads of different regions, which can then be 

distinguished when run on the machine, it is tempting to perform assays for multiple 

factors within the same well with consequent saving of time, and sample. This can be 

done so long as it is shown that there is minimal interference between the parallel assays. 

A priori where the soluble factor has a measurable affinity for another available substrate, 

the effective quantity of substrate is increased, and so binding to the „true‟ substrate 

(bound to the relevant reporter bead) may be reduced. Conversely, where another soluble 

factor with measurable affinity for the „true‟ substrate is present, the apparent binding of 

the factor being measured (via the reporter bead) may be increased. Confirming the non-
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interference of assays performed in parallel was a crucial part of establishing confidence 

with this technique, especially as significant cross reactivity between antibodies against 

various PnCP has been reported [198]. It should be noted that experimental confirmation 

of non-interaction between different multiplexed assays does not exclude expected 

interference between antibodies of appropriate specificities, but differing isotypes (e.g. an 

IgM anti-PnCP-1 antibody, causing interference with an assay for IgG anti-PnCP-1). 

4.3 Early assay development. 

Preliminary experiments used beads that Dr Mark Cobbold had conjugated to 

pneumococcal antigens using periodate conjugation (after Biagini et al) [197]. Antibody 

binding to the coated beads was detected using PE conjugated anti-human IgG obtained 

from BD. Standard curves were produced, but with very poor signal/background ratios, 

and poor absolute signal strength compared to that achieved using published techniques. 

A poly-L-Lysine conjugation method derived from other published work [193] was then 

used, with limited improvements in signal/background ratio (Figure 4-2). Advice was 

then sought from Dr Lindsey Ashton (Institute of Child Health, London), in developing 

the protocol subsequently used and described in the methods chapter of this thesis 

(section 3.2.5.1). PE conjugated anti-human IgG supplied by BectonDickenson was 

replaced by antibody obtained from Southern BioTech, resulting in a marked 

improvement in the assay performance (Figure 4-2). Consequently, this reagent was used 

exclusively in subsequent studies. 
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Figure 4-2 shows preliminary results in establishing microsphere assays. 

Comparison of three different experimental techniques to assay IgG antibodies against pneumococcal 
capsular polysaccharide (Pn-CP) 19F, using antigen-conjugated microspheres. The blue line was obtained 

using beads conjugated using the periodate method, with anti-IgG antibody from BD (diluted 1 in 20). The 

red line was obtained using beads conjugated with the poly-L-lysine method, and IgG antibody from BD 

(diluted 1in 20). The black line was obtained in a separate experiment using beads conjugated with the 

poly-L-lysine method, and IgG antibody from Southern BioTech (diluted 1 in 200). 

4.4 Suboptimal conjugation of substrate to bead affects assay 

performance. 

As discussed above (section 4.1), first principles indicate that substrate density may affect 

assay performance. This was tested when developing the bead-based assay for antibodies 

to tetanus toxoid (Figure 4-3). When limiting amounts of tetanus toxoid were available 

during bead conjugation, subsequent assay performance was adversely affected in that the 

mean fluorescent intensity (MFI) was reduced, and prozone phenomena were noted.  
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Figure 4-3 shows that limiting amounts of available antigen during conjugation to beads affects 

subsequent assay performance.  

Comparison of three different experimental techniques to assay IgG antibodies against tetanus toxoid (in 

standard pneumococcal reference serum). Techniques varied only in the concentration of tetanus toxoid 

used during the bead-conjugation reaction - the red line represents a coating concentration of 5μg/ml, the 

blue line 7.5μg/ml and the back line 12μg/ml. 

4.5 No evidence of inter-assay interactions within multiplexed 

system. 

As discussed above, variations in bead‟s substrate density can affect assay performance, 

and certain anti-PnCP antibodies have been reported to be cross reactive with other 

PnCPs [198]. Thus it was important to confirm that anti-PnCP antibody assays were 

minimally affected by PnCPs bound to other beads present during multiplexed assays. 

Seven PnCP were selected for use to assay levels of specific anti-PnCP. Assays for 

antibodies against each PnCP were therefore performed separately (monoplex) and 

together (multiplex) (see Figure 4-4 for an example). Standard curves for each assay were 

comparable under the two conditions, and it was concluded that subsequently these 

assays could be performed as multiplex.  
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Figure 4-4 shows an assay of IgG antibodies against PnCP-9 – demonstrating consistency between 

monoplex and multiplex methods. 

Detectable levels of anti-PnCP-9 antibody in serial dilutions of standard serum were comparable whether 

measured alone (monoplex) or in the presence of six other sets of beads; each set being coated with one of 

the six other PnCP serotypes. 

4.6 Confirming optimal pre-absorbtion conditions for assay of 

serotype specific anti-pneumococcal antibodies. 

Commercial preparations of PnCP contain contaminating CWPS [199]. Furthermore, as 

discussed in section 4.2, the WHO advises that sera are preabsorbed with CWPS and 

PnCP-22f, which has epitopes that cross react with other PnCP, prior to performing 

assays for serotype specific anti-PnCP antibodies, to reduce the levels of cross reactive 

antibodies present [194].  

Optimal preabsorption conditions in the context of a microsphere-based assay were 

tested. A range of different concentrations for the two preabsorbing agents were used 

(Table 4-1), and their effect on subsequent assay performance was tested.  
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 Concentration of CWPS 

0 μg/ml 0.5 μg/ml 1 μg/ml 2 μg/ml 

 

Concentration 

of PnCP-22f 

0 μg/ml     

1.25 μg/ml  
   

2.5 μg/ml  
   

5 μg/ml  
   

Table 4-1 shows the range of concentrations of preabsorbing agents tested during development of 

pneumococcal antibody assay. 

 

Representative examples of these experiments are shown in Figure 4-5. Measured levels 

of some, but not all, antibodies tested were reduced by pre-absorption with CWPS alone. 

Minimal incremental difference was noted with the higher concentration, but 2 μg/ml was 

chosen for subsequent experiments to ensure maximal efficacy. Similarly, pre-absorption 

with PnCP-22f, in addition to CWPS, attenuated the measured levels of some, but not all 

antibody specificities. Little difference was seen between the high concentrations used, 

and 5 μg/ml was chosen for subsequent experiments.  
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Figure 4-5 shows the effect of varying pre-absorption conditions on subsequent performance of IgG 

anti-PnCP antibody assays. 

Panels A, and B: show the consequences of varying preabsorbing CWPS concentration. (No polysaccharide 

22F was used). Red line – no CPS, Blue line – 0.5 μg/ml CWPS, black line – 2 μg/ml CWPS. Panel A – 

measuring antibody to PnCP-19f; panel B – measuring antibody to PnCP-23. 

Panels C, and D: consequences of varying preabsorbing concentration of PnCP- 22f. (CWPS concentration 

kept constant at 2μg/ml). Red line – no PnCP22f, blue line – 2 μg/ml PnCP22f , black line – 5 μg/ml PnCP-
22f. Panel C – measuring antibody to PnCP-1; panel D – measuring antibody to PnCP-14. 
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4.7 Specificity of anti-PnCP antibodies measured by multiplex 

assay. 

The specificity of IgG and IgM antibodies measured in each multiplexed assay was then 

tested by separately pre-incubating eighty-fold dilutions of standard serum 89SF with 

excess amounts (2.5 μg/ml) of each test antigen in addition to standard pre-absorbents 

CPS (2 μg/ml) and PnCP-22f (5 μg/ml). Assay results for these antibody-depleted 

samples were compared with a standard curve from the same serum. This process was 

also subsequently used to confirm successful bead-antigen conjugations when preparing 

more assay reagents. 

Pre-assay depletions resulted in mean reductions in the measured level of all 

corresponding IgG antibody specificities - ranging from 15 fold (PnCP-19f), to over 300 

fold (for PnCP-14) (Figure 4-6, Figure 4-7, and Figure 4-8). Across all tested 

combinations of depleting-antigen and subsequently measured PnCP-specific IgG, the 

average inter-PnCP effect was an 18% reduction in measured specific IgG titre. The 

greatest inter-specificity effect was seen with pre-incubation with 2.5 μg/ml PnCP-1, 

which caused an average 41% reduction in IgG against PnCP-9v, but greater than 95% 

reduction in measured IgG anti-PnCP-1. 

The effect of preabsorption on levels of IgM, specific for the same or other PnCPs, was 

tested once, in a similar manner, for each depleting PnCP (Figure 4-6, Figure 4-7, and 

Figure 4-8). Although depletion of the corresponding antibody was generally less, 

qualitatively analogous findings regarding test specificity were seen. It was concluded 
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that the assays were sufficiently independent during multiplexing that test sera could be 

measured in this manner. 
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Figure 4-6 shows selective depletion of IgM and IgG serotype specific anti-pneumococcal capsular polysaccharide antibodies by excess antigen 
(serotypes 1, 3, and 6b).  
Preabsorption of an 80 fold dilution of standard serum 89-SF with single PnCP specificities (at 2.5μg/ml) in addition to CWPS (2μg/ml) and PnCP-22f (5μg/ml) 

resulted in substantial depletion of serotype specific antibodies and modest or minimal depletion of other antibody specificities.  Upper panels – one experiment 
measuring specific IgM titres after depletions. Lower panels – mean ± SD of 6 separate experiments to measure specific IgG titres; each experiment used 
separately prepared bead sets.   
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Figure 4-7 shows selective depletion of IgM and IgG serotype specific anti-PnCP antibodies by excess antigen (serotypes 9v, 14, and 19f). 
Preabsorption of an 80 fold dilution of the standard serum 89-SF with single PnCP specificities (at 2.5 μg/ml) in addition to CWPS (2 μg/ml) and PnCP-22f (5 
μg/ml) resulted in substantial depletion of serotype specific antibodies and modest or minimal depletion of other antibody specificities.  Upper panels – one 
experiment measuring specific IgM titres after depletions. Lower panels – mean ± SD of 6 separate experiments to measure specific IgG titres; each experiment 
used separately prepared bead sets.   
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Figure 4-8 shows selective depletion of IgM and IgG serotype specific anti-PnCP antibodies by excess 
antigen (PnCP-23). 
Preabsorption of an 80 fold dilution of the standard serum 89-SF with single PnCP specificities (at 
2.5μg/ml) in addition to CWPS (2μg/ml) and PnCP-22f (5μg/ml) resulted in substantial depletion of 

serotype specific antibodies and modest or minimal depletion of other antibody specificities.  Left panel –
one experiment measuring specific IgM titres after depletions. Right panel – mean ± SD of 6 separate 
experiments to measure specific IgG titres; each experiment used separately prepared bead sets.   

4.8 The human antibody response to phosphorylcholine does 

not fully reflect the response to Pneumococcal Cell Wall 

Polysaccharide. 

It was also intended to establish assays for natural antibodies taken to be representative of 

the B1 cell repertoire (see section 2.5.2). So, based on published research in the mouse 

immune response [100], I sought to establish microsphere based assays for 

phosphorylcholine (PC), the proposed antigenic determinant of CWPS [200-202].

Antigens (either CWPS, or BSA-conjugated Phosphorylcholine) were conjugated to 

microspheres as described previously (see section 3.2.5.1). Assay specificities were tested 

by pre-absorption of 100-fold dilutions of standard serum with either reagent at 

concentrations of 2.5μg/ml, and 10μg/ml, without the addition of PnCP 22f (see Figure 

4-9).
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Depletion testing of the conjugated beads, with the identical antigen was consistent with 

successful conjugation of antigen to the relevant beads, though prozone phenomena were 

also seen on serial dilutions. Pre-absorption with 2.5 and 10 μg/ml PC-BSA reduced 

measured IgM anti-CWPS by 5-10 fold (median of 3 experiments), approximately 

comparable to its effect on IgM anti-PC Abs (10 fold reduction for each concentration, in 

the same experiment). In contrast pre-absorption with 2.5 and 10μg/ml CWPS resulted in 

greater depletion of measured IgM anti-CWPS titres, but less fall in measured IgM anti-

PC levels. 

Figure 4-9 shows cross depletion testing of assays for IgM, IgG1, and IgG2 against phosphorylcholine 
(PC) and Cell wall polysaccharide (CWPS). 
Pre-absorption of a one-hundred fold dilution of standard serum 89-SF with either PC, or CWPS resulted in 
depletion of the relevant IgM antibody specificity, but incomplete cross depletion (upper panel). Lower 
panel demonstrates comparable experiments for IgG1 (blue) and IgG2 (red); partial cross-specificity 
depletion was seen when measuring IgG1 against CWPS and against PC, but measured levels of IgG2 anti-
CWPS increased after pre-absorption with PC. Duplicated symbols, where present, indicate results from 
separate experiments.  
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When testing the effect of depletions on specific IgG1 levels, a comparable pattern was 

seen, except that pre-absorption with 2.5 μg/ml CWPS had minimal effect on IgG1 anti-

PC, whilst pre-absorption with 10 μg/ml appeared to increase measured levels of IgG1. 

Replication of this experiment was not attempted, but it had been performed in parallel 

with the analogous experiment for IgM anti-PC, and one replicate of the tested anti-

CWPS responses, using the same reagents for pre-absorption. 

Further complexity was seen when studying IgG2 responses to these antigens (Figure 

4-9). Levels of IgG2 anti-PC, and IgG2 anti-CWPS were both depleted by pre-absorption 

with their corresponding antigen, but measured levels of IgG2 against CWPS were raised 

by pre-absorption with both concentrations of PC.  

In summary, the evaluation of the assays for antibodies against PC and CWPS identified 

the following: 

1. The presence of prozones within serial dilution testing. 

2. Non-identical depletion patterns by the two antigens - when 2.5μg/ml CWPS and 

10μg/ml PC should contain approximately equimolar amounts of 

phosphorylcholine moieties. 

3. Discrepant results between different antibody subclasses tested for the same 

putative antigen. 

4. A substantial augmentation of some measured antibody titres after certain pre-

absorption conditions. 

It was thus concluded that PC is not likely to be the immuno-dominant epitope in all 

isotypes of the human response to CWPS, and so responses to both antigens should be 
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tested in subsequent experimental samples from patients. Nevertheless, sufficient 

evidence of cross-reactivity between the antibody specificities was obtained to preclude 

secure multiplexing of the two assays, and so subsequent testing of these two responses 

was performed separately. 

4.9 Testing of anti-tetanus toxoid antibodies by microsphere 

assay. 

The performance of microspheres coated with tetanus-toxoid was also tested by depletion 

assays. At the antigen concentration chosen for pre-absorption (2.5 μg/ml) measured IgG 

anti-tetanus toxoid in the pneumococcal standard serum 89-SF was reduced 

approximately 4 fold. In subsequent multiplex testing, pre-absorption with 2.5 μg/ml 

tetanus toxoid had minimal effects on measured levels of IgG against the 7 PnCP, and 

IgG anti-CWPS (data not shown), and vice-versa. It was concluded that anti-tetanus 

toxoid antibodies could be multiplexed with assays of anti-PnCP antibodies (in the 

presence of preabsorption with CWPS and PnCP-22f) or with an assay of anti-CWPS 

antibody.  

4.10  Discussion. 

This work, performed early in my MRC clinical training fellowship, sough to establish 

and validate the subsequent use of microsphere based assays for analysis of isotype 

specific antibodies to various PnCP, to CPS, PC, and to tetanus toxoid, and to perform 

them multiplex where possible.  

The various experiments performed demonstrated satisfactory conditions for antigen-

bead conjugation, and that antigenic epitopes within reagents appear to be maintained 
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after the chemical conjugation to Poly-L-lysine (where necessary), and subsequent 

conjugation to the microspheres themselves.   

Ensuring the presence of excess antigen during conjugation reactions (Figure 4-3), and 

optimal preabsorption conditions (with CPS and PnCP-22f) before performing assays 

(Figure 4-5) minimised the presence of predicted prozone phenomena, but did not 

completely prevent them. It was thus decided that during the subsequent testing of 

multiple experimental sera (chapter 5), serial dilutions should be performed for all 

samples instead of using single dilutions of test sera to be compared with a standard 

curve.  

In contrast, and despite theoretical concerns, extensive cross testing of reagents 

confirmed that there was remarkably little impact on anti-PnCP assay performance when 

performed in the presence of other bead specificities, thus such multiplexed assays were 

used for work described elsewhere in this thesis. Nevertheless, it was notable that during 

PnCP depletion testing, serotype specific IgM titres appeared to fall less than 

corresponding IgG titres (Figure 4-6, Figure 4-7, Figure 4-8). This is not due to the 

relative amounts of serotype specific IgM and IgG in the standard serum [203]. An 

explanation is offered by a recent publication by Baxendale et al [204] which studied 

several human IgM antibodies, produced by hybridomas derived from vaccinated 

volunteers. These antibodies had titratable anti-PnCP activity in a microsphere-based 

assay. In keeping with the findings reported in this thesis chapter, Baxendale et al 

demonstrated the limited sensitivity of their hybridoma-antibodies to depletion by excess 

PnCP, CWPS, or PC, but demonstrated additional poly-reactivity with other antigens 

including self antigens. Molecular analysis of the hybridomas demonstrated minimal 
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deviation from immunoglobulin V, D, and J germline sequences. Based on these findings 

they conclude these are likely to be natural antibody specificities produced by cells of the 

B-1 cell like lineage. They do not report the presence, or absence, of such polyreactive 

species within the IgM fraction of standard serum 89-SF, but if present, they could 

account for the findings shown here (in Figure 4-6, Figure 4-7, and Figure 4-8). 

Importantly, analogous work in isotype-switched, antibody responses to PnCPs do not 

seem derived from the same lineages [205;206]. 

As reported above, general opinion based on published literature from mouse studies 

[200-202] holds that PC is the immunodominant epitope in responses to CWPS. However 

experiments reported here using pooled human serum demonstrated complex and 

mutually-discrepant effects of pre-absorption with either reagent. The findings (Figure 

4-9) are not consistent with the simple concept that PC is the immunodominant epitope to 

human CWPS responses. The published literature includes a report of similar findings, 

with additional variability between individual subjects, when using ELISA based assays 

of human sera [207]. Determining the true specificity, relative quantity, and affinity, of 

these antibodies was beyond the needs of this work as regards the development of the 

assays, but it serves to highlight the complexity of interactions underlying microsphere 

based assays (and ELISAs) and their vulnerability to effects arising from cross-reactive 

antibodies. It was not formally tested whether such interactions are greater in the context 

of multiplexing assays of antibody against CWPS and PC, but it was concluded that for 

subsequent assays of patient sera, these antibodies should be measured separately. 
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4.11  Future work. 

The University of Birmingham Clinical Immunology service have expressed interest in 

further developing the PnCP antibody assays for clinical use, as at present the standard 

(semi-automated) pneumococcal antibody assay only measures bulk isotype-specific 

responses to a mixture of serotypes. The protocols developed during this work have been 

passed on to the clinical lab, but further work is likely to be needed before this assay can 

be offered for clinical use. Their parsimonious use of serum makes them suitable for 

studies where only small samples are available, for instance from infants. 

In the setting of a clinical laboratory the ability to use point dilutions of test samples 

would be of great value, and the need to confirm the accuracy and precision of absolute 

measurements of antibody is essential. This is likely to involve further work to minimise, 

or control for, prozone phenomena, and validation with QC sera (available from NIBSC) 

would be required. All the serotypes chosen for this work are amongst those in 

Pneumovax II - the 23 valent polysaccharide vaccine, and include some but not all those 

in the 7 valent conjugate pneumococcal vaccine Prevnar, and it may be desirable to widen 

the assay repertoire accordingly. It is reasonable to speculate that other pneumococcal 

antigens could be conjugated to microspheres in a similar fashion, but the testing required 

to exclude significant cross reactivity would increase exponentially.  

