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Abstract

Stroke survivors su↵ering from cognitive deficits experience di�culty

completing their daily self-care activities. The latter are referred to

as activities of daily living (ADL) [54]. The resulting loss of indepen-

dence makes them rely on caregivers to help them go through their

daily routine. However, such reliance on caregivers may conflict with

their need for privacy and willingness to keep a control over their

life. A possible solution to tackle this issue is the development of an

assistive or rehabilitation system.

Ideally, the aim of such a system would be to deliver the same services

as a human caregiver. For example, the system could provide mean-

ingful recommendations or hints to stroke survivors during a task, so

they have a higher probability of successfully continuing or complet-

ing it. In order to fulfill such an aim, an assistive or rehabilitation

system would need to monitor stroke survivors’ behavior, constantly

keep track of what they do during the task, and plan the strategies

they should follow to increase their task completion.

The module in charge of planning is really important in this process.

Indeed, this module interacts with stroke survivors or any users dur-

ing the task, analyzes how far they might be in the completion of this

task, and infers what they should do to succeed it. To do so, the plan-

ning module needs to receive information about users’ behavior, and

be trained to “learn” how to take decisions that could guide them.

In the case where the information it receives are incorrect, the main

challenge of the planning module is to cope with the uncertainty in

its inputs, and still be able to take the right decisions as far as users

are concerned.



Di↵erent decision theory models exist and could be implemented, for

example cognitive models [22; 23] or statistical models such as Markov

Decision Process (MDP) [86] or Partially Observable Markov Decision

Process (POMDP) [52]. The MDP assumes full observability as far as

the system’s environment is concerned, while the POMDP provides

a rich and natural framework to model sequential decision-making

problems under uncertainty. Hence, it is potentially a good candidate

for a system whose aim is to guide stroke survivors during ADL, even

if the information it receives is potentially erroneous.

Since a POMDP-based system acknowledges the fact that the infor-

mation it receives about a user may be incorrect, it maintains a prob-

ability distribution over all potential situations this user might be in.

These probability distributions are referred to as “belief states”, and

the belief state space containing all belief states is infinite.

Many methods can be implemented in order to solve a POMDP. In

the case of a system in charge of guiding users, to solve a POMDP

means to find what are the optimal recommendations to send to a user

during a task. Exact POMDP solution methods are known to be in-

tractable, due to their aim of computing the optimal recommendation

for all possible belief states contained in the belief state space [103].

A way to sidestep this intractability is to implement approximation

algorithms by considering only a finite set of belief points, referred to

as “belief subspace”.



In the work presented in this thesis, a belief state representation based

on the MDP reduced state space is explained. We will show how re-

stricting the growth of the MDP state space helps maintain the belief

state’s dimensionality at a relatively small size. The thesis also ana-

lyzes the potential for improving the strategy selection process during

execution. In the case of a POMDP-based system, since strategies are

found only for a subspace of belief states, this may lead the system

to face the challenge of deciding what strategy to take in a situation

it has not been trained for. In this case, we investigated the e↵ect

of di↵erent methods, which can be used during execution to approx-

imate an unknown belief state to a belief state the system has seen

during training.

Overall, this work represents an important step forward in the devel-

opment of an artificial intelligent planning system designed to guide

users su↵ering from cognitive deficits during their activities of daily

living.



Nomenclature

General

• AI - Artificial intelligence

• MDP - Markov Decision Process

• POMDP - Partially Observable Markov Decision Process

• MC - Monte Carlo

• NL - Numerical label

• NNS - Nearest Neighbor Search

• N - Set of natural numbers

• P (.) - Probability

• P (.|.) - Conditional probability

Rehabilitation

• AADS - Apraxia or action disorganization syndrome

• ADL - Activity of daily living

• EF - Errorfull

• EL - Errorless

v



CogWatch system

• CW - CogWatch

• SimU - Simulated User

• ARS - Action recognition system

• TM - Task Manager

• APM - Action policy module

• ERM - Error recognition module

• � - SimU’s compliance probability

• � - SimU’s probability to forget

• a
u

- User’s action

• o - ARS’s output

• ! - Task Manager’s prompt

• µ - Task Manager’s recommendation (i.e., system’s action)

• e - Task Manager’s interpretation of user’s error

• ⇥ - Signal from virtual Cue Selector

• ⇣ - Cue from Cue Selector

• r
s

- User’s state representation

• s
d

- User’s history of action
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Task formalism

• BT - Black tea

• BTS - Black tea with sugar

• WT - White tea

• WTS - White tea with sugar

• BTr - Button trigger

• AD - Addition error

• AN - Anticipation error

• OM - Omission error

• PE - Perplexity error

• PsE - Perseveration error

• QT - Quantity error

• FE - Fatal error

• NFE - Non fatal error

• NE - Not an error

Markov Decision Process

• A - Set of recommendations (i.e., set of system’s actions)

• µ
t

- TM’s recommendation at step t (i.e., system’s action at step t)

• S - Set of states

• s
t

- State at step t

• c(s, µ) - Cost incurred when taking µ in state s

vii



• ⇡ - Policy, with ⇡: S ! A

• � - Geometric discount factor

• V ⇡(s) - Value function for policy ⇡

• V ⇤(s) - Optimal value function

• Q⇡(s, µ) - Q-function for policy ⇡

• Q⇤(s, µ) - Optimal Q-function

• N(s, µ) - Number of times µ is taken in state s

Partially Observable Markov Decision Process

• O - Set of observations

• Z - Observation probability

• B - Set of belief states

• b - Belief state (i.e., probability distribution over states)

• b
t

- Belief state at step t

• b(s) - Probability to be in state s

• c(b, µ) - Cost for taking µ in belief state b

• V ⇡(b) - Value function for policy ⇡

• Q⇡(b, µ) - Q-function for policy ⇡
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Chapter 1

Introduction

1.1 Overview

Each year, there are more than 100,000 new stroke cases in the UK [4], with over

half of all stroke survivors depending on others to carry out Activities of Daily

Living (ADL). Such activities can be defined as sequences of actions related to

specific tasks that one may need to go through in order to live independently (for

example cooking, grooming, teeth-brushing or making a drink). Stroke survivors

face di�culties due to the loss of physical and cognitive functions caused by

Apraxia or Action Disorganization Syndrome (AADS) [6; 76; 117]. In [11], it has

been estimated that such cognitive deficits a↵ect 46% of stroke survivors during

ADL. For example, when aiming to prepare a cup of tea, they may perform a

wrong sequence of actions: forget to pour water in the kettle then switch the

latter on, skip steps, or misuse objects with possible safety implications. It also

has been observed that they could make errors such as hesitating a long period

of time trying to decide what to do next, repeatedly verifying if the water has

boiled, putting ingredients over the cup without adding them, or adding water

into the cup then immediately putting it back into the kettle. These errors can

relate to the defective use of real tools and objects [81], the inability to correctly

select appropriate tools for a task [31], or the inability to complete sequences of

actions [72].
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These impairments are typically associated with loss of action knowledge [30],

attention and executive function deficits [43], and/or loss of object knowledge

[101]. Such acquired neurological deficits have a direct impact on stroke sur-

vivors’ daily life, relatives, caregivers and society as a whole.

In order to mitigate the e↵ects of AADS and improve individuals’ conditions,

rehabilitation interventions can be provided [21; 57]. In this case, rehabilitation

interventions can be defined as processes that enable people who are disabled by

injury or disease to achieve their optimum physical, psychological and social well-

being [66]. During such interventions, skilled clinicians are required to provide

appropriate assistance, guide individuals through ADL by observing their behav-

ior, and prompting them when necessary. Two main schools of thought exist as

to how rehabilitation should be provided. In the case of ADL, when prompting

cognitively impaired persons, clinicians can follow an errorless (EL) or errorfull

(EF) technique. In the case of EL technique, the choice is made to prompt them

at each step of the task, and prevent the occurrence of any error. This technique

was promoted by Werd et al. in the case of dementia, which is an umbrella term

for symptoms such as loss of memory, language or other intellectual capacities

[112]. When the EF technique is applied, the individuals receiving rehabilitation

take all the initiatives during the task, and receive cues only when they make

mistakes. Middleton et al. and van Heugten promoted this technique in the case

of stroke [68; 108]. The choice to follow an EL or EF technique when providing

rehabilitation is a clinical decision that only specialists can take.

However, hiring such specialists comes at a price: an economical and human one.

In the UK, the cost of stroke to society is estimated to be £8.9 billion a year,

with about half linked to indirect costs of ongoing support [18]. Beyond this

economical aspect, the loss of independence a↵ecting stroke survivors’ personal

privacy also needs to be highlighted. Indeed, the di�culties they face on a daily

basis increase their reliance on caregivers, who may directly go to their home to

deliver rehabilitation and recovery care. Some cognitively impaired persons may

perceive this situation as an invasion of their personal space, and be unwilling to

accept this over-reliance on caregivers as a long-term solution [85].
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Therefore, there is a need for technology that can take decisions, and provide

assistance automatically; with the overall goal of reducing AADS related dis-

abilities, and help stroke survivors regain self-su�ciency and independence while

keeping their dignity.

Could this be met by the use of computer technology? Could we design a system

that could easily be installed in the home of stroke survivors, and act as a rehabil-

itation or assistive system? Could we make such a system artificially intelligent,

so it could automatically track their progress through ADL, detect if they make

errors, and provide meaningful recommendations to help them properly complete

a task? To achieve this, the rehabilitation system may be composed of di↵er-

ent modules, each having a specific aim to be fulfilled for the overall goal to be

reached.

The objective of the research presented in this thesis is to describe how such

an artificial intelligent (AI) rehabilitation system can be conceptualized. The

focus will be put on the module in charge of identifying stroke survivors’ error

during ADL, and planning the optimal strategies they should follow at each step

to properly continue or succeed a task. More precisely, the work and analysis

presented will provide answers and suggestions to the following questions:

• How can activities of daily living be modeled by an AI-based rehabilitation

system?

• How can pre-existing AI-based techniques be adapted, in order to fit the

characteristics of such a system?

• How can the system be trained, in order to “learn” how to take decisions

and guide stroke survivors during a task?

• What search technique can be applied, in order to allow the system to reuse

what it has “learnt”, and select the best recommendation stroke survivors

should follow in order to succeed at a task?

• What method could be used to enable automatic error detection in stroke

survivors’ behaviors during a task?
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To be able to address those challenges is the key which, one day, will allow stroke

survivors to receive assistance and rehabilitation at home, without compromising

their privacy and their need to be independent.

1.1.1 General problem definition

To understand how a system could take decisions by itself, we might begin by

analyzing the common decision-making processes we go through on a daily ba-

sis. When involved in an activity that can be completed in di↵erent ways, we go

through a pattern of actions, modifying our environment (i.e., collection of sur-

rounding elements and objects) until we reach our goal. But how do we choose

the sequence of actions we believe will make us complete the task properly? Goal,

environment, rules and consequences of our actions, are parameters that are of-

ten taken into account when decisions must be taken. The plan we follow to go

through a task is generally driven by what we want to achieve (i.e., goal), what is

at our disposal to achieve it (i.e., elements from the environment, objects), what

can be done and how (i.e., rules) and the long-term impact of our present actions

on the future.

For example, when playing chess, to move a chess piece without thinking ahead of

the potential risks and opportunities generated by our current action may result

in a poor game. The relationship between present and future decisions and their

related outcomes is a key element in decision-making. Hence, when given a goal,

context, rules and notion of potential consequences of actions, we can imagine a

system able to follow a similar model by implementing Artificial Intelligence (AI)

techniques. A technology able to do so would then have the ability to “learn”

how to take decisions by itself and plan strategies to guide stroke survivors.

In the next sections, we will go through the background related to di↵erent ap-

plications for which assist systems have been designed. Then we will explain and

compare these systems’ functionality and main components.
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1.1.2 Applications

When systems are able to monitor users with cognitive deficits, they have the

potential to reduce the number of consultations with specialists, assess disease

progression and evaluate medication e↵ects [74]. In the arena of home-based

monitoring of chronic diseases, several studies have been carried out, in particu-

lar [25; 51]. In [51], the authors proposed a monitoring device capable of providing

self-assessments and motor tests for individuals with cognitive impairments. Cued

and un-cued tests were designed to collect data on upper limb conditions. The

data were then analyzed to evaluate users’ compliance and the usability of the

device.

Based on similar methods, another home-based assessment tool was presented

by Cunningham et al. in [25]. Their novel approach ensured that users did not

need to wear any sensorized objects to be monitored. The computer-based de-

vice was designed to collect data on hands and fingers movements. Their results

showed that the data collected could distinguish between the states where the

users’ medication was working at its best and when it had worn o↵.

Monitoring home-based systems can be enhanced with Artificial Intelligence (AI)

methods and automatic planning techniques. In the field of assistive and rehabil-

itation technology, several systems have been designed to increase independent

completion of ADL by users with cognitive deficits. In such a case, these systems

do not only collect data on users’ behavior but can also provide reminders or guid-

ance in order to help them during ADL. They aim to output recommendations in

order to help the user complete a sequence of actions that will lead to task com-

pletion. The key challenges related to this field were described by Kautz et al. in

[55]. In this technical report, the authors highlight the main features an assistive

system should implement in order to properly guide users with cognition deficits

during ADL. Among the di↵erent prototypes the authors designed, they focused

on the development of an ADL prompter and ADL monitor. Taking into account

the fact that some users may have di�culties performing ADL by themselves, the

aim of the ADL prompter was to help such users complete multi-step tasks such

as cooking, by providing them with appropriate prompts and guidance.
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The ADL monitor was designed to track users’ performance during di↵erent

ADL (for example grooming and socializing), and detect users’ errors and abnor-

mal patterns of behaviors during the tasks. Extensive literature reviews focusing

on assistive technology for cognition have been published and updated through

time [29; 64]. In 2011, Gillespie et al. identified 89 publications, where 91 studies

of an assistive system were reported [29]. Given the proliferation of such de-

vices, they highlighted the impracticality to conduct large-scale e�cacy studies

for each of them. They also found that 63% of the reviewed studies focused on

assistive systems designed to provide reminding and prompting interventions to

users. This specific interest supports Hart et al. study’s results, which drew at-

tention to the fact that clinicians saw more potential for devices in the areas of

learning/memory, planning/organization and initiation [32].

The increased interest in this area led to the development of complex systems

such as Autominder [84; 94] and COACH [14]. Implemented as a scheduling aid,

the Autominder reminds older adults what activities should be done through the

day, by providing personalized prompts. To achieve its goal, the system tries to

maintain a correct representation of the user’s daily plan, monitor its execution,

and plan reminders accordingly. After being specified, the user’s plan is updated

trough the day. High quality reminders are then generated by an intelligent plan-

ning system [3]. However, compared to the COACH system [14], the Autominder

does not help users to correctly go through any of the monitored activities.

The COACH system was designed to provide instructional cueing in order to

guide users with dementia during one specific task: hand-washing. In [14], the

focus is put on the COACH Markov Decision Process (MDP) based planning

system. The latter is in charge of providing cues corresponding to the user’s

needs during hand-washing. In order to do so, the whole system is composed of

a monitoring module (i.e., a vision-based agent) [70], which is used to monitor

the user during the task, and provide meaningful information about the user’s

environment to the planning system. An e�cacy study based on participants’

comments was then run to evaluate their point of view about the system’s per-

formance.
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A new COACH system was designed few years later, and implemented a Partially

Observable Markov Decision Process (POMDP) based planning system [36; 71].

Contrary to an MDP, a POMDP can model the uncertainties related to the en-

vironment of the user (for example the actions done by the user during the task,

what he or she has achieved so far), and potentially cope with the errors the mon-

itoring module can make while observing the user’s behavior. In [36], an extended

description of the main modules composing COACH is given. We learn that the

whole system is composed of a video-based hand-and-towel tracker (i.e., a moni-

toring module), a POMDP-based planning system, and a cue selector. Similarly

to the previous prototype, the COACH video-based tracker allows the system to

monitor a user during ADL in a non-invasive way. Three experiments were run

in order to evaluate the performance of COACH’s components, and the overall

ability of the system to provide assistance to six users su↵ering from dementia.

Sequences from a user trial were used to evaluate the tracker, and results showed

that the latter is robust and can recover from failures. The POMDP-based plan-

ning system was evaluated via simulations of hand-washing, and compared with

heuristic policies and the MDP. Results showed that the POMDP-based planning

system performed best, but not significantly better than the heuristic policies.

The global evaluation of the system was run during an eight week user trial, and

during these trials, a caregiver or technician could intervene and input informa-

tion to the system. The results obtained indicated that the POMDP model is a

fairly good model for the domain.

Using the same system, the authors of COACH ran another e�cacy study de-

scribed in [71]. In this study, six older adults with moderate dementia were

asked to wash their hands while being assisted by the COACH system. The per-

formance of the system was calculated based on its ability to provide the right

prompt when necessary (i.e., when the user made mistakes during the task). The

results showed that 78% of the COACH system’s strategies were correct. In this

study, the authors also analyzed the user’s performance, and found that when

COACH was used, an average of 11% more steps were performed independently

by users during the task, which required 60% fewer interactions with a human

caregiver.
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More recently, Peters et al. [79; 80] developed the TEBRA system, which has

been designed to support mildly impaired people during teeth-brushing. Sim-

ilarly to COACH, TEBRA is composed of a sensing module dedicated to the

monitoring of users, a behavior recognition module and a planning system, which

provides prompts when necessary. In order to evaluate the system’s influence

on users’ behavior, a user study was performed with seven participants su↵ering

from cognitive deficits. The participants were assessed through two scenarios re-

ferred to as the caregiver (CG) scenario, and the system (SYS) scenario. In the

CG scenario, users were asked to brush their teeth as usual. As the toothbrush

is sensorized, the TEBRA system could record sensor data and monitor the task

progress. In that specific scenario, no system prompts were allowed to be de-

livered to the users. In the SYS scenario, the system was configured to provide

prompts and guide users during the task. The authors highlighted that in the

SYS scenario, a caregiver could take over and intervene if the system made fatal

errors. The results showed that users made significantly more independent steps

in the SYS scenario compared to the CG scenario. In other words, most users

gradually showed signs of independent behaviors when they could have access to

the system’s prompts. In order to evaluate the appropriateness of these prompts,

the authors introduced the notion of prompts’ semantic correctness. Prompts

are considered semantically correct when they are delivered at the right time (for

example when the user really needs assistance or makes a mistake), and when the

information provided by the prompt corresponds to the next step the user should

follow to correctly continue or finish the task. Taking into account the trials

performed by six participants in the SYS scenario, results showed that 71.3% of

the prompts delivered by the TEBRA system were semantically correct. These

results are encouraging and show the potential of the TEBRA system. However,

as highlighted by the authors, the number of participants involved during the

evaluation does not allow for hypotheses about the impact of the system for people

with specific disabilities in general.

In the next section, we will highlight, from a general perspective, the common

framework assistive and rehabilitation technology such as COACH and TEBRA

share with each other, and the specific di↵erences that make them unique.
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1.1.3 Assistive Systems’ Architecture

Figure 1.1: Rehabilitation system’s architecture

In order to properly assist cognitively impaired users during ADL, systems

such as COACH and TEBRA rely on sub-components that work online, in real-

time and allow them to:

• Monitor users during the task,

• Detect and recognize the actions made by users,

• Plan the next best actions/strategies/recommendations users should follow

in order to properly continue or succeed the task,

• Display this information (i.e., what should be done to succeed) in a way

users can easily understand.
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From a general point of view, as depicted in Figure 1.1, the workflow within

such an architecture can be described as follows:

1. The user is given a task to complete,

2. The user moves objects and performs actions related to the given task,

3. Sensors located in the user’s environment or smart objects monitor the

user’s movements and actions,

4. The sensors’ outputs are analyzed by an Action Recognition System (ARS)

which outputs its interpretation of the user’s actions,

5. A Task Manager plans which optimal action the user should do, then passes

the information to a cue generation module,

6. The Cue Generation module then selects in which form the Task Manager’s

output should be delivered to the user.

1.1.3.1 Monitoring module

Assistive and rehabilitation systems designed to remind users what to do during a

task, need to be able to monitor the environment of the users and their behavior.

The environment corresponds to the direct surrounding or vicinity of the user. For

example, if the task to be monitored is cooking, the environment will correspond

to the space where the activity is taking place. This space may include the

cooking surface, kitchen utensils or any objects within easy reach.

Several researchers have used sensors attached to objects, or placed in the user’s

environment for task monitoring. In the first version of COACH [69], a tracking

bracelet was worn by the user during the hand-washing task, and a digital camera

was used to estimate the two-dimensional coordinates of the user’s hands [35].

The camera was located above the sink and counter where the task was taking

place. The authors of TEBRA also used a camera-based monitoring system [79].

10



In [79], two cameras were used: one camera observed the environment from

an overhead point of view in order to capture the sink and counter; while the

second camera was facing the user in order to observe his or her face and up-

per body during the teeth-brushing task. Contrary to the latest prototype of

COACH, the monitoring module of TEBRA is based on the use of smart sensors

installed in the user’s environment, or integrated in objects that are part of this

environment. Indeed, the authors of TEBRA installed a water flow sensor at the

water supply (the tap) to determine whether or not the latter was used during

the task. Moreover, a sensor module composed of a gyroscope, accelerometer,

and magnetometer was attached to a toothbrush, in order to detect its di↵erent

movements while being held by the user.

Once the monitoring module outputs the information related to the user’s envi-

ronment and behavior, this information can be treated in di↵erent ways by the

rest of the assistive system. In COACH, the hands’ coordinates provided by the

monitoring module are directly sent to the module in charge of planning which

recommendation the user should follow to succeed the task (i.e., the Task Man-

ager) [71]. Conversely, in TEBRA, the outputs of the monitoring module are

analyzed and refined beforehand by an ARS [79] (see Figure 1.1).

1.1.3.2 Action Recognition System

The aim of the ARS is to give a higher level of interpretation of the monitoring

module’s outputs. To do so, it analyzes the outputs provided by the monitoring

module, and infers what actions are being performed by the user during the task.

In other words, the ARS uses hands’ positions and information about movements

of body and objects, to output a more detailed description of the user’s behavior.

Action recognition is challenging due to the spatial variance in the execution of

the task, and the variability with which users can move objects to perform the

same actions. In TEBRA [79], action recognition is based on the extraction of a

set of features from sensor data. These features are then discretized into a small

number of observation variables corresponding to objects’ position, movements,

and whether the tap is being used or not. In this case, a Bayesian Network is

used as a classifier, where the result of the network is a probability distribution
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over the user’s behaviors. From this probability distribution, the most probable

behavior is retrieved and sent to the rest of the system. Once the ARS outputs

its observation of the user’s action, there is no guarantee that this observation

corresponds to the real action made by the user. Indeed, the ARS is prone to

errors and may send wrong information to the next module. At that point in

the architecture of the system, the module which receives the ARS outputs is the

Task Manager. It is in charge of planning the best recommendation that the user

should follow to successfully continue or complete the task.

1.1.3.3 Task Manager

Di↵erent approaches can be implemented as far as the Task Manager (TM) is

concerned. The assumption can be made that its inputs directly correspond to

the real user’s behavior, or that the information it receives may be erroneous. The

second case is the most realistic one. By realistic we mean that there is often

a non-zero probability for complex monitoring modules and the ARS, to make

errors at one point in their process. Hence, it is the goal of the Task Manager to

cope with the potential uncertainty in its inputs and maintain the ability of the

whole system to fulfill its overall aim.

Various prototypes of COACH were engineered through time. The earliest pro-

totypes implemented a Markov Decision Process (MDP) based Task Manager

[14]. The MDP has been widely used in artificial intelligence (AI) [16; 86] to

model and solve decision-planning problems. It provides a model of a system’s

interaction with its environment, allowing us to find the optimal strategies which

can guide that system within its environment. If we take the example of ADL

management, the system’s environment corresponds to the user and the user’s

environment that the system monitors. Indeed, this user’s environment is mod-

eled by the information captured by the monitoring module and the ARS. Hence,

the aim of an MDP-based Task Manager, is to find the optimal strategies that

can guide a user within his or her environment.
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For example, these strategies can be actions the users should perform at a

specific point in the task, or prompts providing a hint in the users’ actions and

denoting how they should correct their behavior, so in both cases they can prop-

erly complete the task. However, the definition of the MDP does not allow it to

cope well with uncertainties in its inputs. Indeed, the MDP-based Task Manager

will tend to “believe” all information that it receives even if this information is

erroneous.

In order to take into account uncertainties related to the user’s actions, COACH’s

planning framework was improved by implementing a Partially Observable Markov

Decision Process (POMDP) based Task Manager [36]. Contrary to the MDP, the

POMDP can model a decision planning process in the case where the system

cannot directly observe the state of the user. Here, the state of the user can

correspond to what he or she has achieved so far (i.e, sequence of his or her ac-

tions) as far as the task is concerned, or any relevant information about his or

her behavior during the task.

The aim of the Task Manager is not only to find how to properly guide a user

during a task. It is also in charge of detecting whether or not the user makes

mistakes while going through the task. This ability to detect errors is an impor-

tant feature which is found in TEBRA and COACH. Indeed, the performance of

both systems can be measured by their ability to provide appropriate prompts

to users when they need help or have made a mistake. In TEBRA [79], a Fi-

nite State Machine (FSM) models timing of a user’s behaviors and the di↵erent

phases in the latter. It then performs a consistency check to verify the user’s

behavior validity. If the user’s behavior is considered to be inconsistent, then the

system will provide a prompt. The ability of COACH to properly detect when

users make mistakes is also a fundamental element the authors took into account

in their e�cacy study [71].

Whether an error is detected or not, when the Task Manager outputs a prompt,

the latter contains abstract information about what is the next best action to

be followed by the user. At this level, the Task Manager’s output is in a form

of a code. Hence, it is sent to a “cue generation module”, which is in charge of

conveying assistive information to users in a way that can be easily understood

and catch their attention.
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1.1.3.4 Cue Generation Module

The implementation of the cue generation module can di↵er based on the ar-

chitecture of the system it is part of. For example, in COACH [14], it is a

stand-alone component of the system, while in TEBRA, it has been designed as

a sub-component of the Task Manager [79; 80].

