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Abstract

The use of optimisation within financial markets is rapidly increasing. There is
a growing demand for a class of new and improved methods to accurately price
financial options. Semi-infinite optimisation (SIO) has become a vivid research
area in mathematical optimisation during the recent two decades. This is due to
the fact that there are many new theoretical advances as well as a broad variety
of real-life problems where this mathematical model can be applied. This research
thesis considers particular applications of SIO to finding upper and lower bounds
on the prices of various types of basket options. In particular, new and original
results have been derived for:

• Finding a lower bound on European basket call option prices.

• Calculating a lower bound on European basket call option prices, incorporating
bid-ask prices within the model; thus making it more realistic.

• Analysing price bounds on various types of American basket options.

• Deriving an upper bound on the price of a discretely sampled arithmetic av-
erage Asian basket call option.

• Extending this model by finding an upper bound on the price of a discretely
sampled arithmetic average Asian basket call option, but incorporating bid-ask
prices.

• The final result is concerned with calculating an upper bound on the price of
an Altiplano Mountain Range option which is closely related to basket options.

The models and results obtained in this thesis could directly be used in financial
markets by investors, investment banks and hedge funds amongst others.
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1 Introduction

The use of options in financial markets is ever present. From speculating to hedging, more and more investors
are starting to use options in their financial activity. Investors are likely to purchase options because the
potential to make profit from them is much greater in comparison to investing in stocks and shares alone
(so called gearing). However, this should be done with some care. Where there is the opportunity to make
bigger profits, of course there is also the risk of making a bigger loss. Investing in an option is no different.
The primary question of interest is, ‘how much should one pay for an option?’ This has and still is perhaps
the most widely studied area of mathematical finance because when pricing an option many factors need
to be taken into account. Calculating the correct current price of an option is important because it stops
any potential arbitrage opportunities, as well considering the following questions. Will the underlying share
price increase or decrease? What is the risk to the holder (buyer)? What is the risk to the writer (seller)?
The current price of a financial option ensures that the holder and writer are getting a fair price and a price
that reflects the risk that is being taken by both parties. So, for example if there is more risk to the writer,
that is, it is more likely that the writer will have to pay out a huge payoff to the holder then this should
be reflected in a higher price for the option since there is a lesser risk for the holder. Thus, there are many
factors that need to be taken into account when pricing a financial option. Of course, this price should reflect
the risk being taken by both the holder and the writer and should take other factors into account.
Hence, it is clear that correctly pricing financial options is of the up-most importance but the question that
still remains is, how do we calculate such a fair current price? For many years this problem has been studied
in mathematical finance and right up until the present day, mathematicians, economists and financial firms
amongst many others have been researching and trying to produce valid theory and methods to correctly
price financial options.
There are many theoretical ideas and models derived in mathematical finance aimed at finding the price of
an option. Of course we are already aware of the famous Black-Scholes partial differential equation derived
by Fischer Black and Myron Scholes to price options (see sub-section 2.1.4), as well as other methods such
as the binomial method (see sub-section 2.1.4) which uses probabilities under a risk-neutral assumption to
construct a binomial lattice tree. However these pricing models are not without their problems and the
paper [1] highlights the problems that using such mathematical models may have in the real world. It should
be remembered that a model is just a model which makes many assumptions about the real world that may
not hold. Further, it may simplify reality too much and so it must be used with real care, especially when
implementing the results in the real financial market.
It is thus clear that although the pricing models that currently exist are very credible, they do have some
potential problems and any new advances within this area of financial mathematics would be greatly wel-
comed. This leads us to considering another area of mathematics which has been developing rapidly in the
last decade, and that is using optimisation to price options. We will present and discuss in detail some
important results showing how optimisation can be used to calculate price bounds on options throughout
this thesis, in particular in sections 4, 5, 7 and 8. As an introductory remark, we note that when using
optimisation to find price bounds on options, the basic steps to model and solve the problem are very similar
regardless of the option under consideration. Using an optimisation approach we can obtain upper and
lower bounds for the current prices of various options and using market data it can then be shown that
these bounds are indeed valid and in some instances it can be shown that the obtained bounds are sharp,
that is, they are the tightest and thus the best possible bounds for the current price of the option under
consideration. Of course as is the case when modelling any real world problem as an optimisation problem,
many factors affect the size, complexity, tractability and solvability of the optimisation but that is something
we shall discuss later on in the thesis. We do note here that combining optimisation with this widely studied
area of mathematical finance has produced impressive results [11, 18, 19, 20, 21, 22].
Having this as motivation, this thesis is dedicated to analysing how mathematical optimisation can be used
to find upper and lower bounds on the current price of a particular type of option. However it should be
remembered that although we are looking for bounds on the current price of an option, ultimately the price
paid is an agreement between the writer and the holder and whether that is at the current price or not is
up to the two parties.
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The goal of this PhD thesis is to present some of our own, new and original results. As we will see a bit
later, the problem of finding upper/lower bounds on the current price of a basket option may be modelled
as a semi-infinite optimisation (SIO) problem. We then look at various reformulation techniques that can
be used to solve the formulated semi-infinite problems and thus yield an upper/lower bound on the current
price of the basket option we are interested in.
In particular, the topics which we have derived new results for are,

• Lower bounds for European basket options.

• A lower bound incorporating bid-ask prices for European basket options.

• Finding price bounds on American basket options.

• Finding upper price bounds on Asian basket options.

• An upper bound for Asian basket options incorporating bid-ask prices.

• An extension to finding upper price bounds on Altiplano Mountain Range options.

Besides these new and original results, we present a literature overview about existing results on this topic.
The thesis is organised as follows. In Section 2 we present some preliminaries from mathematical finance
and mathematical optimisation which we will use throughout this thesis. The work presented in this section
is important because it is here where we present the most basic and fundamental ideas for which the rest of
this thesis is based on. In Section 3 we give a literature overview and present some existing results on how
semi-infinite optimisation has been used to find upper and lower bounds on the price of a European basket
call option. The remainder of the thesis is dedicated to looking at our own, new and original results and is
organised in the following way. In Section 4 we look at new results concerning price bounds on European
basket options. In Section 5 we consider finding price bounds on American basket options. In Section 7 we
demonstrate how price bounds on Asian basket options may be found. In Section 8 we present an extension
to finding price bounds on an Altiplano Mountain Range option. Finally, in Section 9 we conclude this thesis
and look ahead to what could be researched further.
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2 Preliminaries

In this section we present some preliminary and fundamental ideas which are needed for the rest of this thesis.
We note here that these ideas form the base of this thesis and everything we present in this thesis can be linked
back to these fundamental ideas in one form or another. Our topic of interest combines together two huge
areas of mathematics. Namely, we are considering a combination of mathematical finance and mathematical
optimisation, and, in particular, we are considering how mathematical optimisation techniques can be used
to solve problems from mathematical finance. Thus, it is absolutely essential that we are familiar with the
basic ideas and definitions from these two areas of mathematics.

2.1 Preliminaries from Mathematical Finance

We begin by briefly introducing the main ideas from mathematical finance which will be needed and referred
back to throughout this thesis.

2.1.1 Introduction

The first step is to explain some main ideas from mathematical finance. Now, put simply, mathematical
finance is an area of applied mathematics. Confronting a real-world problem, the task is to model it math-
ematically. We then use numerical mathematical techniques to solve the problem and obtain a solution.
Finally, we must interpret the solution in the context of the original problem and make an appropriate con-
clusion in the context of the problem under consideration. The area of mathematical finance is no different.
Here the ‘real world’ problem under consideration is the financial markets. Thus, mathematical finance is
concerned with modelling problems from the financial markets mathematically, and then, using mathemat-
ical techniques, to obtain a solution that can be interpreted within the context of the problem. It is worth
noting here that this area of mathematics has been rapidly growing, especially in the last decade or so.
There are many reasons for this. Firstly, is the fact that we are looking at how to use mathematics on a ‘real
world’ problem; the solutions we obtain can be directly interpreted and used in real by investors in financial
markets. The second reason is the current state of the economy and financial sector. After the financial
crisis of 2007, many people including private investors, financial firms and investment banks are turning to
more sophisticated models to implement in financial markets. Mathematical finance provides investors with
alternative and successful methods which may be implemented in real and as such, it is a hugely welcome
area. By using advanced and sophisticated mathematical techniques to model and solve financial problems,
mathematical finance provides an alternative to other, standard financial techniques.
In what follows we present some ideas and well-known results from mathematical finance which will be useful
for the work that follows later in this thesis. We assume here that the reader is familiar with basic definitions
from finance, such as stocks, shares, dividends, arbitrage and so on.

2.1.2 Financial Options

The base of this thesis is formed from the idea of financial options which we define below.

Definition 2.1. A financial option is a financial product, or a contract, between two parties, issued by the
seller, known as the writer from here on in which gives the buyer, known as the holder from here on in,
the right but not the obligation to purchase or sell a prescribed asset, known as the underlying asset, for
a prescribed price, known as the exercise price at a prescribed future time, known as the expiry date.

Note: The word option comes from the fact that the holder has a choice. The holder may choose to buy/sell
the underlying asset if he wishes to do so. Conversely, the other party of the option is the writer. They have
the obligation to sell/buy the underlying asset as agreed in the option if the holder wishes to exercise the
option.
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Observation: Since the holder has the choice and not the obligation, then it makes intuitive sense that it
should cost the holder something to enter this contract. This is the idea behind pricing financial options;
something which we will come back to in sub-section 2.1.4.

The payoff of the option is the quantity or amount of money that the holder obtains when exercising
the option.
The payoff depends on the exercise price and the value of the underlying asset(s) at the moment of exercising
but not on the price of the option at the moment the holder bought it.
Now, there are many different types of options. As the financial markets continue to grow further, more
types of options will become available to best suit investor’s needs. However, the simplest type of option
is a European vanilla option. These types of options are split into the following two categories. European
vanilla call options and European vanilla put options. Put simply, a European vanilla call option gives the
holder the right to buy the underlying asset, at a pre-agreed fixed price (exercise price), on a pre-agreed
fixed, future date (expiry date). At no other time is the holder allowed to choose to buy the underlying asset
(apart from the pre-agreed expiry date, that is). A European vanilla put option is exactly the same as a
European vanilla call option except that here the holder has the right to sell the underlying asset.
We now present the payoff functions for European vanilla call and put options. For more information in-
cluding diagrams and a thorough explanation of these types of options, we refer the interested reader to [2],
pp. 35-38.
We first need to introduce some notation. In what follows let CE denote the current price of a European
vanilla call option, and let PE denote the current price of a European vanilla put option. Let S denote the
price of the underlying asset at expiry and let E denote the exercise price of the option. Let time be denoted
by t, so that time t � T is the expiry date. Then, since the price of the call/put option depends upon the
price of the underlying asset at expiry and time (see [2] for full details), we may write CE � CEpS, tq and
PE � PEpS, tq.
This allows us to define the payoff of a European vanilla call option as, (see [2])

CEpS, T q � maxpS � E, 0q. (2.2)

Similarly, we may define the payoff of a European vanilla put option as, (see [2])

PEpS, T q � maxpE � S, 0q. (2.3)

Now, as already mentioned, European vanilla options are the simplest type of options that we will encounter.
However, extensions of these options do exist. The most natural extension leads us to American options.
Here the basic idea is the same as European vanilla options but the holder has the choice to exercise the
option at any time up to and including the expiry date. Of course, since the holder has more freedom as to
when they can exercise the option (if they exercise it all, that is), we should expect an American option to
cost at least as much as its European option ‘counterpart’. More information on the basic ideas of American
options can be found in [2].
Now we return to the point made earlier about how rapidly the options market is growing to keep up with
demand to meet different investor’s needs. If only simple European and American options existed the use of
complicated and impressive mathematical models within this area of finance would not be needed. Where
the use of sophisticated mathematics comes into finance is when we consider exotic options. Now, put simply
‘an exotic option is an option that is not a vanilla put or a call’ [2], p.198. Thus the simplest way to spot
an exotic option is to look at its corresponding payoff. If the payoff is of the form (2.2) or (2.3), then this
option is a simple vanilla call or put option and if not, then this option is an exotic option. Of course, the
range of exotic options is huge and we only need to look on the internet, for example, to see the broad range
of exotic options that exist and are readily available to trade in. Also, we note here that different exotic
options have different properties and investors may choose to trade in various different options to best suit
their needs.
Some examples of exotic options are: binaries and digitals, compound options, chooser (or ‘as you like it’)
options, barrier options, Asian options, look-back options, shout options, power options, basket options,
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exchange options, extendible options, range options, spread options, forward-start options, swing options
and rainbow options. We note here that this is by no means a complete list of exotic options that are
available for trading. There are many more which can most commonly be found on the internet. For more
information regarding these, and other exotic options we refer the reader to [2] or [3].
Now, it is clear that there exist a whole range of exotic options available for trading. However, in order to
carry out some meaningful and in-depth research we need to concentrate on one area. In this thesis we will
be working with basket options. As we will see in later sections, the reason for choosing this particular type
of exotic option is that the area of semi-infinite optimisation can be applied to this type of option in an
efficient way.

2.1.3 Basket Options

In this section we introduce the main ideas and properties of basket options. Put simply, a basket option
is an exotic option whose payoff depends on multiple assets. Each asset is assigned a weight and then the
overall sum of the assets with their corresponding weights is taken into account. The value of this weighted
sum is then compared with the fixed exercise price to determine whether or not the basket option should be
exercised. Of course, there exist many types of basket options such as European or American basket options,
for example, as well as basket call options and basket put options. We will explain the type of basket option
we are considering.
Next we introduce the payoff of a basket option. For this, consider a basket option written on n underlying
assets. Recall that there then exists a weight attached to each asset and the payoff depends on a combi-
nation of the prices of these n assets and their corresponding weights as well as the exercise price of the
basket option. Let the exercise price of the basket option under consideration be given by E ¥ 0. Define
Si P R� � tx P R | x ¥ 0u to be the price of the ith underlying asset at expiry, for i � 1, 2, . . . , n and
let ωi P R be the corresponding weight for the ith asset in the basket option. Then for given weights
ω1, ω2, . . . , ωn the payoff of a European basket call option is given by

CpS1, S2, . . . , Sn, T q � max

�
ņ

i�1

ωiSi � E, 0

�
. (2.4)

Also, the payoff of a European basket put option for given weights ω1, ω2, . . . , ωn is given by

P pS1, S2, . . . , Sn, T q � max

�
E �

ņ

i�1

ωiSi, 0

�
. (2.5)

We note here that sometimes it may be more convenient for us to use a vector form of (2.4) and (2.5). We

may define this as follows. Let the weights vector be given by ω � pω1, ω2, . . . , ωnq
T
P Rn, and the asset

price vector (at expiry) be given by S � pS1, S2, . . . , Snq
T
P Rn� � tx P Rn| xi ¥ 0, i � 1, 2, . . . , nu. We may

then write (2.4) equivalently as

CpS, T q � max
�
ωTS � E, 0

�
, (2.6)

and (2.5) equivalently as
P pS, T q � max

�
E � ωTS, 0

�
. (2.7)

Basket options may be used by investors for various reasons. Perhaps the most common reason is diversifi-
cation. By investing in a basket option, an investor is taking a hedging approach. This is because, since the
basket option depends on a combination of numerous, n, assets, if the price of one of the assets falls but the
price of another asset in the basket rises then the investor is in a sense covered by any potential loss he may
make, (of course this is also dependent on the weights given to the assets). For this reason basket options
are popular amongst investors as it allows them to diversify their investment without directly investing in
numerous stocks and shares alone, where transaction costs need to be paid.
Another reason is that basket options allow investors to essentially make a bet on an index. For example,
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suppose we had a basket option written on the assets of the top 100 companies in the UK. Then the holder
of this basket option could choose to exercise this option and lock in a profit by observing the value of the
FTSE 100 at the time of expiry for European options or at any time before expiry for American options.
Thus, for these reasons, investing in basket options seems attractive and sensible for many investors.
A final note we make here is the comparison between the payoff of a basket option and the payoff of a simple
vanilla option. If we compare (2.2) with (2.6) and (2.3) with (2.7), we can see that the payoffs are similar
and almost identical except that in the payoff of the basket option the asset price is not dependent on the
price of a single asset (as is the case with simple vanilla options). Instead it is dependent on the weighted
sum of n assets, thus showing us the similarities yet vital differences between the two types of options.
In the remainder of this thesis we will concentrate on basket options. Interested readers who wish to consider
other types of options as well as basket options are referred to study the work done in [2] or [3].

2.1.4 The Option Pricing Problem

Recall the observation made in sub-section 2.1.2. It was argued there that, on the one hand, since the holder
of an option has a choice but not an obligation to exercise an option it should cost them something to hold
an option. On the other hand, if the holder chooses to exercise the option, the writer has an obligation to
fulfill. They must sell/buy the underlying asset depending on the type of option that has been agreed. Thus,
it would make sense that since the holder has the freedom of choice it should cost them something to hold
an option. This is one of the basic ideas behind option pricing in mathematical finance.
Now, option pricing is one of the most widely studied areas of mathematical finance [2]. There are many
reasons for this. The main reason is linked with the idea above. When pricing a financial option there are
many factors that need to be taken into account. The writer of an option may face the risk of paying out a
potentially large payoff to the holder. In some sense the writer needs to be compensated for taking this risk.
This risk should be reflected in the price of the option. That is, this risk should be reflected in the amount
of money the holder pays the writer to enter the option. Thus the primary question of interest to us is, what
is the price of an option? How can we work out what the price of an option should be such that the risk to
the writer and the freedom of choice to the holder are captured? This is the main question of interest to us
and we will consider this question throughout this thesis.
In this section we state some of the most famous mathematical models that exist to find the price of an
option. However before we proceed to doing so, we take note of the following. Firstly, a mathematical
model is just a model and should be used with care and common sense. Many mathematical models make
numerous assumptions and some of these assumptions may be violated in real life in which case, we should
be very careful when using the model to solve and price options in the real world. Secondly, we should take
note of the results that the mathematical model produces. Financial markets are dependent upon the laws
of supply and demand. The options market is no different. Ultimately, the price paid for an option by the
holder to the writer is the price agreed by both parties. If both parties agree to a price even though this
price is different to the current price, then this is the price that will be paid for the option. However, the
mathematical models which we consider here give a starting point. Using these models to price an option
produces results which take the risk that the writer is taking into account and captures other factors. In a
sense the mathematical models aim to find the ‘fair’ price of an option. They find what the price ‘ought to
be’ on the market under many different, but realistic assumptions about the financial market.
We now recall some well-known mathematical models that exist to find the price of an option. We will not
give in-depth detail here since derivations of the models presented can be found in [2]. Instead we merely
state the models.
The first of these is the well-known Black-Scholes model. In order to present this model we first introduce
some notation. Let S denote the price of the underlying asset at expiry. We will let V � V pS, tq denote the
price of the option under consideration, which depends on the asset price at expiry and time, t. Further, we
will let σ be the volatility of the underlying asset (which captures the standard deviations of future prices), µ
be a measure for the average growth rate of the underlying asset (known as the drift rate), E be the exercise
price of the option, T be the expiry date and r be the risk free interest rate.
Then if W is a Brownian motion (see [2] for a formal definition), using the following stochastic differential

11



equation,
dS

S
� σdW � µdt,

or
dS � SpσdW � µdtq, (2.8)

and under some assumptions stated in [2], we may derive the following partial differential equation (PDE)
for V .

1

2
σ2S2 B

2V

BS2
�
BV

Bt
� rV � rS

BV

BS
� 0. (2.9)

The PDE (2.9) is called the Black-Scholes partial differential equation, and its solution V pS, tq of this PDE
is the price of the option.
In general the PDE (2.9) must be solved numerically, but there do exist some cases (see [2]) where (2.9) can
be solved analytically to give a solution.
Another model which we present here, and is perhaps more linked to what follows later in this thesis that
can be used to price certain financial options is known as the binomial method. This method is important
with regards to the work that follows in the main sections of this thesis because the idea of risk neutrality,
which is fundamental to the binomial method is utilised in the model set-up which is used in later sections.
The basic idea of this method can be summarised as follows.

• Here we assume that the stochastic differential equation (2.8) can be modelled by a discrete random
walk such that the following assumptions hold. The asset price changes only at discrete time points,
given by δt, 2δt, 3δt, . . . , Mδt � T . If the asset price has value Sm at time point mδt, then at the time
point pm� 1qδt, Sm�1 can take one of two prices. Either it can take a price of Sm�1 � ũSm ¡ Sm, or
it can take a price of Sm�1 � d̃Sm   Sm, so that ũ ¡ 1 and 0   d̃   1. Further, we assume that Sm

can move to Sm�1 � ũSm with a probability p, and so Sm can move to Sm�1 � d̃Sm with probability
p1 � pq. The parameters ũ, d̃ and p are chosen in such a way so that the statistical properties of the
discrete random walk coincide with (2.8).

• The second basic idea is based upon the idea of a risk neutral world. This means that (and see [2] for
full details) an investor’s risk preferences become irrelevant when pricing options. Consequently this
means that we can replace the drift rate µ in (2.8) by the interest rate r. This gives the risk-neutral
random walk,

dS � SpσdW � rdtq. (2.10)

The idea of a risk neutral world is a very important concept in mathematical finance and in particular
when pricing options. We will see how this will play an important role in the main work of this thesis
in later sections.

Now that we have introduced the basic ideas of this method, we are in a position to give a brief overview of
how to practically implement it when pricing options. Full details of the binomial method for pricing options
can be found in [2]. Essentially, what we do is build up a tree of possible prices that the underlying asset
can take. At the end (terminal) nodes which represent the expiry date we evaluate the payoff of the option
to be priced. We then use the fact that the price of an option at expiry is equal to its payoff (by arbitrage
arguments) and working back down the tree we can evaluate the current price of the option at time t � 0.
Indeed, if V m denotes the price of the option at time mδt, then using the idea of risk neutrality we can show
that (see [2])

V m � Ere�rδtV m�1s, (2.11)

where E denotes expectation. For a full derivation of this, we refer the reader to [2]. Then using (2.11) and
the method described above, the task is to find the value V 0, which is the current price of the option.
Now, we have stated the famous Black-Scholes model and the binomial method used for pricing options.
One of the restrictions that both of these methods possess is that in their current form they can only be used
to price options with a single underlying asset. However, we have already mentioned that the main topic
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of this thesis is to concentrate on looking at how the prices of a basket option can be found. The natural
question to consider now is if and how we can extend the Black-Scholes model to allow for the pricing of
options written on many underlying assets, such as a basket option. This is done in [3], where we consider
the multi-asset Black-Scholes equation.
Here instead of considering an option written on one underlying asset we consider an option written on
n underlying assets. This allows us to write down a stochastic differential equation for the ith asset, for
i � 1, 2, . . . , n where we extend (2.8) to

dSi � SipσidWi � µidtq. (2.12)

Under similar assumptions (see [3]) and following what was done for the single asset case, we can arrive
at the following PDE, see [3] for full details. This PDE is known as the multi-asset Black-Scholes partial
differential equation (MABSE), and is given by

1

2

ņ

i�1

ņ

j�1

σiσjρijSiSj
B2V

BSiBSj
�
BV

Bt
� rV � r

ņ

i�1

Si
BV

BSi
� 0, (2.13)

where ρij denotes the correlation between asset i and j, for i, j � 1, 2, . . . , n. We note here that ρii � 1
and ρij � ρji, for all i, j � 1, 2, . . . , n. Thus, we can use (2.13) to price options written on many underlying
assets.
Now, the main concern of this thesis is the pricing of basket options. We have just introduced the multi-asset
Black-Scholes equation that can be used to price options written on many underlying assets. Of course we
are free to go ahead and try to use (2.13) to price a basket option of interest. Unfortunately, it turns out that
(2.13) is very difficult to solve numerically, when it comes to basket options. This is highlighted in [3], p.283,
where it is pointed out that when deriving the MABSE formula for basket options we need to delta hedge
with knowledge about correlations between the assets. However, it is very difficult to measure and predict
the correlations between each asset and so delta hedging basket options becomes an almost impossible task.
So although the MABSE formula is valid and can be used to price any multi-asset option, in reality for
the pricing of basket options it is of very little use. Thus, we are in need of more mathematical models or
techniques that can be practically implemented to help us find the price of a basket option. This highlights
one of the reasons as to why specifically we are considering the pricing of basket options in this thesis.

2.1.5 Some other existing methods to price Basket Options

Now, option pricing is a widely studied area so researchers have not just observed the limited use of equation
(2.13) when it comes to pricing basket options, but they have tried to produce some more results. We will
give a short overview of some of these results in this sub-section, referring the reader to study the full details
in [4]. In all of the methods mentioned below and derived in [4] we consider pricing a European basket call
option. We mention the following methods.

• Beisser’s conditional expectation technique. The basic idea here is to estimate the price of the basket
call option under consideration by using the known prices of simple European vanilla calls to obtain a
lower bound on the required price. For a full in-depth derivation of this method we refer the reader to
[4]. In addition, as we will see in later sections, we will adopt a similar technique but use mathematical
optimisation as a solution technique to find upper/lower bounds on the price of a basket option.

• Gentle’s approximation by geometric average. This method is based on the following observation. In
the payoff for the basket call option we have the weighted arithmetic average of the prices of the
underlying assets at expiry. In this method, in the payoff, we replace this weighted arithmetic average
by the weighted geometric average of the underlying assets at expiry.

• Levy’s log-normal moment matching approach. Here, the basic idea is to approximate the distribution
of the basket option of interest by matching the first two moments of the required distribution with the
first two moments of the original distribution of the weighted sum of the stock prices. For full details
of this pricing method we refer the reader to [4].
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• Finding the price of a European basket call option based upon Taylor expansions. In particular, here
we consider Ju’s Taylor expansion from [4]. The basic idea is to define a characteristic function and
then we Taylor expand the ratio of this characteristic function with an arithmetic average which is
defined in [4].

• Inverse gamma approximation by Milevsky and Posner. Here the idea is to use the inverse gamma
distribution (see [5]) as an approximation for the distribution of the assets in the basket option.

• Another technique derived by Milevsky and Posner. The basic idea here is to find the price of the
basket call option by higher order moments using state prices (which are also called all or nothing
options). This option pays out (a certain amount) if a scenario occurs and nothing otherwise. This
allows us to define a state price density which is a density that captures the likelihood of all possible
future scenarios. It may be thought of as a probabilistic weight being assigned to each possible scenario.
Here, we consider matching state price densities to higher moments of the distribution of the weighted
sum of the underlying assets in the payoff of the basket option to be priced.

That concludes this sub-section on presenting preliminaries from mathematical finance and option pricing.
In particular we have introduced some basic ideas about basket options which are fundamental to the rest
of this thesis.
Obviously, the need to find valid pricing techniques to accurately price basket options is very much in
demand. This is the motivation behind the research presented in this thesis.

2.2 Preliminaries from Mathematical Optimisation

Along with the ideas from mathematical finance, this thesis uses mainly ideas from mathematical optimisa-
tion. In this sub-section we present some preliminaries and basic definitions from mathematical optimisation
which are needed later.

2.2.1 Introduction

Optimisation is a mathematical technique aimed at finding the maximum or minimum of a function subject
to a particular domain or region. In the following, we will look at some classes of optimisation problems.

2.2.2 Classes of optimisation problems

Many optimisation problems possess certain characteristics which allow us to define a range of different
classes of optimisation problems. In this sub-section we briefly present some of these different types of prob-
lems.
Mathematical optimisation problems can be put into one of the following two groups. A problem can either
be an unconstrained optimisation problem, or it can be a constrained optimisation problem. We formalise
these concepts as follows. Consider a function f : Rn Ñ R, given by fpxq, where x � px1, x2, . . . , xnq

T
.

We will assume that f is k times continuously differentiable and this will be denoted by f P CkpRn,Rq, for
k ¥ 0, k P N.
We now present some important definitions which are fundamental to rest of this thesis.

Definition 2.14. Let f : Rn Ñ R. Then x� P Rn is said to be a local minimiser of f , if there exists a
neighbourhood Upx�q of x� such that

fpx�q ¤ fpxq, for all x P Upx�q.

Definition 2.15. Let f : Rn Ñ R. Then x� P Rn is said to be a global minimiser of f if

fpx�q ¤ fpxq, for all x P Rn.
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Then, the global unconstrained optimisation problem is to find an x� P Rn such that

fpx�q ¤ fpxq, for all x P Rn.

We write this problem as
minimise

x
fpxq. (UO)

This can be done without loss of generality because even if we wanted to find the maximum of f we could use
optimisation to find the minimum of �f and then observe that the maximum of f is equal to the negative
minimum of �f .
Now we present what is meant by a constrained optimisation problem.
Let f P CkpRn,Rq which is called the objective function. Let X � Rn be the so called feasible set. If x P X,
then x is said to be a feasible point. Then pCOq, given by

minimise
x

fpxq

subject to x P X,
(CO)

is a constrained optimisation problem.
Analogous to the unconstrained problem we look to minimise the function f , again without loss of generality
(see above), but this time we have the condition or constraints that x P X.
This allows to present the following definitions for pCOq.

Definition 2.16. Let f : Rn Ñ R. Then x� P Rn is said to be a local minimiser of pCOq, if there exists
a neighborhood Upx�q of x� such that

fpx�q ¤ fpxq, for all x P Upx�q XX.

Definition 2.17. Let f : Rn Ñ R. Then x� P Rn is said to be a global minimiser of pCOqif

fpx�q ¤ fpxq, for all x P X.

We note here that quite often the feasible set X may take the form

X � tx P Rn|hipxq � 0, i � 1, 2, . . . ,m, gjpxq ¤ 0, j � 1, 2, . . . , ru, (2.18)

where hi, gj P CkpRn,Rq, for all i � 1, 2, . . . ,m and j � 1, 2, . . . , r.

We now distinguish between two important cases. In the case where the function f and the functions
hi, gj , for all i � 1, 2, . . . ,m and j � 1, 2, . . . , r are linear, pCOq is called a linear optimisation problem. In
contrast, if the objective function f or at least one of the constraints hi, gj are not linear, then pCOq is called
a non-linear optimisation problem. It is well known in mathematical optimisation that linear problems are
easier to solve than constrained non-linear problems. This is because mathematically the linear problem is
the simplest case.
An important class of optimisation problems which we consider here is the class of convex optimisation
problems. In order to define this we need the following definition of a convex function.

Definition 2.19. Let c̃ : Rn Ñ R be a function. We say that c̃ is a convex function if

c̃pα̃x� p1� α̃qyq ¤ α̃c̃pxq � p1� α̃qc̃pyq, for all x, y P Rn and α̃ P r0, 1s.

Then a convex optimisation problem is a problem where the objective function f is convex and the feasible
set, X is convex. Convexity of a function is highly desirable in optimisation because for convex optimisation
problems we have the following well-known theorem. (See [6]).

Theorem 2.20. Suppose that in pCOq the objective function f is convex and all the constraints hi, for
i � 1, 2, . . . ,m are linear and gj for j � 1, 2, . . . , r are convex. Then all local minimisers of pCOq are also
global minimisers of (COq.
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2.2.3 Introduction to Semi-Infinite Optimisation

Above we introduced and presented some basic fundamental ideas about mathematical optimisation in gen-
eral. In this sub-section we look at a particular type of optimisation method that will be used throughout
this thesis. Namely, we will look at semi-infinite optimisation.
Here we consider an extension of pCOq. Observe that in pCOq together with (2.18) we have a finite dimen-
sional variable, x P Rn, where n is finite and we also have a finite number of constraints. That is, we have
a total of pm� rq constraints where both m and r are finite. An extension of this would be to consider the
case where either the dimension of the variable is infinite or the number of inequality constraints is infinite
but not both. It is this idea which we consider here.

Definition 2.21. A semi-infinite optimisation problem, (SIO problem) is an optimisation problem of
the form pCOq where either the dimension of the variable or the number of inequality constraints is infinite
but not both.

Observation: The word ‘semi-infinite’ is of vital importance here. It means that both the dimension of the
variables and the number of constraints can not simultaneously be infinite.

Thus, a semi-infinite optimisation problem is a generalisation of a standard, finite optimisation problem,
where in the latter we have finitely many constraints and x is finite dimensional.
Now, the constraints in (2.18) are defined by hipxq and gjpxq, for i � 1, 2, . . . ,m and j � 1, 2, . . . , r. In
particular, the indices i and j, for a fixed value, each represent one particular constraint. In order to extend
this notion, and to capture infinitely many inequality constraints we introduce an index set, I. Here, I � Rp̃,
where p̃ is a (finite) integer. If I is a finite set then we have a standard optimisation problem. If, however,
I is an infinite set then we encounter infinitely many constraints. This index set I will play an important
role throughout the rest of this thesis.
We are now in a position to introduce the basic, primal semi-infinite optimisation problem. For this we
assume that the index set I is an infinite set, and we introduce the following notation. Let f : Rn Ñ R be
a function and let gτ : Rn Ñ R, where τ P I and I is the index set. Then, the basic (primal) SIO problem
(as given in [7]) is given by,

max
x

fpxq

subject to gτ pxq ¤ 0,@ τ P I.
(2.22)

Now, as was the case with standard optimisation, semi-infinite problems may be classed into one of the
following two categories. Linear semi-infinite optimisation problems (LSIO) or non-linear semi-infinite opti-
misation problems (NLSIO). Where of course, analogously to standard optimisation problems a SIO problem
is said to be linear if f and gτ are linear functions in the variable x. If f or gτ are not linear for at least one
τ P I then we have a non-linear semi-infinite optimisation problem. Of course, linear semi-infinite problems
are easier to solve than non-linear semi-infinite problems, since a linear SIO problem is the simplest case of
this type of optimisation problem.
As we will see later, linear semi-infinite optimisation will play a vital role in what we consider in this thesis.
Thus, for that reason we only consider linear SIO problems for the rest of this thesis. For NLSIO problems
we refer the interested reader, for example to [8].

2.2.4 Linear Semi-Infinite Optimisation (LSIO)

Here we consider and present some preliminaries from the area of linear semi-infinite optimisation. Recall
that a linear semi-infinite optimisation problem arises when we have a linear objective function f subject to
linear constraints gτ , for all τ P I in the variable x in the general semi-infinite optimisation problem (2.22).
This allows us to re-write the general SIO problem (2.22) as a general linear semi-infinite optimisation
problem, LSIO. For this we define the following. Let a : I Ñ Rn, and b : I Ñ R be continuous functions
on I (recall here that I is an index set; it may an interval which is a subset of R or any subset of Rp̃ as
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described above. Note that I can not be a set consisting of a finite number of isolated points because this
would then give a finite (and not a semi-infinite) optmisation problem, because if I did consist of a finite
number of isolated points this would give a finite number of constraints. I can however consist of an infinite
number of isolated points) and define the vector c P Rn. Then the linear semi-infinite optimisation problem
is given by, (see [7])

max
x

cTx

subject to apτqTx ¤ bpτq,@ τ P I.
(2.23)

Throughout this thesis, and unless otherwise stated, we will refer to (2.23) as the linear semi-infinite primal
problem. This will play an important role when we present some preliminaries from linear semi-infinite
duality theory. We refer to [9] for examples of the linear SIO model.

2.2.5 LSIO Duality Theory

We are already aware from standard, finite optimisation how important the concept of duality is. Often it
may be difficult to solve a given primal optimisation problem in its current form. One way to overcome this
difficulty is to formulate the dual problem. We can then solve the dual problem if it is easier to solve then
the original primal problem. Then we can use the dual solution to either directly get the solution to the
primal problem or to find bounds on the optimal objective function value of the primal problem.
Duality theory extends to the semi-infinite setting which we are considering. For this thesis we present some
preliminaries from linear semi-infinite optimisation duality theory. For duality results on other types of finite
and semi-infinite optimisation problems we refer the reader to [6] and [8], respectively.
We define the dual problem to the primal linear semi-infinite optimisation problem (2.23).
We define the dual problem to (2.23) as follows. Suppose that the index set I is equal to a set consisting
of infinitely many isolated points. We define a function π : I Ñ R� given by πpτq which takes the value 0
everywhere except on some finite subset of I. This finite subset of I, where π takes positive values is called
the supporting set of π, (see [7] for more on this), and is denoted by

supppπq � tτ P I|πpτq � 0u.