The recent paper by Baxendale et al [204] indicates that polyreactive IgM antibody 

produced after pneumococcal vaccination (and thus likely also to be produced after 

infection) can be detected by apparently serotype-specific microsphere based assays (and 

ELISAs) when configured to measure IgM antibody. Whilst it may yet be determined that 

the level of such „natural antibody‟ proves to be the best measurable human correlate of 
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protection against pneumococal infection, its potential presence in serum samples has 

implications for the correct interpretation of apparently serotype specific anti-PnCP IgM 

assay results. This is especially so in clinically important settings where the proportion of 

„natural antibody‟ may be increased, such as lymphoid malignancy [208], the response to 

microbial antigens [204;209], autoimmunity [210] or ageing [211]. Thus the ability to 

accurately determine amounts, in serum samples, of IgM that is truly specific for 

particular PnCP serotypes would appear to require further work to clarify this complex 

area. 
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5 AUTOANTIBODIES, UNLIKE ANTIBODIES TO ALL 
EXTRINSIC ANTIGEN GROUPS, FALL FOLLOWING B 

CELL DEPLETION WITH RITUXIMAB 

5.1 Introduction. 

Rituximab causes profound depletion of B cells, which express CD20, from blood and 

tissues [2]. It has been used successfully to treat a number of autoimmune diseases. 

Significant falls in disease-associated IgG and IgM autoantibody levels are often seen 

[3;6;12;212] although this does not always happen [22;23]. 

Autoantibodies against the neutrophil serine protease, proteinase-3 (PR3), are encoded by 

immunoglobulin V region genes that have acquired somatic mutations [24]. These 

findings are consistent with the autoantibodies being produced by plasma cells whose 

precursors have undergone affinity maturation through hypermutation of their 

immunoglobulin V-region genes and selection in GC [44], although immunoglobulin V-

region mutations can be acquired without GC [77;78]. Plasma cells derived from GC in 

the spleen and peripheral LN against protein-based antigens, reside in the bone marrow, 

have the capacity to be very long lived, and typically do not express CD20 [58;59]. 

Nevertheless, as immunoglobulin levels are remarkably constant in adults [155] and 

responses giving persistent antibody levels to new antigens can be induced throughout 

life there must be some turnover of long-lived plasma cells. It is possible that if the 

production of new plasma cells is blocked, for example by B cell depletion with 

Rituximab, this turnover would cease and existing plasma cells would persist indefinitely. 

Levels of affinity matured antibody against tetanus toxoid remain unchanged after B cell 

depletion by Rituximab [3] and falls in serum immunoglobulins are generally modest, 
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although falls in IgM have been seen after repeated cycles of treatment [192]. As levels 

of IgG autoantibodies fall following B cell depletion, we set out to test if this was 

attributable to them being produced by a population of intrinsically short-lived AFC.  

Certain types of antigen seem to induce only extrafollicular antibody responses and many 

of the antibody forming cells produced in these responses are short-lived [74;75]. These 

antigens include those based on pure polysaccharides and lipopolysaccharides that are not 

able to complete the CD4 T cell-dependent selection process required for plasma cells to 

differentiate from GC B cells [44]. In addition, B1 cells produce extrafollicular antibody 

responses, but probably do not form GC [46].  

B cell depletion by Rituximab allows the opportunity to investigate whether cells that 

maintain chronic antibody production after an extra-follicular response to antigen can be 

long-lived in the absence of B cell precursors. In this study these findings are directly 

compared to concurrent antibody production against T-dependent extrinsic antigens, and 

the autoantigen PR3. Such comparisons inform our understanding of why autoantibodies 

often fall after B cell depletion therapy. 

5.2 B cell depletion, clinical responses and autoantibody level 

changes associated with Rituximab. 

A criterion for treatment with Rituximab has been that patients should have active 

disease. This is shown by their pretreatment BVAS [17]. Following Rituximab 7 of the 

11 patients were in clinical remission within 1 month and all patients were in remission 

by 5 months (Figure 5-1, top left). As observed by others [3;213;214], the number of 

CD19
+
 lymphocytes in peripheral blood fell to undetectable levels within 2 weeks (all 
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patients) and remained depleted in 10 of 11 patients throughout the five-month 

observation period (Figure 5-1, top right). In one patient, a very low level of CD19
+
 cells 

was detected 5 months after Rituximab but not on retesting one month later.  

IgG anti-PR3 levels fell progressively in most patients, though in two patients little 

change in autoantibody titre was seen during the 4-5 month period studied. (Figure 5-1, 

bottom right). In two other patients titres became undetectable 2 weeks after treatment 

and remained so through 4-5 months. A further two patients‟ autoantibody titres became 

undetectable after 4-5 months. Clinical response characteristically antedated the fall in 

anti-PR3 levels. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 5-1 shows changes in disease activity, B cell 

numbers, and serum IgG anti-PR3 titre, after 

treatment with Rituximab. 

Each triangle represents results from one patient. Top 

left - change in disease activity score (BVAS). Top 
right - change in peripheral B cell count during 

treatment. Bottom left - change in IgG anti-PR3 

antibody titre during treatment. Some dotted lines have 

been used in panel C to identify patients‟ sequential 

results without ambiguity. 
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5.3 Resistance of serum antibody titres against extrinsic 

antigens to depletion by Rituximab. 

The fall in anti-PR3 levels induced by Rituximab were not reflected by a parallel fall in 

antibody levels to different classes of antigen, including those that do not induce 

productive GC. Responses putatively induced from MZ B cells, B1 cells or both of these, 

were assessed by measuring antibody titres to PnCP 1, 3, 6b, 9v, 14, 19, and 23f, as well 

as PC and CWPS. PnCP 3 and CWPS evoke responses in the first year of life, perhaps 

from B1 cells. Other serotypes, including PnCP 1, 6, 14, and 23 produce responses later 

in infancy [102] and are candidate responses of MZ B cells; the antibody response to a 

purified PnCP serotype vaccine does not induce responses that are associated with 

affinity maturation [215]. Natural IgM antibody against A and B blood group antigens 

[103] were also measured. Finally, antibody against tetanus toxoid and EBV-CA – 

responses in which other studies have demonstrated affinity maturation [216-218] –  were 

used as exemplars of TD responses with plasma cells arising GC.  
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Figure 5-2 shows absolute 

levels of IgM and IgG, and 

relative titres of antibodies 

that are specific for either 

Proteinase 3 or one of a 

range of entrinsic antigens, 

in sera of patients about to 

receive treatment with 

Rituximab.  

Panel A shows relative titres 

of IgG anti-Proteinase 3, and 

IgG anti-EBV CA, and the 

absolute serum levels of total 

IgM and IgG. Panels B, C, 

and D respectively show the 

serum titres of IgM, IgG1 and 

IgG2 specific for various 

extrinsic antigens, relative to 
the titre in pneumococcal 

standard serum 89SF (dotted 

line).Each  represents a pre-

treatment serum antibody titre 

in a patient for whom the same 

antibody was also detectable 

in the subsequent post-

treatment sample. Each  

represents a pre-treatment 

serum antibody titre in a 

patient for whom the same 
antibody was not detectable in 

the subsequent post-treatment 

sample.  represent the 

lower limits of detection for 

each assay. In each panel, 

numbers just above the x axis 

report the number of patients 

in whom the relevant antibody 

could not be detected in serum 

prior to treatment.  
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Pre-treatment, relative antibody titres indicate that most patients had detectable IgM 

antibody for each antigenic specificity. Seven of eleven patients had IgG1 against tetanus 

toxoid and each patient had IgG2 against at least one PnCP other than PnCP 3. All had 

IgG2 against CWPS (Figure 5-2). In striking contrast, log10 % change in titres for each 

antibody demonstrated that anti-PR3 antibodies are the exception, falling to a median of 

22% of pre-treatment value in 4-5 months (Figure 5-3 ). IgM titres against all extrinsic 

antigens fell to medians around 70% of starting values (medians 83 to 40%). Comparable 

changes were seen in total serum IgM (median fall to 55% of original value). IgG titres 

against extrinsic antigens typically remained unchanged; only IgG2 antibodies against PC 

fell to a median of 70% of the starting value. Analogous results were obtained for total 

serum IgG (median fall to 70% of original value). IgM antibody titres to A and B blood 

group antigens typically remained unchanged.  

The percentage change in IgG anti-PR3 levels was significantly different to the changes 

in IgG2 titres against all PnCP (p<0.05 for each comparison) and in IgG2 against CWPS 

(p<0.05). Changes in levels of IgG anti-PR3 were also significantly different to those in 

IgG against EBV-CA and IgG1 against tetanus toxoid (both p<0.05), and significantly 

different to changes in IgM against CWPS, and changes in IgM isohemagglutinins (both 

p<0.05). The differences between the changes in IgG anti-PR3 and that in IgM against 

PC (p=0.08) were not significant. 
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Figure 5-3 shows that 
patients’ serum titres of 

IgG anti-PR3 typically fall 
substantially in 4-5 months 
after treatment with 
Rituximab, whereas serum 
levels of IgM and IgG1 and 
IgG2 specific for various 
extreinisc antigens are 
generally preserved. It also 
demonstrates that most 
patients’ total serum IgG 
and IgM levels are little 
changed after Rituximab. 
Panel A shows post treatment 
serum titres of IgG anti-
Proteinase 3 and IgG anti-
EBV CA and total serum IgM 
and total serum IgG, 
expressed as a percentage of 
the level in the corresponding 
pre-treatment sample. Panels 
B, C, and D respectively 
show post treatment serum 
titres of IgM and IgG1 and 
IgG2 specific for various 
extrinisic antibodies, also 
expressed as a percentage of 
the level in the corresponding 
pre-treatment sample. The 
dotted lines (at 100%) 
represent no change in titre 
during the intervening time. 
Each  represents a result 
from a patient in whom both 
samples contained detectable 
antibody. Numbers along 
each x axis report the small 
number of patients whose 
antibody titres became 
undetectable after treatment. 
(The initial antibody titre of
these patients and the lower 

limit of detection of the antibody are shown in Figure 5-2.)  represent median % change (where 3
paired values are available and all patients with antibody at presentation retained a detectable antibody 
titre).
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5.4 Discussion and future work. 

The falls in circulating anti-PR3 autoantibody levels seen in patients treated with 

Rituximab in this study are consistent with findings of other groups treating patients with 

ANCA-associated vasculitis [212;219;220] or rheumatoid arthritis [221] with this agent.  

The relative insensitivity to Rituximab of levels of antibody against some extrinsic 

antigens has also been reported previously [3;13;221]. The current work extends this by 

studying in greater detail antibodies to a wider range of antigens that have been found to 

have a different cellular basis for antibody production in experimental animals. The 

observed fall in autoantibody titres contrasts markedly with the relative preservation of 

antibody levels against extrinsic antigens of each of the classes studied.  

Although many AFC resulting from extrafollicular responses in lymph nodes (LN) and 

spleen are short lived, close examination indicates that this short lifespan is not intrinsic. 

Rather it relates to limited local stroma that supports long-term plasma cell survival. 

Those plasma cells that gain access to this stroma can survive for extended periods [60]. 

If, against this evidence, antibody from extrafollicular responses is produced exclusively 

by short-lived plasma cells, Rituximab therapy would be expected to cause a fall in titres 

of antibody against antigens, like PnCP, that exclusively provoke extrafollicular 

responses. In autoimmune disease, where antigen is virtually limitless, plasmablasts could 

contribute substantially to antibody production. Available evidence indicates that 

unsupported AFC die well within a week of their precursor B cells being triggered by 

antigen [60]. Thus even if maximal tissue depletion of B cells by Rituximab took up to 4 

weeks, it is likely that no AFC would exist outside supportive niches 5 weeks after 

Rituximab administration. If this resulted in the cessation of all anti-PR3 production, 
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levels of this autoantibody would be expected to halve in 20 days – the serum half life of 

IgG [222]. Complexation with circulating autoantigen would probably accelerate loss of 

anti-PR3 from the circulation, making the fall in titre even faster. All studies reporting the 

kinetics of change in IgG autoantibody levels following Rituximab [13;219;221] indicate 

a gradual fall in autoantibody titre that is not consistent with this scenario. Similarly, if 

production of antibody against extrinsic antigens also ceased, measured levels of antigen-

specific IgG would fall to around 6% of their starting values by 4-5 months after 

Rituximab. With a half-life of 5 days [222], IgM antibodies would go through at least 17 

half lives before the time when titres were remeasured. No such fall in IgM antibody 

titres was observed in patients during our study. These considerations indicate that, 

following Rituximab, there must be substantial ongoing production of all antibodies 

tested, and it is consistent with a hypothesis that chronic antibody production is 

predominantly by cells that can be long-lived in the absence of competition from newly-

formed plasma cells. 

We do not know if Rituximab treatment depleted all plasma cell precursors in patients. 

The loss of blood B cells is impressive, but tissue studies could not be performed, for 

ethical reasons. Rituximab therapy has been reported to deplete B cells from the appendix 

[223], and the spleen [224]. Vos et al have reported a reduction in CD22
+
 cells in 

rheumatoid synovium one month after treatment [225]. More recently we have reported 

that CD20
+
 cells were detectable in diseased lung tissue removed from a patient with WG 

who was relapsing at a time when peripheral B cells remained undetectable - 13 months 

after prior Rituximab therapy [226]. Recall responses to antigen are impaired (but not 

abolished) during the period of post-Rituximab B cell depletion, consistent with an effect 
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on non-circulating memory B cells [67]. Two other studies have reported residual B cells 

in lymphoid tissue after Rituximab, but both used suboptimal depletion regimes 

[214;227]. 

Studies of anti-CD20 antibody therapy in mice with B cells that express human CD20, 

show some non-circulating B cells are spared from depletion [40]. It is speculative 

whether this reflects B cell depletion by Rituximab in humans, for efficacy of antibody-

mediated effector mechanisms – complement, and cell damage by phagocytes and 

antibody-dependent NK cell cell-mediated cytotoxicity – differs in humans and mice. 

Serotype specific antibody responses to natural pneumococcal infection can include 

production of plasma cells that have acquired somatic mutations in immunoglobulin V-

region genes [205;228]. This is likely to result from pneumococcal cell protein being 

associated with capsular polysaccharide forming a natural conjugate antigen. This could 

have occurred in the PnCP antibody responses measured in our patients.  

After the bulk of the work contained in this chapter was published [229], Baxendale et al 

[204] have reported findings that indicate caution may be warranted in interpreting IgM 

anti-PnCP titres derived from luminex based assays. This issue is discussed in greater 

depth in section 4.10 above. Importantly, these concerns do not appear to relate to the 

measurement of IgG anti-PnCP titres. 

Notwithstanding these caveats, the preservation of antibody levels against all extrinsic 

antigens assessed makes it unlikely that selective anti-PR3 loss reflects a type of antibody 

response that is uniquely sensitive to Rituximab. 
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If neither variations in the expected half-lives of different antibodies, nor differences 

between particular antibody production pathways, can account for the differential 

sensitivity of autoantibody production to Rituximab, why do autoantibody titres fall after 

Rituximab? Such observations are most comfortably explained by treatment destroying 

niches in inflammatory tissues that selectively support the survival of autoantibody 

secreting cells. „Inflammatory‟ plasma cell niches may have biological value in the 

response to infection by linking the duration of antibody production to the duration of 

injury. 

Figure 5-4 shows a plasma cell present in the renal 
interstitium of a patient with ANCA-associated renal 
vasculitis.  
Photo courtesy of Dr Desley Neil, University of 
Birmingham.  European Journal of Immunology. 2008. 

Plasma cells are present at inflamed sites in ANCA-associated vasculitis [49] (see also 

Figure 5-4), rheumatoid arthritis [53;230], lupus [231] and animal models of lupus 

[232;233]. Plasma cells are also reported in human kidney allografts [234] and liver 

allografts [235] that are undergoing rejection.  

Furthermore, some reports indicate that a disproportionate number of plasma cells at 

these sites produce disease related autoantibodies [230;233]. Interestingly a recent 

publication reports that even where local lymphoid neogenesis occurs in inflamed tissue, 
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nearby plasma cells do not appear clonally related [53]. This implies that plasma cells 

migrate there from secondary lymphoid organs. Ectopic antibody production may not be 

confined to autoimmune inflammation, for AFC have been identified in inflammation 

associated with osteoarthritis, a disease that probably does not have an autoimmune 

aetiology [236]. 

Our hypothesis predicts that the plasma cells producing IgG anti-PR3 might have 

chemokine receptors and cell adhesion molecules that allow them to home to and adhere 

to stroma in inflammatory sites. Some appropriate chemokine ligands – CXCL9 and 

CXCL12 - have already been reported in other inflamed tissue [141;237]. 

The molecules present on autoantibody-producing plasma cells may differ from those that 

lead plasma cells in healthy subjects to find stroma in the bone marrow that sustains their 

survival. For example in mice there is evidence that AFC that express CXCR3 are 

attracted to chemokines produced in inflamed tissue [14]. Such differences, if confirmed, 

could have potential implications for the rational design of new therapeutic agents for use 

in autoimmune disease. 
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6 CUCKOO PLASMA CELLS IN INFLAMMATION 

6.1 Introduction. 

Chapter 5 reported the finding that serum levels of human autoantibodies fall after B cell 

depletion by Rituximab. This fall occurs despite preservation of levels of extrinsic 

antibodies representative of all known pathways of antibody production. The differential 

loss of autoantibody is consistent with the hypothesis that plasma cells can be sustained 

in additional niches intrinsically related to autoimmune inflammation. Upon resolution of 

inflammation, the related plasma cell population would be expected to wane, resulting in 

a selective fall of autoantibody levels. 

There is no satisfactory animal model for the autoimmune nature of ANCA-associated 

vasculitis [21]. We therefore sought to test this hypothesis in a wider context – whether 

additional plasma cells could be sustained by „newly-induced inflammatory niches‟, even 

if the immune response generating the plasma cells was unrelated to cause of the 

inflammation. Furthermore we sought to understand the mechanisms for retaining plasma 

cells in such a site, and the way these sites maintain plasma cell survival.  

To this end, we combined two animal models that have been well characterised in our 

research laboratory: 

1. The T-independent response to NP conjugated to the neutral polysaccharide Ficoll 

in QMxB6 mice. In these mice around 5% of the B cells carry a heavy chain 

transgene that renders them NP-specific. Massive numbers of red-pulp splenic 

plasmablasts are produced by 4 days after immunization with NP-Ficoll, but by 6 

days over 95% of these cells have undergone apoptosis. Nevertheless, most of the 



103 

 

small proportion of plasmablasts that survive and differentiate into plasmablasts 

survive for more than 2 weeks. It was noted that after immunizing with a variety 

of antigens the number of red pulp antibody secreting cells sustained longer term 

is relatively stable, and consistent between models. The findings have been 

interpreted as evidence for an inherent limit on long-lived plasma cell numbers 

due to a finite number of supportive niches [60]. By using mice with transgenic 

NP-specific B cells massively more NP-specific plasma cells are produced in 

response to NP-Ficoll than can find niches that can secure their long term 

survival. QM mice are transgenic for a heavy chain that, when combined with any 

lambda light chain, confers NP-specificity on resultant immunoglobulins [123]. 

Of the 5% of the B cells in QM x B6 F1 hybrid (QMxB6) mice are NP-specific a 

high proportion are located in the marginal zone. As mentioned above, after 

immunizing these mice with NP-Ficoll there is a massive extrafollicular antibody 

response and 4 days after immunization the red pulp is crammed with NP-specific 

plasmablasts [128].  It is postulated that a lack of niches to sustain the survival 

results in the demise of >95% of the NP-specific antibody forming cells (AFC) on 

the 5
th

 day after immunization. It is also hypothesized that the scattered islands of 

AFC that remain in the red-pulp after this time are sustained by special plasma 

cell-sustaining microenvironments [60]. 