In both cases, the cue generation module selects the appropriate pictograms, pre-

recorded videos or sounds to be sent to the users during the task. These elements

can be vocal commands, videos showing an actor performing the action the user

should mirror to continue the task, a picture giving a hint about the next best

step to take, or a written message displayed on a screen stating what should be

done. The cue generation module decides the form in which the cue is shared.

However, the core of the information about what should be done by the user

directly comes from the Task Manager. When the appropriate form of cue is

selected, it is displayed via a screen and speakers located where the task is taking

place.

1.1.4 Similarities with a Spoken Dialogue System

Now that the main modules composing AI-based assistive systems such as COACH

and TEBRA are known; it is interesting to explore their similarities with spo-

ken dialogue systems as far as their architecture is concerned. All systems are

intrinsically designed to enable human-machine interaction. However, in a spo-

ken dialogue system, the primary input and output, from and to the user, is

speech. Similarly to AI-based assistive or rehabilitation systems, a spoken dia-

logue system generally consists of three main components, as shown in Fig 1.2.

The first component is the speech-understanding module, which transforms the

user’s speech into text using automatic speech recognition, then converts it into

a semantic representation of the user’s intention. This information is then passed

to the dialogue manager, which selects the most appropriate system output. Its

role is similar to the Task Manager in a AI-based assistive system. The last com-

ponent is the speech generation module, which transforms the dialogue manager’s

output into text before converting it back to speech [50; 67].
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Figure 1.2: Spoken dialogue system architecture

The aim of a task oriented spoken dialogue system is to complete a given task

while interacting with a user. In the case of a complex task like booking a flight,

the aim of a spoken dialogue system would be to help the user complete the var-

ious sub-actions and hence the global task at the end (for example booking the

right ticket). To do so, the system tries to engage the user in a spoken dialogue,

as a human helper would, retrieving meaningful information which could help the

user achieve his or her goal. In such systems, the speech understanding module

will make errors, which means that what the user truly says is hidden from the

dialogue manager. This draws a parallel with the Action Recognition System

and the Task Manager in AI-based assistive systems: the ARS might output

wrong information about the user’s behavior, so what the user actually does is

only partially observable from the Task Manager’s point of view. As explained

in Section 1.1.3.3, COACH implemented a POMDP-based Task Manager to cope

with uncertainty. In the field of spoken dialogue systems, the use of the POMDP

is also common. For example, the Hidden Information State (HIS) system [115]

is a POMDP-based spoken dialogue system that has successfully been designed

to provide tourist information.

Note that the state of the art related to spoken dialogue systems will often be

cited in order to highlight its potential benefits to assistive and rehabilitation

technologies research.
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1.2 Contribution

The focus of this thesis is an assistive and rehabilitation system named Cog-

Watch (CW), and more specifically the research that we have undertaken as far

as its Task Manager (TM) is concerned [44; 45; 46; 47; 48; 49]. Taking into ac-

count the fact that CogWatch follows the architecture detailed in Figure 1.1, the

contributions related to this research are presented in the following subsections.

1.2.1 State representation in the Task Manager

For a successful human-machine interaction, the representation of the user’s state

in the Task Manager is crucial. In CogWatch, the representation of this state

intrinsically depends on the model on which the Task Manager is based.

In the case of the MDP-based system, the user’s state is modeled by the Task

Manager as a sequence of actions (i.e., actions presumably performed by the user

during the task - see Section 1.1.3.3). This simplified model of the user’s state

corresponds to the Task Manager’s state. Thus, each time the ARS outputs an

observation of the user’s action, this observation is used by the Task Manager

to update its current representation of the user’s state. In other words, each

observation received leads to an update of the Task Manager’s state. When the

user makes an action, he or she passes from one state to another, and so should the

Task Manager. Indeed, one of its goals is to constantly recover a compact model

of the user’s behavior in order to provide him or her with the right information

about what they should do next. Hence, taking into account the fact that a user

can go through any sequence of actions during a task, one challenge for the Task

Manager is to cope with this huge variance in task completion. In this thesis,

we propose a leverage method which allows the Task Manager’s state to contain

enough information about the user’s state, while preventing a drastic expansion

of its size. When implemented, this method also allows maintaining the system’s

state space at a manageable size. In the field of spoken dialogue systems, the state

of the art methods also rely on reducing the dialogue state space and performing

policy optimization on a reduced space [24].
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In the case of the POMDP-based system, the user’s state is modeled by the

Task Manager as a probability distribution over user’s states (i.e., belief state),

and each time that the ARS outputs an observation of the user’s action, this

observation is used to update the belief state. In other words, at any step in the

task, the POMDP-based Task Manager takes into account the fact that the ARS

may have made a mistake, so it maintains probabilities that the users’ action may

be di↵erent from the one observed by the ARS. This thesis shows how to build

the POMDP-based Task Manager’s belief state by re-using the representation of

the MDP-based Task Manager’s reduced state space.

Although this work has been designed to fit CogWatch’s specifications, the tech-

niques used are applicable to any POMDP-based assistive systems, which focus

on providing guidance during sequential tasks, and have a similar representation

of concepts in the user’s state.

1.2.2 MDP and POMDP implementation in CogWatch

In this thesis, we will explain how the MDP and POMDP models were defined to

take into account the specificities of CogWatch. The impact of these models on

the Task Manager will be analyzed and compared within various scenarios. The

choice has been made to implement both MDP and POMDP based Task Manager

in order to easily run an e�cacy study with users. The aims of the evaluations

were to measure the ability of the MDP and POMDP based Task Managers to

properly guide users during di↵erent tasks. This was done in the case where the

assumption was made that the ARS was perfect, and also in the case where the

uncertainty in the ARS outputs was taken into account. These evaluations were

run with real participants, but also via user simulation using a virtualization of

the whole system (see Section 1.2.5).
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1.2.3 Policy optimization

Policy optimization corresponds to the training phase where the Task Manager

“learns” how to optimally act based on its representation of its environment

(i.e., the user’s environment). Artificial intelligence techniques are known to

be promising for improving the performance of spoken dialogue technology [60].

Thus, another contribution of this thesis will be to explain how the POMDP

framework designed for statistical spoken dialogue systems can be modified and

reused for assistive technology in the case of CogWatch.

1.2.4 Users’ error detection

In CogWatch, the Task Manager is not only in charge of planning the next best

action the user should follow in order to correctly continue or succeed a given

task, it also needs to detect when users make mistakes during this task. We will

explain the methods that have been implemented to detect such errors. This has

been done in the case where the ARS is considered to be perfect, but also in the

case where it is assumed that it may output wrong information. In the first case,

the Task Manager uses formal definitions of errors users with AADS can make and

systematically verify if they appear in the Task Manager’s representation of the

user’s state during the task. In the second case, an attempt to develop a method

for error detection under uncertainty was implemented and will be explained.

1.2.5 User Simulation and virtualization of CogWatch

The development of simulated users based on stroke survivors’ behavioral data

will be described. Able to display di↵erent behaviors, these simulated users were

used during evaluation of the MDP-based Task Manager (TM), as well as training

and evaluations of the POMDP-based TM. During evaluations, these simulated

users were interacting with a virtualization of CogWatch, where the main modules

described in Section 1.1.3 were simulated except the Task Manager. In the case

of the POMDP-based TM, the choice of using simulated users was justified by the

need to understand the e↵ect of the ARS error rates and diverse Nearest Neighbor

Search (NNS) techniques on the performance of the TM under uncertainty.
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1.2.6 Nearest neighbor search under uncertainty

To plan what should be done by users during a task, the CogWatch Task Manager

needs to be trained. During this training phase, it “learns” what recommendation

to send to the user, taking into account which state the user may be in during a

task. In the case of the CogWatch POMDP-based Task Manager, a grid-based

approach is used to solve the POMDP [115], (see Section 2.3.2.2). In other words,

the POMDP-based Task Manager does not explicitly associate a recommendation

with each belief state contained in the belief state space during training, but does

so with a set of belief states only (i.e., belief subspace). During execution or

evaluation, when the Task Manager re-uses what it “learned” during training to

guide users, it may update a belief state it has never been trained for, and which

is not associated to any recommendation to be sent to the user. One solution

to tackle this issue is to treat it as a classification problem. Indeed, a classifier

can be trained on a set of belief-state/recommendation pairs, which may help

it to generalize to the whole belief state space. The particular classifier that

we use is based on nearest neighbor search (NNS). Hence, during evaluation, if

the Task Manager updates a belief state it has not been trained for, it can find

the closest neighbor within the set of belief states for which it has an optimal

recommendation associated with. When a neighbor is found, the Task Manager

can associate the optimal recommendation associated to this neighbor with the

belief state it has just updated. In this thesis, it is shown that the distance

function used to identify the element in the belief subspace that is closest to an

arbitrary belief state can have a major e↵ect on the Task Manager’s performance.

A new algorithm, referred to as “SciMK”, was designed for CogWatch. Its impact

on the system’s performance is investigated and compared with other common

methods used in the field of NNS (see Chapter 7).
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1.3 Thesis structure

Chapter 2 o↵ers an introduction to some decision theory models that could be

implemented in an assistive and rehabilitation system. Chapter 3 provides an

overview of the system referred to as “CogWatch”, when implemented with the

MDP and POMDP based Task Manager. Chapter 4 gives a detailed explanation

of the simulated users implemented during training and evaluation of the system.

Chapters 5 and 6 discuss policy learning and the challenge related to the imple-

mentation of an MDP and POMDP based Task Managers. Chapter 7 discusses

the impact of di↵erent metrics and classifier on the system’s performance. Finally

Chapter 8, presents conclusions and discusses possible future research.

20



Chapter 2

Decision Theory Models

2.1 Introduction

In the introduction, we described the background related to the di�culties stroke

survivors face on a daily basis. We highlighted the need for smart technology that

could help them during their activities of daily living (ADL). We then provided an

overview of various assistive systems, which have been designed to automatically

deliver instructional cues during ADL. We saw that one of the key components

of such systems is their planning and decision-making module, referred to as the

Task Manager. The latter is in charge of planning the best next actions users

should follow in order to correctly continue or complete a given task. Hence, in

this chapter, we will focus on di↵erent decision theory models, which could be

applied to the Task Manager so it can fulfill its goal. For simplification purposes,

only topics closely related to the scope of this thesis will be explored.

The first sections of this Chapter give an overview of di↵erent cognitive mod-

els, which could be used to enable action planning in assistive systems. Some

of the limitations and constraints of these methods are highlighted, providing a

motive for the implementation of statistical approaches. Section 2.3 focuses on

statistical models, providing a detailed description of Markov Decision Process

and Partially Observable Markov Decision Process; how they are used to enable

decision/action planning, and how they can be applied to task management.
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2.2 Cognitive models

As explained in the previous chapter, an ideal assistive/rehabilitation technology

can be defined as a system able to deliver appropriate guidance, potentially like

a human caregiver would. This raises the question related to the possibility of

designing a system able to go through a decision process similar to a human one.

In other words, how to make a system select prompts for users like a human

would? In this section, we explore the possibility of implementing cognitive de-

cision models, specifically designed to address how people produce sequences of

actions during activities of daily living.

2.2.1 Hierarchical approach

Lashley [58] proposed that successful completion of sequential tasks requires ac-

tivation of a stored action-plan, and that these plans are organized hierarchically.

This was supported by the observation that actions performed within a sequence

are context dependent. In other words, the actions performed during a task de-

pend on the overall goal pursued, and how it can be reached. If we take the

case where the task is to make a cup tea, the right action to perform at each

step of the task will depend on the type of tea to make (i.e., overall goal) and

what needs to be done to reach this goal (for example adding sugar and milk

if the goal is to make a white tea with sugar). Some of these actions can be

performed any time during the task, while others need to respect some ordering

constraints to be correct. For example, to make a hot cup of tea, the water needs

to be boiled before being poured in the cup. Hence, descriptions of the cognitive

mechanisms of action selection have often adopted hierarchical structures as we

can see in [41]. A representation of such a structure can be seen in Figure 2.1,

where a hierarchical approach is applied to describe steps in the tea-making task

[39]. In this figure, we see that the task “making a cup of tea” is composed of six

basic actions that need to be completed for the cup of tea to be made. Each of

these basic actions can be defined by more detailed sub-actions, which will also

have to be properly completed for their corresponding higher-level actions to be

succeeded.
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Figure 2.1: Hierarchical representation of a tea making task
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Following this lead, new cognitive models were proposed, such as Contention

Scheduling by Cooper and Shallice [22; 23], and an implementation of a neural

network by Botvinick and Plaut [15]; these are described in the following sections.

2.2.2 Contention Scheduling

Contention scheduling (CS) is an approach designed to model human action se-

lection in routine situations (i.e., situations that are considered to be well known

by an individual) [22; 23]. It consists of a hierarchically structured network of

well-learned action sequences that are referred to as schemas. In [22; 23], it is

argued that when going through a task, an individual can have access to di↵erent

schemas (i.e., di↵erent ways of completing that task). All schemas are assumed

to have triggering conditions, activation values and thresholds, which at the end

of a selection process allow one schema to be initiated. In other words, schemas

compete with each other, and the model proposed by Cooper and Shallice ex-

plains how one schema can be selected over the others, so that a sequence of

actions is performed by an individual during a task.

Figure 2.2 shows how the CS theory can be computationally implemented. At

the center of the figure is the schema network, where schemas compete in or-

der to be activated. Schemas receive excitation and inhibition from an object

network and a resource network. The object network is another activation

network where the nodes correspond to representations of objects an individual

may have access to during a task (for example, cup, kettle, spoon in the case of

tea-making). The resource network is a third activation network, which repre-

sents the cognitive resource of the individual. These three networks are connected

via feedback loops, so that resource and object nodes excite and are excited by

schema nodes. A selection process module monitors these interactions and se-

lects a schema when the activation value of the latter reaches a specific threshold.

When a schema is selected, its components (i.e., actions) also need to go through

a selection process. The chosen action’s information is then passed to a motor

system module, which makes the transition between an action being selected at

a cognitive level, and its realization in the physical world.
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Figure 2.2: Principal components of the contention schedulling [22]

From a computational point of view, the model presented by Cooper and

Shallice could be used to design a Task Manager. The latter would then be com-

posed of the schema network and the selection process module, as seen in

Figure 2.2. However, such a Task Manager would not be able to fit the struc-

tural specificities of an assistive/rehabilitation system, as described in Figure 1.1,

Section 1.1.3. Indeed, a Task Manager following the CS theory would need to

communicate in a feedback loop with the ARS, and the latter would need to

provide other types of inputs: specific information about the objects (see object

network in Figure 2.2), and information about the cognitive resources that the

user has access to during the task (see resource network in Figure 2.2). Due to its

inputs constraints, the CS theory cannot be applicable to a system like CogWatch

(whose Task Manager is the focus of this thesis). CogWatch has a fixed archi-

tecture and does not make available to its Task Manager any information about

user’s resource and object representation. Moreover, it is not clear how CS would

cope with uncertainty and deficits within the object and resource networks. In

such a case, CS may display an impaired behavior; similar to the one displayed by

a person su↵ering from cognitive deficits. In a system like CogWatch, the Task

Manager needs to select appropriate prompts/recommendations for users even if

its inputs are erroneous.
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2.2.3 Neural Network

In [15], Botvinick and Plaut explain how it is possible to model action selection

using a neural network, rather than schema hierarchies. Neural networks are

defined as being composed of a set of units, each being related to an activation

value [91]. The activation of each unit depends on excitation and inhibition re-

ceived from other units linked to it, and all units transmit information about

their current activation to others through weighted connections. Neural networks

are often organized into multiple layers. The first layer is the input layer; it is

composed of visible units, which transmit features about the environment to the

network. The activation of these units propagates through one or more hidden

layers, which modify the information received from the inputs before sending

a pattern of activation to an output layer. Similarly to the input layer, the

output layer is composed of visible units, which represent the system’s response

to the input. It is argued that such a network can learn the appropriate set of

weights - pattern of activation within its hidden layer - that enables the selection

of correct output [91]. Hence, in the case of task management, a neural network

could be used to find the appropriate action/recommendation a system should

output, taking into account input features related to the user’s environment.

Figure 2.3: Reccurent network architecture for action selection [15; 22]
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Figure 2.3 shows the network implemented by Botvinick and Plaut for action

selection during ADL. In this network, the input layer carries information about

the objects being held by the user (held object representation) and those

currently in the focus of the user’s attention (viewed object representation).

The output layer relates to the actions that are directed at the objects and en-

vironment. From a computational point of view, such a model could also be

implemented in a Task Manager. If we take the example of the tea-making task,

the network could intensively be trained through supervised learning, with a large

amount of labeled examples of users performing the task. In other words, a la-

beled dataset would be needed. Such a dataset would be composed of feature

vectors related to objects being held, and objects being the center of attention of

a user during the task. These feature vectors would also need to be associated

with the correct next recommendation to output. A Task Manager implementing

Botvinick and Plaut’s model would then use this dataset to learn, via the network,

how specific feature vectors are associated to specific labels (i.e., recommenda-

tions). This knowledge would then be reused during execution, where the Task

Manager would output the next recommendation to provide to the user for each

input it receives. However, similarly to the CS case, a Task Manager based on

Botvinick and Plaut’s model would not be able to fit the structural specificities of

a system like CogWatch. Indeed, a Task Manager following such a model would

need to receive inputs (i.e., features about interaction between objects and users)

that the ARS does not provide. In CogWatch, the ARS is designed to output

observations of actions supposedly made by the users, no information about the

objects being the visual focus of users is available.

2.3 Statistical Models

Taking into account the CogWatch architectural specificities, which are similar

to spoken dialogue systems (see Section 1.1.4), one possibility to enable deci-

sion/action planning is to implement models that have been used in the field of

dialogue management, and reapply them to task management; for example, MDP

[61], or POMDP [115].
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However, it is important to highlight that in the literature [53], both MDPs and

POMDPs have initially been defined in the case where the system is a robot nav-

igating in an area trying to reach a goal, not an assistive/rehabilitation system

interacting with a user in order to help him or her reach a goal. Thus, we will first

go through the definitions of MDPs and POMDPs as they are generally described

in the literature, then explain how these frameworks can be implemented in the

specific case of assistive/rehabilitation technology.

2.3.1 Markov Decision Process

Suppose that you have a system (for example a robot) located in an area where it

can navigate. The system is in a start state and its task is to reach a final state.

Each time the system takes an action toward its goal, that action a↵ects the

environment and incurs a cost. In order to operate as optimally as possible, the

system will have to plan actions that lead to task completion and to the lowest

long-term average cost [40]. In the Artificial Intelligent (AI) literature [106], such

a system is referred to as an agent. When the task that this agent needs to

complete is modeled as a Markov Decision Process [86], the framework of the

latter is defined as a tuple
�
S, A, P, C

 
, with:

• State Space S:

The agent’s environment is modeled by a set of distinct states S. In general

S can be finite, countably infinite or continuous. In this work S is finite

and we will write S = {s1, ..., sN}, with N 2 N.

• Action Space A:

An agent interacting with its environment seeks to influence the latter by

taking actions from its action space A. In this work, A is finite and we will

write A = {µ1, ..., µM

}, M 2 N.

• Transition model P :

The transition model captures the stochastic nature of actions’ e↵ects.

Thus, P (s0 | s, µ) denotes the probability for moving from the current state

s to the next s0 given that action µ is taken.
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• Cost Function C:

The behavior of the agent is encoded in the cost function C(s, µ). The

latter represents the immediate cost for taking action µ when in state s. It

is a powerful method the agent uses to model the e↵ectiveness of an action

given a specific state.

In the standard implementation of this framework, each time the agent takes

an action µ when in a specific state s, the environment stochastically changes

according to the transition model P (s0 | s, µ) in response to this action. As the

agent has access to a finite set of actions A, it uses the cost function C(s, µ)

as a way to judge the quality of its behavior, and make a decision about which

action should be taken. In other words, the cost function is composed of the rules

governing the agent’s environment; it helps the agent to evaluate how good or

bad the impact of its actions is when in a specific state.

Previously, we highlighted the potential advantage to have a system that would

take into account the long-term impact of its actions. In such a case, the cost

function can be formulized in various ways [62]. For example, it can be defined

as the expected trial session cost:

Cost = h
TFX

t=0

C(s
t

, µ
t

)i, (2.1)

which sums up all the costs experienced by the agent during a trial session (a

path in the state space starting in an initial state, and ending in a final state) [61].

In this equation, T
F

is the step at which a final state is reached, and C(s
t

, µ
t

)

is the cost received when action µ
t

is taken in state s
t

. A variant is the infinite

horizon, total discounted cost:

Cost =
1X

t=0

�tC(s
t

, µ
t

), (2.2)

where � is a geometric discount factor with � 2 (0, 1). With such a cost function,

future costs received at step t are discounted by �t.
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Now that the basics of the MDP framework have been given, and that the way

it can be used to model the interaction between an agent and its environment

has been described, we need to focus on another of its important concepts: the

policy. In decision planning, the problem that an agent faces can be viewed as

which actions to take when in a specific state. The choice made by the agent

is based on the policy (i.e., the rule that the agent follows in selecting actions,

given its state). Intuitively, the policy gives the solution to an MDP; it gives a

complete description of what the agent’s decision should be for every state s 2
S. Thus, given an MDP, the task is to find a policy that minimizes the expected

sum of costs incurred by the agent’s actions.

2.3.1.1 MDP policy optimization

To solve the MDP, two more functions are introduced: the value function V ⇡(s)

and the Q-function Q⇡(s, µ), for each state s and action µ [104].

Value Function Suppose that we are given an MDP: a state space S, an action

space A, a transition model P (s0 | s, µ) and a cost function C(s, µ). Suppose that

we also have a policy ⇡ (⇡: S ! A), such that ⇡(s) is the action µ that should be

taken by the agent in state s. Concretely, a policy ⇡ is a mapping from each state

s 2 S to action µ 2 A. Bellman [7] defines that the value of a state s under policy

⇡, denoted by V ⇡(s), is the expected cost when starting at state s and acting

according to policy ⇡ thereafter. For MDPs, it can be formulized as follows:

V ⇡(s) =
X

s

02S

P (s0 | s, ⇡(s))[C(s, ⇡(s)) + V ⇡(s0)]. (2.3)

One way to visualize this function, is to think ahead from one state to all its

possible successors states, as depicted in Figure 2.4. In this diagram, open circles

correspond to a state, and solid circles correspond to a state-action pair (for

example, < s, µ >). Starting from state s, the agent could take any action from

its action space (only three actions are represented). Each of these actions could

then be paired with s and correspond to a solid circle. To take an action in

a specific state incurs a cost. So if we suppose that when in state s the agent
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Figure 2.4: Backup diagram for V ⇡ [104] - Note that µ could be written ⇡(s).

follows the policy ⇡ and takes action µ, then an immediate cost is incurred, and

the agent moves from state s to potential other next states, such as s0.

In [104], the authors explain that Equation 2.3 averages over all the possibilities,

weighting each by its probability of occurring. The equation states that the value

of state s equals the expected value of the next step s0 accumulated along the way,

plus the immediate cost (i.e, C(s, µ) in figure 2.4) [9]. There is at least always

one policy ⇡⇤ that is better or equal than all other policies. This policy is called

the optimal policy. The optimal value function based on this optimal policy is

given in Bellman’s principle of optimality [7]:

V ⇤(s) = min
µ2A

X

s

02S

P (s0 | s, µ)[C(s, µ) + V ⇤(s0)], (2.4)

The optimal value of s, V ⇤(s), is the expected cost when starting at state s and

acting according to the optimal policy ⇡⇤.

Q-function Now, let the Q-value of a state-action pair, denoted by Q⇡(s, µ),

be the expected cost for taking action µ when in state s and acting according

to policy ⇡ afterward [110]. We see that Q⇡(s, µ) and V ⇡(s) can be defined

recursively in terms of each other. This can be formulized as follows:

Q⇡(s, µ) =
X

s

02S

P (s0 | s, µ)[C(s, µ) + V ⇡(s0)] (2.5)
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with

Q⇡(s, ⇡(s)) = V ⇡(s) (2.6)

Figure 2.5: Backup diagram for Q⇡ [104] - Note that µ0 could be written ⇡(s0).

This equation states that if the agent is in state s, takes action µ, and moves

to state s0, it incurs the immediate cost C(s, µ), plus the expected cost V ⇡(s0)

accumulated along the way. In Figure 2.5, state-action pairs are solid circles and

states are open circles. We see that, after taking action µ in state s, the agent

could move from s to any potential next state, while incurring the corresponding

immediate cost. Suppose that after taking action µ while in state s, the agent

incurs a cost (i.e., C(s, µ) in the Figure 2.5), then reaches the next state s0. From

this state, the agent could take any next action contained in its action space (only

two actions are represented). Each of these actions could then be paired with s0;

the rest of the process following the one explained in Figure 2.4. In order words,

following the definition of Q⇡(s, µ), when the agent reaches state s0, it continues

by following policy ⇡, and takes action µ0, with ⇡(s0) = µ0.

Thus the optimal Q-function Q⇤(s, µ) is defined as the expected cost returned

when action µ is taken in state s, and the optimal policy ⇡⇤ is followed afterward:

Q⇤(s, µ) =
X

s

02S

P (s0 | s, µ)[C(s, µ) + V ⇤(s0)]. (2.7)
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Therefore, the optimal value function can also be expressed by:

V ⇤(s) = min
µ2A

Q⇤(s, µ). (2.8)

The optimal policy ⇡⇤ can then be derived from the optimal value function with:

⇡⇤(s) = argmin
µ2A

[
X

s

02S

P (s0 | s, µ)(C(s, µ) + V ⇤(s0))], (2.9)

or from the optimal Q-function:

⇡⇤(s) = argmin
µ2A

Q⇤(s, µ). (2.10)

2.3.1.2 Value iteration algorithm

Di↵erent algorithms can be implemented in order to find the optimal policy ⇡⇤.