If we let R|I|
� denote the set of all such functions π, then we can define the dual problem to the semi-infinite

optimisation problem (2.23) as given in [9] as:

min
πpτq

¸
τPI

bpτqπpτq

subject to
¸
τPI

apτqπpτq � c

π P R|I|
� .

(2.24)

Before proceeding we make some remarks about the problems (2.23) and (2.24). In (2.23) we are optimising an
objective function subject to infinitely many constraints. In contrast, in (2.24) we are optimising an objective
function depending on the infinite dimensional variable, πpτq subject to a finite number of constraints. In
particular our aim in (2.24) is to find a function πpτq. This highlights the connection between the number of
constraints in the primal problem and the dimension of the variables in the dual problem, something which
we are familiar with from linear optimisation duality theory. Throughout this thesis we will refer to problems
taking the form of the problem (2.23) as the primal linear semi-infinite optimisation problem and problems
taking the form (2.24) as the dual of the linear semi-infinite optimisation problem. We note here that the
dual problem itself is not a semi-infinite optimisation problem because it does not have the properties of
problem (2.23). That is, it is not a semi-infinite optimisation problem because we are not considering a
linear optimisation problem on a finite dimensional variable with infinitely many constraints. Therefore, it
makes sense to refer to (2.23) as a linear SIO problem and (2.24) as the dual to a linear SIO problem.
However, on closer analysis of (2.24) some potential problems could arise. One of these is concerned with
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the index set I. In (2.24) we have a sum over all τ P I.
Now, this sum only makes sense if the index set I is described discretely. If we have a continuous description
of the index set I, such as I � r0, 1s, for example and we now define π : I Ñ R�, given by πpτq to be a
function that can now take non-zero values anywhere on I then it is impossible to ‘sum’ up over all τ P I.
Therefore, to complete the definition of duality we consider the following. In the case when the index set I
is a continuous set, intuitively we could take integrals instead of ‘sums’ in the problem (2.24). We can now
define the dual problem to (2.23) where the index set I is described continuously.
Referring the reader to [7] and references given there-in, we define the ‘alternative’ dual problem to the linear
SIO problem (2.23) in terms of Lebesgue integrals as

min
πpτq

»
I

bpτqdπpτq

subject to

»
I

apτqdπpτq � c

πpτq PM�pIq,

(2.25)

where M�pIq is the set of non-negative Borel measures on I, (see [7] for more on this).
From a practical point of view the appropriate formulation of the dual problem to the linear SIO problem
(2.23) will depend on the index set I. If I is equal to a set consisting of infinitely many isolated points then
we use (2.24) as the dual to (2.23). If I is equal to an interval, for example then we use (2.25) as the dual
to (2.23). Throughout this thesis we will see how important the integral form of the dual problem to the
linear SIO problem that models our specific options pricing problem is.
Now that we have presented the dual to the linear semi-infinite primal problem we can now present some
uses of this dual. The primary reason for considering the dual problem is to help us obtain the optimal
objective function value to the primal problem. Frequently in optimisation problems it turns out that the
original primal problem is difficult to solve but its corresponding dual problem may be easier to solve. Using
appropriate duality results we may use the dual optimal objective function value to arrive at the primal
optimal objective function value.
If f�p(2.23)q denotes the optimal value of the objective function in (2.23) and f�p(2.25)q denotes the opti-
mal value of the objective function in (2.25), then we are interested in the following question, under what
conditions can it be guaranteed that f�p(2.23)q � f�p(2.25)q? (Note that we can replace (2.25) with (2.24)
and all of the following analysis would still hold. We consider (2.25) here as the integral form of the dual
problem is most relevant to this thesis). Indeed if we have the relation f�p(2.23)q � f�p(2.25)q, then solving
the dual problem (which may be easier than solving the primal problem directly) would give us the solution
directly to the primal problem.
In what follows we present some important results from linear semi-infinite duality theory which will be used
later in this thesis.
We may observe that the optimal objective function value of the dual problem provides an upper bound to
the optimal objective function value of the primal problem. That is, the relation f�p(2.23)q ¤ f�p(2.25)q
holds [7]. This is known as weak duality and can be summarised in the following theorem.

Theorem 2.26 (Weak duality).
f�p(2.23)q ¤ f�p(2.25)q.

Proof. See [7].

Theorem 2.26 gives us a link between the optimal objective function values of the linear SIO problem (2.23)
and its corresponding dual problem (2.25). That is, it gives us an upper bound on the optimal value of the
objective function for (2.23).
Now the primary question that still remains is, under what conditions does the relation f�p(2.23)q �
f�p(2.25)q hold? We now investigate when this is the case.
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To present the case when f�p(2.23)q � f�p(2.25)q we appeal to the following definition given in [10].

Definition 2.27. We define the first moment cone by

Mn�1 �

"
w �

»
I

�
bpτq
apτq



dπpτq|πpτq PM�pIq

*
.

The following result from [10] gives the conditions for the desired equality f�p(2.23)q � f�p(2.25)q. This
result is known as the strong duality theorem.

Theorem 2.28 (Strong duality). Suppose that
(i) f�p(2.23)q is finite, and
(ii) Mn�1 is closed.
Then f�p(2.23)q � f�p(2.25)q and (2.25) has a solution.

Proof. See [10].

Before proceeding we observe that in piiq of Theorem 2.28 we have the condition that Mn�1 is closed. In
relation to the linear SIO problem this condition is exactly satisfied when the conditions of Theorem 2.30
presented below are satisfied.
We note here that the proof of Theorem 2.30 uses the following lemma taken from [23].

Lemma 2.29. Let Â � Rp̃ be a compact set. Then its convex hull, convpÂq, is also compact.

Proof. See [23].

Then we have the following result taken from [23].

Theorem 2.30. Suppose that the index set I is a compact subset of Rn, and the real valued functions
a1, a2, . . . , an, b which are defined on I are continuous. Further, assume that (2.23) meets the Slater condi-
tion, that is, there exists a vector x̃ P Rn such that

ņ

r�1

arpτqx̃r ¡ bpτq, @ τ P I.

Then, the first moment cone Mn�1 is closed.

Proof. See [23].

Now we may observe the following. We have seen in Theorem 2.28 above, some conditions for f�p(2.23)q �
f�p(2.25)q holding.
Also we have just stated Theorem 2.30 from [23] which states that if (2.23) meets the Slater condition and
I is compact, with a, b being continuous on I, then Mn�1 is closed. Combining these results together gives
the following theorem which can be used in the context of our problem later and can be found in [23].

Theorem 2.31. Consider the primal-dual pair (2.23) and (2.25). Assume the following.

• I is a compact subset of Rn and the real-valued functions a1, a2, . . . , an, b are continuous.

• (2.23) meets the Slater condition.

• f�p(2.23)q is finite.
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Then, (2.25) is solvable and f�p(2.23)q � f�p(2.25)q.

Observation: Theorem 2.31 is just a mixture of Theorem 2.30 and Theorem 2.28. As such, we may view
Theorem 2.31 as an alternative to the strong duality theorem.

That allows us to conclude all of the results needed from LSIO duality theory. As we will see in later
sections, we have utilised the duality theory for LSIO described above for the basket option pricing problem.

2.2.6 Some solution methods to solve LSIO problems

Above we have introduced some preliminary ideas from linear semi-infinite optimisation and the important
concept of duality.
The next area that we consider is concerned with some solution methods for solving the linear semi-infinite
primal problem (2.23). In what follows here we present some selective solution techniques that exist to
solve (2.23). For a more comprehensive and in-detail approach of the methods presented here, and for more
methods that exist to solve (2.23) we refer the reader to [9].
The first solution method we consider is the local reduction approach. For a detailed discussion on this
method we refer the reader to [9]. The basic idea of this solution method is as follows. Consider the linear
semi-infinite primal optimisation problem (2.23). We assume a particular structure of the index set I. The
local reduction method aims to solve (2.23) by using Carathéodory’s Theorem for cones to construct a system
of non-linear equations which produce a necessary condition for the existence of an optimal solution x� to
(2.23). In this method, whilst finding optimal solutions to (2.23), we simultaneously find optimal solutions
for the dual of the problem (2.23) too.
The next solution method which we consider is the most important one for the purposes of this thesis,
and it is called the generic discretisation method. Put simply, this method is one of the simplest types of
discretisation methods that exist to solve (2.23). It aims to solve (2.23) by iteratively replacing the infinite
index set I by a finite subset Uk � I. This means that at each step of this solution algorithm we are solving
a standard, finite linear problem because Uk is a finite index set. The idea is that in the limit as k Ñ 8
the optimal solutions of the solved finite linear problems will iteratively converge to the optimal solution of
(2.23). For more insights and examples on this type of solution method, we refer the reader to [11].
The above two described methods are part of the simplest solution methods that exist to solve (2.23). Some
other solution methods that could be used to solve (2.23) can be found in [9]. Other solution methods include
the following.

• A cutting plane discretisation method

• The three phase method

• Simplex like and exchange methods

• Descent methods

That concludes the preliminary ideas which we need from mathematical optimisation for this thesis.

2.3 Using Mathematical Optimisation in Mathematical Finance

In the previous sub-section we have discussed the main ideas from mathematical optimisation which will be
used in this thesis. Now we briefly explain some uses of mathematical optimisation, and in particular, uses
of optimisation within mathematical finance. We recall here that our aim is to show how mathematics can
be used to model and solve real world financial problems.
The main interest of this thesis is seeing how optimisation can be used to solve problems from mathematical
finance. Although we only consider how to use optimisation to solve one particular problem from mathemati-
cal finance, namely that of option pricing, there are many other problems from various areas of mathematical
finance which can be solved using optimisation. Some of these can be found in [12], where various optimisa-
tion methods are used to solve problems including, asset/liability cash flow matching, volatility estimation,
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portfolio optimisation and constructing an index fund. The use of optimisation to solve real world problems
are not just limited to mathematical finance. Optimisation has wide range of uses to solve many other
problems, some of which can be found in [13].
As a final remark we should remember that a model is just a model and when modelling real world problems
mathematically many assumptions are made. We should take care when interpreting what the mathematical
results mean in the context of the problem. We should also remember to use any mathematical model with
care, especially if the assumptions it makes are violated in real life.

2.3.1 Using Semi-Infinite Optimisation to find bounds on the prices of financial options

As already mentioned previously, the aim of this thesis is to investigate how semi-infinite optimisation can
be used to find bounds on the current price of a basket option.
Before we proceed to doing this, we first need to introduce some fundamental ideas which combine optimi-
sation and finance and are vitally important as they will be used in the remainder of this thesis.
We introduce the idea behind how optimisation can be used to find bounds on the price of a financial option
here. In particular, we will introduce some important definitions which will be implemented throughout this
thesis when we see how SIO can be used for the bounding of prices of basket options.
We have seen in sub-section 2.1.4 that one possible way to find the price of a basket option is to use the
multi-asset Black-Scholes model, where we assume that the price of the basket option satisfies the partial
differential equation (2.13). However, as we stated previously, solving this PDE for a basket option in reality
is difficult due to the correlations between each of the assets in the basket. Thus the need for more sophis-
ticated and alternative mathematical techniques to price basket options is highly in demand.
Recall that from mathematical finance an arbitrage opportunity means that it is possible for an investor to
make an instantaneous risk-free profit. Now we give a slightly different but equivalent definition which will
be useful to us in this thesis, taken from [12].

Definition 2.32 (Arbitrage). An arbitrage is a trading strategy that

• type A- has a positive initial cash inflow and has no risk of a loss later, or

• type B- requires no initial cash input, has no risk of a loss, and has a positive probability of making
profits in the future.

When using optimisation to find bounds on the prices of financial options we are concerned with using an
arbitrage pricing technique. Put simply this means that the only underlying assumption we make in our
model is the assumption of no arbitrage and we use optimisation to produce upper and lower price bounds
using only the knowledge of known prices of other, related financial products such as options written on the
same underlying assets for example, [12]. Here we present the main ideas of how to use optimisation to find
bounds on the price of general financial options and then consider how optimisation can be used to solve the
specific basket option pricing problem in the subsequent sections.
In order to derive a general setting so that we can efficiently use optimisation to find bounds on the prices
of options, we consider a one period model where we are currently at time t � 0 and we wish to model the
asset prices at time t � 1. We start by presenting the following definitions and results, which can be found
in [12].
We consider a set of possible future states which model the possible prices that the underlying assets can
take at a future time. Let these states be given by σ̂j for j � 1, 2, . . . ,m and let the set of all states be given

by Σ̂. That is,
Σ̂ � tσ̂1, σ̂2, . . . , σ̂mu.

To each state σ̂j we assign a corresponding probability pj of that state occurring, for j � 1, 2, . . . ,m.
Now, let Si, for i � 1, 2, . . . , n denote the prices of n underlying assets. In particular, we will let S0

i denote
the current price of the ith underlying asset. We will let S1

i pσ̂jq denote the price of the ith underlying asset
at the future time t � 1, under state σ̂j for j � 1, 2, . . . ,m and i � 1, 2, . . . , n. We will also assume the
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existence of a ‘riskless’ security (such as a government bond) which pays out interest r ¥ 0 between time
t � 0 and t � 1. We will denote this riskless security by S0. Without loss of generality we may set the
current price of the riskless security as, S0

0 � 1 (see [12] for full details why) and define R � 1 � r, so that
the price of the riskless security at the future time, t � 1 is given by

S1
0pσ̂jq � R � 1� r, for all j � 1, 2, . . . ,m.

This allows us to define the following, (see [12]).

Definition 2.33. A risk-neutral probability measure on the set

Σ̂ � tσ̂1, σ̂2, . . . , σ̂mu

is a vector of positive numbers pp1, p2, . . . , pmq
T
P Rm� such that

m̧

j�1

pj � 1,

and for every security/asset Si for i � 0, 1, . . . , n, we have

S0
i �

1

R

�
m̧

j�1

pjS
1
i pσ̂jq

�
�

1

R
ErS1

i s,

where ErS1
i s denotes the expectation of the random variable S1 under the probability distribution pp1, p2, . . . , pmq

T
.

We now present some standard results from linear optimisation taken from [12, 13] which are used in the
proof of Theorem 2.39 which we will use later in this thesis.

Theorem 2.34 (Strong duality). If a primal linear problem has an optimal solution, then so does its dual
problem and the respective objective function values are equal.

Theorem 2.35. If the dual linear problem has a non-empty feasible set then the corresponding primal
problem has a finite objective function value.

Theorem 2.36 (Goldman and Tucker). When both the primal and dual linear optimisation problems

min
x

cTx

s.t. Ax � b x ¥ 0,
(2.37)

and
max
y

bT y

s. t. AT y ¤ c,
(2.38)

have feasible solutions, they have optimal solutions satisfying the strict complementarity condition. That is,
there exist x� and y� optimal for the respective problems such that

x� � pc�AT y�q ¡ 0.

Referring to [12] for full details, these results give the following theorem which is fundamental when using
optimisation models to find bounds on the prices of financial options. It is known as the first fundamental
theorem of asset pricing.
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Theorem 2.39. A risk-neutral probability measure exists if and only if there are no arbitrage opportunities.

Proof. See [12].

Remark: We will see in the main sections of this thesis, that the implementation of the above theorem is
vital when formulating the optimisation model that is used to find price bounds on the option of interest.

In order for the reader to familiarise themselves on how the above results can be implemented to a practical
financial problem, we refer them to study the example presented in [12] pp.187-191 where optimisation is
used to find bounds on the price of a forward-start option.
After studying the example from [12], we note that the methodology employed in the example is very popu-
lar. To model the option pricing problem as a dual of a SIO problem and then to consider the SIO problem
and then to equivalently re-write this SIO problem as a finite optimisation problem which can then be solved
to yield an optimal solution and hence the bounds on the price of the option under consideration, is the
standard way to use optimisation to find price bounds on options. We shall see this in the remainder of this
thesis when we consider how semi-infinite optimisation can be used to find bounds on the price of a basket
option.
That concludes all preliminary material which is needed to understand the rest of this thesis.

23



3 Literature Review

In this section we present some existing results from various references about finding price bounds on Euro-
pean basket options using semi-infinite optimisation.
In all of the results we present in this section, we are interested in using semi-infinite optimisation to find
upper and lower bounds on the price of a European basket call option. As we will see in later sections, these
existing results provide motivation and a base for which we may derive our own results given in sections 4,
5, 7 and 8. We start by giving an introduction to the problem under consideration.

3.1 Introduction

We begin by recalling the basic definition and properties of a basket option as given in sub-section 2.1.3.
We recall that, a basket option is an exotic option whose payoff depends on multiple assets. Each asset
is assigned a weight and then the overall sum of the assets with their corresponding weights is taken into
account. The value of this weighted sum is then compared with the exercise price to determine whether or
not the basket option should be exercised.
Also, recall that associated with any financial option is its current price. This current price reflects the risk
being taken by both the holder and the writer of the option. One of the most important and interesting
topics of mathematical finance is the pricing of options. We are particularly interested in seeing how to find
price bounds on basket options. Recalling from sub-section 2.1.4 that although there are many different
methods that can be used to price a basket option, these methods are not without their problems. The
multi-asset dependence of the payoff of the basket option makes existing pricing techniques very difficult to
execute in practice.
Thus, the need to find a sophisticated and valid mathematical technique to price basket options is very much
in demand, not only by mathematicians but by investors and financial firms as well. The way in which we
tackle the basket option pricing problem is to use mathematical optimisation. The use of optimisation in
pricing financial options has already been highlighted in sub-section 2.3.1 and further uses of optimisation
within the financial world can be found in [12].
Hence, the primary question of interest and under consideration in this thesis is, how can we use optimisation
to find price bounds on basket options? In this thesis we will concentrate on looking at how semi-infinite
optimisation can be used to find upper and lower bounds on the prices of basket options. We present the
basic model set-up and specification of the problem later in this section. Then we present some work from
a range of sources which have considered this problem in detail, in the succeeding sub-sections.
Before proceeding we remark here that basket options consist of many different types. They may be European
or American and they may be call options or put options. When we consider finding price bounds on a basket
option we will clearly specify the type of basket option under consideration.
We first present some fundamental ideas and important concepts from measure theory which can be found
in [14, 15, 16, 17] and will play an important role in the work that follows. We then move on to presenting
existing results on how semi-infinite optimisation can be used to find bounds on basket option prices.

3.2 Concepts from Measure Theory

The concept of measure stems from Euclidean geometry where we consider how to measure a solid body in
various dimensions. In one dimension we think of this measure as length. In two dimensions we think of it
as area and in three dimensions we think of it as volume. However, outside of this geometrical setting the
concept of measure becomes unclear. Measure theory aims to generalise the concepts of length, area and
volume into arbitrary dimensions. To start with we need the following definition of a set function.

Definition 3.1. A set function is a function whose domain is the power set of the set of real numbers,
denoted by 2R and whose co-domain is the set of real numbers R. That is, the mapping Sf : 2R Ñ R is called
a set function.
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We will give a definition of a measure below, (see Definition 3.3). Before presenting that however, we may
think of a measure, informally as follows. A measure on a set is a set function which assigns non-negative
values or 8 to each possible subset of the original set. The non-negative (or 8) value which is assigned to
the subset is done with respect to the size of the subset in relation to the original set. It is this concept of a
measure that allows us to extend the notion of length, area and volume into arbitrary dimensions.
Before formally defining what we mean by a measure, we need the following definition of a σ�algebra.

Definition 3.2. Let X be a set, and let 2X denote its power set. Then the set Σ � 2X is said to be a
σ�algebra on the set X if the following three conditions hold.

1. H P Σ

2. If G P Σ then its complement G1 P Σ.

3. If G1, G2, G3, . . . are a collection of sets in Σ, then it holds for their union that
8¤
i�1

Gi P Σ.

Then we may present the definition of a measure as follows.

Definition 3.3. The set function µ̂ : Σ � 2X Ñ R� Y t8u is a measure on the set X if it satisfies the
following properties.

1. µ̂px̂q ¥ 0, for all x̂ P Σ

2. µ̂pHq � 0

3. For disjoint sets tx̂iuiPN P Σ, we have

µ̂

�¤
iPN

x̂i

�
�

¸
iPN

µ̂px̂iq.

Moreover, if the above conditions hold, pX ,Σ, µ̂q is said to be a measurable space.

We will refer to pX ,Σ, µ̂q as a triple, where X is a set, Σ is a σ�algebra on X and µ̂ is a measure on the set
X .
For the purposes of this thesis, we are interested in a particular area of measure theory. Namely we are
interested in probabilistic measure theory.

Definition 3.4. Consider the triple pΓ,F , πq as described above. Then the set function π : F Ñ r0, 1s is a
probability measure on the set Γ if it satisfies the following properties.

1. πpγ̄q P r0, 1s, for all γ̄ P F

2. πpHq � 0

3. πpΓq � 1

4. For disjoint sets tγ̄iuiPN P F , we have

π

�¤
iPN

γ̄i

�
�

¸
iPN

πpγ̄iq.

Moreover, if the above conditions hold, pΓ,F , πq is said to be a probability space.
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For the remainder of this thesis, in order to distinguish between general and probabilistic measures we will
let µ̂ denote a general measure and let π denote a probability measure.

Note: The condition that πpΓq � 1 and πpHq � 0 implies that πpγ̄q P r0, 1s, for all γ̄ P F .

Before proceeding to see how we may apply the above definitions to the basket option pricing problem
we need the following definitions taken from [16].

Definition 3.5. Let the set Ã be contained in some space X. Then the indicator function of Ã, written
χÃ, is the function defined by: χÃpxq � 1 for x P Ã, and χÃpxq � 0 for x P Ã1.

Definition 3.6. A non-negative function ϕpxq taking only a finite number of different values is called a
simple function. If â1, â2, . . . , ân are the distinct values taken by ϕ, and Ai � tx|ϕpxq � âiu, then clearly

ϕpxq �
ņ

i�1

âiχAipxq.

Definition 3.7. Let f be a simple function defined on the measurable space pX ,Σ, µ̂q, taking a finite number
of non-negative distinct values. If α̂1, α̂2, . . . , α̂n are the distinct values of f , then we may express f as,

f �
ņ

i�1

α̂iχÃi
, where Ãi � tx|fpxq � α̂iu. Then the Lebesgue integral of f with respect to the measure µ̂

is given by »
X
f dµ̂ �

ņ

i�1

α̂iµ̂pÃiq.

Also, the convention 0�8 � 0 is to be understood in this definition [16].

We will also use the following definition of expectation for a random variable with respect to a probability
measure as presented in [17].

Definition 3.8. Let Z be a simple function defined on the probability space pΓ,F , πq. Then the expectation
of Z, with respect to the probability measure π is defined as

EπrZs �
»

Γ

Z dπ,

[17].

We are now in a position to utilise what we have just introduced from probabilistic measure theory for
the basket option pricing problem. In particular we note here that the probability measure π will play an
important role in the set-up and formulation of the optimisation model for the problem we are considering.

3.3 Modelling the basket option pricing problem as an optimisation problem

In what follows, for the remainder of this section, we present results from literature which aim to find price
bounds on a European basket call option.
We start by formally setting some notation. Suppose that we are interested in finding price bounds on a
European basket call option written on n underlying assets, with exercise price E, where E ¥ 0. Suppose
further that for each asset, we know its respective current price. We denote the current price of the ith asset by

S0
i for i � 1, 2, . . . , n. Then we may define the vector S0 P Rn� by S0 �

�
S0

1 , S
0
2 , . . . , S

0
n

�T
. Further, suppose

that the basket option has an expiry date given by T . Then we denote the random asset prices at expiry T ,

26



by Si for i � 1, 2, . . . , n. Then, the vector S P Rn� given by S � pS1, S2, . . . , Snq
T

is an n-dimensional non-
negative real valued random variable. F is a σ�algebra on the set Rn�, and π is a probability measure which
assigns a probability to a vector S. We have the property that πpRn�q � 1, indicating that the probability of
the vector S having non-negative values, that is, the probability that at expiry all assets have a non-negative
price is 1. This property is captured in the constraints of our optimisation problem as we will see below, via
an appropriate Lebesgue integral. Also, we assume that for each asset i, for i � 1, 2, . . . , n, there exists one
European vanilla call option with expiry date T and exercise price Ei P R�, for i � 1, 2, . . . , n. Then the
payoff of each of these i European vanilla call options is given by maxpSi � Ei, 0q for each i � 1, 2, . . . , n.
For our work we assume that we know the current prices of each of these i European vanilla call options and
we denote this known price by C0

i P R� for i � 1, 2, . . . , n. Again, by convention we set C0 P Rn�, where

C0 �
�
C0

1 , C
0
2 , . . . , C

0
n

�T
.

Now recall the binomial method for pricing options from sub-section 2.1.4. There, we saw that the pricing
of an option depended on the parameters ũ, d̃ and p. In particular, we explained how the probability p was
to be used within the method to obtain the price of an option. One of the main assumptions of this method
was the idea of risk-neutrality. Under this assumption we introduced the formula (2.11), which in principle
states that the current price of an option is equal to the value of the discounted expected payoff of that
option under a risk neutral probability measure. This was then used to accurately price the option. Using
a similar idea we will see how we can derive an optimisation model aimed at finding bounds on the price
of a European basket call option. The assumption of risk-neutrality meant that the probability p from the
binomial method was risk-neutral. We now extend this idea to the basket option setting.
To start with, consider an option which gives a future random payoff of Y . If this option has an associated
risk-neutral probability measure π for the returns of its underlying assets, then the current price of this
option would be given by

Eπre�rTY s. (3.9)

That is, the current price of the option would be the discounted expected payoff of the option under the
risk-neutral probability measure π. This is confirmed by formula (2.11), which essentially states the same
thing under the risk-neutrality assumption, with probability p and in a more general setting.
Thus, if we assume risk-neutrality, then the probability measure π associated with the basket option written
on n underlying assets, with future values S P Rn�, is a risk-neutral measure. Also, it is known that (see [11])
if we assume the market to be arbitrage free, then at least one such risk-neutral measure π exists. This was
also presented in Theorem 2.39 in sub-section 2.3.1.
Thus, under the risk-neutrality assumption we can find arbitrage-free upper and lower bounds on the current
price of a basket option. Indeed, for an option with payoff Y , if we take the infimum/supremum over all
probability measures π of Eπre�rTY s, respectively we would get no-arbitrage lower/upper bounds on the
price of the option, respectively. In terms of the basket option pricing problem, we consider the random
future payoff, maxpωTS � E, 0q, so that we are interested in optimising the following expected value with
respect to the risk-neutral probability measure π,

Eπre�rT maxpωTS � E, 0qs.

We also need some restrictions on the probability measure π to be found. For the basic set-up of the problem
we include the conditions that we know the current prices of one European vanilla call option per asset, with
exercise price Ei, for i � 1, 2, . . . , n and these known prices are given by C0

i for i � 1, 2, . . . , n. Under the
assumption of π being a risk-neutral probability measure, we have the condition that Eπre�rT maxpSi �
Ei, 0qs � C0

i for i � 1, 2, . . . , n. Also, we may obviously assume that we know the current prices of each of
the n underlying assets. This gives the restriction that Eπre�rTSis � S0

i for i � 1, 2, . . . , n. Alongside all of
these we also require the condition that Eπr1s � 1, so that this restriction guarantees that the measure π to
be found is a probability measure.
This then allows us to model the basic problem of finding arbitrage-free upper bounds on the price of a
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European basket call option as

sup
π

Eπre�rT maxpωTS � E, 0qs

subject to Eπre�rT maxpSi � Ei, 0qs � C0
i , for i � 1, 2, . . . , n

Eπre�rTSis � S0
i , for i � 1, 2, . . . , n

Eπr1s � 1.

(3.10)

Similarly, we may model the task of finding arbitrage-free lower bounds on the price of a European basket
call option as

inf
π

Eπre�rT maxpωTS � E, 0qs

subject to Eπre�rT maxpSi � Ei, 0qs � C0
i , for i � 1, 2, . . . , n

Eπre�rTSis � S0
i , for i � 1, 2, . . . , n

Eπr1s � 1.

(3.11)

Now, (3.10) and (3.11) are one of the basic optimisation problems that can be used to model the task of
finding upper/lower bounds on the price of a European basket call option. In the next sub-sections we will
consider results which have been derived from (3.10) and (3.11) as well as modifications of these problems.
In particular, we will see how we can obtain bounds on the price of a basket option when we modify the
constraints of the above by assuming that we know the prices of numerous European vanilla call options per
asset with different exercise prices. We will see how to modify the constraints in the above problems so that
instead of assuming that we know the prices of European vanilla call options, we assume that we know the
prices of various other basket call options written on the same n underlying assets, and obtain upper/lower
bounds in this way. We will also consider how to incorporate bid-ask prices into the model and we will also
consider the case when the interest rate r is zero, that is when r � 0. In that case we observe that

e�rT � e0 � 1.

Before proceeding we observe that (3.10) and (3.11) may be written in integral form by utilising the definitions
introduced above.
Observing that the variable S is associated with the probability space

�
Rn�,F , π

�
, using Definition 3.8 the

objective function of (3.10) and (3.11) to be optimised may be written as,

Eπre�rT maxpωTS � E, 0qs �

»
Rn
�

e�rT maxpωTS � E, 0q dπ.

Similarly we may re-write the expectation in the constraints as,

Eπre�rT maxpSi � Ei, 0qs �

»
Rn
�

e�rT maxpSi � Ei, 0q dπ

and

Eπre�rTSis �
»
Rn
�

e�rTSi dπ,

respectively, for i � 1, 2, . . . , n.
For the final constraint Eπr1s � 1, we argued above that this constraint ensured that the measure π to be
found is a probability measure. To see why this is so we observe the following.
From Definition 3.8 we may write,

Eπr1s �
»
Rn
�

1 dπ.
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Now, we may define the constant function c̄ : Rn� Ñ R given by c̄pSq � 1. Then we may observe that c̄pSq
is a simple function because we may write,

c̄pSq � 1� χA1pSq,

where χA1
is the indicator function defined by

χA1
pSq �

#
1 if S P A1

0 otherwise,

and A1 is the set A1 � tS|c̄pSq � 1u.
Now, we observe that A1 � Rn� because c̄pSq � 1, for all S P Rn� and so χA1

� 1, since S P Rn� � A1.
Therefore, using Definition 3.7 we have,»

Rn
�

1 dπ � 1� πpA1q � 1� πpRn�q � πpRn�q.

Therefore, we have
Eπr1s � πpRn�q p� 1q,

and so the final constraint does indeed ensure that the measure π to be found is a probability measure.
Finally, we note here that (3.10) and (3.11) and all possible modifications of these problems which we consider
in this thesis are duals of semi-infinite optimisation problems. They are duals because as we will see later,
the dual problem to (3.10) and (3.11) is a linear semi-infinite optimisation problem with a finite dimensional
variable and infinitely many constraints. That is, the dual problem to (3.10) and (3.11) is a problem of the
form (2.23) and so is a linear semi-infinite optimisation problem.

3.3.1 Solving the basic problems (3.10) and (3.11)

Now, (3.10) and (3.11) are the most basic optimisation problems aimed at finding upper and lower bounds
on the current price of a European basket call option, respectively. Existing literature has observed that
(3.10) and (3.11) are duals to semi-infinite optimisation problems and hence they have utilised results from
duality theory which we introduced in section 2.2.5 to solve these problems. In particular, in [18] the upper
bound problem (3.10) is solved for the general n asset case and the lower bound problem (3.11) is solved for
the specific n � 2 asset case. In [19], problem (3.11) is solved for the general n asset case by equivalently
re-writing the SIO problem for which (3.11) is its dual problem, as a finite LO problem. Finally, in [20]
problems (3.10) and (3.11) are solved for the general n asset case and with the risk-free interest rate r � 0.
In this case the derived upper and lower bounds are the same and so the derived result is actually the price
of the European basket call option.
It is worth noting here that this is not the only model where the obtained bounds are equal to the exact
current price of the basket option. In the following cases the obtained bounds are the exact current basket
option price.

1. When computing an upper bound on the price of the basket option given that we know one forward
(expected) price and one vanilla call option price constraint per asset.

2. When computing an upper bound on the price of the basket option, given two different exercise prices
of a vanilla call option per asset and thus two prices per option, per asset as the constraints. There
are no forward (expected) prices in this model.

3. When computing a lower bound on the price of the basket option, given one forward (expected) price
and one vanilla call option price constraint, per asset.

4. When computing a lower bound on the price of the basket option, given one vanilla call price constraint
per asset, but no forward (expected) prices.
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The constraints of problems (3.10) / (3.11) can be modified to give new optimisation models which aim to
solve the same problem. By considering these modifications we can introduce different solution techniques
and results and compare these to see what the tightest upper/lower bound is.

3.4 Modification 1: Assuming that multiple vanilla call option prices are known,
per asset

We first consider perhaps the most natural extension of the constraints from (3.10) / (3.11). Recall that
when we first formulated the basket option pricing problem as an optimisation problem, we assumed that
we knew the current prices of one European vanilla call option per asset, and so we knew a total of n prices.
Now we consider an extension of this model. We now assume that we know the current prices of multiple
European vanilla call options per asset. Then, using this information and the assumption of no-arbitrage we
look to find bounds on the current price of a European basket call option of interest. In what follows, we
present the work done in [11].
We consider working with the basic upper bound problem (3.10). Recall this optimisation problem as

sup
π

Eπre�rT maxpωTS � E, 0qs

subject to Eπre�rT maxpSi � Ei, 0qs � C0
i , for i � 1, 2, . . . , n

Eπre�rTSis � S0
i , for i � 1, 2, . . . , n

Eπr1s � 1.

(3.10)

We present a simple extension of (3.10), as done in [11]. Instead of assuming that we know the current
prices of one European vanilla call option per asset, given by C0

i , for i � 1, 2, . . . , n; we now assume that
we know the current prices of q European vanilla call options per asset, given by Cli , with exercise prices Eli,
for i � 1, 2, . . . , n � and l � 1, 2, . . . , q. This means that we know a total of (n� q) current European vanilla
call option prices.
This gives the optimisation problem (3.12) below, which is a dual to a linear SIO problem, taken from [11],
and which may be viewed as an extension to (3.10).

sup
π

Eπre�rT maxpωTS � E, 0qs

subject to Eπre�rTSis � S0
i , for i � 1, 2, . . . , n

Eπre�rT maxpSi � Eli, 0qs � Cli , for i � 1, 2, . . . , n and l � 1, 2, . . . , q

Eπr1s � 1.

(3.12)

We now observe that the linear SIO problem for which (3.12) is its dual is given by

inf
ul,z,v

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P Rn�.
(3.13)

We note here that the index set I � Rn� is not compact. However, as the next proposition taken from [11]
shows, we may restrict I in (3.13), to a compact set without changing the feasible set of the problem.
For the purposes of this thesis, we find it necessary to present the proof of the next proposition. This
is because the proof of our new and original results, presented in later sections use similar ideas to those
presented in the following proof.
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Proposition 3.14. Suppose that the exercise prices Eli are ordered such that 0 ¤ E1
i ¤ E2

i ¤ � � � ¤ Eqi ,

for all i � 1, 2, . . . , n. Define the index set I(3.15) �
n�
i�1

r0, Eqi s. Then the following optimisation problem

(3.15), is equivalent to (3.13) in the sense that both problems have the same feasible set, and, hence the same
optimal solution and optimal objective function value.

min
ul,z,vPRn�q�R�Rn

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ maxtω, 0u

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P I(3.15).

(3.15)

Proof. We start by observing that the objective functions of (3.13) and (3.15) are the same. Thus in order
to show these two problems are equivalent we must show that their respective feasible regions are the same.
Let F(3.13) and F(3.15) denote the feasible regions of (3.13) and (3.15), respectively. We then show that
F(3.13) � F(3.15).
The proof comes in two parts.
(i) F(3.13) � F(3.15): Take any pu1, u2, . . . , uq, z, vq P F(3.13). We then show that pu1, u2, . . . , uq, z, vq P F(3.15).

Now, since I(3.15) �
n�
i�1

r0, Eqi s, then I(3.15) forms an n-dimensional ‘rectangle’. That is, it forms a ‘rectangle’

in n-dimensional non-negative space and so I(3.15) � Rn�. From the constraint in (3.13) we have

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P Rn�.