2.  The response to attenuated Salmonella enterica serovar Typhimurium (S. 

Typhimurium). This infection induces a large number of AFC in the splenic red 

pulp and plasma cells can be seen in this site for weeks after immunization [57]. 

Intra-peritoneal infection of C57/B6 mice with 10
5
 live organisms induces a 
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complex immune response, associated with splenomegally. Induction of the 

impressive early and sustained extrafollicular response is T independent, though 

the isotype switched response is a T dependent process. No germinal centres are 

induced in this response until the 4th week when the infection has largely cleared 

[57]. The important point, for our combined model, is that many of the AFC in the 

red pulp and extrafollicular foci persist through the first three weeks of infection 

[57]. The great majority of the AFC in the 3rd week from infection are mature 

(non-dividing) plasma cells. It is postulated that the infection induces a major 

increase in the number of niches that can secure plasma cell survival.  

Figure 6-1 shows a schematic indication of the hypothesis that splenic inflammation results in 
increased numbers of sites that can sustain antibody forming cells beyond 6 days after immunization 
with NP-Ficoll. 
This Figure modified from Sze et al (2000) [60] shows that peak AFC numbers in mouse spleen relate to 
the number of antigen-specific precursor B cells, but that the proportion of AFC sustained after 6 days is 
similar whatever the peak number of AFC produced. The black dashed line shows the AFC numbers in QM 
mice following immunization with NP-Ficoll. We postulated that NP-specific AFC survival might be more 
like the red curve if QMxB6 mice were infected with S. Typhimurium at the time they were immunized 
with NP-Ficoll, due to the increase in AFC-sustaining niches induced by the infection. 

QMxB6 mice that have been infected with 105 live S. Typhimurium intra-peritoneally 

develop new AFC-sustaining niches in the red pulp. We hypothesised that if mice were 

immunized with 30 g NP-Ficoll at the time of infection a proportion of the AFC 
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occupying the infection-induced niches would be NP-specific and NP-specific antibody 

titres would be higher than in control immunized but non-infected mice (Figure 6-1). In 

this scenario an increased proportion of the NP-specific AFC produced would survive 

past the first week after immunization. This has been a collaborative laboratory project 

involving several people, and a range of techniques. The division of work amongst 

members of the research group is summarised in Table 6-1. 

 Dr Alastair 

Ferraro 

(PhD 

student) 

Ms Jenny 

Marshall 

(PhD 

student) 

Dr Elodie 

Mohr 

(Post-

doctoral 

researcher) 

Ms Saeeda 

Bobat  

(PhD 

student) 

Immunizations, harvesting 

spleens and blood 

    

Flow cytometric analyses of 

cell suspensions from spleens 

    

Quantification of serum 

antibody levels 

    

Immunohistochemistry     

Cell counting from sections     

Confocal microscopy     

RT-PCR analysis of  bulk 

tissues 

    

Microdissection and real-time 

RT-PCR of AFC-associated 

and control tissues 

    

Culturing and quantification 

of attenuated S. Typhimurium 

    

Table 6-1 shows the division of laboratory work reported in this chapter. 
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6.2 Splenomegally induced in QMxB6 mice infected with S. 

Typhimurium. 

As expected from published work, mice infected with S. Typhimurium developed 

splenomegally. This was generally seen by day 4 post immunization, was universal at day 

8, and was somewhat reduced at day 35 (Figure 6-2 ). Additional co-immunization with 

NP-Ficoll had little effect on the development of splenomegally and immunization with 

NP-Ficoll alone did not induce splenomegally. 

 

 

 

 

 

 

 

 

 

Figure 6-2 shows splenic weight increases following infection of QMxB6 mice with S. Typhimurium. 

Each symbol shows values from one mouse. The legend for the symbols is above the figure.  
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6.3 Infection with S. Typhimurium prolongs the serum IgM 

response to NP that follows immunization of QMxB6 mice 

with NP-Ficoll. 

As previously reported for QMxB6 mice immunized with NP-Ficoll there is a 45 fold rise 

in the median IgM anti-NP antibody titre by 4 days after immunization. Strikingly this 

titre has already started to fall by day 8 (Figure 6-3). At four days after immunization and 

co-infection titres were if anything higher than in mice receiving only NP-Ficoll. In 

contrast to the non-infected mice the IgM titres in immunized and infected mice were 

sustained at day 8, and still higher than in non-infected animals at day 35. Thus on the 

basis of the serum IgM anti-NP titres co-infection with S. Typhimurium significantly 

augments the durability of the AFC response to NP-Ficoll. The next section probes the 

cellular basis for this difference. Interestingly the group of mice infected with S. 

Typhimurium without NP-Ficoll showed significant rises in IgM anti-NP titres. 

 

Figure 6-3 shows a 

graph of changes in 

IgM anti-NP titre 

in QMxB6 mice 

after immunization 

with NP-Ficoll, 

infection with S. 

Typhimurium, or 

both, which shows 

prolonged elevation 

of IgM anti-NP 

titre after 

immunization in 

the context of co-

infection. 

Each symbol shows 

values from one 

mouse. The legend 

for the symbols is 

above the figure. 
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6.4 Splenic NP-specific antibody forming cell numbers are 

increased by concurrent S. Typhimurium infection. 

The effect of co-infection with S. Typhimurium on the serum antibody response of 

QMxB6 mice to NP-Ficoll is reflected in the numbers of antibody producing cells 

induced. The number of such cells was estimated both by flow cytometric analysis of 

splenic cell suspensions, and by counting of cells in histological sections of spleen.  

6.4.1 Splenic CD138+ cell counts estimated by flow cytometry. 

Flow-cytometry was used to identify the total number of CD138
+
 cells present, and the 

number that also bound NP-phycoerythrin (NP-PE). Representative gating strategies are 

shown in Figure 6-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4 shows representative flow cytometry dot plots showing the proportion of CD138
+
 cells 

staining for intracellular IgG3
 
and anti-NP in individual mice at day 8 after infection or 

immunization. 

Numbers on the dot plots show the percentage of cells in the corresponding gate. 

By day 4, total CD138
+
 cell numbers increased over 45-fold after immunization with NP 

Ficoll alone, and over 180-fold in those immunized and also infected with S. 

Typhimurium (Figure 6-5). An overwhelming proportion of these cells were specific for 
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NP, irrespective of co-infection with S. Typhimurium. Thus compared to naïve mice, NP-

specific CD138
+
 cell numbers were 100-fold higher in immunized mice, and more than 

400-fold higher in those immunized and co-infected.  

By day 8 median number of NP-specific CD138
+ 

cells in immunized mice then fell by 20 

fold consistent with published reports [60]. In contrast, in mice immunized and co-

infected with S. Typhimurium, the median number of NP-specific CD138
+
 cells fell 8 

fold. Thus, taking into account the higher day 4 AFC numbers in the mice coinfected with 

S. Typhimurium, at day 8, NP-specific CD138
+
 cell numbers in immunized and infected 

mice were over 10 times higher than in mice immunized with NP-Ficoll only. This 

differential is substantially greater than the difference in median splenic weights (5 fold) 

indicating a greater frequency of CD138
+
 cells in the infected mice. 

At day 35, NP-specific cell numbers still remained approximately 2.5-fold higher in 

immunized and co-infected mice than in their non-infected peers, but this was no greater 

than the difference in median weights at the time. 

Surprisingly the mice infected with S. Typhimurium but not immunized with NP-Ficoll 

mounted an NP-specific antibody response. Their total numbers of CD138
+
 cells and 

numbers of NP-specific CD138
+
 cells increased gradually until day 8. At this point the 

number of NP-specific AFC, as assessed by flow cytometry, was comparable to that in 

mice co-immunized with NP-Ficoll and this continued through to day 35. Not 

surprisingly the proportion of CD138
+
 cells specific for NP was higher in those mice that 

were immunized with NP-Ficoll (Figure 6-5). 
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Figure 6-5 shows flow 

cytometric quantification of 

changes in the total numbers 

of CD138
+ 

cells, and changes 

in the proportion and 

absolute numbers of CD138
+
 

cells that were NP-specific, in 

spleens of mice immunized, 

infected, or both. 

Within each panel, each 

triangle represents values from 

one mouse. The legend for the 

symbols is above the figures. 
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6.4.2 Co-infection with S. Typhimurium increases numbers of NP-

specific AFC in the splenic red pulp after immunization with NP-

Ficoll, but also generates extra-follicular foci of AFC. 

Splenic sections from non-immunized mice, and those immunized with NP-Ficoll, 

infected with S. Typhimurium, or both, were examined using immunohistochemical 

techniques (Figure 6-6 and Figure 6-7). Anti-IgD antibody was used to identify the B cell 

follicles. These were usually seen adjacent to a T zone that stained strongly with anti-

CD3 antibody (Figure 6-6B). Most NP-specific AFC were found in the red pulp, but in 

some sections, NP-specific AFC could be seen in extra-follicular foci. Extra-follicular 

foci are clusters of AFC located at the interface between the T zone and main red pulp 

area, and contiguous with both (see Figure 6-6F, and Figure 6-7).  

Before immunization, sparse numbers of cells containing cytoplasmic anti-NP antibody 

were present in the splenic red pulp. Four days after immunization with NP-Ficoll, 

massively increased numbers of NP-specific AFC were present throughout the red pulp. 

In mice immunized with NP-Ficoll and infected with S. Typhimurium the enlarged red 

pulp is filled with even more impressive expanses of NP-specific AFC.  

By day 8 after NP-Ficoll, far fewer NP-specific red pulp AFC are seen. This loss of cells 

was less marked in mice co-infected with S. Typhimurium. In the co-infected group but 

not the group receiving NP-Ficoll only, NP-specific AFC were also seen at day 8 in 

extra-follicular foci. By day 35 the differences in the number of NP-specific AFC 

between groups was not marked, except for the red pulp still being larger in the infected 

mice. Most NP-specific AFC at day 35 were in the red pulp. 
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Figure 6-6 shows histological 

changes associated with 

immunizing QMxB6 mice 

with NP-Ficoll with or 

without coinfection with S. 

Typhimurium 
The heading above each 

photomicrograph shows the 

mouse group in relation to 

immunization and/or infection 

and the staining used. NP-F / 

Sal = NP-Ficoll immunization 
with S. Typhimurium infection. 

Microscope magnification of 

the photomicrographs is x 50. 

Panel A, small background 

numbers of NP-specific AFC 

in the red pulp (R) and the 

concentration of NP-specific B 

cells in the marginal zone, 

which lies outside the IgD-

staining follicles (F). In a serial 

section (panel B) CD3 staining 
cells identify the T zone (T). 

Panels C and D show the 

massive numbers of blue-

staining AFC in the red pulp 4 

days after immunization with 

NP-Ficoll Blue staining within 

the follicles identifies NP-

specific germinal centres. The 

larger red pulp area seen in the 

co-infected mouse (panel D) 

compared to that in the non-

infected group (panel C) is 
representative of all mice in the 

co-infected group. Panels E 

and F show that by 8 days 

after NP-Ficoll, AFC in the red 

pulp are now confined to 

discrete areas. In addition there 

are AFC in extrafollicular foci 

(EF). By day 35 after NP-

Ficoll (panels G and H) NP-

specific AFC in both infected 

and non-infected groups are 
confined to discrete areas in 

the red pulp. 

Naïve mouse. CD3 IgD x50 

Day 8 NP-F / Sal. NP IgD. x50 

F 

Day 35 NP-F / Sal . NP IgD  x50 
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Day 35 NP-Ficoll NPIgD x50 
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Figure 6-7 shows a representative photomicrograph of 

mouse spleen 8 days after infection with S. 

Typhimurium demonstrating prominent extra-

follicular foci containing NP-specific AFC. 
A large collection of NP-specific AFC is present in the 

extra-follicular focus (EF) adjacent to the T zone (T) 

(unstained). A few additional NP-specific AFC are seen 

in the red pulp (R). Original magnification x50. 

 

 

 

 

 

 

Relatively few NP-specific AFC were seen in mice sacrificed 4 days after infection with 

S. Typhimurium alone. At day 8, these mice had impressive extra-follicular foci filled 

with clearly NP-specific AFC and some red pulp NP-specific AFC (Figure 6-7). 

An estimate of NP-specific AFC numbers in the spleen of each mouse was also obtained 

by counting cells/unit area in histological sections using the Weibl point counting 

technique (Figure 6-8 top panel). Relative cell counts by this method broadly confirm the 

findings from flow cytometric studies.  

Where possible, the location of NP-specific AFC cells was also recorded - as being either 

in the red pulp or in extra-follicular foci. This was not possible in spleens from mice 

sacrificed at day 4 after immunization with NP-Ficoll, whether co-infected or not, due to 

confluent areas of NP-specific AFC. As previously described [60], red pulp NP-specific 

AFC dominated the response arising after immunization with NP-Ficoll, as shown by the 

ratio between numbers of NP-specific AFC in red pulp to those in extra-follicular foci at 

day 8 and 35 (Figure 6-8 bottom panel). Thus in these mice, changes in red pulp NP-

specific AFC numbers closely reflect changes in total numbers of NP-specific AFC 

(Figure 6-8 middle panel).   

   

EF 

RP 

T 

D8 Sal only. NP IgD x50. 
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In mice infected with S. Typhimurium, and irrespective of prior co-immuinzation wih 

NP-Ficoll, the NP-specific AFC response was not so overwhelmingly confined to the red 

pulp at day 8; the median ratio between the number of NP-specific AFC in the red pulp 

and the number in extra-follicular foci was less than 4. These extra-follicular foci, 

prominent in infected mice, also contained many AFC that were not specific for NP (see 

Figure 6-16). 
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Figure 6-8 shows total 

numbers of splenic NP-

specific AFC and their 

location following 

immunization with NP-Ficoll, 

with or without co-infection. 

Within each panel, each 

triangle represents the values 

from one mouse. Open 

triangles represent data from 
histological sections 

prospectively noted to have 

relatively indistinct staining. 
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6.5 AFC are still being produced at day 8 after infection as 

shown by the continued presence of plasmablasts. 

Increased numbers of plasma cells in the red pulp at day 8 after NP-Ficoll and co-

infection with S. Typhimurium could either be due to prolonged survival of AFC or their 

continued production, or a combination of both of these. To see if there were greater 

numbers of NP-specific plasmablasts in the co-infected mice compared to those receiving 

NP-Ficoll only histological sections were stained for anti-NP antibody and proliferation-

associated nuclear antigen - Ki67. By day 8 after immunization with either NP-Ficoll, or 

infection with S. Typhimurium, or both, few red pulp NP-specific AFC contained nuclear 

staining for Ki67 (Figure 6-9, and Figure 6-10). Thus the AFC in the red pulp in all 

groups of mice at this stage are plasma cells. On the other hand, both groups of infected 

mice had extrafollicular foci with ~30% of Ki67
+
 NP-specific AFC, while, as shown in 

the previous section, mice receiving NP-Ficoll had little or no evidence of extrafollicular 

foci. As expected at day 4 after NP-Ficoll, before the mass loss of NP-specific AFC from 

the red pulp, essentially all the NP-specific AFC that form sheets of cells in the red pulp 

were Ki-67
+
. 
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Figure 6-9 shows that eight 

days after immunization 

with NP-Ficoll almost all red 

pulp AFC have left cell 

cycle, while plasmablasts are 

still present in 

extrafollicular foci of mice 

infected with S. 

Typhimurium  

The mouse group, staining 

patterns and objective 

magnification are shown 

above each photomicrograph. 

Panels A-D show QMxB6 

spleen 8 days after NP-Ficoll. 

A) orients with CD3 and IgD 

staining while the same area 

of a serial section B) is co-

stained for NP binding and the 

proliferation-associated 
nuclear marker - Ki67. The 

red box encompasses red pulp 

with a focus of NP-specific 

AFC and the green box red 

pulp largely devoid of AFC as 

well as an area of T zone red 

pulp junction, which typically 

is associated with 

extrafollicular focus 

formation; no AFC are in this 

area. C) and D) show the 
boxed areas of B) in higher 

power).  

Panels E-H are analogous 

photomicrographs at day 8 

after immunization and co-

infection, but in this series the 

red box shows AFC-

containing red pulp and the 

green box extra-follicular 

focus. Approximately one 

third of AFC in the latter are 
Ki67+, indicating 

proliferation, while the red 

pulp AFC are Ki67-. In 

infected mice, extensive red-

pulp Ki67+ staining that is not 

associated with NP-specific 

AFC is likely to reflect extra-

medullary haemopoesis. 

Microscope magnification of 

the photomicrographs is either 

x50 or x200 as specified in the 

legend of each panel. 
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Figure 6-10 shows the distribution of NP-specific AFC in the spleen 8 days after infection alone, 

where proliferation amongst these AFC is again confined to extra-follicular foci.  

The red box as in Fig 1-9 contains red pulp NP-specific AFC while the green box includes part of an 

extensive extrafollicular focus of NP-specific AFC. Red-pulp Ki67+ staining that is not associated with NP-

specific AFC is likely to reflect extra-medullary haemopoesis. Microscope magnification of the 
photographs is either x50 or x200 as specified in the legend of each panel. 

 

6.6 Increased numbers of non-proliferating splenic NP-specific 

plasma cells are sustained during S. Typhimurium infection.  

The lack of Ki-67 staining by red pulp AFC at 8 d after immunization shows that these 

cells had differentiated into plasma cells. Nevertheless, the presence of proliferating NP-

specific plasmablasts in extra-follicular foci is consistent with the possibility that these 

red pulp plasma cells are being rapidly renewed. To see if the new plasma cell niches 

were supporting longer term plasma cell survival we pulse labelled NP-specific AFC with 

 

 

  

  

  

A   

  
D   
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B   

Day 8. Sal only NP Ki67 x200 

Day 8. Sal only NP Ki67 x50 

Day 8. Sal only NP Ki67 x200 
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the thymidine analogue – 5-Bromo 2΄-deoxyuridine (BrdU) and assessed if the labelled 

cells persisted in the red pulp niches. BrdU was provided in mice‟ drinking water from 24 

hours to 120 hours after inoculations. During this time dividing cells, including 

plasmablasts, incorporate BrdU into cells‟ DNA but any division occurring after 120 

hours will result in subsequent loss of any previously incorporated BrdU. Thus BrdU
+
 

AFC present at later timepoints will be those plasma cells terminally differentiated before 

day 5. As plasma cells may live up to three days without specific supportive factors [45], 

only survival beyond that time could be attributable to supportive niches. Enhanced 

survival of plasma cells was therefore examined in mice at days 9, and at 25 days after 

immunization i.e. 4 and 21days after the BrdU pulse.  

Numbers of splenic CD138
+
 cells and NP-specific CD138

+
 cells as well as the proportion 

of NP-specific CD138
+
 cells that was BrdU

+
, were assessed by flow cytometry at 4 days 

(i.e. during the pulse), 9 day, and 25 days after the different inoculations. Representative 

flow cytometric dot plots are shown in Figure 6-11. 

The results of the second experiment are shown in Figure 6-12. This confirms previous 

findings that at day 4 and at day 9, total numbers of CD138
+
 cells (upper left panel), and 

also numbers of NP-specific CD138
+
 cells (upper right panel), are higher in immunized 

and co-infected mice than in their immunized but not infected peers. A median of 97% of 

NP-specific CD138
+
 cells had incorporated BrdU by 4 days after immunization with NP-

Ficoll, irrespective of co-infection with S. Typhimurium, thus confirming technical 

success of the BrdU methodology at identifying proliferating AFC. Amongst day 9 mice, 

median numbers of NP-specific CD138
+
 cells were 12-fold higher in immunized and co-

infected mice, as compared to mice receiving NP-Ficoll only. This impressive difference 
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was greater than the 7.7-fold differential in median weights, between the same two 

groups of mice. No difference in median numbers of NP-specific CD138
+
 cells was 

detectable between different groups of day 25 mice. 