For example, one way to find the optimal policy ⇡⇤, is to find the optimal value

function V ⇤. The latter can be determined by an iterative algorithm called value

iteration defined in [7; 104]. As seen in Algorithm 1, at first the Value iteration

algorithm randomly guesses and assigns a value to every state s 2 S. These values

are then iteratively updated using the Bellman Backup operator. By doing so,

it creates successively better approximations of the value function (see Equation

2.4) at every time step. The Bellman residual is then calculated as the absolute

di↵erence between the previous guess of each value function and the new estima-

tion obtained after update. The algorithm stops when it converges. Convergence

is signaled when the Bellman error (i.e., the largest Bellman residual of all states)

is less than a pre-defined threshold ✓.

In many cases, the exact details of the MDP (i.e., transition model, cost model)

are not known, or too complicated to obtain. In such cases, problems are ad-

dressed by reinforcement learning algorithms [90], whose main characteristic is

the trial-and-error search technique. Indeed, with reinforcement learning, the

agent is not told what to do. It first follows an initial policy ⇡, discovers which

actions leads to a smaller expected cost by trying many of them, then repeatedly

updates the Q value function.
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Algorithm 1 Value Iteration
✓  arbitrary
for all s 2 S do
V (s) arbitrary

end for
repeat

for all s 2 S do
oldV  V (s)
V (s) min

µ2A[
P

s

02S P (s0 | s, µ)[C(s, µ) + V (s0)]]
Bellman

residual

 |V (s)� oldV |
Bellman

error

 max(Bellman
error

, Bellman
residual

)
end for

until Bellman
error

< ✓
for all s 2 S do
⇡⇤(s) = argmin

µ2A[
P

s

02S P (s0 | s, µ)(C(s, µ) + V (s0))]
end for

A common reinforcement learning algorithm is for example the Monte Carlo Al-

gorithm, which was implemented in an MDP-based spoken dialogue system [61].

In this thesis, the choice was made to implement a Monte Carlo algorithm, be-

cause it is known to be easy and e�cient [104], and also due to the similarities

between spoken dialogue systems and assistive systems (see Section 1.1.4).

2.3.1.3 Monte Carlo algorithm

The Monte Carlo (MC) Algorithm is a reinforcement learning algorithm tailored

for learning tasks that are episodic [5]. A learning task is the process an agent

goes through in order to find the optimal policy. Such a task is defined as episodic

when it has a start state and a final one. To find the optimal policy during an

episodic learning task, the agent goes through an episode (i.e., a trial) of interac-

tions with its environment until a final state is reached. After reaching this final

state, a new episode starts again, where the same problem as before needs to

be solved (i.e., finding the optimal policy). During every new episode, the agent

improves its behavior until the optimal one is reached. This process is explained

in Algorithm 2.
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Algorithm 2 Monte Carlo algorithm
Inputs:
A: set of machine’s actions µ
S: set of machine’s states s
k  0, with k number of iterations
for every s 2 S and µ 2 A do
N(s, µ) 0, with N(s, µ) number of times µ is selected when in s
Q⇤

k

(s, µ) random guess of expected cost for selecting µ when in s
⇡⇤
k

(s) argmin
µ

Q⇤
k

(s, µ)
end for
repeat
k  k + 1
for every s 2 S and µ 2 A do
Generate an episode starting at s with action µ and proceeding according
to ⇡⇤

k�1(s) until a final state is reached.
for each pair

⌦
s0, µ0↵

i

recorded during the episode do
Calculate F (s0, µ0), which is the sum of all the immediate costs incurred
after

⌦
s0, µ0↵

i

until the final state.
Update:
N(s0, µ0) N(s0, µ0) + 1

Q⇤
k

(s0, µ0)  Q

⇤
k�1(s

0
,µ

0)⇤N(s0,µ0)+F (s0,µ0)

N(s0,µ0)

⇡⇤
k

(s) argmin
µ

Q⇤
k

(s, µ)
end for

end for
until converged

In this algorithm, the process starts by assigning random costs to each state-

action pair
⌦
s, µ

↵
, with s 2 S, µ 2 A. This first guess allows the initialization

of the policy, following Equation 2.10. The algorithm then proceeds as follows.

Each time there is a new iteration, the agent goes through an episode by starting

at a state s, takes action µ, then follows the current policy until a final state is

reached. Suppose that it is the first iteration, with k = 1. The agent is in a state

s, takes action µ, then follows policy ⇡⇤
0 until a final state is reached. During each

episode, the states the agent visits and actions it takes are recorded. So when the

final state is reached, the expected cost is calculated for taking an action µ in a

state s for each state-action pair
⌦
s, µ

↵
. This information is then used to update

the Q value and the policy after each episode.
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Every new iteration, the agent will follow the policy that was updated during

the previous iteration. This is repeated until convergence is reached. Here, we

could define convergence as the point where the Q values remain stable, and the

optimal action for each state remain the same after a large number of iterations.

2.3.1.4 MDP-based task management

In the two previous sections, we gave an overview of how an agent can learn how

to act optimally in its environment. In the literature, this framework is generally

defined to fit the idea that the agent is a robot. In the case of systems such as

CogWatch, the agent would correspond to the Task Manager. Indeed, in order

to guide users during a task, the Task Manager is the element of the system that

needs to learn how to take decisions (i.e., decide which recommendations to send

to the user) in an optimal way. As explained in Section 1.1.3.3, to provide such

assistance, each time the user performs an action, the Task Manager updates its

state, which is a simplified model of the user’s state. After each update, the Task

Manager plans an action/recommendation it “believes” the user should follow,

and incurs a cost for doing so. Hence, the overall aim of the Task Manager could

be defined as choosing the recommendations that lead to task completion and to

the lowest long-term average cost [40] from the user point of view. For example,

the goal of the CogWatch Task Manager is to provide recommendations that

minimize the cost of completing the tea-making task.

The task can be modeled with an MDP, and the optimal policy can be found

by applying a Monte Carlo Algorithm 2.3.1.2. The framework given in Section

2.3.1 can also be reapplied. However, more thoughts need to be given to the

definition of the Task Manager’s state. Indeed, the latter needs to take into

account the fact that the user is part of the system’s environment, and that this

user goes through his or her own decision process. This section will then be

dedicated to the definition of the user and Task Manager’s state, the notion of

user and Task Manager’s action and probability distribution in the context of

assistive/rehabilitation systems. In section 2.2, we discussed di↵erent cognitive

decision models, such as Cooper and Shallice’s Contention Scheduling model [22;

23]. Due to CogWatch’s architecture constraints, we explained that it is not
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currently possible to implement such a model in the Task Manager. However, the

Cooper and Shallice’s method could be used to model a user’s behavior during

ADL. In this case, the main features composing the user’s model could be defined

as being composed of the user’s resources, the objects’ network and schemas

network - see Section 2.2. In other words, the user state could be defined so that

it depends on parameters such as:

• the objects the user has access to during the task,

• the user’s knowledge of how these objects can be used,

• the user’s cognitive and physical resources: his or her understanding of the

task and how it can be performed, the actions he or she can take, and the

history of actions that have already been taken during the task.

Ideally, the Task Manager (TM) would have access to the full user state, and

would use the latter to decide what is the best next recommendation µ⇤ to pro-

vide (i.e., action it believes the user should follow). However, in CogWatch, the

TM only receives observations about the actions a
u

that the user has presumably

performed. This information would then correspond to the features part of the

schemas network, and no other network defined in Cooper and Shallice’s method.

In other words, the full user state is hidden, and the TM tries to infer a simplified

user’s state representation from the information that it receives from the Action

Recognition System. Since the information received by the TM correspond to

actions presumably performed by the user, it is assumed that its simplified user’s

state representation (i.e., the limited part of the full user state that the TM can

recover) is the sequence s of actions that the user has presumably performed.

Thus, this is this sequence s of actions that the TM relies on in order to provide

assistance during a task. When an MDP is used to model such a task, this is

the set of states s that corresponds to the Task Manager MDP state space S.

Similarly to the schemas, each of these states can be interpreted as a sequence

of actions the user could go through during a task. In such a case, the Task

Manager state s can be defined as what it considers the user has achieved so far.

Hence, a state s depends at least on the action a
u

taken by the user, and the

history of actions s
d

the user has already taken.
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Now that we have highlighted the di↵erence between the user state and the Task

Manager state, we need to explain the di↵erence between the user actions and

the Task Manager’s actions, which are referred to as recommendations.

Each time the Task Manager receives an observation o as a consequence of the

action a
u

made by the user, it outputs a prompt !. This prompt ! is at least

composed of the recommendation µ that should guide the user during the task.

Contrary to a robot which takes actions to move itself from a start state to reach

a goal, the Task Manager’s recommendations µ do not directly influence the en-

vironment during execution. Indeed, during execution, it is the user, through

his or her own decision process, who modifies the environment with his or her

own actions a
u

. Thus, the output of the Task Manager only has a possibility

to influence the user’s decision process. Thus, at any step, the user may decide

to proceed by following µ or taking any other action to modify the environment

accordingly.

In such conditions, what makes the Task Manager “move” from one state to an-

other essentially depends on the actions made by the user, which are observed by

the Task Manager via the ARS outputs. This means that there is a need to mod-

ify the MDP probability transition P (s0 | s, µ) for CogWatch. In the literature

(see Section 2.3.1), P (s0 | s, µ) corresponds to the probability for the agent to

move from state s to s0 after having taken µ. Previously we said that s depends

on a
u

and s
d

, so the probability transition could be written:

P (s0 | s, µ) = P (a0
u

, s0
d

| µ, a
u

, s
d

)

= P (a0
u

| µ, a
u

, s
d

, s0
d

)P (s0
d

| µ, a
u

, s
d

, a0
u

)

⇡ P (a0
u

| µ)P (s0
d

| s
d

, a0
u

)

(2.11)

where P (a0
u

| µ) is the probability that the user takes action a0
u

when the Task

Manager outputs µ, and P (s0
d

| s
d

, a0
u

) is the probability for the user to move from

one history of actions to another, when taking a new action a0
u

. If we consider that

the user always follow the Task Manager’s recommendation then P (a0
u

| µ) = 1,

and P (s0 | s, µ) ⇡ P (s0
d

| s
d

, a0
u

). Note that this definition of state s, where s may

depend on a
u

and s
d

is inspired by the work of Williams et al. described in [114].
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To understand what values P (s0 | s, µ) can take, one needs to recall that each

time the user takes an action a
u

, the Task Manager receives an observation o

related to a
u

. In CogWatch, the state of the MDP based Task Manager is de-

fined as a sequence of observations, where these observations are actions the Task

Manager believes the user has just made. Indeed, MDPs model full observable

domains, where the agent has a complete knowledge of the current world state

[92]. So when a new observation o is received, the Task Manager moves from

s to s0, where s0 corresponds to the previous state s incremented by the new

ARS observation o0. For example, if s = (a1, a2, a3), µ = a10 and the new ob-

servation received is o = a10, then P (s0 | s, µ) = 1 for s0 = (a1, a2, a3, a10) and

P (s0 | s, µ) = 0 for any other state. In other words, there is a probability 1 to

move from s = (a1, a2, a3) to s0 = (a1, a2, a3, a10) when the observation received

is a10.

As one can see, one of the intrinsic limitations of this framework is related to

the fact that the MDP-based Task Manager tries to recover what the user has

done during the task, “believing” the ARS observations without considering that

they might not correspond to the real actions made by the user. In a realistic

setting, the ARS may make mistakes due to inter- and intra-subject variability in

the way that actions are performed, and also because of sensors noise. Since the

MDP-based Task Manager assumes that the environment is fully observable, it

cannot function well in noisy conditions. Indeed, the MDP-based Task Manager

does not keep track of alternative states the user might be in during the task.

For it to have a recovery mechanism that will handle uncertainty in its inputs, it

will have to learn how to behave in an environment that is only partially observ-

able. In such a case, the natural representation of the user’s state from the Task

Manager point of view is a probability distribution over all simplified user states,

referred to as a belief state b. The latter denotes the fact that due to uncertainty,

the system considers that the user may be in di↵erent states at the same time.
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For the Task Manager to still be able to provide appropriate prompts to users

during a task, and to do so under uncertainty, the task could be modeled as a

POMDP. The latter can provide a framework to model the uncertainty in the

Task Manager’s input, allowing the latter to cope with noisy representation of

its environment. Therefore, the POMDP o↵ers the possibility to improve the

robustness of an assistive/rehabilitation system focusing on task management

when deployed in an environment where the states are not fully observable.

2.3.2 Partially Observable Markov Decision Process

Formally, a POMDP is a tuple
�
S, A, P , C, O, Z

 
[52], where the tuple

�
S, A,

P , C
 
corresponds to an MDP as defined in Section 2.3.1. Two more parameters

are introduced and are directly related to the POMDP:

• Observation space O

An observation is an output from the ARS. Thus, the observation space

is the set of observations o (o 2 O) the ARS can make and that the Task

Manager can receive. After each action a
u

executed by the user, the ARS

will output an observation o corresponding to its interpretation of the action

that the user has just completed.

• Observation probability Z

Observations are probabilistically related to states. Z is a set of observa-

tion probabilities, where Z
o

0
,s

0
,µ

= P (o0 | s0, µ), which denotes the prob-

ability that the observation o0 is made, when the Task Manager is in an

unobservable state s0 and the recommendation µ is outputted.

When a task is modeled with a POMDP, it operates as follows. At each step, the

user and the Task Manager are in an unobservable state. The Task Manager’s

unobservable state is s, where s is a simplified model of the user’s state, and s 2
S. As s is unobservable, the Task Manager maintains a probability distribution

over states, called the belief state b, where b(s) is the probability to be in state

s. Taking into account the current belief state b, the Task Manager selects a

recommendation µ 2 A. This is the action it believes the user should follow and

which minimizes the expected cost.
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Figure 2.6: Partial backup diagram of the belief state update

Whichever action a
u

the user executes causes sensor data to be passed to the ARS,

which outputs a new observation o0 2 O, which depends on the new unobserved

state s0 and µ [115]. As explained in [52], every time an observation is received,

the Task Manager’s belief state is updated by Bayes’ rule:

b0(s0) = k · P (o0 | s0, µ)
X

s2S

P (s0 | s, µ)b(s) , (2.12)

where

• k = 1/P (o | µ, b) is a normalization constant, which causes b’ to sum to 1,

• P (o0 | s0, µ) is the observation probability,

•
P

s2S P (s0 | µ, s)b(s) is the probability to move from state s to s0 when

selecting µ, considering the probability to be in s; summed over all the

states s 2 S.

For example, suppose like in Figure 2.6 that b is a probability distribution over

3 states: s1, s2, s3, and b(s1), b(s2), b(s3) are the respective probabilities to be in

these states. A recommendation µ is selected for the user, which ultimately leads

to a new observation o0 to be received. Then, for example, the new degree of

belief in state s02 is:

b0(s02) = k · P (o0 | s02, µ)[T1b(s1) + T2b(s2) + T3b(s3)] (2.13)

with T1 = P (s02 | s1, µ), T2 = P (s02 | s2, µ) and T3 = P (s02 | s3, µ).
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Let b
t

be the current belief state at step t, and b
t

(s) the probability of being in s

at t. After each update, the Task Manager receives an immediate cost C(b
t

, µ
t

) =
P

s2S bt(s)C(s, µ
t

), depending on its current belief state b
t

and µ
t

. The goal of

the POMDP-based Task Manager is to select recommendations that minimize the

long-term cost, for example - the cumulative, infinite horizon, discounted cost:

Cost =
1X

t=0

�tC(b
t

, µ
t

) =
1X

t=0

�t

X

s2S

b
t

(s)C(s, µ
t

), (2.14)

where � is a geometric discount factor, and future costs received at step t are

discounted by �t.

2.3.2.1 Exact POMDP optimization

Similarly to an MDP, the problem that a POMDP-based agent faces can be

described as what optimal recommendation to select when in a belief state. To

solve a POMDP means to find a policy ⇡, which is a mapping between belief states

and recommendations; ⇡ : B ! A. As belief states are probability distributions

over states, the belief state space is infinite, which makes policy optimization in

a POMDP model challenging. Similarly to the Bellman equation for MDPs 2.4,

a policy ⇡ can be defined by a value function V ⇡; where V ⇡(b) is the expected

cost when starting in belief state b and acting according to policy ⇡ thereafter

[52]:

V ⇡(b) =
X

s2S

b(s)V ⇡(s) (2.15)

In Equation 2.15, V ⇡(s) is the expected cost when starting in state s and acting

according to policy ⇡ thereafter, as seen in Equation 2.3. For problems with a

finite planning horizon, the value function is piecewise linear and convex [52; 102].

The planning horizon is how far the agent “looks into the future” when deciding

what to do. A finite horizon planner is an agent that looks for a fixed finite

number of steps ahead. To say that the value function is piecewise linear in

such a case means that it can be represented by a set of alpha vectors �, where

each alpha vector ↵
i

2 � is of size |S|, and is associated to a recommendation

µ(i) 2 A. Thus, Equation 2.15 can be written more compactly. If we let ↵
⇡

=

hV ⇡(s1), V ⇡(s2), ..., V ⇡(s
n

)i then V ⇡(b) = b · ↵
⇡

.

42



Figure 2.7: POMDP exact value function representation

Given a full set of alpha vectors, the optimal value function and corresponding

optimal policy can be written:

V ⇤(b) = min
⇡

⇤
b · ↵

⇡

⇤ (2.16)

⇡⇤(b) = µ(argmin
⇡

⇤
b · ↵

⇡

⇤) (2.17)

where (·) is the dot product. An example of a value function for a two state (i.e.,

s1 and s2) POMDP is given Figure in 2.7. In this example, the belief state space

B is depicted on the x-axis, the y-axis represents the expected cost for one step,

and the value function itself is depicted by the lower line in bold. Suppose that

when in belief state b = (0, 1) the agent can act following three di↵erent policies

(⇡1, ⇡2, ⇡3). Thus, when starting at b = (0, 1), then following each policy, the

agent will incur three specific expected costs, each of them depicted in Figure

2.7, by C1, C2, C3. Similarly, three expected costs K1, K2, K3 will be incurred

when starting in b = (1, 0) and following ⇡1, ⇡2, ⇡3 afterward. Hence, the belief

state space is divided into three regions, and the optimal recommendation the

agent should take in each region is the one associated with the undermost vector

in that region.
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For example, if a belief state is defined such as it is inferior to belief state x, then

the optimal recommendation the agent should take when in this belief state is

µ(⇡3). Similarly to an MDP, the exact optimal value function can be found by

implementing a value iteration algorithm [102]. However, in practice, computing

optimal planning solutions over all possible belief states in B for POMDPs is

often intractable [65]. Indeed, one well known reason for the limited scalability of

POMDP value iteration algorithms is the so-called curse of dimensionality [52]:

in a problem with n states, POMDP planners must reason about belief states in

an (n � 1)-dimensional continuous space [83]. Hence, a lot of e↵orts have been

made by researchers to develop and implement approximate solutions.

2.3.2.2 Approximate POMDP optimization

To cope with the computational complexity related to the exact value iteration,

a family of approximate methods exists. These methods operate on a fixed set of

belief states (i.e., belief subspace) rather than the full belief state space. Indeed,

many belief states will never be encountered during execution by an agent, and

may be unnecessary to consider during training.

Pineau’s Point-based value iteration (PBVI) [83] is one of those approximation

methods. This algorithm begins by generating a set B̃ of belief states that are

likely to be reached. It initializes an alpha vector for each belief state, then repeat-

edly updates the value of that alpha vector. Similarly to the exact value iteration,

PBVI produces a set of alpha vectors and their corresponding machine’s actions.

The algorithm continues by extending the set B̃ of belief states and finding a new

solution for the extended set. The actions found for each belief state in the set are

then guaranteed to be optimal for these belief states only. The hope is that they

will also be optimal for nearby belief states. Another group of approximation

methods consist of grid-based approximation algorithms [17]. When implement-

ing such algorithms, the belief state space is discretized, and each belief point is

associated with the value function at that point plus the corresponding optimal

machine’s action to take. Contrary to point-based algorithms, which maintain a

full ↵-vector for each belief point, the grid-based approach only updates the value

of each belief point until the optimal policy is found.
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In [83], Pineau et al. compared the PBVI’s performance with Brafman’s grid-

based algorithm and other methods, and results showed that PBVI achieved com-

petitive performance. Indeed, in one example, the implementation of Brafman’s

grid-based algorithm and PBVI led to the same goal completion rate, which is one

of the most important parameters to take into account in the context of assistive

and rehabilitation systems. In this thesis, we implemented a grid-based approach,

as proposed by Young et al. in [115]. With this approach inspired by Brafman’s

method [17], when the system needs to find the optimal machine’s action for an

arbitrary belief point, the nearest belief point is found and its action is used.

Young et al. acknowledged the fact that other methods may be implemented in

the case of large state space. However, their method has proved to work well

in the HIS system, due to a reduction technique they implemented in order to

map the full belief space into a summary space [115]. The HIS system, which is

a spoken dialogue system, has a similar structure than CogWatch, as explained

in Chapter 1. When implementing Young’s method and applying a specific re-

duction state space technique taking into account CogWatch’s specificities (see

Chapter 5), we also succeeded to obtain satisfying results.

In the next paragraph, we explain how the optimal policy can be found when

following a grid-based approximation approach. Similarly to the MDP 2.3.1.2,

this can be done with reinforcement learning algorithms such as the Monte Carlo

(MC) Algorithm [104; 115].

Monte Carlo Algorithm: When using a grid-based approach, the POMDP

policy is represented as a grid where each belief point is related to a Q⇡ function,

and Q⇡(b, µ) is the expected cost for taking µ in b then following the policy ⇡

afterward. To find the optimal policy ⇡⇤, various episodes/trials need to be gen-

erated (see Section 2.3.1.3) in order to update the Q values for each b 2 B and

µ 2 A. Since many trials are necessary to robustly estimate the Q values, it is

common practice that a simulated user is used to generate episodes and interact

with the system during policy optimization [27; 61; 87; 89; 96; 99; 105]. Hence,

we will explain in detail the MC algorithm by considering that a simulated user

(SimU) is used during training.
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As one can see in Figure 2.8, at the beginning, the belief subspace B is ini-

tialized with a set of belief states [17], the expected costs Q(b, µ) for every b 2 B

and µ 2 A are guessed, and the initial policy ⇡ is deduced from these guesses.

Before each episode (i.e., tea trial in the case of CogWatch) the SimU has no

action contained in its history; its state s0 is empty, and the Task Manager is at

b0, with b0 = b(s0) = 1. At each step of the process, the SimU makes an action

a
u

which generates an ARS observation o, leading the Task Manager to update

its current belief state following Equation 2.12. At this point, the process follows

a specific pattern:

• If the updated belief state is already contained in the belief subspace, the

Task Manager selects its corresponding optimal recommendation µ⇤.

• Conversely, if the newly updated belief state b is not part of the belief

subspace, the distance between b and each belief state currently contained

in the belief subspace is calculated:

• If the distance between b and its closest neighbor exceeds a chosen threshold

(✏ in Figures 2.8), then b is added to the belief subspace.

• If the distance between b and its nearest neighbor does not exceed ✏, then b

is not added to B and is replaced by its nearest neighbor in the training pro-

cess. At the end of each episode, a sequence of belief points-recommendation

pairs h b, µ i is recorded, and used to update the estimate Q(b, µ).

At the end of the training, when the Q values are estimated, the optimal policy

⇡⇤ is obtained with:

⇡⇤(b) = argmin
µ

Q(b, µ), 8µ 2 A, 8b 2 B. (2.18)

The inventory of belief points added to B grows over time until a predefined max-

imum number of belief points allowed is reached. Similarly to the MC algorithm

used for MDPs (see Section 2.3.1.3), this process is repeated until convergence is

reached. More information about user simulation will be given in Chapter 4.
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Figure 2.8: MC policy optimisation algorithm
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Once the optimal policy is found, it can be used as a plan cache by the Task

Manager [17; 107], which stores each belief state seen during training and their

corresponding optimal recommendations. Hence, during execution, if the Task

Manager enters a belief state it has visited before during training, it will be able

to re-use its precomputed optimal recommendations contained in its cache. In

the case where the current belief state has never been seen during training, the

cache plan will use a metric to find a neighbor of this current belief state. The

distance between the current belief state and all the belief states contained in

the Task Manager’s cache plan will be computed. The closest neighbor will then

be selected, and the Task Manager will select the optimal recommendation that

has been found for it during training. Note that the metric or nearest neighbor

search (NNS) technique used to retrieve the closest neighbor may have an impact

on the quality of the neighbor selected.

2.3.2.3 POMDP-based task management

Compared to the MDP, one of the advantages of the Partially Observable Markov

Decision Process framework is to handle the uncertainty that occurs in the task

by considering that the user state is only partially observable.

In the field of dialogue systems, researchers have demonstrated the ability of a

POMDP-based system to outperform its equivalent MDP [93; 116]. However,

when the POMDP approach is applied to large domains where the number of

states is high, two main challenges need to be faced. These are related to the

belief state space dimensionality and the tractability of the policy optimization.

One way to solve these issues is to use a factored POMDP as defined in [114].

Factored POMDP Factorization of the POMDP is a technique used in spo-

ken dialogue systems [114; 115], where the user state s is defined such as s =
�
s
u

, a
u

, s
d

 
, with s

u

being the user goal, a
u

the user action and s
d

the state

of the dialogue. As explained in [114], the factored representation reduces the

number of parameters required for the transition function, and allows groups of

parameters to be estimated separately. To apply this technique to ADL manage-

ment, the belief state’s update equation is modified.
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In the case of CogWatch, the user goal s
u

is observable; indeed, contrary to

a dialogue system, the aim of the CogWatch Task Manager is not to infer the

request formulated by the user via his or her speech, but to allow the user to

relearn how to perform a task that is specified at the beginning of each trial.