It then follows that since I(3.15) � Rn�, the constraint in (3.13) obviously still holds for all S P I(3.15). That
is,

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P I(3.15),

and so the second constraint from (3.15) holds.
To show that the first constraint holds we have the following. Recall that pu1, u2, . . . , uq, z, vq satisfies the
constraint

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q,

from (3.13), for all S P Rn�. This means that for the asset price vector S, with Si � η, for some η ¡ 0 and
all other components equal to 0, for i � 1, 2, . . . , n, the constraint still holds. That is, the constraint holds

for the vector S �

�
������

0
0
...
η
0

�
�����, where η is in the ith position, for i � 1, 2, . . . , n.

We have

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P Rn�,

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk ¥ max

�
ņ

k�1

ωkSk � E, 0

�
, @ S P Rn�.

31



Now, for each i � 1, 2, . . . , n, Si � η and all other components are equal to 0.
For a particular i, ùñ

q̧

l�1

puliqmaxpSi � Eli, 0q � zerT � viSi ¥ maxpωiSi � E, 0q

ðñ
q̧

l�1

puliqmaxpη � Eli, 0q � zerT � viη ¥ maxpωiη � E, 0q

ðñ
q̧

l�1

puliqηmax

�
1�

Eli
η
, 0



� zerT � viη ¥ ηmax

�
ωi �

E

η
, 0



,

and so, if we divide both sides by η we get (since η ¡ 0),

ùñ
q̧

l�1

puliqmax

�
1�

Eli
η
, 0



�
zerT

η
� vi ¥ max

�
ωi �

E

η
, 0



,

and if η Ñ8, then
El

i

η Ñ 0, zerT

η Ñ 0 and E
η Ñ 0. This gives, in the limit as η Ñ8,

q̧

l�1

puliqmaxp1, 0q � 0� vi ¥ maxpωi, 0q

ðñ
q̧

l�1

puliq � vi ¥ maxpωi, 0q,

which holds for all i � 1, 2, . . . , n.
This in vector form is just

q̧

l�1

ul � v ¥ maxtω, 0u, (3.16)

and so the first constraint from (3.15) holds.
(ii) F(3.15) � F(3.13): Now we prove the converse. So, take any pu1, u2, . . . , uq, z, vq P F(3.15). Then, in order

to show that pu1, u2, . . . , uq, z, vq P F(3.13), we must show that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P Rn�.

Thus, it suffices to show that

max
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(3.15)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

since pu1, u2, . . . , uq, z, vq P F(3.15) it holds that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P I(3.15).

Thus,

maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ 0 @ S P I(3.15),
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and so,

max
SPI(3.15)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¤ 0,

and so if

max
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(3.15)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

it means that

max
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¤ 0

and so

maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ 0, @ S P Rn�,

ðñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P Rn�,

in which case the proposition is proved.
We now show that

max
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(3.15)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
.

Define the function ψ : Rn� Ñ R, given by

ψpSq � maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS.

Consider ∇ψpSq, for all S R I(3.15). Then we have the following.
(a) If ωTS � E   0,

∇ψpSq � dψ

dS
� �

q̧

l�1

ul � v.

(b) If ωTS � E ¡ 0,

∇ψpSq � dψ

dS
� ω �

q̧

l�1

ul � v.

Now, from the first constraint in (3.15) however, we observe that

�
q̧

l�1

ul � v ¤ �maxtω, 0u ¤ 0, and
q̧

l�1

ul � v ¥ maxtω, 0u ¥ ω.

This means
q̧

l�1

ul � v ¥ ω which gives �
q̧

l�1

ul � v ¤ �ω and so ω �
q̧

l�1

ul � v ¤ 0.
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ùñ In case (a) and (b), for all S R I(3.15),

∇ψpSq ¤ 0 ùñ ψpSq is non-increasing for all S R I(3.15).

This means that ψpSq must attain its maximum value for a value of S P I(3.15) and so it holds that

max
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(3.15)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

and the proposition is proved.

We now show that the semi-infinite optimisation problem (3.15) can be re-formulated as a finite linear
problem. Again we consider the work carried out in [11].
We start be recalling (3.15) as

min
ul,z,v

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ maxtω, 0u

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ maxpωTS � E, 0q, @ S P I(3.15).

(3.15)

Now the second constraint is equivalent to the following two semi-infinite constraints, (3.17) and (3.18), by
observing that

maxpωTS � E, 0q ¥ 0, and maxpωTS � E, 0q ¥ ωTS � E.

ùñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ ωTS � E, @ S P I(3.15) (3.17)

and
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ 0, @ S P I(3.15). (3.18)

Which is equivalent to

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi ¥
ņ

i�1

ωiSi � E, @ S P I(3.15),

and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi ¥ 0 @ S P I(3.15),

respectively.
We may re-write these as

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi �
ņ

i�1

ωiSi � zerT � E ¥ 0, @ S P I(3.15),
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and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � zerT ¥ 0 @ S P I(3.15),

respectively.
Switching the order of summation gives

ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi

�
looooooooooooooooooooooooomooooooooooooooooooooooooon

p�q

�zerT � E ¥ 0, @ S P I(3.15),

and
ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi

�
loooooooooooooooooooomoooooooooooooooooooon

p��q

�zerT ¥ 0 @ S P I(3.15),

respectively.
Now we choose α, β P Rn to be such that αi provides a lower bound to p�q and βi provides a lower bound to
p��q, for all i � 1, 2, . . . , n. That is, we choose αi, βi, for all i, such that

αi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi,

and

βi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi,

for all i � 1, 2, . . . , n.
ùñ The semi-infinite constraints of (3.15) become$'''''''''''''&

'''''''''''''%

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � E ¥ 0

ņ

i�1

βi � zerT ¥ 0.

(3.19)

This means that a vector pu1, u2, . . . , uq, z, vq is feasible for (3.15) if and only if pu1, u2, . . . , uq, α, β, z, vq P
Rn�q � Rn � Rn � R � Rn is feasible for system (3.19). We observe here that by writing the semi-infinite
constraints of (3.15) as system (3.19), we have that the last two constraints are standard (finite) linear
constraints.
Now consider the semi-infinite constraints from system (3.19). Then, we have

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n,

and
q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n.
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Then we observe that both of these constraints are piece-wise linear constraints. Thus, the minimum value
of the left hand side of both inequalities over all values of Si P r0, E

q
i s, for all i � 1, 2, . . . , n occurs at one

of the break points. That is, it occurs exactly when Si � 0 or Si � E1
i or Si � E2

i or . . . or Si � Eqi ,
for all i � 1, 2, . . . , n. Therefore, we may consider these semi-infinite constraints for the pq � 1q values
Si P t0, E

1
i , E

2
i , . . . , E

q
i u, for i � 1, 2, . . . , n.

Thus, it holds that

min
SiPr0,E

q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi

� min
SiPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi,

and

min
SiPr0,E

q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi

� min
SiPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi.

Therefore, each of the semi-infinite constraints of system (3.19) can now be replaced by pq�1q finite piece-wise
linear constraints. That is, we may replace the constraint

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

by
q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi ¥ αi, for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n,

and the constraint

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

by
q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n.

This leads us to the following theorem, which can be found in [11].

Theorem 3.20. The semi-infinite optimisation problem (3.15) is equivalent to the following finite linear
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optimisation problem

min
pu1,u2,...,uq,z,vqPRn�q�R�Rn,α,β,PRn

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ maxtω, 0u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � ωiSi ¥ αi,

for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi,

for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � E ¥ 0

ņ

i�1

βi � zerT ¥ 0,

(3.21)

in the sense that both optimisation problems have the same feasible region and hence the same optimal
solution and the same optimal objective function value.

Observation: In comparison to the semi-infinite problem (3.15); we observe here that (3.21) has n�n � 2n
additional variables and a total of

n� npq � 1q � npq � 1q � 2 � n� 2npq � 1q � 2 � n� 2nq � 2n� 2 � 3n� 2nq � 2 � np2q � 3q � 2

linear constraints. The advantage of solving (3.21) in comparison to (3.15) is that we are solving a standard,
finite linear problem in comparison to a semi-infinite one; something which can be easily implemented on an
appropriate LO software solver, even for large values of n.
This concludes presenting results from [11] which look at finding an upper bound on the current price of a
European basket call option under this particular model setting.
The proof of Proposition 3.14 and the technique used to derive the finite LO problem in Theorem 3.20 is
vital for the remainder of this thesis. In particular, a similar technique used in the proof of Proposition
3.14 is used in section 4.1 to re-write a SIO problem with a non-compact index set as a SIO problem with
a compact index set when considering finding lower bounds on the price of a European basket call option.
Furthermore, the technique used in the proof of Proposition 3.14 and the technique used to obtain the finite
LO problem in Theorem 3.20 is extended in sections 6, 7.2 and 8.2 of this thesis. In particular, using similar
methods to those outlined in Proposition 3.14 and Theorem 3.20, we obtain upper bounds on the price of a
Bermuda basket put option in section 6. We obtain upper bounds on the price of an Asian basket call option
in section 7.2. We obtain upper bounds on the price of an Altiplano Mountain Range option in section 8.2.
Finally, we note that a lower bound for the general n asset case is derived in [19] under this model setting.
The exact problem considered here is the same as problem (3.12) but with an inf objective function, and
the risk-free interest rate r set equal to 0.
We conclude by noting here that the methodology employed in this section and in the proof of Proposition
3.14 is vital to the remainder of this thesis. In this section we modelled the problem of finding an upper
bound on the current price of a European basket call option as a dual of a SIO problem. We then considered
the SIO problem for which the original problem was its dual; and observed that the index set of the SIO
problem was not compact. Through Proposition 3.14 we equivalently re-wrote the SIO problem as a SIO
problem with a compact index set. Finally, we managed to re-write the SIO problem with a compact index
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set as a finite, solvable LO problem. We will employ a similar methodology to the one outlined above when
we present our own results on this topic in sections 4.1,6,7.2 and 8.2.
This concludes presenting work from literature which looks at finding basket option price bounds given that
we know the current prices of numerous vanilla call options per asset.

3.5 Modification 2: Assuming that other basket option prices are known

In this sub-section we consider another modification of the basic optimisation problems (3.10) and (3.11).
Here, the basic model set-up is the same as in section 3.3, but the only difference is that instead of assuming
the current prices of n European vanilla call options, one per asset are known; we assume that we know the
current prices of a certain number of European basket call options, all written on the same n underlying
assets. These underlying assets are the same as those written on the basket option whose price we are
bounding.
We consider the result obtained in [19], which looks at obtaining a lower bound on the price of a European
basket call option.
In what follows, we will use the notation defined below.

• B0 P Rr� represents the current, known prices of the various r basket options, written on n underlying
assets.

• Let E P R� be the exercise price of the basket call option whose price we are bounding.

• Let ω P intpRn�q represent the positive weights vector for the basket call option whose price we are
bounding.

• Let Ei P R� be the exercise price of the ith basket call option whose current price we know, for
i � 1, 2, . . . , r.

• Let ωi P intpRn�q represent the weights of the ith basket option whose current price we know, for
i � 1, 2, . . . , r.

Then, taking the risk-free interest rate, r � 0, our problem may be modelled as the following optimisation
problem which is a dual to a SIO problem and is given as

inf
π

EπrmaxpωTS � E, 0qs

subject to Eπr1s � 1

Eπrmaxpωi
T
S � Ei, 0qs � B0

i , for i � 1, 2, . . . , r

π is a distribution in Rn�.

(3.22)

Defining the variables

�
z
yi



P Rr�1, for i � 1, 2, . . . , r, the linear SIO problem for which (3.22) is its dual

is given by

sup
z,y

z �
ŗ

i�1

B0
i yi

subject to z �
ŗ

i�1

yi maxpωi
T
S � Ei, 0q ¤ maxpωTS � E, 0q @ S P Rn�

y P Rr, z P R are ‘free’.

(3.23)

We are interested in using (3.23) to obtain a solution and in particular we wish to see when the optimal
objective function values of the problem (3.23) and the problem (3.22) coincide. The conditions for exactly
this to occur are given in the next proposition.
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Proposition 3.24. The optimal objective function values of (3.22) and (3.23) coincide if at least one of the
following two conditions hold.
(i) Strict primal feasibility,�

1
B0



P int

��
Eπr1s

Eπrmaxpωi
T
S � Ei, 0qs



: π is a distribution in Rn�



.

In particular, strong duality holds provided the prices B0 are arbitrage-free and remain arbitrage-free after
slight perturbations.
(ii) Strict dual feasibility.
There exists pẑ, ŷq P Rr�1 such that

pẑ, ŷq P int

�
pz, yq P Rr�1 : z �

ŗ

i�1

yi maxpωi
T
S � Ei, 0q ¤ maxpωTS � E, 0q,@ S P Rn�

�
.

In particular, strong duality holds provided that, for each asset, at least the current price of one vanilla option
is known [19].

We now present one way to solve the SIO problem (3.23) as outlined in [19].
For this we fix the following notational convention. Denote Ω to be the pr � nq matrix whose jth row is the
vector pωjqT , for j � 1, 2, . . . , r and also denote Ẽ P Rr� to be the vector pE1, E2, . . . , Erq

T . Furthermore,

let I be a finite index set and suppose that we are given a vector ν P R|I|. Then, for J � I, let νJ P R|J|

denote the vector formed by the entries νj of ν with j P J . Similarly, suppose that a matrix Λ, is given such
that the rows of Λ are indexed by the set I. For J � I, let ΛJ denote the matrix formed by the rows of Λ
indexed by J . Also, let J 1 denote the set IzJ . The set I will be equal to t1, 2, . . . , ru, for some r ¡ 0 and
r P Z.
Using this notation and given J � t1, 2, . . . , ru we define

PJ � PJpΩ, Ẽq �
 
S : ΩJS ¥ ẼJ , ΩJ 1S ¤ ẼJ 1 , S ¥ 0

(
and the set J as

J � tJ � t1, 2, . . . , ru : PJ � Hu.

Then, in order to solve (3.23), we may equivalently re-write (3.23) as a finite linear problem. In order to
re-write (3.23) as a finite LO problem, we use the following lemma.

Lemma 3.25. Let P̃ � tx|Qx ¤ d̄u � Rn be a non-empty polyhedron.
(a) Assume that ā P Rn and ᾱ P R are given. Then the following two conditions are equivalent.
(i) For all x P P̃ , āTx ¤ ᾱ
(ii) There exists y P Rr�, such that

ā � QT y and ᾱ ¥ d̄T y.

(b) Assume ā, b̄ P Rn and ᾱ, β̄ P R are given. Then the following two conditions are equivalent.
(i) For all x P P̃ , either āTx ¤ ᾱ or b̄Tx ¤ β̄
(ii) There exists ζ P r0, 1s such that for all x P P̃ ,

pζā� p1� ζqb̄qTx ¤ pζᾱ� p1� ζqβ̄q.

Proof. See [19].

Then, using this lemma, the SIO problem (3.23) can be re-written as a finite linear problem.
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Proposition 3.26. The SIO problem (3.23) can be re-written equivalently as the following finite linear
problem,

max
z,y

z �B0T y

subject to � ζω � ΩTJ yJ � �ΩTJ γ
J � ΩTJ 1β

J 1, J P J

� z � ζE � yTJ ẼJ ¥ �ẼTJ γ
J � ẼTJ 1β

J 1, J P J
ζ ¤ 1 J P J

y P Rr, z P R, ζ P R�, γ
J P R|J|

� , βJ
1

P R|J 1|
� , J P J .

(3.27)

Proof. We have the following SIO problem for which its dual is (3.22) and is given by

sup
z,y

z �
ŗ

i�1

B0
i yi

subject to z �
ŗ

i�1

yi maxpωi
T
S � Ei, 0q ¤ maxpωTS � E, 0q @ S P Rn�.

(3.23)

Now consider the constraint of the above SIO problem (3.23). We do not know today whether the basket
option whose price we are bounding expires in or out of the money. We consider both cases and use part pbq
of Lemma 3.25.
Then we have that either

z � yT maxpΩS � Ẽ, 0q ¤ ωT s� E, @ S P Rn�, (3.28)

or
z � yT maxpΩS � Ẽ, 0q ¤ 0, @ S P Rn�. (3.29)

Re-write (3.28) as

�pωTS � Eq � yT maxpΩS � Ẽ, 0q ¤ �z, @ S P Rn�
ðñ �ωTS � E � yTJ pΩJS � ẼJq ¤ �z, @ S P PJ , J P J

ðñ �ωTS � E � yTJ ΩJS � yTJ ẼJ ¤ �z, @ S P PJ , J P J .

This is the same as
p�ω � ΩTJ yJq

TS ¤ �z � E � yTJ ẼJ , @ S P PJ , J P J . (3.30)

We can also re-write (3.29) as

z � yTJ pΩJS � ẼJq ¤ 0, @ S P PJ , J P J
ðñ yTJ ΩJS � yTJ ẼJ ¤ �z, @ S P PJ , J P J .

This is the same as
pΩTJ yJq

TS ¤ �z � yTJ ẼJ , @ S P PJ , J P J . (3.31)

We use part piq of pbq with

ā � p�ω � ΩTJ yJq, x � S, ᾱ � �z � E � yTJ ẼJ ,

b̄ � ΩTJ yJ , β̄ � �z � yTJ ẼJ ,

along with

Q �

�
�ΩJ
ΩJ 1



and d̄ �

�
�ẼJ
ẼJ 1



.

40



Then from piq in part pbq, (3.30) and (3.31) holding is equivalent to there existing a ζ P r0, 1s such that
@ S P PJ �

ζp�ω � ΩTJ yJq � p1� ζqΩTJ yJ
�T
S ¤

�
ζp�z � E � yTJ ẼJq � p1� ζqp�z � yTJ ẼJq

	
ðñ

�
p�ζω � ζΩTJ yJq � ΩTJ yJ � ζΩTJ yJ

�T
S ¤ �ζz � ζE � yTJ ẼJζ � z � yTJ ẼJ � ζz � yTJ ẼJζ.

This is equivalent to

�
�ζω � ΩTJ yJ

�T
S ¤ �z � yTJ ẼJ � ζE, @ S P PJ , J P J . (3.32)

Now apply part paq with
ā � p�ζω � ΩTJ yJq and ᾱ � �z � yTJ ẼJ � Eζ,

and Q and d̄ as before.

Then (3.32) holding is equivalent to there existing a vector

�
γJ

βJ
1



P Rn� (where γJ P R|J|

� and βJ
1

P R|J 1|
� )

such that

�ζω � ΩTJ yJ �
�
�ΩTJ ΩJ 1

�� γJ

βJ
1




and

�z � yTJ ẼJ � Eζ ¥
�
�ẼTJ ẼJ 1

	� γJ

βJ
1




for J P J .
This is equivalent to

�ζω � ΩTJ yJ � �ΩTJ γ
J � ΩTJ 1β

J 1 , J P J

and
�z � yTJ ẼJ � ζE ¥ �ẼTJ γ

J � ẼTJ 1β
J 1 , J P J .

Recalling that ζ ¤ 1, the proof is complete.

Then, (3.27) can be solved to yield an optimal solution and hence a lower bound on the current price of the
basket option of interest.
We note here that the technique used in the proof of Proposition 3.26 above to re-write the SIO problem
(3.23) as a finite LO problem (3.27) is vital for the remainder of this thesis. In particular, when deriving our
own results in sections 4.2 and 7.3 , we have used similar techniques as used in the proof of Proposition 3.26.
In section 4.2 we used a similar technique to the one outlined above to obtain lower bounds on the price of
a European basket call option, incorporating bid-ask prices. In section 7.3 we again used similar techniques
as those in the proof of Proposition 3.26 above to obtain results regarding upper bounds on the price of an
Asian basket call option, again incorporating bid-ask prices. We note here that our obtained results extend
the techniques used in the proof of Proposition 3.26 as we incorporate bid-ask prices in our results and we
change the technique so we can solve an upper bound problem in section 7.3.
For the final part of this sub-section, we consider a solution method outlined in [21] which aims to solve
the optimisation problem (3.22) and the corresponding upper bound problem which is the same as problem
(3.22) but with sup replacing inf in the objective function.
The way to find bounds on the current price of a European basket call option using the above described
model what we consider is via a suitable Dantzig-Wolfe decomposition.
Recall that we have seen, and will also see again, that finding a lower bound on the current price of a basket
call option presents a significantly harder and more difficult problem in comparison to the corresponding
upper bound problem. In particular, when we look to find a lower bound on the current price of a basket
option we are presented with various challenges which were not encountered when solving the upper bound
problem.
As highlighted in [21], one advantage of using a Dantzig-Wolfe decomposition solution approach to solve
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the basket option pricing problem is that the upper and lower bounds can be obtained in a similar way. In
particular, if an algorithm is designed for solving the lower bound problem, we only have to slightly modify
the algorithm so that it can be used to solve the upper bound problem. In addition to this, by using this
specific algorithm, which we present below, we can incorporate the use of bid-ask prices into the model,
making it more realistic.
In what follows, we present a Dantzig-Wolfe decomposition solution approach (taken from [21]) to solve the
lower bound problem for the current price of a basket option. The upper bound problem can be solved
similarly by making slight changes as given in Remark 3.38.
For convenience, in the remainder of this sub-section we will use the following notation. Let ω0 P Rn� denote
the weights vector of the basket option whose current price we are bounding, (instead of ω) and let E0 P R�

replace E as the exercise price of the basket option whose current price we are bounding. All other notation
will stay the same. To start with, we recall the basic lower bound optimisation problem under the model we
are considering as

inf
π

Eπrmaxpω0TS � E0, 0qs

subject to Eπr1s � 1

Eπrmaxpωi
T
S � Ei, 0qs � B0

i , for i � 1, 2, . . . , r

π is a distribution in Rn�.

(3.33)

To proceed we use the following notational convention, as done in [21]. Let J̄ � tJ � t0, 1, 2, . . . , ruu be the
set of all subsets J , which is an index set. Define Ω̄ P Rpr�1q�n, to be an pr � 1q � n matrix whose jth row
is the vector pωjqT , for all j � 0, 1, . . . , r, so that the matrix Ω̄ captures the weights of the basket option
whose current price we are bounding, as well as the weights of the basket options whose current price we

know. Further, we also let Ê P Rpr�1q
� be given by pE0, E1, . . . , Erq

T
, so that the vector Ê captures all the

exercise prices that we know.
Now, we assume that we know an upper bound for the price of each asset Si, for i � 1, 2, . . . , n in the basket
option at expiry. In particular, we will let Ui ¡ 0, for all i � 1, 2, . . . , n be an upper bound for the asset
price Si at expiry. This means that for the ith asset, we have that 0 ¤ Si ¤ Ui, for all i � 1, 2, . . . , n. Then,
we may use this to define the vector U P Rn� as pU1, U2, . . . , Unq

T
.

Now we further set the following notational convention, similar to what was done above. For a vector
ν̄ P Rpr�1q, and J P J̄ , let ν̄J P R|J| denote the vector formed by the entries ν̄j , for j P J . Similarly, for a
matrix Λ̄ P Rpr�1q�n, let the rows of Λ̄ be indexed by the set t0, 1, . . . , ru. Then, for J P J̄ , the sub-matrix
Λ̄J is the matrix Λ̄J P R|J|�n, where Λ̄J has its rows constructed by the rows from Λ̄ indexed by the set J .
Also, let J 1 � t0, 1, . . . , ruzJ .
Then, in order to use a suitable Dantzig-Wolfe decomposition solution approach for this problem, we consider
the probability measure π to be from B̃, where B̃ are the box constraints given by

B̃ � r0, U1s � r0, U2s � � � � � r0, Uns.

We use the following proposition.

Proposition 3.34. Let I be an index set, and Ri, for i P I be a partition of B̃. For any piece-wise linear
function, f : B̃ Ñ R, such that when f is restricted to Ri, it is linear for each i P I; we have that

EπrfpSqs �
¸
iPI

EπrfpSq|S P RisπpS P Riq �
¸
iPI

f rEπpS|S P RiqsπpS P Riq.

If Ri is convex and bounded for each i, we further have that EπrS|S P Ris P Ri.

Then, using Proposition 3.34, we may conclude that the probability measure π in a certain region of B̃ can
be concentrated to a single point in that region [21]. That is, in a single ‘box’ of B̃, there exists only one
point where π has a non-zero, and hence positive probability value.

42



In particular, using the piece-wise linearity of the payoff of the basket options, we may partition B̃ by PJ ,
where

PJ � tS P Rn� : Ω̄JS ¥ ÊJ , Ω̄J 1S ¤ ÊJ 1 , 0 ¤ S ¤ Uu, @ J P J̄ .

Using this partition of B̃ and the result in Proposition 3.34, we may re-write the lower bound problem (3.33)
which is a dual to a linear SIO problem, as a finite non-linear optimisation problem.
If SJ P Rn� represents the expected price of the asset prices at expiry. That is, we set EπrSs � SJ and let
the probability of this expected outcome occurring be given by θJ , where 0 ¤ θJ ¤ 1, and θJ P R, then we
have that the problem (3.33) is equivalent to the following finite non-linear optimisation (NLO) problem,

min
θJ

¸
JPJ̄ :0PJ

maxpω0TSJ � E0, 0qθ
J

subject to
¸
JPJ̄

θJ � 1

¸
JPJ̄ :jPJ

maxpωj
T
SJ � Ej , 0qθ

J � B0
j , for j � 1, 2, . . . , r,

SJ P PJ , for J P J̄
θJ ¥ 0, for J P J̄ .

(3.35)

To solve this non-linear optimisation problem we appeal to the Dantzig-Wolfe, (D-W for short) decomposition
algorithm. For the basic ideas and definitions regarding the (D-W) decomposition algorithm, we refer the
reader to [21].
To apply the (D-W) decomposition algorithm to the basket option lower bound pricing problem (3.35) we
first tackle the non-linearity of the problem. To do this we define a new variable uJ � SJθJ , for all J P J̄ .
This would then allow us to apply the (D-W) decomposition algorithm to obtain an optimal solution to
(3.35).
For the sub-problems we consider the block constraints

SJ P PJ , @ J P J̄

and
θJ ¥ 0, @ J P J̄ ,

from (3.35). The remainder of (3.35) will form the master problem. (See [21] for more on this).
Now, observing that PJ is a polyhedron, since it is just a combination of a finite number of linear constraints,

then for each J P J̄ , if ˜SJ,k, for J P J̄ , and k � 1, 2, . . . , NJ , where NJ is the number of extreme points of
the polyhedron PJ , for all J P J̄ , is the set of extreme points for PJ , then, and referring the reader to [21]
for full details, we may re-write (3.35) as the following equivalent problem

min
λJ,k,θJ

¸
JPJ̄ :0PJ

�
ω0T

�
NJ̧

k�1

λJ,k ˜SJ,k

�
� E0

�
θJ

subject to
¸
JPJ̄

θJ � 1

¸
JPJ̄ :jPJ

�
ωj

T

�
NJ̧

k�1

λJ,k ˜SJ,k

�
� Ej

�
θJ � B0

j , for j � 1, 2, . . . , r

NJ̧

k�1

λJ,k � 1, @ J P J̄

λJ,k ¥ 0, for J P J̄
θJ ¥ 0, for J P J̄ .

(3.36)
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Further, if we define θJ,k � θJλJ,k, for all J P J̄ and for all k � 1, 2, . . . , NJ , then (3.36) becomes

min
θJ,k

¸
JPJ̄ :0PJ

NJ̧

k�1

pω0T ˜SJ,k � E0qθ
J,k

subject to
¸
JPJ̄

NJ̧

k�1

θJ,k � 1

¸
JPJ̄ :jPJ

NJ̧

k�1

pωj
T ˜SJ,k � Ejqθ

J,k � B0
j , for j � 1, 2, . . . , r

θJ,k ¥ 0, @ J P J̄ , @ k � 1, 2, . . . , NJ .

(3.37)

We observe that (3.37) is now a large-scale linear optimisation problem in the variable θJ,k, and it is equivalent
to (3.36) which is used to find a lower bound on the current price of a basket option which we are considering
here.
We may now apply the (D-W) decomposition algorithm to the large scale LO problem (3.37) as done in [21].
Consider a subset of the extreme points of the set PJ , for all J P J̄ , given by

X̂ �
¤
JPJ̄

t ˜SJ,k : k � 1, 2, . . . ,MJu �
¤
JPJ̄

t ˜SJ,k : k � 1, 2, . . . , NJu.

Then we define the master problem as

min
θJ,k

¸
JPJ̄ :0PJ

MJ̧

k�1

pω0T ˜SJ,k � E0qθ
J,k

subject to
¸
JPJ̄

MJ̧

k�1

θJ,k � 1

¸
JPJ̄ :jPJ

MJ̧

k�1

pωj
T ˜SJ,k � Ejqθ

J,k � B0
j , for j � 1, 2, . . . , r

θJ,k ¥ 0, @ J P J̄ , @ k � 1, 2, . . . ,MJ .

(3.37X̂ )

Further, defining an indicator variable I0PJ , where

I0PJ �

#
1 if 0 P J

0 otherwise,

and recalling that the sub-problems captured the constraints

SJ P PJ , @ J P J̄ , and θJ ¥ 0, @ J P J̄ ,

from (3.35), we can now define the sub-problems as follows.
Given τ̃ and ρ̃ � pρ̃1, ρ̃2, . . . , ρ̃τ̃ q, and J P J̄ , as in [21], the sub-problems are given by

min
τ̃ ,ρ̃

pω0TS � E0qI0PJ � τ̃ �
¸

jPJ,j¡0

ρ̃jpω
jTS � Ejq

subject to S P PJ .
(3.37S)

We may now solve p3.37X̂ q to obtain an optimal solution and hence a lower bound on the current price of
the basket option under consideration. For full detailed explanation on the solution algorithm used to solve
p3.37X̂ q we refer the reader to [21].
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Remark 3.38. All of the analysis presented above on using the (D-W) decomposition algorithm to obtain
a solution for the bounds on the current price of a basket option has been concerned with a lower bound
problem. As already mentioned, one advantage of using this approach is that we may solve the upper bound
problem in identical fashion by making the following modifications.

• In all optimisation problems, replace min by max.

• Make suitable changes to the (D-W) decomposition solution algorithm as highlighted in [21].

We note that the lower bound problem (3.22) and its corresponding upper bound problem obtained by
replacing inf with sup in the objective function is also solved in [20] using a different solution approach than
the one considered here.
Again, we conclude by noting here that the methodology employed in the proof of Proposition 3.26 is vital
to the remainder of this thesis. In this section we modelled the problem of finding a lower bound on the
current price of a European basket call option as a dual of a SIO problem. We then considered the SIO
problem for which the original problem was its dual. We then re-wrote the semi-infinite constraint of the
SIO problem (3.23) as finitely many linear constraints so that the SIO problem (3.23) could equivalently be
re-written as a finite and solvable LO problem. We will employ a similar methodology to the one outlined
in the proof of Proposition 3.26 when we present our own results on this topic in sections 4.2 and 7.2.

3.6 Other modifications of (3.10) / (3.11)

The modifications of the constraints of problems (3.10) / (3.11) discussed in sections 3.4 and 3.5 are arguably
the most natural modifications that we can make to the basic optimisation model. In this sub-section we
briefly consider some other modifications of (3.10) / (3.11) that have been looked at in existing literature.
In [11], upper bounds on the price of a European basket call option are derived by assuming that we know
the current prices of one European vanilla call option, per asset and the current prices of other European
exotic call options written on single assets only, where these single assets are Si. That is, those assets that
form the basket option; then it is possible to repeat the analysis from sub-section 3.4 and obtain an upper
bound on the current price of a basket call option under this assumption. Some examples of European exotic
call options written on single assets that could be used are k-power options, binaries and digitals and so on.
For a full list we refer the reader to [3].
For a simple example on how to implement what is described above, we refer the reader to [11], where the
above ideas have been implemented for a 2-power option.
Another modification of (3.10) / (3.11) is considered in [21], where a lower bound on the price of a European
basket call option is derived given that we know the current bid-ask prices of m other European basket call
options written on the same n underlying assets. If Baski represents the current, known ask price for the ith

basket option and Bbidi represents the current, known bid price for the ith basket option, for i � 1, 2, . . . ,m,
then the following optimisation problem, which is a dual to a linear SIO problem, is solved in [21].

inf
π

EπrmaxpωTS � E, 0qs

subject to Eπr1s � 1

Eπrmaxpωi
T
S � Ei, 0qs ¤ Baski , for i � 1, 2, . . . ,m

Eπrmaxpωi
T
S � Ei, 0qs ¥ Bbidi , for i � 1, 2, . . . ,m

π is a distribution in Rn�.

(3.39)

3.6.1 Assuming that the bid-ask prices of vanilla options is known

The final optimisation model which we consider is taken from [22]. Recall that in sub-section 3.3, when
setting up the basic optimisation problems (3.10) / (3.11) we assumed that we knew the current prices of
European vanilla call options. Here, we implicitly assumed that we knew the current mid-market prices of
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these options. However, in reality this assumption does not hold. Instead when we look for current prices of
options, say on the internet or in the Financial Times, for example, we are given two prices; a bid price and
an ask price. The bid price corresponds to how much we may sell the option for on the market and the ask
price is the price that we may buy the option for from the market, where ask price is greater than or equal
to the bid price, of course.
We start by setting up the optimisation model as done in [22]. Suppose that the basket call option whose
current price we are bounding is written on n assets, with ωi P R representing the weight of the ith asset,
for i � 1, 2, . . . , n. E is the exercise price of this basket option, with E P R and E ¥ 0. Si P R� represents
the possible prices of the ith asset at expiry, for i � 1, 2, . . . , n. Furthermore, we also suppose that we know
the current ask prices and current bid prices of pm � 1q � n European vanilla options. That is, we assume
that the current bid-ask prices of pm � 1q European vanilla call options, per asset (for a total of n assets)
is known. Let paskij denote the current ask price of the jth European vanilla call option, written on asset i,

for i � 1, 2, . . . , n and j � 0, 1, . . . ,m. Similarly, let pbidij denote the current bid price of the jth European
vanilla call option, written on asset i, for i � 1, 2, . . . , n and j � 0, 1, . . . ,m. Of course we also assume that
paskij ¥ pbidij , for all i � 1, 2, . . . , n, and for all j � 0, 1, . . . ,m. Finally, we also let Eij ¥ 0 denote the exercise

price of the jth European vanilla call option written on asset i, for i � 1, 2, . . . , n and j � 0, 1, . . . ,m. We
also assume that all options have the same expiry date, given by T ; and the risk-free interest rate, r � 0.
If π is a probability measure, then the task of finding a no-arbitrage upper bound on the current price of a
European basket call option is given by,

sup
π

Eπ

�
max

�
ņ

i�1

ωiSi � E, 0

��

subject to EπrmaxpSi � Eij , 0qs ¤ paskij , i � 1, 2, . . . , n, j � 0, 1, . . . ,m

EπrmaxpSi � Eij , 0qs ¥ pbidij , i � 1, 2, . . . , n, j � 0, 1, . . . ,m

Eπr1s � 1.

(3.40)

Now, we observe that (3.40) is the dual to a linear SIO problem.
So if we define y � yask � ybid P Rn�pm�1q, we may deduce the linear SIO problem for which (3.40) is its
dual as

inf
yask,ybid,y,z

z �
ņ

i�1

m̧

j�0

paskij yaskij �
ņ

i�1

m̧

j�0

pbidij y
bid
ij

subject to z �
ņ

i�1

m̧

j�0

yij maxpSi � Eij , 0q ¥ max

�
ņ

i�1

ωiSi � E, 0

�
, @ S P Rn�

y � yask � ybid

y P Rn�pm�1q

yask, ybid P Rn�pm�1q
�

z P R.

(3.41)

We start by re-writing (3.41) in vector form. We adopt the following notational convention. For any vector
raijsi�1,2,...,n, we will write aj , where aj P Rn. That is, the vector with components paijq, for i � 1, 2, . . . , n
will be written as aj , with aj P Rn, for all j � 0, 1, . . . ,m. Furthermore, � denotes the usual vector ‘dot’
product between two vectors, defined as follows.