Figure 6-11 shows that many of the NP-specific CD138
+
 cells present 9 days after immunization 

and/or infection retain BrdU taken up in the first 5 days of the response.  

Representative flow cytometry dot plots are from mice given BrdU between 24 and 120 hours after 

inoculation(s). In the 2nd column, and 3rd columns gated CD138+ cells in spleen suspensions are analysed 
for BrdU incorporated into DNA and NP binding. 

In infected but not immunized mice, a median 82% of NP-specific cells had incorporated 

BrdU at day 4, consistent with the more gradual increase in NP-specific AFC numbers 

seen in this group. However, the absolute number of BrdU
+
 NP-specific CD138

+
 cells 

present at day 9 after infection alone, was still more than median 3 fold above numbers 

seen in immunized, but uninfected mice. 
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The number of BrdU
-
 NP-specific CD138

+
 cells present after 9 days of infection, and 

irrespective of co-immunization, was substantially higher than the number present at day 

4. This is consistent with the ongoing plasmablast proliferation seen in extra-follicular 

foci of similar mice at day 8. It is likely to include both plasmablasts generated de-novo 

after day 5, or continued proliferation of plasmablasts that had previously incorporated 

BrdU between day 1 and the end of day 5. 

Close examination of the flow cytometry dot plots (Figure 6-11 and data not shown) 

reveals that amongst day 9 mice the median BrdU fluorescence in NP-specific CD138
+
 

cells in spleens of immunized mice was some 8 fold higher than in corresponding cells 

from mice both immunized and infected. Thus it may be that some plasmablasts in 

infected and immunized mice continued to divide up to 3 times more after BrdU feeding 

ceased at 120 hours. Nevertheless, as plasmablast divisions occur at 8 hourly intervals or 

less [238], even these AFC will have ceased dividing by day 6, consequently the resultant 

terminally differentiated plasma cells will have survived for at least 3 days in an animal 

studied at day 9. 

In conclusion, the results from the BrdU pulse chase extend the previously reported data, 

by providing evidence that extended survival of increased numbers of non-proliferating 

splenic NP-specific plasma cells can occur in the context of an unrelated source of 

inflammation. Histological examination of sections from these mice‟ spleens is yet to be 

performed, but will be likely to demonstrate that BrdU
+
 NP-specific AFC are 

predominantly in the red pulp. 
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Figure 6-12 shows that the increased number of NP-specific red pulp plasma cells present 9 days 

after immunization with NP-Ficoll and co-infection with S. Typhimurium is attributable, at least in 

part, to an increased number of plasma cells surviving for more than 3 days. 

The graphs show the number of NP-specific AFC that are labelled at 9 and 25 days after immunization with 

NP-Ficoll or infection or both by a BrdU pulse administered from days 2 to 5. The efficiency of the 
labelling was tested by assessing the proportion of plasmablasts labelled at 4 days; i.e. at the peak of the 

plasmablast response and before the onset of mass AFC apoptosis. Each symbol shows values for one 

mouse. Legend for the symbols is above the figure. The open triangles represent data from mice that were 

immunized and co-infected, but which did not demonstrate splenomegally, or other signs of infection with 

S. Typhimurium.  

6.7 Strategies to identify infection-related niches for antibody 

forming cells.  

Having obtained evidence to support the initial hypothesis, I sought to characterise the 

nature of the red-pulp niches that support survival of additional plasma cells during 

inflammation. Two broad approaches were used: 
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To identify cell populations, whose numbers are increased during inflammation, 

for which there is evidence to indicate they contribute to increased plasma cell 

survival. Such cell populations would be expected to co-localise with plasma cells 

(or their precursor plasmablasts). 

To identify changes in the splenic microenvironment consistent with a mechanism 

to increase plasma cell retention and survival. 

6.7.1 The potential role of phagocytes and dendritic cells in 

promoting prolonged survival of AFC in spleens of mice 

infected with S. Typhimurium.  

Acute inflammation is characteristically associated with an infiltrate of neutrophils and 

macrophages. In addition a range of phagocytes and dendritic cells have been shown to 

associate with AFC even in immune responses where there is no infection. There is 

evidence that cells with both neutrophil and macrophage features as well as dendritic 

cells contribute to plasma cell survival through release of factors including BAFF and 

APRIL and IL-6 [174;239-241]. Recently published work from our laboratory, using a 

different model, provides evidence that macrophages are associated with non-

proliferating AFC, and that they express substantial amounts of mRNA encoding for 

APRIL [130]. We thus considered the possible role of neutrophils, macrophages and 

dendritic cells in the maturation and survival of plasma cells in the models studied here.  
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6.7.1.1 Splenic numbers of CD11b+Gr1hiF4/80neg neutrophils and 

CD11b+Gr1intermediateF4/80intermediate macrophages increase after 

infection with S. Typhimurium. 

Flow cytometric studies show S. typhimurium infection results in a significant increase in 

the numbers of both splenic CD11b
+
Gr1

hi
F4/80

neg
 cells and 

CD11b
+
Gr1

intermediate(int)
F4/80

int
 cells. Gating strategies are shown in Figure 6-13. Results 

show that median numbers in both cell populations were more than 3 fold higher by day 

4, and at least 6 fold higher at day 8 after S. typhimurium infection (Figure 6-14). These 

increases occurred irrespective of co-immunization with NP-Ficoll, and were greater than 

the concurrent increases in splenic weight at the corresponding timepoints. By 35 days a 

more modest increase in number in each population compared with non-immunized non-

infected mice was still present. Immunization with NP-Ficoll, in the absence of infection 

was associated with a gradual fall in numbers of CD11b
+
Gr1

hi
F4/80

-
 cells, and 

CD11b
+
Gr1

int
F4/80

int
 cells at day 4 through to day 35. 

It will be seen that the Gr1+, F4/80+ cells separate into three subgroups on flow 

cytometry: Gr1
hi

F4/80
int

, Gr1
int

F4/80
int

 and Gr1
int

F4/80
hi
 cells (Figure 6-13). The numbers 

of all three of these subsets increased in a similar way in response to infection. The data 

for the Gr1
intermediate

F4/80
intermediate

 cells are shown in Figure 6-14B. The numbers of the 

cells in the other two subsets remained throughout approximately 10-fold lower, but 

changes in their number followed a similar pattern to that seen in 

Gr1
intermediate

F4/80
intermediate

 cells (data not shown). 
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Figure 6-13 shows representative flow 

cytometry dot plot demonstrating gates used to 

define populations by surface expression of 

Gr1, F4/80, and CD11b. 

Flow cytometric study of spleen removed 4 days 

after immunization with NP-Ficoll. Left – gating 
of CD11b+ cells that are Gr1+. Right – subgating 

according to intensity of staining with anti-Gr1 

and anti-F4/80 antibodies. Gr1hiF4/80- cells are 

likely to be neutrophils, whilst Gr1intF4/80int cells 

are likely to be macrophages. The phenotype of 

the other two, smaller, gated populations of cells 

is not clear. 

 

 

 

Figure 6-14 shows splenic numbers of CD11b
+
Gr1

hi
F4/80

neg
 cells, and CD11b

+
Gr1

int
F4/80

int
 cells rise 

after infection, but not immunization. 

Changes in numbers of CD11b+Gr1hiF4/80neg cells (left), and in numbers of CD11b+Gr1intF4/80int cells 

(right), as measured by flow cytometry of splenic cell suspensions. Each symbol shows values for one 
mouse. Legend for the symbols is above the figure. 

 

6.7.1.2 The relationship of red pulp AFC at day 8 with CD11b+Gr1+ cells and 

F4/80+ cells. 

Confocal microscopy was used to ascertain if NP-specific AFC were in proximity to Gr1
+
 

cells. The co-staining with Gr1 and F4/80 fails to show coincident staining (Figure 6-16 

top row). This suggests that only the Gr1
high

 cells and F4/80
high

 cells are detectable by this 

methodology and that the major Gr1
int

F4/80
int

 subset may not be detected. In addition the 

small Gr1
high

F4/80
int

 subset is not distinguishable from the Gr1
high

F4/80
-
 cells. 
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Day 8 NP-Ficoll x10. Day 8 Sal only. x10. Day 8 NP-F / Sal. x10. 
CD11b+ 

CD11b+Gr1+ 

Gr1+ 

 

CD11b+ 

CD11b+Gr1+ 

Gr1+ 

CD11b+ 

CD11b+Gr1+ 

Gr1+ 

A B C 

Nevertheless, F4/80
+
Gr1

-
 cells are widely distributed in the red pulp. Consequently, red 

pulp AFC are never far from F4/80
+
 cells. On the other hand there are large areas in the 

red pulp that contain F4/80
+
 cells but lack AFC. It follows many F4/80 expressing cells 

are unlikely to be providing a microenvironment that can support red pulp AFC survival. 

It remains possible that those F4/80
+
 cells that co-localize with AFC have a role in 

maintaining these AFC. Gr1
+
 cells are more focused in the red pulp, but similar 

arguments to those used for F4/80 apply to Gr1
+
 cell co-localization with red pulp AFC. 

Few Gr1
+
 cells were associated with extrafollicular foci, but some F4/80

+
 cells were in 

these foci. In keeping with data from flow cytometry, nearly all Gr1
+
 cells were CD11b

+
 

by confocal microscopy (Figure 6-15). 

 

 

 

 

 

Figure 6-15 shows that in spleens of mice that were previously immunized or infected or both, nearly 

all Gr1
+
 cells are CD11b

+ 
by confocal microscopy, 

In spleens of mice sacrificed 8 days after (A) immunization, (B) immunization and co-infection, or (C) 

infection alone, almost all Gr1+ cells (red) co-stain for CD11b (green) and so appear yellow. Original 

objective magnification x10 for all images. 
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Figure 6-16 shows representative confocal microscopy images of spleens from mice sacrificed at day 8 

after immunization, infection, or both. These show that in each tissue (i) no cells are seen to be 

Gr1
+
F4/80

+
, (ii) most red pulp NP-specific AFC are IgM

+
, (iii) red pulp IgM

+
 AFC are not restricted 

to the proximity of Gr1
+
 cells and (iv) substantial areas of the red pulp contain F4/80

+
 cells  but no 

AFC.  
Panels A, D, G and J show the same splenic section from one representative mouse 8 days after NP-Ficoll 

alone. Panels B, E, H, and L show the same splenic section from one representative mouse 8 days after 

immunization and co-infection. Panels C, F, I and L show the same splenic section from one 

representative mouse 8 days after S. Typhimurium infection alone. Panels A-C show F4/80+ cells (green) 

and Gr1+ cells (red). In confocal microscopy, no Gr1+ cells co-stained for F4/80 (no yellow staining). Gr1+ 

cells were more common in the red pulp of infected mice. Panels D-F show IgM+ cells (blue) and NP-

specific cells (red). NP-specific IgM+ cells appear purple. In each experimental condition red pulp NP-

specific AFC were overwhelmingly IgM+. Extra-follicular foci in S. Typhimurium infected mice also 

included IgM+ AFC not specific for NP. Panels G-I show Gr1+ cells (red) and IgM+ cells (blue).  Neither 

red pulp IgM+ AFC, nor extra-follicular IgM+ AFC, were associated with Gr1+ cells at 8 days after 

immunization, infection or both. Panels J-L show F4/80+ cells (green) and IgM+ cells (red). F4/80+ cells 
are widely distributed within the red pulp and many areas containing F4/80 + cells do not contain IgM

+
 

AFC. All images were taken with x10 objective magnification.  
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6.7.1.3 Splenic numbers of CD11c+ dendritic cells, increase in mice 

infected with S. Typhimurium, but not those only immunized with 

NP-Ficoll. 

Previously published reports have described a CD11c
hi

 cell population of dendritic 

phenotype that are associated AFC and may assist plasmablast maturation to plasma cells 

[128]. We therefore considered the possibility that infection related increases in CD11c
hi

 

cells (or a subset thereof) might be causally associated with the increased numbers of 

AFC in infected mice on day 8 after NP-Ficoll. 

Flow cytometric analyses were therefore performed on splenic cell suspensions from 

mice sacrificed after immunization or infection or both, in order to define a phenotype of 

one or more candidate cell populations. Previous work in our laboratory has divided 

CD11c
+
 cells into CD11c

int
 and CD11c

hi
 subsets of CD8α

- 
cells, and CD11c

+
CD8α

+
 cells. 

These subsets are shown in Figure 6-17, which also shows that there is heterogeneity 

within each of these subsets based on the varying expression of F4/80 and CD4. 
 

It will be seen from Figure 6-17 that infection results in major changes to the proportions 

of CD4
+
 and F4/80

+
 cells in the CD11c

+
 subsets. In particular the proportions of 

F4/80
-
CD4

+
 cells falls, while F4/80

+
CD4

-
 cell proportions increase. These changes 

expressed as numbers of cells per spleen are quantified in Figure 6-18. This shows that in 

the infected mice all 3 subsets defined by CD4 and F4/80 expression increase in number 

during infection, but this is most marked in the F4/80
+
 CD4

- 
subset. By contrast in mice 

immunized with NP-Ficoll, but not infected, only the F4/80
-
 subset increased and then 

only among the CD11c
hi
CD8

-
 and the CD11c

+
CD8

+
 subsets.  
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Figure 6-17 shows representative flow cytometry dot plots demonstrating gates used to define splenic 

cell populations according to staining with antibodies to CD11c, CD8α, CD4, and F4/80 in mice 

sacrificed after immunization, infection, or both. 

Dot plots shown are from mice 8 days after immunization with NP-Ficoll (upper panels), and 8 days after 

immunization with NP-Ficoll and infection with S. Typhimurium (lower panels). For each row, the left dot 

plot shows the gating for 3 subsets of CD11c+ cells, according to the intensity of staining with antibodies to 
CD11c and antibodies to CD8α. The remaining dot plots demonstrate subsets of these primary populations, 

according to intensity of staining for CD4 and F4/80.  

The increase in the CD11c
+
CD8α

+
F4/80

+
CD4

-
 subpopulation (maximal at day 8; a 

median 4.5 fold increase above baseline) was no greater than the concurrent changes in 

spleen weight in these mice. However the increase in median number of 

CD11c
hi

CD8α
-
F4/80

+
CD4

-
 cells was greater, at 5-6 fold by day 8 after S. Typhimurium 

infection. The median number of cells within the CD11c
lo

F4/80
+
CD4

-
 subset, increased 

more than 10 fold by day 8 after infection. 

The CD11c
lo

F4/80
+
CD4

+
 subset was also, more modestly, increased, in association with 

S. Typhimurium infection, but unaffected by immunization with NP-Ficoll. Some of this 

may have been attributable to cell populations spilling across the defined gating 

boundaries (Figure 6-17). 
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6.7.1.4 The relationship at day 8 between splenic AFC and CD11c+F4/80+ 

cells. 

Flow cytometric studies indicate that some CD11c
+
F4/80

+
 cell populations were 

selectively increased in infected mice. Within the remaining time available for this thesis 

it was not possible to develop the technology to co-stain for CD11c and CD8 and CD4 

and F4/80 and either NP or IgM in confocal microscopy. Confocal microscopy was 

therefore used to ascertain if AFC present at day 8 were associated with CD11c
+
F4/80

+
 

cells. 

As noted previously (Figure 6-16 panel J), and seen in the top left image of Figure 6-19, 

F4/80 cells (green) are seen scattered throughout the red pulp after immunization with 

NP-Ficoll. This is also the case for the expanded red pulp of infected mice (Figure 6-16 

panel L, top right image of Figure 6-19). By contrast, F4/80 cells are not seen in the B 

cell follicle, which contains small IgM
+
 B cells (white), in either group. Similarly, the T 

zone, which is devoid of either IgM
+
 B cells or large IgM

+
 AFC at day 8 after either 

inoculation, has few F4/80
+
 cells either. However, at the edge of the T zone in infected 

mice there are clusters of AFC that are likely to be in extra-follicular foci, and these are 

amongst F4/80
+
 cells. 

Interestingly, when visualising binding to CD11c, as well as binding to F4/80 and IgM 

(Figure 6-19 lower panels), it is clear that CD11c
+
 cells (red) encroach much further 

towards, and probably into, the T zone than F4/80
+
 cells do. Furthermore at the sites of 

extra-follicular foci, but not elsewhere along the margin of the T zone, these CD11c
+
 

cells are F4/80
+
 (and so appear yellow) (compare bottom right panel of Figure 6-19 and 

Figure 6-20).  
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Figure 6-18 shows a summary of changes in splenic cell numbers within defined subsets of CD11c

+
 

cells, following infection or immunization or both, in which F4/80
+
CD4

-
 subsets of CD11c

int
CD8α

-

cells, CD11c
hi

CD8α
-
 cells, and CD11c

+
CD8α

+
 cells are increased after infection but not immunization. 

Each symbol represents values from one mouse. The legend for the symbols is below the figure. 
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As seen in the lower panels of Figure 6-19, the CD11c
+
F4/80

+
 cells of greatest interest 

are distributed widely throughout the splenic red pulp in both conditions. Some, but not 

all, CD11c
+
F4/80

+
 cells are in contact with red pulp IgM

+
 AFC, though not all AFC are 

adjacent to CD11c
+
F4/80

+
 cells. 

Flow cytometric studies (Figure 6-15) had also demonstrated further heterogeneity within 

CD11c
+
F4/80

+
 cells. It follows that the confocal microscopy images presented here 

cannot exclude the possibility that those CD11c
+
F4/80

+
 cells found near to red pulp 

plasma cells comprise a subpopulation that is able to contribute to the survival of some 

AFC. Nevertheless, as some day 8 red pulp AFC are not near any CD11c
+
F4/80

+
 cells, it 

is tempting to conclude that the survival of some red pulp plasma cells is independent of 

the any of CD11c
+
F4/80

+
 cells populations identified in flow cytometry as increased in 

infection. However there is an important caveat to this, which is analogous to the 

difficulties in identifying F4/80
int

 staining on CD11b
+
 cells (discussed in 6.7.1.2 above). 

Amongst the subsets of CD11c
+
 cells defined by flow cytometry, CD11c

int
CD8α

-
 

contains the most cells, especially in infected mice (Figure 6-17). The majority of 

CD11c
int

CD8α
-
 cells are F4/80

int
. Thus CD11c

int
CD8α

-
F4/80

+
 cells comprise over half of 

all splenic CD11c
+
 cells, as estimated by flow cytometry.  

This is not apparent in confocal microscopy where there seem to be far fewer 

CD11c
+
F4/80

+ 
cells than CD11c

+
F4/80

-
 cells (Figure 6-19). This could be due to 

insufficient expression of either F4/80, or CD11c, or both on cells that are CD11c
+
F4/80

+
 

by flow cytometry. Irrespective of the technical cause, the likely failure to identify all 

CD11c
+
F4/80

+
 correctly in confocal microscopy leaves the possibility that infection-
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related increases in numbers of CD11c
+
F4/80

+
 cells do contribute to enhanced survival of 

red pulp plasma cells in infected mice. 

 

Figure 6-19 shows 

representative 

confocal micro-

scopy images of 

spleens of mice 8 

days after immun-

ization with or 

without co-

infection, and 

stained for IgM 

and F4/80 with or 

without staining 

for CD11c. These 

show that i) F4/80 

cells are confined 

to the red pulp 

and extra-

follicular foci and 

ii) some 

CD11c
+
F4/80

+ 

cells are identif-

iable in the red 

pulp of both 

groups of mice, 

but that in each 

group, not all red 

pulp AFC (large 

IgM
+
 cells) are 

close to identified 

CD11
+
F4/80

+ 
cells.  