Hence, as discussed in Section 2.3.1.4, we suppose that s can be factorized with

s=
�
a
u

, s
d

 
where:

• The user’s action a
u

is the most recent action really made by the user.

• The history of the user state s
d

is the sequence of actions representing what

the user has achieved so far.

Hence, each part of Equation (2.12) can be expressed by Equations (2.19) and

(2.20).

Observation Function

P (o0 | s0, µ) = P (o0 | a0
u

, s0
d

, µ) ⇡ P (o0 | a0
u

) (2.19)

The observation function, or observation model, is the probability that the

ARS makes the observation o given that the Task Manager is in state s and

previously selected the recommendation µ. It is simplified, taking into account

the fact that, in CogWatch, the ARS observations only depend on the actions

made by the user. In this form, the observation function corresponds to the ARS

confusion matrix.

Transition Probability

P (s0 | s, µ) ⇡ P (a0
u

| µ)P (s0
d

| s
d

, a0
u

) (2.20)

As seen in Section 2.3.1.4, the transition probability is the probability for the

Task Manager to be in state s0, given that it was previously in s and selected

recommendation µ. After decomposition of s, we can simplify the equation by

making some assumptions:
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• The user action model: The probability for the user to make a new

action a0
u

corresponds to his or her probability to follow the Task Manager

recommendation µ : P (a0
u

| µ); (i.e., compliance probability).

• The task history model: The probability for the user to be in state s0
d

only depends on his or her current action a
u

and state s
d

he or she used to

be in: P (s0
d

| s
d

, a0
u

).

When substituted in (2.12), they approximations give Equations (2.21):

b0(s0
d

) = k · P (o0 | a0
u

)P (a0
u

| µ)
X

sd2S

P (s0
d

| s
d

, a0
u

)b(s
d

) , (2.21)

This factorization helps to simplify the belief state update process. Indeed, the

latter is now only based on three update parameters: the observation model, the

user action model and the task history model. This technique has proved its

e↵ectiveness in [114].

2.4 Summary

This chapter reviewed the research undertaken in the field of decision theory mod-

els, and how they could be applied to intelligent assistive/rehabilitation technol-

ogy. An assistive system needs to be able to take decisions via its Task Manager,

in order to provide recommendations to users during ADL. We explored the pos-

sibility of applying a cognitive decision model to the Task Manager, so it could

potentially learn how to plan strategies like a human would. We explained the

current constraints that do not allow the implementation of the cognitive models

described, then focus on statistical decision models, such as the MDP and the

POMDP. We then described how MDPs and POMDPs can be solved using rein-

forcement learning. This chapter also highlighted the MDP limitations and how

a POMDP can overcome them by modeling uncertainties. The next chapter will

introduce CogWatch, which will be the basis of the rest of this thesis.
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Chapter 3

The CogWatch Project

3.1 Introduction

In this chapter, we will focus on the system CogWatch, give more insights about

its main components, and explain the task for which it has been designed.

CogWatch is an assistive system designed to provide guidance to stroke survivors

during activities of daily living (ADL). In this thesis, we will specifically focus on

one type of activities: the tea-making task, and its variants. The overall goal of

the system is to automatically generate instructional cues, so a user interacting

with the system has a higher probability of successfully continuing or finishing

a task. Its second goal is to detect when users make errors during the task and

identify the cause of these errors when they occur.

In the following sections, we will explain the tea-making task, then describe the

CogWatch’s architecture.
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3.2 Task definition

As discussed in Section 1.1, individuals with AADS have a high probability of

making errors when performing activities of daily living. For example, in [100],

the authors described the behavior of a patient with AADS when trying to make

a cup of co↵ee. The authors reported that the patient made several errors, such

as putting butter into the co↵ee, or adding co↵ee grinds into a bowl of oatmeal.

Making a hot drink may appear as a “simple” task for people with no cognitive

deficit or impairment. However, people with AADS are impaired in their cognitive

ability to carry out ADL, which drastically decreases their independence on a

daily basis. In order to help them regain independence, the choice has been made

to design an assistive system which can target the issue related to the preparation

of a hot drink such as tea. In CogWatch, 4 types of tea are considered: Black tea

(BT), Black tea with sugar (BTS), White tea (WT) and White tea with sugar

(WTS).

3.2.1 Actions tree

In [100], Schwartz et al. explained how an ADL can be divided into multiple

levels of action steps. The most basic level of actions can be defined as “the

smallest component of a behavioral sequence that achieves a concrete, functional

result or transformation, describable as the movement of an object from one place

to another or as the change in the state of an object” - [100]. These actions

would correspond to the bottom level of the hierarchal tree described in Figure

2.1. These actions can be grouped together and form higher level actions, such

as the actions at the top-level of the actions tree (Figure 2.1).

In CogWatch, the tea-making task is defined using a set A of top-level actions

only. This set is composed of:

• “Fill kettle”

• “Boil water”

• “Pour kettle” (i.e., pour boiling water into the cup)

• “Add teabag”
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• “Add sugar”

• “Add milk”

• “Remove teabag”

• “Stir”

These actions are part of the observations the Task Manager may receive from

the ARS during execution. To describe a task in such a way enables the detection

of di↵erent types of errors in the user’s behavior.

3.2.2 Error types

Schwartz et al. [100] distinguished between six error types: (1) place substitutions

(moving objects to the wrong destination), (2) object substitution (misuse of

objects, for example adding orange juice to the cup when making co↵ee), (3)

anticipation (performing an action in the wrong sequence), (4) omissions (missing

one step), (5) tool substitutions (using the wrong utensil), and (6) quality errors

(the action was carried out but not in the appropriate way, for example, the

packet of sugar was not completely opened). In the case of CogWatch and the

tea-making task, the errors the Task Manager should be able to detect are defined

as follows.

1. Addition Error: An addition error occurs when the user carries out an

action that belongs to another task. For example, it is decided that the user

should relearn how to make “Black tea”, but he or she adds sugar during

the task.

2. Perseveration Error: A perseveration error occurs when the user repeats

any action he or she has already performed during the task.

3. Anticipation Error: An anticipation error occurs when the user performs

an action too early in time compared to his or her current history of actions.

For example, stirring while the cup is empty.

53



4. Perplexity Error: A perplexity error occurs when the user does not per-

form any action during a specific amount of time T . A counter is reset

after each observation received, and the Task Manager is configured to con-

sider that the user needs assistance if no relevant action is received after T

seconds.

5. Omission Error: An omission error occurs when the user considers that he

or she has finished preparing his or her tea, but the Task Manager detects

that the task is incomplete. For example, the user considers that the task

is over, but he or she has not put teabag in the cup.

6. Fatal Error: A fatal error occurs when the user performs any action that

can potentially cause injuries (for example toying with boiling water), or

when one of the errors described above are repeated too many times.

In the next section, we will describe the structure of CogWatch and explain

how it has been designed to provide instructional cues during the tea-making

task.

3.3 CogWatch architecture

In Figure 3.1, one can see the main modules composing CogWatch. Following the

general structure of assistive systems (see Section 1.1.3), the system is composed

of a set of sensors (monitoring module), an action recognition system (ARS), a

Task Manager, and a Cue Selector (cue generation module).

When interacting with a user, the system works as follows. First, the user chooses

the type of tea (e.g., black tea with sugar) he or she would like to receive training

for. When the task is chosen via a graphical interface, the user can begin the task.

Immersed in an instrumented environment, the user is monitored by a KinectTM

camera, while he or she moves sensorized objects at his or her disposal to perform

an action (i.e., a
u

in the figure) related to the task. When moved, these objects

generate data that are passed to the ARS whose aim is to recognize the action

the user has just performed. Processing the data in real-time, the ARS outputs

an observation o to the Task Manager.
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Figure 3.1: CogWatch architecture, APM: Action Policy Module, ERM: Error
Recognition Module

The latter updates via the State Modeler its representation of the user state

r
s

, and uses it to select the optimal prompt !⇤ to be output. This prompt is

composed of:

1. The system’s best next recommendation µ⇤, which is found by the Action

Policy Module (APM). This best next recommendation µ⇤ corresponds to

the action the Task Manager considers the user should follow in order to

successfully continue or finish the task,

2. The system’s best understanding of whether the user has just made an error

or not e⇤; and if an error has been made, what was the type of this error.

The output e⇤ is found by the Error Recognition Module (ERM).

Each Task Manager’s prompt !⇤ is passed to the Cue Selector, which displays,

when necessary, the Task Manager’s output in a way the user can easily under-

stand: ⇣ (for example still images, video, recorded message). At this point, the

user can make new actions and enter into new cycles with the system until the

task is completed.
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3.3.1 Sensors and sensorized objects

Figure 3.2: A jug fitted with a CogWatch Instrumented Coaster (CIC) and an
‘open’ CIC, showing the accelerometer, PIC microcontroller, Bluetooth module
and battery [33]

The objects the user has access to during the tea-making task are a ket-

tle, water jug, mug, milk jug, spoon and containers for the teabags, sugar and

used tea-bags. Currently, only the kettle, mug and milk jug are instrumented.

The chosen solution is to package the sensors and circuitry into an instrumented

‘coaster’ - the ‘CogWatch Instrumented Coaster (CIC)’, that is located under the

objects as depicted in Figure 3.2. Each CIC contains a 3-axis accelerometers, 3

force sensitive resistors (FSRs), a PIC, a Bluetooth module and a battery.

The CICs function is to respond to changes in motion, tilting, and disturbances of

the objects due to the addition of materials, stirring, collisions or (in the kettle)

vibration during boiling. The FSRs can detect whether the object is standing on

a surface or lifted, changes in weight due to the addition or removal of materi-

als, and more subtle changes in weight distribution across the base of the object

making it possible, for example, to detect stirring.
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Figure 3.3: KinectTM user interface with skeleton view of arms and hands [33]

These coasters were designed and managed by Parekh et al. [33; 75], who were

inspired by the MediaCup concept [26]. Indeed, in [26], the authors explained

how to augment a co↵ee mug with sensing in order to track and capture human

gestures when using the mug. It is interesting to note that, as such sensors are

built almost invisibly into everyday objects, they allow the user to be monitored

in an unobtrusive way. In addition to outputs from CICs, CogWatch’s monitor-

ing module collects hand-coordinate data captured via KinectTM [33]. Composed

of a camera, a depth sensor, and an infrared projector, KinectTM enables the

capturing and recording of 3D hand positions and color images from the user’s

environment. In Figure 3.3, one can see a screenshot of an interface, which shows

how KinectTM raw data can be interpreted or visualized. The usability of the

KinectTM was evaluated in both healthy and apraxic populations by Cogollor et

al. [20], who were in charge of the implementation of KinectTM in CogWatch. In

the study, results suggested that KinectTM is a reliable motion capture system in

a cognitive rehabilitative context.

57



3.3.2 Action Recognition System

The sensorized objects and KinectTM continuously transmit data to the action

recognition system (ARS) during the task. The aims of the ARS are to identify

the actions made by the user and to send its observations to the Task Manager.

The ARS can output ten di↵erent observations as far as the user’s behavior is

concerned. Eight out of these ten observations correspond to the actions defined

in Section 3.2.1. The other observations correspond to erroneous actions that

can be inferred from the way objects are moved or used: (1) “Pour cold water

from jug to cup”, (2) “Toying with boiling water” - users with AADS may have

such hazardous behaviors that need to be detected early in the process in order

to send them appropriate alerts.

In CogWatch, a Hidden Markov Model (HMM) based ARS is implemented [73].

HMMs are a generic framework for statistical sequential pattern processing [88].

Its utilization for action recognition has already been explored in previous re-

search. For example, in [63], Liu et al. explained how a multi-HMM classification

based on signals captured by KinectTM and a wearable sensor can enable hand-

gesture recognition. The authors explained that each of their HMM detectors

calculate a likelihood probability associated to a hand gesture, and that the ges-

ture with the maximum average is considered to be the recognized gesture.

The framework used by the CogWatch ARS is similar to the one presented in [63].

During execution or evaluation, the sensors’ data fed into several trained HMM

based detectors, each responsible for detecting a specific action (see Section 3.2.1)

or erroneous actions. The most probable explanation of the ARS input is then

associated with a label indicating the action observed. This action label is then

output and passed to the Task Manager.

Figure 3.4 shows a screen-shot from the real-time ARS. At the bottom of the

screen-shot, one can see the various action labels printed on the screen as they

are detected by the ARS.
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Figure 3.4: Screen shot showing the output of the real-time Action Recognition
System [73]

3.3.3 Task Manager

As one can see in Figure 3.1, the Task Manager is composed of three main mod-

ules: the State Modeler, the APM and the ERM. When the Task Manager re-

ceives an observation o from the ARS, the State Modeler uses this information to

re-create a representation r
s

of the user’s state. As discussed in Section 2.3.1.4,

this representation of the user state is a simplified model of what the user has

achieved so far during the task. This simplified state r
s

is then passed to the

APM and ERM, which decide what are the optimal prompts to be sent to the

user during the task.

The APM is in charge of finding what is the optimal next recommendations µ⇤

the user should follow; and the ERM is in charge of tracking potential errors e⇤

in the user’s behavior. Both µ⇤ and e⇤ compose a prompt !⇤, with !⇤ = (µ⇤, e⇤)

that is sent to the Cue Selector. The process through which the APM and ERM

select their outputs, and the way r
s

is updated each time an observation is re-

ceived, depend on the model the Task Manager is based on. In this thesis, the

emphasis will be put on the MDP and POMDP based CogWatch Task Manager,

which will respectively be fully described in Chapters 5 and 6.
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The challenge of the Task Manager is to cope with the user’s variability in task

completion. Indeed, since users can have their own preferences or action plans as

far as tea-making is concerned, this task can be completed in various ways. For

example, when making a white tea with sugar, some ingredients can be added at

any point in the task, such as adding milk or sugar. The Task Manager should not

force the user to complete the task following one specific pattern, but adapt itself

to what the user has achieved so far, and retrieve the appropriate information. In

other words, when interacting with CogWatch, the user is free to go through the

task as he or she usually does; and the Task Manager needs to be flexible enough

to acknowledge the fact that di↵erent sequences of actions can lead to a correct

accomplishment of the task. Only the errors defined in Section 3.2.2 draw a limit

between all the potential correct ways to make a cup of tea, and what the Task

Manager should label as erroneous user’s behaviors.

3.3.4 Cue Selector

The information output by the Task Manager is processed by the Cue Selector.

The latter decides when a cue should be sent to the user, and in which form this

cue should be sent. Each cue is displayed via a graphical interface referred to as

the “patient’s interface” - see Figure 3.5. This interface is a Touch-Screen monitor

that allows the user to receive information from CogWatch, and to trigger some

of its functionalities when specific buttons are selected. Through this interface,

the user has access to:

• A history of completed actions, provided by the Task Manager and displayed

in the progress bar,

• A visual reminder of the type of tea currently selected (i.e., task selection),

• A “Finish button” that can be pressed if he or she considers that the task

is finished,

• A “Help button” that can be pressed if he or she needs to receive the Task

Manager prompt. The Cue Selector will then automatically generate a cue,
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Figure 3.5: Screen shot showing the CogWatch patient’s interface

• A “repeat button” that can be pressed if he or she needs to repeat the last

prompt,

• A screen which displays a video or image of the prompt if necessary.

The Cue Selector is in charge of transforming the prompt !⇤ output by the

Task Manager in a user-friendly cue. Di↵erent types of cues can be sent to the

user; ⇣ can be a video, a sound, a pictogram or a text conveying the information

conveyed by !⇤. The type of cue can be chosen in advance by a clinician, de-

pending on the user’s preference or level of cognitive awareness.

The researchers in charge of this module have run several studies in order to

explore the impact of di↵erent cues on users [12; 13; 42]. Moreover, depending

on clinicians’ choice, the Cue Selector can follow an errorless or errorfull method

(Section 1.1). If it is decided that the system should provide cues only when er-

rors are detected in the user’s behavior, then each time the Cue selector receives

a prompt !⇤ = (µ⇤, e⇤), it calculates the number of times F it has seen a specific

error e⇤ since the beginning of the trial.
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If at one point in the trial F is higher than a threshold, the Cue selector sends

⇣ to the user. Note that each type of errors (see Section 3.2) may have a dif-

ferent threshold based on the type of tea chosen. Each threshold can be chosen

in advance by a clinician. If it is decided that the Cue selector should follow an

errorless method, then each time the Cue selector receives !⇤, it will generate the

corresponding cue ⇣.

3.3.5 Interactive buttons

As discussed, the user can press a “Finish button” or “Help button” during

trials via the patient’s interface. When these events occur, the Task Manager is

triggered and is configured to automatically output another prompt !⇤. It works

as follows.

• Finish button: When the finish button is selected by the user, the ERM

automatically verifies the validity of the current user state. If no fatal error

is detected, the ERM outputs a specific label C01 which means that the

task was a success.

• Help button: When the help button is selected by the user, both the

APM and the ERM retrieve the current user state from the State Modeler

for the Task Manager to output its previous prompt !⇤. In this specific

case, instead of evaluating whether to give a cue or not, the Cue Selector

will pass the information contained in !⇤ to the user as requested.
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3.4 Implementation and definition of errors in

the tea-making task

In this section, we focus on how errors are specifically defined and implemented

by default during the tea-making task. In Table 3.1 one can see the specific types

of errors the ERM can automatically detect during a trial. This table contains

the rules the ERM uses to detect whether an error has been made by a user, the

“ID” corresponding to these errors, and for which tasks these errors are relevant.

Table 3.2 shows how many times a specific type of error can be repeated during a

trial, before it is considered that the user has failed the task. If the errors defined

in Table 3.1 are repeated x times, and that x is higher than a threshold (see Table

3.2), the system considers that the user has failed his or her task. As explained

in Section 3.3.4, each time a specific error is detected by the Task Manager, the

information is sent to the Cue Selector which increments the number of time F

this error occurs during the trial. If at one point in the trial F is superior to a

threshold, as shown in Table 3.3, then the Cue selector sends to the user the best

next recommendation of the Task Manager.

All the information given in these tables were defined by the CogWatch psycholo-

gists’ team, and based on their observations of the most common stroke survivors’

behaviors. The main rational for the definition of these errors was to enable the

system to assess users with AADS and ensure that the task could be achieved.

For example, the goal of the ERM is to be able to respond to health and safety

concerns, in the case where users “Toy with boiling water” (see error E03 in

Table 3.1), and detect when :

• users’ actions violate meaningful sequence (for example pouring water to

cup before boiling water - E12, or removing teabag before adding boiled

water to cup - E28 ),

• users’ action clearly contrast with the tasks goal (for example adding sugar

to black tea with no sugar - E21 ; not adding milk when a tea with milk

should be made E26 ),

• users hesitate for too long or request for help (i.e., E01, E02 ).
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These errors were also defined to take into account the current limitations of

the system. Indeed, the current ARS can only output a finite set of observations,

with which the ERM cannot infer all types of errors a human can make. Thus,

the errors described in Table 3.1 focus on the most observable errors made by

stroke survivors during the tea-making task, and what the system is currently

able to observe and detect.

3.5 Summary

In this section, we gave an overview of the main modules composing CogWatch,

and explained the task for which the system has been designed. We enumerated

the actions the system is able to detect during a task, and described the user’s

errors it should automatically recognize. References to similar work related to

each module were given.

Except for the Task Manager, all the other modules (i.e., sensors, ARS, Cue

Selector) were designed or managed by other researchers and colleagues who

have been cited accordingly. The focus of this thesis is the Task Manager and

its impact on the ability of CogWatch to guide users during tea-making. All the

other modules’ intrinsic processes are unobservable from its point of view.

Before going through the details related to the MDP and POMDP based Task

Manager, the next Chapter will focus on how the Task Manager can be trained

via simulation to select appropriate prompts, and how it can be evaluated within

a virtualization of the whole system.
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Table 3.1: Types of user’s behaviors that the ERM can detect. BT = Black
tea, BTS = Black tea with sugar, WT = White tea, WTS = White tea with
sugar, “all” = [BT, BTS, WT, WTS]. AD = Addition error, OM = Omission
error, FE = Fatal error, PE = Perplexity error, PsE = Perseveration error, AN
= Anticipation error, QT = Quantity error, BTr = button trigger, NE = Not an
error.

ID Error type Task Description of user interaction with CogWatch
E01 BTr all Presses “Help Button”
E02 PE all Makes long pause during task
E03 FE all Toys
E04 BTr all Presses “Finish Button” when not required
E05 OM all Omits to press “Finish Button” when required
E06 PsE all Adds water to kettle multiple times
E07 OM all Omits to add water to kettle
E08 OM all Omits to boil water
E09 PsE all Boils water multiple times
E10 OM all Omits to add teabag to cup
E11 PsE all Adds teabag multiple times
E12 AN all Pours water to cup before boiling water
E13 PsE all Pours water to cup multiple times after boiling water
E14 OM all Omits to add boiled water to cup
E15 OM all Omits to remove teabag from cup when required
E16 AN all Stirs while no water is in the cup
E17 OM BTS, WTS Omits to stir
E18 PsE BT Stirs multiple times
E19 PsE WT, BTS Stirs multiple times
E20 PsE WTS Stirs multiple times
E21 AD BT, WT Adds sugar when not required (based on type of task)
E22 QT BTS, WTS Adds too much sugar
E23 OM BTS, WTS Omits to add sugar
E24 AD BT, BTS Adds milk when not required (based on type of task)
E25 QT WT, WTS Adds too much milk
E26 OM WT, WTS Omits to add milk
E27 AN all Boils water before adding water to kettle
E28 AN all Removes teabag before adding boiled water to cup
C01 NE all Task successfully completed
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Table 3.2: Number of times an error can be repeated during a trial until the
system considers that the user has failed the task.

ID Fatal when repeated x time(s)
E01 3
E02 3
E03 1
E04 3
E05 2
E06 4
E07 3
E08 3
E09 4
E10 3
E11 1
E12 1
E13 5
E14 3
E15 3
E16 3
E17 3
E18 5
E19 6
E20 7
E21 1
E22 1
E23 3
E24 1
E25 4
E26 3
E27 1
E28 1
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Table 3.3: Maximum number of times an error can be repeated during a trial
before the Cue Selector begins to send cues to alert the user about his or her
behavior.

ID When error occurs F times
E01 1
E02 1
E03 1
E04 1
E05 1
E06 2
E07 1
E08 1
E09 2
E10 1
E11 1
E12 1
E13 2
E14 1
E15 1
E16 1
E17 1
E18 2
E19 3
E20 4
E21 1
E22 1
E23 1
E24 1
E25 2
E26 1
E27 1
E28 1
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Chapter 4

Simulation

4.1 Introduction

In this Chapter, we will describe the Simulated Users (SimUs) which have been

implemented for training and/or evaluation of the CogWatch Task Manager. We

will explain why a simulated approach was taken, and the advantages and disad-

vantages of this approach. Since the aim of a Simulated User is to solely train or

evaluate the Task Manager, the whole CogWatch system can be virtualized and

simplified from the Task Manager’s point of view. An overview of the virtualiza-

tion of the system will be given, and we will explain how it can be used with a

Simulated User.

4.2 Simulated User (SimU↵)

As discussed, CogWatch is composed of di↵erent modules. Each module goes

through its own process based on the type of inputs it receives and outputs it

needs to deliver. The inputs of the Task Manager are discrete and correspond

to action labels output by the ARS, as defined in Section 3.2.1. Contrary to the

ARS’s challenge, which is to cope with the variability in the way that actions are

performed when the user moves sensorized objects, the Task Manager’s challenge

is to cope with the variability in task completion and the fact that the outputs

of the ARS may be erroneous.
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Figure 4.1: The architecture of the Simulated User (SimU↵).

Hence, to train or evaluate the Task Manager via simulation, we need a com-

ponent able to output user’s actions of the same type that the Task Manager’s

inputs, and display the same variability in task completion as real users.

In this thesis, the implemented simulated user is based on bigram probabilities

estimated from stroke survivors’ data. Its architecture and functioning are ex-

plained in the next section.

4.2.1 Simulated user’s architecture

The Simulated User (SimU↵) that has been designed to enable training or evalu-

ation of the CogWatch Task Manager is composed of 5 main modules, as seen in

Figure 4.1. The core module is the User’s choice, which takes as inputs parame-

ters from the User transition matrix, the Memory Model, the current APM best

next recommendation µ⇤ (see Section 3.3.3), and the Behavioral Strategy module.

When SimU↵ generates an action a
u

, the Task Manager responds with a prompt

!⇤.
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If the Cue Selector does not let the Task Manager’s output reach SimU↵, the

latter chooses what action to take by itself (i.e., the simulated user follows its

own process). If the Cue Selector lets the Task Manager’s output reach the sim-

ulated user (see Section 3.3.4), the simulated user takes into account the optimal

recommendation µ⇤ contained in the prompt with a compliance � (0  �  1),

then selects its next action a0
u

. In other words, if SimU↵ compliance is � = 0,

then SimU↵ always ignores µ⇤ and selects its next actions taking into account

its own process. In this specific case, the Task Manager has no impact on the

simulated user’s performance. Conversely, if the compliance is � = 1, SimU↵

will always follow the recommendation µ⇤ provided by the Task Manager, and

a0
u

= µ⇤. For example, if � = 0.7, then SimU↵ has 70% chance of selecting the

Task Manager’s output as its new action a0
u

.

SimU↵ uses a User’s transition matrix during its action selection process. This

User’s transition matrix is based on action bigram probabilities from data gen-

erated by 63 control and cognitively impaired participants, aged between 21 and

82, who completed di↵erent types of tea. The database is composed of 156 di↵er-

ent sequences of actions that real participants performed when going through the

tasks. This data provides the simulated user with limited information about the

order in which human subjects execute the various actions during di↵erent tasks.

This information is processed to emulate the variability with which a task can

be achieved. However, as only bigram probabilities are taken into account, this

knowledge is incomplete. Indeed, bigrams only provide conditional probability

for a specific action given the previous one. They do not take into account the

whole history of actions performed, which limits the simulated user’s behavior.