For bj , cj P Rn, bj � cj �
ņ

i�1

bijcij , for all j � 0, 1, . . . ,m.
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Then, in vector form, (3.41) can be written as

inf
yask,ybid,y,z

z �
m̧

j�0

pask
j
� yask

j
�

m̧

j�0

pbid
j
� ybid

j

subject to z �
m̧

j�0

yj �maxpS � Ej , 0q ¥ maxpω � S � E, 0q, @ S P Rn�

y � yask � ybid

y P Rn�pm�1q

yask, ybid P Rn�pm�1q
�

z P R.

(3.42)

To solve (3.42) the following definitions and results taken from [22] are utilised.

Definition 3.43. Assume that Ē � rE0, E1, . . . , Ems P Rn�pm�1q, b̃ P Rn and c P R are given. We define
the set of super-replicating strategies, SRpĒ, b̃, cq as

SRpĒ, b̃, cq � tpy, zq � py0, y1, . . . , ym, zq P Rn�pm�1q � R : z �
m̧

j�0

yj �maxpS � Ej , 0q ¥

b̃ � S � c, @ S P Rn�u. (3.44)

Then, using Definition 3.43, we may equivalently re-write the SIO problem (3.42) as the following optimisa-
tion problem

inf
yask,ybid,y,z

z �
m̧

j�0

pask
j
� yask

j
�

m̧

j�0

pbid
j
� ybid

j

subject to py, zq P SRpĒ, ω,Eq

py, zq P SRpĒ, 0, 0q

y � yask � ybid

y P Rn�pm�1q

yask, ybid P Rn�pm�1q
�

z P R,

(3.45)

so that solving (3.45) would now yield an upper bound on the current price of the basket option, which is
what we seek.
We now work with (3.45). The way in which we solve (3.45) is to re-write it as an equivalent finite linear
problem. To do this, we proceed as in [22].

Definition 3.46. Let u, v P Rn. The Hadamard product of u and v is denoted by u � v and is defined as

u � v � pu1v1, u2v2, . . . , unvnq
T .

Therefore, the Hadamard product of two vectors results in a vector whose components are the multiplication
of the original two vectors multiplied component-wise.

Observation: We note here that the Hadamard product is closely linked with the ‘dot’ product for vectors
in the following way.
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Let u, v P Rn and e P Rn be the vector whose components are all equal to 1.
Then,

pu � vq � e �
ņ

i�1

pu � vqi �
ņ

i�1

uivi �

�
����

u1

u2

...
un

�
����

�
����

v1

v2

...
vn

�
���� u � v.

To present the next definition we set the following notational convention. Given a matrix A P Rn�pm�1q, we
define Ai P Rn to be the vector which is the ith column of the matrix A for i � 0, 1, . . . , pm� 1q,m.

Definition 3.47. We define LSRpĒ, b̃, cq to be the set of points py, z, γ̂, β̂, ξq P Rn�pm�1q�R�Rn�pm�1q
� �

Rn�m� � Rn, which satisfy

m̧

j�0

yj � b̃ � γ̂i � β̂i, i � 0, 1, . . . , pm� 1q,

m̧

j�0

yj � b̃ � γ̂m,

i̧

j�0

�
Ej � yj

�
¤ ξ �

�
Ei � γ̂i

�
�
�
Ei�1 � β̂i

	
, i � 0, 1, . . . , pm� 1q,

m̧

j�0

�
Ej � yj

�
¤ ξ � pEm � γ̂mq ,

�z � c ¤ �e � ξ.

(3.48)

Using these definitions we can state the main result of [22]. We note here that it is this result which allows
us to re-write the SIO problem (3.45) as a finite and solvable LO problem. For the proof of this result we
refer the reader to [22].

Theorem 3.49. Assume that 0 � E0 ¤ E1 ¤ � � � ¤ Em P Rn component-wise, and b̃ P Rn and c P R are

given. Then py, zq P SRpĒ, b̃, cq if and only if there exist γ̂ P Rn�pm�1q
� , β̂ P Rpn�mq

� , and ξ P Rn, such that

py, z, γ̂, β̂, ξq P LSRpĒ, b̃, cq.

Proof. See [22].

Thus, using Theorem 3.49 we can re-write the SIO problem (3.45) as a finite linear problem whose number
of variables and constraints is proportional to ppm � 1q � nq [22]. This result can be summarised in the
following corollary, taken from [22].

Corollary 3.50. The super-replication problem (3.45) can equivalently be re-written as the following finite
optimisation problem

min
z,y,yask,ybid,γ̂,β̂,ξ,γ̃,β̃,ξ̃

z �
m̧

j�0

ppask
j
� yask

j
� pbid

j
� ybid

j
q

subject to py, z, γ̂, β̂, ξq P LSRpĒ, ω,Eq

py, z, γ̃, β̃, ξ̃q P LSRpĒ, 0, 0q

y � yask � ybid

yask, ybid P Rn�pm�1q
� .

(3.51)

48



Theorem 3.49 gives a stronger result for the special case when m � 0. That is, when we consider knowing
one European vanilla option price per asset (and so one exercise price, per option, per asset) so that we
know the current bid-ask prices of a total of n European vanilla call options. In this case, it is shown in [22]
that Theorem 3.49 gives the following result.

Theorem 3.52. Assume that 0 � E0 ¤ E1 � E1 P Rn and b̃ P Rn and c P R are given. Then py0, y1, zq P
SRpĒ, b̃, cq if and only if there exists γ̌ P Rn�, such that

γ̌ ¥ y0 � b̃ ¥ �y1, and� z � c ¤ py0 � b̃q � E1 � pγ̌ � E1q.

Proof. See [22].

We notice here that the upper bound obtained in [22] for this particular case (for m � 0) using Theorem
3.52 is an alternative and more general derivation for the upper bound obtained in [20]. This is because in
[20] we ignored bid-ask prices and used mid-market prices. The result obtained here for the m � 0 case is
more general, and it may be shown that (see [22]) the bound obtained in [20] can be obtained here too as a
special case when mid-market prices are assumed. That is, when we take the price to be the average of the
bid-ask prices, so we use

pij �
paskij � pbidij

2
, for all i � 1, 2, . . . , n and j � 0 ðñ pi �

paski � pbidi
2

for all i � 1, 2, . . . , n.

Before concluding, we note here that in [22] only the upper bound problem is considered. The corresponding
lower bound problem is more difficult and is open for future research.
That concludes presenting all existing models from literature which we consider in this thesis concerning the
calculation of upper and lower bounds on the current price of a European basket call option.

3.7 Link with LSIO duality theory

Before we present the main sections of this thesis, we note here that in all of the existing models we have
considered, we are interested in finding price bounds on a European basket call option. As we have seen,
such an option has a piece-wise linear payoff given by, maxpωTS�E, 0q. Furthermore, a standard European
vanilla call option also has a piece-wise linear payoff given by, maxpSi � Ei, 0q. Hence in all models, we are
faced with solving an optimisation problem which is a dual to a piece-wise linear semi-infinite optimisation
problem. We tackled this problem by transforming the linear SIO problem into an equivalent finite LO
problem. In sub-section 2.2.4 we presented results from linear semi-infinite duality theory and we also
considered when the optimal objective function values of the primal semi-infinite problem and its respective
dual problem coincided. Recall that the underlying assumption behind all of these results was the assumption
of a compact index set, I. However, in the basket option pricing problem which we are considering, we have
a non-compact index set I � Rn�, in the SIO problem. However, in sub-section 3.4 and in particular when
considering finding an upper bound on the current price of a basket option, given that we know the current
prices of q other European vanilla call options, per asset, we introduced Proposition 3.14. There we saw
how to equivalently re-write the SIO problem with a non-compact index set Rn�, as a different SIO problem
with one extra constraint and a compact index set I(3.15). Thus, provided that the other assumptions from
Theorem 2.31 are met (which all of the existing literature does), we may apply Theorem 2.31 to the SIO
problem with the compact index set and conclude that the associated SIO problem and its dual problem
have the same optimal objective function value, and so solving the linear SIO problem would also solve its
corresponding dual problem, and so we would find an upper bound on the current price of the basket option
in this way.
There are some other results that consider finding price bounds on basket options. In [24, 25, 26, 27, 28, 29, 30]
the results are concerned with finding price bounds on options. In particular, in [24] upper bounds on a
European basket call option are found using a model-independent approach to formulate a super-replicating
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portfolio consisting of European vanilla call options whose exercise prices we may choose. In [25] upper
bounds on general exotic options using the theory of integral stochastic orders and the theory of co-monotonic
risks are derived. The method used here may of course be applied to basket options which are a type of
exotic option. In [26], upper and lower bounds for derivatives written on two underlying assets are derived
through finding a joint distribution under which the option price is equal to the hedging portfolio’s value.
The method used here may be applied to find price bounds on a basket option written on 2 underlying assets.
In [27], upper and lower bounds on the current price of European basket call options for a general class of
continuous-time financial models are derived. In [28] upper bounds on a European call option written on
many underlying assets using a semi-parametric method are derived. The methodology introduced here may
be used to find price bounds for European basket options. In [29] upper and lower model-independent bounds
on various classes of exotic options using infinite-dimensional linear optimisation methods are derived. The
methodology used here is similar to that as presented above in this section but for different types of options.
In [30], bounds on the current prices of exotic options, in particular the lookback option using a model-
independent approach are derived. The model set-up here is similar to that as presented in this section but
for a different type of option. Further, in [31, 32, 33, 34, 35, 36] some results for the actual current prices
of options are derived. In particular, in [31] an approximate price of a European basket call option using a
jump-diffusion model is derived. In [32], an approximation formula for the current prices of European basket
call options using a local-stochastic volatility model with jumps is derived. In [33], prices of European basket
call options using simulation methods; including a Quasi- Monte Carlo method are derived. In [34], the price
of a European basket call option using the reciprocal gamma distribution is derived. In [35], a new approach
to valuing and hedging basket and spread options using log-normal distributions is derived. Finally, in [36],
approximate basket option prices using a Bernoulli jump process is derived.
Now we present our own results on this topic. In particular we will see how to obtain bounds on the current
price of various classes of basket options. The work that follows are the main sections of this thesis, and
they are our own results. Any existing results which have been used to obtain our own, new and original
results have been clearly cited and referenced.
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4 Finding price bounds on European Basket Options

In this section we present our own new and original results regarding price bounds for European basket
call options. Before proceeding to that however, we begin by noting that there are other results given in
[37, 38] which aim to find lower bounds on the current price of a European basket call option using a different
solution approach. In [37], lower bounds on the current price of European basket call options using a Fréchet
copula approach are derived. In [38], a lower bound on the current price of a European basket call option
under the Black-Scholes framework using a conditioning method is derived.
Our approach uses a different solution methodology so we present our own results for lower bounds on the
current price of European basket call options.

4.1 A lower bound price result for European basket call options

We have seen previously, in Proposition 3.14 and in [11], that it is possible to equivalently re-write the SIO
problem (3.13) as a different SIO problem with an extra constraint and a compact index set I(3.15). However,
this result is only valid when considering upper bounds on the current price of a basket option. The natural
question that arises now is ‘what happens for the lower bound?’. Unfortunately, the lower bound problem
is more complex and presents different challenges which were not encountered in the upper bound problem.
Thus, it is very difficult to obtain a general result in the case of the lower bound problem. However, under
a set of very specific circumstances and assumptions it is possible to derive a similar result to Proposition
3.14 for the lower bound problem. This is done as follows.
Again, we consider the same setting as before. We consider finding a lower bound on the current price of a
European basket call option written on n underlying assets. We assume that for each of the n underlying
assets, the current prices of q European vanilla call options where the underlying is the asset itself are known.
Further, we also assume that we know the current prices of each of the n underlying assets. This allows us
to define the following notation for this sub-section.

• Let ωi P R denote the weight of the ith asset in the basket option, for i � 1, 2, . . . , n.

• Let Si P R� denote the price of the ith underlying asset at expiry, for i � 1, 2, . . . , n.

• Let E P R� be the exercise price of the basket option whose price we are bounding.

• Let Eli P R� denote the lth exercise price of the ith European vanilla call option whose current price
we know and is given by Cli P R�, for l � 1, 2, . . . , q and i � 1, 2, . . . , n.

• Let S0
i P R� denote the current price of the ith underlying asset, for i � 1, 2, . . . , n.

For convenience we adopt the following notational convention. We let ω P Rn, S P Rn�, El P Rn�, Cl P Rn�
and S0 P Rn�, for l � 1, 2, . . . , q.
Also, for each l � 1, 2, . . . , q by writing maxpS�El, 0q P Rn�, we mean this to be the vector with components
maxpSi � Eli, 0q for i � 1, 2, . . . , n.
Then, the problem of finding a lower bound on the current price of the European basket call option is given
by the following problem (4.1), which is a dual to a linear SIO problem, where π is a risk-neutral probability
measure to be found, r ¡ 0 is the interest rate and T is the expiry date of all options, which is assumed to
be the same.

inf
π

Eπre�rT maxpωTS � E, 0qs

subject to Eπre�rT maxpS � El, 0qs � Cl, for l � 1, 2, . . . , q

Eπr1s � 1

Eπre�rTSs � S0.

(4.1)
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To solve (4.1) we appeal to the linear SIO problem for which (4.1) is its dual. This SIO problem is given by

sup
pu1,u2,...,uq,z,vq

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

pulqT maxpS � El, 0qe�rT � z � vTSe�rT ¤ e�rT maxpωTS � E, 0q,

@ S P Rn�.

This is equivalent to

sup
pu1,u2,...,uq,z,vq

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ maxpωTS � E, 0q,

@ S P Rn�.

(4.2)

Now, we observe that the SIO problem has a natural financial interpretation. It aims to find the most
expensive portfolio consisting of European vanilla call options, cash and the underlying assets themselves
such that the overall value of the portfolio is always less than or equal to the payoff of the basket option.
Furthermore, we may interpret the variables pu1, u2, . . . , uq, z, vq as follows. The vectors ul P Rn for l �
1, 2, . . . , q give the amount of the lth priced European vanilla call option that the investor holds. The variable
z is the amount of cash that is in the portfolio and the vector v P Rn represents the number or amount
of underlying assets that have been invested in. We note here that for each ul and v we have adopted the
notational convention described previously.
The question of importance to us is, when does strong duality hold between (4.1) and (4.2)? We discuss this
concept now.
Duality theory from semi-infinite optimisation indicates that strong duality would hold between (4.1) and
(4.2) under some mild assumptions, (see Theorem 2.31), and the index set being compact. In our case the
index set in (4.2) is Rn�, which is not compact since it is not a bounded set. Fortunately however, under
some additional assumptions we can equivalently re-write (4.2) as a semi-infinite optimisation problem with
a compact index set. Then using duality theory from SIO, strong duality would then hold between (4.1) and
this ‘new’ semi-infinite problem with a compact index set. We formalise this approach in the next theorem.
Before proceeding to that however, we note that the lower bound result is very specific and is here only
proved under the assumptions as given in Theorem 4.3. This is in contrast to the upper bound result where
no additional assumptions are needed and the problem can be re-written using a compact index set more
generally.
Recalling that if the basket option yields a payoff of ωTS � E at expiry, we term the option in the money
and if the basket option yields a payoff of 0 at expiry we term the option out of the money, then for the
lower bound case we restrict our attention to the specific case that when the basket option is in the money
at expiry, the value of each weight ωi is at least the total amount of the number of vanilla calls written on
the underlying asset Si, and the amount of the underlying Si that is held, for all i � 1, 2, . . . , n. Here, some
uli and/or vi may be negative due to short selling, for l � 1, 2, . . . , q and for all i � 1, 2, . . . , n. That is, we
assume that,

ω ¥
q̧

l�1

ul � v.

When the basket option is out of the money at expiry, we assume that the investor has short sold at least
one vanilla call option written on Si, and/or the underlying asset Si itself, implying that uli and/or vi   0,
for some l � 1, 2, . . . , q and for all i � 1, 2, . . . , n; and the magnitude at which the short selling has been
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done, is such that the overall holdings in the sub-replicating portfolio are non-positive.
That is, we assume

q̧

l�1

ul � v ¤ 0.

We are now ready to present the following theorem.

Theorem 4.3. Suppose that when the basket option has payoff equal to ωTS�E at expiry, the position that
the investor takes in the sub-replicating portfolio is such that

ω �
q̧

l�1

ul � v ¥ 0,

and assume that when the basket option has payoff equal to 0 at expiry, the position that the investor takes
in the sub-replicating portfolio is such that

q̧

l�1

ul � v ¤ 0.

Consider the problem

max
pu1,u2,...,uq,z,vq

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¤ maxtω, 0u

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ maxpωTS � E, 0q,

@ S P I(4.4).

(4.4)

Then the semi-infinite optimisation problems (4.4), and (4.2) are equivalent, in the sense that both problems
have the same feasible set (and hence the same optimal solution and same optimal objective function value).

Here I(4.4) �
n�
i�1

r0, Eqi s, where we have assumed, without loss of generality that the exercise prices are

arranged in a non-restrictive way such that 0 ¤ E1
i ¤ � � � ¤ Eqi , for all i � 1, 2, . . . , n.

Remarks

1. We first remark here that the objective functions of (4.2) and (4.4) are the same. This is because the
objective function in (4.2) represents the total cost of the sub-replicating portfolio at current time, t � 0.
Since this is a cost which is paid, the maximal such cost is attained since what ever the maximum cost
is, the investor pays it. Therefore, the sup in (4.2) is attained and can be replaced by max as done in
(4.4).

2. The extra constraint in (4.4) also has a significant financial meaning.
The constraint

q̧

l�1

ul � v ¤ maxtω, 0u,

which is equivalent to
q̧

l�1

uli � vi ¤ maxtωi, 0u, @ i � 1, 2, . . . , n,
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means

(a) If the weight ωi ¡ 0, this implies
q̧

l�1

uli � vi ¤ ωi, for all i � 1, 2, . . . , n. This means that for a

strictly positive weight ωi, the total amount of European vanilla calls written on the ith asset plus the
amount of the ith asset which we buy, is at most ωi. Note that when the basket option expires in the
money, we assume that this particular constraint holds, for all i � 1, 2, . . . , n.

(b) If the weight ωi   0, this implies
q̧

l�1

uli � vi ¤ 0, for all i � 1, 2, . . . , n. This means that for a

strictly negative weight ωi, the total amount of European vanilla calls written on the ith asset plus the
amount of the ith asset which we hold is non-positive. This means that some or all of the European
vanilla call options plus the underlying itself have been short sold. We note here that when the basket
option expires out of the money, we assume that this particular constraint holds, for all i � 1, 2, . . . , n.

3. We note here that the additional assumptions are consistent with the additional constraint

q̧

l�1

ul � v ¤ maxtω, 0u.

4. When the assumptions are satisfied, the advantage of solving (4.4) is that the index set in the semi-
infinite constraint of (4.4) is compact, albeit (4.4) containing additional constraints. Problem (4.4)
allows us to solve (4.2) by considering the asset price values in the compact set I(4.4) rather than Rn�
along with some restrictions on how the sub-replicating portfolio must be constructed. These restrictions
are captured in the assumptions of the theorem and the extra constraints in (4.4).

5. This theorem is only valid for the particular case when the stated assumptions are satisfied. This result
does not hold for the lower bound in general, but it does hold for the particular case we are considering
here. Thus, when the assumptions are satisfied we can use this result to obtain lower bounds on the
current price of a European basket call option of interest.

Proof of Theorem 4.3. Let F(4.2) and F(4.4) denote the feasible sets of (4.2) and (4.4), respectively. We show
that F(4.2) � F(4.4). The proof comes in two parts.

1. F(4.2) � F(4.4): Take any pu1, u2, . . . , uq, z, vq P F(4.2). Then we show that pu1, u2, . . . , uq, z, vq P F(4.4) .

We start by observing that, since pu1, u2, . . . , uq, z, vq P F(4.2), then we have

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ maxpωTS � E, 0q (4.5)

holds for all S P Rn�.

Now, I(4.4) �
n�
i�1

r0, Eqi s is just an n-dimensional ‘rectangle’ in Rn� and so I(4.4) � Rn� . Therefore, since (4.5)

holds for all S P Rn�, it certainly holds for all S P I(4.4) � Rn� and so the second constraint from (4.4) holds.
To show that the first constraint holds in (4.4) consider (4.5) again. Now (4.5) holds for all S P Rn�. In
particular, it holds for the vector S with Si � η, for η ¡ 0 and all other components equal to 0, for
for all i � 1, 2, . . . , n. That is, (4.5) holds for the asset price vector given by

S �

�
������

0
0
η
...
0

�
�����
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where η is in the ith position, for all i � 1, 2, . . . , n.
Substituting this asset price vector into (4.5) gives

q̧

l�1

ņ

k�1

ulk maxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk ¤ max

�
ņ

k�1

ωkSk � E, 0

�
.

Since for any i � 1, 2, . . . , n, Si � η and all other components are 0,
it follows that

q̧

l�1

uli maxpη � Eli, 0q � zerT � viη ¤ maxpωiη � E, 0q, @ i � 1, 2, . . . , n,

which is equivalent to

q̧

l�1

uliηmax

�
1�

Eli
η
, 0



� zerT � viη ¤ ηmax

�
ωi �

E

η
, 0



,

@ i � 1, 2, . . . , n.

Dividing by η ¡ 0, we obtain

q̧

l�1

uli max

�
1�

Eli
η
, 0



�
zerT

η
� vi ¤ max

�
ωi �

E

η
, 0



, @ i � 1, 2, . . . , n.

Taking the limit as η Ñ8, we have that
El

i

η Ñ 0, zerT

η Ñ 0 and E
η Ñ 0. This gives

q̧

l�1

uli maxp1, 0q � vi ¤ maxpωi, 0q, @ i � 1, 2, . . . , n,

ðñ
q̧

l�1

ul � v ¤ maxtω, 0u,

and so the first constraint from (4.4) holds too.

6 F(4.2) � F(4.4).

2. F(4.4) � F(4.2): To show the converse, take any pu1, u2, . . . , uq, z, vq P F(4.4). Then we show that

pu1, u2, . . . , uq, z, vq P F(4.2).
Now, if we can show that

min
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
(4.6)

� min
SPI(4.4)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

then we are done because,

maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ 0, @ S P I(4.4),

implies, min
SPI(4.4)

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¥ 0
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and so if (4.6) holds, then

min
SPRn

�

#
maxpωTS � E, 0q �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¥ 0,

which implies, maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ 0, @ S P Rn�,

that is, pu1, u2, . . . , uq, z, vq P F(4.2).
Now we show that (4.6) is indeed true.

Define ψpSq � maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS, and consider S R I(4.4).

Then we have the following two cases for dψ
dS .

Case 1: The basket option expires in the money so that the payoff is given by maxpωTS�E, 0q � ωTS�E ¡
0,

ùñ
dψ

dS
� ω �

q̧

l�1

ul � v ¥ 0,

by supposition.
Case 2: The basket option expires out of the money so that the payoff is given by maxpωTS � E, 0q � 0,

ùñ
dψ

dS
� �

q̧

l�1

ul � v ¥ 0,

by supposition.
Hence in either case, we have that dψ

dS ¥ 0, for all S R I(4.4). That is, ψpSq is non-decreasing for all S R I(4.4)

and so the minimum of ψpSq is for sure attained in I(4.4).
Therefore, (4.6) holds true, and the proof is complete.

We observe here that in the proof of our Theorem 4.3 we have employed a similar methodology to the proof
in Proposition 3.14 in sub-section 3.4. We have considered the same model set up as that described in
sub-section 3.4 but for the lower bound problem.
We note here that due to the disjunctive structure of the underlying feasible set in the SIO problem (4.4),
it is still very difficult to solve, albeit the problem having a compact index set. Nevertheless, our derived
theorem, which allows us to re-write the SIO problem (4.2) with a non-compact index set Rn�, as the SIO
problem (4.4) which has a compact index set is a start and a step in the right direction to solve this more
difficult problem. The solution techniques to solve (4.4) remain open for further research, but even though
we have not fully solved the problem we have derived a theorem which should help in obtaining the final
solution; especially since known, standard techniques can be more readily applied to a SIO problem with a
compact index set in comparison to a SIO problem with a non-compact index set.

Now we present a lower bound result for European basket call options using current bid-ask prices of other
European basket call options.

4.2 A lower bound derived with bid-ask prices

When finding price bounds on a European basket option, we have seen the unrealistic assumption of knowing
current mid-market prices. One way to overcome this assumption, is to incorporate bid-ask prices within
the optimisation model. In this sub-section we consider one way to find a lower bound on the current price
of a European basket call option, given that we know the current bid-ask prices of other basket options. We
have mentioned that this was done in [21]. Here, we a present a new solution approach also for the lower
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bound.
We consider an optimisation model similar to, but not identical to the model given in [21]. We then employ
a similar solution approach to [19], where an upper bound on the current basket option price was found, but
neglecting bid-ask prices.
We consider calculating a lower bound on the current price of a European basket call option written on n
underlying assets, given that we know the current bid-ask prices of r other European basket call options,
written on the same n underlying assets. Furthermore, we also incorporate a positive interest rate, r ¡ 0
into the model.
For convenience, we will adopt the following notation for the remainder of this sub-section.

• Let ω0 P Rn� denote the vector of the weights of the basket option whose price we are bounding.

• Let E0 P R� be the exercise price of the basket option whose price we are bounding.

• Let S P Rn� denote the vector of the asset prices at expiry, T .

• Let ωj P Rn� denote the vector of the weights for the jth basket option whose current bid-ask price we
know, for j � 1, 2, . . . , r.

• Let Ej P R� be the exercise price of the jth basket option whose current bid-ask price we know, for
j � 1, 2, . . . , r.

• Let paskj , pbidj P R� denote the current, known ask, bid prices of the jth basket option, respectively,

for j � 1, 2, . . . , r. Here we have that paskj ¥ pbidj , for all j � 1, 2, . . . , r.

Then, if π denotes a risk-neutral probability measure, and the risk-free interest rate is given by r ¡ 0, the
task of finding a lower bound on the current price of a European basket call option is given by

inf
π

Eπre�rT maxpω0 � S � E0, 0qs

subject to Eπre�rT maxpωj � S � Ej , 0qs ¤ paskj , for j � 1, 2, . . . , r

Eπre�rT maxpωj � S � Ej , 0qs ¥ pbidj , for j � 1, 2, . . . , r

Eπr1s � 1

π is a probability measure in Rn�.

(4.7)

Then, using the definition of duality, we may find the linear SIO problem for which (4.7) is its dual as

sup
z,yask,ybid

z �
ŗ

j�1

�
paskj yaskj � pbidj ybidj

�

subject to z �
ŗ

j�1

yaskj pe�rT maxpωj � S � Ej , 0qq �
ŗ

j�1

ybidj pe�rT maxpωj � S � Ej , 0qq ¤

e�rT maxpω0 � S � E0, 0q @ S P Rn�
yask, ybid P Rr�, z P R.

This problem is equivalent to

sup
z,yask,ybid

z �
ŗ

j�1

�
paskj yaskj � pbidj ybidj

�

subject to zerT �
ŗ

j�1

pyaskj � ybidj qpmaxpωj � S � Ej , 0qq ¤ maxpω0 � S � E0, 0q @ S P Rn�

yask, ybid P Rr�, z P R.
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Defining y P Rr as y � yask � ybid, we may equivalently re-write the above SIO problem as

sup
z,y,yask,ybid

z �
ŗ

j�1

�
paskj yaskj � pbidj ybidj

�

subject to zerT �
ŗ

j�1

yjpmaxpωj � S � Ej , 0qq ¤ maxpω0 � S � E0, 0q @ S P Rn�

y � yask � ybid

y P Rr, yask, ybid P Rr�, z P R.

(4.8)

Therefore the linear SIO problem for which (4.7) is its dual is (4.8).
We assume that strong duality holds between (4.7) and (4.8). That is, we assume that the conditions of the
following lemma, taken from [19] but incorporating bid-ask prices, are satisfied.

Lemma 4.9 ([19], Proposition 2.1). The optimal values of (4.7) and (4.8) coincide if at least one of the
following two conditions holds.
(i) Strict primal feasibility.

�
� 1
pask

pbid

�
P int

�
�
$&
%
�
� Eπr1s�

Eπre�rT maxpωj � S � Ej , 0qs
�
j�1,2,...,r�

Eπre�rT maxpωj � S � Ej , 0qs
�
j�1,2,...,r

�
: π is a distribution in Rn�

,.
-
�
.

In particular, strong duality holds provided the bid-ask prices, pask and pbid, are arbitrage free and remain
arbitrage free after slight perturbations.
(ii) Strict dual feasibility.
There exists pẑ, ŷqT P Rr�1 such that

pẑ, ŷq P int

�#
pz, yqT P Rr�1 : zerT �

ŗ

j�1

yjpmaxpωj � S � Ej , 0qq ¤ maxpω0 � S � E0, 0q @ S P Rn�

+�
.

In particular, strong duality holds provided that, for each asset, at least one vanilla option price is known.

The goal of this sub-section is to re-write the semi-infinite optimisation problem (4.8) as a finite linear
problem. In order to do this, we employ a similar methodology to what was done in [19] and in sub-section
3.5. We note that our result is different because it deals with the lower bound problem by incorporating
bid-ask prices. Further, when re-writing the semi-infinite constraint from problem (4.8) as a set of finite
linear constraints, we have that our finite linear constraints consist only of inequality constraints and no
equality constraints as was derived in [19] and sub-section 3.5. We note here that the results presented in
this sub-section are new in the sense that modelling the problem as (4.7) and solving its specific associated
linear SIO problem (4.8) using this technique has not been done before.
We start by setting the following notational convention.

• Let Ω denote the pr � nq matrix whose jth row is the vector pωjqT , for j � 1, 2, . . . , r.

• Let Ω̄ be the ppr � 1q � nq matrix whose jth row is the vector pωjqT , for j � 0, 1, . . . , r.

• Let Ẽ P Rr� be the vector pE1, E2, . . . , Erq
T .

• Let Ê P Rpr�1q
� be the vector pE0, E1, . . . , Erq

T .

• Let I be a finite index set with J � I. Define a vector ν̄ P R|I|. Then by ν̄J P R|J| we mean the vector
formed by the entries ν̄j , for j P J .
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• Similarly, if the rows of a matrix, Λ̄ whose indices belong to the set I, then by Λ̄J we mean the matrix
formed by the rows of Λ̄ whose indices j P J .

• Finally, let J 1 denote the set IzJ and the index set I will be equal to t0, 1, . . . , ru.

Now we are ready to transform (4.8). To start, we define the following sets.
Let J � t0, 1, . . . , ru. We define PJ as

PJ � tS : Ω̄JS ¥ ÊJ , Ω̄J 1S ¤ ÊJ 1 , S ¥ 0u,

and let
J̄ � tJ � t0, 1, . . . , ru : PJ � Hu .

Then we will show that (4.8) can equivalently be re-written as a finite linear problem, which may be solved
by an appropriate software program to yield the optimal objective function value which is a lower bound on
the current price of the basket call option of interest.
We first need the following lemma which applies the same techniques as in [19], Lemma 3 for upper bounds.

Lemma 4.10. Let Ω̄ P Rppr�1q�nq, Ê P Rpr�1q
� and let J � t0, 1, . . . , ru be arbitrarily chosen and fixed.

Denote the set PJ � PJpΩ̄, Êq as above. If PJ � H then for ψ̂ P Rpr�1q, a P Rn and b P R we have

ψ̂T maxpΩ̄S � Ê, 0q ¤ aTS � b, for all S P PJ , (4.11)

if and only if there exist γJ P R|J|
� , βJ

1

P R|J 1|
� such that

pΩ̄Jq
T ψ̂J � a ¤ �Ω̄TJ γ

J � Ω̄TJ 1β
J 1 and ψ̂TJ ÊJ � b ¥ �pγJqT ÊJ � pβJ

1

qT ÊJ 1 . (4.12)

Proof. For all S P PJ , we have

ψ̂T maxpΩ̄S � Ê, 0q � aTS � b � ψ̂TJ pΩ̄JS � ÊJq � aTS � b � ppΩ̄Jq
T ψ̂J � aqTS � pψ̂TJ ÊJ � bq,

since
Ω̄JS � ÊJ ¥ 0, and Ω̄J 1S � ÊJ 1 ¤ 0.

So, if we consider the linear problem

max
S

ppΩ̄Jq
T ψ̂J � aqTS

subject to � Ω̄JS ¤ �ÊJ

Ω̄J 1S ¤ ÊJ 1

S ¥ 0,

(4.13)

it follows that (4.11) holds if and only if the optimal value of the linear problem (4.13) is at most pψ̂TJ ÊJ�bq,
because if this is the case, then

max
SPPJ

tpΩ̄Jq
T ψ̂J � aqTSu ¤ ψ̂TJ ÊJ � b

ùñ ppΩ̄Jq
T ψ̂J � aqTS ¤ ψ̂TJ ÊJ � b @ S P PJ .

ðñ ppΩ̄Jq
T ψ̂J � aqTS � ψ̂TJ ÊJ � b ¤ 0, @ S P PJ .

This means that ψ̂T maxpΩ̄S � Ê, 0q � aTS � b ¤ 0, @ S P PJ ,
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so that (4.11) holds.
Now, by linear optimisation duality, the dual to (4.13) is obtained as follows. Define the dual variables

γJ P R|J|
� , βJ

1

P R|J 1|
� . Then the dual to (4.13) is given by

min
γJ ,βJ1

� pγJqT ÊJ � pβJ
1

qT ÊJ 1

subject to � Ω̄TJ γ
J � Ω̄TJ 1β

J 1 ¥ pΩ̄Jq
T ψ̂J � a

γJ P R|J|
�

βJ
1

P R|J 1|
� .

(4.14)

Now, by the weak duality theorem, we have that

max
SPPJ

tppΩ̄Jq
T ψ̂J � aqTSu ¤ min

γJ ,βJ1
t�pγJqT ÊJ � pβJ

1

qT ÊJ 1u, (4.15)

but if we impose the condition

�pγJqT ÊJ � pβJ
1

qT ÊJ 1 ¤ ψ̂TJ ÊJ � b,

then by (4.15) we have

max
SPPJ

tppΩ̄Jq
T ψ̂J � aqTSu ¤ ψ̂TJ ÊJ � b,

and since the constraint in (4.14) must hold true, we have that the optimal value of the linear problem (4.13)

is at most ψ̂TJ ÊJ � b if and only if there exists γJ P R|J|
� , βJ

1

P R|J 1|
� such that (4.12) holds and the proof is

complete.

This leads us to the main result of this sub-section, which is summarised in the next proposition.

Proposition 4.16. (i) The SIO problem (4.8) can equivalently be re-written as the following finite linear
problem

max
z,y,yask,ybid

z � ppaskqT yask � ppbidqT ybid

subject to pΩ̄Jq
T

�
�1
y



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 , J P J̄

zerT �

�
�1
y


T
J

ÊJ ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 , J P J̄

y � yask � ybid

y P Rr, yask P Rr�,
ybid P Rr�, z P R,

γJ P R|J|
� , βJ

1

P R|J 1|
� , J P J̄ .

(4.17)
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(ii) In particular, if 0 P J , the finite linear problem (4.17) can be written as

max
z,yask,ybid

z �
ŗ

j�1

ppaskj yaskj � pbidj ybidj q

subject to
¸
jPJ
j�0

pωjyaskj � ωjybidj q � Ω̄TJ γ
J � Ω̄TJ 1β

J 1 ¤ ω0, J P J̄

zerT �
¸
jPJ
j�0

p�yaskj Ej � ybidj Ejq � pγJqT ÊJ � pβJ
1

qT ÊJ 1 ¤ �E0, J P J̄

yask P Rr�, ybid P Rr�
z P R, γJ P R|J|

� , βJ
1

P R|J 1|
� , J P J̄ .

(4.18)

Proof. The proof comes in two parts.
(i) We start by observing that the objective function in (4.8) is the same as the objective function in (4.17).
This is because the objective function in (4.8) represents the total cost of the sub-replicating portfolio
consisting of cash and other European basket call options. The maximal total cost is a cost which is paid by
the investor. Therefore, the optimal objective function value of (4.8) is attained and the sup in (4.8) can be
replaced by max as done in (4.17).
For the constraints of (4.17) we have the following.
Recall the constraint from (4.8) as

zerT �
ŗ

j�1

yjpmaxpωj � S � Ej , 0qq ¤ maxpω0 � S � E0, 0q @ S P Rn�.