The inoculations 
received by the mice are listed above each column. Images in one column are of the same splenic area. The 

colour coding for the antigens (and NP-binding cells) visualized in each image are shown in the top left 

corner of the image. All images taken at 10x original objective magnification. Blue box in lower right panel 

indicates area magnified in Figure 6-20. 

IgM F4/80 IgM F4/80

IgM

CD11c F4/80

CD11c + F4/80

IgM

CD11c F4/80

CD11c + F4/80

Day 8: NP Ficoll only Day 8: NP Ficoll + Sal
IgM F4/80 IgM F4/80

IgM

CD11c F4/80

CD11c + F4/80

IgM

CD11c F4/80

CD11c + F4/80

Day 8: NP Ficoll only Day 8: NP Ficoll + SalDay 8: NP Ficoll only Day 8: NP Ficoll + Sal
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Figure 6-20 shows 

magnified images 

of an extra-

follicular focus of 

AFC 8 days after 

NP-Ficoll with co-

infection. Areas 

flanking the T 

zone and margin 

contain 

CD11c
+
F4/80

- 

cells, while the 

extra-follicular 

focus contains 

CD11c
+
F4/80

+
 cells 

and CD11c
-
F4/80

+
 

cells. 

Both images are of the same splenic area, which is also seen within the blue box in lower right panel of 

Figure 6-19. The colour coding for the antigens (and NP-binding cells) visualized in each image are shown 

in the top left corner of the image. All images taken at 63x original objective magnification. 

6.7.2 An expansion in supportive niches near splenic trabeculae may 

accommodate some of the additional AFC sustained during 

infection. 

Previous publications have reported that red pulp AFC aggregate around collagen fibres 

or trabeculae [45;133]. We thus considered the possibility that these structures support 

the additional plasma cells sustained in the red pulp of infected mice. Eight days after 

immunization with NP-Ficoll, some but not all red pulp NP-specific AFC are found near 

trabeculae that bind antibodies raised against human collagen III, and which appear to 

traverse the red pulp (Figure 6-21A). The specificity within mice of this cross reactive 

polyclonal antibody is not known, though splenic red pulp trabeculae also bind antibodies 

to laminins [121]. The same structures are identified by antibodies to ER-TR7 antigen 

[242] (see Appendix 5).   

Day 8: NP Ficoll and Salmonella
IgM

CD11c F4/80

CD11c + F4/80

CD11c F4/80

CD11c + F4/80
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Interestingly, 8 days after immunization and co-infection with S. Typhimurium, increased 

numbers of NP-specific AFC were seen clustered around these trabeculae though 

additional NP-specific AFCs were also seen scattered elsewhere in the red pulp.  

This association raises the possibility that the trabecular structures might themselves 

contribute to plasma cell survival either by direct interaction with plasma cells or by 

providing a niche where plasma cell-sustaining cells gather. Plasma cells express surface 

receptors that bind to extra-cellular proteins including fibronectin and some collagens 

[243;244]. Furthermore, signals transduced by one of these - VLA-4 - can enhance 

plasma cell survival, at least in vitro [160].  

The association between the trabeculae and NP-specific AFCs was more closely 

examined in eight serial sections from the spleen of a mouse 8 days after infection and 

immunization. All sections were stained for NP binding, and with the antibody against 

human collagen III. Two separate trabeculae, that both had associated AFC aggregates, 

were followed through the multiple sections. Whilst this confirmed the close proximity of 

NP-specific AFCs to the trabeculae, at least some of the AFC in these clusters were not 

visibly in direct contact with the anti-collagen III stained fibres themselves (Figure 6-22).  

Thus it appears that some red pulp NP-specific AFCs generated in the response to 

immunization reside in niches that are close to splenic trabeculae, but these niches are not 

defined by the trabeculae themselves. Further studies are required to characterize all the 

components of these peritrabecular zones. There may be other microenvironments in the 

red pulp that sustain plasma cell survival for a minority of red pulp plasma cells do not 

associate with fibrous trabeculae.  
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Figure 6-21 shows photomicrographs demonstrating that eight days after immunization with NP-

Ficoll, some NP-specific AFCs are found clustered near splenic trabeculae that bind antibody raised 

against human collagen III, and that immunization and co-infection increases the number of such 

cells, but that infection per se does not. 

Photomicrographs of splenic sections immunohistochemically stained with anti-human collagen III (blue) 

and with NP (brown), from representative mice sacrificed 8 days after (A) immunization with NP-Ficoll, 

(B) infection alone and (C and D) immunization with co-infection (two separate mice). After immunization 

some NP-specific AFCs are associated with trabeculae. The number of trabecula-associated cells is 

increased in co-infected mice. Infection alone is not associated with clusters of NP-specific AFCs around 

the trabeculae. Red box in panel C denotes approximate area shown in 8 serial sections in Figure 6-22. 

Images taken at x5 original objective magnification.  

 

 Day 8. NP-Ficoll only. NP. Collagen III. x5 

Day 8. NP-F / Sal. NP. Collagen III. x5 

Day 8. Sal only. NP. Collagen III. x5 

 

Day 8. NP-F / Sal. NP. Collagen III. x5 

 

A B 

D C 

Day 8. NP-F / Sal. NP Collagen III x5 Day 8. NP-F / Sal. NP Collagen III x5 

Day 8. Sal only. NP Collagen III x5 Day 8. NP-Ficoll only. NP Collagen III x5 
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A E 

B F 

C G 

D H 

All images: day 8. NP-F / Salmonella.  NP Collagen IIII x200 Figure 6-22 

shows 

photomicro-

graphs of eight 

serial sections 

through the 

spleen of a 

mouse 8 days 

post immuniz-

ation with NP-

Ficoll and co-

infection, 

showing that 

some NP-

specific AFC 

clustered 

around 

trabeculae are 

not in direct 

contact with 

the anti-

collagen III 

stained fibres. 

Serial sections 

(A-H) were 

taken from the 

same mouse 

shown in 

Figure 6-21 
(right image), 

and immuno-

histochemically 

stained with 

anti-human 

collagen III 

(blue) and with 

NP (brown). 

Red circles 

highlight the 

same cluster of 

AFC in two 
serial sections, 

close to, but not 

in contact with 

a bundle 

binding anti-

collagen III 

antibody. 

Dotted red 

circles indicate the comparable areas in sections on either side, demonstrating the outer limits of the cluster. 
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6.7.3 Clusters of BP3+ cells become prominent in the splenic red pulp 

of S. Typhimurium-infected mice, but are not consistently 

associated with plasma cells. 

BP3
+
 nurse like cells are present within the bone marrow, but also the inflamed 

rheumatoid joint [161]. Furthermore, rheumatoid BP3
+
 cells are reported to produce IL-6 

in vitro [161]. We thus considered the possibility that such BP3
+
 cells could contribute to 

splenic plasma cell survival within the model studied here.  

In non-immunized mice, a diffuse reticular staining pattern is seen with anti-BP3 

antibody in the T zone, and inner B cell follicle. In addition isolated cells in the red pulp 

are also stained (Figure 6-23). These cells are not consistently associated with the small 

numbers of NP-specific AFC found in the red pulp of control mice. 

Sections from mice 8 days after immunization with NP-Ficoll with or without co-

infection with S. Typhimurium, were stained in parallel. In mice immunized with NP-

Ficoll alone, the staining pattern was similar to that in naïve mice. In contrast, 8 days 

after immunization and co-infection with S. Typhimurium, the reticular staining for BP3 

was less clear. Multiple clusters of cells staining for BP3 were seen in the red pulp. Some 

NP-specific AFC were seen on the outer rim of these BP3
+
 clusters, but many plasma 

cells were distant from BP3
+
 cells and some clusters of BP3

+
 cells had no associated AFC 

(Figure 6-23). In mice infected with S. Typhimurium only, it was striking that the 

extrafollicular foci were located within the reticular network of BP3 positivity associated 

with the white pulp.  
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Figure 6-23 shows representative photomicrographs of splenic sections from non-immunized mice, 

and from mice 8 days after immunization with or without co-infection. Both are stained for BP3 

antigen and NP binding. These show that infection increases the red pulp area stained with anti-BP3, 

but that these areas are not directly associated with NP-specific AFC.  

In each row the right image (x200 microscope magnification) shows in detail the area enclosed in the red 

box in the left image (x50 microscope magnification). In naïve mice (panels A and B), and mice 8 days 
after immunization with NP-Ficoll (panels C and D) reticular expression of BP3 (blue) is seen in the T 

zone, and inner part of the B cell follicle. Isolated cells in the red pulp are also BP3+, but NP-specific AFC 

(dark brown) are not consistently near the BP3+ cells. In mice 8 days after immunization with co-infection 

(panels E and F) increased clusters of cells within the red pulp stain BP3+, but few NP-specific AFC are 

amongst them.   

 

 

A B 

Naïve mouse. NP BP3 x50 Naïve mouse NP BP3 x200 

A B 

Day 8, NP-Ficoll. NP BP3 x50 Day 8, NP-Ficoll.NP BP3 x200 

E F 

Day 8, NP-Ficoll. NP BP3 x50 Day 8, NP-Ficoll. NP BP3 x200 

C D 
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6.7.4 CD169+ cells are confined to the splenic marginal zone and not 

associated with AFC.  

In a different experimental model used in our laboratory AFC appear associated with 

CD169
+
 cells [130]. We thus considered the possibility that CD169

+
 cells co-localise with 

splenic AFC in this model, and contribute to their survival. 

Confocal microscopy was used to study the location of CD169
+
 cells in non-immunized 

mice, and those 8 days after either immunization with NP-Ficoll, or after infection with S. 

Typhimurium and immunization with NP-Ficoll (Figure 6-24). In contrast to the other 

model, CD169
+
 cells were confined to the marginal zone in the spleens of QMxB6 mice, 

irrespective of infection with S. Typhimurium. They were not associated with red pulp 

IgM
+
 AFC. 

 

 

 

 

 

Figure 6-24 shows images from con-focal microscopy demonstrating that CD169
+
 cells are confined 

to the splenic marginal zone, irrespective of immunization with NP-Ficoll, or co-infection with S. 

Typhimurium. 

Representative splenic sections from (A) a non-immunized mouse, (B) a mouse 8 days after immunization 

with NP-Ficoll, and (C) a mouse 8 days after immunization and co-infection. CD169+ cells appear green. 

These are confined to the splenic marginal zone, amongst small IgM+ B cells (grey). Larger IgM+ cells, 
AFC, are predominantly confined to the red pulp. All images were taken with x10 objective magnification. 

 

Naïve mouse. x10 Day 8, NP-Ficoll. x10 Day 8, NP-F / Sal. x10 

CD169+ 

IgM+ 

CD169+ 

IgM+ 

CD169+ 

IgM+ 

A B C 
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6.8 Investigating the splenic expression of mRNA for known 

AFC chemotaxis, differentiation and survival factors. 

There are likely to be two main components contributing to the long term survival of 

AFC:  

(i) The presence of niches that provide factors that support long term survival. 

(ii) Factors that induce AFC to home to these niches.  

Splenic changes in either component could impact upon observed numbers of mature 

plasma cells in the splenic red pulp. Possible changes in both of these components 

associated with immunization and or infection are considered in this section.  

The migration of AFC appears to occur in two phases: first the migration of activated B 

blasts from the T zone to extrafollicular foci, where the AFC grow as plasmablasts. The 

second phase is where mature plasma cells locate in niches in the splenic red pulp that 

secure their long term survival. In addition some of the AFC leave the spleen and find 

survival niches in the bone marrow. This movement from spleen to bone marrow and the 

bone marrow niches are not considered in this study.  

The migration from the outer T zone to extrafollicular foci is coordinated by expression 

of chemokines and their receptors [133;134] and coincides with the differentiation of 

CD138
-
Blimp-1

- 
B blasts to CD138

+
Blimp-1

+
 plasmablasts [238;245]. The chemokine 

CXCL12 is chemotactic for plasmablasts which constitutively express the appropriate 

receptor CXCR4 [133;134]. This ligand-receptor pair contributes to homing of plasma 

cells to the bone marrow [133].  Expression of CXCR4 is maintained on most bone 

marrow plasma cells. These plasma cells do not respond to CXCL12 by migration [134], 
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although the interaction between this chemokine and its receptor may stabilize the 

localization of AFC in the marrow. There are conflicting reports of in vitro work as to 

whether CXCL12 supports plasma cell survival [149;162].  

Available evidence indicates that a proportion of plasmablasts migrate towards CXCL9 

or CXCL10 or CXCL11 [134]. All three chemokines are induced in cells of the 

monocyte-macrophage lineage (amongst other cell types) by stimulation with γ-IFN 

[138;139]. Furthermore, CXCL10 and CXCL11 are induced following direct 

lipopolysaccharide (LPS)-mediated activation of macrophages [147;148] and γ-IFN also 

acts synergistically on this response [147]. The receptor for all three of these chemokines 

is CXCR3, which itself can be upregulated by γ-interferon, at least in vitro [14]. There is 

no published evidence for, or against, the possibility that ligands for CXCR3 promote 

survival of any CXCR3-expressing plasma cells in vitro or in vivo. 

Certain cytokines are known to favour AFC differentiation and survival. These have been 

most extensively studied in vitro, and in the context of bone marrow plasma cells in vivo. 

IL-6 by itself can enhance plasma cell survival in vitro, though its efficacy is very much 

greater when acting synergistically with other plasma cell supporting factors [162]. Its in 

vivo role is less clear; long term antibody responses are reported to be unaffected in IL6
-/-

 

mice [162], though in the short term (up to 10 days after secondary immunization) the 

antibody response appears reduced. This may be due to an impact of IL-6 upon cell 

proliferation [246], and may be of relevance in the model studied here. Cassese et al also 

reports a modest in vitro effect of TNF-α on plasma cell survival [162].  
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IL-21 is one of a group of cytokines whose receptors share a common γ chain [247]. It is 

reported to act in concert with B cell receptor ligation to promote the production of 

Blimp-1 and thereby the terminal differentiation of B cells into plasma cells [184]. 

O‟Connor et al have reported a non-redundant role for BCMA-mediated signalling in 

achieving bone marrow plasma cell survival [165]. Published data on adult mice indicates 

this is mediated via APRIL, one of the ligands for BCMA, but not by BCMA‟s other 

ligand BAFF [179].  

The role of these various factors in splenic plasma cell survival is less clear. In contrast to 

their findings in bone marrow, Belnoue et al state (but do not provide data to show) that 

48 hours after in-vivo transfer of antigen-specfic AFCs, the splenic recovery of these 

AFC was no different in BAFF
-/-

 or APRIL
-/-

 recipient mice compared to wild type 

recipient controls [179]. Furthermore bone marrow stromal cells sustain in-vitro plasma 

cell antibody production more effectively than splenic stromal cells, despite higher IL-6 

production by the splenic cells [149].  

The role of any of these factors in enhanced plasma cell survival in the context of splenic 

inflammation is not reported. Furthermore, such cytokines and chemokines may be 

produced by more than one cell type. When this is the case there would be sporadic rather 

than universal association of AFC with each of the different cell types that produced 

AFC-survival factors; a situation that makes interpretation of histological associations 

difficult.  

Immunohistochemical staining of cytokine-producing cells in tissue sections generally 

has proved unreliable. Consequently two alternative approaches were used. In each, 

levels of cytokine mRNA were quantified using real time reverse transcriptase 
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polymerase chain reaction assays (RT2-PCR). First levels of mRNA transcripts that 

encode for various cytokines, or chemokines, and their receptors, were measured in 

spleen cell suspensions from the different groups of mice. Although this will identify if 

leucocyte-produced cytokine message has increased it does not localize the cytokine 

production and would fail to detect cytokines produced by stromal cells that were not 

contained in the cell suspensions studied. Consequently mRNA levels were also assessed 

in microdissected areas taken from tissue sections. 

In keeping with conventional methodology, changes in levels of mRNA species of 

interest were normalized by reporting changes relative to levels of reference gene mRNA 

in the same samples. Cellular levels of mRNA for reference genes (β2-microglobulin and 

β-actin) are usually assumed to be unaffected by experimental conditions. However, total 

splenic cell numbers increase substantially following infection with S. Typhimurium, and 

all cells will express the reference gene mRNA. As only a subset of the cells is likely to 

be producing a plasma cell survival factor any observed increases in normalised levels of 

mRNA for the survival factor of interest will underestimate the upregulation of 

expression in the cell subset producing the mRNA for the factor.  

Assays were also performed on the same tissues to estimate levels of mRNA encoding for 

BCMA, which in the spleen is solely expressed on differentiated AFC. This confirms that 

increases in BCMA mRNA levels following immunization, or infection, or both, broadly 

reproduce corresponding increases seen in total CD138
+
 cell numbers as estimated by 

flow cytometry (Figure 6-25). For this reason BCMA mRNA levels have been used as a 

comparator with levels of different cytokines reported in Figure 6-26, Figure 6-30, and 

Figure 6-31. 
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Figure 6-25 shows changes induced by immunization, infection or both in the absolute numbers of 

splenic CD138
+
 cells reflect concurrent changes in relative levels of BCMA mRNA in splenic 

leucocyte suspensions. 

Each symbol shows values for one mouse. Absolute numbers of CD138+ cells were estimated by flow 

cytometry, and are replotted from Figure 6-5A. Levels of BCMA mRNA were measured by RT2-PCR, and 

are reported relative to levels of β2-microglobulin reference gene mRNA in the same sample. 

6.8.1 In spleen cell suspensions infection induces mRNA for CXCR3-

binding chemokines while the NP-Ficoll response in non-

infected mice upregulates message for CXCR4-binding 

chemokine. 

Changes in levels of mRNA for CXCL9, CXCL10, CXCL11 and CXCL12, were 

assessed by RT2-PCR, in spleen cell suspensions from mice immunized with NP-Ficoll, 

infected with S. Typhimurium, or both. Consistent with published reports, levels of 

CXCL9, CXCL10 and CXCL11 increase substantially following infection, and 
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irrespective of co-immunization, but changes in these chemokines are modest after 

immunization alone. By contrast, increases in CXCL12 were greater in immunized but 

non-infected mice (Figure 6-26). Thus compared with naïve mice, peak median levels of 

CXCL9 mRNA were 11 fold above baseline, CXCL10 were 20 times baseline and 26 

fold for CXCL11. By comparison immunization without infection resulted in changes 

that were never more than 4-fold above baseline for any of these chemokines. Unlike -

IFN levels which were highest at day 35 after infection the levels of these chemokines, in 

parallel with the numbers of plasma cells declined between d8 and d35. Conversely the 

chemokine upregulation occurred earlier than that of -IFN, key cytokine produced in the 

T-helper type 1 (TH-1) protective response against S. Typhimurium infection. These data 

raise the possibility that increased splenic expression of CXCL9, CXCL10 or CXCL11 

during S. Typhimurium could alter the migration patterns of emergent NP-specific 

plasmablasts, if such AFC express CXCR3.

6.8.2 CXCR4 protein is expressed on the surface of AFC from all 

groups of mice although some late switched plasma cells, 

again from all groups of mice, express CXCR3.  

We sought evidence of increased CXCR3 expression within the spleen of infected mice 

as: i) spleens of infected mice have increased splenic expression of CXCL9, and 

CXCL10 and CXCL11 (section 6.8.1 above); ii) some AFC migrate towards these 

chemokines [134] and iii) γ-IFN can increase expression of CXCR3 on AFC [14] In the 

first instance RT2-PCR of splenic cell suspensions was used to assess levels of mRNA for 

CXCR3 as well as CXCR4, which is expressed on most AFC [133].
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Figure 6-26 shows 

that in splenic cell 

suspensions, levels 

of mRNA for γ-

IFN, and CXCL9, 

CXCL10, and 

CXCL11, but not  

CXCL12, increase 

more after 

infection than 

after 

immunization. 