For example, suppose that the action that has just been performed is “Fill kettle”:

bigrams will allow to have access to the probability for the user to perform the

action “Boil water” (or any other action listed in Section 4.2) after “Fill kettle”.

However, these probabilities will not take into account any of the actions that

have been performed before “Fill kettle”.
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In order to compensate for this incomplete knowledge, SimU↵ has access to

three behaviors through the Behavioural strategies module:

1. SimU↵ can select the “Finish button” or the “Help Button” (see Section

3.3). This will force the system to deliver the Task Manager prompt to

SimU↵ which will comply with it (i.e., � = 1 for one step).

2. SimU↵ can decide to do nothing, which will trigger the Task Manager after

a specific amount of time, forcing the latter to deliver a prompt with which

SimU↵ will comply (see Section 3.3).

3. SimU↵ can perform a random but meaningful action. A meaningful action

is an action that is not impossible for a human to perform. For example

removing a teabag from a cup while the latter was not put in beforehand,

is not a meaningful action.

SimU↵ also has access to 5 di↵erent types of memory through the Memory model

module. Each type of memory has a specific impact on how SimU↵ remembers

the history of actions it has already performed:

1. SimU↵ can remember the last action it performed only.

2. SimU↵ can remember all the actions it performed and can repeat some of

them. Suppose that SimU↵ history of action is h = (a1, a2, a4) and the

new action it decides to take is a0
u

= a2. In this case, if a2 is a meaningful

action that can be performed given the context provided by h, then SimU↵

will be allowed to select a2 as its next action, even if this action is part of

the actions it has already selected earlier in the task.

3. SimU↵ can remember all the actions it performed and cannot repeat any.

4. SimU↵ can have a probability � to forget the actions performed in the past

and cannot repeat any actions it still remembers.

5. SimU↵ can have a probability � to forget the actions performed early in

the task and can repeat some of those that it still remembers.
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Points (4) and (5) can be explained as follows. Suppose that at step t, SimU↵

history of action is h
t

= (a1, a2, a4) and h
t

is in SimU↵ memory. To say that

SimU↵ has a probability � to forget its previous actions means that, at t + 1,

the probability for SimU↵’s earliest action a1 to disappear from its history is �.

Thus, if this probability leads SimU↵ to e↵ectively “forget” a1, then it will select

its new action a0
u

considering that h
t+1 = (a2, a4).

4.2.2 Simulated User’s process (example)

Now that the architecture of SimU↵ is given, we summarize the way it works

with an example. Suppose that it is decided to have a SimU↵ which “remembers

all the actions it performed and cannot repeat any of them”, and “performs a

random but meaningful action” when necessary. These options will be referred

to as rules R1 and R2.

Suppose that we are at step t and SimU↵’s actions history is h
t

= (a1, a2, a4).

The Task Manager sends the best next recommendation µ⇤ = a10 to the Cue

Selector. The Cue Selector lets this information reach SimU↵, which receives

µ⇤ = a10. The SimU complies with this input with a probability �. If SimU↵

complies, then its output is automatically a0
u

= a10. If it does not comply with

its input, then the simulated user goes through its own process to select its next

action. In the case where SimU↵ goes through its own action selection process,

it focuses on the action it selected at t� 1, which is a4 in our example. It looks

into the User transition matrix containing the probabilities for a real user to per-

form any other action after a4. Taking into account these bigram probabilities,

the simulated user pre-selects its next action a0
u

. Following R1, if the pre-selected

next action is a meaningful action and is not already contained in h
t

, then SimU↵

will be allowed to output it. Conversely, if the pre-selected next action does not

respect R1, this pre-selected next action will not be output and will need to be

changed.

In this case, the simulated user will follow rule R2 provided by the “Behavioral

strategy” module and randomly select another action that will be meaningful and

not part of h
t

.
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In this thesis, SimU↵ was implemented following this configuration during train-

ing and evaluation. However, during training this SimU↵ had the possibility to

choose its next actions by itself or to follow the system’s recommendations when

available; while during evaluation, it had a fixed level of compliance toward the

system’s recommendations (for example � = 1, see Chapter 6.)

4.3 Simple actions generator (SimU �)

In order to analyze the potential impact of a di↵erent simulated user on the Task

Manager, another simulated user is proposed. In this thesis, it will be referred

to as SimU�. Contrary to SimU↵, SimU� is not based on bigrams calculated

from real participants’ data, and uses a simpler algorithm than SimU↵. It works

as follows.

At the beginning of each trial, when a specific task is chosen, SimU� is given

access to a specific database composed of examples of trials performed by real

participants. This database is di↵erent from the one used by SimU↵ to calculate

its bigrams. The database used by SimU� is composed of 626 di↵erent sequences

of actions, all generated by 27 stroke survivors, aged between 52 and 82. SimU�

is configured to randomly select a sequence of actions from the database, and to

follow the actions composing the sequence up to 50% of the sequence’s length.

When SimU� does not follow the actions contained in the selected sequence, it

complies to the Task Manager’s prompt at 100%. Similarly to SimU↵, SimU�

interacts with the virtualization of the CogWatch system that will be described

in the next section 4.4.

The aim of this other simulated user is to analyze the ability of the Task Manager

to fulfill its goal when interacting with simulated users which do not only display

di↵erent behaviors but which are also based on di↵erent databases. Note that in

this thesis, contrary to SimU↵, SimU� was implemented during evaluation only.
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Figure 4.2: Architecture of the Virtualization of CogWatch.

4.4 Virtualization of CogWatch

To interact with the Task Manager, a simulated user can be implemented into

a virtualization of CogWatch, which is similar to the real system described in

Figure 4.2. As one can see, the virtual model of CogWatch is composed of a

simulated user, a virtual ARS and a virtual Cue Selector. It works as follows.

When the task is chosen, the simulated user starts with an empty actions his-

tory, then takes an action a
u

that is sent to a virtual ARS. The virtual ARS is

implemented as a N ⇥N confusion matrix C (N is the number of actions) whose

i, jth entry is the probability that the ARS outputs observation j when the user

executes action i. Thus, if a
u

is the ith action, then the output of the virtual ARS

is determined randomly according to the ith row of C. The ARS observation is

then passed to the Task Manager (see Section 3.3).
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After receiving this observation, the Task Manager sends its optimal prompt !⇤ =

(µ⇤, e⇤) to a virtual Cue Selector. The latter is a filter, which sends ⇣ =
�
µ⇤||⇥

 

to the simulated user, where µ⇤ is the next best action the Task Manager consid-

ers the user should perform, and ⇥ a signal forcing the simulated user to chose the

next action by itself. Note that the symbol “||” denotes the logical OR operator.

In other words, each time the Cue Selector passes its output to the simulated

user, this output only contains µ⇤ or ⇥. For example, ⇥ is sent instead of µ⇤ if

the Task Manager has not detected any error in the simulated user’s behavior.

Conversely, if an error is detected, then the Task Manager’s output µ⇤ will be

part of ⇣.

Note that this virtual model of CogWatch has been designed with the sole pur-

pose of training or evaluating the Task Manager. Thus “virtual sensors” do not

appear in this architecture. Indeed, from the Task Manager point of view, all

the complexity related to action detection via sensors output, and the impact of

such outputs on the ARS, can be synthesized by a confusion matrix whether the

user is real or virtual. Similarly to the real Cue Selector, the virtual Cue Selector

chooses when to send the information provided by the Task Manager to the user

by processing e⇤. However, it does not emulate the ability of the real Cue Selector

to choose the type of cue (for example, audio, video).

4.5 Training via user simulation

A simulated user can be implemented to train the Task Manager. The notion of

training corresponds to the policy optimization process the Task Manager goes

through in order to “learn” how to select appropriate prompts during a task (see

Chapter 2). Two approaches can be applied during policy optimization: model-

based or simulation-based (also known as model-free) approaches [90]. When

applying a model-based approach, an annotated corpus is used to estimate the

state transition probabilities for the MDP, and both transitions and observation

probabilities for the POMDP. However, this approach has numerous deficiencies:
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• A corpus needs to be available and large enough to robustly estimate the

probabilities.

• The corpus needs to be annotated, so the true identity of the task needs to

be known.

• Learning with a fixed corpus means that the Task Manager will only be

able to explore the states recorded at the time the corpus was created.

At the current time, no such annotated corpus is available for CogWatch.

Theoretically, it is possible to optimize a policy by letting real users interact with

the system. However, the policy’s performance at the initial phase of learning is

generally too low to be acceptable, especially when the target users are cognitively

impaired. Moreover, many trials are necessary to train the system, which is not

feasible with real users. Hence it is common practice that a simulated user is im-

plemented to interact with the system during policy optimization. For example,

this approach has been applied in [27; 61; 87; 89; 96]. Many techniques, such as

graph-based and agenda-based techniques can be applied to design a simulated

user [95; 96; 98]. Statistical methods, such as n-gram [28], cluster-based user

simulation [89], Bayesian networks [82] and hidden-agenda [97] have also proved

their ability to make the process of task modeling automatic [61].

With this simulated-based approach, a simulated user can generate any number

of training episodes and a variety of scenarios, so the Task Manager can explore

the state space in a more exhaustive way. A risk with this approach is that the

simulated user implemented does not properly capture real users behaviors.
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4.6 Evaluation via user simulation

User simulation is a common way to evaluate POMDP techniques [105; 113]. It

is known to provide a useful basis for comparing systems [115], if the behavior of

the simulated user accurately reflects the behaviors of real users.

Intuitively, one could consider that the best approach to evaluation is to let users

interact with the system. However, when participants are not available or when

it is planned to run exhaustive trials, an alternative is to let a simulated user be

in charge of the evaluation. This will enable a wider coverage of user space, and

the possibility to analyze the main elements in the Task Manager structure (i.e.,

APM and ERM - see Section 3.3.3) that have an impact of its ability to fulfill its

goals.

The evaluation approach taken in this thesis is based on the SimUs described

in Section 4.2.2 and 4.3, when interacting with the virtualization of CogWatch

described in Section 4.4. The configuration of the SimUs and virtualization of

CogWatch were defined di↵erently for training and evaluation, so the inputs re-

ceived by the Task Manager during training would not necessarily correspond to

those received during evaluation. Indeed, only SimU↵ was used during train-

ing, at random level of compliance toward the Task Manager’s recommendations.

During evaluation, SimU� and SimU↵ were implemented, and SimU↵ was con-

figured to have a fixed level of compliance in this context.

By applying a simulation-based approach during evaluation, we allowed various

comparisons between the POMDP and MDP-based Task Manager, at varying Ac-

tion Recognition System’s error rates, and Nearest Neighbor Search techniques.

The aim was to measure the impact of the Task Manager’s intrinsic parameters

on its ability to deliver correct prompts during a task. In other words, the aim of

the evaluations that will be described in this thesis is to measure the performance

of the Task Manager rather than the whole system.
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4.7 Summary

In this chapter we described the architecture of two Simulated Users and the vir-

tualization of CogWatch with which they interact, in order to train or evaluate

the Task Manager. We gave an overview of the advantages of such a simulation-

based approach, and highlighted other research where it has also been applied.

The Simulated Users used in CogWatch are based on stroke survivors’ data, com-

posed of di↵erent sequences of actions they performed during di↵erent tasks.

The Simulated User referred to as SimU↵ is flexible and can be configured to

display di↵erent behaviors during training and evaluation. In this thesis, this

SimU↵ was used during evaluation of the MDP-based Task Manager. The de-

tails related to this evaluation will be given in Section 5.4.2. The simulated user

was also used during training and evaluation of the POMDP-based Task Man-

ager, see Chapters 6 and 7, in respectively Sections 6.3 and 7.3.

A di↵erent Simulated User (SimU�) was also introduced. The latter was used

during evaluation of the MDP and POMDP-based Task Manager to verify whether

the evaluation comprises any user-dependency.

In the next Chapter, we will explain how an MDP-based Task Manager can be

defined and implemented in an assistive system such as CogWatch. We will then

describe the evaluations that have been run, and analyze the results obtained via

simulation and with real participants.
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Chapter 5

MDP-based Task Manager

5.1 Introduction

This Chapter gives an in-depth description of the MDP-based Task Manager

implemented in the CogWatch system, where Section 5.3 explains how training

and evaluation are performed with real participants and via user simulation.

5.2 CogWatch MDP-based Task Manager

5.2.1 Task formalism

In Section 3.3, we described the general architecture of the CogWatch system

and the Task Manager. In the case of the MDP-based Task Manager, the State

Modeler depicted in Figure 3.1 is replaced by an Actions History module as shown

in Figure 5.1. The system works as explained in Section 3.3. Nevertheless, it is

important to focus on the observations o output by the ARS and how they are

processed by the MDP-based Task Manager.

Each time the user or Simulated User performs an action a
u

, the ARS outputs

an observation o based on its interpretation of the action that has just been

performed. This observation may be incorrect. However, the CogWatch MDP-

based Task Manager assumes that the user’s environment is fully observable.

Thus, it believes that the output of the ARS is an accurate description of the

actions performed by the user.
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Figure 5.1: Structure of CogWatch with the MDP-based Task Manager.

In this case, the Task Manager keeps track of the user’s history of actions via the

Actions History module. The previous state s is always kept in its memory and

re-used when a new observation is received, in order to update a new state s0.

This new state s0 is then processed by the APM and ERM in order to infer what

action µ⇤ the user should do next, whether he or she has made an error during

the task and, if an error has been made, what type of error has been made e⇤.

5.2.2 State representation

One of the contributions of the work presented in this thesis is to define the MDP

states as sequences of actions supposedly performed by the user during trials. In

this subsection only, suppose that at step t the MDP-based Task Manager state

is s
t

, and for simplification purpose, suppose that the user’s history of actions s
d,t

is the user’s state.
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At step t = 0, which corresponds to the beginning of each trial, the assump-

tion is made that the user has made no action so far and the MDP-based Task

Manager state is empty. At each step, the user performs an action a
u,t

which is

added to s
d,t

. Thus, s
d,t

grows with the number &
t

of actions made at step t, such

that |s
d,t

| = &
t

. Here, |s
d,t

| denotes the size of the sequence s
d,t

. For example, if

s
d,t

= (a1, a1) then |s
d,t

| = 2.

5.2.2.1 APM reduced state representation

Recall that the aim of the MDP-based APM is to plan what should be done next

by the user. Its state s
t

should recover the user state s
d,t

at step t. For this to be

possible, one solution is to have s
t

= s
d,t

at all steps. However, due to the high

variance in task completion, the size of the user state approaches a very large

number during trials. Indeed, since the user is free to perform a task as he or she

wishes, any action can potentially be performed an infinite number of times. This

would lead the MDP state space to become intractable (if s
t

= s
d,t

at all steps).

In order to keep a finite number of states in the MDP state space, another of the

contributions presented in this work is a technique that systematically restricts

the growth of the state taken into account by the MPD-based APM during trials.

In this section only, we will note s̃ the state processed by the MDP-based APM,

which is obtained when the growth of state s is restricted by the rule described

as follows.

At the beginning (t = 0), we suppose that the start state is empty, with s̃0 = s0.

At each step t, when the user makes an actions a
u,t

, the latter is added to the

MDP-based APM state s̃
t

only if the newly generated MDP-based Task Man-

ager’s state s
t+1 is “valid” after this addition. A state is considered to be “valid”

if it does not contain any of the errors defined in Section 3.2.2, or summarized in

Table 3.1. This means that the MDP-based APM states s̃ copy states s only if

the latter are “valid”: all actions that could lead s̃ to contain any error defined

previously are ignored.
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Thus, any action added to the MDP-based APM state must be non erroneous and

a non-redundant continuation of the current state s. This assumption is based

on the fact that, even with such a restriction, the Task Manager APM state s̃

still contains enough information for the APM to fulfill its goal.

In Figure 5.2, one can see an example showing how, from the MDP-based APM’s

perspective, the user state evolves based on the actions made by the user, and

how the restriction technique allows the MDP-based APM to maintain a reduced

state. Figure 5.2 can be explained as follows.

• At t = 0, as discussed, both MDP-based APM and user state are empty :

no action has been made by the user yet.

• At t = 1, the user makes action a
u,1 =“Add teabag”. As one can begin

making a cup of tea by doing so, it is valid and the MDP-based APM

copies it, thus s̃1=s
d,1 =(“Add teabag”).

• At t = 2, the user toys with the kettle a
u,2 =“Toying”. The user state

automatically takes this actions into account, with s
d,2 =(“Add teabag”,

“Toying”). However, this action is not valid as it can cause injuries. More-

over, “Toying” is defined as an error in Table 3.1 (see E03). Thus, the

APM ignores this actions and s̃2 remains the same, such that s̃2 =(“Add

teabag”).

• At t = 3, a
u,3 =“Add water to the kettle”, which is valid, so both s̃3 and

s
d,3 are updated.

• At t = 4, the user repeats the same action a
u,3 =(“Add water in the kettle”).

The user state takes it into account during its update, but not the APM’s

state, as this action has already been performed. Indeed, redundancy is

not allowed in the MDP-based APM state (see E06 in Table 3.1). Thus s̃4

remains the same as s̃3.
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Figure 5.2: Example of state representation in the MDP-based Task Manager

5.2.2.2 ERM state representation

In the MDP-based Task Manager, the APM models the task as an MDP and

uses reinforcement learning to find the optimal policy for each state contained in

the MDP state space. Therefore, there is a need to restrict the size of the state

space. However, the ERM simply applies a set of verification rules to each state

that it receives; no learning process is required. Thus, the state processed by the

ERM in the MDP-based Task Manager is not subjected to any restriction. To

detect errors in the user’s state, the ERM uses the full user state, which corre-

sponds to the second column in Figure 5.2. In other words, when the APM takes

into account a state where no error is contained, the state of the ERM directly

corresponds to the user state: it takes into account the full Task Manager’s state

s
t

, in the case where s
t

= s
d,t

for all steps t.

In the rest of this thesis, for readability purpose, we will always refer to the

Task Manager state as s. When the focus is on the MDP-based APM, s will

correspond to the state after application of the restriction rules described above.

When the focus is on the ERM, s will correspond to the Task Manager state with

no restriction applied.
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5.2.3 Policy representation

The APM state restriction technique explained in the previous section gives the

possibility to the APM of performing policy optimization on a summary space.

From the APM perspective, the full cycle of recommendation selection is de-

scribed in Figure 5.3. In this figure, the Master Space corresponds to the set of

all sequences of actions the user can go through during a task, when no restriction

rule is applied. The Summary Space corresponds to the set of sequences of actions

the MDP-based APM can update, taking into account the restriction rules de-

scribed previously. In other words, the MDP-based APM state space contains all

the combinations of all possible restricted user states (i.e., all valid user states),

which means that any user state from the Master Space has its corresponding

summary state. In Figure 5.3, we can see that after each user action, the APM

maps the new user state from the Master space into a Summary space for which

it selects a recommendation µ⇤. This recommendation then fills its corresponding

slot in the prompt !⇤ to be sent to the next module in CogWatch.

Figure 5.3: MDP-based APM state mapping, with A1,4,7 some of the actions the
user can perform, and µ⇤ the recommendation selected by the APM.
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5.2.4 Error recognition

Contrary to the MDP-based APM, the ERM does not base its functionality on any

reinforcement learning process. Because the MDP-based APM state space only

contains states that clinicians define as valid, then any user state that is not part

of the Summary space is considered to be erroneous by the ERM. Once a state is

detected as erroneous, the second goal of the ERM is to find what type of error it

is. To do so, it takes as input the full state s (i.e., which is a complete copy of the

user state), then automatically compares it with di↵erent rules that have been

encoded based on clinicians’ definitions of specific types of error (see Table 3.1).

When a type of error is detected, the ERM looks for the cause of this error (i.e.,

the action, order of actions or combination of actions, which led to this error).

Once the cause is found, the ERM can associate to this error a specific error ID

corresponding to its type (see Section 3.2.2). Thus, in the MDP-based system,

when the ERM outputs e⇤, the latter is a tuple containing two parameters: error

bool and error ID. In this tuple, error bool is a Boolean which is True if an error

is detected and False otherwise; error ID is the type of error detected if an error

has been made. When outputted, e⇤ fills its corresponding slot in the prompt

!⇤, before being sent to the next module in CogWatch: the Cue Selector. In the

rest of this thesis (unless if the contrary is specified) e⇤ will only refer to error

bool. As discussed in Section 3.2.2, the ERM implemented in the MDP-based

Task Manager can detect six types of errors.

5.3 Training

We saw that contrary to the MDP-based APM, the ERM does not go through any

learning process. A rule-based approach similar to the one applied by the ERM

could have been applied to the APM. However, in order to make the system less

dependent on clinicians and reduce the development complexity, the MDP-based

APM functionality is based on a reinforcement learning technique in order to find

the optimal policy. In CogWatch, the MDP-based APM learns how to find the

optimal policy by being trained with the Monte Carlo Algorithm (Chapter 2).
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5.3.1 MDP framework adaptation to CogWatch

As discussed in Section 2.3.1, the Markov Decision Process framework is defined

by the tuple
�
A, S, P, C

 
. Taking into account CogWatch specifications, these

parameters are adapted as follows:

• Action Space A: The action space is a finite set of recommendations µ

that the APM can output. These recommendations directly correspond

to the user’s actions the ARS can detect. Thus A =
�
“Fill kettle”, “Boil

water”, “Pour kettle”, “Add teabag”, “Add sugar”, “Add milk”, “Stir”,

“Remove teabag”, “Pour cold water from jug to cup”, “Toying with boiling

water”
 
, and µ 2 A.

• State Space S: As discussed in Section 5.2.2, the MDP state space is a

finite set of all the states that are considered as “valid”. In other words,

each state s, with s 2 S is a “valid” sequence of actions, and S correspond

to the Summary space (see Figure 5.3).

With the state restriction technique, the size of the S is 33 for “Black tea”,

205 for “Black tea with sugar” and 1539 for “White tea with sugar”. The

rapid growth of the state space can be explained by the variability in task

completion that still exists even with the state restriction technique. For

example, in the case of “White tea with sugar” 8 actions are considered to

be mandatory for the task to be completed (i.e., “Fill kettle”, “Boil water”,

“Pour kettle”, “Add teabag”, “Add sugar”, “Add milk”, “Stir”, “Remove

teabag”). Even when taking into account the state restriction technique,

these actions can be arranged through many valid combinations. Indeed,

an action like “Add sugar” can be performed at any point in a sequence,

and S will take into account all possible “valid” combinations.

For a better understanding, Figure 5.4 shows the 33 states composing the

state space for “Black tea”. In the case of this specific task, it is for each of

these states that the MDP-based APM needs to find an optimal policy.

• Transition Probability P : The transition probability P (s0 | s, µ) corre-
sponds to the probability for the Task Manager to move from state s to s0

when the recommendation µ is selected, see Section 2.3.1.4.
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Figure 5.4: Representation of the MDP state space for Black tea.

• Cost Function C: The cost C(s, µ) corresponds to the cost incurred when

taking recommendation µ in state s. The cost function is defined as follows.

If the new state obtained after adding µ to state s is:

– “valid”, then the immediate cost incurred is 1.

– not “valid”, then the immediate cost incurred is 1000.

– complete and “valid”, which means that the task has been correctly

completed, then the cost immediately incurred is -100.

Once the MDP framework is adapted to CogWatch, it needs to be solved so the

MDP-based APM can find the optimal recommendations to send to the user for

each state in S.
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5.3.2 APM Policy optimization

Policy optimization is performed using a Monte Carlo Algorithm defined in Sec-

tion 2.3.1.2. During training, the algorithm automatically generates many trials

through which the MDP-based APM learns how to act in an optimal way based

on the state it is in. First, a specific task for which the MDP-based APM needs

to be trained is chosen. Once this choice is made, the corresponding MDP state

space is selected by the MDP-based APM and used during learning. At the be-

ginning of each trial, a Q matrix is initialized with the first guess of the expected

cost for taking each recommendation µ from the action space A in each state s

from the selected state space S. At the end of each trial the total cost is calcu-

lated for each pair
⌦
s, µ

↵
visited. The corresponding Q values are then updated

taking into account the accumulated costs. The whole process is then repeated

until convergence is reached. When convergence is reached for one specific task,

another task (i.e., another type of tea) is selected and the MDP-based APM goes

through another process of learning. At the end of training, the MDP-based APM

saves for each type of tea a mapping between each state s from the corresponding

state space and an optimal recommendation µ⇤.

5.4 Evaluation

Once the optimal policy is obtained, it is important to evaluate the performance

of the system. This section will explain how the MDP-based Task Manager was

evaluated with real participants interacting with the system, and with simulated

users implemented in a virtual environment (see Chapter 4).

5.4.1 Trials with stroke survivors

When real users interacted with the system, the assumption of full observability

from the MDP-based Task Manager was based on the fact that a clinician was

allowed to correct the ARS outputs at all times. In other words, if during a trial

the ARS output an observation that did not correspond to the action made by

the user, the observation could be corrected. In such a case, the Task Manager

always had access to the true user’s behavior.
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Figure 5.5: Structure of CogWatch with the MDP-based Task Manager during
evaluation with stroke survivors.

Taking into account this fact, the architecture of CogWatch with the MDP-based

Task Manager can be updated as in Figure 5.5. The fundamental structure of

CogWatch remains the same as the one described in Figure 5.1. However, we

can see that the observation o of the ARS is verified and can be corrected by a

clinician via an interface. Hence, the ARS observation always corresponded to

the action a
u

performed by the user.

To measure the performance of CogWatch with stroke survivors, two experiments

of 96 trials were performed by 12 stroke survivors (i.e., 6 women, 6 men, aged

between 53 and 82). They went through 24 trials of each type of tea: “Black tea

with sugar”, “White tea with sugar”, “White tea”, “Black tea” in random order.