This is equivalent to

�maxppω0qTS � E0, 0q � yT maxpΩS � Ẽ, 0q ¤ �zerT , @ S P PJ , J P J̄ ,

which is the same as �
�1
y


T
maxpΩ̄S � Ê, 0q ¤ �zerT , @ S P PJ , J P J̄ .

Now we use Lemma 4.10 with the following

ψ̂ �

�
�1
y



a �

�
����

0
0
...
0

�
���� 0 and b � zerT .

Then this means �
�1
y


T
maxpΩ̄S � Ê, 0q ¤ �zerT , @ S P PJ , J P J̄ ,

if and only if there exists γJ P R|J|
� and βJ

1

P R|J 1|
� such that

pΩ̄Jq
T

�
�1
y



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 ,

and �
�1
y


T
J

ÊJ � zerT ¥ �pγJqT ÊJ � pβJ
1

qT ÊJ 1 ,
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for J P J̄ .
The latter inequality is equivalent to

zerT �

�
�1
y


T
J

ÊJ ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 ,

for J P J̄ . This gives the constraints

pΩ̄Jq
T

�
�1
y



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 , J P J̄

and

zerT �

�
�1
y


T
J

ÊJ ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 , J P J̄ ,

and so (i) is proved.
(ii) We start by observing that the objective functions of (4.17) and (4.18) are the same.
For the constraints we have the following.
From (4.17) we have

pΩ̄Jq
T

�
�1
y



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 , J P J̄ .

Since 0 P J , this is equivalent to

�ω0 � pΩJq
T yJ � Ω̄TJ γ

J � Ω̄TJ 1β
J 1 ¤ 0, J P J̄ ,

which is the same as ¸
jPJ
j�0

pωjyjq � Ω̄TJ γ
J � Ω̄TJ 1β

J 1 ¤ ω0, J P J̄ .

Now substitute in yj � yaskj � ybidj , to get

¸
jPJ
j�0

�
ωjpyaskj � ybidj q

�
� Ω̄TJ γ

J � Ω̄TJ 1β
J 1 ¤ ω0, J P J̄ .

This is equivalent to ¸
jPJ
j�0

pωjyaskj � ωjybidj q � Ω̄TJ γ
J � Ω̄TJ 1β

J 1 ¤ ω0, J P J̄ ,

and so the first constraint of (4.18) is proved.
For the second constraint we have the following.
Recall from (4.17) the constraint

zerT �

�
�1
y


T
J

ÊJ ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 , J P J̄ .

Since 0 P J , this is equivalent to

zerT � E0 � yTJ ẼJ � pγJqT ÊJ � pβJ
1

qT ÊJ 1 ¤ 0, J P J̄ ,

which is the same as

zerT �
¸
jPJ
j�0

p�yjEjq � pγJqT ÊJ � pβJ
1

qT ÊJ 1 ¤ �E0, J P J̄ .
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Now substitute in yj � yaskj � ybidj , to get

zerT �
¸
jPJ
j�0

�
�Ejpy

ask
j � ybidj q

�
� pγJqT ÊJ � pβJ

1

qT ÊJ 1 ¤ �E0, J P J̄ .

This is equivalent to

zerT �
¸
jPJ
j�0

p�yaskj Ej � ybidj Ejq � pγJqT ÊJ � pβJ
1

qT ÊJ 1 ¤ �E0, J P J̄ ,

and so the second constraint from (4.18) also holds, and the proof is complete.

We may now solve the finite linear problem (4.17) (instead of the semi-infinite problem (4.8)), to yield the
optimal objective function value and hence a lower bound on the current price of a European basket call
option.
To conclude this sub-section we make the following observation about the size of the linear problem (4.17).
We observe that in (4.17) we have a total of

1� r � r � |J | � |J 1| � 1� 2r � r � 1 � 3r � 2

variables.
For the constraints we have the following. Observe that each constraint requires J P J̄ , where J �
t0, 1, . . . , ru. However, for some J � t0, 1, . . . , ru, PJ � H and J R J̄ even though J � t0, 1, . . . , ru.
Thus, we can obtain upper bounds on the size, or amounts of the constraints of the linear problem (4.17).
In particular, for the set t0, 1, 2, . . . , ru there exists a total of 2r�1 subsets. Since J � t0, 1, . . . , ru we have
the following. The first constraint in (4.17) actually represents n constraints. Therefore the first constraint
can give at most np2r�1q constraints. Similarly, the second constraint in (4.17) may yield at most 2r�1

constraints.
Hence in total the number of constraints in (4.17) has the following upper bound

np2r�1q � 2r�1 � 2r�1pn� 1q.

Thus, the total number of constraints of (4.17) is at most 2r�1pn� 1q.
Although the number of constraints depends exponentially on r, and for large values of r, (4.17) may become
large, it is still finite and we have removed the problem of having infinitely many constraints as in (4.8).
Further, from a practical point of view, we may choose r so that (4.17) remains solvable via an appropriate
linear optimisation software solver. Also, when solving the optimisation problem (4.17), we do not know
today which subsets of J are in J̄ . That is, we do not currently know whether the European basket call
option whose current price we are bounding and the basket options whose current bid-ask prices we know
will expire in/out of the money. In order to solve (4.17) to obtain a lower bound on the current price of the
European basket call option of interest; we take all subsets of J to be in J̄ and solve (4.17) in this way. We
note here that the above inequality regarding the number of constraints of problem (4.17) in this case holds
as an equality.
We observe here that the model set-up and approach to finding a lower bound on the price of a European
basket call option presented above is similar to the model set-up presented in sub-section 3.5. Further, the
methodology employed in the proof of Lemma 4.10, to obtain a finite and solvable LO problem can be viewed
as an extension to the methodology to obtain a finite and solvable LO problem employed in the proof of
Proposition 3.26 in sub-section 3.5. It is an extension because in the proof of Lemma 4.10 we obtained a
lower bound on the price of a European basket call option by incorporating bid-ask prices in the model.
That concludes this sub-section on considering finding lower bounds on the current price of a European
basket call option given that we know the current bid-ask prices of other basket options.
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5 Finding price bounds on American Basket Options

In all of the analysis which we have considered so far, we have only seen how to find price bounds on European
basket call options. In this section we consider an extension to the European basket option pricing problem.
Namely, we consider how to find current price bounds on American basket options.

5.1 Introduction

We start by recalling what is meant by an American option. Put simply an American option is the same as a
European option but with the additional property that an American option can be exercised at any point in
time before or on the expiry date. We observe that if an American option is not exercised before the expiry
date, but is exercised on the expiry date then this ‘American’ option becomes identical to a corresponding
European option.
Since American options have this extra property of early exercise, then the corresponding current price of
the option should take this extra property into account. As such, intuitively it is clear that the current price
of an American option, in general, is not the same as its European option counter-part.
In fact, we may observe the following link between the current prices of European and American options.
An American option gives the holder the choice of exercising the option early. In turn, this means that the
holder has more freedom and choice as to when to exercise the option. Thus, it is possible for the holder to
obtain a large pay-out at a time before expiry that suits them. The current price of the American option
must take this early exercise property into account. Since the writer has a higher likelihood of a larger
payout in comparison to a European option, then the current price of an American option should never be
less than its corresponding European option counterpart. That is, for a European option and an American
option written on the same underlying assets, with the same exercise price and same expiry dates; the current
price of the European option provides a lower bound to the current price of the corresponding American
option. More formally, if the current price of a European option is given by V and the current price of a
corresponding American option is given by VA, then the relation

V ¤ VA

holds. For a more in-depth explanation, including a no-arbitrage argument on why the above inequality
must hold for corresponding pairs of European and American options we refer the reader to the relevant
chapters given in [2].
The question of interest to us is, ‘how can we accurately find price bounds on an American basket option?’
From above, we are already aware that a lower bound on the current price of an American basket option is
given by its corresponding European basket option current price. Thus, we now investigate if and how we
may apply similar ideas and methodologies from Section 3 to obtain an upper bound on the current price of
an American basket option of interest.
Before proceeding, we note here that the results presented in this section are our own results and are new
and original results. Previous and old results which have been used to obtain our new results have been
clearly referenced.
We start by considering finding bounds on the current price of an American basket call option and then turn
our attention to American basket put options.
Thus, in all that follows we retain the same notation from sub-section 2.1 and define the following.

• Let CAptq denote the price of an American basket call option at time t, for t P r0, T s.

• Set CAp0q � CA, so that CA is the current price of an American basket call option.

• Let PAptq denote the price of an American basket put option at time t, for t P r0, T s.

• Set PAp0q � PA, so that PA denotes the current price of an American basket put option.

• Let Sptq be the vector of the prices of the n underlying assets on which the basket option is written
on at time t, for t P r0, T s.
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• Set S � SpT q, which is the vector of the prices of the n underlying assets at expiry, t � T .

• Furthermore, let Cptq denote the price of a corresponding European basket call option, at time t, for
t P r0, T s.

• Let P ptq denote the price of a corresponding European basket put option, at time t, for t P r0, T s.

• These European calls and puts are written on the same underlying assets, with the same weights and
same exercise price.

• Also set Cp0q � C and P p0q � P , which are the current prices of the European call and put basket
options, respectively .

Now, since we are considering American basket options, we denote the time of early exercise (if it is done,
of course) by t̃, where 0 ¤ t̃   T . That is, we assume that t̃ is a point in time such that 0 ¤ t̃   T and if
early exercise is done, it is done at time t � t̃.
Now we are in a position to consider methods to find upper and lower bounds on the current price of
American basket options of interest.
Before proceeding we note here that there do exist other results in [39, 40] which find prices and price
bounds, respectively of various types of American options. In particular, in [39], the prices of American
basket options using a multi-GPU adaptation of a specific Monte-Carlo based method is derived. In [40],
upper bounds on the current prices of general American options using linear semi-infinite optimisation are
derived. However, here a different solution methodology is employed and this paper does not specifically
cover basket options.
Our new and original results, which we present now; use a different solution methodology to that used in
[39, 40].

5.2 Pricing bounds on American basket call options

In this sub-section we consider finding price bounds on an American basket call option.
We consider the following two cases. The first case is when none of the n underlying assets pay out any
dividends. The second case is when some or all of the n underlying assets pay out dividends.

5.2.1 Assuming that all assets do not pay any dividends

Here we consider finding price bounds on an American basket call option under a specific setting. That
is, we assume that none of the n underlying assets on which the basket option is written on pay out any
dividends. Under this setting we will show that the current price of an American basket call option is the
same as its corresponding European counter-part. We note here that the result obtained in this section uses
similar ideas from the derivation of showing that a European and American vanilla call option, where the
underlying pays out no dividends, are equivalent in price. Thus, as such we may view this result which
follows for basket options as an extension from the simple vanilla call option case.
We consider holding a portfolio Π, consisting of one American basket call option, short holding the weighted
sum of the n underlying assets on which the basket option is written on, and a cash amount.
Then, if Πptq denotes the value of the portfolio at time t, for t P r0, T s, we have

Πptq � CAptq � ωTSptq � Ee�rpT�tq.

Then we have two cases to consider for the value of the portfolio Πptq.
Staying consistent with the notation introduced above, we observe that Spt̃q is the vector of the asset prices
at time t̃ . That is, Spt̃q denotes the vector of the asset prices at the time of early exercise, t̃ if it is done.
(a) Early exercise. We consider the value of the portfolio at time t � t̃.

Πpt̃q � CApt̃q � ωTSpt̃q � Ee�rpT�t̃q � maxpωTSpt̃q � E, 0q � ωTSpt̃q � Ee�rpT�t̃q.
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We observe that
max

�
ωTSpt̃q � E, 0

�
� ωTSpt̃q � E,

since we are exercising early.
This gives

Πpt̃q � ωTSpt̃q � E � ωTSpt̃q � Ee�rpT�t̃q � Ee�rpT�t̃q � E � Epe�rpT�t̃q � 1q   0.

6 Πpt̃q   0.

(b) Not exercised early. We consider the value of the portfolio Πptq at expiry, t � T .
Here there are two sub-cases to consider.
(i) ωTS ¡ E

ΠpT q � CApT q � ωTSpT q � Ee�rpT�T q � CApT q � ωTS � E �

maxpωTS � E, 0q � ωTS � E � ωTS � E � ωTS � E � 0.

6 ΠpT q � 0.

(ii) ωTS ¤ E

ΠpT q � CApT q � ωTSpT q � Ee�rpT�T q � CApT q � ωTS � E � maxpωTS � E, 0q � ωTS � E

� 0� ωTS � E � E � ωTS ¥ 0.

6 ΠpT q ¥ 0.

Comparing (a) with (b) we can see that in the early exercise case, the portfolio makes a loss. If we do not
exercise early, the portfolio either gives a zero or positive return. Therefore, it follows that we would never
exercise the American basket call option early (since if we did, our portfolio would make a loss). Hence if
we never exercise the American basket call option early, it becomes identical to its European counter-part.
Therefore, we may conclude that an American basket call option where all n underlying assets pay out no
dividends has identical properties to a corresponding European basket call option where all n underlying
assets pay out no dividends.
So, the current price of this particular American basket call option is equal to the current price of the
corresponding European basket call option. That is, the current price of an American basket call option
where all n underlying assets pay out no dividends is equal to the current price of a corresponding European
basket call option where all of the n underlying assets pay out no dividends. Hence we have that CA � C
in this case.
Therefore, the results derived in Section 3 for the price bounds on a European basket call option are also
valid bounds for the current price of a corresponding American basket call option written on the same n
underlying assets, which pay out no dividends, with the same weights ω and same exercise price E.

5.2.2 Assuming that all or some assets pay dividends

The result above that C � CA is only valid under the assumption that none of the n underlying assets pay
out any dividends. For the case when some or all of the underlying assets pay out dividends the above result
may not hold. We explain why this is so in this sub-section.
To start we set the following notation and assume that all of the n underlying assets pay out a dividend at
a single fixed point in time td, where 0   td   T . Let Di P R� denote the dividend amount paid out by the
ith asset at time td, for i � 1, 2, . . . , n. Since we are considering a basket option we assume that for each of
the underlying assets i, the investor receives the dividend Di adjusted by its corresponding weight ωi, for
i � 1, 2, . . . , n. That is, for each asset i, the investor receives a dividend ωiDi at time td, so that the total

amount of dividends received from the basket option would be
ņ

i�1

ωiDi.

Define the dividends vector D P Rn�, so that at time td, the assets from the basket option pay out a dividend
equal to ωTD.
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Now we explain what happens to the current price of an American basket call option when the underlying
assets pay out dividends.
If we were to exercise the American basket call option early, say at time t̃ where 0 ¤ t̃   T then we would
pay E to obtain a basket worth ωTSpt̃q.
If instead we did not exercise the American basket call option early, then we could put the amount E in the
bank until expiry, t � T and we would receive an amount EerpT�t̃q in return. Therefore we would make a
profit of EerpT�t̃q � E.
By exercising the American basket call option early we can not make the profit EerpT�t̃q�E which is made
by investing E in the bank at time t̃ until T .
Thus, it is only worth exercising the American basket call option early if the dividend received is greater than
the profit received by investing E in the bank at time t̃ until T . That is, we should exercise the American
basket call option early if

ωTD ¡ EerpT�t̃q � E,

and not exercise early if

ωTD ¤ EerpT�t̃q � E,

since we can make more money by investing E in the bank at time t̃ until T .
We observe here that in the early exercise case we assume t̃ ¤ td, because the assets need to be held to
receive the dividend ωTD at time td.
Thus, since there is a possibility of early exercise we conclude that CA � C may now not always be the
case.
Therefore, we may conclude that for an American basket call option where some or all of the underlying
assets pay out dividends, the relation

C ¤ CA

holds.
Note: It is possible to extend the above analysis to cover the case when the n underlying assets all pay out
dividends on multiple dates.
In what follows next, we focus our attention on finding pricing bounds for an American basket put option.

5.3 Pricing bounds on American basket put options

In the previous sub-section we derived bounds on the current price of an American basket call option. In
particular, we have shown that the current price of an American basket call option where all underlying
assets pay out no dividends is equal to the current price of its corresponding European counter-part. This is
because in this case early exercise makes no sense. In the case of dividends we explained how early exercise
could make sense.
The question which we answer in this sub-section is ‘how can we find bounds on the current price of an
American basket put option?’ To start we utilise the following put-call parity result for European basket
options. This result is analogous to the put-call parity for European vanilla options, which can be found in
[2]. After, we prove a put-call parity inequality for American basket options, which is an extension of the
put-call parity inequality for American vanilla options, given in [41].

5.3.1 Put-call parity for European basket options

Consider holding a portfolio, Π, consisting of the weighted sum of the n underlying assets, a European basket
put option and short a European basket call option, written on the same n underlying assets with the same
weights and same exercise price, as well as the same expiry date, t � T .
Then, at any time t, the portfolio has value Πptq, given by

Πptq � ωTSptq � P ptq � Cptq.
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Therefore, the current value of the portfolio, (that is, at time t � 0) is

Πp0q � ωTSp0q � P p0q � Cp0q � ωTSp0q � P � C.

Hence to hold the portfolio Π today it would cost Πp0q.
Now consider the value of Πptq at expiry, t � T .
We have the value of ΠpT q as

ΠpT q � ωTSpT q � P pT q � CpT q

� ωTS �maxpE � ωTS, 0q �maxpωTS � E, 0q.

Now, there are the following two cases to consider.

1. If ωTS ¡ E
ùñ ΠpT q � ωTS � ωTS � E � E.

2. If ωTS ¤ E
ùñ ΠpT q � ωTS � E � ωTS � 0 � E.

Therefore, the value of the portfolio at expiry is always equal to E, and in particular is independent of the
prices of the underlying assets at expiry.
That is, the value of the portfolio ΠpT q is independent of S. Now, the current price of the portfolio is
dependent upon the asset prices at expiry and time. However as we have just seen, the price of ΠpT q is
independent of S. Therefore, we may let the price of the portfolio be equal to V ptq, which is dependent on
time, t but not dependent on the prices of the assets at expiry, S.
Substituting this into the multi-asset Black-Scholes equation (MABSE) given in sub-section 2.1.4, we have

dV

dt
� rV � 0, and so

dV

dt
� rV.

This gives,
1

V
dV � r dt, and so integrating,

»
1

V
dV �

»
r dt. Hence, lnpV q � rt� k,

where k is an arbitrary constant.
ùñ V � ert�k � ertek.

Let ek � A, then we have
V � Aert.

Now, at expiry t � T we have V ptq � V pT q � E.

ùñ E � AerT ùñ A � Ee�rT .

This gives, V � Ee�rT ert, which is equivalent to, V � Ee�rpT�tq.

Therefore, V ptq � Ee�rpT�tq.

ùñ At time t, the portfolio Πptq has value

V ptq � Ee�rpT�tq

ùñ ωTSptq � P ptq � Cptq � Ee�rpT�tq.

So that the current value of the portfolio, that is at time t � 0, is

V p0q � Ee�rT

ùñ ωTSp0q � P p0q � Cp0q � Ee�rT

which is, ωTSp0q � P � C � Ee�rT .
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This gives us the put-call parity for European basket options as

ωTSp0q � P � C � Ee�rT . (5.1)

The put-call parity (5.1) gives us a link between the current prices of a European basket call option and
a European basket put option written on the same n underlying assets with the same weights and same
exercise price, as well as the same expiry date, t � T .
We may now use (5.1) to find price bounds on American basket put options, as we describe below.

5.3.2 A put-call parity inequality

We have derived (5.1) which is a put-call parity for European basket call and put options. This allows us to
link the current prices of European basket put options and call options. Unfortunately, there does not exist
a corresponding put-call parity equation for American basket call and put options.
However, it is possible to re-write the put-call parity equation (5.1) as an inequality which holds for American
basket options. We will call this a put-call parity inequality and this put-call parity inequality follows from
the fact that an American basket option should cost at least as much as its European counter-part.
We summarise the above ideas in the following theorem. The proof of the following theorem uses similar
techniques as in [41], where a result was derived for American vanilla options.

Theorem 5.2. The put-call parity inequality for American basket options, without dividends is given by

ωTSp0q � E ¤ CA � PA ¤ ωTSp0q � Ee�rT .

Proof. The proof comes in two parts.
Upper bound
From (5.1) we have

ωTSp0q � P � C � Ee�rT

ðñ C � P � ωTSp0q � Ee�rT .

Now, P � C � ωTSp0q � Ee�rT , but, PA ¥ P

ùñ PA ¥ C � ωTSp0q � Ee�rT .

However C � CA and so we have
PA ¥ CA � ωTSp0q � Ee�rT .

Therefore, CA � PA ¤ ωTSp0q � Ee�rT ,

and so the upper bound is proved.
Lower bound
For the lower bound, we have the following.
Consider holding the following two portfolios, ΠA and ΠB . ΠA consists of one European basket call option
and an amount of money, specifically E. ΠB consists of an American basket put option and the weighted
sum of the n underlying assets on which the basket options are written on. Then at time t P r0, T s, the
values of ΠA and ΠB are given by

ΠAptq � Cptq � E and ΠB � PAptq � ωTSptq.

In particular, the current prices of the portfolios ΠA and ΠB are given by

ΠAp0q � Cp0q � E � C � E,

and
ΠBp0q � PAp0q � ωTSp0q � PA � ωTSp0q,

respectively.
Now we consider the following two cases.
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1. No early exercising. We consider the prices of ΠAptq and ΠBptq at expiry t � T . Then we have

ΠApT q � CpT q � E � maxpωTS � E, 0q � E � maxpωTS,Eq � E � E � maxtωTS,Eu.

ΠBpT q � PApT q � ωTSpT q � maxpE � ωTS, 0q � ωTS � maxtωTS,Eu.

The prices or payoffs of the portfolios ΠA and ΠB are equal at expiry. This means that, since ΠA and
ΠB both give the same payoff (that is, they have the same value) at expiry, then to avoid arbitrage
opportunities they should have the same current value. That is, the equality ΠAp0q � ΠBp0q, must
hold.
This gives

ΠAp0q � ΠBp0q

C � E � PA � ωTSp0q.

However C � CA since none of the assets pay out dividends. This gives us

CA � E � PA � ωTSp0q

ðñ CA � PA � ωTSp0q � E.

2. Early exercising. Here we assume that we exercise any American option early, at time t � t̃ P r0, T q.
We consider the prices of the portfolios ΠAptq and ΠBptq at time t � t̃.
For portfolio A we have

ΠApt̃q � Cpt̃q � E,

and for portfolio B we have

ΠBpt̃q � PApt̃q � ωTSpt̃q � maxpE � ωTSpt̃q, 0q � ωTSpt̃q � E � ωTSpt̃q � ωTSpt̃q � E.

Now, we observe that ΠApt̃q � Cpt̃q � E ¡ E � ΠBpt̃q, since Cpt̃q ¡ 0.
Therefore, in the early exercise case we have that

ΠApt̃q ¡ ΠBpt̃q.

However, since t̃ P r0, T q is arbitrary, it can take any value between 0 and T , including 0 but not T .
Thus, we have that for any early exercise time t̃, where 0 ¤ t̃   T ,

ΠApt̃q ¡ ΠBpt̃q.

In particular, since this inequality holds for t̃ � 0 we have

ΠAp0q ¡ ΠBp0q

ðñ Cp0q � E ¡ PAp0q � ωTSp0q,

but Cp0q � CA � C, so we have

CA � E ¡ PA � ωTSp0q,

CA � PA ¡ ωTSp0q � E.

Combining the results for the non-early and early exercising cases, gives

ωTSp0q � E ¤ CA � PA

and so the lower bound also holds true.

Therefore, we have shown that

ωTSp0q � E ¤ CA � PA ¤ ωTSp0q � Ee�rT ,

and the theorem is proved.
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Observation: We may now use the put-call parity inequality from Theorem 5.2 to find upper/lower bounds
on the current price of an American basket put option, PA. Since we know that CA � C, that is, we know
that the current price of the American basket call option is equal to the current price of the corresponding
European basket call option and we have already considered methods to find bounds on the current price of
a European basket call option. Then, we may use the bounds on CA � C to obtain bounds on PA.
More formally, if CUB is an upper bound on C and CLB is a lower bound on C, so that CLB ¤ C ¤ CUB ,
as obtained in Section 3, then we may use Theorem 5.2 to find bounds on PA as follows.
For the upper bound we have

ωTSp0q � E ¤ CA � PA

PA ¤ CA � ωTSp0q � E,

but CA � C so that
PA ¤ C � ωTSp0q � E

¤ CUB � ωTSp0q � E.

Hence PA ¤ CUB � ωTSp0q � E.

For the lower bound we have
CA � PA ¤ ωTSp0q � Ee�rT

CA � ωTSp0q � Ee�rT ¤ PA.

However CA � C, so that we have
C � ωTSp0q � Ee�rT ¤ PA.

This gives
CLB � ωTSp0q � Ee�rT ¤ C � ωTSp0q � Ee�rT

¤ PA.

Hence, CLB � ωTSp0q � Ee�rT ¤ PA.

Therefore the upper/lower bounds on PA are given by

CLB � ωTSp0q � Ee�rT ¤ PA ¤ CUB � ωTSp0q � E.

We note here that although this is one possible way to find price bounds on an American basket put option,
it is limited to the specific case of all underlying assets paying out no dividends as described above, and it
may give a wide interval, since we are essentially bounding PA by other bounds (on CA � C) obtained in
Section 3.
With this in mind, we now consider a different setting and see how optimisation can be used to find more
accurate and credible bounds on the current price of a particular type of American basket put option.
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6 Using optimisation to find upper bounds on PA

In this section we consider finding upper bounds on the current price of a certain type of American basket
put option using optimisation. In particular, for this section we consider finding an upper bound on the
current price of a Bermuda basket put option. Put simply a Bermuda option is a certain type of American
option. In particular a Bermuda option gives the holder the right to exercise the option at fixed, pre-agreed
times prior to expiry as well as exercising the option at expiry if it has not been exercised early. In this
section, we let PA denote the current price of a Bermuda basket put option. Then we consider finding upper
bounds on PA using similar techniques to that in sub-section 3.4 for a European basket call option.
Before proceeding we note here that there exist other results regarding pricing and finding price bounds of
Bermuda options, which can be found in [42, 43, 44, 45]. In particular, in [42], pricing methods for Bermudan
options dependent on a large number of underlying assets are derived. The results obtained in this paper
may be used to calculate prices for Bermudan basket options. In [43] upper and lower bounds on Bermuda
options using new variance reduction techniques are derived. The results obtained from this paper could
also be extended to the Bermuda basket option case. In [44] lower bounds on multi-dimensional Bermudan
options using a stochastic grid bundling method are derived. Finally, in [45] upper and lower bounds on the
prices of Bermuda basket options using Monte Carlo simulations are found.
Our new and original result uses a solution approach which is different to the approaches used in the references
described above. It is different because we model the problem as a dual of a linear semi-infinite optimisation
problem, and then re-write this linear SIO problem as a finite and solvable linear problem in a way which
has not been done before. The optimal objective function value is then an upper bound on the current price
of a Bermuda basket put option. In particular, we follow a similar model set-up to what was presented in
sub-section 3.4. So, we consider finding an upper bound on the current price of a Bermuda basket put option,
given that we know the prices of q European vanilla call options per asset and the expected (forward) price
per asset, under a risk-neutral probability measure.
Further, assuming that the holder of this Bermuda put option may exercise this option either at one fixed,
pre-agreed point in time prior to the expiry date or they may exercise it at expiry, and retaining all notation
from sub-section 3.4 we consider the following model set-up.

• Let the risk free interest rate be given by r ¡ 0.

• Let t� be a point in time such that 0 ¤ t�   T , be the pre-agreed, fixed time point at which the
Bermuda basket put option may be exercised early.

• Set Spt�q � SB , so that SBi
P Rn� is the price of the ith asset at time t�, for i � 1, 2, . . . , n.

• Recall that SpT q � S P Rn�, is the vector of the prices of the n underlying assets at expiry.

Then we may now present the optimisation model.
The task of finding an upper bound on the current price of a Bermuda basket put option is modelled by the
following problem, with the variable π, which is a dual of a linear SIO problem.

sup
π

Eπrmaxte�rt
�

maxpE � ωTSB , 0q, e
�rT maxpE � ωTS, 0qus

subject to Eπre�rT maxpSi � Eli, 0qs � Cli , for i � 1, 2, . . . , n and l � 1, 2, . . . , q

Eπre�rTSis � S0
i , for i � 1, 2, . . . , n

Eπre�rt
�

SBi
s � S0

i , for i � 1, 2, . . . , n

Eπr1s � 1.

(6.1)

We solve (6.1) using a similar methodology to that what was done for the European basket call option pricing
problem.
Before proceeding we highlight the key differences between a Bermuda basket put option and a European
basket option and the new challenges we face with trying to find price bounds on this particular instrument.
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The main difference is that of early exercise. The Bermuda basket put option may either be exercised early,
at time t� or it can be exercised at expiry, t � T . In comparison, the European option can only be exercised
at expiry, t � T . This vital difference is captured in the objective function of (6.1). The payoff of the
Bermuda basket put option is the maximum of the payoff at expiry or at the time of early exercise. We face
new challenges when finding price bounds on the Bermuda basket put option, in the sense that we have to
consider different cases: when the Bermuda option is exercised early and when the Bermuda option is not
exercised early.
In particular, when carrying out pricing analysis for this particular type of option, we have to consider both
the values of the asset price vector at early exercise, given by SB as well as the values of the price vector at
expiry, given by S. We note here that this additional challenge was not encountered when we found price
bounds on European basket options. The feature of early exercise that the Bermuda option gives makes
finding price bounds on this option more complicated than what was seen for European basket options.
We start by deriving the linear SIO problem for which (6.1) is its dual, and this is given by

inf
pul,v,y,zq

q̧

l�1

pulqTCl � z � vTS0 � yTS0

subject to
q̧

l�1

pulqT maxpS � El, 0qe�rT � z � vTSe�rT � yTSBe�rt
�

¥

maxte�rt
�

maxpE � ωTSB , 0q, e
�rT maxpE � ωTS, 0qu, @ SB , S P Rn�.

This problem is equivalent to

inf
pul,v,y,zq

q̧

l�1

pulqTCl � z � vTS0 � yTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P Rn�.

(6.2)

We observe that the SIO problem (6.2) and the variables pul, v, y, zq have a natural financial interpretation.
We may interpret the variables pul, v, y, zq as follows. The components of ul, given by uli denote the amount
of European call options, written on asset i, for i � 1, 2, . . . , n which we buy today at price Cli and con-
tributes maxpSi � Eli, 0q to the super-replicating portfolio, for l � 1, 2, . . . , q. z represents a cash amount.
The components of v, given by vi, for i � 1, 2, . . . , n represent the amount of the ith asset we buy at a price of
S0
i and contributes Si to the super-replicating portfolio. The components of y, given by yi, for i � 1, 2, . . . , n

represent the amount of the ith asset we buy at a price of S0
i and contributes SBi to the super-replicating

portfolio.
Problem (6.2) aims to find the cheapest cost portfolio consisting of European vanilla calls, cash, an amount
of the underlying assets and another amount of the underlying assets such that the value of this portfolio
super-replicates the payoff of the basket option whose current price we are bounding, for all possible non-
negative values of S and SB .
Now, we note that the index set I � Rn� in (6.2) is not compact. However, we may derive the following
proposition whereby we can restrict I in (6.2) to a compact set without changing the feasible set of (6.2).

Proposition 6.3. Suppose without loss of generality that the exercise prices Eli are ordered such that 0 ¤

E1
i ¤ E2

i ¤ � � � ¤ Eqi , for all i � 1, 2, . . . , n. Define the index set I(6.4) �
n�
i�1

r0, Eqi s. Then the following

optimisation problem (6.4), is equivalent to (6.2) in the sense that both problems have the same feasible set,
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and, hence the same optimal solution and optimal objective function value.

min
ul,v,y,z PRn�q�Rn�Rn�R

q̧

l�1

pulqTCl � z � vTS0 � yTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P I(6.4)

y ¥ maxt�ω, 0u
q̧

l�1

ul � v ¥ maxt�ω, 0u.

(6.4)

Remarks

1. We first remark that the objective functions of (6.2) and (6.4) are the same. This is because the
objective function in (6.2) represents the total cost of the super-replicating portfolio at the current
time, t � 0. Since this is a cost which is paid, the minimal such cost is attained since what ever the
minimum cost is, the investor pays it. Therefore, the inf in (6.2) is attained and can be replaced by
min as in (6.4).

2. The extra constraints in (6.4) have a significant financial meaning.
The constraint

y ¥ maxt�ω, 0u,

which is equivalent to
yi ¥ maxt�ωi, 0u, @ i � 1, 2, . . . , n,

means:
(a) If the weight ωi ¡ 0, this implies, yi ¥ 0, for all i � 1, 2, . . . , n. This means that for a strictly
positive weight ωi, the corresponding amount of the ith asset which is bought at a price of S0

i today
and contributes SBi

to the super-replicating portfolio is non-negative. That is, we do not short sell the
asset i in this case.
(b) If the weight ωi   0, this implies, yi ¥ ωi, for all i � 1, 2, . . . , n. This means that for a strictly
negative weight ωi, the amount at which we buy the ith underlying asset at a price of S0

i today and
contributes SBi in the super-replicating portfolio, is at least ωi.
Further, the constraint

q̧

l�1

ul � v ¥ maxt�ω, 0u

which is equivalent to
q̧

l�1

uli � vi ¥ maxt�ωi, 0u, @ i � 1, 2, . . . , n

means:

(a) If the weight ωi ¡ 0, this implies,
q̧

l�1

uli � vi ¥ 0, for all i � 1, 2, . . . , n. This means that for a

strictly positive weight ωi, the total amount of European vanilla calls written on the ith asset plus the
amount of the ith asset which contributes Si to the super-replicating portfolio is non-negative.

(b) If the weight ωi   0, this implies,
q̧

l�1

uli � vi ¥ ωi, for all i � 1, 2, . . . , n. This means that for a

strictly negative weight ωi, the total amount of European vanilla calls written on the ith asset plus the
amount of the ith asset which contributes Si to the super-replicating portfolio is at least ωi.
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3. The extra constraints give conditions or restrictions on how the super-replicating portfolio should be
constructed.

4. The advantage of solving (6.4) instead of (6.2) is that the index set in the semi-infinite constraint of
(6.4) is compact, albeit (6.4) containing additional constraints. Problem (6.4) allows us to construct
the minimal cost super-replicating portfolio, which is the optimal objective function value of the SIO
problem (6.2), by considering a compact index set I(6.4) and constraints which impose conditions on how
the super-replicating portfolio is to be constructed. Thus, (6.4) ensures that the value of the portfolio
always super-replicates the payoff of the basket option whose current price we are bounding for all non-
negative values of S and SB by considering a compact set to which S and SB can take values in, as well
as some extra restrictions on how to construct the super-replicating portfolio which are to be obeyed.

Proof of Proposition 6.3. We start by observing that the objective functions of (6.2) and (6.4) are the same.
Thus in order to show these two problems are equivalent we must show that their respective feasible regions
are the same. Let F(6.2) and F(6.4) denote the feasible regions of (6.2) and (6.4), respectively. We then show
that F(6.2) � F(6.4).
The proof comes in two parts.
(i) F(6.2) � F(6.4): Take any pu1, u2, . . . , uq, v, y, zq P F(6.2). We then show that

pu1, u2, . . . , uq, v, y, zq P F(6.4). Now, since I(6.4) �
n�
i�1

r0, Eqi s, then I(6.4) forms an n-dimensional ‘rectangle’.

That is, it forms a ‘rectangle’ in n-dimensional non-negative space and so I(6.4) � Rn�. Thus, from the
constraint in (6.2) we have

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P Rn�.