Each symbol 

represents values 

from one mouse. 

Levels of mRNA 

were measured by 

RT2-PCR and are 
all reported relative 

to reference gene 

(β2-microglobulin) 

mRNA levels in 

the same sample. 

Where less than 

three symbols are 

shown per group, 

no mRNA was 

detected in samples 

from unreported 
mice. Changes in 

BCMA mRNA 

levels, which 

broadly reproduce 

changes in CD138+ 

cell numbers 

estimated by flow 

cytometry, are 

shown for 

comparison. 
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The results of these experiments are shown in Figure 6-27. Levels of CXCR3 mRNA in 

spleen cell suspensions were little changed after either infection, or immunization, or 

both. Surprisingly, levels of CXCR4 mRNA were found to be lower than baseline for at 

least 8 days after all types of inoculation. This decrease was most marked in infected 

mice.  

These findings contrast with the changes in BCMA mRNA following inoculation, which 

are represented on the same figure – and which are a reasonable surrogate for total 

CD138
+

 cell numbers in these mice. It can be concluded from this that much of the 

CXCR3 and CXCR4 expressed within the leucocyte suspension is not present in AFC. At 

least in CD4 T cells, surface turnover of CXC4 can be substantial and intracellular stores 

exist, thus dissociation of mRNA levels from surface expression of the corresponding 

protein is likely [153;248].  
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Figure 6-27 shows that in spleen cell suspensions, relative levels of CXCR4 mRNA are below baseline 

levels for at least 8 days after immunization, or infection or both, whilst CXCR3 mRNA levels change 

little in the same mice, over the same time.  

Figure also shows contemporary changes in BCMA mRNA that reflect changes in splenic CD138+ cell 

numbers. Each symbol represents values from one mouse. Levels of mRNA were measured by RT2-PCR 
and are reported relative to levels of β2-microglobulin reference gene mRNA in the same sample.  

 

Given these difficulties with the assessment of CXCR3 and CXCR4 expression on AFC 

by mRNA, in the repeat experiment the surface expression of these molecules on NP-

specific AFC was assessed by flow cytometry. Technical issues precluded co-staining for 

CD138 expression with either chemokine receptor, so intracellular NP
high

 staining was 

used to identify NP-specific AFC. As most NP-specific AFC generated after infection 

alone are NP
int

 (Figure 6-4), AFC chemokine expression could not be studied in these 
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mice. Representative flow cytometry dot plots for mice that were immunized, and those 

that were immunized and co-infected, are shown in figure Figure 6-28. 

Figure 6-28 shows that although NP-specific AFC express CXCR4 they are only a small proportion 

of the CXCR4-expressing cells in the spleens of responding mice and few AFC express CXCR3 and 

these are mainly a subset of non-switched AFC in co-infected and immunized mice.  

The 2 left columns show representative dot plots CXCR4 expression related to cytoplasmic+surface NP 

binding. The centre columns show gated cells showing cytoplasmic + surface NP-binding and the right two 

columns IgM and CXCR3 expression in the gated NP-specific AFC.showing the proportion of NP-specific 
AFC that are CXCR4+, and the proportions of IgM NP-specific AFC and isotype switched NP-specific 

AFC that are CXCR3+, at 4 and 9 days after immunization, with or without co-infection. Numbers on the 

dot plots show the percentage of cells in the corresponding gate. 

In all mice studied at day 4 - irrespective of inoculation received - more than 95% of NP-

specific AFC had detectable CXCR4 expression (Figure 6-29, top left panel). CXCR4 

expresion was also detectable on more than 85% of NP-specific AFC in each of the day 9 

mice. Amongst the few mice studied it appeared that the the proportion of NP-specific 

AFC expressing CXCR4 was slighly lower in uninfected mice than their infected peers. 

Importantly only a small proportion of the cells expressing CXCR4 are NP-specific AFC. 

Surface expression of CXCR3 was examined separately on IgM
+
 NP-specific AFC and 

isotype-switched NP-specific AFC. At both timepoints studied, most NP-specific AFC 

were IgM
+
 (Figure 6-29, top right panel). Irrespective of timepoint studied or inoculation 

receieved, fewer than 10% of IgM
+
 NP-specific AFC were CXCR3

+
 (Figure 6-29, bottom 
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left panel). At 4 days after either inoculation, a median of 5% of isotype switched NP-

specific AFC are CXCR3
+

. (Figure 6-29, bottom right panel). Strikingly, however, the 

proportion of splenic isotype-switched NP-specific AFC that are CXCR3
+
 in all day 9 

mice is signifcantly higher than that in all day 4 mice (p<0.01, Mann Whitney test). It 

was not possible to discern any additional effect of infection on the proprotion of isotype 

switched NP-specific AFC were CXCR3
+
 at day 9. 

It is tempting to conclude that the rise in the proportion of isotype switched NP-specific 

AFC that express CXCR3 reflects either i) preferential retention of CXCR3
+ 

AFC in the 

spleen or ii) a survival advantage for such AFC relative to other AFC retained within the 

spleen. Two other observations from these data do not concur with this: 

i) at day 4, the proportion of IgM
+
 NP-specific AFC that are CXCR3

+ 
is not less 

than the proportion amongst the switched NP-specific AFC – and no equivalent 

enrichment for CXCR3
 
expressing IgM NP-specific AFC is seen between day 4 

and day 9. 

ii) the proportion of isotype switched NP-specific AFC that are CXCR3
+ 

 

increases between 4 and 9 days after immunization alone – but the proportion of 

all splenic NP-specific AFC that is isotype switched does not (Figure 6-29, top 

right panel).  

These results still need to be repeated, but an alternative explanation is possible. The 

median proportion of day 9 NP-specific CD138
+
 cells that were BrdU

-
 was 25% in 

immunized mice, and 57% in immunized and co-infected mice (see Figure 6-12). Thus 

many AFC present at day 9 developed after day 5. Any alteration, between day 4 and day 

9, in the proportion of newly emergent AFC that are CXCR3
+
 could influence the 
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proportion of prevalent AFC that are CXCR3
+
 at day 9. This scenario seems most 

plausible in the context of evolving S. Typhimuruim infection though it remains 

unproven, and could be the subject of future work. 

Figure 6-29 shows the proportion ofNP-specific AFC that express CXCR4
+ 

or CXCR3
+
. 

Each symbol shows values for one mouse. The legend for the symbols is above the figure. The open 

triangle represents one mouse that was inoculated with NP-Ficoll and S. Typhimurium, but did not develop 

splenomegally or any other signs of infection. 

B blasts usually migrate from the white pulp as they differentiate into plasmblasts; i.e. the 

migration occurs in proliferating cells. Thus the plasma cells that at day 9 retain BrdU 

taken up before day 6 are likely to have migrated from the white pulp several days before. 

The continued expression of CXCR4 in day 9 plasma cells may refect retention in red 

pulp niches rater than migration to these niches. The high splenic levels of CXCL9 or 
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CXCL10 or CXCL11 seem unlikely to be having influence more than a small proportion 

of AFC from infected day 9 mice. 

6.8.3 Levels of mRNA for IL-6 and IL-21, but not mRNA for TNF-α or 

BAFF or APRIL, are selectively increased in spleens of mice 

infected with S. Typhimurium. 

RT2-PCR assays were performed to assess changes induced by infection and/or 

immunization in mRNA encoding the putative AFC survival and maturation factors in 

spleen cell suspensions. The factors assessed were IL-6, IL-21, TNF-α, BAFF and 

APRIL.  

Levels of IL-6 and IL-21 mRNA are increased more after infection than after 

immunization (Figure 6-30). In contrast levels of mRNA for TNF-α, BAFF and APRIL 

changed remarkably little following any inoculation (Figure 6-31). 

Amongst both groups of infected mice changes in IL-6 mRNA levels tracked changes in 

levels of BCMA mRNA and hence, by inference, the numbers of AFC. The highest 

measured levels of IL-6 mRNA (median 16-fold above baseline) were found at day 4 

after infection and co-immunization, whilst levels in infected but not-immunized mice 

peaked at median 7-fold above baseline, at day 8. In both groups of infected mice, levels 

of IL-6 mRNA were still elevated at day 35. By contrast, in immunized but not infected 

mice, no correlation between levels of IL-6 mRNA and BCMA mRNA was seen, and 

median levels remained within 2-fold of baseline throughout.  
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Figure 6-30 shows that in splenic cell suspensions, levels of IL-6 and IL-21 mRNA are more 

substantially increased after infection, than after immunization.  

Each symbol represents values from one mouse. Levels of mRNA were measured by RT2-PCR and are 

reported relative to reference gene (β2-microglobulin) mRNA levels in the same sample. Where less than 

three symbols are shown per group, no mRNA was detected in the samples from unreported mice. Changes 

in BCMA mRNA levels, which broadly reproduce changes in CD138+ cell numbers estimated by flow 

cytometry, are shown for comparison. 

Irrespective of co-immunization, in infected mice peak levels of IL-21 mRNA were seen 

at day 8, and the medians were more than 10-fold above baseline. Levels in both these 

groups declined only marginally by day 35. The only impact of co-immunization of IL-21 

mRNA levels was seen at day 4; levels had already begun to climb in this group, whereas 

they were virtually unchanged in mice that were infected but not immunized. Whereas 

infection, and to a lesser extent additional co-immunization, has a substantial effect on 

 Open diamonds – naïve mice. Coloured diamonds – day 4 mice. 

Circles – day 8 mice. Triangles – day 35 mice. 
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IL-21 mRNA levels, immunization alone only resulted in median 3-fold rise in levels 

seen at day 8. 

Figure 6-31 shows that in splenic cell suspensions, levels of mRNA encoding for TNF-α, BAFF and 

APRIL are little changed after infection, immunization or both, and that none of these mRNA species 

increase more after infection than after immunization.  

Each symbol represents values from one mouse. Levels of mRNA were measured by RT2-PCR and are 

reported relative to reference gene (β2-microglobulin) mRNA levels in the same sample. Changes in 

BCMA mRNA levels, which broadly reproduce changes in CD138+ cell numbers estimated by flow 

cytometry, are shown for comparison. 

 

  

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

TNF-α

105

104

103

105

104

103

APRILAPRIL

101

102

101

102

101

102

101

102

BAFFBAFF

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

NP-Ficoll Sal NP-F / Sal

BCMA 

103

104

101

102

103

104

101

102

BCMA 

103

104

101

102

103

104

101

102

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

TNF-α

105

104

103

105

104

103

APRILAPRIL

101

102

101

102

101

102

101

102

BAFFBAFF

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

NP-Ficoll Sal NP-F / Sal

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

D
ay

 0

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8

D
ay

 3
5

D
ay

 4

D
ay

 8
D
ay

 3
5

TNF-α

105

104

103

105

104

103

TNF-αTNF-α

105

104

103

105

104

103

105

104

103

105

104

103

APRILAPRIL

101

102

101

102

101

102

101

102

APRILAPRILAPRILAPRIL

101

102

101

102

101

102

101

102

101

102

101

102

101

102

101

102

101

102

101

102

101

102

101

102

BAFFBAFF

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

BAFFBAFFBAFFBAFF

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

100

101

102

103

NP-Ficoll Sal NP-F / SalNP-FicollNP-Ficoll Sal Sal NP-F / Sal

BCMA 

103

104

101

102

103

104

101

102

BCMA 

103

104

101

102

103

104

101

102

 L
e
v
e
l 
o
f 
m

R
N

A
 s

p
e
c
ie

s
 o

f 
in

te
re

s
t,
 r

e
la

ti
v
e
 t
o

 l
e

v
e

l 
o
f 

re
fe

re
n
c
e
 g

e
n
e
 m

R
N

A
 



156 

 

Surprisingly, and in contrast to levels of IL-6 and IL-21 mRNA in spleen cell 

suspensions, levels of mRNA encoding TNF-α, or BAFF, or APRIL changed relatively 

little after immunization, or infection, or both. Changes in the levels of all 3 mRNA 

species varied no more than 4-fold different from baseline at any timepoint. 

Thus amongst the mRNA species studied here in spleen cell suspensions, only IL-6 and 

IL-21 mRNA shows increases in levels in bulk splenic cell suspensions that are plausibly 

associated with the increased numbers of splenic AFC present in S. Typhimurium 

infected mice.  

6.9 Estimation of regional variations in mRNA levels within the 

spleen by RT2-PCR of laser microdissected sections. 

To look for regional variations in the levels of AFC-supporting chemokines and 

cytokines that can influence AFC-survival in vivo, levels of mRNA encoding these were 

assessed in different compartments of the spleen. In order to obtain reliable data multiple 

dissected areas, each representative of the compartment of interest, are needed. Multiple 

sections of a tissue are cut and placed on a single, membrane coated slide, which is 

subsequently stained with cresyl violet to assist the identification of compartments within 

the tissue. However additional localisation techniques are needed to identify splenic 

compartments with confidence, and AFCs themselves cannot be identified by cresyl 

violet staining alone. Two additional sections were thus cut before the sections to be used 

for microdissection, and two additional sections cut after. These four were stained by 

immunohistochemical techniques. Within each flanking pair, one was stained for NP-

specific AFC and for IgD
+ 

cells, whilst the other was stained for Ki67
+
, a nuclear marker 
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of proliferation, and for IgD
+
 cells. By cross reference between composite 

photomicrographs of the immunohistochemically stained slides and the cresyl-violet 

stained sections we identified AFC-rich and AFC-sparse areas of red pulp, and 

plasmablast-rich extrafollicular foci for microdissection. In addition areas of B cell 

follicles with continuous IgD
+
 small recirculating B cells (Ki67

- 
areas) and central T 

zones were dissected. Further details of this technique are provided in the methods 

chapter (section 3.3.13.3). Previous work had shown that the majority of red pulp AFC at 

day 4 and day 8 after immunization or infection or both, were NP-specific IgM
+
 AFC, 

(Figure 6-5, Figure 6-16, and Figure 6-29).  

Localisation of splenic compartments by this process, and the laser microdissection itself 

are highly time-consuming and so only selected tissues that were expected to be 

informative were to be used. These were spleens from mice sacrificed at day 4 and day 8 

after immunization, day 8 spleens from infected mice, and day 8 spleens from infected 

and co-immunized mice. In the event, tissue from the 3 mice sacrificed at day 8 after 

infection and co-immunization had become unavailable. Three mouse spleens were 

available for each of the other conditions of interest.  Extra-follicular foci of AFC, of 

sufficient size to microdissect accurately, could only be identified in infected mice. 

Additionally, the presence of confluent red pulp plasma cells in day 4 mice precluded the 

identification of AFC-sparse red pulp areas in these mice. The tissues examined, and the 

splenic compartments that were successfully identified and microdissected are 

summarised in Table 6-2. 

Levels of Blimp-1 mRNA, and BCMA mRNA were measured in the dissected tissues, to 

test the technical success in discriminating AFC-rich red pulp areas, and AFC-sparse red 
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pulp areas, and in identifying AFC-rich extra-follicular foci. The results, which are shown 

in Figure 6-32, confirm the association between the levels of each of these mRNA 

species, and also the association of each with the relative frequency of NP-specific AFCs 

in corresponding immunohistochemically stained sections. Blimp-1 mRNA levels are 

thus used as a comparator with levels of different cytokines reported in Figure 6-33 and 

Figure 6-34 and Figure 6-35 in the next section). 

Splenic Compartment Corresponding 

legend on 

Figure 6-32 

through to 

Figure 6-35 

Day 4 

after 

NP-Ficoll 

Day 8 

after 

NP-Ficoll 

Day 8 after  

S. Typhimurium 

infection. 

AFC rich red pulp  Red pulp NP
+
    

AFC sparse red pulp Red pulp NP
-
    

Extra-follicular foci EF Foci    

Primary B cell follicles IgD
+
    

Central T zone T zone    
Table 6-2 shows the range of mouse spleen compartments identified and microdissected, according to 

the experimental conditions and timepoints chosen.   

Three mice were available for each condition and splenic tissue was obtained from each.  
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Figure 6-32 shows relative amounts of Blimp-1 mRNA, and BCMA mRNA in different splenic 

regions, at day 4 and day 8 after NP-Ficoll immunization, and at day 8 of S. Typhimurium infection. 

These both closely reflect the distribution of AFCs in the corresponding tissue sections as identified 

by immunohistochemistry.  

Each symbol represents values from one mouse. Levels of Blimp-1 mRNA and BCMA mRNA were 

measured by RT2-PCR, and are each reported relative to levels of β2-microglobulin reference gene mRNA 

in the same sample. The legend for the symbols is shown above the figure. Where less than three symbols 

are shown per group, no mRNA was detected in the samples from unreported mice. Red pulp NP+ = NP-
specific AFC-rich areas of red pulp. Red pulp NP- = NP-specific AFC-sparse areas of red pulp. EF foci = 

Extra-follicular foci. T zone = central T zone. IgD+ = primary B cell follicles.  

6.9.1 Evidence for different chemokines present in the splenic red 

pulp of infected mice compared to those responding to NP-

Ficoll only 

Levels of mRNA encoding for the chemokines CXCL9, CXCL10, CXCL11, and 

CXCL12, and for γ-IFN were studied in the different microdissected splenic 

compartments. The results were consistent with those from spleen cell suspension RT2-

PCR assays. As seen in Figure 6-33, levels of the inflammation related chemokines 

CXCL9, CXCL10 and CXCL11, and also levels of  γ-IFN mRNA, are higher in day 8 

infected mice, than in day 8 immunized peers. Red pulp levels of these same mRNA 

species are also generally higher 8 days than 4 days after immunization. By contrast 
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CXCL12 mRNA levels are similar at day 4 and day 8 after NP-Ficoll, and these levels are 

higher than those at day 8 after infection alone.  

The microdissection methodology provides location specific information at different 

timepoints, so additional, and much more detailed, analysis is possible. At day 4 after 

NP-Ficoll, CXCL12 mRNA levels were highest in the red pulp (Figure 6-33 bottom right 

panel). This gradient, if reflected in CXCL12 protein expression, would favour migration 

of CXCR4
+
 AFC towards the red pulp. Histological evidence (Figure 6-6) and 

compartmental levels of Blimp-1 mRNA (Figure 6-33, top left panel) indicate that much 

migration of AFC has already occurred by this time. There is no co-existing gradient in 

levels of mRNA for CXCL9 or CXCL10 or CXCL11. It is therefore unlikely that the few 

CXCR3
+ 

NP-specific AFC use these chemokines to migrate to the red pulp (Figure 6-33, 

middle panels and bottom left panel). As the proportion of cells expressing CXCR3 and 

the proportion expressing CXCR4 totals more than 100% (Figure 6-29), it is likely that 

some of these CXCR3
+
 AFC also express CXCR4. 

Eight days after NP-Ficoll, the CXCL12 gradient persists. However, there is no 

difference in CXCL12 levels between red pulp areas still rich in Blimp-1 mRNA, and red 

pulp areas with lower levels of Blimp-1 mRNA. Differential CXCL12 expression cannot 

therefore account for the selective survival to day 8 of AFC in some red pulp areas but 

not others.  

In the same day 8 immunized mice a gradient in CXCL10 mRNA levels is present that, if 

present at the protein level, would favour migration to the red pulp of late emerging 

CXCR3
+ 

AFC. There is no detectable difference in CXCL10 mRNA between AFC-rich 

and AFC-spare red pulp areas, but there are differences between these areas in levels of 
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mRNA for γ-IFN (Figure 6-33, top right panel) and CXCL11 (Figure 6-33, bottom left 

panel). The significance of these findings, if any, is not clear. 