During one experiment, the users did not receive any guidance at all, while in

the other experiment the same users could receive assistance from the system. In

both experiments, they simply received the instruction to make a specific type of

tea. Note that during all trials where users could interact with CogWatch, they

were free to follow or not the system’s recommendations.
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Both experiments used a randomized cross over design. Users were randomly

allocated to the order in which they had access to the Cogwatch system or when

they had to go through the tasks by themselves. All users were given the time

to be introduced to the system (i.e., 5 to 10 minutes), and received explanations

about how to interact with the patient’s screen (see Chapter 3). During this intro-

duction phase, examples of cues were shown to them, and they had the possibility

to choose which ones they preferred the most. They also had the possibility to

try the system themselves before starting the experiment with CogWatch. Note

that a clinician or an experimenter was always in the room in case the user had

questions.

To measure the performance of the MDP-based Task Manager implemented in

CogWatch, the number of Non Fatal Errors (NFE) and Fatal Errors (FE) made

by the users when assisted by CogWatch (CW) were compared with its equivalent

when the users were performing the tasks without having access to the system’s

recommendations. Note that CogWatch clinicians defined NFE as recoverable

errors; in other words, when such errors occur the task can be continued and

potentially correctly completed by the user. By contrast, FE are non-recoverable

errors and force the task to be aborted; for example, they can occur when the

user’s safety is at risk.

Recall that the Cue Selector acts like a filter. At each step, it receives a prompt

(from the Task Manager), takes into account the number of errors detected by

the Task Manager, and decides by itself when to transform each prompt into a

cue that will be shared with the user. Hence, an Errorfull technique was applied

(see Section 1.1) during the evaluation with stroke survivors, and the number

of errors detected by the Task Manager did not necessarily correspond to the

number of cues received by the user.
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5.4.2 Trials with simulated users

The evaluation performed via user simulation was done by implementing SimU↵

and SimU� respectively described in Section 4.2.1 and Section 4.3. These sim-

ulated users were configured to interact with a Virtualization of the whole Cog-

Watch system depicted in Figure 5.6. The structure of this virtualization was

described in Section 4.4. In Figure 5.6, we see that the MDP-based Task Man-

ager was specifically implemented in the virtualization of CogWatch in order to

be evaluated.

During evaluation, the SimUs were used to analyze the impact of the Task Man-

ager’s best next recommendation µ⇤ on the SimUs’ success rate without the e↵ect

of the Cue Selector. In other words, we virtually run trials following an Errorless

technique. (Note that during evaluations using user simulation, contrary to the

evaluations run with real participants, no clinician could intervene to adjust the

ARS observations.)

Figure 5.6: Diagram of the system used to evaluate the MDP-based Task Manager
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Two scenarios were run during evaluation. In the first scenario,

• The virtual ARS error rate was configured to be 0%. In other words, the

ARS was perfect,

• The virtual Cue Selector was configured to always let the Task Manager’s

prompts reach SimU↵,

• SimU↵ was used to performed 300 trials of “Black tea”, “Black tea with

sugar” and “White tea with sugar” at varying level of compliance; respec-

tively 100%, 50%, 20% and 0% compliance.

The notion of SimU ’s compliance toward the Task Manager’s prompts was ex-

plained in Chapter 4 Section 4.2.1

In the second scenario,

• The virtual Cue Selector was set up to always let the Task Manager’s

prompts reach SimU↵ and SimU�,

• The level of compliance of SimU↵ was 100%,

• SimU� was configured to display the behavior explained in Chapter 4 Sec-

tion 4.3,

• The SimU↵ and SimU� were used to performed 300 trials of “Black tea”,

“Black tea with sugar” and “White tea with sugar” at varying ARS error

rate, respectively 0%, 10%, 20% and 30%.

As discussed in Chapter 4, the virtual ARS is modelled as a confusion matrix.

The confusion matrices used in the second scenario can be seen in Figure 5.7.

Note that the error rate and confusion matrix of the real CogWatch ARS are

unknown. Thus, the confusion matrices of the virtual ARS are randomly chosen.
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Figure 5.7: Virtual ARS confusion matrices. (a - ARS error rate 10%, (b - ARS
error rate 20%, (c - ARS error rate 30%. Class 1: “Fill kettle”, Class 2: “Boil
water”, Class 3: “Add teabag”, Class 4: “Pour kettle”, Class 5:“Add sugar”,
Class 6:“Add milk”, Class 7: “Stir”, Class 8:“Remove teabag”, Class 9:“Pour
water from jug to cup”, Class 10:“Toying with boiling water”, Class 11: ; (no
action performed or detected).
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5.5 Results

This section reports the results obtained when comparing real users’ performance

with and without the assistance of the MDP-based Task Manager implemented in

CogWatch. It also shows the impact of the ARS error rate and level of compliance

of the simulated user on the ability of the latter to succeed its tasks.

5.5.1 Results obtained with stroke survivors

In Table 5.5.1, one can see that when interacting with CogWatch, stroke survivors

made fewer Fatal and Non Fatal Errors, and succeeded to complete the tasks

more often than when they did not have access to the system’s prompts. Indeed,

stroke survivors’ success rate with CogWatch was 95.8%, and only 67.7% without.

In Figure 5.8, one can see that the use of CogWatch significantly reduced the

occurrence of some types of errors, such as omission, sequence and quantity errors.

In other words, when stroke survivors were guided by the system, they forgot

mandatory actions less often (for example adding the teabag in the cup); they

made fewer sequential errors (for example trying to switch the kettle on when

the latter is empty); and they did not misjudge the amount of water to put in

the kettle or in the cup (i.e., quantity error). Figure 5.9 shows the total number

of errors (i.e., NFE + FE) made by each stroke survivor over the 96 trials.

One can see that the impact of CogWatch was very beneficial to those who had

di�culties performing the tasks alone (i.e., Pt19, Pt11, Pt07, Pt10, Pt16, Pt14,

Pt15). By contrast, stroke survivors who had no di�culty performing the task by

themselves made more errors when interacting with the system (i.e., Pt06, Pt13,

Pt09, Pt08). This could mean that stroke survivors who have a higher probability

of succeeding the task by themselves, and rarely need the system’s help, might

be disturbed by some of the system’s recommendations.

NFE FE Successes
With CW 73 4 92
Without CW 90 31 65

Table 5.1: Users’ number of Non Fatal Errors (NFE), Fatal Errors (FE) and
successes over 96 trials.
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Figure 5.8: Number of specific types of errors made by users over 96 trials.

Figure 5.9: Total number of errors made by users over 96 trials.

95



Another reason that could explain why more errors are detected in this specific

case could be related to the type of the errors made: perseveration errors related

to the action of stirring (see E18 - E20 in Table 3.1). The action of “stirring”

is di�cult to define precisely (i.e., di�culty to define when it begins, when it

stops, when it is repeated based on the movements made). Without CogWatch,

the number of errors made by stroke survivors was calculated by clinicians, who

may tend to be more flexible than the system as far as the action of stirring is

concerned. For example, if a user continuously stirs, making circular movements

without stopping, this could be interpreted by clinicians as one “stirring” action,

while the system may consider that several “stirring” actions occurred because of

the number of circular motions performed (i.e., even without interruption). In this

case, it would mean that the system tend to count the number of “stirring” actions

di↵erently than clinicians, and potentially detect more perseveration errors than

they do.
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5.5.2 Results obtained via simulation

Following the first scenario described in Section 5.4.2, we obtained the results

depicted in Figure 5.10. In this figure, one can see that SimU↵ success rate was

higher when it was configured to follow the recommendations µ⇤ provided by the

Task Manager at each step. During “Black tea” and “Black tea with sugar”, when

the simulated user followed the system’s recommendations 100% of the time, its

success rate was 100%.

During “White tea with sugar”, even if the recommendations provided by the

Task Manager were always correct, SimU↵ success rate was 97%. This is due to

the fact that the CogWatch system is an after-e↵ect system, where an action has

to be made by the user, then observed by the ARS, for the Task Manager to react

to it and retrieve the appropriate prompt. If the first action of the user is seen

as a Fatal Error, the system cannot help the user and the trial will be labeled as

a failure from start. More specifically, during this particular task, the simulated

user began few trials by selecting the action “Boil water”, which is considered as

a Fatal Error. Indeed, in Table 3.1, one can see that this behavior is defined as

Figure 5.10: SimU↵ success rate at varying levels of compliance during “Black
tea”, “Black tea with sugar” and “White tea with sugar”. Virtual ARS error
rate: 0%.
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erroneous (i.e., Error ID: E27). This erroneous behavior was part of the di↵erent

behaviors seen in real participants data that SimU↵ emulates.

Figure 5.10 also shows that when SimU↵ level of compliance decreased, its ability

to succeed the tasks also decreased. The case where SimU↵ compliance was 0%

corresponds to the case where it did not receive any guidance from the system

and went through each trial by itself. One can see that SimU↵ had a high

probability to fail the task in this case. For example, during “Black tea with

sugar”, SimU↵ succeeded the task only 21% of the time when performing the

task by itself. Similarly to real participants who had di�culties in completing

the task by themselves (see previous section), SimU↵ had a higher probability

of succeeding all tasks when it received guidance from the system and complied

to this guidance.

It is also possible to note that SimU↵ success rate decreased when the complexity

of the task increased. When performing the task by itself (0% compliance),

SimU↵ succeeded “Black tea” 78% of the time. During this task, it needed

to find a correct combination of at least 6 mandatory actions. By contrast, in

“White tea with sugar” where a correct combination of at least 8 actions needed

to be found, SimU↵ succeeded the task only 10% of the time.
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Following the second scenario explained in Section 5.4.2, we measured the

ability of the MDP-based Task manager to correctly guide a SimU↵ complying

100% of the time with the system’s recommendations, and SimU� at varying

ARS error rates.

Figures 5.11, 5.12 and 5.13 respectively show SimU↵ and SimU�’s success rate

at varying ARS error rates, when performing “Black tea”, “Black tea with sugar”

and “White tea with sugar”. One can see the impact of the increase of ARS error

rate on the ability of the MDP-based APM to guide the simulated users during

the tasks: The more the ARS error rate increases, the more it is di�cult for the

MDP-based APM to properly guide the simulated users.

Indeed, any divergence between the MDP-based APM representation of the user

state and the real user state will decrease the ability of the system to output

optimal prompts. Moreover, because the simulated users in this scenario have

a high level of compliance (note that SimU↵ has a higher level of compliance

than SimU�), they are configured to respect the recommendations output by

the MDP-based APM. In other words, at high ARS error rate, the MDP-based

APM has more chances to make the simulated users fail the task.

On each figure, the simulated users’ success rate when constantly ignoring

the prompts of the system was also represented (i.e., 0% compliance). It shows

what the simulated users were capable of by themselves - how they performed

the tasks when they did not receive any assistance from the system. As such, it

is not dependent on the ARS error rate, and is a good indication of a threshold

to measure the usefulness of the system. For example, in Figure 5.11, one can

see that around 12% ARS error rate, SimU↵’s success rate when assisted by the

system was lower than what it was capable of by itself. In other words, at this

level of uncertainty, the MDP-based APM was not useful to SimU↵ as the latter

was able to succeed the task more often without it.
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Figure 5.11: SimU↵ and SimU�’s success rate at varying ARS error rate - “Black
tea”.

Figure 5.12: SimU↵ and SimU�’s success rate at varying ARS error rate - “Black
tea with sugar”.
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Figure 5.13: SimU↵ and SimU�’s success rate at varying ARS error rate -
“White tea with sugar”.

As discussed in Chapter 4, SimU↵ and SimU� display di↵erent behaviors,

and are based on di↵erent user’s database. On each figure, one can see that

SimU� had a higher success rate at 0% compliance than SimU↵. This shows

that the database used by SimU� is composed of many correct user’s examples

of tasks completion, while SimU↵ behaves as a virtually limited user (due to its

intrinsic limitations, see Section 4.2.1). In the case of “Black tea with sugar” (i.e.,

Figure 5.12), one can see that around 3% ARS error rate, the MDP-based Task

Manager began to output recommendations that made SimU� fail the task more

often than what it was capable of by itself. By contrast, this phenomenon did not

occur with SimU↵, even at 30% ARS error rate. When comparing each figure

with each other, it is also possible to see that the complexity of the task has an

impact on the simulated users’ success rate, when interacting with the system.

For example, the Figures show that at high ARS error rate (for example, 20%,

30% ARS error rate) the MDP-based APM has a higher probability of misleading

the simulated users during “White tea with sugar” than during “Black tea”.
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Indeed, at 30% ARS error rate, the simulated users’ success rate is approximately

41% when performing “Black tea”, and only 25.5% when performing “White tea

with sugar”. Globally, we can note that the more the ARS makes mistakes, the

more the MDP-based Task Manager has an incorrect representation of the user’s

state, which leads to more incorrect prompts to be output. In other words, when

the ARS error rate is high, the MDP-based Task Manager misguides users and

make those who follows its recommendations fail more often.

Compared to Figures 5.11 and 5.12, Figure 5.13 also shows the data points related

to the user trial (i.e., “White tea with sugar” task) described in Section 5.5.1. One

can see that, in the specific case of “White tea with sugar”, when stroke survivors

had access to the system’s prompts, they succeeded the task 100% of the time. As

explained in Section 5.4.1, the system was assumed to be perfect in this context

(i.e., ARS’s error rate: 0%). In the other scenario, when stroke survivors went

through the tasks without the system’s recommendations, their success rate was

62.5% during “White tea with sugar”. These results give a preliminary suggestion

that similarly to SimU↵ and SimU�, at ARS’s error rate 0%, stroke survivors

had a higher probability to succeed the task when having access to the system’s

prompts, than when they went through the task by themselves.

However, in the experiments run with simulated users, the latter were used to go

through 300 trials of “White tea with sugar” at each ARS error rate, following the

APM’s outputs 100% and 0% of the time. Stroke survivors only went through 24

trials, and when they had access to the system, they were free to follow or not its

recommendations at any point during the trials. Moreover, a EF technique was

applied when stroke survivors interacted with the system, while a EL technique

was applied with simulated users. Thus, for a robust comparison between stroke

survivors and simulated users’ performance, more trials should be run with stroke

survivors, in the same conditions simulated users were used. To be able to do so in

the future, will give us the possibility to analyze the validity of the methodology

used to design the simulated users implemented.
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5.6 Summary

This section described in detail the MDP-based APM and the ERM, and how

these modules allow the MDP-based Task Manager to provide prompts to users.

The MDP framework of the APM and the rule-based technique used to design the

ERM were fully described. Implementing a Monte Carlo Algorithm, the MDP-

based APM was evaluated with stroke survivors and via user simulation. An

attempt to compare stroke survivor and simulated users’ performance was made:

it was highlighted that in order to do so in a robust way more experiments needed

to be run in the same conditions.

The results of the current experiments showed the ability of the system to be an

e�cient assistive system with stroke survivors when the MDP-based Task Man-

ager has access to the user state. This was possible with a clinician correcting

the inputs of the Task Manager if necessary. However, in a full automatic set-

ting, when no clinician can intervene, the results highlighted the di�culties of

the MDP-based Task Manager to cope with uncertainty. Each time the ARS

makes a wrong observation, the MDP-based Task Manager will update a wrong

representation of the user state, which at high ARS error rate will make the sys-

tem tend to fail to fulfill its goals. This can be explained by the fact that the

MDP cannot robustly model uncertainty. Hence, in the next section, a Partially

Observable Markov Decision Process will be implemented in order to analyze how

the POMDP is able to compensate for the MDP limitations.
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Chapter 6

POMDP-based Task Manager

6.1 Introduction

This section gives an in-depth description of the POMDP-based Task Manager

that was implemented in the CogWatch system. Section 6.2.2 shows how the

MDP state space (i.e., summary space) can be used to represent the POMDP

states called belief states. Section 6.3 then explains how training and evaluation

were performed via user simulation at varying ARS error rate.

6.2 CogWatch POMDP-based Task Manager

Contrary to the MDP, in this Chapter we take into account the fact that the

user’s environment is only partially observable from the system’s point of view.

In such a case, the CogWatch POMDP-based Task Manager maintains a proba-

bility distribution over the user states, and infers what he or she should do next.

Similarly to the MDP-based Task Manager, the POMDP-based Task Manager

should also be able to detect whether the user makes errors or not during the

tasks.

104



Figure 6.1: Structure of CogWatch with the POMDP-based Task Manager.

6.2.1 Task formalism

In Section 3.3, we described the general architecture of the CogWatch system

and the Task Manager. In the case of the POMDP-based Task Manager, the

State Modeler is replaced by a Belief State Estimator (i.e, one for the APM and

another for the ERM) as shown in Figure 6.1. The system works as explained

in Section 3.3. Nevertheless, once again, it is important to focus on the observa-

tion o output by the ARS and how it is processed by the POMDP-based Task

Manager. Each time the user or Simulated User performs an action a
u

, the ARS

outputs an observation o based on its interpretation of what action has just been

performed. This observation may be incorrect, and contrary to the MDP-based

Task Manager, the POMDP-based Task Manager acknowledges this possibility.
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Each observation o is used to update a belief state b
s

that will be used by the

APM, and a belief state b
e

that will be used by the ERM (see Equation 2.21).

Via the APM, the POMDP-based Task Manager uses b0
s

in order to select the

best next recommendation µ⇤ that the system considers the user should follow

to successfully finish or continue a task. Via the ERM, the POMDP-based Task

Manager uses b0
e

to output its best understanding of whether the user has just

made an error or not e⇤. The outputs µ⇤ and e⇤ are then passed in the form of

a prompt !⇤ that is sent to the Cue Selector. The latter then decides when it is

necessary to share the cue ⇣ with the user or Simulated User.

Note that with the MDP-based system, the ERM could also find what was

the type of errors made when an error occurred. With the ERM used in the

POMDP-based Task Manager, we will only focus on the ability of the latter to

detect whether an error has been made or not.

6.2.2 Belief state representation

In [37], a POMDP approach was taken for action planning during ADL, and the

POMDP belief state was defined as a probability distribution over variables such

as users attitude (dementia level, responsiveness, awareness), and user’s behav-

ior. Here, we show how the belief state can directly be defined as a probability

distribution over the underlying MDP state space.

6.2.2.1 APM perspective

The MDP state space S for “Black tea” contains 33 valid user states (see Section

5.3). Hence, the belief state b
s

that the APM uses to plan the next best action the

user should perform is a probability distribution over just 33 states. Following

the same rule, the belief state b
s

used by the APM is a probability distribution

over 205 states for “Black tea with sugar” and 1539 states for “White tea with

sugar”. Each belief state b
s

sums up to 1.
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6.2.2.2 ERM perspective

In the case of the POMDP-based Task Manager, for the ERM to detect if the

user makes a mistake during the task under uncertainty, we add an error state

s
e

to S, where s
e

is an encapsulation of all user states that are not “valid” (see

definition of state validity in Chapter 5). Let S
e

be this new state space. Hence,

the belief state b
e

used by the ERM is a probability distribution over 34 states

for “Black tea”, 206 states for “Black tea with sugar” and 1540 states for “White

tea with sugar”. Each belief state b
e

sums up to 1.

6.2.3 Belief update

In this implementation a factored POMDP was used, as discussed in Section

2.3.2.3. In such a case, the belief state’s update equation is defined as in Equation

2.21.

6.3 Training and evaluation

To solve a POMDP, a policy (⇡⇤ : B ! A) needs to be found between a belief

subspace B and the action space A, such that ⇡⇤(b) minimizes the expected cost

of task completion given belief state b.

For the POMDP-based APM, the states of the MDP are sequences of actions

that can lead to successful task completion, where B
s

is the belief subspace and

A is the action space. For the ERM used in the POMDP-based Task Manager,

an additional state s
e

is added to the MDP state space, where B
e

is the belief

subspace and E is the error space, with E =
�
True, False

 
. In other words, when

a belief state b
e

is updated, the ERM can output e⇤ = True if it considers that

b
e

captures an erroneous user’s behavior, or e⇤ = False it if considers that b
e

captures a non erroneous user’s behavior.

Both POMDP-based APM and ERM implemented in the POMDP-based Task

Manager are trained o✏ine with a simulated user (see Section 4.2.2). As far as

the APM is concerned, a Monte Carlo (MC) Algorithm [104] is used for policy

optimization (see Section 2.3.2.2). The ERM uses the algorithm given in Algo-

rithm 3, to learn which label e⇤ (erroneous or not erroneous) to associate to each

107



belief state b
e

in B
e

. Note that contrary to µ⇤, e⇤ are not recommendations that

a user can follow in order to change his or her state. They are indications of

whether the system considers that an error was made by the user or not.

This section explains the framework on which is based the POMDP-based APM

and ERM’s training; gives a general description of the optimization algorithm

used, an overview of the POMDP-based Task Manager operations, and the de-

tails related to the evaluations run to verify the performance of the POMDP-based

system.

6.3.1 POMDP-based APM

The POMDP-based Task Manager implements a POMDP-based APM. Similarly

to the MDP-based APM, its aim is to learn how to select which optimal actions

the user should follow to successfully continue or complete a task. In this sub-

section only, the belief state b
s

updated by the POMDP-based APM, and the

belief state space B
s

will respectively be referred to as b and B for simplification

purpose.

6.3.1.1 POMDP framework adaptation to CogWatch

Formally, a POMDP is a tuple
�
S, A, P , C, O, Z

 
[52], where the tuple

�
S,

A, P
 
corresponds to the MDP as defined in Section 5.3, and Z is the observa-

tion probability explained in Section 2.3.2. The other parameters are adapted to

CogWatch as follows.

The Cost Function C: C(b, µ) is the cost for selecting recommendation µ

when in belief state b. As we consider that b is a probability distribution over the

MDP states, we define C(b, µ) such as:

C(b, µ) =
X

s2S

C(s, µ)b(s), (6.1)

where C(s, µ) is the cost for selecting recommendation µ when in state s, as

explained in Section 5.3.
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The Observation Space O: In CogWatch, the Observation Space is defined

such as O = A. As discussed in Chapter 3 Section 3.3.2, the set of observations

the Task Manager can receive from the ARS is such that O =
�
“Fill kettle”, “Boil

water”, “Pour kettle”, “Add teabag”, “Add sugar”, “Add milk”, “Stir”, “Remove

teabag”, “Pour cold water from jug to cup”, “Toying with boiling water”
 
.

6.3.1.2 APM Policy optimization

During training, a belief-state-action value function Q(b, µ) records the immedi-

ate cost for selecting the recommendation (i.e., action the user should follow) µ in

belief state b, for all belief states contained in the belief subspace B. Q is defined

as the expected cost of a trial starting in belief state b, the POMDP-based APM

selecting recommendation µ, and thereafter proceeding according to the current

policy ⇡ until the trial ends and a final belief state is reached. The process is

repeated until convergence is reached.

At the beginning, the initial policy is guessed. The belief subspace B is ini-

tialized and contains a chosen number of belief states b. In this work, when the

task is chosen (i.e., when the type of tea is chosen), B is initialized with the be-

lief states related to the MDP states contained in the corresponding MDP state

space. This initialization is inspired by the method implemented by Brafman in

[17], where the initial grid is composed of all perfect information belief states,

which correspond to the underlying MDP.

For example, if the task chosen is “Black tea”, the corresponding MDP state

space size is 33, as explained in Section 5.3 and B is initially populated with 33

belief states. Each belief state has a probability one to be in a specific MDP

state s and probability zero for all other MDP states. In other words, at the

initialization, the APM belief subspace contains belief states such as:

• 1: [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

• 2: [0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

• ...

• 33: [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
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Each of those initial belief states is then associated to their respective optimal

policy found when solving the MDP (see Chapter 5). In CogWatch, the POMDP-

based APM finds a mapping from belief states b 2 B to recommendations µ 2 A

by implementing the Monte Carlo algorithm explained in Chapter 2, Figure 2.8.

6.3.2 ERM for POMDP-based Task Manager

In the POMDP-based Task Manager, the goal of the ERM is to find an optimal

policy "⇤ ("⇤ : B
e

! E), which is a mapping from each belief state b
e

2 B
e

to

labels e 2 E. In [47] an attempt to use a modified Monte Carlo Algorithm to find

such a policy was implemented but was not successful. Indeed, in this previous

work, the ERM used in the POMDP-based system did not succeed to outperform

the one used in the MDP-based system under uncertainty.

In order to explore another technique which could allow the ERM to find policy

"⇤, another algorithm is proposed in this thesis (Algorithm 3). Contrary to the

MC algorithm used by the APM (see Figure 2.8), in the Algorithm given in 3,

the knowledge of the true user’s state is used to calculate the cost C(b
e

, e) for

considering that a belief state b
e

is erroneous or not. In this thesis, the cost

C(b
e

, e) is defined such that:

C(b
e

, e) = 1000 , (6.2)

for all b
e

2 B
e

and e 2 E. Note that for simplification purposes, in this subsection

only, b
e

and B
e

will respectively denoted as b and B.

Similarly to the MC algorithm, a SimU is implemented to interact with a vir-

tualization of the system (Chapter 4) during training. The Algorithm works as

follows. First, the assumption is made that the SimU ’s initial state s0 is empty

(i.e., it has not performed any action yet), and that the initial belief state is b0,

with b0 = b(s0) = 1. During each virtual trial, the SimU selects di↵erent actions

that are passed to the virtual ARS. Each time an action is received by the ARS,

the latter outputs an observation, which allows the belief state b to be updated.
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Each time the belief state is updated, the algorithm records the current true

state s of the SimU and makes it observable in the rest of the process. Following

the current policy, the belief state b that has just been updated is labeled with e,

which can be True or False. The algorithm then verifies whether the user state

is truly erroneous or not. If the ERM suggested the correct label for the current

belief state, it receives a negative cost. If its suggestion was not correct com-

pared to the true user’s state, it receives a positive cost. After each suggestion,

the corresponding Q(b, e) is updated. In this case, Q(b, e) is defined as the cost

of a trial starting in belief state b, the ERM selecting output e, and thereafter

proceeding according to the current policy " until the trial ends and a final belief

state is reached. At the end of each trial, the current policy is updated, consid-

ering that the label incurring the lowest cost for each belief state is the optimal

one. The whole process is repeated until convergence. Here, we can consider that

convergence occurs when the optimal labels allocated to each belief state remain

unchanged during a large number of iterations.