It then follows that since I(6.4) � Rn�, the constraint in (6.2) obviously still holds for all SB , S P I(6.4). That
is,

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P I(6.4),

and so the first constraint from (6.4) holds.
To show that the final two constraints hold we have the following. Recall that pu1, u2, . . . , uq, v, y, zq satisfies
the constraint

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P Rn�,

(6.5)

from (6.2), for all SB , S P Rn�.
Then we consider the following two cases.
Case 1: The American basket put option is exercised early. In this case we are interested in the price SB .
The price of the assets at expiry, given by S is irrelevant in this case and may be treated as an unknown
constant.
Now, since (6.5) holds for all SB P Rn�, it certainly holds for the particular asset price price vector SB , with

SBi
� e�rpT�t

�qη, for some η ¡ 0 and all other components equal to 0, for i � 1, 2, . . . , n. That is, the

constraint holds for the vector SB � e�rpT�t
�q

�
������

0
0
...
η
0

�
������

�
������

0
0
...

e�rpT�t
�qη

0

�
�����, where η is in the ith position, for
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i � 1, 2, . . . , n.
This gives

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB P Rn�

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk � erpT�t
�q

ņ

k�1

ykSBk
¥

max

#
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
,max

�
E �

ņ

k�1

ωkSk, 0

�+
, @ SB P Rn�.

Now, for each i � 1, 2, . . . , n, SBi
� e�rpT�t

�qη and all other components are equal to 0.
For a particular i, ùñ

q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk � erpT�t
�qyiSBi

¥

max

#
erpT�t

�q max pE � ωiSBi
, 0q ,max

�
E �

ņ

k�1

ωkSk, 0

�+
,

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk � erpT�t
�qyie

�rpT�t�qη ¥

max

#
erpT�t

�q max
�
E � ωie

�rpT�t�qη, 0
	
,max

�
E �

ņ

k�1

ωkSk, 0

�+
,

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk � ηyi ¥

max

#
ηmax

�
EerpT�t

�q

η
� ωi, 0

�
,max

�
E �

ņ

k�1

ωkSk, 0

�+

and so, if we divide both sides by η we get, (since η ¡ 0)

ùñ

q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q

η
�
zerT

η
�

ņ

k�1

vkSk

η
� yi ¥

max

#
max

�
EerpT�t

�q

η
� ωi, 0

�
,

1

η
max

�
E �

ņ

k�1

ωkSk, 0

�+

,

and if η Ñ 8, then,

q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q

η Ñ 0, zerT

η Ñ 0,

ņ

k�1

vkSk

η Ñ 0, EerpT�t�q

η Ñ 0 and

1
η max

�
E �

ņ

k�1

ωkSk, 0

�
Ñ 0. This gives, in the limit as η Ñ8,

yi ¥ maxtmaxp�ωi, 0q, 0u � maxt�ωi, 0u

6 yi ¥ maxt�ωi, 0u,
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which holds for all i � 1, 2, . . . , n.
This in vector form is just

y ¥ maxt�ω, 0u. (6.6)

Case 2: The American basket put option is not exercised early. In this case we are interested in the asset
price vector at expiry, given by S P Rn�. The price of the assets at any time before T , that is, the price of
the assets at any time before expiry, and in particular at any potential SB , is irrelevant in this case and may
be treated as an unknown constant.
Now, since (6.5) holds for all S P Rn�, it certainly holds for the particular asset price price vector S, with
Si � η, for some η ¡ 0 and all other components equal to 0, for i � 1, 2, . . . , n. That is, the constraint holds

for the vector S �

�
������

0
0
...
η
0

�
�����, where η is in the ith position, for i � 1, 2, . . . , n.

This gives

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ S P Rn�

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk � erpT�t
�q

ņ

k�1

ykSBk
¥

max

#
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
,max

�
E �

ņ

k�1

ωkSk, 0

�+
, @ S P Rn�.

Now, for each i � 1, 2, . . . , n, Si � η and all other components are equal to 0.
For a particular i, ùñ

q̧

l�1

puliqmaxpSi � Eli, 0q � zerT � viSi � erpT�t
�q

ņ

k�1

ykSBk
¥

max

#
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
,maxpE � ωiSi, 0q

+

ðñ
q̧

l�1

puliqmaxpη � Eli, 0q � zerT � viη � erpT�t
�q

ņ

k�1

ykSBk
¥

max

#
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
,maxpE � ωiη, 0q

+

ðñ
q̧

l�1

puliqηmax

�
1�

Eli
η
, 0



� zerT � viη � erpT�t

�q
ņ

k�1

ykSBk
¥

max

#
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
, ηmax

�
E

η
� ωi, 0


+
,
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and so, if we divide both sides by η we get, (since η ¡ 0)

ùñ
q̧

l�1

puliqmax

�
1�

Eli
η
, 0



�
zerT

η
� vi �

erpT�t
�q

ņ

k�1

ykSBk

η
¥

max

#
1

η
erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
,max

�
E

η
� ωi, 0


+

,

and if η Ñ8, then,

erpT�t�q

ņ

k�1

ykSBk

η Ñ 0, zerT

η Ñ 0,
El

i

η Ñ 0, E
η Ñ 0 and

1
η erpT�t

�q max

�
E �

ņ

k�1

ωkSBk
, 0

�
Ñ 0. This gives, in the limit as η Ñ8,

q̧

l�1

puliqmaxp1, 0q � vi ¥ maxt0,maxp0� ωi, 0qu

ðñ
q̧

l�1

uli � vi ¥ maxt�ωi, 0u,

which holds for all i � 1, 2, . . . , n.
This in vector form is just

q̧

l�1

ul � v ¥ maxt�ω, 0u. (6.7)

Thus we have shown that (6.6) and (6.7) hold and so the final two inequalities from (6.4) hold, thus proving
that F(6.2) � F(6.4).
(ii) Now we prove the converse, F(6.4) � F(6.2). So, take any pu1, u2, . . . , uq, v, y, zq P F(6.4). Then, in order

to show that pu1, u2, . . . , uq, v, y, zq P F(6.2), we must show that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P Rn�.

To this end, it suffices to show that; in the early exercise case

max
SBPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q

*
�

max
SBPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q

*
,
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and in the non-early exercise case, that

max
SPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q

*
�

max
SPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q

*
.

This is because, since pu1, u2, . . . , uq, v, y, zq P F(6.4), it holds that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P I(6.4).

Thus,

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q ¤ 0 @ SB , S P I(6.4),

and so,

max
SBPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q

�zerT � vTS � yTSBerpT�t
�q

*
¤ 0,

in the early exercise case, and

max
SPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q

�zerT � vTS � yTSBerpT�t
�q

*
¤ 0,

in the non-early exercise case.
So, if in the early exercise case we have

max
SBPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
�

max
SBPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
,
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and in the non-early exercise case we have

max
SPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
�

max
SPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
,

it means that

max
SBPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
¤ 0,

and

max
SPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
¤ 0,

respectively.
Thus,

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q ¤ 0 @ SB , S P Rn�,

ðñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P Rn�,

in which case the proposition is proved.
We now show that, in the early exercise case

max
SBPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
�

max
SBPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
,
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and in the non-early exercise case

max
SPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
�

max
SPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT

�vTS � yTSBerpT�t
�q

*
,

is indeed the case.
Again we consider two cases.
Case 1: The American basket put option is exercised early. In this case we are interested in the asset price
SB . The price of the assets at expiry, given by S, is irrelevant in this case and may be treated as an unknown
constant.
In the early exercise case, we have that E�ωTSB ¡ 0 since early exercise of the Bermuda basket put option
would only take place if it were in the money.
We define the function ψ : Rn� Ñ R, given by

ψpSBq � maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q.

In this case the function ψpSBq becomes,

ψpSBq � maxterpT�t
�qpE � ωTSBq,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q.

Consider ∇ψpSBq, for all SB R I(6.4). Then we have the following cases to consider.
(a) If E � ωTS ¡ 0, then ψpSBq becomes,

ψpSBq � maxterpT�t
�qpE � ωTSBq, pE � ωTSqu �

q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q.

Then we consider two sub-cases as follows.
piq If erpT�t

�qpE � ωTSBq ¡ pE � ωTSq, then ψpSBq becomes,

ψpSBq � erpT�t
�qpE � ωTSBq �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

This means

∇ψpSBq �
dψ

dSB
� �erpT�t

�qω � erpT�t
�qy � erpT�t

�qp�ω � yq.

piiq If pE � ωTSq ¡ erpT�t
�qpE � ωTSBq, then ψpSBq becomes,

ψpSBq � pE � ωTSq �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.
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This means

∇ψpSBq �
dψ

dSB
� �erpT�t

�qy.

(b) If E � ωTS   0, then ψpSBq becomes,

ψpSBq � maxterpT�t
�qpE � ωTSBq, 0u �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

This is the same as

ψpSBq � erpT�t
�qpE � ωTSBq �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q,

since we only exercise early if the option is in the money, (see above). This means,

∇ψpSBq �
dψ

dSB
� �erpT�t

�qω � erpT�t
�qy � erpT�t

�qp�ω � yq.

Now, from (6.6) however,we observe that

y ¥ maxt�ω, 0u ¥ �ω ùñ y ¥ �ω ðñ �y ¤ ω

so � ω � y ¤ 0. This means erpT�t
�qp�ω � yq ¤ 0.

Also, y ¥ maxt�ω, 0u ¥ 0 ùñ y ¥ 0 ðñ �y ¤ 0.

This means � erpT�t
�qy ¤ 0.

ùñ In all cases (a) and (b), for all SB R I(6.4),

∇ψpSBq ¤ 0 ùñ ψpSBq is non-increasing for all SB R I(6.4).

For case 2 we have the following.
Case 2: The American basket put option is not exercised early. In this case we are interested in the asset
price vector at expiry, given by S P Rn�. The price of the assets at any time before T , that is, the price of
the assets at any time before expiry, and in particular at any potential SB , is irrelevant in this case and may
be treated as an unknown constant.
We define the function ψ̃ : Rn� Ñ R, given by

ψ̃pSq � maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q.

Consider ∇ψ̃pSq, for all S R I(6.4). Then we have the following cases to consider.

(a) If E � ωTSB ¡ 0, then ψ̃pSq becomes

ψ̃pSq � maxterpT�t
�qpE � ωTSBq,maxpE � ωTS, 0qu �

q̧

l�1

pulqT maxpS � El, 0q � zerT

� vTS � yTSBerpT�t
�q.

Then we consider the following two sub-cases.
piq If E � ωTS ¡ 0, then ψ̃pSq becomes,

ψ̃pSq � maxterpT�t
�qpE � ωTSBq, pE � ωTSqu �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.
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Then we have the following.
1) If erpT�t

�qpE � ωTSBq ¡ pE � ωTSq, then ψ̃pSq becomes

ψ̃pSq � erpT�t
�qpE � ωTSBq �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

This means

∇ψ̃pSq � dψ̃

dS
� �

q̧

l�1

ul � v.

2) If pE � ωTSq ¡ erpT�t
�qpE � ωTSBq, then ψ̃pSq becomes

ψ̃pSq � pE � ωTSq �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

This means,

∇ψ̃pSq � dψ̃

dS
� �ω �

q̧

l�1

ul � v.

piiq If E � ωTS   0, then ψ̃pSq becomes,

ψ̃pSq � maxterpT�t
�qpE � ωTSBq, 0u �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

However since erpT�t
�q ¡ 0, then ùñ erpT�t

�qpE � ωTSBq ¡ 0 for this case since E � ωTSB ¡ 0.
This means ψ̃pSq is

ψ̃pSq � erpT�t
�qpE � ωTSBq �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

This gives

∇ψ̃pSq � dψ̃

dS
� �

q̧

l�1

ul � v.

(b) If E � ωTSB   0, then ψ̃pSq becomes,

ψ̃pSq � maxt0,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q.

Then, again we consider the following two sub-cases.
piq If E � ωTS ¡ 0, then ψ̃pSq becomes,

ψ̃pSq � maxt0, pE � ωTSqu �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q,

which in this case is the same as

ψ̃pSq � pE � ωTSq �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q,

This gives,

∇ψ̃pSq � dψ̃

dS
� �ω �

q̧

l�1

ul � v.
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piiq If E � ωTS   0, then ψ̃pSq becomes,

ψ̃pSq � maxt0, 0u �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q,

which is the same as,

ψ̃pSq � �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q,

This gives

∇ψ̃pSq � dψ̃

dS
� �

q̧

l�1

ul � v.

Now, from (6.7) however,we observe that

q̧

l�1

ul � v ¥ maxt�ω, 0u ¥ 0 ùñ
q̧

l�1

ul � v ¥ 0 ðñ �
q̧

l�1

ul � v ¤ 0, and

q̧

l�1

ul � v ¥ maxt�ω, 0u ¥ �ω ùñ
q̧

l�1

ul � v ¥ �ω

ðñ �
q̧

l�1

ul � v ¤ ω ùñ �ω �
q̧

l�1

ul � v ¤ 0.

ùñ In all cases (a) and (b), for all S R I(6.4),

∇ψ̃pSq ¤ 0 ùñ ψ̃pSq is non-increasing for all S R I(6.4).

Thus, in both cases we have established that ψ and ψ̃ are non-increasing for all SB , S R I(6.4), respectively.

This means that ψpSBq and ψ̃pSq must attain its maximum value for a value of SB , S P I(6.4), respectively.
Thus, it holds that; in the early exercise case

max
SBPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
�

max
SBPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
,

and in the non-early exercise case

max
SPRn

�

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
�

max
SPI(6.4)

"
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu �
q̧

l�1

pulqT maxpS � El, 0q � zerT�

vTS � yTSBerpT�t
�q

*
,

as was to be shown, and the proposition is proved.
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We now show that the semi-infinite optimisation problem (6.4), can be re-formulated as a finite linear
problem.
We recall (6.4) as

min
ul,v,y,z PRn�q�Rn�Rn�R

q̧

l�1

pulqTCl � z � vTS0 � yTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu, @ SB , S P I(6.4)

y ¥ maxt�ω, 0u
q̧

l�1

ul � v ¥ maxt�ω, 0u.

(6.4)

Now, the first constraint is equivalent to the following three semi-infinite constraints (6.8), (6.9) and (6.10),
by observing that

maxterpT�t
�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu ¥

erpT�t
�q maxpE � ωTSB , 0q ¥ erpT�t

�qpE � ωTSBq,

and
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu ¥

erpT�t
�q maxpE � ωTSB , 0q ¥ 0,

and
maxterpT�t

�q maxpE � ωTSB , 0q,maxpE � ωTS, 0qu ¥

maxpE � ωTS, 0q ¥ E � ωTS.

ùñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

erpT�t
�qpE � ωTSBq, @ SB , S P I(6.4)

(6.8)

and
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

0, @ SB , S P I(6.4)

(6.9)

and
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS � yTSBerpT�t
�q ¥

E � ωTS, @ SB , S P I(6.4).

(6.10)

Which is equivalent to

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi ¥ EerpT�t
�q � erpT�t

�q
ņ

i�1

ωiSBi ,

@ SB , S P I(6.4),

and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi
¥ 0, @ SB , S P I(6.4),
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and

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi
¥ E �

ņ

i�1

ωiSi, @ SB , S P I(6.4),

respectively.
ðñ

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi
� erpT�t

�q
ņ

i�1

ωiSBi
� zerT � EerpT�t

�q ¥ 0,

@ SB , S P I(6.4),

and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi � zerT ¥ 0, @ SB , S P I(6.4),

and

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � erpT�t
�q

ņ

i�1

yiSBi
�

ņ

i�1

ωiSi � zerT � E ¥ 0, @ SB , S P I(6.4),

respectively.
Switching the order of summation gives

ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� erpT�t
�qωiSBi

�
loooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

p�q

�zerT � EerpT�t
�q ¥ 0,

@ SB , S P I(6.4),

and
ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

�
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

p��q

�zerT ¥ 0, @ SB , S P I(6.4),

and

ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi

�
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

p���q

�zerT � E ¥ 0, @ SB , S P I(6.4),

respectively.
Before proceeding we observe that the left hand side is identical in (6.8), (6.9) and (6.10). Therefore, it is
possible to derive the first constraint in the optimisation problem (6.4), from (6.8), (6.9) and (6.10) by using
the following property of the maximum.

If a ¥ b and a ¥ c ùñ a ¥ maxtb, cu.

Now we choose α, β, γ P Rn such that αi provides a lower bound to p�q , βi provides a lower bound to p��q,
and γi provides a lower bound to p� � �q, for all i � 1, 2, . . . , n. That is, we choose αi, βi, γi, for all i, such
that

αi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi � erpT�t

�qωiSBi
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and

βi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

,

and

γi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi � ωiSi,

for all i � 1, 2, . . . , n.
ùñ The semi-infinite constraints of (6.4) become

$''''''''''''''''''''''&
''''''''''''''''''''''%

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� erpT�t
�qωiSBi

¥ αi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

¥ βi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi � ωiSi ¥ γi, @ SBi , Si P r0, E

q
i s, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � EerpT�t
�q ¥ 0

ņ

i�1

βi � zerT ¥ 0

ņ

i�1

γi � zerT � E ¥ 0.

(6.11)
This means that a point pu1, u2, . . . , uq, v, y, zq is feasible for (6.4) if and only if
pu1, u2, . . . , uq, v, y, z, α, β, γq P Rn�q�Rn�Rn�R�Rn�Rn�Rn is feasible for system (6.11). We further
observe that by writing the semi-infinite constraints of (6.4) as system (6.11), we have that the last three
constraints are standard (finite) linear constraints and the first 3n constraints are semi-infinite but the index
set is now the bounded, closed interval r0, Eqi s, for all i � 1, 2, . . . , n.
Now we consider the semi-infinite constraints from system (6.11). Then, we have

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� erpT�t
�qωiSBi

¥ αi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n,

and
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi ¥ βi, @ SBi , Si P r0, E

q
i s, @ i � 1, 2, . . . , n,

and

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi ¥ γi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n.

The semi-infinite constraints of system (6.11) are piece-wise linear constraints. This means that the minimum
value of the left hand side of the inequalities over all values of SBi

and Si in the interval r0, Eqi s occurs at
one of the breakpoints. That is, it occurs exactly when SBi and /or Si � 0 or SBi and/or Si � E1

i or SBi

and/or Si � E2
i or . . . or SBi and/or Si � Eqi , for all i � 1, 2, . . . , n. Thus, we may consider the semi-infinite

constraints above for the values SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u, for all i � 1, 2, . . . , n.

87



Hence, it holds that

min
SBi

, SiPr0,E
q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� erpT�t
�qωiSBi

� min
SBi

, SiPt0,E1
i ,E

2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� erpT�t
�qωiSBi

,

and

min
SBi

, SiPr0,E
q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� min
SBi

, SiPt0,E1
i ,E

2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

,

and

min
SBi

, SiPr0,E
q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi

� min
SBi

, SiPt0,E1
i ,E

2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi.

Therefore, each of the semi-infinite constraints can now be replaced by pq � 1q2 finite piece-wise linear
constraints. That is, we may replace the constraint

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi � erpT�t

�qωiSBi ¥ αi, @ SBi , Si P r0, E
q
i s, @ i � 1, 2, . . . , n,

by

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi � erpT�t

�qωiSBi ¥ αi, for SBi , Si P t0, E
1
i , E

2
i , . . . , E

q
i u,

@ i � 1, 2, . . . , n

and the constraint
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

¥ βi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n,

by

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

¥ βi, for SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n,

and the constraint
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi ¥ γi, @ SBi
, Si P r0, E

q
i s, @ i � 1, 2, . . . , n,

by
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi ¥ γi, for SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u,

@ i � 1, 2, . . . , n.

We may summarise the above analysis in the following theorem, which we have derived from above.
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Theorem 6.12. The semi-infinite optimisation problem (6.4) is equivalent to the following finite linear
optimisation problem

min
pu1,u2,...,uq,v,y,zqPRn�q�Rn�Rn�R,α,β,γPRn

q̧

l�1

pulqTCl � z � vTS0 � yTS0

subject to
q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

�

erpT�t
�qωiSBi ¥ αi,

for SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

¥ βi,

for SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi � erpT�t
�qyiSBi

� ωiSi ¥ γi,

for SBi
, Si P t0, E

1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � EerpT�t
�q ¥ 0

ņ

i�1

βi � zerT ¥ 0

ņ

i�1

γi � zerT � E ¥ 0

y ¥ maxt�ω, 0u
q̧

l�1

ul � v ¥ maxt�ω, 0u,

(6.13)

in the sense that both optimisation problems have the same feasible region and hence the same optimal
solution and the same optimal objective function value.

Observation: In comparison to the semi-infinite problem (6.4); we observe that (6.13) has n� n� n � 3n
additional variables and a total of

npq � 1q2 � npq � 1q2 � npq � 1q2 � 3� n� n � 3npq � 1q2 � 3� 2n � 2n� 3npq � 1q2 � 3

� 2n� 3npq2 � 2q � 1q � 3 � 2n� 3nq2 � 6nq � 3n� 3 � 5n� 6nq � 3nq2 � 3 � np3q2 � 6q � 5q � 3

linear constraints. The advantage of solving (6.13) in comparison to (6.4) is that we are solving a standard,
finite linear problem in comparison to a semi-infinite one.
Therefore, we have derived a solvable optimisation model which can be used to find upper bounds on the
current price of this particular American basket put option.
We observe here that the model set up and approach to finding an upper bound on the price of a Bermuda
basket put option presented above is very similar to the model set up presented in sub-section 3.4 which
looked at finding an upper bound on the price of a European basket call option. Further, the methodology
employed in the proof of Proposition 6.3 can be viewed as an extension to the methodology employed in the
proof of Proposition 3.14 in sub-section 3.4. It is an extension because in the proof of Proposition 6.3 we had
to consider the early exercise feature of the Bermuda basket put option; something which was not required
of course in the proof of Proposition 3.14. Similarly, the ideas used to obtain the finite LO problem (6.13)
can also be viewed as an extension to the techniques used in sub-section 3.4 to re-write the SIO problem
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(3.13) as a solvable and finite LO problem.
As a concluding remark, we note here that the above model may be extended to the case where there are
multiple early exercise dates for the Bermuda basket put option.
This is done by recalling one of the assumptions we made about the Bermuda basket put option at the
beginning of this section. We assumed that the Bermuda option had a sole early exercise time given by t�.
In reality however most of the Bermuda options traded have multiple exercise times. Fortunately however,
we can derive price bounds on a Bermuda basket put option with multiple early exercise times by proceeding
in exactly the same way as we did above.
In this case the objective function and one of the constraints would have to be modified. We assume that
the Bermuda basket put option can be exercised at pk�1q early exercise times before expiry or on the expiry
date if it has not already been exercised.
In order to derive the optimisation model to capture the feature of multiple early exercise times we introduce
the following notation.

• Let tj denote the fixed time points for which the option can be exercised early, for j � 1, 2, . . . , k;
where tk � T , which is the expiry date of the option.

• Let Siptjq P R� denote the value of the ith asset at time tj , for i � 1, 2, . . . , n and j � 1, 2, . . . , k. Note
here that under this notation we have Siptkq � SipT q � Si, for i � 1, 2, . . . , n.

• Retain all other notation from the beginning of this section.

Then we can model the problem of finding an upper bound on the price of a Bermuda basket put option,
with multiple early exercise times as the following optimisation problem which is a dual of a SIO problem.

sup
π

Eπ
�

max
j�1,2,...,k

�
e�rtj maxpE � ωTSptjq, 0q

��
subject to Eπre�rT maxpSi � Eli, 0qs � Cli , for i � 1, 2, . . . , n and l � 1, 2, . . . , q

Eπre�rtjSiptjqs � S0
i , for i � 1, 2, . . . , n and j � 1, 2, . . . , k

Eπr1s � 1.

(6.14)

We remark here that the constraint

Eπre�rtjSiptjqs � S0
i , for i � 1, 2, . . . , n and j � 1, 2, . . . , k

means that the discounted expected value of the asset price vector at each time point tj , for j � 1, 2, . . . , k
is equal to the current asset price vector, where we recall that tk � T , which is the expiry date of the option.
We can now derive the SIO problem for which (6.14) is its dual and proceed as above to re-write this SIO
problem as a SIO problem with a compact index set and then equivalently re-write this SIO problem with
a compact index set as a finite and solvable LO problem. This concludes our analysis on using SIO to find
upper bounds on the current price of a Bermuda basket put option.
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7 Finding price bounds on Asian Basket Options

Recall that in Section 6 we presented one extension to the European basket option pricing problem. Namely,
we saw how to calculate price bounds on a Bermuda basket put option. In this section we consider another
extension to the European basket option pricing problem. That is, we now consider how to find price bounds
on Asian basket options.

7.1 Introduction

Before proceeding to the analysis on finding price bounds for Asian basket options, we first formally define
what we mean by an Asian option.
Put simply, an Asian option is a path-dependent option whose payoff depends upon an average of its
underlying asset(s) price. This average is calculated by considering the prices of the underlying asset(s)
throughout the life of the option, including the expiry date, T . Thus, Asian options are often referred to as,
options on the average.
The simplest example of an Asian option is an Asian vanilla call option. If S̄ is the average price of the
underlying asset from time t � 0 to t � T which is the expiry date, and E ¥ 0 is the exercise price, then the
payoff of an Asian vanilla call option would be given by

maxpS̄ � E, 0q. (7.1)

We observe that the way in which the average in the payoff of an Asian option is calculated is different from
option to option. It is up to the holder and writer of the Asian option under consideration to agree, before
the start of the option, how the average will be calculated.
Letting Sptq denote the price of the underlying asset at time t, for all t P r0, T s, then the common ways to
calculate the average in an Asian option are given below.

1. Arithmetic average in the continuous case. Here we assume that t can take any value between 0 and
T . Then under this assumption the value of S̄ is given by

S̄ �
1

T

» T
0

Sptq dt. (7.2)

2. Arithmetic average in the discrete case. Here we assume that the average depends upon the prices of
the underlying asset(s) at N discrete time points in the interval r0, T s. If these time points are given
by t1, t2, . . . , tN � T , then the value of S̄ is given by

S̄ �
1

N

Ņ

j�1

Sptjq. (7.3)

3. Geometric average in the continuous case. In this case we assume that t can take any value between
0 and T . Then the value of S̄ is given by

S̄ � e
1
T

³T
0

lnpSptqq dt. (7.4)

There are other recent results on finding current prices and finding current price bounds on Asian options in
[46, 47, 48, 49, 50, 51, 52]. In particular, in [46] current prices for Asian basket options using moment matching
procedures are derived. In [47] pricing methods for Asian arithmetic average basket options in a Black-Scholes
framework using a Quasi-Monte Carlo method are derived. In [48] prices of Asian basket options using limit
distributions of sums of log-normal variables are derived. In [49] an analytical approximation approach is
used to find current prices of Asian basket options. In [50] upper and lower bounds on the current price of an
Asian basket option are derived by using a conditioning variable approach. In [51] upper and lower bounds
on the current price of discrete arithmetic Asian basket options are derived in a Black-Scholes framework.
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Finally, in [52] model-independent lower bounds for general arithmetic average Asian options are derived,
using a similar approach to what is done here but not specifically for basket options.
Our approach to finding upper bounds on the current price of an Asian basket option is new because we
model the problem as a dual to a linear SIO problem and then re-write this linear SIO as a finite and solvable
linear problem in a way which has not been done before.

7.2 Upper bound on the price of an Asian basket call option using SIO

We now consider how semi-infinite optimisation can be used to find current price bounds on Asian basket
options.
In this sub-section we consider a similar model set-up and solution approach to that given in sub-section
3.4 for European basket call options. We note here that the results obtained in this sub-section are new, in
the sense that finding price bounds on an Asian basket option by using semi-infinite optimisation using the
solution approach which we consider here has not been done before.
We first describe the model set-up and recall and introduce some notation. In what follows we consider
finding an upper bound on the current price of an Asian basket call option, given that we know the current
prices of q Asian vanilla call options per asset and the expected (forward) price per asset, under a risk-neutral
probability measure, which is to be found.
We consider finding price bounds on an Asian basket call option written on n underlying assets, and we
introduce the following notation.

• Let ωi P R denote the weight of the ith asset, for i � 1, 2, . . . , n.

• Let the price of the ith underlying asset at time t be denoted by Siptq P R�, for all i � 1, 2, . . . , n.

• Let the exercise price of the Asian basket option whose current price we are bounding be denoted by
E P R�.

• For the q Asian vanilla options per asset whose current price we know, let the lth exercise price for the
ith underlying asset be given by Eli P R�, for l � 1, 2, . . . , q and i � 1, 2, . . . , n.

• Let the lth current price of the Asian vanilla option written on asset i be given by Ali P R�, for
l � 1, 2, . . . , q and i � 1, 2, . . . , n.

• Further, the current price of the ith asset will be denoted by S0
i P R�, for all i � 1, 2, . . . , n.

We will adopt the notational convention for the vector form of these variables as given in Section 3.
Furthermore, we will assume that all options in the model have the same expiry date, T . Also, for the
purposes of this thesis we consider the case where for all options in the model, the average of the n underlying
asset prices is calculated by an arithmetic discrete average. That is, for all options we consider the asset
prices of all n underlying assets at times t1, t2, . . . , tN � T and calculate the arithmetic mean using these
values to obtain S̄. We will also assume that the risk-free interest rate is equal to zero.
Then this gives us

S̄ �
1

N

Ņ

j�1

Sptjq,

and so the lth payoff for the Asian vanilla call option written on asset i, whose current price we know and is
given by Ali, is

max

�
1

N

Ņ

j�1

Siptjq � Eli, 0

�
, (7.5)

for all l � 1, 2, . . . , q and i � 1, 2, . . . , n.
Similarly, the payoff of the Asian basket call option whose current price we are bounding is given by

max

�
ņ

i�1

ωi

�
1

N

Ņ

j�1

Siptjq

�
� E, 0

�
. (7.6)
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Using (7.5) and (7.6) and the model setting outlined above, we may model the task of finding an upper
bound on the current price of an Asian basket call option as the following optimisation problem which is a
dual of a linear SIO problem.

sup
π

Eπ

�
max

�
ņ

i�1

ωi

�
1

N

Ņ

j�1

Siptjq

�
� E, 0

��

subject to Eπ

�
max

�
1

N

Ņ

j�1

Siptjq � Eli, 0

��
� Ali, @ i � 1, 2, . . . , n and l � 1, 2, . . . , q

Eπr1s � 1

EπrSiptjqs � S0
i , @ j � 1, 2, . . . , N, i � 1, 2, . . . , n.

(7.7)

Deriving the linear SIO problem for which (7.7) is its dual, we obtain the problem

inf
pul,z,vptjqqPRn�q�R�Rn�N

q̧

l�1

pulqTAl � z �
Ņ

j�1

pvptjqq
TS0

subject to
q̧

l�1

pulqT max

�
1

N

Ņ

j�1

Sptjq � El, 0

�
� z �

Ņ

j�1

pvptjqq
TSptjq ¥

max

�
ņ

i�1

ωi

�
1

N

Ņ

j�1

Siptjq

�
� E, 0

�
, @ Sptjq P Rn�, @ j � 1, 2, . . . , N.

(7.8)

Now, we assume that the investors position in the super-replicating portfolio does not change with respect
to time. That is, once the investor has initially decided how many Asian vanilla call options to buy, how
much cash to invest and how much of each underlying asset to buy, at time t � 0, he holds these amounts
throughout the duration of the portfolio, that is, until expiry t � T . This means that all of the variables
ul, z and vptjq in the optimisation model are independent of time t. In particular, we may replace vptjq by
some vector, independent of t, say v, for all j, so that we have vptjq � v, for all j � 1, 2, . . . , N .
Now we recall the definition of the discrete arithmetic average as

S̄ �
1

N

Ņ

j�1

Sptjq,

that is,

S̄i �
1

N

Ņ

j�1

Siptjq, @ i � 1, 2, . . . , n.

Then under these stated assumptions we may equivalently re-write the semi-infinite optimisation problem
(7.8) as

inf
pul,z,vqPRn�q�R�Rn

q̧

l�1

pulqTAl � z �NvTS0

subject to
q̧

l�1

pulqT max
�
S̄ � El, 0

�
� z �NvT S̄ ¥ max

�
ωT S̄ � E, 0

�
,

@ S̄ P Rn�,

S̄ �
1

N

Ņ

j�1

Sptjq.

(7.9)

This SIO problem (7.9) and the variables have a natural financial interpretation. We may interpret the
variables pul, z, vq as follows. ul which has components uli represents the amount of the lth Asian vanilla
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call option written on the ith asset in the super-replicating portfolio, for l � 1, 2, . . . , q and i � 1, 2, . . . , n. z
represents a cash amount. Nv which has components Nvi, for i � 1, 2, . . . , n represents the total amount of
the ith underlying asset which is currently held, for i � 1, 2, . . . , n. We observe here that vi represents the
amount of the ith asset which is held in the portfolio at each respective time point tj for i � 1, 2, . . . , n and
j � 1, 2, . . . , N . However since we buy the same amount of the underlying asset today but for N discrete
time points, then Nvi represents the total amount which we currently hold of the ith asset, for i � 1, 2, . . . , n.
The problem (7.9) itself may be interpreted as follows. We are interested in finding the cheapest cost portfolio
consisting of Asian vanilla call options, cash and the underlying assets themselves such that the overall value
of the portfolio always super-replicates the payoff of the Asian basket call option whose current price we are
finding an upper bound on, for all possible non-negative values of the average asset price.
Our task is to reformulate (7.9) as a solvable linear problem which can be solved to obtain the optimal
objective function value which is an upper bound on the current price of the Asian basket call option under
consideration.
Now, we note here that the index set I � Rn� in (7.9) is not compact. However, as the next proposition
shows, if we impose a restriction on how the super-replicating portfolio is to be constructed, we may restrict
I in (7.9) to a compact set without changing the feasible set of the problem.
In particular, if we impose the constraint

q̧

l�1

ul �Nv ¥ maxtω, 0u,

it can be shown, (see Proposition 7.10) that we may replace the non-compact index set Rn� by a compact
index set.

Proposition 7.10. Suppose without loss of generality that the exercise prices Eli are ordered such that

0 ¤ E1
i ¤ E2

i ¤ � � � ¤ Eqi , for all i � 1, 2, . . . , n. Define the index set I(7.11) �
n�
i�1

r0, Eqi s. Then the following

optimisation problem (7.11), is equivalent to (7.9) in the sense that both problems have the same feasible set,
and, hence the same optimal solution and optimal objective function value.

min
pul,z,vqPRn�q�R�Rn

q̧

l�1

pulqTAl � z �NvTS0

subject to
q̧

l�1

ul �Nv ¥ maxtω, 0u

q̧

l�1

pulqT max
�
S̄ � El, 0

�
� z �NvT S̄ ¥ max

�
ωT S̄ � E, 0

�
,

@ S̄ P I(7.11),

S̄ �
1

N

Ņ

j�1

Sptjq.

(7.11)

Remarks

1. We first remark that the objective functions of (7.9) and (7.11) are the same. This is because the
objective function in (7.9) represents the total cost of the super-replicating portfolio at the current
time, t � 0. Since this is a cost which is paid, the minimal such cost is attained since what ever the
minimum cost is, the investor pays it. Therefore, the inf in (7.9) is attained and can be replaced by
min as in (7.11).

2. The extra constraint in (7.11) has a significant financial meaning.
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The constraint
q̧

l�1

ul �Nv ¥ maxtω, 0u,

which is equivalent to
q̧

l�1

uli �Nvi ¥ maxtωi, 0u, @ i � 1, 2, . . . , n

means:

(a) If the weight ωi ¡ 0, this implies
q̧

l�1

uli �Nvi ¥ ωi, for all i � 1, 2, . . . , n. This means that for a

strictly positive weight, ωi, the total amount of Asian vanilla calls, written on the average price of the
ith underlying asset plus the total amount of the holdings of the ith asset over all time points is at least
ωi, for i � 1, 2, . . . , n.

(b) If the weight ωi   0, this implies
q̧

l�1

uli � Nvi ¥ 0, for all i � 1, 2, . . . , n. This means that for a

strictly negative weight, ωi, the total amount of Asian vanilla calls, written on the average of the ith

underlying asset, plus the total amount of holdings of the ith asset over all time points is non-negative,
for i � 1, 2, . . . , n.