Eight days after infection, there is no CXCL12 gradient to favour migration of new AFC 

to the red pulp, but CXCL12 mRNA levels in these mice are marginally higher in the 

extra-follicular foci than the T zone. Since at day 9 after infection, the majority of NP-

specific AFC are BrdU
- 
(Figure 6-12), it is likely that most of the AFC present at day 8 

after infection are formed after day 5. The continued formation of AFC, in the absence of 

a CXCL12 gradient to guide migration to the red pulp, may account for the substantial 

accumulation of NP-specific AFC seen in the extra-follicular foci of these mice. Similar 

factors likely account for the same observation at day 8 after infection with co-

immunization.  
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Figure 6-33 shows that mNA for CXCL9, CXCL10 and CXCL11 and IFN-  are selectively induced 
by infection rather than immunization, but do not relate specifically to sites where AFC are located. 
CXCL12 by contrast is increased in immunized rather than infected mice, but again this is not 
clearly associated to AFC-containing areas.  
Corresponding levels of mRNA for Blimp-1, which is only expressed in AFCs are shown for comparison. 
Each symbol represents values from one mouse. The legend for the symbols is shown above the figure. 
Levels of mRNA were measured by RT2-PCR; mRNA species of interest are reported relative to levels of 
β2-microglobulin reference gene mRNA in the same sample. Where less than three symbols are shown per 
group, no mRNA was detected in the samples from unreported mice. Red pulp NP+ = NP-specific AFC-rich 
areas of red pulp. Red pulp NP- = NP-specific AFC-sparse areas of red pulp. EF foci = Extra-follicular foci. 
T zone = central T zone. IgD+ = primary B cell follicles.
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In these day 8 infected mice there is no evidence of a gradient in CXCL9 or CXCL10 or 

CXCL11 that could favour migration of newly formed CXCR3
+
 AFC from the T zone to 

extra-follicular foci. CXCL11 is higher in the red pulp of these mice than in their extra-

follicular foci so one might consider that any extra-follicular CXCR3
+
 AFC could use this 

to migrate to the red pulp, but levels are also higher in the T zone and no accumulation of 

AFC is seen there.  

Nevertheless, the red pulp of day 8 infected mice does contain NP-specific AFC, and it is 

likely – but as yet unproven – that these include relatively long lived AFC. Circumstantial 

evidence in support of this is that i) NP-specific AFC are already present in the red pulp 4 

days post infection (Figure 6-8) but that ii) most NP-specific CD138
+
 cells present at 4 

days after infection are newly formed (BrdU
+
) (Figure 6-12) and – as discussed above – 

iii) it is not clear how migration to the red pulp can occur at later timepoints.  

Spleens of day 4 infected mice were not examined by RT2-PCR analysis of 

microdissected areas. It seems possible that early in infection a CXCL12 gradient still 

exists in these mice to favour migration to the red pulp. A similar argument holds for 

AFC migration to the red pulp by day 4 after immunization with co-infection – especially 

as for these mice it has been shown that almost all their NP-specific AFC are CXCR4
+
, 

and relatively few are CXCR3
+
 (Figure 6-29).  

None of the inflammatory chemokines, nor γ-IFN, nor CXCL12, exhibit differential 

mRNA expression between AFC-rich and AFC-sparse areas of red pulp in infected mice 

so it is unlikely that these factors contribute to extended survival of AFC in selected areas 

of these mice‟ spleens. 
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6.9.2 Levels of BAFF mRNA, but not APRIL or TNF-α mRNA, correlate 

with AFC frequency in splenic red-pulp areas, eight days after 

immunization or infection. 

Levels of mRNA encoding for TNF-α, BAFF and APRIL (all AFC-supporting factors in 

the TNF-α superfamily) were also measured in the microdissected compartments of the 

selected mouse spleens (Figure 6-34). For each of these three cytokines, comparison of 

overall levels of mRNA in microdissected tissues revealed only modest differences 

between groups of mice subjected to different inoculations. As with the data on 

chemokine mRNA, levels of BAFF, APRIL and TNF-α mRNA were comparable in 

microdissected tissues to those in spleen cell suspensions (Figure 6-31).  

Within spleens of mice BAFF mRNA levels were appreciably higher 8 days after NP-

Ficoll or S. Typhimurium in AFC-rich red pulp areas than in AFC-sparse red pulp areas 

(Figure 6-34, top right panel). Median levels of BAFF mRNA were also selectively raised 

in AFC-rich extra-follicular foci of infected mice. Thus, 8 days after either infection or 

immunization, levels of mRNA encoding for BAFF are raised in areas where AFC were 

located and the presence of AFC is confirmed by the high levels of Blimp-1 mRNA in 

these areas (Figure 6-34, top left panel). There was no clear association between levels of 

TNF-α mRNA, or APRIL mRNA and AFC containing areas. The high levels of BAFF in 

the white pulp may well reflect the known roles of this cytokine in homeostasis of resting 

and activated B cells [86].  
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Figure 6-34 shows higher levels of BAFF mRNA, but not mRNA for TNF-α, or APRIL, are present in 

NP-specific AFC containing splenic regions of mice sacrificed 8 days after immunization or infection. 
Corresponding levels of mRNA for Blimp-1, which is only expressed in AFCs, are shown for comparison. 
Each symbol represents values from one mouse. The legend for the symbols is shown above the figure. 
Levels of mRNA were measured by RT2-PCR, and mRNA species of interest are reported relative to levels 
of β2-microglobulin reference gene mRNA in the same sample. Where less than three symbols are shown 
per group, no mRNA was detected in the samples from unreported mice. Red pulp NP+ = NP-specific 
AFC-rich areas of red pulp. Red pulp NP- = NP-specific AFC-sparse areas of red pulp. EF foci = Extra-
follicular foci. T zone = central T zone. IgD+ = primary B cell follicles.

6.9.3 IL6 and IL21 mRNA are selectively up regulated in infected 

mice. 

The studies of spleen cell suspensions showed selective upregulation of IL-6 and IL-21 in 

infected mice. Microdissection confirms this association with S. Typhimurium infection 

but fails to identify any differences between AFC-containing and other compartments for 
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IL-6. It does show higher IL-21 levels in both the T and B cell areas of the white pulp 

compared to the red pulp (Figure 6-35).

Figure 6-35 shows that mRNA for IL-6 and 
IL-21are rarely detectable in different splenic 
regions of uninfected mice and that in 
different splenic regions of mice infected 8 
days previously levels of these mRNA species 
do not correlate with corresponding numbers 
of prevalent NP-specific AFC present.  
Corresponding levels of mRNA for Blimp-1, 
which is only expressed in AFC, are shown for 
comparison. Each symbol represents values 
from one mouse. The legend for the symbols is 
shown above the figure. Levels of mRNA were 
measured by RT2-PCR, and mRNA species of 
interest are reported relative to levels of β2-
microglobulin reference gene mRNA in the 
same sample. Where less than three symbols are 
shown per group, no mRNA was detected in the 
samples from unreported mice. Red pulp NP+ =
NP-specific AFC-rich areas of red pulp. Red 
pulp NP- = NP-specific AFC-sparse areas of red 
pulp. EF foci = Extra-follicular foci. T zone = 
central T zone. IgD+ = primary B cell follicles.
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6.10  Discussion and future work. 

Detailed results are reported here of an experiment designed to test the hypothesis that 

„inflammatory niches‟ can secure extended survival of additional plasma cells, even those 

unrelated to the cause of the inflammation. Available results from a repeat experiment 

have also been included. A preliminary experiment – not reported here – had measured 

serum levels of IgM anti-NP and numbers of splenic AFC at days 4, 10 and 35 after 

immunization with or without co-infection. All three experiments have consistent results 

and support the original hypothesis that more NP-specific AFC survive in QM x B6 mice 

immunized with NP-Ficoll if AFC sustaining niches are induced by co-infection with S. 

Typhimurium. 

Splenic red pulp niches supporting NP-specific AFC 8 days after immunization with co-

infection appear close to, but not necessarily in contact with, red pulp fibrous trabeculae 

(Figure 6-21 and Figure 6-22). Similar co-localization of AFC and splenic trabeculae was 

seen in immunized but not infected mice (Figure 6-21), as has been reported previously 

[45;133]. Further studies are needed to test whether most trabecula-associated plasma 

cells are actually long lived. The repeat experiment that included BrdU administration to 

immunised mice was designed to do this. Histological examination of spleens of mice 

sacrificed at day 9 or later should confirm that most trabecula-associated plasma cells are 

BrdU
+
.  

Our RT2-PCR assays of microdissected splenic compartments also identify high levels of 

BAFF mRNA level as a feature of red pulp areas that contain plasma cells at day 8 after 

infection and immunization. It was unfortunate that doubly inoculated mice were not 
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available for microdissection and subsequent RT2-PCR in the first experiment. This will 

need to be performed on spleens of mice in the repeat experiment, but there is no reason 

to expect a different result in this group.  

The implied requirement for BAFF in achieving plasma cell survival is consistent with 

the reports that BCMA is essential for plasma cell survival (albeit in a study of bone 

marrow plasma cells) [165]. This contrasts with published work on plasma cell survival 

in the bone marrow [179], in the medullary cords of the lymph node [130], and the tonsil 

[249]. All of these associate the local production of APRIL with plasma cell survival. We 

have not been able to find a report of the roles of BAFF and APRIL in sustaining AFC 

survival at inflamed sites. 

Locally elevated BAFF levels, and proximity to trabeculae, are features common to AFC-

niches in both immunized, and infected, mice. It therefore appears that the infection-

related increase in red pulp niches reflects increased capacity at „conventional‟ trabecula-

associated niches. If so, why does infection render them capable of supporting more 

AFC? The data do not indictate that increased levels of BAFF contribute to the increased 

numbers of NP-specific AFC at 8 d after immunization in the infected mice. In contrast, 

though levels of neither IL-6 nor IL-21 vary substantially between AFC-rich and AFC-

sparse areas (Figure 6-35), levels of IL-6 mRNA and levels of IL-21 mRNA are higher in 

infected mice, than in their immunized but uninfected peers (Figure 6-30). Of these two 

cytokines, IL-6 levels seems the more likely to have a role in AFC survival in vivo, as i) 

IL-6 supports AFC survival in vitro [162], ii) levels of IL-6, but not levels of IL-21, have 

already risen by day 5 post infection (Figure 6-30), when apoptosis of most unsupported 
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splenic AFC occurs, and iii) in infected mice levels of IL-6 mRNA, but not IL-21 mRNA, 

are typically highest in the red pulp (Figure 6-35). 

O‟Connor et al report that IL-6 and BAFF have additive effects on plasma cell survival, 

at least in vitro [165]. In the context of our study, it is therefore tempting to speculate that 

additional red pulp IL-6 enables plasma cell to survive at lower levels of BAFF and/or 

APRIL. If this effect is superimposed upon levels of BAFF that decline with distance 

from a trabeculae-related source, the net result would be an enlarged peri-trabecular area 

capable of supporting plasma cell survival. This, in turn, would increase the number of 

NP-specific AFC supported in the red pulp of infected mice (Figure 6-36).  

 

 

 

 

 

 

 

 

Figure 6-36 is a schematic diagram illustrating how the effective size of a BAFF-dependent AFC 

niche might be increased by a diffuse increase in levels of red pulp IL-6, without a change in 

localiazed levels of BAFF. 

The minimum support sufficient to sustain AFC survival remains constant throughout the red pulp, and is 
indicated by the dashed black line. BAFF levels vary within the splenic red pulp, and provide dose-

dependent support to AFC (green line). The effective support to AFC provided in uninfected mice by a 

combination of uniformly low levels of IL-6, and locally variable levels of BAFF is represented by the thin 

red line. This results in a narrow region where total support is sufficient for AFC survival (thin red double 

ended arrow). In infected mice BAFF levels do not change, but the uniformly higher levels of red pulp IL-6 

increase the total support provided at any location (thick red line) results in an increased size of red pulp 

niche (thick double ended red arrow). 
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It is remarkable that even infected, and not immunized, QMxB6 mice have more long-

lived NP-specific plasma cells at day 9 than their conventionally immunized QMxB6 

peers (Figure 6-12). This may reflect LPS mediated „bystander‟ activation of available B 

cells [250;251], alternatively, it may be due to cross reactivity between antigens from S. 

Typhimurium and surface immunoglobulin on NP-specific B cells. 

Hargreaves et al have previously demonstrated that most migration of AFC to the red 

pulp is CXCR4 dependent [133]. The present study supports this in identifying, in mice 

that received NP-Ficoll, a CXCL12 gradient favouring migration of CXCR4
+
 AFC to the 

red pulp. It is striking that in infected mice there is no such gradient, and many AFC 

accumulate in extra-follicular foci. Only a minority of these are still proliferating (Ki67
+
), 

and BAFF levels at this site are comparable to AFC-supporting areas of the red pulp. It 

therefore seems possible that, in S. Typhimurium-infected mice, extra-follicular foci 

comprise an additional niche to sustain long term plasma cell survival. Again, 

histological examination of BrdU fed mice can examine this possibility.  

In addition to the marked accumulation of AFC in extra-follicular foci, infected but non-

immunized mice have some NP-specific red-pulp AFC. No evidence was found for 

significant CXCR3
+
 mediated migration of AFC within the spleen. A recent report has 

described a new chemokine receptor, CXCR7, which binds CXCL11 and CXCL12 [252]. 

This report indicates widespread expression of CXCR7 mRNA in a range of tissues 

(including the spleen). However it appears that expression of the corresponding protein, 

at least in adult mice and humans, is confined to transformed cells. A detailed 

examination of the presence or absence of CXCR7 in various immune cells is yet to be 

reported, but could be of great interest – e.g. in CXCR4-independent AFC migration 
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within the spleen. Others have previously demonstrated expression of CXCR6 on human 

plasma cells [253], and expression of CXCL16, the ligand for CXCR6 in the spleen, the 

bone marrow and the inflamed rheumatoid joint [253;254]. The possibility that CXCR6 

mediates splenic plasma-cell migration has not explored here. 

Splenic CD11b
+
F4/80

+ 
macrophages, and some splenic CD11c

+
F4/80

+
 dendritic cells, 

could not be satisfactorily identified by presently available confocal microscopy 

techniques. This is particularly frustrating as these cell types are increased in the spleen 

after S. Typhimurium infection, and could produce either BAFF or IL-6 or both 

[170;241;255]. It may yet be possible to identify other antigenic markers for these cells 

that enable their identification using confocal microscopy. It is possible that more than 

one cell type is capable of providing all sufficient support for AFC - perhaps by 

producing the necessary BAFF, with or without IL-6. If so then the histological 

approaches just discussed – and those reported elsewhere in this chapter – will fail to 

identify the association between AFC and any of the relevant cell types. 

Flow-assisted cytometric cell sorting (FACS) of splenic cell types, and subsequent RT2-

PCR analysis of homogeneous post-sort populations could at least address the relative 

contribution of these various cell types to overall splenic production of various putative 

AFC-survival factors, including BAFF and IL-6. This approach has already been applied 

in our laboratory in other models.  

Previous publications have reported that, in addition to the AFC-supportive molecules 

studied here, other factors can enhance plasma cell survival, at least in vitro. IL-5 can 

promote plasma cell survival in vitro although there appears to be functional redundancy 

in its action [162], and so we did not explore any role for IL-5 in the present model. The 
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plasma cell surface receptors VLA-4, and CD44 may contribute to the cells‟ survival, 

though the published findings are not consistent [160;162].  

At least one ligand for VLA-4 – fibronectin – is  widely expressed in the spleen [256], 

and so it alone cannot be a determinant of a plasma cell niche. In contrast histologically 

detectable expression of hyaluronic acid (a ligand for CD44) in the splenic red pulp is 

restricted to vascular structures [257]. As production of hyaluronic acid is widely 

upregulated in inflammation [258;259] infection-related increases in splenic expression 

of hyaluronic acid might provide additional support to plasma cells. This merits 

investigation but was not undertaken here. 

A large part of information in this report regarding niches, and infection-related changes 

in the spleen, was derived from RT2-PCR based assays of mRNA levels. This is 

necessary given the difficulties in interpreting histological staining for cytokines, and 

chemokines. Nevertheless, inferences about protein levels from levels of corresponding 

mRNA as measured by RT2-PCR requires caution - and even more so in the context of a 

substantial, and changing, cellular infiltrate. Levels of mRNA are expressed relative to 

levels of reference gene mRNA. As discussed in section 6.8 above, increased production 

of reference gene mRNA due to infection related increases in cell numbers will tend to 

result in underestimation of absolute levels of mRNA species of interest. This, in turn, 

many results in more modest infection-related changes in mRNA levels being 

overlooked. The use of microdissection did enable us to test if mRNA detected in spleen 

cell suspensions was localized within certain compartments in the spleen. 

Furthermore, the sequential relationship between cellular mRNA expression, cellular 

protein synthesis, cellular secretion of protein, and extra-cellular (or cell surface) 
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persistence of protein is not invariable. The example of variable cell surface expression of 

CXCR4 has already been cited [153;248], but there are other examples pertinent to this 

work. CXCL12 can bind to CXCR4
-
 cells via cell-surface heparin sulphate, and can bind 

to other negatively-charged glycosaminoglycans in the extra-cellular matrix [260]. In 

both circumstances the CXCL12 retains functional activity.  Neutrophils can store BAFF, 

and possibly APRIL, in cytoplasmic granules, with secretion of granule contents after 

stimulation [255;261]. Secreted APRIL can also bind to extra-cellular proteoglycans and 

may thus accumulate there [177]. All these phenomena would result in levels of 

functional protein that are not reflected in contemporary local mRNA production. This 

could, for example, result in a failure to detect a true association between APRIL and 

supportive niches. 

Although interesting, and contrasting, observations were made in the various groups of 

mice, the experiments reported here cannot confirm a causal, and non-redundant, 

relationship between BAFF and niche-related support for AFC. It is common to test such 

observations by the use of mice genetically deficient for the critical factor, or its ligand, 

or the addition of blocking substances (e.g. anti-BAFF antibodies, or BAFF-receptor Ig).  

However, BAFF has multiple roles within the B cell lineage and elsewhere so 

interpretation of the results obtained would be virtually impossible in the present model 

that involves active infection. 

The present study indicates that AFC survival in spleens of uninfected mice is also 

through a similar BAFF-dependent pathway. This has previously been investigated 

experimentally. Consistent with our findings, Ingold et al have reported that post-

immunisation BAFF-selective blockade reduces the number of splenic NP-specific AFCs 
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present [177]. Others have reported strain-dependent effects when using such approaches 

[262]. 

The more complex infection/immunization model reported here has many potentially 

interesting, and informative, permutations. One could administer antibiotics to previously 

infected and co-immunized mice – a crude analogy to the therapeutic role of Rituximab 

in autoimmune disease. The resultant, accelerated, resolution of inflammation would be 

expected to cause a loss of established splenic NP-specific plasma cells.  

Alternatively one might consider immunization with a T-dependent antigen (preferably 

with prior priming) instead of NP-Ficoll. This scenario may test more fully any role for 

CXCR3 in splenic AFC migration or survival as in published reports that used recall 

responses to antigen, the proportion of AFC that are CXCR3
+
 is higher than seen in our 

present work [14;134].  