6.3.3 Training at varying ARS error rates

The training of a POMDP-based system can be executed at varying ARS error

rates [115]. In this work, the APM is trained around 10% and 20% ARS error rate

(see Figure 7.10). The ERM is trained at 10%, 20% and 30% ARS error rate (see

Figure 5.7). During training of the APM, SimU↵ was implemented to interact

with the virtualization of CogWatch (see Section 4.2.1). It was configured to

select its actions by itself, complying to the APM’s outputs only when the virtual

Cue Selector randomly accepts to let these outputs pass.

The ERM was trained twice. During its first training, SimU↵ was used and

had the possibility to randomly decide to follow pre-defined sequences of actions.

During its second training, SimU↵ was configured to comply with the system’s

recommendations 0% of the time and had to follow its intrinsic behavior in order

to select actions. The results of both trainings were recorded separately.
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Algorithm 3 Algorithm for ERM
Inputs:
E: set of ERM’s labels e
S: set of (valid) user’s states s
Q(b, e) : cost for selecting e when in b
B : initial set of belief states b
" : initial policy, with " : B ! E
repeat
j  0
b b0
Generate a tea trial with the Simulated User:
for Each observation output by the ARS do
j  j + 1
Update the belief state b

j

.
Record the current state s

j

of the Simulated User.
e
j

 "(b
j

) or "(b
n

)
with b

n

 nearest neighbor of b
j

in B.
if e

j

 False then

if s is in S then
Q(b

j

, e
j

)  Q(b
j

, e
j

) - C(b
j

, e
j

)
else
Q(b

j

, e
j

)  Q(b
j

, e
j

) + C(b
j

, e
j

)
end if

else

if s is in S then
Q(b

j

, e
j

)  Q(b
j

, e
j

) + C(b
j

, e
j

)
else
Q(b

j

, e
j

)  Q(b
j

, e
j

) - C(b
j

, e
j

)
end if

end if
J  j

end for
for r 2 [0, J ] do
Update the policy
"(b

r

) argmin
e

Q(b
r

, e), 8b
r

2 B, 8e 2 E.
end for

until converged
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6.3.4 Evaluation

Once the policies ⇡⇤ : B
s

! A and "⇤ : B
e

! E are obtained, the performance of

the POMDP-based Task Manager can be evaluated.

One approach to evaluation is to let real users interact with the system, as it has

been done with the MDP-based Task Manager (see Chapter 5). In the case of the

POMDP-based system, the APM and ERM were evaluated via simulation (see

Chapter 4). This enables a wider coverage of user space, and the possibility to

exhaustively analyze the main parameters that have an impact on the POMDP-

based Task Manager’s ability to fulfill its goals.

In this section, we will explain how the APM and ERM were evaluated sepa-

rately, and how they were evaluated jointly.

6.3.4.1 Trials with simulated users

The evaluation performed via user simulation was done by implementing SimU↵

and SimU� respectively described in Section 4.2.2 and Section 4.3; the latter be-

ing implemented to interact with a Virtualization of the whole CogWatch system

(see Figure 6.2). The structure of this virtualization was described in Section

4.4. This structure is similar to the one where the MDP-based Task Manager

was implemented (Figure 5.6). In Figure 6.2 we see that the POMDP-based

Task Manager is implemented instead of the MDP-based Task Manager. Note

that similarly to the evaluations run via simulation with the MDP-based system

(Section 5.4.2), no clinician could intervene to adjust the ARS observations.
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Figure 6.2: Diagram of the system used to evaluate the POMDP-based Task
Manager

Evaluation of the APM In order to evaluate the APM only, we analyzed

the impact of its best next recommendations µ⇤ on the SimUs’ success rate, at

varying ARS error rates, and without the e↵ect of the Cue Selector (i.e., Errorless

technique). Both SimU↵ and SimU� were implemented to run the experiments.

Here, SimU↵ was configured to display another behavior than the simulated user

implemented for training: During evaluation, SimU↵ was configured to follow the

APM’s outputs 100% of the time.

Two scenarios were run.

• In the first scenario, the assumption was made that the virtual ARS confu-

sion matrices were perfectly observable from the POMDP-based APM point

of view. The confusion matrices used in this scenario can be seen in Figure

5.7.
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• In the second scenario, we considered that the POMDP-based APM had

access to an approximation of the virtual ARS confusion matrix. Since the

latter is taken into account into the belief update equation (Equation 2.21),

the aim was to investigate the potential impact of the imperfect perception

of di↵erent ARS confusion matrices, on the performance of the POMDP-

based APM.

Evaluation of the ERM In order to evaluate the ERM only, the SimU↵

implemented for the APM’s evaluation was reused. We analyzed the ability of

the ERM to correctly detect when the simulated user made errors or not at

30% ARS error rate during “Black tea” (Figure 5.7). We also investigated the

potential impact of the simulated user’s behavior implemented during training on

the ERM’s performance during evaluation. The ERM trained following Algorithm

3 and implemented in the POMDP-based system was also compared with the

performance of the ERM implemented in the MDP-based system.

Joint evaluation In the joint evaluation, the SimU↵ implemented for the

APM’s evaluation is reused. The virtualization of the system was configured

to only send a prompt to the simulated user when the ERM detected an error.

When a prompt was passed to the simulated user, the latter complied with the

recommendation suggested by the APM. When no prompt was received, the

simulated user automatically chose its next action based on its intrinsic settings.

In this scenario, the POMDP-based Task Manager performance was calculated

with:

P
hits

= P
CR

+ P (µ
SC

|e
u

, e) , (6.3)

where P
CR

is the probability that the ERM correctly detects that the user did

not make an error, and P (µ
SC

|e
u

, e) is the probability that the APM retrieves a

semantically correct recommendation µ
SC

(µ
SC

2 A) given that the user made

an error e
u

and that the ERM detects that an error has been made e (e 2 E).

This scenario tests the ability of the Task Manager to select semantically correct

recommendations (see Section 1.1.2).
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6.4 Results

This section focuses on the performance of the APM and ERM implemented in

the POMDP-based Task Manager. The evaluations were run via simulation and

the results obtained were compared with the MDP-based Task Manager described

in Chapter 5. Note that in this Section, the POMDP-based APM and ERM used

the Euclidean metric to find the closest neighbor of the current belief state they

are in, if the latter was not already contained in their respective belief subspace.

By contrast, recall that the MDP-based Task Manager does not use any metric

during the evaluation.

6.4.1 APM performance only

6.4.1.1 First scenario

Here, the assumption is made that the POMDP-based Task Manager knows the

ARS confusion matrix, and each graph depicts the SimUs’ success rate at vary-

ing ARS error rate. Figures 6.3, 6.4 and 6.5 show each SimU ’s performance

when interacting with the MDP-based APM, the POMDP-based APM and when

following the APM outputs 0% of the time, for respectively “Black tea”, “Black

tea with sugar”, “White tea with sugar”.

As expected, one can see that the POMDP-based APM is more e�cient than

the MDP one at increasing ARS error rate for all types of tea. For example, at

30% ARS error rate, for “Black tea”, “Black tea with sugar” and “White tea

with sugar”, the SimU↵ success rate was respectively 96%, 55%, 39.6% when

complying to the POMDP-based APM outputs, compared to 42.6%, 26%, 23%

when complying to the MDP-based APM outputs.

As discussed in Chapter 5 Section 5.5.2, one can note that when the complexity

of the task increases, the SimUs’ success rate decreases. Indeed, when interact-

ing with the POMDP-based APM, and at increasing ARS error rate, the SimUs

have a higher probability to succeed a simple task such as “Black tea” rather

than “White tea with sugar”. For example, as noted earlier, the SimU↵ success

rate was 96% at 30% ARS error rate for “Black tea” and 39.6% during “White

tea with sugar”.
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Figure 6.3: SimU success rate at varying ARS error rate during “Black tea”.
POMDP-based APM using euclidean distance. ARS confusion matrix observable.

This can be explained by the fact that during “White tea with sugar”, each belief

state is a probability distribution over 1539 states (i.e., each time the APM re-

ceives an observation, it may believe that the user is potentially in 1539 di↵erent

states at the same time). By contrast, during “Black tea”, each belief state is a

probability distribution over 33 states only. It is known that one of the di�culties

in solving POMDPs can be attributed to the curse of dimensionality [83]. The

curse of dimensionality refers to the increase in complexity because of the number

of hidden states.

Comparing the SimUs success rate when following the APM outputs 0% of the

time and when interacting with the POMDP-based APM allows to measure the

usefulness of the system. One can see that for all types of tea, it is more advanta-

geous for SimU↵ to comply with the POMDP-based APM outputs rather than

trying to perform the tasks by itself. As highlighted in Section 5.5.2, SimU�

has a higher success rate than SimU↵ when performing the tasks by itself. Dur-

ing “Black tea” (Figure 6.3) it is advantageous for SimU� to interact with the

POMDP-based APM up to 30% ARS error rate.
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Figure 6.4: SimU success rate at varying ARS error rate during “Black tea with
sugar”. POMDP-based APM using Euclidean distance. ARS confusion matrix
observable.

At 30% ARS error rate, SimU� success rate is the same whether it interacts

with the system or performs the task by itself. During “Black tea with sugar”

(Figure 6.4), the POMDP-based APM outputs are advantageous for SimU� up

to 20% ARS error rate. At a higher ARS error rate, the POMDP-based APM

outputs begin to have a downward impact on SimU� success rate. For exam-

ple, at 30% ARS error rate, SimU� succeeds the task more often by itself (89%

success rate) than when it interacts with the POMDP-based APM (61% success

rate). At the same level of ARS error rate, SimU↵ succeeds the task 55% of

the time. In this specific case, some of the errors it made and which ultimately

led it to fail some trials were omission and perseveration errors. For example, in

some trials, SimU↵ forgot to add sugar, which is a mandatory ingredient during

“Black tea with sugar” (see E23 in Table 3.1). It also sometimes added too many

teabags in the cup or boiled water multiple times (see E09 and E11 in Table

3.1). Another important di↵erence between SimU↵ and SimU� is their level of

compliance toward the POMDP-based APM outputs. SimU↵ complies all the

time with the POMDP-based APM outputs, which is not the case with SimU�.
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Figure 6.5: SimU success rate at varying ARS error rate during “White tea with
sugar”. POMDP-based APM using Euclidean distance. ARS confusion matrix
observable.

The latter follows a predefined sequence of actions up to 50%, then complies with

the POMDP-based APM outputs (see Section 4.3). Hence, SimU� tends to have

a lower compliance to the system’s recommendations compared to SimU↵. For

example, during “Black tea”, the SimU↵ success rate was higher than SimU�

success rate. Hence, it was advantageous to always comply to the POMDP-based

APM outputs during this task. However, when the task complexity increased

(with “Black tea with sugar” and “White tea with sugar”), to not always com-

ply to the system’s outputs allowed SimU� to have a higher success rate than

SimU↵ at increasing ARS error rate. For example, during “Black tea with sugar”

(Figure 6.4), at around 14% ARS error rate, one can see that SimU� began to

outperform SimU↵; and at 20% ARS error rate, SimU� had 89% success rate

compared to 82% success rate for SimU↵. In other words, during complex tasks,

when the ARS error rate increases, as the POMDP-based APM outputs have

a higher probability to be suboptimal or incorrect, the fact that SimU� does

not comply all the time with the POMDP-based APM outputs tend to be an

advantage.
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6.4.1.2 Second scenario

In Equation 2.21, the observation model takes into account the corruption induced

by the ARS - its confusion matrix. In this scenario, the assumption is made that

the POMDP-based APM does not correctly acknowledge the corruption induced

by the ARS. In other words, the confusion matrix it takes into account in equa-

tion 2.21 is di↵erent from the real confusion matrix of the virtual ARS. This

phenomenon may occur if the ARS confusion matrix is not perfectly known, and

the Task Manager only has an approximate understanding of the type of errors

made by the ARS during execution.

In Figures 6.6 and 6.7, one can see the di↵erent confusion matrices related to

the virtual ARS and the confusion matrices as seen by the POMDP-based APM.

They are similar, however, the distribution of errors among actions is not the

same. We can also highlight that this distribution of errors is more important

in this scenario than in the previous one (see the confusion matrices used in sce-

nario 1 - Figure 5.7.) Indeed, in the previous scenario, the confusion matrices

implemented were sparser at the level of actions which are mandatory and cannot

be repeated (see Table 3.2); for example “Add teabag”, “Add sugar”, “Remove

teabag”.
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Figure 6.6: Confusion matrices as implemented in the virtual ARS. (a - ARS
error rate 7.5% (approximation used: 8%), (b - ARS error rate 20%, (c - ARS
error rate 29%. Class 1: “Fill kettle”, Class 2: “Boil water”, Class 3: “Add
teabag”, Class 4: “Pour kettle”, Class 5:“Add sugar”, Class 6:“Add milk”, Class
7: “Stir”, Class 8:“Remove teabag”, Class 9:“Pour water from jug to cup”, Class
10:“Toying with boiling water”, Class 11: ; (no action performed or detected).
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Figure 6.7: Confusion matrices as seen by the POMDP-based APM. (a - ARS
error rate 7.7%, (b - ARS error rate 20%, (c - ARS error rate 26.5%. Class 1:
“Fill kettle”, Class 2: “Boil water”, Class 3: “Add teabag”, Class 4: “Pour ket-
tle”, Class 5:“Add sugar”, Class 6:“Add milk”, Class 7: “Stir”, Class 8:“Remove
teabag”, Class 9:“Pour water from jug to cup”, Class 10:“Toying with boiling
water”, Class 11: ; (no action performed or detected).

122



Figure 6.8: SimU↵ success rate at varying ARS error rate during “Black tea”.
POMDP-based APM using Euclidean distance. POMDP-based TM has an ap-
proximation of ARS confusion matrix.

Figures 6.8, 6.9 and 6.10 show SimU↵ success rate at varying ARS error

rate, for respectively “Black tea”, “Black tea with sugar” and “White tea with

sugar”, with the POMDP-based APM using the Euclidean metric for its Nearest

Neighbor Search (NNS) technique.

One can see that for “Black tea” and “Black tea with sugar”, the POMDP-based

APM is more e�cient than the MDP one at increasing ARS error rate. However,

for “Black tea”, at 29% ARS error rate, the SimU succeeded the task more often

when ignoring the POMDP-based APM prompts. Indeed, at 29% ARS error rate,

the SimU succeeded the task 66% of the time with the POMDP-based APM,

compared to 78% success rate when it ignored the system. This is a sign of lost

of usefulness as far as the system is concerned. When performing “White tea

with sugar” in Figure 6.10, both MDP and POMDP-based APM have a similar

impact on the SimU success rate, except at 29% ARS error rate, where one can

see that the MDP outperforms the POMDP. Indeed, both MDP and POMDP

are a↵ected by the complexity of the task, as seen in the first scenario.
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Figure 6.9: SimU↵ success rate at varying ARS error rate during “Black tea with
sugar”. POMDP-based APM using Euclidean distance. POMDP-based TM has
an approximation of ARS confusion matrix.

Figure 6.10: SimU↵ success rate at varying ARS error rate during “White tea
with sugar”. POMDP-based APM using Euclidean distance. POMDP-based TM
has an approximation of ARS confusion matrix.
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Note that during “Black tea with sugar”, when interacting with the POMDP-

based system at 29% ARS error rate, the simulated user made more fatal errors

than in the case where the ARS confusion matrix was observable by the Task

Manager (see Figure 6.4 at 30% ARS error rate). Indeed, here, the simulated

user tends to make more perseveration errors (for example, repeating too many

times actions such as “Add sugar”, “Add teabag”, “Stir” and “Pour water to

cup”). The number of time such actions can be repeated during a trial before the

system considers that a fatal error has been made was given in Table 3.2. These

perseveration errors tend to occur when the ARS sends a wrong observation to the

Task Manager. For example, the simulated user performs the action “Add sugar”,

but the ARS outputs that it has just stirred. In some of these cases, the Task

Manager would then believe that some mandatory actions are missing from the

simulated user’s state, and take the decision to send the recommendation to do

an action that the simulated user has already performed. Following the previous

example, it means that the Task Manager would recommend the simulated user

to add sugar to the cup, even thought the simulated user has already performed

this action. Due to its level of compliance, the simulated user would then follow

the system’s recommendation, repeat “Add sugar” and fail the task.

6.4.2 ERM performance only

In Figure 6.11, one can see the percentage of correct detection, false positive

and false negative made by the ERM implemented in the MDP-based Task Man-

ager and in the POMDP-based Task Manager. Before being implemented in the

POMDP-based Task Manager, the ERM was trained following Algorithm 3, with

SimU↵ displaying two di↵erent behaviors (i.e., training � and training ⌘). Dur-

ing training �, SimU↵ could randomly choose to follow a predefined sequence of

actions, or select actions following its intrinsic configuration and comply to the

POMDP-based APM outputs when the latter were passed to it. During training

⌘, SimU↵ was configured to follow the system’s outputs 0% of the time; so it

performs the tasks by itself. During evaluation, SimU↵ was used and configured

to follow the APM’s outputs 100% of the time when the latter were sent to it.
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Figure 6.11: ERM evaluation: percentage of correct detection, false positive and
false negative. ARS error rate: 30%. Task: “Black tea”.

Contrary to the ERM implemented in the POMDP-based Task Manager, the

ERM implemented in the MDP-based Task Manager is not trained; it follows

specific rules explained in Section 5.2.4. As one can see in Figure 6.11, the

performance of the ERM implemented in the POMDP-based Task Manager out-

performs the one implemented in the MDP-based Task Manager. Indeed, at 30%

ARS error rate during “Black tea”, the ERM implemented in the MDP-based

system correctly detected when SimU↵ made errors or not (True positive and

True negative) 59% of the time, while the ERM implemented in the POMDP-

based Task Manager was able to correctly detect True positive and True negative

around 97% of the time when trained following training � and 96% when trained

following training ⌘.

We can note that the behavior of the simulated user implemented to train the

ERM (POMDP-based system) did not have an important impact of its ability to

detect True positives and True negatives.
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Figure 6.12: ERM evaluation: percentage of semantically correct prompts deliv-
ered to a simulated user. ARS error rate: 30%. Task: “Black tea”.

6.4.3 Joint performance

Before running the joint performance, the ERM implemented in the POMDP-

based Task Manager was trained as explained in the previous subsection 6.4.2.

The APM was trained as explained in section 6.3.1. During evaluation, SimU↵

was configured to follow the APM’s outputs 100% of the time, when the latter

were sent to it.

Figure 6.12 shows the percentage of semantically correct prompts delivered by

the POMDP-based Task Manager during “Black tea”, at 30% ARS error rate.

The notion of semantically correctness was explained in Section 6.3.4.1. It takes

into account the number of times the ERM correctly detects when the simulated

user makes an error or not, and whether the recommendation suggested by the

APM is semantically correct according to what the user has achieved so far. One

can also see that the joint utilization of the ERM and APM implemented in the

POMDP-based Task Manager outperformed the one implemented in the MDP-

based Task Manager.
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This is due to the fact that in the POMDP-based Task Manager, the POMDP-

based APM has a higher probability to output correct prompts than in the MDP-

based Task Manager under uncertainty. The other reason is related to the fact

that the ERM implemented in the POMDP-based Task Manager has a better

ability to detect True positives and True negatives than the one implemented in

the MDP-based Task Manager under uncertainty. For example, one can see that

the MDP-based Task Manager provides semantically correct prompts around 50%

of the time only, while the POMDP-based Task Manager succeeds to do so 96%

of the time.

6.5 Summary

This section described in detail the POMDP-based APM and ERM within the

Task Manager, and how these modules plan under uncertainty. We explained

how the MDP once solved can be reused within the POMDP. The POMDP

framework and the implementation of its factorization within CogWatch were

fully described. Both APM and ERM implemented in the POMDP-based Task

Manager were evaluated via user simulation, and compared with the MDP-based

system. The results showed that the ability of the POMDP to model the un-

certainty in its environment makes it more robust against noise compared to the

MDP. However, in some cases, we showed that the POMDP does not succeed to

outperform the MDP. The evaluation was run while using the Euclidean metric

for the POMDP-based APM and ERM.

In the next section, we will focus on the POMDP-based APM and run the same

evaluation with di↵erent metrics and classification techniques. The aim will be

to see how the Nearest Neighbor Search technique or classifiers such as SVM can

a↵ect the performance of the system, at varying ARS error rates. Indeed, in the

case where the POMDP-based APM updates a belief state that is not part of

its belief subspace obtained after training, its ability to retrieve an appropriate

neighbor for this belief state in order to copy its strategy, may depend on the

NNS technique implemented.
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Chapter 7

Nearest Neighbor Search in the

POMDP-based APM

7.1 Introduction

During evaluation, the POMDP-based APM may update a belief state that it

has never seen during training, and for which it has no optimal recommendation

associated. In such a case, the nearest neighbor to this belief state which already

has an optimal recommendation µ⇤ can be found, and µ⇤ will be output. This

technique consists of finding the neighbor of a given belief state and imitating its

behavior [17]. Hence, the problem of selecting the optimal recommendation for

a belief state can be seen as a classification problem. For example, in Figure 7.1,

the updated belief state b0
e

generated by the ERM belief state estimator is not

contained in M
e

, so the neighbor eb is selected instead. The ERM then associates

the recommendation of this neighbor to the current belief state.

In the previous chapter, the results focused on the performance of the POMDP-

based system when implementing the Euclidean metric to select neighbors when

necessary. However, many metric distance functions and approaches can be used

to solve the Nearest Neighbor Search (NNS) problem [1; 10]. Moreover, as high-

lighted in [2; 34; 111], the accuracy of the k-nearest neighbor (KNN) classification

will depend on the metric applied, and on the dimensionality of the points taken

into account.
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Figure 7.1: Detailed diagram of the system used to evaluate the POMDP-based
Task Manager

The aim of this chapter is to investigate the impact of the metrics used to select

the nearest neighbors on the quality of the CogWatch POMDP-based APM’s out-

puts. We will show that the POMDP-based APM’s performance does not only

depends on the ARS error rate, but also on the metric or method applied to select

neighbors during evaluation. We will compare the impact of techniques such as

Support Vector Machine (SVM), Euclidean distance, Manhattan distance, Corre-

lation distance, k-d tree and another metric-based algorithm that we developed,

and that we will referred to as SciMK.
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7.1.1 Classifier

The policy obtained after training of the Task Manager is used as a labeled

training set for the classifier implemented in this work. As discussed, the problem

can be seen as a classification problem where the system needs to find to which

class each current belief state belongs.

7.1.1.1 Support Vector Machine (SVM)

A SVM performs classification tasks by constructing hyperplanes in a multidi-

mensional space that separates cases of di↵erent class labels [59; 109]. Specifically,

in this thesis, we use Support Vector Classification with a linear kernel [38; 78]

to associate a class (i.e., µ 2 A) to each belief state updated during the evalua-

tion. In a context of multi-class classification, SVM was also implemented by the

authors in [111] and compared to other techniques.

7.1.2 Metrics

The policy obtained after training of the POMDP-based APM is used as a set

of potential neighbors. Each time a belief state is updated, if it is not contained

in this set, a metric is used to compare this belief state with all the belief states

contained in the set (i.e., brute-force search). Among the main metric distance

functions that exist [1], we implemented: the Euclidean distance, the Manhattan

distance [56], and the correlation distance [77].
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7.1.3 Tree based approach structure

7.1.3.1 K-d tree

Given a set of belief points, k-d tree aggregates distance information, acknowledg-

ing the fact that if point A is very distant from point B, and point B is very close

to point C, then point A is very far from point C, without having to calculate the

distance between A and C. Hence, k-d tree allows to reduce the computational

cost related to brute-force search, by reducing the number of distance calcula-

tions to compute in order to find a neighbor. A more detailed description of the

algorithm can be found in [8]. In this work, when k-d tree is implemented, the

Euclidean metric is used to calculate distances.

132



7.2 SciMK

SciMK is a novel algorithm for comparing belief states. It measures the similarity

of two belief states by comparing the underlying patterns of their MDP recom-

mendations. A belief state is a probability distribution over the MDP states.

Each MDP state is associated with an optimal recommendation µ⇤ after solving

the MDP (see Chapter 5). Hence each belief state can be transformed into a

corresponding probability distribution over MDP recommendations. A unique

numerical label (NL) is then associated to each MDP recommendation to facil-

itate the comparison between vectors. The motivation for SciMK is that the

similarity between two belief states could be based on the underlying distribu-

tion over recommendations rather than MDP states, because the purpose of the

process is to allocate recommendations to unseen belief states.

For example, in Figure 7.2:

• Step (0), the belief state is represented as a probability distribution b over

MDP states.

• Step (1), the probability distribution over MDP states b is sorted in de-

scending order of probabilities.

• Step (2), the belief state is represented as a probability distribution b̃ over

the MDP recommendations corresponding to each MDP state from step

(1).

• Step (3), the belief state is represented as a vector v(b̃) of numerical labels

(i.e., weights), each of the latter corresponding to a specific MDP recom-

mendation. The vector v(b̃) is referred to as a “NL vector”.

In the example given in Figure 7.2, step (3), ⇡⇤(state2) = ⇡⇤(state
N

) and their

corresponding Numerical Label is 10.
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Figure 7.2: Belief state transformation.
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A computational advantage of SciMK is that the space of NL vectors can

be partitioned in a way that can speed up the KNN process. The partitioning

process works as follows:

1. Each belief state contained in the belief subspace is transformed into its

corresponding NL vector.

2. The space of NL vectors is partitioned into equivalence classes. NL vectors

are grouped into the same equivalence class if, in step 2 (Figure 7.2), their

maximum probabilities are associated with the same MDP recommenda-

tion.

The partitioning can be done o✏ine, before evaluation. During evaluation, if

a newly updated belief state b is not contained in the belief subspace, SciMK

searches for an appropriate neighbor in the space of NL vectors, by following

those major steps:

1. The belief state b is sorted in descending order of probabilities. All states

which have a probability zero are removed.