3. This extra constraint gives conditions or restrictions on how the super-replicating portfolio should be
constructed.

4. The advantage of solving (7.11) instead of (7.9) is that the index set in the semi-infinite constraint of
(7.11) is compact, albeit (7.11) containing additional constraints. Problem (7.11) can be solved to obtain
the optimal objective function value of (7.9) by considering a compact index set I(7.11) and additional
constraints which impose conditions on how the super-replicating portfolio is to be constructed. Thus,

(7.11) can be used to solve (7.9) by considering the values of S̄ in the compact set I(7.11) �
n�
i�1

r0, Eqi s

as well as some restrictions on how to construct the super-replicating portfolio, instead of considering
values of S̄ in the unbounded set Rn�.

Proof of Proposition 7.10. We start by observing that the objective functions of (7.9) and (7.11) are the
same. Thus in order to show these two problems are equivalent we must show that their respective feasible
regions are the same. Let F(7.9) and F(7.11) denote the feasible regions of (7.9) and (7.11), respectively. We
then show that F(7.9) � F(7.11).
The proof comes in two parts.
(i) F(7.9) � F(7.11): Take any pu1, u2, . . . , uq, z, vq P F(7.9). We then show that pu1, u2, . . . , uq, z, vq P F(7.11).

Now, since I(7.11) �
n�
i�1

r0, Eqi s, then I(7.11) forms an n-dimensional ‘rectangle’. That is, it forms a ‘rectangle’

in n-dimensional non-negative space and so I(7.11) � Rn�. Thus, from the constraint in (7.9) we have

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P Rn�.

It then follows that since I(7.11) � Rn�, the constraint in (7.9) obviously still holds for all S̄ P I(7.11). That
is,

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P I(7.11),

and so the second constraint from (7.11) holds.
To show that the first constraint holds we have the following. Recall that pu1, u2, . . . , uq, z, vq satisfies the
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constraint

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P Rn�

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpS̄k � Elk, 0q � z �N
ņ

k�1

vkS̄k ¥ max

�
ņ

k�1

ωkS̄k � E, 0

�
, @ S̄ P Rn�.

This means that for the asset price vector S̄, with S̄i � η, for some η ¡ 0 and all other components equal

to 0, for i � 1, 2, . . . , n, the constraint still holds. That is, the constraint holds for the vector S̄ �

�
������

0
0
...
η
0

�
�����,

where η is in the ith position, for i � 1, 2, . . . , n.
Now, for each i � 1, 2, . . . , n, S̄i � η and all other components are equal to 0.
For a particular i, ùñ

q̧

l�1

puliqmaxpS̄i � Eli, 0q � z �NviS̄i ¥ maxpωiS̄i � E, 0q

ðñ
q̧

l�1

puliqmaxpη � Eli, 0q � z �Nviη ¥ maxpωiη � E, 0q

ðñ
q̧

l�1

puliqηmax

�
1�

Eli
η
, 0



� z �Nviη ¥ ηmax

�
ωi �

E

η
, 0



,

and so, if we divide both sides by η we get, (since η ¡ 0)

ùñ
q̧

l�1

puliqmax

�
1�

Eli
η
, 0



�
z

η
�Nvi ¥ max

�
ωi �

E

η
, 0



,

and if η Ñ8, then,
El

i

η Ñ 0, z
η Ñ 0 and E

η Ñ 0. This gives, in the limit as η Ñ8

q̧

l�1

puliqmaxp1, 0q � 0�Nvi ¥ maxpωi, 0q

ðñ
q̧

l�1

uli �Nvi ¥ maxpωi, 0q,

which holds for all i � 1, 2, . . . , n.
This in vector form is just

q̧

l�1

ul �Nv ¥ maxtω, 0u, (7.12)

and so the first constraint from (7.11) holds.
(ii) F(7.11) � F(7.9): Now we prove the converse. So, take any pu1, u2, . . . , uq, z, vq P F(7.11). Then, in order

to show that pu1, u2, . . . , uq, z, vq P F(7.9), we must show that

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P Rn�.
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To this end, it suffices to show that

max
S̄PRn

�

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
�

max
S̄PI(7.11)

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
,

since pu1, u2, . . . , uq, z, vq P F(7.11) it holds that

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P I(7.11).

Thus

maxpωT S̄ � E, 0q �
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¤ 0, @ S̄ P I(7.11),

and so

max
S̄PI(7.11)

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
¤ 0,

and so if

max
S̄PRn

�

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
�

max
S̄PI(7.11)

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
,

it means that

max
S̄PRn

�

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
¤ 0

and so

maxpωT S̄ � E, 0q �
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¤ 0 @ S̄ P Rn�

ðñ
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ maxpωT S̄ � E, 0q, @ S̄ P Rn�,

in which case the proposition is proved.
We now show that

max
S̄PRn

�

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
�

max
S̄PI(7.11)

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
.

Define the function ψ : Rn� Ñ R, given by

ψpS̄q � maxpωT S̄ � E, 0q �
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄.
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Consider ∇ψpS̄q, for all S̄ R I(7.11). Then we have
(a) If ωT S̄ � E   0,

∇ψpS̄q � dψ

dS̄
� �

q̧

l�1

ul �Nv.

(b)If ωT S̄ � E ¡ 0,

∇ψpS̄q � dψ

dS̄
� ω �

q̧

l�1

ul �Nv.

Now, from (7.12) however, we observe that

�
q̧

l�1

ul �Nv ¤ �maxtω, 0u ¤ 0, and

q̧

l�1

ul �Nv ¥ maxtω, 0u ¥ ω

ðñ
q̧

l�1

ul �Nv ¥ ω ðñ �
q̧

l�1

ul �Nv ¤ �ω

ðñ ω �
q̧

l�1

ul �Nv ¤ 0.

ùñ In case (a) and (b), for all S̄ R I(7.11),

∇ψpS̄q ¤ 0 ùñ ψpS̄q is non-increasing for all S̄ R I(7.11).

This means that ψpS̄q must attain its maximum value for a value of S̄ P I(7.11) and so it holds that

max
S̄PRn

�

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
�

max
S̄PI(7.11)

#
maxpωT S̄ � E, 0q �

q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄

+
,

and the proposition is proved.

Now we show that the semi-infinite optimisation problem (7.11) can be re-formulated as a finite linear
problem.
We start be recalling (7.11) as

min
pul,z,vqPRn�q�R�Rn

q̧

l�1

pulqTAl � z �NvTS0

subject to
q̧

l�1

ul �Nv ¥ maxtω, 0u

q̧

l�1

pulqT max
�
S̄ � El, 0

�
� z �NvT S̄ ¥ max

�
ωT S̄ � E, 0

�
,

@ S̄ P I(7.11) �
n¡
i�1

r0, Eqi s,

S̄ �
1

N

Ņ

j�1

Sptjq.

(7.11)
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Now, using the following property of the maximum,

maxta, bu ¥ a and maxta, bu ¥ b,

the second constraint in (7.11) is equivalent to the following two semi-infinite constraints (7.13) and (7.14),
by observing that

maxpωT S̄ � E, 0q ¥ 0 and

maxpωT S̄ � E, 0q ¥ ωT S̄ � E.

ùñ
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ ωT S̄ � E, @ S̄ P I(7.11) (7.13)

and
q̧

l�1

pulqT maxpS̄ � El, 0q � z �NvT S̄ ¥ 0, @ S̄ P I(7.11). (7.14)

Which is equivalent to

q̧

l�1

ņ

i�1

uli maxpS̄i � Eli, 0q � z �N
ņ

i�1

viS̄i ¥
ņ

i�1

ωiS̄i � E, @ S̄ P I(7.11),

and
q̧

l�1

ņ

i�1

uli maxpS̄i � Eli, 0q � z �N
ņ

i�1

viS̄i ¥ 0 @ S̄ P I(7.11),

respectively.
ðñ

q̧

l�1

ņ

i�1

uli maxpS̄i � Eli, 0q �N
ņ

i�1

viS̄i �
ņ

i�1

ωiS̄i � z � E ¥ 0, @ S̄ P I(7.11),

and
q̧

l�1

ņ

i�1

uli maxpS̄i � Eli, 0q �N
ņ

i�1

viS̄i � z ¥ 0 @ S̄ P I(7.11),

respectively.
Switching the order of summation gives

ņ

i�1

�
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i

�
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

p�q

�z � E ¥ 0, @ S̄ P I(7.11),

and
ņ

i�1

�
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i

�
loooooooooooooooooooooomoooooooooooooooooooooon

p��q

�z ¥ 0 @ S̄ P I(7.11),

respectively.
Now we choose α, β P Rn such that αi provides a lower bound to p�q and βi provides a lower bound to p��q,
for all i � 1, 2, . . . , n. That is, we choose αi, βi, for all i � 1, 2, . . . , n, such that

αi ¤
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i
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and

βi ¤
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i,

for all i � 1, 2, . . . , n.
ùñ The semi-infinite constraints of (7.11) become$'''''''''''''&

'''''''''''''%

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i ¥ αi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i ¥ βi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n

ņ

i�1

αi � z � E ¥ 0

ņ

i�1

βi � z ¥ 0.

(7.15)

This means that a point pu1, u2, . . . , uq, z, vq is feasible for (7.11) if and only if pu1, u2, . . . , uq, α, β, z, vq P
Rn�q�Rn�Rn�R�Rn is feasible for system (7.15). We observe that by writing the semi-infinite constraints
of (7.11) as system (7.15), we have that the last two constraints are standard (finite) linear constraints.
Now consider the semi-infinite constraints from system (7.15),

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i ¥ αi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n,

and
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i ¥ βi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n.

Then we observe that these constraints are piece-wise linear constraints. Thus, the minimum value of the left
hand side of both inequalities over all values of S̄i P r0, E

q
i s, for all i � 1, 2, . . . , n occurs at one of the break

points. That is, it occurs exactly when S̄i � 0 or S̄i � E1
i or S̄i � E2

i or . . . or S̄i � Eqi , for all i � 1, 2, . . . , n.
Therefore, we may consider these semi-infinite constraints for the pq� 1q values S̄i P t0, E

1
i , E

2
i , . . . , E

q
i u, for

i � 1, 2, . . . , n.
Thus, it holds that

min
S̄iPr0,E

q
i s

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i

� min
S̄iPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i,

and

min
S̄iPr0,E

q
i s

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i

� min
S̄iPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i.

Therefore, each of the semi-infinite constraints can now be replaced by pq � 1q finite piece-wise linear con-
straints. That is, we may replace the constraint

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i ¥ αi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n,
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by
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i ¥ αi, for S̄i P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n,

and the constraint

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i ¥ βi, @ S̄i P r0, E
q
i s, @ i � 1, 2, . . . , n,

by
q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i ¥ βi, for S̄i P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n.

We may summarise the above analysis in the following theorem.

Theorem 7.16. The semi-infinite optimisation problem (7.11) is equivalent to the following finite linear
optimisation problem

min
pu1,u2,...,uq,z,vqPRn�q�R�Rn,α,β,PRn

q̧

l�1

pulqTAl � z �NvTS0

subject to
q̧

l�1

ul �Nv ¥ maxtω, 0u

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i � ωiS̄i ¥ αi,

for S̄i P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpS̄i � Eli, 0q �NviS̄i ¥ βi,

for S̄i P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

ņ

i�1

αi � z � E ¥ 0

ņ

i�1

βi � z ¥ 0

S̄i �
1

N

Ņ

j�1

Siptjq, @ i � 1, 2, . . . , n,

(7.17)

in the sense that both optimisation problems have the same feasible region and hence the same optimal
solution and the same optimal objective function value.

Observation: In comparison to the semi-infinite problem (7.11); we observe that (7.17) has n � n � 2n
additional variables and a total of

n� npq � 1q � npq � 1q � 2� n � 2n� 2npq � 1q � 2 � 2n� 2nq � 2n� 2

� 4n� 2nq � 2 � 2p2n� nq � 1q � 2pnpq � 2q � 1q

linear constraints. The advantage of solving (7.17) in comparison to (7.11) is that we are solving a standard,
finite linear problem in comparison to a semi-infinite one.
Therefore, solving the linear problem (7.17) would yield an upper bound on the current price of an Asian
basket call option.
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We observe here that the model set up and approach to finding an upper bound on the price of an Asian
basket call option as presented above is very similar to the model set up presented in sub-section 3.4 which
looked at finding an upper bound on the price of a European basket call option. Further, the methodology
employed in the proof of Proposition 7.10 can be viewed as a modification to the methodology employed in
the proof of Proposition 3.14 in sub-section 3.4. It is a modification because in the proof of Proposition 7.10
we considered finding price bounds on an Asian basket call option given that we know the current prices
of Asian vanilla call options. This is different to the proof of Proposition 3.14 which considered finding an
upper bound on the price of a European basket call option, given that we know the prices of European
vanilla call options. Similarly the ideas used to obtain the finite LO problem (7.17) can also be viewed as a
modification to the techniques used in sub-section 3.4 to re-write the SIO problem (3.13) as a solvable and
finite LO problem.

7.3 An upper bound derived with bid-ask prices

When finding price bounds on an Asian basket option, we have seen in the previous sub-section the unrealistic
assumption of knowing current mid-market prices. One way to overcome this, is to incorporate bid-ask prices
within the optimisation model. In this sub-section we consider one way to find an upper bound on the current
price of an Asian basket call option, given that we know the current bid-ask prices of other basket options.
We saw how this was done in [22] and sub-section 3.6.1 for European basket options. Here, we present a new
and original solution approach by incorporating bid-ask prices within the model and assuming a non-zero
interest rate, r ¡ 0 within the optimisation model.
We consider an optimisation model similar to, but not identical to the model given in sub-section 4.2. We
then employ a solution approach similar to what was done in sub-section 4.2, where we found a lower bound
on the current European basket option price, incorporating bid-ask prices.
We consider calculating an upper bound on the current price of an Asian basket call option written on n
underlying assets, given that we know the current bid-ask prices of r other Asian basket call options, written
on the same n underlying assets.
For this sub-section we will adopt the following notation.

• Let ω P Rn� denote the vector of the weights of the basket option whose current price we are bounding.

• Let E P R� be the exercise price of the basket option whose current price we are bounding.

• Let ωk P Rn� denote the vector of the weights for the kth basket option whose current bid-ask price we
know, for k � 1, 2, . . . , r.

• Let Ek P R� be the exercise price of the kth basket option whose current bid-ask price we know, for
k � 1, 2, . . . , r.

• Let paskk , pbidk P R� denote the current and known ask, bid prices of the kth basket option, respectively,
for k � 1, 2, . . . , r. Obviously, here paskk ¥ pbidk , for all k � 1, 2, . . . , r.

We consider the case where the average of all Asian options in the model is calculated via a discrete arithmetic
average. In particular, we assume that the average is calculated by considering the asset price values at N
discrete time points given by t1, t2, . . . , tN � T , where T is the expiry date of all options which is assumed to
be the same. If Sptjq P Rn� denotes the vector of the asset prices at time tj , for j � 1, 2, . . . , N ; the average
asset price, denoted by S̄ would be given by

S̄ �
1

N

Ņ

j�1

Sptjq.

Then, if π denotes a risk-neutral probability measure which is to be found, and the risk-free interest rate is
given by r ¡ 0, the task of finding an upper bound on the current price of an Asian basket call option is
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given by

sup
π

Eπ

�
e�rT max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

��

subject to Eπ

�
e�rT max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

��
¤ paskk , for k � 1, 2, . . . , r

Eπ

�
e�rT max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

��
¥ pbidk , for k � 1, 2, . . . , r

Eπr1s � 1

Eπre�rtjSptjqs � S0, j � 1, 2, . . . , N

π is a probability measure in Rn�.

(7.18)

We find the linear SIO problem for which (7.18) is its dual as

inf
uask,ubid,z,vptjq

z � puaskqT pask � pubidqT pbid �
Ņ

j�1

pvptjqq
TS0

subject to z �
ŗ

k�1

e�rT
�
uaskk

�
max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�

�
ŗ

k�1

e�rT
�
ubidk

�
max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�

�
Ņ

j�1

e�rtj pvptjqq
TSptjq ¥

e�rT max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

�
, @ Sptjq P Rn�, j � 1, 2, . . . , N

uask, ubid P Rr�, z P R, vptjq P Rn, j � 1, 2, . . . , N.

This SIO problem is equivalent to

inf
uask,ubid,z,vptjq

z � puaskqT pask � pubidqT pbid �
Ņ

j�1

pvptjqq
TS0

subject to zerT �
ŗ

k�1

�
uaskk � ubidk

�
max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�

�
Ņ

j�1

erpT�tjqpvptjqq
TSptjq ¥

max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

�
, @ Sptjq P Rn�, j � 1, 2, . . . , N

uask, ubid P Rr�, z P R, vptjq P Rn, j � 1, 2, . . . , N.
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Defining u P Rr as u � uask � ubid, we may equivalently re-write the above SIO problem as

inf
uask,ubid,u,z,vptjq

z � puaskqT pask � pubidqT pbid �
Ņ

j�1

pvptjqq
TS0

subject to zerT �
ŗ

k�1

uk max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�

�
Ņ

j�1

erpT�tjqpvptjqq
TSptjq ¥

max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

�
, @ Sptjq P Rn�, j � 1, 2, . . . , N

u � uask � ubid

uask, ubid P Rr�, z P R, u P Rr, vptjq P Rn, j � 1, 2, . . . , N.

(7.19)

Now, we assume that the investors position in the super-replicating portfolio does not change with respect
to time. That is, once the investor has initially decided how many Asian basket call options to buy, how
much cash to invest and how much of each underlying asset to buy, at time t � 0, the investor holds these
amounts throughout the duration of the portfolio, that is until expiry t � T . This means that all of the
optimisation variables u, uask, ubid, z and vptjq are independent of time t. In particular, we may replace
vptjq by some vector, independent of t, say v, for all j, so that we have vptjq � v, for all j � 1, 2, . . . , N .
With this in mind, we may re-write the SIO problem (7.19) as the following SIO problem

inf
uask,ubid,u,z,v

z � puaskqT pask � pubidqT pbid �NvTS0

subject to zerT �
ŗ

k�1

uk max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�

� vT

�
Ņ

j�1

erpT�tjqSptjq

�
¥

max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

�
, @ Sptjq P Rn�, j � 1, 2, . . . , N

u � uask � ubid

uask, ubid P Rr�, z P R, u P Rr, v P Rn.

(7.20)

Therefore under the stated assumptions, the problem (7.18) is a dual to the linear SIO problem (7.20).
We assume that strong duality holds between (7.18) and (7.20) (this is satisfied under some mild assumptions
stated in [19]). That is, we assume that the conditions of the following lemma, taken from [19] but slightly
modified to allow for Asian options and bid-ask prices, are satisfied.

Lemma 7.21 ([19], Proposition 2.1). The optimal values of (7.18) and (7.20) coincide if at least one of the
following two conditions holds.
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(i) Strict primal feasibility,

�
���

1
pask

pbid

S0

�
��P int

�#
�
����������

Eπr1s

Eπ

�
e�rT max

�
pωkqT

�
1
N

Ņ

j�1

Sptjq

�
� Ek, 0

��
k�1,2,...,r

Eπ

�
e�rT max

�
pωkqT

�
1
N

Ņ

j�1

Sptjq

�
� Ek, 0

��
k�1,2,...,r

Eπre�rtjSptjqsj�1,2,...,N

�
���������

:

π is a distribution in Rn�

+�
.

In particular, strong duality holds provided the current bid-ask prices pask and pbid, are arbitrage free and
remain arbitrage free after slight perturbations.
(ii) Strict dual feasibility.
There exists pẑ, û, v̂qT P R1�r�n such that

pẑ, û, v̂q P int

�"
pz, u, vqT P R1�r�n : zerT �

ŗ

k�1

uk max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�
�

vT

�
Ņ

j�1

erpT�tjqSptjq

�
¥ max

�
ωT

�
1

N

Ņ

j�1

Sptjq

�
� E, 0

�
, @ Sptjq P Rn�, j � 1, 2, . . . , N

*

.

In particular, strong duality holds provided that, for each asset, at least one vanilla option price is known.

The aim of this sub-section is to re-formulate the semi-infinite optimisation problem (7.20) as a finite linear
problem. In order to do this, we employ a similar methodology to what was done in sub-section 4.2 for
European basket options. We note here that the results presented in this sub-section are new in the sense
that modelling the problem as (7.18) and solving its specific, related linear SIO problem (7.20) using this
technique has not been done before. Also, obtaining an upper bound on the current price of an Asian basket
call option under the presence of bid-ask prices and a non-zero interest rate is a significant result because it
improves the previous model which we considered in sub-section 4.1.
We set the following notational convention, similar to what was defined in sub-section 4.2.

• Let Ω denote the pr � nq matrix whose kth row is the vector pωkqT , for k � 1, 2, . . . , r.

• Let Ω̄ be the ppr� 1q � nq matrix which is obtained by adding the vector ωT on top of the first row of
the matrix Ω. That is, Ω̄ is the matrix whose zeroth row is ωT and whose kth row is the vector pωkqT ,
for k � 1, 2, . . . , r.

• Let Ê P Rpr�1q
� be the vector pE,E1, E2, . . . , Erq

T .

• Let I be a finite index set with J � I. Define a vector ν̄ P R|I|. Then ν̄J P R|J| is the vector formed
by the entries ν̄j , for j P J .

• Similarly, if the rows of a matrix, Λ̄ whose indices belong to the set I, then Λ̄J is the matrix formed
by the rows of Λ̄ whose indices j P J .

• Let J 1 denote the set IzJ and the index set I will be equal to t0, 1, . . . , ru.

• Here, the first row of Ω̄ will be indexed by 0 and the first entry of Ê by 0.
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Now we are ready to transform (7.20). For this, we define the following sets.
Let J � t0, 1, . . . , ru. We define PJ as

PJ �

#
Sptjq|Ω̄J

�
1

N

Ņ

j�1

Sptjq

�
¥ ÊJ , Ω̄J 1

�
1

N

Ņ

j�1

Sptjq

�
¤ ÊJ 1 , Sptjq ¥ 0, @ j � 1, 2, . . . , N

+
,

and let
J̄ � tJ � t0, 1, . . . , ru : PJ � Hu .

Analogously to Lemma 4.10 and Proposition 4.16, we will show that (7.20) can equivalently be re-written as
a finite linear problem, which may be solved by an appropriate software program to yield the optimal ob-
jective function value which is an upper bound on the current price of the Asian basket call option of interest.

Lemma 7.22. piq Let Ω̄ P Rppr�1q�nq, Ê P Rpr�1q
� and let J � t0, 1, . . . , ru be arbitrarily chosen and fixed.

Denote the set PJ � PJpΩ̄, Êq as above. If PJ � H then for

�
�1
u



P Rpr�1q, v P Rn and zerT P R we have

�
�1
u


T
max

�
Ω̄

�
1

N

Ņ

j�1

Sptjq

�
� Ê, 0

�
� vT

�
Ņ

j�1

erpT�tjqSptjq

�
¥ �zerT , for all Sptjq P PJ , (7.23)

if and only if v ¥ 0 and there exist γJ P R|J|
� , βJ

1

P R|J 1|
� such that

�pΩ̄Jq
T

�
�1
u



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1

and�
�1
u


T
J

ÊJ � zerT ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 .

(7.24)

piiq The SIO problem (7.20) can equivalently be re-written as the following finite linear problem

min
z,u,uask,ubid,v

z � puaskqT pask � pubidqT pbid �NvTS0

subject to � pΩ̄Jq
T

�
�1
u



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 , J P J̄
�
�1
u


T
J

ÊJ � zerT ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 , J P J̄

u � uask � ubid

v ¥ 0

u P Rr, uask P Rr�,
ubid P Rr�, z P R, v P Rn,

γJ P R|J|
� , βJ

1

P R|J 1|
� , J P J̄ .

(7.25)

Proof. The proof comes in two parts.
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piq For all Sptjq P PJ , we have
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So, if we consider the linear problem
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(7.26)

it follows that (7.23) holds if and only if the optimal value of the linear problem (7.26) is at least
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because if this is the case, then
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Ņ

j�1

Sptjq

�
� vT

�
Ņ
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This means that�
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� Ê, 0

�
� vT

�
Ņ
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�
� zerT ¥ 0, for all Sptjq P PJ ,

so that (7.23) holds.
Now, by linear optimisation duality, the dual to (7.26) is obtained as follows. First we make a substitution.

107



Define S P Rn� and S̃ P Rn� as

S � 1

N

Ņ

j�1

Sptjq and S̃ �
Ņ

j�1

erpT�tjqSptjq,

then the LO problem (7.26) becomes
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S,S̃

�
Ω̄TJ
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T
S � vT S̃

subject to � Ω̄JS ¤ �ÊJ

Ω̄J 1S ¤ ÊJ 1

S, S̃ ¥ 0.

Now we define the dual variables γJ P R|J|
� , βJ

1

P R|J 1|
� . Then the dual to (7.26) is given by

max
γJ ,βJ1

pγJqT ÊJ � pβJ
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P R|J 1|
� .

(7.27)

Now, by the weak duality theorem, we have that

min
S,S̃

#�
Ω̄TJ

�
�1
u



J


T
S � vT S̃

+
¥ max
γJ ,βJ1

!
pγJqT ÊJ � pβJ
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and after re-substituting for S and S̃ gives,
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(7.28)
However, if we impose the condition

pγJqT ÊJ � pβJ
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qT ÊJ 1 ¥
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then by (7.28) we have
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and since the constraint in (7.27) must hold true, we have that the optimal value of the linear problem (7.26)

is at least

�
�1
u


T
J

ÊJ � ze
rT if and only if v ¥ 0 and there exists γJ P R|J|

� , βJ
1

P R|J 1|
� such that (7.24) holds

and so piq is proved.
piiq We start by observing that the objective function in (7.20) is the same as the objective function in (7.25).
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This is because the objective function in (7.20) represents the total cost of the super-replicating portfolio
consisting of cash, other Asian basket call options and the underlying assets. The minimal total cost is a
cost which is paid by the investor. Therefore, the optimal objective function value of (7.20) is attained and
the inf in (7.20) can be replaced by min as done in (7.25).
For the constraints of (7.25) we have the following.
Recall the constraint from (7.20) as
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ŗ

k�1

uk max

�
pωkqT

�
1

N

Ņ

j�1

Sptjq

�
� Ek, 0

�
� vT

�
Ņ
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Ņ

j�1

Sptjq

�
� E, 0

�
�

ŗ
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for all Sptjq P PJ , J P J̄ .

Now we use part piq, so this means
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Ņ

j�1

erpT�tjqSptjq

�
¥ �zerT ,

for all Sptjq P PJ , J P J̄

if and only if v ¥ 0 and there exist γJ P R|J|
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Therefore, (7.20) is equivalent to the following linear optimisation problem

min
z,u,uask,ubid,v

z � puaskqT pask � pubidqT pbid �NvTS0

subject to � pΩ̄Jq
T

�
�1
u



J

¤ �Ω̄TJ γ
J � Ω̄TJ 1β

J 1 , J P J̄
�
�1
u


T
J

ÊJ � zerT ¤ pγJqT ÊJ � pβJ
1

qT ÊJ 1 , J P J̄

u � uask � ubid

v ¥ 0

u P Rr, uask P Rr�,
ubid P Rr�, z P R, v P Rn,

γJ P R|J|
� , βJ

1

P R|J 1|
� , J P J̄ ,

and the proof is complete.

Remark: In the finite linear problem (7.25) we have the constraint v ¥ 0. This has the following important
financial meaning. The vector v which has components vi, for i � 1, 2, . . . , n represents the amount of asset i
which is put into the portfolio at each time point t1, t2, . . . , tN � T . v ¥ 0 means vi ¥ 0, for all i � 1, 2, . . . , n
and financially this means that at each time point t1, t2, . . . , tN � T , the position taken in the super-
replicating portfolio for the ith underlying asset is a long position, for all i � 1, 2, . . . , n. Thus, equivalently
re-writing the SIO problem (7.20) as a finite linear problem (7.25) gives us a condition, namely that v ¥ 0
in the super-replicating portfolio. If there exists an index i0 such that vi0   0, then it can not be guaranteed
that the portfolio super-replicates the payoff of the Asian basket call option for all non-negative values of
Sptjq, for j � 1, 2, . . . , N . It is advantageous to solve (7.25) as opposed to (7.20) because we are solving a
finite linear optimisation problem in comparison to a semi-infinite one.
Thus, we may solve the finite linear problem (7.25) (instead of the semi-infinite problem (7.20)) to yield the
optimal objective function value which is an upper bound on the current price of an Asian basket call option.
To conclude this sub-section we make the following observation about the size of the linear problem (7.25).
We observe that in (7.25) there are a total of

1� r � r � n� |J | � |J 1| � 1� 2r � n� r � 1 � 3r � n� 2

variables.
For the constraints we have the following. Observe that each of the first 2 constraints requires J P J̄ , where
J � t0, 1, . . . , ru. However, for some J � t0, 1, . . . , ru, PJ � H and J R J̄ even though J � t0, 1, . . . , ru.
Thus, we can obtain upper bounds on the size, or amounts of the constraints of the linear problem (7.25). In
particular, for the set t0, 1, 2, . . . , ru there exists a total of 2r�1 subsets. Since J � t0, 1, . . . , ru we have the
following. The first constraint in (7.25) actually represents n constraints. Therefore we have that the first
constraint can give at most np2r�1q constraints. Similarly, the second constraint in (7.25) may yield at most
2r�1 constraints. The constraint v ¥ 0 means vi ¥ 0, for all i � 1, 2, . . . , n, so this represents n constraints.
Hence, in total the number of constraints in (7.25) has the following upper bound

np2r�1q � 2r�1 � n � 2r�1n� 2r�1 � n � 2r�1pn� 1q � n.

Therefore, the total number of constraints of (7.25) is at most 2r�1pn� 1q � n.
Although the number of constraints depends exponentially on r, and for large values of r, (7.25) may become
large, it is still finite and we have removed the problem of having infinitely many constraints as in (7.20).
Further, from a practical point of view, we may choose r so that (7.25) remains solvable using an appropriate
linear optimisation software solver. Also, when solving the optimisation problem (7.25), we do not know
today which subsets of J are in J̄ . That is, we do not currently know which of the basket options expire
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in/out of the money. In order to solve problem (7.25) to obtain an upper bound on the current price of the
Asian basket option of interest; we take all subsets of J to be in J̄ and solve (7.25) in this way. We note
here that the above inequality regarding the number of constraints of problem (7.25) in this case holds as
an equality.
We observe here that the model set-up and approach to finding an upper bound on the price of an Asian
basket call option presented above is similar to the model set-up presented in sub-section 3.5. Further, the
methodology employed in the proof of Lemma 7.22, to obtain a finite and solvable LO problem can be viewed
as an extension to the methodology to obtain a finite and solvable LO problem employed in the proof of
Proposition 3.26 in sub-section 3.5. It is an extension because in the proof of Lemma 7.22 we obtained an
upper bound (instead of a lower bound) on the price of an Asian basket call option given that we know the
bid-ask prices of other Asian basket call options.
That concludes this sub-section on considering finding upper bounds on the current price of an Asian basket
call option given that we know the current bid-ask prices of other basket options.
This concludes our analysis on finding bounds on the current price of an Asian basket option.
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8 Extension to price bounds for Mountain Range options

In this section we consider finding an upper bound on the current price of a specific Mountain Range option.
We first explain what a Mountain Range option is and then we see how to apply similar techniques from
previous sections to aid us to find price bounds on these specific types of options.

8.1 Introduction

Introduced in 1998 by the French bank Société Générale, Mountain Range options are a type of exotic option
which are aimed at fulfilling the rising demand for unique and innovative financial products by investors.
Put simply, a Mountain Range option combines properties of basket options and range options. In general,
Mountain Range options have a payoff which depends upon several assets (just like a basket option) and
several time points (like a range option). Since these types of options have basket option like properties they
become of interest to us, and in particular the question of how to accurately price a Mountain Range option
arises.
In this section we consider how to find an upper bound on the current price of a particular type of Mountain
Range option using semi-infinite optimisation. We note here that the results presented in this section are
new and original, in the sense that modelling the problem as a SIO problem and re-formulating it the way
we do so here for this specific type of option has not been done before.
In particular, we consider finding an upper bound on the current price of an Altiplano Mountain Range
option. Full details and properties of this type of option are discussed below.
Other types of Mountain Range options which exist but are not discussed in this thesis include Annapurna,
Atlas, Everest and Himalayan Mountain Range options. For a full list of Mountain Range options, and for
more information on these we refer the interested reader to [53], for example.

8.2 Upper bound on the price of an Altiplano Mountain Range option

We start this sub-section by explaining some basic properties and the payoff function for an Altiplano
Mountain Range option, and then we move on to seeing how semi-infinite optimisation may be used to
obtain an upper bound on the current price of this particular option.
Put simply, an Altiplano Mountain Range option is an option written on many assets with the following
property. An Altiplano Mountain Range option pays out a coupon payment, C ¡ 0, if the ratio of the
prices of all underlying assets at pre-agreed and pre-specified times with the current respective asset price
does not exceed the exercise price, E, of the option. If at least one ratio does exceed E, at any one of the
pre-agreed times, then the option pays out what a European basket call option would where the weights are
the reciprocal of the current underlying asset price [53].
To formalise this, we define the following notation. Consider an Altiplano Mountain Range option written on
n underlying assets, with expiry date T , and with only one pre-agreed, pre-specified time point of interest.
This time point is the expiry date, t � T . Let Si denote the price of the ith asset at expiry, for i � 1, 2, . . . , n
and let S0

i , denote the current price of the ith asset, for i � 1, 2, . . . , n. Then we may define the following
quantity, ωi P R� as the weight for asset i, for all i � 1, 2, . . . , n as,

ωi �
1

S0
i

, for S0
i ¡ 0.

Thus, we may define the vectors, S P Rn�, S0 P intpRn�q and ω P intpRn�q, where ωi �
1
S0
i
, for i � 1, 2, . . . , n.

If we define a binary variable µA by

µA �

$&
%0, if max

i�1,2,...,n

!
Si

S0
i

)
¤ E

1, otherwise
, (8.1)
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then the payoff of the Altiplano Mountain Range option under consideration is given by, (and see [53] for
more details)

A � µA max

�
ņ

i�1

Si
S0
i

� E, 0

�
� p1� µAqC.

Using the vector notation introduced earlier, this is equivalent to

A � µA maxpωTS � E, 0q � p1� µAqC, (8.2)

where µA P t0, 1u is decided by the conditions in (8.1).
Therefore, the payoff of an Altiplano Mountain Range option is (8.2).
Before proceeding it is worth mentioning the similarities, yet vital differences between a ‘standard’ European
basket call option and an Altiplano Mountain Range option. The payoff of an Altiplano Mountain Range
option is ultimately decided by the parameter µA, which in this case depends upon the prices of the ratios of
the underlying assets at expiry, and the current prices. If all underlying assets have ratio below E at expiry,
then the Altiplano Mountain Range option pays out a coupon payment C, set by the writer. If however, at
least one of the ratio values exceeds E, then the Altiplano Mountain Range option becomes identical to a
European basket call option and pays out

maxpωTS � E, 0q � max

�
ņ

i�1

Si
S0
i

� E, 0

�
.