It would also be interesting, and useful, to confirm the original hypothesis – namely that 

plasma cells unrelated to a cause of inflammation can be sustained in inflammatory sites 

– in mice suffering an alternative form of inflammation that does not involve an infection 

(or autoimmunity). The study of a non-lymphoid organ may also simply the interpretation 

of the findings. One such model is that of ischaemia reperfusion injury in the kidney 

[263].  
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7 GENERAL DISCUSION AND IMPLICATIONS FOR 
FUTURE RESEARCH 

The studies presented here arose from the surprising clinical observations that in patients 

with various autoimmune diseases, including Wegener‟s granulomatosis, serum titres of 

disease-associated IgG autoantibodies fall after therapeutic B cell depletion with 

Rituximab, while total serum IgG levels show little change.  

First we considered whether such sensitivity to Rituximab was a) a feature of a certain 

pathway of antibody production, or b) a feature of antibody producing cells arising from a 

particular B cell subset, or c) a feature of autoantibies that are produced exclusively by 

short lived plasma cells. Initially we developed the technology to measure antibodies of 

several different specificities in parallel (Chapter 4), This technology, and other 

established techniques, were then deployed to measure levels of antibodies against 

different classes of antigen from in sera from patients with active disease, and paired 

samples from the same patients after treatment with Rituximab (Chapter 5). The findings 

were most consistent with the following hypothesis: 

1. Plasma cells, including those producing autoantibody, accumulate in sites of 

inflammation. 

2. Inflamed sites provide supportive niches that enhance the survival of such plasma 

cells. 

3. Treatment of autoimmune disease by Rituximab, results in resolution of the 

disease related inflammation. 

4. As the inflammation resolves, the unsupported plasma cells die. 
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5. Subsequently the serum autoantibody titres, previously maintained by those 

plasma cells, then fall. 

Further work sought to test, in an experimental model, the underlying hypothesis that 

long lived plasma cells can be supported in inflamed tissues. Results obtained following 

intra-peritoneal inoculation of QM x B6 mice, in which some 5% of their B cells are NP-

specific, with either NP-Ficoll, or live attenuated S. Typhimurium or both. S.

Typhimurium infection creates new niches that support plasma cells in the spleen. The 

finding that increase numbers of NP-specific plasma cells survived in those mice that 

were infected with S. Typhimurium as well as immunized with NP-Ficoll is consistent 

with the hypothesis set out above.

Based on the published literature one may conclude that emergent AFC are likely to 

migrate to inflamed sites through interactions between CXCR3 and its ligands CXCL9, 

CXCL10 and CXCL11 [264]. These publications include reports that:

Indicate CXCL9 and CXCL11 are present in at least some inflamed tissues, 

including the rheumatoid joint [141;265], and CXCL9 is upregulated in inflamed 

lymph nodes [266]. These nodes become enriched for CXCR3+ monocytes [266].

Additionally, CXCL10 is induced in experimental models of renal injury [267].

Show CXCR3+ plasmablasts can migrate to these ligands [134]. 

Plasma cells are found at non-lymphoid sites of inflammation in mouse models 

[232], and in many inflamed human tissues [49;53;230;231;234-236] (see also 

Figure 5-4 in this thesis).
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Provide evidence that indicates that some plasma cells in rheumatoid joints are 

indeed CXCR3+ [141].

The proportion of new AFC that express CXCR3 may be increased in certain 

circumstances. Thus: 

In vitro studies have found that -IFN increases surface expression of CXCR3 

during in the process of memory B cell differentiation into AFC [14], at least in 

the subpopulation switched to IgG1.

Others have found, in patients with SLE,  an unusual circulating population of 

CD19hi cells that is enriched for autoreactive specificities [268]. These CD19hi

cells, which appear to be memory B cells [268], typically express higher levels of 

CXCR3 than CD19lo/normal cells from the same subject and exhibit chemotaxis to 

CXCL9 [269].

Why then do findings presented in Chapter 6 not support this model of CXCR3 mediated 

AFC migration? There are several possibilities. These include:

1. The time constraints and resources of the mice studies mean that findings 

should be considered as provisional until they have been repeated. 

2. The timepoints chosen for study may not reveal the impact of infection 

and related inflammation on AFC expression of CXCR3. 

3. S. Typhimurium may prevent increases in AFC expression of CXCR3 as a 

virulence strategy.  

4. CXCR3 expression on AFC might only be modulated by T-dependent 

responses, or perhaps only in responses derived from memory B cells. The 
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mouse studies reported in Chapter 6 involved T-independent responses to 

NP-Ficoll. 

By contrast we did find evidence that most intra-splenic AFC migration in our model is 

mediated by CXCR4. This is consistent with some published literature [133]. 

Upregulated expression of CXCL12 has also been reported at several inflamed sites 

including the rheumatoid synovium [270], and in more than one model of renal 

inflammation [271;272]. Interestingly, in NZB/W mice – animals whose kidneys are 

recognised to be a major site of AFC accumulation [232] – treatment with anti-CXCL12 

mAb results in a fall in serum anti-DNA IgG, but not total levels of serum IgG [272].  

Other work presented in Chapter 6, which still needs to be replicated, raises the 

possibility that during S. Typhimurium infection the increased splenic capacity for 

supporting plasma cells – above and beyond that attributable to splenomegally alone – is 

attributable to a combination of a) inflammation related increases in local IL-6 production 

and b) local production of BAFF. 

Could a similar mechanism apply in human autoimmune disease? Published work 

indicates that levels of IL-6 are higher in the inflamed rheumatoid synovium than in the 

serum [273] consistent with local production. Others have found direct [274] and indirect 

[275] evidence of local IL-6 production in renal lupus nephritis. To our knowledge, only 

indirect evidence has so far been published regarding locally increased IL-6 production in 

kidneys affected by ANCA-vasculitis [275], but this seems a plausible possibility given 

the available evidence, and the biology of IL-6 production (2.8.1.1). Appendices 3 and 4 

report our findings that serum levels of IL-6 are greatly elevated in patients with active 
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vasculitis, and that these systemic levels fall after remission induction with Rituximab 

based treatment. 

The published literature also includes several reports of local BAFF production at sites of 

clinical inflammation [276-278]. Given that BAFF can be produced by neutrophils and 

macrophages [170;255], and that both cell types can be activated by ANCA antibodies 

present in WG [21], it is possible that BAFF is present at sites of vasculitic damage in 

patients with WG. 

As with IL-6, serum levels of BAFF are elevated in most patients with WG, compared to 

healthy controls [279]. Serum BAFF levels are also elevated in most patients with SLE or 

RA [277;280].  Serum levels of BAFF correlate with disease activity score (and serum 

auto-antibody titres) in patients with conventionally treated SLE [281]. However, 

available evidence indicates that therapeutic B cell depletion in patients with SLE [282] 

and in patients with Rheumatoid Arthritis [221] is associated with a rise in serum BAFF 

levels, whilst autoantibody levels fall in such patients [11;23]. The rise in serum BAFF 

may be due to the operation of homeostatic mechanisms, but superficially does contradict 

the hypothesis offered here. However, there is no published information on levels of 

BAFF at inflamed sites (or their anatomical correlates during clinical remission), and 

only local levels are likely to be of relevance regarding local AFC survival. 

The emergent hypothesis from this work – that antibody producing plasma cells, 

including autoantibody producing plasma cells, are supported and sustained at sites of 

disease related inflammation – remains an attractive candidate explanation for the 

selective falls in most serum autoantibody titres after Rituximab. However it appears that 

not all autoantibody titres fall in this way – even within a common patient cohort. For 
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example amongst 16 patients with SLE treated with Rituximab, reported in detail by 

Cambridge et al [23], serum titres of anti-nucleosome antibodies (n=11) and anti-dsDNA 

antibodies (n=14) fell significantly whilst serum levels of antibodies against histone 

(n=10), SSA (n=9), and ribonucleoproteins (n=7) did not.  

In SLE some autoantibodies are circulating in significant quantities several years before 

symptoms develop [283]. The corresponding autoantibody-producing AFC are therefore 

presumably present before significant disease related inflammation develops. One might 

expect that the autoantibody-producing AFCs that emerge during this prodromal phase 

would mostly accumulate in „conventional‟ niches within the bone marrow. Our model 

would predict that such autoantibody production from these AFC would not be sensitive 

to Rituximab. 

 

 

 

 

 

 

 

 

 

Figure 7-1 shows the gradual development of autoantibodies prior to the emergence of symptoms of 

SLE. Taken from Arbukle et al 2003 [283]. 

In patients that subsequently develop SLE, auto-antibodies become detectable at variable intervals before 

clinical symptoms. Some, such as anti-Ro antibodies, are present long before disease, and their titres appear 

relatively preserved after Rituximab [23]. Others, such as anti-DNA antibodies, often emerge soon before 

symptoms, and more often fall after Rituximab therapy. ANA – Anti nuclear antibody. APL – Anti 

phospholipid antibody. dsDNA – double stranded DNA. nRNP – nuclear ribonucleoprotein.  
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The available evidence supports this to a certain extent. As shown in Figure 7-1, anti-

dsDNA antibodies emerge relatively late in pre-clinical SLE [283], and as previously 

noted, seem relatively sensitive to Rituximab treatment [23]. Conversely anti-Ro (SSA) 

antibodies emerge earlier [283], and are reported to be less Rituximab sensitive [23]. As 

such comparisons would be better made within one patient cohort, the value of this 

evidence is limited at present. No published reports describe the timescale of ANCA 

emergence prior to clinical ANCA-associated vasculitis.  

It may be that important differences between the animal model used in this work and the 

human diseases of interest limit the capacity to translate mechanisms from one to the 

other. Nevertheless, the technologies successfully applied to the „cuckoo project‟ 

(Chapter 6) ought to be adaptable to the studies of human pathological tissue. Such work, 

an obvious extension of the research reported here, would test whether local production 

of one or more factors that support AFC survival contributes to the survival of CXCR3
+
 

AFC, or CXCR4
+
 AFC, at sites of pathological inflammation. Alternatively, as discussed 

at the end of Chapter 6, different animal models could be used that bear closer analogy to 

the clinical scenarios of interest.  

Finally, whilst Rituximab is clearly finding a role as a valuable new therapeutic option in 

the treatment of autoimmune disease, it is likely that further biological therapies will 

continue to emerge. For example, a therapeutic agent that antagonises BAFF is already 

being developed [284]. As several life threatening autoimmune diseases, such as 

Wegener‟s granulomatosis, have less than ideal conventional therapies, it is likely that 

difficult clinical scenarios will continue to arise in patients are treated with new agents 
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that are at early stages of clinical development [21]. Some of these new treatments in 

time may find their own „niches‟ in the therapeutic arsenal.   

The experience with Rituximab over the last 5-8 years sets a precedent for further 

treatment development. It provides the hope that „experiments of medicine‟ that deploy 

specific therapeutic agents in a clinical setting will provide unexpected insights into 

human immunology. 
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8 APPENDIX 1: PROFORMA FOR BIRMINGHAM 
VASCULITIS ACTIVITY SCORE (BVAS) 

 
Figure 8-1 is reproduced from Luqmani et al, 1994, [17] and shows the standard proforma used to 

assess disease activity in ANCA associated vasculitis. 
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9 APPENDIX 2: RT2-PCR PRIMER AND PROBE SEQUENCES

mRNA species Origin Forward primer sequence Reverse primer sequence Probe sequence

IL6 MacLennan group TCGGAGGCTTAATTACACATGTTC AAGTGCATCATCGTTGTTCATACA CAGAATTGCCATTGCACAACTCTTTTCTCAT

BAFF MacLennan group GAAGTGTGCCATGTGAGTTATGAGA TCACCCAAGGCAAAAAGCA TCCTTTGCCAACACGCACCGC

APRIL MacLennan group CGAGTCTGGGACACTGGAATTT AGATACCACCTGACCCATTGTGA CTGCTCTATAGTCAGGTCCTGTTTCATGATGTGAC

Blimp-1SC MacLennan group CAAGAATGCCAACAGGAAGTATTTT CCATCAATGAAGTGGTGGAACTC TCTCTGGAATAGATCCGCCA-MGB

-IFN MacLennan group TCTTCTTGGATATCTGGAGGAACTG GAGATAATCTGGCTCTGCAGGATT TTCATGTCACCATCCTT-MGB

IL-21 MacLennan group ACACCCAAAGAATTCCTAGAAAGACTAA TGCATTCGTGAGCGTCTATAGTG AGCATCTCTCCTAGAACACATAGGACCCGAAGAT

CXCL12 MacLennan group CAAGCATCTGAAAATCCTCAACAC CACTTTAATTTCGGGTCAATGCA TGCACGGCTGAAGAACAACAACAGACAA
BCMA MacLennan group TCCAACCCTCCTGCAACCT CGTGTACGTCCCTTTCACTGAA TCAGCCTTACTGTGATCCAAGCGTGACC

CXCL9 Applied Biosystems Unknown Unknown Unknown 

CXCL10 Applied Biosystems Unknown Unknown Unknown

CXCL11 Applied Biosystems Unknown Unknown Unknown

TNF-α Applied Biosystems Unknown Unknown Unknown

CXCR3 Applied Biosystems Unknown Unknown Unknown

CXCR4 Applied Biosystems Unknown Unknown Unknown

β2-microglobulin MacLennan group CATACGCCTGCAGAGTTAAGCA ATCACATGTCTCGATCCCAGTAGA CAGTATGGCCGAGCCCAAGACCG

Table 9-1 lists the source of RNA primers and probes used in RT2-PCR assays, and the probes’ RNA sequences where known.
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10 APPENDIX 3: SERUM LEVELS OF CYTOKINES IN 
PATIENTS WITH ACTIVE ANCA-ASSOCIATED 

VASCULITIS, COMPARED TO LEVELS IN HEALTHY 
CONTROLS 

 Naïve patients Relapsed patients 

Cytokine 

 

Median serum 

level as 

multiple of 

controls‟ 

median serum 

level 

Significant 

difference 

with 

controls 

 

Median serum 

level as 

multiple of 

controls‟ 

median serum 

level 

Significant 

difference 

with 

controls 

 

Significant 

difference 

between 

naïve and 

relapsed 

patients 

IL-1β 2.2 x  1.6 x   

IL-1Rα 2.8 x  2.6 x   

IL-2 5.9 x  2.7 x   

IL-4 2.1 x  1.1 x   

IL-5 10.2 x  3.9 x   

IL-6 5.7 x  3.0 x   

IL-7 3.2 x  2.0 x   

IL-8 3.2 x  1.5 x   

IL-9 4.9 x  4.4 x   

IL-10 8.5 x  4.7 x   

IL-12 4.8 x  3.1 x   

IL-13 3.8 x  3.2 x   

IL-17 8.5 x  6.7 x   

Eotaxin 1.6 x  2.3 x   

G-CSF 1.2 x  1.2 x   

GM-CSF 2.7 x  1.5 x   

γ-IFN 1.5 x  1.1 x   

IP-10 1.9 x  1.2 x   

MCP-1 4.1 x  3.4 x   

MIP-1α 1.9 x  1.3 x   

MIP-1β 2.7 x  2.1 x   

PDGF 1.1 x  1.6 x   

TNF-α 1.4 x  1.1 x   

VEGF 7.9 x  5.7 x   
Table 10-1 summarizes the serum levels of various cytokines in treatment-naïve patients with ANCA-

vasculitis, and in patients with relapsed ANCA-vasculitis relative to levels in healthy controls’ serum.  

Subsequent pages show dot plots with results for individual patients and controls. 

Levels of each cytokine (listed in far left column) in patients with untreated ANCA associated vasculitis 

(n=19; left columns), and those with relapsed ANCA-associated vasculitis (n=13; right columns) are 

reported relative to the median level amongst healthy controls (n=8). Statistical significance (Mann 

Whitney test) for each comparison is reported is as follows: p<0.05 (), p<0.01 (), or p<0.001 (). 
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Scatter plots representing results for each patient or control subjects (where appropriate) 

regarding parameters of disease activity, serum autoantibody titres, and levels of each 

cytokine, are presented below. Dotted lines, where present, indicate the limits of the 

assay‟s range. Statistical significance (Mann Whitney test) for each comparison is 

reported as follows:  p<0.05 (    ), p<0.01 (        ), or p<0.001 (            ). 
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11 APPENDIX 4: CHANGES IN SERUM LEVELS OF 
CYTOKINES IN PATIENTS WITH ANCA- ASSOCIATED 

VASCULITIS AFTER TREATMENT WITH 
CYCLOPHOSPHAMIDE OR RITUXIMAB  

Cytokine 

 

Changes in 5 months after 

Cyclophosphamide based therapy 

Changes in 5 months after 

Rituximab based therapy 

 Median % fall (or 

rise) 

Significance 

of change 

(p<0.05) 

Median % 

fall (or 

rise) 

Significance 

(p<0.05) 

IL-1β 8%  28%  

IL-1Rα 35%  4%  

IL-2 87-93%  86%  

IL-4 18%  33%  

IL-5 70-72%  83%  

IL-6 70%  67%  

IL-7 64%  48%  

IL-8 33%  48%  

IL-9 69%  40%  

IL-10 57%  35%  

IL-12 52%  46%  

IL-13 71%  69%  

IL-17 35%  45% rise  

Eotaxin 77% rise  42% rise  

G-CSF 11%  31%   

GM-CSF 44%  43%  

γ-IFN 28%  25%  

IP-10 50%  113% rise  

MCP-1 10%  9% rise  

MIP-1α 34%  28%  

MIP-1β 9%  32% rise  

PDGF 36%  4%  

TNF-α 12%  57%  

VEGF 66%  29%  
Table 11-1 summarizes the changes in serum levels of various cytokines in the 5 months following 

treatment of ANCA-associated vasculitis with either cyclophosphamide or Rituximab based regimes.  

Subsequent pages show dot plots with results for individual patients and controls. 

The table reports the median percentage change in various cytokines (far-left column) in the 5 months 

following treatment with either a cyclophosphamide based regime (left columns; n=7) or a Rituximab based 

regime (right columns; n=6). Percentage changes were calculated for each cytokine in each patient and the 

median percentage in each treatment group is reported here. Statistical significance (Wilcoxon signed rank 

test) for each comparison is reported is p<0.05 (). No tests reached significance of p<0.01. 
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Scatter plots representing the changes within each patient, in levels of parameters 

indicating disease activity, in serum levels of autoantibody, and in serum levels of each 

cytokine, are presented on the subsequent pages. In each plot two dots, linked by a solid 

line, represent the results from one patient. Horizontal dotted lines, where present indicate 

the limits of the assay‟s range. Where appropriate, levels in control patients (n=8) are 

included for comparison. Statistical significance (Wilcoxon signed rank test) for each 

comparison is reported as follows: p<0.05 (    ). 
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12 APPENDIX 5: IMMUNOHISTOCHEMICAL STAINING 
WITH ANTIBODIES AGAINST ER-TR7 AND AGAINST 

HUMAN COLLAGEN III 

Additional immunohistochemical studies indicated that antibodies against human 

Collagen III and antibodies against ER-TR7 [242] identify similar structures in the 

spleens of naïve QMxB6 mice, and those inoculated with NP-Ficoll, or S. Typhimurium 

or both. Examples are shown in Figure 12-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12-1 shows that in the spleens of QMxB6 mice, analogous trabecular structures are identified 

by antibodies against human Collagen III, and antibodies against ER-TR7 [242].  

The mouse group, staining patterns and original magnification are shown above each photomicrograph. 

Panels A and B are photomicrographs of proximate spleen sections from one representative naïve mouse, 

whilst Panels C & D are photomicrographs of proximate spleen sections from a representative mouse 8 

days after S. Typhimurium infection. All sections were stained for antibodies to NP (brown). Panels A & C 

are also stained with antibodies against human Collagen III (blue), whilst panels B & D are stained with 

antibodies against ER-TR7 (brown). Analogous structures, including red pulp trabeculae, are identified by 

the antibody against human Collagen III and the antibody against ER-TR7.  
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