2. The belief state is transformed into its corresponding probability distribu-

tion over MDP recommendations b̃ (see step (2) in Figure 7.2).

3. The MDP recommendation µ
p

(b̃), where µ
p

(b̃) = argmax
µ2A b̃(µ), is recorded.

Here, µ
p

(b̃) is the MDP recommendation which has the highest probability

in b̃. It is also the MDP recommendation associated to the state s with the

highest probability in b.

4. The transformed belief state b̃ is mapped to its NL vector v(b̃).

5. The equivalence class h in the space of NL vectors that v(b̃) belongs to is

selected. From a computational point of view, the space of NL vectors is a

hash table, where recommendations are the keys and sets of vectors are the

values. To select the cluster h that corresponds to v(b̃) means to retrieve

the set of NL vectors which had their highest probability associated to µ
p

(b̃)

when they were probability distributions over MDP recommendations.
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6. The distance between the NL vector v and each vector u in h, when u and v

have the same dimension, is obtained using the Euclidean norm kv�uk2. Let
dim(v) be the size of vector v. If dim(v) 6= dim(u) and |dim(v)�dim(u)| <
�, where � is a threshold to be chosen, the size of the vector with the

highest dimension (v or u) is reduced, so v and u have the same dimension.

When the dimensionality of a vector needs to be reduced, the algorithm

successively removes from it the actions that had the lowest probabilities

when they were probability distributions over MDP recommendations (see

step (2) in Figure 7.2). If |dim(v)� dim(u)| � �, then u is rejected and is

not considered as a potential neighbor that could be selected.

7. The neighbor u
p

is selected such that u
p

= argmin
u2hkv � uk2.

8. The belief state b
p

which, once transformed, created the neighbor u
p

, is

retrieved from the belief subspace B.

9. The POMDP recommendation µ⇤, where µ⇤ = ⇡⇤(b
p

) is selected by the

POMDP-based APM and sent to the user or simulated user.

For example, in Figure 7.2 suppose that ⇡⇤
M

(state1) =“add teabag” (i.e., MDP

optimal recommendation). Since state1 has the highest probability in the belief

state, the NL vector in step (3) is only compared to other NL vectors whose

highest probability was also allocated to “add teabag” in step (2).

Note that the belief states corresponding to the vectors of NLs contained in h

are not all associated to the same optimal recommendation found during training

of the POMDP-based APM. In other words, the MDP recommendation which

has the highest probability in b̃ does not necessarily correspond to the POMDP

recommendation associated to b. SciMK does not come down to consider that

⇡⇤(b) = µ
p

(b̃).
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7.3 Evaluation

This section focuses on the performance of the APM implemented in the POMDP-

based Task Manager, at varying NNS techniques and ARS error rates. The

evaluations were run via simulation and the results obtained were compared with

the MDP-based Task Manager described in Chapter 5. The policy ⇡⇤ : B !
A obtained via grid-based approach is reused by the POMDP-based APM (see

Section 6.3).

7.3.1 Trials with a simulated user

The evaluation performed via user simulation was done by implementing SimU↵

described in Section 4.2.1. SimU↵ was configured to follow the APM’s outputs

100% of the time, and was implemented so it could interact with a Virtualization

of the whole CogWatch system (see Figure 6.2). The structure of the system is

similar to the one where the MDP-based Task Manager was implemented during

evaluation (Figure 5.6). Similarly to the evaluations described in Chapter 6, no

clinician was allowed to intervene to correct the ARS outputs.

7.3.2 Evaluation of the APM

Similarly to the evaluation explained in Chapter 6 Section 6.3.4.1, in order to

evaluate the APM only, we analyzed the impact of its best next recommendations

µ⇤ on the simulated user’s success rate, at varying ARS error rates, but also at

varying NNS techniques, and without the e↵ect of the Cue Selector (i.e., Errorless

technique).

The scenarios described in Section 6.3.4.1 were re-run at varying NNS techniques.

A third scenario was implemented in order to verify that SciMK does not come

down to consider that ⇡⇤(b) = µ
p

(b̃).
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7.4 Results

7.4.1 APM performance only

7.4.1.1 First scenario

In the first scenario, the assumption is made that the virtual ARS confusion ma-

trices are perfectly observable from the APM’s point of view (see Figure 5.7).

In Figure 7.3, one can see that the impact of the NNS techniques on the SimU

success rate were similar, except for SciMK and the correlation distance, which

allowed the SimU to succeed “Black tea” 100% of the time at varying ARS error

rates.

During “Black tea with sugar”, Figure 7.4, one can note that the choice of the

NNS technique influenced the ability of the POMDP-based APM to select the

appropriate recommendation for the SimU . For example, at 30% ARS error rate,

when the POMDP-based APM used the Euclidean metric to select neighbors, it

succeeded to make the SimU correctly complete its task 55% of the time. By

contrast, when SVM or SciMK were implemented, the SimU respectively suc-

ceeded its task 74% and 83% of the time.

The same phenomenon occurs during “White tea with sugar”, where the sim-

ulated user’s success rate also depends on the NNS technique implemented. In

Figure 7.5, one can see that SciMK outperformed the other methods. As high-

lighted in Chapter 6 Section 6.4, the size of the belief states has an impact on the

ability of the POMDP-based APM to select appropriate recommendations. The

more complicated is the task, the more the belief states’ size increases, the more

complicated it is for the POMDP-based APM to correctly guide the simulated

user.

138



Figure 7.3: SimU ↵ success rate at varying ARS error rate and NNS techniques.
ARS confusion matrix is observable. Task: “Black tea”.

Figure 7.4: SimU ↵ success rate at varying ARS error rate and NNS techniques.
ARS confusion matrix is observable. Task: “Black tea with sugar”.
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Figure 7.5: SimU ↵ success rate at varying ARS error rate and NNS techniques.
ARS confusion matrix is observable. Task: “White tea with sugar”.

7.4.1.2 Second scenario

In the second scenario, the assumption is made that the virtual ARS confusion

matrices are not fully known by the APM (see Figure 6.6 and 6.7). Figures

7.6, 7.7, 7.8 show SimU↵ success rate performing “Black tea”, “Black tea with

sugar” and “White tea with sugar”. The horizontal line labeled “0% compliance”

corresponds to the SimU success rate when receiving no prompts. The results

show the impact of the NNS techniques and SVM that were applied by the APM

to choose the best next recommendation that should be retrieved given the cur-

rent belief state. One can see that the best SimU success rates are consistently

achieved with SciMK. For example, during “Black tea with sugar”, at 29% ARS

error rate, when SciMK is used, the simulated user makes significantly fewer per-

severation errors than when the Euclidean distance is implemented. Instead of

repeating the same recommendations as discussed in Chapter 6, Section 6.4.1.2,

when SciMK is implemented the Task Manager tends to propose alternative rec-

ommendations to the simulated user, which then prevents the occurrence of too

many task failures. Indeed, SciMK makes the Task Manager more robust toward

incorrect observations sent by the ARS.
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Figure 7.6: SimU ↵ success rate at varying ARS error rate and NNS techniques.
POMDP-based TM has an approximation of ARS confusion matrix. Task: “Black
tea”.
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Figure 7.7: SimU ↵ success rate at varying ARS error rate and NNS techniques.
POMDP-based TM has an approximation of ARS confusion matrix. Task: “Black
tea with sugar”.

Figure 7.8: SimU ↵ success rate at varying ARS error rate and NNS tech-
niques. POMDP-based TM has an approximation of ARS confusion matrix.
Task: “White tea with sugar”.

142



The Figures also show that, given a new belief state, when the Euclidean and

Correlation distances, and SVM were used to output a prompt, the latter had

a similar impact on the SimU success rate at varying ARS error rates, except

during “White tea and sugar”. Figure 7.8 shows that SVM was more advan-

tageous than the Euclidean distance at 8% ARS error rate, but this advantage

disappeared at higher ARS error rate. The POMDP-based system outperformed

the MDP except in Figure 7.8, when using the Euclidean distance or SVM at 29%

ARS error rate. In this specific case, the POMDP-based APM made the SimU

fail the task more often than when the SimU performed it without guidance (i.e.,

0% compliance) or when guided by the MDP-based system. When performing

“White tea with sugar” without guidance, the SimU success rate was 10%, while

it was close to 0% when the POMDP-based APM selected its neighbors with the

Euclidean distance or SVM.

Figures 7.6, 7.7, 7.8 also show the impact of the complexity of the task on the

ability of the APM (MDP and POMDP) to guide the SimU properly. Table 7.1

gives a summary of the domain for each task: |B| corresponds to the number of

belief states contained in the subspace after training, |O| the number of observa-

tions the Task Manager can receive, |A| the number of recommendations µ the

Task Manager can output, and |b| the number of underlying MDP states compos-

ing the belief state. In other words, in the case of “White tea with sugar”, each

time the SimU selects an action, the POMDP-based APM potentially considers

that the SimU is in 1539 di↵erent states at the same time.

Table 7.1: Tasks properties
Task |B| |O| |A| |b|

Black tea 199 10 10 33
Black tea with sugar 993 10 10 205
White tea with sugar 3982 10 10 1539
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Moreover, in the case of brute force nearest neighbor search, the POMDP-

based APM may have to look for a neighbor for a given belief state among 3982

candidates. The more the belief state dimensionality increases, the more di�cult

it is for the APM to output correct prompts. One solution to this issue would

be to focus on reducing the size of the MDP state space and at the same time

the size of the belief states, by merging similar MDP states based on the pattern

of actions they are composed of. As explained in Section 5.2.2, the MDP state

space is composed of all sequences of actions that are considered to be “valid”,

and which could lead to a successful completion of the task. Thus, there are re-

dundancies within the state space, with states like ( “add teabag into cup”, “add

water to the kettle”) and (“add water to the kettle”, “add teabag into cup”) that

could be merged together. This dimensionality leverage of the MDP state space

may decrease the computational burden from the POMDP-based Task Manager

side, which may improve its performance.

Figure 7.9 shows the main di↵erences between SciMK and the Correlation dis-

tance. Consider the example of a SimU trying to make a “Black tea”, and having

performed the sequence of actions “add water in the kettle”, “add teabag into

cup”, “boil water”, “pour water from kettle to cup”, “stir” (N.B., this history

of actions is not observable from the Task Manager’s point of view). When the

observation of the last action of the SimU history is sent to the Task Manager,

the latter updates its belief state, and generates b-test. In the example, this belief

state is not contained in the belief subspace B, thus the POMDP-based APM

must find a neighbor.

When the APM uses the Correlation distance to do so, it will tend to select a

neighbor which has a similar probability distribution over the MDP states than

b-test, see Figure 7.9 - (3). This is not the case for SciMK, see Figure 7.9 - (1).

After belief state transformation using the technique described in Section 7.2,

SciMK selects a neighbor based on the pattern of NL similarities, see Figure 7.9

- (2). As seen in Figures 7.6, 7.7, 7.8, SciMK allows the APM to output correct

recommendations more often. In Figure 7.9, when using the Correlation distance,

the APM outputs “stir”, which is not a semantically correct recommendation, as

the SimU has already done it, see Figure 7.9 - (4).
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However, with SciMK, the APM outputs the optimal next best recommendation

the SimU should follow based on its current state: “remove teabag”. Note that

if the SimU makes actions that are not semantically correct, this will not nec-

essarily lead to an immediate failure (see Table 3.2). However, it increases the

probability that the SimU may fail the task afterward.

When comparing the results showed in Figures 7.6, 7.7 and 7.8, with those de-

picted in Figures 7.3, 7.4 and 7.5, it is also possible to note that it is easier for

the POMDP-based Task Manager to provide the appropriate recommendations,

when it has access to the confusion matrices implemented by the virtual ARS,

and when these confusion matrices are sparse (i.e., at the level of actions which

are mandatory and cannot be repeated - see Table 3.2). For example, in “White

tea with sugar”, at 20% ARS error rate, with SciMK, the simulated user’s suc-

cess rate is 83% when the POMDP-based Task Manager has access to the ARS

confusion matrix, and when the latter is sparse. By contrast, also with SciMK

and at 20% ARS error rate, the simulated user’s success rate is only 58% when

the POMDP-based Task Manager has an approximation of the ARS confusion

matrix, and when the latter is less sparse than the one used in 7.5.
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Figure 7.9: Comparison of neighbors selected by di↵erent NNS techniques. (1)
and (3): Comparison of probabilistic distributions. (2) and (4) : Comparison of
NLs vectors.
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7.4.1.3 Third scenario

In order to show that, for a given belief state, SciMK does not come down to con-

sider that ⇡⇤(b) = µ
p

(b̃), a third scenario was run. In this scenario, we made the

assumption that the POMDP-based APM had an approximate understanding of

the ARS’s confusion matrix. The true confusion matrix of the ARS was as shown

in Figure 7.10. The confusion matrix taken into account by the POMDP-based

APM was as in Figure 7.11. These confusion matrices were chosen to simulate

the case where the ARS makes more errors than what the POMDP-based APM

believes it does (i.e., virtual ARS error rate: 24.1%, ARS error rate as seen by

the Task Manager: 19.7%). This choice is also justified by the fact the confusion

matrix of the real ARS is currently unknown, and the POMDP-based APM can

only base its process on an approximation.

In this case, Figure 7.12 depicts the impact of the POMDP-based APM on the

SimU↵ success rate during “Black tea with sugar”, at varying NNS techniques.

The technique which consists in considering that ⇡⇤(b) = µ
p

(b̃) (see Section 7.2)

is referred to as the Most Likely State (MLS) policy [19]. With this heuristic, the

state with the highest probability is found, and the APM selects the recommen-

dation that would be optimal for that state in the underlying MDP.

We also implemented the method referred to as “Sum MLS”. With this method,

the probabilities of each similar recommendation in b̃ are summed, and the APM

selects the recommendation that has the highest probability after the sum.

One can see that SciMK outperformed all other techniques. When implemented

by the POMDP-based APM, SciMK allowed the POMDP-based APM to make

the SimU succeed its task 68% of the time. By contrast, when “MSL” is im-

plemented, the SimU succeeds only 52% of the time, and 62% of the time with

“Sum MSL”.
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Figure 7.10: Confusion matrix as implemented in the virtual ARS. ARS error
rate 24.1%. Class 1: “Fill kettle”, Class 2: “Boil water”, Class 3: “Add teabag”,
Class 4: “Pour kettle”, Class 5:“Add sugar”, Class 6:“Add milk”, Class 7: “Stir”,
Class 8:“Remove teabag”, Class 9:“Pour water from jug to cup”, Class 10:“Toying
with boiling water”, Class 11: ; (no action performed or detected).

Figure 7.11: Confusion matrix seen by the POMDP-based APM. ARS error rate
19.7%. Class 1: “Fill kettle”, Class 2: “Boil water”, Class 3: “Add teabag”, Class
4: “Pour kettle”, Class 5:“Add sugar”, Class 6:“Add milk”, Class 7: “Stir”, Class
8:“Remove teabag”, Class 9:“Pour water from jug to cup”, Class 10:“Toying with
boiling water”, Class 11: ; (no action performed or detected).
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Figure 7.12: SimU success rate. ARS confusion matrix implemented Figure 7.10.
ARS confusion matrix seen by POMDP-based APM: Figure 7.11. Task: “Black
tea with sugar”.
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7.5 Summary

In this chapter, the impact of di↵erent NNS techniques on the system’s perfor-

mance was analyzed. A specific metric-based algorithm referred to as SciMK

was introduced and the results showed its ability to enable the POMDP-based

APM to be more robust toward noise and task complexity than other techniques.

During evaluations, we highlighted the fact that the choice of the metric used

during NNS has an impact on the POMDP-based APM’s performance. More-

over, we saw that the dimensionality of the belief states in complex task such as

“White tea with sugar” make it hard for the POMDP-based APM to plan under

uncertainty. We discussed the possibility of applying a second MDP state space

reduction technique in order to potentially tackle this issue.
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Chapter 8

Conclusion

8.1 Thesis summary

This thesis has examined the challenge of implementing an artificial intelligent

planning module, referred to as “Task Manager”, in an assistive/rehabilitation

system for cognition named CogWatch. CogWatch was designed to provide in-

structional cues to stroke survivors during their activities of daily living. In order

to fulfill its goal, the system observes the user during a given task, detects the

actions made by the user via an Action Recognition System (ARS), and infers

what cues to send in order to assist him or her. In this work, we focused on how

a Task Manager can be modeled and implemented in such a system, so it can

guide users while they are preparing hot drinks. Hence, the core of this thesis

was the Task Manager.

In CogWatch, the aims of the Task Manager are to find what are the best actions

the user should follow (i.e., recommendations) in order to successfully continue

or finish a task, and to detect when the user’s behavior is erroneous. We exam-

ined di↵erent models the Task Manager could be based on, discussed how these

models could be implemented, then specifically focused on the implementation

of a Markov Decision Process (MDP) and Partially Observable Markov Decision

Process (POMDP) based Task Manager.

MDPs and POMDPs provide a rich framework for sequential action/recommendation-

planning. Contrary to the MDP, the POMDP can model uncertainty in the

recommendations e↵ects and uncertainty in the user’s environment. In realis-
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tic situations where uncertainties are taken into account, POMDPs are known

to be more advantageous than MDPs. In the case of CogWatch, realistic situ-

ations refer to the fact that the system’s ability to make mistakes is taken into

account. Indeed, when observing a user during a task, CogWatch may generate

a wrong interpretation of the user’s behaviors and send this false information to

the Task Manager. Whether the information received is correct or incorrect, the

Task Manager’s goal remains the same: it needs to properly guide users, even

under uncertainty. In such a case, the POMDP-based Task Manager is expected

to perform better than the MDP-based Task Manager. The work presented in

this thesis explained how both MDP and POMDP models can be adapted to take

into account the specificities of a system like CogWatch, and how the POMDP

can be solved via a grid-based approach.

When implementing a POMDP-based Task Manager, the latter maintains a prob-

ability distribution over states, called “belief state” during each interaction with

the user. Each time the Task Manager receives new information about the user’s

behavior, it updates its belief state, and at the same time its interpretation of

what the user has achieved so far in the task. This thesis proposed an e�cient

state and belief state representation based on the underlying MDP state space.

One of the goals of the Task Manager (MDP and POMDP) is to find the opti-

mal recommendation the user should follow through the task. In the case of the

POMDP, recommendation selection is based on each belief state updated, and is

determined by the policy found by the Task Manager after training. This process

of learning the optimal policy is called “policy optimization”. A grid-based ap-

proach was implemented in order to solve the POMDP and obtain such a policy.

It is an approximate method, which allows the system to learn how to act opti-

mally only for a set of belief states. In other words, the method allows to find a

mapping between a finite set of belief states and optimal recommendations. Many

other approaches and approximate methods exist, such as point-based algorithms

(see for example [83]). Contrary to point-based algorithms, the approach chosen

may rely on Nearest Neighbor Search (NNS) techniques in order estimate the

appropriate recommendation to select for a belief state not part of the mapping

obtained after training. Di↵erent NNS techniques were implemented in order to

analyze their impact on the POMDP-based Task Manager’s performance when
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interacting with a simulated user. This thesis also proposed and detailed how

simulated users can be designed based on real user’s data, and how a virtualiza-

tion of the whole system can be built in order for this simulated user to interact

with it.

Another goal of the Task Manager (MDP or POMDP) is to detect errors in the

user’s behavior. A rule-based approach was applied to the MDP-based Task Man-

ager, taking into account the definition of errors users with cognitive deficits tend

to make during activities of daily living. In the case of the POMDP-based Task

Manager, an algorithm was proposed to enable error detection under uncertainty.

Both methods were compared during a specific task.

Results showed that stroke survivors who had di�culties going through their

tasks by themselves, made fewer errors when they were guided by CogWatch.

The limitations of the MDP-based system under uncertainty were analyzed. As

expected, results showed that most of the time, the POMDP-based system has a

better ability to cope with uncertainty in its inputs than the MDP-based system.

Thus, the focus was put on the impact of NNS techniques on the POMDP-based

system performance. We found that the novel algorithm presented in this thesis

constantly outperformed the other methods it has been compared with. This

novel algorithm, referred to as “SciMK”, allowed the POMDP-based Task Man-

ager to select appropriate recommendations more often than other methods, at

increasing ARS error rate.
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8.2 Open problems and Future work

This research can be extended in di↵erent directions:

• The MDP-based Task Manager was evaluated with real participants and via

user simulation, while the POMDP-based Task Manager was evaluated via

user simulation only. This was due to the unavailability of real participants

when the POMDP-based system was implemented. Thus, a part of future

work should be dedicated to the evaluation of the POMDP-based system

with stroke survivors. The main advantage of evaluation via simulation was

the possibility to go through an extensive analysis of the POMDP-based

Task Manager’s performance at varying Action Recognition System’s error

rates and NNS techniques.

• A grid-based approximation approach was taken to solve the POMDP, and

di↵erent NNS techniques were implemented in order analyze the limits of

this method at varying ARS error rates. It could also be interesting to

compare our grid-based approximation approach to point-based approxi-

mation approaches (for example, PBVI [83] or Perseus [103]) in the context

of CogWatch.

• In this work, we discussed about the fact that the confusion matrix of

the real ARS is unknown. To simulate this situation, the POMDP-based

Task Manager was evaluated taking into account an approximation of this

confusion matrix. Currently, all confusion matrices assume that when the

user does not make an action, no observation is output by the ARS. Hence,

another matter for future research could be related to the ability of the

Task Manager to act when the user makes an action, but the ARS outputs

no observation. One solution could be to model timing in users’ behaviors

and allow the Task Manager to detect when an action is more likely to have

been performed even if the ARS does not communicate any information

about it.

154



• In Chapter 5, we discussed the current impossibility to robustly compare the

performance of stroke survivors with the performance of the simulated users

implemented in the virtual CogWatch system. This matter could be tackled

in the future after running new experiments, which could give some insights

about the validity of the methodology used to design the simulated users

and the virtual environment. In this case, the notion of real and virtual

users’ performance could be measured by taking into account the number

and type of errors made during the tasks, and users’ success rate with and

without the CogWatch system. For a robust analysis, both real users and

simulated users should go through the same experiments. For example,

real and simulated users should perform the same number of trials during

evaluation. They should also share a common level of compliance toward

the system’s recommendations in order to measure the system’s impact of

their success rate. Moreover, both simulated and real users should interact

with the same configuration of the CogWatch system (i.e., same ARS error

rate, same EL or EF technique applied).

• Currently, the recommendations the Task Manager can provide correspond

to the top level of the actions tree depicted in Figure 2.1. In the future,

it would be interesting to increase the systems recommendations level of

detail. It would then allow the system to provide more specific information

about what the user should do to correct his or her behavior. For example,

in the case where the system would detect that the user did not pour enough

water in the cup, the system would then retrieve nuanced recommendations

such as Add some more water. We can also imagine the case where the ARS

would provide more detailed information about the users actions, which

would allow the Task Manager to detect more specific errors (for example,

when the user holds an object with an incorrect grip).

• A more e�cient algorithm could be implemented in order to reduce the

dimensionality of the MDP state space. Currently the state space reduction

technique focuses on not allowing incorrect sequences of actions to be part

of the state space. However, even with this technique, when the number of

mandatory actions to be made during a task increases, the size of the state
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space may increase rapidly. This is due to the fact that some mandatory

actions such as “Add sugar” or “Add milk” in “White tea with sugar” can

be performed at any moment during the task. Indeed, in such a task, these

actions have no sequential constraint (for example it is possible to add milk

at the very end, or when the cup is still empty). Currently, the technique

implemented takes into account all the possible combinations of correct

sequences of actions, even those which are equal as far as the completion

of the task is concerned (for example, (“Add water in the kettle”, “Boil

water”, “Add milk”) and (“Add water in the kettle”, “Add milk”, “Boil

water”)). We can imagine an extended technique that would take into

account actions which are mandatory and have no sequential constraint.

For example, this new technique would check whether actions such as “Add

teabag”, “Add sugar” or “Add milk” are part of the user’s state during

tasks where they are mandatory, without keeping any information about

when they have been performed. Indeed, this specific information does not

a↵ect whether the trials are correct or not.

• Finally, it would be interesting to compare the performance of the Cog-

Watch Task Manager with other assistive systems’ Task Manager, such as

COACH [14] and TEBRA [79]. Indeed, CogWatch, COACH and TEBRA,

all focus on sequential activities of daily living, and aim to provide appro-

priate guidance to users with cognitive impairments. They also share a

similar architecture as described in Figure 1.1. For example, TEBRA and

CogWatch used a camera-based monitoring system, and sensorized objects

in the users’ environment in order to capture information about their be-

havior during the tasks [73; 79]. The latest versions of COACH [36] and

CogWatch both implement a POMDP-based Task Manager in order to take

into account uncertainties related to the users actions (see Chapter 6). Each

system also has its own specificities that make them unique. For example,

in COACH and CogWatch the cue generation module (see Figure 1.1) is

a stand-alone component of the system, while in TEBRA, it has been de-

signed as a sub-component of the Task Manager [14; 79].
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However, more important and intrinsic di↵erences exists between these sys-

tems, which currently make the comparison of their Task Manager practi-

cally infeasible. Indeed, CogWatch, TEBRA and COACH have been imple-

mented to model di↵erent tasks (i.e., tea-making, teeth-brushing and hand-

washing); and their performance during these tasks have been assessed in

di↵erent ways by their authors. Moreover, the Task Manager performance

highly depends on the system’s ARS error rate, which is also di↵erent in

all systems. Hence, in order to compare the Task Manager developed for

CogWatch with those designed for other systems, a common specific task

should be chosen (i.e., teeth-brushing, hand-washing or tea-making), and

the code related to all other components part of the systems should be

made available, so the CogWatch Task Manager could be implemented in

the other system’s environment before being evaluated by users with simi-

lar cognitive deficits. The development of a common framework will make

it possible to have a better understanding of the strengths and limitations

of assistive systems for cognition, and help in the improvement of novel

techniques that could be beneficial in the field.
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