Thus, depending on the ratio of the asset price values at expiry and the current asset price values; this
particular Altiplano Mountain Range option may payout exactly what a ‘standard’ European basket call
option would.
Now that we have considered the basic properties and payoff function for an Altiplano Mountain Range
option, we now see how optimisation can be used to find bounds on its current price.
From here-on in we will use the payoff (8.2) for the Altiplano Mountain Range option.
To find an upper bound on the current price we consider a similar model set-up to that in sub-sections 4.1,
6 and 7.2, where we considered current price bounds for European, American and Asian basket options,
respectively.
We consider finding upper bounds on the current price of an Altiplano Mountain Range option, given that
we know the current prices of q European vanilla call options, per asset. That is, we know a total of
pn � qq current European vanilla call option prices. The European vanilla call options are written on the
same n underlying assets as in the Altiplano Mountain Range option. In what follows, we let Cli P R�

denote the lth current and known European vanilla call option price, written on asset i, for i � 1, 2, . . . , n
and l � 1, 2, . . . , q. Further, Eli P R� will denote the exercise price of the lth European vanilla call option,
whose current price we know and is written on asset i, for i � 1, 2, . . . , n and l � 1, 2, . . . , q.
We will assume that we know the current prices of each of the n underlying assets, and that these current
prices are all positive.
Then, if the risk-free interest rate is given by r ¡ 0, and π is a risk-neutral probability measure to be found,
the task of finding an upper bound on the current price of an Altiplano Mountain Range option can be
modelled by

sup
π

Eπre�rT
�
µA maxpωTS � E, 0q � p1� µAqC

�
s

subject to Eπre�rT maxpSi � Eli, 0qs � Cli , for i � 1, 2, . . . , n and l � 1, 2, . . . , q

Eπr1s � 1

Eπre�rTSis � S0
i , for i � 1, 2, . . . , n,

(8.3)
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where we recall that µA P t0, 1u is chosen in accordance with (8.1).
We may derive the linear SIO problem for which (8.3) is a dual, as the problem

inf
ul,z,v

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

e�rT pulqT maxpS � El, 0q � z � e�rT vTS ¥ e�rT
�
µA maxpωTS � E, 0q � p1� µAqC

�
,

@ S P Rn�.

This SIO problem is equivalent to

inf
ul,z,v

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P Rn�.
(8.4)

The SIO problem (8.4) has a natural financial interpretation. We may interpret the variables pul, z, vq as
follows. ul which has components uli represents the amount of the lth European vanilla call option written
on the ith asset in the super-replicating portfolio, for l � 1, 2, . . . , q and i � 1, 2, . . . , n. z represents a cash
amount. v which has components vi, for i � 1, 2, . . . , n represents the amount of the ith underlying asset
which is held in the super-replicating portfolio.
The SIO problem (8.4) itself may be interpreted as follows. We are interested in finding the cheapest cost
portfolio consisting of European vanilla call options, cash and the underlying assets such that the overall
value of the portfolio always super-replicates the payoff of the Altiplano Mountain Range option whose
current price we are finding an upper bound on, for all possible non-negative values of the asset prices at
expiry.
We now work with (8.4) to obtain the optimal objective function value which is an upper bound on the
current price of the Altiplano Mountain Range option under consideration.
We note here that the index set I � Rn� in (8.4) is not compact. However, as the next proposition shows,
if we impose a restriction on how the super-replicating portfolio is to be constructed, we may restrict I in
(8.4) to a compact set without changing the feasible set of the problem.
In particular, if we impose the constraint

q̧

l�1

ul � v ¥ µAω,

then it can be shown, (see Proposition 8.5 below) that we may replace the non-compact index set Rn� by a
compact index set.

Proposition 8.5. Suppose without loss of generality that the exercise prices Eli are ordered such that 0 ¤

E1
i ¤ E2

i ¤ � � � ¤ Eqi , for all i � 1, 2, . . . , n. Define the index set I(8.6) �
n�
i�1

r0, Eqi s. Then the following

optimisation problem (8.6), is equivalent to (8.4) in the sense that both problems have the same feasible set,
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and, hence the same optimal solution and optimal objective function value.

min
pul,z,vqPRn�q�R�Rn

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ µAω

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC,

@ S P I(8.6).

(8.6)

Remarks

1. We remark here that the objective functions of (8.4) and (8.6) are the same. This is because the
objective function in (8.4) represents the total cost of the super-replicating portfolio at the current
time, t � 0. Since this is a cost which is paid, the minimal such cost is attained since what ever the
minimum cost is, the investor pays it. Therefore the inf in (8.4) is attained and can be replaced by
min as done in (8.6).

2. The extra constraint in (8.6) has a significant financial meaning.
The constraint

q̧

l�1

ul � v ¥ µAω,

which is equivalent to
q̧

l�1

uli � vi ¥ µAωi, @ i � 1, 2, . . . , n

means:

(a) If µA � 0, this implies,
q̧

l�1

uli � vi ¥ 0, for all i � 1, 2, . . . , n. This means that for the ith asset,

the total amount of European vanilla calls, written on the ith underlying asset, plus the amount of the
ith asset which is held is non-negative, for i � 1, 2, . . . , n.

(b) If µA � 1, this implies,
q̧

l�1

uli � vi ¥ ωi �
1

S0
i

, for all i � 1, 2, . . . , n. This means that for the ith

asset, the total amount of European vanilla calls, written on the ith underlying asset, plus the amount
of the ith asset which is held is at least 1

S0
i

, for i � 1, 2, . . . , n.

3. This extra constraint gives conditions or restrictions on how the super-replicating portfolio should be
constructed.

4. The advantage of solving (8.6) instead of (8.4) is that the index set in the semi-infinite constraint
of (8.6) is compact, albeit (8.6) containing additional constraints. Problem (8.6) allows us to obtain
the optimal objective function value of (8.4) by considering a compact index set I(8.6) and additional
constraints which impose conditions on how the super-replicating portfolio is to be constructed. Thus,

(8.6) allows us to solve (8.4) by considering the values of S in the compact set I(8.6) �
n�
i�1

r0, Eqi s as well

as some restrictions on how to construct the super-replicating portfolio, instead of considering values
of S in the unbounded set Rn�.

Proof of Proposition 8.5. We start by observing that the objective functions of (8.4) and (8.6) are the same.
Thus in order to show these two problems are equivalent we must show that their respective feasible regions
are the same. Let F(8.4) and F(8.6) denote the feasible regions of (8.4) and (8.6), respectively. We then show
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that F(8.4) � F(8.6).
The proof comes in two parts.
(i) F(8.4) � F(8.6): Take any pu1, u2, . . . , uq, z, vq P F(8.4). We then show that pu1, u2, . . . , uq, z, vq P F(8.6).

Now, since I(8.6) �
n�
i�1

r0, Eqi s, then I(8.6) forms an n-dimensional ‘rectangle’. That is, it forms a ‘rectangle’

in n-dimensional non-negative space and so I(8.6) � Rn�. Thus, from the constraint in (8.4) we have

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P Rn�.

It then follows that since I(8.6) � Rn�, the constraint in (8.4) obviously still holds for all S P I(8.6). That is,

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P I(8.6),

and so the second constraint from (8.6) holds.
To show that the first constraint holds we have the following. Recall that pu1, u2, . . . , uq, z, vq satisfies the
constraint

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P Rn�

ðñ
q̧

l�1

ņ

k�1

pulkqmaxpSk � Elk, 0q � zerT �
ņ

k�1

vkSk ¥ µA max

�
ņ

k�1

ωkSk � E, 0

�
� p1� µAqC,

@ S P Rn�.

This means that for the asset price vector S, with Si � η, for some η ¡ 0 and all other components equal

to 0, for i � 1, 2, . . . , n, the constraint still holds. That is, the constraint holds for the vector S �

�
������

0
0
...
η
0

�
�����,

where η is in the ith position, for i � 1, 2, . . . , n.
Now, for each i � 1, 2, . . . , n, Si � η and all other components are equal to 0.
For a particular i, ùñ

q̧

l�1

puliqmaxpSi � Eli, 0q � zerT � viSi ¥ µA maxpωiSi � E, 0q � p1� µAqC

ðñ
q̧

l�1

puliqmaxpη � Eli, 0q � zerT � viη ¥ µA maxpωiη � E, 0q � p1� µAqC

ðñ
q̧

l�1

puliqηmax

�
1�

Eli
η
, 0



� zerT � viη ¥ ηµA max

�
ωi �

E

η
, 0



� p1� µAqC,

and so, if we divide both sides by η we get, (since η ¡ 0)

ùñ
q̧

l�1

puliqmax

�
1�

Eli
η
, 0



�
zerT

η
� vi ¥ µA max

�
ωi �

E

η
, 0



�
p1� µAqC

η
,
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and if η Ñ8, then,
El

i

η Ñ 0, zerT

η Ñ 0, E
η Ñ 0 and p1�µAqC

η Ñ 0. This gives, in the limit as η Ñ8

q̧

l�1

puliqmaxp1, 0q � 0� vi ¥ µA maxpωi, 0q � 0

ðñ
q̧

l�1

uli � vi ¥ µA maxpωi, 0q � µAωi,

since ωi �
1
S0
i
¡ 0, for all i � 1, 2, . . . , n.

Since the above holds for all i � 1, 2, . . . , n, this in vector form is just

q̧

l�1

ul � v ¥ µAω,

and so the first constraint from (8.6) holds.
(ii) F(8.6) � F(8.4): Now we prove the converse. So, take any pu1, u2, . . . , uq, z, vq P F(8.6). Then, in order to

show that pu1, u2, . . . , uq, z, vq P F(8.4), we must show that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P Rn�.

To this end, it suffices to show that

max
SPRn

�

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(8.6)

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

since pu1, u2, . . . , uq, z, vq P F(8.6) it holds that

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P I(8.6).

Thus,

µA maxpωTS � E, 0q � p1� µAqC �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ 0, @ S P I(8.6),

and so

max
SPI(8.6)

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¤ 0,

and so if

max
SPRn

�

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(8.6)

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,
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it means that

max
SPRn

�

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
¤ 0

and so

µA maxpωTS � E, 0q � p1� µAqC �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¤ 0 @ S P Rn�

ðñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC, @ S P Rn�,

in which case the proposition is proved.
We now show that

max
SPRn

�

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(8.6)

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
.

Define the function ψ : Rn� Ñ R, given by

ψpSq � µA maxpωTS � E, 0q � p1� µAqC �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS.

Consider ∇ψpSq, for all S R I(8.6). Then we have the following.
(a) If µA � 1, then ψpSq becomes

ψpSq � maxpωTS � E, 0q �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS.

Now we consider the following two cases.
(i) If ωTS � E   0,

∇ψpSq � dψ

dS
� �

q̧

l�1

ul � v.

(ii)If ωTS � E ¡ 0,

∇ψpSq � dψ

dS
� ω �

q̧

l�1

ul � v.

(b) If µA � 0, then ψpSq becomes

ψpSq � C �
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS.

This gives

∇ψpSq � dψ

dS
� �

q̧

l�1

ul � v.
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Now, from the constraint in (8.6) however,we have that

q̧

l�1

ul � v ¥ µAω.

Then we have the following.
(a) If µA � 1, the constraint from (8.6) reads

q̧

l�1

ul � v ¥ ω, which gives, �
q̧

l�1

ul � v ¤ �ω, which means, ω �
q̧

l�1

ul � v ¤ 0.

Also,
q̧

l�1

ul � v ¥ ω ¡ 0, so, �
q̧

l�1

ul � v   0.

(b) If µA � 0, the constraint from (8.6) reads

q̧

l�1

ul � v ¥ 0, which means, �
q̧

l�1

ul � v ¤ 0.

ùñ In all cases (a) and (b), for all S R I(8.6), we have that

∇ψpSq ¤ 0 or ∇ψpSq   0 ùñ ψpSq is non-increasing or decreasing for all S R I(8.6), respectively.

This means that ψpSq must attain its maximum value for a value of S P I(8.6) and so it holds that

max
SPRn

�

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
�

max
SPI(8.6)

#
µA maxpωTS � E, 0q � p1� µAqC �

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS

+
,

and the proposition is proved.

We now show that the semi-infinite optimisation problem (8.6) can be re-formulated as a finite linear problem.
We start by recalling (8.6) as

min
pul,z,vqPRn�q�R�Rn

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ µAω

q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µA maxpωTS � E, 0q � p1� µAqC,

@ S P I(8.6).

(8.6)

Now, using the following property of the maximum,

maxta, bu � c ¥ a� c and maxta, bu � c ¥ b� c,

the second constraint is equivalent to the following two semi-infinite constraints (8.7) and (8.8), by observing
that

µA maxpωTS � E, 0q � p1� µAqC ¥ µApω
TS � Eq � p1� µAqC, and

µA maxpωTS � E, 0q � p1� µAqC ¥ p1� µAqC.
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ùñ
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ µApω
TS � Eq � p1� µAqC, @ S P I(8.6) (8.7)

and
q̧

l�1

pulqT maxpS � El, 0q � zerT � vTS ¥ p1� µAqC, @ S P I(8.6). (8.8)

Which is equivalent to

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi ¥ µA

�
ņ

i�1

ωiSi � E

�
� p1� µAqC, @ S P I(8.6),

and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q � zerT �
ņ

i�1

viSi ¥ p1� µAqC, @ S P I(8.6),

respectively.
ðñ

q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � µA

ņ

i�1

ωiSi � zerT � µAE � p1� µAqC ¥ 0, @ S P I(8.6),

and
q̧

l�1

ņ

i�1

uli maxpSi � Eli, 0q �
ņ

i�1

viSi � zerT � p1� µAqC ¥ 0, @ S P I(8.6),

respectively.
Switching the order of summation gives

ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi

�
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

p�q

�zerT � µAE � p1� µAqC ¥ 0, @ S P I(8.6)

and
ņ

i�1

�
q̧

l�1

uli maxpSi � Eli, 0q � viSi

�
loooooooooooooooooooomoooooooooooooooooooon

p��q

�zerT � p1� µAqC ¥ 0, @ S P I(8.6),

respectively.
Now we choose α, β P Rn such that αi provides a lower bound to p�q and βi provides a lower bound to p��q,
for all i � 1, 2, . . . , n. That is, we choose αi, βi, for all i � 1, 2, . . . , n, such that

αi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi

and

βi ¤
q̧

l�1

uli maxpSi � Eli, 0q � viSi,
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for all i � 1, 2, . . . , n.
ùñ The semi-infinite constraints of (8.6) become$'''''''''''''&

'''''''''''''%

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � µAE � p1� µAqC ¥ 0

ņ

i�1

βi � zerT � p1� µAqC ¥ 0.

(8.9)

This means that a point pu1, u2, . . . , uq, z, vq is feasible for (8.6) if and only if pu1, u2, . . . , uq, α, β, z, vq P
Rn�q � Rn � Rn � R � Rn is feasible for system (8.9). We observe here that by writing the semi-infinite
constraints of (8.6) as system (8.9), we have that the last two constraints are standard (finite) linear con-
straints.
Now consider the semi-infinite constraints from system (8.9),

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n,

and
q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n.

Then we observe that these constraints are piece-wise linear constraints. Therefore, the minimum value of
the left hand side of both inequalities over all values of Si P r0, E

q
i s, for all i � 1, 2, . . . , n occurs at one

of the break points. That is, it occurs exactly when Si � 0 or Si � E1
i or Si � E2

i or . . . or Si � Eqi ,
for all i � 1, 2, . . . , n. Therefore, we may consider these semi-infinite constraints for the pq � 1q values
Si P t0, E

1
i , E

2
i , . . . , E

q
i u, for i � 1, 2, . . . , n.

Thus, it holds that

min
SiPr0,E

q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi

� min
SiPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi,

and

min
SiPr0,E

q
i s

q̧

l�1

uli maxpSi � Eli, 0q � viSi

� min
SiPt0,E1

i ,E
2
i ,...,E

q
i u

q̧

l�1

uli maxpSi � Eli, 0q � viSi.

Therefore, each of the semi-infinite constraints can now be replaced by pq � 1q finite piece-wise linear con-
straints. That is, we may replace the constraint

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi ¥ αi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n,

by
q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi ¥ αi, for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n,
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and the constraint

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, @ Si P r0, E
q
i s, @ i � 1, 2, . . . , n,

by
q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi, for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n.

The above analysis can be summarised in the following theorem.

Theorem 8.10. The semi-infinite optimisation problem (8.6) is equivalent to the following finite linear
optimisation problem

min
pu1,u2,...,uq,z,vqPRn�q�R�Rn,α,β,PRn

q̧

l�1

pulqTCl � z � vTS0

subject to
q̧

l�1

ul � v ¥ µAω

q̧

l�1

uli maxpSi � Eli, 0q � viSi � µAωiSi ¥ αi,

for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

q̧

l�1

uli maxpSi � Eli, 0q � viSi ¥ βi,

for Si P t0, E
1
i , E

2
i , . . . , E

q
i u, @ i � 1, 2, . . . , n

ņ

i�1

αi � zerT � µAE � p1� µAqC ¥ 0

ņ

i�1

βi � zerT � p1� µAqC ¥ 0,

(8.11)

in the sense that both optimisation problems have the same feasible region and hence the same optimal
solution and the same optimal objective function value.

Observation: In comparison to the semi-infinite problem (8.6); we observe here that (8.11) has n�n � 2n
additional variables and a total of

n� npq � 1q � npq � 1q � 1� 1 � n� 2npq � 1q � 2

� n� 2nq � 2n� 2 � 3n� 2nq � 2 � np2q � 3q � 2

linear constraints. The advantage of solving (8.11) in comparison to (8.6) is that we are solving a standard,
finite linear problem in comparison to a semi-infinite one; something which can be implemented on an
appropriate LO software solver, even for large values of n.
We may now solve the finite linear problem (8.11) by using an appropriate software program. This will yield
the optimal objective function value which is an upper bound on the current price of the Altiplano Mountain
Range option under consideration.
In particular, if the optimal objective function value is independent of µA, which we treated as a parameter,
then this optimal objective function value is a valid upper bound.
In general however this may not be the case and the optimal objective function value may be dependent
upon the value of µA. In this case, the upper bound is obtained as follows. Since µA P t0, 1u, we substitute
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in µA � 0 and µA � 1, respectively into the obtained optimal objective function value. The upper bound on
the current price of the Altiplano Mountain Range option is the bigger of these optimal objective function
values.
We observe here that the model set up and approach to finding an upper bound on the price of an Altiplano
Mountain Range option presented above is very similar to the model set up presented in sub-section 3.4 which
looked at finding an upper bound on the price of a European basket call option. Further, the methodology
employed in the proof of Proposition 8.5 can be viewed as a modification to the methodology employed in
the proof of Proposition 3.14 in sub-section 3.4. It is a modification because in the proof of Proposition 8.5
we had to consider the consider the value of the parameter µA which determines what payoff the Altiplano
Mountain Range option will take; something which was not required of course in the proof of Proposition
3.14. Similarly, the ideas used to obtain the finite LO problem (8.11) can also be viewed as a modification
to the techniques used in sub-section 3.4 to re-write the SIO problem (3.13) as a solvable and finite LO
problem.

8.3 A numerical example

We conclude this section by presenting a numerical example which shows how the above analysis can be
used and implemented within real financial markets.
For this example we consider the n � 3 asset case and we assume that we know the current prices of
q � 2 European vanilla call options per asset. In this case the finite linear problem (8.11) has a total of
6�1�3�3�3 � 16 variables and np2q�3q�2 � 3p4�3q�2 � p3�7q�2 � 23 constraints. We start by re-
writing (8.11) in a more convenient form and then solve the problem using the software LiPS- 1.9.4, which is
designed to solve large scale linear and integer optimisation problems. The optimal objective function value
is an upper bound on the current price of the Altiplano Mountain Range option under consideration. For
more information about the software program LiPS-1.9.4, we refer the interested reader to [54].
We consider the following numerical values for this example.
The current underlying asset prices, given by S0

i , for i � 1, 2, 3 are given in the following table (where p
means pence).

Current underlying asset price S0
1 S0

2 S0
3

Numerical Value 194p 209p 218p

This allows us to define the following weights ωi, for i � 1, 2, 3.

Weight ω1 ω2 ω3

Numerical Value 1
194

1
209

1
218

For the European vanilla call options whose current prices we know we have the following data, for the
exercise prices.

European Vanilla call exercise price E1
1 E1

2 E1
3 E2

1 E2
2 E2

3

Numerical Value 150p 161p 210p 174p 200p 225p

With the following current prices.

European Vanilla call current option price C1
1 C1

2 C1
3 C2

1 C2
2 C2

3

Numerical Value 56p 60p 13p 32p 25p 5p

Furthermore, we have that the interest rate r � 0.01 � 1% and the expiry date T � 0.5 years is 6 months
from now. The Altiplano Mountain Range option has an exercise price E � 1.5 pence and a coupon payment
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C � 10 pence.
Using this numerical data we may write (8.11) as the linear optimisation problem (A.1) given in Appendix
A.
In order to solve (A.1) using LiPS-1.9.4, we re-write (A.1) in a more convenient and computer friendly form.

In this case we define 16 variables xi, for i � 1, 2, . . . , 16 as follows. Let u1 � px1, x2, x3q
T

, u2 � px4, x5, x6q
T

,

z � x7, v � px8, x9, x10q
T

, α � px11, x12, x13q
T

and β � px14, x15, x16q
T

. Then (A.1) can be re-written as
problem (A.2) which is given in Appendix A.
We solve (A.2) for the values µA � 0 and µA � 1, respectively. Then an upper bound on the current price
of the Altiplano Mountain Range option is given by the bigger of the obtained optimal objective function
values.
For the µA � 0 case, (A.2) becomes (A.3), and for the µA � 1 case problem (A.2) becomes problem (A.4);
which can all be found in Appendix A.
We solve each of these problems (A.3) and (A.4) in LiPS-1.9.4.
For (A.3) we may input the problem into LiPS-1.9.4 as shown in Figure 1.
Commanding the program to solve the problem gives the output shown in Table I, below.

Table I below shows part of the solution output for problem (A.3) obtained by LiPS-1.9.4.

Table I: Part of the solution output given in LiPS-1.9.4 for problem (A.3).

From Table I we may read off the optimal objective function value of (A.3) as 2000
201 � 9.950248 � � � � 9.95 to

3 significant figures.
We may solve (A.4) by proceeding in similar fashion. The input of (A.4) into LiPS-1.9.4 is shown in Figure
2 in Appendix A.
Again commanding the program to solve the problem gives the output shown in Table II, below.
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Table II below shows part of the solution output for problem (A.4) obtained by LiPS-1.9.4.

Table II: Part of the solution output given in LiPS-1.9.4 for problem (A.4).

From Table II we may read off the optimal objective function value of (A.4) as 3.00004 � 3.00 to 3 significant
figures.
Referring the reader to study the material presented in Appendix A and in tables I and II, we may use these
numerical results to conclude that an upper bound on the current price of the Altiplano Mountain Range
option under consideration is given by

maxt9.95, 3.00u � 9.95pence.

Therefore, the current price of this particular Altiplano Mountain Range option should not exceed 9.95pence.
That concludes this section on looking at how to find price bounds on an Altiplano Mountain Range option.
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9 Conclusion

In conclusion, we first presented existing models and then derived our own models which aim to find upper
and lower bounds on the current price of various classes of basket options. In particular, we have presented
some basic and preliminary ideas from mathematical finance and option pricing as well as mathematical
optimisation and semi-infinite optimisation. Then we explained how and why optimisation could be used to
find current price bounds on financial options. We then presented existing results which consider how semi-
infinite optimisation can be used to find upper and lower bounds on the current price of a European basket
call option. In particular, we started by introducing the basic model set-up. We aimed to find no-arbitrage
and model independent upper/lower bounds on the current price of a European basket call option, written
on n underlying assets. Firstly given that we know the current prices of one European vanilla call option,
per asset and the forward/expected price of each asset, and then by considering an extension of this basic
model. We modified the constraints by assuming that we know the current prices of other European basket
call options, written on the same n underlying assets. We then extended both of these models further by
incorporating bid-ask prices, making each model more realistic and more accurate. We then assumed that
instead of knowing one European vanilla call option price, per asset; we know the current prices of several
European vanilla call option prices, per asset; allowing us to present another model. In the remainder of the
thesis we presented our own, new and original results. In particular, we derived important and new results
concerning upper and lower bounds for various classes of basket options, including European, American and
Asian basket options as well as extending our analysis to finding current price bounds for a certain class of
Mountain Range options. The results which we derived are important because on the one hand they extend
previous results and on the other hand they can directly be implemented in financial markets by investment
banks and other financial firms which are interested in the pricing of options. As a final summary of what
has been presented in this thesis we have the following six new results.

1. In section 4.1, we have derived a lower bound for the current price of a European basket call option,
under a set of specific assumptions and scenarios In particular, we have derived a semi-infinite optimi-
sation problem with a compact index set which when solved would yield a lower bound on the price
of a European basket call option under the scenario outlined in section 4.1. We note here that given
the nature of the problem, solution techniques to solve the derived SIO problem (4.4) is still open to
further research. Our result has at least transformed the linear SIO problem with a non-compact index
set to a linear SIO problem with a compact index set.

2. In section 4.2 we have extended the European basket call option pricing problem by incorporating
bid-ask prices within the optimisation model to make the model more realistic and we derived a lower
bound from this model. In particular, we have derived a finite linear optimisation problem which can
be solved by an appropriate software solver.

3. In section 5.2 and 5.3 we studied in detail, methods to find price bounds on both American basket call
and put options, respectively. In particular, we showed in section 5.2 that it does not make sense to
exercise an American basket call option early when none of the underlying assets pay out any dividends.
Therefore, this type of option is equivalent to its European basket call option counterpart and the price
bounds found for this option are also valid for this particular American basket call option. In the same
section we further argued that when at least one of the underlying assets pays out dividends then
the price of an American basket call option is at least as much as its European basket call option
counterpart. In section 5.3 we considered price bounds on American basket put options, where none
of the underlying assets pay out any dividends. By first deriving a put-call parity for European basket
options, we derived a put-call parity inequality for American basket options. This allowed us to obtain
upper and lower bounds on the price of an American basket put option by using the bounds obtained
for the price of a European/American basket call option, where none of the underlying assets pay out
any dividends.
In section 6 we then considered a Bermuda basket put option which is a specific type of American option
and found an upper bound on this current option price using semi-infinite optimisation. In particular,
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we derived a solvable, finite linear optimisation problem which would yield an upper bound on the price
of this particular type of basket option. We ended this section by explaining how to extend the given
model to find price bounds on a Bermuda basket put option with multiple early exercise dates and
explained that following a similar analysis, a finite linear optimisation problem could also be derived
in this case.

4. In section 7.2 we found an upper bound on the current price of a certain type of Asian basket call
option by using a similar approach to what had been done for the European basket call option. In par-
ticular, we derived a solvable, finite linear optimisation problem which when solved (via an appropriate
software) would yield an upper bound on the price of this particular Asian basket call option.

5. In section 7.3, we then extended this model for Asian basket call options to derive an upper bound
under the presence of bid-ask prices. Here we used a different approach under the more realistic
assumption of knowing bid-ask prices for related options to derive a solvable, finite linear optimisation
problem which could be used to find upper bounds on the price of an Asian basket call option.

6. Finally, in section 8.2 we extended our ideas to finding an upper bound on a unique type of exotic
option. That is, we used semi-infinite optimisation to derive an upper bound on the current price of an
Altiplano Mountain Range option; and we also presented a numerical example for this option. Then
using an appropriate software solver we obtained a solution. In particular, in section 8.2 we derived a
finite, linear optimisation model which can be used to find an upper bound on the price of this type of
option. In section 8.3 we explicitly used our derived optimisation model from section 8.2 with market
data and a LO software solver to present the reader with a numerical example of how our obtained
model can be used in practice.

We note here that the methodology of using optimisation to calculate price bounds on options ahead of
alternative methods should be clear. We have seen in sub-section 2.1.4 the problems that the traditional
Black-Scholes framework encounters when pricing multi-asset options, such as basket options. The multi-
asset Black-Scholes equation struggles to incorporate correlation between the assets which may exist, and as
such may produce inaccurate results. Furthermore, it also makes many assumptions, some of which may not
hold in reality. In contrast, by using optimisation to price options we assume only the absence of arbitrage
and the knowledge of current prices of similar assets, which is reasonable and holds in the real world. Op-
tions with complicated payoffs, such as basket options, are often difficult to price. However, mathematical
optimisation provides an efficient and accurate way to find bounds and in some cases price an option of
interest.
It is worth explaining our choices of models here and why for a given particular type of basket option, we
selected the model that we did. In sections 4.1 and 7.3 we chose these particular models (that is, assuming
that we know the prices of other basket options) because the solution technique used in these sections is
reliant upon the model being specified in the way it has been done so. For the remaining sections the models
were down to choice and finding a model where the solution technique in each respective section worked and
gave a solution. It is worth noting that no model is perfect and of course all models can be improved. The
selection of models presented in sections 4-8 are down to simplicity and staying close to reality. We have
models set up so they are are simple to understand and use but are realistic in the sense that the constraints
we have picked, we have done so because we know that prices exist for these instruments and are easily
accessible or can be easily found.
We have seen many optimisation models throughout this thesis aimed at finding bounds on the current price
of a basket option. We have combined theory from mathematical finance and mathematical optimisation to
obtain a solution to our formulated models. Thus, this shows how mathematical theory is being used and
implemented in the real world to solve real world problems.
We observe that the main results of this thesis are concerned with semi-infinite optimisation and its applica-
tions to the basket option pricing problem. In particular, we have presented various semi-infinite optimisation
problems with a non-compact index set, Rn�. This led us to encounter many different and new challenges.
Almost all existing results on SIO assume that the index set is compact. In order to utilise this theory,
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we first had to re-write our basket option pricing problem as a SIO problem with a compact index set.
Recall that this was done firstly in Proposition 3.14 for an upper bound on the current price of a European
basket call option, and then by ourselves in proceeding sections for various other types of basket options.
One possible area for future research would be to consider general results for semi-infinite problems with a
non-compact index set.
Further ideas for future research on this topic include extending the upper bound bid-ask prices result in
sub-section 3.6.1, to the lower bound problem. That is, how can we find a lower bound on the current price
of a European basket call option given that we know the current bid-ask prices of European vanilla call
options.
Another idea which could be researched upon is concerned with the computer optimisation part of this the-
sis. We have introduced many large scale linear optimisation problems which may be solved by appropriate
software packages. One interesting area to research would be to compare the speeds and memory usage of
various different software packages when solving the LO problems given in this thesis. This is especially im-
portant when solving real-world financial problems where minimising time and money are of course desired.
As a final remark, we should be careful and cautious with our results. Although our newly obtained results
may be very credible; we are modelling a real-world problem as an optimisation problem under certain as-
sumptions. If we wish to incorporate our results in real financial markets, we should do so with some care.
We should ensure that all assumptions of the model are satisfied in reality before using any results obtained
here. It should be remembered that a model is just model, and of course, ultimately the laws of supply and
demand dictate what the current price of an option should be. In fact, the ultimate price paid for an option
is an agreed price between both respective parties. Nevertheless, the results obtained in this thesis may give
the holder and writer of a basket option a starting point.
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A Appendix

Using the numerical data given in sub-section 8.3, the finite linear optimisation problem (8.11) may be
written as follows.

min
pu1,u2,z,vqPR3�2�R�R3,α,β,PR3

56u1
1 � 60u1

2 � 13u1
3 � 32u2

1 � 25u2
2 � 5u2

3 � z � 194v1 � 209v2 � 218v3

subject to � u1
1 � u2

1 � v1 ¤ �
1

194
µA

� u1
2 � u2

2 � v2 ¤ �
1

209
µA

� u1
3 � u2

3 � v3 ¤ �
1

218
µA

α1 ¤ 0

� 150v1 � α1 ¤ �
75

97
µA

� 24u1
1 � 174v1 � α1 ¤ �

87

97
µA

α2 ¤ 0

� 161v2 � α2 ¤ �
161

209
µA

� 39u1
2 � 200v2 � α2 ¤ �

200

209
µA

α3 ¤ 0

� 210v3 � α3 ¤ �
105

109
µA

� 15u1
3 � 225v3 � α3 ¤ �

225

218
µA

β1 ¤ 0

� 150v1 � β1 ¤ 0

� 24u1
1 � 174v1 � β1 ¤ 0

β2 ¤ 0

� 161v2 � β2 ¤ 0

� 39u1
2 � 200v2 � β2 ¤ 0

β3 ¤ 0

� 210v3 � β3 ¤ 0

� 15u1
3 � 225v3 � β3 ¤ 0

� α1 � α2 � α3 � zerT ¤ µAE � p1� µAqC
� β1 � β2 � β3 � zerT ¤ �p1� µAqC.

(A.1)
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Using the variables xi, for i � 1, 2, . . . , 16 as defined in sub-section 8.3, problem (A.1) may equivalently be
re-written as,

min
x1,x2,...,x16

56x1 � 60x2 � 13x3 � 32x4 � 25x5 � 5x6 � x7 � 194x8 � 209x9 � 218x10

subject to � x1 � x4 � x8 ¤ �
1

194
µA

� x2 � x5 � x9 ¤ �
1

209
µA

� x3 � x6 � x10 ¤ �
1

218
µA

x11 ¤ 0

� 150x8 � x11 ¤ �
75

97
µA

� 24x1 � 174x8 � x11 ¤ �
87

97
µA

x12 ¤ 0

� 161x9 � x12 ¤ �
161

209
µA

� 39x2 � 200x9 � x12 ¤ �
200

209
µA

x13 ¤ 0

� 210x10 � x13 ¤ �
105

109
µA

� 15x3 � 225x10 � x13 ¤ �
225

218
µA

x14 ¤ 0

� 150x8 � x14 ¤ 0

� 24x1 � 174x8 � x14 ¤ 0

x15 ¤ 0

� 161x9 � x15 ¤ 0

� 39x2 � 200x9 � x15 ¤ 0

x16 ¤ 0

� 210x10 � x16 ¤ 0

� 15x3 � 225x10 � x16 ¤ 0

� x11 � x12 � x13 � 1.005x7 ¤ 1.5µA � 10p1� µAq

� x14 � x15 � x16 � 1.005x7 ¤ �10p1� µAq.

(A.2)
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Problem (A.2) becomes the following problem (A.3) for the µA � 0 case.

min
x1,x2,...,x16

56x1 � 60x2 � 13x3 � 32x4 � 25x5 � 5x6 � x7 � 194x8 � 209x9 � 218x10

subject to � x1 � x4 � x8 ¤ 0

� x2 � x5 � x9 ¤ 0

� x3 � x6 � x10 ¤ 0

x11 ¤ 0

� 150x8 � x11 ¤ 0

� 24x1 � 174x8 � x11 ¤ 0

x12 ¤ 0

� 161x9 � x12 ¤ 0

� 39x2 � 200x9 � x12 ¤ 0

x13 ¤ 0

� 210x10 � x13 ¤ 0

� 15x3 � 225x10 � x13 ¤ 0

x14 ¤ 0

� 150x8 � x14 ¤ 0

� 24x1 � 174x8 � x14 ¤ 0

x15 ¤ 0

� 161x9 � x15 ¤ 0

� 39x2 � 200x9 � x15 ¤ 0

x16 ¤ 0

� 210x10 � x16 ¤ 0

� 15x3 � 225x10 � x16 ¤ 0

� x11 � x12 � x13 � 1.005x7 ¤ �10

� x14 � x15 � x16 � 1.005x7 ¤ �10.

(A.3)
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Problem (A.2) becomes the following problem (A.4) for the µA � 1 case.

min
x1,x2,...,x16

56x1 � 60x2 � 13x3 � 32x4 � 25x5 � 5x6 � x7 � 194x8 � 209x9 � 218x10

subject to � x1 � x4 � x8 ¤ �
1

194

� x2 � x5 � x9 ¤ �
1

209

� x3 � x6 � x10 ¤ �
1

218
x11 ¤ 0

� 150x8 � x11 ¤ �
75

97

� 24x1 � 174x8 � x11 ¤ �
87

97
x12 ¤ 0

� 161x9 � x12 ¤ �
161

209

� 39x2 � 200x9 � x12 ¤ �
200

209
x13 ¤ 0

� 210x10 � x13 ¤ �
105

109

� 15x3 � 225x10 � x13 ¤ �
225

218
x14 ¤ 0

� 150x8 � x14 ¤ 0

� 24x1 � 174x8 � x14 ¤ 0

x15 ¤ 0

� 161x9 � x15 ¤ 0

� 39x2 � 200x9 � x15 ¤ 0

x16 ¤ 0

� 210x10 � x16 ¤ 0

� 15x3 � 225x10 � x16 ¤ 0

� x11 � x12 � x13 � 1.005x7 ¤ 1.5

� x14 � x15 � x16 � 1.005x7 ¤ 0.

(A.4)
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Figure 1 below shows the input of problem (A.3) into LiPS-1.9.4.

Figure 1: Inputting problem (A.3) for the µA � 0 case into LiPS- 1.9.4.
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Figure 2 below shows the input of problem (A.4) into LiPS-1.9.4.

Figure 2: Inputting problem (A.4) for the µA � 1 case into LiPS- 1.9.4.
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